
Unifying Requirements and Code: An Example

Alexandr Naumchev1(B), Bertrand Meyer1,2, and Victor Rivera1

1 Software Engineering Laboratory, Innopolis University, Innopolis, Russia
{a.naumchev,b.meyer,v.rivera}@innopolis.ru

2 ETH Zürich, Zurich, Switzerland
http://university.innopolis.ru/

Abstract. Requirements and code, in conventional software engineering
wisdom, belong to entirely different worlds. Is it possible to unify these
two worlds? A unified framework could help make software easier to
change and reuse. To explore the feasibility of such an approach, the
case study reported here takes a classic example from the requirements
engineering literature and describes it using a programming language
framework to express both domain and machine properties. The paper
describes the solution, discusses its benefits and limitations, and assesses
its scalability.

Keywords: Software engineering · Requirements specifications · Mul-
tirequirements · Eiffel

1 Introduction

According to the standard view in software engineering, the tasks of require-
ments, design and implementation require distinct techniques and produce dif-
ferent artifacts.

What if instead of focusing on the differences we recognized the fundamental
unity of the software construction process through all its stages? The principle of
seamlessness (see e.g. [1]) follows from this assumption that the commonalities
are more fundamental than the differences, and that it pays to use the same
set of concepts, notations and tools throughout the development, from the most
general and user-oriented initial steps down to the most technical tasks.

A consequence of the seamlessness principle is that requirements are just
another software artifact, susceptible to many of the same techniques as code and
design. In particular, assuming a modern programming language with powerful
abstraction facilities, the requirements can be written in the same notation as
the program.

The notion of multirequirements [2] adds to this principle the idea of using
several interleaved descriptions: natural language, graphical, and formal (Eiffel
text) serving as the reference.

How realistic is the seamless multirequirements approach, what are its limits,
and what benefits does it bring? To help answer this question, the present article
takes the example used in a classic paper of the requirements literature, Jackson’s
c© Springer International Publishing Switzerland 2016
M. Mazzara and A. Voronkov (Eds.): PSI 2015, LNCS 9609, pp. 233–244, 2016.
DOI: 10.1007/978-3-319-41579-6 18

234 A. Naumchev et al.

and Zave’s zoo control system, and describes it entirely in a seamless style,
including the formal constraints that form a key part of the original article.

The goal of the paper is not advocacy but experimentation. The advocacy
is present in the earlier references cited above. We practice a seamless approach
to software construction and consider it fruitful, but the present discussion does
not attempt to establish its superiority; rather it starts from the seamlessness
hypothesis - in particular, the hypothesis that a single notation, Eiffel, is applica-
ble to requirements analysis just as much as to programming - and applies this
hypothesis fully and consistently to a significant example. While we draw some
conclusions, the important part is the result of the experiment as presented here,
enabling readers to form their own conclusions as to the benefits and limits of
the approach.

Section 2 briefly explains why it is interesting to put into question the tra-
ditional separation between software development tasks. Section 3 proposes an
approach to unify software development tasks by combining the approaches
described in [2,3]. Section 4 introduces some theoretical and technical back-
ground. Section 5 presents the approach applied to an example. Finally, Sect. 6
concludes and mentions future work.

1.1 Summary of Contributions

Experimentation mentioned at the end of Sect. 1 resulted in the following key
outcomes.

– An evidence suggesting that it is possible to use Multirequirements approach
[2] for describing cyber-physical systems like zoo turnstile controller. At the
same time, different types of exemplar statements goes far beyond just the
relational statements used in [2].

– An evidence suggesting that a real programming language notation may be
even more expressive than most of the popular formal notations. Section 5.5
contains all the details.

– An example showing how object orientation helps to effectively manage com-
plexity in specifications. The approach used in [3], where the specification is
basically a linear list of statements, does not scale to the case of large sys-
tems, when the number of requirements is too big. Object orientation provides
a way to relate the conceptual objects so that the resulting specification will
be scattered across the classes in an intuitive way.

2 The Drawbacks of Too Much Separation of Concerns

Historically, there was a reason for emphasizing the distinction between devel-
opment tasks. The goal was to highlight the specific needs of requirements and
design, moving away from the “code first, think later” way of building software.
But as the precepts of software engineering have gained wide acceptance and
programming languages have moved from low-level machine-coding notations to

Unifying Requirements and Code: An Example 235

descriptive formalisms with high expressive power, the reverse approach is worth
exploring: instead of emphasizing the differences, show the fundamental unity of
the software process.

The traditional approach is subject to five criticisms.

(i) Insufficient information. Requirements analysts do not know what details
are important for developers. They are good at expressing customer needs
in a form the customer is ready to sign, but they typically do not know
what is implementable and what is not. [4] discusses some typical flaws of
natural language requirements specifications.

(ii) Lack of communication. When developers see ambiguous or contradictory
elements in the requirements, they will not always go back and ask, but
will often interpret the requirement according to their own understanding,
which may or may not coincide with user wishes.

(iii) Impedance mismatches [1]. The use of different formalisms at different
stages requires translations and creates risks of mistakes.

(iv) Impediment to change. With different formalisms, it is difficult [1] to ensure
that a change at one level is reflected at other levels.

(v) Impediment to reuse. The presence of requirements as a document specific
to each project may mask the commonality between projects and make the
team miss potential reuse of existing developments.

3 A Seamless Approach

3.1 Unifying Processes

Consideration of the problems listed above leads to trying a completely different
approach, which recognizes that beyond the obvious differences between tasks of
software development they share fundamental needs, concepts, principles, tech-
niques. In particular, they can be addressed through a common notation. Mod-
ern programming languages are not just coding tools to talk to a machine, but
powerful tools for expressing abstract concepts and modeling complex systems.
The Eiffel notation used in the present work uses object-oriented principles of
classes, genericity, polymorphism and inheritance, which have proved adept at
describing sophisticated systems (independently of their technical programming
aspects) in a modular, flexible, reusable and evolutionary way. Thanks to the
presence of Design by Contract mechanisms, it can describe not only the struc-
ture of systems but their abstract semantics.

3.2 The Hypothesis

The hypothesis explored in this paper, in light of the above analysis, is that it
is possible to design a software development process that:

(i) Uses for requirements the same notation and tools as for design and imple-
mentation.

236 A. Naumchev et al.

(ii) Links the resulting documents (requirements, design, code) together, ensur-
ing a major goal of software engineering: traceability.

(iii) Makes it possible to prove, formally, the correctness of the implementation
against the specification.

(iv) Supports extendibility by ensuring that small changes in the requirements
will cause a proportionally small change in the design and the implementa-
tion.

3.3 How to Test the Hypothesis

The present work relies on the following scenario for testing the preceding
hypothesis at least in part:

(i) Propose a candidate process.
(ii) Select examples and apply the process.
(iii) Analyze the outcome.

[2] sketches such a process, based on using object orientation for representing the
relationships between the conceptual objects in the requirements document. The
basic idea was to have an object-oriented code along with the natural language
description of a requirement. It is also possible to represent each code fragment
graphically as a BON diagram [5].

[2], however, uses as example the very notion of requirements process. In
other words, it is self-referential. This confers (we hope) a certain elegance to
the example, but makes it look artificial. In the present paper we take a more
standard example, coming from a classic requirements paper by Jackson and
Zave [3].

More precisely, the requirements from the example are represented using the
model-based [6] contracts-equipped [7] object-oriented [1] notation (Eiffel).

4 Theoretical and Technical Background

4.1 Design by Contract

Work [7] gives a comprehensive description of Design By Contract. Design By
Contract integrates Hoare-style assertions [8] within object-oriented programs
[1] constraining the data that run time objects hold. This approach equips each
class feature (member) with a predicate expression, that specify its behavior, in
the form of pre- and postcondition. The postcondition has to hold whenever the
precondition held and the feature finished its computation before the program
execution process invokes the next feature. Design By Contract equips the class
itself with an invariant predicate expression which holds in all states of the
corresponding objects.

Unifying Requirements and Code: An Example 237

4.2 Model-Based Contracts

If classical contracts are for constraining the data that run time objects actually
hold, model-based contracts are “meta” contracts for constraining the objects
as mathematical entities (sets, sequences, bags, relations etc.), and an execution
process does not instantiate the corresponding mathematical representations at
run time as parts of the objects. Model-Based Contracts are useful when it is
not possible to capture all the nuances by means of classical contracts. The PhD
thesis [6] gives some examples of such situations and a comprehensive description
of the concept.

4.3 AutoProof

The AutoProof [9] tool is capable of formally proving the correctness of contract-
equipped object-oriented programs, both classical and model-based. AutoProof
proves for every routine that the conjunction of the precondition and the class
invariant before invocation ensures the conjunction of the postcondition and the
class invariant after invocation. The class is verified if and only if all the class
features are verified.

5 Unifying the Two Worlds: An Example

Avoiding the problems analyzed in Sect. 2 means unifying the worlds of require-
ments and code in a unified framework. This section illustrates the approach. It
takes the example from the work [3] and shows how to express requirements of
various types in the style of work [2] - namely, using Eiffel as a formal specifica-
tion language for expressing each requirement. Originally the authors used this
example to demonstrate the process of deriving specifications from requirements,
and the unified approach captures all the nuances of this process.

5.1 Example Overview

The authors of [3] start with giving the overall context: “...Our small example
concerns the control of a turnstile at the entry to a zoo. The turnstile consists
of a rotating barrier and a coin slot, and is fitted with an electrical interface...”
This small paragraph mostly describes the relationships between the conceptual
objects. Figure 1 contains specification of the context in the style of work [2].

Translating the specification from Fig. 1 back to natural language using the
object-oriented semantics results in almost the same initial description: “A ZOO
has a TURNSTILE turnstile; a TURNSTILE has a COINSLOT coinslot and a
BARRIER barrier so that coinslot has Current TURNSTILE as turnstile and
barrier has Current TURNSTILE as turnstile...” COINSLOT and BARRIER
hold references to the TURNSTILE instances in order to capture the “electrical
interface” phenomena: the word “interface” means something over which the
parties are able to communicate with each other; communicating means sending

238 A. Naumchev et al.

class ZOO
feature

t u r n s t i l e : TURNSTILE
end

class TURNSTILE
feature

c o i n s l o t : COINSLOT
ba r r i e r : BARRIER

invariant
c o i n s l o t . t u r n s t i l e = Current
ba r r i e r . t u r n s t i l e = Current

end

class COINSLOT
feature

t u r n s t i l e : TURNSTILE
invariant

t u r n s t i l e . c o i n s l o t = Current
end

class BARRIER
feature

t u r n s t i l e : TURNSTILE
invariant

t u r n s t i l e . b a r r i e r = Current
end

Fig. 1. Expressing the context formally

messages to each other, and to send message to someone in the object-oriented
world is to take a reference to the object and perform a qualified call on it. So
at the very least the parties should hold references to each other to be able to
communicate in two directions.

5.2 The Designation Set

After stating the problem context the authors of [3] describe the designa-
tion set. Each designation basically corresponds to a separate type of events
observed in the problem area. The authors give the designations as a set of
predicates as in Fig. 2. Figure 3 is an Eiffel implementation of each designa-
tion set described in Fig. 2. The implementation uses Eiffel features names as
labels for the events types. The natural language descriptions from Fig. 2 pro-
vide heuristics on which feature should be added to which class (Fig. 2 highlights
the correspondence with bold). Each event type has an associated history - a
sequence of moments in time when the events of this particular type occurred. For
example, enters : MML SEQUENCE[INTEGER 64] (in Fig. 3) is a sequence
of moments in time expressed in milliseconds when events of type enter took
place. MML SEQUENCE is a class from the MML (Mathematical Modeling
Library) and denotes mathematical sequence. MML contains special classes for
expressing model-based contracts. Although it is possible to instantiate some
simple objects from these classes (like a sequence containing one element), the
instances will not be modifiable. The model annotation is the Eiffel mechanism to
represent model-based contracts (introduced in Sect. 4.2). For instance, expres-

– Push(e): In event e a visitor pushes the barrier to its intermediate position
– Enter(e): In event e a visitor pushes the barrier fully home and so gains entry to

the zoo
– Coin(e): In event e a valid coin is inserted into the coin slot
– Lock(e): In event e the turnstile receives a locking signal
– Unlock(e): In event e the turnstile receives an unlocking signal

Fig. 2. The Zoo Turnstile example designation set

Unifying Requirements and Code: An Example 239

note
model : en t e r s

deferred class ZOO
feature

ente r
deferred
ensure

en t e r s . b u t l a s t ˜ old en t e r s
en t e r s . l a s t > old en t e r s . l a s t

end
en t e r s : MMLSEQUENCE[INTEGER 64]

end

note
model : locks , unlocks

deferred class TURNSTILE
feature

l o ck
deferred
ensure

l o ck s . b u t l a s t ˜ old l o ck s
l o ck s . l a s t > old l o ck s . l a s t

end
unlock
deferred
ensure

unlocks . b u t l a s t ˜ old unlocks
unlocks . l a s t > old unlocks . l a s t

end
l o ck s : MMLSEQUENCE[INTEGER 64]
unlocks : MMLSEQUENCE[INTEGER 64]

end

note
model : c o in s

deferred class COINSLOT
feature

co in
deferred
ensure

co in s . b u t l a s t ˜ old co in s
co in s . l a s t > old co in s . l a s t

end
co in s : MMLSEQUENCE[INTEGER 64]

end

note
model : pushes

deferred class BARRIER
feature

push
deferred
ensure

pushes . b u t l a s t ˜ old pushes
pushes . l a s t > old pushes . l a s t

end
pushes : MMLSEQUENCE[INTEGER 64]

end

Fig. 3. Specifying the designation set formally

sion model : enters in Fig. 3 gives a hint that enters feature will be used for
expressing the model-based part of the contract.

The deferred keyword states that the specification gives only formal defini-
tions of the events (in terms of pre- and postconditions [8]) and does not give the
corresponding operational reactions of the machine on the events. The ensure
clause is the postcondition of the feature. It describes how the system changes
after reacting on an event of the corresponding type. These specifications are
intuitively plausible: an event occurrence should result in extending the corre-
sponding history with the moment in time when the event took place, and the
time of the new event should be strictly bigger than the time of the previous
event, as shown, for instance, by the postcondition in feature unlock of Fig. 3.
The keyword old is used to indicate expressions that must be evaluated in the
pre-state of the routine, and ˜ makes a comparison by value.

5.3 Shared Phenomena

The authors of [3] introduce the notion of shared phenomena - that is, the
phenomena visible to both the world (the environment) and the machine (the
notions of the world and the machine were introduced by Jackson in [10]). In
the present approach this notion is covered by using the “has a” relationships
between the ZOO and the TURNSTILE classes, accompanied with the model-
based contracts. Namely, since a ZOO has a turnstile as its feature, it can see

240 A. Naumchev et al.

deferred class ZOO
feature

t u r n s t i l e : TURNSTILE
ent e r s : MMLSEQUENCE[INTEGER 64]

invariant
en t e r s . count <= t u r n s t i l e . c o i n s l o t . c o in s . count

end

Fig. 4. Entries should never exceed payments

any phenomena hosted by the turnstile: locks, unlocks, coins, pushes; since a
TURNSTILE does not hold any references to a ZOO, it can not observe nor
control the enter events modeled by ZOO.

5.4 Specifying the System

Work [3] introduces a set of criteria by means of which it is possible to iden-
tify whether the machine is specified or not. One of the criteria states that all
requirements should be expressed in terms of shared phenomena only. Require-
ments refinement is the process of converting the requirements stated in terms of
both shared and non-shared phenomena to the form in which they are expressed
in terms of shared phenomena only. Refinement process consists of identifying
some laws, which hold in the environment regardless of the machine behaviour,
and constraining the machine behaviour. The resulting constraints imposed on
the machine together with the laws of the environment should logically imply
the requirements stated in the beginning.

The authors of [3] state that the laws of the environment are always expressed
in the indicative mood, while the restrictions imposed on the machine behavior
are expressed in the optative mood.

All properties of the problem derived in [3] - be they optative or indicative
descriptions - can be conceptually divided into the two main categories.

Properties Which Hold at Any Moment in Time: An example of such
property is the OPT1 requirement (expressed in Fig. 4) saying that entries should
never exceed payments (the authors of [3] use OPT∗ for labeling properties
expressed in an optative mood). Within the present approach this requirement
can be expressed in the following way. The “something always holds” semantics
fits perfectly into the semantics of Eiffel invariant: “something holds in all states
of the object”, as expressed in Fig. 4.

Properties Which Hold Depending on the Type of the Next Event to
Occur: The indicative property IND2 saying that it is impossible to push the
barrier if the turnstile is locked will serve as an example (the authors of [3] use
IND∗ for labeling properties expressed in the indicative mood). Figure 5 depicts
the corresponding specification. The initial description is divided into the two
different claims: first, the turnstile should be unlocked at least once, and second,

Unifying Requirements and Code: An Example 241

deferred class BARRIER
feature

push
require

not t u r n s t i l e . un locks . i s empty
(not t u r n s t i l e . l o ck s . i s empty) implies (t u r n s t i l e . un locks . l a s t >

t u r n s t i l e . l o ck s . l a s t)
deferred
end

end

Fig. 5. It is impossible to use locked turnstile

deferred class BARRIER
feature

t u r n s t i l e : TURNSTILE
push
deferred
ensure

((old t u r n s t i l e . un locks . l a s t > old t u r n s t i l e . l o ck s . l a s t) and
(pushes . count = t u r n s t i l e . c o i n s l o t . c o in s . count))
implies (t u r n s t i l e . l o ck s . l a s t > pushes . l a s t and

(t u r n s t i l e . l o ck s . l a s t − pushes . l a s t) < 760)
end
pushes : MMLSEQUENCE[INTEGER 64]

end

Fig. 6. The machine locks the turnstile timely

if the turnstile has ever been locked, the last unlock should have occurred later
than the last lock.

Real Time Properties: The authors of [3] derive several timing constraints on
the events processing. For example, the OPT7 requirement says that the amount
of time between the moment when the number of the barrier pushes becomes
equal to the number of coins inserted and the moment when the machine locks
the turnstile should be less than 760 ms. This is basically a constraint for the
reaction on the push event: if the next push event uses the last coin, the machine
should ensure that the turnstile is locked in a timely fashion, so that a human
being will not have time to enter without paying. The 760 quantity reflects
the fact that it takes at least 760 ms for a human being to rotate the barrier
completely and enter the Zoo.

Taking this reasoning into consideration, the present specification approach
handles the timing constraint by putting it into the push feature postcondition
(as depicted in Fig. 6). The antecedent of the implication assumes the situation
when before the push event the turnstile was locked (oldturnstile.unlocks.last >
oldturnstile.locks.last expression in Fig. 6), and after the event occurrence
the number of barrier pushes became equal to the number of coins inserted
(pushes.count = turnstile.coinslot.coins.count expression in Fig. 6). The con-
sequent reflects the requirement that, having in place the situation that the
antecedent describes, there should be a lock event which is more late than the
last push event (turnstile.locks.last > pushes.last expression in Fig. 6), and

242 A. Naumchev et al.

deferred class ZOO
feature

t u r n s t i l e : TURNSTILE ABSTRACT
ente r
deferred
end
en t e r s : MMLSEQUENCE[INTEGER 64]

invariant
t u r n s t i l e . c o i n s l o t . c o in s . count > en t e r s . count implies

(agent ente r) . p r e cond i t i on
end

Fig. 7. The turnstile let people who pay enter

the distance between them should be less than 760 ms ((turnstile.locks.last −
pushes.last) < 760 expression in Fig. 6).

5.5 Specifying the “Unspecifiable”

One of the requirements mentioned in [3] was OPT2 saying that the visitors who
pay are not prevented from entering the Zoo. The authors give only informal
statement of this requirement: ∀ v,m, n • ((Enter#(v,m) ∧Coin#(v, n) ∧ (m <
n)) =⇒ ′The machine will not prevent another Enter event′.

The antecedent of this implication should be read like “the number of entries
is less than the number of coins inserted”. The authors of [3] do not formalize the
consequent and leave it in the natural language form. The present specification
approach handles this requirement using standard Eiffel mechanism called agents
(see Fig. 7).

The agent clause treats a feature (the enter feature in this particular case) as
a separate object so that the feature precondition becomes one of the boolean-
type features of the resulting object.

6 Conclusion

Software construction involves different activities. Typically these activities are
performed separately. For instance, requirements and code, as developed nowa-
days, seem to belong to different worlds. The case study reported in this paper
shows the feasibility of unifying requirements and code in a single framework.

This paper takes the classic Zoo Turnstile example [3] and implements it
using Eiffel programming language. Eiffel is used not just to express the domain
properties but also the properties of the machine [10], enabling users to combine
requirements and code in a single framework. This paper does not present the
complete implementation of the example due to limited space. Full implementa-
tion can be reached in the GitHub project [11].

The specification approach presented in this work is suitable not only for
formalizing the statements that [3] formalizes, but also for formalizing those
which are not possible to formalize with classical instruments like predicate or
temporal logic (like OPT2 requirement, see Fig. 7).

Unifying Requirements and Code: An Example 243

The present approach is not only expressively powerful - it enables smooth
transition to design and implementation. GitHub project [11] contains a contin-
uation of the present work in the form of a complete implementation of the Zoo
Turnstile example.

In order to understand the benefits of the present approach better it seems
feasible to evaluate it against the hypothesis stated in Sect. 3.2:

(i) Unity of software development tasks: indeed, all the code fragments corre-
sponding to different specification items merged together will bring a com-
plete design solution available at [11] (the classes ending with “ abstract”).

(ii) Traceability between the specification and the implementation: the classes
ending with “ concrete” available at [11] contain the implementation and
relate to the specification classes by means of inheritance.

(iii) Provability of the classes: the AutoProof system [9] is capable of formally
proving both classical and model-based contracts in Eiffel. However, it is
not yet capable of proving “higher-level” agents-based contracts like the one
used in Fig. 7 for expressing requirement OPT2 from the work [3]. Adding
this functionality to AutoProof is one of the next work items.

(iv) Extendibility of the solution: since Eiffel artifacts used in the formalizations
of the requirements items correspond to their natural language counterparts
directly, it is visible right away how a change in one representation will affect
the second.

Speaking about scalability of the approach, a formal representation of a
requirements item specified with Eiffel is as big as the scope of the item and
its natural language description are, so the overall complexity of the final doc-
ument should not depend on the size of the project. Anyway, this is something
to test by applying the approach to a bigger project.

6.1 Future Work

The future actions plan include:

(i) to prove formally that the specifications are consistent. In particular to
ensure that the features specifications preserve the invariants of their home
classes; to ensure that the invariants are self-consistent. For example it
should not be possible for P (x) and ¬P (x) to hold at the same time.

(ii) to extend the BON notation [5] so that it will be capable of expressing
model-based contracts.

(iii) to design machinery for translating model-based contract-oriented require-
ments to their natural language counterpart so that the result will be recog-
nizable by a human being.

(iv) to apply the approach to a bigger project.
(v) to extend AutoProof technology [9] so that it will be able to handle agents

in specifications (like in Fig. 7).

244 A. Naumchev et al.

It seems feasible to utilize AutoProof technology [9] for achieving goal (i).
AutoProof is already capable of proving that a feature implementation pre-
serves its specification (except specifications with agents), and it seems logical
to empower it with the capabilities for working solely on the specifications level.
Work [12] contains a formal proof that it is possible to achieve goal (v).

As a result of implementing the plan a powerful framework for expressing all
possible views on the software under construction should emerge. The threshold
of success includes the possibility to generate the specification classes (their
names end with “ abstract”) available at [11] automatically, using requirements
documents produced according to the present process as input.

Acknowledgment. This work has been supported by the Russian Ministry of edu-
cation and science with the project “Development of new generation of cloudy
technologies of storage and data control with the integrated security system and
the guaranteed level of access and fault tolerance” (agreement: 14.612.21.0001, ID:
RFMEFI61214X0001). Also, the authors would like to thank their colleagues Alexander
Chichigin and Dr. Manuel Mazzara from the Innopolis University Software Engineering
Laboratory for their invaluable feedback.

References

1. Meyer, B.: Object-Oriented Software Construction, vol. 2. Prentice Hall, New York
(1988)

2. Meyer, B.: Multirequirements. In: Seyff, N., Koziolek, A. (eds.) Modelling and
Quality in Requirements Engineering (Martin Glinz Festscrhift). MV Wissenschaft
(2013)

3. Jackson, M., Zave, P.: Deriving specifications from requirements: an example.
In: Proceedings of the 17th International Conference on Software Engineering,
pp. 15–24. ACM (1995)

4. Meyer, B.: On formalism in specifications. IEEE Softw. 2(1), 6–26 (1985)
5. Waldén, K., Nerson, J.M.: Seamless Object-Oriented Software Architecture.

Prentice-Hall, Upper Saddle River (1995)
6. Polikarpova, N.: Specified and verified reusable components. Ph.D. thesis, Diss.,

Eidgenössische Technische Hochschule ETH Zürich, Nr. 21939, 2014 (2014)
7. Meyer, B.: Touch of Class: Learning to Program Well with Objects and Contracts.

Springer, Heidelberg (2009)
8. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM

12(10), 576–580 (1969)
9. Tschannen, J., Furia, C.A., Nordio, M., Meyer, B.: Automatic verification

of advanced object-oriented features: the autoproof approach. In: Meyer, B.,
Nordio, M. (eds.) LASER 2011. LNCS, vol. 7682, pp. 133–155. Springer,
Heidelberg (2012)

10. Jackson, M.: The world and the machine. In: 17th International Conference on
Software Engineering, ICSE 1995, pp. 283–283. IEEE (1995)

11. Naumchev, A.: Jackson-zave zoo turnstile implementation (2015). https://github.
com/anaumche/Zoo-Turnstile-Multirequirements

12. Nordio, D.M.: Proofs and proof transformations for object-oriented programs.
Ph.D. thesis, Citeseer (2009)

https://github.com/anaumche/Zoo-Turnstile-Multirequirements
https://github.com/anaumche/Zoo-Turnstile-Multirequirements

	Unifying Requirements and Code: An Example
	1 Introduction
	1.1 Summary of Contributions

	2 The Drawbacks of Too Much Separation of Concerns
	3 A Seamless Approach
	3.1 Unifying Processes
	3.2 The Hypothesis
	3.3 How to Test the Hypothesis

	4 Theoretical and Technical Background
	4.1 Design by Contract
	4.2 Model-Based Contracts
	4.3 AutoProof

	5 Unifying the Two Worlds: An Example
	5.1 Example Overview
	5.2 The Designation Set
	5.3 Shared Phenomena
	5.4 Specifying the System
	5.5 Specifying the ``Unspecifiable''

	6 Conclusion
	6.1 Future Work

	References

