
Modeling Actor Systems Using
Dynamic I/O Automata

Ilham W. Kurnia(B) and Arnd Poetzsch-Heffter

University of Kaiserslautern, Kaiserslautern, Germany
{ilham,poetzsch}@cs.uni-kl.de

Abstract. Actor-based programming has become an important tech-
nique for the development of concurrent and distributed systems. This
paper presents a new automaton model for actor systems and demon-
strates how the model can be used for compositional verification. The
model allows expressing the detailed behavior of actor components where
components are built from actors and other components. It abstracts
from internal and environment behavior, supports encapsulation of
actors, and captures the dynamic aspects of actor creation and expo-
sure of actor names to the component environment, which are crucial
for verification. We handle these changes at the component interface by
specializing dynamic I/O automata. The model can be used as a founda-
tion of different verification techniques. We illustrate this by combining
weakest precondition techniques on the actor level with simulation proofs
on the component level.

1 Introduction

Actors [2] are a well studied programming model that gets more and more atten-
tion for developing concurrent and distributed systems (e.g., actors in Scala
[19]). At runtime, an actor-based system consists of a dynamically changing set
of actors. Actors are similar to objects: They have a unique name and a local
state; they can create new actors and send messages to other actors addressing
them by their name. As the sender does not wait for a reply, i.e., messages are
passed asynchronously, message sending naturally leads to concurrent behavior
of sender and receiver.

Our overall goal is the compositional verification of actor systems. More
precisely, we want to verify the behavior of actor components independently of
their environment and use component specifications to verify larger components.
This goal entails the following requirements:

– A hierarchical component concept is needed that goes beyond single actors
and allows to develop components by encapsulating other components.

– Components have to be handled in an open way, i.e., without knowing their
environment (cf. [20]).

– Dynamic actor creation and the passing of actor names has to be captured.

c© Springer International Publishing Switzerland 2016
M. Mazzara and A. Voronkov (Eds.): PSI 2015, LNCS 9609, pp. 186–202, 2016.
DOI: 10.1007/978-3-319-41579-6 15

Modeling Actor Systems Using Dynamic I/O Automata 187

The combination of these requirements is surprisingly challenging. In particular,
a component consisting of several actors might expose some of its actors to the
environment, thereby enabling the environment to interact with these actors.
Exposing actors to the environment dynamically changes the component inter-
face (as demonstrated in Sect. 2). Thus, it is important to precisely keep track
of the exposed actors to capture the component behavior.

We use automaton models as they allow constructive specification techniques
[27]. They can incorporate both notions of states and actions, making them
flexible to integrate with various verification techniques. In particular, they are
often compositional which allows for compositional reasoning. The challenge is to
capture the dynamic behavior at the component interfaces. In our approach, we
follow the ideas of the dynamic I/O automaton (DIOA) model [6,7]. As the high
degree of dynamicity provided by DIOA is larger than needed for our purposes
and as it would further complicate verification, we adapt DIOA to actor systems.
In summary, the paper makes the following contributions:

– It formally develops an automaton model that faithfully captures the dynamic
semantics of actors and components (Sect. 3).

– It combines a verification technique for actor programs and a simulation-
based proof technique to a two-tier verification approach for actor components
(Sect. 4).

The paper closes with a discussion on related work and a conclusion.

Notation. We use abstract data structures sequence, set, multiset and map. The
sequence data structure is represented by Seq〈T 〉, with T denoting the type of
the sequence elements. An empty sequence is denoted by [] and a sequence con-
catenation is simply juxtaposition. The set data structure Set〈T 〉 is a container
of values of type T while a multiset is denoted by M〈T 〉. Standard notations
for sets are used. The map data structure Map〈S, T 〉 is an associative container
that maps unique keys of type S to values of type T . An empty map is denoted
by {}. If m is a map, m[x �→ y] represents the insertion or update of the key
x with value y to m. The value y of key x is represented by m(x). If x is not
associated to any value, then m(x) = undef. The predicate diffOn(m1,m2,X)
for a set of keys X is true if m1 may differ from m2 with respect to the values
of keys in X and other keys are mapped to the same value.

2 Class-Based Actor Programming

Our techniques have been developed for the verification of ABS programs [23].
ABS is a class-based actor language with futures, subtyping and recursive data
types. In this paper, we only consider a core fragment of ABS, called αABS. As
illustrated in Listing 1.1, the syntax of αABS is similar to Java. Actor creation
is like object creation using the new expression. The state of an actor consists of
creation parameters and attributes (e.g., a Session-actor has the creation para-
meter c and an attribute w). A class defines the messages that are understood

188 I.W. Kurnia and A. Poetzsch-Heffter

by its actors. The body of a message definition is a statement that is executed
when the message is processed. Messages may have parameters, but do not have
a return value. Syntactically, sending a message is similar to calling a method
in Java. Semantically, a send is executed by adding the message to the buffer
of the receiver actor. Actors retrieve messages from the buffer one by one and
execute them until completion1.

1class Server(DB db) {

2 reqSess(Client c) {

3 Session ss = new Session(c, db);

4 c.provSess(ss);

5} }

6class Worker(Client c, DB db) {

7 do(Query q) {

8 Value v = compute(q, db);

9 c.response(v);

10} }

11class Session(Client c, DB db) {

12 Worker w = null;

13 perform(Query q) {

14 if (w == null)

15 w = new Worker(c, db);

16 w.do(q);

17 }

18}

19

20

Listing 1.1. Server implementation in αABS

The program in Listing 1.1 realizes a tiny server. Clients can request sessions
from the server and then use the session actors to perform a query. The session
actors internally use workers to execute the query and to send the response to the
client. The domain of queries and results are represented by the data types Query

and Value, respectively. Details of these types and of how queries are computed
are not of interest here. The example is not meant to be realistic; rather it is
designed to illustrate three important aspects:

– The server component is used in an unknown environment. The only infor-
mation about the environment is that there are clients and that these clients
accept the messages provSess and response. In particular, we do not known
what the clients do with the session actors.

– At runtime, the server consists of a server actor, a set of session actors, and
sets of workers. The session actors are dynamically created and exposed to
the environment. Thus, they are part of the behavioral interface of the server.
The worker actors are encapsulated and can never be accessed from the envi-
ronment. They all use the server’s database that can only be accessed via the
session interface.

– The sessions run concurrently2.

Inspired by component frameworks like OSGi [35], a component consists of a
set of classes C with a designated activator class C0 ∈ C [26]. The idea is that
a component instance is created by creating an actor of class C0. All actors
transitively created by this activator belong to the component instance. Conse-
quently, we require C to contain all classes of actors that might transitively be
1 αABS does not support suspension of tasks or wait statements.
2 For simplicity, we have only one worker per session. It is easy to extend the example

to support pools of workers.

Modeling Actor Systems Using Dynamic I/O Automata 189

created by actors of class C0. In the example, the Server class is the activator for
a component consisting of {Server, Session, Worker}. A subcomponent contains
less classes and a different activator class; e.g., {Session, Worker} with activator
class Session is a subcomponent of the server component. Based on this notion,
we can verify the Server properties from the properties of the Session component
in a hierarchical way.

A safety property of the server is that its sessions correctly respond to the
queries. In the following sections, we show how to accurately represent such
systems using the DIOA model and verify that the implementation satisfies the
desired behavior.

3 Automaton Model

The DIOA model [7] is a two-tier automaton model based on signature automata
(SA)3, formalized in Definition 1. On top of the standard elements of transition
systems: the set of (initial) states and the labeled transition relation, SA also
have state signatures: a description of its input, output and internal actions
parameterized by the state. The state-based classification of actions (of the uni-
verse Act) not only allows us to explicitly distinguish the externally observable
behavior represented by the automata, but also to have the interaction possi-
bilities dependent on the states. The two-tier aspect and the state signatures
are what are extended from I/O automata (IOA) [29]. SA retain an important
property of IOA: they are input-enabled.

Definition 1 (Signature Automata). A signature automaton A =
〈states(A), start(A), sig(A), steps(A)〉 is a 4-tuple where

– states(A) is a set of states,
– start(A) ⊆ states(A) is a non-empty set of initial states,
– sig(A) is a signature mapping where for each s ∈ states(A), sig(A)(s) =

〈in(A)(s), out(A)(s), int(A)(s)〉 where in(A)(s), out(A)(s), int(A)(s) ⊆ Act
such that in(A)(s) ∩ out(A)(s) = in(A)(s) ∩ int(A)(s) = out(A)(s) ∩
int(A)(s) = ∅,

– steps(A) ⊆ states(A) × acts(A) × states(A) is a transition relation, such that
• ∀(s, l, s′) ∈ steps(A) : l ∈ ̂sig(A)(s),
• ∀s ∈ states(A) : ∀l ∈ in(A)(s) : ∃s′ ∈ states(A) : s

l−→ s′, and
• acts(A) =

⋃

s∈states(A)

̂sig(A)(s),

where the -̂operator represents the union of sets of the signature tuple.

Behavior can be represented by an SA in terms of executions and traces. An
execution is a sequence of alternating sequence s0l1s1 . . . of states and actions
such that s0 is an initial state and si−1

li−→ si is a transition in SA. A trace is

3 We use abbreviations for automata to also represent “a single automaton”. The
usage is apparent from the context.

190 I.W. Kurnia and A. Poetzsch-Heffter

the observable variant of an execution, i.e., the projection of the execution to
the sequence of its actions. The overall behavior of an entity represented by an
SA is captured by a set of executions (traces). We further define an external
trace to be a trace derived from an execution where each action li is either an
input or output action at state si−1. The external traces describe the observable
interaction between the entity and its environment.

The state signatures of SA are very flexible, such that an action may be an
input action in one state and output in another, for example. This flexibility is
excessive for representing actor systems, so we define in the following how to
restrict them.

3.1 First Tier Model

The first tier of a DIOA model for actors is populated by actor automata (AA):
SA that are enriched with the characteristics of (groups of) actors. This means:

– An actor can only send messages to other actors and pass these actors’ names
as parameters when they have been exposed to that actor.

– An actor must be able to accept any possible message sent by its environment.
– A newly created actor always has a fresh name.
– An actor processes one incoming message to completion at a time.

Before we show how to enrich SA to represent these characteristics, we first
introduce several elementary building blocks. We shortly define a notion of com-
ponents based on the creation dependency between classes. This notion allows
for a definition of AA that covers both actors and component instances.

The universes of actor(name)s, classes, messages, and data values are repre-
sented by a, b ∈ A, C ∈ CL, m ∈ M, and d ∈ D, respectively. We say “actor
a” to refer to an actor of some unique name a. The behavior of each actor is
represented by a class C. A class also determines what kind of messages an actor
of that class can process, represented by aMsg(C) ⊆ M. This function states
which messages are allowed to be sent to the actor and which messages the actor
can send to other actors. We overload this function with an extra parameter
type ∈ {in, out , int} to distinguish respectively which messages are part of the
input interface of the class, which messages can be sent by the actor to another
actor, and which messages the actor can send to itself, e.g., to trigger inter-
nal computations. The function class(a) represents the class of actor a and the
parameterized universe A(C) defines the set of actors of class C. The component
with activator class C is denoted by [C].

A message m can be an actor creation message new C(p) or a message send
mtd(p). A parameter can either be a data value d or an actor name. As with
actors, the universe of a data type D can be represented by D(D).

From these universes we build the set of events E which replaces the domain
of actions Act for AA. An event e ∈ E represents the occurrence of a message
m = msg(e) being sent from the sender actor a = sender(e) to the target actor
b = target(e) or being reacted to by b. If m is a creation message, b will be the name

Modeling Actor Systems Using Dynamic I/O Automata 191

of the newly created actor while a is its creator. The actor creation event is written
as a → b : new C(p). We assume that actors are named hierarchically, so that we
can say whether b is transitively created by a by checking that a is an ancestor
of b (written a ∈ ancestors(b)). For message sends, we distinguish between the
emittance of the message (a → b : mtd(p)) and its reaction (a � b : mtd(p)).
The function param(e) extracts the parameters of the message msg(e), while the
function acq(e), short for acquaintance, extracts the actors exposed in e.

Adapting SA to represent actors and component instances (together we call
them entities) based on the context described above requires two ingredients:
enriched states and some constraints placed on the initial states, the state signa-
tures and the transition relation. Definition 2 describes the states and constraints
utilizing the function isLocal that identifies whether an actor is represented by
the AA:

isLocal(a, a′, kind) def= (kind = TAct =⇒ a = a′)
∧ (kind = TComp =⇒ a′ ∈ ancestors(a))

Definition 2 (Actor Automata). A parameterized SA A(this, kind) =
〈states(A), start(A), sig(A), steps(A)〉 with the following description:

1. states(A) is a map with a fixed domain V ⊆ V denoting the variables stored
by the entity. V includes the following variables: buf , known, expActors,
ready , nameGen, and tgen , representing an event bag (of type M〈E〉), the
set of known actors (2A), the set of exposed actors (2A), whether the entity
is at a ready point (B), the actor name generator (2A), and the traces gener-
ated by the entity (Seq〈E〉), respectively. The read-only class parameters are
stored under the variable params. Other variables are internal and grouped
together under ints.

2. A non-empty set of initial states start(A) ⊆ states(A).
3. A signature mapping sig(A) where for each state s ∈ states(A), sig(A)(s) =

〈in(A)(s), out(A)(s), int(A)(s)〉, where in(A)(s), out(A)(s), int(A)(s) ⊆ E.
4. A transition relation steps(A) ⊆ states(A) × acts(A) × states(A).

is an actor automaton representing an entity (with the initial actor) of kind
“actor” (TAct) or “component instance” (TComp) of name this of class/com-
ponent D when it satisfies the following constraints:

A1. ∀s ∈ start(A) : s(buf) = s(nameGen) = ∅ ∧ this ∈ s(known) ∧ s(ready)
∧ s(expActors) = {this} ∧ s(tgen) = [].

A2. ∀s ∈ states(A) : in(A)(s) =
{

e

∣

∣

∣

∣

isEmit(e) ∧ msg(e) ∈ aMsg(D, in)
∧ isLocal(target(e), this , kind) ∧ ¬isLocal(sender(e), this , kind)

}

.

A3. ∀s ∈ states(A) : out(A)(s) =
⎧

⎪

⎪

⎨

⎪

⎪

⎩

e

∣

∣

∣

∣

∣

∣

∣

∣

isEmit(e) ∧ acq(e) ⊆ s(known) ∧ msg(e) ∈ aMsg(D, out)
∧ (isSend(e) =⇒ isLocal(sender(e), this , kind)

∧ ¬isLocal(target(e), this, kind))
∧ (isCreate(e) =⇒ target(e) /∈ s(nameGen) ∧ sender(e) = this)

⎫

⎪

⎪

⎬

⎪

⎪

⎭

.

192 I.W. Kurnia and A. Poetzsch-Heffter

A4. ∀s ∈ states(A) : int(A)(s) =
⎧
⎨

⎩
e

∣
∣
∣
∣
∣
∣

(isReact(e) =⇒ emitOf (e) ∈ s(buf))

∧ (isEmit(e) =⇒ isSend(e) ∧ acq(e) ⊆ s(known)

∧isLocal(sender(e), this, kind) ∧ isLocal(target(e), this, kind))

⎫
⎬

⎭
.

A5. ∀(s, e, s′) ∈ steps(A) : e ∈ in(A)(s) =⇒ s′ = s[buf �→ s(buf) ∪ {e}].
A6. ∀(s, e, s′) ∈ steps(A) : isReact(e) =⇒ s(ready)

∧ diffOn(s, s′, {buf , known, ready , tgen , ints}) ∧ s′(tgen) = s(tgen) e
∧ s′(buf) = s(buf) − {emitOf (e)} ∧ s′(known) = s(known) ∪ acq(e).

A7. ∀(s, e, s′) ∈ steps(A) : isEmit(e) ∧ e ∈ out(A)(s) ∪ int(A)(s) =⇒
∧ diffOn(s, s′′, {expActors, ready , tgen , ints}) ∧ s′(tgen) = s(tgen) e
∧ (isCreate(e) =⇒ s′(known) = s′′(known) ∪ {target(e)}

∧ s′(nameGen) = s′′(nameGen) ∪ {target(e)})
∧ (e ∈ int(A)(s) =⇒ s′(buf) = s′′(buf) ∪ {e}).

Definition 2 describes how SA are transformed to AA. AA are parameterized
with the (initial) actor (of the component instance) this, mimicking how classes
are behavior templates of actors, and kind , the kind of the entity. The events
used in a particular AA are parameterized accordingly by this. The states consist
of predefined variables governing the local event buffer, the exposure knowledge
of non-local and local actors from and to the environment, whether the actor is
ready to process the next incoming message or whether the component instance
is ready to execute the next message, the actor name generator, and the trace
the entity has generated. These variables allow the construction of Constraints
A1 to A7 that regulate over the state signatures and the transition relation to
represent the actor characteristics.

Constraint A1 defines the initial states, where the buffer is still empty, the
entity knowledge is still at its minimum, the entity is ready to process an incom-
ing message and no actor has been generated yet. For a component instance, the
last aspect means that no locally created actor is exposed to the environment.

Constraints A2 to A4 describe how the state signatures are derived from
the state. The input and output state signatures are restricted by the allowed
messages of the class/component and message direction. Only emittance events
are part of these signatures. The internal state signatures are either reaction
events to events stored in the buffer or emittance events where both sender and
target actors are local.

Constraints A5 to A7 describe the effect of all transitions on the state vari-
ables. All incoming messages are put into the buffer without otherwise changing
the state. The entity can only react to a message when it is ready to do so. Exe-
cuting a reaction event causes the corresponding emittance event to be removed
from the buffer and the set of known actors is updated by the newly received
acquaintance. When an output or internal event can be emitted, we allow the
set of exposed actors, the values of the ready flag and the internal variables to
be changed. If the event is an actor creation event, the entity knows the created
actor. To ensure fresh names, the name generator keeps the name of the created
actor. If it is an internal event, then the event is directly added to the entity’s
buffer.

Modeling Actor Systems Using Dynamic I/O Automata 193

We drop the parameters this and kind from an AA when they are irrelevant
to the discussion. The name(s) of the (set of) actor(s) is retrieved by the function
names:

names(A(this, kind)) def=

{

{this}, if kind = TAct
{a | this = ancestors(a)}, if kind = TComp

For AA representing component instances, the function returns an over-
approximation of the set of actors that are local to the instance.

More specific behavior of an AA that goes beyond the constraints is expressed
by so-called AA specifications. We illustrate such specifications by an example.

Example 1. The behavior of an AA representing the server component (i.e., the
system) can be specified in three parts: the provided and required interfaces,
which form the set of allowed messages, the internal state, and the actions taken
by a server component instance. As a component, the server’s provided interface
consists not only of the server actor’s own interface (where it provides the reqSess

method), but also of the interface of the associated session actors (where they
provide the perform method). The required interface consists of the provSess and
response methods. The component’s specification does not include the internal
communication, because they are not observable by the environment.

The internal states of the server component need to capture the created
sessions, to which client each session is mapped to, and the queries the component
instance is currently processing. The states of this component are populated
when the component instance reacts to a message of the provided interface.
This reaction is marked by the execution of an event cl � srv : reqSess(cl)
or cl � sess : perform(q). In response, the server component sends back a
fresh session srv → cl : provSess(sess) or the computed query sess → cl :
response(compute(q)), respectively.

The specifications for AA that represent classes can be further optimized
because each actor processes one incoming message at a time. The actions exe-
cuted by the Server class can be represented by the AA using the following event
sequence:

cl � srv : reqSess(cl) srv → sess : new Session(cl , db) srv → cl : provSess(sess).

The AA definition allows this event sequence to be portrayed accurately.

Important to note is that AA does not utilize the full flexibility of SA with
regards to the state signature. An input event will always be an input event, and
similarly to output and internal event. The lemma formalizes this fact.

Lemma 1. Let A be an AA. We define in(A) to be
⋃

s∈states(A)in(A)(s), and
similarly for out(A) and int(A). Then in(A) ∩ out(A) = in(A) ∩ int(A) =
out(A) ∩ int(A) = ∅.
Proof. Follows from Constraints A2 to A4.

This lemma implies that AA are essentially more flexible IOA and verification
procedures for IOA are reusable. This lemma is also carried over to the second
tier which handles the dynamic creation aspect.

194 I.W. Kurnia and A. Poetzsch-Heffter

3.2 Second Tier Model

Missing from the first tier is the effect of creating an actor or a compo-
nent instance. Attie and Lynch [7] model this effect by defining configuration
automata (CA). CA are based on the notion of configurations: the set of A of
alive SA and a mapping S that maps each SA in A to a particular state. The
configuration information allow CA, the main semantic model, to represent open
systems that feature dynamic creation. Here we present the tweaked CA for actor
systems.

For an actor system, on top of the set of alive AA and the state information, a
configuration needs to store the information of actors that have been exposed to
the environment E. We set some sanity conditions on the alive AA such that they
are pairwise representing distinct entities and it is impossible for AA to create
entities that are already alive. Definition 3 formalizes this requirement using the
names function and the output state signature of each AA in the configuration.

Definition 3 (Configurations). A configuration C is a triple 〈A,S,E〉 where
A is a set of AA, S maps each AA A ∈ A to a state s ∈ states(A), and E ⊆
names(C) is the set of actor(name)s that have been exposed to the environment
such that

∀A, B ∈ A : A �= B =⇒ (names(A) ∩ names(B) = ∅
∧ out(A)(S(A)) ∩ {e | isCreate(e) ∧ target(e) ∈ names(B)} = ∅).

The names function is lifted to configurations: names(C) =
⋃

A∈A

names(A).

Important to CA is that they are derived from configurations. That is, the
signatures and the available transitions in a CA are fully dictated by the AA
present in the configurations and their state mapping. The following definition
precisely provides how to derive the signature of a configuration. It is based on
the observation that an event is always observable by at most two actors: the
sender and the target.

Definition 4 (Signatures of a Configuration). Let C = 〈A,S,E〉 be a
configuration. Let commonEv be the set of common events between actors
represented within the configuration: commonEv = { e | sender(e), target(e) ∈
names(C) }. Let envEv be the set of bogus events generated by the environment:

envEv =

{
e

∣∣∣∣ isSend(e) ∧ acq(e) ∩ ({a | ancestors(a) ∩ names(C) = ∅} ∪ E) �= ∅
∧ sender(e) /∈ names(C)

}
.

Then, the signature of C is sig(C) = 〈in(C), out(C), int(C)〉, where

– in(C) = (
⋃

A∈A

in(A)(S(A))) − commonEv − envEv ,

– out(C) = (
⋃

A∈A

out(A)(S(A))) − commonEv ,

– int(C) =
⋃

A∈A

(int(A)(S(A))) ∪ (
⋃

A∈A

in(A)(S(A)) ∩ ⋃

A∈A

out(A)(S(A))),

Modeling Actor Systems Using Dynamic I/O Automata 195

The signature of a configuration is the aggregation of the state signatures of
each AA in the configuration. All events sent by and to actors in the configuration
are clumped together as internal events. These common events from each actor’s
perspective are external events, but from the system’s perspective they occur
within the system. A special attention is needed for the input events, where due
to the lack of information of the system on the AA stage, each AA is modeled
as open as possible. This openness, however, include events that can never be
generated by the environment (and the system at the current configuration):
messages coming from an actor not represented by an AA in the configuration
whose parameters include actors of the configuration that are not yet exposed. To
retain input-enabledness, they must be removed from the configuration’s input
signature.

For each event in the signature of a configuration, we can derive the effect
of executing that event from the involved AA. This transition from the pre-
configuration to the post-configuration can be seen as an aggregate of the
transitions of the participating AA. If the event creates another entity, the
AA representing that entity is added to the configuration, such that the AA
is mapped to some initial state. All AA that can participate in executing that
event must perform the corresponding transition. The post-state of each transi-
tion is recorded in the post-configuration. The post-configuration also takes note
of which actors become exposed to the environment after executing the event.
Definition 5 formalizes this description.

Definition 5 (Intrinsic Transitions). Let C = 〈A,S,E〉, C
′ = 〈A′,S′,E′〉

be configurations and e an event. Let A′(target(e)) be an AA of class class(e)
or component [class(e)], if e is a creation event (i.e., isCreate(e)). There is an
intrinsic transition from C to C

′ labeled by e, written C
e=⇒ C

′, iff

1. e ∈ ̂sig(C),
2. A

′ = A ∪ {A′(target(e)) | isCreate(e)},
3. for all A ∈ A

′ − A : S′(A) ∈ start(A) ∧ S
′(A)(params) = param(e),

4. for all A ∈ A : if e ∈ ̂sig(A)(S(A)) ∧ S(A) e−→A s, then S
′(A) = s, otherwise

S
′(A) = S(A), and

5. E
′ = E ∪

{

a

∣

∣

∣

∣

isSend(e) ∧ target(e) /∈ names(C)
∧ a ∈ acq(e) − {a | ancestors(a) ∩ names(C) = ∅}

}

.

The following definition assembles the configurations, signatures, and tran-
sitions into a CA. More precisely, all configurations are taken from AA that
are deemed alive (Definition 3), whose signatures and possible transitions are
exactly as stated in Definitions 4 and 5, respectively. For simplicity, we restrict
ourselves to CA where initially only one entity is present in the configuration.
Initial configurations that contain more than one entity can be simulated by
having a main actor that creates the other entities and sends a start message to
them in a non-deterministic order.

Definition 6 (Configuration Automata). A configuration automaton C is a
pair 〈sa(C), config(C)〉 where

196 I.W. Kurnia and A. Poetzsch-Heffter

– sa(C) is an SA; (the parts of this SA are abbreviated to states(C) =
states(sa(C)), start(C) = start(sa(C)), etc. for brevity)

– a configuration mapping config(C) with domain states(C) such that for all
x ∈ states(C), config(C)(x) is a configuration;

such that the following constraints are satisfied:

1. If x ∈ start(C) and (A, s) ∈ config(C)(x), then s ∈ start(A).
Additionally, ∀x ∈ start(C) : 〈A,S,E〉 = config(C)(x) ∧ |A| = 1 ∧ E ⊆
names(A).

2. If (x, e, x′) ∈ steps(C) then config(C)(x) e=⇒ config(C)(x′).
3. If x ∈ states(C) and config(C)(x) e=⇒ C for some event e and a configuration

C, then ∃x′ ∈ states(C) such that config(C)(x′) = C and (x, e, x′) ∈ steps(C).
4. ∀x ∈ states(C) : in(C)(x) = in(config(C)(x))

∧out(C)(x) = out(config(C)(x)) ∧ int(C)(x) = int(config(C)(x)).

4 Verification

The automaton model can be used for verifying the correctness of an implemen-
tation of an actor system. We follow a two-tier approach proposed by, e.g., Misra
and Chandy [30] to perform this task. The first tier is verifying that the class
implementation satisfies the class specification, represented by an AA. In this
tier, we follow an approach by Dovland et al. [15], where the class implemen-
tations are checked against desired trace-based class invariants. First, a trace-
based class invariant is extracted from the AA. Then, the class implementation
is translated into a simple sequential language in the spirit of the transforma-
tional approach by Olderog and Apt [34]. The verification takes place by, e.g.,
taking the weakest-liberal precondition of the translated implementation and
deducing that the weakest-liberal precondition holds. This technique allows the
verification of safety properties. The second tier is done by constructing a simula-
tion relation from the CA representing the implementation of the component to
the CA representing the component specification. This relation checks whether
the component specification is fulfilled by the activator class and subcompo-
nent specifications. We use a specialized simulation relation called the possibility
map [29,33], which synchronizes only on external events. This tier allows the
verification of liveness properties on top of the safety properties.

In the following subsections, we sketch how verification on each tier works.
More details including a soundness proof for a more complex setting and the
model’s congruence to an actor-based language are available [24]. The reference
also contains an application of the verification technique to components with
recursive unbounded actor creation of a single chain.

4.1 Class Verification

Verifying the class implementation is done in two parts. First, we encode the
AA representing the class specification as a class invariant. The class invari-
ant reflects what needs to remain true at an actor before and after executing a

Modeling Actor Systems Using Dynamic I/O Automata 197

method in response of an incoming message. Furthermore, it also ensures when-
ever an actor is in the middle of a computation, that computation is part of a
response of the actor to an incoming message. To support the verification effort
on this tier, we include a user-defined relation ρ(f, s) which links the class para-
meters used in the implementation and the state variables used in the AA. It is
typically given during the verification process as the implementation is available
and only the internal variables of the specification are compared to the class
parameters.

Definition 7 (Class Invariants). Let A be an AA. Given a predicate ρ(f, s)
over the class parameters f and a state s of the A, the class invariant I(f, t) of
A over f and the trace t is defined as follows:

I(f, t) def= ∃s ∈ states(A) : s(ready) ∧ s(tgen) = t ∧ ρ(f, s)

Following the idea of Dovland et al. [15], we encode the class implemen-
tation into a simple sequential language SEQ with non-deterministic assign-
ments [5]. This language consists of the typical sequential statement constructs,
such as conditional, skip and sequential composition, enriched with a non-
deterministic assignment, an assume statement, and a procedure construct. The
non-deterministic assignment is used to assign the names of newly created actors,
while the assume statement is used to establish that the invariant holds before
and after the method execution, respectively. The procedure construct is used
to represent the methods of a class.

Encoding the implementation in SEQ has the advantage of using well-
established semantics such as the weakest liberal precondition semantics. This
means we can introduce the following verification condition of class C with the
invariant I(f, t):

∀m, t, f , x : wf(t) ∧ I(f, t) =⇒ wlp(m(x) bodym, I(f, t))

where wf(t) maintains the well-formedness of trace t, m(x) bodym is a method
definition in C populated by parameters x, and wlp(s,Q) is the weakest lib-
eral precondition that ensures that postcondition Q holds after executing state-
ment s.

Example 2. The class invariant of the Server class is derived from its AA A
(Example 1) by setting the predicate ρ as true: I(db, t) def= ∃s ∈ states(A) :
s(ready) ∧ s(tgen) = t. Assuming e1 = cl � this : reqSess(cl), e2 = this →
sess : new Session(db) and e3 = this → cl : provSess(sess), the verification
condition for the implementation in Listing 1.1 is

∀t, db, cl : wf(t)∧I(db, t) =⇒ ∀sess : wf(t e1 e2) =⇒ wf(t e1 e2 e3) =⇒ I(t e1 e2 e3).

The verification proceeds by first-order logic deduction rules.

198 I.W. Kurnia and A. Poetzsch-Heffter

4.2 Component Verification

The second tier deals with verifying components and ultimately the whole sys-
tem. The main verification method is the possibility map [29,33], a specialized
simulation relation that allows an implementation to synchronize with its spec-
ification only on external events. That is, an implementation may conduct an
arbitrary number of internal transitions to fulfill its desired observable behavior.

Definition 8 (Possibility Maps). Let C1, C2 be CA and Eext ⊆ Act(C1) a set
of events. A map r = Map〈states(C1), states(C2)〉 is a possibility map from C1 to
C2 with respect to Eext if the following conditions hold.

1. If x ∈ start(C1) then r(x) �= undef and r(x) ∈ start(C2).
2. If x

e=⇒C1 x′∧r(x) �= undef then r(x′) �= undef and either e /∈ Eext∧r(x) = r(x′)
or r(x) e=⇒C2 r(x′).

This verification method is defined for IOA and in general does not work for
DIOA due to the dynamic state signatures. Actor systems have the advantage
that the set of external events can be over-approximated (Lemma 1). This set
is defined by the following function given the initial actor of the component
instance:

extEv(a) = {e | isMethod(e) ∧ isEmit(e) ∧ ({sender(e), target(e)} ∩ ancestors(a) �= ∅)}

In addition to the external events, the component specification utilizes the reac-
tion events of the input events which are captured by the following function.

Ecmp(a) = extEv(a) ∪ {e | emitOf (e) ∈ extEv(a)}

If we can find a possibility map with respect to Ecmp between the CA containing
the AA of the component specification and the CA containing the AA of the class
specification, then the component specification is satisfied by its implementation.

Theorem 1. Let C[C] be a CA whose initial configurations consist of a compo-
nent instance of component [C] and CC a CA whose initial configurations consist
of an actor this of class C. Let r = Map〈states(CC), states(C[C])〉 be a possibility
map from CC to C[C] with respect to Ecmp(this). Given the set of external traces
xtraces(C) of CA C, then,

xtraces(CC) ⊆ xtraces(C[C]).

Proof. Follows from [33] for IOA and Lemma1.

Example 3. Assume we have a verified specification of the [Session] component,
where it represents the perform and the response of each query from the envi-
ronment. The internal state of the [Session] component is the set of queries
the component instance is currently processing. Using the specifications of the
[Session] component and the Server class (Example 1), we can construct a pos-
sibility map between them and the AA of the Server component by:

Modeling Actor Systems Using Dynamic I/O Automata 199

– equating the event bag of the [Server] component instance to the event bags
of the [Session] component instances and the Server actor,

– equating the queries of the [Server] component instance to the queries of the
[Session] component instance, and

– mapping the correct [Session] component instance to each client, as stored in
the internal state of the [Server] component instance.

5 Related Work

There are several automaton models for representing actors, but they either do
not consider actor creation or all actors are assumed to be present in the system
from the start. Belonging to the former approach are the translation of actor
programs to constraint automata [37] and the modeling of timing aspects of
actor programs by timed automata [22]. An example of the latter is the work
by Leo [28] where actor systems are modeled by the composition of an infinite
number of IOA, each of which has a flag indicating whether the represented actor
has been created.

Automaton models that accurately capture dynamic creation need to store
the created names. History-dependent automata [31,32] provide a generalized
means to encode systems with dynamic creation, but without a separation of
concerns between the behavior of the system’s individual entities and the col-
lective, instantiated behavior. Similar to DIOA [6,7], dynamic communicating
automata (DCA) [8,9] and dynamic register automata [1] provide this separa-
tion, where a template automaton is used to describe the generic behavior of
each process in the system. Instantiations of the template automaton (i.e., the
processes) is collected in a configuration (for DCA, message sequence charts
[21]). These models need a composition operator to avoid packing the behav-
ior of every system component into one template automaton. Callable timed
automata [10] represent behavioral templates for calls and the (timed) systems
are represented using timed transition systems. An adaptation for actor systems
is not straightforward, as the semantics are based on the calls instead of entities
such as actors. Dynamic reactive modules [17] model process classes as transi-
tion systems that use logical formulas to describe the transition relations. This
framework is more suitable for systems whose entities share variables.

Logics can be used to model actor systems. Some models based on tempo-
ral logic have been pursued [11,16,36], but they carry the drawback that the
implementation has to be encoded in full together with the specification’s for-
mula. A promising approach is the use of trace-based dynamic logic [4,12,13],
which can handle actor systems with more complex features such as futures. The
modularity of the verification of this approach is up to the method level, with
the integration of a (static) component notion as defined in this paper is still
to be investigated. We have investigated a generalized Hoare logic based on the
splitting of traces into input and output traces [25]. Implementation verification
using this approach is an open challenge.

Models based on process algebra [3,18] require the construction of a
(bi)simulation relation to compare the implementation and the specification,

200 I.W. Kurnia and A. Poetzsch-Heffter

unless abstractions are applied [14,40] which allow automatic model checking
at the loss of some precision. A translation from the expressive Specification
Diagram for actor systems [38] to process algebra has been worked out [39].

6 Conclusion

In this paper we presented an automaton model based on DIOA for representing
actor systems. The automaton model provides an explicit support for dynamic
creation and dynamic topology. It enables accurate representation of the com-
plete observable behavior of the actor systems, while allowing abstractions to be
built based on a simple hierarchical component notion. The integration with the
component notion enables a hierarchical end-to-end verification approach. We
illustrate it using a transformational approach to a sequential language to verify
the implementation and a simulation relation to verify the components.

We envision several directions of further research. First, a full support for
futures in the model is still not yet established. One way to support this is
by introducing a special kind of SA that only represent futures. An interesting
question is how the futures generated by the environment can be handled by the
model. Another direction is to investigate other verification techniques applicable
to this model. Some preliminary work on adapting temporal logic for DIOA
exists, but the logical rules and their soundness are not yet fully investigated.

References

1. Abdulla, P.A., Atig, M.F., Kara, A., Rezine, O.: Verification of dynamic register
automata. In: FSTTCS, pp. 653–665 (2014)

2. Agha, G.: Actors: A Model of Concurrent Computation in Distributed Systems.
MIT Press, Cambridge (1986)

3. Agha, G., Thati, P.: An algebraic theory of actors and its application to a simple
object-based language. In: Owe, O., Krogdahl, S., Lyche, T. (eds.) From Object-
Orientation to Formal Methods. LNCS, vol. 2635, pp. 26–57. Springer, Heidelberg
(2004)

4. Ahrendt, W., Dylla, M.: A system for compositional verification of asynchronous
objects. Sci. Comput. Program. 77(12), 1289–1309 (2012)

5. Apt, K.R.: Ten years of Hoare’s logic: a survey part II: nondeterminism. Theor.
Comput. Sci. 28, 83–109 (1984)

6. Attie, P.C., Lynch, N.A.: Dynamic Input/Output automata: a formal model for
dynamic systems. In: Larsen, K.G., Nielsen, M. (eds.) CONCUR 2001. LNCS, vol.
2154, pp. 137–151. Springer, Heidelberg (2001)

7. Attie, P.C., Lynch, N.: Dynamic Input/Output automata: a formal and composi-
tional model for dynamic systems. Inf. Comput. (2015) (To appear)

8. Bollig, B., Cyriac, A., Hélouët, L., Kara, A., Schwentick, T.: Dynamic communicat-
ing automata and branching high-level MSCs. In: Dediu, A.-H., Mart́ın-Vide, C.,
Truthe, B. (eds.) LATA 2013. LNCS, vol. 7810, pp. 177–189. Springer, Heidelberg
(2013)

Modeling Actor Systems Using Dynamic I/O Automata 201

9. Bollig, B., Hélouët, L.: Realizability of dynamic MSC languages. In: Ablayev, F.,
Mayr, E.W. (eds.) CSR 2010. LNCS, vol. 6072, pp. 48–59. Springer, Heidelberg
(2010)

10. Boudjadar, A., Vaandrager, F., Bodeveix, J.-P., Filali, M.: Extending UPPAAL for
the modeling and verification of dynamic real-time systems. In: Arbab, F., Sirjani,
M. (eds.) FSEN 2013. LNCS, vol. 8161, pp. 111–132. Springer, Heidelberg (2013)

11. Dam, M., Fredlund, L., Gurov, D.: Toward parametric verification of open distrib-
uted systems. In: de Roever, W.-P., Langmaack, H., Pnueli, A. (eds.) COMPOS
1997. LNCS, vol. 1536, pp. 150–185. Springer, Heidelberg (1998)

12. Din, C.C., Dovland, J., Johnsen, E.B., Owe, O.: Observable behavior of distributed
systems: component reasoning for concurrent objects. J. Log. Algebr. Program.
81(3), 227–256 (2012)

13. Din, C.C., Owe, O.: Compositional and sound reasoning about active objects with
shared futures. Research report 437 (2014)

14. D’Osualdo, E., Kochems, J., Ong, C.-H.L.: Automatic verification of erlang-style
concurrency. In: Logozzo, F., Fähndrich, M. (eds.) Static Analysis. LNCS, vol.
7935, pp. 454–476. Springer, Heidelberg (2013)

15. Dovland, J., Johnsen, E.B., Owe, O.: Verification of concurrent objects with asyn-
chronous method calls. In: SwSTE, pp. 141–150 (2005)

16. Duarte, C.H.C.: Proof-theoretic foundations for the design of actor systems. Math.
Struct. Comput. Sci. 9(3), 227–252 (1999)

17. Fisher, J., Henzinger, T.A., Nickovic, D., Piterman, N., Singh, A.V., Vardi, M.Y.:
Dynamic reactive modules. In: Katoen, J.-P., König, B. (eds.) CONCUR 2011.
LNCS, vol. 6901, pp. 404–418. Springer, Heidelberg (2011)

18. Gaspari, M., Zavattaro, G.: An algebra of actors. In: Ciancarini, P., Fantechi, A.,
Gorrieri, R. (eds.) FMOODS. Springer, New York (1999)

19. Haller, P., Odersky, M.: Scala actors: unifying thread-based and event-based pro-
gramming. Theor. Comput. Sci. 410(2–3), 202–220 (2009)

20. International Telecommunication Union - Telecommunication Standardization.
Open distributed processing - reference models parts 1–4. Technical report,
ISO/IEC (1995)

21. International Telecommunication Union - Telecommunication Standardization.
Recommendation Z.120: Message Sequence Chart (MSC). Technical report,
ISO/IEC (2011)

22. Jaghoori, M.M., Chothia, T.: Timed automata semantics for analyzing Creol. In:
FOCLASA, pp. 108–122 (2010)

23. Johnsen, E.B., Hähnle, R., Schäfer, J., Schlatte, R., Steffen, M.: ABS: a core lan-
guage for abstract behavioral specification. In: Aichernig, B.K., de Boer, F.S.,
Bonsangue, M.M. (eds.) Formal Methods for Components and Objects. LNCS,
vol. 6957, pp. 142–164. Springer, Heidelberg (2011)

24. Kurnia, I.W.: An automata-theoretic approach to open actor system verification.
Ph.D. thesis, University of Kaiserslautern, January 2015

25. Kurnia, I.W., Poetzsch-Heffter, A.: A relational trace logic for simple hierarchical
actor-based component systems. In: AGERE! 2012, pp. 47–58. ACM (2012)

26. Kurnia, I.W., Poetzsch-Heffter, A.: Verification of open concurrent object sys-
tems. In: Giachino, E., Hähnle, R., de Boer, F.S., Bonsangue, M.M. (eds.) Formal
Methods for Components and Objects. LNCS, vol. 7866, pp. 83–118. Springer,
Heidelberg (2013)

27. Lamport, L.: What good is temporal logic? In: IFIP Congress, pp. 657–668 (1983)
28. Leo, J.: Dynamic process creation in a static model. Master’s thesis, MIT (1990)

202 I.W. Kurnia and A. Poetzsch-Heffter

29. Lynch, N., Tuttle, M.R.: Hierarchical correctness proofs for distributed algorithms.
In: PODC, pp. 137–151 (1987)

30. Misra, J., Mani Chandy, K.: Proofs of networks of processes. IEEE Trans. Software
Eng. 7(4), 417–426 (1981)

31. Montanari, U., Pistore, M.: Ugo Montanari and Marco Pistore. ENTCS 10,
170–188 (1997)

32. Montanari, U., Pistore, M.: History-dependent automata: an introduction. In:
Bernardo, M., Bogliolo, A. (eds.) SFM-Moby 2005. LNCS, vol. 3465, pp. 1–28.
Springer, Heidelberg (2005)

33. Nipkow, T., Slind, K.: I/O automata in Isabelle/HOL. In: Dybjer, P., Nordström,
B., Smith, J. (eds.) TYPES. LNCS, vol. 996, pp. 101–119. Springer, Heidelberg
(1994)

34. Olderog, E.-R., Apt, K.R.: Fairness in parallel programs: the transformational
approach. ACM TOPLAS 10(3), 420–455 (1988)

35. OSGi core release 5 (2012). http://www.osgi.org
36. Schacht, S.: Formal reasoning about actor programs using temporal logic. In: Agha,

G., De Cindio, F., Rozenberg, G. (eds.) APN 2001. LNCS, vol. 2001, pp. 445–460.
Springer, Heidelberg (2001)

37. Sirjani, M., Jaghoori, M.M., Baier, C., Arbab, F.: Compositional semantics of an
actor-based language using constraint automata. In: Ciancarini, P., Wiklicky, H.
(eds.) COORDINATION 2006. LNCS, vol. 4038, pp. 281–297. Springer, Heidelberg
(2006)

38. Smith, S., Talcott, C.L.: Specification diagrams for actor systems. High.-Order
Symb. Comput. 15(4), 301–348 (2002)

39. Thati, P., Talcott, C., Agha, G.: Techniques for executing and reasoning about
specification diagrams. In: Rattray, C., Maharaj, S., Shankland, C. (eds.) AMAST
2004. LNCS, vol. 3116, pp. 521–536. Springer, Heidelberg (2004)

40. Zufferey, D., Wies, T., Henzinger, T.A.: Ideal abstractions for well-structured tran-
sition systems. In: Kuncak, V., Rybalchenko, A. (eds.) VMCAI 2012. LNCS, vol.
7148, pp. 445–460. Springer, Heidelberg (2012)

http://www.osgi.org

	Modeling Actor Systems Using Dynamic I/O Automata
	1 Introduction
	2 Class-Based Actor Programming
	3 Automaton Model
	3.1 First Tier Model
	3.2 Second Tier Model

	4 Verification
	4.1 Class Verification
	4.2 Component Verification

	5 Related Work
	6 Conclusion
	References

