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Abstract We introduce a notion of data depth for recovery of community structures
in large complex networks. We propose a new data-driven algorithm, K-depths, for
community detection using the L1-depth in an unsupervised setting. We evaluate
finite sample properties of the K-depths method using synthetic networks and
illustrate its performance for tracking communities in online social media platform
Flickr. The new method significantly outperforms the classical K-means and yields
comparable results to the regularizedK-means. Being robust to low-degree vertices,
the new K-depthsmethod is computationally efficient, requiring up to 400 times less
CPU time than the currently adopted regularization procedures based on optimizing
the Davis–Kahan bound.

1 Introduction

The explosive growth of online social networking and recent advances on modeling
of massive and complex data has led to a skyrocketing interest in analysis of graph-
structured data and, particularly, in discovering network communities. Indeed, many
real-world networks—from brain connectivity to ecosystems to gang formation and
money laundering—exhibit a phenomena where certain features tend to cluster
into local cohesive groups. Community detection has been extensively studied in
statistics, computer science, social sciences and domain knowledge disciplines and
nowadays still remains one of the most hottest research areas in network analysis
(for overview of algorithms, see, e.g., [5, 11, 13, 21, 22, 37, 42, 46, 50, 68], and the
references therein).

The current paper is motivated by three overarching questions. First, there
exists no unique and agreed upon definition of network community, typically a
community is thought of a cohesive set of vertices that have stronger or better
internal connections within the set than with external vertices [37, 44]. Second,
community discovery is further aggravated in a presence of (usually multiple)
outliers, and until recently the two tightly woven problems of outlier detection
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and network clustering have been studied as independent problems [5, 15, 48].
Third, vertices with a low degree (or the so-called parasitic outliers of the spectrum
[35]) tend to produce multiple zero eigenvalues of the graph Laplacian, which
results in a higher variability of spectral clustering and thus a reduced finite
sample performance in community detection. Fourth, most of the currently available
methods for community discovery within a spectral clustering framework are based
on the Euclidean distance as a measure of “cohesion” or “closeness” among vertices,
and thus do not explicably account for the underlying probabilistic geometry of the
graph.

We propose to address the above challenges by introducing a concept of data
depth into the network community detection that allows to integrate ideas on
cohesion, centrality, outliers, and community discovery under a one systematized
“roof.” Data depth is a nonparametric and inherently geometric tool to analyze,
classify, and visualize multivariate data without making prior assumptions about
underlying probability distributions. A new impetus has been recently given to data
depths due to their broad utility in high dimensional and functional data analysis
(for overview, see, e.g., [9, 26, 27, 34, 40, 47, 58, 73], and the references therein.).
Given a notion of data depth, we can measure the “depth” (or “outlyingness”) of
a given object or a set of objects with respect to an observed data cloud. A higher
value of a data depth implies a deeper location or higher centrality in the data cloud.
By plotting such a natural center-outward ordering of depth values that serves as a
topological map of the data, the presence of clusters, outliers, and anomalies can
be evaluated simultaneously in a quick and visual manner. A notion of data depth
is novel to network studies. The only relevant paper on the topic is due to [14]
who consider a random sample of graphs following the same probability model
on the space of all graphs of a given size. This probabilistic framework, however,
is not applicable to analysis of most real-world graph-structured data where the
available data consists only of a single network. In this paper we primarily focus
on utility of L1-depth as the main tool for unsupervised community detection in a
spectral setting. Although there exist numerous other depth alternatives, our choice
of a depth function is motivated by simplicity and tractability of L1-depth and the
fact that it can be computed using a fast and monotonically converging algorithm
[29, 30, 65]. This makes L1-depth particularly attractive for community discovery in
large complex networks.

The paper is organized as follows. Section 2 provides background on graphs,
spectral clustering, and K-means algorithm.We introduce the new K-depths method
based on the L1-depth and discuss its properties in Sect. 3. simulation studies are
presented in Sect. 4. Section 5 illustrates application of the K-depths method to
tracking communities in online social media platform Flickr.
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2 Preliminaries and Background

Graph Notations Consider an undirected and loopless graph G D .V ; E/, with a
vertex set V of cardinality n and an edge set E . We assume that G consists of K non-
overlapping communities and K is given. Let A be an n � n-symmetric empirical
adjacency matrix, i.e.,

A D
(

1; if .i; j/ 2 E
0; otherwise:

The population counterpart of A is denoted by P. Let D be a diagonal matrix of

degrees, i.e., Dii D
nP

jD1

Aij. Then, the graph Laplacian is defined as

L D D�1=2AD�1=2: (1)

Spectral Clustering For smaller networks, communities can be identified via
optimizing various goodness of partition measures, for instance, Ratio Cut [19],
Normalized Cut [60], and Modularity [45], which involve a search for optimal
split over all possible partitions of vertices. However, such discrete optimization
problems are typically NP-hard and thus are not feasible for larger networks. The
computational challenges can be circumvented using spectral clustering (SC) that
yields a continuous approximation to discrete optimization [67]. Hence, SC is
now one of the most widely popular procedures for tracking communities in large
complex networks [66].

The key idea of SC is to embed a graph G into a collection of multivariate sample
points. Given K communities, we identify orthogonal eigenvectors v�j; j D 1; : : : ;K
of the Laplacian L (or adjacency matrix A) that correspond to the largest K
eigenvalues, and construct the n � K-matrix V D Œv�1; : : : ; v:K �. Each row of V ,
vi � vi�, provides a representation in R

K of a vertex in V . Given this embedding,
we can now employ any appropriate classifier to cluster this multivariate data set
into K communities, and the most conventional choice is a method of K-means
[1, 31, 36, 51].

Given a set of data points xi 2 R
d, for i D 1; : : : ; n, the method of K-means [41]

aims to group observations into K sets C D fC1; : : : ;CKg in such a way that the
within-cluster sum of squares is minimized, that is, we minimize

argmin
C

KX
kD1

X
x2Ck

jjx � �kjj2; (2)

where �k is the mean of points in Ck, jjx � �kjj2 is the squared Euclidean distance
between x and k-th group mean �k. The optimization (2) is highly computationally
intensive. As an alternative, we can employ the Lloyd’s algorithm (also known as
Voronoi iteration or relaxation) for (2) that is based on iterative refinement and that
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allows to quickly identify an optimum (see the outline of the K-means 1). In this
paper, the initial centers are chosen randomly from the data set.

Algorithm 1: The K-means algorithm
Input : a set of data points X D fx1; : : : ; xng, an initial set of K means m1; : : : ;mK .
Output: a partition of X.

1 do
2 � Assign points to its nearest cluster in terms of squared Euclidean distance, for

k D 1; : : : ;K:

Ck D fxi W jjxi � mkjj2 � jjxi � mjjj2; 8j; 1 � j � Kg
� Update cluster centers as the mean of points in new clusters, for k D 1; : : : ;K:

mk D 1

jCkj
X
xi2Ck

xi:

3 until the assignment no longer change;

Regularization Low-degree vertices tend to producemultiple zero eigenvalues of a
Laplacian L, which in turns increases clustering variability and adversely impacts a
performance of the K-means algorithm. The problem is closely connected to the
concentration of L, that is, the study on how close a sample Laplacian L to its
expected value. Sparser networks tend to produce more low-degree vertices and do
not concentrate. The idea of regularization in this context is to somehow diminish
the impact of such vertices with low degrees, by viewing them as outliers and
shrinking them toward the center of spectrum. As a result, regularization leads to a
higher concentration. There are a number of regularization procedures ranging from
brute-force trimming of outliers to sophisticated methods that are closely connected
to regularization of covariance matrices (for more discussion and the most recent
literature review see [35]). One of the most popular approaches, by analogy with a
ridge regularization of covariance matrices, is to select some positive parameter �

and add �=n to all entries of the adjacency matrix A [1], that is

A� D A C �J;

where J D 1=n1, 1 is n � n-matrix with all elements 1. The resulting regularized
Laplacian then takes a form

L� D D�1=2
� A�D

�1=2
� ;

where Dii;� D
nP

jD1

Aij C � . The optimal regularizer � can then be selected by

minimizing the Davis–Kahan bound, i.e., the bound on the distance between the
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sample and population Laplacians (for study on properties of regularized spectral
clustering see, [31, 35], and the references therein). However, selecting an optimal
regularizer � is highly computationally expensive. In addition, the impact of small
and weak communities on performance of regularized spectral clustering is not
clear.

In this light, an interesting question arises on whether we can develop an alter-
native data-driven and computationally inexpensive method for taming “outliers”
with low degrees and bypass the optimization stage of the Davis–Kahan bound? It
seems natural to unitize here a statistical methodology that has been developed with
a particular focus on analysis of outliers, that is, a notion of data depth.

3 Community Detection Using L1 Data Depth

In this section, we propose a new unsupervised K-depths algorithm for network
community detection based on iterative refinement with L1 depth.

The L1 Data Depth In this paper we consider an L1-data depth of Vardi and
Zhang [65]. Consider N distinct observations x1; : : : ; xN in R

p which we need to
partition into K clusters, and let I.k/ be a set of labels for observations in the k-th
cluster. Let each observation xi be associated with a scalar �i, i D 1; : : : ;N, where
�i are viewed as weights or as “multiplicities” of xi, and �i D 1 if the data set has
no ties. The multivariate L1-median of a k-th cluster, y0.k/, is then defined as

y0.k/ D argminC.yjk/; (3)

where C.yjk/ is the weighted sum of distances between y and points xi in the k-th
cluster

C.yjk/ D
X
i2I.k/

�ijjxi � yjj 8k: (4)

Here jju � vjj, u; v 2 R
p, is the Euclidean distance in Rp. If x1; : : : ; xN are not mul-

ticollinear (which is the case of the considered spectral clustering framework), C.y/
is positive and strictly convex in Rp. If the set x1; : : : ; xN has ties, “multiplicities” �i

can be chosen in such a way that it preserves convexity of C.y/ (see [65], for further
discussion).

The L1 depth was proposed by Vardi and Zhang [65], based on the notion of a
multivariate L1-median (3), and the idea has been further extended to clustering and
classification in multivariate and functional settings by López-Pintado and Jörnsten
[39], Jörnsten [29]. Given a cluster assignment, the L1 depth of point x; x 2 R

K with
respect to a k-th cluster is defined as

LD.xjk/ D 1 � maxŒ0; jjNe.xjk/jj � f .xjk/�: (5)
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Here f .xjk/ D �.x/=
P

i2I.k/ �i with �.x/ D PN
iD1 �iI.x D xi/ and Ne.xjk/ is the

average of the unit vectors from a point x to all observations in the k-th cluster and
is defined as

Ne.xjk/ D
X

i2I.k/;xi¤x

�iei.x/=
X
j2I.k/

�j;

where ei.x/ D .xi � x/=jjxi � xjj.
The idea of 1 � LD.xjk/ is to quantify a minimal additional weight required to

assign x so that x becomes the multivariate L1-median of the k-th cluster x [ fxi; i 2
I.k/g [65]. Hence, L1 depths as a robust representation of a topological structure of
each cluster. Since L1 is non-zero outside the convex hull of the data cloud, it is a
feasible depth choice for comparing multiple clusters [29].

The K-Depths Method It is well known that K-means clustering algorithm is non-
robust to outliers [16, 59, 69]. This partially is due to the fact that the K-means
algorithm is based on a squared Euclidean norm as the measure of “distance” and
only captures the information between a pair of points, i.e., a candidate center
and another point (see Fig. 1a). Also to identify a cluster, the K-means algorithm
uses a presumptive cluster center defined by a cluster mean, which makes it
sensitive to anomalies and outliers. Although we update centers and clusters until
the assignments no longer change, there is no guarantee that the global optimum
for (2) can be found [49, 54].

Our idea is motivated by the two overarching questions. Is there an alternative
“cohesion” measure to a squared Euclidean norm? Does such a measure allow to

(a) (b)

(c)

Fig. 1 Comparing K-means and K-depths algorithms. Circles denote cluster centers. Each cluster
is identified by colors and border around points. (a) K-means. (b) K-depths. (c) Generalized K-
depths
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achieve a higher accuracy and stability by taking advantage of more information
between clusters and points?

Indeed, such a “cohesion” measure exists, and it can be based on a data depth
notion. As discussed earlier, a depth function evaluates how “deep” (or “central”) a
point is with respect to a group of data (i.e., a cluster). Hence, depth functions allow
for more informative and robust “cohesion” (or “distance”) measures than a squared
Euclidean norm (Fig. 1b).

Our proposed approach is then to use a data depth (particularly, the L1 depth)
to find “nearest” clusters as a part of iterative refinement, and we call the new
method “K-depths” clustering algorithm. That is, following the spectral clustering
setting, we embed a graph into a collection of multivariate sample points. Then,
given K communities, we identify orthogonal eigenvectors of the Laplacian L that
correspond to the K largest eigenvalues of L, and construct an n�K-matrix V that is
formed by eigenvectors of L. We view each row of V as a representation of a network
vertex in R

K , and thus, we get n sample points in K-dimensional space. Clustering
of these multivariate points using the K-depths yields a partition of networks into
K communities. (The K-depths method is outlined in Algorithm 2. Note that we
still use a squared Euclidean norm to initialize the K-depths iterative refinement.)
Note that instead of Laplacian spectral embedding, we can also consider adjacency
spectral embedding (see [36] and references therein).

Algorithm 2: Spectral clustering K-depths algorithm
Input : network G; number of communities K, depth function LD.
Output: a partition of G.

1 compute L using (1) ; // Spectral Clustering
2 construct V by combining the leading K eigenvectors of L;
3 view each row of V as a multivariate representation of each vertex in V ;
4 randomly select K points as initial centers m0

1;m0
2; : : : ;m0

K ; // K-depths
5 define initial clusters: C0

k D fxi W jjxi � mkjj2 � jjxi � mjjj2; 8j; 1 � j � Kg;
6 do
7 extract inner p percent vertices: Ik D fxi W LD.ijk/ � LD.:jk/.p�nk /g for

k D 1; : : : ;K update clusters: Ck D fxi W LD.xijk/ � LD.xijj/; 8j; 1 � j � Kg;
8 until the assignment no longer change;

The K-depths algorithm presented above is closely related to the modified
Weiszfeld algorithm of [65]. The idea of the K-depths is to evaluate “centrality”
of any given point in respect to all points within a cluster (see Fig.1b), that is,
in respect to points located inside the cluster and points located close to a cluster
borderline. However, points that fall in-between clusters may provide redundant or
noisy information, which leads a higher variability of the clustering algorithm. We
therefore introduce the generalized K-depths measure which only accounts for the
inner parts of a cluster to calculate depth values (Fig. 1c). Given a contour plot of
a cluster, we compute L1 depth values using points which are within an arbitrary
percentage contour p 2 Œ0; 1�. For instance, Fig. 1b is a special case of Fig. 1c where
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the locality parameter p is 1, i.e., all 100% of available data are used in the K-depths
algorithm. We can also view the locality parameter p as a trade-off of bias (i.e.,
detection accuracy) and variance (i.e., detection variability).

Remark The optimal choice of p, similarly to selection of optimal trimming,
largely depends on a definition of outlier, types of anomalous behavior, proportion
of contamination, and structure of the data. Conventionally, trimming and other
robustifying parameters are chosen using various types of resampling, including
V-fold crossvalidation, jackknife, and bootstrap (see [2, 24, 25]). Under the network
setting, the problem is further aggravated by the lack of an agreed-upon definition
of outliers and network anomalies and their dependence on the underlying network
model structure (for overviews, see [3–5, 17, 18]). For instance, [5] discuss at least
four kinds of outliers: mixed membership, hubs, small clusters, independent neutral
nodes. Although selecting p using crossvalidation is likely to be affected by the
presence of outliers in an observed network, we believe that one of the resampling
ideas such as crossvalidation or bootstrap [12, 63] is still arguably the most feasible
approach that allows to minimize parametric assumptions about the network model.

3.1 Properties of Spectral Clustering K-Depths Algorithm

Asymptotic properties of spectral clustering and, particularly, theK-means/ medians
algorithms have been widely studied both in probability and statistics (for the most
recent overviews, see, e.g., [28, 36, 52, 53], and the references therein). While most
of the results focus on denser networks, most recently [36] derive an upper error
bound for spectral clustering under moderately sparse stochastic block model with
a maximum expected degree of order log n or higher.

The key result behind deriving all asymptotic properties of theK-means/ medians
algorithms is to show that there exists a sequence �n; �n � 0 such that limn!1 �n D
0 and

zAk � .1 C �n/z
�.G/; n 2 ZC (6)

where zAk.G/ is the approximate polynomial time solution from the K-
means/medians algorithms and z�.G/ is the optimal solution. If such a sequence �n
exists, then [10] define asymptotic optimality of the K-medians algorithm.

Defining z.G/ in (6) in terms of a Frobenius norm of a distance between the
K largest eigenvectors U1; : : : ;UK of a population adjacency matrix P and their
respective counterparts OU1; : : : ; OUK from an empirical adjacency matrix A, [33]
show that there exists an approximate polynomial time solution to the K-means



Fast Community Detection in Complex Networks with a K-Depths Classifier 147

algorithm with an error bound

jj O� OX � OUjj2F � .1 C �/ min
�2Mn;K
X2RK�K

jjU � OUjj2F; OU; U 2 R
n�K ;

where U D ŒU1; : : : ;UK � and OU D Œ OU1; : : : ; OUK �. Here � is a true membership
matrix such that �igi is 1 where gi 2 f1; : : : ;Kg is the community membership of
vertex i, and Mn;K is a collection of all n � K-matrices where each row has exactly
one 1 and the remaining K � 1 entries are 0. For discussion on analogous results
on existence of .1 C �/-approximate solution for a k-medians algorithm in network
applications see, for instance, [36].

Since statistical properties of median and L1-depth are closed related (see [65]),
we state the following conjecture about the error bound of the K-depths algorithm
under the L1 depth and adjacency spectral embedding.

Conjecture 1 There exists an ˝-approximate polynomial time solution to the
K-depths method under adjacency spectral embedding which attains

jj O� OX � OUjj2F � ˝ min
�2Mn;K
X2RK�K

jjU � OUjj2F; (7)

where ˝ is a positive constant and . O�; OX/ 2 Mn;K � RK�K is the output of ˝-
approximate K-depths algorithm.

Armed with (7), an upper bound on network community detection error of the
K-depths algorithm 2 under adjacency spectral embedding can be derived for a
stochastic block model (SBM), following derivations of [36, 52, 65]. This error
bound for the K-depths increases with an increasing network sparsity and with
the growing number of communities. In addition, assuming existence of a ˙-
approximate solution to the K-depths algorithm, analogous error bounds can be
derived under Laplacian spectral embedding [52, 53].

4 Simulations

In this section we evaluate a finite sample performance of the unsupervised K-
depths classifier for detecting network communities and primarily focus on a case
of two communities. To measure a goodness of clustering, we employ such standard
criteria as misclassification rate and normalized mutual information (NMI). We
define misclassification rate as the total percentage of mislabeled vertices, i.e.,

� D 1

n

KX
iD1

jSij;

where jSij is the number of misclassified vertices in the i-th community.
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Given the two sets of clusters with a total of n vertices: R D fr1; : : : ; rKg and
C D fc1; : : : ; cJg, the NMI is given by Manning et al. [43]:

NMI.R;C/ D I.RIC/

ŒH.R/ C H.C/�=2
:

Here I is mutual information

I.RIC/ D
X
k

X
j

P.rk
\

cj/ log
P.rk

T
cj/

P.rk/P.cj//

D
X
k

X
j

jrk T
cjj

n
log

njrk T
cjj

jrkjjcjj

where P.rk/, P.cj/, and P.rk
T

cj/ are the probabilities of a vertex being in cluster
rk, cj and in the intersection of rk and cj, respectively, and H is entropy defined by

H.R/ D �
X
k

P.rk/ logP.rk/ D �
X jrkj

n
log

jrkj
n

:

NMI takes values between 0 and 1, and we prefer a clustering partition with a higher
NMI.

4.1 Network Clustering with Two Groups

Here we use a benchmark simulation framework based on a 2-block stochastic block
model (SBM)[61, 71]. SBM is a particular case of an inhomogeneous Erdös–Renyi
model in which edges are formed independently and probability of an edge between
two vertices is determined by group membership of vertices [23].

Following a simulation setting of Joseph and Yu [31], we generate 100 networks
of order 3000 from an SBM with a block probability matrix

B D
�

0:01 0:0025

0:0025 0:003

�
; (8)

and assume that the connections within the k-th community follow an independent
Bernoulli distribution with probability Bkk, k D 1; 2.

Table 1(a) summarizes clustering performance of the K-means and K-depths
algorithms in terms of misclassification rate and NMI. We find that the K-depths
method noticeably outperforms the K-means algorithm, delivering 36% lower
misclassification rate and more than four times higher NMI, although with a
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Table 1 Performance of the
K-means and K-depths
algorithms in respect to
misclassification rate � and
NMI, with standard deviation
in (), under (a)

Method � NMI

(a)

K-means 0.44 0.05

(0.08) (0.09)

K-depths 0.28 0.23

(0.13) (0.19)

(b)

K-means 0.62 0.24

(0.21) (0.08)

K-depths 0.55 0.43

(0.25) (0.07)

SBM (8) and (b) Generalized
SBM (GSBM). The locality
parameter p for the K-depths
algorithm is 0.1
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Fig. 2 Boxplots of clustering performance of the K-means and K-depths in terms of misclassifi-
cation rate and NMI for the SBM (8)

somewhat higher variability. Remarkably, the boxplot for misclassification rate and
NMI (see the left panel of Fig. 2) indicates that despite a higher variability, the
lower quartile of the misclassification rates delivered by the K-depths algorithm
is smaller than the upper quartile of the misclassification rates yielded by the K-
means algorithm. A similar dynamics is also observed for NMI (see the right panel
of Fig. 2).

We find that regularization of both K-means and K-depths where an optimal
regularizer � is selected using optimizing the Davis–Kahan bound as per [31]
improves community discovery. That is, the regularized K-means outperforms the
regularized K-depths in terms of misclassification rates, i.e., 0.16 vs. 0.22; and
the regularized K-depths outperforms the regularized K-means in terms of NMI,
i.e., 0.44 vs. 0.40. However, regularization turns out to be highly computationally
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Fig. 3 Contour plots based on the L1-data depth and varying data proportions p, i.e., p is 0.1, 0.3,
0.5, and 0.7

expensive, that is, finding an optimal regularization for a single network of 3000
vertices under SBM (8) requires 1800 s (with 1 additional sec for the K-means
algorithm itself). In contrast, the unregularized K-depths algorithm takes only 4 s.
(The elapsed time is assessed in R on an OS X 64 bit laptop with 1.4 GHz Intel Core
i5 processor and 4GB 1600MHz DDR3 memory.)

Thus, being intrinsically robust to low-degree vertices, the new K-depths method
provides a simple and computationally efficient alternative to the currently adopted
regularization procedures based on optimizing the Davis–Kahan bound.

Choice of a Locality Parameter Let us explore the impact of a locality parameter
p, p 2 Œ0; 1�, on a clustering performance of the K-depths algorithm. Note that p
controls how many points are selected to form the “deepest” sub-clusters which
other points are compared with. Figure 3 visualizes sub-clusters and the respective
contour plots based on the L1-depth, corresponding to p D .0:1; 0:3; 0:5; 0:7/.
If p is 1, the whole data cloud is used, while lower values of p lead to a higher
concentration of points around the cluster center and aim to minimize the impact
of outlying points or noise. Hence, a locality parameter p can be viewed as a trade-
off between bias and variance. Figure 4 shows the performance of the K-depths
algorithm in respect to varying p and the SBM (8). We find that in general both
mean and variance of misclassification rates and NMI are stable and comparable for
p of less than 0.5. As expected, higher values of p lead to a better performance in
terms of average misclassification rates and NMI but also result in a substantially
higher variability. In general, an optimal p can be selected via crossvalidation, and
choice of p is likely to be linked with a sparsity of an observed network. However,
given the stability of the K-depths performance, as a rule of thumb we suggest to
use a p of 0.5 or less.
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Fig. 4 Boxplots of misclassification rates (a) NMI (b) with various choices of locality parameter p.
The dashed line connects medians for resulting misclassification rates and NMI for various locality
parameters p, in plots (a) and (b) respectively

4.2 Network Clustering with Outliers

Now we evaluate the performance of the K-depths algorithm in respect to a network
with outliers. In particular, we consider the so-called Generalized Stochastic Block
Model (GSBM) of Cai and Li [5] which is based on incorporating small and
weak communities (outliers) into a conventional SBM structure. More specifically,
consider an undirected and loopless graph G D .V ; E/ with N D n C m vertices,
where n is the number of “inliers” which follow the standard SBM framework
and m is the number of “outliers” which connect with other vertices in random.
Each inlier vertex is assigned to one of the two communities, while all outliers are
placed into the 3rd community. An example of GSBM is shown in Fig. 5, two strong
communities are colored by red and greenwithin solid circles, the outliers (oneweak
and small community) are colored by blue within a dashed circle.
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Fig. 5 Network with
outliers, or small and weak
community, under GSBM

In this section we consider a GSBM of Cai and Li [5] by adding 30 outliers (i.e.,
one small and weak community) into a standard 2-block SBM (8).

In particular, we set a probability of an edge between outliers to be of 0.01.
Connection between inliers and outliers is defined by an arbitrary .0; 1/-matrix Z,
Z 2 R

n�m, such that EZ D ˇ1T D Œˇ; : : : ;ˇ� and the component of ˇ are 3000
i.i.d. copies of U2, where U is a uniform random variable on Œ0; 0:0025�.

Following [5], we define a misclassification rate based only on inliers in the
dominant 1st and 2nd communities, i.e.,

� D 1

n

2X
kD1

jSkj;

where jSkj is a number of misclassified vertices in the k-th community and k D 1; 2.
Similarly, NMI is defined calculated only on inliers and a number of clusters K are
set to 3 for both K-means and K-depths algorithms.

Table 1(b) summarizes the results for misclassification rates and NMI delivered
by the K-means and K-depths algorithms. In general, misclassification rates for
both methods under the GSBM model are noticeably higher than the analogous
rates under a standard SBM. However, the K-depths algorithm still outperforms
the K-means method, yielding a 10% lower misclassification rate. In turn, NMI
delivered by the K-depths algorithm is almost twice higher than the corresponding
NMI of the K-means method, i.e., 0.43 vs. 0.24, respectively. Remarkably, under
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Fig. 6 Boxplots of clustering performance of the K-means and K-depths in terms of misclassifi-
cation rate and NMI under the GSBM

the GSBM variability of both methods is very similar, while the upper quartile of
NMI for the K-means algorithm is lower than almost all values of NMI delivered by
the K-depths algorithm (see Fig. 6).

5 Application to Flickr Communities

In this section, we illustrate the K-depths algorithm to tracking communities in
Flickr. Flickr is a popular website for users to share personal photographs and
also an online platform. This data set contains the information of 80,513 Flickr
bloggers, each blogger is viewed as a vertex, and the friendship between bloggers
is represented by undirected edges. The data is available from [70]. Bloggers are
divided into 195 groups depending on their interests. As discussed by Tang and Liu
[62], the network is very sparse and scale-free (i.e., its degree distribution follows a
power law).

In our study, we consider a subnetwork of Flickr by extracting vertices that
belong to the second and third communities and edges within and in-between of
these communities. Isolated vertices (vertices with no edges) are removed. The
resulting data represents an undirected graph with 216 vertices and 996 edges; the
second community contains 155 vertices and 753 edges, while the third community
contains 61 vertices and 19 edges.

We now apply the K-means and K-depths algorithms to identify clusters in the
Flickr subnetwork (see Table 2). We find that the K-depths algorithm delivers a mis-
classification rate of 0.35, which is more than 26% lower than the misclassification
rate of 0.47 yielded by theK-means algorithm. In turn, NMI yielded by theK-depths
algorithm is comparable with NMI of the K-means algorithm.
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Table 2 Misclassification
rate (�) and Normalized
Mutual Information (NMI)
criteria for the K-means and
K-depths methods for the
Flickr subnetwork

Method � NMI

K-means 0.47 0.07

K-depths 0.35 0.07

The locality parameter p
for the K-depths algorithm
is 0.5

6 Conclusion and Future Work

In this paper, we introduce a new unsupervised approach to network community
detection based on a nonparametric concept of data depth within a spectral
clustering framework. In particular, we propose a data-driven K-depths algorithm
based on iterative refinement of the L1 depth. The new method is shown to
substantially outperform the classical K-means and to deliver comparable results
to the regularized K-means. The K-depths algorithm is simple and computationally
efficient, requiring up to 400 times less CPU time than the currently adopted
regularization procedures based on optimizing the Davis–Kahan bound. Moreover,
theK-depths algorithm is intrinsically robust to low-degree vertices and accounts for
the underlying geometrical structure of a graph, thus paving the way for using the
L1 depth and other depth functions as an alternative to computationally expensive
selection of optimal regularizers.

In addition to asymptotic analysis of the K-depths clustering, in the future we
plan to advance the K-depths approach to other types of depth functions, for exam-
ple, the classical ones: half-space depth, Mahalanobis depth, random projection
depth etc [38, 55–57, 72], and to the most recent such as Monge-Kantorovich depth
[6, 20] and to explore utility of the K-depths method as initialization algorithm (for
discussion, see [64] and the references therein). Another interesting direction is to
investigate the relationship between properties of the K-depths approach and the
trimmed K-means algorithms [7, 8, 32], both in networks and general multivariate
clustering contexts.
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