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Abstract In this paper, we propose a series of bias-reduced moment estimators
for the Population Spectral Distribution (PSD) of large covariance matrices, which
are fundamentally important for modern high-dimensional statistics. In addition,
we derive the limiting distributions of these moment estimators, which are then
adopted to test the order of PSDs. The simulation study demonstrates the desirable
performance of the order test in conjunction with the proposed moment estimators
for the PSD of large covariance matrices.
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1 Introduction

Statistical inference concerning large covariance matrices is developing rapidly,
due to the wide availability of high-dimensional data from a variety of scientific,
economic, and social studies. Some specific structural assumptions about covariance
matrices are often considered, e.g., sparsity in terms of population eigenvalues and
eigenvectors or sparsity in terms of the entries of covariance matrices. Johnstone
[11] proposes that there only exist a fixed number r of population eigenvalues
separated from the bulk. In an even more extreme case, Berthet and Rigollet [4]
assume r D 1 and the covariance matrix can be modeled as I C ���T , where �

is a unit length sparse vector and � 2 R
C. Birnbaum et al. [5] propose adaptive

estimation of r � 1 individual leading eigenvectors when the ordered entries of
each eigenvector decay rapidly.
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In high-dimensional framework, where the dimension p and the sample size n
are both large, estimating Population Spectral Distribution (PSD) Hp of covariance
matrix †p has attracted much attention recently, see [3, 9, 12, 14, 15, 19]. In [15],
the estimation is designed for discrete PSDs with finite support. In [9], the proposed
method is evaluated by three simple models considered in their simulation study:
†p D Ip, Hp D 0:5ı1 C 0:5ı2, and a Toeplitz covariance matrix. For the first model,
all population eigenvalues are equal to 1, which is a special case of order 1 discrete
PSDs, i.e., Hp D ı1, while the second model is of order 2 (with mass points 1 and
2) and the third is of order p (i.e., continuous PSD as p ! 1).

In this paper, our main contribution is to propose bias-reduced moment estima-
tors for the PSD of large covariance matrices. These moment estimators can be
proved to enjoy some desirable theoretical properties. We then adopt the test in [18]
in conjunction with the proposed moment estimators to test the order of PSDs.

Specifically, we assume that under the null hypothesis, there are k distinct pop-
ulation eigenvalues a1; : : : ; ak, and their multiplicities are p1; : : : ; pk, respectively.
Then the PSD Hp can be expressed as

Hp D w1ıa1 C � � � C wkıak ; (1)

where wi D pi=p and thus
Pk

iD1 wi D 1. This model has been considered in [3, 12,
14, 15, 19], where the estimation of Hp is developed by assuming the order k D k0

is known. This assumption does not cause any serious problem if the true order k is
smaller than k0, since the model with higher order contains the (smaller) true model.
But if k > k0, then any estimation based on k D k0 can surely lead to erroneous
result. Another closely related work is [7], in which the authors develop a cross-
validation type procedure to estimate the order k. However, their estimators cannot
be used to test the order of PSDs because of the lack of asymptotic distributions. Qin
and Li [18] consider the following hypotheses to find statistical evidence to support
that there are no more than k0 distinct mass points in Hp.

H0 W k � k0 v.s. H1 W k > k0; k0 2 N: (2)

The rest of the paper is organized as follows. In the next section, we discuss the
bias-reduced estimation of moments of PSDs. In Sect. 3, we reformulate the test
in [18] with our proposed moment estimators. Section 4 reports simulation results.
Concluding remarks are presented in Sect. 5 and proofs of the main theorems are
postponed to the last section.
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2 Moments of a PSD and Their Bias-Reduced Estimators

Let x1; : : : ; xn, xi 2 R
p, be a sequence of independent and identically distributed

zero mean random vectors with a common population covariance matrix †p. The
sample covariance matrix is

Sn D 1

n

nX

iD1

xix0
i:

Note that the population mean is assumed to be zero for simplicity, if not, one may
replace Sn with its centralized version.

Let Hp be the PSD of †p and Fn be the empirical spectral distribution (ESD) of
Sn. Integer moments of Hp and Fn are, respectively, defined as

�k WD
Z

tkdHp.t/ and Ǒ
k WD

Z

xkdFn.x/;

k D 0; 1; 2; : : : : Unbiased estimators of �k’s based on Ǒ
k’s under normality are

provided in [10, 21]. However, their results are limited to k � 4. In [3, 12, 13], more
general moment estimators are introduced. However, their estimators are biased.
Moreover, their asymptotic means and variances have no explicit forms, and are
expressed through contour integrals only. In this paper, we present an explicit bias-
reduced version of the estimators in [3].

Our main assumptions are listed as follows. These three assumptions are
conventional conditions for the central limit theorem of linear spectral statistics,
see [1, 2].

Assumption (a) The sample size n and the dimension p both tend to infinity such
that cn WD p=n ! c 2 .0; 1/.

Assumption (b) There is a doubly infinite array of i.i.d. random variables .wij/,
i; j � 1, satisfying

E.w11/ D 0; E.w2
11/ D 1; E.w4

11/ < 1;

such that for every given p; n pair, Wn D .wij/1�i�p;1�j�n. Hence, the observed data

vectors can be represented as xj D †
1=2
p w:j where w:j D .wij/1�i�p denotes the jth

column of Wn.

Assumption (c) The PSD Hp of †p weakly converges to a probability distribution
H, as p ! 1, and the sequence of spectral norms .jj†pjj/ is bounded.

Under the assumptions (a)–(c), the ESD Fn converges in distribution to a
determinate distribution Fc;H [20], called the limiting spectral distribution (LSD),
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and the moments �k and Ǒ
k also converge,

�k ! Q�k WD
Z

tkdH.t/ and Ǒ
k ! Q̌

k WD
Z

xkdFc;H.x/:

Moreover, these limiting moments Q�k’s and Q̌
k’s are linked through a series of

recursive formulas [16],

Q�1 D Q̌
1;

Q�2 D Q̌
2 � c Q�2

1 ;

Q�k D Q̌
k � 1

c

X
.c Q�1/

i1 .c Q�2/
i2 � � � .c Q�k�1/

ik�1 �.i1; : : : ; ik�1/; k � 2;

where the sum runs over the following partitions of k:

.i1; : : : ; ik�1/ W k D i1 C 2i2 C � � � C .k � 1/ik�1; il 2 N;

and the coefficient �.i1; : : : ; ik�1/ D kŠ=Œi1Š � � � ik�1Š.k C 1 � i1 � � � � ik�1/Š�:

Bai et al. [3] just plug Ǒ
k’s into these recursive formulas to get the estimators of

�k’s (also estimators of Q�k’s).
It’s obvious that the mapping from Q̌

k’s to Q�k’s,

g W . Q̌
1; : : : ; Q̌

k/
0 ! . Q�1; : : : ; Q�k/0; (3)

is one-to-one and its Jacobian matrix @g.ˇ/=@̌ is a lower-triangular matrix with unit
determinant. Therefore, the properties of the plug-in estimators are fully determined
by those of Ǒ

k’s which actually, as estimators of Q̌
k’s when Hp D H and cn D c, are

biased by the order of O.1=p/ [1]. In this paper, our main contribution is to correct
the bias and propose bias-reduced moment estimators.

Let qs;t be the coefficient of zt in the Taylor expansion of .1 C z/�s at z D 0 and
define three power series P.z/, Q.z/, and R.z/ as

P.z/ D �1 � c
1X

lD1

Q�l.�z/l; (4)

Q.z/ D c
1X

lD0

q3;l Q�lC2z
l; R.z/ D 1 � c

1X

lD0

q2;l Q�lC2z
lC2: (5)

Let �k .k � 1/ be the coefficient of zk�2 in the Taylor expansion of function
Pk.z/Q.z/=R.z/ at z D 0. Apparently �1 D 0: When calculating �k for k � 2,
it’s enough to keep the terms of zl for l � k� 2 in the series P;Q, and R since higher
order terms, after taking derivatives of order k � 2, are all zero at z D 0. Therefore,
�k is a function of c; Q�1; : : : ; Q�k, and thus a function of c; Q̌

1; : : : ; Q̌
k.
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It will be shown that �k=p is approximately the leading term of the bias contained
in Ǒ

k, and hence we modify this estimator to

Ǒ�
k D Ǒ

k � 1

p
O�k;

where O�k D �k.cn; Ǒ
1; : : : ; Ǒ

k/, k D 1; 2; : : : : The correction can be conducted
iteratively by updating O�k from Ǒ�

k ’s to reduce the bias to the order of o.1=p/. As a
consequence, we obtain bias-reduced estimators of the moments �k’s, referred to as
O�k’s,

. O�1; : : : ; O�k/0 D g. Ǒ�
1 ; : : : ; Ǒ�

k /; (6)

k D 1; 2; : : : :

Theorem 1 Suppose that the assumptions (a)–(c) hold, then

(i) the estimator O�k .k � 1/ is strongly consistent, i.e.,

O�k � �k
a:s:��! 0:

(ii) If in addition E.w4
11/ D 3, then

p . O�1 � �1; : : : ; O�k � �k/
0 D�! Nk.0; ‰.k//; (7)

where ‰.k/ D ABA0, A is the Jacobian matrix @g.ˇ/=@̌ at ˇ D . Q̌
k/, and

B D .bij/1�i;j�k with its entries

bij D 2

i�1X

lD0

.i � l/˛i;l˛j;iCj�l;

where ˛s;t is the coefficient of zt in the Taylor expansion of Ps.z/, the sth power
of P.z/ defined in (4) .

Theorem 1 establishes the consistency and asymptotic normality of the proposed
bias-reduced moment estimators O�k’s. Compared with the estimators in [3], our
proposed moment estimators have two main advantages: One is that the limiting
mean vector in (7) is zero, which implies that our estimators reduce biases to the
order of o.1=p/; The other is that the limiting covariance matrix in (7) is explicitly
formulated.
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3 Test Procedure

Define a .k C 1/ � .k C 1/ Hankel matrix �.G; k/ related to a distribution G,

�.G; k/ D

0

B
B
B
@

g0 g1 � � � gk
g1 g2 � � � gkC1

:::
:::

:::

gk gkC1 � � � g2k

1

C
C
C
A

;

where gj is the jth moment of G, j D 0; : : : ; 2k: Write D.k/ D det.�.Hp; k//
then, from Proposition 1 in [12], D.k0/ D 0 if the null hypothesis in (2) holds,
otherwise D.k0/ > 0. On the other hand, from Theorem 1, a plug-in estimator of
this determinant, denoted by bD.k0/, can be obtained by replacing �k in D.k0/ with
O�k, defined in (6), for k D 1; : : : ; 2k0, i.e.,

bD.k0/ D

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

O�0 O�1 � � � O�k0

O�1 O�2 � � � O�k0C1

:::
:::

:::

O�k0 O�k0C1 � � � O�2k0

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

:

We may thus reject the null hypothesis if bD.k0/ is significantly greater than zero.
Applying Theorem 1 and the main theorem in [18], we may immediately derive the
asymptotic distribution of bD.k0/.

Theorem 2 Suppose that the assumptions (a)–(c) hold, then the statistic bD.k0/ is
asymptotically normal, i.e.,

p
�
bD.k0/ � D.k0/

�
D�! N.0; 	2

k0
/;

where 	2
k0

D ˛0V
V 0˛ with ˛ D vec.adj.�.H; k0///, the vectorization of the
adjugate matrix of �.H; k0/. The .2k0 C 1/ � .2k0 C 1/ matrix 
 consists of the
first row and column zero and the remaining submatrix ‰.2k0/ defined in (7), and
the .k0 C 1/2 � .2k0 C 1/ matrix V D .vij/ is a 0-1 matrix with only vi;ai D 1,
ai D i � b.i � 1/=.k0 C 1/ck0, i D 1; : : : ; .k0 C 1/2, where bxc denotes the greatest
integer not exceeding x.

To present the limiting null distribution and guarantee the consistency of the
order test, we need the following assumption:

Assumption (d) The order of Hp is consistent with the order of H, that is, they
simultaneously satisfy the null hypothesis or the alternative in (2).
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This assumption is a generalized version of the condition that the order of Hp

is equal to that of its limit H, which requires the weight parameters wi D pi=p of
Hp in (1) all converge to some positive constants, which, for example, excludes the
spike model Hp D .1 � 1=p/ı1 C .1=p/ıa, for some a ¤ 1, see [11]. Notice that the
order of Hp for their spike model is always 2 but that of H is 1.

From Theorem 1, the unknown parameters involved in the limiting variance 	2
k0

are c; Q�1; : : : ; Q�4k0 . Under the null hypothesis and Assumption (d), Q�k for k � 2k0

is a function of Q�1; Q�2; : : : ; Q�2k0�1. A numerical algorithm for obtaining Q�k from
the lower moments is introduced in [12]. Therefore, under the null hypothesis, a
strongly consistent estimator of 	2

k0
is 	2

k0
.cn; O�1; : : : ; O�2k0�1/, denoted by O	2

H0
.

Theorem 3 Suppose that the assumptions (a)–(d) hold then, under the null hypoth-
esis,

pbD.k0/

O	H0

D�! N.0; 1/;

where O	H0 is the square root of O	2
H0
.

Theorem 4 Suppose that the assumptions (a)–(d) hold, then the asymptotic power
of the order test tends to 1, as .n; p/ ! 1.

4 Simulation

4.1 Case of Testing for Order Two PSDs

We report on simulations carried out to evaluate the performance of the order test.
Samples are drawn from zero mean multivariate normal population Np.0; †/. The
sample size is n D 100; 200; 300; 400; 500 and the dimension to sample size ratio is
c D 1; 3; 5; 7. The number of independent replications is 10,000.

We first examine empirical sizes of the test. The model under the null hypothesis
is

Hp D w1ıa1 C w2ıa2 ;

where the distinct mass points are fixed at .a1; a2/ D .1; 4/ and their weights
are .w1;w2/ D .0:95; 0:05/, .0:9; 0:1/, .0:8; 0:2/, and .0:5; 0:5/. Results collected
in Table 1 show that, when n D 100, the empirical sizes are a bit smaller than
the targeted nominal level 0.05; as the sample size increases, all empirical sizes
approach 0.05.
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Table 1 Empirical sizes in percentages of the test for PSDs of order two

Hp D 0:95ı1 C 0:05ı4 Hp D 0:9ı1 C 0:1ı4

n c D 1 c D 3 c D 5 c D 7 c D 1 c D 3 c D 5 c D 7

100 2.47 3.68 3.82 4.19 3.30 3.81 4.31 4.32

200 4.00 4.70 4.94 4.11 4.85 4.74 5.10 4.14

300 4.35 4.87 4.92 4.55 4.86 4.72 4.89 4.89

400 4.89 4.76 4.73 4.99 5.03 4.99 4.90 5.05

Hp D 0:8ı1 C 0:2ı4 Hp D 0:5ı1 C 0:5ı4

n c D 1 c D 3 c D 5 c D 7 c D 1 c D 3 c D 5 c D 7

100 3.52 4.30 4.44 4.56 4.57 4.36 4.34 4.25

200 4.92 4.59 4.55 5.02 5.25 4.90 4.68 4.86

300 5.27 5.07 4.51 5.15 4.95 5.33 4.97 5.06

400 5.12 5.50 4.91 4.46 5.12 4.92 4.71 5.18

The dimension to sample size ratio c D 1; 3; 5; 7. The nominal significant level is ˛ D 0:05 and
the number of independent replications is 10,000

We also observe that, for small p and n, the performance of the order test
in conjunction with the bias-reduced moment estimators varies slightly when the
mixture proportions of Hp change. This is due to the fact that our test statistic is
dependent upon the moment estimators of Hp, which are affected by the changing
mixture proportions.

Next, we examine the power of the order test. Four models under the alternative
hypothesis are employed:

Model 1: Hp D 0:8ı1 C 0:1ı4 C 0:1ı7;

Model 2: Hp D 0:8ı1 C 0:1ı3 C 0:05ı7 C 0:05ı10;

Model 3: Hp D 0:8ı1 C 0:2 � U.4; 10/;

Model 4: Hp D U.1; 25/;

where U.a; b/ stands for a uniform distribution on the interval .a; b/ � R
C. The

fist two models are discrete PSDs and their orders are, respectively, 3 and 4. Model
3 can be seen as a mixture of a discrete distribution and a continuous one, where
80 % of the population eigenvalues are 1 and the remaining 20 % are drawn from
U.4; 10/. The last model is completely continuous.

Notice that the test statistic is invariant to orthonormal transformation. Hence,
without loss of generality, we set †p to be diagonal. For discrete PSDs, we set
the diagonal entries of †p according to the mixture proportions and corresponding
distinct mass points, then use this (same) †p for all 10,000 replications; while for
continuous PSDs or PSDs with a continuous mixture component, for each of 10,000
replications, we generate a (different) set of diagonal entries for †p accordingly.

Figure 1 exhibits the empirical power for Models 1–4. The results exhibit a trend
that the power tends to 1 as the sample size increases, while the power deteriorates
as the ratio c increases. This demonstrates that the increased dimension makes the
order detection harder to achieve. The power for Model 2 is better than that for
Model 1, which can be attributed to the fact that, compared with Model 1, Model
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Fig. 1 Empirical powers of the test for Models 1–4 with the dimensional ratio c D 1; 3; 5; 7. The
nominal significant level is ˛ D 0:05 and the number of independent replications is 10,000

2 is further away from the null hypothesis due to the existence of the largest mass
point 10. Another phenomena is that the power for the pure continuous model grows
slowly compared with the others, although its true order is infinity in the limit, which
seems far away from the null hypothesis. A possible reason is that the moment
estimators of this continuous PSD have large fluctuations comparing to those of the
other discrete PSDs.

4.2 Case of Testing for Order Three PSDs

Qin and Li [18] do not provide simulation results on order three PSDs due to the
unavailability of higher order moment estimators. Given the proposed bias-reduced
moment estimators in this paper, we will be able to test for any order of PSDs. In this
section, we examine the performance of the test for order three hypothesis. Samples
are still drawn from zero mean multivariate normal population. The sample size is
taken as n D 300; 400; 500; 600 and the dimension to sample size ratio is set to be
c D 0:3; 0:6; 0:9; 1:2. The number of independent replications is 10,000.
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Table 2 Empirical sizes in percentages of the test for PSDs of order three

Hp D 0:4ı1 C 0:4ı4 C 0:2ı7 Hp D 0:4ı1 C 0:4ı5 C 0:2ı10

n c D 0:3 c D 0:6 c D 0:9 c D 1:2 c D 0:3 c D 0:6 c D 0:9 c D 1:2

300 2.78 4.00 4.77 4.09 3.18 4.36 4.94 4.65

400 4.13 4.82 5.00 5.32 4.24 4.91 5.18 5.92

500 4.96 5.52 5.53 5.38 4.59 5.11 5.77 5.79

600 4.92 5.39 5.51 5.82 4.83 5.65 5.51 6.00

Hp D 0:5ı1 C 0:3ı4 C 0:2ı7 Hp D 0:5ı1 C 0:3ı5 C 0:2ı10

n c D 0:3 c D 0:6 c D 0:9 c D 1:2 c D 0:3 c D 0:6 c D 0:9 c D 1:2

300 3.05 4.56 4.44 4.70 3.37 4.71 5.13 5.45

400 4.39 5.45 5.68 5.73 4.62 5.37 6.07 5.97

500 4.54 5.84 5.90 6.03 4.86 5.72 5.66 6.19

600 5.04 5.68 5.95 5.89 5.46 5.89 6.00 6.15

The dimension to sample size ratio c D 0:3; 0:6; 0:9; 1:2. The nominal significant level is ˛ D 0:05

and the number of independent replications is 10,000

The model under the null hypothesis is

Hp D w1ıa1 C w2ıa2 C w3ıa3 ;

where the distinct mass points are .a1; a2; a3/ D .1; 4; 7/; .1; 5; 10/ and their
weights are .w1;w2;w3/ D .0:4; 0:4; 0:2/; .0:5; 0:3; 0:2/. Results in Table 2 show
that the empirical sizes are all close to the nominal level, though their fluctuation is
a bit larger than that in the test of order two.

Next, we examine the power of the order test using four models under the
alternative.

Model 5: Hp D 0:4ı1 C 0:3ı5 C 0:2ı15 C 0:1ı25,
Model 6: Hp D 0:4ı1 C 0:3ı5 C 0:2ı15 C .1=15/ı25 C .1=30/ı30,
Model 7: Hp D 0:4ı1 C 0:4ı5 C 0:2U.10; 20/,
Model 8:Hp D 0:4ı1 C 0:3ı5 C 0:2ı15 C 0:1U.20; 30/.

The fist two models are discrete PSDs of orders 4 and 5, respectively, and the last
two models are mixture distributions of discrete and continuous. Figure 2 illustrates
the power curves for Models 5–8. It shows that this test is more difficult to gain
power than the order two test since we need to estimate higher order moments of
PSDs. However, we still can see that the power increases along with the increasing
.n; p/, which again demonstrates the consistency of the test.
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Fig. 2 Empirical powers of the test for Models 5–8 with the dimensional ratio c D
0:3; 0:6; 0:9; 1:2. The nominal significant level is ˛ D 0:05 and the number of independent
replications is 10,000

5 Conclusions and Remarks

In this paper we propose bias-reduced moment estimators of PSDs, which are
originally introduced in [3]. The proposed estimators successfully remove all
O.1=p/ terms in the biases such that the asymptotic normal distributions regain zero
mean. We adopt these bias-reduced estimators to a test procedure for the order of
PSDs, proposed by Qin and Li [18]. Asymptotic distributions of the test statistic are
presented under both the null and the alternative hypotheses as .n; p/ ! 1 with
their ratio p=n ! c 2 .0; 1/. We have observed in the simulation study that the
order test maintains desired nominal level and its power tends to 1 as .n; p/ tend to
infinity.

Recall that unbiased estimators of the first fourth moments of the PSD are given
in [10, 21], referred to as O�.u/

k ; k D 1; 2; 3; 4. Corresponding estimators in [3] are
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referred as to O�.b/
k . Some elementary calculations reveal that

O�1 D O�.b/
1 D O�.u/

1 ; O�2 D O�.b/
2

�

1 � 1

n

�

D O�.u/
2

�

1 � 3

n2
C 2

n3

�

;

O�3 D O�.b/
3

�

1 � 3

n

�

D O�.u/
3

�

1 � 17

n2
C 12

n3
C 52

n4
� 48

n5

�

;

O�4 D O�.b/
4 C Op

�
1

n

�

D O�.u/
4 C Op

�
1

n2

�

;

from which we can clearly see that these estimators are all asymptotically equiva-
lent, while O�.b/

k has a bias of order O.1=p/ and O�k keeps a bias of order O.1=p2/,
k D 2; 3; 4.

It is worth noticing that the central limiting theorems of all these estimators
heavily rely on the moment conditions, say E.w4

11/ D 3, of the underlying
distribution. If the fourth moment is not equal to 3, then there are two additional
terms appearing in the limiting mean and covariance matrix, see [17]. Moreover,
these two terms are functions of both eigenvalues and eigenvectors of †p (unless
†p is diagonal), which are currently hard to be estimated.

6 Proofs

6.1 Proof of Theorem 1

Suppose that the assumptions (a)–(c) hold, from [20], the ESD Fn converges
weakly to the LSD Fc;H, and moreover the Stieltjes transform sn.z/ of the ESD Fn

converges almost surely to s.z/, the Stieltjes transform of Fc;H . Let .ˇ1; : : : ; ˇk/
0 D

g�1.�1; : : : ; �k/ then,

ˇj D
Z

tjdFcn;Hp.t/ ! Q̌
j WD

Z

tjdFc;H.t/; j � 1;

where Fcn;Hp is an LSD derived from Fc;H by replacing c and H with cn and Hp,
respectively.

When the support of H is bounded, the support of Fc;H is also bounded. Thus,
for any z 2 C with jzj large, the Stieltjes transform sn.z/ and s.z/ can be expanded
as Laurent series, and we have

sn.z/ D
Z

1

x � z
dFn.x/ D

1X

lD0

�1

zlC1
Ǒ
l

a:s:��! s.z/ D
1X

lD0

�1

zlC1
Q̌
l:
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From this we get Ǒ�
j � ˇj D Ǒ

j � O�j=p � ˇj
a:s:��! 0, and hence

O�j � �j
a:s:��! 0; j D 1; 2; : : : ;

as .n; p/ ! 1; which is the first conclusion.
For the second conclusion, applying Theorem 1.1 in [1] with fj.z/ D zj, j D

1; : : : ; k; for real case, we obtain

p
� Ǒ

1 � ˇ1; : : : ; Ǒ
k � ˇk

�
D�! Nk.�;B/;

where the mean vector � D .�j/ with

�j D � 1

2�i

I

C1

czjs3.z/
R
t2.1 C ts.z//�3dH.t/

.1 � c
R
s2.z/t2.1 C ts.z//�2dH.t//2

dz; (8)

and the covariance B D .bij/ with its entries

bij D � 1

2�2

I

C2

I

C1

zi1z
j
2

.s.z1/ � s.z2//2
s0.z1/s0.z2/dz1dz2; (9)

where

s.z/ D �1 � c

z
C cs.z/

is companion Stieltjes transform of Fc;H satisfying

z D � 1

s.z/
C c

Z
t

1 C ts.z/
dH.t/: (10)

The contours C1 and C2 in (8) and (9) are simple, closed, non-overlapping, taken in
the positive direction in the complex plane, and each enclosing the support of Fc;H .
Then the second conclusion of this theorem follows from a standard application of
the Delta method, and the remaining works are to calculate the contour integrals
in (8) and (9).

Without loss of generality, let the contour C2 enclose C1 and both of them be
away from the support SF of Fc;H such that

max
t2SH ;z2Ci

jts.z/j < 1;



116 Y. Qin and W. Li

where SH is the support of H. In such a situation, for any z 2 C1 [ C2,

P.s.z// D �1 � c
1X

lD1

.�s.z//l Q�l D �1 C c
Z

ts.z/

1 C ts.z/
dH.t/;

Q.s.z// D c
1X

lD0

q3;l Q�lC2s
l.z/ D c

Z
t2

.1 C ts.z//3
dH.t/;

R.s.z// D 1 � c
1X

lD0

q2;l Q�lC2s
lC2.z/ D 1 � c

Z
.zt/2

.1 C tz/2
dH.t/;

and from (10) we also get P.s.z// D zs.z/, where the functions P;Q, and R are
defined in (4)–(5). On the other hand, denote the image of Ci under s.z/ be

s.Ci/ D fs.z/ W z 2 Cig; i D 1; 2:

Notice that s.z/ is a univalent analytic function on C n .SF [ f0g/, and thus Ci and
s.Ci/ are homeomorphic, which implies s.C1/ and s.C2/ are also simple, closed, and
non-overlapping. In addition, from the open mapping theorem and the fact s.z/ ! 0

as jzj ! 1, we may conclude that s.C2/ encloses s.C1/, and both of them have
negative direction and enclose zero.

Based on these knowledge and by the equality

s2.z/

s0.z/
D 1 � c

Z
t2s2.z/

.1 C ts.z//2
dH.t/; (11)

the integral in (8) becomes

�j D � 1

2�i

I

C1

czjs.z/s0.z/
R
t2.1 C ts.z//�3dH.t/

1 � c
R
s2.z/t2.1 C ts.z//�2dH.t/

dz

D 1

2�i

I

s.C1/

Pj.s/Q.s/

sj�1R.s/
ds

D
(

0; j D 1;

1
. j�2/Š

�
Pj.z/Q.z/=R.z/

�. j�2/ ˇˇ
zD0

; 2 � j � k;
(12)

where the equality in (11) is obtained by taking the derivative of z on both sides of
the Eq. (10), and the results in (12) are from the Cauchy integral theorem.

Finally, the integral in (9) can be simplified as

bij D � 1

2�2

I

C2

I

C1

zi1z
j
2

.s.z1/ � s.z2//2
ds.z1/ds.z2/
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D � 1

2�2

I

s.C2/

I

s.C1/

Pi.s1/Pj.s2/

si1s
j
2.s1 � s2/

2
ds1ds2

D � 1

2�2

I

s.C2/

Pj.s2/

sj2

�I

s.C1/

Pi.s1/

si1.s1 � s2/
2
ds1

�

ds2:

By the Cauchy integral theorem,

I

s.C1/

Pi.s1/

si1.s1 � s2/
2
ds1 D

i�1X

lD0

I

s.C1/

˛i;l

si�l
1 .s1 � s2/

2
ds1

D �2�i
i�1X

lD0

˛i;l.i � l/

si�lC1
2

:

From similar arguments, we get

bij D � 1

�i

i�1X

lD0

.i � l/˛i;l

I

s.C2/

Pj.s2/

siCj�lC1
2

ds2

D 2

i�1X

lD0

.i � l/˛i;l˛j;iCj�l;

i; j D 1; : : : ; k:

6.2 Proof of Theorem 4

Under the alternative hypothesis and the assumption of this theorem, we have
D.k0/ D det.�.Hp; k0// ! det.�.H; k0// > 0 and

O	2
H0

a:s:��! 	2
H0

WD 	2
k0

.c; Q�1; : : : ; Q�2k0�1; ��
2k0

; : : : ; ��
4k0

/ > 0;

as .n; p/ ! 1, where ��
k , 2k0 � k � 4k0, is the kth moment of a discrete random

variable with only k0 different masses, determined by its first 2k0 � 1 moments
Q�1; : : : ; Q�2k0�1. Therefore, for large p and n, O	H0 exists and is positive, and

P

 
bD.k0/

O	H0=p
> z˛

!

D P

 
bD.k0/ � D.k0/

	k0 =p
> z˛

O	H0

	k0

� D.k0/

	k0=p

!

D 1 � ˆ

�

z˛

	H0

	k0

� det.�.H; k0//

	k0 =p

�

C op.1/

! 1;
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as .n; p/ ! 1, where 	k0 is the square root of 	2
k0

defined in Theorem 2 and z˛ is
the 1 � ˛ quantile of standard normal population.
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