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Abstract Measurements of variables are often subject to error due to various
reasons. Measurement error in covariates has been discussed extensively in the
literature, while error in response has received much less attention. In this paper,
we consider generalized linear mixed models for clustered data where measurement
error is present in response variables. We investigate asymptotic bias induced by
nonlinear error in response variables if such error is ignored, and evaluate the
performance of an intuitively appealing approach for correction of response error
effects. We develop likelihood methods to correct for effects induced from response
error. Simulation studies are conducted to evaluate the performance of the proposed
methods, and a real data set is analyzed with the proposed methods.

1 Introduction

Generalized linear mixed models (GLMMs) have been broadly used to analyze
correlated data, such as clustered/familial data, longitudinal data, and multivariate
data. GLMMs provide flexible tools to accommodate normally or non-normally
distributed data through various link functions between the response mean and a
set of predictors. For longitudinal studies, in which repeated measurements of a
response variable are collected on the same subject over time, GLMMs can be used
as a convenient analytic tool to account for subject-specific variations [e.g., 5].

Standard statistical analysis with GLMMs is typically developed under the
assumption that all variables are precisely observed. However, this assumption
is commonly violated in applications. There has been much interest in statistical
inference pertaining to error-in-covariates, and a large body of methods have been
developed [e.g., 3, 17, 18]. Measurement error in response, however, has received
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much less attention, and this is partially attributed to a misbelief that ignoring
response error would still lead to valid inferences. Unfortunately, this is only true in
some special cases, e.g., the response variable follows a linear regression model
and is subject to additive measurement error. With nonlinear response models
or nonlinear error models, inference results can be seriously biased if response
error is ignored. Buonaccorsi [1] conducted numerical studies to illustrate induced
biases under linear models with nonlinear response measurement error. With binary
responses subject to error, several authors, such as Neuhaus [10] and Chen et al. [4],
demonstrated that naive analysis ignoring measurement error may lead to incorrect
inference results.

Although there is some research on this topic, systematic studies on general
clustered/longitudinal data with response error do not seem available. It is the goal
of this paper to investigate the asymptotic bias induced by the error in response
and to develop valid inference procedures to account for such biases. We formulate
the problem under flexible frameworks where GLMMs are used to feature various
response processes and nonlinear models are adopted to characterize response
measurement error.

Our research is partly motivated by the Framingham Heart Study, a large scale
longitudinal study concerning the development of cardiovascular disease. It is
well known that certain variables, such as blood pressure, are difficult to measure
accurately due to the biological variability and that their values are greatly affected
by the change of environment. There has been a large body of work on the
analysis of data from the Framingham Heart Study, accounting for measurement
error in covariates. For example, Carroll et al. [2] considered binary regression
models to relate the probability of developing heart disease to risk factors including
error-contaminated systolic blood pressure. Within the framework of longitudinal
analysis, the impact of covariate measurement error and missing data on model
parameters has been examined. Yi [16] and Yi et al. [19] proposed estimation
and inference methods that account for measurement error and missing response
observations. Other work can be found in [7, 20], among others. Relative to the
extensive analysis of data with covariate error, there is not much work on accounting
for measurement error in continuous responses using the data from the Framingham
Heart Study.

The remainder of the paper is organized as follows. In Sect. 2, we formulate
the response and the measurement error processes. In Sect. 3, we investigate the
estimation bias in two analyses: the naive analysis that completely ignores response
measurement error, and a partial-adjustment method that fits model to transformed
surrogate responses. In Sect. 4, we develop likelihood-based methods to cover
two useful situations: measurement error parameters are known, or measurement
error parameters are unknown. In Sect. 5, we evaluate the performances of various
approaches through simulation studies. In Sect. 6, we illustrate the proposed method
using a real data set from the Framingham Heart Study. Discussion and concluding
remarks are given in Sect. 7.
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2 Model Formulation

2.1 Response Model

Suppose data from a total of n independent clusters are collected. Let Yij denote the
response for the jth subject in cluster i, i D 1; : : : ; n, j D 1; : : : ;mi. Let Xij and
Zij be vectors of covariates for subject j and cluster i, respectively, and write Xi D
.XT

i1; : : : ;XT
imi

/T and Zi D .ZT
i1; : : : ;ZT

imi
/T. Here we use upper case letters and the

corresponding lower case letters to denote random variables and their realizations,
respectively.

Conditional on random effects bi and covariates fXi;Zig, the Yij. j D 1; : : : ;mi/

are assumed to be conditionally independent and follow a distribution from the
exponential family with the probability density or mass function

fyjx;z;b.yijjxij; zij;bi/ D expŒfyij˛ij � a1.˛ij/g=a2.�/ C a3.yij; �/�; (1)

where functions a1.�/, a2.�/, and a3.�/ are user-specified, � is a dispersion parameter,
and ˛ij is the canonical parameter which links the conditional mean, �b

ij D
E.YijjXi;Zi;bi/, via the identity �b

ij D @a1.˛ij/=@˛ij.
A generalized linear mixed model (GLMM) relates �b

ij to the covariates and
random effects via a regression model

g.�b
ij/ D XT

ijˇ C ZT
ijbi; (2)

where ˇ is a vector of regression coefficients for the fixed effects, and g.�/ is a
link function. Random effects bi are assumed to have a distribution, say, fb.biI � b/,
with an unknown parameter vector � b. The link function g.�/ is monotone and
differentiable, and its form can be differently specified for individual applications.
For instance, for binary Yij, g.�/ can be chosen as a logit, probit, or complementary
log-log link, while for Poisson or Gamma variables Yij, g.�/ is often set as a log link.

A useful class of models belonging to GLMMs is linear mixed models (LMM)
where g.�/ in (2) is set to be the identity function, leading to

Yij D XT
ijˇ C ZT

ijbi C �ij (3)

where the error term �ij is often assumed to be normally distributed with mean 0 and
unknown variance �.

Let � D .ˇT; � T
b ; �/T be the vector of model parameters. In the absence of

response error, estimation of � is based on the likelihood for the observed data:

L .�/ D
nY

iD1

Li.�/;
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where

Li.�/ D
Z miY

jD1

fyjx;z;b.yijjxij; zij;biI �/fb.biI � b/dbi (4)

is the marginal likelihood for cluster i, and fyjx;z;b.yijjxij; zij;biI �/ is determined
by (1) in combination with (2). Maximizing L .�/ with respect to � gives the
maximum likelihood estimator of � .

2.2 Measurement Error Models

When Yij is subject to measurement error, we observe a value that may differ from
the true value; let Sij denote such an observed measurement for Yij, and we call it
a surrogate variable. In this paper we consider the case where Yij is a continuous
variable only. Let fsjy;x;z.Sijjyi; xi; zi/ or fsjy;x;z.Sijjyij; xij; zij/ denote the conditional
probability density (or mass) function for Sij given fYi;Xi;Zig or fYij;Xij;Zijg,
respectively. It is often assumed that

fsjy;x;z.sijjyi; xi; zi/ D fsjy;x;z.sijjyij; xij; zij/:

This assumption says that given the true variables fYij;Xij;Zijg for each subject j in
a cluster i, the observed measurement Sij is independent of variables fYik;Xik;Zikg
of other subjects in the same cluster for k ¤ j.

Parametric modeling can be invoked to feature the relationship between the true
response variable Yij and its surrogate measurement Sij. One class of useful models
are specified as

Sij D h.Yij;Xij;ZijI � i/ C eij; (5)

where the stochastic noise term eij has mean zero. Another class of models are given
by

Sij D h.Yij;Xij;ZijI � i/ � eij; (6)

where the stochastic term eij has mean 1. These models basically modulate the mean
structure of the surrogate variable Sij:

E.SijjYi;Xi;Zi/ D h.Yij;Xij;ZijI � i/; (7)

where the function form h.�/ can be chosen differently to facilitate various appli-
cations, and � i is a vector of error parameters for cluster i. For cases where the
measurement error process is homogeneous, e.g., same measuring system is used
across clusters, we replace � i with a common parameter vector � .
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Specification of h.�/ reflects the feature of the measurement error model. For
example, if h.�/ is set as a linear function, model (5) gives a linear relationship
between the response and surrogate measurements:

Sij D �0 C �1Yij C �T
2 Xij C �T

3 Zij C eij;

where parameters �0, �1, �2, and �3 control the dependence of surrogate measure-
ment Sij on the response and covariate variables; in the instance where both �2 and �3

are zero vectors, surrogate measurement Sij is not affected by the measurements of
the covariates and depends on the true response variable Yij only. More complex
relationships can be delineated by employing nonlinear function forms for h.�/.
In our following simulation studies and data analysis, linear, exponential, and
logarithmic functions are considered for h.�/.

We call (5) additive error models, and (6) multiplicative error models to indicate
how noise terms eij act relative to the mean structure of Sij. Commonly, noise terms
eij are assumed to be independent of each other, of the true responses as well as
of the covariates. Let f .eijI � e/ denote the probability density function of eij, where
� e is an associated parameter vector. With model (5), the eij are often assumed to
be normally distributed, while for model (6), a log normal or a Gamma distribution
may be considered.

3 Asymptotic Bias Analysis

In this section we investigate asymptotic biases caused by response error under the
two situations: (1) response error is totally ignored in estimation procedures, and (2)
an intuitively compelling correction method is applied to adjust for measurement
error in response.

3.1 Naive Analysis of Ignoring Measurement Error

We consider a naive analysis which fits the GLMM (1) to the observed raw
data (hereafter referred to as NAI1), i.e., we assume that the Sij are linked with
covariates via the same random effects model. Let �� D .ˇ�T; � �T

b ; ��/T denote
the corresponding parameter vector, and the corresponding working likelihood
contributed from cluster i is given by

L w
i .��/ D

Z mY

jD1

fyjx;z;b.sijjxij; zij;b�
i I ��/fb.b�

i I � �
b /db�

i :

Maximizing
Pn

iD1 logL
w
i .��/ with respect to �� gives an estimator, say O��

, of ��.
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Adapting the arguments of White [14] it can be shown that under certain
regularity conditions, as n ! 1, O��

converges in probability to a limit that is
the solution to a set of estimating equations

Etrue

(
nX

iD1

@ logL w
i .��/=@��

)
D 0; (8)

where the expectation is taken with respect to the true joint distribution of the
associated random variables. The evaluation of (8) involves integration over the
nonlinear error functions which are often intractable.

To gain insights into the impact of ignoring error in response, we consider a
LMM

Yij D ˇ0 C .ˇ1 C bi/Xij C �ij; (9)

where ˇ0 and ˇ1 are regression parameters, the �ij are independent of each other
and of other variables, �ij � N.0; �/ with variance �, and bi � Normal.0; �2

b / with
variance �2

b . We consider the additive error model (5), where the eij are independent
of each other and of other variables, eij � N.0; �2

e /, and the mean error structures
are, respectively, specified as one of the following two cases.

Case 1 Linear measurement error.

Commonly seen in epidemiologic studies, this structure specifies a linear form
for the measurement error

h.Yij;Xij;ZijI �/ D �0 C �1Yij;

where � D .�0; �1/, �0 represents a systematic error of the measuring device at
Yij D 0, and �1 is a scale factor. It can be easily shown that simple relationship
between the true and working parameters is

ˇ�
0 D �0 C �1ˇ0; ˇ�

1 D �1ˇ1; ��2
b D �2

1 �2
b ;

and

�� D �2
1 � C �2

e :

These results suggest that estimation of fix effect ˇ1 and variance component �2
b

is generally attenuated or inflated by factor �1, a factor which governs the difference
between the true response Yij and surrogatemeasurement Sij. When �1 equals 1, even
if there is systematic measurement error involved with measuring Yij (i.e., �0 ¤ 0),
disregarding error in Yij does not bias point estimates of fix effect ˇ1 and variance
component �2

b , but may reduce estimation precision.



Mixed Models with Response Error 89

Case 2 Exponential measurement error.

The second error structure specifies an exponential form for the measurement
error

h.Yij;Xij;ZijI �/ D exp.�Yij/;

which may be useful to feature transformed response variables that are not measured
precisely.

The bias in the naive estimator for fixed effect ˇ1 does not have an analytic
form when the response is subject to nonlinear measurement error. To illustrate
the induced bias in estimation of ˇ1 with response error ignored, we undertake
a numerical study. The covariates Xij are independently generated from a normal
distribution N.0; 1/. We fix the values of ˇ0 and � at �1 and 0:01, respectively, and
consider values of �2

b to be 0:01, 0:25, and 1, respectively. The error parameters are,
respectively, specified as � D 0:5 and 1, and �2

e D 0:01, 0:25, and 0:75.
As shown in Fig. 1, the relationship between the naive limit ˇ�

1 and the value of
ˇ1 is nonlinear. For instance, when � D 0:5, the naive estimate is attenuated for
small values of ˇ1 but is inflated for large values of ˇ1. In general, the direction and
magnitude of the bias induced by nonlinear response error depend on the function
form of h.�/ as well as the magnitude of the parameters in the measurement error
process.
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1 from the completely naive approach induced by an exponential error model.
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3.2 Analysis of Transformed Data

With the response process modeled by an LMM, Buonaccorsi [1] considered an
intuitively tempting method to correct for response error in estimation. The idea is
to employ a two-step approach to correct for response error effects. In the first step,
keeping the covariates fixed, we use the mean function h.�/ of the measurement error
model and find its inverse function h�1.�/, and then calculate a pseudo-response

QYij D h�1.SijI �/:

In the second step, we perform standard statistical analysis with QYij taken as
a response variable. This approach (hereafter referred to as NAI2) is generally
preferred over NAI1, as it reduces a certain amount of bias induced by response
measurement error. However, this method does not completely remove the biases
induced from response error.

To evaluate the performance of using pseudo-response in estimation procedures,
we may follow the same spirit of Sect. 3.1 to conduct bias analysis. As it is difficult
to obtain analytic results for general models, here we perform empirical studies by
employing the same responsemodel (9) and the measurement error model for Case 2
as in Sect. 3.1.

It is seen that as expected, the asymptotic bias, displayed in Fig. 2, is smaller
than that from the NAI1 analysis. This confirms that the NAI2 method outperforms
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the NAI1 method. However, the NAI2 method does not completely remove the bias
induced in the response error. The asymptotic bias involved in the NAI2 method is
affected by the size of the covariate effect as well as the degree of response error.
The asymptotic bias increases as the size of ˇ1 increases. Furthermore, the values
of the error parameters � and �2

e have significant impact on the bias; the size of the
bias tends to increase as �2

e increases.

4 Inference Methods

The analytic and numerical results in Sect. 3 demonstrate that disregarding response
error may yield biased estimation results. To account for the response error effects,
in this section we develop valid inferencemethods for the response model parameter
vector � . Our development accommodates different scenarios pertaining to the
knowledge of response measurement error. Let � denote the parameter vector
associated with a parametric model of the response measurement error process.
Estimation of � may suffer from nonidentifiability issues in the presence of
measurement error in the variables. To circumvent this potential problem, we
consider three useful situations: (i) � is known, (ii) � is unknown but a validation
subsample is available, and (iii) � is unknown but replicates for the surrogates are
available.

The first situation highlights the idea of addressing the difference between the
surrogate measurements and the response variables without worrying about model
nonidentifiability issues. The second and third scenarios reflect useful practical
settings where error model parameter � is often unknown, but estimable from
additional data sources such as a validation subsample or replicated surrogate mea-
surements. For each of these three situations, we propose strategies for estimating
the response model parameters and derive the asymptotic properties of the resulting
estimators.

4.1 � Is Known

In some applications, the value of � is known to be �0, say, from a priori study, or
specified by the analyst for sensitivity analyses. Inference about � is then carried
out based on the marginal likelihood of the observed data:

L .�; �0/ D
nY

iD1

Li.�; �0/
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where

Li.� ; �/ D
Z (

miY

jD1

Z
fsjy;x;z.sijjyij; xij; zijI �/

� fyjx;z;b.yijjxij; zij;biI �/dyij

)
fb.biI � b/dbi;

which requires the conditional independence assumption

fsjy;x;z;b.sijjyij; xij; zij;biI �/ D fsjy;x;z.sijjyij; xij; zijI �/I (10)

fsjy;x;z;b.sijjyij; xij; zij;biI �/ and fsjy;x;z.sijjyij; xij; zijI �/ represent the conditional prob-
ability density function of Sij given fYij;Xij;Zij;big and fYij;Xij;Zijg, respectively.

Maximizing
Pn

iD1 logLi.�; �0/ with respect to the parameter � gives the
maximum likelihood estimator O� of � . Let Ui.�; �0/ D @ logLi.�; �0/=@� . From
standard likelihood theory, under regularity conditions, O� is a consistent estimator
for � . As n ! 1, n1=2. O� � �/ is asymptotically normally distributed with
mean 0 and variance I �1, where I D Ef�@Ui.�; �0/=@�Tg. By the Bartlett
identity and the Law of Large Numbers, I can be consistently estimated by
n�1

Pn
iD1 Ui. O�; �0/U

T
i . O�; �0/.

4.2 � Is Estimated from Validation Data

In many applications, � is often unknown and must be estimated from additional
data sources, such as a validation subsample or replicates of measurements of Yij.
Here we consider the case that a validation subsample is available, and in the next
section we discuss the situation with replicated measurements.

Assume that the validation subsample is randomly selected, and let ıij D 1 if
Yij is available and ıij D 0 otherwise. Specifically, if ıij D 1, then measurements
fyij; sij; xij; zijg are available; when ıij D 0, measurements fsij; xij; zijg are available.
Let Nv D Pn

iD1

Pmi
jD1 ıij be the number of the measurements in the validation

subsample. The full marginal likelihood of the main data and the validation data
contributed from cluster i is given by

LFi.�; �/ D
Z "

miY

jD1

˚
fsjx;z;b.sijjxij; zij;biI � ; �/

�1�ıij

� ˚
fs;yjx;z;b.sij; yijjxij; zij;biI �; �/

�ıij

#
fb.biI � b/dbi; (11)

where fs;yjx;z;b.sij; yijjxij; zij;biI � ; �/ represents the conditional probability density
functions of fSij;Yijg, given the covariates fxij; zijg and random effects bi.
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Under the conditional independence assumption (10), we obtain

fsjx;z;b.sijjxij; zij;biI �; �/ D
Z

fsjy;x;z.sijjyij; xij; zijI �/fyjx;z;b.yijjxij; zij;biI �/dyij;

and

fs;yjx;z;b.sij; yijjxij; zij;biI �; �/ D fsjy;x;z.sijjyij; xij; zijI �/fyjx;z;b.yijjxij; zij;biI �/;

where fsjy;x;z.sijjyij; xij; zijI �/ is the conditional probability density function deter-
mined by the measurement error model such as (5) or (6), and fyjx;z;b.yijjxij; zij;biI �/

is the conditional probability density function specified by the GLMM (1) in
combination with (2).

Let

L� i.�; �/ D
Z "

miY

jD1

˚
fsjx;z;b.sijjxij; zij;biI �; �/

�1�ıij

� ˚
fyjx;z;b.yijjxij; zij;biI �/

�ıij

#
fb.biI � b/dbi;

and

L	i.�/ D
miY

jD1

˚
fsjy;x;z.sijjyij; xij; zijI �/

�ıij
;

thenLFi.�; �/ D L� i.�; �/ L	i.�/.
Inference about f�; �g can, in principle, be conducted by maximizingQn
iD1 LFi.�; �/, or

Pn
iD1 logLFi.�; �/, with respect to f�; �g. When the dimension

of f�; �g is large, direct maximization of
Pn

iD1 logLFi.�; �/ with respect to � and
� can be computationally demanding. We propose to use a two-stage estimation
procedure as an alternative to the joint maximization procedure.

Let U�
i .�; �/ D @ logL� i.�; �/=@� and Qi.�/ D @ logL	i.�/=@�. In the first

stage, estimator for �, denoted by O�, is obtained by solving
nX

iD1

Qi.�/ D 0:

In the second stage, replace � with O� and solve

nX

iD1

U�
i .�; O�/ D 0 (12)

for � . Let O�p denote the solution to (12).
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Assume that the size of the validation sample is increasing with the sample size
n on the same scale, i.e., as n ! 1 and Nv=n ! 
 for a positive constant 
. Then
under regularity conditions,

p
n. O�p��/ is asymptotically normally distributed with

mean 0 and variance given by

˙� D ��Ef@U�
i .�; �/=@�Tg��1 C �

Ef@U�
i .�; �/=@�Tg��1

Ef@U�
i .�; �/=@�Tg

� �
Ef@Qi.�/=@�Tg��1 �

Ef@U�
i .� ; �/=@�Tg�T �Ef@U�

i .�; �/=@�Tg��1
:

The proof is outlined in the Appendix. An estimate of ˙ � can be obtained by
replacing Ef@U�

i .�; �/=@�Tg, Ef@U�
i .�; �/=@�Tg, and Ef@Qi.�/=@�Tg with their

empirical counterparts n�1
Pn

iD1 @U�
i . O�p; O�/=@�T, n�1

Pn
iD1 @U�

i . O�p; O�/=@�T, and
n�1

Pn
iD1 @Qi. O�/=@�T, respectively.

4.3 Inference with Replicates

In this section we discuss inferential procedures for the setting with replicates of the
surrogate measurements for Yij. Suppose the response variable for each subject in
a cluster is measured repeatedly, and let Sijr denote the rth observed measurement
for subject j in cluster i, r D 1; : : : ; dij, where the replicate number dij can vary
from subject to subject. For r ¤ r0, Sijr and Sijr0 are assumed to be conditionally
independent, given fYi;Xi;Zi;big. The marginal likelihood contributed from cluster
i is given by

LRi.�; �/ D
Z

fb.biI � b/

miY

jD1

� Z
fyjx;z;b.yijjxij; zij;biI �/

�
dijY

rD1

fsjy;x;z;b.sijrjyij; xij; zij;biI �/dyij

�
dbi:

Unlike the two-stage estimation procedure for the case with validation data,
estimation for � and � generally cannot be separated from each other, because
information on the underlying true responses and the measurement process is mixed
together. A joint estimation procedure for f�; �g by maximizing

Qn
iD1 LRi.�; �/ is

particularly required.
Specifically, let

Ui.� ; �/ D @ logLRi.�; �/=@�; and Qi.�; �/ D @ logLRi.�; �/=@�

be the score functions. Define

�Ri.�; �/ D
�

Qi.�;�/
Ui.�;�/

�
:
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The maximum likelihood estimators for � and � is obtained by solving

nX

iD1

�Ri.�; �/ D 0I

we let . O�R; O�R/ denote the solution.

Under suitable regularity conditions, n1=2
� O�R��

O�R��

�
is asymptotically normally

distributed with mean 0 and covariance matrix ŒEf�Ri.�; �/�T
Ri.�; �/g��1:

4.4 Numerical Approximation

To implement the proposed methods, numerical approximations are often needed
because integrals involved in the likelihood formulations do not have analytic forms
in general. With low dimensional integrals, Gaussian–Hermite quadratures may be
invoked to handle integrals without a closed form. For example, the integral with an
integrand of form exp.�u2/f .u/ is approximated by a sum

Z 1

�1
exp.�u2/f .u/du �

KX

kD1

wk f .tk/;

where f .�/ is a given function, K is the number of selected points, and tk and wk are
the value and the weight of the kth designated point, respectively. The approximation
accuracy relies on the order of the quadrature approximations. We found in our
simulation that a quadrature approximation with order 5 performs adequately
well for a single integral; as the number of random components increases, more
quadrature points are required in order to obtain a good approximation. When f .�/
is a symmetric or nearly symmetric function, the approximation is generally good,
even when the number of quadrature points is chosen to be small.

Computation quickly becomes infeasible as the number of nested random
components grows [9]. The convergence of an optimization procedure can be very
slow if the dimension of the random components is high. One approach to deal
with such integrals is to linearize the model with respect to the random effects, e.g.,
using a first-order population-averaged approximation to the marginal distribution
by expanding the conditional distribution about the average random effect [12].
Alternatively, Laplace’s approximation can be useful to obtain an approximate
likelihood functionwith a closed form [12, 15]. The basic form of linearization using
Laplace’s approximation is a second-order Taylor series expansion of the integrand

f .u/ and is given by
R
Rd f .u/du � .2�/d=2f .u0/

ˇ̌�@2 log f .u0/=@u@uT
ˇ̌�1=2

;

where d is the dimension of u, and u0 is the mode of f .u/, i.e., the solution to
@ log f .u/=@u D 0. To construct Laplace’s approximation, the first two derivatives
of log f .u/ are basically required.
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5 Simulation Studies

We conduct simulation studies to assess the performance of the proposed likelihood-
based methods. We consider the setting with n D 100 and mi D 5 for i D 1; : : : ; n.
The covariates Xij are simulated from the standard normal distribution, and random
effects bi are generated from a normal distribution with mean 0 and variance �2

b D
0:04. The response measurements are generated from the model

Yij D ˇ0 C ˇ1Xij C biXij C �ij;

where �ij � N.0; �/, and the parameter values are set as ˇ0 D �1, ˇ1 D log.0:5/,
and � D 0:04.

We consider two models for the measurement error process. That is, surrogate
measurements Sij are simulated from one of the two measurement error models:

(M1). Sij D exp.�Yij/ C eij,
(M2). Sij D �0 C �1Yij C eij,

where eij is independent of Yi and Xi, and follows a normal distribution with mean
0 and variance �2

e D 0:04. For error model (M1), the error parameters are specified
as � D 0:5. For error model (M2), the parameters are specified as �0 D 0:5 and
�1 D 0:5.

Let � denote the vector of associated parameters for the measurement error
model. Specifically, in error model (M1), � D .�; �2

e /T; while in error model (M2),
� D .�0; �1; �2

e /T. We evaluate the proposed methods under two scenarios regarding
the knowledge of �: (i) � is treated as known, and (ii) � is estimated from internal
validation data. For scenario (ii), we obtain a validation subsample by randomly
selecting one subject from each cluster. We use Gaussian quadrature of order 15
in the numerical approximation for the likelihood-based approaches. Two thousand
simulations are run for each parameter configuration.

We conduct three analyses for each simulated data set: the two naive approaches
described in Sects. 3.1 and 3.2 and the proposed methods described in Sect. 4.
We report the simulation results based on four measures: relative bias in percent
(Bias%), sample standard deviation of the estimates (SD), average of model-based
standard errors (ASE), and coverage probability of the 95% confidence interval
(CP%).

Table 1 reports the results for the exponential measurement error model (M1).
As expected, the NAI1 approach produces very biased (attenuated) estimates of the
fixed-effect parameter ˇ1, and the coverage rates of the 95% confidence interval are
close to 0. The NAI2 approach, which analyzes transformed surrogate responses,
produces slightly better estimates of ˇ1. The magnitude of the relative bias, although
smaller than that from NAI1, is still substantial. In contrast, the proposed likelihood
approaches give consistent estimates for ˇ1 in both scenarios, and the coverage rates
of its 95% confidence intervals are close to the nominal value.

Table 2 reports the results for the linear measurement error model (M2). Again
the estimates for ˇ1 from the NAI1 approach are biased, and the values are scaled
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approximately by a factor of �1, which is in agreement with the analytical result
shown in Sect. 3. The NAI2 approach yields good estimates for ˇ0, ˇ1, and �2

b
with small finite sample biases. The NAI2 estimates for �, however, are very
biased, resulting in coverage rates of corresponding confidence intervals far from
the nominal value of 95%. In contrast, the proposed likelihood-based approach
gives consistent estimators for the fixed-effect and variance component, and the
associated standard errors are similar to the empirical standard deviations. As a
result, the coverage rates of the 95% confidence intervals are close to the nominal
value.

6 Application

We illustrate our proposed methods by analyzing the data from the Framingham
Heart Study. The data set includes exams #2 and #3 for n D 1615 male subjects
aged 31–65 [3]. Two systolic blood pressure (SBP) readings were taken during each
exam. One of the clinical interests is to understand the relationship between SBP
and potential risk factors such as baseline smoking status and age [6, 8, 11]. The
risk factors, however, may not have linear effects on SBP directly.

Preliminary exploration shows that SBP measurements are skewed, and using
a square-root transformation to .Tij � 50/ is reasonably satisfactory for obtaining
a symmetric data distribution, where Tij represents the true SBP measurement for
subject i at time j, where j D 1 corresponds to exam #2, and j D 2 for exam #3,
and i D 1; : : : ; n. We now let Yij denote such a transformed variable, i.e., Yij Dp
Tij � 50. We assume that the Yij follow the model

Yij D ˇ0 C ˇageXij1 C ˇsmokeXij2 C ˇexamXij3 C bi C �ij; j D 1; 2; i D 1; : : : ; n;

where Xij1 is the baseline age of subject i at exam #2, Xij2 is the indicator variable for
baseline smoking status of subject i at exam #1, Xij3 is 1 if j D 2 and 0 otherwise,
and bi and �ij are assumed to be independently and normally distributed with means
0 and variances given by �2

b and �, respectively.
Because a subject’s SBP changes over time, the two individual SBP readings at

each exam are regarded as replicated surrogates. Several measurement error models
for SBP reading have been proposed by different researchers [2, 7, 13]. Let T�

ijr be
the rth observed SBP reading for subject i at time j, i D 1; : : : ; n, j D 1; 2, r D 1; 2.
We consider an error model log.T�

ijr �50/ D log.Tij �50/Ceijr , suggested by Wang
et al. [13], where the eijr are assumed to be independent of each other and of other
variables, and are normally distributed with mean 0 and variance �2

e . Let Sijr denote
log.T�

ijr � 50/, then the measurement error model is equivalently given by

Sijr D 2 log.Yij/ C eijr:
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Table 3 Analysis of data from the Framingham Heart Study

NAI1a NAI2b Proposedc

Est. SE p-value Est. SE p-value Est. SE p-value

ˇ0 4:117 0.030 < 0:001 7:727 0.140 < 0:001 7:729 0.156 < 0:001

ˇage 0:006 0.001 < 0:001 0:029 0.003 < 0:001 0:027 0.003 < 0:001

ˇsmoke �0:027 0.012 0:031 �0:122 0.057 0:032 �0:120 0.061 0:048

ˇexam �0:020 0.004 < 0:001 �0:086 0.018 < 0:001 �0:087 0.017 < 0:001

�2
b 0:036 0.021 0:083 0:782 0.020 < 0:001 0:754 0.040 < 0:001

� 0:013 0.018 0:474 0:248 0.018 < 0:001 0:120 0.007 < 0:001

aNAI1: naive LMM analysis of observed data ignoring measurement error.
bNAI2: naive LMM analysis of the constructed pseudo-response data.
cProposed: the proposed likelihood method that accounts for measurement error.

Table 3 reports results from analyses using the proposed method and the two
naive approaches. The estimated regression coefficients ˇage, ˇsmoke, and ˇexam

from the proposed method are 0.027, �0.120, and �0.087, respectively. At the 5%
significance level, age is significantly associated with increasing blood pressure.
The negative coefficient for smoking status may suggest an effect of smoking
on decreasing blood pressure. As expected, the results from the NAI2 approach
are similar to those from the proposed method due to the small value of the
measurement error variance. The NAI1 estimates, however, are not comparable to
those from the NAI2 and the proposed method, possibly in part due to a different
scale of the response variable.

7 Discussion

In this paper, we exploit analysis of response-error-contaminated clustered data
within the framework of generalized linear mixed models. Although in some
situations ignoring error in response does not alter point estimates of regression
parameters, ignoring error in response does affect inference results for general
circumstances. Error in response can produce seriously biased results.

In this paper we perform asymptotic bias analysis to assess the impact of
ignoring error in response. We investigate the performance of a partial-error-
correction method that was intuitively used in the literature [1]. To fully account for
error effects, we develop valid inferential procedures for various practical settings
which pertain to the information on response error. Simulation studies demonstrate
satisfactory performance of the proposed methods under various settings.
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Appendix

Let �i.�; �/ D
�

Qi.�/

U�

i .�;�/

�
. Because . O�p; O�/ is a solution to �i.�; �/ D 0, by first-

order Taylor series approximation, we have

n1=2

 O� � �

O�p � �

!
D �

 
E
˚
@Qi.�/=@�T

�
0

E
˚
@U�

i .�; �/=@�T
�

E
˚
@U�

i .� ; �/=@�T�

!�1

� n�1=2

nX

iD1

�i.�; �/ C op.1/:

It follows that n1=2. O�p � �/ equals

�n�1=2
�
E
˚
@U�

i .�; �/=@�T���1

(
nX

iD1

U�
i .�; �/ � E

˚
@U�

i .� ; �/=@�T�

� �
E
˚
@Qi.�/=@�T���1

nX

iD1

Qi.�/

)
C op.1/ D �n�1=2
 �1.�; �/

nX

iD1

˝i.�; �/ C op.1/;

where ˝i.�; �/ D U�
i .�; �/ � Ef@U�

i .�; �/=@�TgŒEf@Qi.�/=@�Tg��1Qi.�/, and

 .�; �/ D Ef@U�

i .�; �/=@�Tg.
Applying the Central Limit Theorem, we can show that n1=2. O�p � �/ is

asymptotically normally distributed with mean 0 and asymptotic covariance matrix
given by 
 �1˙.
 �1/T, where ˙ D Ef˝i.�; �/˝T

i .�; �/g. But under suitable
regularity conditions and correct model specification, EfU�

i .�; �/U�T
i .�; �/g D

Ef�@U�
i .�; �/=@�Tg, EfQi.�/QT

i .�/g D Ef�@Qi.�/=@�Tg, and EfU�
i .�; �/QT

i .�/g
D Ef�@U�

i .�; �/=@�Tg. Thus,

˙ D Ef�@U�
i .�; �/=@�Tg C Ef@U�

i .�; �/=@�Tg �Ef@Qi.�/=@�Tg��1

� �
Ef@U�

i .�; �/=@�Tg�T :

Therefore, the asymptotic covariance matrix for n1=2. O�p � �/ is

˙� D �
Ef�@U�

i .�; �/=@�Tg��1 C �
Ef�@U�

i .�; �/=@�Tg��1
Ef@U�

i .� ; �/=@�Tg
� �

Ef@Qi.�/=@�Tg��1 �
Ef@U�

i .�; �/=@�Tg�T �Ef�@U�
i .�; �/=@�Tg��1

:
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