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Abstract We point out that the ideas underlying some test procedures recently
proposed for testing post-model-selection (and for some other test problems) in the
econometrics literature have been around for quite some time in the statistics litera-
ture. We also sharpen some of these results in the statistics literature. Furthermore,
we show that some intuitively appealing testing procedures, that have found their
way into the econometrics literature, lead to tests that do not have desirable size
properties, not even asymptotically.

1 Introduction

Suppose we have a sequence of statistical experiments given by a family of
probability measures

˚
Pn;˛;ˇ W ˛ 2 A; ˇ 2 B

�
where ˛ is a “parameter of interest”,

and ˇ is a “nuisance-parameter”. Often, but not always, A and B will be subsets
of the Euclidean space. Suppose the researcher wants to test the null hypothesis
H0 W ˛ D ˛0 using the real-valued test-statistic Tn.˛0/, with large values of Tn.˛0/

being taken as indicative for violation of H0.1 Suppose further that the distribution
of Tn.˛0/ under H0 depends on the nuisance parameter ˇ. This leads to the key
question: How should the critical value then be chosen? [Of course, if another,
pivotal, test-statistic is available, this one could be used. However, we consider here
the case where a (non-trivial) pivotal test-statistic either does not exist or where
the researcher—for better or worse—insists on using Tn.˛0/.] In this situation a
standard way (see, e.g., [3, p.170]) to deal with this problem is to choose as critical

1This framework obviously allows for “one-sided” as well as for “two-sided” alternatives (when
these concepts make sense) by a proper definition of the test-statistic.
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value

cn;sup.ı/ D sup
ˇ2B

cn;ˇ.ı/; (1)

where 0 < ı < 1 and where cn;ˇ.ı/ satisfies Pn;˛0;ˇ

�
Tn.˛0/ > cn;ˇ.ı/

� D ı for
each ˇ 2 B, i.e., cn;ˇ.ı/ is a .1 � ı/-quantile of the distribution of Tn.˛0/ under
Pn;˛0;ˇ . [We assume here the existence of such a cn;ˇ.ı/, but we do not insist that it
is chosen as the smallest possible number satisfying the above condition, although
this will usually be the case.] In other words, cn;sup.ı/ is the “worst-case” critical
value. While the resulting test, which rejects H0 for

Tn.˛0/ > cn;sup.ı/; (2)

certainly is a level ı test (i.e., has size � ı), the conservatism caused by taking the
supremum in (1) will often result in poor power properties, especially for values
of ˇ for which cn;ˇ.ı/ is much smaller than cn;sup.ı/. The test obtained from (1)
and (2) above (more precisely, an asymptotic variant thereof) is what Andrews and
Guggenberger [1] call a “size-corrected fixed critical value” test.2

An alternative idea, which has some intuitive appeal and which is much less
conservative, is to use cn; Ǒn.ı/ as a random critical value, where Ǒ

n is an estimator
for ˇ (taking its values in B), and to reject H0 if

Tn.˛0/ > cn; Ǒn.ı/ (3)

obtains (measurability of cn; Ǒn.ı/ being assumed). This choice of critical value
can be viewed as a parametric bootstrap procedure. Versions of cn; Ǒn.ı/ have been
considered by Williams [14] or, more recently, by Liu [9]. However,

Pn;˛0;ˇ

�
Tn.˛0/ > cn; Ǒn.ı/

�
� Pn;˛0;ˇ

�
Tn.˛0/ > cn;sup.ı/

�

clearly holds for every ˇ, indicating that the test using the random critical value
cn; Ǒn.ı/ may not be a level ı test, but may have size larger than ı. This was
already noted by Loh [8]. A precise result in this direction, which is a variation
of Theorem 2.1 in [8], is as follows:

Proposition 1 Suppose that there exists a ˇmax
n D ˇmax

n .ı/ such that cn;ˇmax
n

.ı/ D
cn;sup.ı/. Then

Pn;˛0;ˇmax
n

�
cn; Ǒn.ı/ < Tn.˛0/ � cn;sup.ı/

�
> 0 (4)

2While Andrews and Guggenberger [1] do not consider a finite-sample framework but rather a
“moving-parameter” asymptotic framework, the underlying idea is nevertheless exactly the same.
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implies

sup
ˇ2B

Pn;˛0;ˇ

�
Tn.˛0/ > cn; Ǒn.ı/

�
> ı; (5)

i.e., the test using the random critical value cn; Ǒn.ı/ does not have level ı. More
generally, if Ocn is any random critical value satisfying Ocn � cn;ˇmax

n
.ı/.D cn;sup.ı//

with Pn;˛0;ˇmax
n

-probability 1, then (4) still implies (5) if in both expressions cn; Ǒn.ı/

is replaced by Ocn. [The result continues to hold if the random critical value Ocn also
depends on some additional randomization mechanism.]

Proof Observe that cn; Ǒn.ı/ � cn;sup.ı/ always holds. But then the l.h.s. of (5) is
bounded from below by

Pn;˛0;ˇmax
n

�
Tn.˛0/ > cn; Ǒn.ı/

�

D Pn;˛0;ˇmax
n

�
Tn.˛0/ > cn;sup.ı/

�C Pn;˛0;ˇmax
n

�
cn; Ǒn.ı/ < Tn.˛0/ � cn;sup.ı/

�

D Pn;˛0;ˇmax
n

�
Tn.˛0/ > cn;ˇmax

n
.ı/
�C Pn;˛0;ˇmax

n

�
cn; Ǒn.ı/ < Tn.˛0/ � cn;sup.ı/

�

D ı C Pn;˛0;ˇmax
n

�
cn; Ǒn.ı/ < Tn.˛0/ � cn;sup.ı/

�
> ı;

the last inequality holding in view of (4). The proof for the second claim is
completely analogous. �

To better appreciate condition (4) consider the case where cn;ˇ.ı/ is uniquely

maximized at ˇmax
n and Pn;˛0;ˇmax

n
. Ǒ

n ¤ ˇmax
n / is positive. Then

Pn;˛0;ˇmax
n

.cn; Ǒn.ı/ < cn;sup.ı// > 0

holds and therefore we can expect condition (4) to be satisfied, unless there exists
a quite strange dependence structure between Ǒ

n and Tn.˛0/. The same argument
applies in the more general situation where there are multiple maximizers ˇmax

n

of cn;ˇ.ı/ as soon as Pn;˛0;ˇmax
n

. Ǒ
n … arg max cn;ˇ.ı// > 0 holds for one of the

maximizers ˇmax
n .

In the same vein, it is also useful to note that Condition (4) can equiv-
alently be stated as follows: The conditional cumulative distribution function
Pn;˛0;ˇmax

n
.Tn.˛0/ � � j Ǒ

n/ of Tn.˛0/ given Ǒ
n puts positive mass on the interval

.cn; Ǒn.ı/; cn;sup.ı/� for a set of Ǒ
n’s that has positive probability under Pn;˛0;ˇmax

n
.

[Also note that Condition (4) implies that cn; Ǒn.ı/ < cn;sup.ı/ must hold with
positive Pn;˛0;ˇmax

n
-probability.] A sufficient condition for this then clearly is that for

a set of Ǒ
n’s of positive Pn;˛0;ˇmax

n
-probability we have that (i) cn; Ǒn.ı/ < cn;sup.ı/,

and (ii) the conditional cumulative distribution function Pn;˛0;ˇmax
n

.Tn.˛0/ � � j Ǒ
n/

puts positive mass on every non-empty interval. The analogous result holds for the
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case where Ocn replaces cn; Ǒn.ı/ (and conditioning is w.r.t. Ocn), see Lemma 5 in the
Appendix for a formal statement.

The observation that the test (3) based on the random critical value cn; Ǒn.ı/

typically will not be a level ı test has led Loh [8] and subsequently Berger and Boos
[2] and Silvapulle [13] to consider the following procedure (or variants thereof)
which leads to a level ı test that is somewhat less “conservative” than the test given
by (2)3: Let In be a random set in B satisfying

inf
ˇ2B Pn;˛0;ˇ .ˇ 2 In/ � 1 � �n;

where 0 � �n < ı. That is, In is a confidence set for the nuisance parameter ˇ

with infimal coverage probability not less than 1 � �n (provided ˛ D ˛0). Define a
random critical value via

cn;�n;Loh.ı/ D sup
ˇ2In

cn;ˇ.ı � �n/: (6)

Then we have

sup
ˇ2B

Pn;˛0;ˇ

�
Tn.˛0/ > cn;�n ;Loh.ı/

� � ı:

This can be seen as follows: For every ˇ 2 B

Pn;˛0;ˇ

�
Tn.˛0/ > cn;�n ;Loh.ı/

� D Pn;˛0;ˇ

�
Tn.˛0/ > cn;�n ;Loh.ı/; ˇ 2 In

�

CPn;˛0;ˇ

�
Tn.˛0/ > cn;�n;Loh.ı/; ˇ … In

�

� Pn;˛0;ˇ

�
Tn.˛0/ > cn;ˇ.ı � �n/; ˇ 2 In

�C �n

� Pn;˛0;ˇ

�
Tn.˛0/ > cn;ˇ.ı � �n/

�C �n

D ı � �n C �n D ı:

Hence, the random critical value cn;�n ;Loh.ı/ results in a test that is guaranteed to be
level ı. In fact, its size can also be lower bounded by ı � �n provided there exists
a ˇmax

n .ı � �n/ satisfying cn;ˇmax
n .ı��n/.ı � �n/ D supˇ2B cn;ˇ.ı � �n/: This follows

since

sup
ˇ2B

Pn;˛0;ˇ

�
Tn.˛0/ > cn;�n;Loh.ı/

�

� sup
ˇ2B

Pn;˛0;ˇ

 

Tn.˛0/ > sup
ˇ2B

cn;ˇ.ı � �n/

!

3 Loh [8] actually considers the random critical value cn;�n;Loh� .ı/ given by supˇ2In cn;ˇ.ı/,
which typically does not lead to a level ı test in finite samples in view of Proposition 1 (since
cn;�n;Loh� .ı/ � cn;sup.ı/). However, Loh [8] focuses on the case where �n ! 0 and shows that then
the size of the test converges to ı; that is, the test is asymptotically level ı if �n ! 0. See also
Remark 4.



Testing in the Presence of Nuisance Parameters: Some Comments on Tests. . . 73

D sup
ˇ2B

Pn;˛0;ˇ

�
Tn.˛0/ > cn;ˇmax

n .ı��n/.ı � �n/
�

� Pn;˛0;ˇmax
n .ı��n/

�
Tn.˛0/ > cn;ˇmax

n .ı��n/.ı � �n/
�

D ı � �n: (7)

The critical value (6) (or asymptotic variants thereof) has also been used in
econometrics, e.g., by DiTraglia [4], McCloskey [10, 11], and Romano et al. [12].

The test based on the random critical value cn;�n ;Loh.ı/ may have size strictly
smaller than ı. This suggests that this test will not improve over the conservative
test based on cn;sup.ı/ for all values of ˇ: We can expect that the test based on (6)
will sacrifice some power when compared with the conservative test (2) when the
true ˇ is close to ˇmax

n .ı/ or ˇmax
n .ı � �n/; however, we can often expect a power

gain for values of ˇ that are “far away” from ˇmax
n .ı/ and ˇmax

n .ı � �n/, as we then
typically will have that cn;�n ;Loh.ı/ is smaller than cn;sup.ı/. Hence, each of the two
tests will typically have a power advantage over the other in certain parts of the
parameter space B.

It is thus tempting to try to construct a test that has the power advantages of both
these tests by choosing as a critical value the smaller one of the two critical values,
i.e., by choosing

Ocn;�n;min.ı/ D min
�
cn;sup.ı/; cn;�n;Loh.ı/

�
(8)

as the critical value. While both critical values cn;sup.ı/ and cn;�n;Loh.ı/ lead to level
ı tests, this is, however, unfortunately not the case in general for the test based on the
random critical value (8). To see why, note that by construction the critical value (8)
satisfies

Ocn;�n ;min.ı/ � cn;sup.ı/;

and hence can be expected to fall under the wrath of Proposition 1 given above. Thus
it can be expected to not deliver a test that has level ı, but has a size that exceeds ı.
So while the test based on the random critical value proposed in (8) will typically
reject more often than the tests based on (2) or on (6), it does so by violating the
size constraint. Hence it suffers from the same problems as the parametric bootstrap
test (3). [We make the trivial observation that the lower bound (7) also holds if
Ocn;�n;min.ı/ instead of cn;�n ;Loh.ı/ is used, since Ocn;�n ;min.ı/ � cn;�n;Loh.ı/ holds.] As
a point of interest we note that the construction (8) has actually been suggested in
the literature, see McCloskey [10].4 In fact, McCloskey [10] suggested a random
critical value Ocn;McC.ı/ which is the minimum of critical values of the form (8) with
�n running through a finite set of values; it is thus less than or equal to the individual
Ocn;�n;min’s, which exacerbates the size distortion problem even further.

4This construction is no longer suggested in [11].
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While Proposition 1 shows that tests based on random critical values like cn; Ǒn.ı/

or Ocn;�n ;min.ı/ will typically not have level ı, it leaves open the possibility that
the overshoot of the size over ı may converge to zero as sample size goes to
infinity, implying that the test would then be at least asymptotically of level ı. In
sufficiently “regular” testing problems this will indeed be the case. However, for
many testing problems where nuisance parameters are present such as testing post-
model- selection, it turns out that this is typically not the case: In the next section
we illustrate this by providing a prototypical example where the overshoot does not
converge to zero for the tests based on cn; Ǒn.ı/ or Ocn;�n;min.ı/, and hence these tests
are not level ı even asymptotically.

2 An Illustrative Example

In the following we shall—for the sake of exposition—use a very simple example
to illustrate the issues involved. Consider the linear regression model

yt D ˛xt1 C ˇxt2 C �t .1 � t � n/ (9)

under the “textbook” assumptions that the errors �t are i.i.d. N.0; �2/, �2 > 0, and
the nonstochastic n�2 regressor matrixX has full rank (implying n > 1) and satisfies
X0X=n ! Q > 0 as n ! 1. The variables yt, xti, as well as the errors �t can be
allowed to depend on sample size n (in fact may be defined on a sample space that
itself depends on n), but we do not show this in the notation. For simplicity, we shall
also assume that the error variance �2 is known and equals 1. It will be convenient
to write the matrix .X0X=n/�1 as

.X0X=n/�1 D
 

�2
˛;n �˛;ˇ;n

�˛;ˇ;n �2
ˇ;n

!

:

The elements of the limit of this matrix will be denoted by �2
˛;1, etc. It will prove

useful to define �n D �˛;ˇ;n=.�˛;n�ˇ;n/, i.e., �n is the correlation coefficient between
the least-squares estimators for ˛ and ˇ in model (9). Its limit will be denoted by
�1. Note that j�1j < 1 holds, since Q > 0 has been assumed.

As in [7] we shall consider two candidate models from which we select on the
basis of the data: The unrestricted model denoted by U which uses both regressors
xt1 and xt2, and the restricted model denoted by R which uses only the regressor
xt1 (and thus corresponds to imposing the restriction ˇ D 0). The least-squares
estimators for ˛ and ˇ in the unrestricted model will be denoted by Ǫn.U/ and
Ǒ
n.U/, respectively. The least-squares estimator for ˛ in the restricted model will

be denoted by Ǫn.R/, and we shall set Ǒ
n.R/ D 0. We shall decide between the

competing models U and R depending on whether jpn Ǒ.Un/=�ˇ;nj > c or not,
where c > 0 is a user-specified cut-off point independent of sample size (in line
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with the fact that we consider conservative model selection). That is, we select the
model OMn according to

OMn D
(
U if jpn Ǒ

n.U/=�ˇ;nj > c;
R otherwise.

We now want to test the hypothesis H0 W ˛ D ˛0 versus H1 W ˛ > ˛0 and we insist,
for better or worse, on using the test-statistic

Tn.˛0/ D
h
n1=2 . Ǫ .R/ � ˛0/ =

�
�˛;n

�
1 � �2

n

�1=2
�i

1. OMn D R/

C �
n1=2 . Ǫ .U/ � ˛0/ =�˛;n

�
1. OMn D U/:

That is, depending on which of the two models has been selected, we insist on using
the corresponding textbook test-statistic (for the known-variance case). While this
could perhaps be criticized as somewhat simple-minded, it describes how such a
test may be conducted in practice when model selection precedes the inference step.
It is well known that if one uses this test-statistic and naively compares it to the
usual normal-based quantiles acting as if the selected model were given a priori,
this results in a test with severe size distortions, see, e.g., [5] and the references
therein. Hence, while sticking with Tn.˛0/ as the test-statistic, we now look for
appropriate critical values in the spirit of the preceding section and discuss some of
the proposals from the literature. Note that the situation just described fits into the
framework of the preceding section with ˇ as the nuisance parameter and B D R.

Calculations similar to the ones in [7] show that the finite-sample distribution of
Tn.˛0/ under H0 has a density that is given by

hn;ˇ.u/ D �
�
n1=2ˇ=�ˇ;n; c

�
�
�
u C �n

�
1 � �2

n

��1=2
n1=2ˇ=�ˇ;n

�

C
�
1 � �

��
1 � �2

n

��1=2 �
n1=2ˇ=�ˇ;n C �nu

�
;
�
1 � �2

n

��1=2
c
��

� .u/ ;

where �.a; b/ D ˆ.a C b/ � ˆ.a � b/ and where � and ˆ denote the density
and cdf, respectively, of a standard normal variate. Let Hn;ˇ denote the cumulative
distribution function (cdf) corresponding to hn;ˇ .

Now, for given significance level ı, 0 < ı < 1, let cn;ˇ.ı/ D H�1
n;ˇ.1� ı/ as in the

preceding section. Note that the inverse function exists, since Hn;ˇ is continuous and
is strictly increasing as its density hn;ˇ is positive everywhere. As in the preceding
section let

cn;sup.ı/ D sup
ˇ2R

cn;ˇ.ı/ (10)

denote the conservative critical value (the supremum is actually a maximum in
the interesting case ı � 1=2 in view of Lemmata 6 and 7 in the Appendix).
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Let cn; Ǒn.U/
.ı/ be the parametric bootstrap-based random critical value. With �

satisfying 0 < � < ı, we also consider the random critical value

cn;�;Loh.ı/ D sup
ˇ2In

cn;ˇ.ı � �/ (11)

where

In D
h Ǒ

n.U/ ˙ n�1=2�ˇ;nˆ
�1.1 � .�=2//

i

is an 1 � � confidence interval for ˇ. [Again the supremum is actually a maximum.]
We choose here � independent of n as in [4, 10, 11] and comment on sample size
dependent � below. Furthermore define

Ocn;�;min.ı/ D min
�
cn;sup.ı/; cn;�;Loh.ı/

�
: (12)

Recall from the discussion in Sect. 1 that these critical values have been used in the
literature in the contexts of testing post-model-selection, post-moment-selection, or
post-model-averaging. Among the critical values cn;sup.ı/, cn; Ǒn.U/

.ı/, cn;�;Loh.ı/,
and Ocn;�;min.ı/, we already know that cn;sup.ı/ and cn;�;Loh.ı/ lead to tests that are
valid level ı tests. We next confirm—as suggested by the discussion in the preceding
section—that the random critical values cn; Ǒn.U/

.ı/ and Ocn;�;min.ı/ (at least for some
choices of �) do not lead to tests that have level ı (i.e., their size is strictly larger
than ı). Moreover, we also show that the sizes of the tests based on cn; Ǒn.U/

.ı/ or
Ocn;�;min.ı/ do not converge to ı as n ! 1, implying that the asymptotic sizes
of these tests exceed ı. These results a fortiori also apply to any random critical
value that does not exceed cn; Ǒn.U/

.ı/ or Ocn;�;min.ı/ (such as Ocn;McC.ı/ in [10] or
cn;�;Loh�.ı/). In the subsequent theorem we consider for simplicity only the case
�n � �, but the result extends to the more general case where �n may depend on n.

Theorem 2 Suppose �n � � ¤ 0 and let 0 < ı � 1=2 be arbitrary. Then

inf
n>1

sup
ˇ2R

Pn;˛0;ˇ

�
Tn.˛0/ > cn; Ǒn.U/

.ı/
�

> ı: (13)

Furthermore, for each fixed �, 0 < � < ı, that is sufficiently small we have

inf
n>1

sup
ˇ2R

Pn;˛0;ˇ

�
Tn.˛0/ > Ocn;�;min.ı/

�
> ı: (14)

Proof We first prove (14). Introduce the abbreviation 	 D n1=2ˇ=�ˇ;n and define
O	.U/ D n1=2 Ǒ.U/=�ˇ;n. Observe that the density hn;ˇ (and hence the cdf Hn;ˇ)
depends on the nuisance parameter ˇ only via 	 , and otherwise is independent
of sample size n (since �n D � is assumed). Let Nh	 be the density of Tn.˛0/

when expressed in the reparameterization 	 . As a consequence, the quantiles satisfy
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cn;ˇ.v/ D Nc	 .v/ for every 0 < v < 1, where Nc	 .v/ D NH�1
	 .1 � v/ and NH	

denotes the cdf corresponding to Nh	 . Furthermore, for 0 < � < ı, observe that
cn;�;Loh.ı/ D supˇ2In cn;ˇ.ı � �/ can be rewritten as

cn;�;Loh.ı/ D sup
	2Œ O	.U/˙ˆ�1.1�.�=2//�

Nc	 .ı � �/:

Now define 	max D 	max.ı/ as a value of 	 such that Nc	max.ı/ D Ncsup.ı/ WD
sup	2R Nc	 .ı/. That such a maximizer exists follows from Lemmata 6 and 7 in
the Appendix. Note that 	max does not depend on n. Of course, 	max is related to
ˇmax
n D ˇmax

n .ı/ via 	max D n1=2ˇmax
n =�ˇ;n. Since Ncsup.ı/ D Nc	max.ı/ is strictly

larger than

lim
j	 j!1

Nc	 .ı/ D ˆ�1.1 � ı/

in view of Lemmata 6 and 7 in the Appendix, we have for all sufficiently small �,
0 < � < ı, that

lim
j	 j!1

Nc	 .ı � �/ D ˆ�1.1 � .ı � �// < Ncsup.ı/ D Nc	max.ı/: (15)

Fix such an �. Let now " > 0 satisfy " < Ncsup.ı/ � ˆ�1.1 � .ı � �//. Because of the
limit relation in the preceding display, we see that there exists M D M."/ > 0 such
that for j	 j > M we have Nc	 .ı � �/ < Ncsup.ı/ � ". Define the set

A D ˚
x 2 R W jxj > ˆ�1.1 � .�=2// C M

�
:

Then on the event f O	.U/ 2 Ag we have that Ocn;�;min.ı/ � Ncsup.ı/ � ". Furthermore,
noting that Pn;˛0;ˇmax

n

�
Tn.˛0/ > cn;sup.ı/

� D Pn;˛0;ˇmax
n

�
Tn.˛0/ > Ncsup.ı/

� D ı, we
have

sup
ˇ2R

Pn;˛0;ˇ

�
Tn.˛0/ > Ocn;�;min.ı/

� � Pn;˛0;ˇmax
n

�
Tn.˛0/ > Ocn;�;min.ı/

�

D Pn;˛0;ˇmax
n

�
Tn.˛0/ > Ncsup.ı/

�C Pn;˛0;ˇmax
n

�Ocn;�;min.ı/ < Tn.˛0/ � Ncsup.ı/
�

� ı C Pn;˛0;ˇmax
n

�Ocn;�;min.ı/ < Tn.˛0/ � Ncsup.ı/; O	.U/ 2 A
�

� ı C Pn;˛0;ˇmax
n

�Ncsup.ı/ � " < Tn.˛0/ � Ncsup.ı/; O	.U/ 2 A
�

:
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We are hence done if we can show that the probability in the last line is positive and
independent of n. But this probability can be written as follows:5

Pn;˛0;ˇmax
n

�Ncsup.ı/ � " < Tn.˛0/ � Ncsup.ı/; O	.U/ 2 A
�

D Pn;˛0;ˇmax
n

�Ncsup.ı/ � " < Tn.˛0/ � Ncsup.ı/; O	.U/ 2 A; j O	.U/j � c
�

CPn;˛0;ˇmax
n

�Ncsup.ı/ � " < Tn.˛0/ � Ncsup.ı/; O	.U/ 2 A; j O	.U/j > c
�

D Pn;˛0;ˇmax
n

�
Ncsup.ı/ � n1=2 . Ǫ .R/ � ˛0/ =

�
�˛;n

�
1 � �2

�1=2
�

> Ncsup.ı/ � "; O	.U/ 2 A; j O	.U/j � c
�

CPn;˛0;ˇmax
n

�Ncsup.ı/ � n1=2 . Ǫ .U/ � ˛0/ =�˛;n

> Ncsup.ı/ � "; O	.U/ 2 A; j O	.U/j > c
�

D
h
ˆ.Ncsup.ı/ C �

�
1 � �2

��1=2
	max/ � ˆ.Ncsup.ı/ C �

�
1 � �2

��1=2
	max � "/

i

� Pr .Z2 2 A; jZ2j � c/ C Pr
�Ncsup.ı/ � Z1 > Ncsup.ı/ � ";Z2 2 A; jZ2j > c

�
;

where we have made use of independence of Ǫ .R/ and O	.U/, cf. Lemma A.1 in [6],
and of the fact that n1=2 . Ǫ .R/ � ˛0/ is distributed as N.��˛;n�	max; �2

˛;n

�
1 � �2

�
/

under Pn;˛0;ˇmax
n

. Furthermore, we have used the fact that
�
n1=2 . Ǫ .U/ � ˛0/ =�˛;n;

O	.U//
0 is under Pn;˛0;ˇmax

n
distributed as .Z1;Z2/0 where

.Z1;Z2/
0 � N

	
.0; 	max/0;

	
1 �

� 1




;

which is a non-singular normal distribution, since j�j < 1. It is now obvious from
the final expression in the last but one display that the probability in question is
strictly positive and is independent of n. This proves (14).

We turn to the proof of (13). Observe that cn; Ǒn.U/
.ı/ D Nc O	.U/.ı/ and that

Ncsup.ı/ D Nc	max.ı/ > lim
j	 j!1

Nc	 .ı/ D ˆ�1.1 � ı/

in view of Lemmata 6 and 7 in the Appendix. Choose " > 0 to satisfy " < Ncsup.ı/ �
ˆ�1.1 � ı/. Because of the limit relation in the preceding display, we see that there
exists M D M."/ > 0 such that for j	 j > M we have Nc	 .ı/ < Ncsup.ı/ � ". Define
the set

B D fx 2 R W jxj > Mg :

5The corresponding calculation in previous versions of this paper had erroneously omitted the

term �
�
1 � �2

�
�1=2

	max from the expression on the far right-hand side of the subsequent display.
This is corrected here by accounting for this term. Alternatively, one could drop the probability
involving j O	.U/j � c altogether from the proof and work with the resulting lower bound.
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Then on the event f O	.U/ 2 Bg we have that cn; Ǒn.U/
.ı/ D Nc O	.U/.ı/ � Ncsup.ı/ � ".

The rest of the proof is then completely analogous to the proof of (14) with the set
A replaced by B. �

Remark 3

(i) Inspection of the proof shows that (14) holds for every �, 0 < � < ı, that
satisfies (15).

(ii) It is not difficult to show that the suprema in (13) and (14) actually do not
depend on n.

Remark 4 If we allow � to depend on n, we may choose � D �n ! 0 as n ! 1.
Then the test based on Ocn;�n;min.ı/ still has a size that strictly overshoots ı for every
n, but the overshoot will go to zero as n ! 1. While this test then “approaches”
the conservative test that uses cn;sup.ı/, it does not respect the level for any finite-
sample size. [The same can be said for Loh’s [8] original proposal cn;�n;Loh�.ı/,
cf. footnote 3.] Contrast this with the test based on cn;�n;Loh.ı/ which holds the level
for each n, and also “approaches” the conservative test if �n ! 0. Hence, there
seems to be little reason for preferring Ocn;�n ;min.ı/ (or cn;�n;Loh�.ı/) to cn;�n ;Loh.ı/ in
this scenario where �n ! 0.

Appendix

Lemma 5 Suppose a random variable Ocn satisfies Pr .Ocn � c�/ D 1 for some real
number c� as well as Pr .Ocn < c�/ > 0. Let S be real-valued random variable. If for
every non-empty interval J in the real line

Pr .S 2 J j Ocn/ > 0 (16)

holds almost surely, then

Pr
�Ocn < S � c�� > 0:

The same conclusion holds if in (16) the conditioning variable Ocn is replaced by
some variable wn, say, provided that Ocn is a measurable function of wn.

Proof Clearly

Pr
�Ocn < S � c�

� D E
�
Pr
�
S 2 .Ocn; c�� j Ocn

�� D E
�
Pr
�
S 2 .Ocn; c�� j Ocn

�
1
�Ocn < c�

��
;

the last equality being true, since the first term in the product is zero on the event
Ocn D c�. Now note that the first factor in the expectation on the far right-hand side
of the above equality is positive almost surely by (16) on the event fOcn < c�g, and
that the event fOcn < c�g has positive probability by assumption. �

Recall that Nc	 .v/ has been defined in the proof of Theorem 2.
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Lemma 6 Assume �n � � ¤ 0. Suppose 0 < v < 1. Then the map 	 ! Nc	 .v/ is
continuous on R. Furthermore, lim	!1 Nc	 .v/ D lim	!�1 Nc	 .v/ D ˆ�1.1 � v/.

Proof If 	l ! 	 , then Nh	l converges to Nh	 pointwise on R. By Scheffé’s Lemma, NH	l

then converges to NH	 in total variation distance. Since NH	 is strictly increasing on
R, convergence of the quantiles Nc	l.v/ to Nc	 .v/ follows. The second claim follows
by the same argument observing that Nh	 converges pointwise to a standard normal
density for 	 ! ˙1. �
Lemma 7 Assume �n � � ¤ 0.

(i) Suppose 0 < v � 1=2. Then for some 	 2 R we have that Nc	 .v/ is larger than
ˆ�1.1 � v/.

(ii) Suppose 1=2 � v < 1. Then for some 	 2 R we have that Nc	 .v/ is smaller than
ˆ�1.1 � v/.

Proof Standard regression theory gives

Ǫn.U/ D Ǫn.R/ C ��˛;n
Ǒ
n.U/=�ˇ;n;

with Ǫn.R/ and Ǒ
n.U/ being independent; for the latter cf., e.g., [6], Lemma A.1.

Consequently, it is easy to see that the distribution of Tn.˛0/ under Pn;˛0;ˇ is the
same as the distribution of

T 0 D T 0.�; 	/ D
�p

1 � �2W C �Z
�
1 fjZ C 	 j > cg

C
 

W � �
	

p
1 � �2

!

1 fjZ C 	 j � cg ;

where, as before, 	 D n1=2ˇ=�ˇ;n, and where W and Z are independent standard
normal random variables.

We now prove (i): Let q be shorthand for ˆ�1.1 � v/ and note that q � 0 holds
by the assumption on v. It suffices to show that Pr .T 0 � q/ < ˆ.q/ for some 	 . We
can now write

Pr
�
T 0 � q

� D Pr
�p

1 � �2W C �Z � q
�

� Pr

 

jZ C 	 j � c;W � q � �Z
p

1 � �2

!

C Pr

 

jZ C 	 j � c;W � q C �	
p

1 � �2

!

D ˆ.q/ � Pr.A/ C Pr.B/:

Here, A and B are the events given in terms of W and Z. Picturing these two events
as subsets of the plane (with the horizontal axis corresponding to Z and the vertical
axis corresponding to W), we see that A corresponds to the vertical band where



Testing in the Presence of Nuisance Parameters: Some Comments on Tests. . . 81

jZ C 	 j � c, truncated above the line where W D .q � �Z/=
p

1 � �2; similarly,
B corresponds to the same vertical band jZ C 	 j � c, truncated now above the
horizontal line where W D q C �	=

p
1 � �2.

We first consider the case where � > 0 and distinguish two cases:

Case 1: �c �
�
1 �p

1 � �2

�
q.

In this case the set B is contained in A for every value of 	 , with AnB being a
set of positive Lebesgue measure. Consequently, Pr.A/ > Pr.B/ holds for every 	 ,
proving the claim.

Case 2: �c >
�
1 �p

1 � �2

�
q.

In this case choose 	 so that �	 � c � 0, and, in addition, such that also .q �
�.�	 � c//=

p
1 � �2 < 0, which is clearly possible. Recalling that � > 0, note

that the point where the line W D .q � �Z/=
p

1 � �2 intersects the horizontal line
W D q C �	=

p
1 � �2 has as its first coordinate Z D �	 C .q=�/.1 �p

1 � �2/,
implying that the intersection occurs in the right half of the band where jZC	 j � c.
As a consequence, Pr.B/ � Pr.A/ can be written as follows:

Pr.B/ � Pr.A/ D Pr.BnA/ � Pr.AnB/

where

BnA D
n
�	 C .q=�/.1 �

p
1 � �2/ � Z � �	 C c;

.q � �Z/=
p

1 � �2 < W � q C �	=
p

1 � �2

o

and

AnB D
n
�	 � c � Z � �	 C .q=�/.1 �

p
1 � �2/;

q C �	=
p

1 � �2 < W � .q � �Z/=
p

1 � �2

o
:

Picturing AnB and BnA as subsets of the plane as in the preceding paragraph, we
see that these events correspond to two triangles, where the triangle corresponding
to AnB is larger than or equal (in Lebesgue measure) to that corresponding to BnA.
Since 	 was chosen to satisfy �	 � c � 0 and .q � �.�	 � c//=

p
1 � �2 < 0, we

see that each point in the triangle corresponding to AnB is closer to the origin than
any point in the triangle corresponding to BnA. Because the joint Lebesgue density
of .Z;W/, i.e., the bivariate standard Gaussian density, is spherically symmetric and
radially monotone, it follows that Pr.BnA/ � Pr.AnB/ < 0, as required.

The case � < 0 follows because T 0.�; 	/ has the same distribution as T 0.��; �	/.
Part (ii) follows, since T 0.�; 	/ has the same distribution as �T 0.��; 	/. �
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Remark 8 If �n � � ¤ 0 and v D 1=2, then Nc0.1=2/ D ˆ�1.1=2/ D 0, since Nh0 is
symmetric about zero.

Remark 9 If �n � � D 0, then Tn.˛0/ is standard normally distributed for every
value of ˇ, and hence Nc	 .v/ D ˆ�1.1 � v/ holds for every 	 and v.
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