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Abstract Fitting linear regression models can be computationally very expensive
in large-scale data analysis tasks if the sample size and the number of variables are
very large. Random projections are extensively used as a dimension reduction tool in
machine learning and statistics. We discuss the applications of random projections in
linear regression problems, developed to decrease computational costs, and give an
overview of the theoretical guarantees of the generalization error. It can be shown
that the combination of random projections with least squares regression leads to
similar recovery as ridge regression and principal component regression. We also
discuss possible improvements when averaging over multiple random projections,
an approach that lends itself easily to parallel implementation.

1 Introduction

Assume we are given a data matrixX 2 R
n�p (n samples of a p-dimensional random

variable) and a response vector Y 2 R
n. We assume a linear model for the data

where Y D Xˇ C " for some regression coefficient ˇ 2 R
p and " i.i.d. mean-

zero noise. Fitting a regression model by standard least squares or ridge regression
requires O.np2/ or O. p3/ flops. In the situation of large-scale (n; p very large) or
high dimensional ( p � n) data these algorithms are not applicable without having
to pay a huge computational price.

Using a random projection, the data can be “compressed” either row- or column-
wise. Row-wise compression was proposed and discussed in [7, 15, 19]. These
approaches replace the least-squares estimator

argmin
�2Rp

kY � X�k2
2 with the estimator argmin

�2Rp
k Y �  X�k2

2; (1)

where the matrix  2 R
m�n (m � n) is a random projection matrix and has,

for example, i.i.d. N .0; 1/ entries. Other possibilities for the choice of  are
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discussed below. The high dimensional setting and `1-penalized regression are
considered in [19], where it is shown that a sparse linear model can be recovered
from the projected data under certain conditions. The optimization problem is still
p-dimensional, however, and computationally expensive if the number of variables
is very large.

Column-wise compression addresses this later issue by reducing the problem to
a d-dimensional optimization with d � p by replacing the least-squares estimator

argmin
�2Rp

kY � X�k2
2 with the estimator � argmin

�2Rd

kY � X��k2
2; (2)

where the random projection matrix is now � 2 R
p�d (with d � p). By right

multiplication to the data matrix X we transform the data matrix to X� and thereby
reduce the number of variables from p to d and thus reducing computational com-
plexity. The Johnson–Lindenstrauss Lemma [5, 8, 9] guarantees that the distance
between two transformed sample points is approximately preserved in the column-
wise compression.

Random projections have also been considered under the aspect of preserving
privacy [3]. By pre-multiplication with a random projection matrix as in (1) no
observation in the resulting matrix can be identified with one of the original data
points. Similarly, post-multiplication as in (2) produces new variables that do not
reveal the realized values of the original variables.

In many applications the random projection used in practice falls under the
class of Fast Johnson–Lindenstrauss Transforms (FJLT) [2]. One instance of such
a fast projection is the Subsampled Randomized Hadamard Transform (SRHT)
[17]. Due to its recursive definition, the matrix–vector product has a complexity of
O. p log. p//, reducing the cost of the projection to O.np log. p//. Other proposals
that lead to speedups compared to a Gaussian random projection matrix include
random sign or sparse random projection matrices [1]. Notably, if the data matrix
is sparse, using a sparse random projection can exploit sparse matrix operations.
Depending on the number of non-zero elements in X, one might prefer using a
sparse random projection over an FJLT that cannot exploit sparsity in the data.
Importantly, using X� instead of X in our regression algorithm of choice can be
disadvantageous if X is extremely sparse and d cannot be chosen to be much smaller
than p. (The projection dimension d can be chosen by cross validation.) As the
multiplication by � “densifies” the design matrix used in the learning algorithm the
potential computational benefit of sparse data is not preserved.

For OLS and row-wise compression as in (1), where n is very large and p < m <

n, the SRHT (and similar FJLTs) can be understood as a subsampling algorithm.
It preconditions the design matrix by rotating the observations to a basis where all
points have approximately uniform leverage [7]. This justifies uniform subsampling
in the projected space which is applied subsequent to the rotation in order to reduce
the computational costs of the OLS estimation. Related ideas can be found in the
way columns and rows of X are sampled in a CUR-matrix decomposition [12].
While the approach in [7] focuses on the concept of leverage, McWilliams et al.
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[15] propose an alternative scheme that allows for outliers in the data and makes use
of the concept of influence [4]. Here, random projections are used to approximate
the influence of each observation which is then used in the subsampling scheme to
determine which observations to include in the subsample.

Using random projections column-wise as in (2) as a dimensionality reduction
technique in conjunction with (`2 penalized) regression has been considered in [10,
11, 13]. The main advantage of these algorithms is the computational speedup while
preserving predictive accuracy. Typically, a variance reduction is traded off against
an increase in bias. In general, one disadvantage of reducing the dimensionality
of the data is that the coefficients in the projected space are not interpretable in
terms of the original variables. Naively, one could reverse the random projection
operation by projecting the coefficients estimated in the projected space back into
the original space as in (2). For prediction purposes this operation is irrelevant, but
it can be shown that this estimator does not approximate the optimal solution in
the original p-dimensional coefficient space well [18]. As a remedy, Zhang et al.
[18] propose to find the dual solution in the projected space to recover the optimal
solution in the original space. The proposed algorithm approximates the solution to
the original problem accurately if the design matrix is low-rank or can be sufficiently
well approximated by a low-rank matrix.

Lastly, random projections have been used as an auxiliary tool. As an example,
the goal of McWilliams et al. [16] is to distribute ridge regression across variables
with an algorithm called LOCO. The design matrix is split across variables and the
variables are distributed over processing units (workers). Random projections are
used to preserve the dependencies between all variables in that each worker uses a
randomly projected version of the variables residing on the other workers in addition
to the set of variables assigned to itself. It then solves a ridge regression using this
local design matrix. The solution is the concatenation of the coefficients found from
each worker and the solution vector lies in the original space so that the coefficients
are interpretable. Empirically, this scheme achieves large speedups while retaining
good predictive accuracy. Using some of the ideas and results outlined in the current
manuscript, one can show that the difference between the full solution and the
coefficients returned by LOCO is bounded.

Clearly, row- and column-wise compression can also be applied simultaneously
or column-wise compression can be used together with subsampling of the data
instead of row-wise compression. In the remaining sections, we will focus on
the column-wise compression as it poses more difficult challenges in terms of
statistical performance guarantees. While row-wise compression just reduces the
effective sample size and can be expected to work in general settings as long as
the compressed dimension m < n is not too small [19], column-wise compression
can only work well if certain conditions on the data are satisfied and we will give an
overview of these results. If not mentioned otherwise, we will refer with compressed
regression and random projections to the column-wise compression.

The structure of the manuscript is as follows:We will give an overview of bounds
on the estimation accuracy in the following Sect. 2, including both known results
and new contributions in the form of tighter bounds. In Sect. 3 we will discuss the
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possibility and properties of variance-reducing averaging schemes, where estimators
based on different realized random projections are aggregated. Finally, Sect. 4
concludes the manuscript with a short discussion.

2 Theoretical Results

We will discuss in the following the properties of the column-wise compressed
estimator as in (2), which is defined as

Ǒ�
d D � argmin

�2Rd

kY � X��k2
2; (3)

where we assume that � has i.i.d.N .0; 1=d/ entries. This estimator will be referred
to as the compressed least-squares estimator (CLSE) in the following.We will focus
on the unpenalized form as in (3) but note that similar results also apply to estimators
that put an additional penalty on the coefficients ˇ or � . Due to the isotropy of the
random projection, a ridge-type penalty as in [11, 16] is perhaps a natural choice. An
interesting summary of the bounds on random projections is, on the other hand, that
the random projection as in (3) already acts as a regularization and the theoretical
properties of (3) are very much related to the properties of a ridge-type estimator of
the coefficient vector in the absence of random projections.

We will restrict discussion of the properties mostly to the mean-squared error
(MSE)

E�

�
E".kXˇ � X Ǒ�

d k2
2/

�
: (4)

First results on compressed least squares have been given in [13] in a random design
setting. It was shown that the bias of the estimator (3) is of order O.log.n/=d/.
This proof used a modified version of the Johnson–Lindenstrauss Lemma. A recent
result [10] shows that the log.n/-term is not necessary for fixed design settings
where Y D Xˇ C " for some ˇ 2 R

p and " is i.i.d. noise, centred E"Œ"� D 0 and
with the variance E"Œ""0� D �2In�n. We will work with this setting in the following.

The following result of [10] gives a bound on the MSE for fixed design.

Theorem 1 ([10]) Assume fixed design and Rank.X/ � d. Then

E�

�
E".kXˇ � X Ǒ�

d k2
2/

� � �2d C kXˇk2
2

d
C trace.X0X/

kˇk2
2

d
: (5)

Proof See Appendix.

Compared with [13], the result removes an unnecessary O.log.n// term and
demonstrates the O.1=d/ behaviour of the bias. The result also illustrates the
tradeoffs when choosing a suitable dimension d for the projection. Increasing d
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will lead to a 1=d reduction in the bias terms but lead to a linear increase in the
estimation error (which is proportional to the dimension in which the least-squares
estimation is performed). An optimal bound can only be achieved with a value of d
that depends on the unknown signal and in practice one would typically use cross
validation to make the choice of the dimension of the projection.

One issue with the bound in Theorem 1 is that the bound on the bias term in the
noiseless case (Y D Xˇ)

E�

�
E".kXˇ � X Ǒ�

d k2
2/

� � kXˇk2
2

d
C trace.X0X/

kˇk2
2

d
(6)

is usually weaker than the trivial bound (by setting Ǒ�
d D 0) of

E�

�
E".kXˇ � X Ǒ�

d k2
2/

� � kXˇk2
2 (7)

for most values of d < p. By improving the bound, it is also possible to point out
the similarities between ridge regression and compressed least squares.

The improvement in the bound rests on a small modification in the original proof
in [10]. The idea is to bound the bias term of (4) by optimizing over the upper bound
given in the foregoing theorem. Specifically, one can use the inequality

E�ŒE"ŒkXˇ � X�.�0X0X�/�1�0X0Xˇk2
2��

� min
Ǒ2Rp

E�ŒE"ŒkXˇ � X��0 Ǒk2
2��;

instead of

E�ŒE"ŒkXˇ � X�.�0X0X�/�1�0X0Xˇk2
2��

� E�ŒE"ŒkXˇ � X��0ˇk2
2��:

To simplify the exposition we will from now on always assume we have rotated the
design matrix to an orthogonal design so that the Gram matrix is diagonal:

˙ D X0X D diag.�1; : : :; �p/: (8)

This can always be achieved for any design matrix and is thus not a restriction.
It implies, however, that the optimal regression coefficients ˇ are expressed in
the basis in which the Gram matrix is orthogonal, this is the basis of principal
components. This will turn out to be the natural choice for random projections and
allows for easier interpretation of the results.

Furthermore note that in Theorem 1 we have the assumption Rank.X/ � d,
which tells us that we can apply the CLSE in the high dimensional setting p � n as
long as we choose d small enough (smaller than Rank.X/, which is usually equal to
n) in order to have uniqueness.



56 G.-A. Thanei et al.

With the foregoing discussion on how to improve the bound in Theorem 1 we get
the following theorem:

Theorem 2 Assume Rank.X/ � d, then the MSE (4) can be bounded above by

E�ŒE"ŒkXˇ � X Ǒ�
d k2

2�� � �2d C
pX

iD1

ˇ2
i �iwi (9)

where

wi D .1 C 1=d/�2
i C .1 C 2=d/�i trace.˙/ C trace.˙/2=d

.d C 2 C 1=d/�2
i C 2.1 C 1=d/�i trace.˙/ C trace.˙/2=d

: (10)

Proof See Appendix.

The wi are shrinkage factors. By defining the proportion of the total variance
observed in the direction of the ith principal component as

˛i D �i

trace.˙/
; (11)

we can rewrite the shrinkage factors in the foregoing theorem as

wi D .1 C 1=d/˛2
i C .1 C 2=d/˛i C 1=d

.d C 2 C 1=d/˛2
i C 2.1 C 1=d/˛i C 1=d

: (12)

Analyzing this term shows that the shrinkage is stronger in directions of high
variance compared to directions of low variance. To explain this relation in a bit
more detail we compare it to ridge regression. The MSE of ridge regression with
penalty term �kˇk2

2 is given by

E"ŒkXˇ � XˇRidgek2
2� D �2

pX

iD1

� �i

�i C �

�2 C
pX

iD1

ˇ2
i �i

� �

� C �i

�2

: (13)

Imagine that the signal lives on the space spanned by the first q principal directions,
that is ˇi D 0 for i > q. The best MSE we could then achieve is �2q by running
a regression on the first q first principal directions. For random projections, we can
see that we can indeed reduce the bias term to nearly zero by forcing wi � 0 for
i D 1; : : : ; q. This requires d � q as the bias factors will then vanish like 1=d. Ridge
regression, on the other hand, requires that the penalty � is smaller than the qth
largest eigenvalue �q (to reduce the bias on the first q directions) but large enough
to render the variance factor �i=.�i C �/ very small for i > q. The tradeoff in
choosing the penalty � in ridge regression and choosing the dimension d for random
projections is thus very similar. The number of directions for which the eigenvalue
�i is larger than the penalty � in ridge corresponds to the effective dimension and
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will yield the same variance bound as in random projections. The analogy between
the MSE bounds (9) for random projections and (13) for ridge regression illustrates
thus a close relationship between compressed least squares and ridge regression or
principal component regression, similar to Dhillon et al. [6].

Instead of an upper bound for the MSE of CLSE as in [10, 13], we will in the
following try to derive explicit expressions for the MSE, following the ideas in [10,
14] and we give a closed form MSE in the case of orthonormal predictors. The
derivation will make use of the following notation:

Definition 1 Let � 2 R
p�d be a random projection. We define the following

matrices:

�Xd D�.�0X0X�/�1�0 2 R
p�p and T�d D E�Œ�Xd � D E�Œ�.�0X0X�/�1�0� 2 R

p�p:

The next Lemma [14] summarizes the main properties of �X
d and T�d .

Lemma 1 Let � 2 R
p�d be a random projection. Then

.i/ .�X
d /0 D �X

d (symmetric),
.ii/ �X

dX
0X�X

d D �X
d (projection),

.iii/ if ˙ D X0X is diagonal ) T�d is diagonal.

Proof See Marzetta et al. [14].

The important point of this lemma is that when we assume orthogonal design then
T�d is diagonal. We will denote this by

T�d D diag.1=�1; : : :; 1=�p/;

where the terms �i are well defined but without an explicit representation.
A quick calculation reveals the following theorem:

Theorem 3 Assume Rank.X/ � d, then the MSE (4) equals

E�ŒE"ŒkXˇ � X Ǒ�
d k2

2�� D �2d C
pX

iD1

ˇ2
i �i

�
1 � �i

�i

�
: (14)

Furthermore we have

pX

iD1

�i

�i
D d: (15)

Proof See Appendix.
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Fig. 1 Numerical simulations of the bounds in Theorems 2 and 3. Left: the exact factor .1��1=�1/

in the MSE is plotted versus the bound w1 as a function of the projection dimension d. Right: the
exact factor .1 � �p=�p/ in the MSE and the upper bound wp. Note that the upper bound works
especially well for small values of d and for the larger eigenvalues and is always below the trivial
bound 1

By comparing coefficients in Theorems 2 and 3, we obtain the following corollary,
which is illustrated in Fig 1:

Corollary 1 Assume Rank.X/ � d, then

8i 2 f1; : : :; pg W 1 � �i

�i
� wi (16)

As already mentioned in general we cannot give a closed form expression for the
terms �i in general. However, for some special cases (26) can help us to get to an
exact form of the MSE of CLSE. If we assume orthonormal design (˙ D CIp�p),
then we have that �i=�i is a constant for all i and and thus, by (26), we have �i D
Cp=d. This gives

E�ŒE"ŒkXˇ � X Ǒ�
d k2

2�� D �2d C C
pX

iD1

ˇ2
i

�
1 � d

p

�
; (17)

and thus we end up with a closed form MSE for this special case.
Providing the exact mean-squared errors allows us to quantify the conserva-

tiveness of the upper bounds. The upper bound has been shown to give a good
approximation for small dimensions d of the projection and for the signal contained
in the larger eigenvalues.
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3 Averaged Compressed Least Squares

We have so far looked only into compressed least-squares estimator with one
single random projection. An issue in practice of the compressed least-squares
estimator is its variance due to the random projection as an additional source of
randomness. This variance can be reduced by averaging multiple compressed least-
squares estimates coming from different random projections. In this section we will
show some properties of the averaged compressed least-squares estimator (ACLSE)
and discuss its advantage over the CLSE.

Definition 2 (ACLSE) Let f�1; : : :;�Kg 2 R
p�d be independent random projec-

tions, and let Ǒ�i
d for all i 2 f1; : : :;Kg be the respective compressed least-squares

estimators. We define the averaged compressed least-squares estimator (ACLSE) as

ǑK
d WD 1

K

KX

iD1

Ǒ�i
d : (18)

One major advantage of this estimator is that it can be calculated in parallel with the
minimal number of two communications, one to send the data and one to receive the
result. This means that the asymptotic computational cost of ǑK

d is equal to the cost
of Ǒ�

d if calculations are done on K different processors. To investigate the MSE of
ǑK
d , we restrict ourselves for simplicity to the limit case

Ǒ
d D lim

K!1
ǑK
d (19)

and instead only investigate Ǒ
d. The reasoning being that for large enough values of

K (say K > 100) the behaviour of Ǒ
d is very similar to ǑK

d . The exact form of the
MSE in terms of the �i’s is given in [10]. Here we build on these results and give an
explicit upper bound for the MSE.

Theorem 4 Assume Rank.X/ � d. Define

� D
pX

iD1

��i

�i

�2

:

The MSE of Ǒ
d can be bounded from above by

E�ŒE"ŒkXˇ � X Ǒ
dk2

2�� � �2� C
pX

iD1

ˇ2
i �iw

2
i ;
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where the wi’s are given (as in Theorem 1) by

wi D .1 C 1=d/�2
i C .1 C 2=d/�i trace.˙/ C trace.˙/2=d

.d C 2 C 1=d/�2
i C 2.1 C 1=d/�i trace.˙/ C trace.˙/2=d

:

and

� 2 Œd2=p; d�:

Proof See Appendix.

Comparing averaging to the case where we only have one single estimator we see
that there are two differences: First the variance due to the model noise " turns into
�2� with � 2 Œd2=p; d�, thus � � d. Second the shrinkage factors wi in the bias are
now squared, which in total means that the MSE of Ǒ

d is always smaller or equal to
the MSE of a single estimator Ǒ�

d .
We investigate the behaviour of � as a function of d in three different situations

(Fig. 2). We first look at two extreme cases of covariance matrices for which the
respective upper and lower bounds Œd2=p; d� for � are achieved. For the lower bound,
let ˙ D Ip�p be orthonormal. Then �i=�i D c for all i, as above. From

pX

iD1

�i=�i D d

we get �i=�i D d=p. This leads to

� D
pX

iD1

.�i=�i/
2 D p

d2

p2
D d2

p
;

which reproduces the lower bound.
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Fig. 2 MSE of averaged compressed least squares (circle) versus the MSE of the single estimator
(cross) with covariance matrix ˙i;i D 1=i. On the left with �2 D 0 (only bias), in the middle
�2 D 1=40 and on the right �2 D 1=20. One can clearly see the quadratic improvement in terms
of MSE as predicted by Theorem 4
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We will not be able to reproduce the upper bound exactly for all d � p. But
we can show that for any d there exists a covariance matrix ˙ , such that the upper
bound is reached. The idea is to consider a covariancematrix that has equal variance
in the first d direction and almost zero in the remaining p � d. Define the diagonal
covariance matrix

˙i;j D

8
ˆ̂
<

ˆ̂
:

1; if i D j and i � d

	; if i D j and i > d

0; if i ¤ j

: (20)

We show lim	!0 � D d. For this decompose ˚ into two matrices ˚d 2 R
d�d and

˚r 2 R
. p�d/�d:

˚ D
�

˚d

˚r

�
:

The same way we define ˇd, ˇr, Xd and Xr. Now we bound the approximation error
of Ǒ˚

d to extract information about �i=�i. Assume a squared data matrix (n D p)
X D p

˙ , then

E˚ Œargmin
�2Rd

kXˇ � X˚�k2
2� � E˚ ŒkXˇ � X˚˚�1

d ˇdk2
2�

D E˚ ŒkXrˇr � Xr˚r˚
�1
d ˇdk2

2�

D 	E˚ Œkˇr � ˚r˚
�1
d ˇdk2

2�

� 	.2kˇrk2
2 C 2kˇdk2

2E˚ Œk˚rk2
2�E˚ Œk˚�1

d k2
2�/

� 	C;

where C is independent of 	 and bounded since the expectation of the smallest
and largest singular values of a random projection is bounded. This means that the
approximation error decreases to zero as we let 	 ! 0. Applying this to the closed
form for the MSE of Ǒ˚

d we have that

pX

iD1

ˇ2
i �i

�
1 � �i

�i

�
�

dX

iD1

ˇ2
i

�
1 � �i

�i

�
C 	

pX

iDdC1

ˇ2
i

�
1 � �i

�i

�

has to go to zero as 	 ! 0, which in turn implies

lim
	!0

dX

iD1

ˇ2
i

�
1 � �i

�i

�
D 0;
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Fig. 3 Simulations of the variance factor � (line) as a function of d for three different covariance
matrices and in lower bound (d2=p) and upper bound (d) (square, triangle). On the left (˙ D Ip�p)
� as proven reaches the lower bound. In the middle (˙i;i D 1=i) � reaches almost the lower
bound, indicating that in most practical examples � will be very close to the lower bound and thus
averaging improves MSE substantially compared to the single estimator. On the right the extreme
case example from (20) with d D 5, where � reaches the upper bound for d D 5

and thus lim	!0 �i=�i D 1 for all i 2 f1; : : :; dg. This finally yields a limit

lim
	!0

pX

iD1

�2
i

�2
i

D d:

This illustrates that the lower bound d2=p and upper bound d for the variance
factor � can both be attained. Simulations suggest that � is usually close to the
lower bound, where the variance of the estimator is reduced by a factor d=p
compared to a single iteration of a compressed least-squares estimator, which is
on top of the reduction in the bias error term. This shows, perhaps unsurprisingly,
that averaging over random projection estimators improves the mean-squared error
in a Rao–Blackwellization sense. We have quantified the improvement. In practice,
one would have to decide whether to run multiple versions of a compressed least-
squares regression in parallel or run a single random projection with a perhaps larger
embedding dimension. The computational effort and statistical error tradeoffs will
depend on the implementation but the bounds above will give a good basis for a
decision (Fig. 3).

4 Discussion

We discussed some known results about the properties of compressed least-squares
estimation and proposed possible tighter bounds and exact results for the mean-
squared error. While the exact results do not have an explicit representation, they
allow nevertheless to quantify the conservative nature of the upper bounds on
the error. Moreover, the shown results allow to show a strong similarity of the
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error of compressed least squares, ridge and principal component regression. We
also discussed the advantages of a form of Rao–Blackwellization, where multiple
compressed least-square estimators are averaged over multiple random projections.
The latter averaging procedure also allows to compute the estimator trivially in a
distributed way and is thus often better suited for large-scale regression analysis.
The averaging methodology also motivates the use of compressed least squares
in the high dimensional setting where it performs similar to ridge regression and
the use of multiple random projection will reduce the variance and result in a
non-random estimator in the limit, which presents a computationally attractive
alternative to ridge regression.

Appendix

In this section we give proofs of the statements from the section theoretical results.

Theorem 1 ([10]) Assume fixed design and Rank.X/ � d, then the AMSE 4 can be
bounded above by

E�ŒE"ŒkXˇ � X Ǒ�
d k2

2�� � �2d C kXˇk2
2

d
C trace.X0X/

kˇk2
2

d
: (21)

Proof (Sketch)

E�ŒE"ŒkXˇ � X Ǒ�
d k2

2�� D E�ŒkXˇ � X�.�0X0X�/�1�0X0Xˇk2
2� C �2d

� E�ŒkXˇ � X�.�0X0X�/�1�0X0X��0ˇk2
2� C �2d

D E�ŒkXˇ � X��0ˇk2
2� C �2d:

Finally a rather lengthy but straightforward calculation leads to

E�ŒkXˇ � X��0ˇk2
2� D kXˇk2

2

d
C trace.X0X/

kˇk2
2

d
(22)

and thus proving the statement above. ut
Theorem 2 Assume Rank.X/ � d, then the AMSE (4) can be bounded above by

E�ŒE"ŒkXˇ � X Ǒ�
d k2

2�� � �2d C
pX

iD1

ˇ2
i �iwi (23)
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where

wi D .1 C 1=d/�2
i C .1 C 2=d/�i trace.˙/ C trace.˙/2=d

.d C 2 C 1=d/�2
i C 2.1 C 1=d/�i trace.˙/ C trace.˙/2=d

: (24)

Proof We have for all v 2 R
p

E�Œmin
O�2Rd

kXˇ � X� O�k2
2� � E�ŒkXˇ � X��0vk2

2�:

Which we can minimize over the whole set Rp:

E�Œmin
O�2Rd

kXˇ � X� O�k2
2� � min

v2Rp
E�ŒkXˇ � X��0vk2

2�:

This last expression we can calculate following the same path as in Theorem 1:

E�ŒkXˇ � X��0vk2
2� Dˇ0X0Xˇ � 2ˇ0X0XE�Œ��0�v

C v0
E�Œ��0X0X��0�v

Dˇ0X0Xˇ � 2ˇ0X0Xv

C .1 C 1=d/v0X0Xv C trace.˙/

d
kvk2

2;

where ˙ D X0X. Next we minimize the above expression w.r.t v. For this we take
the derivative w.r.t. v and then we zero the whole expression. This yields

2
�
1 C 1

d

�
˙v C 2

trace.˙/

d
Ip�pv � 2˙ˇ D 0:

Hence we have

v D
��

1 C 1

d

�
˙ C trace.˙/

d
Ip�p

��1

˙ˇ;

which is element wise equal to

vi D ˇi�i

.1 C 1=d/�i C trace.˙/=d
:

Define the notation s D trace.˙/. We now plug this back into the original
expression and get

min
v2Rp

E�ŒkXˇ � X��0vk2
2� Dˇ0˙ˇ � 2ˇ0˙v

C .1 C 1=d/v0˙v C s

d
kvk2

2
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D
pX

iD1

ˇ2
i �i � 2ˇivi�i C .1 C 1=d/v2

i �i C s=dv2
i

D
pX

iD1

�
ˇ2
i �i � 2ˇ2

i �i
�i

.1 C 1=d/�i C s=d

C ˇ2
i �i.1 C 1=d/

�2
i

..1 C 1=d/�i C s=d/2

C ˇ2
i �i

s

d

�i

..1 C 1=d/�i C s=d/2

�

D
pX

iD1

ˇ2
i �iwi;

by combining the summands we get forwi the expression mentioned in the theorem.
ut

Theorem 3 Assume Rank.X/ � d, then the MSE (4) equals

E�ŒE"ŒkXˇ � X Ǒ�
d k2

2�� D �2d C
pX

iD1

ˇ2
i �i

�
1 � �i

�i

�
: (25)

Furthermore we have

pX

iD1

�i

�i
D d: (26)

Proof Calculating the expectation yields

E�ŒE"ŒkXˇ � X Ǒ
dk2

2�� D ˇ0˙ˇ � 2ˇ0˙T�
d ˙ˇ C E�ŒE"ŒY

0X�X
d X

0Y��:

Going through these terms we get:

ˇ0˙ˇ D
pX

iD1

ˇ2
i �i

ˇ0˙T�
d ˙ˇ D

pX

iD1

ˇ2
i

�2
i

�i

E�ŒE"ŒY
0X�X

d X
0Y�� D ˇ0˙E�Œ�X

d �˙ˇ C E�ŒE"Œ"
0X�X

d X
0"��:
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The first term in the last line equals
Pp

iD1 ˇ2
i �2

i =�i. The second can be calculated in
two ways, both relying on the shuffling property of the trace operator:

E�ŒE"Œ"
0X�X

d X
0"�� D E"Œ"

0XTX
d X

0"�� D �2 trace.XTX
d X

0/

D �2 trace.˙TX
d / D

pX

iD1

�i

�i
:

E�ŒE"Œ"
0X�X

d X
0"�� D �2

E�Œtrace.X�X
d X

0/� D �2
E�Œtrace.˙�X

d /�

D �2
E�Œtrace.Id�d/� D �2d:

Adding the first version to the expectation from above we get the exact expected
mean-squared error. Setting both versions equal we get the equation

d D
pX

iD1

�i

�i
:

ut
Theorem 4 Assume Rank.X/ � d, then there exists a real number � 2 Œd2=p; d�

such that the AMSE of Ǒ
d can be bounded from above by

E�ŒE"ŒkXˇ � X Ǒ
dk2

2�� � �2� C
pX

iD1

ˇ2
i �iw

2
i ;

where the wi’s are given as

wi D .1 C 1=d/�2
i C .1 C 2=d/�i trace.˙/ C trace.˙/2=d

.d C 2 C 1=d/�2
i C 2.1 C 1=d/�i trace.˙/ C trace.˙/2=d

and

� 2 Œd2=p; d�:

Proof First a simple calculation [10] using the closed form solution gives the
following equation:

E�ŒE"ŒkXˇ � X Ǒ
dk2

2�� D �2

pX

iD1

��i

�i

�2 C
pX

iD1

ˇ2
i �i

�
1 � �i

�i

�2

: (27)



Random Projections for Large-Scale Regression 67

Now using the corollary from the last section we can bound the second term by the
following way:

�
1 � �i

�i

�2 � w2
i : (28)

For the first term we write

� D
pX

iD1

��i

�i

�2

: (29)

Now note that since �i=�i � 1 we have

��i

�i

�2 � �i

�i
(30)

and thus we get the upper bound by

pX

iD1

��i

�i

�2 �
pX

iD1

�i

�i
D d: (31)

For the lower bound of � we consider an optimization problem. Denote ti D �i
�i
, then

we want to find t 2 R
p such that

pX

iD1

t2i is minimal

under the restrictions that

pX

iD1

ti D d and 0 � ti � 1:

The problem is symmetric in each coordinate and thus ti D c. Plugging this into
the linear sum gives c D d=p and we calculate the quadratic term to give the result
claimed in the theorem. ut
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