
PHM: Mining Periodic High-Utility Itemsets

Philippe Fournier-Viger1(B), Jerry Chun-Wei Lin2, Quang-Huy Duong3,
and Thu-Lan Dam3,4

1 School of Natural Sciences and Humanities,
Harbin Institute of Technology Shenzhen Graduate School, Shenzhen, China

philfv@hitsz.edu.cn
2 School of Computer Science and Technology,

Harbin Institute of Technology Shenzhen Graduate School, Shenzhen, China
jerrylin@ieee.org

3 College of Computer Science and Electronic Engineering,
Hunan University, Changsha, China

huydqyb@gmail.com
4 Faculty of Information Technology, Hanoi University of Industry,

Hanoi, Vietnam
lanfict@gmail.com

Abstract. High-utility itemset mining is the task of discovering high-
utility itemsets, i.e. sets of items that yield a high profit in a customer
transaction database. High-utility itemsets are useful, as they provide
information about profitable sets of items bought by customers to retail
store managers, which can then use this information to take strategic
marketing decisions. An inherent limitation of traditional high-utility
itemset mining algorithms is that they are inappropriate to discover
recurring customer purchase behavior, although such behavior is common
in real-life situations (for example, a customer may buy some products
every day, week or month). In this paper, we address this limitation by
proposing the task of periodic high-utility itemset mining. The goal is
to discover groups of items that are periodically bought by customers
and generate a high profit. An efficient algorithm named PHM (Peri-
odic High-utility itemset Miner) is proposed to efficiently enumerate all
periodic high-utility itemsets. Experimental results show that the PHM
algorithm is efficient, and can filter a huge number of non periodic pat-
terns to reveal only the desired periodic high-utility itemsets.

Keywords: High-utility itemset · Periodic itemset · Average periodicity

1 Introduction

High-utility itemset mining (HUIM) [4,7,10–12,15] is a popular data mining
task. It has attracted a lot of attention in recent years. It extends the traditional
problem of Frequent Itemset Mining (FIM) [1]. This latter consists of discov-
ering frequent itemsets, i.e. groups of items (itemsets) appearing frequently in
a transaction database [1]. FIM has many applications. However, an important
c© Springer International Publishing Switzerland 2016
P. Perner (Ed.): ICDM 2016, LNAI 9728, pp. 64–79, 2016.
DOI: 10.1007/978-3-319-41561-1 6



PHM: Mining Periodic High-Utility Itemsets 65

limitation of FIM is that it assumes that each item cannot appear more than once
in each transaction and that all items have the same importance (e.g. weight,
unit profit or value). High-Utility Itemset Mining (HUIM) addresses this issue
by considering that each item may have non binary purchase quantities in trans-
actions and that each item has a weight (e.g. unit profit). The goal of HUIM is to
discover itemsets having a high utility (e.g. yielding a high profit) in a transaction
database. Besides, market basket analysis, HUIM has several other applications
such as website click stream analysis, and biomedical applications [11,15]. Mining
high-utility itemsets is widely recognized as more challenging than FIM because
the utility measure used in HUIM is not anti-monotonic, i.e. a high utility itemset
may have supersets or subsets having lower, equal or higher utilities [4]. Thus,
techniques for reducing the search space in FIM cannot be directly reused in
HUIM. Though several algorithms have been proposed for HUIM [4,7,10–12,15],
an inherent limitation of these algorithms is that they are inappropriate to dis-
cover recurring customer purchase behavior, although such behavior is common
in real-life situations. For example, in a retail store, some customers may buy
some set of products on approximately a daily or weekly basis. Detecting these
purchase patterns is useful to better understand the behavior of customers and
thus adapt marketing strategies, for example by offering specific promotions to
cross-promote products such as reward or points to customers who are buying a
set of products periodically. In the field of FIM, algorithms have been proposed to
discover periodic frequent patterns (PFP) [2,3,8,9,13,14] in a transaction data-
base. However, these algorithms are inadequate to find periodic patterns that
yield a high profit, as they only select patterns based on their frequency. Hence,
these algorithms may find a huge amount of periodic patterns that generate a
low profit and miss many rare periodic patterns that yield a high profit.

To address this limitation of previous work, this paper proposes the task of
periodic high-utility itemset mining. The goal is to efficiently discover all groups
of items that are bought together periodically and generate a high profit, in
a customer transaction database. The contributions of this paper are fourfold.
First, the concept of periodic patterns used in FIM is combined with the concept
of HUIs to define a new type of patterns named periodic high-utility itemsets
(PHIs), and its properties are studied. Second, novel measures of a pattern’s
periodicity named average periodicity and minimum periodicity are introduced
to provide a flexible way of assessing the periodicity of patterns. Third, an effi-
cient algorithm named PHM (Periodic High-utility itemset Miner) is proposed
to efficiently discover the periodic high-utility itemsets. Fourth, an extensive
experimental evaluation is carried to compare the efficiency of PHM with the
state-of-the-art FHM algorithm for HUIM. Experimental results show that the
PHM algorithm is efficient, and can filter a huge number of non periodic patterns
to reveal only the desired itemsets. The rest of this paper is organized as follows.
Sections 2, 3, 4 and 5 respectively present preliminaries related to HUIM, related
work, the PHM algorithm, the experimental evaluation and the conclusion.



66 P. Fournier-Viger et al.

2 Related Work

This section reviews related work in high-utility itemset mining and periodic
frequent pattern mining.

2.1 High-Utility Itemset Mining

Definition 1 (Transaction database). Let I be a set of items (symbols). A
transaction database is a set of transactions D = {T1, T2, ..., Tn} such that for
each transaction Tc, Tc ∈ I and Tc has a unique identifier c called its Tid. Each
item i ∈ I is associated with a positive number p(i), called its external utility
(e.g. unit profit). For each transaction Tc such that i ∈ Tc, a positive number
q(i, Tc) is called the internal utility of i (e.g. purchase quantity).

Example 1. Consider the database of Table 1, which will be used as running
example. This database contains seven transactions (T1, T2...T7). Transaction T3

indicates that items a, b, c, d, and e appear in this transaction with an internal
utility of respectively 1, 5, 1, 3 and 1. Table 2 indicates that the external utility
of these items are respectively 5, 2, 1, 2 and 3.

Table 1. A transaction database

TID Transaction

T1 (a, 1), (c, 1),

T2 (e, 1)

T3 (a, 1), (b, 5), (c, 1), (d, 3), (e, 1)

T4 (b, 4), (c, 3), (d, 3), (e, 1)

T5 (a, 1), (c, 1), (d, 1)

T6 (a, 2), (c, 6), (e, 2)

T7 (b, 2), (c, 2), (e, 1)

Table 2. External utility values

Item a b c d e

Unit profit 5 2 1 2 3

Definition 2 (Utility of an item/itemset). The utility of an item i in a
transaction Tc is denoted as u(i, Tc) and defined as p(i) × q(i, Tc). The utility
of an itemset X (a group of items X ⊆ I) in a transaction Tc is denoted as
u(X,Tc) and defined as u(X,Tc) =

∑
i∈X u(i, Tc). The utility of an itemset X

(in a database) is denoted as u(X) and defined as u(X) =
∑

Tc∈g(X) u(X,Tc),
where g(X) is the set of transactions containing X.

Example 2. The utility of item a in T6 is u(a, T6) = 5 × 2 = 10. The utility of
the itemset {a, c} in T6 is u({a, c}, T6) = u(a, T6)+u(c, T6) = 5×2+1×6 = 16.
The utility of the itemset {a, c} (in the database) is u({a, c}) = u(a) + u(c) =
u(a, T1)+u(a, T3)+u(a, T5)+u(a, T6)+u(c, T1)+u(c, T3)+u(c, T5)+u(c, T6) =
5 + 5 + 5 + 10 + 1 + 1 + 1 + 6 = 34.



PHM: Mining Periodic High-Utility Itemsets 67

Definition 3 (High-utility itemset mining). The problem of high-utility
itemset mining is to discover all high-utility itemsets [4,7,10–12,15]. An itemset
X is a high-utility itemset if its utility u(X) is no less than a user-specified
minimum utility threshold minutil given by the user.

Example 3. If minutil = 30, the complete set of HUIs is {a, c} : 34, {a, c, e} : 31,
{b, c, d} : 34, {b, c, d, e} : 40, {b, c, e} : 37, {b, d} : 30, {b, d, e} : 36, and {b, e} : 31,
where each HUI is annotated with its utility.

In HUIM, the utility measure is not monotonic or anti-monotonic [12,15], i.e., an
itemset may have a utility lower, equal or higher than the utility of its subsets.
Several HUIM algorithms circumvent this problem by overestimating the utility
of itemsets using the Transaction-Weighted Utilization (TWU) measure [12,15],
which is anti-monotonic, and defined as follows.

Definition 4 (Transaction weighted utilization). The transaction utility
(TU) of a transaction Tc is the sum of the utility of all the items in Tc.i.e.
TU(Tc) =

∑
x∈Tc

u(x, Tc). The transaction-weighted utilization (TWU) of an
itemset X is defined as the sum of the transaction utility of transactions con-
taining X, i.e. TWU(X) =

∑
Tc∈g(X) TU(Tc).

Example 4. The TUs of T1, T2, T3, T4, T5, T6 and T7 are respectively 6,3, 25, 20,
8, 22 and 9. The TWU of single items a, b, c, d, e are respectively 61, 54, 90, 53
and 79. TWU({c, d}) = TU(T3) + TU(T4) + TU(T5) = 25 + 20 + 8 = 53.

Theorem 1 (Pruning search space using the TWU). Let X be an itemset,
if TWU(X) < minutil, then X and its supersets are low utility. [12]

Algorithms such as Two-Phase [12], BAHUI [10], PB [7], and UPGrowth+ [15]
utilizes the above property to prune the search space. They operate in two phases.
In the first phase, they identify candidate high utility itemsets by calculating
their TWUs. In the second phase, they scan the database to calculate the exact
utility of all candidates found in the first phase to eliminate low utility itemsets.
Recently, an alternative algorithm called HUI-Miner [11] was proposed to mine
HUIs directly using a single phase. Then, a faster depth-first search algorithm
FHM [4] was proposed, which extends HUI-Miner. In FHM, each itemset is
associated with a structure named utility-list [4,11]. Utility-lists allow calculating
the utility of an itemset quickly by making join operations with utility-lists of
shorter patterns. Utility-lists are defined as follows.

Definition 5 (Utility-list). Let � be any total order on items from I. The
utility-listof an itemset X in a database D is a set of tuples such that there is a
tuple (tid, iutil, rutil) for each transaction Ttid containing X. The iutil element
of a tuple is the utility of X in Ttid. i.e., u(X,Ttid). The rutil element of a tuple
is defined as

∑
i∈Ttid∧i�x∀x∈X u(i, Ttid).

Example 5. Assume that � is the alphabetical order. The utility-list of {a} is
{(T1, 5, 1), T3, 5, 20), (T5, 5, 3), (T6, 10, 12)}. The utility-list of {d} is {(T3, 6, 3),
(T4, 6, 3), (T5, 2, 0)}. The utility-list of {a, d} is {(T3, 11, 3), (T5, 7, 0)}.



68 P. Fournier-Viger et al.

To discover HUIs, FHM performs a single database scan to create utility-lists
of patterns containing single items. Then, longer patterns are obtained by per-
forming the join operation of utility-lists of shorter patterns. The join opera-
tion for single items is performed as follows. Consider two items x, y such that
x � y, and their utility-lists ul({x}) and ul({y}). The utility-list of {x, y} is
obtained by creating a tuple (ex.tid, ex.iutil + ey.iutil, ey.rutil) for each pair
of tuples ex ∈ ul({x}) and ey ∈ ul({y}) such that ex.tid = ey.tid. The join
operation for two itemsets P ∪ {x} and P ∪ {y} such that x � y is per-
formed as follows. Let ul(P ), ul({x}) and ul({y}) be the utility-lists of P ,
{x} and {y}. The utility-list of P ∪ {x, y} is obtained by creating a tuple
(ex.tid, ex.iutil + ey.iutil − ep.iutil, ey.rutil) for each set of tuples ex ∈ ul({x}),
ey ∈ ul({y}), ep ∈ ul(P ) such that ex.tid = ey.tid = ep.tid. Calculating the
utility of an itemset using its utility-list and pruning the search space is done as
follows.

Property 1 (Calculating utility of an itemset using its utility-list). The utility
of an itemset is the sum of iutil values in its utility-list [11].

Theorem 2 (Pruning search space using utility-lists). Let X be an item-
set. Let the extensions of X be the itemsets that can be obtained by appending
an item y to X such that y � i, ∀i ∈ X. If the sum of iutil and rutil values in
ul(X) is less than minutil, X and its extensions are low utility [11].

FHM is very efficient. However, an important limitation of current HUIM
algorithms is that they are not designed for discovering periodic patterns.

2.2 Periodic Frequent Pattern Mining

In the field of FIM, algorithms have been proposed to discover periodical frequent
patterns (PFP) [2,3,8,9,13,14] in a transaction database. Discovering PFP has
applications in many domains such as web mining, bioinformatics, and market
basket analysis [14]. The concept of PFP is defined as follows [14].

Definition 6 (Periods of an itemset). Let there be a database D = {T1, T2,
..., Tn} containing n transactions, and an itemset X. The set of transactions
containing X is denoted as g(X) = {Tg1 , Tg2 ..., Tgk}, where 1 ≤ g1 < g2 <
... < gk ≤ n. Two transactions Tx ⊃ X and Ty ⊃ X are said to be consecutive
with respect to X if there does not exist a transaction Tw ∈ g(X) such that
x < w < y. The period of two consecutive transactions Tx and Ty in g(X) is
defined as pe(Tx, Ty) = (y − x), that is the number of transactions between
Tx and Ty. The periods of an itemset X is a list of periods defined as ps(X) =
{g1−g0, g2−g1, g3−g2, ...gk−gk−1, gk+1−gk}, where g0 and gk+1 are constants
defined as g0 = 0 and gk + 1 = n. Thus, ps(X) =

⋃
1≤z≤k+1 (gz − gz−1).

Example 6. For the itemset {a, c}, The list of transactions containing {a, c} is
g({a, c}) = {T1, T3, T5, T6}. Thus, the periods of this itemset are ps({a, c}) =
{1, 2, 2, 1, 1}.



PHM: Mining Periodic High-Utility Itemsets 69

Definition 7 (Periodic frequent pattern). The maximum periodicity of an
itemset X is defined as maxper(X) = max(ps(X)) [14]. An itemset X is a peri-
odic frequent pattern (PFP) if |g(X)| ≥ minsup and maxper(X) < maxPer,
where minsup and maxPer are user-defined thresholds [14].

The first algorithm for mining PFPs is PFP-Tree [14]. It utilizes a tree-based and
pattern-growth approach for discovering PFPs. Then, the MTKPP algorithm [2]
was proposed for discovering the k most frequent PFPs in a database, where k
is a user-specified parameter. MTKPP utilizes a vertical structure to maintain
information about itemsets in the database A variation of the PF-Tree algorithm
named the ITL-Tree was also introduced [3] to reduce the time for mining PFPs
by approximating the periodicity of itemsets. Another approximate algorithm for
PFP mining was recently proposed [9]. Other extensions of the PF-Tree algo-
rithm named MIS-PF-tree [8] and MaxCPF [13] were respectively proposed to
mine PFPs using multiple minsup thresholds, and multiple minsup and minper
thresholds. An important limitation of traditional algorithms for PFP mining is
that they are inadequate to find periodic patterns that yield a high profit, since
they only consider the support (frequency) of patterns. Hence, they may find
a huge amount of periodic patterns that yield a low profit and miss many rare
periodical patterns that yield a high profit.

3 The PHM Algorithm

To address the aforementioned limitation of HUI and PFP mining algorithms,
this section introduces the concept of periodic high-utility itemsets (PHUIs). The
first subsection present novel measures to assess the periodicity of HUIs, while
the second subsection presents and efficient algorithm named PHM (Periodic
High-Utility Itemset Miner) to discover PHUIs efficiently.

3.1 Measuring the Periodicity of High-Utility Patterns

A drawback of the maximum periodicity measure used by most PFP algorithms
is that an itemset is automatically discarded if it has a single period of length
greater than the maxPer threshold. Thus, this measure may be viewed as too
strict. To provide a more flexible way of evaluating the periodicity of patterns,
the concept of average periodicity is introduced in the proposed algorithm.

Definition 8 (Average periodicity of an itemset). The average periodicity
of an itemset X is defined as avgper(X) =

∑
g∈ps(X) /|ps(X)|.

Example 7. The periods of itemsets {a, c} and {e} are respectively ps({a, c}) =
{1, 2, 2, 1, 1} and ps({e}) = {2, 1, 1, 2, 1, 0}. The average periodicities of these
itemsets are respectively avgper({a, c}) = 1.4 and avgper({e}) = 1.16.

Lemma 1 (Relationship between average periodicity and support).
Let X be an itemset appearing in a database D. An alternative and equivalent
way of calculating the average periodicity of X is avgper(X) = |D|/(|g(X)|+1).



70 P. Fournier-Viger et al.

Proof. Let g(X) = {Tg1 , Tg2 , . . . , Tgk} be the set of transactions containing X,
such that g1 < g2 < . . . < gk. By definition, avgper(X) =

∑
g∈ps(X) /|ps(X)|.

To prove that the lemma holds, we need to show that
∑

g∈ps(X) /|ps(X)| =
|D|/(|g(X)| + 1).
(1) We first show that

∑
g∈ps(X) = |D|, as follows:

∑
g∈ps(X) = (g1 − g0) + (g2 − g1) + . . . (gk − gk−1) + (gk+1 − gk)}

=
∑

g∈ps(X) = g0 + (g1 − g1) + (g2 − g2) + . . . (gk − gk) + (gk+1)
= gk+1 − g0= |D|.
(2) We then show that |ps(X)| = |g(X)| + 1, as follows:
By definition, ps(X) =

⋃
1≤z≤k+1 (gz − gz−1). Thus, the set ps(X) contains k+1

elements. Since X appears in k transactions, sup(X) = k, and thus |ps(X)| =
|g(X)| + 1.
Since (1) and (2) holds, the lemma holds. 
�
The above lemma is important as it provides an efficient way of calculating the
average periodicity of itemsets in a database D. The term |D| can be calculated
once, and thereafter the average periodicity of any itemset X can be obtained
by only calculating |g(X)|+ 1, and then dividing |D| by the result. This is more
efficient than calculating the average periodicity using Definition 8. Besides, this
lemma is important as it shows that there is a relationship between the support
used in FIM and the average periodicity of a pattern. Although the average peri-
odicity is useful as it measures what is the typical period length of an itemset, it
should not be used as the sole measure for evaluating the periodicity of a pattern
because it does not consider whether an itemset has periods that vary widely or
not. For example, the itemset {b, d} has an average periodicity of 2.33. However,
this is misleading since this itemset only appears in transaction T3 and T4, and
its periods ps({T3, T4}) = {3, 1, 4} vary widely. Intuitively, this pattern should
not be a periodic pattern. To avoid finding patterns having periods that vary
widely, our solution is to combine the average periodicity measure with other
periodicity measure(s). The following measures are combined with the average
periodicity to achieve this goal. First, we define the minimum periodicity of an
itemset as minper(X) = min(ps(X)) to avoid discovering itemsets having some
very short periods. But this measure is not reliable since the first and last period
of an itemset are respectively equal to 1 or 0 if the itemset respectively appears
in the first or the last transaction of the database. For example, the last period
of itemset {e} is 0, because it appears in the last transaction (T7), and thus its
minimum periodicity is 0. Our solution to this issue is to exclude the first and last
periods of an itemset from the calculation of the minimum periodicity. Moreover,
if the set of periods is empty as a result of this exclusion, the minimum periodic-
ity is defined as ∞. In the rest of this paper, we consider this definition. Second,
we consider the maximum periodicity of an itemset maxper(X) as defined in
the previous section. The rationale for using this measure in combination with
the average periodicity is that it can avoid discovering periodical patterns that
do not occur for long periods of time. In terms of calculation costs, a reason for
choosing the minimum periodicity, maximum periodicity and average periodicity
as measure is that they can be calculated very efficiently for an itemset X by



PHM: Mining Periodic High-Utility Itemsets 71

scanning the list of transactions g(X) only once. That is, calculating these mea-
sures do not require to store the set of periods ps(X) in memory. Conversely,
other measures such as the standard deviation would require to calculate all
periods of an itemset beforehand. Thus, we define the concept of periodic high-
utility itemsets by considering the minimum periodicity, maximum periodicity
and average periodicity measures.

Definition 9 (Periodic high-utility itemsets). Let minutil, minAvg,
maxAvg, minPer and maxPer be positive numbers, provided by the user. An
itemset X is a periodic high-utility itemset if and only if minAvg ≤ avgper(X) ≤
maxAvg, minper(X) ≥ minPer, maxper(X) ≤ maxPer, and u(X) ≥ minutil.

Table 3. The set of PHUIs in the running example

Itemset u(X) |g(X)| Minper(X) Maxper(X) Avgper(X)

{b} 22 3 1 3 1.75

{b, e} 31 3 1 3 1.75

{b, c, e} 37 3 1 3 1.75

{b, c} 28 3 1 3 1.75

{a} 25 4 1 2 1.4

{a, c} 34 4 1 2 1.4

{c, e} 27 4 1 3 1.4

For example, if minutil = 20, minPer = 1, maxPer = 3, minAvg = 1, and
maxAvg = 2, the complete set of PHUIs is shown in Table 3. To develop an
efficient algorithm for mining PHUIs, it is important to design efficient pruning
strategies. To use the periodicity measures for pruning the search space, the
following theorems are presented.

Lemma 2 (Monotonicity of the average periodicity). Let X and Y be
itemsets such that X ⊂ Y . It follows that avgper(Y ) ≥ avgper(X).

Proof. The average periodicities of X and Y are respectively avgper(X) =
|D|/(|g(X)| + 1) and avgper(Y ) = |D|/(|g(Y )| + 1). Because X ⊂ Y , it fol-
lows that g(Y ) ⊆ g(X). Hence, avgper(Y ) ≥ avgper(X). 
�
Lemma 3 (Monotonicity of the minimum periodicity). Let X and Y be
itemsets such that X ⊂ Y . It follows that minper(Y ) ≥ minper(X).

Proof. Since X ⊂ Y , g(Y ) ⊆ g(X). If g(Y ) = g(X), then X and Y have the
same periods, and thus minper(Y ) = minper(X). If g(Y ) ⊂ g(X), then for
each transaction Tx ∈ g(X) \ g(Y ), the corresponding periods in ps(X) will
be replaced by a larger period in ps(Y ). Thus, any period in ps(Y ) cannot be
smaller than a period in ps(X). Hence, minper(Y ) ≥ minper(X). 
�



72 P. Fournier-Viger et al.

Lemma 4 (Monotonicity of the maximum periodicity). Let X and Y
be itemsets such that X ⊂ Y . It follows that maxper(Y ) ≥ maxper(X) [14].

Theorem 3 (Maximum periodicity pruning). Let X be an itemset
appearing in a database D. X and its supersets are not PHUIs if maxper(X) >
maxPer. Thus, if this condition is met, the search space consisting of X and all
its supersets can be discarded.

Proof. By definition, if maxper(X) > maxPer, X is not a PHUI. By Lemma 4,
supersets of X are also not PHUIs.

Theorem 4 (Average periodicity pruning). Let X be an itemset appear-
ing in a database D. X is not a PHUI as well as all of its supersets if
avgper(X) > maxAvg, or equivalently if |g(X)| < (|D|/maxAvg) − 1. Thus,
if this condition is met, the search space consisting of X and all its supersets
can be discarded.

Proof. By definition, if avgper(X) > maxAvg, X is not a PHUI. By Lemma 2,
supersets of X are also not PHUIs. The pruning condition avgper(X) > maxAvg
is rewritten as: |D|/(|g(X)|+1) > maxAvg. Thus, 1/(|g(X)|+1) > maxAvg/|D|,
which can be further rewritten as |g(X)| + 1 < |D|/maxAvg, and as |g(X)| <
(|D|/maxAvg) − 1. 
�

3.2 The Algorithm

The proposed PHM algorithm is a utility-list based algorithm, inspired by the
FHM algorithm [4], where the utility-list of each itemset X is annotated with
two additional values: minper(X) and maxper(X). The main procedure of PHM
(Algorithm 1) takes a transaction database as input, and the minutil, minAvg,
maxAvg, minPer and maxPer thresholds. The algorithm first scans the data-
base to calculate TWU({i}), minper({i}), maxper({i}), and |g({i})| for each
item i ∈ I. Then, the algorithm calculates the value γ = (|D|/maxAvg)−1 to be
later used for pruning itemsets using Theorem 4. Then, the algorithm identifies
the set I∗ of all items having a TWU no less than minutil, a maximum peri-
odicity no greater than maxPer, and appearing in no less than γ transactions
(other items are ignored since they cannot be part of a PHUI by Theorems 1,
3 and 4). The TWU values of items are then used to establish a total order �
on items, which is the order of ascending TWU values (as suggested in [11]). A
database scan is then performed. During this database scan, items in transac-
tions are reordered according to the total order �, the utility-list of each item
i ∈ I∗ is built and a structure named EUCS (Estimated Utility Co-Occurrence
Structure) is built [4]. This latter structure is defined as a set of triples of the
form (a, b, c) ∈ I∗ × I∗ × R. A triple (a,b,c) indicates that TWU({a, b}) = c.
The EUCS can be implemented as a triangular matrix (as shown in Fig. 1 for
the running example), or as a hash map of hash maps where only tuples of the
form (a, b, c) such that c �= 0 are kept. After the construction of the EUCS, the



PHM: Mining Periodic High-Utility Itemsets 73

Algorithm 1. The PHM algorithm
input : D: a transaction database,

minutil, minAvg, maxAvg, minPer and maxPer: the thresholds
output: the set of periodic high-utility itemsets

1 Scan D once to calculate TWU({i}), minper({i}), maxper({i}), and |g({i})|
for each item i ∈ I;

2 γ ← (|D|/maxAvg) − 1;
3 I∗ ← each item i such that TWU(i) ≥ minutil, |g({i})| ≥ γ and

maxper({i}) ≤ maxPer;
4 Let � be the total order of TWU ascending values on I∗;
5 Scan D to build the utility-list of each item i ∈ I∗ and build the EUCS

structure;
6 Search (∅, I∗, γ, minutil, minAvg, minPer, maxPer, EUCS, |D|);

Item a b c d
b 25
c 61 54
d 33 45 53
e 47 54 76 45

Fig. 1. The EUCS

Item a b c d
b 1
c 4 3
d 2 2 3
e 2 3 4 2

Fig. 2. The ESCS

depth-first search exploration of itemsets starts by calling the recursive proce-
dure Search with the empty itemset ∅, the set of single items I∗, γ, minutil,
minAvg, minPer, maxPer, the EUCS structure, and |D|.

The Search procedure (Algorithm 2) takes as input an itemset P , extensions
of P having the form Pz meaning that Pz was previously obtained by appending
an item z to P , γ, minutil, minAvg, minPer, maxPer, the EUCS, and |D|. The
search procedure performs a loop on each extension Px of P . In this loop, the
average periodicity of Px is obtained by dividing |D| by the number of elements
in the utility list of Px plus one (by Lemma 1). Then, if the average periodicity
of Px is in the [minAvg,maxAvg] interval, the sum of the iutil values of the
utility-list of Px is no less than minutil (cf. Property 1), the minimum/maximum
periodicity of Px is no less/not greater than minPer/maxPer according to
the values stored in its utility-list, then Px is a PHUI and it is output. Then,
if the sum of iutil and rutil values in the utility-list of Px are no less than
minutil, the number of elements in the utility list of Px is no less than γ,
and maxper(Px) is no greater than maxPer, it means that extensions of Px
should be explored (by Theorems 1, 3 and 4). This is performed by merging Px
with all extensions Py of P such that y � x to form extensions of the form
Pxy containing |Px| + 1 items. The utility-list of Pxy is then constructed by
calling the Construct procedure (cf. Algorithm 3), to join the utility-lists of P ,
Px and Py. This latter procedure is mainly the same as in HUI-Miner [11],
with the exception that periods are calculated during utility-list construction to



74 P. Fournier-Viger et al.

obtain maxPer(Pxy) and minPer(Pxy) (not shown). Then, a recursive call to
the Search procedure with Pxy is done to calculate its utility and explore its
extension(s). The Search procedure starts from single items, recursively explores
the search space of itemsets by appending single items, and only prunes the
search space using Theorems 1, 3 and 4. Thus, it can be easily seen that this
procedure is correct and complete to discover all PHUIs.

Algorithm 2. The Search procedure
input : P : an itemset, ExtensionsOfP: a set of extensions of P , γ, minutil,

minAvg, minPer, maxPer, the EUCS structure, |D|
output: the set of periodic high-utility itemsets

1 foreach itemset Px ∈ ExtensionsOfP do
2 avgperPx ← |D|/(|Px.utilitylist| + 1);
3 if SUM(Pxy.utilitylist.iutils) ≥ minutil∧

minAvg ≤ avgperPx ≤ maxAvg ∧ Px.utilitylist.minp ≥
minPer ∧ Px.utilitylist.maxp ≤ maxPer∧ then output Px;

4 if SUM(Px.utilitylist.iutils)+SUM(Px.utilitylist.rutils) ≥ minutil ∧
avgperPx ≥ γ and Px.utilitylist.maxp ≤ maxPer then

5 ExtensionsOfPx ← ∅;
6 foreach itemset Py ∈ ExtensionsOfP such that y � x do
7 if ∃(x, y, c) ∈ EUCS such that c ≥ minutil) then
8 Pxy ← Px ∪ Py;
9 Pxy.utilitylist ← Construct (P, Px, Py);

10 ExtensionsOfPx ← ExtensionsOfPx ∪ {Pxy};

11 end

12 end
13 Search (Px, ExtensionsOfPx, γ, minutil, minAvg, minPer, maxPer,

EUCS, |D|);
14 end

15 end

Furthermore, in the implementation of PHM, two additional optimizations
are included, which are briefly described next. Optimization 1. Estimated
Average Periodicity Pruning (EAPP). The PHM algorithm creates a struc-
ture called EUCS to store the TWU of all pairs of items occurring in the data-
base, and this structure is used to prune any itemset Pxy containing a pair
of items {x,y} having a TWU lower than minutil (Line 7 of the search proce-
dure). The strategy EAPP is a novel strategy that uses the same idea but prune
itemsets using the average periodicity instead of the utility. During the second
database scan, a novel structure called ESCS (Estimated Support Co-occurrence
Structure) is created to store |g({x, y})| for each pair of items {x,y} (as shown in
Fig. 2). Then, Line 7 of the search procedure is modified to prune itemset Pxy
if |g({x, y})| is less than γ by Theorem 4. Optimization 2. Abandoning List
Construction early (ALC). Another strategy introduced in PHM is to stop



PHM: Mining Periodic High-Utility Itemsets 75

Algorithm 3. The Construct procedure
input : P : an itemset, Px: the extension of P with an item x, Py: the

extension of P with an item y
output: the utility-list of Pxy

1 UtilityListOfPxy ← ∅;
2 foreach tuple ex ∈ Px.utilitylist do
3 if ∃ey ∈ Py.utilitylist and ex.tid = exy.tid then
4 if P.utilitylist �= ∅ then
5 Search element e ∈ P.utilitylist such that e.tid = ex.tid.;
6 exy ← (ex.tid, ex.iutil + ey.iutil − e.iutil, ey.rutil);

7 end
8 else
9 exy ← (ex.tid, ex.iutil + ey.iutil, ey.rutil);

10 end
11 periodexy ← calculatePeriod(exy.tid,UtilityListOfPxy);
12 UpdateMinPerMaxPer(UtilityListOfPxy, periodexy);
13 UtilityListOfPxy ← UtilityListOfPxy ∪ {exy};

14 end

15 end
16 return UtilityListPxy ;

constructing the utility-list of an itemset if a specific condition is met, indicating
that the itemset cannot be a PHUI. By Theorem 4, an itemset Pxy cannot be
a PHUI, if it appears in less than γ = (|D|/maxAvg) − 1 transactions. The
strategy ALC consists of modifying the Construct procedure (Algorithm 3) as
follows. The first modification is to initialize a variable max with the value γ in
Line 1. The second modification is to the following lines, where the utility-list
of Pxy is constructed by checking if each tuple in the utility-lists of Px appears
in the utility-list of Py (Line 3). For each tuple not appearing in Py, the vari-
able max is decremented by 1. If max is smaller than γ, the construction of the
utility-list of Pxy can be stopped because |g(Pxy)| will not be higher than γ.
Thus Pxy is not a PHUI by Theorem 4, and its extensions can also be ignored.

4 Experimental Study

We performed an experimental study to assess the performance of PHM. The
experiment was performed on a computer with a sixth generation 64 bit Core i5
processor running Windows 10, and equipped with 12 GB of free RAM. We com-
pared the performance of the proposed PHM algorithm with the state-of-the-art
FHM algorithm for mining HUIs. All memory measurements were done using
the Java API. The experiment was carried on four real-life datasets commonly
used in the HUIM litterature: retail, mushroom, chainstore and foodmart. These
datasets have varied characteristics and represents the main types of data typi-
cally encountered in real-life scenarios (dense, sparse and long transactions). Let



76 P. Fournier-Viger et al.

|I|, |D| and A represents the number of transactions, distinct items and average
transaction length of a dataset. retail is a sparse dataset with many different
items (|I| = 16,470, |D| = 88,162, A = 10,30). mushroom is a dense dataset with
long transactions (|I| = 119, |D| = 8,124, A = 23). chainstore is a dataset that
contains a huge number of transactions (|I| = 461, |D| = 1,112,949, A = 7.23).
foodmart is a sparse dataset (|I| = 1,559, |D| = 4,141, A = 4.4). The chainstore
and foodmart datasets are real-life customer transaction databases containing
real external and internal utility values. The retail and mushroom datasets con-
tains synthetic utility values, generated randomly [11,15]. In the experiment,
PHM was run on each dataset with fixed minper and minAvg values, while
varying the minutil threshold and the values of the maxAvg and maxper para-
meters. In these experiments, the values for the periodicity thresholds have been
found empirically for each dataset (as they are dataset specific), and were cho-
sen to show the trade-off between the number of periodic patterns found and
the execution time. Note that results for varying the minper and minAvg val-
ues are not shown because these parameters have less influence on the patterns
found than the other parameters. Thereafter, the notation PHM V-W-X-Y rep-
resents the PHM algorithm with minper = V , maxper = W , minAvg = X,
and maxAV G = Y . Figure 3 compares the execution times of PHM for various
parameter values and FHM. Figure 4, compares the number of PHUIs found by
PHM for various parameter values, and the number of HUIs found by FHM.

Fig. 3. Execution times

It can first be observed that mining PHUIs using PHM can be much faster
than mining HUIs. The reason for the excellent performance of PHM is that
it prunes a large part of the search space using its designed pruning strategies
based on the maximum and average periodicity measures. For all datasets, it can



PHM: Mining Periodic High-Utility Itemsets 77

Fig. 4. Number of patterns found

be found that a huge amount of HUIs are non periodic, and thus pruning non
periodic patterns leads to a massive performance improvement. For example,
for the lowest minutil, maxPer and maxAvg values on these datasets, PHM is
respectively up to 214, 127, 100 and 230 times faster than FHM. In general, the
more the periodicity thresholds are restrictive, the more the gap between the
runtime of FHM and PHM increases. A second observation is that the number
of PHUIs can be much less than the number of HUIs (see Fig. 4). For example,
on retail, 20,714 HUIs are found for minutil = 2, 000. But only 110 HUIs are
PHUIs for PHM 1-1000-5-500, and only 7 for PHM 1-250-5-150. Some of the
patterns found are quite interesting as they contain several items. For example,
it is found that items with product ids 32, 48 and 39 are periodically bought
with an average periodicity of 16.32, a minimum periodicity of 1, and a maximum
periodicity of 170. Huge reduction in the number of patterns are also observed on
the other datasets. These overall results show that the proposed PHM algorithm
is useful as it can filter a huge amount of non periodic HUIs encountered in real
datasets, and can run faster. Memory consumption was also compared, although
detailed results are not shown as a figure due to space limitations. It was observed
that PHM can use up to 10 times less memory than FHM depending on how
parameters are set. For example, on chainstore and minutil = 1, 000, 000, FHM
and PHM 1-5000-5-500 respectively consumes 1,631 MB and 159 MB of memory.

5 Conclusion

This paper explored the problem of mining periodic high-utility itemsets
(PHUIs). An efficient algorithm named PHM (Periodic High-utility itemset
Miner) was proposed to efficiently discover PHUIs using novel minimum and
average periodicity measures. An extensive experimental study with real-life



78 P. Fournier-Viger et al.

datasets has shown that PHM can be more than two orders of magnitude faster
than FHM, and discover more than two orders of magnitude less patterns by fil-
tering non periodic HUIs. The source code of the PHM algorithm and datasets
can be downloaded as part of the SPMF open source data mining library [5]
http://www.philippe-fournier-viger.com/spmf/.

For future work, we will consider designing alternative algorithms to mine
PHUIs. In particular, interesting possibilities are to integrate length constraints
in PHUI mining [6], and to use a database projection and merging approach
as proposed in the EFIM [17] algorithm for HUI mining. Lastly, more complex
types of patterns such as periodic sequential rules could also be explored [16].

References

1. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large
databases. In: Proceedings of the International Conference Very Large Databases,
pp. 487–499 (1994)

2. Amphawan, K., Lenca, P., Surarerks, A.: Mining top-k periodic-frequent pattern
from transactional databases without support threshold. In: Proceedings of the
3rd International Conference on Advances in Information Technology, pp. 18–29
(2009)

3. Amphawan, K., Surarerks, A., Lenca, P.: Mining periodic-frequent itemsets with
approximate periodicity using interval transaction-ids list tree. In: Proceeding of
the 2010 Third International Conference on Knowledge Discovery and Data Min-
ing, pp. 245–248 (2010)

4. Fournier-Viger, P., Wu, C.-W., Zida, S., Tseng, V.S.: FHM: faster high-utility
itemset mining using estimated utility co-occurrence pruning. In: Proceedings of
the 21st International Symposium on Methodologies for Intelligent Systems, pp.
83–92 (2014)

5. Fournier-Viger, P., Gomariz, A., Gueniche, T., Soltani, A., Wu, C., Tseng, V.S.:
SPMF: a Java open-source pattern mining library. J. Mach. Learn. Res. (JMLR)
15, 3389–3393 (2014)

6. Fournier-Viger, P., Lin, C.W., Duong, Q.-H., Dam, T.-L.: FHM+: faster high-
utility itemset mining using length upper-bound reduction. In: Proceedings of the
29th International Conference on Industrial, Engineering and Other Applications
of Applied Intelligent Systems, p. 12. Springer (2016)

7. Lan, G.C., Hong, T.P., Tseng, V.S.: An efficient projection-based indexing app-
roach for mining high utility itemsets. Knowl. Inform. Syst. 38(1), 85–107 (2014)

8. Kiran, R.U., Reddy, P.K.: Mining rare periodic-frequent patterns using multiple
minimum supports. In: Proceedings of the 15th International Conference on Man-
agement of Data (2009)

9. Kiran, R.U., Kitsuregawa, M., Reddy, P.K.: Efficient discovery of periodic-frequent
patterns in very large databases. J. Syst. Softw. 112, 110–121 (2015)

10. Song, W., Liu, Y., Li, J.: BAHUI: fast and memory efficient mining of high utility
itemsets based on bitmap. Int. J. Data Warehous. Min. 10(1), 1–15 (2014)

11. Liu, M., Qu, J.: Mining high utility itemsets without candidate generation. In: Pro-
ceedings of the 22nd ACM International Conference Information and Knowledge
Management, pp. 55–64 (2012)

http://www.philippe-fournier-viger.com/spmf/


PHM: Mining Periodic High-Utility Itemsets 79

12. Liu, Y., Liao, W., Choudhary, A.: A two-phase algorithm for fast discovery of high
utility itemsets. In: Proceedings of the 9th Pacific-Asia Conference on Knowledge
Discovery and Data Mining, pp. 689–695 (2005)

13. Surana, A., Kiran, R.U., Reddy, P.K.: An efficient approach to mine periodic-
frequent patterns in transactional databases. In: Proceedings of the 2011 Quality
Issues, Measures of Interestingness and Evaluation of Data Mining Models Work-
shop, pp. 254–266 (2012)

14. Tanbeer, S.K., Ahmed, C.F., Jeong, B.S., Lee, Y.K.: Discovering periodic-frequent
patterns in transactional databases. In: Proceedings of the 13th Pacific-Asia Con-
ference on Knowledge Discovery and Data Mining, pp. 242–253 (2009)

15. Tseng, V.S., Shie, B.-E., Wu, C.-W., Yu, P.S.: Efficient algorithms for mining
high utility itemsets from transactional databases. IEEE Trans. Knowl. Data Eng.
25(8), 1772–1786 (2013)

16. Zida, S., Fournier-Viger, P., Wu, C.-W., Lin, J.C.W., Tseng, V.S.: Efficient mining
of high utility sequential rules. In: Proceedings of the 11th International Conference
Machine Learning and Data Mining, pp. 1–15 (2015)

17. Zida, S., Fournier-Viger, P., Lin, J.C.-W., Wu, C.-W., Tseng, V.S.: EFIM: a highly
efficient algorithm for high-utility itemset mining. In: Proceedings of the 14th Mex-
ican International Conference on Artificial Intelligence, pp. 530–546


	PHM: Mining Periodic High-Utility Itemsets 
	1 Introduction
	2 Related Work
	2.1 High-Utility Itemset Mining
	2.2 Periodic Frequent Pattern Mining

	3 The PHM Algorithm
	3.1 Measuring the Periodicity of High-Utility Patterns
	3.2 The Algorithm

	4 Experimental Study
	5 Conclusion
	References


