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Abstract. For the past decades, many efforts have been made in the
fields of protein structure prediction. Among these, the protein backbone
reconstruction problem (PBRP) has attracted much attention. The goal
of PBRP is to reconstruct the 3D coordinates of all atoms along the
protein backbone for given a target protein sequence and its Cα coordi-
nates. In order to improve the prediction accuracy, we attempt to refine
the 3D coordinates of all backbone atoms by incorporating the state-
of-the-art prediction softwares and support vector regression (SVR). We
use the predicted coordinates of two excellent methods, PD2 and BBQ,
as our feature candidates. Accordingly, we define more than 100 possi-
ble features. By means of the correlation analysis, we can identify several
significant features deeply related to the prediction target. Then, a 5-fold
cross validation is carried out to perform the experiments, in which the
involved datasets range from CASP7 to CASP11. As the experimental
results show, our method yields about 8 % improvement in RMSD over
PD2, which is the most accurate predictor for the problem.

Keywords: Protein backbone · Bioinformatics · Three-dimensional
coordinates · Support vector regression · Prediction

1 Introduction

Proteins are required for growth and development in the human body. A protein,
called a polypeptide, is composed of a chain of amino acids. A series of amino acids
are linked together by peptide chains to form a protein backbone. An amino acid is
the fundamental unit of a protein. There are twenty kinds of standard amino acids
and each kind of amino acid can be differentiated by its R group. Each protein has
its own specific functions and unique structure which can cooperate with other
proteins to achieve some required functionalities. Because protein structure and
protein function are closely related, in order to find out these protein functions,
most biologists adopt the approaches that predict protein tertiary structures by
means of amino acid sequences or other related information.
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There are two main approach types of the protein structure prediction. The
first one is the experimental method, including X-ray diffraction and nuclear
magnetic resonance (NMR) [10,14]. The other one is the computational method,
including homology modeling [5], folding recognition [6], and ab initio [9]. As for
these two categories, the former one requires a lot of time and cost while the latter
one doesn’t. Therefore, this motivates us to adopt the computational method to
predict the 3D protein structure.

The all-atom protein backbone reconstruction problem (PBRP) is to utilize a
protein sequence and its 3D coordinates of α-carbon (Cα) for predicting the 3D
coordinates of all atoms (N, C and O atoms) on the protein backbone. There
are several related studies which fall into this category, such as SABBAC [11],
Wang’s method [17], Chang’s method [2], BBQ [4], Chen’s method [3], Wu’s
method [18], PD2 [12] and so on. For a complete survey on the methods (or
software) of the protein backbone prediction, one can refer to the thesis written
by Yuan [19].

In order to improve the accuracy of protein structure prediction, we propose
a new method to refine the 3D coordinates of all backbone atoms by means of
support vector regression (SVR) [15,16]. Our prediction target is the differences
of N and O atoms’ coordinates between the predicted results of PD2 and the
real 3D coordinates of PDB, and the differences of C atoms’ coordinates between
the predicted results of BBQ and the real 3D coordinates of PDB. Our training
features are generated from the predicted results of PD2 and BBQ.

The experimental datasets range from CASP7 to CASP11, where CASP
stands for the Critical Assessment of Protein Structure Prediction [13]. We per-
form a 5-fold cross validation experiment for performance evaluation. For each
fold of validation, a CASP dataset is extracted for testing and the remaining
CASP datasets are involved for training. Coordinates in the training datasets
are first predicted by PD2 and BBQ. Then these predicted coordinates are com-
pared with their real coordinates to produce the differences. The differences are
the learning objective for the SVR. In the feature selection stage, we analyze the
correlations between the objective value and available features, and then select
the most representative features. To ease the training process, we partition the
amino acids into twenty groups (twenty datasets) and then predict these dif-
ferences by each individual SVR. Finally, we combine our predicted differences,
their corresponding predicted N and O coordinates with PD2, and predicted
C coordinates with BBQ to export our predicted coordinates of N, C and O.
The performance is evaluated by the RMSD values. The experimental results
show that our prediction results yield about 8% improvement over the results
predicted by PD2, which is the most accurate predictor for the problem [19].

The rest of this paper is organized as follows. In Sect. 2, we will introduce
experimental datasets, root-mean-square deviation (RMSD) and features used in
this paper. In Sect. 3, we will describe our proposed method in detail. In Sect. 4,
we will present our experimental results. Finally, in Sect. 5, the conclusion will
be given.
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2 Preliminaries

2.1 Datasets and Performance Evaluation

Critical Assessment of Protein Structure Prediction (CASP) [13] is an interna-
tional competition held every two years since 1994. The main goal of CASP
is to evaluate the capabilities of the methods for identifying three-dimensional
structure of the protein from its amino acid sequence. In order to assess the
performance of a method, CASP examines the predicted 3D structures in many
different ways, such as the accuracy of a model, accuracy of a quaternary struc-
ture, and so on. Because our research also focuses on the 3D structure prediction,
we use CASP datasets to perform our experiments.

Root-mean-square deviation (RMSD) [7,8] is an evaluation method of molec-
ular modeling which computes the average distance between the predicted values
and the ground truths.

RMSD =

√
√
√
√1

l

l∑

i=1

(XA
i − XB

i )2, (1)

where XA
i and XB

i denote the coordinates of the ith atom on the backbone in
the proteins A and B, respectively, and l denotes the length of the proteins.
Generally, a lower RMSD indicates the higher similarity, which means that the
predicted coordinates is close to the real ones. RMSD has been widely used in
structural biology. In this paper, we also use RMSD to evaluate the quality of
the prediction models.

2.2 Feature Generation and Feature Selection

This subsection describes the features we use to build the SVR models. All
features are extracted within a fragment, as illustrated in Fig. 1. That is, once
the prediction target, like the C atom, is determined, we define a window around
this atom. We say this atom and its surrounding atoms constitute a fragment.
The features required by SVR are calculated as follows.

Fig. 1. The fragment of LC = 6 consecutive atoms on the protein backbone, where the
C atom is assigned to be the fragment center.
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Coordinate: The predicted x, y and z coordinates of N, C, O and Nnext

atoms are obtained from BBQ and PD2, denoted as Nx(BBQ), Ny(BBQ),
Cz(PD2), etc. The real coordinates of two Cαs are also involved as the fea-
tures. Thus, there are totally 30 features.

Coordinate difference: The coordinate differences are calculated from the
predicted x, y and z coordinates of N, C, O and Nnext atoms. Only the
difference of each corresponding pair of coordinates is computed, such as
Nx(PD2) − Nx(BBQ), Ny(PD2) − Ny(BBQ), etc. Thus, 12 features are
obtained.

Euclidean distance: The Euclidean distance measures the amount of space
between the two predicted positions, obtained from BBQ and PD2, of the
same atom on the Euclidean space. The formula for calculating Euclidean
distance is given as follows.

d(xpi
, xbi , ypi

, ybi , zpi
, zbi) =

√

(xpi
− xbi)

2 + (ypi
− ybi)

2 + (zpi
− zbi)

2 (2)

In Eq. 2, xpi
, ypi

, zpi
are the 3D coordinates of the ith atom on the protein

backbone predicted by PD2 and xbi , ybi , zbi are the 3D coordinates of the
ith atom on the protein backbone predicted by BBQ.

Bond length: Two adjacent atoms form a bond on the protein backbone. There
are five bond lengths in a fragment, including N-Cα, Cα-C, C=O, C-Nnext,
and Nnext-Cαnext

. The bond length is calculated in terms of the Euclidean
distance. Because bond lengths associated with BBQ and PD2 are calculated
separately, it follows that 10 features are obtained.

Bond length difference: Each bond length difference is derived by the two
corresponding bond lengths, predicted from the two methods.

Bond angle: Since three atoms form an angle, the bond angle can thus be
obtained by law of cosines. Consequently, for a fragment with LC = 6,
we can get five different angles, including N-Cα-C, Cα-C=O, Cα-C-Nnext,
O=C-Nnext, and C-Nnext-Cαnext

.
Bond angle difference: Each bond angle difference is calculated from the two

corresponding predicted bond angles of two methods.
Torsion angle: The torsion angle is computed by four consecutive atoms

on the main chain. In addition to φ(Cprev-N-Cα-C), ψ(N-Cα-C-N) and
ω(Cα-C-Nnext-Cαnext

), we also choose the other features in our fragment,
including N-Cα-C=O, O=C-Nnext-Cαnext

, Cα-C=O-Nnext, Cα-C-Nnext=O
(planes of Cα-C-Nnext and C -Nnext=O), Nnext-C-Cα=O and C-Nnext-
Cαnext

-Cnext. Since PD2 and BBQ are used for the computation of torsion
angles, 18 features are obtained.

Torsion angle difference: This feature is obtained from the torsion angles. We
compute the differences from the torsion angles obtained by PD2 and BBQ.

So far, we have defined nine kinds of features. Table 1 shows the feature
names and their sizes.

The above feature extraction method is performed around the C atom in a
fragment-by-fragment manner, as shown in Fig. 1. We assign the C atom as the
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Table 1. The names and sizes of all feature subsets.

Feature index Feature name Size

F1 Coordinate 30

F2 Coordinate difference 12

F3 Euclidean distance 4

F4 Bond length 10

F5 Bond length difference 5

F6 Bond angle 10

F7 Bond angle difference 5

F8 Torsion angle 18

F9 Torsion angle difference 9

Total 103

fragment center because this arrangement is most suitable for predicting both C
and O atoms. Nevertheless, one may wonder whether this is also suitable when
N atom is served as the prediction target. Therefore, we assign the N atom as
the fragment center and perform another experiment. The experimental results
(not shown in this paper) exhibit that the prediction accuracies of N atoms
with the C-center window and those with the N -center window only show little
difference. Thus, we still use the C-center window for predicting N atoms here.

Since the performance of models depends heavily on the selected features,
we have to consider which one is relevant to the coordinate prediction. In order
to identify important features, we calculate the Pearson’s correlation coefficient
between the objective value and each feature value. For a given feature, its
correlation coefficient with the objective variable is given in Eq. 3.

r =
∑n

i=1(xi − x̄)(yi − ȳ)
√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2)
, (3)

where n denotes the number of data elements, xi denotes the ith element of data
instances (x1, x2, . . . , xn), yi denotes the ith instance of the objective values
(y1, y2, . . . ,yn), x̄ and ȳ represent the means of x and y, respectively.

3 The Coordinate Difference Prediction Method

In order to improve the predicted results, we adopt SVR to predict the
x-difference, y-difference and z-difference of each of N, C and O atoms on the
backbone of a target protein. Then, these differences are combined with the pre-
dicted results of BBQ and PD2 to yield our predicted coordinates. Our coordi-
nate difference prediction procedure is described as follows.



Coordinate Refinement on All Atoms of the Protein Backbone 217

Algorithm: The Coordinate Difference Prediction Method.
Input: 1. One training set T , containing the predicted coordinates obtained

from PD2 and BBQ and the real coordinates in PDB.
2. One target protein, containing the predicted coordinates of PD2 and BBQ,
along with real Cα coordinates.

Output: The predicted coordinates of N, C and O atoms along the target protein
backbone.

Step 1 (Extract features): Partition the residues of all proteins in T into 20
groups, corresponding to 20 types of standard amino acids. Calculate the 103
feature values associated with each kind of residue, defined in the previous
section.

Step 2 (Perform correlation analysis): For each of the nine objective values
(Ox-difference, Oy-difference, Oz-difference, Nx-difference, etc.) in T , calcu-
late the Pearson’s correlation coefficient between each feature value and the
objective value. Since the p-value represents the confidence level associated
with its correlation coefficient, we thus can adopt a thresholding method to
identify significant features.

Step 3 (Predict the difference by SVR): For each kind of objective values
and amino acid groups, we use the selected features to train an SVR model.
Thus, 180 models (20 kinds of residues, 3 kinds of atoms, 3D coordinates)
are obtained. Then, these models are invoked to perform prediction of the
target protein based on the residue and atom types.

Step 4 (Combine the predicted difference with PD2/BBQ): Combine the
predicted differences with their corresponding predicted positions obtained
by BBQ and PD2 to generate the final coordinates.

Step 5 (Merge all residues together): Bring the predicted coordinates of
all residues together to reconstruct the 3D positions of all atoms (N, C and
O atoms) on the target protein backbone.

The flow chart is shown in Fig. 2.

4 Experimental Results

For evaluating the performance of our method, we adopt CASP7, CASP8,
CASP9, CASP10 and CASP11 as the experimental datasets, which contain 65,
52, 63, 39 and 55 proteins, respectively. We use only the information of chain A
of proteins to carry out the experiments. If there is no chain A, the next chain
is used. All features are scaled into the range of [a, b] = [−1, 1] by Eq. 4.

xi − xmin

xmax − xmin
(b − a) + a, (4)

where xi denotes the value of a certain feature of the ith training data element,
xmax is the maximum value in the feature, xmin is the minimum value, a and b
are the lower and upper bounds of the range, respectively.

In the 5-fold cross validation, each CASP is selected as the testing dataset for
one time. Once a CASP is determined for testing, the remaining CASPs serve
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Fig. 2. The flow chart for predicting the 3D structure of a protein.

as the training datasets. For example, if we select CASP7 as the testing dataset,
then the rest ones, from CASP8 to CASP11, are used as the training dataset.
The testing procedure is performed for each CASP dataset.

As mentioned in the previous section, in our algorithm, Step 1 generates the
feature candidates and Step 2 calculates correlation coefficients of these features
and the objective values. From the correlation analysis, we find that some of the
features are indeed significant.

Figure 3 shows the correlations of the 103 features and the Ox-differences
of all 20 amino acids obtained from CASP8 to CASP11. We count the number
of significances, which means that p-value (the complement of confidence level)
is less than 0.05. The value of 0.05 is a widely adopted standard cut-off. It
denotes that the test shows strong evidence against the null hypothesis that
no correlation between the objective value and the feature value. Note that
maximum count of significances is 20, because there are 20 types of amino acids.
Here, if one of the following criteria is satisfied, a feature is considered as a
significant one, and it is selected for training.
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Fig. 3. The correlations of 103 features and Ox-differences of 20 amino acids in the
training set consisting of CASP8 to CASP11. (Color figure online)

Fig. 4. The counts of significant occurrences in various features with respect to
Ox-differences in the training set consisting of CASP8 to CASP11.

1. The feature has correlation value greater than or equal to 0.15 and the number
of its significance counts is greater than or equal to 15.

2. The feature has correlation value greater than or equal to 0.4 and the number
of its significance counts is greater than or equal to 10.

Furthermore, Fig. 4 illustrates the count of significances of the 103 features
with respect to Ox-differences obtained from CASP8 to CASP11. According
to our criteria, we can extract three significant features (indices 34, 37 and 40),
which are the predicted differences Cx(PD2)−Cx(BBQ), Ox(PD2)−Ox(BBQ)
and Nnext,x(PD2) − Nnext,x(BBQ), respectively. That is to say, these features
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highly correlate with our target Ox-differences. Similar results are revealed for y-
coordinates and z-coordinates. All significant features over all CASPs are listed
in Table 2.

Next, we use these selected features to train the SVR models. Here we adopt
LibSVM [1] to perform our experiments. We use the RBF (Radial Basis Func-
tion) kernel and set the three SVR parameters (cost, tube and hyperparameter)
to the default values.

The performance of our experimental results is evaluated by RMSD. Table 3
shows the RMSDs of individual N, C and O atoms of BBQ, PD2 and our 5-fold
cross validation method. The improvement of O prediction over PD2 is about
7.7 %. And the improvement of C prediction over PD2 is about 13.2 %, which
combines the gain from the BBQ over PD2 (about 6.4 %) and the gain from ours
over BBQ (about 7.8 %). Table 4 shows the overall RMSDs of BBQ, PD2 and
our method. Our method yields 8.03 % improvement over PD2.

Table 2. The significant features selected in the nine objective values of the 5-fold cross
validation experiments. The bold underlined one means that the feature is chosen in
all training sets.

Nx Ny Nz Cx Cy Cz Ox Oy Oz

31, 32, 31, 32, 31, 32, 34, 35, 36, 34, 35, 36, 39,
33, 43, 33, 43, 33, 43, 37, 38. 39, 37. 38. 42, 46,
47, 52, 47, 52, 47, 52, 40. 41, 42. 40. 41. 48, 55,
57. 57. 57. 60. 55, 60.

60.

Table 3. The average RMSDs of individual atoms (N, C and O) of BBQ, PD2 and
our method in CASP7, CASP8, CASP9, CASP10 and CASP11 datasets. Here, the
percentage inside parentheses means the improvement over PD2.

Dataset Method

BBQ PD2 Our method

N C O N C O N C O

CASP7 0.2401 0.2395 0.6347 0.1897 0.2416 0.5879 0.1853 0.2209(8.57%) 0.5443(7.42%)

CASP8 0.3775 0.2668 0.7051 0.2375 0.3057 0.6968 0.2336 0.2486(18.68%) 0.6415(7.94%)

CASP9 0.4229 0.2569 0.6632 0.2462 0.2864 0.6115 0.2434 0.2367(17.35%) 0.5672(7.24%)

CASP10 0.2429 0.2444 0.6513 0.2042 0.2298 0.5991 0.2015 0.2227(3.09%) 0.5515(7.95%)

CASP11 0.2992 0.2310 0.6252 0.2197 0.2525 0.5994 0.2144 0.2127(15.76%) 0.5497(8.29%)

Arithmetic mean 0.3165 0.2477 0.6449 0.2195 0.2632 0.6189 0.2157 0.2283(12.69%) 0.5708(7.77%)

Weighted arithmetic

mean

0.3205 0.2477 0.6482 0.2198 0.2646 0.6179 0.2161 0.2284(13.17%) 0.5701(7.73%)
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Table 4. The RMSDs of all atoms of BBQ, PD2 and our method for CASP7, CASP8,
CASP9, CASP10 and CASP11 datasets.

Dataset Method Improvement over PD2 %

BBQ PD2 Ours

CASP7 0.3632 0.3335 0.3102 6.99 %

CASP8 0.4412 0.4030 0.3672 8.88 %

CASP9 0.4344 0.3635 0.3341 8.09 %

CASP10 0.3726 0.3386 0.3159 6.70 %

CASP11 0.3775 0.3491 0.3166 9.31 %

Arithmetic mean 0.3978 0.3575 0.3288 7.99 %

Weighted arithmetic mean 0.3986 0.3574 0.3286 8.03 %

5 Conclusion

In the past decades, lots of efforts have been devoted to the study of the protein
backbone reconstruction problem. Until now, the methods, such as BBQ, PD2
and so on, have already been successfully developed and applied to the problem.
Since these methods have their individual strengths and weakness, the prediction
accuracy can thus be improved by taking advantage of their strengths.

In this paper, we propose an algorithm to refine the 3D coordinates of all
atoms on a protein backbone with SVR. The objective values of our prediction
is the differences between the predicted coordinates and the real ones. We first
define a set of feature candidates extracted from the predicted coordinates of
BBQ and PD2. It is well-known that the key factor to affect the prediction
performance is the feature relevance. Thus, we perform the correlation analysis
to identify significant features. The experimental datasets range from CASP7
to CASP11. As the experimental results show, the three most significant fea-
tures for predicting the Ox-differences and Cx-differences are the differences of
the predicted x-coordinates of PD2 and BBQ in C, O and Nnext atoms. Simi-
lar results are exhibited for y-coordinates and z-coordinates. In summary, our
method yields about 8 % improvement in RMSD over PD2, which is the best
previous predictor in this problem up to now.
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