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Abstract. In this paper, we employ a deep Convolutional Neural Net-
work (CNN) for the classification of regions of interest of malignant soft
tissue lesions in mammography and show that it performs on par to expe-
rienced radiologists. The CNN was applied to 398 regions of 5× 5 cm, half
of which contained a malignant lesion and the other half depicted sus-
picious regions in normal mammograms detected by a traditional CAD
system. Four radiologists participated in the study. ROC analysis was
used for evaluating results. The AUC of CNN was 0.87, which was higher
than the mean AUC of the radiologists (0.84), though the difference was
not significant.

1 Introduction

Computer Aided Detection and Diagnosis (CAD) systems are being developed
for a variety of modalities and pathologies. Mammography has traditionally been
on the fore front of this endeavor and commercial CAD systems are widely
used in clinical practice. Unfortunately, progress has mostly stagnated in the
past decade and the merit of contemporary systems is strongly questioned, with
studies showing no significant improvements in the sensitivity for invasive breast
cancer [1]. Therefore, there is a strong need to continue the development of
mammography CAD.

The culmination of several decades of research into statistical learning meth-
ods, in particular deep learning [2,3], is recently making headlines [4,5], with
many Artificial Intelligence (AI) systems claiming human or even superhuman
performance in a variety of tasks, previously thought to be insurmountably com-
plicated. Deep Convolutional Neural Networks (CNN) have emerged as the de-
facto standard for vision based AI tasks and form the basis for face and object
detection and autonomous vehicles. Traditional CAD systems employ features
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such as spiculation, texture and contrast which are subsequently fed to a sta-
tistical learning machine. Rather than relying on engineers that mold medical
knowledge into a set of features, deep architectures learn relevant features from
data and the system is trained end-to-end. In essence, these ideas are not new
and have been around since the late seventies. Their success in recent years
can largely be attributed to more efficient training, advances in hardware and
employment of many core computing and most importantly, sheer amounts of
annotated training data.

In this paper, we employ a CNN for the classification of soft tissue lesions (e.g.
masses and architectural distortions). We operate on square regions of 5× 5 cm
extracted from mammograms at suspicious locations identified by a traditional
CAD system. This system outperforms a traditional CAD system we devel-
oped previously. In this study we compare the performance of this system to
radiologists.

2 Deep Convolutional Neural Networks

To get a label for every sample, the image is convolved with a set of filter kernels,
not unlike Gaussian derivative filters used in many traditional CAD systems,
generating feature maps, which again are subjected to several transformations.
Unlike traditional systems, however, most transformations are learned from data
rather than handcrafted, allowing the algorithm to focus on information relevant
for the classification problem and not predefined by the engineer. After the convo-
lutional layers, several fully connected layers, where each activation is associated
with a weight, are typically added, the exact benefit of which is still an open
research question. Most people report an increase in performance when added,
however. After the fully connected layers, the activations are fed to a softmax
function, which generates a posterior probability over the labels. The parameters
in the network are learned using maximum likelihood and backpropagation in
combination with Stochastic Gradient Descent (SGD).

Pooling layers are typically added in between convolutional layers to reduce
the size of the feature maps and induce some degree of translation invariance.
Apart from this, these models do not exhibit any inherent invariances, although
work is being done to incorporate this. Data augmentation, making new samples
by means of deformations that one would expect to model possible variations
in the data, is typically performed to make the networks robust and prevent
overfitting.

For training the CNN, we used raw images and only applied a log transform.
Images were scaled from 70 micron to 200 for faster processing. We employed
a previously developed candidate detector designed for mammographic lesions
[6] to generate candidate locations. It operates by extracting five features based
on first and second order Gaussian kernels, two designed to spot the center of a
focal mass and two looking for spiculation patterns, characteristic of malignant
lesions. A final feature indicates the size of optimal response in scale-space.
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To generate the pixel based training set, we extracted positive samples from
a disk of constant size inside each annotated malignant lesion in the training set,
to sample the same amount from every lesion size and prevent bias for larger
areas. To obtain normal pixels for training, we randomly sampled 1 in 300 pixels
from normal tissue in normal images, resulting in approximately 130 negative
samples per normal image. The resulting samples were used to train a random
forest [7] (RF) classifier. RFs can be parallelized easily and are therefore fast to
train, are less susceptible to overfitting and easily adjustable for class-imbalance
and therefore suitable for this task.

Centered at each location, we extracted patches of size 250× 250 (5× 5 cm).
The pixel values in the patches were scaled using simple min-max scaling, with
values calculated over the whole training set. Since some candidates occur at the
border of the imaged breast, we padded the images with zeros. Negative samples
were only taken from normal images. Annotated benign samples such as cysts
and fibroadenomae were removed from the training set. However, not all benign
lesions in our data are annotated and therefore some may have ended in the train
or validation set as negatives. An overview of the data is provided in Table 1.
The train, validation and test set were split on a patient level. We augmented all
positive samples by translating and scaling each patch 16 times. All patches were
subsequently flipped randomly during training. After augmentation, the train set
consisted of 334752 positive patches and 853800 negatives. When combining the
train and validation set, this amounts to 379632 positive and 931640 negative
patches.

We used a VGG-like architecture [8] with 5 convolutional layers of {16, 32, 64,
128, 128} with 3 × 3 kernels and 2 × 2 max-pooling on all but the fourth con-
volutional layer. A stride of 1 was used in all convolutions. Two fully connected
layers of 300 each were added. The network architecture was chosen in a similar
fashion as described by Simonyan et al. [8]. An illustration is provided in Fig. 1.
To learn the model, we used RMSProp [9], an adaption of R-Prop for SGD with
Nesterov momentum. We used Drop-out [10] on the fully connected layers with
p = 0.5 as a regularizer and employed the MSRA [11] weight filler, with a uni-
form distribution. A learning rate of 5 × 10−5 with a weight decay of 5 × 10−5

was used. To battle the strong class imbalance, positive samples were presented
multiple times during an epoch, keeping a 50/50 positive/negative ratio in each
minibatch. All hyperparameters were optimized on a validation set and the CNN
was subsequently retrained on the full training + validation set using the found
parameters.

Fig. 1. Illustration of the employed architecture.
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3 Reader Study

The mammograms used were collected from a screening program in The Nether-
lands (Bevolkingsonderzoek Mid-West) and were recorded with a Hologic Selenia
mammography device. All tumors are biopsy proven malignancies and annotated
by an experienced reader. The test set consisted of 199 biopsy proven malignant
lesions and an equal amount of normals taken from normal cases, that were
considered the most difficult by the candidate detector, resulting in 398 patches.
This gives a representative set of difficult samples and allows for larger differences
between readers and the CNN.

The group of readers comprised four experienced and certified breast radiol-
ogists. Since the CNN was trained with patches at 200 micron, we provided the
two first readers with this resolution (reader one and three). This resolution was
considered acceptable by the readers for analysis of mass lesions, but does not
allow detection of microcalcifications. Since we excluded cases with microcalci-
fications this was not an issue. However, to assess whether the downsampling
affected the reading, the other two radiologists read the patches at the original
resolution.

The patches used in the reader study were the same as those fed to the CNN
except that the standard processing algorithm provided by the manufacturer was
applied for the images read by the radiologists. The radiologists were provided
with a slider and instructed to score the patch between zero and one hundred
based on their assessment of the suspiciousness of the patch.

Statistical analysis was performed with the DBM MRMC method [12] in
which radiologists and the CNN are considered as two modalities (e.g. each
radiologist was paired with the CNN in the analysis of variance).

4 Results

The ROC curve of the CNN and mean curve of the readers are shown in Fig. 2.
The CNN obtained an AUC of 0.87, the radiologists a mean AUC of 0.845.
We found no significant difference between the network and the radiologist (p =
0.2530). The invididual AUC values of the readers were: reader 1 = 0.845, reader
2 = 0.8774, reader 3 = 0.8411 and reader 4 = 0.8274. The first two readers were
given patches at 200 micron and the last two at 70. There is clearly no significant
difference between the readers performance at different resolutions.

Table 1. Overview of the data the network is trained with. Pos refers to the amount
of malignant lesions and neg to the amount of normals.

Cases Exams Images Candidates

Pos Neg Pos Neg Pos Neg Pos Neg

Train 296 6433 358 11780 634 39872 634 213450

Validation 35 710 42 1247 85 4218 85 19460
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Fig. 2. Comparison between the CNN and the mean of the radiologists.

5 Discussion

In this paper, we have shown that a deep Convolutional Neural Network (CNN)
trained on a large dataset of patches, centered around locations of interest is
performing comparable to experienced radiologists. The patch based system is
a sub problem and is clearly not the way radiologist read a mammogram in the
clinic. We are currently exploring the incorporation of context information inside
one view, addition of CC/MLO correlation, symmetry and temporal information.

We believe deep CNNs or similar statistical learning methods show great
promise, have potential to advance the interest of Computer Aided Diagnosis
(CAD) and that these algorithms can ultimately not only aid the physician but
will eventually be able to read mammograms independently.
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