
BFS-Based Model Checking of Linear-Time
Properties with an Application on GPUs

Anton Wijs(B)

Eindhoven University of Technology, Eindhoven, The Netherlands
A.J.Wijs@tue.nl

Abstract. Efficient algorithms have been developed to model check live-
ness properties, such as the well-known Nested Depth-First Search, which
uses a depth-first search (DFS) strategy. However, in some settings, DFS
is not a suitable option. For instance, when considering distributed model
checking on a cluster, or many-core model checking using a Graphics
Processing Unit (GPU), Breadth-First Search (BFS) is a more natural
choice, at least for basic reachability analysis. Liveness property check-
ing, however, requires the detection of (accepting) cycles, and BFS is
not very suitable to detect these on-the-fly. In this paper, we consider
how a model checker that completely runs on a GPU can be extended to
efficiently verify whether finite-state concurrent systems satisfy liveness
properties. We exploit the fact that the state space is the product of the
behaviour of several parallel automata. The result of this work is the
very first GPU-based model checker that can check liveness properties.

1 Introduction

Model checking [2] is a formal verification technique to ensure that a model
satisfies desired functional properties. Some of these properties may address
infinite system behaviour. Such properties are called liveness properties; they
express that some desired behaviour eventually happens [1].

In finite-state systems, infinite behaviour is only possible if some of the states
are visited infinitely often. Therefore, in the state space of such a system, infinite
behaviour is represented by a cycle and a path from the initial state leading to it.
A counter-example to a liveness property is also some infinite behaviour through
the product of the system behaviour and an automaton accepting any infinite
behaviour that violates the property [2]. Linear-time properties, for instance
expressed in the LTL temporal logic, can be represented by such automata, for
instance Büchi and Rabin automata.

For explicit-state model checking, there are efficient algorithms to find
counter-examples to liveness properties, e.g. [10,14,17,29,30]. All of these per-
form a search through the state space using a Depth-First Search (DFS) strategy.
However, in some settings, Breadth-First Search (BFS) is a more natural choice

A. Wijs—We gratefully acknowledge the support of NVIDIA Corporation with the
donation of the GeForce Titan X used for this research.

c© Springer International Publishing Switzerland 2016
S. Chaudhuri and A. Farzan (Eds.): CAV 2016, Part II, LNCS 9780, pp. 472–493, 2016.
DOI: 10.1007/978-3-319-41540-6 26

BFS-Based Model Checking of Linear-Time Properties 473

for graph traversals than DFS. For instance, when model checking is done by sev-
eral machines collaboratively in a network [5,7,11], and when General Purpose
Graphics Processing Units (GPGPUs or GPUs) are employed for model check-
ing. In the former case, information obtained through DFS traversals cannot
efficiently by synchronised between workers. In the latter case, the availability
of thousands of threads, and the requirement to occupy these to fully harness
the computing power of the GPU, is at odds with a DFS-based search, in which
a stack is used and the focus is always on the state at the top of the stack.
One might consider running multiple randomised DFSs in parallel [12,23], but
maintaining thousands of stacks would require too much overhead.

GPUs are being used to dramatically speed up computations. For explicit-
state model checking, GPUs are used for on-the-fly state space exploration
and safety property checking [6,35,36,39], offline property checking [3,8,9,34],
counterexample generation [38], and state space decomposition and minimisa-
tion [33,37].

The next challenge in GPU model checking is the on-the-fly checking of
general linear-time properties. In this paper, we consider doing this using a
BFS-based approach. The best known way to find cycles using a BFS-like search
is by topological sorting of the states [19], but it does not work on-the-fly, i.e.
while discovering the state space. A more suitable algorithm is a heuristic search
called piggybacking [13,16], in which a state that may be in a cycle of a counter-
example, is carried (piggybacked) along the search. If at any point, a state is
visited which is at that time also piggybacked, then a cycle is found. However,
the algorithm is not complete; in many situations, it may fail to detect a cycle.

Contributions. Firstly, we define, to the best of our knowledge, for the first time
a variant of piggybacking using Rabin automata to express properties. Secondly,
we propose several new algorithms that can efficiently analyse the input model
before the checking is started, to extract structural information that tends to
make the piggybacking algorithm more effective. Thirdly, in earlier work [13], a
post-processing phase was proposed to further analyse particular states that can
be identified as ‘promising’ during piggybacking. This phase makes piggybacking
complete for bounded suffix model checking, in which cycle detection is limited to
cycles of a predetermined number of transitions. In [13], a depth-bounded DFS
was initiated from each of those promising states to search for a cycle containing
them. In this paper, we show that with the extracted structural information,
the number of promising states can be reduced, thereby potentially speeding
up the post-processing phase. Fourthly, we discuss how piggybacking can be
implemented in a GPU model checking approach, focussing primarily on the data
structures. Finally, we validate the effectiveness of our approach as a whole, and
the application of the different algorithms in particular, on an implementation
in the GPU model checker GPUexplore [35,36].

It should be stressed that, even though we focus on using GPUs, our pro-
posed enhancements of piggybacking may be of use in other contexts as well.
For instance, in [25], several heuristics are used to incrementally verify liveness
properties symbolically using saturation. Our proposed heuristics seem to be

474 A. Wijs

more refined than the ones they use; for instance, they consider every visiting of
a state in a non-trivial strongly connected component to be an event that may
close a cycle in the state space, whereas we can distinguish situations where this
cannot be the case from cases where it can.

Piggybacking was first proposed in [16] and extended in [13], and a similar
approach is used as an on-the-fly heuristic in the OTF-OWCTY algorithm [4].
Various different strategies to select and remove piggybacking states have been
proposed, including piggybacking not one, but multiple states, to improve the
algorithm. However, these variations tend to not fundamentally improve the
original algorithm. We are the first to try to exploit the fact that the state space
is the combination of behaviour of several interacting processes in the input
model. One of the new algorithms, to identify so-called essential states, is inspired
by [22]. They statically analyse cycles in processes to improve partial order
reduction, and they consider state-based models. as opposed to our algorithm,
which works for action-based models.

The structure of the paper is as follows. In Sect. 2, we discuss the basic
notions. Section 3 presents the piggybacking algorithm and various algorithms
to statically analyse input models. How these algorithms affect GPU model
checking is explained in Sect. 4. Experimental results are given in Sect. 5, and
finally, our conclusions are presented in Sect. 6.

2 Preliminaries

In this section, we discuss the basic notions involved to understand the problem,
namely Lts, network of Ltss, and an action-based version of Rabin automata.

Labelled Transition Systems. We use Labelled Transition Systems (Ltss) to rep-
resent the semantics of finite-state systems. They are action-based descriptions,
indicating how a system can change state by performing particular actions.

Definition 1 (Labelled Transition System). An Lts G is a tuple 〈S,A,T ,s〉,
with

– S a finite set of states;
– A a set of action labels;
– T ⊆ S × A × S a transition relation;
– s ∈ S the initial state.

Actions in A are denoted by a, b, c, etc. We use s1
a−→s2 to denote 〈s1, a, s2〉 ∈

T . If s1
a−→s2, this means that an action a can be performed in state s1, leading to

state s2; we call s2 a successor of s1. We refer with →∗ and →+ to the reflexive,
transitive closure, and the transitive closure of →, respectively. We call s1→∗s2
and s1→+s2 paths through G, and for a path π, we refer with S(π) to the set of
states that are part of π. A cycle is a path consisting of at least one transition,
from a state s1 to itself, i.e. s1→+s1. Finally, inf(π) is the set of states in S(π)
that are part of a cycle in π. In particular, if π is a cycle, we have S(π) = inf(π).
In finite-state Ltss, a path involving a cycle is called an infinite path.

BFS-Based Model Checking of Linear-Time Properties 475

Lts Networks. We use Lts networks (Definition 2) to describe concurrent sys-
tems. They consist of a finite number of concurrent process Ltss and a set of
synchronisation rules that define the possible interaction between the processes.
We write 1..n for the set of integers ranging from 1 to n. A vector v̄ of size n
contains n elements indexed from 1 to n. For all i ∈ 1..n, v̄i represents the ith

element of vector v̄.

Definition 2 (LTS network). An Lts network N of size n is a pair 〈Π,V〉,
where

– Π is a vector of n concurrent process Ltss. For each i ∈ 1..n, we write Πi =
〈Si,Ai, Ti, si〉.

– V is a finite set of synchronisation rules. A synchronisation rule is a tuple
〈a, T 〉, where a is an action label and T ⊆ 1..n.

The synchronisation rules define how the processes can synchronise with each
other. These rules allow m among n synchronisation between transitions of the
same label. The fact that they must have the same label is a restriction of our
definition of Lts networks, by which it differs from the one in [24]. Our rules can,
for instance, express that a-transitions of different processes need to synchronise,
and not that a- and b-transitions must synchronise with each other, and produce
a transition with some other label, say c. The reason for having the restriction
is due to our desire to compactly represent synchronisation rules in the GPU
model checker [35,36]. It does not restrict our ability to specify concurrent system
behaviour, since any network with rules that do not adhere to this restriction
can be rewritten to a network without such rules. It does remove the ability to
rename transition labels, but on the other hand, this is not a limitation for the
current application, in which renaming is never applied.

The explicit behaviour of an Lts network is defined by its system Lts
(Definition 3).

Definition 3 (System LTS). Given an Lts network N = 〈Π,V〉, its system
Lts is defined by NG = 〈SN ,AN , TN , sN 〉, with

– SN = S1 × · · · × Sn;
– AN =

⋃
i∈1..n Ai;

– sN = 〈s1, . . . , sn〉, and
– TN is the smallest relation satisfying:

∀s̄ ∈ SN , 〈a, T 〉 ∈ V.(∀i ∈ 1..n.

(
(i �∈ T ∧ s̄i = s̄′

i)

∨ (i ∈ T ∧ s̄i
a−→ s̄′

i)

)

) =⇒ s̄
a−→ s̄′

The system Lts is obtained by combining the processes in Π according to
the synchronisation rules in V. In the following, we assume that the so-called
independent transitions of a process, i.e. those that do not require synchronisa-
tion with other transitions, are always enabled. In other words, for each process
Πi (i ∈ 1..n) and independent action a ∈ Ai, we assume that 〈a, {i}〉 ∈ V.

476 A. Wijs

Rabin Automata. Model checking linear-time functional properties involves
checking whether a system satisfies a property ϕ, written in some linear-time
temporal logic. The property can be a liveness property addressing infinite sys-
tem behaviour (“something good eventually happens”). Since we use the action-
based Lts network formalism to express system behaviour, we also require an
action-based way to express our properties (which can, for instance, be done
using action-based LTL). For this, we extend the definition of Lts to obtain an
action-based Rabin automaton [28].

Definition 4 (Rabin automaton). A Rabin automaton (RA) R is a tuple
〈S,A, T , s,F〉, with

– 〈S,A, T , s〉 an Lts;
– F a set of k pairs of state sets {(Li,Ki) | 0 ≤ i < k}, with Li,Ki ⊆ S.

An RA has an acceptance condition: an infinite path π is accepted iff there
exists a pair (Li,Ki) ∈ F such that inf(π) ∩ Li = ∅ and inf(π) ∩ Ki �= ∅ [2,21].
RAs are as expressive as ω-regular languages (and many linear-time properties
are ω-regular). In fact, contrary to Büchi automata, deterministic versions of
RAs already have the full power of ω-regular languages [15]. A deterministic
automaton defines for each state and action label at most one successor state.

Verifying Linear-Time Properties. When checking functional properties, one
must solve the emptiness problem for the product of NG and the property
automaton R¬ϕ, where R¬ϕ refers to the RA accepting all infinite paths
described by the negation of ϕ [32]. In fact, this product is the system Lts
PG of an Lts network P = 〈Π ′,V ′〉 combining N and R¬ϕ, in which for
each i ∈ 1..n, Π ′

i = Πi, Π ′
n+1 = R¬ϕ, and the synchronisation rules of N

have been extended in V ′ to always involve synchronisation with R¬ϕ, i.e.
V ′ = {〈a, T ∪ {n + 1}〉 | 〈a, T 〉 ∈ V}.

Fig. 1. Request-
response automata

A counter-example for ϕ in PG exists iff there exists
some path π = 〈sN , t〉 →∗ 〈s̄, t〉, with t the initial state of
R¬ϕ, and a path π′ = 〈s̄, t〉→+〈s̄, t〉, that is accepted by
R¬ϕ. Let C = {t′ | 〈s̄′, t′〉 ∈ S(π′)}, then the combination
of π and π′ is accepted iff there exists an (Li,Ki) ∈ F
such that C ∩ Li = ∅ and C ∩ Ki �= ∅. If this is the case,
then π′ is referred to as an accepting cycle. In other words,
solving the emptiness problem boils down to checking for
the reachability of accepting cycles.

Figure 1 shows a Büchi automaton B¬ψ (a), which
accepts all paths that traverse through s1 infinitely often,
and a Rabin automaton R¬ψ (b). Both express the nega-
tion of a property ψ = “after p, eventually q happens”.1

This property is of a very commonly used type, namely
request-response. For our application, Rabin automata are often more suitable
than Büchi automata. In GPU model checking (Sect. 4), the outgoing transitions
of each state vector are constructed using multiple threads. In general, for this
1 Note that this is an action-based property referring to the transition-labels, as

opposed to a state-based property referring to state predicates.

BFS-Based Model Checking of Linear-Time Properties 477

construction, the more independent transitions are present in the processes, the
more potential there is to explore them in parallel, which speeds up the suc-
cessor construction. When using non-deterministic Büchi automata, we observe
that the potential to avoid synchronisation is often smaller than when using
(deterministic) Rabin automata. For instance, in R¬ψ, we can ignore the self-
loops, and combine R¬ψ with NG in such a way that p and q-transitions of NG
need to synchronise with p and q-transitions of R¬ψ, but other transitions do
not, thereby avoiding many synchronisations. In B¬ψ, however, we have a self-
loop ¬q at state s1, which cannot be ignored in the same way, since we depend
on q-transitions in NG being blocked whenever R¬ψ is in state s1 in PG . This
could be solved by extending B¬ψ, but an additional drawback is that unlike
R¬ψ, B¬ψ is non-deterministic for p at state s0, thereby creating two branches
in PG whenever a p-transition can be fired, which may increase the state space
size. On the other hand, it should be noted that in general, Rabin automata tend
to be larger than Büchi automata expressing the same property, but multiple
techniques exist to keep the former reasonably small [20].

3 On-The-Fly BFS-Based Property Checking

3.1 A Piggyback Algorithm for Rabin Automata

It is well-known that
BFS-based graph
search algorithms are
not as efficient in
detecting cycles as
DFS-based algorithms.
This is because unlike
in DFS, where a
stack is employed
that keeps track of
the currently explored
path, information on
the individual paths
in the state space is
not maintained dur-
ing a BFS. However,
there is one excep-
tion to this, relat-
ing to the state s
from which the BFS
is initiated: if at any
point in the BFS, s
is reached again, we
know that a cycle
involving s exists.

478 A. Wijs

This observation is the basis for the piggyback algorithm in [16], which was
initially designed to perform bounded liveness checking, and improved in [13]
to handle liveness properties with a bounded suffix (i.e. the cycle in the state
space is bounded in size, as opposed to the cycle in the property automaton).
In Algorithm 1, we present a version of the piggyback algorithm tailored for the
use of Rabin automata, which is, to the best of our knowledge, the first time
this is done. At lines 1, 9 and 12, the acceptance condition for Rabin automata
is checked, and the results of those checks are, where applicable, piggybacked
along with the piggybacked state. This is the key difference between this and
previous versions of the piggyback algorithm.

In Algorithm 1, α refers to the state that is piggybacked along with the state
being visited or explored. The notation • refers to a value representing ‘no state’.
At lines 1–2, the initial state of PG is selected as a piggyback value if the initial
state of R¬ϕ is in at least one Ki (indicated by I), i.e. potentially makes a cycle
involving that state accepting. State α, together with the indices in I of the
involved (Li,Ki) are combined with the state. The combination is added to sets
Open and Closed (line 3), where Open is the set of states that have been visited,
but not yet explored, and Closed is the set of explored states.

Next, while Open is not empty, states are taken from that set, to be explored
(lines 4–5). At line 6, the out function returns the outgoing transitions of s̄,
i.e. out(s̄) = {〈a, s̄′〉 | s̄

a−→s̄′}. At line 7, the early termination condition of the
algorithm is checked: if at any time, one of the successors of a state is the state
being piggybacked, we have clearly detected a cycle. At lines 9–10, it is checked
whether successor s̄′ can still be in an accepting cycle. This is the case if for at
least one of the (Li,Ki) ∈ F relevant for the piggybacked state, s̄′ is not in Li. If
such an (Li.Ki) no longer exists, we remove the current piggybacked state, and
consider s̄′ as a new piggybacked value (lines 11–13). At line 14, the presence of s̄′

in Closed is checked. If it is not present, s̄′ is added to Open and Closed with the
updated piggybacked information (lines 15–16). Else, if currently a state is being
piggybacked, we have to consider re-exploration of s̄′: if the piggybacked value
of s̄′ encountered in Closed is •, we reopen the state and update its information
(lines 19–20). Else, we indicate at line 22 that a so-called blocking situation
has occurred (which we discuss next). In the end, these situations are further
analysed at lines 23–24. Note that re-exploration of a state can be done at most
once: if it is in Closed without a piggybacked value, and it is reached from a
state with a piggybacked value, it will be explored again, and added to Closed
with the piggybacked value. Hence, the complexity of the algorithm is O(|SP |).

Unfortunately, the piggyback algorithm is not complete; in many situations,
it fails to detect accepting cycles. Figure 2 illustrates two types of problems,
where, for convenience, we consider one pair of state sets (L,K)∈F . In the figure,
double-lined states are in K, while no states are in L. Piggybacked states are
listed between square brackets, and the search enters via incoming transitions.
In Fig. 2a, when reaching s̄1 ∈ K, this state cannot be piggybacked, since s̄0
already is. This may cause a situation called shadowing [13]: the accepting cycle
s̄1→+s̄1 is not recognised due to a different state being piggybacked.

BFS-Based Model Checking of Linear-Time Properties 479

Fig. 2. Shadowing and blocking

Figure 2b illustrates a problem
called blocking [13]. The search enters
the cycle from s̄0 and s̄1, and pig-
gybacks both. This means that when
exploring s̄2, s̄0 is encountered with
a different piggybacked value, and
hence, the search is blocked (line 22 of
Algorithm 1), i.e. it cannot continue
along that path. Similarly, the search
from s̄0 is blocked. The result is that
the cycle is not detected.

However, the occurrence of block-
ing does not necessarily indicate the
presence of cycles. Another cause for blocking is due to the confluence of paths,
which tends to occur very frequently in state spaces, due to the interleaving
semantics of the input models [27]. This is illustrated in Fig. 2c: from s̄0, value α
is piggybacked to s̄2, due to which a search from s̄1 with value β �= α is blocked.

In a way, one can interpret shadowing as a specific form of blocking; in
Fig. 2a, the search is blocked at s̄2 due to reaching state s̄1 which already has a
piggybacked value not equal to s̄1 itself. In [13], it is proposed to keep track of
blocking occurrences during piggybacking, and post-processing those occurrences
by starting a DFS with depth-bound b is launched from every point in the state
space where blocking occurs, to determine whether or not a cycle of at most
size b exists. However, not all blocking occurrences require further analysis. We
observe the following, which is formalised in a lemma.

Lemma 1. Consider an accepting cycle π = s1→∗s2→s3→∗s1 with, for some
(Li, Ki) ∈ F , S(π) ∩ Ki �= ∅ and S(π) ∩ Li = ∅. Say that a search enters π
via s1, and piggybacks a value α along π, but is being blocked at s3, because the
latter already has a piggyback value β. Then, eventually, blocking will also occur
at s1, or an accepting cycle containing s1 is discovered.

Proof. By induction on the length m of s3→∗s1.

– m = 0: we have s3 = s1, therefore blocking at s1 happened when considering
the successors of s2.

– m = 1: s1 is a successor of s3. We either have β = s1, in which case an accepting
cycle containing s1 is discovered (line 7 of Algorithm 1), or the search is blocked
at s1, since s1 is in Closed, β �= •, and α �= • (line 22 of Algorithm 1).

– m = m′ +1: let s4 be the successor of s3 in π. There are now two possibilities:
1. either s4 has no piggyback value, in which case s4 will be added with

piggyback value β to Open, either at line 16 or 20 of Algorithm 1, and by
the induction hypothesis, eventually blocking will occur at s1, or another
accepting cycle through s1 is discovered.

2. or s4 has a piggyback value γ �= β. Then, another search along s4→∗s1
(with length m′) is being conducted with piggyback value γ. By the induc-
tion hypothesis, either blocking will occur at s1, or, in case γ = s1 and
exploration continues to s1, an accepting cycle containing s1 and s4 will
be discovered. ��

480 A. Wijs

In Sect. 4, we discuss how we analyse blocking occurrences on the GPU.
Lemma 1 is a key observation to reduce the number of occurrences that need
to be resolved. In particular, it suffices to look at those blocking occurrences
at states by which the search has entered a cycle and has closed process-local
cycles. Distinguishing these from others depends on knowing where the cycles
are, which we do not. However, in the next section, several new algorithms are
presented to statically analyse Lts networks to determine via which states in
the Π ′

i a search enters a local cycle. If in PG a given state does not enter a local
cycle in any of the Π ′

i, then it also cannot enter a cycle in PG . This relation
between cycles in the Π ′

i and cycles in PG is discussed next.

3.2 Static Analysis of Lts Networks

In this section, we present several algorithms to statically analyse networks under
analysis, with the goal to extract information that can improve the effective-
ness of the piggyback algorithm. These algorithms analyse the different Π ′

i in
isolation, and have a complexity which is at most quadratic in the size of an
individual Π ′

i. This is often much lower than the complexity of computing PG ,
which is O(|S1| × · · · × |Sn+1|). Lemma 2 serves as the starting point for our
reasoning.

Lemma 2. Consider an Lts network P = 〈Π ′,V ′〉. For every cycle π = s̄ →+ s̄
in PG, the following holds for each of the Π ′

i (i ∈ 1..n + 1):

1. either ∀s̄′ ∈ S(π).s̄′
i = s̄i

2. or ∃πi = s̄i →+ s̄i.∀s ∈ S(πi).∃〈s̄′, s〉 ∈ S(π)

Furthermore, for at least one Π ′
i, case 2 holds.

Lemma 2 follows from the following observation. Consider a state vector
s̄ = 〈s0, . . . , sn〉 ∈ SP that is part of a cycle π. If we traverse π all the way back
to s̄, then locally in each Π ′

i, we have moved from si to si, meaning that either
we did not move at all (case 1) or we have traversed a local cycle in Π ′

i (case 2).
Of course, for at least one of the Π ′

i, case 2 must hold, otherwise π would not
contain any transitions, and hence not be a cycle.

Independent Cycles. Lemma 2 implies that if for at least one of the Πi, si is
contained in a non-trivial, independent strongly connected component (SCC),
then s̄ (and, in fact, any state vector containing si) is part of a cycle in NG .
An SCC is a subgraph in which every state is reachable from every other state
in the SCC. It is non-trivial if it contains at least one transition.2 Finally, it
is independent if it consists of transitions that require no synchronisation with
other transitions in the network. Since we avoid the need to synchronise with
the property automaton whenever possible (see Sect. 2), there can be SCCs in a

2 Alternatively, an SCC is called trivial if it contains exactly one state, but here we
use the criterion that an SCC is trivial if it contains no transitions.

BFS-Based Model Checking of Linear-Time Properties 481

process Lts that require no synchronisation with any other process Lts, includ-
ing the property automaton. Being aware of reaching independent cycles during
model checking can be very helpful: if we ever reach a state vector containing at
least one state in an independent cycle, and an accepting property state, then
we immediately know that there is an accepting cycle.

Independent SCCs can be detected in each Π ′
i by employing a variant of the

well-known SCC algorithm of Tarjan [31], in which we limit ourselves to the
exploration of independent transitions, and we launch Tarjan’s algorithm once
from each of the states si∈S ′

i, while never reexploring those states that were
visited during previous explorations.

This approach runs in a time linear to the number of states, since Tarjan’s
algorithm runs in linear time, and each state is explored at most once. In the
end, trivial SCCs are removed from the results.

Cycle Entry States. From Lemma 2, we know that during a search, a cycle in
PG can only have been completely traversed as soon as at least one local cycle
in one of the Π ′

i is traversed. Because of that fact, we would like to analyse the
Π ′

i to determine which states are possible entry points to cycles (and therefore
points where a cycle can also be closed).

There exist algorithms to identify all elementary cycles, i.e. cycles in which
no state is present more than once, in a directed graph, for instance [18,31].
However, these algorithms have a time complexity which is exponential in the
number of vertices, and therefore larger than we can allow, i.e. larger than com-
puting PG . Because of this, we propose a new algorithm (Algorithm 2), which
does not identify all elementary cycles individually, but instead identifies all
states by which at least one elementary cycle can be entered via some path from
the initial state. Besides this, for every such state, it keeps track of the transi-
tion labels that require synchronisation in P and are associated to at least one
transition of a cycle entered via that state. These labels are elements of what
we call the action dependency set associated with a state. The algorithm has a
worst case complexity of O(n2), with n the number of states.

Fig. 3. Cycle entries

As an example, consider the Lts in Fig. 3. The cycle
entry states are marked black. If a search starts from s0,
then s1, s4, and s3 are entry states: path s0→s1 leads
to cycles s1→s2→s3→s1 and s1→s2→s4→s3→s1, path
s0→s4 leads to s4→s3→s1→s2→s4, and path s0→s4→s3
leads to s3→s1→s2→s3. The action dependency sets are
{a, b, c, d, e} for s1, {e, c, a, d} for s4, and {c, a, b} for s3.
Note that an SCC detection algorithm does not provide
us the desired result. For instance, Tarjan’s algorithm will
identify s1, . . . , s4 as an SCC, with either s1 or s4 as root
state, depending on the DFS-order, but it will not distin-
guish s2 from the other states.

The DFS-based algorithm is described in procedure
dfsCheckEntries (line 5), which is applied to each of
the initial states in P (line 6), after some global sets have

482 A. Wijs

been initialised. There are three Closed sets, i.e. sets consisting of fully explored
states: Closedco, containing closed states that are in a cycle which is currently
open, i.e. partially on the DFS stack, Closedcc, containing states that are on a
closed cycle, and Closed, containing states not on a cycle. Furthermore, for each
of the Π ′

i, there are several sets:

– cycleentriesi contains the states in S ′
i that have been identified as cycle entry

states;
– crepsi contains a subset of cycleentriesi of so-called representatives. For each

cycle in Π ′
i, at least one of its states is representative;

– sdepsi records prioritised connections between states and representatives, to
keep track of which states are directly connected via a transition to a represen-
tative, and which states are indirectly connected via states that are directly
connected;

– asetsi contains the action dependency sets of the cycle entry states, i.e. states
in cycleentriesi.

Finally, cclosing contains cycle entry states of open cycles, and curdeps con-
tains the currently recorded connections between the state at the top of the DFS
stack and representatives.

For each transition s
a−→s′ of state s for which dfsCheckEntries is called,

i.e. which is at the top of the DFS stack, a number of distinct situations is
considered (we refer to the DFS stack as stack in Algorithm 2):

1: (Line 10): if s′ is on the DFS stack (s′∈stack), then s′ is clearly a cycle
entry state, since si→∗s→s′ leads to cycle s′→+s′. Hence, we add s′ to cclosing
(the cycle is still open) and cycleentriesi. We record in curdeps that s relates to
(representative) s′ with priority 1, indicating a direct connection.

2: (Line 13): if s′ is in Closedco, then we relate s to all representatives that have
been related to s′, but now with an incremented priority, representing an indirect
connection (sdepsi(s)(t) =⊥ at line 15 means that sdepsi(s)(t) is undefined). For
example, if through the Lts of Fig. 3, the algorithm first explores s0→s1→s2→s3,
then identifies s1 as cycle entry, records 〈s1, 1〉 as a direct connection for s3,
backtracks over s3, and then reaches s3 again via s4, then s4 gets the connection
〈s1, 2〉, signifying that s4 relates to s1 via s3.

3: (Line 17): if s′ is in Closedcc, then s′ is a cycle entry state. At line 19, D
records those representatives to which s′ has a more direct connection than s
(with ‘undefined’ being the weakest connection). If D is not empty, then at lines
21–22, the relevant representatives get connected to s′. If any of the involved
connections of s′ is not direct, then reopening of s′ is required (line 24). Finally,
at lines 25–26, those connections are set to 1, by which repeated reopening of s′

based on those connections is prevented.
Continuing the example from the previous item, if the search backtracks all

the way back to s0, then s1, . . . , s4 are all in Closedcc. If then, s4 is reached again
from s0, s4 is identified as cycle entry. However, the path s0→s4 can be extended
such that s3 is cycle entry, but this still needs to be detected. Since 〈s1, 2〉 is an

BFS-Based Model Checking of Linear-Time Properties 483

indirect connection of s4, it will be reexplored. This leads us to s3, which will
now be identified as cycle entry, at which point the search backtracks, since s3
has no indirect connections.

4: (Line 27): if s′ is nei-
ther on the stack, nor in
any Closed set, then the
search continues via s′,
and the connections of s′

are connections for s as
well.

Once s′ has been exp-
lored, a is added to the
action dependency set of
the states in curdeps, if
a-transitions require syn-
chronisation (lines 30–
31). Finally, curdeps is
used to update sdepsi(s):
for every representative in
either of the two sets,
we keep the strongest
recorded connection in
sdepsi(s).

When s is fully exp-
lored, s is added to Closed
if there are no connec-
tions, i.e. s is not part
of a cycle (lines 33–34).
Otherwise, s is part of
an open cycle (lines 35–
36), and hence added
to Closedco. Finally, if s
represents at least one
open cycle, we move s
to the set of represen-
tatives crepsi. Backtrack-
ing over s means that
the associated open cycles
are now closed. All states
no longer related to an
open cycle are moved to
Closedcc (lines 37–41).

Essential Cycle Entries.
Finally, having detected all cycle entry states for each of the Π ′

i, we can consider

484 A. Wijs

how the Π ′
i may synchronise. For instance, if a local cycle π = s0

a−→s0 exists in
Π ′

1, and a requires synchronisation, and there is only one other cycle π′ con-
taining an a-transition in Π ′

2, then any cycle containing a in PG must be the
result of combining π and π′. Therefore, to be aware of the possibility of a cycle
occurring in PG during a search, it suffices to keep track of only one of the two
cycles π and π′, i.e. only the cycle entry states of one of the two.

Algorithm 3 selects
among the cycle entry
states a subset con-
taining what we call
the essential cycle entry
states, or essential states.
At lines 1–2, we con-
struct an integrated and
sorted version of all the
crepsi, in which the rep-
resentatives of all Π ′

i

are sorted by the num-
ber of actions in their
action dependency set,
from small to large. Then, all representatives are at first selected (lines 3–5).
The selection procedure is covered at lines 6–8: if for a representative s of Π ′

i,
none of its actions is shared with a removed representative from some other Π ′

j ,
then s can be safely removed. Finally, at lines 9–10, all cycle entry states with
connections to essential representatives are marked as being essential as well.

Note that the approach suggested here only approximates the real relation
between elementary cycles in the network, since multiple cycles may share cycle
entry states, and in those cases, their synchronising actions may be lumped
together in one action dependency set. However, improving on this would involve
the detection of all individual elementary cycles, which is too time-consuming.

3.3 Using the Static Analysis Results in the Piggyback Algorithm

The algorithms described in Sect. 3.2 can be used in a pre-processing phase
to provide additional structural information for the piggyback algorithm. We
describe here how and when that information can be used, referring back to
Algorithm 1.

First of all, detecting independent cycles in the process Ltss results in a set
of states Ci, for each Π ′

i, consisting of all the states that are in at least one
independent cycle. Whenever the piggyback algorithm reaches a state vector
s̄′ for which 1) there exists at least one i ∈ 1..n such that s̄′

i ∈ Ci and 2)
{j | (Lj ,Kj) ∈ F∧s̄′

n+1 ∈ Kj} �= ∅, then an accepting cycle has been found, since
one can construct from s̄′ a cycle by following the transitions in the independent
cycle in Π ′

i. This can be checked directly after line 6 in Algorithm 1.
Second of all, knowing the cycle entry states for each Π ′

i can help to distin-
guish blocking situations occurring due to the confluence of paths from situations
occurring due to the closing of a cycle. When blocking occurs on a state s̄ in

BFS-Based Model Checking of Linear-Time Properties 485

which no process state enters a process-local cycle, i.e. no state is a cycle entry
state, we can conclude that the blocking cannot have been caused by closing
a global (system-level) cycle. This check can be added to Algorithm 1 at line
21. Only if the check evaluates to true, will the blocking occurrence be marked.
This can be even further improved if we also keep track of when we are closing
process-local cycles, starting from the moment when the current piggyback value
was picked up. Only in those cases where at least one such cycle is closed, is it
possible that we are also closing a cycle in PG . Besides this advantage, one can
as well improve the selection of piggyback values in those cases where the Rabin
automaton only contains cycles in which the cycle entry states are all in some
Ki (1 ≤ i ≤ |F|): only when a state s̄ contains an accepting property state and
has at least one cycle entry state should it be selected for piggybacking. This
can be used as an additional condition in Algorithm 1 at lines 2 and 12.

Finally, knowing the essential states for each Π ′
i helps us to further distin-

guish promising from unpromising situations: only blocking situations involving
essential states are interesting for post-processing, since a cycle in PG must be
closed by revisiting a state s̄ containing an essential state. Furthermore, under
the same assumption about the Rabin automaton as described above, informa-
tion on the essential states can help to make more informed decisions regarding
the selection of piggyback values. This affects Algorithm 1 at the same lines as
the ones mentioned above for cycle entry information.

4 GPU Model Checking

GPUexplore [35,36] is an explicit-state model checker that practically runs
entirely on a GPU (only the general progress is checked on the host side, i.e.
by a thread running on the Central Processing Unit (CPU)). It is written in
CUDA C, an extension of C offered by Nvidia. It provides the Compute Unified
Device Architecture interface to write applications for Nvidia’s GPUs. GPU-
explore takes an Lts network as input, and can construct the system Lts
using many threads in a BFS-based exploration, while checking on-the-fly for
the presence of deadlocks and violations of safety properties. A safety property
can be added as an automaton to the network. The general approach of GPU-
explore is discussed here, leaving out many of the details that are not relevant
for understanding the current work. The interested reader is referred to [35,36].

Fig. 4. GPUexplore overview

In a CUDA program, the host launches
CUDA functions called kernels, that are to be
executed many times in parallel by a specified
number of GPU threads. Usually, all threads
run the same kernel using different parts of the
input data, although some GPUs allow multi-
ple different kernels to be executed simulta-
neously (GPUexplore does not use this fea-
ture). Each thread is executed by a streaming
processor (SP), see Fig. 4. Threads are grouped
in blocks of a predefined size. Each block is
assigned to a streaming multiprocessor (SM).

486 A. Wijs

Each thread has a number of on-chip registers that allow fast access. The
threads in a block together share memory to exchange data, which is located
in the (on-chip) shared memory of an SM. Finally, the blocks can share data
using the global memory of the GPU, which is relatively large, but slow, since it
is off-chip. The global memory is used to exchange data between the host and
the kernel. The GTX Titan X, which we used for our experiments, has 12 GB
global memory and 24 SMs, each having 128 SPs, which is in total 3,072 SPs.

Writing well-performing GPU applications is challenging, due to the execu-
tion model of GPUs, which is Single Instruction Multiple Threads. Threads are
partitioned in groups of 32 called warps. The threads in a warp run in lock-step,
sharing a program counter, so they always execute the same program instruc-
tion. Hence, thread divergence, i.e. the phenomenon of threads being forced to
execute different instructions (e.g., due to if-then-else constructions) or to access
physically distant parts of the global memory, negatively affects performance.

Model checking tends to introduce divergences frequently, as it requires com-
bining the behaviour of the processes in the network, and accessing and storing
state vectors of the system state space in the global memory. In GPUexplore,
this is mitigated by combining relevant network information as much as possible
in 32-bit integers, and storing these as textures, that only allow read access and
use a dedicated cache to speed up random accesses. Furthermore, in the global
memory, a hash table is used to store state vectors (Fig. 4). The hash table
has been designed to optimise accesses of entire warps: the space is partitioned
into buckets consisting of 32 integers, precisely enough for one warp to fetch a
bucket with one combined memory access. State vectors are hashed to buckets,
and placed within a bucket in an available slot. If the bucket is full, another
hash function is used to find a new bucket. Each block accesses the global hash
table to collect vectors that still require exploration. To each state vector with n
process states, a group of n threads is assigned to construct its successors using
fine-grained parallelism. Since access to the global memory is slow, each block
uses a dedicated state cache (Fig. 4). It serves to collect newly produced state
vectors, that are subsequently stored in the global hash table in batches. With
the cache, block-local duplicates can be detected. The approach allows to work
with vectors that require any number of integers smaller than 32 to be stored.

Fig. 5. Encodings of an Lts and a state
vector with bookkeeping

The data structures used are illus-
trated in Fig. 5. At the top, an encod-
ing of the Lts in Fig. 3 is given. The
State offsets array contains the offsets
needed to read the outgoing transi-
tions of a state i in Transitions: they
are stored from position State offsets[i]
up to (not including) State offsets[i+1].
A transition is a pair of integers, the
first being the (index of) a transition
label, and the second being the target
state. When possible, multiple target

states are listed in one entry (in the case of non-determinism). Transitions are

BFS-Based Model Checking of Linear-Time Properties 487

stored as compactly as possible: for a transition of Π ′
i, the log2(|Ai|) bits needed

to store the label index are combined with the log2(|Si|) bits needed to store the
target state in one 32-bit integer.

Below the Lts encoding, the encoding of a state vector can be seen. The top
part corresponds to how GPUexplore originally used to encode state vectors:
the state ID’s for the individual process Ltss are concatenated. For each of the
Π ′

i, log2(|Si|) bits are reserved in the vector. If required, multiple 32-bit integers
are used to store a vector. At the bottom of Fig. 5, the structure of a state vector
extended with bookkeeping bits is displayed. Besides the states of the Π ′

i:

– n bits are reserved to indicate which of the processes have already fully tra-
versed a local cycle since the last piggyback value was picked up (CC?);

– n bits are reserved to indicate which of the states are essential (Es.?);
– Two bits are reserved to indicate whether the property automaton is in a state

that requires infinite visits, finite visits, or neither (∞?);
– One bit is used to indicate whether blocking occurred on the vector (Bl.?);
– One bit indicates whether the vector is new, i.e. requires exploration (Nw.?);
– Thirty-two bits are reserved to store a piggyback value (PB).

Instead of piggybacking vectors, which is costly space-wise, pointers to the
global hash table are piggybacked. One 32-bit integer suffices: in 27 bits, we store
the index of a bucket (in 12 GB, about 100 million buckets can be stored), and
with the remaining 5 bits, the position of a vector within the bucket is given.

GPUexplore is extended as follows to support the checking of linear-time
properties. First of all, the network data contains the information we obtained
through static analysis, plus the status of the property states (requires infinite
visits, finite visits, or neither). The current implementation supports the use of
Rabin automata in which F is a singleton; this can be straightforwardly extended
by increasing the number of bookkeeping bits. Furthermore, transitions that
lead to a cycle entry state and close a cycle are marked, and essential states
are marked. Second of all, using that information, we mark state vectors in the
obvious way, i.e. the status of the individual process states is kept in the vector.
To do this correctly, it is important that these markings are at times merged;
different groups may construct the same successor state with different markings.
Both when storing states in the local state cache, and in the global hash table,
this merging is performed.

The overall approach follows Algorithm 1 and the extensions discussed in
Sect. 3.3. If all cycles in the Rabin automaton can only be entered via states in
K (F = {(L,K)}), then visiting a vector state with a property state in K is only
selected as a piggyback value if at least one state in the vector is essential. This
can avoid some of the issues of standard piggybacking, in particular shadowing
such as in Fig. 2a, since s̄0 will not be selected as a piggyback value if no state
in it is essential.

When blocking occurs on a state vector s̄, this is marked (in Bl.?) only if s̄
contains an essential state (Es.?) and at least one local cycle has been traversed
(CC?). By Lemma 1, this is sufficient. Once the state space has been completely
explored without detection of a counter-example, post-processing of the blocking

488 A. Wijs

occurrences must be conducted. Since DFSs cannot be performed efficiently on
a GPU, we need to perform this post-processing in a way different from the
technique in [13]. Instead, we launch up to sixteen parallel BFSs at a time, each
performed by several thread blocks from one of the marked states. During each
BFS, visited and explored states are marked in the global hash table using two
bits. The space previously occupied to store a piggyback value pointer can be
reused for this purpose, hence the space for 32/2 parallel BFSs. Each BFS is
bounded by the fact that the global hash table is scanned completely for open
states up to a predefined number of times. The search in each BFS can be limited
to those processes for which it was indicated that they fully traversed a local
cycle (in the CC? bits). The sixteen groups of thread blocks process all marked
states in this way, until either none are left, or an accepting cycle has been
detected.

5 Experimental Results

GPUexplore is equipped with a separate preprocessor, written in Python.
It can read Lts networks and produces an output file that configures the
GPU model checker. To the preprocessor, we added the ability to read Rabin
automata, which are stored as normal Ltss with some additional information
regarding F . Also, we implemented the algorithms explained in Sect. 3. Results
on cycle entry states and essential states is added to the configuration file, while
results in independent SCCs are added by adapting the Ltss in the network:
any state appearing in such an SCC is equipped with an independent selfloop.
This allows the model checker to efficiently determine whether a state is in an
independent SCC or not, just by looking at the outgoing transitions of that
state.

We conducted experiments using input models from various sources, namely
the BEEM database [26], the VLTS benchmark suite3, the mCRL2 website4,
and two models (ABP and broadcast) designed by us.

To conduct the experiments, a machine with an AMD A6-3670 CPU, 16
GB memory, and an Nvidia GeForce Titan X GPU, running Linux Mint
17.2 was used. GPUexplore used 3120 blocks, 512 threads per block, which
turned out to be optimal for reachability analysis [35,36]. Table 1 provides the
runtime results in seconds. Besides reachability analysis (Rch.) and standard
piggybacking (PB), several variants of the algorithm have been used, namely:

– +iSCC: A version using only the information on independent SCCs;
– +SPB: +iSCC plus smart piggyback value selection based on essential states;
– +SBR: +SPB with smart blocking resolution, i.e. only blockings with essential

states and the closing of a local cycle are considered.

3 http://cadp.inria.fr/resources/vlts.
4 http://www.mcrl2.org.

http://cadp.inria.fr/resources/vlts
http://www.mcrl2.org

BFS-Based Model Checking of Linear-Time Properties 489

Table 1. GPU runtimes (in seconds) for various piggyback variants

Model Prop. |SPG | Rch. PB +iSCC +SPB +SBR

Time ? Time ? Time ? Time ?

1394 request-response 200K 2.68 5.01 ✓ 5.05 ✓ 4.10 ✓ 3.02 ✓

1394.1 request-response 36.9M 10.42 16.39 ✓ 16.37 ✓ 13.20 ✓ 12.11 ✓

acs lock eventually freed 4.8K 1.61 0.40 ✗ 0.37 ✗ 0.38 ✗ 0.35 ✗

acs.1 lock eventually freed 200K 2.14 0.45 ✗ 0.45 ✗ 0.46 ✗ 0.43 ✗

wafer stepper.1 �♦ all wafers

exposed

3.8M 6.61 35.34 ✓ 35.32 ✓ 23.51 ✓ 12.63 ✓

ABP request-response 481.8M 968.44 253.57 ✗ 258.21 ✗ 230.58 ✗ 180.35 ✗

broadcast �♦ communication

succeeds

105.4M 151.05 53.43 ✗ 57.36 ✗ 48.35 ✗ 47.36 ✗

transit �♦ message sent or

buffered

4.4M 9.06 0.99 ✗ 0.81 ✗ t.o.p. - t.o.p. -

asyn3 �♦ leader announced

or reset

17.2M 49.65 2.84 ✗ 2.75 ✗ 2.75 ✗ 2.70 ✗

asyn3.1 �♦ leader announced

or reset

215.4M 472.43 2.39 ✗ 2.52 ✗ 2.40 ✗ 2.43 ✗

ODP �♦ WORK executed 178K 4.65 1.14 ✗ 1.11 ✗ 1.11 ✗ 1.12 ✗

ODP.1 �♦ WORK executed 10.1M 13.49 1.99 ✗ 2.02 ✗ 2.03 ✗ 1.91 ✗

lamport.8 �♦P0@CS 35.1M 35.89 2.33 ✗ 2.32 ✗ 2.26 ✗ 2.27 ✗

lann.6 �♦P0@CS 144M 136.23 1.62 ✗ 1.64 ✗ 4.03 ✗ 1.64 ✗

lann.7 �♦P0@CS 160M 202.46 1.56 ✗ 1.50 ✗ 1.51 ✗ 1.51 ✗

peterson.7 �P0 wait

=⇒ ♦P0@CS

142.5M 4223.36 368.30 ✗ 384.12 ✗ 502.53 ✗ 712.63 ✗

szymanski.5 �P0 wait

=⇒ ♦P0@CS

79.5M 323.34 91.30 ✗ 102.27 ✗ 165.52 ✗ 181.54 ✗

In Table 1, for each model, a brief description of the property is given, where
‘�’ and ‘♦’ are shorthand for ‘always’ and ‘eventually’, in line with the LTL
operators. For each experiment, its result is reported, where ✓ indicates that
the property is satisfied, and ✗ means that it is not.

We do not compare the GPUexplore runtimes with those of a standard
CPU model checker. It has been established that on the same benchmarks, GPU-
explore outperforms state-of-the-art (single-core) explicit-state model checkers
by one to two orders of magnitude [35,36]. If we can establish that the checking
of linear-time properties can be done in comparable runtimes, then we can safely
conclude that the GPU can be effectively applied for this as well.

Table 1 does not provide the runtimes of the preprocessing steps for each
experiment, which involve the relevant algorithms described in Sect. 3. In prac-
tically all the cases, preprocessing took only a fraction of the subsequent explo-
ration time. An exception to this is the transit model, for which the detection
of cycle entry states and essential states caused a time-out (t.o.p. = time-out
during preprocessing in Table 1). In that model, one process Lts is much larger
than the others, making it costly to analyse it in comparison to directly exploring
the system Lts.

First of all, we experienced that for most of the analysed models, the stan-
dard piggyback algorithm is already very efficient, and we can conclude that it
is suitable to check liveness properties with a GPU. Concerning the proposed

490 A. Wijs

extensions, there are two types of situations where we experienced improved run-
times. The first situation is when post-processing has to be performed. In the
cases 1394, 1394.1, and wafer stepper.1, the extensions were more efficient,
due to being less prone to mark blocking occurrences. The second situation is
when the infinitely visitable states in the Rabin automaton are not immediately
reached in the state space search. More precisely, in those cases where there is
a non-empty prefix in the property automaton before the suffix expressing the
infinite behaviour part, the extensions made more informed decisions. This was
the case for acs and broadcast. The ability to identify independent SCCs was
also helpful in some cases: for transit, ODP, and lann.7, +iSCC was the most
efficient option.

Finally, it should be noted that for peterson.7 and szymanski.5, two cases
from the BEEM database, the extensions actually lead to worse results. It turns
out that the infinitely visitable states of the Rabin automata are reachable
already very early on during the state space search, leading to many possi-
ble candidates for piggybacking. This holds for all the extensions. In general,
on the GPU, the extensions have one major drawback compared to standard
piggybacking, which is the fact that vector markings have to be maintained in
the global hash table. This means that additional writes to the global memory
must be done frequently. In case this additional marking work does not pro-
ductively contribute to finding a counter-example, the runtime only increases.
It would be interesting to investigate whether the same can be observed when
model checking is done on the CPU.

Concluding, the piggyback algorithm is very suitable to efficiently check live-
ness properties with a GPU. Under certain circumstances, the suggested exten-
sions improve on these results, in particular when post-processing needs to be
performed, and when the property has a non-empty prefix. In several cases, how-
ever, applying the extensions actually negatively influenced the runtimes. To
overcome this, it seems that a good strategy would be to first run the standard
piggyback algorithm, and stop it if post-processing would be required. Instead
of post-processing, one could then launch the most informed variant (+SBR), to
try to find a counter-example in that way. In case the latter is also not successful,
post-processing is still possible.

6 Conclusions

We presented a method to check linear-time properties using a BFS-based search
technique. It employs the piggybacking algorithm, adapted to take new insights
regarding blocking into account. Furthermore, it uses structural information of
the input model obtained by applying new preprocessing algorithms. Like stan-
dard piggybacking, it is complete for bounded-suffix model checking, i.e. for
finding counter-examples involving cycles no longer than a given bound.

We demonstrated that both the original piggyback algorithm and the pro-
posed extensions generally work effectively in a GPU model checker, but we
expect that the extensions also work well in other settings where BFS-based
techniques need to be applied.

BFS-Based Model Checking of Linear-Time Properties 491

Future Work. We plan to involve fairness constraints, to rule out specific counter-
examples, and reduction techniques, such as partial order reduction [2].

References

1. Alpern, B., Schneider, F.: Defining liveness. Inform. Process. Lett. 21(4), 181–185
(1985)

2. Baier, C., Katoen, J.P.: Principles of Model Checking. The MIT Press, Cambridge
(2008)

3. Barnat, J., Bauch, P., Brim, L., Češka, M.: Designing fast LTL model checking
algorithms for many-core GPUs. J. Parall. Distrib. Comput. 72, 1083–1097 (2012)

4. Barnat, J., Brim, L., Ročkai, P.: A time-optimal on-the-fly parallel algorithm for
model checking of weak LTL properties. In: Breitman, K., Cavalcanti, A. (eds.)
ICFEM 2009. LNCS, vol. 5885, pp. 407–425. Springer, Heidelberg (2009)

5. Barnat, J., Brim, L., Stř́ıbrná, J.: Distributed LTL model-checking in SPIN. In:
Dwyer, M.B. (ed.) SPIN 2001. LNCS, vol. 2057, pp. 200–216. Springer, Heidelberg
(2001)

6. Bartocci, E., DeFrancisco, R., Smolka, S.: Towards a GPGPU-parallel SPIN model
checker. In: SPIN, pp. 87–96. ACM (2014)

7. Blom, S., van de Pol, J., Weber, M.: LTSmin: distributed and symbolic reachability.
In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 354–359.
Springer, Heidelberg (2010)

8. Bošnački, D., Edelkamp, S., Sulewski, D., Wijs, A.: Parallel probabilistic model
checking on general purpose graphic processors. STTT 13(1), 21–35 (2011)

9. Ceška, M., Pilar, P., Paoletti, N., Brim, L., Kwiatkowska, M.: PRISM-PSY: pre-
cise GPU-accelerated parameter synthesis for stochastic systems. In: Chechik,
M., Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol. 9636, pp. 367–384. Springer,
Heidelberg (2016). doi:10.1007/978-3-662-49674-9 21

10. Courcoubetis, C., Vardi, M., Wolper, P., Yannakakis, M.: Memory efficient algo-
rithms for the verification of temporal properties. In: Clarke, E.M., Kurshan, R.P.
(eds.) CAV 1990. LNCS, vol. 531, pp. 233–242. Springer, Heidelberg (1990)

11. Dill, D.: The murphi verification system. In: Alur, R., Henzinger, T.A. (eds.) CAV
1996. LNCS, vol. 1102, pp. 390–393. Springer, Heidelberg (1996)

12. Evangelista, S., Laarman, A., Petrucci, L., van de Pol, J.: Improved multi-core
nested depth-first search. In: Chakraborty, S., Mukund, M. (eds.) ATVA 2012.
LNCS, vol. 7561, pp. 269–283. Springer, Heidelberg (2012)

13. Filippidis, I., Holzmann, G.: An improvement of the piggyback algorithm for par-
allel model checking. In: SPIN, pp. 48–57. ACM (2014)

14. Geldenhuys, J., Valmari, A.: Tarjan’s algorithm makes on-the-Fly LTL verification
more efficient. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988,
pp. 205–219. Springer, Heidelberg (2004)

15. Grädel, E., Thomas, W., Wilke, T. (eds.): Automata, Logics, and Infinite Games.
LNCS, vol. 2500. Springer, Heidelberg (2002)

16. Holzmann, G.J.: Parallelizing the spin model checker. In: Donaldson, A., Parker,
D. (eds.) SPIN 2012. LNCS, vol. 7385, pp. 155–171. Springer, Heidelberg (2012)

17. Holzmann, G., Peled, D., Yannakakis, M.: On nested depth first search. In: SPIN,
pp. 23–32. American Mathematical Society (1996)

18. Johnson, D.: Finding all the elementary circuits of a directed graph. SIAM J.
Comput. 4(1), 77–84 (1975)

http://dx.doi.org/10.1007/978-3-662-49674-9_21

492 A. Wijs

19. Kahn, A.: Topological sorting of large networks. Commun. ACM 5(11), 558–562
(1962)

20. Klein, J., Baier, C.: Experiments with deterministic ω-automata for formulas of
linear temporal logic. TCS 363(2), 182–195 (2006)

21. Kupferman, O.: Automata theory and model checking. In: Clarke, E.M., Henzinger,
T.A., Veith, H. (eds.) Handbook of Model Checking. Springer, New York (2015)

22. Kurshan, R.P., Levin, V., Minea, M., Peled, D.A., Yenigün, H.: Static partial
order reduction. In: Steffen, B. (ed.) TACAS 1998. LNCS, vol. 1384, pp. 345–357.
Springer, Heidelberg (1998)

23. Laarman, A., Langerak, R., van de Pol, J., Weber, M., Wijs, A.: Multi-core nested
depth-first search. In: Bultan, T., Hsiung, P.-A. (eds.) ATVA 2011. LNCS, vol.
6996, pp. 321–335. Springer, Heidelberg (2011)

24. Lang, F.: Refined interfaces for compositional verification. In: Najm, E.,
Pradat-Peyre, J.-F., Donzeau-Gouge, V.V. (eds.) FORTE 2006. LNCS, vol. 4229,
pp. 159–174. Springer, Heidelberg (2006)

25. Molnár, V., Darvas, D., Vörös, A., Bartha, T.: Saturation-based incremental LTL
model checking with inductive proofs. In: Baier, C., Tinelli, C. (eds.) TACAS 2015.
LNCS, vol. 9035, pp. 643–657. Springer, Heidelberg (2015)

26. Pelánek, R.: BEEM: benchmarks for explicit model checkers. In: Bošnački, D.,
Edelkamp, S. (eds.) SPIN 2007. LNCS, vol. 4595, pp. 263–267. Springer, Heidelberg
(2007)

27. Pelánek, R.: Properties of state spaces and their applications. STTT 10(5), 443–
454 (2008)

28. Rabin, M.: Decidability of second order theories and automata on infinite trees.
Trans. AMS 141, 1–35 (1969)

29. Schwoon, S., Esparza, J.: A note on on-the-fly verification algorithms. In:
Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 174–190.
Springer, Heidelberg (2005)

30. Sun, J., Liu, Y., Dong, J.S., Wang, H.H.: Specifying and verifying event-based
fairness enhanced systems. In: Liu, S., Araki, K. (eds.) ICFEM 2008. LNCS, vol.
5256, pp. 5–24. Springer, Heidelberg (2008)

31. Tarjan, R.: Depth-first search and linear graph algorithms. SIAM J. Comput. 1(2),
146–160 (1972)

32. Vardi, M., Wolper, P.: An automata-theoretic approach to automatic program
verification. In: LICS, pp. 332–344. IEEE (1986)

33. Wijs, A.: GPU accelerated strong and branching bisimilarity checking. In: Baier,
C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 368–383. Springer,
Heidelberg (2015)

34. Wijs, A.J., Bošnački, D.: Improving GPU sparse matrix-vector multiplication for
probabilistic model checking. In: Donaldson, A., Parker, D. (eds.) SPIN 2012.
LNCS, vol. 7385, pp. 98–116. Springer, Heidelberg (2012)

35. Wijs, A., Bošnački, D.: GPUexplore: many-core on-the-fly state space exploration
using GPUs. In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014 (ETAPS). LNCS,
vol. 8413, pp. 233–247. Springer, Heidelberg (2014)

36. Wijs, A., Bošnački, D.: Many-Core On-The-Fly Model Checking of Safety Proper-
ties Using GPUs. STTT (2016)

37. Wijs, A., Katoen, J.-P., Bošnački, D.: GPU-based graph decomposition into
strongly connected and maximal end components. In: Biere, A., Bloem, R. (eds.)
CAV 2014. LNCS, vol. 8559, pp. 310–326. Springer, Heidelberg (2014)

BFS-Based Model Checking of Linear-Time Properties 493

38. Wu, Z., Liu, Y., Liang, Y., Sun, J.: GPU accelerated counterexample generation in
LTL model checking. In: Merz, S., Pang, J. (eds.) ICFEM 2014. LNCS, vol. 8829,
pp. 413–429. Springer, Heidelberg (2014)

39. Wu, Z., Liu, Y., Sun, J., Shi, J., Qin, S.: GPU accelerated on-the-fly reachability
checking. In: ICECCS, pp. 100–109. IEEE (2015)

	BFS-Based Model Checking of Linear-Time Properties with an Application on GPUs
	1 Introduction
	2 Preliminaries
	3 On-The-Fly BFS-Based Property Checking
	3.1 A Piggyback Algorithm for Rabin Automata
	3.2 Static Analysis of Lts Networks
	3.3 Using the Static Analysis Results in the Piggyback Algorithm

	4 GPU Model Checking
	5 Experimental Results
	6 Conclusions
	References

