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Abstract. Soufflé is an open source programming framework that
performs static program analysis expressed in Datalog on very large code
bases, including points-to analysis on OpenJDK7 (1.4M program vari-
ables, 350K objects, 160K methods) in under a minute. Soufflé is being
successfully used for Java security analyses at Oracle Labs due to (1)
its high-performance, (2) support for rapid program analysis develop-
ment, and (3) customizability. Soufflé incorporates the highly flexible
Datalog-based program analysis paradigm while exhibiting performance
results that are on-par with manually developed state-of-the-art tools.
In this tool paper, we introduce the Soufflé architecture, usage and
demonstrate its applicability for large-scale code analysis on the Open-
JDK7 library as a use case.

1 Introduction

Among the reasons for the slow industrial adoption of static program analysis
is the lack of sufficient customizability and scalability in tools. Recently, the
use of Datalog-like languages, has had a resurgence in several computer science
communities [9], particularly, in the area of program analysis [2–4,12,16,18]
where tools such as µZ [10], LogicBlox [11] and bddbddb [18] have shown great
promise. In these tools, Datalog acts as a domain specific language to express
custom program analyses concisely, reducing the complexity of developing pro-
gram analyzers. The drawback of this approach is that program analyses speci-
fied in Datalog typically experience reduced performance compared to manually
implemented tools. A notable reason for this decrease in performance appears to
be the “one size fits all” approach of evaluating Datalog programs, i.e., Datalog
engines generally lack the ability to specialize their evaluation process for a given
instance of a program analysis specification.

To close the performance gap, we have developed a tool called Soufflé that
overcomes the performance limitations of standard Datalog evaluation by per-
forming an efficient synthesis of Datalog specifications to executable C++ pro-
grams. As a result, Soufflé is able to perform analyses on-par with state-of-the-
art manual tools while retaining the advantages of employing a domain specific
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Fig. 1. Comparison: standard Datalog evaluation versus the architecture of Soufflé

language for expressing static program analyses. For example, [6] reports the
ground-breaking capability of obtaining points-to analysis results for the Open-
JDK library in under a minute. With the same dataset, Soufflé can obtain a
similar performance (35s) using a general purpose analysis infrastructure on a
multi-core commodity desktop system.

In this tool paper, we give an overview of the Soufflé framework;
notably its architecture, optimizations and expected performance on very large
code bases. We conclude with a summary of on-going developments of the
Soufflé infrastructure.

2 How It Works

A Datalog program [1] consists of an extensional database, which is defined by
facts, and an intensional database, which is defined by rules. In a setup for static
program analysis, the extensional database represents an input program in rela-
tional form. The relational representation of an input program is obtained from
an extractor [15] describing the relevant semantics of the input program for a
given program analysis. The intensional database represents the program analy-
sis specification phrased as Horn clause formulae over finite domains. Figure 1(a)
illustrates the workflow for static program analysis in Datalog. The query result
of the Datalog execution represents the actual result of the program analysis.
While standard schemes for evaluating Datalog are generally optimized for reduc-
ing the amount of redundant computation, e.g., the conventional, interpreter-
based semi-näıve evaluation scheme [1] as shown in Fig. 1(b), they lack the ability
to specialize their evaluation for a given program analysis specification instance.

Soufflé takes a different approach: Instead of evaluating a Datalog pro-
gram on-the-fly, we treat a Datalog program as a specification that is synthe-
sized to a C++ program. The C++ program is compiled, and executed with
the extensional database (i.e. facts) as an input. Essentially, the generated exe-
cutable becomes an analyzer in its own right. Figure 1(c) depicts our translation
scheme, where the Datalog specification is first parsed and semantically checked.
The input specification is then translated internally to an imperative Relational
Algebra Machine (RAM) program. The RAM program is further translated to a
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Fig. 2. Specialization Hierarchy and First Futamura Projection of Semi-Näıve
Evaluation

C++ program with OpenMP annotations for parallel execution and C++ tem-
plate based meta-programming elements. In the last stage, an OpenMP/C++
compiler translates the generated code to a highly optimized, parallel program.

2.1 A Hierarchy of Specializations

To achieve a synthesis of Datalog specifications to C++, we follow a staged
specialization hierarchy as depicted in Fig. 2(a). At each stage, a specialization
step, as characterized by Futamura projections [8], is applied. The foundation
is provided by an abstract transformation Mix that, given an interpreter Int
and a source program Source, yields a specialized program amalgamating the
interpreter and the source program. The specialized program performs the same
computation as the source program (executed by the interpreter) – yet more
efficiently. In Fig. 2(b), the semantic equivalence is shown between evaluation
under an interpreter Int and the program produced by the Mix transforma-
tion [8]. What is of particular interest, is that at each specialization phase,
information is revealed that enables opportunities for code optimizations that
were not possible at earlier stages. As a consequence, the binary code produced
by our specialization hierarchy is on-par in terms of run-time and memory usage
with state-of-the-art hand crafted code.

The first specialization PRAM=Mix(Intdl,Idb) sees the Semi-Näıve Evalua-
tion [1] as the interpreter, Intdl. It is specialized with the intensional database,
Idb, corresponding to the analysis specification. As a result, we receive a rela-
tional algebra machine program PRAM that expresses the computation of the
specified analysis as a series of fix-point computation steps over relational alge-
bra operations. From a high-level viewpoint, the specialization of the Semi-Näıve
evaluation is a translation of a declarative Datalog program to an imperative
relational algebra program.

The next application of Futamura’s projection is performed on the RAM
program, i.e., PC++<>

= Mix(IntRAM,PRAM), that has been generated by the
first stage and the RAM interpreter IntRAM. The conducted specializations tar-
get the efficient structuring of loop-based join operations and the identification
of optimal index support, in order to reduce the worst-case runtime complexity
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Fig. 3. Java-like input program, a graphical representation of its control-flow, and
security specification in Soufflé

of the RAM program. However, index management is expensive and a minimal
number of indices is desirable. In Soufflé we employ a novel, optimal and
polynomial-time algorithm that is inspired by Dilworth’s theorem [7] to com-
pute only necessary indices. The idea of the algorithm is to compute partitions
of chains in a lattice of indices. From each chain, a maximum index is computed
that subsumes all other indices in the chain. This optimization results in a large
run-time improvement in the resulting analyzer. After specializing the relational
algebra program, C++ code that makes extensive use of templates is generated.

The final specialization step, PC++ = Mix(Int<>,PC++<>
), is performed

while compiling the generated C++ program. This Futamura projection is imple-
mented using template-based meta-programming techniques [17]. With meta-
programming techniques, data structures and algorithms are specialized by sta-
tic information, thereby hoisting computations from run-time to compile-time.
E.g., data structure interfaces are realized in form of C++ concepts rather than
polymorphic C++ base classes to eliminate virtual-call dispatches and run-time
type checks. The generated data structures are highly specialized towards the
use of the corresponding relations in the input program. We employ efficient par-
allel variations of B-trees and Tries, with customized data element, node, and
iterator types. Additionally, primary and secondary index support is provided
for efficient operations on the represented relation in the program. For exam-
ple, one of the most time-consuming operations with the use of indices is the
comparison of two tuples. For this purpose we instantiate specialized versions
of templatized lexicographical order functions in order to removing unnecessary
control-flow and memory access overhead from the analysis run-time.

Our staged-translation approach using a specialization hierarchy coupled
with standard Datalog optimizations and specialized relational data structures
allows Soufflé to analyze very large code bases, previously considered to be
impractical for Datalog-based engines. The generated C++ code is packaged in
form of header files for a smooth integration with host applications.

2.2 An Example of the Specialization Process

Figure 3 illustrates a simple security analysis for an example assuming that there
is a low and high security state in a program. The invocation of a security
sensitive method vulnerable is permitted only in the high-security state. A call
to the method protect transfers the security state from low to high if permitted.
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The example code of Fig. 3 would not violate the imposed security policy if it
can be assumed that i < j whenever m is invoked. However, since this can not
be ensured, m exhibits a security violation which we would like to detect. The
control-flow graph of m is shown next to the code fragment. It has the start
nodes s, and nodes �1,�2, and �3 representing statements in the input program.
An edge (x, y) ∈ E between two nodes represents a potential transfer of control.
A statement x ∈ P raises the security level.

A simple analysis verifying the imposed security policy computes all state-
ments that can be reached without passing the protect function. If a call to
vulnerable is included in this set, the security policy is violated. Such a secu-
rity analysis is be specified by the Soufflé code listed next to the control-flow
graph in Fig. 3. The first section of the program declares relations used in the
Soufflé program. The relation E is defined as a binary relation between two
Node elements and the sets P and I contain elements of type Node. The qualifier
input denotes that the relations are an extensional database and are provided
as an input when executing the analysis. The set I contains all nodes in the
control-flow that are not secure and is denoted as a result of the analysis using
the qualifier output. In particular, if node �3 which is a vulnerable call is in
set I, the method m does not fulfill the security policy to be enforced and would
thus be identified as insecure.

The analysis always assumes the entry node s to be insecure by adding it to
set I via I("s"). The propagation rule

I(y) :- I(x), E(x,y), !P(y).

adds node y to the set of insecure nodes if (1) node x is insecure, (2) there is a
control-flow from x to y, and (3) the target node y does not raise the security
level.

Soufflé translates the given analysis specification in stages. The specializa-
tion hierarchy first fuses the semi-näıve evaluation with rules from the analysis
as shown in Fig. 4: For the recursively defined set I code computing a fixed-point
is generated. The set I is thereby supported by two auxiliary sets I′ and Δ I. The
set I′ represents the newly gained knowledge within an iteration of the fix-point
computation and set Δ I represents the newly gained knowledge of the previous
iteration. The fix-point computation is performed in the while loop from line 2
to line 9 of the RAM program listed by Fig. 4(a). The first section of the loop
body (lines 3 - 7) computes I′ using Δ I as an input. The loop starting in line 4
iterates over all nodes in Δ I and the nested loop starting in line 5 iterates over
all edges in the control flow graph. If any of those edges links some node x to a
previously discovered insecure node y present in Δ I, where x is not a protect
call itself and has not been marked as insecure before, it is add to the newly
deduced set of insecure nodes I′ (lines 6 and 7). In the last two statements of
the loop body (i.e. lines 8 and 9) the newly gained knowledge of relation I′ is
added to relation I and I′ becomes Δ I. The fixed-point calculation terminates
if no new insecure nodes could be identified.

The pseudo-code of the Futamura projection is not optimal since it might
have a worst-case complexity of O(n · m) where n is the number of nodes in the
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Fig. 4. Running example

control-flow graph and m is the number of edges in the control-flow graph. To
improve the performance of the program, we specialize the loop traversal of the
loop in line 5 by employing an index. The index filters out all pairs in the edge
relation whose source is not node u, i.e., all the edges are selected which emanate
of node u denoted by the set E(u, ). This specialization requires an index on
relation E, yet significantly reduces the runtime complexity. Typical analyses
result in potentially hundreds of indices, making index management expensive
if performed naively. We therefore employ an optimal, minimal index selection
technique based on Dilworth’s theorem [7] to select only necessary indices since
an index may subsume several indices. Suppose we had another access to relation
E on both u and v attributes, i.e., E(u, v). A naive implementation would be to
have two indices defined by the lexicographical orders u and u<v, however, the
minimal solution would be to have only one index, namely, u<v as it subsumes
the index with only u. Some information to our solution to this combinatorial
problem can be found in [13].

To implement indices from the previous step, we employ templatized B-Trees
that require a comparison function for two tuples in the relation. The comparison
function is implemented as a lexicographical order in the form of a template as
sketched below,

template<int...> struct Comperator;
template<int i, int ... tail > struct Comperator<i,tail...> {
static bool cmp(const tuple& a, const tuple& b){
return a[ i ] < b[i ] || (a[ i ] == b[i] && Comperator<tail...>::cmp(a,b));
}
};
template<> struct Comperator<> {

static bool cmp(const tuple&, const tuple&){ return true; }
};

The variadic template for the struct Comperator is parametrized by the columns
in order. E.g., the call Comperator<2,0>::cmp(a,b) compares the tuples a and
b by checking whether the third element of a is less than the third element of b.
If the comparison results in a tie, the first elements of both tuples are compared
to determine the order between the two tuples a and b. The operator is defined
recursively: the base case is given by the struct Comperator<> considering
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every tuple equal, and the inductive case by struct Comperator<i,tail...>,
comparing the i-th components and, if equal, delegating the comparison to
Comperator<tail...>. The expansion of the template for a given instance such
as Comperator<2,0> is performed at compile-time and delivers, in combination
with function inlining, significant performance gains for index construction and
retrieval. Without applying meta-programming techniques that rely on program
specializations, i.e., pushing computations from runtime to compile-time, these
performance gains would not be achievable.

3 Case Study: OpenJDK7

In this section we present our experience using Soufflé as a Java security
analysis tool on the Java Development Kit (JDK). We point the reader to [5]
for information on the Java vulnerabilities work at Oracle. For more detailed
performance data on the techniques used in Soufflé, we refer the reader to [13].

In Table 1 we present three types of analyses performed on the OpenJDK7-
b147. Due to the sheer size of OpenJDK7 (1.4M variables, 350K heap objects,
160K methods, 590K invocations and 17K types) such analyses are typically
regarded as either impractical for most tools or at the very least, extremely
challenging. The CI column refers to a context-insensitive points-to analysis
and the CS refers to a context-sensitive points-to analysis. Points-to analysis is
the main building block of most security analyses performed and are typically
dominating the overall execution time. The last column, Security, refers to a
large, composite security analysis similar to the caller sensitive method analysis
in [5].

For our evaluation, we compare the performance of bddbddb [18], Z3’s Data-
log extension µZ [10], an SQLite based Datalog engine [14], and a 8-core parallel
version of Soufflé. Each analysis has been ported to the respective Datalog
variation of the evaluated tools. The resulting specifications typically comprise
a few thousand lines of code. For the Soufflé based specifications, Soufflé’s
module system has been utilized to facilitate the reuse of code among the three
analysis, reducing the necessary development effort.

Our experiments reveal the limited capability of pre-existing Datalog-based
tools when analyzing very large code bases. The CI analysis represents a very
simple points-to analysis that does not construct the call-graph on the fly. A

Table 1. Comparison of Datalog evaluation tools for analyses on the OpenJDK7 b147
library, executing on an 8 core Intel Xeon E5-2690 v2 @ 3.0 GHz server system. DNF
= Did Not Finish within 18 h.

CI CS Security

Tool Δt [hh:mm::ss] Memory [GB] Δt [hh:mm::ss] Memory [GB] Δt [hh:mm::ss] Memory [GB]

bddbddb 0:30:00 5.7 DNF DNF DNF DNF

SQLite 6:20:00 40.2 DNF DNF DNF DNF

µZ DNF DNF DNF DNF DNF DNF

Soufflé 0:00:35 8.5 6:44:08 206.4 14:45:01 75.3
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hand-crafted version of this analysis is reported to run under a minute [6]. For
the CI analysis, bddbddb performs the analysis in a reasonable amount of time.
However Soufflé outperforms bddbddb in terms of run-time by more than 50×
consuming a comparable amount of memory. In the case of the CS and Security
analyses, Soufflé is the only tool capable of performing the analyses within
the 18 h time limit imposed by the computation resources available to us for our
evaluations. The Z3 based versions did not manage to finish any of our evaluated
analyses in time.

4 Conclusion and Current Developments

We have presented Soufflé, a Datalog-based analysis tool that instead of evalu-
ating Datalog, performs several specialization and optimization steps to produce
a compiled, binary analyzer that can handle very large code bases. Soufflé is
publicly available1 and is actively developed by both Oracle and several uni-
versities. Soufflé supports a range of Datalog language extensions to aid in
the specification of program analyses and resulting analyzers may be directly
included into host applications as a header-only library.
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4. Alpuente, M., Feliú, M.A., Joubert, C., Villanueva, A.: Datalog-based program
analysis with BES and RWL. In: de Moor, O., Gottlob, G., Furche, T., Sellers, A.
(eds.) Datalog 2010. LNCS, vol. 6702, pp. 1–20. Springer, Heidelberg (2011)

5. Cifuentes, C., Gross, A., Keynes, N.: Understanding caller-sensitive method vul-
nerabilities: a class of access control vulnerabilities in the java platform. In: Pro-
ceedings of the 4th ACM SIGPLAN International Workshop on State of the Art
in Program Analysis. SOAP 2015, NY, USA, pp. 7–12. ACM, New York (2015)

6. Dietrich, J., Hollingum, N., Scholz, B.: Giga-scale exhaustive points-to analysis
for java in under a minute. In: Proceedings of the 2015 ACM SIGPLAN Inter-
national Conference on Object-Oriented Programming, Systems, Languages, and
Applications. OOPSLA 2015, NY, USA. pp. 535–551. ACM, New York (2015)

1 http://souffle-lang.github.io.

http://souffle-lang.github.io


430 H. Jordan et al.

7. Dilworth, R.: A decomposition theorem for partially ordered sets. Ann. Math.
2(51), 161–166 (1950)

8. Futamura, Y.: Partial evaluation of computation process - an approach to a
compiler-compiler. High. Order Symbolic Comput. 12(4), 381–391 (1999)

9. Green, T.J., Huang, S.S., Loo, B.T., Zhou, W.: Datalog and recursive query
processing. Found. Trends Databases 5(2), 105–195 (2013)

10. Hoder, K., Bjørner, N., de Moura, L.: µZ– an efficient engine for fixed points with
constraints. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806,
pp. 457–462. Springer, Heidelberg (2011)

11. LogicBlox Inc.: Declartive cloud platform for applications that combine transac-
tions & analytics. http://www.logicblox.com

12. Naik, M., Aiken, A., Whaley, J.: Effective static race detection for Java. SIGPLAN
Not. 41(6), 308–319 (2006)

13. Scholz, B., Jordan, H., Subotic, P., Westmann, T.: On fast large-scale program
analysis in datalog. In: Zaks, A., Hermenegildo, M.V. (eds.) Proceedings of the
25th International Conference on Compiler Construction, CC 2016, Barcelona,
Spain, 12–18 March 2016, pp. 196–206. ACM (2016)

14. Scholz, B., Vorobyov, K., Krishnan, P., Westmann, T.: A datalog source-to-
source translator for static program analysis: an experience report. In: 24th Aus-
tralasian Software Engineering Conference, ASWEC 2015, Adelaide, SA, Australia,
28 September – 1 October, 2015, pp. 28–37. IEEE Computer Society (2015)

15. Smaragdaiks, Y., Bravenboer, M., Kastrinis, G.: Doop: A framework for java
pointer analysis. http://doop.program-analysis.org/

16. Smaragdakis, Y., Kastrinis, G., Balatsouras, G.: Introspective analysis: context-
sensitivity, across the board. In: PLDI, NY, USA, pp. 485–495. ACM, New York
(2014)

17. Veldhuizen, T.L.: C++ templates as partial evaluation. In: Danvy, O. (ed.) PEPM,
pp. 13–18. University of Aarhus (1999). http://dblp.uni-trier.de/db/conf/pepm/
pepm1999.html#Veldhuizen99

18. Whaley, J., Avots, D., Carbin, M., Lam, M.S.: Using datalog with binary decision
diagrams for program analysis. In: Yi, K. (ed.) APLAS 2005. LNCS, vol. 3780, pp.
97–118. Springer, Heidelberg (2005)

http://www.logicblox.com
http://doop.program-analysis.org/
http://dblp.uni-trier.de/db/conf/pepm/pepm1999.html#Veldhuizen99
http://dblp.uni-trier.de/db/conf/pepm/pepm1999.html#Veldhuizen99

	SOUFFLÉ: On Synthesis of Program Analyzers
	1 Introduction
	2 How It Works
	2.1 A Hierarchy of Specializations
	2.2 An Example of the Specialization Process

	3 Case Study: OpenJDK7
	4 Conclusion and Current Developments
	References


