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Abstract. Boolean functional synthesis is the process of automatically
obtaining a constructive formalization from a declarative relation that
is given as a Boolean formula. Recently, a framework was proposed for
Boolean functional synthesis that is based on Craig Interpolation and in
which Boolean functions are represented as And-Inverter Graphs (AIGs).
In this work we adapt this framework to the setting of Binary Deci-
sion Diagrams (BDDs), a standard data structure for representation
of Boolean functions. Our motivation in studying BDDs is their com-
mon usage in temporal synthesis, a fundamental technique for construct-
ing control software/hardware from temporal specifications, in which
Boolean synthesis is a basic step. Rather than using Craig Interpola-
tion, our method relies on a technique called Self-Substitution, which can
be easily implemented by using existing BDD operations. We also show
that this yields a novel way to perform quantifier elimination for BDDs.
In addition, we look at certain BDD structures called input-first, and
propose a technique called TrimSubstitute, tailored specifically for such
structures. Experiments on scalable benchmarks show that both Self-
Substitution and TrimSubstitute scale well for benchmarks with good
variable orders and significantly outperform current Boolean-synthesis
techniques.

1 Introduction

Boolean functions appear in all levels of computing, and can fairly be considered
as one of the most fundamental building block of modern digital computers.
Often, the most intuitive way of defining a Boolean function is not construc-
tively, describing how the outputs can be computed from the inputs, but rather
declaratively, as a relation between input and output values that must be sat-
isfied [4]. Nevertheless, in order to implement a function in a practical format,
such as in a circuit or program, a declarative definition is not enough, and a con-
structive description of how to compute the output from the input is necessary.
The process of going from a declarative formalization to a constructive one is
called functional synthesis [14]. This transformation is a challenging algorithmic
problem, which we focus on in this paper.

In this work, we follow a framework proposed in [16,17] for algorithmically
synthesizing a correct-by-construction constructive representation of a desired
Boolean function from a relational specification. Such relation is given as a
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propositional formula that relates input and output variables. Our construc-
tion ensures that when the input is realizable, that is, there is a corresponding
output for that specific input, the function that we synthesize produces this out-
put. More formally, given a specification in the form of a characteristic function
f : B

m × B
n → B, where f(x ,y) = 1 iff y is a correct output for the input

x , we synthesize functions rf : Bm → B and g : Bm → B
n with the guaran-

tee that rf (x ) = 1 precisely when there exists some y for which f(x ,y) = 1
and f(x , g(x )) = 1 for every input vector x for which rf (x ) = 1. As such, our
framework consists of two phases. The first phase is the realizability phase, and
requires the computation of the Boolean realizability function rf . The second
phase is the function-construction phase, in which we construct the function g.

The proposed framework in [17] is based on representing Boolean functions
by means of And-Inverter Graphs (AIGs) [20]. In this paper we adapt this frame-
work to the setting of Reduced Ordered Binary Decision Diagrams (BDDs) [6],
a data structure designed for the efficient representation and manipulation of
Boolean functions. BDDs provide easy-to-manipulate canonical (and minimal)
representations of Boolean functions in which Boolean operations can be imple-
mented efficiently. BDDs have found numerous applications in a variety of set-
tings, including model checking [7], equivalence checking [24], and others. Our
main motivation for using BDDs is that Boolean functional synthesis is also a
basic step in temporal synthesis, a fundamental technique for constructing control
software/hardware from temporal specifications [26], which is most often imple-
mented by using BDDs, cf. [3]. Thus, our approach can be easily incorporated
to temporal-synthesis tools. We discuss the differences between the AIG-based
and BDD-based approaches below.

At the heart of our approach there is a technique we call Self-Substitution, a
simplification of the Craig Interpolation-based approach that appears in [17]. A
single-step Self-Substitution enables us to extract a function g syntactically from
the function f for a case in which there is a single output variable. When there
are multiple output variables, we iterate the single-step for each of the output
variables. In this way we can use Self-Substitution both for quantifier elimination,
in the realizability phase, and for constructing a function g, one output variable
at a time. We use the software tool CUDD [28] for our implementation, and
show that Self-Substitution can be efficiently implemented through basic BDD
operations by using the CUDD API. Thus, Self-Substitution provides a novel
way to perform quantifier elimination for BDDs, where the standard technique
has been Shannon Expansion [6].

We begin the synthesis process by converting the relational specification
f into a BDD. To obtain rf we quantify out the output variables existen-
tially one by one, which can be done by either Shannon Expansion or Self-
Substitution. Eliminating the output variables one by one yields a realizabil-
ity sequence fn, . . . , f0 of BDDs, where fn is the specification f , and f0 is the
desired realizability function rf . In the function-construction phase again we use
Self-Substitution, leveraging the realizability sequence f1, . . . , fn to construct a
function, represented as a BDD, for each output variable. At the end, we obtain
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an n-rooted BDD for the implementation function g, where each root repre-
sents a single output variable. Motivated by [22], we study Self-Substitution on
a specific BDD order called input-first. In input-first BDDs, all input variables
precede output variables. We develop a novel method, TrimSubstitute, which
tailors Self-Substitution for input-first BDDs.

Our experimental evaluation relies on scalable problem instances rather than
a random collection of problem instances, so we can evaluate the scalability of
our techniques. Our evaluations demonstrate that the proposed framework scales
well when the problem admits a good variable order, which is a well-established
property of BDDs [6]. Our comparisons also showed that our method outperforms
the previous AIG-based approach and other state-of-the-art tools by orders of
magnitude. We also compare Self-Substitution as a quantifier-elimination tech-
nique against the standard Shannon-Expansion technique, and show that in
many cases Self-Substitution scales better than Shannon Expansion. In addi-
tion, we show that TrimSubstitute outperforms Self-Substitution on input-first
BDDs. The tool we built to implement our framework, RSynth, is available
on-line1.

The contributions of this paper are as follows: We offer a BDD-based app-
roach for Boolean Synthesis that is simple and requires only basic BDD proce-
dures. We show that our method outperforms other synthesis tools on scalable
benchmarks. Our method also suggests a novel way for BDD based quantifier
elimination. In addition we also offer a technique for input-first BDD in which we
tailor our method specifically to this BDD order and show that we outperform
all others tools.

Related Work. Functional Boolean synthesis has been the goal of a number of
different works over the years, focusing on different applications in both hardware
and software design. In some literature, our definition of functional synthesis is
also called uniformization [13]. Note however, that our definition is different
than that of logic synthesis, which is used in tools such as ABC, in which a given
circuit structure is transformed to meet certain criteria [5].

Several approaches have been proposed for functional Boolean synthesis,
but one trend that can be observed among them is that BDDs seem to be
a popular choice of data structure to use for the underlying representation of
Boolean functions, despite a common concern regarding their scalability. Kuncak
et al. developed a general framework for functional synthesis, focusing mainly
on unbounded domains, such as integer arithmetic and sets with size constraints
[22]. For Boolean logic, they suggest to start with a BDD following what we call
an input-first order. Our work on input-first BDDs can be viewed as an elabo-
ration of their work. Tronci considered synthesis of Boolean functions in a work
that is focused on synthesizing optimal controllers [29]. He mentioned a basic
form of Self-Substitution for function construction to extract an implementation
function from a relational specification, but did not develop the idea and did
not exploit Self-Substitution as a quantifier-elimination technique. Kukula and
1 http://www.cs.rice.edu/∼lm30/RSynth/.

http://www.cs.rice.edu/~lm30/RSynth/
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Shiple [21] were the first to address explicitly the issue of converting relational to
functional specifications. They present a direct mapping of a BDD for a relation
to a circuit, where each node of the BDD is converted into a hardware module
composed of several logic gates. Their approach is quite complex, and was not
accompanied by an empirical evaluation. Bañeres, Cortadella, and Kishinevsky
also addressed the problem for converting relational to functional specifications
[1]. Their approach is based on a recursive search in which the cost function is
a parameter. In this sense, their work is focused on optimizing the output size,
rather than scalability, as in our work. Another search-based synthesis tool is
Sketch [27], where the user specifies the behavior of a desired function, which
the tool finds by searching through the space of possible implementations. A
very recent work of [19] adapts [17] to synthesis for relations specified as large
conjunctions of small formulas. Their work also makes use of Self-Substitution
for function construction, but does not use BDDs. Certain QBF solvers [2,15]
include the capability of producing witnesses from the proof of validity of a for-
mula. For valid QBF formulas these witnesses can be computed fairly efficiently,
but cannot be applied when the formula is not valid.

Boolean synthesis lies at the heart of temporal synthesis, as temporal synthe-
sis for the temporal formula �f (“globally f”), where f is a Boolean formula,
essentially requires functional Boolean synthesis for the formula f . There are
several tools for temporal synthesis [10,18,25], yet the focus of such tools is
on dealing with temporal formulas, while dealing with the underlying Boolean
formulas is ignored or delegated to Boolean-synthesis tools.

Our framework is based on that of Jiang [16,17], also concerned with extract-
ing functions from Boolean relations. That work uses and-inverters graphs
(AIGs) as the basic data structure, and uses Craig Interpolation for quanti-
fier elimination and witness extraction. As seen below, our experiments have
shown that this interpolation-based approach does not scale well and is very
unpredictable. This has also been noted in [19].

Since our approach can also be used for quantifier elimination, we compare it
with the standard quantifier elimination technique of Shannon Expansion. Other
quantifier elimination techniques such as Goldberg and Manolios [12], require
the formulas to be in CNF form, rather than the BDD representation we use. In
addition, these techniques eliminate variables in blocks, while to compute each
witness variable separately, our synthesis requires the variables to be eliminated
individually.

2 Preliminaries

Boolean Functions. We denote by B = {0, 1} the set of Boolean values.
For simplicity, we often conflate an m-ary Boolean function f : B

m → B

with its representation by means of a Boolean formula f with m proposi-
tional variables. Then f(σ) = 1 if and only if σ ∈ B

m is a satisfying assign-
ment for f . Two formulas f(x ) and f ′(x ) are logically equivalent, denoted
f ≡ f ′, if f(σ) = f ′(σ) for every assignment σ for x . Given formulas
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f(x1, . . . , xm) and f ′(y1, . . . , yn), we use f [xi �→ f ′] to denote the formula
f(x1, . . . , xi−1, f

′(y1, . . . , yn), xi+1, . . . , xm), representing the functional compo-
sition of f in variable xi with f ′. A Quantified Boolean Formula, or QBF, is
a Boolean formula in which some variables can be universally or existentially
quantified. In this work we assume that all the QBF are in prenex normal
form in which all the quantifiers are grouped together before the quantifier-
free part of the formula. Every QBF can be converted into a logically equiv-
alent quantifier-free formula through a process called quantifier elimination.
This is usually performed using the technique of Shannon Expansion [6], where
∀xf ≡ f [x �→ 0] ∧ f [x �→ 1], and ∃xf ≡ f [x �→ 0] ∨ f [x �→ 1]. Given a QBF
in prenex normal form, we can obtain its equivalent quantifier-free formula by
eliminating the quantifiers from the inside out.

Binary Decision Diagrams. A [Reduced Ordered] Binary Decision Diagram,
or BDD, is a data structure that represents a Boolean function as a directed
acyclic graph [6]. BDDs can be seen as a reduced representation of a binary deci-
sion tree of a Boolean function. We require that variables are ordered the same
way along every path of the BDD (“ordered”) and that the BDD is minimized
to eliminate duplication (“reduced”). For a given variable order, the reduced
BDD is canonical. The variable order used can have a major impact on its
size, and two BDDs representing the same function but with different orders
can have an exponential difference in size. Consequently, finding a good vari-
able order is essential for BDD-based Boolean reasoning. Since BDDs represent
Boolean functions, they can be manipulated using standard Boolean operations.
We overload the notation of the operators ¬, ∧, ∨ and functional composition
(e.g. B[xi �→ B′]) with equivalent semantics to their counterparts for Boolean
formulas.

3 Theoretical Framework

3.1 Realizability and Synthesis

The problem of synthesis of Boolean functions is formally defined as follows.

Problem 1. Given a relation between two vectors of Boolean variables repre-
sented by the characteristic function f : B

m × B
n → B, obtain a function

rf : B
m → B such that rf (x ) = 1 exactly for the inputs x ∈ B

m for which
∃yf(x ,y), and a function g : Bm → B

n such that f(x , g(x )) = 1 if and only if
rf (x ) = 1.

In the context of this problem, f is called the specification, g is called the
implementation or witness function, and rf is called a realizability function. The
specification is interpreted as describing a desired relationship between inputs
and outputs of a function, and the implementation describes how to obtain
an output from an input such that this relationship is maintained. The real-
izability function indicates for which inputs the specification can be satisfied.
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in the expression f(x ,y), x = (x1, . . . , xm) are called the input variables, and
y = (y1, . . . , yn) the output variables. The function that gives the i-th bit of
g(x ) is called a witness-bit function, and is denoted by gi(x ). A Boolean func-
tion f(x ,y) is said to be realizable for an input σ if ∃yf(σ,y) ≡ 1. We say that
f is realizable if ∀x∃yf(x ,y) ≡ 1. For every assignment σ for x such that f is
realizable for σ we will have that rf (σ) = 1. In this case, g(σ) is called a witness
for σ. In case rf (σ) = 0 we are not concerned about the output of g since f is
unrealizable for σ.

Following [17], the structure of our solution takes two steps, (1) Realizability,
where we obtain rf by constructing a sequence of formulas with progressively
fewer output variables, and (2) Function construction, in which we synthesize a
witness-bit function from every formula in the sequence obtained in the realiz-
ability step.

To perform both steps, we suggest a novel method called Self-Substitution. In
Sect. 2 we observed that Boolean quantifier elimination is usually performed via
Shannon Expansion. More recently, it was proposed to use Craig Interpolation
for quantifier elimination (see [16]). We now introduce Self-Substitution as an
alternative quantifier-elimination technique.

Lemma 1 (Self-Substitution for Quantifier Elimination). Let ϕ = Qyf(x, y) be
a QBF formula, where Q is either a universal or existential quantifier and f
is quantifier-free. Let q be 0 if Q is universal and 1 if Q is existential. Then,
Qyf(x, y) is logically equivalent to f(x, f(x, q)), and is also logically equivalent
to f(x,¬f(x,¬q)).

Proof. If Q is an existential quantifier, we prove that for every assignment σ for
x , ∃yf(σ, y) = 0 iff f(σ, f(σ, 1)) = 0: If ∃yf(σ, y) = 0, then f(σ, y) = 0 for all
possible assignments of y. Since this includes f(σ, 1), then f(σ, f(σ, 1)) = 0. On
the other hand, if f(σ, f(σ, 1)) = 0, then it cannot be the case that f(σ, 1) = 1
(otherwise f(σ, f(σ, 1)) = f(σ, 1) = 1). Therefore, f(σ, 1) = 0, and so f(σ, 0) =
f(σ, f(σ, 1)) = 0. Since both f(σ, 1) = 0 and f(σ, 0) = 0, then ∃yf(σ, y) = 0.
The claim that for every assignment σ, ∃yf(σ, y) = 0 iff f(σ,¬f(σ, 0)) = 0
is proved analogously. The proof when Q is a universal quantifier is derived by
using the identity ∀yf(x , y) ≡ ¬∃y¬f(x , y). 
�

Following Lemma 1, quantifier elimination can be performed by replacing
quantified formulas by their quantifier-free equivalents. Table 1 compares the
formulas produced by quantifier elimination using Shannon Expansion and Self-
Substitution.

The Self-Substitution method looks surprising at first glance. In the Shannon-
Expansion method it is easy to see that the size of the quantifier-free for-
mula becomes exponential compared to its quantified version, as it is a dis-
junction of all possible assignments. In Self-Substitution such a blow-up also
takes place, but the encapsulation of all assignments is more subtle. The
depth of the nested functions for a formula with n quantified variables is
n + 1. Therefore all the possible assignments for the quantified variables can
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Table 1. Equivalent formulas using each method of quantifier elimination

∀yf(x , y) ∃yf(x , y)

Shannon Expansion f(x , 0) ∧ f(x , 1) f(x , 0) ∨ f(x , 1)

Self-Substitution 1 f(x , f(x , 0)) f(x , f(x , 1))

Self-Substitution 2 f(x, ¬f(x , 1)) f(x , ¬f(x , 0))

be obtained recursively. For example let qi = 1 if the quantifier Qi is exis-
tential, and qi = 0 if Qi is universal. Then a possible expansion for two
quantified variables is Q1y1Q2y2f(x , y1, y2) = Q1y1f(x , y1, f(x , y1, q2)) =
f(x , f(x , q1, f(x , q1, q2)), f(x , f(x , q1, f(x , q1, q2)), q2)).

The following lemma which appeared in many forms in various places, e.g. [1,
17,29], is derived from Lemma 1 and shows how Self-Substitution can be used
for synthesis purposes.

Lemma 2 (Synthesis by Self-Substitution). Let f(x, y) be a Boolean formula
with free variables x and y. Then f(x, 1) and ¬f(x, 0) are witness functions to
f(x, y).

Proof. By Lemma 1, ∃yf(x , y) is logically equivalent to f(x , f(x , 1)) and to
f(x ,¬f(x , 0)). Since rf (x ) = 1 exactly for those x for which ∃yf(x , y) holds,
both f(x , f(x , 1)) and f(x ,¬f(x , 0)) return 1 if and only if rf (x ) = 1. Thus,
f(x , 1) and ¬f(x , 0) are witness functions to f(x , y). 
�

The witness f(x , 1) is called the default-1 witness, while the witness ¬f(x , 0)
is called the default-0 witness. The observation in [17] is that when f is real-
izable for all x , the conjunction of the two formulas ¬f(x , 0) and ¬f(x , 1) is
unsatisfiable. From a resolution proof of this unsatisfiability, one can extract a
Craig interpolant, which may be smaller than either f(x , 1) or ¬f(x , 0). Our
experimental evaluation for our benchmarks does not support this expectation,
where we show the advantage of using the witness function f(x , 1) for synthesis
and f(x , f(x , 1)) for existential-quantifier elimination.

3.2 Realizability and Function-Construction Using BDDs

Similarly to [17], we separate the synthesis approach into two phases. We call the
first the realizability phase, and the second the function construction phase. We
assume that the input is in the form of a BDD Bf that describes the function
f(x ,y). When f is obvious from the reference, we denote Bf by B.

Realizability. Our definition of rf requires that rf returns 1 exactly for those
assignments of x for which ∃yf(x ,y). This means rf can be obtained by apply-
ing quantifier elimination on the output variables. Recall that f has n output
variables y1, . . . , yn. Typically, the order of variables makes a major difference
in constructing a BDD. However, in this section we assume no specific order.
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The basic idea is as follows: from the input BDD B, we construct a sequence
B = {Bn, Bn−1, . . . B1, B0} of BDDs, where Bn = B, such that Bi−1 is log-
ically equivalent to ∃yiBi. Therefore, the BDD Bi−1 is constructed from Bi

by eliminating the existentially quantified variable yi. The elimination process
guarantees that B0 represents the realizability function rf .

The elimination of yi from Bi can be done via either Shannon Expansion,
or via Self-Substitution. For Shannon Expansion, we define Bi−1 = Bi[yi �→
0] ∨ Bi[yi �→ 1]. To use the Self-Substitution method, we define either Bi−1 =
Bi[yi �→ Bi[yi �→ 1]] to construct the default-1 witness for yi or Bi−1 = Bi[yi �→
¬Bi[yi �→ 0]] to construct the default-0 witness for yi.

Function Construction. We next use the BDD sequence obtained in the real-
izability process to construct a sequence of BDDs W = {Wn,Wn−1, . . . ,W1},
each emitting an output bit.

By using Lemma 2, we perform the function-construction step as follows. Let
B = {Bn, Bn−1, . . . , B1, B0} be the BDD sequence obtained in the realizability
step, and note that the output variables in the BDD Bi are y1, . . . , yi. We first
construct W1 from B1 by setting W1 = B1[y1 �→ 1] for a default-1 witness for y1
or W1 = ¬B1[y1 �→ 0] for a default-0 witness for y1. The structure of BDDs allows
us to define both B1 and ¬B1 without extra effort. Next, we inductively define
either Wi = Bi[y1 �→ W1, . . . , yi−1 �→ Wi−1, yi �→ 1] for a default 1 witness for
yi, or Wi = ¬Bi[y1 �→ W1, . . . , yi−1 �→ Wi−1, yi �→ 0] for a default 0 witness for
yi. Thus, every Wi has only the input variables x , and represents the witness-bit
function gi(x ). Thus, the proof for the following theorem follows from Lemma 2.

Theorem 1. For every assignment σ for y, the sequence (g1(σ), . . . gn(σ)) is a
witness to σ. Thus W describes a witness function for B.

In practice, we chose, for simplicity, to use only the default-1 witnesses. In
principle, one could always choose the best among the default-0 and default-1
witnesses. Since, however, we have n output variables, and the assignment of one
of them affects the others, finding the optimal combination of bit-witness func-
tions requires optimizing over an exponentially large space, which is an expensive
undertaking. Finding such combinations of functions is a matter of future work.

3.3 Synthesis of Input-First BDD

An input-first BDD is a BDD in which all the input (universal) variables precede
all the output (existential) variables. Synthesis using input-first BDDs was sug-
gested in [22], but an explicit way to do it was not provided. This specific order
of variables of input-first BDDs has led us to develop a method called Trim-
Substitute for synthesis of input-first BDDs, in which we tailor Self-Substitution
specifically for the input-first order. Given the input BDD, the running time of
TrimSubstitute is at most quadratic in its size. In Sect. 4 we show that Trim-
Substitute indeed outperforms Self-Substitution on input-first BDDs. In this
section we give an outline of our method. Full proof with an example appears
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in the appendix. For simplicity TrimSubstitute produces default-1 witnesses.
With minor modification the TrimSubstitute method can produce any desired
combination of bit-witness functions.

An output node (resp. input node) in a BDD B is a node labeled with an
output (resp. input) variable. Recall that every non-terminal node in B has
exactly two children called high-child and low-child. Let B be an input-first BDD.
We define Fringe(B) to be the collection of all output nodes and terminal nodes
in B that have an input node as an immediate parent. Note that Fringe(B)
can be found by performing standard graph-search operations (e.g. Depth-First-
Search) on B. Also note that B is realizable exactly for those assignments for
which the corresponding node in Fringe(B) is not the terminal node 0.

Given an input-first BDD B, we assume without loss of generality that the
order of the output variables in B is y1, . . . yn. We construct a sequence of witness
BDDs W = (W1, . . . ,Wn), in which every Wi contains only input variables, and
is the witness-bit function gi(x ). To obtain W , we construct a sequence of
BDDs B’ = (B′

1, . . . , B
′
n) in which every B′

i is an input-first BDD that contains
all input variables, plus only output variables from yi, . . . , yn. We obtain Wi

from B′
i by an operation called “trim”, and obtain B′

i+1 from B′
i and W ′

i by
an operation called “substitute”, hence our method’s name TrimSubstitute. We
next describe how B’ and W are obtained.

We assume by induction on i ≤ n that B′
i is an input-first BDD that is

realizable for exactly the same inputs as B, and that contains input variables
plus only output variables from yi, . . . , yn. Setting B′

1 = B, we already satisfy
these assumptions for the base case. We first construct Wi by “trimming” B′

i,
which means replacing each node v in Fringe(B′

i) with either the terminal node
0 or 1. Intuitively we construct Wi to produce an output bit for yi in the “default-
1” sense, i.e., Wi always produces 1 unless 1 is not a possible output bit for yi.
Formally, this is done as follows.

Note that if a v ∈ Fringe(B′
i) is the terminal node 0, then the assignment

to yi is irrelevant since the path to v corresponds to an unrealizable input, and
so it can be left as 0. If v is a variable node, it cannot be that both children of v
are the terminal node 0, as otherwise v itself would be reduced to 0. Therefore,
if v is labeled by yi, and the high-child of v is not the terminal node 0, replace v
with the terminal node 1. Otherwise, if v is labeled by yi and the high-child of
v is 0 (then the low-child of v is not 0), replace v with the terminal node 0. For
all other cases (v is labeled yj , where j > i, or v is the terminal node 1), replace
v with the terminal node 1. Note that Wi has only input variables.

Finally, we use B′
i and Wi to construct B′

i+1. To do that, we define B′
i+1 =

B′
i[yi �→ Wi]. That is, B′

i+1 is constructed from B′
i by “substituting” yi with

Wi. By construction we have that B′
i+1 is an input-first BDD that is realizable

for the same inputs as B and that contains input variables plus only output
variables from yi+1, . . . , yn. Therefore, the induction assumption is maintained.
An example of the construction can be found in the appendix.

Theorem 2. The BDD sequence W = (W1, . . . ,Wn) describes a witness func-
tion for B.
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In the last induction step we obtain an additional BDD B′
n+1 which is realiz-

able for the same inputs as B, but contains only input variables. As such, B′
n+1

encodes the realizability function rf .

4 Experimental Evaluation

We compare our approach with two current state-of-the-art methods: the Craig
Interpolation-based approach [17] and Sketch [27]. In addition, we compare
between Shannon Expansion and Self-Substitution as quantifier-elimination
methods to be used for the realizability phase. Finally, we see how the Trim-
Substitute method, specialized to input-first BDDs, compares with the generic
Self-Substitution method when using this type of BDD.

Rather than using a random collection of problem instances for our experi-
ments, we selected a collection of scalable benchmarks, presented in Table 2, that
operate over vectors of Boolean variables. Each entry in the table represents a
class of benchmarks parameterized by the length n of the vectors. This allows
us to produce benchmarks of different size to measure how our techniques scale.
For our experiments we vary n in powers of 2 between 8 and 1024, totaling 42
benchmark instances. The first five benchmark classes represent linear-arithmetic
functions in which the vectors encode the binary representation of integers in n
bits, while the sixth represents the sorting of a bit array of size n. The first col-
umn in Table 2 describes the function we synthesize, where x and x ′ are vectors
of input variables and y is a vector of output variables. The relational specifica-
tion of these functions are shown in the second column. These specifications are
translated to propositional-logic formulas (see appendix for details) and given as
input to the algorithm, which then constructs a BDD for the relational specifica-
tion and synthesizes the implementation function. All benchmarks are realizable
for every input2, therefore the realizability function is just the constant 1.

Table 2. Benchmark classes used for synthesis. See the appendix for translation into
propositional-logic formulas.

Function to synthesize Specification

Subtraction y = x’ − x y + x = x’

Maximum y = max(x , x’ ) (y ≥ x ) ∧ (y ≥ x’ ) ∧ ((y = x ) ∨ (y = x’ ))

Minimum y = min(x , x’ ) (y ≤ x ) ∧ (y ≤ x’ ) ∧ ((y = x ) ∨ (y = x’ ))

Floor of average y = �x + x’

2
	 (2y = x + x ′) ∨ (2y + 1 = x + x’ )

Ceiling of average y = 
x + x’

2
� (2y = x + x’ ) ∨ (2y = x + x’ + 1)

Sorting y = sort(x ) sorted(y) ∧ (Σn
i=1xi = Σn

j=1yj)

2 The Subtraction class of benchmarks is defined for subtraction modulo 2n, or equiv-
alently subtraction in two’s complement, which is realizable for all inputs.
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For purposes of evaluation we have constructed a tool, called RSynth, imple-
mented in C++11 using the CUDD BDD library [28]. Self-Substitution was
implemented using the built-in method Compose for BDD composition. That
way, for a BDD B representing a function f(x , y), the BDD for f(x , f(x , 1))
is computed as B.Compose(i, B.Compose(i, bddOne)), where bddOne is the
BDD for the constant 1 and i is the index of variable y. All the experiments in
this paper were carried out on a computer cluster consisting of 192 Westmere
nodes of 12 processor cores each, running at 2.83 GHz with 4 GB of RAM per
core, and 6 Sandy Bridge nodes of 16 processor cores each, running at 2.2 GHz
with 8 GB of RAM per core. Since the algorithm has not been parallelized, the
cluster was used solely to run different experiments simultaneously. The execu-
tion of each benchmark for a given n had a maximum time limit of 8 h.

Scalability Comparison with Previous Approaches. We compared the
performance of RSynth with the Craig Interpolation approach from [17] that
synthesizes functions in the format of AIGs, and the Sketch synthesis tool [27]
that uses syntax-guided search-based synthesis. The original tool for Craig Inter-
polation from [17] was not available, therefore we used an implementation of the
same method, which is called MonoSkolem, from [19].

Since BDD sizes can blow up if a poor variable order is chosen, causing initial
BDD construction time to dominate the overall running time, we selected a vari-
able order that can be expected to produce efficient BDDs for our benchmarks.
For that, we chose an order called fully interleaved, in which the variables are
ordered according to their index, alternating input and output variables.

We show the results of the comparison for the Subtraction, Maximum and
Ceiling of Average benchmark classes in Fig. 1. Similar results were obtained for
the other arithmetic benchmarks. Recall that n is the number of variables in
each vector x , x’ and y , therefore the total number of variables in each case is
3n, with 2n input variables and n output variables.

Sketch is omitted from Fig. 1 because it was unable to synthesize the bench-
marks for any n greater than 3, in all cases either timing out or running out of
memory. For the two remaining approaches, it is noticeable that RSynth outper-
formed MonoSkolem by orders of magnitude, and scaled significantly better.

Although these results seem to lean considerably in favor of our approach,
note that the benchmark classes used so far are deterministic (relations that
have a unique implementation), while Craig Interpolation is reported to produce
better results for non-deterministic relations by exploiting the flexibility in the

Table 3. Non-deterministic benchmark classes

Input Output Specification

Decomposition x y , y’ x = y + y’

Equalization x , x’ y , y’ x + y = x’ + y’

Intermediate value x , x’ y (x ≤ y ∧ y ≤ x’ ) ∨ (x’ ≤ y ∧ y ≤ x )
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Fig. 1. Comparison of running time of RSynth against MonoSkolem

choice of witness. To address these factors, we added to the same setting an
additional collection of linear arithmetic operations, represented in Table 3, this
time of non-deterministic benchmarks.

Contrary to expectations, as Fig. 2 shows, our method gives better perfor-
mance for the non-deterministic benchmark classes as well. From this we can
conclude that despite the flexibility that Craig Interpolation provides, it does
not necessarily exploit the don’t-cares of the input specification efficiently. These
results are supported by the ones obtained in [19], which reported that the qual-
ity of the results obtained when using Craig Interpolation depended strongly on
the interpolation procedure of finding good interpolants, something which is not
guaranteed to happen. Comparison of the size of the implementation between
RSynth and MonoSkolem also showed that the functions constructed by Craig
Interpolation are much larger.

These results allow us to conclude that with a good variable order to the
function being synthesized, our method scales well and outperforms previous
approaches. For linear arithmetic operations, we can identify fully-interleaved to
be such an order.

Shannon Expansion vs. Self-Substitution. As mentioned in Sect. 3.2, the
first step of the synthesis, realizability, requires quantifier elimination, which
can be performed by either Shannon Expansion or Self-Substitution. We com-
pared these two techniques by measuring the running time of the realizability
phase using each of them. Our experiments show that the realizability step is
responsible for only a small fraction of the running time of the synthesis. For
the arithmetic benchmarks with fully-interleaved order, this step is performed in
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Fig. 2. Comparison of running time using non-deterministic benchmarks. The results
for Equalization using MonoSkolem are not shown due to the synthesis timing out for
n > 8.

under 1s in all cases, even for n = 1024. In order to better observe the difference
between the two quantifier-elimination techniques, we measured them using the
Sorting benchmark class, for which the BDD representation is not as efficient.

As can be seen in Fig. 3, as n grows Self-Substitution tends to perform better
than Shannon Expansion, taking approximately 40% less time to perform the
realizability step for n = 256 (the same behavior was observed on the arithmeti-
cal benchmarks, using different variable orders). Thus, our experiments show an
advantage in using Self-Substitution for quantifier elimination in the realizability
step. Note that both Self-Substitution and Shannon Expansion are semantically
equivalent, and thus produce identical BDDs. Therefore, the difference in per-
formance between the two methods originates solely from the application of the
CUDD operation itself over the constructed BDD. Shannon Expansion is cur-
rently the standard way of performing quantifier elimination on BDDs, but our
experiments indicate that Self-Substitution interacts more efficiently with this
type of data structure and should be considered as an alternative for practical
applications.

Synthesis for Input-First BDDs. Following a suggestion in [22] for synthesis
of propositional logic, we presented in Sect. 3.3 the TrimSubstitute method for
BDDs that follow an input-first order. We compared the performance of Trim-
Substitute with Self-Substitution (using Self-Substitution for both realizability
and function construction) on input-first BDDs.
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Fig. 3. Comparison of Shannon expansion and self-substitution for realizability, for the
Sorting benchmark class

We first observed that construction time of the input-first BDD for the arith-
metic benchmark classes scales poorly and was very large even for a relatively
small n. The reason is that in the input-first order, the BDD is forced to keep
track of all relevant information about the input before looking at the output
variables. Thus, the constructed BDD must have a path for every possible out-
put of the function being synthesized. Since in the arithmetic benchmarks, the
number of such paths is 2n, it does not pay off to use an input-first order for
these benchmarks, regardless of the efficiency of the synthesis algorithm used.

On the other hand, for other classes of specifications the amount of informa-
tion that must be memorized about the input can be polynomial or even linear
in size. An example for that is the Sorting benchmark class, in which it is only
necessary to keep track of the number of 1s in the input; thus, only n paths
are required in the constructed BDD. In this case, although the construction
time of the initial BDD still dominates the running time (experiments showed
construction to take around 1200 s for n = 256), the size of the constructed BDD
scales much better and makes synthesis feasible for a larger number of bits. The
development of techniques to lessen the impact of construction time is a matter
of future work.

Figure 4 shows a comparison of running time between the Self-Substitution
and TrimSubstitute methods for Sorting. We can see that TrimSubstitute greatly
improves over Self-Substitution, performing around 50 times faster for n = 256.
These results imply that when the specification can be efficiently represented as
an input-first BDD, TrimSubstitute can be used to obtain a significant improve-
ment in synthesis time.
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Fig. 4. Comparison of methods for synthesis using input-first BDDs for the Sorting
benchmark class

5 Concluding Remarks

In this work we introduced BDD-based methods for synthesizing Boolean
functions from relational specifications. We suggested a method called Self-
Substitution for both quantifier elimination and function construction. We also
suggested a method called TrimSubstitute, which outperforms Self-Substitution
on input-first BDDs. We demonstrated that our methods scale well for bench-
marks for which we have good BDD variable order, and outperform prior tech-
niques.

A key challenge venue is to lessen the impact of the BDD size in the syn-
thesis process. Factored representation of BDDs and early-quantification tech-
niques, used in both symbolic model checking [8] and satisfiability testing [23],
may be also helpful for synthesis. Another research direction is to find a good
combination of bit-witness functions for specific benchmarks. There may also
be BDD variants that can bring benefits in this area. For example, Free Binary
Decision Diagrams (FBDDs) [11] relax the variable-order requirement in BDDs
by allowing separate paths to use different orders. This might allow for more
efficient representation of specifications in cases where an efficient global order
is difficult to find. The Self-Substitution method as a technique for quantifier
elimination calls for further research, both in applied settings, for example, in
symbolic model checking [8], and in theoretical settings, for example, in the study
of Post classes and algebraic clones [9]. Finally, we plan to explore the extension
of our techniques to the setting of temporal synthesis.
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A APPENDIX

A.1 Proof of TrimSubstitute

We prove Theorem 2. Let B be an input-first BDD, and let B’ = (B′
1, . . . , B

′
n)

and W = (W1, . . . ,Wn) as defined in Sect. 3.3. Figure 5 depicts our construction.
Given a BDD D, and a node v in D, the subgraph Dv of D is obtained by
restricting D to all the nodes that can be reached from v. Assume z1, . . . zk are
the variables of D. Then by following a partial assignment ν to the variables of
z1, . . . zi for some i, we follow a unique path in D that ends up in a node v. Then
the subgraph Dv is called the subgraph reached by following ν in D.

Theorem 2. The BDD sequence W = (W1, . . . ,Wn) describes a witness func-
tion for B.

Proof. Let gi : Bm → B be the function that describes Wi. The following facts
are easily proved by induction on i.

1. Following the construction of Wi, for every realizable assignment σ to the
input variables, the path followed by (σ, gi(σ)) in B′

i does not end in the
terminal node 0.

2. Following fact (1), and the construction of B′
i+1, we have that for every real-

izable assignment σ to the input variables, the subgraph reached by following
σ in B′

i+1 is identical to the subgraph reached by following (σ, gi(σ)) in B′
i.

Therefore B′
i+1 is realizable for σ as well.

As a result, we specifically have that for every realizable assignment σ to the
input variables, the assignment (σ, g1(σ), . . . , gn(σ)) leads to the terminal node
1. This means that the BDD sequence W = (W1, . . . ,Wn) describes a witness
function for B. 
�

A.2 Encoding of Specifications in Propositional Logic

For completeness we show how to encode the specification given in Sect. 4,
Table 2, into propositional logic formulas (later represented as a BDD).
We assume that an integer is described by a vector of variables z =
(zn, zn−1, . . . , z2, z1), where zn represents the most significant bit and z1 the
least significant bit. We now describe how specific operations used in the high-
level specifications are encoded in propositional logic.
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x1

x2 x2

y1 y1

y2 y2

0 1

(a) B′
1 = B

x1

x2

0 1

(b) W1

x1

x2

y2 y2

0 1

(c) B′
2

x1

x2

0 1

(d) W2

Fig. 5. Example of the TrimSubstitute method for a BDD representing the formula
(((x1 → ¬y1) ∧ (x1 ⊕ x2) ∧ (x1 ⊕ y2)) ∨ ((x1 ↔ x2) ∧ (y1 ⊕ y2))). Nodes with bold
outlines are in Fringe(B′

i), and are either white if they should be replaced by the leaf
node 0 or gray if they should be replaced by the leaf node 1.
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Relational Operations. The formulas (z = z′), (z ≤ z′) and (z ≥ z′) are
encoded respectively as ϕ=, ϕ≤ and ϕ≥, as follows:

ϕ= =
n∧

i=1

(zi ↔ z′
i) (1)

ϕ≤ = ϕn, where ϕi = (¬zi ∧ z′
i) ∨ ((zi ↔ z′

i) ∧ ϕi−1) and ϕ0 = 1 (2)

ϕ≥ = ϕn, where ϕi = (zi ∧ ¬z′
i) ∨ ((zi ↔ z′

i) ∧ ϕi−1) and ϕ0 = 1 (3)

Addition. Since addition is an operation that returns an integer rather than
a Boolean it cannot be implemented as a single Boolean formula. Rather, it
produces n formulas ϕ+

n , . . . , ϕ+
1 representing a new integer, which can be later

combined into a single formula through one of the relational operators above.
The encoding for the + operator follows the usual representation of addition in
binary: ϕ+

i = zi ⊕ z′
i ⊕ ci−1 where ci = (zi ∧ z′

i) ∨ (zi ∧ ci−1) ∨ (z′
i ∧ ci−1).

In this encoding, ci represents the carry-out from the addition in the i-th
position. The carry-in for the first position, c0, is normally 0, but can be set to 1
to add an extra term of 1 to the sum, which is useful in the formulas for average.

Recall that in the Subtraction benchmark class, + is interpreted as addition
modulo n. On the other hand, in the high-level formulas for average we need the
result of the addition with an extra bit added if necessary. This extra bit can be
obtained by simply taking cn. Therefore the comparisons in these formulas are
actually performed over (n + 1)-bit integers.

Sorting. The specification for the Sorting benchmark class requires a more
careful encoding. Recall that its high-level specification is given as sorted(y) ∧
(Σn

i=1xi = Σn
j=1yj) where x and y are interpreted as bit arrays. The first con-

junct says that the output must be sorted, meaning that all 0 bits must precede
all 1 bits. This is defined recursively for a range of consecutive positions yi, . . . , yj
by saying that either all the variables are assigned to 1, or the first is 0 and the
rest are sorted. The function sorted(y) is defined as sorted(yi, . . . , yj) = 1 if
i = j and (

∧j
k=i yk) ∨ (¬yi ∧ sorted(yi+1, . . . , yj)) otherwise.

The second conjunct in the Sorting specification says that the output must
have the same number of bits set to 1 as the input. In the high-level represen-
tation, this can be represented by Σn

i=1xi = Σn
j=1yj , but in practice it is not

necessary to use summation in the encoding. Instead, the propositional logic
formula for this property can be represented by a recurrence and constructed
using dynamic programming:

ϕ0,0 = 1
ϕi,0 = ¬xi ∧ ϕi−1,0

ϕ0,j = ¬yj ∧ ϕ0,j−1

ϕi,j = ((xi ↔ yj) ∧ ϕi−1,j−1) ∨ (xi ∧ ¬yj ∧ ϕi,j−1) ∨ (¬xi ∧ yj ∧ ϕi−1,j) (4)
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In this encoding, ϕi,j means that x1, . . . , xi has the same number of 1s as
y1, . . . , yj . This is obtained by matching each bit that is set to 1 in the input
with a bit that is set to 1 in the output, and skipping bits that are set to 0.

Note that some of these encodings can be optimized, for example the spec-
ification for Sorting can be reduced by testing at the same time if the input is
sorted and it has the same number of 1s as the output. This can shorten the
construction time, but since it is logically equivalent to the original formula, by
the canonicity property of BDDs, the resulting BDD for the specification will be
the same.
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