
Swarat Chaudhuri
Azadeh Farzan (Eds.)

 123

LN
CS

 9
78

0

28th International Conference, CAV 2016
Toronto, ON, Canada, July 17–23, 2016
Proceedings, Part II

Computer Aided
Verification



Lecture Notes in Computer Science 9780

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany



More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407


Swarat Chaudhuri • Azadeh Farzan (Eds.)

Computer Aided
Verification
28th International Conference, CAV 2016
Toronto, ON, Canada, July 17–23, 2016
Proceedings, Part II

123



Editors
Swarat Chaudhuri
Rice University
Houston, TX
USA

Azadeh Farzan
University of Toronto
Toronto, ON
Canada

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-41539-0 ISBN 978-3-319-41540-6 (eBook)
DOI 10.1007/978-3-319-41540-6

Library of Congress Control Number: 2015943799

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer International Publishing Switzerland 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG Switzerland



Preface

It is our pleasure to welcome you to the proceedings of CAV 2016, the 28th Inter-
national Conference on Computer-Aided Verification, held in Toronto, Ontario, during
July 17–23, 2016.

The CAV conference series is dedicated to the advancement of the theory and
practice of computer-aided formal analysis of hardware and software systems. The
conference covers the spectrum from theoretical results to concrete applications, with
an emphasis on practical verification tools and the algorithms and techniques that are
needed for their implementation. CAV considers it vital to continue spurring advances
in hardware and software verification while expanding to new domains such as bio-
logical systems and computer security.

The CAV 2016 program included four invited keynote talks, four invited tutorials, 58
technical papers (consisting of 46 regular papers and 12 tool papers) accepted out of 195
submissions, and briefings from the SYNTCOMP and SYGUS synthesis competitions.
The conference was accompanied by six co-located events: VSTTE (Verified Software:
Theories, Tools, and Experiments), NSV (Numerical Software Verification), SYNT
(Synthesis), EC2 (Exploiting Concurrency Efficiently and Correctly), HCCV (High-
Consequence Control Verification), and VMW (Verification Mentoring Workshop).

Our invited keynote speakers were Gilles Barthe (IMDEA Software Institute),
Gerwin Klein (NICTA and University of New South Wales), and Moshe Vardi (Rice
University). Parosh Aziz Abdulla (Uppsala University), Vitaly Chipounov (EPFL),
Paulo Tabuada (UCLA), and Martin Vechev (ETH Zurich) gave invited tutorials.

We introduced three significant changes to CAV’s review process this year. First,
CAV 2016 employed a lightweight double-blind reviewing process. This meant that
committee members did not have access to the names and affiliations of the authors as
they reviewed a paper, and were able to produce an unbiased initial reivew. However,
author names were revealed late in the online discussion process to permit calibration
against the authors’ prior work. Second, we introduced an External Review Committee,
consisting of reviewers committed to producing four to five reviews, and also increased
the size of the main Program Committee. These changes significantly reduced the
number of papers that a committee had to review. Third, CAV 2016 had a two-phase
evaluation process. Each paper received three reviews by the end of the first phase;
considering the reviews and accounting for feedback from the reviewers, we solicited
up to two additional reviews for papers for which consensus did not exist or further
expertise was considered necessary.

Many people worked hard to make CAV 2016 a success. We thank the authors and
the invited speakers for providing the excellent technical material, the Program
Committee and the External Review Committee for their thorough reviews and the time
spent on evaluating all the submissions and discussing them during the online dis-
cussion period, and the Steering Committee for their guidance.



We thank Pavol Černý, Sponsorship Chair, for helping to bring much-needed
financial support to the conference; Zachary Kincaid, Workshop Chair, and all the
organizers of the co-located events for bringing their events to the CAV week; Roopsha
Samanta, Publicity Chair, for diligently publicizing the event; and Aws Albarghouthi,
Artifact Evaluation Chair, and the Artifact Evaluation Committee for their work on
evaluating the artifacts submitted. We gratefully acknowledge NSF for providing
financial support for student participants. We sincerely thank the sponsors of CAV
2016 for their generous contributions.

We also thank the University of Toronto and Rice University for their support.
Finally, we hope you find the proceedings of CAV 2016 intellectually stimulating and
practically valuable.

July 2016 Swarat Chaudhuri
Azadeh Farzan
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Abstract. Many possible solutions, differing in the assumptions and
implementations of the components in use, are usually in competition
during early design stages. Deciding which solution to adopt requires
considering several trade-offs. Model checking represents a possible way
of comparing such designs, however, when the number of designs is large,
building and validating so many models may be intractable.

During our collaboration with NASA, we faced the challenge of con-
sidering a design space with more than 20,000 designs for the NextGen
air traffic control system. To deal with this problem, we introduce a com-
positional, modular, parameterized approach combining model checking
with contract-based design to automatically generate large numbers of
models from a possible set of components and their implementations.
Our approach is fully automated, enabling the generation and valida-
tion of all target designs. The 1,620 designs that were most relevant to
NASA were analyzed exhaustively. To deal with the massive amount of
data generated, we apply novel data-analysis techniques that enable a
rich comparison of the designs, including safety aspects. Our results were
validated by NASA system designers, and helped to identify novel as well
as known problematic configurations.

1 Introduction

When multiple system design configurations are possible, there is a need to map
the design space in order to understand the big picture, and be able to demon-
strate the impact of design choices, such as different combinations of potential
subcomponents with different features, on the overall functionality and safety of
the system. Safety assessment of complex and critical systems can clearly benefit
from the use of formal methods techniques [14,15,20,22,24,27–31,34], but a large
space of possible designs presents major challenges for model-checking analysis,
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Fig. 1. Process overview

including producing models of each design, cross-design validation, and compar-
ative safety analysis across the large design space. We address these challenges,
exemplifying our methodology on NASA’s full-scale design space for NextGen air
traffic control, in which there are many ways to allocate essential functions such
as aircraft separation assurance [26], and competing possible implementations of
the same components. The U.S. government made NASA primarily responsible
for the design and verification of NextGen air traffic control [2,3]. The new air
traffic management system is expected to be in place for decades to come [5]
so we must evaluate the design space thoroughly to ensure that we guarantee
safety while allowing optimization for important secondary considerations. The
importance of early-design stage optimization carries to many classes of critical
or long-lived projects, including commercial aircraft and space missions, where
the need to change the design later in the system development process would be
extremely difficult, and very costly.

In this paper, we discuss the application of model-checking-based techniques
to support the exploration of the NextGen design space. This is one of six studies
funded within NASA’s Functional Allocation Project; it will contribute directly
to the final system design. We define a compositional, parameterized modeling
framework that can generate more than 20,000 possible designs. In collaboration
with NASA Ames and NASA Langley experts, we focus in on the 1,620 that they
identified as the most instructive configurations for a comparative analysis. The
outcome of this analysis provides significant insights into the features of the
various configurations. In order to tackle the huge design space, we develop a
new process that relies on multiple tools. The activities, depicted in Fig. 1, can
be summarized in four main phases: Design Space Definition, System Modeling,
Configuration Analysis, and Data Analysis.

Design Space Definition. The stage was set by working with NASA in order to
identify precisely (yet informally [26]) the situations of interest, and by defining
the modeling dimensions to capture them.

System Modeling. Modeling each solution independently would be too time-
consuming (if not outright unfeasible). Plus each model needs to be properly
validated to ensure that it upholds the expected properties. Furthermore, inde-
pendent models would require a lot of maintenance effort to propagate changes
and ensure that they are all aligned with NASA’s most current designs. We can
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manage these sources of complexity by combining several ingredients. First, we
use an architectural language (i.e., OCRA [17]) to separate the system architec-
ture from the implementation of the single components (obtained as SMV [16]
models). This allows us to model each component in isolation, partitioning the
effort, and minimizing the time required to validate changes in any component.
Additionally, this permits changes to the implementation of a single component
without impacting the rest of the system. Second, we use contracts (encoded in
OCRA as LTL formulas) to characterize each component. This allows us to prop-
erly specify the interactions between components, and decompose the validation
properties into more localized subcomponent properties. Third, we use parame-
ters to factor out multiple configurations into a single (although more complex)
model. If two configurations require only marginal changes to an implementation,
we capture these changes using parameters within the models. These techniques
allow us to automatically generate a formal representation for each configuration
in the design space, with great confidence in their correctness and alignment.

Configuration Analysis. We verify each model against the properties of inter-
est; in addition, techniques for safety assessment identify which combinations of
faults lead to the violation of fundamental properties. The corresponding Fault
Trees are automatically computed (using xSAP [10]), thus providing additional
information on the reliability of each configuration. We instantiate and analyze
each configuration independently, exploiting the typical parallelism of modern
computing infrastructures, thus significantly speeding up the analysis.

Data Analysis. Such analysis results in a significant amount of data, and poses
the problem of how to analyze it. We combine this data into a symbolically
represented dataset, linking each configuration to its satisfied properties and
Fault Trees. This dataset is particularly useful in such an exploratory phase, since
it describes the whole design space and can be studied offline. For example, by
automatically extracting sets of configurations enjoying specific properties (e.g.,
absence of single points of failure), it is possible to achieve a better understanding
of the design space. Our focused analysis of NASA’s air traffic control design
space confirmed expected results [23,25] as well as identifying novel ones. In
particular, we highlighted the need for additional assumptions when dealing with
changes in delegation of separation assurance from an aircraft to the ground, e.g.,
in case of a request for backup.

The contribution of this paper is twofold. First, we develop a complex and
realistic case study of public relevance, and make models, tools, and results
publicly available for future investigation (at [4]). This is no ordinary case study,
and to be able to handle the massive size, we need to exploit a novel process that
is our second contribution. Our process is able to scale to address a large design
space exploration problem. The process builds on existing tools and techniques
and adds a novel data analysis phase that is necessary to obtain insights from
the large amount of generated artifacts. We show that this technology is mature
and able to assist designers in formalizing and narrowing down design choices in
an early phase of system design.
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The rest of the paper is structured according to the process described above
(Fig. 1). Sections 2 to 5 illustrate each phase of the process in greater detail.
Related works are discussed in Sects. 6 and 7 concludes with possible directions
for future work.

2 Design Space Definition

The main objective of an air traffic control system is to avoid aircraft collisions.
In air traffic management, a Loss of Separation (LOS) between two aircraft
occurs when they are predicted to pass too close to each other. One of the major
goals of the next generation of air traffic control is to minimize the number of
times that a LOS ever occurs. This task is called Separation Assurance. In this
case study, we are interested in studying the separation assurance provided by
different designs when splitting the functionality between components on-board
airplanes and on-ground. In particular, aircraft that always rely on the ground for
separation assurance are called Ground Separated (GSEP), while aircraft with
on-board separation assurance capabilities are called Self-Separating (SSEP).
The main distinction between the two types of aircraft is the ability of SSEP to
perform self-separation, without the need for approval from ground control. The
goal of distributing the responsibility for separation assurance across different
components is to increase efficiency and improve fault tolerance.

Our work started by considering several proposals from NASA’s Flight
Dynamics, Trajectory, and Controls Branch for different solutions regarding
Function Allocation for Separation Assurance [26]. These ideas were the result
of considering several features and characteristics in a preliminary phase.

Our first step was to identify and formalize the dimensions shared by different
proposals, and this allowed us to define the design space. In order to model the
airspace and its dynamics, we track each aircraft’s intended trajectory through
four different time-windows: Current, Near, Mid, and Far. These indicate increas-
ingly distant points in time. For each window, we encode the intended position
of the aircraft. However, since we are only interested in whether two aircraft
can potentially be in a conflict, we simplify this information. For a given time-
window, we say that two aircraft are in the same Conflict Area (CA) iff their
trajectories are too close to each other and would cause a Loss of Separation.
We say that two aircraft are in LOS iff they are in the same conflict area in the
Current time-window. If two aircraft are in the same CA in another window,
we say that they have a predicted LOS. These abstractions make it possible to
focus on the other modeling dimensions: what information the different agents
share, how they behave in case of predicted LOS, and the impacts of the actions
of each agent on the overall system. Contrary to previous works (e.g., [28]), we
consider more complex interactions between separation agents, components with
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multiple implementations, and priorities in case of predicted LOS. We derived
six modeling dimensions that enable us to capture these different trade-offs:

1. SSEP Separation Agent
2. Aircraft Mix
3. Information Sharing
4. Burdening Rules
5. Communication Steps
6. ACDR (Airborne Conflict Detection and Resolution) Implementations.

SSEP Separation Agent. A key difference between the solutions is who is respon-
sible for performing separation for the SSEPs. We split this task into separation
for the Tactical (Near- and Mid-) and Strategic (Far-) windows. For each of
these windows we define who is in charge of separating the SSEPs: the ground
(ATC ), the aircraft (SELF ), or the aircraft with possible delegation to ground
(SATC ). If the ground ATC is in charge of separating the SSEPs, then it com-
putes the resolutions and sends them to the aircraft. If the aircraft is in charge of
its own separation, computation of a resolution strategy happens on-board, pos-
sibly involving coordination between aircraft. The third case (SATC ) captures
the possibility for an SSEP to delegate its own separation to the ground. This is
used to capture different situations such as backup in case of a fault, privileged
traffic corridors, and transfer of responsibility in designated airspace regions. In
the future, we expect other cases to be studied. For example, resolutions might
be computed on-board but require approval from ground.

Aircraft Mix. We consider situations in which all aircraft are of the same type,
and also where mixed types coexist. The same design can be analyzed without
SSEPs, with an even number of GSEPs and SSEPs, without GSEPs, or any
option in-between. Each combination is indicated by the number of GSEPs and
SSEPs, i.e., 〈#GSEP,#SSEP 〉.
Burdening Rules. A priority must be defined in order to address detected conflicts
between aircraft of different types. Burdening rules define who should move when
such a conflict occurs: (1) Undefined, (2) GSEP, (3) SSEP. For example, if the bur-
den is on the GSEP, then the conflict should be resolved by changing the trajectory
of the GSEP. If the burdening rules are undefined, then each agent will arbitrarily
choose a burdened strategy, and consistently apply it to every conflict.

Information Sharing. It is important to consider the minimization of required
communications, in order to reduce reaction times and system complexity. There-
fore, we need to understand what is the minimum amount of intent that aircraft
need to share. We make two main distinctions: information sharing from GSEPs
to SSEPs and from SSEPs to ATC. For each of these two information sharing
pipelines, we consider scenarios from sharing no information (None) to sharing
information concerning just the Current-window, up to the Near -window, up to
the Mid -window, or all the windows (Far -window).

Communication Steps. In some situations, multiple communication rounds might
be needed in order to reach an agreement among the parties. However, delays in
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Table 1. Summary of possible and considered design dimensions (difference in size is
highlighted in bold)

Name Possible Considered

Values Size Values Size

SSEP TS SA ATC, SELF, SATC 3 ATC, SELF, SATC 3

SSEP SS SA ATC, SELF, SATC 3 ATC, SELF, SATC 3

Aircraft mix 〈4, 0〉, 〈3, 1〉, 〈2, 2〉,
〈1, 3〉, 〈0, 4〉

5 〈4, 0〉, 〈3, 1〉, 〈2, 2〉,
〈1, 3〉, 〈0, 4〉

5

Burdening rules Undef, GSEP, SSEP 3 Undef, GSEP, SSEP 3

GSEPs to SSEPs info None, Current,
Near, Mid, Far

5 Current, Far 2

SSEPs to ATC info None, Current,
Near, Mid, Far

5 Far 1

Com steps 1, 2, . . . 2 1, 2 2

ACDR implementations Simple, Asymmetric,
Non-receptive

3 Simple, Asymmetric,
Non-receptive

3

TOTAL 20,250 1,620

communication and availability of the networks make it necessary to minimize
the number of communication rounds that need to occur.

ACDR Implementations. We considered different implementations for the Air-
borne Conflict Detection and Resolution (ACDR) component. The simplest
implementation of the ACDR computes a resolution without considering the
behavior of the other aircraft (“ACDR Simple”). A more complex implementa-
tion instead takes into account how the other SSEPs are going to resolve the
conflict, and uses this knowledge to compute a resolution that is guaranteed to
solve the current conflict (“ACDR Asymmetric”). Finally, the last implementa-
tion (called “ACDR Non-Receptive”) is the one in which we declaratively enforce
the assumption that conflicts among SSEPs will be resolved without specifying
how, thus constraining the environment with a non-receptive specification [6];
this last option is useful to study the system behavior assuming a perfect ACDR.

Table 1 shows the possible dimensions defined during the first analysis, and
yields a design space with 20,250 configurations. Though we can scale to auto-
matically generate and analyze this many models, further discussions with NASA
domain experts led us to focus our exhaustive analysis on the subset of 1,620
configurations most interesting from the domain point of view. In particular,
they decided to fix the information sharing of the SSEPs in order to provide all
information (i.e., Far) and consider only the two extreme cases for the informa-
tion shared by the GSEPs: Current and Far. This reduced the design space to a
set of 1,620 configurations (right part of Table 1). These are the configurations
analyzed in the rest of the paper.
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3 System Modeling

ADS-B Net

AC 1 AC 2 AC 3 AC 4

Communication Layer

ATC

Fig. 2. Model architecture

The dimensions described in Table 1 are cap-
tured by defining a unified structure includ-
ing all possible configurations. This structure is
equipped with parameters and multiple imple-
mentations of the components, making it possi-
ble to model the whole system once, and then
automatically generate any of the 1,620 possible
instances. This reduces the modeling effort that
is, in terms of resources, the most expensive part
of the process. However, we need to pay particu-
lar attention to the validation of the instantiated models, in order to make sure
that all expected behaviors are properly captured.

The general structure of the model is shown in Fig. 2, and includes four air-
craft, the ATC, and two different types of networks: ADS-B and Communication
Layer. ADS-B is used only among the aircraft, while the Communication Layer
is used between the aircraft and the ATC. This choice makes it simple to pro-
vide different characteristics to the two networks: faults, symmetry, amount of
information, delays, etc. We always consider up to four aircraft instances. This
is sufficient to capture all combinations of conflicts between aircraft of different
types: GSEP-to-SSEP, GSEP-to-GSEP, SSEP-to-SSEP. This abstraction only
represents how many aircraft can be in a single conflict at the same time, and
does not assume anything about the size of the airspace [34].

Figure 3 shows the decomposition of the system into a hierarchy of component
types, and this provides an architecture that can be incrementally refined. For
example, we break down the definition of the Aircraft and ATC components into
subcomponents, and this compositional approach allows us to simplify modeling
and validation.

System

Aircraft ATC ADS-B Network
Communication

Layer

Airborne CDR
(ACDR)

ADS-B In

Pilot

Ground CDR
(GCDR)

Operator

Route Manager

Protocol Policy

Legend

Composite: OSS

Leaf: OSS + SMV

Fig. 3. Hierarchical decomposition
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We use the Aircraft component (the most complex component) to exemplify
our parametric modeling approach. There are two types of aircraft: SSEP and
GSEP. Since these two types differ only in few ways, they are modeled as a
generic aircraft component whose behavior is selected via a set of parameters, as
listed in Table 2. More specifically, we model the Aircraft component as having
the following parameters: adsb in, ts agent, ss agent, and burdening. The
parameters ts agent and ss agent are used to specify who is in charge of the
Tactical Separation (TS) (i.e., Near- and Mid-window) and Strategic Separa-
tion (SS) (i.e., Far-window). Similarly, the parameters burdening and adsb in
capture, respectively, the information about the burdening rule in use and the
availability of the ADS-B receiver. Using this parametric model, we can describe
a GSEP as an aircraft that is always separated by the ground controller, and
that does not have an ADS-B In component:

Aircraft(adsb_in=No, ts_agent=ATC, ss_agent=ATC, burdening=GSEP).

The impact of parameter choice is localized to the parameterized subcompo-
nent. For example, the burdening parameter has an impact only on the ACDR
component. Having components whose implementations are independent of the
model’s parameters makes it possible to re-use these components for multiple
configurations. We also use a similar approach for modeling faults in the com-
munication networks, and we localize all of those faults within the network com-
ponents: ADS-B Network and Communication Layer. As shown in Fig. 3, there
are two different components that are used to capture the ADS-B functionality:
the ADS-B Network and the ADS-B In component. By separating these (con-
ceptually related) components, we are able to model the aircraft independently
of the faults, and the number of aircraft connected to the network. Table 2 pro-
vides a summary of the input and output information, and of the parameters
for the Aircraft component. In each configuration, we enforce that all GSEPs
must have the same parameters, and this applies also for the SSEPs. Therefore,
in the same configuration there cannot be two SSEPs with, e.g., two different
separation assurance agents. This is not a limitation of the model or tools, but a
design choice motivated by the domain that we are exploring and our choice to
keep the model more understandable and limit the scope to realistic scenarios.

The architecture shown in Figs. 2 and 3 is captured using the OCRA lan-
guage [17]. Breaking components (e.g., Aircraft) into simpler components sim-
plifies both modeling and validation. In particular, we can write properties about
the Aircraft and then decompose them into properties of the subcomponents.
This pattern is called Contract-Based Design, and it is supported by OCRA
using contracts expressed in Linear Temporal Logic (LTL). For example, we
write a contract for the Aircraft (Fig. 4) and decompose it into contracts on its
subcomponents (see REFINEDBY in the Figure). To take advantage of contract-
based design we need to perform two steps [18]. First, we need to check that the
refinement of the contract is correct. This means that the guarantees provided
by the subcomponents in the refinement are sufficient to prove the guarantee of
the supercomponent. After performing this step, we know that independently of
the choice of parameters, if the implementations of the ACDR and Pilot satisfy
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Table 2. Parameters, Inputs and Outputs of the Aircraft model

Type Name Domain

Parameter id [1..4]

adsb in Boolean

ts sa agent {ATC, SELF, SATC}
ss sa agent {ATC, SELF, SATC}
burdening {Undefined, GSEP, SSEP}

Input suggestion {near,mid,far} ground Conflict area [0..4]

communication phase Boolean

ac {1,2,3,4} intention {current,near,mid,far} Conflict area [0..4]

ac {1,2,3,4} {ts,sa} agent {ATC, SELF, SATC}
Output intention {current,near,mid,far} Conflict area [0..4]

predicted conflict {near,mid,far} Boolean

request {ts,ss} sa ground Boolean

their contracts, then also the Aircraft satisfies its contract. As a second step, we
verify that the implementations of each component satisfy their contracts. This
operation is done locally on the component in isolation and, since most compo-
nents are relatively small, it can be performed efficiently. Every time we modify
a basic component, we only need to validate it against its contracts, and we are
guaranteed that the composite components will still satisfy their contracts. This
way of using contracts significantly speeds up the design loop. To draw a parallel
with software engineering, the contracts that we write are comparable to unit
tests in which we focus on the correctness of the component in isolation.

CONTRACT AC_maintain_intention_ts_self
-- If self -separating , during communication phase if no conflict
-- is predicted , the intention will not change.
-- Tactical Separation Case.
assume: TRUE;
guarantee: always (( communication_phase and ts_sa_agent = SA_SELF) implies

((not predicted_conflict_near implies
next(intention_near) = intention_near) and

(not predicted_conflict_mid implies
next(intention_mid) = intention_mid)));

CONTRACT AC_maintain_intention_ts_self
REFINEDBY cdr.ACDR_no_conflict_means_maintain_near ,

cdr.ACDR_no_conflict_means_maintain_mid ,
pilot.Pilot_apply_ts_self ,
pilot.Pilot_intention_is_not_nop;

Fig. 4. Example of a contract on the Aircraft component

An added benefit of this process of contract decomposition is that it
requires a rigorous understanding of the relationships between the components.
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This raises interesting questions about how to define the components, how to
divide responsibilities, and what behavior can be expected by every compo-
nent in nominal situations. In fact, we are forced to define requirements that
all component implementations must satisfy. In our case, this investigation was
supported by a close collaboration with NASA, which resulted for example, in
the definition of multiple possible ACDR implementations, and the definition of
more than 130 contracts.

4 Configuration Analysis

Once the unified model is complete, we proceed to analyze each possible con-
figuration in isolation. For each configuration we break the analysis into the
following steps:

1. Instance Generation
2. Airspace, Nominal, and Extended Validation
3. Nominal and Extended Verification
4. Fault Tree and Reliability Analysis.

Automation of this phase is very important. Each step is run automatically, from
the definition of the instance to the generation of all verification and Fault Tree
artifacts. This ensures that the process is reproducible and scalable.

Instance Generation. Each leaf component in our hierarchical architecture is
associated with an implementation (a behavioral model defined as an SMV file)
by defining a map file. The OCRA tool uses this mapping to generate a single
monolithic SMV file of the instance. This makes it extremely easy to instantiate
the system with multiple functional implementations of the components, and
also to create instances with and without faults. We pass parameters through
the OCRA architecture using pre-processing instructions to define constants. In
this way, the variability of the model is limited to the OCRA architecture and
map files used during the generation phase. The outcomes of this phase are three
models: airspace, nominal, and extended. These are standard SMV files, without
parameters, that can be analyzed by any out-of-the-box technique.

Airspace, Nominal, and Extended Validation. The models for the configuration
are generated automatically, therefore, before proceeding to the verification step,
we need to gain confidence in the quality of the generated models. For this reason,
we perform these additional validation steps.

The airspace model captures the system without separation assurance agents.
This is the first validation check: the model must allow the occurrence and
resolution of LOS. We generated this model by mapping the separation agents to
implementations that have no constraints, while using nominal implementations
for the aircraft and networks. To certify that the components work correctly
together, we verify 18 CTL properties encoding the possibilities of bad and good
behaviors, and 24 LTL properties derived from contracts.
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The nominal model uses a nominal implementation for every component,
including separation agents. Unlike the extended model, in this case we do not
allow components to fail. We validate this model with 29 LTL properties derived
from the contracts of the components.

Finally, the extended model uses an implementation for every component
that includes faults (95 faults in total, as described in [28]). The validation of the
extended model checks that all faults are possible (through 137 CTL possibility
properties), and that they respect their dynamics, i.e., permanent or transient,
with 29 LTL properties.

Overall, the validation of the 3 models requires a combination of different
techniques in order to be effective and be carried out in a limited time. The
CTL verification requires a fixpoint-based approach, using BDDs, while for the
LTL properties, we use the IC3-based algorithms implemented in nuXmv [16].
Every property is checked against a known result that, if violated, causes the
analysis to stop for further investigation.

Nominal and Extended Verification. In this step, we characterize different config-
urations by verifying additional properties. The most important is whether LOS
can always be avoided (NO-LOS), followed by stronger versions: NO-LOS-Near,
-Mid, -Far. Other properties provide additional information on the quality of
the configuration, e.g., Detect-Near “Every conflict in the Near-window (Mid-,
Far- respectively) is detected by at least one Agent.” This property is satisfied
if the ATC (which is an Agent, in this context) detects a conflict between two
aircraft, without either of the aircraft detecting it. It is clear that we can devise
stronger versions of this property, and apply them to different time-windows
(e.g., Detect-Mid, -Far). This provides a simple way of ranking configurations
according to how many and which properties they satisfy. During extended veri-
fication, we check instead whether these properties are still satisfied in the pres-
ence of faults. For most properties this will not be the case. However, if some
property is satisfied even with faults, it means that the property and the faults
have no relationship in the given configuration. In this step, we verify 24 LTL
and 30 invariant properties on both the nominal and extended models.

Fault Tree and Reliability Analysis. We compute the Fault Tree associated with
each safety property in order to understand the resilience of each configuration
in the presence of faults. Fault Trees are a standard in safety-critical domains [7,
8,32]. More specifically, we compute the set of minimal cutsets, i.e., all possible
faults configurations (called cutsets) that can cause the violation of the given
property. These cutsets are minimal because they only include the faults that are
necessary to violate the property. Minimal cutsets are computed automatically
from the formal model, using the IC3-based technique described in [11] and
implemented in xSAP [10]. For each Fault Tree, we also generate a reliability
function [12]. This function relates the probability of violating the property to
the probability of occurrence of each basic fault.
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5 Data Analysis

Each configuration can be analyzed independently. We exploit this fact and run
the analysis on a cluster with 12 Intel Xeon X5650 processors (72 cores). The
average size of the models was 10107 states, and each model was checked against
346 properties. The two most difficult steps were those of model validation, due
to the need for BDD-based reasoning, and minimal cutset computation, since it
requires solving a parameter synthesis problem. These two steps were completed
within an hour for most configurations, but for roughly 10 % of the models,
they required several hours to complete. Verification of the LTL properties was
performed using the nuXmv [16] IC3 implementation, requiring roughly 5 min
per model.

Once all results are available, we can perform the last step of the process: Data
Analysis. Each configuration provides us with a set of verification results and a
set of Fault Trees. Therefore, we face the challenge of how to intuitively represent
the information provided by more than 1,600 Fault Trees and verification results.
We approached the problem by collecting these artifacts into relations. The first,
V ⊆ C × B

n, relates each configuration (i.e., a set of values for the parameters)
to the satisfaction of the verification properties. The second, FT ⊆ C × N ×
2MCS instead relates each configuration and property index to the set of minimal
cutsets (MCS) associated with it. This data can be queried and manipulated
offline, by the domain experts, in order to obtain more insights into the design
space.

5.1 Summary of Results

Most of the configurations (Table 3) satisfy the key property of avoiding Loss of
Separation (NO-LOS). The fact that NO-LOS-Far is satisfied by some SSEP-
Only configurations is due to the non-receptive implementation of the ACDR,
which assumes that trajectories are computed in a way that avoids potential
conflicts in the Far-window. However, not all configurations using the SSEP-
Only ACDR are immune to LOS. For example, when including burdening rules,
GSEPs (that do not use the ACDR) can interfere with the SSEPs and lead to
a LOS.

Table 3. Models satisfying NO-LOS for different windows

GSEP-Only Mixed Mixed Mixed SSEP-Only Total

4-0 3-1 2-2 1-3 0-4

NO-LOS 324 244 212 213 258 1251

NO-LOS-Near 324 244 209 210 252 1239

NO-LOS-Mid 324 192 138 141 198 993

NO-LOS-Far 0 0 0 18 84 102
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Prime Implicants. To extract interesting facts from the verification results, we
synthesize the region of parameters that satisfy a property of interest. To com-
pute the region of parameters that satisfy a property, we fix the property value
and quantify away the other properties in the relation V . E.g., for NO-LOS we
define:

NO LOS(C) = ∃P1, · · · , Pn. V (C,P1, · · · , Pn) ∧ PNO LOS

where Pi is a Boolean variable associated with the verification result for property
i, and C is the set of configuration variables (i.e., parameters). In this way,
we can compute the region of parameters associated with the satisfaction of
each property. Very few of these regions have a compact representation. To
extract interesting facts from these regions, we compute the prime implicants
of the region, i.e., the set of minimal elements that are sufficient to enforce the
satisfaction of the property. For cardinality 1, we obtain the following implicant
for NO-LOS:

(MIX = 〈4, 0〉) ∨ (SSEP TS SA = ATC) ∨ (SSEP SS SA = ATC)

This tells us that there are three ways to guarantee NO-LOS: (i) having only
GSEP airplanes, or having the ATC in control of the (ii) Strategic or (iii) Tactical
separation of any SSEP.

By checking that NO-LOS-Far is achieved only by configurations using non-
receptive ACDR, we verified the corresponding claim from Table 3. Moreover,
we verified that not all configurations using non-receptive ACDR can satisfy
NO-LOS-Far, thus discovering a necessary but not sufficient condition. These
analyses were performed using pySMT [21] in order to represent the data using
BDDs [13] for efficient querying.

Reliability Functions. Analyzing the reliability functions obtained from the Fault
Trees, we can synthesize the region of configurations that have a probability of
violating a property below a given threshold. This result provides us different sets
of candidates that are able to guarantee a high reliability. In addition to that, we
want also to analyze the impact of a variation in the probability of failure of differ-
ent groups of components. In Fig. 5 we demonstrate this last analysis by proceed-
ing as follows. First, we partition the faults into three groups: the ones related to
the Communication Layer, the ADS-B, and all the others. For each configuration
and each value of the probability of the faults of the Communication Network (y
axis) and of the ADS-B Network (x axis), we compute the probability of reaching
a LOS, by considering all other faults to have a fixed probability of 10−8 (Basic
Probability). In Fig. 5, we summarize this information by plotting how many con-
figurations have a probability of leading to a LOS that is below the threshold of
10−4 for the given probability of the faults. Interestingly, we see that reducing the
reliability of the Communication Layer has a bigger impact than reducing the reli-
ability of the ADS-B network. We see this because when the probability of faults
in the ADS-B is high (x axis close to −2), but the probability of fault of the com-
munication layer is low (y axis close to −8), the probability of reaching a LOS is
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Fig. 5. Impact of the communication faults on LOS probability.

below the threshold of 10−4 for more than 800 configurations. If we look at the
opposite situation, instead, we see that less than 100 configurations have a proba-
bility of reaching LOS that is below the threshold. The insight that we gain from
this is that many of the analyzed configurations are robust with respect to failures
of the ADS-B.

A different analysis is presented in Fig. 6 in which we analyze how many con-
figurations share the same top N single points of failure. A single point of failure
is a single fault that is sufficient to (in our case) cause a LOS, and corresponds
to a minimal cutset of cardinality one. There are roughly 10 single points of
failure that are shared by more than a thousand configurations. However, we
also notice that most faults are single points of failure for a limited number of
configurations; recall that there are 95 faults in total. If the probability of those
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Fig. 6. Configurations impacted by the top N single points of failure.

10 faults is very high, then we can significantly prune the design space, and focus
only on the configurations that are not affected by those faults.

5.2 Interesting Executions

A selection of the most relevant results was discussed with the domain experts.
In particular, we were able to independently reproduce two known issues, side-
walk [25,33] and coincidental conflicts [23], and discover a new one.

Side-walk Conflict. Side-walk conflicts occur whenever we use the “simple” imple-
mentation of the ACDR, in which conflicts between SSEPs are resolved by choos-
ing a free conflict area. The problem occurs when more than one SSEP decides to
move to the same conflict area. Due to the symmetry of the resolution algorithm,
this strategy is not guaranteed to resolve the conflict. To break this symmetry,
we developed the asymmetric version of the ACDR.

Coincidental Conflict. The asymmetric ACDR is not able to resolve conflicts
early. In particular, we would like to always satisfy NO-LOS-Mid, i.e., avoid
predicted LOS in the Mid-window. This is not possible if we allow only one
communication step. In fact, if four aircraft are in two different conflicts that
are resolved correctly, they might still end up in a new conflict. Consider the
two conflict sets {AC1, AC2} and {AC3, AC4}. AC1 and AC3 decide to move to
solve their respective conflicts. However, they choose to move to the same conflict
area. An additional round of communication is needed in order to resolve this
conflict, and this generalizes to needing at most log(n) communication steps
when considering n aircraft.

Backup From Ground. The novel problematic configuration that we identified
stems from limited requirements on the behavior of the backup operation,
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i.e., when an SSEP is able to request backup from the ground and it delegates
its separation to the ATC (SATC). This turned out to require more assumptions
than were initially considered. In fact, when enabling this behavior, all config-
urations violate NO-LOS, excluding the ones with non-receptive ACDR. This
is motivated (as shown by the counterexamples) by a lack of information and
a mismatch of expectations in the airspace. In particular, in the design used in
this project, whenever an aircraft requests ATC assistance, the other aircraft are
not aware of it. Therefore, all of the other SSEPs expect the aircraft to maintain
its behavior as an SSEP. In order to solve this issue, we propose two options.
First, requests for ground-assistance are relayed to other aircraft. Second, the
algorithm for separation used by ATC needs to take into account that the air-
craft was an SSEP, and therefore compute a resolution taking into account what
the other SSEPs expect the aircraft to do. These extensions are left as future
work.

6 Related Work

Before NASA turned to the question of what designs were best for automated
air traffic control, it was necessary to explore what designs were possible. To that
end, NASA launched several initiatives to formally reason about a single such
system; two of these works, using symbolic model checking [34] and probabilistic
model checking [35] techniques led to the decision to use the former for the
problem of broader design space exploration. However, neither technique proved
sufficiently scalable to capture all of the relevant details of a single design at the
same time.

This paper presents a large advancement along the same line of research of [28],
in which a modeling abstraction for the problem was proposed, by designing and
verifying a monolithic model. This modeling abstraction proved to be suitable for
capturing the problem, however, it could not be scaled to cover the entire design
space. Therefore, in this work we devise a tailored process that allows us to model,
validate, verify, and compare the full design space (i.e., 20,000 designs and beyond)
with exhaustive analysis of the more than 1,600 most likely candidate designs.
This was made possible by breaking down the modeling and using a compositional
approach based on contract-based design (as opposed to the monolithic approach
of [28]). The size of the design space not only created challenges for running the
analysis, but also for analyzing the results: we had to consider new ways of looking
at the considerable amount of data produced in order to extract interesting infor-
mation rather than providing NASA with a firehose of data. Thanks to the exten-
sive coverage of the design space enabled by the process described in this paper,
we managed to identify some configurations that were of interest for NASA. The
examples that we highlight show that this approach pinpointed implicit assump-
tions and critical points in the design process.

The term design space exploration is commonly used to describe the study of a
design space (mostly combinatorial) by avoiding the computation of all solutions
and optimizing with respect to some cost function. For example, Airbus [9] uses
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automated techniques to evaluate design spaces, in which multiple solutions are
compared and sorted with respect to their weight. It is important to notice,
however, that we are dealing with a sequential problem while works such as [9]
deal with combinational ones. Moreover, the existence of a cost function allows
the optimization engine to prune “bad” configurations, thus reducing the actual
number of configurations that will be eventually checked. In our case, there is
no cost function defined; we are instead interested in a better understanding of
the design space, and thus want to be able to thoroughly analyze every possible
design. Therefore, we analyze all of the realistic configurations and collect the
data in a form suitable for subsequent comparison.

When we move from combinational to sequential problems, we find works
related to product lines, e.g., Software Product Lines [19], that deal with a sim-
ilar problem of verification of a parametric system. In [19] the authors propose
an extension to NuSMV that is able to perform symbolic model checking of an
extended version of CTL (feature-oriented CTL). The differences with our work
are several. From a process point of view, we focus not only on the verification
but also on the validation of the generated models and on safety assessment; the
outcome of our process is more informative since it relates the set of configura-
tions with the properties that are satisfied (i.e., parameter synthesis). Finally,
we integrate the modeling phase with a compositional approach that helps to
save significant modeling effort. In principle, we could try to combine multiple
configurations in order to analyze them together in a symbolic way. However,
this was not needed and, on the contrary, the ability to work on each configura-
tion independently made it possible to exploit high levels of parallelism provided
by modern computing infrastructures.

7 Conclusions and Future Work

In this paper, we presented and released a complex real-world case study demon-
strating the application of formal methods to the analysis of the big design space
associated with the NextGen Automated Air Traffic Control System under study
at NASA. Our approach resulted in a wealth of interesting data that supported
the re-discovery of known results, and also the identification of new insights.
When we started, NASA engineers had many possible design ideas, all described
informally. We helped them to formalize and clarify these ideas, and to make
hidden assumptions explicit. To the best of our knowledge, this is the first time
that a design space of this scale has been mapped out by considering every
possible solution in such depth.

The task of analyzing all the 1,620 designs would have been unfeasible with-
out the novel process that we introduce. Our process combines and builds upon
existing techniques and tools to perform model generation, validation, verifica-
tion, and safety assessment. The process relies on a compositional, parametric,
and contract-based approach in order to maximize reuse, and to ensure great
confidence in the models by means of aggressive model validation. Overall, our
study shows that this technology is mature and able to assist designers in for-
malizing and narrowing down design choices in an early phase of system design.
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We extracted meaningful information from this data, and we expect that
even more will be extracted in the future, working in collaboration with the
NASA domain experts. In the future, we plan to extend the model by identifying
additional modeling dimensions of interest, e.g., the fact that ADS-B information
might not propagate equally to all aircraft, or the presence of multiple ATCs.
Finally, we plan to leverage more the contract-based infrastructure defined in this
work, in order to identify properties that can be proved by pure compositional
reasoning. We believe that this process can be applied to other design exploration
situations in which the size of the design space stems from the local variability
of the components. For example, we have started working with the World Bank
through Data Science for Social Good [1] to use an adaptation of the framework
presented in this paper to help them root out corruption, collusion, and fraud
by comparatively analyzing the temporal behaviors of their large network of
suppliers.
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Abstract. Formal techniques for guaranteeing software correctness have
made tremendous progress in recent decades. However, applying these
techniques to real-world safety-critical systems remains challenging in
practice. Inspired by goals set out in prior work, we report on a large-scale
case study that applies modern verification techniques to check safety
properties of a radiotherapy system in current clinical use. Because of
the diversity and complexity of the system’s components (software, hard-
ware, and physical), no single tool was suitable for both checking critical
component properties and ensuring that their composition implies criti-
cal system properties. This paper describes how we used state-of-the-art
approaches to develop specialized tools for verifying safety properties of
individual components, as well as an extensible tool for composing those
properties to check the safety of the system as a whole. We describe
the key design decisions that diverged from previous approaches and
that enabled us to practically apply our approach to provide machine-
checked guarantees. Our case study uncovered subtle safety-critical flaws
in a pre-release of the latest version of the radiotherapy system’s control
software.

Keywords: Case study · Safety-critical systems · SMT-based
verification · Lightweight formal methods

1 Introduction

Formal techniques for guaranteeing software correctness have made tremen-
dous progress in recent decades. However, applying these techniques to real-
world safety-critical systems remains challenging for three reasons. First, using
general-purpose tools to formally prove deep properties of a system component
(e.g., functional correctness of a cryptographic primitive [6]) requires substan-
tial expertise and manual effort. Second, many real systems contain components
for which effective formal analysis is still an active research topic (e.g., formally
guaranteeing liveness for a consensus protocol within a distributed system [22]),
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and thus in practice, these components can only be analyzed by weaker tech-
niques such as testing or expert review. Third, even when deep properties can
be established for individual system components, their composition may not add
up to overall system safety, leading to catastrophic failures [25].

This paper reports on a large-scale case study in applying modern verification
techniques to check the safety of a radiotherapy system in current clinical use:
the Clinical Neutron Therapy System (CNTS) at the University of Washington
Medical Center. We describe how to practically address the above challenges
with a combination of techniques that reason at the system and component lev-
els, and that provide guarantees of varying strength, from automatic proof to
manual review. To check system-level properties (such as “the beam shuts off
if physical settings of the machine do not match the prescription”), we devel-
oped and analyzed a formal model of CNTS in Alloy [1,26]. Using this model,
we obtained partial specifications of critical component-level properties (such as
“the therapy control software sends a shut-down message if it receives an out-
of-tolerance sensor reading”). To check the resulting component properties, we
built a suite of custom tools, ranging from an SMT-based verifier for properties
of the control software to a manual review processor for properties of the phys-
ical components. These custom tools plug into our safety case checker (SCC),
which combines the system model with the results of the component checks into
a mechanized argument—a form of a safety case [28,48]—that CNTS satisfies
its critical safety properties.

To the best of our knowledge, this case study presents the first formal,
machine-checked safety case for a real system. A typical safety case takes the
form of a structured argument, expressed in natural language or graphical nota-
tion [14,37], that a system satisfies a desired critical property. This argument
decomposes the system property into a set of component properties, each of
which is justified with concrete evidence (e.g., the results of verification, manual
review, or testing). As massive informal artifacts, however, typical safety argu-
ments suffer from logical fallacies [21] and are difficult to audit for the presence
and sufficiency of evidence. For these reasons, prior work [42,43] has called for
mechanization of safety case checking. Our work shows, for the first time, that
such mechanization is not only possible, but that it is both practical and useful.
Building on existing verification frameworks [1,46], our safety case (including the
system model and the component checkers) consists of just 2700 lines of code,
yet its checks uncovered safety-critical flaws in pre-release versions of the CNTS
control software.

Our work differs from prior efforts [10] at safety case mechanization in that
the safety argument is embedded into a formal model of the system. In prior work,
properties of system components are abstracted by uninterpreted predicates, and
a mechanized tool ensures that the logical structure of the argument is sound.
With this approach, missing properties or assumptions about the environment
are discovered through manual auditing. We take a different approach, which
enables us to both check the logical soundness of the argument and mechanically
discover (some kinds of) missing properties. In particular, our safety argument



Investigating Safety of a Radiotherapy Machine 25

takes the form S ⇒ P , where S is a model of the system and P is the desired
safety property. The model S specifies the behavior of the system in terms of
the properties s1, . . . , sn of individual components and their interactions. When
expressed in Alloy, such a model enables both bounded simulation and check-
ing of abstract executions of the system. Bounded simulation helps ensure that
the model S includes all desirable treatment scenarios (thus guarding against
vacuous fulfillment of the safety argument S ⇒ P ). The checking, on the other
hand, helps detect missing component properties (e.g., “the Ethernet network
does not drop messages”) that are necessary to establish the safety property P .

A component property si serves as a (partial) specification for the implemen-
tation of the component ci in the underlying system. Ideally, each component
ci would be mechanically verified to satisfy si, but such verification is currently
infeasible for many properties (e.g., the reliability of an Ethernet network). Our
safety case therefore employs a pragmatic approach that allows weaker evidence
to be used for these properties. In particular, each property si is guarded by an
uninterpreted predicate, written as evidence(tool, args) ⇒ si, which states that
the given external tool establishes the property si for the component ci. When
checking a safety case, SCC invokes the specified external tools to determine
the truth of these predicates, but it does not reason about the strength of the
evidence provided by the tool: the sufficiency of evidence is subject to manual
auditing. Our safety case aids this manual part of the process by making explicit,
and precise, all links from a safety argument to evidence.

The rest of this paper is organized as follows. Section 2 provides an overview
of the CNTS system. Section 3 describes our machine-checked safety case for
CNTS. Section 4 presents SCC and other tools we built as part of the case
study. Section 5 discusses the flaws that these tools helped us find and correct.
Section 6 surveys related work, and Sect. 7 concludes the paper.

2 Overview of CNTS

The Clinical Neutron Therapy System (CNTS) is a radiotherapy machine that
uses neutron radiation to treat tumors resistant to conventional radiotherapy.
Due to the high installation and maintenance costs of neutron-based systems,
CNTS has been in service for over 30 years, and it is one of only three systems of
this kind in the United States. As such, it depends heavily on custom software
developed by CNTS engineers, who have achieved a remarkable safety record,
with no serious misadministrations due to machine or control system problems.

CNTS engineers have re-implemented its therapy control software twice since
1984 [30,35]. The latest controller [31] is implemented in a subset of the EPICS
(Experimental Physics and Industrial Control System) dataflow language [17],
which is widely used for controlling scientific instruments. This development
effort aims to support new therapies, integrate new software and hardware, and
adapt to changes in the hospital’s systems—with continued safety as the fore-
most concern.



26 S. Pernsteiner et al.

CNTS as a whole is designed [34] to enforce a number of critical safety
properties, including prescription safety, which is the focus of our work:

Prescription Safety Property (Prx). During treatment, the beam will
turn off if any physical machine setting moves outside the tolerances speci-
fied by the prescription and the operator has not issued the manual override
command.1

This property is enforced by a control subsystem, consisting of hardware and
software components, that monitors and drives the system’s physical compo-
nents. Our safety case for Prx (Sect. 3) spans the control subsystem of CNTS, as
well as the physical components involved in a treatment prescription.

Physical Components. The key physical components of CNTS include the
cyclotron, the leaf collimator, the gantry, and the treatment couch. The cyclotron
generates a broad beam of particles, which passes through the leaf collimator in
the gantry head on its way to the patient. The collimator consists of forty steel
leaves that control the shape of the beam. The gantry head also contains a set
of wedges and filters that can be inserted to further adjust the beam’s shape
and intensity. The gantry rotates 360 degrees around the treatment couch so
that the beam can enter the patient from any angle. The couch itself has five
degrees of motion freedom. A treatment prescription specifies settings for all of
these components, and the CNTS control subsystem ensures that each setting
remains within prescribed tolerances during treatment.

Control Subsystem. The CNTS control subsystem is a collection of hardware
and software components, which communicate by exchanging messages through
a private Ethernet network. The components relevant to our safety case include:

Embedded Single-Board Computers interface with motors and sensors for
controlling the physical components of the system. For example, the Treatment
Motion Controller (TMC) monitors the orientation of the couch and the gantry.
Separate computers exist for shaping the neutron beam and for monitoring the
patient’s radiation exposure. These embedded computers were installed by the
original system vendor and are treated as black boxes by CNTS engineers

Therapy Control (TC) Software displays the user interface on the opera-
tor console, accepts commands from the operator, coordinates the activity of
the embedded computers, and helps enforce CNTS safety properties (such as
Prx). The TC, now re-implemented in EPICS, runs on a general-purpose Linux
computer.

Programmable Logic Controller (PLC) serves as an interface between the
networked components and the cyclotron control hardware. The PLC is electri-
cally connected to the Hardwired Safety Interlock System (HSIS), which consists
of a series of mechanical relays. These relays carry power to the radio frequency
1 The manual override exists to enable treatment to continue if a sensor for a machine

setting generates a false alarm.
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amplifiers that accelerate particles in the cyclotron. If any relay is opened, the
cyclotron stops receiving power and the neutron beam shuts off. For example, if
a machine setting moves out of the prescribed tolerances, the TC sends a signal
to the PLC to open an HSIS relay, thus shutting off the beam. The PLC func-
tionality is implemented using ladder logic [36], and the CNTS staff modifies
and maintains this implementation in addition to the TC.

3 Building a Case for Prescription Safety

This section describes our approach to building a formal, machine-checkable
safety case for a key property of CNTS—prescription safety (Prx). The presen-
tation focuses on the aspects of case design that enabled us to practically and
effectively check a deep property of a complex system. The tools we developed,
and the results we obtained, are discussed in the following sections. All artifacts
comprising the case can be found on the project’s web page [3].

3.1 Structuring the Case: A System Model with Pluggable Checkers

Our safety case for Prx consists of two parts: (1) a system model S that specifies
partial properties of the components spanned by Prx (Sect. 2), and (2) a set of
custom tools for checking if those components satisfy the specified properties.
The tools indicate either success or failure, depending on whether a given prop-
erty can be established (through some means) for a given component. Our safety
case checker (SCC) connects the model and the tools through uninterpreted
predicates of the form evidence(tool, args), which guard component properties
specified by S (see, e.g., Fig. 2). These predicates tell SCC which tools to invoke,
and how, to establish a given property. The SCC collects pass/fail results of run-
ning the tools and uses an off-the-shelf counterexample finder [1] to check that,
assuming the obtained results, S ⇒ Prx. A safety case constructed in this way
provides a high-level safety argument (i.e., the system model S, the system prop-
erty Prx, and the predicates describing how the evidence is obtained), which aids
manual auditing, as well as a formal artifact, which enables automatic checking
for (some classes of) safety-critical regressions as the system evolves.

3.2 Making the Case: Diagrams, Models, and Tools

We developed the safety case for Prx in three steps. First, we worked with CNTS
engineers to identify the system components and interactions that are relevant
to Prx, producing an informal, diagrammatic model of the system. This step was
crucial for determining the level of detail at which to model the system, and
to understand the engineers’ concerns—specifically, which properties mattered
most and where to focus our analysis effort. Next, we formalized and refined
the system model in Alloy [1,26], a widely-used specification language that
extends first-order logic with transitive closure and relational algebra. Through-
out the formalization process, we relied heavily on Alloy’s counterexample finder
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Fig. 1. A fragment of the property-part diagram for a part of the Prx property. Boxes
represent system components, and rounded boxes represent properties. Edges originat-
ing from a property indicate that the property depends on the target components or
properties for its fulfillment. Edges originating from a component indicate interaction
via messages. Components within the dashed box are connected via Ethernet.

to detect errors in logical reasoning, as well as component properties that were
missing from our informal diagrams. Finally, we used the resulting Alloy model—
and feedback from CNTS engineers—to determine where and how to focus our
tool-building effort. We describe each of these steps in more detail below.

Drafting an Iinformal Case. To build a safety case for Prx, we first drafted
an informal safety argument, expressed as a property-part diagram [27]. This
kind of diagram shows how components—or parts—of the system relate to each
other and how their individual properties collectively satisfy the desired system
property. Figure 1 shows a fragment of the property-part diagram for Prx that
covers the rotation angle of the treatment couch. The diagram shows how the top-
level property and its sub-properties are established by a combination of other
properties and components. For example, the Programmable Logic Controller
(PLC) and the Hardwired Safety Interlock System (HSIS) jointly ensure that
the beam is turned off when the Therapy Sum relay is opened (disabled). The
informal case for Prx includes similar diagrams for other machine parameters
that are specified by a treatment prescription.

Formalizing the Case. To formalize the Prx case, we developed an Alloy model
of the major components of CNTS. These include the therapy control (TC)
software, the Treatment Motion Controller (TMC), the Programmable Logic
Controller (PLC), the Hardwired Safety Interlock System (HSIS), the beam,
and the machine settings involved in a prescription. Our model specifies the
internal states of the components (e.g., whether a given HSIS relay is open or
closed) and their external interactions (e.g., the messages exchanged between
the TC and the embedded computers) in sufficient detail to capture the key
behaviors of the system, such as the beam shutting off when a machine setting
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enters an out-of-tolerance state, or the beam staying on due to manual override.
The lead CNTS engineer audited the model to ensure that it accurately describes
the partial properties of the system relevant to the argument.

Figure 2 shows a snippet of our formalization. Lines 7–13 specify a property
of the PLC that is relevant to the case. We model the changes in the state of the
PLC relays and coils as events ordered by the next relation. Relays can be either
open or closed, and coils can be either energized or de-energized. Relay 2754 of
the PLC corresponds to the Therapy Sum Interlock relay in Fig. 1. Whenever
this relay is in the open state (line 7), PLC coil 1623 enters a de-energized state,
which, in turn, electrically signals an HSIS relay to open and cause the beam to
shut off (lines 8–13). Other parts of the system are modeled at a similar level of
detail.

Fig. 2. A property of the PLC, guarded by an evidence predicate. The property states
that PLC coil 1623 is de-energized when relay 2754 is open. Coil 1623 controls the
neutron beam and relay 2754 is written to by the Therapy Controller (TC)—this is
the mechanism by which the TC shuts off the beam when a machine setting is out of its
prescribed tolerance. The property (lines 7–13) is a formula in the Alloy language [1,26].
The evidence predicate (lines 1–6) states that the external PLC Analysis tool (Sect. 4)
must be called to establish that the PLC satisfies this property.

Fig. 3. The Alloy formulation of the Prx property. For all machine states, if all com-
ponent properties (e.g., Fig. 2) hold, a machine setting is out of prescribed tolerances
in that state, and the manual override has not been enabled for that machine setting,
then a “beam off” event must occur after the given state.
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While formalizing the case, we relied heavily on the Alloy Analyzer [1] to
discover soundness and vacuity errors in our argument. Checking that the model
is sound (permits no behavior that violates Prx) let us detect missing component
properties (e.g., the Ethernet network does not drop messages), and checking
that the model is not vacuous (permits some behaviors that satisfy Prx) let us
detect accidental contradictions in the formalization. To check for soundness
errors, we asked the Analyzer to verify that our model of CNTS implies Prx for
all event sequences of length up to ten, as shown in Fig. 3. The bound of ten
encompasses all known treatment scenarios and is thus large enough to prevent
Prx from being vacuously fulfilled. To check this, we asked the Analyzer to verify
that a bound of ten events is sufficient to simulate treatment scenarios in which
(1) the beam remains on because the machine settings remain within tolerance;
(2) a setting goes out of tolerance, but the beam shut off is manually overridden;
and (3) the beam shuts off due to an out-of-tolerance setting and the absence of
manual override. All of these checks explore massive potential state spaces (on
the order of 22800 states), and all pass in seconds.

Building Tools. Having formalized the case, we used it to decide what tools
to build in order to establish the specified component properties. In particular,
we determined the tool interfaces by going through the model and systemati-
cally annotating all component properties with evidence predicates, as shown in
Fig. 2. An evidence predicate evaluates to true if and only if the specified tool
indicates success when invoked with the given arguments. For example, lines 1–6
in Fig. 2 state that the evidence (a proof) for the PLC property is produced by
the PLC analysis tool (Sect. 4), invoked with the specified parameters. We deter-
mined what kind of evidence was practically sufficient for each component (e.g.,
a proof, passing tests, or manual review) based on the feedback from CNTS
engineers. This process of connecting properties with evidence was crucial in
focusing our analysis effort (Sect. 5): building a tool that proves a narrow class
of properties is much easier than building a general-purpose verifier. Our safety
case both articulated these properties and helped guide the construction of tools
for checking them.

4 Tools and Analyses

This section surveys the tools that we built to produce and check evidence for
the Prx safety case described in Sect. 3. We focused the analysis effort on the
components that are directly modified by the CNTS engineers: the Therapy Con-
trol (TC) software and the Programmable Logic Controller (PLC). In particular,
we built a linter and an SMT-based verifier for the subset of EPICS in which
TC is written, a static analyzer for (a narrow class of) properties of PLC ladder
logic code, and a static analyzer for the EPICS-PLC interface code. We relied on
expert approval and manual review of documentation to establish the relevant
properties of the embedded computers, the Hardwired Safety Interlock System
(HSIS), the Ethernet network, and the physical components. The presence of
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this expert evidence was checked using a simple text-processing tool. We also
built a safety case checker (SCC) to connect our formal model of CNTS (Sect. 3)
with the results produced by the tools. We describe each of these tools in more
detail below, highlighting how the safety case guided our choice of analyses, their
construction, and their application.

Safety Case Checker (SCC). Our safety case checker (SCC) automates the inte-
gration of external evidence-generating tools into a formal safety argument,
expressed with respect to a model of the system. We chose the Alloy language and
the Alloy Analyzer as our toolset for system-level reasoning. However, a similar
checker could also be created for other formal frameworks (e.g., [9,40,41]).

Fig. 4. Overview of the algorithm used by our safety case checker.

The SCC consists of two parts: (1) an extension to the Alloy language, and
(2) a checker for this language extension that is based on the Alloy Analyzer.
The language is extended with a small library that provides the uninterpreted
evidence predicate. In particular, the formula evidence[tool, args, kind] rep-
resents the presence (or absence) of the given kind of evidence, produced by
invoking the specified tool on the provided arguments. The checker, as shown
in Fig. 4, provides an interpretation for each evidence predicate in a safety case
by performing the specified tool invocation and recording the result in Alloy.
This invocation is performed through a simple plug-in interface, designed for
easy addition of new tools to the checker. The resulting interpretation I gives
meaning only to the evidence predicates, and, as such, it is a partial interpre-
tation [44,47] for the safety case S ⇒ P , which includes additional relations
(e.g., the next relation in Fig. 2). The checker passes I and S ∧ ¬P to the Alloy
Analyzer, which checks that I cannot be extended into a finite counterexample
to the safety case—i.e., an interpretation I ′ ⊇ I that satisfies S ∧ ¬P in a finite
universe of discourse. The results of SCC verification are sound up to the bound
on the universe size, modulo any bugs in the implementation of SCC and the
pluggable checkers.

EPICS Verifier. We focused our most advanced analysis, a fully automated
verifier for a subset of the EPICS language, on the newest component of the sys-
tem, the Therapy Control (TC) software. This tool uses an SMT solver to verify
safety properties of programs written in a subset of EPICS that includes all code
from CNTS. Because the Therapy Control software is finite-state, with bounded
execution length and memory consumption, our EPICS verifier is both sound
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(it does not miss defects) and complete (it does not report false positives) for
CNTS. The Prx case uses the verifier to prove that the therapy control software
initiates beam shut-off whenever it receives an out-of-tolerance reading from a
sensor (see, e.g., Fig. 5).

The verifier builds on Rosette [45], a language for constructing verification
and synthesis tools based on SMT solvers. It takes as input an EPICS dataflow
program and a safety property, symbolically interprets the program on an arbi-
trary state and input event, and then invokes the Z3 solver [11] to check that
the property holds in the resulting state. The output is either a guarantee that
the property holds, or a concrete state and input event (a counterexample) that
causes the program to violate the property.

An EPICS dataflow program is a graph consisting of edges, called links, and
nodes, called records, along with configuration settings and initial values for
each record. At run time, the EPICS interpreter behaves as a reactive system,
responding to events (such as arrival of input from external devices or expiration
of a timer) by updating the state of the graph and possibly sending output to
external devices. In contrast to traditional dataflow systems, which automatically
update all dependent values when an input value changes, the EPICS language
gives the programmer explicit control over all data flow and control flow in the
program. Moreover, EPICS code can modify the structure of the dataflow graph
at run time, adding or removing edges, as well as modifying record configurations,
such as the expression evaluated in a record. These dynamic features make it
challenging to verify general EPICS code.

Unlike general EPICS programs, however, CNTS code is amenable to verifi-
cation because it does not use the dynamic features of EPICS. Since EPICS for-
bids dynamic memory allocation and guarantees termination of event handlers,
all EPICS programs with no dynamic features are finite-state, and their execu-
tions have bounded length. As a result, our verifier can automatically prove deep
properties of CNTS code, without requiring loop invariants or imposing artificial
bounds on heap size and execution length. Our verifier uncovered a safety-critical
bug in a production version of the CNTS therapy control software, in addition
to a subtle dependence of a pre-release version of the software on a bug in the
EPICS runtime, as described in Sect. 5.1.

Fig. 5. A property of the CNTS therapy control software verified with the EPICS
verifier. It states that, after a couch turntable angle reading is processed (line 2), the
beam interlock is triggered (“beam off”) if the couch turntable’s actual rotation differs
from the prescription by more than the tolerance, the manual override is disabled, and
the machine is in therapy mode.
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EPICS Linter. The EPICS linter establishes a basic well-formedness property
assumed by our verifier: all record links (i.e., dataflow edges) in a program refer
to valid records. EPICS does not otherwise report broken links, instead assuming
that missing records will be provided by other EPICS instances on the same local
network. Ensuring that all links are valid implies that a given EPICS program
contains all code relevant to the analysis. Our linter uncovered several issues in
the therapy control code, described in Sect. 5.1.

EPICS-PLC Interface Checker. The EPICS-PLC interface checker ensures that
a given EPICS record is connected to a particular PLC relay. This requires
analyzing both the EPICS program and a separate startup script that initializes
communication with the PLC. The Prx safety case, for example, uses the interface
checker to ensure that the EPICS Therapy Sum Interlock record is properly
connected to the PLC Therapy Sum Interlock relay.

PLC Checker. The PLC checker analyzes the graph of connections between coils,
relays, and the power source in a ladder logic program. This checker provides
two analyses that are useful for the Prx case. First, it can check that a named
relay’s state is not updated by any other element within the PLC. Second, it can
check that all paths from the power source to a named coil pass through a named
relay, thus guaranteeing that the coil is energized only when the relay is closed.
In the Prx safety case, these checks establish that the Therapy Sum Interlock
relay in the PLC is modified only as a result of messages from the therapy control
software, and that opening the Therapy Sum Interlock relay must de-energize
the PLC coil connected to the Hardwired Safety Interlock System (HSIS).

Expert Evidence. The expert evidence tool allows an expert to assert that a com-
ponent property holds based on manual inspection of some part of the system.
After examining the property in question, the expert creates a text document
explaining in prose the nature of the inspection and the evidence that supports
the property, along with the expert’s name and the current date to support
future auditing. For example, the configuration of the CNTS HSIS is defined by
a non-machine-readable circuit diagram, so the Prx safety case relies on expert
inspection to establish properties of the HSIS. In general, our case relies on
expert evidence only for claims that would be impractical to support otherwise.

5 Results and Discussion

This section presents the results of developing a mechanically-checkable safety
case for Prx, and the lessons learned from our experience. Developing the case
uncovered several issues in the new therapy control software for CNTS, including
two safety-critical defects. We also found that structuring the case as a system
model with pluggable checkers focused our analysis effort, enabling us to perform
deep checks of a complex system, while writing only 2700 lines of code.
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5.1 Issues Uncovered

Through the construction of the Prx case, we found several previously unknown
issues in a pre-release version of the CNTS therapy control software, and we
rediscovered an issue that the CNTS engineers found during a production test
run. We discuss these issues first, and conclude by briefly describing a problem
that we found in the system model itself.

Array Semantics. While developing the part of the case related to the setting
of the couch rotation angle, we discovered a serious issue in the therapy control
code and in a major component of the EPICS runtime. The issue concerns array
calculations, which are performed using EPICS records of type acalcout. An
acalcout record performs calculations over arrays of a statically specified length.
All intermediate values in the computation are truncated or padded with zeros
to match this length.

The affected calculation in the therapy control software uses an “in-place
slice” operator that retains elements between two given indices and zeroes the
rest. In the documentation [16], the bounds on this operator are both inclusive,
but in the version of acalcout used in CNTS, the upper bound is erroneously
treated as exclusive. The therapy control software behaves correctly under the
exclusive semantics, but upgrading to a version of acalcout that correctly imple-
ments the inclusive semantics would introduce subtle errors into several calcula-
tions in the therapy control software. Our EPICS verifier, initially implemented
using the inclusive semantics, detected one such error in the computation of a
flag sent to the PLC to control the neutron beam, for which sending the wrong
value may cause the beam to fail to turn off when a sensor reading is out of pre-
scribed tolerances. Due to this issue, the CNTS engineers cannot safely upgrade
this essential library—correct behavior of the software depends upon the library
bug. The CNTS engineers were unaware of this problem until our EPICS verifier
revealed it.

Gantry Rotation. Early in the first production run of the new therapy control
software, the CNTS engineers identified a safety-critical flaw in the checking of
the gantry rotation angle. The gantry angle measurement ranges from −0.5◦ to
+360.5◦, and the intent when developing the gantry rotation checks was to treat
pairs of angles separated by 360◦ as equivalent, so that a rotation measurement
of 360◦ would satisfy a prescription for 0◦. However, an error in the arithmetic
used in the check caused the system to treat as equivalent any pair of angles
equally distant from 180◦; for example, a measurement of 200◦ would satisfy a
prescription for 160◦. This error could have allowed the beam to turn on and
remain on with the gantry rotation set to an incorrect angle.

Before we had completed the relevant portion of the Prx case, the CNTS
engineers notified us that the code contained a bug involving the gantry rota-
tion angle, but provided no other details. When we completed the case, SCC
detected an error: the EPICS verifier, when asked to prove that the therapy
control software triggered the Therapy Sum Interlock upon receiving an out-
of-tolerance gantry rotation measurement, instead produced a counterexample
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containing a rotation measurement and prescription value that erroneously failed
to trigger the interlock. We investigated the relevant EPICS code to identify the
root cause of the bug and confirmed the details with the EPICS engineers. After
applying their fix to the CNTS EPICS code, SCC processed the Prx safety case
without errors.

Broken Links. Our EPICS linter uncovered a total of 59 references to nonexistent
records in the therapy control software. Three of these represented serious prob-
lems: they were caused by a misspelled record name, which would prevent the
operator from being informed of certain error conditions. The CNTS engineers
fixed these issues promptly. Another three turned out to be harmless remnants
from an earlier code removal. The remaining 53 links refer to records that should
have been annotated as nonlocal, since they exist in a separate EPICS instal-
lation that is accessed transparently over the network at runtime. The CNTS
engineers are investigating how to annotate these nonlocal links.

Case Error. Our initial formalization of the Prx case contained an error, arising
from a misunderstanding about the design of the system: the case claimed that
an invalid couch rotation would cause the therapy control software to open the
PLC’s Gantry/Couch Subsystem Interlock relay, and the PLC would then inter-
nally open its Therapy Sum Interlock relay. But while trying to formulate the
corresponding evidence invocation, we were unable to find the PLC relay num-
ber for the Gantry/Couch Subsystem Interlock. In fact, no such relay exists. The
therapy software, not the PLC, combines Gantry/Couch Subsystem and other
interlocks to compute the Therapy Sum, and it sends the combined Therapy
Sum Interlock state to the PLC. Our strategy of connecting every component
property to concrete evidence directly led to our discovery of this modeling error.

5.2 Performance

As shown in Fig. 6, end-to-end checking of our safety case takes less than an hour.
The figure also shows the sizes of the codebases processed by our analysis tools.
The PLC software is developed in a non-textual representation, so we report its
size in terms of nodes (relays, coils, and other logic elements) and edges (wires)
in the ladder logic graph. The size of the therapy control codebase includes both
the EPICS dataflow graph definitions and the startup script used to load the
graph and initialize communication between the therapy software and external
hardware. The system model for the Prx case is specified in Alloy, extended with
the SCC evidence library. The EPICS tools (the linter, verifier, and connection
checker) share a common codebase, so they are reported together. Most of the
common codebase is related to parsing; only 57 lines are specific to the linter,
441 are specific to the EPICS verifier, and 61 are specific to the EPICS-PLC
interface checker. The case, in total, consists of 2700 lines of code.

5.3 Lessons Learned

Developing our safety case for CNTS led to three primary insights.
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Fig. 6. Total analysis time for the Prx case (left), sizes of the CNTS software com-
ponents analyzed as part of the case (right, above the line), and sizes of the system
model and tools that make up the case (right, below the line). The performance data
was collected on a Debian 8 laptop with an Intel Core i7-4900MQ CPU running at
2.80 GHz with 16 GB RAM.

1. System Model as Safety Case. Our decision to base the case on a detailed
system model rather than a propositional formula (with component properties
represented by uninterpreted predicates) enabled us to detect errors in the case
with minimal auditing effort. A missing property in an Alloy model results
in a concrete counterexample (an execution of the system that violates the
safety property), whereas a missing premise in a propositional argument can
be detected only through manual auditing. For example, our safety case for Prx

initially failed to specify that the ethernet network does not drop any packets.
The Alloy Analyzer produced a counterexample, showing a scenario in which a
dropped packet led to a violation of Prx. Using a detailed Alloy model helped
us not only ensure that relevant component properties are stated, but also that
our argument is not vacuous (because the system model has no executions).

2. Simple Safety Case Checking. The decision to implement our safety case
checker (SCC) on top of Alloy significantly eased the development burden while
providing us with ready-made automated analysis and visualization facilities.
Initially, we had planned to implement SCC using a custom language to han-
dle reasoning about the model and external evidence, as proposed in previous
work [10,12,18,19]. However, as part of the development of SCC, we chose to
first prototype it directly in Alloy. From this prototype, the general design pat-
tern for evidence predicates emerged, allowing us to easily connect additional
external checkers to SCC, leading to a suite of lightweight but effective tools for
the Prx case.

3. Deep and Narrow Custom Tools. We found case-guided tool development
to be highly effective since it focused our efforts on the important properties of
each component. With only 1964 lines of code, we built four custom tools for
CNTS that check a narrow class of properties each, as specified by our sys-
tem model. The integration of these tools into SCC was eased by its simple
plug-in architecture. To add a new tool, the tool developer simply registers a
plugin, consisting of a small Python script that can invoke the tool and inter-
pret its output to determine success or failure. In particular, the need for the
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EPICS-PLC connectivity checker became apparent only late in the development
of the Prx case, but because we had already implemented the plug-in architec-
ture for SCC, we were able to both develop and integrate this checker in less
than a day.

6 Related Work

There is a large body of literature on ensuring safety of critical systems (see,
e.g., [28,38] for a survey). This section surveys the most closely related work,
focusing on previous safety efforts at CNTS, methodologies for ensuring safety of
complex systems, languages for expressing safety cases, and symbolic techniques
for checking properties of software components.

CNTS Safety. The CNTS engineering staff has, over the years, produced a large
collection of heterogeneous evidence [29] in support of CNTS safety properties,
including Prx. This includes a 200-page document detailing system requirements,
developed in consultation with physicists and clinicians; a 2,100 line Z specifi-
cation [30] of the Therapy Control software; a 16,000 LOC reference implemen-
tation of the Z specification in C (in use until July 2015); a 240-page reference
manual [33]; a 43-page therapist guide [32]; and an extensive set of end-to-end
testing protocols that are executed on a daily, weekly, monthly, and yearly basis.
However, none of these prior efforts produced an explicit, mechanically checked
safety argument. Our Prx safety case is the first such argument to be created
for CNTS, and its creation has already led to improvements in the new CNTS
software.

Approaches to Safety. Traditional approaches to system safety are process-based.
Systems like CNTS or the Mars rover [24] are developed according to strict best
practices, by highly skilled engineers. At the system level, these practices involve
detailed requirements, documentation, hazard analysis, and formalization of key
parts of the system design. At the code level, they include adherence to stringent
coding conventions (see, e.g., [23]), manual code reviews, use of static analysis,
and extensive testing. Process-based approaches are highly effective at producing
low-defect code. However, they provide no explicit argument that the system as
a whole satisfies critical properties.

Our work builds on case-based approaches to safety (e.g., [25,28,37,39]).
These approaches aim to produce an explicit argument [25] that links claims
about component behavior to concrete evidence in the form of tests, proofs,
manual reviews, etc. Our approach to developing the Prx case is most closely
related to that of Near et al. [39]. We also used property-part diagrams [27] to
first develop an informal case, which we then formalized in Alloy [1,26]. But
Near et al. do not connect their system-level argument to evidence; instead
they use an interactive analysis to produce evidence obligations only for the
software component of their target system. Our approach, in contrast, uses SCC
to connect the system model to evidence generated by a variety of tools, including
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a fully automatic code verifier. To our knowledge, our case study is also the first
to analyze low-level Programmable Logic Controllers as well as the system’s
software.

Languages for Expressing Safety Cases. Existing languages and tools for devel-
oping dependability cases (e.g., [13,37]) focus on managing the structure of a
case. In these languages, a safety case takes the form of a semi-formal argu-
ment expressed in a graphical notation [37], with safety claims linked to evi-
dence from heterogeneous sources. SCC, in contrast, focuses on expressing the
safety argument with respect to a detailed formal model of the system, linked to
tool-generated evidence. This approach enables automated reasoning about the
logical correctness and non-vacuity of the safety argument.

In terms of automation, SCC is most closely related to the Evidential Tool
Bus (ETB) [10]. The ETB is a general-purpose framework for tool integration,
for scripting distributed workflows, and for connecting claims with supporting
evidence. Its input language is a variant of Datalog. SCC shares with the ETB
the idea of a semantics-neutral connection between claims and evidence, using
uninterpreted predicates. In contrast to the ETB, however, SCC provides a more
expressive formal language (with quantifiers and transitive closure), suitable for
system modeling. SCC also provides, via Alloy, automatic soundness and vacuity
checking, as well as facilities for counterexample visualization. We made heavy
use of these features while developing the Prx safety case.

Software Verification. There is a wide variety of verification tools (e.g., [2,4,5,7,
8,15,20,49]) for general-purpose programming languages. These tools are hard
to build, requiring significant effort and expertise. As a result, they are rarely cre-
ated for more specialized languages, such as EPICS. Our EPICS verifier is, to our
knowledge, the first of its kind. Its implementation leverages Rosette [45,46], a
language designed for easy creation of domain-specific verification and synthesis
tools based on SMT. Our verifier scales to real EPICS programs and is capable
of finding subtle flaws that cannot be found without symbolic reasoning.

7 Conclusion

This paper reported on a case study in applying modern verification techniques
to construct the first mechanically-checked safety case for a real safety-critical
system, the Clinical Neutron Therapy System (CNTS). Our safety case includes
a detailed formal model of CNTS and a set of tools for establishing component
properties specified by the model. Leveraging existing formal tools, Alloy and
Rosette, we built the entire case by writing just 2700 lines of code. The construc-
tion of the case revealed serious flaws in the CNTS therapy control software and
in the implementation of the EPICS language, which we reported to the CNTS
staff. Our results demonstrate that formal, checkable safety cases can provide
significant practical benefits by focusing analysis effort on deep properties of
system components that matter for the safety of the system as a whole.
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Abstract. Despite 20+ years of research on processor verification, it
remains hard to use formal verification techniques in commercial proces-
sor development. There are two significant factors: scaling issues and
return on investment. The scaling issues include the size of modern
processor specifications, the size/complexity of processor designs, the
size of design/verification teams and the (non)availability of enough for-
mal verification experts. The return on investment issues include the
need to start catching bugs early in development, the need to continue
catching bugs throughout development, and the need to be able to reuse
verification IP, tools and techniques across a wide range of design styles.

This paper describes how ARM has overcome these issues in
our Instruction Set Architecture Formal Verification framework “ISA-
Formal.” This is an end-to-end framework to detect bugs in the data-
path, pipeline control and forwarding/stall logic of processors. A key
part of making the approach scale is use of a mechanical translation of
ARM’s Architecture Reference Manuals to Verilog allowing the use of
commercial model-checkers. ISA-Formal has proven especially effective
at finding micro-architecture specific bugs involving complex sequences
of instructions.

An essential feature of our work is that it is able to scale all the
way from simple 3-stage microcontrollers, through superscalar in-order
processors up to out-of-order processors. We have applied this method
to 8 different ARM processors spanning all stages of development up to
release. In all processors, this has found bugs that would have been hard
for conventional simulation-based verification to find and ISA-Formal is
now a key part of ARM’s formal verification strategy.

To the best of our knowledge, this is the most broadly applicable
formal verification technique for verifying processor pipeline control in
mainstream commercial use.

1 Introduction

Modern microprocessor designs apply many optimizations to improve perfor-
mance: pipelining, forwarding, issuing multiple instructions per cycle, multiple
c© Springer International Publishing Switzerland 2016
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independent pipelines, out-of-order instruction completion, out-of-order instruc-
tion issue, etc. All of these optimizations are supposed to be invisible to the
programmer in a uniprocessor context: the overall effect should be the same as
executing instructions one at a time in program order. But each of these opti-
mizations introduces corner cases that potentially change the behaviour and the
different optimizations interact with each other in complex ways.

For example, in a pre-release version of one of ARM’s dual-issue processors,
there was a defect in the inter-pipeline forwarding control logic that resulted in
an instruction reading its input value from the wrong place if the instruction was
preceded by a conditional instruction whose condition did not hold (and whose
results should therefore not be used as inputs). The shortest instruction sequence
which could demonstrate this defect was 5 instructions long. The particular set
of instructions that could trigger the defect was fairly narrow because it was
necessary that the instructions used particular parts of the pipeline, and the
instruction sequence had to be aligned such that the first of these instructions
executed in pipeline 0.

For traditional simulation-based verification to detect this defect you would
need a detailed understanding of the micro-architecture of that particular proces-
sor, of the corner cases caused by the forwarding paths and of the kinds of errors
one is likely to make in implementing forwarding control logic. Creating such
tests is not only hard and unreliable, but it is also expensive because the tests
would be specific to the particular micro-architectural choices in a processor and
different tests must be created for each processor.

This paper describes the “ISA-Formal” verification technique that we have
developed at ARM for verifying that processors correctly implement the Instruc-
tion Set Architecture (ISA) part of the architecture specification. Our method
uses bounded model checking to explore different sequences of instructions and
was able to detect the above defect prior to release of the RTL to manufacturers.

The effectiveness of ISA-Formal is important to its adoption within ARM
but it is not the most important requirement we had to satisfy in order to make
formal verification a useful part of ARM’s processor development flow. Before
ISA-Formal could be deployed widely within ARM, we had make it work within
the constraints of commercial processor development:

(1) Processor development takes a long time (2 years or more) and it is impor-
tant to be able to be able to detect bugs at all stages of processor development.
We have applied ISA-Formal all the way from incomplete designs that still con-
tain bugs through to complete, heavily tested designs.

(2) Verifying a processor takes longer than design: the long tail of processor
development is developing new tests for the processor and fixing any bugs. It
is important that useful results can be obtained even in the early stages of
verification — before the complete test infrastructure has been developed. ISA-
Formal is able to find bugs involving instructions for which we do not have a
specification; all we need is a specification of any instruction whose result could
be affected by the bug.
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(3) Verification teams work in parallel with design teams so it is important
that verification teams are able to continue searching for new bugs even when
there are multiple outstanding bugs waiting to be fixed. Some bugs can take
months to be fixed if they are not critical to immediate project milestones. ISA-
Formal is able to work round known bugs in the processor.

(4) Any verification technique requires significant investment so reusability
not only of the technique but also of the infrastructure is critical. We are able
to reuse the tools across ARM v8-A/R (Application/Real-time) class and across
v8-M (Microcontroller) class processors. The only part that needs to be cus-
tomized for each processor is the Verilog abstraction function that extracts the
effective architectural state from the micro-architectural state of a processor.
This portability has been a great benefit while developing the technique because
it allowed several processor teams to pool resources: one team worked on how to
verify floating point instructions while another worked on branches and another
worked on load-store instructions.

(5) Modern processor architectures and modern processors are large: the
ARM v8-A ISA specification is over 2500 pages long, the v7-M ISA specification
is over 600 pages long (almost half the length of the entire specification). It
is important that verification techniques scale both in terms of human effort
and computing resources. We have written a tool to automatically translate
the source of the ARM Architecture Specifications to Verilog; and we split the
verification task into thousands of small properties allowing effective use of large
compute clusters.

We demonstrated these properties in three small-scale trials on different
processors and have since refined and applied the technique on five further
ARM processors: checking almost the complete instruction set architecture of
these processors ranging from simple 3-stage microcontrollers up to sophisti-
cated 64-bit out-of-order processors. ISA-Formal is now a key part of ARM’s
formal verification strategy.

We characterise our approach as “end-to-end verification” because it focusses
on directly verifying the path from instruction decode through to instruction
retire against the architectural specification in contrast to hierarchical or block-
level verification which focusses on verifying individual blocks against micro-
architectural specifications and then verifying that the composition of those
blocks meets the overall specification.

ISA-Formal is strongly based on techniques developed in the academic com-
munity; our contribution is a description of the techniques needed to make it scale
and of the challenges and solutions in creating a portable approach which can be
applied in a commercial setting to a wide range of processor micro-architectures.

The remainder of this paper is structured as follows: Sect. 2 discusses related
work; Sect. 3 illustrates the basic idea, demonstrating how ISA-Formal can be
applied manually, to a single instruction and discusses the kinds of bugs it was
able to discover in real processors; Sect. 4 describes how we scaled this idea up to
handle full ISA specifications; Sect. 5 describes adaptations to handle a variety of
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different micro-architectural features; Sect. 6 reports on the results of applying
this method to multiple processors; Sect. 7 concludes.

2 Related Work

Our work builds heavily on the pioneering work from the ‘90’s such as Burch-
Dill’s automatic verification based on flushing refinements [5] and Srinivasan’s
verification based on completion refinements [19]. These and many other works
used different notions of correctness of which Aagard et al. [1,2] give a useful
taxonomy and establish conditions under which different notions of correctness
are equivalent.

Our approach focusses on verifying RTL (Verilog) in contrast to work which
verifies a high-level model of the microarchitecture design against a specifica-
tion. For example, Lahiri et al. [14] verified the microarchitecture of the M*-core
processor core (an early RISC-style architecture) and [13] verified the microar-
chitecture for an out-of-order processor through a series of successive refinements
but neither verified against the RTL of an actual processor. In our experience,
most errors are introduced while translating the microarchitecture design into
RTL and during subsequent optimisation so verifying before RTL misses a lot
of bugs. The challenge of verifying actual RTL is that it makes it hard to use
abstraction techniques such as using uninterpreted functions because the actual
RTL of an efficient processor tends not to have convenient blocks which match
directly with parts of the original specification.

Many approaches to verifying pipeline control logic have used theorem prov-
ing techniques to tackle the difficult problems of handling pipeline forwarding
and hazards in in-order processors [12,21] and, later, for out-of-order proces-
sors [7–9,16]. Theorem proving techniques are powerful and tend to suffer less
machine-scaling issues than more automated techniques but their reliance on ver-
ification experts leads to severe human-scaling issues: it is hard to hire enough
experts. We prefer to ride Moore’s law and use more CPU-intensive but more
automatable approaches.

There has been considerable commercial interest recently in formal verifi-
cation of floating point units such as Kaivola et al. [10], KiranKumar [11] and
Slobodova et. al [18]. This is impressive and important work but essentially
orthogonal to our own: while it tackles the scaling issues that occur when ver-
ifying commercial processors, it focusses on individual blocks processing a sin-
gle instruction with relatively simple input-output signals while our approach
focusses on the entire pipeline and especially the control logic to handle interac-
tions between instructions. We describe how we deal with verification of pipelines
containing floating point units in Sect. 5.1.

3 Illustration: Hand-Written Properties

The basic approach to verification that we use in ISA-Formal is based on the
above prior work. We start with the processor in a simple, well-defined state
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uArch0 with no instructions in the pipeline. We then execute for a number of
cycles where each cycle may issue an instruction. This serves to put the processor
into a more complex state where hazards, forwarding, etc. can occur. And finally,
we execute an instruction In and test whether the instruction executes correctly.
This is done by applying an abstraction function abs which extracts the archi-
tectural state of the processor immediately before In executes and immediately
after In executes. We do not flush the pipe before or after In.

uArch0 uArch1 uArchn−1 uArchn

Archn−1 Archn

I1 In

abs abs

In

A key part of making this scalable is that, instead of allowing the formal
verification tool to choose any instruction for In, we enumerate all the instruc-
tion classes supported by the architecture and perform a separate check for
each instruction class. Proving these simpler results is helpful early in processor
development by making it easy to focus on checking the currently implemented
instructions. Later in development, the pattern of failing instructions is a useful
guide in localizing the fault: if all branch instructions are failing, there is no
need to worry about bugs in the ALU. And as the size of the verification task
scales up, splitting the verification task into many small properties lets us make
more effective use of our verification cluster which is optimized for running many
independent processes across hundreds of machines.

To make this more concrete, consider the task of checking an addition instruc-
tion in the classic 5-stage pipeline illustrated in Fig. 1. This consists of 5 pipeline
stages responsible for instruction fetch (IF), decode (ID), execute (EX), memory
access (MEM) and writeback of results (WB). Values are read from the register
file at the ID/EX boundary and results are written to the register file at the
MEM/WB boundary. Forwarding paths (aka bypass logic) are used to reduce
the number of stalls by allowing the result of one instruction to be used as an
input to the ALU if required by the next instruction. Conventionally, most of
the control signals from decode and those that control the pipeline and forward-
ing paths are not shown — although that is where many of the most difficult
bugs lie. We use this simple microarchitecture to explain the technique, Sect. 5
discusses how we adapt the approach to handle more realistic microarchitectures
including dual issue, out-of-order retire and register renaming.

Our first challenge is to implement the abstraction function abs which is
responsible for converting the micro-architectural state of the processor into
an architectural state. To verify an addition instruction, the function abs must
extract the current values of the integer registers.

Many simple processors commit their results in order in a single pipeline
stage. This means that, at the beginning of the cycle where the add instruction
commits, the micro-architectural register file should contain the same values as
the architectural register file before the add executes and, at the end of the
cycle, the micro-architectural register file should contain the same values as the
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Fig. 1. A 5-stage processor pipeline, with forwarding paths, omitting I-Fetch

architectural register file after the add executes. We can therefore obtain the
state before by reading the state at the end of the writeback stage and the state
after by reading from the end of the Mem stage.

The other part of the input state of the processor that we require is the opcode
of the current instruction. The opcode is normally discarded shortly after instruc-
tion decode and is not available at the point where an instruction commits. We
therefore need to implement a “pipeline follower” which copies the opcode from
one stage to the next and implements the same pipeline stall/flush logic as the
datapath. This is similar to the introduction of “ghost state” in Lahiri et al. [13].
The followers and abstraction logic for the pre/post-states are illustrated in Fig. 2

Fig. 2. A 5-stage processor pipeline with state abstraction and follower

Of course, modern ARM processors are considerably more challenging than
a simple 5-stage pipeline: Sect. 5 describes the variations on the above approach
required to apply ISA-Formal in practice.

Our second challenge is to create a specification of the addition instruction.
For any individual instruction, the specification can often be written as a short
piece of purely combinational logic. For example, ARM’s 16-bit encoding of the
instruction “ADD Rd, Rn, Rm” has opcode 0b0001100 | Rm << 6 | Rn<< 3 |
Rd and adds the contents of registers Rn and Rm and writes the result to register
Rd.
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This can be implemented by the following System-Verilog.

assign ADD_retiring = (pre.opcode & 16’b1111_1110_0000_0000)
== 16’b0001_1000_0000_0000;

assign ADD_result = pre.R[pre.opcode[8:6]]
+ pre.R[pre.opcode[5:3]];

assign ADD_Rd = pre.opcode[2:0];

To complete the example, we add assertions that the abstracted result
matches the result of the specification when retiring an add instruction.

assert property (@(posedge clk) disable iff (˜reset_n)
ADD_retiring |-> (ADD_result == post.R[ADD_Rd]));

The above specification is remarkably simple so it is worth examining what
kinds of defect this specification could catch.

Decode Errors. Most obviously, this specification would detect any error in
instruction decoding. But many decode errors are also caught by other verifi-
cation methods such as directed or random testing so, at first sight, this does
not seem especially useful. However, the instruction decoder is responsible not
just for determining how to execute the current instruction but also for setting
signals that determine whether it is safe to apply optimizations involving later
instructions. A property like the above found a decoder bug involving one such
signal that determined whether two adjacent instructions could be fused into
a single micro-op: the signal was being incorrectly set for one instruction. This
defect had been missed despite extensive testing of the processor: there were tests
to ensure that the optimization did happen but testing is ill-suited to checking
that it never happens in any other circumstance.

Datapath Errors. An error in a datapath would be caught by this kind of check
although, in practice, many errors of this kind are caught by other verification
methods already in use.

Interactions between Instructions. Most usefully, and unlike methods based
on Burch-Dill flushing, this specification will detect errors caused by interactions
between instructions such as errors in the forwarding logic that can supply inputs
to this instruction. The example given in the introduction of a sequence of five
instructions which triggered an error in the forwarding control logic was detected
by a hand-written property like the above. Bugs like this are significantly more
important to catch because the forwarding paths vary from one processor to
another, the control logic is difficult to get right and the errors are hard to catch
by conventional tests.

We currently use bounded model checking which verifies that a sequence of
n instructions does not go wrong but to show that any sequence does not go
wrong, we would need to find invariants about the processor and use those to
get unbounded proofs. Going further, in order to complete ISA verification, we
would need to verify that instructions are not lost, duplicated or reordered (we
have done this for some processors) and, to complete verification of the core,
we would need to verify exception taking mechanisms, the instruction fetch unit
and the memory management unit.
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4 Generating Verification IP with Architecture Explorer

The main challenge in applying the above approach to a full processor is one
of scaling. The ARM v8-M architecture has 384 instruction encodings and the
instruction set part of the architecture specification is over 600 pages long [4];
and the ARM v8-A/R architecture has 1280 instruction encodings and is over
2500 pages long [3]. Some of the encodings explicitly disallow using certain reg-
isters as sources or destinations to the instructions, many of the instructions
are conditional and there are a variety of other complications and corner cases.
In addition, changes are regularily added to the architecture specification. All
these reasons make the prospect of writing, testing and maintaining a Verilog
specification like that shown above unattractive.

Over the last 5 years we have developed tools which transform ARM’s official
Architecture Reference Manuals into executable specifications of the v8-A/R and
v8-M architectures [17]. A key part of making this specification useful was to test
it thoroughly before using the specification to verify anything else. In many ways,
this is like Fox and Myreen’s testing of their ARM ISA specification [6] except
that we were able to use ARM’s internal architecture conformance testsuite
(that is normally used to test processors) to test the specifications with billions
of instructions that probe each instruction’s corner cases.

The core of this specification is ARM’s Architecture Specification Language
(ASL) that grew out of the pseudocode used in earlier versions of the architecture
reference manuals. At a high level, ASL is an indentation-sensitive, imperative,
strongly typed, first-order language with type inference, exceptions, enumera-
tions, arrays, records, and no pointers. All integers in ASL are unbounded and
there is direct support for N-bit bitstrings and functions are allowed to be poly-
morphic in the width of a bitstring. For example, memory read returns a value
of type bits(8*size) where size is constrained to be 1, 2, 4 or 8.

The task of scaling the ISA-Formal approach up to handle the full instruction
sets with all their complexities is therefore one of translating the rich, expressive
ASL language to combinational System-Verilog using the synthesizable subset
of Verilog that is accepted by commercial Verilog model checkers. The chal-
lenge in doing this is that synthesizable Verilog is intended to describe hardware
and imposes several limitations upon us; (1) Verilog integers are finite and the
bitwidth is a part of the type; (2) Combinational Verilog is normally written in
a declarative style with no assignments or control flow and few function calls;
(3) Synthesizable Verilog does not support unbounded for-loops or while-loops;
(4) Synthesizable Verilog does not support exceptions; (5) The width of bit-
strings in Verilog must always be a manifest constant and there is no form of
polymorphism over bitwidths of functions.

We were able to overcome the first four issues using relatively conventional
compiler techniques. (1) We use a global flow-insensitive value range analysis to
compute the required width of most integer variables and use a large, but safe
bound for any integers with unknown range. (2) Verilog includes a rarely used
procedural subset which most of the language can be translated into. (3) User-
supplied bounds on loops can be used to unroll all loops. (4) A whole-program
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transformation which adds additional flags and control flow to make exception
and return-related control flow explicit.

The most challenging problem was dealing with bitstring polymorphism. Vir-
tually all polymorphism was caused by instructions which could operate on data
of different widths such as 8, 16, 32 or 64-bit load instructions. This obser-
vation enabled us to eliminate almost all polymorphism by automatically spe-
cializing such instruction encodings to create a separate instruction for each
data width and then to use alternate passes of constant propagatation and a
“monomorphization” pass which identifies calls to polymorphic functions where
the bitwidth is a manifest constant and replaces the call with a call to a
monomorphic instance of the polymorphic function. The remaining polymor-
phism is handled by a set of ad-hoc transforms in the Verilog backend.

5 Applying ISA-Formal to CPUs

In practice, few processors are as simple as the 5-stage pipeline sketched in
Fig. 1 and we have had to develop a number of techniques in writing abstraction
functions to deal with complex functional units, out-of-order retire, dual issue
pipelines, instruction fusion, and register renaming.

5.1 Complex Functional Units

For the most part, our end-to-end approach to verification works: commercial
model checkers are able to handle the complexity of most components without
assistance. However, for complex functional units such as floating point and the
memory system we choose to use other more scalable verification techniques such
as the end-to-end memory-system verification technique described by Stewart
et al. [20]. This modular approach lets ISA-Formal verification focus on control
logic and forwarding paths that controls, feeds and is fed by these complex units.

In order to make ISA-Formal modular, we partition the specification on func-
tion call boundaries into different parts “Instruction Set Architecture (ISA),”
“Floating Point,” “Exception,” “Address Translation,” etc. and only generate
Verilog for the “ISA” part. Any functions on the interfaces to other partitions
are written by hand and many are just a few lines long: returning some compo-
nent of the result of the pre-state or changing some component of the post-state.

On the interfaces, we adopt a variety of approaches to filling the resulting
gaps in the generated Verilog using interface properties, subset behaviour check-
ing and abstract functions. In general, these approaches will prevent us from
detecting bugs in some parts of the processor using ISA-Formal. We tackle this
by tracking which parts of the processor are not being checked by ISA-Formal
and ensuring that an alternative verification technique is used on those parts.

Interface Properties. For some components such as the memory system, we
were already creating interface specifications which were sufficiently strong that
we could use the interface specification instead of the memory system. This only
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required us to convert the architectural view of the memory system to the micro-
architectural view by translating requests/responses between representations.

Subset Behaviour Checking. For components such as floating point units, a
specification of the full behaviour would still be too complex to use in verification
but is quite simple if we restrict ourselves to a subset of the full behaviour. For
example, if we restrict the inputs to ±{0, 1,∞,S-NaN,Q-NaN} then it is easy
to create specifications of all the FP instructions for this subset and perform
some verification. Obviously, this would not be sufficient to detect errors in the
floating point unit itself, but this subset gives enough different values that errors
in the control and forwarding logic can be detected.

We could use SystemVerilog assumptions to restrict inputs to the chosen set
of inputs, but this would restrict all of the checks that ISA-Formal performs on
instructions: whether the instruction sets condition flags, raises an exception,
accesses memory, which registers are written, etc. Instead, we add an additional
signal indicating whether the inputs are in the supported subset and use that
signal only to restrict checks of the values written to floating point registers.

Abstract Functions. The final option is to use the processor as an oracle.
That is, we add logic to track the inputs and outputs from some functional unit
and then use the output value if the inputs of a function in the architectural
specification match the actual inputs of a functional unit in the processor. Since
we are choosing to trust the behaviour of that unit, this cannot detect errors in
the unit but it can detect errors in the surrounding control and forwarding logic.

5.2 Out of Order Completion

In an in-order core, all instructions retire strictly in-order, but some slower
instructions may complete out of order. Retiring a load (say) after the memory
protection check but before the data returns from the memory system allows
independent instructions to continue without waiting for the access to complete.
Such optimizations are important to verify because they introduce difficult cor-
ner cases in the design such as ensuring that the result of the load is written
back even if the processor takes an exception.

The difficulty in verifying out-of-order completing instructions is that it is
hard to construct the post-state: by the time that the load instruction completes,
some of the instructions issued after load will also have completed. This is further
complicated because some load instructions may be split into multiple micro-ops
which complete independently.

Our solution to this is to take a snapshot of the pre-state when the load
instruction retires. As each micro-op for the instruction under test completes, the
snapshot is updated with the change. Finally, when the last micro-op completes,
the final post-state is available and the instruction can be checked against the
architecture specification.
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5.3 Dual Issue Pipelines

Dual issue pipelines decode and execute two consecutive instructions in parallel.
To handle dual issue pipelines, we add a further abstraction function to extract
the intermediate state between execution of the two instructions. Our initial
approach to checking these was to create two copies of the combinational logic
implementing the specification: one copy for each pipeline. This worked but
consumed a lot of memory and would scale badly for 3 or more-issue processors
so, instead, we use a single copy of the specification and insert multiplexors to
select which pre/post state is used with the specification.

The most serious problem encountered occurs if the second instruction can
suppress part of the behaviour of the first instruction. For example, if both
instructions modify the carry flag, then the final value written will be the result of
the second instruction. In this case, the carry flag value from the first instruction
may not be available at the writeback stage and we need to identify the correct
signal to use and add a pipeline follower to propagate the value down to the
point of serialization. Any error in choice of signal is detected when that signal
is used as part of the pre-state of the second instruction.

5.4 Instruction Fusion

A high-performance processor might wish to fuse commonly occuring pairs of
consecutive instructions into a single instruction. For example Malik et al. [15]
describes a processor that detects sequences of dependent ALU instructions
such as

SUB R4, R1, R2 ; R4 := R1 - R2
ADD R4, R4, R3 ; R4 := R4 + R3

and fuses them into a single macro-operation that reads three inputs from the
register file and performs two add/subtract operations.

Optimizations of this kind raise a potential problem in sequences where the
results of the first instruction are overwritten by the second instruction because
the processor may not calculate the post-state of the first instruction or the
pre-state of the second instruction.

Our solution is to add additional verification logic to calculate the missing
intermediate state. The correctness of this logic is verified when checking that
all uses of the SUB instruction (i.e., the first instruction of the pair) is correct
and that justifies use of the result when checking that the SUB/ADD fused pair
(i.e., the first/second instruction pair) gives the correct overall result.

5.5 Register Renaming

Processors with out-of-order instruction issue differ significantly from processors
with in-order issue because they speculatively execute instructions past branch
instructions. To allow them to recover from mis-speculation, they use a regis-
ter rename table that maps architectural registers such as “X0” to one of a
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large pool of physical registers. As instructions are decoded, source registers are
“renamed” using this table; free physical registers are allocated and the rename
table is updated with mappings from destination register names to these physi-
cal registers. Instructions typically execute as soon as their input dependencies
are satisfied but, to preserve the illusion that instructions execute in program
order, a reorder buffer (ROB) only commits instructions in program order.

Despite the added complexity of speculative execution, register renaming
and reorder buffers, it is actually simpler to apply ISA-Formal to out-of-order
processors because they have a single clearly identified point of serialization
implemented in the reorder buffer. In contrast, in-order processors have a variety
of different mechanisms to support a limited degree of out-of-order execution
such as varying pipeline length or supporting out-of-order completion of slow
instructions and these different mechanisms are scattered across the processor.

5.6 Debugging Abstraction Functions

From the above, it should be apparent that creating the abstraction code remains
a difficult task and involves a lot of work with the CPU designers to get right.
While debugging these abstraction functions, we have found that it is useful to
start by using hand-written properties like those described in Sect. 3 for instruc-
tions that touch the major parts of the processor. For example, a data-processing
instruction, a load, a store, a floating point move, etc.

It is significantly easier to debug the abstraction function using hand-written
specifications than using a mechanical translation from the specification. Once
we have debugged the abstraction functions, we switch to using the machine-
generated specifications exclusively, and rarely look at the generated code.

5.7 Handling Known Problems

One of the major difficulties we experienced before developing ISA-Formal was
that formal verification tools would report variations on the same defect over
and over again. This was a problem early in development when we might know
that part of the processor was missing or incomplete; and it is a problem at any
stage that once the bug report has been filed, the verification team wants to
focus on finding other problems until the bug has been dealt with.

A critical technique for handling known problems is to maintain a list of
assumptions corresponding to each individual bug or feature. As each bug is
fixed, we remove the corresponding assumption and confirm that the bug has
been fixed. Using assumptions is a simple technique but it greatly increases our
ability to use formal verification to detect errors early in development and it
very effectively decouples processor design from verification allowing the tasks
to proceed in parallel.

6 Results

This section describes the results of applying ISA-Formal in three small-scale
trials and five full-scale uses. These eight trials and uses cover the full lifetime of
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ARM processor developments; they cover both application processor targetted
at mobile phones, etc. and microcontrollers targetted at embedded uses; and
they cover micro-architectures ranging from 3-stage, in-order pipelines through
dual-issue, in-order pipelines to out-of-order pipelines.

6.1 ARM’s Development Phases

ARM’s development process involves four stages of roughly equal length: Develop
and Test (D&T), Alpha, Beta and Access. The goal of each stage is to create
a basic pipeline design in D&T; make it feature complete by the end of Alpha;
improve power, performance and area through Beta; and to improve confidence
in the design through the access period where the design is made available to
the lead partners for that processor for evaluation and feedback. Testing steadily
increases throughout this process and each stage applies roughly an order of
magnitude more testing than the previous stage.

6.2 Small-Scale Trials

We carried out three small-scale trials on processors that were already in the
access phase to demonstrate the ability of ISA-Formal to detect defects that
were hard to detect by other means. These trials consisted of developing hand-
written properties like those described in Sect. 3 and demonstrated the ability
to detect defects that had been found by other means as well as new defects.

The defect described in the introduction is an example of a bug we detected
during this trial process. The trigger sequence of the defect is conditional exe-
cution of instructions executing in two pipeline stages with a combination of
taken and not-taken instructions. In a 2-pipeline design, the size of the small-
est trigger sequence is 5 instructions: one to set up the condition, two (one per
pipe) to generate values that might be forwarded, and two (one per pipe) to
consume forwarded values. (There are several variations on that basic pattern.)
Using traditional simulation-based verification, patterns like this would have to
be tested on all combinations of instructions that have forwarding paths between
them in that particular micro-architecture and each processor will have a differ-
ent set of forwarding paths. There are many, many sequences of instructions like
this to be tested so defects of this form are typically only found during soak-
testing during the Access phase. Using ISA-Formal, we created hand-written
properties for one or two instructions corresponding to each major unit in the
datapath (the ALU, shifter, multiplier, etc.), we created abstraction functions
for each of the two pipelines, and, since we left the opcode received from the fetch
unit unconstrained, the commercial bounded-model-checker explored sequences
of instructions up to some bound. We ran about a dozen properties through
the model checker and after two minutes proof time detected the failing trigger
sequence.

The same experience was repeated on all three processors: bugs were found
with relatively little effort with the bulk of the work being done by junior engi-
neers supervised by formal experts and with input from the microarchitects.
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Fig. 4. Defect detection by time

The consistent combination of low human effort and low machine effort was an
important part of demonstrating that ISA-Formal could detect difficult defects
that, at best, would have been caught only during the Access phase.

6.3 Production Usage

Based on the success of the small-scale trials, ARM decided to adopt ISA-Formal
as part of the formal verification strategy on five processors that were in earlier
stages in their development: three in D&T, one in Alpha and one in Access. This
work used the tool described in Sect. 4 to generate Verilog for all instructions
directly from ARM’s official Architecture Reference Manuals allowing engineers
to focus on developing abstraction functions and testing the processor.

Defects have been found in all five processors with the distribution roughly
in proportion to the effort invested in that processor. The small-scale trials
had demonstrated that ISA-Formal can detect difficult to detect defects late in
processor development; the production usage demonstrated that ISA-Formal is
effective at detecting defects in earlier phases of development. Figures 3 and 4
show the distribution of confirmed, distinct defects detected using ISA-Formal
by phase and by time. Figure 3 shows that ISA-Formal is capable of catching
many defects early in development (overcoming the problem of being able to
find many distinct defects in parallel with development) and that it is capable of
finding defects late in development even after extensive testing by other methods.
Figure 4 shows that ISA-Formal is able to start detecting defects in just a few
weeks work and continues to find bugs as processors are developed.

We also found that ISA-Formal was able to detect issues affecting all areas
of the instruction set: FP/SIMD, Memory, Branches, Integer, Exceptions and
System instructions (e.g., memory fence instructions). Figure 5 shows the dis-
tribution of bugs found by ISA-Formal by the area of the processor affected
(combining results for all processors). (The “Integer” category includes both
integer datapath instructions and basic pipeline control issues — it is often hard
to separate the two since integer instructions are so fundamental to a processor.)
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FP/SIMD 25%
Memory 21%
Branch 21%
Integer 18%
Exception 8%
System 7%

Fig. 5. Defect detection by area

Processor Lines of code

#1 2400
#2 2250
#3 4600
#4 1000
#5 2500

Fig. 6. Size of verification code

It is encouraging to note that the two largest sources of detected bugs were
FP/SIMD instructions and memory instructions. As Sect. 5.1 explains, we do
not test the FPU or the memory subsystem but, despite this, we are still able
to test and find defects in the forwarding, pipeline control and register logic
connected to these units.

The effort of creating, testing and debugging the machine-readable specifi-
cation and a tool to translate it to Verilog is considerable but can be shared
across multiple processors and can be used for other purposes within the com-
pany (e.g., documentation, testing of architecture extensions, etc.). The primary
cost of implementing ISA-Formal on a new processor is the effort required to
implement the pipeline follower and abstraction function on each processor. As
a rough indication of the effort required, Fig. 6 shows the number of lines of
code required for each (anonymized) processor. Most processors need around
2,500 lines of support code: a fairly modest cost. The outliers are processor #4
which has not yet added a follower for floating point registers and processor #3
which is a more complex processor than the other four.

Beyond the bug numbers, we found that applying ISA-Formal early in the
development was capable of finding bugs that would not normally be caught
until much later. For example, very early in development of an out-of-order
processor, ISA-Formal found a bug that occurred when all the free registers in
the physical register pool were in use. This was found before the processor could
even execute load-store instructions so we would not normally be catching such
bugs that early.

7 Conclusions

Two barriers to widespread industry adoption of formal verification techniques
to check processors are scaling and return on investment issues. The end-to-end
approach to verification that we adopt tackles both issues: it allows machine-
generation of verification IP from the architecture specification, it allows engi-
neers to detect bugs that affect actual instruction sequences very early in deploy-
ment, and it encourages creation of reusable tools, techniques and IP that can
be used across an unusually wide range of micro-architectural styles.

This paper describes the steps needed to turn the basic idea into a scal-
able, reusable technique: automation, dealing with a range of different micro-
architectural design techniques, and initial bringup issues. We have applied this



End-to-End Verification of ARMR© Processors with ISA-Formal 57

method to 8 different ARM processors spanning all stages of development up to
release. In all processors, this has found bugs that would have been hard for con-
ventional simulation-based methods to find and ISA-Formal is now a key part
of ARM’s formal verification strategy.

To the best of our knowledge, this is the most broadly applicable formal ver-
ification technique for verifying processor pipeline control in mainstream com-
mercial use.
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Abstract. We propose a practical verification framework for preemptive
OS kernels. The framework models the correctness of API implementa-
tions in OS kernels as contextual refinement of their abstract specifi-
cations. It provides a specification language for defining the high-level
abstract model of OS kernels, a program logic for refinement verifica-
tion of concurrent kernel code with multi-level hardware interrupts, and
automated tactics for developing mechanized proofs. The whole frame-
work is developed for a practical subset of the C language. We have
successfully applied it to verify key modules of a commercial preemptive
OS μC/OS-II [2], including the scheduler, interrupt handlers, message
queues, and mutexes etc. We also verify the priority-inversion-freedom
(PIF) in μC/OS-II. All the proofs are mechanized in Coq. To our knowl-
edge, our work is the first to verify the functional correctness of a prac-
tical preemptive OS kernel with machine-checkable proofs.

1 Introduction

Verifying OS kernels has long been recognized as an important but also extremely
challenging task. There have been exciting efforts for OS kernel verification
[4,13,16,27] in recent years, but most of them have no or limited support of
kernel-level preemption, which allows tasks to be preempted even in kernel mode.
This limitation restricts their applicability to real-time systems, where preemp-
tive multitasking is indispensable to achieve real-time guarantees.

Preemptive kernels require explicit invocation of schedulers inside interrupt
handlers and careful interrupt management in the kernel code, which make the
kernel highly concurrent and complex. In this paper we propose a verification
framework for preemptive OS kernels, and show its application in verifying key
modules of μC/OS-II [2], a commercial preemptive real-time multitasking kernel
for microprocessors and microcontrollers. The verification is fully mechanized
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in Coq [1]. To our knowledge, it is the first verification of (key modules of) a
preemptive OS kernel with machine-checkable proofs. The key contribution of
the work is to adapt existing theories on interrupt verification [11] and contex-
tual refinement of concurrent programs [17,19,24,25], and integrate them into
a framework for real-world preemptive OS kernel verification. Specifically, our
work makes the following new contributions:

First, we formulate and verify the correctness of the APIs of OS ker-
nels as contextual refinement between their implementations and specifications.
Although refinement approaches have been applied in earlier work on OS kernel
verification [4,13,16], we believe our work is the first to explicitly specify and
prove contextual refinement for APIs of a preemptive OS kernel, following recent
progress on refinement verification of concurrent programs [17,19,24,25]. As we
explain in Sect. 2.2, contextual refinement not only serves as a very strong notion
of functional correctness of system APIs, but also allows us to prove properties
based on the more abstract API specifications and then carry it down to the
level of concrete implementations, which makes the verification much simpler
than doing proofs directly at the concrete level.

Second, we provide a simple modeling language for specifying kernel prim-
itives. The language strives for balance between abstraction and expressiveness
for scheduling. On the one hand, we want the specification to abstract away
implementation details. On the other hand, it should provide enough details so
that many important properties can be specified at the abstract specification
level. Our modeling language provides an abstract sched command, allowing
us to specify explicitly when the scheduler is invoked in synchronization primi-
tives or interrupt handlers. Semantics of sched is parameterized over abstract
scheduling policies (e.g., priority-based or round-robin). Expressiveness about
these details are necessary to specify system-wide scheduling properties.

Third, we propose a program logic for refinement verification of concurrent
kernel programs. The logic supports multi-level nested hardware interrupts and
configurable schedulers. It extends concurrent separation logic [21] (CSL) with
relational assertions that relate program states at the implementation and the
specification levels, as in Liang et al. [17,19]. It also assigns ownership-transfer
semantics to interrupt management operations and verify multi-level hardware
interrupts in a realistic setting. Different from traditional Hoare-style program
logics, whose soundness ensures the semantic interpretation of Hoare-triples,
our logic explicitly establishes contextual refinement, which is more useful for
establishing abstractions for system APIs, as explained above.

Fourth, our framework is developed for a practical subset of C. It has been
successfully applied to verify key APIs of μC/OS-II [2], including the timer inter-
rupt handler (and a pseudo interrupt handler to demonstrate the support of
multi-level interrupts), the scheduler, the time management, and four synchro-
nization mechanisms: message queues, mail boxes, semaphores, and mutexes.
It is worth noting that, unlike existing works [4,13,16,27] that are focused on
kernels newly developed with verification in mind, we take a commercial system
developed by an independent third-party and verify the code with minimum mod-
ification, which demonstrates the generality and applicability of our framework.
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Fifth, we also specify and verify priority inversion freedom (PIF) of
μC/OS-II. PIF is a crucial property for real-time systems and is worth veri-
fying in its own right. Moreover, since the specification and verification are done
at the level of the abstract model (i.e., specifications) of the kernel, they also
help validate our model of system APIs. As we explain above, many important
properties cannot be specified if the model is too weak or overly abstract.

Coq proofs and a companion technical report are available at http://staff.
ustc.edu.cn/∼fuming/research/certiucos.

2 Background and Overview of Our Work

2.1 Preemptive OS Kernels and Interrupts

In a preemptive OS kernel, execution of a task inside the kernel can be inter-
rupted at any program point (unless interrupts are disabled). Then the control is
switched to the interrupt handler. When the handler finishes, it may invoke the
scheduler and switch the execution context to a different task, instead of return-
ing to the original interrupted task. For instance, with priority-based scheduling,
the interrupt handler always switches to the highest priority task at its end.

The x86 Interrupt Mechanism. Interrupt handling and management are indis-
pensable in preemptive OS kernels. We give an overview of the interrupt mech-
anism in x86 systems (based on the Intel 8259 A interrupt controller).

The CPU has a flag bit IF indicating whether interrupts are enabled or not.
The cli/sti instruction clears/sets the bit to disable/enable interrupts. In 8259 A
there is a register isr, each bit of which corresponds to a hardware interrupt
and records if the interrupt is being served or not. Different priority levels are
assigned to different sources of interrupts, with level-0 being the highest. When
an interrupt request comes, we check IF and isr. If the interrupts are enabled
and there is currently no interrupt with higher or the same priority being served,
the request will be served. The corresponding bit in isr is set to 1 and the control
jumps to the corresponding interrupt handler.

On the invocations of an interrupt handler, the CPU flags (including IF) are
saved on the stack, and interrupts are disabled automatically. If interrupts are
enabled again inside the handler, the handler could be further interrupted by
requests with higher priorities, causing nested interrupts.

The handler returns to the program being interrupted using the iret instruc-
tion, which also restores the flags (including IF). Before the handler returns,
it needs to execute eoi to send an “end of interrupt” signal to the interrupt
controller, which clears the corresponding bit in isr. Note that after eoi but
before iret, if interrupts are enabled (IF = 1), the handler could be interrupted
by interrupts at a lower or the same level.

Overview of μC/OS-II. μC/OS-II is a commercial preemptive real-time multi-
tasking OS kernel developed by Micrium [2]. The kernel has 6000+ lines of C
code and 300+ lines of assembly. It allows a fixed number of tasks, multi-level

http://staff.ustc.edu.cn/~fuming/research/certiucos
http://staff.ustc.edu.cn/~fuming/research/certiucos
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interrupts, and preemptive priority-based scheduling. The system APIs include
“semaphores; event flags; mutual-exclusion semaphores that eliminate unbounded
priority inversions; mailboxes; message queues; task, time and timer manage-
ment; and fixed sized memory block management” [2]. μC/OS-II is developed for
microprocessors and microcontrollers, and it does not support virtual memory.
It has been deployed in many real-world safety critical applications, including
avionics (e.g., the Mars Curiosity Rover) and medical equipments.

2.2 Overview of the Verification Framework

An OS kernel hides details of the underlying hardware and provides an abstract
programming model for application-level programmers. The implementation of
the kernel must ensure that behaviors of user applications in the real machine
are consistent with their behaviors under the abstract model [14]. Thus the OS
verification can be reduced to verifying refinement between the concrete and
abstract programming models.

Contextual Refinement as Correctness. We consider three entities, the applica-
tion A, the abstract specifications of the system APIs and interrupt handlers
O, and their concrete implementations O. When system calls are made or inter-
rupts are handled, routines in O are invoked in the real execution, while in the
programmers’ mind those in O are invoked instead at the abstract level. Then
the correctness of OS kernels requires O refines O under all contexts A:

∀A.[[A[O]]] ⊆ [[A[O]]]

where [[ ]] maps a program P to the set of its observable behaviors. It says that,
for all applications, executing the concrete code O does not have more observ-
able behaviors than executing the abstract version O. In this paper, observable
behaviors are defined as finite prefixes of execution traces consisting of observable
events, following Liang et al. [17].

Contextual refinement is a very strong notion of functional correctness of
system APIs since it quantifies over all applications. Moreover, it makes verifica-
tion of system-wide properties simpler. For instance, if we want to verify certain
property Φ about a whole system A[O], i.e., Φ holds over every trace in [[A[O]]],
we could prove that it holds over every trace in the superset [[A[O]]] instead.
Proofs at the abstract level could be much simpler than the concrete level.

The Whole Verification Framework. Figure 1 shows the structure of our verifi-
cation framework. To model OS kernels and applications, we introduce two lan-
guages (in block A), the low-level language for the concrete code implementation
and the high-level language for the abstract specification. Above them we have
a program logic (in block B) that allows us to prove the low-level kernel imple-
mentation contextually refines the high-level specifications. The framework also
provides a set of Coq tactics (in block C) to automatically generate and prove
verification conditions. The μC/OS-II modules certified in this framework are
shown in block D. Below we give details of some of the building blocks.
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Fig. 1. Structure of the verification framework and μC/OS-II verification

3 Modeling of OS Kernels

As explained above, the correctness of OS kernels is formalized based on three
entities — user applications A, the concrete implementation O, and the abstract
specification O. In this section we introduce the programming (or modeling)
languages for the three entities (see block A in Fig. 1). Due to space limit, we
only show the main language features with simplifications for clear presentation.
The details are available at TR and the Coq code [26].

3.1 The Low-Level Language

The low-level language consists of two parts for implementations of user appli-
cations and OS kernels, respectively.

Application Language. The application language is shown at the top of Fig. 2.
It is a subset of the C language consisting of function calls, pointer operations
(except pointer arithmetics), arrays, structs, bit operations, etc. The application
code A maps function names to their function bodies. The command f(ē) calls
the function f , which could be either an application function in A or an OS API
(in O at the low-level or in O at the high-level, as we explain below).
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(AExpr) e ::= n | x | ∗ e | &e | e.id | e[e] | . . .

(AppStmts) d ::= e=e | f(ē) | d; d |while (e) d | if (e) d else d | return e | . . .
(AppCode) A ::= {f1 � d1, . . . , fn � dn}

(LPrim) ι ::= switch x | encrt | excrt | eoi k | iext | . . .

(LStmts) s ::= d | ι | s; s |while (e) s | . . . (ItrpCode) θ ::= [s0, . . . , sN−1]

(ProgUnit) η ::= {f1 � s1, . . . , fn � sn} (LOSCode) O ::= (ηa, ηi, θ)

(LProg) P ::= (A, O)

(BitVal) b, ie ∈ {0, 1} (ISRReg) isr ::= [b0, . . . , bN−1]

(CrtStk) cs ::= nil | ie ::cs (ItrpStk) is ::= nil | k :: is

(ItrpTaskSt) δ ::= (ie, is, cs) (ItrpSt) π ::= {t1 � δ1, . . . , tn � δn}

Fig. 2. The language for applications and kernel implementation

Note that the correctness of OS kernels are independent of the implemen-
tation language of A. Here we pick the C language for A to simplify the for-
malization because the applications and the kernel are now implemented in the
same language and we do not have to consider the interaction between different
languages when defining the whole system (A[O]) behaviors.

Low-Level Language for OS Kernels. The middle of Fig. 2 shows the low-level
language for the concrete implementation of OS kernels. Usually the kernels are
implemented in C with inline assembly. However, giving semantics directly to C
with inline assembly requires us to expose stacks and registers, which make the
semantics overly complex. To avoid this problem, we extend the C statements
with assembly primitives ι to encapsulate the assembly code. Semantics of these
primitives will be given below.

switch x switches to the target task x. encrt enters a critical region by
disabling interrupts. It also saves the old IF onto the stack to allow nested
critical regions. Note we use ie to model the IF flag and abstract away other
bits in the hardware EFLAGS register. excrt exits the current critical region by
popping the stack to recover ie. Since we hide stacks in our state model, we use
an abstract stack cs to save the historical ie bits (see Fig. 2, which is explained
below). eoi k clears the k-th bit in isr, indicating that the k-th interrupt is no
longer in service. iext enables interrupts and returns to the interrupted program.

The kernel implementation O consists of the system API implementation ηa,
the internal functions ηi and the interrupt handlers θ. The internal functions are
called only by code in ηa or θ. θ is a sequence of N interrupt handlers, where N
is the maximum number of interrupts we support. The handler with the lower
identifier has the higher priority. Then a complete low-level program P is defined
as a pair of the application code A and the kernel code O.

Operational Semantics. The language is concurrent, with multiple continuations
(i.e., control stacks) in the state, each corresponding to a task. All tasks share
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memory, but each has its own local variables and local interrupt states (see δ in
Fig. 2, which is explained below). We also separate the program state (including
memory and variables) into two disjoint parts, one for the application code A
and the other for the kernel code O. The only way for A to access kernel states
is to call system APIs in O, and O cannot access application states.

We give small-step operational semantics to the language. For each step, the
processor picks the continuation of the current task and executes its current
command or expression. To model concurrency and interrupts, both commands
and expressions could be executed in multiple steps, where each step corresponds
to the granularity of a single machine instruction (as in CompCertTSO [22], but
we use the sequential consistent model instead of the x86-TSO memory model).

The assembly implementation of the context switch routine is abstracted into
the primitive switch x. It switches the execution from the current task to the
target task x, where x stores the task identifier.

The other assembly primitives ι are all related to interrupts management and
handling. To model their semantics, we introduce interrupt states in the state
model, as shown at the bottom of Fig. 2. The global register isr is shared by all
tasks. It models the isr register in the 8259 A interrupt controller, as explained in
Sect. 2.1. In addition, there are local interrupt states δ for each task. It contains
a local copy ie of the IF flag in the EFLAGS register (see Sect. 2.1) recording
whether interrupts are enabled, a stack cs consisting of the historical values of
ie to support nested critical regions, and another stack is recording the sequence
of interrupts that interrupt the execution of the task. The stack is is auxiliary
data introduced mainly for verification purposes. π records the δ of each task.

encrt enters a critical region by disabling interrupts (i.e., clearing the ie bit
using cli). It also saves the old ie onto the cs stack. excrt exits the critical region
by popping off the top value on cs and using it to restore ie (executing sti if the
value is 1).

Interrupt requests may arrive non-deterministically after each step if ie = 1.
A level-k request is served only if there is no request at higher or the same
level being served (i.e., ∀k′.k′ ≤ k → isr(k′) = 0). Then the processor clears
ie, sets isr(k) to 1, pushes the number k onto the logical stack is, saves the
execution context and the local variables onto the abstract control stack (i.e.,
the continuation), and finally jumps to the interrupt handler θ(k).

eoi k clears the k-th bit in isr, indicating that the k-th interrupt is no longer
in service. iext is an abstraction of the iret instruction. It resets the ie bit to
1 to enable interrupts, pops out the topmost interrupt number on the is stack,
and returns to the interrupted program.

3.2 The High-Level Specification Language

Viewing from the aspect of application programmers, we model the OS kernel
as an extended C language with multi-tasking and system calls. As explained
above, the C language is used to implement user applications A, and the system
calls invoke an abstract version of system routines in O, which are implemented
using a simple specification language. Correspondingly, the low-level concrete
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(HStmts) ::= sched | γ(v̄) |assert | end | 1; 2 | 1+ 2

(HAPISet) ϕ ::= {f1 � 1, . . . , fn � n} (HEvtSet) ε ::= [ 0, . . . , N−1]

(HSched) χ ∈ HAbsSt → TaskId → Prop (TaskId) t ∈ Nat

(HOSCode) O ::= (ϕ, ε, χ () HProg) P ::= (A,O)

(HAbsSt) Σ ::= { 1 �Ω1, . . . , n �Ωn} (HDataNm) ::= tcbls | ctid | . . .

(HData) Ω ::= α | t | . . . (HStatus) ts ::= rdy | . . .

(HTCBLs) α ::= {t1 �(pr1, ts1, . . .),. . ., tn �(prn, tsn, . . .)}

Fig. 3. High-level spec. language and abstract states

representation of kernel states is modeled as algebraic abstract states at the
high level. This section presents the high-level language and its semantics.

As shown in Fig. 3, the whole high-level program P consists of the application
code A and the abstract specification of the kernel O. The application code A is
the same as in the low-level language (see Fig. 2). O contains the specifications
ϕ for kernel APIs, ε for interrupt handlers, and χ for the scheduler.

Programmers at this level have no control over interrupts (e.g., enabling
or disabling interrupts). Always enabled, interrupts are modeled implicitly as
abstract external events that may occur non-deterministically at any program
points. At the high level an incoming level-k event is always handled by executing
ε(k), i.e. the k-th handler specified in ε.

The system APIs and interrupt handlers are specified as an abstract state-
ment s, which forms a simple but expressive specification language. sched does
scheduling. Its semantics is determined by the abstract scheduler specification
χ. As defined in Fig. 3, χ is a binary relation between abstract states and task
identifiers. That is, given an abstract state Σ (defined at the bottom of Fig. 3), χ
finds a related task identifier as the next task to execute. Note that χ is a relation
instead of a function, therefore the abstract scheduler could be non-deterministic.
Since χ is provided as part of the kernel specification, the semantics of sched in
our language is configurable. Specifying details of the scheduling policies (instead
of using a more abstract non-deterministic scheduler that may pick any task)
allows us to specify and verify scheduling properties such as PIF at the high
level.

γ(v̄) is a meta-level relation (defined in Coq) that takes v̄ as arguments and
maps an abstract state to another. It can be instantiated to specify any atomic
transitions over abstract states. assert b asserts that the predicate b holds over
the current abstract state. end represents the end of abstract APIs or interrupt
handlers. s1; s2 and s1+s2 are statements for sequential composition and non-
deterministic choices respectively.

Abstract States. The kernel state is represented as the abstract state Σ at the
high level. As defined at the bottom of Fig. 3, Σ is a mapping from names a
to the abstract data Ω. Here tcbls is the name for the high-level abstract TCB
list α, which maps task identifiers to abstract tasks, including the priority pr
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(a natural number), the task status (ready, waiting, etc.) and so on, depending
on the low-level implementations. ctid is the name for the current task identifier t.

Example of High-Level Specifications. We use sdly
def= (γerr(ticks) +

(γdly(ticks); sched)) to specify the system API “void OSTimeDly(Int16u ticks)”,
which delays the current task for the specified number of system ticks. The
atomic operation γerr(ticks) specifies the error case when ticks = 0. γdly(ticks)
defines the atomic behavior of updating the status of the current task from
“ready” to “waiting” with the duration set to ticks when ticks > 0, and the
following sched switches to another ready task, following the scheduling policy
specified by the abstract scheduler χ. Note that the exclusive conditions over
ticks in γerr(ticks) and γdly(ticks) make the non-deterministic choice statement
deterministic. We omit the definitions of γerr(ticks) and γdly(ticks) here.

As another example, below we show the abstract scheduler specification
χμC/OS-II for μC/OS-II. It requires that the selected task be ready and have
the highest priority among all the ready tasks.

χμC/OS-II
def
= λΣ, t.∃α, pr.Σ(tcbls) = α ∧ α(t) = (pr, rdy)∧

∀t′, pr′. (t �= t′∧α(t′)=(pr′, rdy))→pr′ ≺pr

3.3 OS Correctness

As we explain in Sect. 2.2, the correctness of OS kernels can be defined in terms
of contextual refinement. Below we give its formal definition.

Definition 3.1 (OS Correctness). O 
ψ O iff
∀A,W,W.Match(ψ,W,W) =⇒ ((A,O),W ) � ((A,O),W)
where ψ ∈ LOSFullSt → HAbsSt → Prop and

Match(ψ, (T,Δ,Λ, t), (T,Δ,Σ)) def=
(t ∈ dom(T ))∧ (ψ Λ Σ)∧ (t=Σ(ctid))∧ (dom(T )=dom(Σ(tcbls)))

The low-level kernel code O refines its high-level abstract specifications O

with constraints ψ over initial kernel states, denoted as O 	ψ O, if and only
if for any client code A, low-level state W and high-level state W, if W and
W satisfy certain consistency constraint (w.r.t. ψ), then the set of observable
behaviors of the low-level configuration ((A,O),W ) is a subset of ((A,O),W)
(i.e., (P,W ) � (P,W), following the event trace refinement in [17]).

Due to space limit, we elide the definitions of W and W in Sects. 3.1 and
3.2. The low-level whole program state W is in the form of (T,Δ,Λ, t), where
the task pool T maps task identifiers to their continuations, Δ is the client state,
Λ is the low-level kernel state, and t is the identifier of the current task. The
high-level program state W is in the form of (T,Δ,Σ), where Σ is an abstraction
of the low-level kernel state Λ and the current task id t.

The constraint Match requires that: (1) initially W and W have the same
task pool T and client state Δ; (2) the current task t is in T ; (3) the low-level
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Fig. 4. Specification of concurrent programs

kernel state Λ and the high-level abstract state satisfy ψ; (4) the current task
at the low level and the high level are the same; and (5) the set of tasks in the
abstract TCB list should be the same as those in the low-level task pool.

4 Relational Program Logic for Refinement Verification

In this section, we present a CSL-style relational program logic for refinement
verification. The logic uses relational assertions to prove refinement between
an implementation and its specification. It also follows the ownership-transfer
semantics in CSL to reason about multi-level hardware interrupts.

Refinement of Concurrent Programs, and Relational Reasoning. For concurrent
programs, refinement establishes stronger functional correctness than traditional
Hoare triples. As an example, the function inc shown in Fig. 4(a) increments the
counter cnt. It may be called simultaneously by concurrent tasks. Figure 4(b)
gives pre-/post-conditions to specify inc, which would be valid in a sequen-
tial setting and is sufficient to describe the functionality. However, they cannot
be used in a concurrent setting because they are not stable with respect to
concurrent behaviors of other tasks. To make them stable, we may need the
specifications in Fig. 4(c), which is too weak to capture the functionality.

Figure 4(d) gives a relational specifications to show that inc refines an
abstract operation 〈CNT++〉 [19], where 〈C〉 represents an atomic operation C.
The relational assertions specify three important entities, the concrete state
(cnt), the abstract state (CNT) and the abstract operation (〈CNT++〉) that the
program refines (which could be non-atomic in general [19]). The precondition
requires that initially cnt has the consistent value with its abstract counterpart
CNT, and the abstract operation that inc needs to refine is 〈CNT++〉. The post-
condition ensures cnt and CNT remain consistent and the remaining abstract
operation that needs to be refined is end (i.e., 〈CNT++〉 has been accomplished).

Our refinement proofs for OS kernels follow the same kind of relational rea-
soning, where the assertions now relate the concrete kernel state, the abstract
kernel state (Σ) and the abstract statement (s).

Assertions. Below is the assertion language, and its semantics is given in Fig. 5.

(Asrt) p, q, r :: = emp | empE | x �−→v | ISR(isr) | IE(ie) | IS(is) |CS(cs) | �k� | χ�t
| ��Ω | [|�|] | p ∗ p | p ∧ p | . . .

(Inv) I :: = [p0, . . . , pN ]
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(RelState) Θ ::= (σ, Σ, ) (LTaskCfg) σ ::= (m, isr, δ) (LTaskSt) m ::= (G, E, M)

(σ, Σ, ) |= emp iff σ.m.M = ∅ ∧ Σ = ∅
(σ, Σ, ) |= empE iff σ.m.E = ∅ ∧ (σ, Σ, ) |= emp

(σ, Σ, ) |= x→−� v iff ∃a.(σ.m.G)(x) = a ∧ σ.m.M = {a � v} ∧ Σ = ∅
(σ, Σ, ) |= ISR(isr′) iff σ.isr = isr′ ∧ (σ, Σ, ) |= emp

(σ, Σ, ) |= �k� iff ((k=N ∧ is=nil) ∨ ∃is′.(σ.δ.is=k :: is′)) ∧ (σ, Σ, ) |= emp

(σ, Σ, ) |= χ�t iff χ Σ t

(σ, Σ, ) |= [| ′|] iff = ′ ∧ (σ, Σ, ) |= emp

(σ, Σ, ) |= �Ω iff Σ = { � Ω} ∧ σ.m.M = ∅
f ⊥ g

def
= dom(f) ∩ dom(g) = ∅ Σ1  Σ2

def
=

Σ1 ∪ Σ2 iff Σ1 ⊥ Σ2
undef otherwise

σ1  σ2
def
=

((G, E, M1 ∪ M2), isr, δ) iff M1 ⊥ M2 ∧ σ1 = ((G, E, M1), isr, δ)
∧σ2 = ((G, E, M2), isr, δ)

undef otherwise

Θ1  Θ2
def
= (σ1  σ2, Σ1  Σ2, ) where Θ1 =(σ1, Σ1, ) ∧ Θ2 =(σ2, Σ2, )

Θ |= p1 ∗ p2 iff ∃Θ1, Θ2.Θ = Θ1  Θ2 ∧ Θ1 |= p1 ∧ Θ2 |= p2

Fig. 5. Semantics of relational assertions

As explained above, the assertions are interpreted over relational states Θ, which
consist of the low-level task-local states σ, the high-level abstract states Σ, and
the abstract statements s that the low-level code needs to refine. Σ and s are
defined in Fig. 3. σ, as shown in Fig. 5, consists of a task-local view m of program
variables and memory, and also the global isr register and the task-local interrupt
states δ (see Fig. 2). Here m contains the global and local variables (G and E
respectively) and the memory M , whose definitions are omitted.

Assertion emp says the low-level memory and the high-level abstract state
are both empty. empE further requires that the local variable environment be
empty too. x �−→ v specifies a singleton memory cell with v stored in the global
program variable x. ISR(isr), IS(is), IE(ie) and CS(cs) specify the value of the
corresponding interrupt status (see Fig. 2). �k� means that the currently running
interrupt handler is at level k (or k = N , meaning no running handlers).

χ�t says that, based on the high-level abstract state, the abstract sched-
uler χ picks t as the target task. a � Ω specifies a singleton high-
level abstract state mapping the data name a to the abstract data Ω.

Fig. 6. Memory partition for handler and non-
handler (Figure taken from [11])

[|s|] means the current abstract
statement remaining to be refined
is s. The separating conjunction
p1 ∗ p2 means p1 and p2 hold over
disjoint parts of a relational state.

Ownership-Transfer Semantics for
Multi-level Interrupts. CSL [21]
prevents data races by enforc-
ing disjoint ownership of resources
among tasks. Synchronization is
modeled in terms of ownership
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transfer. Feng et al. [11] extend CSL and assign ownership-transfer semantics
to interrupt operations. The idea is demonstrated in Fig. 6, which shows the
logical memory model when there are only one task and single-level interrupt.
Since the interrupt handler can preempt the task, we let the handler to reserve
its required memory first (represented as block B). B must remain publicly avail-
able if the interrupt is enabled. Then the task can only access the remaining part
(block T ). We use grey boxes to represent local resources of the task. Disabling
interrupts (cli) by the task essentially transfers the ownership of B from public
to task-local. Correspondingly, sti converts the block from task-local to public,
therefore the task cannot access it anymore. Similarly, invocation of the inter-
rupt handler (not shown in the figure) automatically transfers B from public to
the local resource of the handler, while iret transfers it back to public.

Since block B is shared between the interrupt handler and the task, it must
be well-formed when it is public. We use the resource invariant I0 to specify the
well-formedness. Then the above ownership transfer semantics of cli and sti can
be formalized in the following (simplified) program logic rules:

I0 � {pt} cli {pt ∗ I0} I0 � {pt ∗ I0} sti {pt}
Note that the partition between B and T is enforced logically using the sepa-
rating conjunction in separation logic (see Fig. 5). It does not require physical
separation in the program state model.

In this paper we extend this idea to support multi-level nested interrupts,
where the ownership transfer of interrupt primitives is determined not only by
the ie flag, but also by the isr register. Figure 7 shows the memory model (where
the number N of interrupts is set to 6). Interrupt handlers at levels 0 to N −1
are assigned with resource blocks B0, . . . , BN−1 respectively. BN represents the
resource shared only among tasks, i.e., the non-handler code. We omit task-local
resources, therefore there are no counterparts to block T in Fig. 6. Handlers’
priorities to reserve their required resources are consistent with their interrupt
priority levels. That is, B0 satisfies all the need of the level-0 (highest priority)
handler, while the level-k handler may need to access B0, . . . , Bk−1, in addition
to Bk. The non-handler has the lowest priority. Each block Bk is specified by
the resource invariant I(k), where I is defined as a sequence of N+1 assertions
(see the assertion syntax defined above).

ie=1

ie=0

isr: [ 1    0   1    0    0    0 ] [ 1    0    0   0    0    0 ]

sti cli sti

eoi

eoi

iret

iret

(2)

[ 1 0 1 0 1 0 ]

(1)(3)

(4)

B0B1B3B4B5B6 B2 B0B1B3B4B5B6 B2 B0B1B3B4B5B6 B2

B0B1B3B4B5B6 B2B0B1B3B4B5B6 B2

(5)

cli

Fig. 7. Ownership-transfer for multi-level interrupts
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Figure 7 demonstrates the ownership transfer of resource caused by inter-
rupt operations under different conditions. The grey or dotted blocks represent
resources exclusively owned in interrupt handlers, different textures for differ-
ent interrupts. The white ones represent resources available for share. Suppose
initially we are at state (1), where the level-3 handler is being executed, as the
value of isr indicates. Since interrupts are disabled, the handler owns B0 − B3,
knowing no requests of levels 0 to 3 could be served. Enabling interrupts (sti)
loses B0 − B2, as shown by state (2), but B3 is remained because isr(3) = 1
and requests of the same (or lower) level are not handled. However, if isr(3) = 0
instead (as in state (5)), executing sti loses B3 as well. Ownership transfer by
cli is the dual of sti.

Executing eoi at state (1) leads to state (5), but it causes no ownership
transfer because interrupts are disabled anyway. If interrupts are enabled instead,
as in state (2), eoi loses the ownership of B3 because another level-3 request may
be handled in state (4). iret can be executed only after eoi. If interrupts are
disabled (as in state (5)), it transfers B0 − B3 from local resources to shared
resources. Otherwise (as in state (4)) there is no ownership transfer because the
handler has lost the ownership of B0 − B3 already.

At state (2), interrupts with higher priority can be served. The “irq 1” step
sets the bit isr(1), disables interrupts, and transfers B0 and B1 from shared
resources to local resources of the level-1 handler, as in state (3).

The Top Rule. We show some selected program logic rules in Fig. 8. The
TopRule establishes the judgment �ψ O : O, ensuring the correctness of O
w.r.t. O if the initial concrete and abstract kernel states satisfy ψ (explained in
Sect. 3.3).

To verify the kernel, we need to come up with a specification Γ for the
internal functions ηi in the low-level code, and a sequence of invariants I for
kernel states. Γ assigns a pair of pre-/post-conditions to each internal function.
We omit the formal definition here.

Then we prove that the internal functions, the API implementations and the
interrupt handlers in the low-level kernel satisfy their specifications, respectively
(the last three premises in the first line of the TopRule rule). The proof of each
component carries the abstract scheduler specification χ and the invariant I.

The rule also requires that ψ ensures the initial states satisfy the invariant
I[0, N ], the interrupt-related states are properly initialized, and the initial local
variable environment is empty. I[n,m] defined in Fig. 8 is the separating con-
junction of invariants from level n to m. OS[isr, ie, is, cs] specifies the status of
interrupts, and requires that the currently executing handler (on top of is) have
the highest priority among those in service (as recorded in isr). �ψ� lifts ψ to
relational assertions (definition omitted). We also omit some more detailed side
conditions about the initial states in the rule.

Verifying Interrupt Handlers. We omit the rules of proving χ; I � ηi : Γ and
Γ ;χ; I � ηa : ϕ for internal functions and APIs respectively, which are similar
to the rules for interrupt handlers. The Itrp rule proves the correctness of



72 F. Xu et al.

Fig. 8. Selected inference rules

interrupt handlers. It requires that each individual interrupt handler is correct
with respect to its specification. The judgment for statements is in the form of
Γ ;χ; I; r; pi � {

p
}

s
{

q
}
. We follow the CSL-style reasoning, where I specifies

shared resource blocks, and the pre-/post-conditions specify local resources that
are accessed exclusively by the current task. The precondition is p, while q, r and
pi are all post-conditions for different exits, i.e., sequential composition, return
from functions, and return from interrupts, respectively. For the whole body of
interrupt handlers, we disable the other two exits by setting r and q to false.

We build the pre-/post-conditions of handlers with the auxiliary definitions
BldItrpPre and BldItrpRet given in Fig. 8. The precondition says that, when enter-
ing the level-k handler, isr(k) is set to 1, the interrupt is disabled and k is pushed
onto the interrupt stack is (therefore OS[isr{k � 1}, 0, k::is, nil]). Since there is
no handler of higher-priority in service, the handler has exclusive access to the
resource I[0, k] (see Fig. 7). It also needs to refine the high-level specification
code ε(k). empE requires there are no local variables at the beginning.

The built post-condition requires that: (1) the corresponding isr bit has been
cleared; (2) if interrupts are enabled (ie = 1), the handler has no access to the
shared resources; otherwise it needs to ensure that its owned resources are well
formed w.r.t. I[0, k] (see the two iret steps in Fig. 7); and (3) there is no high-
level specification code remaining to be refined (i.e., the abstract specification
code ε(k) specified in the precondition has been fulfilled).



A Practical Verification Framework for Preemptive OS Kernels 73

Rules for Commands. The iext rule simply requires that the post-condition pi

holds when we reach the end of the interrupt handler. The encrt rule shows the
ownership transfer when interrupts are disabled. Suppose we are at the level-
k handler (k = N means we are executing the non-handler code). Disabling
interrupts prevents interrupt requests from level 0 to k−1, therefore the current
task gains the ownership of I[0, k − 1]. The transfer of the k-th block is specified
by INV(I, k) in Fig. 8. If the bit isr(k) is 0 (or k = N), the task also gains the
ownership of I(k), otherwise it already owns the k-th block and there is no extra
ownership transfer. The two scenarios are also demonstrated by the two cli steps
in Fig. 7. If interrupts are already disabled when encrt is executed, there is no
ownership transfer, as shown by the encrt-0 rule.

The excrt rule is the dual of the encrt rule (see the two sti steps in Fig. 7).
Correspondingly there is a excrt-0 rule, which is omitted here. The eoi rule
says, if interrupts are enabled, the task loses the ownership of I(k) after eoi k.
Otherwise there is no ownership transfer and the corresponding rule is omitted
(see the two eoi steps in Fig. 7).

The switch rule requires that the invariant SWINV(I) holds before switching
away and it is preserved after switching back. SWINV(I), defined in Fig. 8, says
that interrupts must be disabled, and all the bits of isr are 0 (i.e., either we are
running non-handler code or we are in the outmost layer of nested invocation
of interrupt handlers and have already executed eoi). Also if we are running
level-k code (either handler or non-handler if k = N), the resource blocks 0 to k
acquired before should satisfy I[0, k], so that the target task could access them.
The rule also says that the task-local states is and cs are not changed by switch.

To establish refinement, the precondition also requires that the high-level
abstract scheduler χ picks the same task with the one in x, and switch x at
the low level correspond to the sched step at the high level. Therefore in the
post-condition sched is no longer in the remaining abstract operations.

Following [19], the abscsq rule looks like a regular consequence rule but
allows us to execute the abstract code. The implication p � p′ is defined below.

That is, given a related state (σ,Σ, s) satisfying p, the abstract code s could
execute zero or multiple steps starting from Σ and reach (Σ′, s′), so that the
resulting related state (σ,Σ′, s′) satisfies p′. This rule allows us to establish sim-
ulation between the concrete and the abstract code, which then ensures refine-
ment.

We can look at Fig. 4 to see the use of this rule. Suppose we want to verify
inc() using the specification in Fig. 4(d). When we reach the cas command (see
Fig. 4(a)), we have the precondition (tmp=cnt ∧ cnt=CNT ∧ [|<CNT++>|] ∨ . . . )
(the case for tmp �= cnt omitted). Right after cas, we have (done ∧ cnt =
CNT+1∧[|<CNT++>|] ∨ ¬done∧. . . ). We have cnt = CNT+1 because cnt increments
if cas succeeds. To establish the simulation, we apply the abscsq rule to execute
the abstract code, because (cnt=CNT+1 ∧ [|<CNT++>|]) � (cnt=CNT ∧ [|end|]),
following the above definition of p � p′.
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Theorem 4.1 gives the soundness of the framework. The proofs are based on a
compositional simulation following [18], and have been formalized in Coq. More
details about the logic can be seen in TR [26].

Theorem 4.1 (Soundness). �ψ O :O =⇒ O 	ψ O.

5 Proving Priority-Inversion-Freedom

Formalization of PIF. Earlier work [6] defines priority inversions in terms of
whether there is a higher priority task waiting directly or indirectly for a lower
priority task. Since the definition refers to the current priority of tasks, its mean-
ing is affected by algorithms that dynamically change the priority of tasks, such
as the classic priority ceiling and priority inheritance algorithms [23]. We give a
new formalization of PIF, which is based on the original priorities assigned by
the programmers, reflecting the actual degree of urgency.

Definition 5.1 (Priority Inversion Freedom). PIF(Σ) holds, iff for any t,
tc, pr and prc, if t �= tc, tc = CurTask(Σ), pr = OrgPr(t, Σ), prc = OrgPr(tc, Σ),
IsWait(t, Σ) and ¬IsOwner(tc, Σ), then pr � prc.

It says, if the current task tc does not own any shared resources, then its original
priority should be higher than (or equal to) any other waiting tasks t. Here
OrgPr(t, Σ) represents t’s original priority assigned by programmers. IsWait(t, Σ)
means that t is blocked, waiting for certain shared resource, and ¬IsOwner(tc, Σ)
means that the task tc does not own any shared resource (e.g., mutexes).

If each task eventually releases its shared resource (i.e., there is no deadlock),
the definition ensures that the waiting task with higher priority will be eventually
released and executed. Therefore it prevents unbounded priority inversion [23].

PIF of μC/OS-II. The mutex of μC/OS-II is implemented with a simplified
priority ceiling protocol [23]. When proving it satisfies PIF, we find a counterex-
ample (given in TR [26]) showing that PIF cannot be guaranteed unless there is
no nested use of mutexes. By adding the assumption of no nested mutexes, we
prove that the mutex in μC/OS-II ensures our PIF definition.

Theorem 5.2 (PIF without Nested Use of Mutexes).

If Init(Σ), (A,OμC/OS-II) � (T,Δ,Σ) H
∗�� (T ′,Δ′, Σ′), NoNCR(A,Σ, T,Δ),

and SchedProp(Σ′), then PIF(Σ′).

It says, for any application code A, task pool T , client state Δ and abstract
kernel state Σ, if initially there are no tasks waiting for mutexes (Init(Σ)), and
there is no nested use of mutexes (NoNCR(A,Σ, T,Δ)), then for any T ′, Δ′

and Σ′ generated during the execution, if Σ′ is consistent with the priority-
based scheduling (i.e., the currently running task always has the highest priority
among all the ready tasks, represented as SchedProp(Σ′)), then it must satisfy
PIF. Here we use a simplified OμC/OS-II that contains the PIF mutex as the only
APIs. The proof is formalized in Coq.
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6 Verifying µC/OS-II

We have applied our framework to verify key modules (around 1300 lines of C
code without counting comments and empty lines) of μC/OS-II V2.52, including
the scheduler, the timer interrupt handler, mutexes, message queues, mail boxes,
semaphores, and the time management. These 1300 lines of C code verified in our
framework correspond to around 3250 lines of code in their original format (with
comments and empty lines) in the source files of μC/OS-II, including “ucos ii.h”,
“os q.c”, “os sem.c”, “os mbox.c”, “os mutex.c”, “os time.c”, “os core.c” and
“os cpu a.c”. The verified modules cover 63 % of the frequently used APIs and
internal functions [2]. We ignore some synchronization APIs which have similar
functionality as the verified ones. Verification of task creation/deletion is still
ongoing work based on the presented framework.

Modifications to the Original Code. Our verification is based on the original code
with some minor modifications. For instance, the API OSQPend(S) is used to
receive a message from a queue, and its original code does not check if the input
pointer S points to a valid event control block, because it assumes that the client
code always gets S by calling OSQCreate() (thus S should already be valid). We
drop this assumption about the client code. Correspondingly we insert code that
checks whether S is a valid pointer. If S is invalid a new error code is returned.
Similar modifications are made to some other modules too. The reason for doing
above modifications is that the contextual refinement proved in our verification
framework assumes arbitrary client code, while kernels are usually implemented
with assumptions over client code for efficiency.

Table 1. The Verification Package

Framework Coq lines

Basic Libraries 32061
Machine & Logic 23095
Automated Tactics 21050

Total 76206

Certified μC/OS-II Coq lines

C Code Definitions 1824
Specifications 6012
Priority Inversion Freedom 9570
Libraries for μC/OS-II 62085
Auto. Generated Code 25357

Total 104848

Verified Modules lines of C Coq lines

Global Declarations 187 -

Message Queue 240 4537
Semaphore 166 2441
Mailbox 171 3326
Mutex 301 17331
Time Management 39 861
Timer Interrupt 17 443
Internal Functions 195 5447

Final Theorems - 501

Total 1316 34887

Proof Efforts. The Coq implementation consists of around 216,000 lines of code
and proofs in Coq8.4pl6. Table 1 gives a break down of the number of lines for
various components. Compiling the entire Coq package takes around 16 h on
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a machine with 3.6 GHz cpu and 32G memory. The work takes us around 5.5
person years in total, including 4 person years for the framework and 1 person
year for verifying the first μC/OS-II module (Message Queue). With the facilities
(tactics, libraries and invariants etc.) being stabilized, verifying the remaining
modules (around 900 lines of C code) only takes us around 6 person months.

The most challenging part is to verify the timer interrupt handler, which
traverses the entire TCB list and updates task status in each TCB block. It
needs to access all the shared data structures in μC/OS-II. Several different
updates to shared data structures make the loop invariant quite complicated.

Also verifying an existing OS kernel is more difficult than verifying a new
one written for verification purpose. When verifying μC/OS-II the major diffi-
culty comes from the gap between the low-level concrete data structure and the
high-level abstract representation. For instance, μC/OS-II uses a smart bitmap
algorithm to record whether a task is in the waiting queue. The implementa-
tion requires us to establish a subtle consistency relation between the low-level
bitmap and the high-level abstract waiting queue. The verification would have
been much simpler if the waiting queue is simply implemented as a linked list.

Coq Tactics. Proof automation is essential to improve the productivity. We
develop tactics for automatically proving relational separation logic assertions
and generating verification conditions based on existing techniques [5,7,20].
They do forward reasoning for statements, including function calls and prim-
itives entering and exiting critical regions, etc. Also some domain-specific tactics
are implemented for individual data structures used in μC/OS-II, including ones
for the arithmetic properties of Int32 and bitmaps. Thanks to these tactics, the
ratio of Coq proof scripts to the verified C code is around 26:1. Another advan-
tage of the tactics is that they can extract lemmas independent of program con-
texts for verifying functionality of code. Users can verify code using the tactics
without knowing much about the underlying framework.

7 Related Work and Conclusion

There have been a number of OS verification projects, including seL4 [15,16],
Verisoft [4], VCC/VeriSoftXT [3,9], Verve [27], and CertiKOS [8,13]. Most of
them have no or limited support of preemption and multi-level interrupts.

seL4 [15,16] is one of the milestone OS kernel verification projects. The verifi-
cation is fully mechanized in Isabelle/HOL. The kernel of seL4 does not support
general preemption. Instead, tasks are preemptible only at specific points. There-
fore the code verified is mostly sequential. On the other hand, the seL4 project
has verified rich features and properties such as virtual memory, real-time prop-
erties and security properties, which are not done in our work.

The Verisoft project also verifies OS microkernels [4] in Isabelle/HOL, but
the CVM model used there does not permit interrupts inside the kernel. Its
successor project, Verisoft XT [3], uses VCC [9] to verify the commercial Hyper-V
hypervisor. VCC supports verification of concurrent C code by inserting auxiliary
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code and ghost states. The proofs have a refinement flavor, but VCC does not
establish contextual refinement as what we do. Also it is unclear how VCC is
applied to verify multi-level nested interrupts in hypervisors.

Verve [27] combines a type-safe kernel with a minimal hardware abstraction
layer. The kernel is concurrent, but the properties verified are mostly about type
safety, much weaker than our contextual refinement property. Also Verve simply
squashes multiple interrupt levels into a single level and does not really handle
multi-level interrupts. VCC/VerisoftXT and Verve use the Z3 SMT solver [10] for
better automation, while we use Coq which generates machine-checkable proofs.
Also the soundness of our program logic is proved in Coq. Therefore the trusted
computing base (TCB) of our approach is smaller.

Gu et al. [13] verify the mCertiKOS hypervisor. Their kernel is sequential.
Recently, Chen et al. [8] propose a framework for building certified interruptible
OS kernels (based on mCertiKOS) with device drivers. Their framework does not
support preemptive concurrency as ours, and it requires that interrupt handlers
for device drivers and non-handler kernel code should not share any state.

Gotsman and Yang [12] developed a program logic based on CSL, which
decomposes the verification of preemptive kernels into verifying the scheduler
and the tasks. Their proofs are on-paper only and not mechanized. The machine
model does not support multi-level interrupts, also their program logic is used
to prove partial correctness, not contextual refinement as we do.

Conclusion. We have developed a practical verification framework for general
verification purpose of preemptive OS kernels with multi-level interrupts. Cor-
rectness of the OS kernel is formalized as a contextual refinement between the
low-level concrete implementations and the high-level specifications. As far as we
know, our work is the first to establish contextual refinement for system APIs of
a preemptive OS kernel. We have applied the framework to verify key modules
and PIF of μC/OS-II, a commercial embedded real-time OS.

It is worth noting that although our verification framework is developed to
verify μC/OS-II, it is a general verification framework and most of its building
blocks can be reused to verify other OS kernels. As shown in Fig. 1, the small-
step semantics for the C subset, the program logic and the tactics are all general
and mostly independent of the μC/OS-II verification project. A potential limi-
tation is that the interrupt mechanism in our operational semantics is modeled
specifically based on the Intel 8259 A interrupt controller, and the program logic
rules for interrupts are designed accordingly. However, the logic rules follow the
general ownership transfer idea from CSL. With a different processor and inter-
rupt mechanism, even though we may need to change the current inference rules
for interrupt primitives, we can apply the same ownership transfer idea, and the
required change should be superficial. Another limitation is that our C subset
is chosen based on the μC/OS-II code. In particular, it does not allow function
pointers, which requires the support of higher-order functions in the logic.
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Abstract. Software failures resulting from configuration errors have
become commonplace as modern software systems grow increasingly
large and more complex. The lack of language constructs in configu-
ration files, such as types and grammars, has directed the focus of a
configuration file verification towards building post-failure error diagno-
sis tools. In addition, the existing tools are generally language specific,
requiring the user to define at least a grammar for the language mod-
els and explicit rules to check. In this paper, we propose a framework
which analyzes datasets of correct configuration files and derives rules
for building a language model from the given dataset. The resulting
language model can be used to verify new configuration files and detect
errors in them. Our proposed framework is highly modular, does not rely
on the system source code, and can be applied to any new configuration
file type with minimal user input. Our tool, named ConfigC, relies on
an abstract representation of language rules to allow for this modular-
ity. ConfigC supports learning of various rules, such as orderings, value
relations, type errors, or user defined rules by using a probabilistic type
inference strategy and defining a small interface for the rule type.

1 Introduction and System Overview

Configuration errors are one of the most important root-causes of modern soft-
ware system failures [10,11]. In practice, misconfiguration problems may result
in security vulnerabilities, application crashes, severe disruptions in software
functionality, and incorrect program executions [9,10,12,13]. Although several
tools have been proposed to automate configuration error diagnosis after failures
occur [3,5–7], these tools rely on a manual approach to understand and detect
the failure symptoms. The main reasons for this are: (1) entries in configuration
files are untyped assignments, (2) there is no explicit structure policy for the
entries in configuration files, and (3) there are surprisingly few rules specifying
the entries’ constraints.

We propose an approach to the verification of configuration files which is based
on learning rules about the language model for configuration files. There is no uni-
versal definition of a “configuration file”. In general, most configuration files tend
c© Springer International Publishing Switzerland 2016
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Fig. 1. ConfigC’s workflow. The green boxes represent configuration files, including
both correct general configuration files and users’ input configuration files. The purple
boxes are the components within ConfigC. The yellow boxes are results generated by
ConfigC’s components.

to be a series of assignment to system variables. Configuration files generally do
not have more complicated language constructs, lest they become a setup script.

Figure 1 describes an overview of our system. We start with the assumption
that we are given a number of correct configuration files belonging to the same
category (for instance, MySQL or Apache). Such files follow similar patterns,
which we exploit in a learning algorithm to build rules that describe a language
model for the files. Since the “language” of configuration types is untyped and
unstructured, we first parse the files and translate them into a more structured,
intermediary representation. When running type inference on a configuration file,
the type of a variable cannot always be fully determined from a single value. We
address this problem by introducing so called probabilistic types. Rather than
giving a variable a single type, we assign several types with their probability
distributions. We can then use these more structured files as a training set to
learn the rules. The learning algorithm is template-based to be easily extensible.
We provide an initial set of templates and the learner learns some concrete
instances from the training set. These rules are used for detecting errors violating
the learned constraints in the files given by the user.

As an illustration of a simple rule that we can learn, consider a template
X1 ≤ X2, where X1 and X2 are integer variables. The learner might derive
the rule stating that mysql.max persistent ≤ max connections. There
is a classification and taxonomy of configuration errors in the existing work
on automated configuration troubleshooting [1,11]. We provide templates for
every class that ConfigC can handle: we consider integer constraints, ordering
constraints, typing constraints, and constraints about correlated entries (such
as “if X is present, Y has to appear as well”). Unfortunately, we cannot handle
the class of errors that rely on the analysis of the whole operating system. Our
language-based approach can only learn on sets of text files, not the system
environment.

From a practical perspective ConfigC introduces no additional burden to the
users: they can simply use ConfigC to check for errors in their configuration files.
However, they can also easily extend the framework themselves. The system is
designed to be highly modular. If there is a class of rules that ConfigC is not
currently learning, the user can develop their own templates and learners for
that class. The new learner can be added to ConfigC and this way it can check
additionally a new set of errors.
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Finally, from a systems perspective this is the first approach that proactively
checks the correctness of configuration files. All previous work [3,5–7,10,12,13]
tries to identify the problem after the failure occurred. Our approach isolates
potential errors before the system failure occurs, e.g. before the installation. We
can also see ConfigC as a tool that can run in conjunction with existing tools.
Pre-analyzed configuration files are already free from language-based errors, and
this way the workloads of post-failure forensics at the runtime is significantly
reduced, thus making these tools truly practical.

To summarize, this tool paper makes the following contributions. First, we
designed and implemented a tool, ConfigC, that can learn a language model
from an example set of correct configuration files, and we use the model to
verify new configuration files. Second, we use probabilistic types to assign a
confidence distribution over a set of types to a value. Finally, in ConfigC we
define an interface for describing a verification attribute in a learning context,
making it easy to add new rules to the system.

2 Motivating Examples

When writing configuration files, users usually take already existing files and
modify the files, with little knowledge of the system. The non-expert user can
then easily introduce in errors. Even worse, the original file may already cor-
rupted and the errors are propagated further. Below we show some real worlds
examples of the errors commonly found in configuration files. All these examples
are extracted from real-world reports [8,11]. The deep, domain specific knowl-
edge needed to identify these error manually is strong motivation for a tool such
as ConfigC.

Example 1: Ordering Errors. When configuring PHP to run with the Apache
HTTP Server, the user writes, among others, the following lines:

extension = mysql.so
...
extension = recode.so

This file caused the Apache server to fail to start due to a segmentation
fault error. When using PHP in Apache, the extension “mysql.so” depends on
“recode.so” and the relative ordering of two of them is crucial. ConfigC would
inform the user that “recode.so” should appear before “mysql.so”, and return
the error:

ORDERING ERROR: Expected "extension" recode.so"
BEFORE "extension" "mysql.so"

Example 2: Entry Missing Errors. If the user wants to use OpenLDAP
to enable her directory access protocol, she needs to use the password policy
overlay. This is usually done through the following entries in the OpenLDAP
configuration file:

include schema/ppolicy.schema
overlay ppolicy
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When using the password policy overlay in OpenLDAP, we have to first include
the related schema. Leaving out the “include” statement will cause the failure
of this LDAP. Running ConfigC on such a misconfiguration file would return:

MISSING KEYWORD ERROR: Expected "overlay" "ppolicy"
in the same file as:"include" "schema/ppolicy.schema"

Example 3: Type Errors. If the user tries to install MySQL, she first needs
to initiate the path for the log information generated by MySQL. A user may
put the following code in the MySQL configuration file:

general log = /var/log/mysql/mysql.log

However, the entry “general log” should be an integer, not a string. In MySQL,
there is another entry named “general log file” which is used to specify the log
path. After ConfigC analyzes this configuration file, it correctly identifies the
error:

TYPE ERROR: Expected a Int with P=1.0 for
"general log[mysqld]"

Example 4: Value Correlation Errors. When configuring PHP on MySQL,
the user may write the following lines of entries in both the PHP and MySQL
configuration files:

mysql’s config
max connections = 300
...
php’s config
mysql.max persistent = 400

This could cause MySQL to abort with the error information: “too many
connections”. In this case, the “mysql.max persistent” in PHP should be no
larger than the “max connections” in MySQL configuration file. Another rule
we have implemented is learning inequality relations between integers. Running
ConfigC on this combined configuration file would return:

INTEGER RELATION ERROR:
Expected "max connections">="mysql.max persistent"

3 Learning the Rules

To learn rules, we first translate to the intermediate representation where each
line of a configuration file is reduced to a keyword-value pair (k, v). Parsing is
language dependent and users may provide extra help to the translator for their
specific language, such as specifying a comment character. We must assign types
to the keywords to guide the learning modules. With typed keyword-value pairs,
we can run each learning module independent of each other. We learn a set of
rules over every file, then merge them.

Introducing the Types. Based only on a single example value of v we cannot
fully determine the type of k. Consider for instance the following example:
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foo = 300
bar = 300.txt

Most likely foo is an integer and we learn an equality rule, but it could
also be a string. In this case we want to learn the rule foo ∈ substrings(bar).
We therefore assign a distribution of types to a value, an idea closely related
to existentially quantified types [4]. We introduce probabilistic types to address
this issue.

Let T be a set of basic types. In ConfigC set T contains strings, integers,
file paths, sizes and IP addresses. A probabilistic type built from T is a list
of pairs [(τ1, p1), . . . , (τn, pn)] such that τi ∈ T , 0 ≤ pi ≤ 1 and Σpi = 1.
These probabilities are updated each time a new example value for a keyword is
encountered.

When a value has a probabilistic type, we generate rules for all
its types. This means that by assigning foo a probabilistic type (e.g.
(foo, 300, [(Int, 90%), (String, 10%)]) we now generate rules for both strings and
integers. Once the type inference can uniquely determine the type, the proba-
bility of all other types is set to zero, and the associated rules are withdrawn.

Note that typing is also a system module than can be easily extended to sup-
port more types. In that case the user will need to provide rules for type inference
and probability distributions for values where type inference is ambiguous.

Rule Learning. With every type we associate a set of templates, specific to
this type. Once the input files are fully type-annotated, we generate rules that
are instances of these templates. We always learn the largest set of rules that
all correct configuration files satisfy. This way ConfigC can guarantee that, over
the set of rules we consider, there will be no false negatives that could have been
caught with the given learning set. The only case of a false negative can be when
there was no evidence of such a rule in the learning set - we cannot generate
rules from nothing.

4 Implementation and Evaluation

Implementation. ConfigC is implemented in Haskell and takes full advantage
of its polymorphism to make the system more modular. In particular, rules are
represented as a type, where the type must support a particular interface (called
a typeclass in Haskell) to be compatible with our system. By using language
extensions (FlexibleInstances and MultiParamTypeClasses), this typeclass can
be made polymorphic over the data structure as denoted by Foldable t =>.
The user can then choose a data structure that is most natural to the rule
they are implementing. For example, in our implementation, Missing Entries
were easier to manipulate in lists, while Type Errors fit more naturally into a
hashmap. This typeclass defines the three functions that each set of rules must
implement to work with our system. The core learning algorithm is simply a
fold using merge over the derived rules from running learn on each file in the
learning set.
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Typeclasses and other features of Haskell means that our system consists of
only 267 lines of code, with another 233 for the rule modules. With an average
size of 58 lines of code for each rule module, this is evidence of how simple it is
to extend ConfigC with new rules.

class Foldable t => RuleSet t a where
learn :: IRConfigFile -> t a
merge :: t a -> t a -> t a
check :: t a -> IRConfigFile -> Error

Since we learn a set of rules on each file in isolation from the other, we have a
pleasingly parallel situation. Haskell allows us to easily take advantage of this by
using the parallel mapping library [2], both for translation to the intermediate
representation, and for learning the rules on each file. The merge stage could
also easily be parallelized, using a divide and conquer approach, but ConfigC
runs fast enough over our learning set (28 files, 961 lines of code) that this has
not been necessary.

The integer relation rule has an unusual implementation that uses function
as first-class objects in Haskell. Rather than associated keywords with SMT for-
mula, we directly associate them with a function of type (Int->Int->Bool).
Since we need to compare rules over equality, we must have a way to com-
pare functions. This limits the types of functions we use to (==),(>=),(<=).
Although this is sufficient for most cases, more fine-grained relations could be
encoded with SMT formulas then passed to a solver.

The tool is available for download at http://marksantolucito.com/cavae.
html.

Evaluation. To evaluate our tool, we take a subset of 20 benchmarks from
an existing dataset of configuration errors [1,8,11] which are supported by our
tool. Table 1 contains an evaluation summary. We do not report the running
times, since they are negligible: even when running in the interpreter mode,
files are analyzed instantaneously. We spent approximately 30 s on learning the
rules. When we run the compiled version, we need for learning and verification
combined less than 5 s. Our focus is usefulness of the tool: its ability to detect
configuration errors and the number of false positives. For every benchmark class
we took five examples. The middle column represents the number of detected
errors, while the right column represents the number of returned false positives
per each benchmark.

A benchmark passes a test if it reports an error on the source of the mis-
configuration (it is not a false negative). We call false positives any reported
error that was unrelated to the value of interest. It is worth noting that this is
in fact a conservative estimate. Since these benchmarks are taken from online
forums, there is no guarantee the files contain only a single error. Indeed, on
some benchmarks, ConfigC found errors in the file that were similar to rules
broken by other benchmarks.

We fail one benchmark in Value Relations because we do not yet support
relations between file sizes of different units (Mb to Kb). In one Keyword Order-
ing benchmark, ConfigC reports a type error on the value of interest instead of

http://marksantolucito.com/cavae.html
http://marksantolucito.com/cavae.html
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an ordering error. This is a result of our context embedding in the translation to
the intermediate representation - reordering the value puts it in a new context
where the type is now also incorrect.

Table 1. Benchmarks for misconfiguration detection

Error type Passing tests False positives

Missing Entry 5/5 1, 0, 0, 0, 4

Type Error 5/5 0, 0, 0, 0, 0

Keyword Ordering 5/5 0, 2, 1, 0, 6

Value Relations 4/5 0, 0, 0, 1, 0

All but one false positive reports were integer relations. They are the result
of overfitting on rules. ConfigC can learn overapproximating rules when the
learning set does not show the full spectrum of possible values. Since integer
relations have a larger space of relation than ordering relations for instance,
ConfigC needs a larger learning set in order to eliminate false positives.

The false positive for the Value Relation was a Missing Entry error. This is
a result of the fact that we cannot learn rules that are disjunctions. In this case,
no socket is provided to [mysqld], failing a rule we had learned over the dataset.
In fact, this is not a misconfiguration because a socket only needs to be provided
to one (or both) [mysqld] or [wampsqld]. We reported an error since none of the
files in the learning set had no socket associated with [mysqld]. In fact, since we
do not support disjunctive rules, we could not have even learned such a rule -
though in practice these seem to be uncommon.

5 Conclusions

In this paper, we introduce ConfigC, a highly-modular framework that allows
verification of configuration files, even without a language model of the file.
New verification properties require only a small amount of code and are not
language specific, all indicating that ConfigC could be widely adopted by system
administrators. Such a verification tool that scales in both performance and
expressivity can revolutionize configuration file checking, reducing the cost of
system maintenance and failure dramatically.

The field of verification must guarantee the reliability of entire systems, and
31 % of all system failures are caused by misconfiguration, while only 20 % are
caused by program bugs [9]. We hope ConfigC can be a catalyst to spark interest
in the potential impact of verification for configuration files.

Acknowledgements. We thank the anonymous reviewers for their insightful com-
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Abstract. MapReduce is a popular programming model for data par-
allel computation. In MapReduce, the reducer produces an output from
a list of inputs. Due to the scheduling policy of the platform, the inputs
may arrive at the reducers in different order. The commutativity problem
of reducers asks if the output of a reducer is independent of the order of
its inputs. Although the problem is undecidable in general, the MapRe-
duce programs in practice are usually used for data analytics and thus
require very simple control flow. By exploiting the simplicity, we propose
a programming language for reducers where the commutativity problem
is decidable. The main idea of the reducer language is to separate the
control and data flow of programs and disallow arithmetic operations in
the control flow. The decision procedure for the commutativity problem
is obtained through a reduction to the equivalence problem of stream-
ing numerical transducers (SNTs), a novel automata model over infinite
alphabets introduced in this paper. The design of SNTs is inspired by
streaming transducers (Alur and Cerny, POPL 2011). Nevertheless, the
two models are intrinsically different since the outputs of SNTs are inte-
gers while those of streaming transducers are data words. The decidabil-
ity of the equivalence of SNTs is achieved with an involved combinatorial
analysis of the evolvement of the values of the integer variables during
the runs of SNTs.

1 Introduction

MapReduce is a popular framework for data parallel computation. It has
been adopted in various cloud computing platforms including Hadoop [8] and
Spark [16]. In a typical MapReduce program, a mapper reads from data sources
and outputs a list of key-value pairs. The scheduler of the MapReduce framework
reorganizes the pairs (k, v1), (k, v2) . . . (k, vn) with the same key k to a pair (k, l),
where l is a list of values v1, v2, . . . , vn, and sends (k, l) to a reducer. The reducer
then iterates through the list and outputs a key-value pair1. More specifically,
taking the “word-counting” program as an example. It counts the occurrences

1 We focus on the Hadoop style reducer in this work.
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of each word in a set of documents. The mappers read the documents and out-
put for each document a list in the form of (word1, count1), (word2, count2),
. . ., (wordn, countn), where countk is the number of occurrences of wordk in
the document being processed. These lists will be reorganized into the form of
(word1, list1), (word2, list2), . . . , (wordn, listn) and sent to the reducers, where
listk is a list of integers recording the number of occurrences of wordk. Note
that the order of the integers in the lists can differ in different executions due
to the scheduling policy. This results in the commutativity problem.

A reducer is said to be commutative if its output is independent of the order
of its inputs. The commutativity problem asks if a reducer is commutative. A
study from Microsoft [18] reports that 58 % of the 507 reducers submitted to
their MapReduce platform are non-commutative, which may lead to very tricky
and hard-to-find bugs. As an evidence, those reducers already went through seri-
ous code review, testing, and experiments with real data for months. Still, among
them 5 reducers containing very subtle bugs caused by non-commutativity (con-
firmed by the programmers).

The reducer commutativity problem in general is undecidable. However, in
practice, MapReduce programs are usually used for data analytics and have
very simple control structures. Many of them just iterate through the input
list and compute the output with very simple operations. We want to study
if the commutativity problem of real-world reducers is decidable. It has been
shown in [3] that even with a simple programming language where the only loop
structure allowed is to go over the input list once, the commutativity problem
is already undecidable. Under scrutiny, we found that the language is still too
expressive for typical data analytics programs. For example, it allows arbitrary
multiplications of variables, which is a key element in the undecidability proof.

Contributions. By observing the behavioral patterns of reducer programs for
data analytics, we first design a programming language for reducers to charac-
terize the essential features of them. We found that the commutativity problem
becomes decidable if we partition variables into control variables and data vari-
ables. Control variables can occur in transition guards, but can only store values
directly from the input list (e.g., it is not allowed to store the sum of two input
values in a control variable). On the other hand, data variables are used to
aggregate some information for outputs (e.g. sum of the values from the input
list), but cannot be used in transition guards. This distinction is inspired by the
streaming transducer model [1], which, we believe, provides good insights for
reducer programming language design in the MapReduce framework. Moreover,
we assume that there are no nested loops in the language for reducers, which is
a typical situation for MapReduce programs in practice.

We then introduce a formalism called streaming numerical transducers (SNT)
and obtain a decision procedure for the commutativity problem of the afore-
mentioned language for reducers. Similar to the language for reducers, SNTs
distinguish between control variables and data variables. Although conceptually
SNTs are similar to streaming transducers over data words introduced in [1],
they are intrinsically different in the following sense: The outputs of SNTs are
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integers and the integer variables therein are manipulated by linear arithmetic
operations. On the other hand, the outputs of streaming transducers are data
words, and the data word variables are manipulated by concatenation opera-
tions. SNTs in this paper are assumed to be generalized flat, which generalizes
the “flat” automata (c.f. [11]) in the sense that each nontrivial strongly con-
nected component (SCC) of the transition graph is a collection of cycles, instead
of one single cycle. Generalized flat transition graphs are sufficient to capture
the transition structures of the programs in the aforementioned language for
reducers.

The decision procedure for the commutativity problem is obtained by reduc-
ing to the equivalence problem of SNTs, which is further reduced to the non-zero
output problem. The non-zero output problem asks whether given an SNT, there
exists some input data word w and initial valuation of variables such that the
output of the SNT on w is defined and non-zero. For the non-zero output prob-
lem of SNTs, we apply a nontrivial combinatorial analysis of the evolvement
of the integer variables during the runs of SNTs (Sect. 5.1). The key idea of
the decision procedure is that, generally speaking, if only the non-zero output
problem is concerned, the different cycles in the SCCs can be dealt with indepen-
dently (Sects. 5.2 and 5.3). As a further evidence of the usefulness of SNTs for
MapReduce programs, we demonstrate that SNTs can be composed to model and
analyze the reducer programs that read the input list multiple times (Sect. 6).

As a novel formalism over infinite alphabets, the model of SNTs is interest-
ing in its own right: On the one hand, SNTs are expressive in the sense that
they include linear arithmetic operations on integer variables, while at the same
time admit rather general transition graphs, that is, generalized flat transition
graphs. On the other hand, despite this strong expressibility, it turns out that
the commutativity problem, the equivalence problem, and the non-zero output
problem of SNTs are still decidable.

Related Work. SNTs can be seen as generalizations of register automata [10,14]
where registers correspond to the control variables in our terminology. Although
register automata can have very general transition graphs beyond the general-
ized flat ones, they do not allow arithmetic operations on the variables. There
have been many automata models that contain arithmetic operations. Counter
automata contain counters whose values can be updated by arithmetic operations
(see [5–7,9,11], to cite a few) in each transition. Intuitively, the major difference
between SNTs and counter automata is that SNTs work on data words and can
apply arithmetic operations to an unbounded number of independent integer
values, whereas counter automata contain a bounded number of counters which
involve only a bounded number of integer values in one configuration. Cost reg-
ister automata (CRA) [2] also contain arithmetic operations, where the costs are
stored into registers for which arithmetic operations can be applied. The equiva-
lence of CRAs with the addition operation is decidable. SNTs are different from
CRAs since the inputs of CRAs are words on finite alphabets, while those of
SNTs are data words. Moreover, SNTs allow guards over variables ranging over
an infinite domain but CRAs do not. There have been several transducer models
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on data words: Streaming transducers [1] mentioned before and symbolic trans-
ducers [17]. Symbolic transducers have data words as both inputs and outputs.
They can put guards on the input value in one position of data words, but are
incapable of comparing and aggregating multiple input values in different posi-
tions. In [13], the authors considered a model for reducers in the MapReduce
framework where the only comparison that can be performed between data val-
ues are equalities, and the reducers are essentially register automata/transducers.
Their model can describe a system with multiple layers of mappers and reducers.

The rest of the paper is organized as follows. Section 2 defines the notations
used in this paper. Section 3 describes our design of the programming language
for reducers. Section 4 defines SNTs. Section 5 describes the decision procedure of
SNTs. Section 6 discusses how to use our approach to analyze the commutativity
property of more challenging data analytics programs. We conclude this work in
Sect. 7. The missing technical details and proofs can be found in the full version
of this paper [4].

2 Preliminaries

Let Z, Z�=0 be the set of integers, non-zero integers, respectively. We assume that
all variables range over Z. For a function f , let dom(f) and rng(f) denote the
domain and range of f , respectively.

An expression e over the set of variables Z is defined by the following rules,
e ::= c | cz | (e + e) | (e − e), where z ∈ Z and c ∈ Z. As a result of the
commutativity and associativity of +, without loss of generality, we assume
that all expressions e in this paper are of the form c0 + c1z1 + · · · + cnzn, where
c0, c1, . . . , cn ∈ Z and z1, . . . , zn ∈ Z. For an expression e = c0+c1z1+ · · ·+cnzn,
let vars(e) denote the set of variables zi such that ci �= 0. Let EZ denote the set
of all expressions over the set of variables Z. In this paper, it is assumed that
all the constants in the expressions are encoded in binary.

A valuation ρ of Z is a function from Z to Z. A symbolic valuation Ω of Z is
a function that maps a variable in Z to an expression (possibly over a different
set of variables). The value of e under a valuation ρ (resp. symbolic valuation
Ω), denoted by [[e]]ρ (resp. [[e]]Ω), is defined recursively in the standard way. For
example, let Ω be a symbolic valuation the maps z1 to z1 + z2 and z2 to 3z2,
then [[2z1+z2]]Ω = 2[[z1]]Ω +[[z2]]Ω = 2(z1+z2)+3z2 = 2z1+5z2. For a valuation
ρ, a variable z, and c ∈ Z, define the valuation ρ[c/z] such that ρ[c/z](z) = c
and ρ[c/z](z′) = ρ(z′) for z′ �= z.

In this paper, we use X and Y to denote the sets of control variables and
data variables, respectively. We use the variable cur /∈ X ∪ Y to store the data
value that is currently being processed in the input list and use X+ to denote
the set X ∪ {cur}. A guard is a formula either of type 1 defined by the rules
g ::= true | cur ≤ x | cur > x | g ∧ g, or of type 2 defined by the rules
g ::= true | cur ≥ x | cur < x | g ∧ g, where x ∈ X, and c ∈ Z. Note that
the guards defined here are equality-free in the sense that for each guard g,
no equalities between the variables in X+ can be inferred from g. Let ρ be a
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valuation of X+ and g be a guard. Then ρ satisfies g, denoted by ρ |= g, iff g is
evaluated to true under ρ. Let [n] denote the set {1, 2, . . . , n}, and [a, b] denote
the set {a, a + 1, . . . , b} when b ≥ a and ∅ otherwise. A permutation on [n] is a
bijection from [n] to [n]. The set of permutations on [n] is denoted by Sn.

A data word w is a sequence of integer values d1 . . . dn such that di ∈ Z

for each i. We use hd(w), tl(w), and |w| to denote the data value d1, the tail
d2 . . . dn, and the length n, respectively. We use ε to denote an empty data word.
As a convention, we let hd(ε) = ⊥, tl(ε) = ⊥, and |ε| = 0. Given two data words
w,w′, we use w.w′ to denote their concatenation. Given σ ∈ Sn, we lift σ to
data words by defining σ(w) = dσ(1) . . . dσ(n), for each data word w = d1 . . . dn.
We call σ(w) as a permutation of w.

3 Language for Integer Reducers

We discuss the rationale behind the design of the programming language for
reducers such that the commutativity problem is decidable. The language intends
to support the following typical behavior pattern of reducers: A reducer program
iterates through the input data word once, aggregates intermediate information
into variables, and produces an output when it stops. Later in Sect. 6, we will
show an extension that allows resetting the iterators so that an input data word
can be traversed multiple times.

s ∈ Statements ::= y := e; | y+= e; | x := x′; | s s | next; | if (g){s} [else {s}]
p ∈ Programs ::= loop{s next; }ret r; | s next; p

Fig. 1. A simple programming language for reducers. Here x ∈ X are control variables,
y ∈ Y are data variables, x′ ∈ X+, e ∈ EX+ are expressions, and r is an expression in
EX∪Y . The square brackets mean that the else branch is optional.

More concretely, we focus on the programming language in Fig. 1. The lan-
guage includes the usual features of program languages, variable assignments,
sequential compositions, and conditional branchings. It also includes a statement
next; which is used to advance the data word iterator. The loops next; statement
repeatedly executes the loop body s next; until reaching the end of input data
word. The novel feature of the language is that we partition the variables into
two sets: control variables X and data variables Y . The variables from X are
used for guiding the control flow and the variables from Y are used for storing
aggregated intermediate data values. The variables from X can store only either
initial values of variables in X or values occurring in the input data word. They
can occur both in guards g or arithmetic expressions e. On the other hand, the
variables from Y can aggregate the results obtained from arithmetic expressions
e, but cannot occur in guards g or arithmetic expressions e. The initial values of
variables can be arbitrary. Given a program p, a data word w, and a valuation
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ρ0, we use pρ0(w) to denote the output of p on w, with the initial values of
variables given by ρ0. The formal semantics of the language can be found in the
full version [4].

In this paper, we assume that the reducer programs p satisfy that all the
guards between two consecutive next statements are mono-typed, more specifi-
cally, for each execution path in the control flow graph of p and each pair of
consecutive next statements, either all the guards g of the branching statements
between them are of type 1, or all the guards between them are of type 2 (cf.
Sect. 2 for the definition of guards). In addition, to simplify the presentation,
we assume that the reducer programs p are transition-enabled in the following
sense, for each execution path in the control flow graph of p, there is an input w
and initial valuations of variables ρ0 so that the run of p over w and ρ0 follows
the execution path.

Note that we do not allow multiplications in the language, so the reduction
from the Diophantine equations in [3] no longer works. Even though, if we do
not distinguish the control and data variables, we can show easily that commu-
tativity problem for this language is still undecidable, by a reduction from the
reachability problem of Petri nets with inhibitor arcs [12,15]. The reachability
problem of Petri nets with inhibitor arcs is reduced to the reachability problem
of the reducer programs, which is in turn easily reduced to the commutativity
problem of reducer programs.

Notice that in the programming language, we only allow additions (+=) or
assignments (:=) of a new value computed from an expression over X+ to data
variables. In Fig. 2 we demonstrate a few examples performing data analytics
operations. Observe that all of them follow the same behavioral pattern: The
program iterates through the input data word and aggregates some intermedi-
ate information into some variables. The operations used for the aggregation are
usually rather simple: either a new value is added to the variable (e.g. sum and
cnt in Fig. 2) storing the aggregated information, or a new value is assigned to
the variable (e.g. max and 2nd largest in Fig. 2). Actually, the similar behav-
ioral pattern occurs in all programs we have investigated. Still, one may argue
that allowing only additions and subtractions is too restrictive for data analytics.

Fig. 2. Examples of reducers performing data analytics operations
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In Sect. 6, we will discuss the extensions of the language to support more chal-
lenging examples, such as Mean Absolute Deviation and Standard Deviation.

We focus on the following problems of reducer programs: (1) Commutativity :
given a program p, decide whether for each data word w and its permutation
w′, it holds that pρ0(w) = pρ0(w

′) for all initial valuations ρ0. (2) Equivalence:
given two programs p and p′, decide whether for each data word w and each
initial valuation ρ0, it holds that pρ0(w) = p′

ρ0
(w).

4 Streaming Numerical Transducers

In this section, we introduce streaming numerical transducers (SNTs), whose
inputs are data words and outputs are integer values. A SNT scans a data word
from left to right, records and aggregates information using control and data
variables, and outputs an integer value when it finishes reading the data word.
We will use SNTs to decide the commutativity and equivalence problem of the
reducer programs defined in Sect. 3.

A SNT S is a tuple (Q,X, Y, δ, q0, O), where Q is a finite set of states, X is
a finite set of control variables to store data values that have been met, Y is a
finite set of data variables to aggregate information for the output, δ is the set
of transitions, q0 ∈ Q is the initial state, O is the output function, which is a
partial function from Q to EX∪Y . The set of transitions δ comprises the tuples
(q, g, η, q′), where q, q′ ∈ Q, g is a guard over X+ (defined in Sect. 2), and η is
an assignment which is a partial function mapping X ∪ Y to EX+∪Y such that

for each x ∈ dom(η) ∩ X, η(x) = x′ for some x′ ∈ X+. We write q
(g,η)−−−→ q′ to

denote (q, g, η, q′) ∈ δ for convenience. We would like to remark that the guards
in the transitions can be of both types, that is, of type 1 or type 2.

Moreover, we assume that an SNT S satisfies the following constraints.
(1) Deterministic: For each pair of distinct transitions originating from q, say
(q, g1, η1, q′

1) and (q, g2, η2, q′
2), it holds that g1 ∧ g2 is unsatisfiable. (2) General-

ized flat : Each SCC (strongly connected component) of the transition graph of
S is either a single state or a set of simple cycles {C1, . . . , Cn} which contains a
state q such that for each i, j : 1 ≤ i < j ≤ n, q is the only state shared by Ci

and Cj . (3) Independently evolving and copyless: For each (q, g, η, q′) ∈ δ and for
each y ∈ dom(η) ∩ Y , η(y) = e or η(y) = y + e for some expression e over X+.

The semantics of an SNT S is defined as follows. A configuration of S is a
pair (q, ρ), where q ∈ Q and ρ is a valuation of X ∪ Y . An initial configuration
of S is (q0, ρ0), where ρ0 assigns arbitrary values to the variables from X ∪ Y .
A sequence of configurations (q0, ρ0)(q1, ρ1) . . . (qn, ρn) is a run of S over a data

word w = d1 . . . dn iff there exists a path (sequence of transitions) P = q0
(g1,η1)−−−−→

q1
(g2,η2)−−−−→ q2 . . . qn−1

(gn,ηn)−−−−−→ qn such that for each i ∈ [n], ρi−1[di/cur] |= gi,
and ρi is obtained from ρi−1 as follows: (1) For each x ∈ X, if ηi(x) = cur then
ρi(x) = di, otherwise, if ηi(x) = x′ ∈ X then ρi(x) = ρi−1(x′), otherwise ρi(x) =
ρi−1(x). (2) For each y ∈ Y , if y ∈ dom(ηi), then ρi(y) = [[ηi(y)]]ρi−1[di/cur],
otherwise, ρi(y) = ρi−1(y). We call (qn, ρn) the final configuration of the run.
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In this case, we also say that the run follows the path P . We say that a path
P in S is feasible iff there exists a run of S following P . An SNT S is said to
be transition-enabled if each path in S is feasible. We assume that all SNTs
considered in this paper are transition enabled.

Given a data word w = d1 . . . dn and an initial configuration (q0, ρ0), if there
is a run of S over w starting from (q0, ρ0) and with the final configuration
(qn, ρn), then the output of S over w w.r.t. ρ0, denoted by Sρ0(w), is [[O(qn)]]ρn

.
Otherwise, Sρ0(w) is undefined, denoted by ⊥.

Example 1 (SNT for Max). The SNT Smax for computing the maximum value
of an input data word is defined as ({q0, q1}, {max}, ∅, δ, q0, O), where the set of
transitions δ and the output function O are illustrated in Fig. 3 (here X = {max},
Y = ∅, and max := cur denotes the assignment of cur to the variable max).

q0 q1
(true,max := cur)

(cur > max,max := cur)

(cur ≤ max, ∅)

O(q1) = max

Fig. 3. The SNT Smax for computing the maximum value

Proposition 1. For each reducer program p, one can construct an equivalent
SNT S where the number of states and the maximum number of simple cycles
in an SCC of the transition graph are at most exponential in the number of
branching statements in p.

Intuitively, the exponential blow-up in the construction is due to the following
difference between reducer programs p and SNTs S: A reducer program moves
to the next value of an input data word only when a next statement is executed,
while an SNT advances the iterator in each transition. Therefore, a sequence
of statements with k branching points between each pair of consecutive next
statements in the control flow of p correspond to at most 2k transitions of S.

We focus on three decision problems of SNTs: (1) Commutativity : Given an
SNT S, decide whether S is commutative, that is, whether for each data word w
and each permutation w′ of w, Sρ0(w) = Sρ0(w

′) for all initial valuations ρ0. (2)
Equivalence: Given two SNTs S,S ′, decide whether S and S ′ are equivalent, that
is, whether over each data word w, Sρ0(w) = S ′

ρ0
(w) for all initial valuations ρ0.

(3) Non-zero output : Given an SNT S, decide whether S has a non-zero output,
that is, whether there is a data word w and an initial valuation ρ0 such that
Sρ0(w) /∈ {⊥, 0}.

We first observe that the commutativity problem can be reduced to the
equivalence problem of SNTs, which can be further reduced to the non-zero
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output problem of SNTs. For analyzing the complexity of the decision procedure
in the next section, we state the complexity of the reductions w.r.t. the following
factors of SNTs: the number of states, the number of control variables (resp.
data variables), and the maximum number of simple cycles in an SCC of the
transition graph. We will adopt the convention that if after a reduction, some
factor becomes exponential, then this fact will be stated explicitly, and on the
other hand, if some factor is still polynomial after the reduction, then this fact
will be made implicit and will not be stated explicitly.

Proposition 2. The commutativity problem of SNTs is reduced to the equiva-
lence problem of SNTs in polynomial time.

We briefly describe the idea of the reduction in Proposition 2 here. Suppose
that S = (Q,X, Y, δ, q0, O) is an SNT such that X = {x1, . . . , xk} and Y =
{y1, . . . , yl}. Without loss of generality, we assume that the output of S is defined
only for data words of length at least two. We will construct two SNTs S1 and
S2 so that S is commutative iff S is equivalent to both S1 and S2.

– Intuitively, over a data word w = d1d2d3 . . . dn with n ≥ 2, S1 simulates
the run of S over d2d1d3 . . . dn, that is, the data word obtained from w by
swapping the first two data values.

– Intuitively, over a data word w = d1d2d3 . . . dn with n ≥ 2, S2 simulates the
run of S over d2d3 . . . dnd1, that is, the data word obtained from w by moving
the first data value to the end.

The correctness of this reduction follows from the fact that all the permutations
of d1 . . . dn can be generated by composing the two aforementioned permutations
corresponding to S1 and S2 respectively (cf. Proposition 1 in [3]). The construc-
tion of S1 (resp. S2) from S is in polynomial time w.r.t. the size of S.

Proposition 3. From SNTs S1 and S2, an SNT S3 can be constructed in poly-
nomial time such that (S1)ρ0(w) �= (S2)ρ0(w) for some data word w and valua-
tion ρ0 iff (S3)ρ0(w) �∈ {⊥, 0} for some data word w and valuation ρ0.

Proposition 3 can be proved by a straightforward product construction.
The lemma below states a property of SNTs, due to the fact that the SNTs

are assumed to be transition-enabled and the guards are equality-free (cf. the
definition of guards in Sect. 2).

Proposition 4. Let S be an SNT and P be a path in S. There is a data word
w such that (1) there is a run of S over w which follows P , (2) no data values
occur twice in w.

5 Decision Procedure for the Non-zero Output Problem

We prove our main result, Theorem 1, by presenting a decision procedure for
the non-zero output problem of SNTs. We fix an SNT S = (Q,X, Y, δ, q0, O)
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such that X = {x1, . . . , xk} and Y = {y1, . . . , yl}. We first define summaries of
the computations of S on paths and cycles in Sect. 5.1, then present a decision
procedure for the case that the transition graph of S is a generalized lasso in
Sect. 5.2. The transition graph of S is said to be a generalized lasso if it comprises

a handle H = q0
(g1,η1)−−−−→ q1 . . . qm−1

(gm,ηm)−−−−−→ qm and a collection of simple cycles
C1, . . . , Cn such that qm is the unique state shared by each pair of distinct cycles
from {C1, . . . , Cn}. We extend the procedure to SNTs whose transition graphs
are not necessarily generalized lassos in Sect. 5.3.

Theorem 1. The non-zero output problem of SNTs can be decided in time expo-
nential in the number of data variables and the maximum number of simple cycles
in an SCC of transition graphs.

Corollary 1. The commutativity problem of reducer programs can be decided in
time exponential in the number of data variables, and doubly exponential in the
number of branching statements of reducer programs.

Remark 1. Though the decision procedure for the commutativity problem of
reducer programs has a complexity exponential in the number of data variables,
and doubly exponential in the number of branching statements, we believe that
the decision procedure could still be implemented to automatically analyze the
programs in practice, in which these numbers are usually small.

5.1 Summarization of the Computations on Paths and Cycles

Suppose P = p0
(g1,η1)−−−−→ p1 . . . pn−1

(gn,ηn)−−−−−→ pn is a path of S. We assume that
the initial values of the control and data variables are represented by a symbolic
valuation Ω over X ∪Y . We use the variables dP

1 , dP
2 , . . . , dP

rP
to denote the data

values introduced while traversing P . Notice that according to Proposition 4,
one can choose different values for different positions of P . Therefore, for each
position of P , a fresh variable is introduced to represent the data value in that
position. Thus we have rP = n. Here we use the superscript P to denote the
fact that rP (resp. dP

1 , . . . ) is associated with the path P .

Proposition 5. Suppose that P is a path and the initial values of X ∪ Y are
represented by a symbolic valuation Ω. Then the values of X ∪Y after traversing
the path P are specified by a symbolic valuation Θ(P,Ω) satisfying the following
conditions.

– The set of indices of X, i.e., [k], is partitioned into IP
pe and IP

tr, the indices
of persistent and transient control variables, respectively. A control variable
is persistent if its value has not been changed while traversing P , otherwise, it
is transient.

– For each xj ∈ X such that j ∈ IP
pe, Θ(P,Ω)(xj) = Ω(xj).

– For each xj ∈ X such that j ∈ IP
tr, Θ(P,Ω)(xj) = dP

πP (j)
, where πP : IP

tr → [rP ]
is a mapping from the index of a transient control variable to the index of the
data value assigned to it.
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– For each yj ∈ Y , Θ(P,Ω)(yj) = εP
j + λP

j Ω(yj) +
∑

j′∈[k]

αP
j,j′Ω(xj′) +

∑

j′′∈[rP ]

βP
j,j′′dP

j′′ , where εP
j , λP

j , αP
j,1, . . . , α

P
j,k, βP

j,1, . . . , β
P
j,rP

are integer con-

stants such that λP
j ∈ {0, 1} (as a result of the “independently evolving and

copyless” constraint). It can happen that λP
j = 0, which means that Ω(yj) is

irrelevant to Θ(P,Ω)(yj). Similarly for αP
j,1 = 0, and so on.

In Proposition 5, the sets IP
pe, IP

tr, the mapping πP , and the constants εP
j ,

λP
j , . . . , βP

j,rP
only depend on P and are independent of Ω. In addition, they

can be computed in polynomial time from (the transitions in) P . We define
(πP )−1 as the inverse function of πP , that is, for each j′ ∈ [rP ], (πP )−1(j′) =
{j ∈ IP

tr | πP (j) = j′}.
As a corollary of Proposition 5, the following result demonstrates how to

summarize the computations of S on the composition of two paths.

Corollary 2. Suppose that P1 and P2 are two paths in S such that the last state
of P1 is the first state of P2. Moreover, let Θ(P1,Ω) (resp. Θ(P2,Ω)) be the symbolic
valuation summarizing the computation of S on P1 (resp. P2). Then the symbolic
valuation summarizing the computation of S on P1P2 is Θ(P2, Θ(P1,Ω)).

In order to get a better understanding of the relation between Θ(P2, Θ(P1,Ω))

and (Θ(P1,Ω), Θ(P2,Ω)), in the following, for each yj ∈ Y , we obtain a more
explicit form of the expression Θ(P2, Θ(P1,Ω))(yj), by unfolding therein the expres-
sion Θ(P1,Ω).

Θ(P2, Θ(P1,Ω))(yj) =
(

ε
P2
j

+ λ
P2
j

ε
P1
j

)
+
(

λ
P2
j

λ
P1
j

)
Ω(yj) +

∑
j′∈I

P1
pe

(
α

P2
j,j′ + λ

P2
j

α
P1
j,j′

)
Ω(x

j′ )+

∑
j′∈I

P1
tr

(
λ

P2
j

α
P1
j,j′

)
Ω(x

j′ ) +
∑

j′∈rng(πP1 )

⎛
⎜⎜⎝λ

P2
j

β
P1
j,j′ +

∑
j′′∈(πP1 )−1(j′)

α
P2
j,j′′

⎞
⎟⎟⎠ d

P1
j′ +

∑
j′∈[rP1 ]\rng(πP1 )

(
λ

P2
j

β
P1
j,j′

)
d

P1
j′ +

∑
j′∈[rP2 ]

β
P2
j,j′d

P2
j′ .

In the equation, j′ ∈ IP1
pe implies that xj′ remains unchanged when traversing

P1, which means the initial value of xj′ before traversing P2 is still Ω(xj′) and
therefore we have the item (αP2

j,j′)Ω(xj′). When j′ ∈ rng(πP1), the initial value

of xj′′ for each j′′ ∈ (πP1)−1(j′) before traversing P2 is dP1
j′ and therefore we

have the item

(
∑

j′′∈(πP1 )−1(j′)

αP2
j,j′′

)

dP1
j′ . For all j′ ∈ [k] = IP1

pe ∪ IP1
tr , we have

the item (λP2
j αP1

j,j′)Ω(xj′), i.e. the coefficient of Ω(xj′) in Θ(P1,Ω) multiplied by

λP2
j . Moreover, for all j′ ∈ [rP1 ] = rng(πP1) ∪ ([rP1 ]\rng(πP1)), we have the item

(λP2
j βP1

j,j′)dP1
j′ , i.e. the coefficient of dP1

j′ in Θ(P1,Ω) multiplied by λP2
j .
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In the following, by utilizing Proposition 5 and Corollary 2, for each path C�

which is obtained by iterating a cycle C for � times, we illustrate how Θ(C	,Ω)

is related to Θ(C,Ω) and �. For convenience, we call � a cycle counter variable.

Proposition 6. Suppose that C is a cycle and P = C� such that � ≥ 2. Then
the symbolic valuation Θ(C	,Ω) to summarize the computation of S on P is as
follows,

Θ(C	,Ω)(yj) =
(
1 + λC

j + · · ·+ (λC
j )�−1

)
εC
j + (λC

j )�Ω(yj)+∑
j′∈IC

pe

(
1 + λC

j + · · ·+ (λC
j )�−1

)
αC

j,j′Ω(xj′) +
∑

j′∈IC
tr

(λC
j )�−1αC

j,j′Ω(xj′)+

∑
j′∈rng(πC)

∑
s∈[�−1]

⎛
⎝λC

j βC
j,j′ +

∑
j′′∈(πC)−1(j′)

αC
j,j′′

⎞
⎠ (λC

j )�−s−1dC,s
j′ +

∑
j′∈[rC ]\rng(πC)

∑
s∈[�−1]

(
(λC

j )�−sβC
j,j′
)
dC,s

j′ +
∑

j′∈[rC ]

βC
j,j′d

C,�
j′ ,

where the variables dC,s
1 , . . . , dC,s

rC
for s ∈ [�] represent the data values introduced

when traversing C for the s-th time.

From Proposition 6 and the fact that λj ∈ {0, 1}, we have the following
observation.

– If λC
j = 0, then

Θ(C	,Ω)(yj) = εC
j +

∑

j′∈IC
pe

αC
j,j′Ω(xj′) +

∑

j′∈rng(πC)

⎛
⎜⎝

∑

j′′∈(πC)−1(j′)

αC
j,j′′

⎞
⎟⎠dC,�−1

j′ +

∑

j′∈[rC ]

βC
j,j′d

C,�
j′ .

– If λC
j = 1, then

Θ(C	,Ω)(yj) = �εC
j + Ω(yj) +

∑

j′∈IC
pe

�αC
j,j′Ω(xj′) +

∑

j′∈IC
tr

αC
j,j′Ω(xj′)+

∑

j′∈rng(πC)

∑

s∈[�−1]

(

βC
j,j′ +

∑

j′′∈(πC)−1(j′)
αC

j,j′′

)

dC,s
j′ +

∑

j′∈[rC ]\rng(πC)

∑

s∈[�−1]

βC
j,j′d

C,s
j′ +

∑

j′∈[rC ]

βC
j,j′d

C,�
j′ .

5.2 Decision Procedure for Generalized Lassos

In this section, we present a decision procedure for SNTs whose transition graphs
are generalized lassos. From Proposition 6, we know that the coefficients con-
taining the cycle counter variable � in Θ(C	,Ω)(yj) can be non-zero when λC

j = 1.
The non-zero coefficients may propagate to the output expression. In such a case,
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because the SNTs are “transition-enabled” (i.e. for any sequence of transitions,
a corresponding run exists), intuitively, one can pick a run corresponding to a
very large � so that it dominates the value of the output expression and makes
the output non-zero. In the decision procedure we are going to present, we first
check if the handle of the generalized lasso produces a non-zero output in Step
I. We then check in Step II the coefficients containing � in the output expression
is non-zero. If this does not happen, then we show in Step III that the non-zero
output problem of SNT can be reduced to a finite state reachability problem
and thus can be easily decided.

Before presenting the decision procedure, we introduce some notations. Let
e be an expression consisting of symbolic values Ω(z) for z ∈ X ∪ Y and
variables d1, . . . , ds corresponding to the values of the input data word. More
specifically, let e := μ0 + μ1Ω(z1) + · · · + μk+lΩ(zk+l) + ξ1d1 + · · · + ξsds,
such that μ0, μ1, . . . , μk+l, ξ1, . . . , ξs are expressions containing only constants
and cycle counter variables. Then we call μ0 the constant atom, μiΩ(zi)
the Ω(zi)-atom for i ∈ [k + l], and ξjdj the dj-atom for j ∈ [s] of the
expression e. Moreover, μ1, . . . , μk+l, ξ1, . . . , ξs are called the coefficients and
Ω(z1), . . . , Ω(zk+l), d1. . . . , ds the subjects of these atoms. A non-constant atom
is said to be nontrivial if its coefficient is not identical to zero.

In the rest of this subsection, we assume that the transition graph of S
comprises a handle H = q0

(g1,η1)−−−−→ q1 . . . qm−1
(gm,ηm)−−−−−→ qm and a collection of

simple cycles C1, . . . , Cn such that qm is the unique state shared by each pair
of distinct cycles from {C1, . . . , Cn}. Moreover, without loss of generality, we
assume that O(qm) = a0 + a1x1 + · · · + akxk + b1y1 + · · · + blyl, and O(q) is
undefined for all the other states q.

A cycle scheme s is a path C�1
i1

C�2
i2

. . . C�t
it

such that i1, . . . , it ∈ [n], �1, . . . , �t ≥
1, and for each j ∈ [t − 1], ij �= ij+1. Intuitively, s is a path obtained by first
iterating Ci1 for �1 times, then Ci2 for �2 times, and so on. From Proposition 6
and Corollary 2, a symbolic valuation Θ(s,Ω) can be constructed to summarize
the computation of S on s.

Lemma 1. Suppose s = C�1
i1

C�2
i2

. . . C�t
it

is a cycle scheme, and Ω is a symbolic
valuation representing the initial values of the control and data variables. For all

j′ ∈ I
Ci1
pe , let rj′ be the largest number r ∈ [t] such that j′ ∈ ⋂

s∈[r] I
Cis
pe , i.e., xj′

remains persistent when traversing C�1
i1

C�2
i2

. . . C
�r

j′
ir

j′
. Then for each j ∈ [l] and

j′ ∈ I
Ci1
pe , the coefficient of the Ω(xj′)-atom in Θ(s,Ω)(yj) is

e +
∑

s1∈[rj′ ]

(
1 + λ

Cis1
j + · · · + (λ

Cis1
j )�s1−1

)
α

Cis1
j,j′

∏

s2∈[s1+1,t]

(
λ

Cis2
j

)�s2

,

where (1) e=0 when rj′ = t and (2) e = (λCis
j )�s−1α

Cis

j,j′
∏

s′∈[s+1,t]

(
λ

Ci
s′

j

)�s′

with

s = rj′ + 1 when rj′ < t.
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The constant atom of Θ(s,Ω)(yj) is

∑

s1∈[t]

(
1 + λ

Cis1
j + · · · + (λ

Cis1
j )�s1−1

)
ε

Cis1
j

∏

s2∈[s1+1,t]

(
λ

Cis2
j

)�s2

Moreover, for all j ∈ [l], in Θ(s,Ω)(yj), only the constant atom and the coefficients

of the Ω(xj′)-atoms with j′ ∈ I
Ci1
pe contain a subexpression of the form μs�1 for

some μs ∈ Z.

Notice that above, λ
Cis1
j ∈ {0, 1} for j ∈ [l] and s1 ∈ [t]. Hence the value of

(1 + λ
Cis1
j + · · · + (λ

Cis1
j )�s1−1) can only be 1 or �s1 and

(
λ

Cis2
j

)�s2

∈ {0, 1}.

Therefore, both the constant atom and the coefficient of the Ω(xj′)-atom with

j′ ∈ I
Ci1
pe can be rewritten to the form of c0+c1�1+c2�2+· · ·+ct�t for c0 . . . ct ∈ Z.

Note that some of c0 . . . ct might be zero.

Step I: We are ready to present the decision procedure. At first, we observe
that after traversing H with the initial values of the variables given by some
valuation Ω0, for each j′ ∈ IH

tr , the value of the control variable xj′ becomes
dH

πH(j′)
, more formally, Θ(H,Ω0)(xj′) = dH

πH(j′)
.

In Step I, we check if [[O(qm)]]Θ(H,Ω0) is not identical to zero. This can be
done by checking if the constant-atom or the coefficient of some non-constant
atom of the output expression [[O(qm)]]Θ(H,Ω0) is not identical to zero.

Step I. Decide whether [[O(qm)]]Θ(H,Ω0) is not identical to zero. If the answer
is yes, then the decision procedure terminates and returns the answer true.
Otherwise, go to Step II.

Complexity Analysis of Step I. Since Θ(H,Ω0) can be computed in polynomial
time from H, it follows that Step I can be done in polynomial time.

Step II: The goal of Step II is either showing that in f = [[O(qm)]]
Θ(s,Θ(H,Ω0)) ,

all subexpressions containing the cycle counter variables are identical to zero
and hence can be ignored or showing that f is not identical to zero. Let s =

C�1
i1

C�2
i2

. . . C�t
it

be a cycle scheme. From Lemma 1, for each j′ ∈ I
Ci1
pe and symbolic

valuation Ω, the only subexpression containing �1 in the coefficient of Ω(xj′)-
atom of [[O(qm)]]Θ(s,Ω) is

∑

1≤j≤l

bj

(
(λCi2

j )�2 . . . (λCit
j )�t

) (
1 + λ

Ci1
j + · · · + (λCi1

j )�1−1
)

α
Ci1
j,j′ . (∗)
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Since λ
Ci1
j , λ

Ci2
j , . . . , λ

Cit
j ∈ {0, 1}, the expression (∗) can be rewritten as

μs,(i1,j′)�1 + νs,(i1,j′) for some integer constants μs,(i1,j′) and νs,(i1,j′).
The only subexpression containing �1 in the constant atom of [[O(qm)]]Θ(s,Ω) is

∑

1≤j≤l

bj

(
(λCi2

j )�2 . . . (λCit
j )�t

)(
1 + λ

Ci1
j + · · · + (λCi1

j )�1−1
)

ε
Ci1
j . (∗∗)

The expression (∗∗) can be rewritten as μs,(i1,0)�1 + νs,(i1,0) for some integer

constants μs,(i1,0) and νs,(i1,0). If μs,(i1,0) = 0 and μs,(i1,j′) = 0 for all j′ ∈ I
Ci1
pe ,

then we can ignore all subexpressions containing the cycle counter variable �1 in

[[O(qm)]]Θ(s,Ω) , i.e., the subexpressions μs,(i1,0)�1 and μs,(i1,j′)�1 for all j′ ∈ I
Ci1
pe .

Step II. For each i1 ∈ [n], check all cycle scheme s = C�1
i1

Ci2 . . . Cit
such

that i2, . . . , it are mutually distinct. There are only finitely many this kind
of cycle schemes. If one of the following constraints is satisfied, then return
true.
(1) There is j′ ∈ I

Ci1
pe such that μs,(i1,j′) �= 0. (2) μs,(i1,0) �= 0.

If the decision procedure has not returned yet, then go to Step III.

Complexity analysis of Step II. Since i1, . . . , it are mutually distinct, the number
of cycle schemes s = C�1

i1
Ci2 . . . Cit

in Step II is exponential in the number of
cycles in the generalized lasso. Once the cycle scheme is fixed, the two constraints
in Step II can be decided in polynomial time. Therefore, the complexity of Step
II is exponential in the number of cycles in the generalized lasso.

If there exists j′ ∈ I
Ci1
pe such that μs,(i1,j′) �= 0, then [[O(qm)]]

Θ(s,Θ(H,Ω0))

contains some nontrivial non-constant atom for s = C�1
i1

Ci2 . . . Cit
and some

�1 = s. The guards in the path Cs
i1

Ci2 . . . Cit
enforce a preorder over the sub-

jects of those nontrivial non-constant atoms. Pick one of the nontrivial non-
constant atoms with a maximal subject w.r.t. the preorder. Since the sub-
ject is maximal, it can be assigned an arbitrarily large number so that the
corresponding atom dominates [[O(qm)]]

Θ(s,Θ(H,Ω0)) . This is sufficient to make
[[O(qm)]]

Θ(s,Θ(H,Ω0)) non-zero. Otherwise, if [[O(qm)]]
Θ(s,Θ(H,Ω0)) contains some

other nontrivial non-constant atoms, then we can apply a similar argument
as above and conclude that [[O(qm)]]

Θ(s,Θ(H,Ω0)) can be made non-zero. On the
other hand, if [[O(qm)]]

Θ(s,Θ(H,Ω0)) contains no nontrivial non-constant atoms,
but μs,(i1,0) �= 0, then we can let �1 arbitrarily large to make the expres-

sion [[O(qm)]]
Θ(s,Θ(H,Ω0)) non-zero. Therefore, when there is j′ ∈ I

Ci1
pe such that

μs,(i1,j′) �= 0, or μs,(i1,0) �= 0, we are able to conclude that there must be an
input to make [[O(qm)]]

Θ(s,Θ(H,Ω0)) non-zero. Similar arguments can be applied
to �2 . . . �n.

If Step II does not return true, we show below that for all cycle schemes
s1 = C�1

i1
C�2

i2
. . . C

�s1
is1

with i1, i2, . . . , is1 ∈ [n], all subexpressions containing
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cycle counter variables in [[O(qm)]]Θ(s,Ω) are identical to zero and hence can be
removed. Let i′2 . . . i′s2

be the sequence obtained from i2 . . . is1 by keeping just
one copy for each duplicated index therein. In Step II we already checked a cycle
scheme s2 = C�1

i1
Ci′

2
. . . Ci′

s2
. Step II guarantees that all subexpressions contain-

ing �1 in [[O(qm)]]Θ(s2,Ω) are identical to zero and hence can be removed. Because

for all j ∈ [l], λ
C1

j , . . . , λ
Cn

j ∈ {0, 1}, (λCi2
j )�2 . . . (λ

Cis1
j )�s1 = λ

Ci′
2

j . . . λ
Ci′

s2
j . We

proved that the (∗) and (∗∗) style expressions are equivalent in both s1 and s2.
Hence we can also remove all subexpressions containing �1 from [[O(qm)]]Θ(s1,Ω) ,
without affecting its value. Those subexpressions containing �2 can also be
removed by considering the cycle scheme s3 = C�2

i2
Ci′′

3
. . . Ci′′

s3
and applying

a similar reasoning, where the sequence i′′3 . . . i′′s3
is obtained from i3 . . . is1 , simi-

larly to the construction of i′2 . . . i′s2
from i2 . . . is1. The same applies to all other

cycle counter variables �3, . . . , �s1 . We use the notation Θ(s,Ω)−(yj) to denote
the expression obtained by removing from the constant atom and coefficients
of the non-constant atoms of Θ(s,Ω)(yj) all subexpressions containing the cycle
counter variables, for all yj ∈ Y .

Lemma 2. Suppose that the decision procedure has not returned true after
Step II. For each cycle scheme s, let f = [[O(qm)]]

Θ(s,Θ(H,Ω0)) and f ′ =
[[O(qm)]]

Θ(s,Θ(H,Ω0))
− . For all valuations ρ, [[f ]]ρ �= 0 iff [[f ′]]ρ �= 0.

Step III: For each cycle scheme s, let

Θ(s,Θ(H,Ω0))−
(yj)

= ε
(s)−

j + λs
jΘ

(H,Ω0)(yj) +
∑

j′∈[k]

α
(s)−

j,j′ Θ(H,Ω0)(xj′) +
∑

j′∈[rs]

βs
j,j′dsj′

=
(
ε
(s)−

j + λs
jε

H
j

)
+

(
λs

jλ
H
j

)
Ω0(yj) +

∑

j′∈IH
pe

(
α
(s)−

j,j′ + λs
jα

H
j,j′

)
Ω0(xj′)

+
∑

j′∈IH
tr

(
λs

jα
H
j,j′

)
Ω0(xj′) +

∑

j′∈rng(πH)

(

λs
jβ

H
j,j′ +

∑

j′′∈(πH)−1(j′)
α
(s)−

j,j′′

)

dH
j′

+
∑

j′∈[rH ]\rng(πH)

(
λs

jβ
H
j,j′

)
dH

j′ +
∑

j′∈[rs]

βs
j,j′dsj′ .

Note that the coefficients of the ds1-atom, . . . , and ds
rs-atom in

Θ(s,Θ(H,Ω0))−
(yj) are the same as those in Θ(s,Θ(H,Ω0))(yj).

We first observe that the coefficients of the atoms in Θ(s,Θ(H,Ω0))
−

(yj) are
from a bounded set.

Lemma 3. Suppose that the decision procedure has not returned yet after Step
II. For all cycle scheme s and yj ∈ Y , the constant atom and the coefficients of all

non-constant atoms in Θ(s,Θ(H,Ω0))
−

(yj) are from a finite set U ⊂ Z comprising



The Commutativity Problem of the MapReduce Framework 107

(1) the constant atom and the coefficients of the non-constant atoms in the

expression Θ(C
	i
i ,Θ(H,Ω0))

−
(yj) for i ∈ [n] and �i ∈ {1, 2},

(2) the numbers α
Cs2
j,j′ +β

Cs1

j,πCs1 (j′)
and α

Cs1
j,j′′ +α

Cs2
j,j′′ , where s1, s2 ∈ [n], j ∈ [l], j′ ∈

I
Cs1
tr ∩ I

Cs2
tr , j′′ ∈ [k].

We define the abstraction of Θ(s,Θ(H,Ω0))−
, denoted by Abs(s), as the union

of the following three sets of tuples:

– the tuple for the constant atom:
{(

0,
(
ε
(s)−

1 + λs
1ε

H
1 , . . . , ε

(s)−

1 + λs
1ε

H
1

))}
,

– tuples for the control variable atoms: {(j′, (cj′,1, . . . , cj′,l)) | j′ ∈ [k]}, where

cj′,j is the coefficient of the Θ(s,Θ(H,Ω0))
−

(xj′)-atom in Θ(s,Θ(H,Ω0))
−

(yj) for
j ∈ [l],

– tuples for the other atoms: {(k + 1, (c1, . . . , cl))}, where (c1, . . . , cl) ∈ U l is

the vector of coefficients of the d′-atom in (Θ(s,Θ(H,Ω0))
−

(yj) for all j ∈ [l] and

d′ �∈ {Θ(s,Θ(H,Ω0))
−

(xj′) | xj′ ∈ X}.

Let A =
⋃{Abs(s) | s a cycle scheme}. Then A can be constructed as fol-

lows: We first compute Abs(HC1), . . .Abs(HCn), put them into A , then compute
from them the abstractions Abs(HC1C1), . . . ,Abs(HC1Cn),Abs(HC2C1), . . . by
appending C1, . . . , Cn, put them into A , and so on, until reaching a fixed point.

Step III. We first construct the set A and then.

1. Check whether there is (0, (c0,1, . . . , c0,l)) ∈ A such that a0 + b1c0,1 +
· · · + blc0,l �= 0. If the answer is yes, then return true.

2. Check whether there are j′ ∈ [k] and (j′, (cj′,1, . . . , cj′,l)) ∈ A such that
aj′ + b1cj′,1 + · · · + blcj′,l �= 0. If the answer is yes, then return true.

3. Check whether there is (k+1, (c1, . . . , cl)) ∈ A such that b1c1+· · ·+blcl �=
0. If the answer is yes, then return true.

If the decision procedure has not returned yet, return false.

Complexity Analysis of Step III. The size of the set U is polynomial over the
size of the generalized lasso (i.e. the size of the transitions in the generalized
lasso). The size of A is exponential over l, the number of data variables. The
three conditions in Step III can be checked in time polynomial over the size of
A . In summary, the complexity of Step III is exponential over the number of
data variables.

5.3 Decision Procedure for SNTs

We generalize the decision procedure to the case that the transition graphs
of SNTs are generalized lassos to the full class of SNTs. We first define a
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generalized multi-lasso as a sequence m = H1(C1,1, . . . , C1,n1)H2(C2,1, . . . ,

C2,n2) . . . Hr(Cr,1, . . . , Cr,nr
) s.t. (1) for each s ∈ [r], Hs = qs,1

(g2,η2)−−−−→
qs,2 . . . qs,ms−1

(gms ,ηms )−−−−−−−→ qs,ms
is a generalized lasso, (2) for 1 ≤ s < s′ ≤ r,

Hs(Cs,1, . . . , Cs,ns
) and Hs′(Cs′,1, . . . , Cs′,ns′ ) are state-disjoint, except the case

that when s′ = s + 1, qs,ms
= qs′,1, and (3) q1,1 = q0.

Since the transition graph of S can be seen as a finite collection of generalized
multi-lassos, in the following, we shall present the decision procedure by showing
how to decide the non-zero output problem for generalized multi-lassos.

We fix a generalized multi-lasso below and assume without loss of generality
that O(qr,mr

) = a0 + a1x1 + · · · + akxk + b1y1 + · · · + blyl and O(q′) is undefined
for every other state q′ in m.

m = H1(C1,1, . . . , C1,n1)H2(C2,1, . . . , C2,n2) . . . Hr(Cr,1, . . . , Cr,nr
).

Step I′: We do the same analysis as in Step I for the path H1 . . . Hr.

Step II′: Let s ∈ [1, r − 1]. In order to analyze the set of cycles C =
{Cs,1, . . . , Cs,ns

}, next we show how to summarize the effect of the path
Hs+1 . . . Hr on the values of the variables in the state qs,ms

by extending the out-
put function and defining O(qs,ms

) (note that qs,ms
is the unique state shared by

all those cycles in C). Suppose that [[O(qr,mr
)]]

Θ(Hs+1...Hr,Ω) = a0+a1Ω(x1)+· · ·+
akΩ(xk)+b1Ω(y1)+ · · ·+blΩ(yl)+e, where Ω(x1) . . . Ω(xk) and Ω(y1) . . . Ω(yl)
represent the values of x1 . . . xk and y1 . . . yl in the state qs,ms

, and e is a lin-
ear combination of the variables that represent the data values introduced when
traversing Hs+1 . . . Hr. Then we let O(qs,ms

) := a0 + a1x1 + · · · + akxk + b1y1 +
· · · + blyl.

Step II′. For each s ∈ [r], s′ ∈ [ns], and each cycle scheme s =
C�1

s,s′Ci2 . . . Cit
such that Ci2 . . . Cit

∈ {Cs,1, . . . , Cs,ns
, . . . , Cr,1, . . . , Cr,nr

}
and Ci2 . . . Cit

are mutually distinct, we perform an analysis of the expres-
sion [[O(qs,ms

)]]
Θ(s,Θ(H1...Hs,Ω0)) , in a way similar to Step II. If the decision

procedure does not return during the analysis, then go to Step III′.

Intuitively, in Step II′, during the analysis of the cycle scheme s =
C�1

s,s′Ci2 . . . Cit
, the effect of the paths Hs+1, . . . , Hr and the cycles Ci2 , . . . , Cit

on the atom coefficients which contain the cycle counter variable �1, is described

by the expressions λ
Hs+1
j . . . λHr

j λ
Ci2
j . . . λ

Cit
j for j ∈ [l]. Since the output expres-

sion O(qs,ms
) defined above has already taken into consideration the expressions

λ
Hs+1
j . . . λHr

j for j ∈ [l], in Step II′, we can do the analysis for the cycles in C
as if we have a generalized lasso where the handle is H1 . . . Hs, the collection
of cycles is {Cs,1, . . . , Cs,ns

, . . . , Cr,1, . . . , Cr,nr
}, and the output state is qs,ms

,
with the output expression O(qs,ms

).
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Step III′: After Step II′, if the decision procedure has not returned yet, then
similar to Lemma 3, the following hold.

– For each s ∈ [r] and each path s = H1s1H2 . . . Hsss such that for each s′ ∈ [s],
ss′ is a cycle scheme over the collection of cycles {Cs′,1, . . . , Cs′,ns′ }, it holds
that the constant atom and all the coefficients of the non-constant atoms in
Θ(s,Ω0)

−
(yj) are from a bounded domain U .

– Moreover, an abstraction of s, denoted by Abs(s), can be defined,
so that A , which contains the set of Abs(s) for the paths s =
H1s1H2 . . . Hsss (where s ∈ [r]), can be computed effectively from
H1, C1,1, . . . , C1,n1 ,H2, . . . , Hr, Cr,1, . . . , Cr,nr

.

Step III′. We apply the same analysis to A as in Step III. If the procedure
does not return during the analysis, then return false.

Complexity Analysis of Step I ′–III′. The complexity of Step I′ is polynomial in
the maximum length of generalized multi-lassos in S. The complexity of Step II′′

is exponential in the maximum number of simple cycles in a generalized multi-
lasso. The complexity of Step III′ is exponential in the number of data variables
in S.

Fig. 4. More challenging examples of reducers performing data analytics operations

6 Extensions

In this section, we discuss some extensions of our approach to deal with the
more challenging examples. For cases with multiplication, division, or other more
complicated functions at the return point, e.g., the avg program, we can model
them as an uninterpreted k-ary function and verify that all k parameters of the
uninterpreted functions remain the same no matter how the input is permuted,
e.g., the avg program always produces the same sum and cnt for all permutation
of the same input data word. This is a sound but incomplete procedure for
verifying programs of this type. Nevertheless, it is not often that a practical
program for data analytics produces, e.g., 2q/2r from some input and q/r for its
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permutation. Hence this procedure is often enough for proving commutativity
for real world programs (Fig. 4).

The MAD (Mean Absolute Deviation) program is a bit more involved. Beside
the division operator / that also occurs in the avg example, it uses a new iterator
operation init, which resets cur to the head of the input data word. The strategy
to verify this program is to divide the task into two parts: (1) ensure that the
value of avg is independent of the order of the input, (2) treat avg as a control
variable whose value is never updated and then check if the 2nd half of the
program (c.f., Fig. 5) is commutative.

Fig. 5. The 2nd half of
MAD

We handle the division at the end of the pro-
gram in Fig. 5 in the same way as we did for the
avg program. The guarantee we obtain after the
corresponding SNT is checked to be commutative
is that the program outputs the same value for any
value of avg and any permutation of the input data
word.

The SD (Standard Deviation) program is even
more challenging. The main difficulty comes from
the use of multiplication in the middle of the program (instead of at the return
point). In order to have a sound procedure to verify this kind of programs, we
can extend the transitions of SNTs to include uninterpreted k-ary functions.
However, this is not a trivial extension and we leave it as future work.

7 Conclusion

The contribution of the paper is twofold. We propose a verifiable programming
language for reducers. Although it is still far away from a practical programming
language, we believe that some ideas behind our language (e.g., the separation of
control variables and data variables) would be valuable for the design of a prac-
tical reducer language. On the other hand, we propose the model of streaming
numerical transducers, a transducer model over infinite alphabets. To our best
knowledge, this is the first decidable automata model over infinite alphabets
that allows linear arithmetics over the input values and the integer variables.
Although we required that the transition graphs of SNTs are generalized flat,
SNTs with such kind of transition graphs turn out to be quite powerful, since
they are capable of simulating reducer programs without nested loops, which is
a typical scenario of reducer programs in practice. At last, we would like to men-
tion that although we assumed the integer data domain, all the results obtained
in this paper are still valid when a dense data domain, e.g. the set of rational
numbers, is assumed.
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Abstract. We consider the problem of verifying liveness for systems
with a finite, but unbounded, number of processes, commonly known as
parameterised systems. Typical examples of such systems include distrib-
uted protocols (e.g. for the dining philosopher problem). Unlike the case
of verifying safety, proving liveness is still considered extremely challeng-
ing, especially in the presence of randomness in the system. In this paper
we consider liveness under arbitrary (including unfair) schedulers, which
is often considered a desirable property in the literature of self-stabilising
systems. We introduce an automatic method of proving liveness for ran-
domised parameterised systems under arbitrary schedulers. Viewing live-
ness as a two-player reachability game (between Scheduler and Process),
our method is a CEGAR approach that synthesises a progress relation for
Process that can be symbolically represented as a finite-state automaton.
The method is incremental and exploits both Angluin-style L*-learning
and SAT-solvers. Our experiments show that our algorithm is able to
prove liveness automatically for well-known randomised distributed pro-
tocols, including Lehmann-Rabin Randomised Dining Philosopher Pro-
tocol and randomised self-stabilising protocols (such as the Israeli-Jalfon
Protocol). To the best of our knowledge, this is the first fully-automatic
method that can prove liveness for randomised protocols.

1 Introduction

Verification of parameterised systems is one of the most extensively studied prob-
lems in computer-aided verification. Parameterised systems are infinite families
of finite-state systems that are described in some finite behavioral description
language. Distributed protocols (e.g. for the dining philosopher problem) are
typical examples of parameterised systems since they can represent any finite
(but unbounded) number of processes. Verifying a parameterised system, then,
amounts to verifying every instance of the infinite family. In the case of a dining
philosopher protocol, this amounts to verifying the protocol with any number of
philosophers. Although the problem was long known to be undecidable [11], a
lot of progress has been made to tackle the problem resulting in such techniques
as network invariants (including cutoff techniques), symbolic model checking
(including regular model checking), and finite-range abstractions, to name a few.
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The reader is referred to the following excellent surveys [2,7,17,77,79] covering
these different approaches to solving the problem.

Nowadays there are highly effective automatic methods that can success-
fully verify safety for many parameterised systems derived from real-world con-
current/distributed algorithms (e.g. see [2–7,10,13,20–23,36,43,44,49,54,56,63,
75,77,78]). In contrast, there has been much less progress in automatic tech-
niques for proving liveness for parameterised systems. In fact, this difficulty has
also been widely observed (e.g. see [8,48,67,77]). Proving liveness amounts to
proving that, under a class of adversarial schedulers (a.k.a. adversaries or just
schedulers), something “good” will eventually happen. The problem is known
to be reducible to finding an infinite path satisfying a Büchi condition (e.g. see
[7,24,65,67,72–74,77]). The latter problem (a.k.a. repeated reachability) in gen-
eral requires reasoning about the transitive closure relations, which are generally
observed to be rather difficult to compute automatically.

Randomised parameterised systems are infinite families of finite-state systems
that allow both nondeterministic and probabilistic transitions (a.k.a. Markov
Decision Processes [52]). This paper concerns the problem of verifying liveness for
randomised parameterised systems, with an eye towards a fully-automatic verifi-
cation algorithm for well-known randomised distributed protocols that commonly
feature in finite-state probabilistic model checkers (e.g. PRISM [51]), but have
so far resisted fully-automatic parameterised verification. Such protocols include
Lehmann-Rabin’s Randomised Dining Philosopher Protocol [55] and randomised
self-stabilising protocols (e.g. Israeli-Jalfon’s Protocol [47] and Herman’s Proto-
col [46]), to name a few. Randomised protocols generalise deterministic protocols
by allowing each process to make probabilistic transitions, i.e., not just a transi-
tion with probability 1. Randomisation is well-known to be useful in the design
of distributed protocols, e.g., to break symmetry and simplifies distributed algo-
rithms (e.g. see [39,58]). Despite the benefits of randomisation in protocol design,
the use of randomisation makes proving liveness substantially more challeng-
ing (e.g. see [58,59,69]). Proving liveness for probabilistic distributed protocols
amounts to proving that, under a class of adversaries, something “good” will
eventually happen with probability 1 (e.g. see [12,29,35,52,53,58,76]). Unlike
the case of deterministic protocols, proving liveness for probabilistic protocols
requires reasoning about games between an adversary and a stochastic process
player (a.k.a. 11

2 -player game), which makes the problem computationally more
difficult even in the finite-state case (e.g. see [53]). To the best of our knowledge,
there is presently no fully-automatic technique which can prove liveness for such
randomised distributed protocols as Lehmann-Rabin’s Randomised Distributed
Protocols [55], and self-stabilising randomised protocols including Israeli-Jalfon’s
Protocol [47] and Herman’s Protocol [46].

Contribution: The main contribution of the paper is a fully-automatic method
for proving liveness over randomised parameterised systems over various net-
work topologies (e.g. lines, rings, stars, and cliques) under arbitrary (including
unfair) schedulers. Liveness under arbitrary schedulers is a desirable property
in the literature of self-stabilising algorithms since an unfair scheduler (a.k.a.



114 A.W. Lin and P. Rümmer

daemon) enables a worst-case analysis of an algorithm and covers the situation
when some process is “frozen” due to conditions that are external to the process
(e.g. see [14,33,41,50]). There are numerous examples of self-stabilising proto-
cols that satisfy liveness even under unfair schedulers (e.g. see [14,31,39,47,50]).
Similar examples are also available in the literature of mutual exclusion proto-
cols (e.g. [34,70]), and consensus/broadcast protocols (e.g. [25,39]). Our algo-
rithm can successfully verify liveness under arbitrary schedulers for a fragment
of FireWire’s symmetry breaking protocol [35,60], Israeli-Jalfon’s Protocol [47],
Herman’s Protocol [46] considered over a linear array, and Lehmann-Rabin Din-
ing Philosopher Protocol [34,55].

It is well-known that for proving liveness for a finite-state Markov Decision
Process (MDP) only the topology of the system matters, not the actual prob-
ability values (e.g. see [29,30,45,76]). Hence, the same is true for randomised
parameterised systems since each instance is a finite MDP. In this paper, we
follow this approach and view the problem of proving liveness under arbitrary
schedulers as a 2-player reachability game between Scheduler (Player 1) and
Process (Player 2) over non-stochastic parameterised systems, obtained by sim-
ply ignoring the actual probability values of transitions with non-zero proba-
bilities (transitions with zero probability are removed). This simple reduction
allows us to adopt any symbolic representation of non-stochastic parameterised
systems. In this paper, we represent parameterised systems as finite-state letter-
to-letter transducers, as is standard in regular model checking [2,7,23,65,77].
In this framework, configurations of parameterised systems are represented as
words over a finite alphabet Σ (usually encoding a finite set of control states
for each local process). Many distributed protocols that arise in practice can be
naturally modelled as transducers.

To automatically verify liveness of parameterised systems in this represen-
tation, we develop a counterexample-guided method for synthesising Player 2
strategies. The core step of the approach is the computation of well-founded rela-
tions guiding Player 2 towards winning configurations (and the system towards
“good” states). In the spirit of regular model checking, such well-founded rela-
tions are represented as letter-to-letter transducers; however, unlike most reg-
ular model checking algorithms, we use learning and SAT-based methods to
compute the relations, in line with some of the recent research on the appli-
cation of learning for program analysis (e.g. [40,62–64]). This gives rise to a
counterexample-guided algorithm for computing winning strategies for Player 2.
We then introduce a number of refinements of the base method, which turn out
to be essential for analysing challenging systems like the Lehmann-Rabin proto-
col: strategies for Player 2 can be constructed incrementally, reducing the size
of automata that have to be considered in each inference step; symmetries of
games (e.g., rotation symmetry in case of protocols with ring topology) can be
exploited for acceleration; and inductive over-approximations of the set of reach-
able configurations can be pre-computed with the help of learning. To the best
of our knowledge, the last refinement also represents the first successful appli-
cation of Angluin’s L*-algorithm [9] for learning DFAs representing inductive
invariants in the regular model checking context.



Liveness of Randomised Parameterised Systems under Arbitrary Schedulers 115

We have implemented our method as a proof of concept. Besides the four
aforementioned probabilistic protocols that we have successfully verified against
liveness (under all schedulers), we also show that our tool is competitive with
existing tools (e.g. [8,65]) for proving liveness for deterministic parameterised
systems (Szymanski’s mutual exclusion protocol [70], Left-Right Dining Philoso-
pher Protocol [58], Lamport’s Bakery Algorithm [15,39], and Resource-Allocator
Protocol [32]). Finally, we report that our tool can also automatically solve clas-
sic examples from combinatorial game theory on infinite graphs (take-away game
and Nim [38]). To the best of our knowledge, our tool is the first verification tool
that can automatically solve these games.

Related Work: There are currently only a handful of fully-automatic tech-
niques for proving liveness for randomised parameterised systems. We mention the
works [27,35,61] on proving almost-sure termination of sequential probabilistic
programs. Strictly speaking, these works are not directly comparable to our work
since their tools/techniques handle only programs with variables over integer/real
domains, and cannot naturally model the protocol examples over line/ring topol-
ogy that we consider in this paper. Based on the work of Arons et al. [12], the app-
roach of Esparza et al. [35] aims to guess a terminating pattern by constructing a
nondeterministic program from a given probabilistic program and a terminating
pattern candidate. This allows them to exploit model checkers and termination
provers for nondeterministic programs. The approach is sound and complete for
“weakly-finite” programs, which include parameterised programs, i.e., programs
with parameters that can be initialised to arbitrary large values, but are finite-
state for every valuation of the parameters. The approach of [27] is a constraint-
based method to synthesise ranking functions for probabilistic programs based
on martingales and may be able to prove almost sure termination for probabilistic
programs that are not weakly finite. Monniaux [61] proposed a method for proving
almost sure termination for probabilistic programs using abstract interpretation,
though without tool support.

As previously mentioned, there is a lot of work on liveness for non-
probabilistic parameterised systems (e.g. see [8,24,37,65,67,68,72–74]). We
assess our technique in this context by using several typical benchmarking exam-
ples that satisfy liveness (more precisely, deadlock-freedom) under arbitrary
schedulers including Szymanski’s Protocol, Bakery Protocol, and Deterministic
Dining Philosopher with Left-Right Strategy.

Two-player reachability games on automatic graphs (i.e. regular model check-
ing with non-length preserving transducers) have been considered by Neider
[62], who proposed an L*-based learning algorithm for constructing the set of
winning regions enriched with “distance” information, which is a number that
can be represented in binary or unary. [Embedding distance information in a
reachability set was first done in regular model checking by Vardhan et al. [75]]
Augmenting winning regions or reachability sets with distance information, how-
ever, often makes regular sets no longer regular [63]. In this paper, we do not
consider non-length preserving transducers and our algorithm is based on con-
structing progress relations for Player 2. In particular, part of our algorithm
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employs an L*-based algorithm for synthesising an inductive invariant which,
however, differs from [62,75] since membership tests (i.e. reachability of a sin-
gle configuration) are decidable. Recently Neider and Topcu [64] proposed a
learning algorithm for solving safety games over rational graphs (an extension
of automatic graphs), which are dual to reachability games.

2 Preliminaries

General notations: For any two given real numbers i ≤ j, we use a standard
notation (with an extra subscript) to denote real intervals, e.g., [i, j]R = {k ∈ R :
i ≤ k ≤ j} and (i, j]{k ∈ R : i < k ≤ j}. We will denote intervals over integers by
removing the subscript, e.g., [i, j] := [i, j]R∩Z. Given a set S, we use S∗ to denote
the set of all finite sequences of elements from S. The set S∗ always includes the
empty sequence which we denote by ε. Given two sets of words S1, S2, we use
S1 ·S2 to denote the set {v ·w : v ∈ S1, w ∈ S2} of words formed by concatenating
words from S1 with words from S2. Given two relations R1, R2 ⊆ S×S, we define
their composition as R1 ◦ R2 = {(s1, s3) : (∃s2)((s1, s2) ∈ R1 ∧ (s2, s3) ∈ R2)}.

Transition systems: Let ACT be a finite set of action symbols. A transition
system over ACT is a tuple S = 〈S; {→a}a∈ACT, {Ub}b∈AP〉, where S is a set
of configurations, →a ⊆ S × S is a binary relation over S, and Ub ⊆ S is a
unary relation on S. In the sequel, we will often consider transition systems
where AP = ∅ and |ACT| = 1, in which case 〈S; {→a}a∈ACT, {Ub}b∈AP〉 will be
denoted as 〈S;→〉. If |ACT| > 1, we use → to denote the relation

(⋃
a∈ACT →a

)
.

The notation →+ (resp. →∗) is used to denote the transitive (resp. transitive-
reflexive) closure of →. We say that a sequence s1 → · · · → sn is a path (or run)
in S (or in →). Given two paths π1 : s1 →∗ s2 and π2 : s2 →∗ s3 in →, we may
concatenate them to obtain π1  π2 (by gluing together s2). We call π1 a prefix
of π1  π2. For each S′ ⊆ S, we use the notations pre→(S′) and post→(S′) to
denote the pre/post image of S′ under →. That is, pre→(S′) := {p ∈ S : ∃q ∈
S′(p → q)} and post→(S′) := {q ∈ S : ∃p ∈ S′(p → q)}.

Words and automata: We assume basic familiarity with word automata. Fix
a finite alphabet Σ. For each finite word w = w1 . . . wn ∈ Σ∗, we write w[i, j],
where 1 ≤ i ≤ j ≤ n, to denote the segment wi . . . wj . Given an automaton
A = (Σ,Q, δ, q0, F ), a run of A on w is a function ρ : {0, . . . , n} → Q with
ρ(0) = q0 that obeys the transition relation δ. We may also denote the run ρ by
the word ρ(0) · · · ρ(n) over the alphabet Q. The run ρ is said to be accepting if
ρ(n) ∈ F , in which case we say that the word w is accepted by A. The language
L(A) of A is the set of words in Σ∗ accepted by A.

Reachability games: We recall some basic concepts on 2-player reachability
games (e.g. see [42, Chapter 2] on games with 1-accepting conditions). An arena
is a transition system S = 〈S;→1,→2〉, where S (i.e. the set of “game configu-
rations”) is partitioned into two disjoint sets V1 and V2 such that pre→i

(S) ⊆ Vi

for each i = 1, 2. The transition relation →i denotes the actions of Player i. Sim-
ilarly, for each i = 1, 2, the configurations Vi are controlled by Player i. In the
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sequel, Player 1 will also be called “Scheduler”, and Player 2 “Process”. Given
a set I0 ⊆ S of initial states and a set F ⊆ S of final (a.k.a. target) states, the
goal of Player 2 is to reach F from I0, while the goal of Player 1 is to avoid
it. More formally, a strategy for Player i is a partial function f : S∗Vi → S
such that, for each v ∈ S∗ and p ∈ Vi, if vp is a path in S and that p is not
a dead end (i.e. p →i q for some q), then f(vp) is defined in such a way that
p →i f(vp). Given a strategy fi for Player i = 1, 2 and an initial state s0 ∈ S,
we can define a unique (finite or infinite) path in S π : s0 →j1 s1 →j2 · · · such
that sjk+1 = fi(s0s1 . . . sjk) where i ∈ {1, 2} is the (unique) number such that
sjk ∈ Vi. Player 2 wins iff some state in F appears in π, or if the path is finite
and the last configuration belongs to Player 1. Player 1 wins iff Player 2 does not
win (i.e. loses). A strategy f for Player i is winning from I0, for each strategy
g for Player i + 1 (mod 2), the unique path in S from each s0 ∈ I0 witnesses a
win for Player i. Such games (a.k.a. reachability games) are determined (e.g. see
[42, Proposition 2.21]), i.e., either Player 1 has a winning strategy or Player 2
has a winning strategy.

Convention 1. For simplicity’s sake, we make the following assumptions on
our reachability games. They suffice for the purpose of proving liveness for para-
meterised systems. The techniques can be easily adapted when these assumptions
are lifted.

(A0) Arenas are strictly alternating, i.e., a move made by a player does not
take the game back to her configuration (i.e. post→i

(S) ∩ Ai = ∅, for each
i ∈ {1, 2}).

(A1) Initial and final configurations belong to Player 1, i.e., I0, F ⊆ V1.
(A2) Non-final configurations are no dead ends, i.e., ∀x ∈ S \ F,∃y : x →1

y ∨ x →2 y.

3 The Formal Framework

Parameterised systems are an infinite family F = {Si}i∈N of finite-state transi-
tion systems. Similarly, randomised parameterised systems are an infinite family
F = {Si}i∈N of Markov Decision Processes [52], which are finite-state transition
systems S = 〈S;→1,→2〉 that have both “nondeterministic” transitions →1 and
“probabilistic” transitions →2.

We first informally illustrate the concept of randomised para-
meterised systems by means of Israeli-Jalfon Randomised Self-
Stabilising Protocol [47] (also see [66]). The protocol has a ring
topology and each process either holds a token (denoted by �) or
does not hold a token (denoted by ⊥). At any given step, the Sched-
uler chooses a process P that holds a token. The process P can then pass the
token to its left or right neighbour each with probability 0.5. In doing so, two
tokens that are held by a process are merged into one token (held by the same
process). It can be proven that under arbitrary schedulers, starting from any
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configuration with at least one token, the protocol will converge to a configura-
tion with exactly one token with probability 1. This is an example of liveness
under arbitrary schedulers.

It is well-known that the liveness problem for finite MDPs S depends on
the topology of the graph S, not on the actual probability values in S (e.g.
[29,30,45,76]). In fact, this result easily transfers to randomised parameterised
systems since every instance in the infinite family is a finite MDP. Following this
approach, we may view the problem of proving (almost-sure) liveness for ran-
domised parameterised systems under arbitrary schedulers as a 2-player eacha-
bility game between Scheduler (Player 1 with moves →1) and Process (Player 2
with moves →2) over the arena S = 〈S;→1,→2〉 obtained by simply ignoring
the actual probability values of transitions in →2 (with non-zero probabilities).
This simple reduction allows us to view randomised parameterised systems as
an infinite family of finite arenas and adopt standard symbolic representations
of non-stochastic parameterised systems (many of which are known). Our for-
mal framework uses the standard symbolic representation using letter-to-letter
transducers. To simplify our presentation, we will directly define liveness for ran-
domised parameterised systems in terms of non-stochastic two player games and
relegate this standard reduction in the full version for interested readers.

3.1 Liveness as Games

Given a randomised parameterised system F = {Si}i∈N, a set I0 ⊆ V1 of ini-
tial states, and a set F ⊆ V1 of final states, we say that a randomised para-
meterised system satisfies liveness under arbitrary schedulers with probability 1
(a.k.a. almost surely terminates) if from each configuration s0 ∈ post→∗(I0),
Player 2 has a winning strategy reaching F in F (viewed as an arena). The
justification of this definition is in the full version.

3.2 Representing Infinite Arenas

Our formal framework uses the standard symbolic representation of parame-
terised systems from regular model checking [7,23,65,77], i.e., transducers. Many
distributed protocols that arise in practice can be naturally modelled as trans-
ducers. Transducers are letter-to-letter automata that accept k-ary relations over
words (cf. [19]). In this paper, we are only interested in binary length-preserving
relations [7], i.e., a relation R ⊆ Σ∗ ×Σ∗ such that each (v, w) ∈ R implies that
|v| = |w|. For this reason, we will only define length-preserving transducers and
only for the binary case. Given two words w = w1 . . . wn and w′ = w′

1 . . . w′
n

over the alphabet Σ, we define a word w ⊗ w′ over the alphabet Σ × Σ as
(w1, w

′
1) · · · (wn, w′

n). A letter-to-letter transducer is simply an automaton over
Σ×Σ, and a binary relation R over Σ∗ is regular if the set {w⊗w′ : (w,w′) ∈ R}
is accepted by a letter-to-letter automaton R. Notice that the resulting relation
R only relate words that are of the same length. In the sequel, to avoid nota-
tional clutter, we will use R to mean both a transducer and the binary relation
that it recognises.
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Definition 1 (Automaticsystems).AsystemS = 〈S; {→a}a∈ACT, {Ub}b∈AP〉
is said to be automatic if S and Ub (for each b ∈ AP) are regular sets over some
non-empty finite alphabet Σ, and each relation →a (for each a ∈ ACT) is given by a
transducer over Σ.

We warn the reader that the most general notion of automatic transition systems
[19], which allow non-length preserving transducers, are not needed in this paper.
When the meaning is understood, we shall confuse the notation →a for the
transition relation of S and the transducer that recognises it.

Example 1. We shall now model Israeli-Jalfon Protocol as an automatic tran-
sition system S = 〈S;→1,→2〉, where Scheduler’s actions are labeled by 1 and
Process’s actions are labeled by 2. In general, configurations of Israeli-Jalfon
protocol are circular structures, but they can easily be turned into a word over
a certain finite alphabet by linearising them. More precisely, the domain S of
S is the set of words over Σ = {⊥,�, �̂} of the form (⊥ + �)∗�(⊥ + �)∗, or
(⊥ + �)∗�̂(⊥ + �)∗.

For example, the configuration �⊥�⊥ denotes the configuration where the
1st and the 3rd (resp. 2nd and 4th) processes are (resp. are not) holding a token.
The letter �̂ is used to denote that Scheduler chooses a specific process that
holds a token. Note that the intersection of languages generated by these two
regular expressions is empty. The transition relation →1 is given by the regular
expression I∗(�, �̂)I∗ where I := {(�,�), (⊥,⊥)}. The transition relation �2

is given by a union of the following regular expressions:

– I∗(�̂,⊥) ((⊥,�) + (�,�)) I∗

– I∗ ((⊥,�) + (�,�)) (�̂,⊥)I∗
– ((⊥,�) + (�,�)) I∗(�̂,⊥)
– (�̂,⊥)I∗ ((⊥,�) + (�,�))

Note that the right column represents transitions that handle the circular case.
Also, note that if I0 = (⊥ + �)∗�(⊥ + �)∗ and F = ⊥∗�⊥∗, Player 2 can
always win the game from any reachable configuration (note: post→∗(I0) = I0)
by simply minimising the distance between the leftmost token and the rightmost
token in the configuration. ��

3.3 Algorithm for Liveness (an Overview)

Our discussion thus far has led to a reformulation of liveness for probabilistic
parameterised systems as the following decision problem: given an automatic
arena S = 〈S;→1,→2〉, a regular set I0 ⊆ S of initial configurations, and a
regular set F of final configurations, decide if Player 2 can force the game to
reach F in S starting from each configuration in post→∗(I0). In the sequel, we
will call 〈S, I0, F 〉 a game instance. Note that the aformentioned problem is
undecidable even when →2 is restricted to identity relations, which amounts to
the undecidable problem of safety [7]. We will show now that decidability can
be retained if “advice bits” are provided in the input.

Advice bits are a pair 〈A,≺〉, where A ⊆ S is a set of game configurations
and ≺ ⊆ S ×S is a binary relation over the game configurations. Intuitively, A is
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an inductive invariant, whereas ≺ is a well-founded relation that guides Player
2 to win. More precisely, the advice bits 〈A,≺〉 are said to conform to the game
instance 〈S, I0, F 〉 if:

(L1) I0 ⊆ A,
(L2) A is →-inductive, i.e., ∀x, y : x ∈ A ∧ (x → y) ⇒ y ∈ A,
(L3) ≺ is a strict preorder1 on S,
(L4) Player 2 can progress from A by following ≺:

∀x ∈ A \ F, y ∈ S \ F :
(
(x →1 y) ⇒ (∃z ∈ A : (y →2 z) ∧ x � z)

)
.

Conditions (L1) and (L2) ensure that post→∗(I0) ⊆ A, while conditions
(L3)–(L4) ensure that Player 2 has a winning strategy from each configuration in
post→∗(I0). Note that (L3) implies well-foundedness of ≺, provided that ≺ only
relates words of the same length (which is always sufficient for advice bits, and will
later follow from the use of length-preserving transducers to represent ≺).

Theorem 1. Let S = 〈S;→1,→2〉 be a →∗-image-finite arena, i.e., post→∗(s)
is finite, for each s ∈ S. Given a set I0 ⊆ V1 of initial configurations, and a set
F ⊆ V1 of final configurations, the following are equivalent:

1. Player 2 has a winning strategy reaching F in S starting from each configu-
ration in post→∗(I0) ∩ V1.

2. There exist advice bits 〈A,≺〉 conforming to the input 〈S, I0, F 〉.
Advice bits 〈A,≺〉 are said to be regular if A (resp. ≺) is given as a regular

set (resp. relation). With the help of regular advice bits, the problem of deciding
a winning strategy for Player 2 becomes decidable:

Lemma 1. Given an automatic arena S = 〈S;→1,→2〉, a regular set I0 ⊆ S of
initial configurations, a regular set F of final configurations, and regular advice
bits T = 〈A,≺〉, we can effectively decide whether T conforms to the game
instance 〈S, I0, F 〉.
Lemma 1 follows from the fact that each of the conditions (L1)–(L4) is express-
ible in first-order logic interpreted over the given game instance extended with
the advice bits, i.e., the transition systems 〈S; {→1,→2,≺}, {I0, F,A}〉. Decid-
ability then follows since model checking first-order logic formulas over auto-
matic transition systems is decidable (e.g. see [18,19] and see [71] for a detailed
complexity analysis), the proof of which is done by standard automata methods.

To decide whether Player 2 has a winning strategy for the reachability
game, Lemma 1 tells us that one can systematically enumerate all possible reg-
ular advice bits and check whether they conform to the input game instance
〈S, I0, F 〉. A naive enumeration would simply go through each k = 1, 2, . . . and
all advice bits 〈A,≺〉 where each of the two automata have at most k states.
This would be extremely slow.
1 A binary relation ≺ on a set A is said to be a strict preorder if it is irreflexive (i.e. for

each s ∈ A, s �≺ s) and transitive (for each s, s′, s′′ ∈ A, s ≺ s′ and s′ ≺ s′′ implies
that s ≺ s′′).
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4 Automatic Liveness Proofs

We now describe how regular advice bits 〈A,≺〉 for (regular) game
instances 〈S, I0, F 〉 can be computed automatically, thus proving that Player 2
can win from every reachable configuration, which (as we saw in the previous
section) establishes liveness for randomised parameterised systems. We define a
constraint-based method that derives 〈A,≺〉 as the solution of a set of Boolean
formulas representing the conditions (L1)–(L4) from Sect. 3.3. Since a full
Boolean encoding of (L1)–(L4) would be exponential in the size of the automata
representing the advice bits, our algorithm starts with a relaxed version of (L1)–
(L4) and gradually refines the encoding with the help of counterexamples; in
this sense, our approach is an instance of CEGAR [28], and has similarities with
recent learning-based methods for computing inductive invariants [63].

Throughout the section we assume that an alphabet Σ and game
instance 〈S, I0, F 〉 has been fixed. We will represent the well-founded relation ≺
using a transducer T≺ = (Σ × Σ,Q≺, δ≺, q0≺, F≺), and the set A as automa-
ton AA = (Σ,QA, δA, q0A, FA). Our overall approach for computing the automata
makes use of two main components, which are invoked iteratively within a refine-
ment loop:

SYNTHESISE Candidate automata (AA, T≺) with nA and n≺ states, respec-
tively, are computed simultaneously with the help of a SAT-solver, enforcing
a relaxed set of conditions encoded as a Boolean constraint ψ. The trans-
ducer T≺ is length-preserving and irreflexive by construction; this implies
that the relation ≺ is a well-founded preorder iff it is transitive.

VERIFY It is checked whether the automata (AA, T≺) satisfy conditions (L1)–
(L4) from Sect. 3.3. If this is not the case, ψ is strengthened to eliminate
counterexamples, and Synthesise is again invoked; otherwise, (AA, T≺) rep-
resent a winning strategy for Player 2 by Theorem1.

This refinement loop is enclosed by an outer loop that increments the para-
meters nA, and n≺ (initially set to some small number) when Synthesise
determines that no automata satisfying ψ exist anymore. Initially, the for-
mula ψ approximates (L1)–(L4), by capturing aspects that can be enforced
by a Boolean formula of polynomial size. The next sections described Synthe-
sise and Verify in detail.

4.1 VERIFY: Checking (L1)–(L4) Precisely

Suppose that automata (AA, T≺) have been computed. In the Verify stage, it
is determined whether the automata indeed satisfy the conditions (L1)–(L4),
which can effectively be done due to Lemma 1. The check will have one of the
following outcomes:

1. (AA, T≺) represent correct advice bits.
2. (L1) is violated: some word x ∈ I0 is not accepted by AA.
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3. (L2) is violated: there are words x ∈ A and y with x → y, but y �∈ A.
4. (L3) is violated: T≺ does not represent a transitive relation (recall that T≺

is length-preserving and irreflexive by construction).
5. (L4) is violated: there are words x ∈ A \ F and y ∈ S \ F such that x →1 y,

but no word z ∈ A exists with y →2 z and x � z.

In cases 2–5, the computed words are counterexamples that are fed back to the
Synthesise stage; details for this are given in Sect. 4.3.

The required checks on (AA, T≺) can be encoded as validity of first-order
formulas, and finally carried out using automata methods (e.g. see [71]). In (L3)
and (L4), it is in addition necessary to eliminate the quantifier ∃z by means of
projection. Note that all free variables in the formulas are implicitly universally
quantified.

(L1) I0(x) ⇒ A(x)
(L2) A(x) ∧ (x →1 y ∨ x →2 y) ⇒ A(y)
(L3) x ≺ y ∧ y ≺ z ⇒ x ≺ z
(L4) A(x) ∧ ¬F (x) ∧ ¬F (y) ∧ (x →1 y) ⇒ ∃z.

(
A(z) ∧ (y →2 z) ∧ x � z

)

4.2 SYNTHESISE: Computation of Candidate Automata

We now present the Boolean encoding used to search for (deterministic)
automata (AA, T≺), and to this end make the simplifying assumption that the
states of the transducer T≺ are Q≺ = {1, . . . , n≺}, states of the automaton AA

are QA = {1, . . . , nA}, and that q0≺ = q0A = 1 are the initial states. The fol-
lowing Boolean variables are used to represent automata: a variable x≺

t for
each tuple t = (q, a, b, q′) ∈ Q≺ × Σ × Σ × Q≺; a variable xA

t for each tuple
t = (q, a, q′) ∈ QA×Σ×QA; and a variable zM

q for each q ∈ QM and M ∈ {≺, A}.
The assignment xM

t = 1 is interpreted as the existence of the transition t in the
automaton for M ; likewise, we use zM

q = 1 to represent that q is an accepting
state (in DFAs it is in general necessary to have more than one accepting state).

The set of considered automata in step Synthesise is restricted by imposing
a number of conditions. Most importantly, only deterministic automata are con-
sidered, which is important for refinement: to eliminate counterexamples, it will
be necessary to construct Boolean formulas that state non-acceptance of certain
words, which can only be done succinctly in the case of languages represented
by DFAs:

(C1) The automata AA and T≺ are deterministic.
The second condition encodes irreflexivity of the relation ≺:

(C2) Every accepting path in T≺ contains a label (a, b) with a �= b.

The third group of conditions captures minimality properties: automata that
can (obviously) be represented with a smaller number of states are excluded:

(C3) Every state of the automata AA and T≺ is reachable from the initial state.
(C4) From every state in the automata AA and T≺ an accepting state can be

reached.
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Finally, we can observe that the states of the constructed automata can be
reordered almost arbitrarily, which increases the search space that a SAT solver
has to cover. The performance of Synthesise can be improved by adding
symmetry breaking constraints. Symmetries can be removed by asserting that
automata states are sorted according to some structural properties extracted
from the automaton; suitable properties include whether a state is accepting, or
which self-transitions a state has:

(C5) The states {2, . . . , nM} (for M ∈ {≺, A}) are sorted according to the inte-
ger value of the bit-vector 〈zM

q , xM
(q,l1,q), . . . , x

M
(q,lk,q)〉 where q ∈ {2, . . . , nM}

and l1, . . . , lk is some fixed order of the transition labels in M .

Encoding as formulas. The encoding of (C1) and (C5) as a Boolean constraint
is straightforward. For (C2), we assume additional Boolean variables rq (for
each q ∈ Q≺) to identify states that can be reached via paths with only (a, a)
labels. (C2) is ensured by the following constraints, which are instantiated for
each q ∈ Q≺:

(q �= q≺
0 ) ∨ rq, ¬z≺

q ∨ ¬rq, ¬rq ∨
∧

a∈Σ,q′∈Q≺

(¬x≺
(q,a,a,q′) ∨ rq′).

The first constraint ensures that rq holds for the initial state, the second con-
straint excludes rq for all final states. The third constraint expresses preservation
of the rq flags under (a, a) transitions.

We outline further how (C3) can be encoded for AA (the other parts of (C3)
and (C4) are similar). We assume additional variables yq (for each q ∈ QA)
ranging over the interval [0, nA − 1], to encode the distance of a state from the
initial state; these integer variables can further be encoded in binary as a vector
of Boolean variables. The following formulas, instantiated for each q ∈ QA,
define the value of the variables, and imply that every state is only finitely many
transitions away from the initial state:

y1 = 0, (q = 1) ∨
∨

a∈Σ,q′∈QA

(
xA
(q′,a,q) ∧ yq = yq′ + 1

)
.

4.3 Counterexample Elimination

If the Verify step discovers that (AA, T≺) violate some of the required condi-
tions (L1)–(L4), one of four possible kinds of counterexample will be derived,
corresponding to outcomes #2–#5 described in Sect. 4.1. The counterexamples
are mapped to constraints CE i (for i = 1, . . . , 4) to be added to ψ in Synthesise
as a conjunct:

– A configuration x from I0 has to be included in A: CE 1 = A(x)
– A configuration y has to be included in A, under the assumption that x is

included: CE 2 = ¬A(x) ∨ A(y)
– Configurations x, z have to be related by ≺, under the assumption that x, y

and y, z are related: CE 3 = x �≺ y ∨ y �≺ z ∨ x ≺ z
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– Player 2 has to be able to make a ≺-decreasing step from y, assuming x →1 y
and x is included in A: CE 4 = ¬A(x) ∨ ∃z.

(
A(z) ∧ (y →2 z) ∧ x � z

)

Each of the formulas can be directly translated to a Boolean constraint over the
vocabulary introduced in Sect. 4.2, augmented with additional auxiliary vari-
ables; the most intricate case is CE 4, due to the quantifier ∃z. More details are
given in the full version.

5 Optimisations and Incremental Liveness Proofs

The monolithic approach introduced so far is quite fast when compact advice
bits exist (as shown in Sect. 6), but tends to be limited in scalability for more
complex systems, because the search space grows rapidly when increasing the
size of the considered automata. To address this issue, we introduce a range of
optimisations of the basic method, in particular an incremental algorithm for
synthesising advice bits, computing the set A and the relation ≺ by repeatedly
constructing small automata.

5.1 Incremental Liveness Proofs

We first introduce a disjunctive version of the advice bits used to witness liveness:

Definition 2. Let (J,<) be a non-empty well-ordered index set.2 A disjunctive
advice bit is a tuple 〈A, (Bj ,≺j)j∈J 〉, where A,Bj ⊆ S are sets of game configu-
rations, and each ≺j ⊆ S × S is a binary relation over the game configurations,
such that:

(D1) I0 ⊆ A;
(D2) A is →-inductive, i.e., ∀x, y : x ∈ A \ F ∧ (x → y) ⇒ y ∈ A;
(D3) A is covered by the Bj sets and F , i.e., A ⊆ F ∪ ⋃

j∈J Bj;
(D4) for each j ∈ J , the relation ≺j is a strict preorder on S;
(D5) for each j ∈ J , player 2 can progress from Bj by following ≺j:

∀x ∈ A ∩ Bj \ (F ∪
⋃

i<j

Bi), y ∈ S \ F :
(

(x →1 y) ⇒
∃z ∈ Bj : (y →2 z) ∧ z ≺j x

)
.

The difference to monolithic advice bits (as defined in Sect. 3.3) is that the
global preorder ≺ is replaced by a set of preorders ≺j . Player 2 progresses
to sets Bi with smaller index i < j by following ≺j , and this way eventually
reaches F . A monolithic order ≺ can be reconstructed by defining

x ≺ y ⇔
{

idx (x) < idx (y) if idx (x) �= idx (y)
x ≺j y if idx (x) = idx (y) = j

2 This means, < is a strict total well-founded order on J .
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Algorithm 1. Incremental liveness checker
1 A ← S ; // Over-approximation of reachable configurations

2 W ← F ; // Under-approximation of winning configurations

3 while A 	⊆ W do

4 choose a word u ∈ A \ W ;

5 if u is reachable then

6 W ← W ∪ win(u, A, W ) ; // Widen set of winning configurations

7 else

8 A ← A ∩ invariant(u, A) ; // Tighten set of reachable configurations

9 return “Player 2 can win from every reachable configuration!”

where idx (x) = min{j ∈ J | x ∈ Bj}, and idx (x) = min J in case these is no
j ∈ J with x ∈ Bj . From this, it immediately follows that Theorem1 also holds
for disjunctive advice bits. We can further note that if J is finite and all sets
in (A, (Bj , <j)j∈J) are regular, then the disjunctive advice bits correspond to
regular monolithic advice bits; in general this is not the case for infinite J .

Algorithm 1 outlines the incremental liveness checker, defined with the help
of disjunctive advice bits. The algorithm repeatedly refines a set A over-
approximating the reachable configurations, and a set F under-approximating
the configurations from which player 2 can win, and terminates as soon as all
reachable configurations are known to be winning. The algorithm makes use of
two sub-routines: in line 8, invariant(u,A) denotes a relatively inductive invari-
ant I [26] excluding u, i.e., a set I ⊆ S such that

(RI1) u �∈ I;
(RI2) I0 ⊆ I;
(RI3) A is →-inductive relative to A, i.e., ∀x, y : x ∈ (I ∩ A \ F ) ∧ (x → y) ⇒

y ∈ I.

If A satisfies conditions (D1) and (D2), and I is inductive relative to A, then
also A∩ I is an inductive set in the sense of (D1) and (D2). We can practically
compute automata representing sets I using a SAT-based refinement loop similar
to the one in Sect. 4.

The second function win(u,A,W ) (line 6) computes a further progress
pair (B,≺) witnessing the ability of Player 2 to win from u, and returns the
set B, subject to:

(PP1) u ∈ B;
(PP2) the relation ≺ is a strict preorder on S;
(PP3) Player 2 can progress from B by following ≺:

∀x ∈ A ∩ B \ W, y ∈ S \ F :
(
(x →1 y) ⇒ ∃z ∈ B : (y →2 z) ∧ z ≺ x

)
.

Again, a SAT-based refinement loop similar to the one in Sect. 4 can be used to
find regular progress pairs (B,≺) satisfying the conditions. Comparing (RI1)–
(RI3) and (PP1)–(PP3) with (D1)–(D5), it is also clear that disjunctive
advice bits can be extracted from every successful run of Algorithm 1, which
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implies soundness. Algorithm 1 is in addition complete in the following sense:
if there exist (monolithic) regular advice bits conforming to a game 〈S, I0, F 〉,
if the words u chosen in line 4 are always of minimum length, and if the func-
tions invariant and win always compute minimum-size automata (representing
sets I and (B,≺)) solving the conditions (RI1)–(RI3) and (PP1)–(PP3), then
Algorithm 1 terminates. This minimality condition is satisfied for the learning-
based algorithms derived in Sect. 4.

5.2 Pre-Computation of Inductive Invariants

Algorithm 1 can be optimised in different regards. First of all, the assign-
ment A ← S (line 1) initialising the approximation A of reachable states can be
replaced with more precise pre-computation of the reachable states, for instance
with the help of abstract regular model checking [22]. In fact, any set A satisfying
(D1) and (D2) can be chosen.

We propose an efficient method for initialising A by utilising Angluin’s
L∗-learning algorithm [9], which is applicable due to the property of length-
preserving arenas that reachability of a given configuration w (a word) from
the initial configurations I0 is decidable. Decidability follows from the fact that
there are only finitely many configurations up to a certain length, and the words
occurring on a derivation w0 → w1 → · · · → wn all have the same length, so
that known (explicit-state or symbolic) model checking methods can be used to
decide reachability.

Reachability of configurations enables us to construct an L∗ teacher (a.k.a.
oracle). Membership queries for individual words w are answered by checking
reachability of w in the game. Once the learner produces an hypothesis automa-
ton H, the teacher verifies that:

1. H includes the language I0, i.e., (D1) is satisfied. If this is not the case, the
teacher informs the learner about some further word in I0 that has to be
accepted by H.

2. H is inductive, i.e., satisfies condition (D2), which can be checked by means
of automata methods (as in Sect. 4). If (D2) is violated, the counterexample
pair (x, y) is examined, and it is checked whether the configuration x is reach-
able. If x is not reachable, the teacher gives a negative answer and demands
that x be removed from the language; otherwise, the teacher demands that y
is added to the language.

3. H describes the precise set of reachable configurations, for configuration
length up to some fixed n. In other words, whenever H accepts some word w
with |w| ≤ n, the configuration w has to be reachable; otherwise, the teacher
demands that w is eliminated from the language.

If all three tests succeed, the teacher accepts the produced automaton H, which
indeed represents a set A satisfying (D1) and (D2). Tests 1 and 2 ensure that
H is an inductive invariant, while test 3 is necessary to prevent trivial solu-
tions: without the test, the algorithm could always return an automaton H
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recognising the universal language Σ∗. The parameter n determines the pre-
cision of synthesised invariants: larger n lead to automata H that are tighter
over-approximations of the precise language of reachable configurations.3

This algorithm is guaranteed to terminate if the set of reachable configu-
rations in an arena is regular; but it might only produce some inductive over-
approximation of the reachable configurations. In our experiments, the computed
languages usually capture reachable configurations very precisely, and the learn-
ing process converges quickly.

5.3 Exploitation of Game Symmetries

As a second optimisation, the incremental procedure can be improved to take
symmetries of game instances into account, thus reducing the number of iter-
ations needed in the incremental procedure; algorithms to automatically find
symmetries in parameterised systems have recently proposed in [57]. This cor-
responds to replacing line 6 of Algorithm1 with the assignment W ← W ∪
σ∗(win(u,A,W )); where σ is an automorphism of the game instance 〈S, I0, F 〉,
and σ∗(L) = L ∪ σ(L) ∪ σ2(L) ∪ · · · represents unbounded application of σ to
a language L ⊆ Σ∗. An automorphism (or symmetry pattern [57]) is a length-
preserving bijection σ : Σ∗ → Σ∗ such that 1. initial and winning configurations
are σ-invariant, i.e., σ(I0) = I0 and σ(F ) = F ; and 2. σ is a homomorphism of
the moves, i.e., u →i v if and only if σ(u) →i σ(v) for i ∈ {1, 2}.

A symmetry commonly present in systems with ring topology is rotation,
defined by σrot(u1u2 . . . un) = u2 . . . unu1; the Israeli-Jalfon protocol (Exam-
ple 1) exhibits this symmetry, as do many other examples. In addition, the fixed-
point σ∗

rot(L) can effectively be constructed for any regular language L ⊆ Σ∗

using simple automata methods, which is of course important for implementing
the optimised incremental algorithm.

In terms of disjunctive advice bits 〈A, (Bj ,≺j)j∈J〉, application of a symme-
try σ corresponds to including a sequence (B,≺), (σ(B),≺σ), (σ2(B),≺σ2

), . . .
of progress pairs, defining (u ≺ρ v) ⇔ (ρ−1(u) ≺ ρ−1(v)) for any bijec-
tion ρ : Σ∗ → Σ∗. The resulting monolithic progress relation will in general not
be regular; in terms of ordinals, this means that a well-order (J,<) greater than
ω is chosen.

6 Experiments and Conclusion

All techniques introduced in this paper have been implemented in the liveness
checker SLRP [1] for parameterised systems, using the SAT4J [16] solver for
Boolean constraints. For evaluation, we consider a range of (randomised and
deterministic) parameterised systems, as well as Take-away and Nim games,
shown in Table 1. Two of the randomised protocols, Lehmann-Rabin and Israeli-
Jalfon are symmetric under rotation. Since Herman’s original protocol in a ring

3 In our implementation we currently hard-code n to be 5.
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[46] only satisfies liveness under “fair” schedulers, we used the version of the pro-
tocol in a line topology, which does satisfy liveness under all schedulers. Firewire
is an example taken from [35,60] representing a fragment of Firewire symmetry
breaking protocol. For handling combinatorial games, the monolithic method in
Sect. 4 was adapted by removing condition (L2); adaptation of the incremental
algorithm from Sect. 5.1 to this setting has not been considered yet.

All models could be solved using at least one of the considered CEGAR
modes. In most cases, the monolithic approach from Sect. 4 displays good per-
formance, and in case of the deterministic systems is competitive with existing
tools (e.g. [8,65]). Monolithic reasoning outperforms the incremental methods
(Sect. 5) in particular for Szymanski, which is because Algorithm1 spends a lot
of time computing a good approximation A of reachable states, although liveness
can even be shown using A = Σ∗.

In contrast, the most complex model, the Lehmann-Rabin protocol for Din-
ing Philosophers, can only be solved using the incremental algorithm, and
only when accelerating the procedure by exploiting the rotation symmetry of
the game (Sect. 5.3). In configuration Incr+Inv+Symm, Algorithm1 computes
an initial set A represented by a DFA with 23 states (Sect. 5.2), calls the

Table 1. Verification results for parameterised systems and games. Mono is the mono-
lithic method from Sect. 4, Incr the incremental algorithm from Sect. 5.1, and Inv and
Symm the optimisations introduced in Sect. 5.2 and 5.3, respectively. A dash — indi-
cates that a model is not symmetric under rotation, or that the incremental algorithm is
not applicable (in case of Take-away and Nim). The numbers in the table give runtime
(wall-clock time) for the individual benchmarks and configurations; all experiments
were done on an AMD Opteron 6282 32-core machine, Java heap memory limited to
20 GB, timeout 2 h.

Mono Incr Incr+Inv Incr+Symm Incr+Inv
+Symm

Randomised parameterised systems

Lehmann-Rabin (DP) [34] T/O T/O T/O 48 min 10 min

Israeli-Jalfon [47] 4.6s 22.7s 21.4s 9.9s 9.7s

Herman [46] 1.5s 1.6s 2.4s — —

Firewire [35,60] 1.3s 1.3s 2.0s — —

Deterministic parameterised systems

Szymanski [4,65] 5.7s 27 min 10min — —

DP, left-right strategy 1.9s 6.4s 3.4s — —

Bakery [4,65] 1.6s 2.7s 1.9s — —

Resource allocator [32] 2.2s 2.2s 2.0s — —

Games on infinite graphs

Take-away [38] 2.8s — — — —

Nim [38] 5.3s — — — —
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function win 25 times to obtain further progress relations (Sect. 5.1), and over-
all needs 4324 iterations of the refinement procedure of Sect. 4. To the best of
our knowledge, this is the first time that liveness under arbitrary schedulers for
randomised parameterised systems like Lehmann-Rabin could be shown fully
automatically.

Future Work. We conclude with two concrete research questions among many
others. The most immediate question is how to embed fairness in our frame-
work of randomised parameterised systems. Another research direction concerns
how to extend transducers to deal with data so as to model protocols where
tokens may store arbitrary process IDs (examples of which include Dijkstra’s
Self-Stabilizing Protocol [31]).
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Abstract. We present the first framework for efficient application of
stateless model checking (SMC) to programs running under the relaxed
memory model of POWER. The framework combines several contribu-
tions. The first contribution is that we develop a scheme for system-
atically deriving operational execution models from existing axiomatic
ones. The scheme is such that the derived execution models are well
suited for efficient SMC. We apply our scheme to the axiomatic model
of POWER from [8]. Our main contribution is a technique for efficient
SMC, called Relaxed Stateless Model Checking (RSMC), which systemat-
ically explores the possible inequivalent executions of a program. RSMC
is suitable for execution models obtained using our scheme. We prove
that RSMC is sound and optimal for the POWER memory model, in
the sense that each complete program behavior is explored exactly once.
We show the feasibility of our technique by providing an implementation
for programs written in C/pthreads.

1 Introduction

Verification and testing of concurrent programs is difficult, since one must con-
sider all the different ways in which parallel threads can interact. To make mat-
ters worse, current shared-memory multicore processors, such as Intel’s x86,
IBM’s POWER, and ARM, [9,28,29,45], achieve higher performance by imple-
menting relaxed memory models that allow threads to interact in even subtler
ways than by interleaving of their instructions, as would be the case in the
model of sequential consistency (SC) [32]. Under the relaxed memory model of
POWER, loads and stores to different memory locations may be reordered by the
hardware, and the accesses may even be observed in different orders on different
processor cores.

Stateless model checking (SMC) [25] is one successful technique for verify-
ing concurrent programs. It detects violations of correctness by systematically
exploring the set of possible program executions. Given a concurrent program
which is terminating and threadwisely deterministic (e.g., by fixing any input
data to avoid data-nondeterminism), a special runtime scheduler drives the SMC
exploration by controlling decisions that may affect subsequent computations, so
that the exploration covers all possible executions. The technique is automatic,
has no false positives, can be applied directly to the program source code, and

c© Springer International Publishing Switzerland 2016
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can easily reproduce detected bugs. SMC has been successfully implemented
in tools, such as VeriSoft [26], Chess [37], Concuerror [17], rInspect [49], and
Nidhugg [1].

However, SMC suffers from the state-space explosion problem, and must
therefore be equipped with techniques to reduce the number of explored execu-
tions. The most prominent one is partial order reduction [18,24,39,47], adapted
to SMC as dynamic partial order reduction (DPOR) [2,23,40,43]. DPOR
addresses state-space explosion caused by the many possible ways to schedule
concurrent threads. DPOR retains full behavior coverage, while reducing the
number of explored executions by exploiting that two schedules which induce
the same order between conflicting instructions will induce equivalent execu-
tions. DPOR has been adapted to the memory models TSO and PSO [1,49], by
introducing auxiliary threads that induce the reorderings allowed by TSO and
PSO, and using DPOR to counteract the resulting increase in thread schedulings.

In spite of impressive progress in SMC techniques for SC, TSO, and PSO,
there is so far no effective technique for SMC under more relaxed models, such
as POWER. A major reason is that POWER allows more aggressive reorderings
of instructions within each thread, as well as looser synchronization between
threads, making it significantly more complex than SC, TSO, and PSO. There-
fore, existing SMC techniques for SC, TSO, and PSO can not be easily extended
to POWER.

In this paper, we present the first SMC algorithm for programs running under
the POWER relaxed memory model. The technique is both sound, in the sense
that it guarantees to explore each programmer-observable behavior at least once,
and optimal, in the sense that it does not explore the same complete behavior
twice. Our technique combines solutions to several major challenges.

The first challenge is to design an execution model for POWER that is suit-
able for SMC. Existing execution models fall into two categories. Operational
models, such as [12,21,41,42], define behaviors as resulting from sequences of
small steps of an abstract processor. Basing SMC on such a model would induce
large numbers of executions with equivalent programmer-observable behavior,
and it would be difficult to prevent redundant exploration, even if DPOR tech-
niques are employed. Axiomatic models, such as [7,8,36], avoid such redundancy
by being defined in terms of an abstract representation of programmer-observable
behavior, due to Shasha and Snir [44], here called Shasha-Snir traces. However,
being axiomatic, they judge whether an execution is allowed only after it has
been completed. Directly basing SMC on such a model would lead to much
wasted exploration of unallowed executions. To address this challenge, we have
therefore developed a scheme for systematically deriving execution models that
are suitable for SMC. Our scheme derives an execution model, in the form of
a labeled transition system, from an existing axiomatic model, defined in terms
of Shasha-Snir traces. Its states are partially constructed Shasha-Snir traces.
Each transition adds (“commits”) an instruction to the state, and also equips
the instruction with a parameter that determines how it is inserted into the
Shasha-Snir trace. The parameter of a load is the store from which it reads its
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value. The parameter of a store is its position in the coherence order of stores
to the same memory location. The order in which instructions are added must
respect various dependencies between instructions, such that each instruction
makes sense at the time when it is added. For example, when adding a store or a
load instruction, earlier instructions that are needed to compute which memory
address it accesses must already have been added. Our execution model therefore
takes as input a partial order, called commit-before, which constrains the order
in which instructions can be added. The commit-before order should be tuned
to suit the given axiomatic memory model. We define a condition of validity for
commit-before orders, under which our derived execution model is equivalent to
the original axiomatic one, in that they generate the same sets of Shasha-Snir
traces. We use our scheme to derive an execution model for POWER, equivalent
to the axiomatic model of [8].

Having designed a suitable execution model, we address our main challenge,
which is to design an effective SMC algorithm that explores all Shasha-Snir
traces that can be generated by the execution model. We address this chal-
lenge by a novel exploration technique, called Relaxed Stateless Model Checking
(RSMC). RSMC is suitable for execution models, in which each instruction can
be executed in many ways with different effects on the program state, such as
those derived using our execution model scheme. The exploration by RSMC com-
bines two mechanisms: (i) RSMC considers instructions one-by-one, respecting
the commit-before order, and explores the effects of each possible way in which
the instruction can be executed. (ii) RSMC monitors the generated execution for
data races from loads to subsequent stores, and initiates alternative explorations
where instructions are reordered. We define the property deadlock freedom of exe-
cution models, meaning intuitively that no run will block before being complete.
We prove that RSMC is sound for deadlock free execution models, and that our
execution model for POWER is indeed deadlock free. We also prove that RSMC
is optimal for POWER, in the sense that it explores each complete Shasha-Snir
trace exactly once. Similar to sleep set blocking for classical SMC/DPOR, it may
happen for RSMC that superfluous incomplete Shasha-Snir traces are explored.
Our experiments indicate, however, that this is rare.

To demonstrate the usefulness of our framework, we have implemented
RSMC in the stateless model checker Nidhugg [33]. For test cases written in
C with pthreads, it explores all Shasha-Snir traces allowed under the POWER
memory model, up to some bounded length. We evaluate our implementation on
several challenging benchmarks. The results show that RSMC efficiently explores
the Shasha-Snir traces of a program, since (i) on most benchmarks, our imple-
mentation performs no superfluous exploration (as discussed above), and (ii) the
running times correlate to the number of Shasha-Snir traces of the program. We
show the competitiveness of our implementation by comparing with an existing
state of the art analysis tool for POWER: goto-instrument [5].

Outline. The next section presents our derivation of execution models. Section 3
presents our RSMC algorithm, and Sect. 4 presents our implementation and
experiments. Proofs of all theorems, and formal definitions, are provided in our
technical report [4]. Our implementation is available at [33].
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2 Execution Model for Relaxed Memory Models

POWER — A Brief Glimpse. The programmer-observable behavior of
POWER multiprocessors emerges from a combination of many features, includ-
ing out-of-order and speculative execution, various buffers, and caches. POWER
provides significantly weaker ordering guarantees than, e.g., SC and TSO.

We consider programs consisting of a number of threads, each of which runs
a deterministic code, built as a sequence of assembly instructions. The grammar
of our assumed language is given in Fig. 1. The threads access a shared memory,
which is a mapping from addresses to values. A program may start by declaring
named global variables with specific initial values. Instructions include register
assignments and conditional branches with the usual semantics. A load 'r:=[a]'
loads the value from the memory address given by the arithmetic expression a
into the register r. A store '[a0]:=a1' stores the value of the expression a1 to the
memory location addressed by the evaluation of a0. For a global variable x, we
use x as syntactic sugar for [&x], where &x is the address of x. The instructions
sync, lwsync, isync are fences (or memory barriers), which are special instructions
preventing some memory ordering relaxations. Each instruction is given a label,
which is assumed to be unique.

As an example, consider the program in Fig. 2. It consists of two threads P
and Q, and has two zero-initialized memory locations x and y. The thread P
loads the value of x, and stores that value plus one to y. The thread Q is similar,
but always stores the value 1, regardless of the loaded value. Under the SC or
TSO memory models, at least one of the loads L0 and L2 is guaranteed to load
the initial value 0 from memory. However, under POWER the order between the
load L2 and the store L3 is not maintained. Then it is possible for P to load the
value 1 into r0, and for Q to load 2 into r1. Inserting a sync between L2 and L3
would prevent such a behavior.

Axiomatic Memory Models. Axiomatic memory models, of the form in [8],
operate on an abstract representation of observable program behavior, intro-
duced by Shasha and Snir [44], here called traces. A trace is a directed graph,

〈prog〉 ::= 〈varinit〉∗ 〈thrd〉+
〈varinit〉 ::= 〈var〉 '=' Z

〈thrd〉 := 'thread' 〈tid〉 ':' 〈linstr〉+
〈linstr〉 ::= 〈label〉 ':' 〈instr〉 ';'
〈instr〉 ::= 〈reg〉 ':=' 〈expr〉 | // register assignment

'if' 〈expr〉 'goto' 〈label〉 | // conditional branch
〈reg〉 ':=' '[' 〈expr〉 ']' | // memory load
'[' 〈expr〉 ']' ':=' 〈expr〉 | // memory store
'sync' | 'lwsync' | 'isync' // fences

〈expr〉 ::= (arithmetic expression over literals and registers)

Fig. 1. The grammar of concurrent programs
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x = 0 y = 0

thread P: thread Q:

L0: r0 := x; L2: r1 := y;
L1: y := r0+1; L3: x := 1;

L0: r0 := x

L1: y := r0+1

L2: r1 := y

L3: x := 1

po,data porfrf

Fig. 2. Left: An example program: LB + data. Right: A trace of the same program.

Event Parameter Semantic Meaning
L3: x := 1 0 First in coherence order for x

L0: r0 := x L3 Read value 1 from L3

L1: y := r0+1 0 First in coherence order for y
L2: r1 := y L1 Read value 2 from L1

Fig. 3. The run L3[0].L0[L3].L1[0].L2[L1], of the program in Fig. 2 (left), leading to
the complete state corresponding to the trace given in Fig. 2 (right). Here we use the
labels L0–L3 as shorthands for the corresponding events.

in which vertices are executed instructions (called events), and edges capture
dependencies between them. More precisely, a trace π is a quadruple (E, po, co, rf)
where E is a set of events, and po, co, and rf are relations over E1. An event is a
tuple (t, n, l) where t is an identifier for the executing thread, l is the unique label
of the instruction, and n is a natural number which disambiguates instructions.
Let E denote the set of all possible events. For an event e = (t, n, l), let tid(e)
denote t and let instr(e) denote the instruction labelled l in the program code.
The relation po (for “program order”) totally orders all events executed by the
same thread. The relation co (for “coherence order”) totally orders all stores to
the same memory location. The relation rf (for “read-from”) contains the pairs
(e, e′) such that e is a store and e′ is a load which gets its value from e. For
simplicity, we assume that the initial value of each memory address x is assigned
by a special initializer instruction initx, which is first in the coherence order for
that address. A trace is a complete trace of the program P if the program order
over the committed events of each thread makes up a path from the first instruc-
tion in the code of the thread, to the last instruction, respecting the evaluation
of conditional branches. Figure 2 shows the complete trace corresponding to the
behavior described in the beginning of this section, in which each thread loads
the value stored by the other thread.

An axiomatic memory model M (following the framework [8]) is defined as a
predicate M over traces π, such that M(π) holds precisely when π is an allowed
trace under the model. Deciding whether M(π) holds involves checking (i) that
the trace is internally consistent, defined in the natural way (e.g., the relation
co relates precisely events that access the same memory location), and (ii) that
various combinations of relations that are derived from the trace are acyclic or
irreflexive. Which specific relations need to be acyclic depends on the memory
model.

1 [8] uses the term “execution” to denote what we call “trace”.
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We define the axiomatic semantics under M as a mapping from programs P
to their denotations [[P]]AxM , where [[P]]AxM is the set of complete traces π of P such
that M(π) holds. In the following, we assume that the axiomatic memory model
for POWER, here denoted MPOWER, is defined as in [8]. The interested reader
is encouraged to read the details in [8], but the high-level understanding given
above should be enough to understand the remainder of this text.

Deriving an Execution Model. Let an axiomatic model M be given, in the
style of [8]. We will derive an equivalent execution model in the form of a tran-
sition system.

States. States of our execution model are traces, augmented with a set of fetched
events. A state σ is a tuple of the form (λ, F,E, po, co, rf) where λ(t) is a label
in the code of t for each thread t, F ⊆ E is a set of events, and (E, po|E , co, rf)
is a trace such that E ⊆ F . (Here po|E is the restriction of po to E.) For a
state σ = (λ, F,E, po, co, rf), we let exec(σ) denote the trace (E, po|E , co, rf).
Intuitively, F is the set of all currently fetched events and E is the set of events
that have been committed. The function λ gives the label of the next instruction
to fetch for each thread. The relation po is the program order between all fetched
events. The relations co and rf are defined for committed events (i.e., events in
E) only. The set of all possible states is denoted S. The initial state σ0 ∈ S

is defined as σ0 = (λ0, E0, E0,∅,∅,∅) where λ0 is the function providing the
initial label of each thread, and E0 is the set of all initializer events.

Commit-Before. The order in which events can be committed – effectively a
linearization of the trace – is restricted by a commit-before order. It is a para-
meter of our execution model which can be tuned to suit the given axiomatic
model. Formally, a commit-before order is defined by a commit-before function
cb, which associates with each state σ = (λ, F,E, po, co, rf), a commit-before
order cbσ ⊆ F × F , which is a partial order on the set of fetched events. For
each state σ, the commit-before order cbσ induces a predicate enabledσ over the
set of fetched events e ∈ F such that enabledσ(e) holds if and only if e �∈ E and
the set {e′ ∈ F | (e′, e) ∈ cbσ} is included in E. Intuitively, e can be committed
only if all the events it depends on have already been committed. Later in this
section, we define requirements on commit-before functions, which are necessary
for the execution model and for the RSMC algorithm respectively.

Transitions. The transition relation between states is given by a set of rules, in
Fig. 4. The function valσ(e, a) denotes the value taken by the arithmetic expres-
sion a, when evaluated at the event e in the state σ. The value is computed in the
natural way, respecting data-flow. (Formal definition in the technical report [4].)
For example, in the state σ corresponding to the trace given in Fig. 2, where
e is the event corresponding to label L1, we would have valσ(e, r0+1) = 2. The
function addressσ(e) associates with each load or store event e the memory loca-
tion accessed. For a label l, let λnext(l) denote the next label following l in the
program code. Finally, for a state σ with coherence order co and a store e to
some memory location x, we let extendσ(e) denote the set of coherence orders
co′ which result from inserting e anywhere in the total order of stores to x in co.
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F t = {e′′ ∈ F |tid(e′′) = t} e = (t, |F t|, λ(t))
� ∃e′, a, l . e′ ∈ F \ E ∧ tid(e′) = t ∧ instr(e′) = (if a goto l)

σ
FLB−−→ (λ[t ←↩ λnext(λ(t))], F ∪ {e}, E, po ∪ (F t × {e}), co, rf)

FETCH

instr(e) = (if a goto l) t = tid(e)
valσ(e, a) ∈ Z \ {0} enabled σ(e)

σ
FLB−−→ (λ[t ←↩ l], F , E ∪ {e}, po, co, rf)

BRT

instr(e) ∈ {sync, lwsync, isync, r:=a}
enabled σ(e)

σ
FLB−−→ (λ, F , E ∪ {e}, po, co, rf)

LOC

instr(e) = (if a goto l)
valσ(e, a) = 0 enabled σ(e)

σ
FLB−−→ (λ, F , E ∪ {e}, po, co, rf)

BRF

instr(e) = ([a]:=a′) enabled σ(e) M(exec(σ′))
σ′ = (λ, F , E ∪ {e}, po, co′, rf) co′ ∈ extendσ(e)

σ
e[positionco′ (e)]−−−−−−−−−−→ σ′

ST

instr(e) = (r:=[a]) enabledσ(e) ew ∈ E instr(ew) = ([a′]:=a′′)
addressσ(ew) = addressσ(e) σ′ = (λ, F , E ∪ {e}, po, co, rf ∪ {(ew, e)}) M(exec(σ′))

σ
e[ew ]−−−→ σ′ LD

Fig. 4. Execution model of programs under the memory model M. Here σ =
(λ, F, E, po, co, rf).

For each such order co′, we let positionco′(e) denote the position of e in the total
order: I.e. positionco′(e) is the number of (non-initializer) events e′ which precede
e in co′.

The intuition behind the rules in Fig. 4 is that events are committed non-
deterministically out of order, but respecting the constraints induced by the
commit-before order. When a memory access (load or store) is committed, a
non-deterministic choice is made about its effect. If the event is a store, it is
non-deterministically inserted somewhere in the coherence order. If the event
is a load, we non-deterministically pick the store from which to read. Thus,
when committed, each memory access event e is parameterized by a choice p:
the coherence position for a store, and the source store for a load. We call e[p]
a parameterized event, and let P denote the set of all possible parameterized
events. A transition committing a memory access is only enabled if the resulting
state is allowed by the memory model M. Transitions are labelled with FLB
when an event is fetched or a local event is committed, or with e[p] when a
memory access event e is committed with parameter p.

We illustrate this intuition for the program in Fig. 2 (left). The trace in Fig. 2
(right) can be produced by committing the instructions (events) in the order L3,
L0, L1, L2. For the load L0, we can then choose the already performed L3 as the
store from which it reads, and for the load L2, we can choose to read from the
store L1. Each of the two stores L3 and L1 can only be inserted at one place in
their respective coherence orders, since the program has only one store to each
memory location. We show the resulting sequence of committed events in Fig. 3:
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the first column shows the sequence of events in the order they are committed,
the second column is the parameter assigned to the event, and the third column
explains the parameter. Note that other traces can be obtained by choosing
different values of parameters. For instance, the load L2 can also read from the
initial value, which would generate a different trace.

Next we explain each of the rules: The rule FETCH allows to fetch the
next instruction according to the control flow of the program code. The first
two requirements identify the next instruction. To fetch an event, all preceding
branch events must already be committed. Therefore events are never fetched
along a control flow path that is not taken. We point out that this restriction
does not prevent our execution model from capturing the observable effects of
speculative execution (formally ensured by Theorem 1).

The rules LOC, BRT and BRF describe how to commit non-memory access
events.

When a store event is committed by the ST rule, it is inserted non-
deterministically at some position n = positionco′(e) in the coherence order. The
guard M(exec(σ′)) ensures that the resulting state is allowed by the axiomatic
memory model.

The rule LD describes how to commit a load event e. It is similar to the ST
rule. For a load we non-deterministically choose a source store ew, from which the
value can be read. As before, the guard M(exec(σ′)) ensures that the resulting
state is allowed.

Given two states σ, σ′ ∈ S, we use σ
FLB(max)−−−−−−−→ σ′ to denote that σ

FLB−−−→
∗
σ′ and

there is no state σ′′ ∈ S with σ′ FLB−−−→ σ′′. A run τ from some state σ is a sequence
of parameterized events e1[p1].e2[p2]. · · · .ek[pk] such that σ

FLB(max)−−−−−−→ σ1
e1[p1]−−−−→

σ′
1

FLB(max)−−−−−−→ · · · ek[pk]−−−−→ σ′
k

FLB(max)−−−−−−→ σk+1 for some states σ1, σ
′
1, . . . , σ

′
k, σk+1 ∈ S.

We write e[p] ∈ τ to denote that the parameterized event e[p] appears in τ . Observe
that the sequence τ leads to a uniquely determined state σk+1, which we denote
τ(σ). A run τ , from the initial state σ0, is complete iff the reached trace execτ(σ0) is
complete. Figure 3 shows an example complete run of the program in Fig. 2 (left).

In summary, our execution model represents a program P as a labeled tran-
sition system TSP

M,cb = (S, σ0,−→), where S is the set of states, σ0 is the initial
state, and −→ ⊆ S× (P ∪ {FLB}) × S is the transition relation. We define the
execution semantics under M and cb as a mapping, which maps each program P
to its denotation [[P]]ExM,cb, which is the set of complete runs τ induced by TSP

M,cb.

Validity and Deadlock Freedom. Here, we define validity and deadlock free-
dom for memory models and commit-before functions. Validity is necessary for
the correct operation of our execution model (Theorem 1). Deadlock freedom is
necessary for soundness of the RSMC algorithm (Theorem 4). First, we introduce
some auxiliary notions.

We say that a state σ′ = (λ′, F ′, E′, po′, co′, rf′) is a cb-extension of a state
σ = (λ, F,E, po, co, rf), denoted σ ≤cb σ′,if σ′ can be obtained from σ by fetching
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in program order or committing events in cb order. Formally σ ≤cb σ′ if po =
po′|F , co = co′|E , rf = rf′|E , F is a po′-closed subset of F ′, and E is a cbσ′-
closed subset of E′. More precisely, the condition on F means that for any
events e, e′ ∈ F ′, we have [e′ ∈ F ∧ (e, e′) ∈ po′] ⇒ e ∈ F . The condition on E
is analogous.

We say that cb is monotonic w.r.t. M if whenever σ ≤cb σ′, then (i)
M(exec(σ′)) ⇒ M(exec(σ)), (ii) cbσ ⊆ cbσ′ , and (iii) for all e ∈ F such that
either e ∈ E or

(
enabledσ(e) ∧ e �∈ E′), we have (e′, e) ∈ cbσ ⇔ (e′, e) ∈ cbσ′

for all e′ ∈ F ′. Conditions (i) and (ii) are natural monotonicity requirements on
M and cb. Condition (iii) says that while an event is committed or enabled, its
cb-predecessors do not change.

A state σ induces a number of relations over its fetched (possibly commit-
ted) events. Following [8], we let addrσ, dataσ, ctrlσ, denote respectively address
dependency, data dependency and control dependency. Similarly, po-locσ is the
subset of po that relates memory accesses to the same memory location. Lastly,
syncσ and lwsyncσ relate events that are separated in program order by respec-
tively a sync or lwsync. The formal definitions can be found in [8], and in our
technical report [4]. We can now define a weakest reasonable commit-before
function cb0, capturing natural dependencies:

cb0σ = (addrσ ∪ dataσ ∪ ctrlσ ∪ rf)+,

where R+ denotes the transitive (but not reflexive) closure of R.
We say that a commit-before function cb is valid w.r.t. a memory model M

if cb is monotonic w.r.t. M, and for all states σ such that M(exec(σ)) we have
that cbσ is acyclic and cb0σ ⊆ cbσ.

Theorem 1 (Equivalence with Axiomatic Model). Let cb be a commit-
before function valid w.r.t. a memory model M. Then [[P]]AxM = {exec(τ(σ0)) |
τ ∈ [[P]]ExM,cb}. ��

Program Blocked run τ Blocked state σ

x = 0 y = 0

thread P: thread Q:

L0: r0:=y; L3: x:=3;
L1: x:=r0; L4: sync;
L2: x:=2; L5: y:=1;

L3[0]
L5[0]

L0[L5]
L2[0]
(L1 blocked)

L0: r0:=y

L1: x:=r0

L2: x:=2

L3: x:=3

L4: sync

L5: y:=1

data

po-loc

sync

sync
co rf

Fig. 5. If the weak commit-before function cb0 is used, the POWER semantics may
deadlock. When the program above (left) is executed according to the run τ (center) we
reach a state σ (right) where L0, L2, L3–L5 are successfully committed. However, any
attempt to commit L1 will close a cycle in the relation co; syncσ; rf; dataσ; po-locσ, which
is forbidden under POWER. This blocking behavior is prevented when the stronger
commit-before function cbpower is used, since it requires L1 and L2 to be committed in
program order.
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The commit-before function cb0 is valid w.r.t. MPOWER, implying (by The-
orem 1) that [[P]]Ex

MPOWER,cb0
is a faithful execution model for POWER. However,

cb0 is not strong enough to prevent blocking runs in the execution model for
POWER. I.e., it is possible, with cb0, to create an incomplete run, which cannot
be completed. Any such blocking is undesirable for SMC, since it corresponds to
wasted exploration. Figure 5 shows an example of how the POWER semantics
may deadlock when based on cb0.

We say that a memory model M and a commit before function cb are deadlock
free if for all runs τ from σ0 and memory access events e such that enabledτ(σ0)(e)
there exists a parameter p such that τ.e[p] is a run from σ0. I.e., it is impossible
to reach a state where some event is enabled, but has no parameter with which
it can be committed.

Commit-Before Order for POWER. We will now define a stronger commit
before function for POWER, which is both valid and deadlock free:

cbpowerσ = (cb0σ ∪ (addrσ; po) ∪ po-locσ ∪ syncσ ∪ lwsyncσ)+

Theorem 2. cbpower is valid w.r.t. MPOWER.

Theorem 3. MPOWER and cbpower are deadlock free.

3 The RSMC Algorithm

Having derived an execution model, we address the challenge of defining an SMC
algorithm, which explores all allowed traces of a program in an efficient manner.
Since each trace can be generated by many equivalent runs, we must, just as in
standard SMC for SC, develop techniques for reducing the number of explored
runs, while still guaranteeing coverage of all traces. Our RSMC algorithm is
designed to do this in the context of semantics like the one defined above, in
which instructions can be committed with several different parameters, each
yielding different results.

Our exploration technique basically combines two mechanisms:

(i) In each state, RSMC considers an instruction e, whose cb-predecessors have
already been committed. For each possible parameter value p of e in the
current state, RSMC extends the state by e[p] and continues the exploration
recursively.

(ii) RSMC monitors generated runs to detect read-write conflicts (or “races”),
i.e., the occurrence of a load and a subsequent store to the same memory
location, such that the load would be able to read from the store if they
were committed in the reverse order. For each such conflict, RSMC starts
an alternative exploration, in which the load is preceded by the store, so
that the load can read from the store.

Mechanism (ii) is analogous to the detection and reversal of races in conventional
DPOR, with the difference that RSMC need only detect conflicts in which a
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load is followed by a store. A race where a load follows a store does not induce
reordering by mechanism (ii). This is because our execution model allows the
load to read from any of the already committed stores to the same memory
location, without any reordering.

Instruction Parameter Semantic Meaning
L0: r0 := x initx (read initial value)
L1: y := r0+1 0 (first in coherence of y)

L2: r1 := y inity (read initial value)
L3: x := 1 0 (first in coherence of x)

Fig. 6. The first explored run of the program in Fig. 2

We illustrate the basic idea of RSMC on the program in Fig. 2 (left). As usual
in SMC, we start by running the program under an arbitrary schedule, subject
to the constraints imposed by the commit-before order cb. For each instruction,
we explore the effects of each parameter value which is allowed by the memory
model. Let us assume that we initially explore the instructions in the order L0,
L1, L2, L3. For this schedule, there is only one possible parameter for L0, L1, and
L3, whereas L2 can read either from the initial value or from L1. Let us assume
that it reads the initial value. This gives us the first run, shown in Fig. 6. The
second run is produced by changing the parameter for L2, and let it read the
value 1 written by L1.

During the exploration of the first two runs, the RSMC algorithm also detects
a race between the load L0 and the store L3. An important observation is that
L3 is not ordered after L0 by the commit-before order, implying that their order
can be reversed. Reversing the order between L0 and L3 would allow L0 to read
from L3. Therefore, RSMC initiates an exploration where the load L0 is preceded
by L3 and reads from it. (If L3 would have been preceded by other events that
enable L3, these would be executed before L3.) After the sequence L3[0].L0[L3],
RSMC is free to choose the order in which the remaining instructions are con-
sidered. Assume that the order L1, L2 is chosen. In this case, the load L2 can
read from either the initial value or from L1. In the latter case, we obtain the
run in Fig. 3, corresponding to the trace in Fig. 2 (right).

After this, there are no more unexplored parameter choices, and so the RSMC
algorithm terminates, having explored four runs corresponding to the four pos-
sible traces.

In the following section, we will provide a more detailed look at the RSMC
algorithm, and see formally how this exploration is carried out.

3.1 Algorithm Description

In this section, we present our algorithm, RSMC, for SMC under POWER. We
prove soundness of RSMC, and optimality w.r.t. explored complete traces.
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The RSMC algorithm is shown in Fig. 7. It uses the recursive procedure
Explore, which takes parameters τ and σ such that σ = τ(σ0). Explore will
explore all states that can be reached by complete runs extending τ .

First, on line 1, we fetch instructions and commit all local instructions as far
as possible from σ. The order of these operations makes no difference. Then we
turn to memory accesses. If the run is not yet terminated, we select an enabled
event e on line 2.

// P[e] holds a run
// preceding the load event e.
global P = λe.〈〉
// Q[e] holds a set of continuations
// leading to the execution of the
// load event e after P[e].
global Q = λe.∅

Explore(τ, σ)
// Fetch & commit local greedily.

1: while(∃σ′.σ FLB−−−−→ σ′){σ := σ′;}
// Find committable memory access e.

2: if(∃e.enabledσ(e)){
3: if(e is a store){

// Explore all ways to execute e.

4: S := {(n, σ′)|σ e[n]−−−→ σ′};
5: for((n, σ′) ∈ S){
6: Explore(τ.e[n], σ′);
7: }
8: DetectRace(τ, σ, e);
9: }else{ // e is a load

10: P[e] := τ;
// Explore all ways to execute e.

11: S := {(ew, σ′)|σ e[ew ]−−−−→ σ′};
12: for((ew, σ′) ∈ S){
13: Explore(τ.e[ew], σ′);
14: }

// Handle R -> W races.
15: explored = ∅;
16: while(∃τ ′ ∈ Q[e]\explored){
17: explored := explored∪{τ ′};
18: Traverse(τ, σ, τ ′);
19: }
20: }
21: }

DetectRace(τ, σ, e)

1: for
er [ew] ∈ τ s.t.

er is a load ∧ (er , e) 	∈ cbσ
∧ addressσ(er) = addressσ(e)

{
// Compute postfix after P[er].

2: τ ′ := the τ ′ s.t. τ = P[er].τ ′;
// Remove events not cb-before e.

3: τ ′′ := normalize(cut(τ ′, e, σ), cbσ);
// Construct new continuation.

4: τ ′′′ := τ ′′.e[*].er [e];
// Add to Q, to explore later.

5: Q[er] := Q[er]∪{τ ′′′};
6: }

Traverse(τ, σ, τ ′)
1: if(τ ′ = 〈〉){
2: Explore(τ, σ);
3: }else{

// Fetch & commit local greedily.

4: while(∃σ′.σ FLB−−−−→ σ′){σ := σ′;}
5: e[p].τ ′′ := τ ′; // Get first event.
6: if(p = *){

// Explore all ways to execute e.

7: S := {(n, σ′)|σ e[n]−−−→ σ′};
8: for((n, σ′) ∈ S){
9: Traverse(τ.e[n], σ′, τ ′′);

10: }
11: }else if(∃σ′.σ

e[p]−−−→ σ′){
12: Traverse(τ.e[p], σ′, τ ′′);
13: }else{

// Only happens when the final
// load in τ ′ does not accept its
// parameter. Stop exploring.

14: }
15: }

Fig. 7. An algorithm to explore all traces of a given program. The initial call is
Explore(〈〉, σ0).

If the chosen event e is a store (lines 3–8), we first collect, on line 4, all
parameters for e which are allowed by the memory model. For each of them,
we recursively explore all of its continuations on line 6. I.e., for each coherence
position n that is allowed for e by the memory model, we explore the continuation
of τ obtained by committing e[n]. Finally, we call DetectRace. We will return
shortly to a discourse of that mechanism.
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If e is a load (lines 9–20), we proceed in a similar manner. Line 10 is related to
DetectRace, and discussed later. On line 11 we compute all allowed parameters
for the load e. They are (some of the) stores in τ which access the same address
as e. On line 13, we make one recursive call to Explore per allowed parameter.
The structure of this exploration is illustrated in the two branches from σ1 to
σ2 and σ5 in Fig. 8(a).

σ0

σ1

τ0
ew

e′
w

σ2 σ5

σ3

σ4

er[ew]
er[e

′
w]

τ1

êw[p]

σ6

σ7

σ8

τ2

êw[p]

er[êw]

ra
ce

σ0

σ1

τ0
ew

e′
w

σ2
...

σ3

σ4

er[ew]

τ1

êw[p]

σ6

σ7

σ8

τ2

êw[p]

er[êw]

σ9

σ10

τ3

ˆ̂ew[p′]

σ11

σ12

σ13

τ4

ˆ̂ew[p′]

er[ˆ̂ew]

race

(a) A new branch τ2.êw[*].er[êw] is added
to Q[er] and later explored, starting from
σ1. τ2 is a restriction of τ1, containing only
events that are cbσ4 -before êw.

(b) Another read-write race is detected,
starting from the leaf of a branch ex-
plored by Traverse. The new branch
τ4.ˆ̂ew[*].er[ˆ̂ew] is added at σ1, not at σ7.

Fig. 8. How Explore applies event parameters, and introduces new branches. Thin
arrows indicate exploration performed directly by Explore. Bold arrows indicate tra-
versal by Traverse.

Notice in the above that both for stores and loads, the available parameters
are determined entirely by τ , i.e. by the events that precede e in the run. In
the case of stores, the parameters are coherence positions between the earlier
stores occurring in τ . In the case of loads, the parameters are the earlier stores
occurring in τ . For stores, this way of exploring is sufficient. But for loads it
is necessary to also consider parameters which appear later than the load in a
run. Consider the example in Fig. 8(a). During the recursive exploration of a
run from σ0 to σ4 we encounter a new store êw, which is in a race with er. If
the load er and the store êw access the same memory location, and er does not
precede êw in the cb-order, they could appear in the opposite order in a run
(with êw preceding er), and êw could be an allowed parameter for the load er.
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This read-write race is detected on line 1 in the function DetectRace, when
it is called from line 8 in Explore when the store êw is being explored. We
must then ensure that some run is explored where êw is committed before er

so that êw can be considered as a parameter for er. Such a run must include
all events that are before êw in cb-order, so that êw can be committed. We
construct τ2, which is a template for a new run, including precisely the events in
τ1 which are cb-before the store êw. The run template τ2 can be explored from
the state σ1 (the state where er was previously committed) and will then lead to
a state where êw can be committed. The run template τ2 is computed from the
complete run in DetectRace on lines 2 and 3. This is done by first removing (at
line 2) the prefix τ0 which precedes er (stored in P[er] on line 10 in Explore).
Thereafter (at line 3) events that are not cb-before êw are removed using the
function cut (here, cut(τ, e, σ) restricts τ to the events which are cbσ-before e),
and the resulting run is normalized. The function normalize normalizes a run by
imposing a predefined order on the events which are not ordered by cb. This
is done to avoid unnecessarily exploring two equivalent run templates. The run
template τ2.êw[*].er[êw] is then stored on line 5 in the set Q[er], to ensure that
it is explored later. Here we use the special pseudo-parameter * to indicate that
every allowed parameter for êw should be explored (See lines 6–10 in Traverse).

All of the run templates collected in Q[er] are explored from the same call
to Explore(τ0, σ1) where er was originally committed. This is done on lines 15–
19. The new branch is shown in Fig. 8(a) in the run from σ0 to σ8. Notice on
line 18 that the new branch is explored by the function Traverse, rather than
by Explore itself. This has the effect that τ2 is traversed, with each event using
the parameter given in τ2, until er[êw] is committed. The traversal by Traverse
is marked with bold arrows in Fig. 8. If the memory model does not allow er

to be committed with the parameter êw, then the exploration of this branch
terminates on line 13 in Traverse. Otherwise, the exploration continues using
Explore, as soon as er has been committed (line 2 in Traverse).

Let us now consider the situation in Fig. 8(b) in the run from σ0 to σ10.
Here τ2.êw[*].er[êw], is explored as described above. Then Explore continues
the exploration, and a read-write race is discovered from er to ˆ̂ew. From earlier
DPOR algorithms such as e.g. [23], one might expect that this case is handled by
exploring a new branch of the form τ2.êw[p].τ ′

3 .̂̂ew[p′].er [̂̂ew], where er is simply
delayed after σ7 until ˆ̂ew has been committed. Our algorithm handles the case
differently, as shown in the run from σ0 to σ13. Notice that P[er] can be used
to identify the position in the run where er was last committed by Explore (as
opposed to by Traverse), i.e., σ1 in Fig. 8(b). We start the new branch from
that position (σ1), rather than from the position where er was committed when
the race was detected (i.e., σ7). The new branch τ4 is constructed when the
race is detected on lines 2 and 3 in DetectRace, by restricting the sub-run
τ2.êw[p].er[êw].τ3 to events that cb-precede the store ˆ̂ew.

The reason for returning all the way up to σ1, rather than starting the new
branch at σ7, is to avoid exploring multiple runs corresponding to the same
trace. This could otherwise happen when the same race is detected in multiple
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runs. To see this happen, let us consider the program given in Fig. 9. A part of
its exploration tree is given in Fig. 10. In the interest of brevity, when describing
the exploration of the program runs, we will ignore some runs which would be
explored by the algorithm, but which have no impact on the point of the example.
Throughout this example, we will use the labels L0, L1, and L2 to identify the
events corresponding to the labelled instructions. We assume that in the first run
to be explored (the path from σ0 to σ3 in Fig. 10), the load at L0 is committed
first (loading the initial value of x), then the stores at L1 and L2. There are
two read-write races in this run, from L0 to L1 and to L2. When the races are
detected, the branches L1[*].L0[L1] and L2[*].L0[L2] will be added to Q[L0].
These branches are later explored, and appear in Fig. 10 as the paths from σ0

to σ6 and from σ0 to σ9 respectively. In the run ending in σ9, we discover the
race from L0 to L1 again. This indicates that a run should be explored where
L0 reads from L1. If we were to continue exploration from σ7 by delaying L0
until L1 has been committed, we would follow the path from σ7 to σ11 in Fig. 10.
In σ11, we have successfully reversed the race between L0 and L1. However, the
trace of σ11 turns out to be identical to the one we already explored in σ6.
Hence, by exploring in this manner, we would end up exploring redundant runs.
The Explore algorithm avoids this redundancy by exploring in the different
manner described above: When the race from L0 to L1 is discovered at σ9, we
consider the entire sub-run L2[0].L0[L2].L1[1] from σ0, and construct the
new sub-run L1[*].L0[L1] by removing all events that are not cb-before L1,
generalizing the parameter to L1, and by appending L0[L1] to the result. The
new branch L1[*].L2[L1] is added to Q[L0]. But Q[L0] already contains the
branch L1[*].L2[L1] which was added at the beginning of the exploration. And
since it has already been explored (it has already been added to the set explored
at line 17) we avoid exploring it again.

thread P: thread Q: thread R:

L0: r := x L1: x := 1 L2: x := 2

Fig. 9. A small program where one thread P loads from x, and two threads Q and R
store to x.

Soundness and Optimality. We first establish soundness of the RSMC algo-
rithm in Fig. 7 for the POWER memory model, in the sense that it guarantees to
explore all Shasha-Snir traces of a program. We thereafter establish that RSMC
is optimal, in the sense that it will never explore the same complete trace twice.

Theorem 4 (Soundness). Assume that cb is valid w.r.t. M, and that M and
cb are deadlock free. Then, for each π ∈ [[P]]AxM , the evaluation of a call to
Explore(〈〉, σ0) will contain a recursive call to Explore(τ, σ) for some τ , σ such
that exec(σ) = π. ��
Corollary 1. RSMC is sound for POWER using MPOWER and cbpower.
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σ0

σ1 σ4 σ7

L0[initx]
L1[0]

L2[0]

σ2 σ5 σ8

L1[0] L0[L1] L0[L2]

σ3 σ6 σ9

L2[0] L2[0] L1[1]

σ10

σ11

L1[1]

L0[L1]

race

ra
ce

race

L0 L1 L2
rf co

exec(σ6) = exec(σ11)

Fig. 10. Part of a faulty exploration tree for the program above, containing redundant
branches. The branches ending in σ6 and σ11 correspond to the same trace. The RSMC
algorithm avoids this redundancy by the mechanism where all branches for read-write
races from the same load er are collected in one set Q[er].

The proof of Theorem 4 involves showing that if an allowed trace exists, then
the races detected in previously explored runs are sufficient to trigger the later
exploration of a run corresponding to that trace.

Theorem 5 (Optimality forPOWER).Assume thatM = MPOWER and cb =
cbpower. Let π ∈ [[P]]AxM . Then during the evaluation of a call to Explore(〈〉, σ0),
there will be exactly one call Explore(τ, σ) such that exec(σ) = π. ��

While the RSMC algorithm is optimal in the sense that it explores precisely
one complete run per Shasha-Snir trace, it may initiate explorations that block
before reaching a complete trace (similarly to sleep set blocking in classical
DPOR). Such blocking may arise when the RSMC algorithm detects a read-write
race and adds a branch to Q, which upon traversal turns out to be not allowed
under the memory model. Our experiments in Sect. 4 indicate that the effect of
such blocking is almost negligible, without any blocking in most benchmarks,
and otherwise at most 10 % of explored runs.

4 Experimental Results

In order to evaluate the efficiency of our approach, we have implemented it as
a part of the open source tool Nidhugg [33], for stateless model checking of
C/pthreads programs under the relaxed memory. It operates under the restric-
tions that (i) all executions are bounded by loop unrolling, and (ii) the analysis
runs on a given compilation of the target C code. The implementation uses
RSMC to explore all allowed program behaviors under POWER, and detects
any assertion violation that can occur. We validated our implementation by
successfully running all 8070 relevant litmus tests published with [8].
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Table 1. A comparison of running times (in seconds) for our implementation Nidhugg
and goto-instrument. The F column indicates whether fences have been inserted code
to regain safety. The LB column indicates whether the tools were instructed to unroll
loops up to a certain bound. A t/o entry means that the tool failed to complete within
900 s. An asterisk (* ) means that the tool found a safety violation. A struck out entry
means that the tool gave the wrong answer regarding the safety of the benchmark.
The superior running time for each benchmark is given in bold font. The SS column
indicates the number of complete traces explored by Nidhugg before detecting an error,
exploring all traces, or timing out. The B (for “blocking”) column indicates the number
of incomplete runs that Nidhugg started to explore, but that turned out to be invalid.

Tool running time (s), and trace count

goto-instrument Nidhugg

F LB Time Time SS B

dcl singleton 7 *0.40 *0.13 3 0

dcl singleton y 7 5.05 0.19 7 0

dekker 10 *229.39 *0.11 5 0

dekker y 10 t/o 0.76 246 0

fib false *1.86 t/o 109171 0

fib false join *0.84 *35.46 11938 0

fib true 7.05 t/o 109122 0

fib true join 8.92 57.67 19404 0

indexer 5 68.16 1.57 19 0

lamport 8 *635.45 *0.12 3 0

lamport y 8 t/o 0.20 50 2

parker 5 1.20 *0.13 5 0

parker y 5 1.24 7.44 1126 0

peterson *0.24 *0.11 3 0

peterson y 0.19 0.11 10 1

pgsql 8 *161.05 *0.11 2 0

pgsql y 8 t/o 0.58 16 0

pgsql bnd t/o *0.11 2 0

pgsql bnd y t/o t/o 36211 0

stack safe 13.84 73.86 1005 0

stack unsafe *1.03 *3.32 20 0

szymanski *1.02 *0.11 17 0

szymanski y 304.87 0.31 226 0

The main goals of our experimental evaluation are (i) to show the feasibility
and competitiveness of our approach, in particular to show for which programs
it performs well, (ii) to compare with goto-instrument, which to our knowledge is
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the only other tool analyzing C/pthreads programs under POWER2, and (iii) to
show the effectiveness of our approach in terms of wasted exploration effort.

Table 1 shows running times for Nidhugg and goto-instrument for several
benchmarks in C/pthreads. All benchmarks were run on an 3.07 GHz Intel Core
i7 CPU with 6 GB RAM. We use goto-instrument version 5.1 with cbmc version
5.1 as backend.

We note here that the comparison of running time is mainly relevant for the
benchmarks where no error is detected (errors are indicated with a * in Table 1).
This is because when an error is detected, a tool may terminate its analysis
without searching the remaining part of the search space (i.e., the remaining
runs in our case). Therefore the time consumption in such cases, is determined
by whether the search strategy was lucky or not. This also explains why in
e.g. the dekker benchmark, fewer Shasha-Snir traces are explored in the version
without fences, than in the version with fences.

Comparison with goto-instrument. goto-instrument employs code-to-code trans-
formation in order to allow verification tools for SC to work for more relaxed
memory models such as TSO, PSO and POWER [5]. The results in Table 1
show that our technique is competitive. In many cases Nidhugg significantly
outperforms goto-instrument. The benchmarks for which goto-instrument per-
forms better than Nidhugg, have in common that goto-instrument reports that
no trace may contain a cycle which indicates non-SC behavior. This allows goto-
instrument to avoid expensive program instrumentation to capture the extra
program behaviors caused by memory consistency relaxation. While this treat-
ment is very beneficial in some cases (e.g. for stack * which is data race free and
hence has no non-SC executions), it also leads to false negatives in cases like
parker, when goto-instrument fails to detect Shasha Snir-cycles that cause safety
violations. In contrast, our technique is precise, and will never miss any behav-
iors caused by the memory consistency violation within the execution length
bound.

We remark that our approach is restricted to thread-wisely deterministic
programs with fixed input data, whereas the bounded model-checking used as
a backend (CBMC) for goto-instrument can handle both concurrency and data
nondeterminism.

Efficiency of Our Approach. While our RSMC algorithm explores precisely one
complete run per Shasha-Snir trace, it may additionally start to explore runs
that then turn out to block before completing, as described in Sect. 3. The SS
and B columns of Table 1 indicate that the effect of such blocking is almost
negligible, with no blocking in most benchmarks, and at most 10 % of the runs.

A costly aspect of our approach is that every time a new event is committed
in a trace, Nidhugg will check which of its possible parameters are allowed by the
axiomatic memory model. This check is implemented as a search for particular

2 The cbmc tool previously supported POWER [6], but has withdrawn support in
later versions.



152 P.A. Abdulla et al.

cycles in a graph over the committed events. The cost is alleviated by the fact
that RSMC is optimal, and avoids exploring unnecessary traces.

To illustrate this tradeoff, we present the small program in Fig. 11. The first
three lines of each thread implement the classical Dekker idiom. It is impossible
for both threads to read the value 0 in the same execution. This property is used
to implement a critical section, containing the lines L4–L13 and M4–M13. However,
if the fences at L1 and M1 are removed, the mutual exclusion property can be

x = 0 y = 0 z = 0

thread P: thread Q:
L0: x := 1; M0: y := 1;
L1: sync; M1: sync;
L2: r0 := y; M2: r1 := x;
L3: if r0 = 1 M3: if r1 = 1

goto L14; goto M14;
L4: z := 1; M4: z := 1;
L5: z := 1; M5: z := 1;
L6: z := 1; M6: z := 1;
L7: z := 1; M7: z := 1;
L8: z := 1; M8: z := 1;
L9: z := 1; M9: z := 1;
L10: z := 1; M10: z := 1;
L11: z := 1; M11: z := 1;
L12: z := 1; M12: z := 1;
L13: z := 1; M13: z := 1;
L14: r0 := 0; M14: r1 := 0;

Fig. 11. SB+10W+syncs: A litmus test
based on the idiom known as “Dekker” or
“SB”. It has 3 allowed Shasha-Snir traces
under POWER. If the sync fences at lines
L1 and M1 are removed, then it has 184759
allowed Shasha-Snir traces. This test is
designed to have a large difference between
the total number of coherent Shasha-Snir
traces and the number of allowed Shasha-
Snir traces.

violated, and the critical sections may
execute in an interleaved manner.
The program with fences has only
three allowed Shasha-Snir traces, cor-
responding to the different observable
orderings of the first three instructions
of both threads. Without the fences,
the number rises to 184759, due to
the many possible interleavings of the
repeated stores to z. The running time
of Nidhugg is 0.01 s with fences and
161.36 s without fences.

We compare this with the results of
the litmus test checking tool herd [8],
which operates by generating all pos-
sible Shasha-Snir traces, and then
checking which are allowed by the
memory model. The running time of
herd on SB+10W+syncs is 925.95 s
with fences and 78.09 s without fences.
Thus herd performs better than Nid-
hugg on the litmus test without fences.
This is because a large proportion
of the possible Shasha-Snir traces are
allowed by the memory model. For
each of them herd needs to check the

trace only once. On the other hand, when the fences are added, the performance
of herd deteriorates. This is because herd still checks every Shasha-Snir trace
against the memory model, and each check becomes more expensive, since the
fences introduce many new dependency edges into the traces.

We conclude that our approach is particularly superior for application style
programs with control structures, mutual exclusion primitives etc., where relaxed
memory effects are significant, but where most potential Shasha-Snir traces are
forbidden.

5 Conclusions

We present the first framework for efficient SMC for programs running under
POWER. It combines solutions to several challenges. We developed a scheme
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for systematically deriving execution models that are suitable for SMC, from
axiomatic ones. We present RSMC, a novel algorithm for exploring all relaxed-
memory traces of a program, based on our derived execution model. We show
that RSMC is sound for POWER, meaning that it explores all Shasha-Snir traces
of a program, and optimal in the sense that it explores the same complete trace
exactly once. RSMC can in some situations waste effort by exploring blocked
runs, but our experimental results shows that this is rare in practice. Our imple-
mentation shows that the RSMC approach is competitive relative to an existing
state-of-the-art implementation. We expect that RSMC will be sound also for
other similar memory models with suitably defined commit-before functions.

Related Work. Several SMC techniques have been recently developed for pro-
grams running under the memory models TSO and PSO [1,20,49]. In this work
we propose a novel and efficient SMC technique for programs running under
POWER.

In [8], a similar execution model was suggested, also based on the axiomatic
semantics. However, compared to our semantics, it will lead many spurious exe-
cutions that will be blocked by the semantics as they are found to be disallowed.
This would cause superfluous runs to be explored, if used as a basis for stateless
model checking.

Beyond SMC techniques for relaxed memory models, there have been many
works related to the verification of programs running under relaxed memory
models (e.g., [3,11,13–15,19,30,31,35,48]). Some of these works propose pre-
cise analysis techniques for finite-state programs under relaxed memory models
(e.g., [3,11,21]). Others propose algorithms and tools for monitoring and testing
programs running under relaxed memory models (e.g., [14–16,22,35]). Different
techniques based on explicit state-space exploration for the verification of pro-
grams running under relaxed memory models have also been developed during
the last years (e.g., [27,30,31,34,38]). There are also a number of efforts to design
bounded model checking techniques for programs under relaxed memory models
(e.g., [6,13,46,48]) which encode the verification problem in SAT/SMT. Finally,
there are code-to-code transformation techniques (e.g., [5,10,11]) which reduce
verification of a program under relaxed memory models to verification of a trans-
formed program under SC. Most of these works do not handle POWER. In [21],
the robustness problem for POWER has been shown to be PSPACE-complete.

The closest works to ours were presented in [5,6,8]. The work [5] extends
cbmc to work with relaxed memory models (such as TSO, PSO and POWER)
using a code-to-code transformation. The work in [6] develops a bounded model
checking technique that can be applied to different memory models (e.g., TSO,
PSO, and POWER). The cbmc tool previously supported POWER [6], but has
withdrawn support in its later versions. The tool herd [8] operates by generating
all possible Shasha-Snir traces, and then for each one of them checking whether
it is allowed by the memory model. In Sect. 4, we experimentally compare RSMC
with the tools of [5,8].
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Abstract. We consider the following basic task in the testing of con-
current systems. The input to the task is a partial order of events, which
models actions performed on or by the system and specifies ordering
constraints between them. The task is to determine if some scheduling of
these events can result in a bug. The number of schedules to be explored
can, in general, be exponential.

Empirically, many bugs in concurrent programs have been observed to
have small bug depth; that is, these bugs are exposed by every schedule
that orders d specific events in a particular way, irrespective of how the
other events are ordered, and d is small compared to the total number
of events. To find all bugs of depth d, one needs to only test a d-hitting
family of schedules: we call a set of schedules a d-hitting family if for
each set of d events, and for each allowed ordering of these events, there
is some schedule in the family that executes these events in this ordering.
The size of a d-hitting family may be much smaller than the number of
all possible schedules, and a natural question is whether one can find
d-hitting families of schedules that have small size.

In general, finding the size of optimal d-hitting families is hard, even
for d= 2. We show, however, that when the partial order is a tree, one can
explicitly construct d-hitting families of schedules of small size. When the
tree is balanced, our constructions are polylogarithmic in the number of
events.

1 Introduction

Consider the following basic task in systematic testing of programs. We are given
n events a1, a2, . . ., an, and we ask if the execution of some ordering of these
events can cause the program to exhibit a bug. In the worst case, one needs to
run n! tests, one corresponding to each ordering of events. Empirically, though,
many bugs in programs depend on the precise ordering of a small number of
events [3,13,16]. That is, for many bugs, there is some constant d (called the
bug depth, small in comparison to n) and a subset ai1 , . . ., aid of events such
that some ordering of these d events already exposes the bug no matter how
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all other events are ordered. This empirical observation is the basis for many
different systematic testing approaches such as context-bounded testing [14],
delay-bounded testing [6], and PCT [3]. Can we do better than n! tests if we
only want to uncover all bugs of depth up to d, for fixed d? An obvious upper
bound on the number of tests is given by

(
n

d

)
· d! ≤ nd,

which picks a test for each choice of d events and each ordering of these events.
In this paper, we show that one can do significantly better—in this as well as in
more general settings.

Hitting Families of Schedules. We consider a more general instance of the
problem, where there is a partial ordering between the n events. A schedule is
a linearization (a linear extension) of the partial order of events. A dependency
between two events a and b in the partial order means that in any test, the event
a must execute before b. For example, a may be an action to open a file and
b an action that reads from the file, or a may be a callback that enables the
callback b.

The depth of a bug is the minimum number of events that must be ordered
in a specific way for the bug to be exposed by a schedule. For example, consider
some two events a and b in the partial order of an execution. If a bug manifests
itself only when a occurs before b, the bug depth is 2. If there are three events
that must occur in a certain order for a bug to appear, the depth is 3, and so on.
For example, an order violation involving two operations is precisely a bug of
depth 2: say, event a writes, event b reads, or vice versa (race condition). Basic
atomicity violation bugs are of depth 3: event a establishes an invariant, b breaks
it, c assumes the invariant established by a; bugs of larger depth correspond to
more involved scenarios and capture more complex race conditions. A schedule
is said to hit a bug if the events that expose the bug occur in the schedule in
the required order. The question we study in this paper is whether it is possible
to find a family of schedules that hits all potential bugs of depth d, for a fixed
d ≥ 2 —we call such a family a d-hitting family of schedules.

For a general partial order, finding an optimal d-hitting family is NP-hard,
even when d = 2 [24]; in fact, even approximating the optimal size is hard [4,9].
Thus, we focus on a special case: when the Hasse diagram of the partial order is
a tree. Our choice is motivated by several concurrent programming models, such
as asynchronous programs [8,11,20] and JavaScript events [17], whose execution
dependencies can be approximated as trees.

Constructing Hitting Families for Trees. For trees and d = 2, it turns out
that two schedules are enough, independent of the number of events in the tree.
These two schedules correspond to leftmost and rightmost DFS (depth-first)
traversals of the tree, respectively.
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For d > 2 and an execution tree of n events, we have already mentioned
the upper bound of nd for the size of an optimal d-hitting family (cf. delay-
bounded scheduling [6]). Our main technical results show that this family can
be exponentially sub-optimal. For d = 3 and a balanced tree on n nodes, we show
an explicit construction of a 3-hitting family of size O(log n), which is optimal
up to a constant factor. (Our construction works on a more general partial order,
which we call a double tree.) For each d > 3, we show an explicit construction of
a d-hitting family of size f(d) · (log n)d−1, which is optimal up to a polynomial.
Here f(d) is an exponential function depending only on d. As a corollary, the
two constructions give explicit d-hitting families of size O(log n) (for d = 3) and
O((log n)d−1) (for d > 3) for antichains, i.e., for the partial order that has no
dependencies between the n events. We also show a lower bound on the size
of d-hitting families in terms of the height of the tree; in a dual way, for an
antichain of n events, the size of any d-hitting family is at least g(d) · log n for
each d > 2.

For a testing scenario where the height of the tree (the size of the maximum
chain of dependencies) is exponentially smaller than its size (the number of
events), our constructions give explicit test suites that are exponentially smaller
than the size—in contrast to previous techniques for systematic testing.

Related Work. Our notion of bug depth is similar to bug depth for shared-
memory multi-threaded programs introduced in [3]. The quantity in [3] is defined
as the minimal number of additional constraints that guarantee an occurrence
of the bug. Depending on the bug, this can be between half our d and one less
than our d. Burckhardt et al. [3] show an O(mnd′−1) family for m threads with
n instructions in total (d′ denotes bug depth according to their definition). Since
multi-threaded programs can generate arbitrary partial orders, it is difficult to
prove optimality of hitting families in this case.

Our notion of d-hitting families is closely related to the notion of order dimen-
sion for a partial order, defined as the smallest number of linearizations, the
intersection of which gives rise to the partial order [5,19,23]. Specifically, the
size of an optimal 2-hitting family is the order dimension of a partial order, and
the size of an optimal d-hitting family is a natural generalization. To the best of
our knowledge, general d-hitting families have not been studied before for general
partial orders. A version of the dimension (d = 2) called fractional dimension is
known to be of use for approximation of some problems in scheduling theory [2].
Other generalizations of the dimension are also known (see, e.g., [22]), but, to
the best of our knowledge, none of them is equivalent to ours.

Summary. The contribution of this paper is as follows:

– We introduce d-hitting families as a common framework for systematic testing
(Sect. 2). The size of optimal d-hitting families generalizes the order dimen-
sion for partial orders, and the families themselves are natural combinatorial
objects of independent interest.
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– We provide explicit constructions of d-hitting families for trees that are close
to optimal: up to a small constant factor for d = 3 and up to a polynomial
for d > 3 (Sects. 3–5). Our families of schedules can be exponentially smaller
than the size of the partial order.

We outline some challenges in going from our theoretical constructions to build-
ing practical and automated test generation tools in Sect. 6.

2 Hitting Families of Schedules

In this section, we first recall the standard terminology of partial orders, and then
proceed to define schedules (linearizations of these partial orders) and hitting
families of schedules.

Preliminaries: Partial Orders. A partial order (also known as a partially
ordered set, or a poset) is a pair (P,≤) where P is a set and ≤ is a binary
relation on P that is:

(1) reflexive: x ≤ x for all x ∈ P,
(2) antisymmetric: x ≤ y and y ≤ x imply x = y for all x, y ∈ P,
(3) transitive: x ≤ y and y ≤ z imply x ≤ z for all x, y, z ∈ P.

One typically uses P to refer to (P,≤). We will refer to elements of partial orders
as events; the size of P is the number of events in it, |P|.

The relation x ≤ y is also written as x ≤P y and as y ≥ x; the event x is
a predecessor of y, and y is a successor of x. One writes x < y iff x ≤ y and
x �= y. Furthermore, x is an immediate predecessor of y (and y is an immediate
successor of x) if x < y but there is no z ∈ P such that x < z < y. The Hasse
diagram of a partial order P is a directed graph where the set of vertices is P
and an edge (x, y) exists if and only if x is an immediate predecessor of y. Partial
orders are sometimes identified with their Hasse diagrams.

Events x and y are comparable iff x ≤ y or y ≤ x. Otherwise they are
incomparable, which is written as x � y. Partial orders (P1,≤1) and (P2,≤2) are
disjoint if P1∩P2 = ∅; the parallel composition (or disjoint union) of such partial
orders is the partial order (P,≤) where P = P1 ∪ P2 and x ≤ y iff x, y ∈ Pk

for some k ∈ {1, 2} and x ≤k y. In this partial order, which we will denote by
P1 ‖ P2, any two events not coming from a single Pk are incomparable: x1 ∈ P1

and x2 ∈ P2 imply x1 � x2.
For a partial order (P,≤) and a subset Q ⊆ P, the restriction of (P,≤) to

Q is the partial order (Q,≤Q) in which, for all x, y ∈ Q, x ≤Q y if and only
if x ≤ y. Instead of ≤Q one usually writes ≤, thus denoting the restriction by
(Q,≤). We will also say that the partial order P contains the partial order Q. In
general, partial orders (P1,≤1) and (P2,≤2) are isomorphic iff there exists an
isomorphism f : P1 → P2: a bijective mapping that respects the ordering, i.e.,
with x ≤1 y iff f(x) ≤2 f(y) for all x, y ∈ P1. Containment of partial orders is
usually understood up to isomorphism.



Hitting Families of Schedules for Asynchronous Programs 161

Schedules and Their Families. A partial order is linear (or total) if all its
events are pairwise comparable. A linearization (linear extension) of the partial
order (P,≤) is a partial order of the form (P,≤′) that is linear and has ≤′ which
is a superset of ≤. We call linearizations (linear extensions) of P schedules. In
other words, a schedule α is a permutation of the elements of P that respects
P, i.e., respects all constraints of the form x ≤ y from P: for all pairs x, y ∈ P,
whenever x ≤P y, it also holds that x ≤α y. We denote the set of all possible
schedules by S(P); a family of schedules for P is simply a subset of S(P).

In what follows, we often treat schedules as words and families of schedules as
languages. Indeed, let P have n elements {v1, . . . , vn}, then any schedule α can
be viewed as a word of length n over the alphabet {v1, . . . , vn} where each letter
occurs exactly once. We say that α schedules events in the order of occurrences
of letters in the word that represents it.

Suppose α1 and α2 are schedules for disjoint partial orders P1 and P2; then
α1 · α2 is a schedule for the partial order P1 ‖ P2 that first schedules all events
from P1 according to α1 and then all events from P2 according to α2. Note that
we will use the · to concatenate schedules (as well as individual events); since
some of our partially ordered sets will contain strings, concatenation “inside” an
event will be denoted simply by juxtaposition.

Admissible Tuples and d-Hitting Families. Fix a partial order P and let
a = (a1, . . . , ad) be a tuple of d ≥ 2 distinct elements of P; we call such tuples
d-tuples. Suppose α is a schedule for P; then the schedule α hits the tuple a if
the restriction of α to the set {a1, . . . , ad} is the sequence a1 · . . . · ad.

Note that for a tuple a to have a schedule that hits a it is necessary and
sufficient that a respect P; this condition is equivalent to the condition that
ai ≤ aj or ai � aj whenever 1 ≤ i ≤ j ≤ d. We call d-tuples satisfying this
condition admissible.

Definition 1 (d-hitting family). A family of schedules F for P is d-hitting if
for every admissible d-tuple a there is a schedule α ∈ F that hits a.

It is straightforward that every P with |P| = n has a d-hitting family of size at
most

(
n
d

) · d! ≤ nd: just take any hitting schedule for each admissible d-tuple,
of which there are at most

(
n
d

) · d!. For d = 2, the size of the smallest 2-hitting
family is known as the dimension of the partial order [5,23]. Computing and even
approximating the dimension for general partial orders is known to be a hard
problem [4,9,24]. In the remainder of the paper, we focus on d-hitting families for
specific partial orders, most importantly trees (which can, for instance, approxi-
mate happens-before relations of asynchronous programs). We first consider two
simple examples.

Example 2 (chain). Consider a chain of n events (a linear order): Cn =
{1, . . . , n} with 1 < 2 < . . . < n. This partial order has a unique schedule:
α = 1 · 2 · . . . · n; a d-tuple a = (a1, . . . , ad) is admissible iff a1 < . . . < ad, and α
hits all such d-tuples. Thus, for any d, the family F = {α} is a d-hitting family
for Cn.



162 D. Chistikov et al.

Example 3 (chain with independent event). Consider Cn ‖ {†}, the dis-
joint union of Cn from Example 2 and a singleton {†}. There are n + 1 pos-
sible schedules, depending on how † is positioned with respect to the chain:
α0 = † · 1 · 2 · . . . · n, α1 = 1 · † · 2 · . . . · n, . . . , αn = 1 · 2 · . . . · n · †. For d = 2,
admissible pairs are of the form (i, j) with i < j, (†, i), and (i, †) for all 1 ≤ i ≤ n;
the family F2 = {α0, αn} is the smallest 2-hitting family. Now consider d = 3.
Note that all triples (i, †, i + 1) with 1 ≤ i ≤ n − 1, as well as (†, 1, 2) and
(n−1, n, †), are admissible, and each of them is hit by a unique schedule. There-
fore, the smallest 3-hitting family of schedules consists of all n + 1 schedules:
F3 = {α0, . . . , αn}. For d ≥ 4, it remains to observe that every d-hitting family
is necessarily d′-hitting for 2 ≤ d′ ≤ d, hence F3 is optimal for all d ≥ 3.

An important corollary of this example is that, for any d ≥ 3 and any
partial order P, every d-hitting family must contain at least m + 1 schedules,
where m denotes the maximum number n such that P contains Cn ‖ {†}. This
m is upper-bounded (and this upper bound is tight) by the height of the partial
order P, sometimes called length: the maximal cardinality of a chain (a set of
pairwise comparable events) in P.

3 Hitting Families of Schedules for Trees

3.1 Definitions and Overview

Consider a complete binary tree of height h with edges directed from the root.
This tree is the Hasse diagram of a partial order T h, unique up to isomorphism;
we will apply tree terminology to T h itself. The root of T h forms the 0th layer,
its children the 1st layer and so on. The maximum k such that T h has an element
in the kth layer is the height of the tree T h. We will assume that elements of
T h are strings: T h = {0, 1}≤h with x ≤ y for x, y ∈ T h iff x is a prefix of y.
The kth layer of T h is {0, 1}k, and nodes of the hth layer are leaves. Unless
x ∈ T h is a leaf, nodes x 0 and x 1 are left- and right-children of x, respectively.
(Recall that the juxtaposition here denotes concatenation of strings, with the
purpose of distinguishing individual strings and their sequences.) The tree T h

has n = 2h+1 − 1 nodes.
The central question that we study in this paper is as follows: How big are

optimal d-hitting families of schedules for T h with n nodes?
As it turns out, for T h very efficient constructions of d-hitting families exist.

It is, in fact, possible, to find such families that have size exponentially smaller
than n, the number of events. More specifically, we prove the following results
(h is the height of the partial order—the size of the longest chain):

1. For arbitrary d ≥ 3, there is a simple d-hitting family of size O(nd−2) (Claim 5
in the following Subsect. 3.2).

2. For d = 3, there is a 3-hitting family of size O(h) (Theorem 7 in Sect. 4).
3. For arbitrary d ≥ 3, there is a d-hitting family of size O(hd−1) (Theorem 10

in Sect. 5).
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Our main technical results are Theorems 7 and 10, shown in the next sections—
where they are stated for complete binary trees, with h = log(n + 1) − 1. (Arbi-
trary trees are, of course, contained in these complete trees, and our constructions
extend in a natural way.) The remainder of this section is structured as follows.
In Subsect. 3.2, we prove, as a warm-up, Claim 5. After this, in Subsect. 3.3, we
show that the problem of finding families of schedules with size smaller than n
turns out to be tricky even when there are no dependencies between events at
all. This problem arises as a sub-problem when considering trees (as, indeed,
there are no dependencies between the leaves in a tree), and thus our main
constructions in Sects. 4 and 5 must be at least as agile.

3.2 Warm-Up: d-Hitting Families of Size O(nd−2)

Claim 4. The smallest 2-hitting family of schedules for T h has size 2.

The construction is as follows. Take Fdfs = {λ, ρ} where λ and ρ are left-to-right
and right-to-left DFS (depth-first) traversals of T h, respectively. More formally,
these schedules are defined as follows: for x, y ∈ T h, x ≤λ y if either x ≤ y (i.e.,
x is a prefix of y) or x = u 0x′ and y = u 1 y′ for some strings u, x′, y′ ∈ {0, 1}∗;
x ≤ρ y if either x ≤ y or x = u 1x′ and y = u 0 y′. For instance, T 2 has
λ = ε · 0 · 00 · 01 · 1 · 10 · 11 and ρ = ε · 1 · 11 · 10 · 0 · 01 · 00. The family Fdfs is
2-hitting: all admissible pairs (x, y) satisfy either x ≤ y, in which case they are
hit by any possible schedule, or x � y, in which case neither is a prefix of the
other, x = u ax′ and y = u ā y′ with {a, ā} = {0, 1}, so λ and ρ schedule them
in reverse orders. Since it is clear that a family of size 1 cannot be 2-hitting for
T h with h ≥ 1 (as T h contains at least one pair of incomparable elements), the
family Fdfs is optimal.

Based on this construction for d = 2, it is possible to find d-hitting families
for d ≥ 3 that have size o(nd) where n = 2h+1 −1 is the number of events in T h:

Claim 5. For any d ≥ 3, T h has a d-hitting family of schedules of size O(nd−2).

Indeed, group all admissible d-tuples a = (a1, . . . , ad) into bags agreeing on
a1, . . . , ad−2. For each bag, construct a pair of schedules λ′ = λ′(a1, . . . , ad−2)
and ρ′ = ρ′(a1, . . . , ad−2) as follows. In both λ′ and ρ′, first schedule a1, . . . , ad−2:
that is, start with an empty sequence of events, iterate over k = 1, . . . , d−2, and,
for each k, append to the sequence all events x ∈ T h such that x ≤ ak. The order
in which these xes are appended is chosen in the unique way that respects the
partial order T h. Events that are predecessors of several ak are only scheduled
once, for the least k. Note that no ak, 1 ≤ k ≤ d, is a predecessor of any aj for
j < k, because otherwise the d-tuple a = (a1, . . . , ad) is not admissible. After
this, the events of T h that have not been scheduled yet form a disjoint union
of several binary trees. The schedule λ′ then schedules all events according to
how the left-to-right DFS traversal λ would work on T h, omitting all events that
have already been scheduled, and the schedule ρ′ does the same based on ρ. As a
result, these two schedules hit all admissible d-tuples that agree on a1, . . . , ad−2;
collecting all such schedules for all possible a1, . . . , ad−2 makes a d-hitting family
for T h of size at most 2nd−2.
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3.3 Antichains: d-Hitting Families of Size f(d) logn

An antichain is a partial order where every two elements are incomparable:
An = {v1} ‖ {v2} ‖ . . . ‖ {vn}. The set of all schedules for An is Sn, the
set of all permutations, and the set of all admissible d-tuples is the set of all
d-arrangements of these n events.

For our problem of finding hitting families of schedules for trees, considering
antichains is, in fact, an important subproblem. For example, a complete binary
tree with m nodes contains an antichain of size �m/2: the set of its leaves.
Thus, any d-hitting family of sublinear size for the tree must necessarily extend
a d-hitting family of sublinear size for the antichain—a problem of independent
interest that we study in this section.

Theorem 6. For any d ≥ 3, the smallest d-hitting family for An has size
between g(d) log n − O(1) and f(d) log n, where g(d) ≥ d/2 log(d + 1) and
f(d) ≤ d! d.

We sketch the proof of Theorem 6 in the remainder of this section. We will show
how to obtain the upper bound by two different means: with the probabilistic
method and with a greedy approach. From the results of the following Sect. 4
one can extract a derandomization for d = 3, also with size O(log n); and Sect. 5
achieves size f(d) · (log n)d−1 for d ≥ 3. In the current section we also show a
lower bound based on a counting argument; the reasoning above demonstrates
that this lower bound for antichains extends to a lower bound for trees (see
Corollary 8).

Upper Bound: Probabilistic Method. Consider a family of schedules
F = {α1, . . . , αk} where each αi is chosen independently and uniformly at
random from Sn; the parameter k will be chosen later. Fix any admissible
a = (a1, . . . , ad). What is the probability that a specific αi does not hit a?
A random permutation arranges a1, . . . , ad in one of d! possible orders without
preference to any of them, so this probability is 1 − 1/d!. Since all αi are chosen
independently, the probability that none of them hits a is (1 − 1/d!)k. By the
union bound, the probability that at least one d-tuple a is not hit by any of αi

does not exceed p = nd · (1 − 1/d!)k.
Now observe that this value of p is exactly the probability that F is not a d-

hitting family. If we now choose k in such a way that p < 1, then the probability
of F being a d-hitting family is non-zero, i.e., a d-hitting family of size k exists.
Calculation shows that k > (d! d) log n/ log e suffices.

The probabilistic method, a classic tool in combinatorics, is due to Erdős [1].

Upper Bound: Greedy Approach. We exploit the following connection
between d-hitting families and set covers. Recall that in a set cover problem
one is given a number of sets, R1, . . . , Rs, and the goal is to find a small number
of these sets whose union is equal to R = R1 ∪ . . . ∪ Rs. A set Ri covers an
element e ∈ R iff e ∈ Ri, and this covering is essentially the same as hitting in
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d-hitting families: elements e ∈ R are admissible d-tuples a = (a1, . . . , ad), and
each schedule α corresponds to a set Rα that contains all d-tuples a that it hits.
A d-hitting family of schedules is then the same as a set cover.

A well-known approach to the set cover problem is the greedy algorithm,
which in our setting works as follows. Initialize a list of all admissible a =
(a1, . . . , ad); on each step, pick some schedule α that hits the largest number
of tuples in the list, and cross out all these tuples. Terminate when the list is
empty; the set of all picked schedules is a d-hitting family.

While this algorithm can be used for any partial order P, in our case we
can estimate the quality of its output. The so-called greedy covering lemma by
Sapozhenko [18] or a more widely known Lovász-Stein theorem [12,21] gives an
explicit upper bound on the size of the obtained greedy cover in terms of |R| and
the density of the instance (the smallest γ such that every e ∈ R belongs to at
least γs out of s sets). In our case, |R| ≤ nd, and the density is 1/d!; the obtained
upper bound on the size of the smallest d-hitting family is d! d · log n/ log e −
Θ(d! d log d).

Lower Bound. Consider the case d = 3. Take any 3-hitting family F =
{α1, . . . , αk} and consider the binary matrix B = (bij) of size k × (n − 1) where
bij = 1 iff the schedule αi places event vj before vn. We claim that all columns
of B are pairwise distinct. Indeed, if for some j′ �= j′′ and all i it holds that
bij′ = bij′′ , then no schedule from F can place vj′ before vn without also plac-
ing vj′′ before vn, and vice versa. This means that no schedule from F hits the
3-tuples a′ = (vj′ , vn, vj′′) and a′′ = (vj′′ , vn, vj′), so F cannot be 3-hitting.

Since all columns of B are pairwise distinct and B is a 0/1-matrix, it follows
that the number of columns, n − 1, cannot be greater than the number of all
subsets of its rows, 2k. From n − 1 ≤ 2k we deduce that k ≥ log(n − 1). The
construction in the general case d ≥ 3 is analogous.

As we briefly explained above, the lower bound for an antichain of size n
remains valid for any partial order that contains an antichain of size n (as
defined in Sect. 2). We invoke this argument in Theorem 7 and Corollary 8 in
the following section.

4 3-Hitting Families of Size O(logn)

The goal of this section is to construct 3-hitting families of schedules for trees.
In fact, the construction that we develop is naturally stated for slightly more
involved partial orders, which we call double trees. These double trees are exten-
sions of trees (see Fig. 1). We construct explicit 3-hitting families of schedules
of logarithmic size for double trees, so that restriction of these 3-hitting families
to appropriate subsets of events gives explicit 3-hitting families for trees and for
antichains, also of logarithmic size.

The (binary) double tree of half-height h ≥ 1 is the partial order D defined
as follows. Intuitively, each Dh is a parallel composition (disjoint union) of two
copies of Dh−1, with additional top and bottom (largest and smallest) events;
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Fig. 1. (a) A double tree (h = 2); (b) A tree embedded into a double tree

and the induction basis is that D0 consists of a single event. Figure 1 depicts D2,
the double tree of half-height 2.

More precisely, (the Hasse diagram of) D consists of two complete binary
trees of height h that share their set of 2h leaves; in the first tree, the edges are
directed from the root to the leaves, and in the second tree, from the leaves to
the root. Formally, Dh = {−1,+1} × {0, 1}≤h−1 ∪ {0} × {0, 1}h; note that the
cardinality of this set is 3 · 2h − 2. Each event x = (sx, x′) ∈ Dh either belongs
to one of the trees (sx ∈ {−1,+1}) or is a shared leaf (sx = 0). We define the
ordering by taking the transitive closure of the following relation: let x = (sx, x′)
and y = (sy, y′) be events of Dh; if {sx, sy} ⊆ {−1, 0}, then x ≤ y whenever x′

is a prefix of y′; and if {sx, sy} ⊆ {0,+1}, then x ≤ y whenever y′ is a prefix of
x′. (Note that all events x, y with sx = sy = 0 are pairwise incomparable.)

Theorem 7. The smallest 3-hitting family for the double tree Dh with n =
3 · 2h − 2 events has size between 2h = 2 log n − O(1) and 4h = 4 log n − O(1).

Recall that a double tree with 3 · 2h − 2 events contains a complete binary
tree with 2 · 2h − 1 nodes, which in turn contains an antichain of size 2h. As
a corollary, T h, a tree with n = 2 · 2h − 1 nodes, has a 3-hitting family of size
4h = 4 log(n + 1) − 4. Similarly, An, an antichain of size n = 2h, has a 3-hitting
family of size 4 log n. Unlike the constructions from Subsect. 3.3, the construction
of Theorem 7 is explicit.

Corollary 8. For an arbitrary (not necessarily balanced) tree of height h, out-
degree at most Δ, and with at least 2 children of the root, the smallest 3-hitting
family has size between h and 4h log Δ.

Note that lower bounds proportional to h follow from Example 3. We describe
the construction of Theorem 7 below.

Matrix Notation. We use the following notation for families of schedules. Let
P be a partial order, |P| = n. Let F be a family of schedules for P, |F | = m.
We then write

F =

⎛

⎜
⎜
⎜
⎝

a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

. . .
...

am1 am2 . . . amn

⎞

⎟
⎟
⎟
⎠
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where F = {α1, . . . , αm} and αi = ai1 ·ai2 · . . . ·ain for 1 ≤ i ≤ m. In other words,
a family of m schedules for an n-sized partial order is written as an m×n-matrix
whose entries are elements of P, with no element appearing more than once in
any row. In particular, if α is a schedule for P, then we represent it with a
row vector. The union of families naturally corresponds to stacking of matrices:

F1 ∪ F2 =
(

F1

F2

)
, and putting two matrices of the same height m next to each

other corresponds to concatenating two families of size m, in order to obtain a
family of size m for the union of two partial orders:

(
F1 F2

)
.

Construction of 3-Hitting Families for Double Trees. We define the fam-
ilies of schedules using induction on h; in matrix notation, the families will be
denoted and structured as follows:

Mh =
[
Ah Bh

Ch Dh

]

where all four blocks are of size (3 · 2h−1 − 1) × 2h; in total, Mh will contain 4h
schedules, each with 3 · 2h − 2 events.

Base case, h = 1:

[
A1 B1

]
=

[
C1 D1

]
=

[
(−1, ε) (0, 0) (0, 1) (+1, ε)
(−1, ε) (0, 1) (0, 0) (+1, ε)

]
.

Note that M1 specifies both possible schedules two times. However, this redun-
dancy disappears in the inductive step.

Inductive step from h ≥ 1 to h + 1: Note that, for � ∈ {0, 1}, restricting
Dh+1 to events of the form (s, x′) where x′ = � x′′ leads to a partial order
isomorphic to Dh; these two partial orders are disjoint, and we denote them by
Dh(�), � ∈ {0, 1}; in fact, Dh(0) ∪ Dh(1) ∪ {(−1, ε), (+1, ε)} forms a partition of
Dh+1. We assume that the matrix Mh is known (the inductive hypothesis); for
� ∈ {0, 1}, we denote its image under the (entry-wise) mapping (s, x′) �→ (s, � x′)
by Mh(�). In other words, Mh(�) is the matrix that defines our (soon proved to
be 3-hitting) family of schedules for Dh(�); we will also apply the same notation
to A, B, C, and D.

Finally, we will need two auxiliary schedules for double trees, which we call
left and right traversals. The left traversal λ of Dh+1 is defined inductively as
follows: it first schedules (−1, ε), then takes the left traversal of Dh(0), then
the left traversal of Dh(1), and then schedules (+1, ε). The right traversal ρ is
defined symmetrically. Denote by λ(�) and ρ(�) left and right traversals of Dh(�),
respectively (we omit reference to h since this does not create confusion). Then
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Ah+1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

(−1, ε)
... Ah(0) Ah(1)

(−1, ε)
(−1, ε) λ(0)
(−1, ε) λ(1)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, Bh+1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

(+1, ε)

Bh(1) Bh(0)
...

(+1, ε)
λ(1) (+1, ε)
λ(0) (+1, ε)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

,

Ch+1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

(−1, ε)
... Ch(1) Ch(0)

(−1, ε)
(−1, ε) ρ(0)
(−1, ε) ρ(1)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, Dh+1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

(+1, ε)

Dh(0) Dh(1)
...

(+1, ε)
ρ(1) (+1, ε)
ρ(0) (+1, ε)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

Our result is that, for each h, Mh is a 3-hitting family of schedules for Dh.
The key part of the proof relies on the following auxiliary property, which is a
stronger form of the 2-hitting condition.

Lemma 9. For any pair of distinct events a = (a1, a2) from Dh, if there is a
schedule for Dh that hits a, then each of the matrices

[
Ah Bh

]
and

[
Ch Dh

]

contains a schedule for Dh where a1 is placed in the first half and a2 is placed
in the second half.

5 d-Hitting Families for d ≥ 3 of Size f(d)(logn)d−1

Fix some d and let T h be a complete binary tree of height h, as defined in
Subsect. 3.1. In this section we prove the following theorem.

Theorem 10. For any d ≥ 2 the complete binary tree of height h has a d-hitting
family of schedules of size exp(d) · hd−1.

Note that in terms of the number of nodes of T h, which is n = 2h+1 − 1,
Theorem 10 gives a d-hitting family of size polylogarithmic in n. The proof
of the theorem is constructive, and we divide it into three steps. The precise
meaning to the steps relies on auxiliary notions of a pattern and of d-tuples
conforming to a pattern; we give all necessary definitions below.

Lemma 11. For each admissible d-tuple a = (a1, . . . , ad) there exists a pat-
tern p such that a conforms to p.

Lemma 12. For each pattern p there exists a schedule αp that hits all d-tuples
a that conform to p.

Lemma 13. The total number of patterns, up to isomorphism, does not exceed
exp(d) · hd−1.

The statement of Theorem 10 follows easily from these lemmas. The key insight
is the definition of the pattern and the construction of Lemma 12.
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In the sequel, for partial orders that are trees directed from the root we will
use the standard terminology for graphs and trees (relying on Hasse diagrams):
node, outdegree, siblings, 0- and 1-principal subtree of a node, isomorphism. We
denote the parent of a node u by paru and the least common ancestor of nodes
u and v by lca(u, v).

If T is a tree and X ⊆ T is a subset of its nodes, then by [X] we denote the
lca-closure of X: the smallest set Y ⊆ T such that, first, X ⊆ Y and, second, for
any y1, y2 ∈ Y it holds that lca(y1, y2) ∈ Y . The following claim is a variation of
a folklore Lemma 1 in [7].

Claim 14. |[X]| ≤ 2 |X| − 1.

Definition 15 (pattern). A pattern is a quintuple p = (D,�, s, �, π) where:

– d ≤ |D| ≤ 2d − 1,
– (D,�) is a partial order which is, moreover, a tree directed from the root,
– the number of non-leaf nodes in (D,�) does not exceed d − 1,
– each node of (D,�) has outdegree at most 2,
– the partial function s : D ⇀ {0, 1} specifies, for each pair of siblings v1, v2 in

(D,�), which is the left and which is the right child of its parent: s(vt) = 0
and s(v3−t) = 1 for some t ∈ {1, 2}; the value of s is undefined on all other
nodes of D,

– the partial function � : D ⇀ {0, 1, . . . , h − 1} associates a layer with each
non-leaf node of (D,�), so that u ≺ v implies �(u) < �(v); the value of � is
undefined on all leaves of D, and

– π is a schedule for (D,�).

We remind the reader that the symbol ≤ refers to the same partial order as T h.

Definition 16 (conformance). Take any pattern p = (D,�, s, �, π) and any
tuple a = (a1, . . . , ad) of d distinct elements of the partial order T h. Consider
the set {a1, . . . , ad}: the restriction of ≤ to its lca-closure A = [{a1, . . . , ad}] is a
binary tree, (A,≤). Suppose that the following conditions are satisfied:

(a) the trees (D,�) and (A,≤) are isomorphic: there exists a bijective mapping
i : D → A such that v1 � v2 in D iff i(v1) ≤ i(v2) in T h;

(b) the partial function s correctly indicates left- and right-subtree relations: for
any v ∈ D, s(v) = b ∈ {0, 1} if and only if i(v) lies in the b-principal subtree
of i(par(v));

(c) the partial function � correctly specifies the layer inside T h: for any non-leaf
v ∈ D, �(v) = |i(v)|; recall that elements of T h are binary strings from
{0, 1}≤h;

(d) the schedule π for (D,�) hits the tuple i−1(a) = (i−1(a1), . . . , i−1(ad)).

Then we shall say that the tuple a conforms to the pattern p.

We now sketch the proof of Lemma 12. Fix any pattern p = (D,�, s, �, π).
Recall that we need to find a schedule αp that hits all d-tuples a = (a1, . . . , ad)
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Fig. 2. Example of bugs of depth d = 2 and d = 3 in a web page

conforming to p. We will pursue the following strategy. We will cut the tree T h

into multiple pieces; this cutting will be entirely determined by the pattern p,
independent of any individual a. Each piece in the cutting will be associated with
some element c ∈ D, so that each element of D can have several pieces associated
with it. In fact, every piece will form a subtree of T h (although this will be of
little importance). The key property is that, for every d-tuple a = (a1, . . . , ad)
conforming to p, if i is the isomorphism from Definition 16, then each event ak,
1 ≤ k ≤ d, will belong to a piece associated with i−1(ak). As a result, the desired
schedule αp can be obtained in the following way: arrange the pieces according
to how π schedules elements of D and pick any possible schedule inside each
piece. This schedule will be guaranteed to meet the requirements of the lemma.

6 From Hitting Families to Systematic Testing

Hitting families of schedules serve as a theoretical framework for systematically
exposing all bugs of small depth. However, bridging the gap from theory to
practice poses several open challenges, which we describe in this section.

To make the discussion concrete, we focus on a specific scenario: testing the
rendering of web pages in the browser. Web pages exhibit event-driven concur-
rency: as the browser parses the page, it concurrently executes JavaScript code
registered to handle various automatic or user-triggered events. Many bugs occur
as a consequence of JavaScript’s ability to manipulate the structure of the page
while the page is being parsed. Previous work shows such bugs are often of small
depth [10,17].

As an example, consider the web page in Fig. 2. In the example, the image
(represented by the <img> tag) has an on-load event handler that calls the func-
tion loaded() once the image is loaded. The function, defined in a separate script
block, changes the text of the paragraph p to Loaded. There are two potential
bugs in this example. The first one is of depth d = 2, and it occurs if the image
is loaded quickly (for example, from the cache), before the browser parses the
<script> tag. In this case, the on-load handler tries to call an undefined func-
tion. The second bug is of depth d = 3, and it occurs if the handler is executed
after the <script> tag is parsed, but before the <p> tag is parsed. In this case,
the function loaded() tries to access a non-existent HTML element.

Next, we identify and discuss three challenges.
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Fig. 3. Using a timer to fix the bug from Fig. 2 involving a non-existent element

Events and Partial Orders Need Not Be Static. Our theoretical model
assumes a static partially-ordered set of events, and allows arbitrary reordering
of independent (incomparable) events. For the web page in Fig. 2, there are three
parsing events (corresponding to the three HTML tags) and an on-load event.
The parsing events are chained in the order their tags appear in the code. The
on-load event happens after the <img> tag is parsed, but independently of the
other parsing events, giving a tree-shaped partial order.

In more complex web pages, the situation is not so simple. Events may be
executions of scripts with complex internal control-flow and data dependencies,
as well as with effect on the global state. Once a schedule is reordered, new
events might appear, and some events might never trigger. An example showing
a more realistic situation is given in Fig. 3. In order to fix the bug involving a
non-existent HTML element p, the programmer now explicitly checks the result
of getElementById(). If p does not exist (p == null), the programmer sets a
timer to invoke the function loaded() again after 10 milliseconds. As a conse-
quence, depending on what happens first—the on-load event or the parsing of
<p>—we may or may not observe one or more timeout events. Note that the
chain of timeout events also depends on parsing the <script> tag. If the tag
is not parsed, the loaded() function does not exist, so no timer is ever set.
Moreover, the number of timeout events depends on when exactly the <p> tag
is parsed.

The example shows that there is a mismatch between the assumption of
static partially ordered events and the dynamic nature of events occuring in
complex web pages. Ideally, the mismatch should be settled in future work by
explicitly modeling this dynamic nature. However, even the current theory of
hitting families can be applied as a testing heuristic. While we lose completeness
(in the sense of hitting all depth-d bugs), we retain the variety of different event
orderings. In the context of web pages, an initial execution of a page gives us
an initial partially ordered set of events. We use it to construct a hitting family
of schedules, which we optimistically try to execute. The approach is based on



172 D. Chistikov et al.

the notion of approximate replay, which is employed by R4, a stateless model
checker for web pages [10]. We come back to this approach later in the section.

Another approach is to construct hitting families on the fly : Such a construc-
tion would unravel events and the partial order dynamically during execution,
and non-deterministically construct a schedule from a corresponding hitting fam-
ily. In this way, the issue of reordering events in an infeasible way does not arise,
simply because nothing is reordered. This is in line with how PCT [3] and delay-
bounded scheduling [6] work. On-the-fly constructions of small hitting families
are a topic for future work.

Beyond Trees. Our results on trees are motivated by the existing theoretical
models of asynchronous programs [6,8,11], where the partial order induced by
event handlers indeed form trees. However, in the context of web pages, events
need not necessarily be ordered as nodes of a tree. An example of a feature that
introduces additional ordering constraints is deferred scripts. Scripts marked
as deferred are executed after the page has been loaded, and they need to be
executed in the order in which their corresponding <script> tags were parsed
[15]. The tree approximation corresponds to testing the behavior of pages when
the deferred scripts are treated as normal scripts and loaded right away. An open
question is to generalize our construction to other special cases of partial orders
that capture common programming idioms.

Unbalanced Trees. For a tree of height h, constructions from Sects. 4 and 5
give 3-hitting families of size O(h) and O(h2), respectively. If the tree is balanced,
the cardinality of these families are exponentially smaller than the number of
events in the tree. However, in the web page setting, trees are not balanced.

In order to inspect the shape of partial orders occurring in web pages, we
randomly selected 24 websites of companies listed among the top 100 of For-
tune 500 companies. For each website, we used R4 [10] to record an execution
and construct the happens-before relation (the partial order). Table 1 shows the
number of events and the height of the happens-before graph for the websites.
The results indicate that a typical website has most of the events concentrated
in a backbone of very large height, proportional to the total number of events.

The theory shows that going below Θ(h) is impossible in this case unless d <
3; and this can indeed lead to large hitting families: for example, our construction
for h = 1000 and d = 4 corresponds to several million tests. However, not all
schedules of the partial ordering induced by the event handlers may be relevant:
if two events are independent (commute), one need not consider schedules which
only differ in their ordering. Therefore, since hitting families are defined on
an arbitrary partial order, not only on the happens-before order, we can use
additional information, such as (non-)interference of handlers, to reduce the
partial ordering first.

For web pages, we apply a simple partial order reduction to reduce the size
of the input trees in the following way. We say a pair of events race if they both
access some memory location or some DOM element, with at least one of them
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Table 1. For each website, the table show the number of events in the initial execu-
tion, the height of the partial order (happens-before graph), the number of schedules
generated for d = 3, and the number of schedules for d = 3 with pruning based on
races.

Website # Events Height d = 3 d = 3 (pruned)

abc.xyz 337 288 561 0

newscorp.com 1362 875 2689 100

thehartford.com 2018 1547 3913 138

www.allstate.com 4534 3822 9023 106

www.americanexpress.com 2971 2586 5897 340

www.bankofamerica.com 2305 2095 4561 150

www.bestbuy.com 301 248 576 10

www.comcast.com 188 118 337 16

www.conocophillips.com 4184 3478 8286 248

www.costco.com 7331 6390 14614 364

www.deere.com 2286 1902 4516 236

www.generaldynamics.com 2820 2010 5611 272

www.gm.com 2337 1473 4600 94

www.gofurther.com 1117 638 2154 568

www.homedepot.com 3780 2100 7515 1526

www.humana.com 5611 4325 11174 2058

www.johnsoncontrols.com 2953 2395 5881 450

www.jpmorganchase.com 4134 3519 8247 1316

www.libertymutual.com 3885 3560 7735 324

www.lowes.com 6938 4383 13778 3438

www.massmutual.com 3882 3313 7682 1852

www.morganstanley.com 2752 2301 5402 128

www.utc.com 4081 3266 8100 206

www.valero.com 2116 1849 4178 38

writing to this location or the DOM element. Events that do not participate in
races commute with all other events, so they need not be reordered if our goal
is to expose bugs.

R4 internally uses a race detection tool (EventRacer [17]) to over-
approximate the set of racing events. In order to compute hitting families, we
construct a pruned partial order from the original tree of events. As an example,
for d = 3 and the simple O(nd−2) construction, instead of selecting a1 arbitrar-
ily, we select it from the events that participate in races. We then perform the
left-to-right and right-to-left traversals as usual. In total, the number of gener-
ated schedules is 2r, where r is the number of events participating in races. This

http://abc.xyz
http://newscorp.com
http://thehartford.com
www.allstate.com
www.americanexpress.com
www.bankofamerica.com
www.bestbuy.com
www.comcast.com
www.conocophillips.com
www.costco.com
www.deere.com
www.generaldynamics.com
www.gm.com
www.gofurther.com
www.homedepot.com
www.humana.com
www.johnsoncontrols.com
www.jpmorganchase.com
www.libertymutual.com
www.lowes.com
www.massmutual.com
www.morganstanley.com
www.utc.com
www.valero.com
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number can be significantly smaller than 2n, as can be seen in the fourth (d = 3)
and fifth (d = 3 pruned) columns of Table 1.

7 Conclusions

We have introduced hitting families as the basis for systematic testing of con-
current systems and studied the size of optimal d-hitting families for trees and
related partial orders.

We have shown that a range of combinatorial techniques can be used to
construct d-hitting families: we use a greedy approach, a randomized approach,
and a construction based on DFS traversals; we also develop a direct inductive
construction and a construction based on what we call patterns. The number
of schedules in the pattern-based construction is polynomial in the height—for
balanced trees, this is exponentially smaller than the total number of nodes.

Our development of hitting families was motivated by the testing of asyn-
chronous programs, and we studied the partial ordering induced by the happens-
before relationship on event handlers. While this ordering gives a useful testing
heuristic in scenarios such as rendering of web pages, the notion of hitting fami-
lies applies to any partial ordering, and we leave its further uses to future work.

Acknowledgements. We thank Madan Musuvathi for insightful discussions and
comments.
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Abstract. We present the tool ParCoSS for verification of cooperative
multithreading programs. Our tool is based on the recently proposed
Compiled Symbolic Simulation (CSS) technique. Additionally, we employ
parallelization to further speed-up the verification. The potential of our
tool is shown by evaluation.

1 Introduction

In this paper we propose our tool ParCoSS (Parallelized Compiled Symbolic
Simulation) for verification of cooperative multithreading programs available
in the Extended Intermediate Verification Language (XIVL) format. The XIVL
extends the SystemC IVL [11,15], which has been designed to capture the sim-
ulation semantics of SystemC programs [2,10,13], with a small core of OOP
features to facilitate the translation of C++ code [16]. For verification purpose
the XIVL supports computations with symbolic expressions and the assume and
assert functions with their usual semantic. Our tool and set of XIVL examples
is available at [1].

Verification of (cooperative) multithreading programs is difficult due to the
large state space caused by all possible inputs and thread interleavings. Symbolic
Simulation, a combination of symbolic execution [4,14] and Partial Order Reduc-
tion (POR) [8,9] has been shown to be particularly effective to tackle state explo-
sion [5,6,15]. Recently Compiled Symbolic Simulation (CSS) has been proposed
as further improvement [12]. CSS works by integrating the symbolic execution
engine and POR based scheduler together with the multithreading program, e.g.
available in the XIVL format, into a C++ program. Then, a standard C++ com-
piler is used to generate a native binary, whose execution performs exhaustive
verification of the multithreading program. In contrast to traditional verifica-
tion methods based on interpretation, CSS can provide significant simulation
speed-ups especially by native execution of concrete operations.

This work was supported in part by the German Federal Ministry of Education and
Research (BMBF) within the project EffektiV under contract no. 01IS13022E and
by the German Research Foundation (DFG) within the Reinhart Koselleck project
DR 287/23-1 and by the University of Bremen’s graduate school SyDe, funded by
the German Excellence Initiative.
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The implementation of our tool ParCoSS is based on CSS and additionally
supports parallelization to further improve simulation performance. Compared to
the original CSS approach our tool uses a fork/join based state space exploration
instead of manually cloning the execution states to handle non-deterministic
choices due to symbolic branches and scheduling decisions. A fork/join based
architecture most notably has the following advantages: (1) It allows to generate
more efficient code. (2) It drastically simplifies the implementation.

In particular, we avoid the layer of indirection necessary for variable access
when manually tracking execution states and use native execution for all function
calls by employing coroutines. Besides very efficient context switch implementa-
tion, coroutines allow natural implementation of algorithms without unwinding
the native stack and without using state machines to resume execution on context
switches. Additionally, manual state cloning of complex internal data structures
is error prone and difficult to implement efficiently, whereas the fork system call
is already very mature and highly optimized. Finally, our architecture allows for
straightforward and efficient parallelization by leveraging the process scheduling
and memory sharing capabilities of the underlying operating system.

2 Extended Intermediate Verification Language (XIVL)

An example cooperative multithreading program illustrating the core features
of the XIVL is shown in Fig. 1. The program is using two threads to compute
the sum of odd numbers up to the bound specified by the variable x, which is
initialized using a symbolic expression of type int in Line 2 and constrained in
Line 28. The threads synchronize using the wait and notify functions on the
global event e. The XIVL syntax resembles C++, supports integer and boolean
data types with all arithmetic and logic operators, arrays and pointers, is using
high-level control flow structures and has a small set of OOP features including
classes, inheritance and virtual methods with overrides and dynamic dispatch.

1 event e;
2 int x = ?(int);
3 int sum = 0;
4
5 bool is_odd(int i) {
6 return (i % 2) != 0;
7 }
8
9 thread A {

10 int i = 0;
11 while (true) {
12 wait_event(e);
13 i += 1;
14 if (is_odd(i))
15 sum = sum + i;
16 }

17 }
18
19 thread B {
20 while (x > 0) {
21 x -= 1;
22 notify(e, 0);
23 wait_time (1);
24 }
25 }
26
27 main {
28 assume(x >= 8 && x <= 10);
29 start;
30 assert(sum <= 25);
31 }

Fig. 1. XIVL example program
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Fig. 2. Tool overview

3 Implementation Details

To simplify development, facilitate code re-use and the translation process from
XIVL to C++ we have implemented the PCSS (Parallel CSS) library, which
provides common building blocks for parallel symbolic simulation. The PCSS
library is linked with the C++ program during compilation. An overview of
our tool is shown in Fig. 2. In the following we will describe our PCSS library,
provide more details on the fork/join based exploration and briefly sketch the
translation process from XIVL to C++.

3.1 PCSS Library

The right hand side of Fig. 2 shows the main components, and their interaction,
of the PCSS library. Essentially it consists of the following components: kernel,
scheduler, SMT engine, fork engine and some process shared data.

The kernel provides a small set of functions which directly correspond to
the XIVL kernel related primitives (e.g. wait and notify) and allows to sim-
ulate the SystemC event-driven simulation semantics. Furthermore, all thread
functions of the XIVL model are registered in the kernel. The kernel will allo-
cate a coroutine with every thread function as entry point. Coroutines naturally
implement context switches as they allow to jump execution between arbitrarily
nested functions while preserving the local data. Our implementation is using the
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1 bool on_branch(const SmtExpr &cond) {
2 auto stat = check_branch_status(cond);
3 if (stat == BranchStatus :: BothFeasible) {
4 bool is_child = fork_engine ->fork();
5 if (is_child)
6 pc = smt ->bool_and(pc, cond);
7 else
8 pc = smt ->bool_and(pc, smt ->bool_not(cond));
9 return is_child;

10 }
11 return stat == BranchStatus :: FalseOnly ? false : true;
12 }

Fig. 3. Symbolic branch execution

lightweight boost context library and in particular the functions make fcontext
and jump fcontext to create and switch execution between coroutines, respec-
tively. The scheduler is responsible for selecting the next runnable thread inside
the scheduling loop of the kernel. Our coroutine implementation allows to eas-
ily switch execution between the scheduling loop and the chosen thread. POR
is employed to reduce the number of explored interleavings. The POR depen-
dency relation is statically generated from the XIVL model and encoded into
the C++ program during translation. At runtime it is passed to the scheduler
during initialization.

The SMT engine provides common functionality required for symbolic execu-
tion. It keeps track of the current path condition, handles the assume and assert
functions, and checks the feasibility of symbolic branch conditions. Furthermore,
the SMT engine provides SMT types and operations. Essentially this is a light-
weight layer around the underlying SMT solver and allows to transparently swap
the employed SMT solver.

The fork engine is responsible to split the execution process into two inde-
pendent processes in case of a non-deterministic choice. This happens when both
branch directions are feasible in the SMT engine or multiple thread choices are
still available in the scheduler after applying POR. One of the forked processes
will continue exploration while the other is suspended until the first terminates.
This approach simulates a depth first search (DFS) of the state space. As an
optimization, the fork engine allows to run up to N processes in parallel, where
N is a command line parameter to the compiled C++ program. Parallelization
is very efficient as the processes explore disjoint state spaces independently.

3.2 Fork/Join Based State Space Exploration

Executing Symbolic Branches. The on branch function in the SMT engine,
shown in Fig. 3, accepts a symbolic branch condition and returns a concrete
decision, which is then used to control native C++ control flow structures. The
check branch status checks the feasibility of both branch directions by checking
the satisfiability of the branch condition and its negation. In case both branch
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1 bool ForkEngine ::fork() {
2 int pid = ::fork();
3 if (pid != 0) {
4 num_children ++;
5 while (! try_fork(shared_data , N)) {
6 if (num_children > 0) {
7 join_any_child ();
8 } else {
9 usleep (1); // wait for someone else to join child

10 }
11 }
12 } else {
13 num_children = 0;
14 }
15 return pid == 0;
16 }

Fig. 4. Implementation of parallelized forking

directions are feasible, the execution will fork (Line 4) into two independent
processes and update the path condition (pc) with the normal (Line 6) or negated
condition (Line 8), respectively. Please note that the execution is not forked and
the path condition is not extended when only a single branch direction is feasible.

Parallelization. The forked processes communicate using anonymous shared
memory, which is created during initialization in the first process using the
mmap system call and thus accessible from all forked child processes. The shared
memory essentially contains three information: (1) counter variable to ensure
that no more than N processes will run in parallel, (2) shutdown flag to gracefully
stop the simulation, e.g. when an assertion violation is detected, (3) unnamed
semaphore to synchronize access. The semaphore is initialized and modified using
the sem init, sem post and sem wait functions. Furthermore, each process locally
keeps track of the number of forked child processes (num children). Figure 4
shows an implementation of the fork function. First the fork system call is
executed. The child process (pid is zero) will never block, since executing only
one process will not increase the number of active processes. The parent process
however will first try to atomically check and increment the shared counter
in Line 5. When this fails, i.e. the maximum number N of processes is already
working, the parent process will wait until a working processes finishes, by either
awaiting one of its own children (Line 7) or until some other process joins its
children (Line 9).

3.3 XIVL to C++ Translation

We use the XIVL example from Fig. 1 to illustrate the XIVL to C++ translation
process, which basically performs five steps: (1) Replace native data types (inte-
ger and boolean) and operations with SMT types and operations where necessary
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Table 1. Experiment results, T.O. denotes timeout (limit 750 s)

Benchmark Kratos ISS ParCoSS

P-1 P-4 P-8

buffer-ws-p5 1.400 65.951 9.086 2.882 1.987

mem-slave-tlm-bug-50 T.O 3.731 <0.1 <0.1 <0.1

mem-slave-tlm-sym-50 T.O 3.940 <0.1 <0.1 <0.1

pressure-15 1.281 219.300 17.182 5.312 3.855

pressure-bug-50 444.781 0.897 <0.1 <0.1 <0.1

irqmp-8 – 108.670 32.719 10.815 8.237

irqmp-12 – T.O 530.705 178.108 128.257

(here variable x ). Variables which are never assigned a symbolic value (here vari-
ables i and sum) can keep their native type and perform native operations. (2)
Instrument control flow code to query the SMT engine for a concrete decision.
The branch condition x > 0 will be transformed into an SMT expression, e.g. as
smt→ bv gt(x, smt→ bv val(0)), and wrapped by the on branch function of the
smt engine. (3) Generate static POR information for the scheduler. Essentially,
a static analysis is employed to detect read/write and notify/wait dependencies.
A flow- and context-insensitive pointer analysis is used to increase the precision.
(4) Redirect builtin XIVL functions to the SMT engine (assume and assert) and
kernel instance (e.g. wait event and notify). (5) Add a new main function that
will initialize the PCSS library and call the main function of the XIVL model. It
will initialize the global data of the XIVL model and then enter the scheduling
loop of the kernel by calling the start simulation function.

4 Evaluation and Conclusion

We have evaluated our tool on a set of SystemC benchmarks from the liter-
ature [3,7,15] and the TLM model of the Interrupt Controller for Multiple
Processors (IRQMP) of the LEON3-based virtual prototype SoCRocket [17].
All experiments have been performed on a Linux system using a 3.5 GHz Intel
E3 Quadcore with Hyper-Threading. We used Clang 3.5 for compilation of the
C++ programs and Z3 v4.4.1 in the SMT Layer. The time (memory) limit have
been set to 750 s (6 GB), respectively. T.O. denotes that time limit has been
exceeded. The results are shown in Table 1. It shows the simulation time in sec-
onds for Kratos [7], Interpreted Symbolic Simulation (ISS) [6,15], and our tool
ParCoSS with a single process (P-1) and parallelized with four (P-4) and eight
processes (P-8). Comparing P-4 with P-8 allows to observe the effect of Hyper-
Threading. The results demonstrate the potential of our tool and show that our
parallelization approach can further improve results. As expected, CSS can be
considerably faster than ISS. On some benchmarks Kratos is faster due to its
abstraction technique, but the difference is not significant. Furthermore, Kratos



ParCoSS: Efficient Parallelized Compiled Symbolic Simulation 183

is not applicable to the irqmp benchmark due to missing C++ language fea-
tures. For future work we plan to integrate dynamic information, for POR and
selection of code blocks for native execution, into our CSS framework.
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Abstract. The Satisfiability Modulo Theory (SMT) problem over
floating-point arithmetic is a major hurdle in applying SMT techniques
to real-world floating-point code. Solving floating-point constraints is
challenging in part because floating-point semantics is difficult to specify
or abstract. State-of-the-art SMT solvers still often run into difficulties
when solving complex, non-linear floating-point constraints.

This paper proposes a new approach to SMT solving that does not
need to directly reason about the floating-point semantics. Our insight
is to establish the equivalence between floating-point satisfiability and
a class of mathematical optimization (MO) problems known as uncon-
strained MO. Our approach (1) systematically reduces floating-point sat-
isfiability to MO, and (2) solves the latter via the Monte Carlo Markov
Chain (MCMC) method.

We have compared our implementation, XSat, with MathSat, Z3
and Coral, state-of-the-art solvers that support floating-point arithmetic.
Evaluated on 34 representative benchmarks from the SMT-Competition
2015, XSat significantly outperforms these solvers. In particular, it pro-
vides both 100 % consistent satisfiability results as MathSat and Z3, and
an average speedup of more than 700X over MathSat and Z3, while Coral
provides inconsistent results on 16 of the benchmarks.

1 Introduction

Floating-point constraint solving has received much recent attention to sup-
port the testing and verification of programs that involve floating-point com-
putation. Existing decision procedures, or Satisfiability Modulo Theory (SMT)
solvers, are usually based on the DPLL(T) framework [19,33], which combines a
Boolean satisfiability solver (SAT) for the propositional structure of constraints
and a specialized theory solver. These decision procedures can cope with logical
constraints over many theories, but since they are bit-level satisfiability solvers
(SAT), their theory-specific SMT components can run into difficulties when deal-
ing with complex, non-linear floating-point constraints.

This work proposes a new approach for solving floating-point satisfiability.
Our approach does not need to directly reason about floating-point semantics.
Instead, it transforms a floating-point constraint to a floating-point function that
represents the models of the constraint as its minimum points. This “represent-
ing function” is similar to fitness functions used in search-based testing in the
sense both reduce a search problem to a function minimization problem [30].
c© Springer International Publishing Switzerland 2016
S. Chaudhuri and A. Farzan (Eds.): CAV 2016, Part II, LNCS 9780, pp. 187–209, 2016.
DOI: 10.1007/978-3-319-41540-6 11
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However, unlike search-based testing, which uses fitness functions as heuristics,
our approach uses the representing function as an essential element in developing
precise, systematic methods for solving floating-point satisfiability.

Representing Function. Let π be a floating-point constraint, and dom(π) be
the value domain of its variables. Our insight is to derive from π a floating-point
program R that represents how far a value x ∈ dom(π) is from being a model of
π. As illustrated in Fig. 1, we can imagine R as a distance from x ∈ dom(π) to the
models of π: It is non-negative everywhere, becomes smaller when x goes closer
to the set of π’s models, and vanishes when x goes inside (i.e., when x becomes a
model of π). Thus, such a function R allows us to view the SMT constraint π as
function minimization problem of function R. We call R a representing function.1

Fig. 1. Illustration of the representing function R for a floating-point constraint π.

It is a common need to minimize/maximize scalar functions in science and
engineering. The research field dedicated to the subject is known as mathemat-
ical optimization (MO) [17]. MO works by iteratively evaluating its objective
function, i.e., the function that MO attempts to minimize. In other words, the
representing function allows the transformation of an SMT problem to an MO
problem, which enables floating-point constraint solving by only executing its
representing function, without the need to directly reason about floating-point
semantics—a key benefit of such an SMT-MO problem reduction.

Note, however, that an MO formulation of the SMT problem does not, by
itself, provide a panacea to SMT solving, since many MO problems are them-
selves intractable. However, efficient algorithms have been successfully applied to
difficult MO problems. A classic example is the traveling salesman problem. The
problem is NP-hard, but has been nicely handled by simulated annealing [26],
a stochastic MO technique. Another example is the Monte Carlo Markov Chain
method (MCMC) [9], which has been successfully applied in testing and verifi-
cation [12,18,38].

The insight of this work is that, if we carefully design the representing func-
tions so that certain rules are respected, we can reduce floating-point constraint

1 The term “representing function” in English should first appear in Kleene’s book [27],
where the author used it to define recursive functions. “Representing function” is
also called “characteristic function” or “indicator function” in the literature.



XSat: A Fast Floating-Point Satisfiability Solver 189

solving to a category of MO problems known as unconstrained MO that can be
efficiently solved. Thus, our high-level approach is: (1) systematically transform
a floating-point constraint in conjunctive normal format (CNF) to its represent-
ing function, and (2) adapt MCMC to minimize the representing function to
output a model of the constraint or report unsat.

We have compared our implementation, XSat, with Z3 [16], MathSat [14],
and Coral [39], three solvers that can handle floating-point arithmetic. Our eval-
uation results on 34 representative benchmarks from the SMT-Competition 2015
show that XSat significantly outperforms these solvers in both correctness and
efficiency. In particular, XSat provides 100 % consistent satisfiability results as
MathSat and Z3, and an average speedup of more than 700X over MathSat and
Z3, while Coral provides inconsistent results on 16 of the 34 benchmarks.

Contributions. We introduce a new SMT solver for the floating-point satisfi-
ability problem. Our main contributions follow:

– We show, via the use of representing functions, how to systematically reduce
floating-point constraint solving to a class of MO problems known as uncon-
strained MO;

– We establish a theoretical guarantee for the equivalence between the original
floating-point satisfiability problem and the class of MO problems.

– We realize our approach in the XSat solver and show empirically that XSat
significantly outperforms the state-of-the-art solvers.

The rest of the paper is organized as follows. Section 2 gives an overview of our
approach, and Sect. 3 presents its theoretical underpinning. Section 4 presents
the algorithm design of the XSat solver, while Sect. 5 describes its overall imple-
mentation and our evaluation of XSat. Finally, Sect. 6 surveys related work, and
Sect. 7 concludes.

2 Approach Overview

This section presents a high-level overview of our approach. Its main goal is to
illustrate, via examples, that (1) it is possible to reduce a floating-point satisfia-
bility problem to a class of mathematical optimization (MO) problems, and (2)
efficient solutions exist for solving those MO problems.

2.1 Preliminaries on Mathematical Optimization

A general Mathematical Optimization (MO) problem can be written as follows:

minimize f(x)
subject to x ∈ S

(1)

where f is called the objective function, and S the search space [17].
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MO techniques can be divided into two categories. One focuses on how func-
tions are shaped at local regions and where a local minimum can be found near
the given inputs. This local optimization is classic, involving techniques dated
back to the 17th century (e.g., Newton’s approach or gradient-based search).
Local optimization not only provides the minimum value of a function within
a neighborhood of the given input points, but also aids global optimization,
another, more active body of research, which determines the minimum value
of a function over an entire search space.

Let f be a function over a metric space with d as its distance. We call x∗ a local
minimum point if there exists a neighborhood of x∗, namely {x | d(x, x∗) < δ}
for some δ > 0, so that all x in the neighborhood satisfy f(x) ≥ f(x∗). The
value of f(x∗) is called the local minimum of the function f . If f(x∗) ≤ f(x) for
all x ∈ S, we call f(x∗) the global minimum of the function f , and x∗ a global
minimum point.

In this presentation, if we say minimum (resp. minimum point), we mean
global minimum (resp. global minimum point). It should be clear that a function
may have more than one minimum point but only one minimum.

2.2 From SMT to Unconstrained Mathematical Optimization

Suppose we want to solve the simple floating-point constraint

x ≤ 1.5 (2)

Here, we aim to illustrate the feasibility of reducing an SMT problem to an MO
problem. In fact, each model of x ≤ 1.5 is a global minimum point of the formula

f1(x) =

{
0 if x ≤ 1.5
(x − 1.5)2 otherwise

(3)

and conversely, each global minimum point of f1 is also a model of x ≤ 1.5,
since f1(x) ≥ 0 and f1(x) = 0 iff x ≤ 1.5 (see Sect. 3 for a formalization). In
the MO literature, the kind of problem of minimizing f1 is called unconstrained
MO, meaning that its search space is the whole domain of the objective func-
tion. Unconstrained MO problems are generally regarded easier to solve than
constrained MO2 since they can be efficiently solved if the objective function f1
is smooth to some degree [34]. Figure 2 shows the curve of f1 and a common
local optimization method, which uses tangents of the curve to quickly converge
to the minimum point. The smoothness makes it possible to deduce information
about the function’s behavior at points of the neighborhood of a particular point
x by using objective and constraint information at x.

2 For example, it is common practice to transform a constrained MO problem by
replacing its constraints with penalized terms in the objective function and to solve
the problem as an unconstrained MO [34].
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(a) (b)

Fig. 2. (a) The curve of f1 (Eq. 3) and (b) illustration of a classic local optimization
method for finding a minimum point of f1. The method uses tangents of the curve to
quickly converge to a minimum point. (Color figure online)

2.3 Efficiently Solve MO Problems via MCMC

Suppose we slightly complicate constraint (2) by adding a non-linear conjunct:

x ≤ 1.5 ∧ (x − 1)2 = 4. (4)

This SMT problem can still be reduced to an unconstrained MO problem, with
objective function

f2(x) = f1(x) + ((x − 1)2 − 4)2 (5)

where f1 is as in Eq. (3). The equivalence of the two problems follows from the
fact that f2(x) = 0 if and only if f1(x) = 0 and ((x − 1)2 − 4)2 = 0. The curve
of f2 is shown in Fig. 3(a), which has local minimum points at both x = −1
and x = 3, and only x = −1 is the global minimum point. It is more difficult
to locate the global minimum point of this function, because local optimization
methods such as the one illustrated in the previous example can be trapped in
local minimum points, e.g., terminating and returning x = 3 in Fig. 3.

In this paper, we use a Monte Carlo Markov Chain (MCMC) method [9]
as a general approach for unconstrained MO problems. MCMC is a random
sampling technique used to simulate a target distribution. Consider, for example,
the target distribution of coin tossing, with 0.5 probability for having the head
or tail. An MCMC sampling is a sequence of random variables x1,. . . , xn, such
that the probability of xn being “head”, denoted by Pn, converges to 0.5, i.e.,
limn→∞ Pn = 0.5. The fundamental fact regarding MCMC sampling can be
summarized as the lemma below [9]. For simplicity, we only show the result with
discrete-valued probabilities here.

Lemma 1. Let x be a random variable, A be an enumerable set of the possible
values of x. Let f be a target distribution function for each a ∈ A. Then, for
an MCMC sampling sequence x1, . . . , xn . . . and a probability density function
P (xi = a) for each xi, we have:

P (xn = a) → f(a). (6)
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In short, the MCMC sampling follows the target distribution asymptotically.

Why do we adopt MCMC? There are multiple advantages. First, the search
space in our problem setting involves floating-point values. Even in the one-
dimensional case, a very small interval contains a large number of floating-
point numbers. MCMC is known as an effective technique to deal with large
search spaces. Because MCMC samples follow the distribution asymptotically,
it can be configured so that the sampling process has more chance to attain the
minimum points than the others (by sampling for a target distribution based
on λx : exp−f(x) for example, where f is the function to minimize). Second,
MCMC has many mature techniques and implementations that integrate well
with classic local search techniques. These implementations have proven efficient
for real-world problems with a large number of local minimum points, and can
even handle functions beyond classic MO, e.g., discontinuous objective func-
tions. Other MO techniques, e.g., genetic programming, may also be used for
our problem setting, which we leave for future investigation.

Figure 3(b) illustrates the iteration of MCMC sampling combined with a local
optimization. As in the previous example, the local optimization can quickly
converge (shown as steps p0 → p1 and p2 → p3 in the figure). The MCMC step,
shown as the p1 → p2 step, allows the search to escape from being trapped in
local minimum points. This MCMC step is random, but follows a probability
model which we will explain in Sect. 4.

(a) (b)

Fig. 3. (a) The curve of f2 (Eq. 5); (b) Illustration of how MCMC can be combined
with local optimization for locating the global minimum point x = −1. MCMC starts
from p0, converges to local minimum p1, then performs a random move to p2 (called a
Monte-Carlo step, see Sect. 4) and converges to p3, which is the global minimum point.

3 Technical Formulation

This section presents the theoretical underpinning of our approach. We write F
for the set of floating-point numbers. Given a function f , we call x a zero of f if
f(x) = 0.
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Language. The language of interest is modeled as the set of quantifier-free
floating-point constraints. Each constraint π is a conjunction or disjunction of
arithmetic comparisons.

Constraints of FP π := π1 ∧ π2 | π1 ∨ π2 | e1 �� e2

Arithmetic expressions e := c | X | foo(e1, · · · en) | e1 ⊕ e2

where ��∈ {≤, <,≥, >,==, 	=}, ⊕ ∈ {+,−, ∗, /}, c is a floating-point numeral,
X is a floating-point variable, and foo is an interpreted floating-point function,
which can be a library function, e.g., trigonometric, logarithmic or user-defined
ones. We denote the language by FP.

Let π ∈ FP be a constraint with variables X1, · · · ,XN . We write dom(π)
for the value domain of its variables. Usually, dom(π) = FN . We say a vector of
floating-point numbers (x1, · · · , xN ) is a model of π, denoted by (x1, · · · , xN ) |=
π, if π becomes a tautology by substituting Xi with the corresponding xi for
all i ∈ [1, N ]. In the following, we shall use a meta-variable x for a vector of
floating-point numbers (x1, · · · , xN ).

As mentioned in Sect. 1, our idea is to derive from π a floating-point program
that represents how far a floating-point input, i.e., (x1, · · · , xN ), is from being
a model of π. We specify this program as below:

Definition 1. Given a floating-point constraint π, a floating-point program R of
type dom(π) → F is called a representing function of π if the following properties
hold:

R1. R(x) ≥ 0 for all x ∈ dom(π),
R2. Every zero of R is a model of π: ∀x ∈ dom(π), R(x) = 0 =⇒ x |= π, and
R3. The zeros of R include all models of π: ∀x ∈ dom(π), x |= π =⇒ R(x) = 0.

The concept of representing functions allows us to establish an equivalence
between the floating-point satisfiability problem and an MO problem. This is
shown in the theorem below:

Theorem 1. Let π be a floating-point constraint, and R be its representing func-
tion. Let x∗ be a global minimum point of R. Then we have

π is satisfiable ⇔ R(x∗) = 0. (7)

Proof. Let x∗ be an arbitrary global minimum point of R. If π is satisfiable with
x being one of its models, then we have R(x) = 0 by R3. By R1, x is also a global
minimum point of R. Thus R(x∗) = R(x) = 0 since at most one global minimum
exists. The proof for the “⇐” part follows directly from R2.

A simple procedure for solving floating-point constraints follows from
Theorem 1.
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Procedure P: Let π be a floating-point constraint π ∈ FP.

P1. Construct a floating-point program R such that R1-3 hold with regard
to π.
P2. Minimize R. Let x∗ be the calculated global minimum point.
P3. Check whether R(x∗) = 0. If yes, return x∗ as a model, or unsat
otherwise.

Analysis of Procedure P. One challenge faced with procedure P lies in step
P2. In general, global optimization may not return a true global minimum point.
To make this point clear, we use the notation x̂∗ for the global minimum point
produced by the MO tool, and x∗ for a true global minimum point. Then we
have

R(x̂∗) ≥ R(x∗). (8)

We consider two cases in analyzing procedure P. In the first case, if procedure P
reports sat, we have R(x̂∗) = 0. Thus, R(x∗) = 0 as well because of Eq. (8) and
condition R1. Following Theorem1, we conclude that π is necessarily satisfiable
in this case. As for the second case, if procedure P reports unsat, we have
R(x̂∗) > 0. In this case, it is still possible that π is satisfiable, meaning that step
P2 produces a conservative global minimum point, i.e., R(x̂∗) > 0 but R(x∗) = 0.
To summarize, the following lemma holds:

Lemma 2. Let π be a floating-point constraint of FP. Procedure P has the fol-
lowing two properties: (1) Soundness: If procedure P reports sat, π is necessarily
satisfiable, and (2) Incompleteness: Procedure P may incorrectly report unsat
when π is actually satisfiable. This case happens if the MO tool at step P2 cal-
culates a wrong global minimum point.

In the next section, we present XSat, a solver that realizes procedure P. As
we will show in Sect. 5, by carefully designing the representing function, the
incompleteness in theory can be largely mitigated in practice.

4 The XSat Solver

This section presents the algorithmic design of XSat, an SMT solver to handle
quantifier-free floating-point constraints. XSat is an instance of Procedure P
(Sect. 3).

Notation. Given a set A, we write |A| to denote its cardinality. We adopt C’s
ternary operator “p ? a : b” to denote a code fragment that evaluates to a
if p holds, or b otherwise. As in the previous section, we use F for the set of
floating-point numbers, and FP for the language of quantifier-free floating-point
constraints that we have defined.
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Let π be a floating-point constraint of FP in the form of a conjunction. If
we have a representing function for each of the conjuncts, we can construct the
representing function of π as

Rπ1∧π2 = Rπ1 + Rπ2 . (9)

Similarly, if π is in the form of a disjunction, we can use

Rπ∨π2 = Rπ1 ∗ Rπ2 . (10)

Above, both “+” and “*” denote the operations as given by IEEE floating-point
arithmetic. Clearly, both Rπ1∧π2 and Rπ∨π2 satisfy conditions R1–3 since both
Rπ1 and Rπ2 do, and since ∀a, b ≥ 0, we have a + b = 0 ⇔ a = 0 ∧ b = 0 and
a ∗ b = 0 ⇔ a = 0 ∨ b = 0.

To construct R for arithmetic comparisons, we need to introduce a helper
function θ. Its idea is similar to the representation distance implemented in
Boost [2], which counts the number of floating-point numbers between two bit-
pattern representations. Because the IEEE-754 standard ensures that the next
higher representable floating point value from a floating-point number a is a
simple integer increment up from the previous one [21], we can view θ(a, b) for
a, b ∈ F \ {NaN, Inf,−Inf} as

θ(a, b) = |{x ∈ F | min(a, b) < x < max(a, b)}|. (11)

In general, for arbitrary a, b ∈ F, θ(a, b) always returns a non-negative integer;
it vanishes if and only if a and b hold the same floating-point value. Then, we
use

Re1≤e2

def= e1 ≤ e2 ? 0 : θ(e1, e2) (12)

The representing function for the other arithmetic comparisons can be derived
using the lemma below. The lemma directly follows from Definition 1.

Lemma 3. Given π, π′ ∈ FP such that π ⇔ π′ (logical equivalence), any repre-
senting function of π is also a representing function of π′.

Now, we can define Rx≥y as Ry≤x, Rx==y as Rx≥y∧x≤y. For the strict inequal-
ities, we use the notation x− for the largest floating point that is strictly smaller
than x, and reduce Rx<y to Rx≤y− , Rx>y to Ry<x, and Rx
=y to Rx<y∨x>y. We
summarize the representing function used in XSat in the theorem below:

Theorem 2. Let F be a conjunctive normal form of FP:

F
def
=

∧

j∈J

∨

i∈I

ei,j ��i,j e′
i,j (13)

where ei,j and e′
i,j are quantities to be interpreted over floating-point numbers

or expressions, and ��i,j∈ {≤,≥,==, <,>, 	=}. Then, the function below is a
representing function of F :

∑

j∈J

∏

i∈I

d(��, ei,j , e
′
i,j) (14)
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where

d(==, x, y)
def
= θ(x, y) (15)

d(≤, x, y)
def
= x ≤ y ? 0 : θ(x, y) (16)

d(≥, x, y)
def
= x ≥ y ? 0 : θ(x, y) (17)

d(<, x, y)
def
= x < y ? 0 : θ(x, y) + 1 (18)

d(>, x, y)
def
= x > y ? 0 : θ(x, y) + 1 (19)

d(	=, x, y)
def
= x 	= y ? 0 : 1 (20)

Algorithm 1 shows the main steps of the XSat algorithm. (Line 1–5): The
algorithm follows the three steps in procedure P, except that in practice, more
than one starting points are used to launch MCMC. (Such a technique is com-
monly used in the MO literature, since most MO algorithms are sensible to
its starting points [34].) If none of these starting points leads to a minimum
point x∗ such that R(x∗) = 0, unsat is reported. (Line 7–15): The func-
tion GEN is a simple code generator that generates the representing function.
It works by recursively walking through the logical and arithmetic expres-
sions of the language FP. (Lines 16–27): Each iteration of the loop can be
regarded as an MCMC sampling over the space of the local minimum points [29].
In Algorithm 1, Line 17 enforces that the initial x is already a local minimum
point. Each iteration (Lines 18–25) is composed of the two phases that are clas-
sic in the Metropolis-Hasting algorithm family of MCMC [13]. In Phase 1 (Lines
19-20), the algorithm proposes a new sample x∗ from the current sample x. Then,
the algorithm relies on a local minimization procedure to only propose local min-
imum points. Phase 2 (Lines 21–25) decides whether x∗ should be accepted. As
an algorithm of Metropolis-Hasting family, we use f(x∗)/f(x) as the acceptance
ratio. If f(x∗) < f(x), the proposed x∗ will be accepted. Otherwise, x∗ may still
be accepted, but only with the probability exp(f(x) − f(x∗)).3

Example. Consider the floating-point formula

A(x) def= (x == SIN(x) ∧ x ≥ 1E-10) (21)

where SIN is an implementation of the sine function, say, from glibc 2.21 [4].
Deciding A(x) is challenging for traditional SAT/SMT solvers. In fact, the part
x == SIN(x) is unsatisfiable in the theory of reals (because x = SIN(x) ⇔ x = 0
in reals) but it can be satisfied in the floating-point semantics (SIN(x) = x if
|x| < 2−26 in glibc’s implementation).

3 In a general Metropolis-Hasting algorithm, in the case of f(x∗) > f(x), x∗ is to

be accepted with the probability of exp(− f(x∗)−f(x)
T

), where T is the “annealing
temperature” [26]. Our algorithm sets T = 1 for simplicity.
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Algorithm 1. The XSat solver.

Input:
π Quantifier-free floating-point constraint of FP
LM Local minimization procedure
iter MCMC iteration number

Output: sat with a model of π, if such a model can be found, or unsat
otherwise

1 Let R be the floating-point program:

double R(double X){return g ;}

where g refers to the expression generated by GEN (π), and X is the variable
in π.
/* Iteration of procedure P with n start starting points. */

2 for j = 1 to n start do
3 Let sp be a randomly generated starting point
4 Let x∗ = Metropolis-Hasting(R, sp)
5 if R(x∗) == 0 then return x∗

6 return unsat

7 Function GEN (π)
8 if π is in the form of π1 ∧ π2 then
9 return ‘(’ GEN(π1) ‘+’ GEN(π1) ‘)’

10 if π is in the form of π1 ∨ π2 then
11 return ‘(’ GEN(π1) ‘*’ GEN(π1) ‘)’

12 if π is in the form of e0 �� e1, where �� is an arithmetic comparison then
13 return ‘d(’ �� ‘,’ GEN(π1) ‘,’ GEN(π2) ‘)’

14 if π is a floating-point constant then
15 return the constant as a string

16 Function Metropolis-Hasting (f , x)
17 x = LM(f, x)
18 for k = 1 to iter do
19 Let d be a random perturbation generation from a predefined

distribution
20 Let x∗ = LM(f, x + d)
21 if f(x∗) < f(x) then accept = true
22 else
23 Let m randomly generated from the uniform distribution on [0, 1]
24 Let accept be the Boolean m < exp(f(x) − f(x∗))

25 if accept then x = x∗

26 return x
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Following Theorem 2, we use a representing function

θ(x, SIN(x)) + (x ≥ 1E-10 ? 0 : θ(x, 1E-50)). (22)

Two models of A(x) that XSat finds are 1.1E-8 and 9.5E-9.

Discussion. The example above illustrates that XSat is execution-based—XSat
executes the function (22) (so to minimize it) rather than analyzing the semantics
of the logic formula (21). While this feature allows XSat to handle floating-
point formulas that are difficult for traditional solvers, it also implies that XSat
may be affected by floating-point inaccuracy: Let R be the representing function
and x∗ be its minimal point. Imagine that R(x∗) > 0 but the calculating R(x∗)
incorrectly gives 0 due to a truncation error. Then, XSat reports sat for an
unsatisfiable formula. To overcome this issue, we test the original constraint to
confirm the satisfiability (Sect. 5.1). Also, we have designed XSat’s representing
function using θ to sense small perturbations when calculating R. In the literature
of search-based algorithms [28,30], fitness functions have been proposed based
on an absolute-value norm or Euclidean distance. They are valid representing
functions in the sense of R1–3, but may trigger floating-point inaccuracies.

5 Experiments

5.1 Implementation

As a proof-of-concept demonstration, we have implemented XSat as a research
prototype. Our implementation is written in Python and C. It is composed of
two building blocks.

(B1). The front-end uses Z3’s parser smt file API [8] to parse an SMT2-Lib file
to its syntax tree representation, which is then transformed to a representing
function following Lines 7–15 and Line 1 of Algorithm1. The transformed pro-
gram is compiled by Clang with optimization level -O2 and invoked via Python’s
C extension.

(B2). The back-end uses an implementation of a variant of MCMC, known as
Basinhopping, taken from the scipy.optimize library of Python [6]. This MCMC
tool has multiple options, including notably (1) the number of Monte-Carlo
iterations and (2) the local optimization algorithm. These options are used in
Algorithm 1 as the input parameters iter and LM respectively. In the experiment,
we set iter = 100 and LM = “Powell” (which refers to Powell’s algorithm [36]).
To ensure that XSat does not returns sat yet the formula is unsatisfiable, we
have used Z3’s front-end to check XSat’s calculated model.

The XSat solver does not yet support all floating-point operations that
are specified in the SMT-LIB 2 standard [37]. The floating-point operators



XSat: A Fast Floating-Point Satisfiability Solver 199

currently supported by XSat mainly include the common arithmetic opera-
tions: fp.leq, fp.lt, fp.geq, fp.gt, fp.eq, fp.neg, fp.add, fp.mult, fp.sub and fp.div.
To extend XSat with other operators such as fp.min, fp.max, fp.abs and fp.sqrt,
etc. should be straightforward since they can be directly translated into arith-
metic expressions. XSat currently only accepts the rounding mode RNE (round
to nearest). Other rounding modes can be easily supported in the front-end
by setting appropriate floating-point flags in the C program. For example,
the rounding mode RTZ (round toward zero) can be realized by introducing
fesetround(FE_TOWARDZERO) in the representing function. The unsupported
features listed above do not occur in the tested floating-point benchmarks (see
below).

It is worth noting that, as mentioned in Sect. 4, XSat has the potential
to handle floating-point constraints beyond the current SMT2-LIB’s specifi-
cation, because interpreted functions, such as trigonometric functions or any
user-defined functions, can be readily implemented by translating them to their
corresponding C implementations. An illustrative example of dealing with the
sine function is given in Sect. 4.

5.2 Experimental Setup

Tested Floating-Point Benchmark.s. We have evaluated XSat over a set
of more than 200 benchmark SMT2 formulas. These benchmarks are proposed
by Griggio (a main contributor of MathSat.4) for SMT-COMP 2015. They are
accessible online [1]. To present our experimental results, we first divide Griggio’s
benchmarks into three parts:

(1) <=10K in file size: 131 SMT2 files
(2) 11K – 20K in size: 34 SMT2 files
(3) >20K in size: 49 SMT2 files

We have run XSat on all these benchmarks. This section presents our experi-
ments on (2). We include our experimental results on (1) and (3) in AppendicesA
and B.

Compared Floating-Point Solvers. We have compared XSat with MathSat,
Z3 and Coral, state-of-the-art solvers that are freely available online. MathSat
and Z3 competed in the QF FP (quantifier-free floating-point) track of the 2015
SMT Competition (SMT-COMP) [7]. The Coral solver was initially used in
symbolic execution. It uses a search based approach to solve path constraints [25].
Unlike MathSat or Z3, Coral does not directly support the SMT2 language.
Thus, we have transformed the benchmarks in the SMT2 language to the input
language of Coral [3].

4 Griggio initially used these benchmarks for comparing MathSat and Z3 [23].
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For each solver, we use its default setting for running the benchmarks. All
experiments were performed on a laptop with a 2.6 GHz Intel Core i7 and 16 GB
RAM running MacOS 10.10.

Evaluation Objectives. There are two specific evaluation objectives:

– Correctness testing : For each benchmark, we run all solvers and check the
consistency of their satisfiability results. MathSat’s result is used as the refer-
ence because the selected benchmarks are initially used and provided by the
MathSat developers.

– Efficiency testing : For each benchmark, we run all solvers with 48 h as the
timeout limit. The time is wall time measured by the standard Unix command
“time”.

5.3 Quantitative Results

This subsection presents the empirical evaluation results with respect to the
correctness and the efficiency of the solvers (Table 1).

Correctness. We sort the 34 benchmark programs by size in Table 1 (Col.
1-2), show each benchmark’s number of variables (Col. 3) and report its satis-
fiability result (Col. 4–7). As mentioned above, MathSat’s satisfiability results
(Col. 4) are used as the reference. It shows that Z3 provides consistent results
except for the benchmark sin.2.c.10, for which it times out after 48 h. Coral can-
not solve 15 of the benchmarks with the wrong results marked by a framed
box. For the benchmark sin2.c.10, Coral crashes due to an internal error
(java.lang.NullPointerException).5 Col. 7 shows the results of XSat, which is
100 % consistent compared with MathSat. We have summarized the correctness
ratio for each solver on the last row of the table: 100 % for Z3,6 54.6 % for Coral,7

and 100 % for XSat.

Efficiency. Table 1 also reports the time used by the solvers (the last four
columns). Both Z3 and Mathsat show large performance variances over different
benchmarks. Some of the benchmarks take very long time, such as sin.2.c.10
for MathSat, which takes 43438.34 s (¿ 12 h) or test v7 r7 vr5 c1 s19694 for Z3,
which takes 20862.74 s. On average, both MathSat and Z3 need more than 2,000 s
(shown in the last row of the table).8 By contrast, Coral and XSat (the last two
5 More precisely, our JVM reports errors at coral. util. visitors. adaptors. Typed-

VisitorAdaptor. visitSymBoolOperations (TypedVisitorAdaptor.java: 94). We are
unsure whether this is due to bugs in Coral or our misusing it.

6 The benchmark that Z3 times out on, sin2.c.10, is not included in calculating Z3’s
correctness.

7 The one that Coral crashes on, sin2.c.10, is not included when calculating Coral’s
correctness.

8 The one that Z3 times out on, sin2.c.10, is omitted in calculating Z3’s performance.
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Table 1. Comparison of MathSat, Z3, Coral and XSat on the SMT-Competition 2015
benchmarks proposed by Griggio, of file sizes 11K-20K.

Benchmark Satisfiability Time (seconds)

SMT2-LIB program size

(byte)

#var MathSat Z3 Coral XSat MathSat Z3 Coral XSat

div2.c.30 11430 32 sat sat unsat sat 131.73 14633.28 2.43 7.41

mult1.c.30 11478 33 sat sat unsat sat 293.28 14.55 1.37 0.80

div3.c.30 11497 33 sat sat unsat sat 139.30 212.68 1.37 0.76

div.c.30 11527 33 sat sat unsat sat 90.75 140.09 1.37 0.75

mult2.c.30 11567 34 sat sat unsat sat 358.77 12.87 1.39 0.77

test v7 r7 vr10 c1 s24535 14928 7 sat sat sat sat 35.27 85.56 0.78 0.77

test v5 r10 vr5 c1 s13195 15013 5 sat sat sat sat 160.30 260.32 0.54 0.76

div2.c.40 15060 42 sat sat unsat sat 419.57 6011.65 3.38 11.90

mult1.c.40 15088 43 sat sat unsat sat 726.95 31.88 1.57 0.83

test v7 r7 vr1 c1 s24449 15090 7 unsat unsat unsat unsat 359.42 669.88 1.34 3.93

div3.c.40 15117 43 sat sat sat sat 301.53 226.78 0.92 0.80

div.c.40 15157 43 sat sat unsat sat 290.41 375.42 1.57 0.79

mult2.c.40 15177 44 sat sat unsat sat 1680.93 30.03 1.59 0.77

test v7 r7 vr5 c1 s3582 15184 7 sat sat sat sat 101.78 78.10 0.55 0.83

test v7 r7 vr1 c1 s22845 15273 7 sat sat sat sat 138.76 2619.23 0.72 0.78

test v7 r7 vr5 c1 s19694 15275 7 sat sat sat sat 705.91 20862.74 0.64 0.86

test v7 r7 vr5 c1 s14675 15277 7 sat sat sat sat 66.90 227.70 0.53 0.76

test v7 r7 vr10 c1 s32506 15277 7 sat sat sat sat 291.32 1401.88 0.74 0.96

test v7 r7 vr10 c1 s10625 15277 7 sat sat sat sat 2971.82 1335.51 0.53 0.76

test v7 r7 vr1 c1 s4574 15279 7 sat sat sat sat 90.80 2381.56 0.80 0.77

test v5 r10 vr5 c1 s8690 15393 5 unsat unsat unsat unsat 264.36 563.48 1.37 1.58

test v5 r10 vr1 c1 s32538 15393 5 unsat unsat unsat unsat 38.88 153.65 1.35 2.22

test v5 r10 vr5 c1 s13679 15395 5 sat sat unsat sat 256.88 1748.58 1.36 0.76

test v5 r10 vr10 c1 s15708 15395 5 unsat unsat unsat unsat 3586.89 9099.97 1.35 1.89

test v5 r10 vr10 c1 s7608 15400 5 unsat unsat unsat unsat 2098.50 4941.08 1.36 1.89

test v5 r10 vr1 c1 s19145 15486 5 sat sat sat sat 125.61 190.75 0.88 0.76

test v5 r10 vr1 c1 s13516 15488 5 sat sat sat sat 107.16 89.15 0.89 0.76

test v5 r10 vr10 c1 s21502 15488 5 unsat unsat unsat unsat 1810.06 4174.55 1.35 2.00

sin2.c.10 17520 37 sat >48h crash sat 43438.34 timeout crash 26.64

div2.c.50 18755 52 sat sat unsat sat 972.07 1803.04 4.57 15.81

mult1.c.50 18757 53 sat sat unsat sat 2742.47 61.49 1.71 1.32

div3.c.50 18798 53 sat sat unsat sat 350.13 473.64 1.72 0.99

mult2.c.50 18848 54 sat sat unsat sat 2890.08 106.22 1.71 0.96

div.c.50 18849 53 sat sat unsat sat 464.64 554.38 1.70 0.97

SUMMARY - 100.0% 54.6% 100.0% 2014.75 2290.05 1.38 2.80

columns) perform significantly better than MathSat or Z3. Both can finish most
benchmarks within seconds. On average, Coral requires 1.38 s, which is less than
XSat (2.80 s). Note that Coral only obtains accurate satisfiability results on
54.6 % of the benchmarks.

Appendices A and B list our experimental results of XSat versus Z3 and
Mathsat on the rest of Griggio’s benchmarks. Similar to Table 1, the results
in Tables 2 and 3 show an important performance improvement of XSat over
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MathSat and Z3. Note that on five of the listed benchmarks, XSat reports unsat
while MathSat and Z3 report sat. We have recognized such incompleteness in
Lemma 2. Thus, although XSat has achieved significantly better results than the
other evaluated solvers, it is generally unable to prove unsat, while Z3 and
MathSat can. Therefore, XSat does not compete, but rather complements these
solvers.

6 Related Work

The study on floating-point theory is relatively sparse compared to other theo-
ries. Eager approaches encode floating-point constraints as propositional formu-
las [15,35], relying on a SAT solver as the backend; the lazy approaches, on the
other hand, use a propositional CDCL solver [24] to reason about the Boolean
structure and an ad-hoc floating-point procedures for theory reasoning. The
issues of these decision procedures are well-known: The eager approaches may
produce large propositional encoding, which can be a considerable time burden
for the worst-case exponential SAT solvers, while the lazy approaches may have
difficulties to deal with nontrivial numerical (e.g., non-linear) operations that are
frequent in real-world floating-point code. Although, we have seen active develop-
ment and enhancement for these solutions, such as the mixed abstractions [11],
theory-based heuristics [22], or the natural domain SMT [23], state-of-the-art
floating-point decision procedures still face performance challenges.

The idea of using numerical methods in program reasoning has been explored.
As an example, the SMT-solver dReal [20] combines numerical search with logical
techniques for solving problems that can be encoded as first-order logic formulas
over the real numbers. There is also a body of work on symbolic and numerical
methods [28,31,32] for test generation in scientific programs.

Perhaps the closely related work to XSat is the Coral solver [10,39]. It involves
mostly heuristic-based fitness functions integrated in symbolic execution [25],
which has been successfully integrated in Java Pathfinder [5]. However, to the
best of our knowledge, it has not seen much adoption. Compared to XSat, Coral
does not provide a precise and systematic solution for using mathematical opti-
mization in solving floating-point constraints.

7 Conclusion

We have introduced XSat, a floating-point satisfiability solver that is grounded
on the concept of representing functions. Given constraint π and program R
such that R1-3 hold, the theoretical guarantee of Theorem1 stipulates that the
problem of deciding π can be equivalently solved via minimizing R and checking
whether R(x∗) = 0 where x∗ is a global minimum point of R.
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The key challenge of such an approach lies in minimizing the representing
function R, which involves an unconstrained mathematical optimization problem.
While many MO problems are intractable, our sight is that carefully designed
representing functions can lead to MO problems efficiently solvable in practice.
We have implemented the XSat solver to empirically validate our theory. XSat
systematically transforms quantifier-free floating-point formulas into represent-
ing functions, and minimizes them via MCMC methods. We have compared XSat
with the state-of-the-art floating-point solvers, MathSat, Z3 and Coral. Evalu-
ated on benchmarks taken from the SMT-Competition 2015, XSat is shown to
significantly outperform these solvers.

Acknowledgments. We thank the anonymous reviewers for their useful comments on
earlier versions of this paper. Our special thanks go to Viktor Kuncak for his thoughtful
feedback. This work was supported in part by NSF Grant No. 1349528. The information
presented here does not necessarily reflect the position or the policy of the Government
and no official endorsement should be inferred.

A Experimental Results for Griggio’s Benchmarks
(<=10K)

Table 2 shows that XSat produces the same satisfiability as MathSat and Z3 on
nearly all benchmarks of file sizes <=10K. XSat does not support mul 03 03 1
(shown as unsupported in the table) because it currently does not handle NaN
involved in its formula. XSat reports unsat for sqrt.c.5 whereas MathSat
and Z3 report sat; this phenomenon also appears in Table 2 (which we have
explained at the end of Sect. 5). Regarding the performance, XSat significantly
outperforms both MathSat and Z3 in average: 2473.95 and 992.03 s for MathSat
and Z3 respectively, and 2.63 s for XSat.9

B Experimental Results for Griggio’s Benchmarks
(>20K)

Table 3 shows that XSat produces the same results as MathSat and Z3 for most
benchmarks of sizes > 20K where MathSat or Z3 does not timeout; Observe
that XSat reports unsat on four benchmarks (sqrt.c.10, sqrt.c.15,
sqrt.c.20 and sqrt.c.25) which are satisfiable according to Z3.

9 The benchmarks that Z3 or MathSat timeouts are not included when measuring
their mean times (the last row of Table 2).
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Table 2. Comparison of MathSat, Z3 and XSat. The table lists all 131 SMT2 files of
size <=10K in Griggio’s benchmarks. The timeout bound is 48 h.

Benchmark Satisfiability Time (seconds)

SMT2-LIB program size

(byte)

MathSat Z3 XSat MathSat Z3 XSat

test v5 r15 vr10 c1 s11127 492 sat sat sat 0.01 0.18 2.03

square 1182 unsat unsat unsat 0.49 0.17 2.52

e1 2.c 1361 sat sat sat 0.12 0.50 1.03

e1 1.c 1361 sat sat sat 0.11 0.52 0.55

e1.c 1587 sat sat sat 0.13 0.56 1.02

pow5 1622 unsat unsat unsat 107.76 564.23 2.06

e2a 3.c 1788 sat sat sat 0.11 0.34 1.01

div2.c.3 1821 sat sat sat 1.01 3.31 1.03

e2a 1.c 1884 sat sat sat 0.12 0.05 0.55

div3.c.3 1911 sat sat sat 1.48 2.78 1.01

div.c.3 1914 sat sat sat 0.77 2.50 1.01

mult1.c.3 1917 sat sat sat 0.16 0.56 1.03

e2a 2.c 1979 sat sat sat 0.12 0.32 1.02

mult2.c.3 2004 sat sat sat 0.24 0.63 1.02

sine.1.0.i 2502 sat sat sat 7.16 3.87 1.02

e3 2.c 2529 sat sat sat 2.57 2.72 1.02

e2 3.c 2540 sat sat sat 0.15 0.36 1.03

e2 1.c 2588 sat sat sat 0.74 2.23 1.03

f23 2607 sat sat sat 7.33 11.64 0.54

sine.8.0.i 2617 unsat unsat unsat 9.87 45.71 1.15

sine.7.0.i 2617 unsat unsat unsat 12.81 45.31 1.13

sine.6.0.i 2617 unsat unsat unsat 5.22 40.68 1.13

sine.5.0.i 2617 unsat unsat unsat 35.32 38.48 1.16

sine.4.0.i 2617 unsat unsat unsat 409.29 32.98 0.65

sine.3.0.i 2617 unsat unsat unsat 18.34 45.26 1.13

sine.2.0.i 2617 unsat unsat unsat 12.63 30.68 1.13

e2 2.c 2636 sat sat sat 0.11 0.36 0.65

e3 1.c 2692 sat sat sat 0.85 4.00 1.02

square.8.0.i 2817 unsat unsat unsat 8.12 17.86 1.13

square.7.0.i 2817 unsat unsat unsat 3.43 13.29 0.67

square.6.0.i 2817 unsat unsat unsat 3.50 23.61 1.13

square.5.0.i 2817 unsat unsat unsat 12.83 20.05 1.12

square.4.0.i 2817 unsat unsat unsat 3.41 19.09 0.65

square.3.0.i 2817 unsat unsat unsat 5.69 13.34 1.13

square.2.0.i 2817 unsat unsat unsat 3.88 30.35 1.13

square.1.0.i 2817 unsat unsat unsat 3.42 12.92 1.13

e2.c 3279 sat sat sat 0.83 2.28 0.65

newton.8.1.i 3461 sat sat sat 3.76 5.36 1.04

newton.5.1.i 3461 sat sat sat 24.12 14.87 1.03

newton.7.1.i 3552 sat sat sat 12.80 6.65 0.54

newton.6.1.i 3552 sat sat sat 12.79 8.32 1.03

newton.4.1.i 3552 sat sat sat 5.10 9.41 1.03

newton.3.1.i 3552 unsat unsat unsat 3460.87 458.06 1.25

newton.2.1.i 3552 unsat unsat unsat 12419.87 341.96 1.25

newton.1.1.i 3552 unsat unsat unsat 912.12 241.52 0.74

e3.c 4011 unsat unsat unsat 0.67 3.49 16.06

test v3 r3 vr5 c1 s26769 4103 sat sat sat 1.23 2.89 1.02

(Continued)



XSat: A Fast Floating-Point Satisfiability Solver 205

Table 2. (Continued)

Benchmark Satisfiability Time (seconds)

SMT2-LIB program size

(byte)

MathSat Z3 XSat MathSat Z3 XSat

test v3 r3 vr5 c1 s16867 4103 sat sat sat 0.66 2.17 0.54

test v3 r3 vr5 c1 s16641 4103 sat sat sat 0.77 2.23 1.05

test v3 r3 vr1 c1 s6731 4103 unsat unsat unsat 4.46 10.94 2.69

test v3 r3 vr1 c1 s5578 4103 unsat unsat unsat 1.22 4.40 2.06

test v3 r3 vr1 c1 s10392 4103 sat sat sat 1.76 5.13 1.04

test v3 r3 vr10 c1 s29304 4103 sat sat sat 0.84 2.20 1.04

test v3 r3 vr10 c1 s24300 4103 sat sat sat 2.75 3.03 1.02

test v3 r3 vr10 c1 s14052 4103 sat sat sat 2.55 4.89 1.02

add 01 1 4 4118 unsat unsat unsat 54.09 39.66 2.26

add 01 1 3 4118 unsat unsat unsat 48.12 30.98 2.27

add 01 1 2 4118 unsat unsat unsat 34.99 22.37 2.29

add 01 1 1 4118 unsat unsat unsat 8.52 20.30 2.29

add 01 10 4 4118 unsat unsat unsat 48.78 24.67 2.25

add 01 10 3 4118 unsat unsat unsat 22.62 23.94 2.36

add 01 10 2 4118 unsat unsat unsat 9.14 14.52 2.30

add 01 10 1 4118 unsat unsat unsat 3.32 8.48 2.26

add 01 100 4 4118 unsat unsat unsat 35.53 25.66 2.17

add 01 100 3 4118 unsat unsat unsat 15.13 19.12 2.27

add 01 100 2 4118 unsat unsat unsat 3.65 8.31 2.26

add 01 100 1 4118 unsat unsat unsat 1.47 4.55 2.27

add 01 1000 4 4118 unsat unsat unsat 11.03 16.22 2.16

add 01 1000 3 4118 unsat unsat unsat 3.88 9.61 2.18

add 01 1000 2 4118 unsat unsat unsat 1.68 4.66 2.28

add 01 1000 1 4118 unsat unsat unsat 1.25 3.57 2.47

mul 03 3 1 4211 sat sat unsupported 20.01 7.52 unsupported

mul 03 30 4 4211 unsat unsat unsat 235.55 503.51 2.53

mul 03 30 1 4211 unsat unsat unsat 11.65 43.26 2.65

mul 03 3000 1 4211 timeout timeout unsat >48 h >48 h 2.48

mul 000003 30000 1 4211 timeout unsat unsat >48 h 16906.61 2.46

div2.c.10 4264 sat sat sat 65.87 21.25 1.13

mult1.c.10 4346 sat sat sat 12.70 3.40 1.02

div3.c.10 4347 sat sat sat 50.33 9.95 1.01

div.c.10 4357 sat sat sat 7.23 12.98 1.03

mult2.c.10 4433 sat sat sat 13.52 4.25 1.02

mul 03 30 7 4459 unsat unsat unsat 16.70 50.67 2.47

mul 03 30 6 4459 unsat unsat unsat 10.46 52.32 2.35

mul 03 30 5 4459 unsat unsat unsat 9.28 48.58 2.57

mul 03 30 3 4459 unsat unsat unsat 10.43 41.03 2.47

mul 03 30 2 4459 unsat unsat unsat 9.19 40.61 2.38

newton.8.2.i 5061 sat sat sat 7.18 10.42 1.05

newton.5.2.i 5061 unsat unsat unsat 72647.46 5486.77 0.54

sqrt.c.2 5070 sat sat sat 225.06 71.90 7.10

newton.7.2.i 5152 sat sat sat 81.02 20.90 1.06

newton.6.2.i 5152 sat sat sat 8.95 11.36 1.05

newton.4.2.i 5152 unsat unsat unsat 5488.06 4900.28 0.54

newton.3.2.i 5152 unsat unsat unsat 25240.14 3360.73 1.28

newton.2.2.i 5152 unsat unsat unsat 8889.74 3806.77 1.26

newton.1.2.i 5152 unsat unsat unsat 5681.05 4262.89 1.27

(Continued)
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Table 2. (Continued)

Benchmark Satisfiability Time (seconds)

SMT2-LIB program size

(byte)

MathSat Z3 XSat MathSat Z3 XSat

sin2.c.2 5242 sat sat sat 18.90 7.80 9.18

square and power inverse 6494 sat sat sat 0.01 0.01 0.84

newton.8.3.i 6669 sat sat sat 41.29 15.84 1.11

newton.5.3.i 6669 timeout unsat unsat >48 h 15519.38 1.41

newton.7.3.i 6762 sat sat sat 586.00 13.54 1.12

newton.6.3.i 6762 sat sat sat 135.75 307.57 0.55

newton.4.3.i 6762 unsat unsat unsat 63877.95 12611.50 1.32

newton.3.3.i 6762 unsat unsat unsat 51598.07 11232.12 1.32

newton.2.3.i 6762 timeout unsat unsat >48 h 17982.84 1.32

newton.1.3.i 6762 unsat unsat unsat 59252.23 13776.82 1.32

div2.c.20 7818 sat sat sat 127.18 50.76 7.29

mult1.c.20 7886 sat sat sat 98.25 4.32 1.04

div3.c.20 7895 sat sat sat 135.78 77.00 1.05

div.c.20 7915 sat sat sat 40.17 68.29 1.04

mult2.c.20 7975 sat sat sat 71.30 13.59 1.03

qurt.c.2 8332 unsat unsat unsat 48.25 16.43 15.64

test v3 r8 vr5 c1 s8257 8359 unsat unsat unsat 20.65 20.14 1.58

test v3 r8 vr5 c1 s10746 8361 unsat unsat unsat 31.51 38.80 2.38

test v3 r8 vr1 c1 s733 8448 unsat unsat unsat 22.77 21.76 2.19

test v3 r8 vr10 c1 s18214 8448 unsat unsat unsat 45.47 31.62 1.67

test v3 r8 vr1 c1 s23752 8450 unsat unsat unsat 11.97 5.64 2.20

test v3 r8 vr1 c1 s20372 8450 unsat unsat unsat 10.64 6.47 1.76

test v3 r8 vr10 c1 s5590 8450 sat sat sat 33.42 68.78 1.04

test v3 r8 vr5 c1 s1507 8452 unsat unsat unsat 18.78 19.66 1.66

test v3 r8 vr10 c1 s4660 8454 unsat unsat unsat 41.24 34.78 2.08

test v5 r5 vr1 c1 s14623 8628 sat sat sat 58.75 86.74 1.15

test v5 r5 vr1 c1 s16138 8715 sat sat sat 22.96 58.91 1.14

test v5 r5 vr10 c1 s7194 8715 sat sat sat 78.97 120.72 1.04

test v5 r5 vr10 c1 s5379 8717 sat sat sat 53.81 36.80 1.05

test v5 r5 vr5 c1 s9855 8721 sat sat sat 36.09 136.86 1.06

test v5 r5 vr5 c1 s2800 8721 sat sat sat 121.14 660.37 1.25

test v5 r5 vr1 c1 s15604 8721 sat sat sat 19.30 39.96 1.04

test v5 r5 vr10 c1 s5996 8721 sat sat sat 9.56 18.63 0.54

test v5 r5 vr5 c1 s24018 8723 sat sat sat 53.83 70.01 1.16

sin2.c.5 9817 sat sat sat 513.95 11640.31 81.31

sqrt.c.5 11235 sat sat unsat 362.19 2033.94 33.78

MEAN 2473.95 992.03 2.63
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Table 3. Comparison of MathSat, Z3 and XSat. The table lists all 49 SMT2 files of
size >20K in Griggio’s benchmarks. The timeout bound is 600 s.

Benchmark Time (seconds) Satisfiability

SMT2-LIB program size (byte) MathSat Z3 XSat MathSat Z3 XSat

sqrt.c.10 21694 510.21 >600s 25.39 sat timeout unsat

test v5 r15 vr5 c1 s8246 21786 >600s >600s 5.43 timeout timeout unsat

test v5 r15 vr1 c1 s26845 21806 205.72 >600s 4.25 unsat timeout unsat

test v5 r15 vr10 c1 s25268 21811 >600s >600s 4.16 timeout timeout unsat

test v5 r15 vr5 c1 s26657 22065 1516.29 >600s 4.40 unsat timeout unsat

test v5 r15 vr5 c1 s23844 22067 >600s >600s 4.97 timeout timeout unsat

test v5 r15 vr1 c1 s8236 22067 88.61 >600s 4.12 unsat timeout unsat

test v5 r15 vr1 c1 s32559 22067 177.08 154.21 4.68 unsat unsat unsat

test v5 r15 vr10 c1 s14516 22245 >600s >600s 3.95 timeout timeout unsat

qurt.c.5 23164 30.09 180.65 16.87 unsat unsat unsat

test v7 r12 vr5 c1 s29826 23733 6742.22 >600s 1.65 sat timeout sat

test v7 r12 vr10 c1 s15994 23825 >600s >600s 1.44 timeout timeout sat

test v7 r12 vr10 c1 s30410 24063 >600s >600s 7.26 timeout timeout sat

test v7 r12 vr5 c1 s14336 24247 301.37 >600s 2.21 sat timeout sat

test v7 r12 vr5 c1 s8938 24248 57.62 536.56 1.93 sat sat sat

test v7 r12 vr1 c1 s10576 24267 >600s >600s 9.48 timeout timeout unsat

test v7 r12 vr1 c1 s22787 24338 >600s >600s 6.81 timeout timeout unsat

test v7 r12 vr10 c1 s18160 24430 >600s >600s 7.42 timeout timeout unsat

test v7 r12 vr1 c1 s703 24434 >600s >600s 8.99 timeout timeout unsat

sin2.c.15 25228 >600s >600s 214.19 timeout timeout sat

gaussian.c.25 29880 >600s 489.56 89.84 timeout sat sat

sqrt.c.15 32189 484.49 >600s 35.82 sat timeout unsat

test v7 r17 vr5 c1 s2807 32704 >600s >600s 7.81 timeout timeout unsat

test v7 r17 vr1 c1 s30331 32869 >600s >600s 9.13 timeout timeout unsat

test v7 r17 vr5 c1 s25451 32957 >600s >600s 7.95 timeout timeout unsat

sin2.c.20 33009 >600s >600s 226.16 timeout timeout sat

test v7 r17 vr10 c1 s8773 33144 >600s >600s 7.55 timeout timeout sat

test v7 r17 vr5 c1 s4772 33215 >600s >600s 7.91 timeout timeout unsat

test v7 r17 vr1 c1 s24331 33219 >600s >600s 9.50 timeout timeout unsat

test v7 r17 vr1 c1 s23882 33219 >600s >600s 2.58 timeout timeout sat

test v7 r17 vr10 c1 s3680 33328 >600s >600s 6.90 timeout timeout unsat

test v7 r17 vr10 c1 s18654 33403 >600s >600s 2.39 timeout timeout sat

sin.c.25 40529 >600s >600s 372.76 timeout timeout sat

sin2.c.25 40740 >600s >600s >600s timeout timeout timeout

sqrt.c.25 46801 147.34 >600s 131.43 sat timeout unsat

sqrt.c.20 46801 151.93 >600s 153.13 sat timeout unsat

qurt.c.10 47941 33.34 490.03 55.50 unsat unsat unsat

qurt.c.15 73120 35.16 1.50 134.12 unsat unsat unsat

gaussian.c.75 89683 >600s >600s >600s timeout timeout timeout

qurt.c.25 93119 51.39 >600s 194.27 unsat timeout unsat

qurt.c.20 93119 58.78 >600s 190.35 unsat timeout unsat

sin2.c.75 119783 >600s >600s >600s timeout timeout timeout

sin.c.75 119787 >600s >600s >600s timeout timeout timeout

gaussian.c.125 150785 >600s >600s >600s timeout timeout timeout

sin2.c.125 200496 >600s >600s >600s timeout timeout timeout

sin.c.125 200496 >600s >600s >600s timeout timeout timeout

gaussian.c.175 210704 >600s >600s >600s timeout timeout timeout

sin2.c.175 280955 >600s >600s >600s timeout timeout timeout

sin.c.175 280977 >600s >600s >600s timeout timeout timeout
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Abstract. We present a novel interpolation algorithm for effectively
propositional logic (epr), a decidable fragment of first-order logic that
enjoys a small-model property. epr is a powerful fragment of quanti-
fied formulas that has been used to model and verify a range of pro-
grams, including heap-manipulating programs and distributed proto-
cols. Our interpolation technique samples finite models from two sides
of the interpolation problem and generalizes them to learn a quantified
interpolant. Our results demonstrate our technique’s ability to compute
universally-quantified, existentially-quantified, as well as alternation-free
interpolants and inductive invariants, thus improving the state of the art.

1 Introduction

Craig interpolation techniques have played an important role in the advance-
ment of automated analysis and verification: from hardware verification [18],
to software verification [12,19], to error diagnosis [10], and even to modeling
of cyber-physical systems [4]. By representing program executions as first-order
formulas, interpolants can be used to concisely conjecture why the program is
correct. Expanding the scope of interpolation-based verification requires investi-
gating and developing interpolation techniques for different logical theories that
enable modeling of various program features.

In this paper, we investigate the problem of computing Craig interpolants
for effectively propositional logic (epr), also known as the Bernays-Schönfinkel-
Ramsey fragment of first-order logic. epr is the class of formulas of the form
∃∗∀∗ϕ, where the quantifier-free formula ϕ has no function symbols. Two inter-
esting aspects motivate our study of this fragment: (i) decidability of its satisfi-
ability and (ii) its surprising applicability to modeling a range of complex pro-
gram features. For instance, epr has been used to model programs manipulating
linked-list data structures and arrays [13–15,17,26], software-defined networking
programs [5], eventually consistent data stores [29], parameterized distributed
protocols [22], amongst others [23–25]. Indeed, the power of epr lies primarily
in its ability to model unbounded structures. Thus, progress in interpolation can
open the door to verification in a large spectrum of domains.

We propose a sampling-based technique for computing an interpolant I for
two inconsistent epr formulas, A and B. A key insight in our approach is that
we can use an epr satisfiability procedure as an oracle to systematically sam-
ple finite models of A and B and generalize them to monotonically grow an
c© Springer International Publishing Switzerland 2016
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interpolant. A finite model of an epr formula can be viewed as a relational
structure—a hypergraph—over a finite set of nodes. Our algorithm thus samples
hypergraphs from A and B and generalizes them into infinite sets of structurally
similar hypergraphs.

Our presented technique ensures that computed interpolants do not con-
tain quantifier alternation—that is, they are of the form ∃∗ϕ, ∀∗ϕ, or Boolean
combinations of those. This pragmatic constraint is motivated by the fact that
computed interpolants are typically used in verification engines, and thus form
inductive invariant conjectures. To check if an interpolant I(x) is an inductive
invariant with respect to a transition relation T (x,x′), one needs to check satis-
fiability of I(x) ∧ T (x,x′) ∧ ¬I(x′). If I has quantifier alternation, we leave the
decidable confines of the epr fragment—due to the negation of I, which makes
it of the form ∀∗∃∗ϕ. Thus, by finding alternation-free interpolants, we maintain
decidability of inductiveness checking.

Contributions. To our knowledge, this paper is the first comprehensive inves-
tigation of epr interpolation. We summarize our key contributions as follows:

– We first present an interpolation algorithm that can construct an existentially-
quantified interpolant, of the form ∃∗ϕ, or detect its non-existence. The algo-
rithm monotonically grows an interpolant by sampling finite models and gen-
eralizing them using the model-theoretic notion of diagrams [9].

– We present an interesting proof of soundness and completeness of our algo-
rithm and identify epr fragments and conditions for which it is complete.

– We show that, by solving the dual interpolation problem, our algorithm can
also be used to construct universally-quantified interpolants, of the form ∀∗ϕ.

– We then show how, by systematically decomposing the interpolation problem,
we can leverage this procedure to construct alternation-free interpolants with
Boolean combinations of universal and existential quantifiers.

– We validate our interpolation algorithm by implementing it alongside a simple
interpolation-based verifier. We show that the verifier (i) is competitive with
recent pdr-based algorithms [15,17] for computing universal invariants, and
(ii) is able to compute alternation-free invariants, a fragment that is out of
scope for existing techniques.

2 Illustrative Example

In this section, we illustrate our technique with simple examples.

Existential Interpolants. Consider the following formulas in epr:

A � ∃a.∀b. (p(a) ∨ q(a)) ∧ r(b) B � ∃c.∀d.¬p(d) ∧ ¬q(d) ∧ s(c)

where p, q, r, s are unary relations. A ∧ B is unsatisfiable, and we would like to
find an interpolant I such that (i) A ⇒ I, (ii) I ⇒ ¬B, and (iii) I is over the
shared vocabulary of A and B: the relations p and q, only.



212 S. Drews and A. Albarghouthi

Fig. 1. High-level illustration of unidirectional interpolation.

We will search for an interpolant in epr that is restricted to existential quan-
tifiers, i.e., contains no universal quantifiers. To do so, we will use an algorithm
we call unidirectional interpolation (uitp), illustrated at a high-level in Fig. 1.
uitp grows an interpolant by sampling models of A only (hence, unidirectional)
and generalizing them. epr satisfiability is decidable and epr formulas have
finite models, which we can find using a reduction to sat (or using, e.g., the Z3
smt solver [20]). The problem is that models in this fragment correspond to a
universe of anonymous elements that satisfy the formula. The question is: how
can we generalize such a model to a set of models and represent it as a formula?

Let us begin by sampling the following model (structure) m from A: the
singleton universe of elements {u1}, where p(u1) and r(u1) hold, but q(u1) does
not. Observe that this model satisfies A, denoted m |= A. Now, we can generalize
this model to a set of models using the model-theoretic notion of diagrams [9,17],
restricted to the shared vocabulary of A and B.

A diagram is analogous to a cube in the propositional setting, in that it is
a conjunction of the facts the model satisfies. However, since our model is a
collection of anonymous elements, we need to abstract them using quantified
variables as follows:

diag(m) � ∃xu1 . p(xu1) ∧ ¬q(xu1)

There are three important aspects to observe:

(i) m |= diag(m), and the diagram generalized m to a set of infinitely many
models that have at least one element satisfying p but not q;

(ii) the relation r does not appear in the diagram, since it is not in the shared
vocabulary of A and B; and

(iii) diag(m) ∧ B is unsatisfiable.

At a high-level, a model defines a relational structure between a set of
elements—perhaps a graph, linked list, or tree. Generically, models represent
hypergraphs. A diagram then abstracts a model into a formula defining an infi-
nite set of structurally similar hypergraphs, as illustrated in Fig. 2.

Our goal is to sample enough models such that the disjunction of their dia-
grams covers (subsumes) A and is unsatisfiable with B. In this example, A is
not subsumed by diag(m), and therefore we sample a model of A that is not a
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Fig. 2. Illustration of diagrams as sets of models

model of diag(m). Suppose we get the model m′ with the universe {u2}, where
q(u2) and r(u2) hold, but p(u2) does not. From m′, we construct the following:

diag(m′) � ∃xu2 .¬p(xu2) ∧ q(xu2)

The formula diag(m′) is unsatisfiable with B, but together with diag(m)
does not yet subsume A. We sample a third model of A that is neither a
model of diag(m) nor diag(m′). Suppose we get the model m′′ with the universe
{u3}, where p(u3), q(u3), and r(u3) hold. From m′′, we construct the following:
diag(m′′) � ∃xu3 . p(xu3) ∧ q(xu3). The formula diag(m′′) is unsatisfiable with B
and, together with diag(m) and diag(m′), subsumes A. Therefore,

diag(m) ∨ diag(m′) ∨ diag(m′′)

is an interpolant of (A,B). In practice, we weaken the interpolant further, and
hasten convergence, by dropping unnecessary conjuncts appearing in the dia-
grams; we do so using unsat cores, as described in Sect. 4.1.

Detecting that no Interpolant Exists. Not all epr formulas have
existentially-quantified interpolants. Consider the following example [7]:

A � ∀x. p(y, x) B � ∀x.¬p(x, z)

An interpolant for A and B has to have a quantifier alternation, for instance,
∃y.∀x. p(y, x). If we run uitp on the pair (A,B), we can detect that no
existentially-quantified interpolant exists. Suppose that we sample the model
m with universe {u} where p(u, u) holds. Then, diag(m) is ∃xu. p(xu, xu). This
diagram is satisfiable with B (see Fig. 1(c)). A diagram of m is the strongest
possible existentially-quantified formula in the shared vocabulary of (A,B) for
which m is a model; therefore, we can conclude that there is no existentially-
quantified interpolant for (A,B).

Universal Interpolants. Suppose that a pair of formulas (A,B) only has a
universally-quantified interpolant. By definition of an interpolant, this means
that the dual interpolation problem over (B,A) has an existentially-quantified
interpolant. Therefore, to compute a universally-quantified interpolant for
(A,B), we can simply use uitp to compute an interpolant for (B,A) and negate
it, as negation flips the existential quantifier into a universal one (see Sect. 4.1).

Alternation-Free Interpolants. Let us now consider an example that requires
a Boolean combination of ∃∗ϕ and ∀∗ϕ formulas—i.e., an alternation-free epr
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Fig. 3. High-level illustration of one recursive step of bidirectional interpolation.

formula. The uitp algorithm described above is insufficient in this case, as it
cannot compute interpolants with Boolean combinations of existential and uni-
versal quantifiers. To construct such an interpolant, we will use uitp as a sub-
procedure, but we will decompose the interpolation problem and invoke uitp
on a dual problem when requiring universal quantifiers. We call this approach
bidirectional interpolation, bitp, as it alternates sampling between the A and B
sides of the interpolation problem.

Consider the following interpolation problem:

A � ∃x, z.∀y.¬r(x, z) ∧ p(y, y) B � ∃y∀x, z.¬r(x, z) ∧ ¬p(y, y)

We begin by invoking uitp on the above, and it will immediately discover a model
m of A whose diagram overlaps with B. Suppose uitp discovers the following
diagram for some model m:

diag(m) � ∃x.¬r(x, x) ∧ p(x, x)

It happens that diag(m) overlaps with B. Intuitively, the region of overlap,
diag(m) ∧ B, cannot be isolated by the interpolant using only existential quan-
tifiers. Therefore, we need to strengthen the diagram using a universal formula.
To do so, we attempt to find a universal interpolant between diag(m) ∧ A and
diag(m) ∧ B. Specifically, we invoke uitp on the interpolation problem

(diag(m) ∧ B, diag(m) ∧ A)

and negate the result—this produces a universally-quantified formula with which
we can strengthen diag(m). Notice that B now appears on the left side of the
interpolation problem; thus, sampling now proceeds from the region in B that
overlaps with diag(m) (see Fig. 3 for an illustration).

Once we get a universal interpolant, we use it to strengthen diag(m). In this
example, after more sampling, we finally arrive at the following interpolant:

(∃x, z.¬r(x, z)) ∧ (∀y. p(y, y))

We have demonstrated how bitp uses uitp as a base procedure to com-
pute alternation-free interpolants. In a nutshell, the algorithm proceeds as if
an existential interpolant exists, and when it finds out that is not the case, it
switches direction to find the universal subformulas required to strengthen the
interpolant. We describe this process in detail in Sect. 4.3.
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3 Preliminaries

In this section, we formalize definitions needed for the rest of the paper.

Effectively Propositional Logic. We shall use L to denote the class of all
epr formulas. An epr formula ψ is a first-order formula that, when written in
prenex normal form, is of the form

∃x1, . . . , xn.∀y1, . . . , ym. ϕ,

where xi and yi are quantified variables, and ϕ is a quantifier-free formula over
quantified variables, free variables, and relations. Note that ϕ has no function
symbols. (We elide constants for clarity of presentation.) Throughout the paper,
we shall refer to epr formulas as if they are written in prenex normal form.
We shall use vocab(ψ) to denote the set of free variables and relation symbols
appearing in ψ. We shall also refer to the following epr subfragments:

– L∀: the class of formulas that only contain universal quantifiers,
– L∃: the class of formulas that only contain existential quantifiers, and
– Laf: the class of formulas that do not contain quantifier alternation.

Observe that (L∃ ∪ L∀) ⊂ Laf ⊂ L.

Finite Models. Given a L formula ψ with a set V of free variables and a set R
of relation symbols, a finite model m of ψ, denoted m |= ψ, is a tuple (U,A, T ),
where

– U is a finite set of elements, called the universe of m;
– A is an assignment function mapping free variables V and existentially-

quantified variables of ψ to elements of U ; and
– T is an interpretation function that maps each relation r ∈ R to a set of tuples

over U such that, for r with arity n, (u1, ..., un) ∈ Un is in the relation r if
and only if (u1, ..., un) ∈ T (r).

As is standard, given a model m of ψ, if ψ is instantiated with A and T , it
evaluates to true under the universe U . The cardinality of m is the size of its
universe. Despite the fact that L formulas may have infinite models, we will
always use model to refer to finite models.

It is important to note that formulas in L have a small-model property, mean-
ing that a formula is satisfiable iff it has a model whose universe is smaller than
or equal to the sum of the number of free and existentially-quantified variables
(see Theorem 3 below).

Diagrams. We now define the model-theoretic notion of a diagram, which allows
us to abstract a model m into a set of models.

Given a model m = (U,A, T ), a set of variables V , and a set of relations R,
we construct the diagram of m with respect to V and R, denoted diag(m,V,R)
(or diag(m), when V and R are clear from context) as follows:
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– For each element ui ∈ U , introduce a fresh variable xui
.

– Let ϕelem be the conjunction of the following terms:
For each distinct ui, uj ∈ U , the term xui


= xuj
.

For each x ∈ V , the term x = xu, where A(x) = u.
– Let ϕrel be the conjunction of terms described as follows:

For each r ∈ R and (u1, . . . , un) ∈ T (r), the term r(xu1 , . . . , xun
).

For each r ∈ R and (u1, . . . , un) 
∈ T (r), the term ¬r(xu1 , . . . , xun
).

– Finally, diag(m,V,R) = ∃xu1 , . . . , xu|U| . ϕelem ∧ ϕrel

Observe that m |= diag(m,V,R). The diagram abstracts the anonymous
elements of the universe of a model as existential variables. As a result the
diagram of m is the set of all models that have a substructure isomorphic to m
(see definition of substructure below, and recall Fig. 2 for a visualization).

Example 1. Let ψ � P (x) ∧ ∀y. (¬P (y) ∨ ¬Q(y)). A possible model m |= ψ is:

– U = {u1, u2}
– A = {x �→ u2}
– T = {P �→ {(u2)}, Q �→ ∅}
The diagram of the model m with respect to V = {x} and R = {P} is:

∃xu1 , xu2 . xu2 
= xu1 ∧ x = xu2 ∧ P (xu2) ∧ ¬P (xu1)

If we had considered instead a model m′ with a single element in its universe,
we would have obtained that diag(m′, V,R) is ∃xu. x = xu ∧ P (xu). �

Substructure. We briefly define the model-theoretic substructure relation.
Given a model m = (U,A, T ), a substructure of m is a model m′ = (U ′, A′, T ′)
such that U ′ ⊂ U and A′ and T ′ are restrictions of A and T to U ′. We will use
m′ � m to denote that m′ is isomorphic to a substructure of m. The notion of
a substructure admits many desirable properties:

Theorem 1. If m1 � m2 and ϕ ∈ L∃, then m1 |= ϕ ⇒ m2 |= ϕ.

Corollary 1. m1 � m2 if and only if m2 |= diag(m1).

Proof. The forward direction is a consequence of Theorem 1. For the reverse, if
m2 |= diag(m1), then, by construction of diag, there is a subset of m2 that is
isomorphic to m1, so m1 � m2. �

Theorem 2. If m1 � m2 and ϕ ∈ L∀, then m2 |= ϕ ⇒ m1 |= ϕ.

Corollary 2. Given ϕ ∈ Laf, written as a Boolean combination of L∀ and L∃
subformulas, if m1 � m2 and each L∃ subformula ψ of ϕ has the property that
m2 |= ψ ⇒ m1 |= ψ, then m2 |= ϕ ⇒ m1 |= ϕ.

Proof. From the given and from Theorem 2, we know that m1 satisfies at least
as many subformulas of ϕ as m2 does, and thus m1 |= ϕ. �
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Small Models. Additionally, given an arbitrary model m |= ϕ for ϕ ∈ L, there
exists a small model m′ � m such that m′ |= ϕ.

Theorem 3. If ϕ is a satisfiable epr formula written in prenex normal form

A � ∃x1, . . . , xn∀y1, . . . , yk. ϕ(x1, . . . , xn, y1, . . . , yk, c1, . . . , c�)

where c1, . . . , c� are free variables, then there exists a model of ϕ with size |U | �
n + �.

Proof. Let m be a model of ϕ. Consider m′ = (U ′, A, T ′) where

– U ′ is the restriction of U to ϕ, i.e. the elements to which existentially-quantified
variables x1, . . . , xn and free variables c1, . . . , c� are mapped.

– T ′ is the restriction of T to U ′.

Then, it follows immediately that m′ is also a model of ϕ with U ′ � n + �. �

Interpolants. Given a pair of L formulas, (A,B), where A ∧ B is unsatisfiable,
an interpolant I for the interpolation problem (A,B) is a formula such that

– A ⇒ I is valid,
– I ⇒ ¬B is valid, and
– vocab(I) ⊆ vocab(A) ∩ vocab(B).

Given an interpolation problem (A,B), we call (B,A) the dual interpolation
problem. For the purposes of this paper, we will restrict interpolants to formulas
in the alternation-free subfragment of epr, namely, Laf.

4 Effectively Propositional Interpolation

In this section, we describe our algorithms for computing interpolants for epr
formulas. We first present a unidirectional interpolation algorithm, which can
compute interpolants in L∃ and L∀ by sampling from one side (i.e., formula)
of the interpolation problem. We then discuss bidirectional interpolation, which
alternates its sampling between the two sides to construct an interpolant in Laf.

4.1 Unidirectional Interpolation

Algorithm Description. The unidirectional interpolation algorithm, uitp, is
used to find an interpolant in L∃ for a pair of formulas (A,B) or to detect
that no such interpolant exists. The high-level idea is to grow an interpolant—
starting from false—by sampling models of A. Of course, A likely has infinitely
many models; the algorithm thus generalizes sampled models using diagrams
until they subsume all of A or until a model’s diagram overlaps with B, in which
case we know there does not exist an existentially-quantified interpolant.

uitp is presented in Algorithm 1 as a set of guarded rules that update a set of
samples S, which contains diagrams of models of A. Initially, the set S is empty;
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the rule sample finds a model of A that is not a model of one of the diagrams
in S and adds its diagram to S. The diagrams are taken with respect to the set
of variables V and relations R in the shared vocabulary, vocab(A) ∩ vocab(B).

Observe that S is a set of existentially-quantified formulas of the form

∃X. a1 ∧ . . . ∧ an,

where ai is an atomic predicate. At any point the candidate interpolant is
∨

S,
i.e., the disjunction of all diagrams in S. Thus, the candidate interpolant begins
as being false, and every time the rule sample is applied, the candidate inter-
polant is weakened. Note that all formulas in L∃ can be written as disjunctions
of existentially-quantified conjunctions of atoms.

The algorithm succeeds in finding an interpolant when the rule itp applies—
that is, when A ⇒ ∨

S and
∨

S ⇒ ¬B are valid. Observe that all of these
satisfiability checks lie within epr, and are therefore decidable.

If the algorithm detects a diagram in S that is satisfiable with B, using rule
fail, it concludes that no interpolant in L∃ exists for (A,B). The intuition here
is as follows: Given a model m |= A, diag(m) is the strongest formula in L∃ for
which m is a model. Therefore, if diag(m) overlaps with B, we cannot find an
interpolant in L∃ that includes the model m. (See Theorem 5.)

Finally, the rule abstract attempts to weaken a diagram up to B—that is,
it takes a diagram in S and removes some of its conjuncts such that the result
is still unsatisfiable with B. In practice, this is performed using unsat cores,
when checking whether the diagram is satisfiable with B. Whereas this rule is
not needed for soundness or completeness, it is of crucial importance in practice,
as otherwise diagrams are overly specific (this is further discussed below).

Computing L∀ Interpolants. uitp can also be used to compute universally-
quantified interpolants in L∀. This can be easily done as follows: Suppose that
(A,B) has an interpolant I∀ in L∀. By definition of an interpolant, we know that

(i) B ⇒ ¬I∀ is valid and
(ii) ¬I∀ ⇒ ¬A is valid.

In other words, ¬I∀ is an interpolant for the dual interpolation problem, (B,A).
Observe that ¬I∀ is in L∃, since the negation turns the universal quantifier into
an existential one. Therefore, to find a universal interpolant for (A,B), we can
simply use uitp to find an existential interpolant for (B,A) and take its negation.
Viewed differently, by solving the dual interpolation problem, we are essentially
modifying uitp to sample from the B side of the interpolation problem instead
of the A side, and this allows us to compute universally-quantified interpolants.

Interpolant Strength. For any two formulas, there is typically a spectrum of
interpolants. Depending on the order in which the uitp rules are applied, we
may arrive at different interpolants.

On one extreme, if we avoid using the abstract rule, we ensure that what-
ever interpolant we find is the strongest possible one. This is because, for every
sampled model m of A, uitp will add the strongest possible formula in L∃ that
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init
S ← ∅

m |= A ∧
∧

s∈S

¬s
sample

S ← S ∪ {diag(m,V,R)}

s ∈ S s � ∃X.
∧

D s′ � ∃X.
∧

D′ D′ ⊂ D s′ ∧ B is unsat
abstract

S ← (S \ {s}) ∪ {s′}
s ∈ S s ∧ B is sat

fail
no L∃ interpolant exists for (A,B)

A ∧
∧

s∈S

¬s is unsat B ∧
∨

S is unsat

itp∨
S is an L∃ interpolant for (A,B)

Algorithm 1. Unidirectional interpolation

contains m (its diagram) to the set of samples S. Any interpolant that is stronger
will thus have to exclude one of the models of A.

On the other extreme, if at every step abstract is applied exhaustively—
i.e., until it is no longer applicable to any s ∈ S—then we arrive at a maximal
interpolant. (This is equivalent to taking a minimal unsat core of each diagram
with respect to B, which can result in sampling exponentially fewer models.)
A maximal interpolant I is one that cannot be weakened while remaining an
interpolant—i.e., there does not exist an interpolant I ′ such that I ⇒ I ′ and
I 
≡ I ′. Note that there maybe a number of incomparable maximal interpolants.

The following theorem states that different applications of the rules can result
in all interpolants, from the weakest to the strongest.

Theorem 4. For every interpolant I ∈ L∃ of (A,B), there exists a run of uitp
that will compute it.

4.2 Theoretical Properties of UITP

We now investigate soundness and completeness of uitp.

Soundness. The following theorem states that uitp is sound.

Theorem 5 (Soundness). If uitp, invoked on (A,B), returns a formula I ∈
L∃, then I is an interpolant of (A,B). If the fail rule applies, then there is no
interpolant in L∃ for (A,B).

Proof. The first statement follows from the fact that (i) the candidate inter-
polant

∨
S is in L∃; (ii) following the rule sample, the candidate interpolant is

over the shared vocabulary of A and B; and (iii) the rule itp ensures that the
returned formula I is such that A ⇒ I and I ⇒ ¬B.

We prove the latter statement by contradiction. Suppose I ∈ L∃ is an inter-
polant for (A,B), but the fail rule applies. Then, there is a model m |= A such
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that diag(m) ∧ B is satisfiable. I can be written as
∨

i ψi, where ψi is an L∃ for-
mula of the form ∃∗ϕi, where ϕi is a conjunction of atoms. If m |= A, then, since
I subsumes A, m |= I. In particular, for some i, m |= ∃∗ϕi. By construction,
diag(m) is at least as strong as ∃∗ϕi, so since diag(m) ∧ B is satisfiable, so is
I ∧ B—but this contradicts the definition of an interpolant. �

Completeness. We now consider completeness of uitp: meaning that it is
always able to find an interpolant if one exists or detect its non-existence in a
finite number of steps. The key insight in our proof is the observation that every
epr formula A has a finite set of small models that characterize an L∃ formula
that subsumes A. The following lemma formalizes this observation, which we
prove using epr’s small-model property.

Lemma 1 (L∃ basis). Given A ∈ L, let M = {m | m is a small model of A}.
Then M is a finite set, called an L∃ basis, such that

A ⇒
(

∨

m∈M

diag(m)

)

is valid. (1)

Proof. For any model m |= A, there is a small model m′ |= A such that m′ � m,
and therefore diag(m) ⇒ diag(m′). It follows that every model of A is a model
of

∨
m∈M diag(m), and since the small models have an upper bound on their

cardinality, there are finitely many of them. Therefore, Formula 1 is well-formed
and holds. �

Using Lemma 1, we are now ready to state completeness of uitp. The fol-
lowing theorem assumes a fair application of uitp rules.

Theorem 6 (Completeness of UITP). Let c be the maximum of the small-
model cardinality bounds of A and B. If uitp is invoked under the additional
constraint that each sampled model has cardinality at most c, then eventually
one of the rules itp or fail applies.

Proof. First, consider the case that an interpolant exists. By Lemma 1, A has
an L∃ basis M ′ where each model has size at most c. So, if an interpolant exists
in L∃, we eventually find it by enumerating the finitely many models (up to
isomorphism) of size at most c.

Second, consider the case where no interpolant exists. The algorithm will
eventually find a model m |= A such that diag(m)∧B is satisfiable. This follows
from Lemma 1, as if no such model is found, the existence of an L∃ basis would
induce an interpolant. �

Complete Theories. The above completeness theorem assumes that sampling
produces models of bounded cardinality. This can be enforced by adding the
constraint card(c) to the formula:

card(c) � ∃x1, . . . , xc.∀y.
∨

1�i�c

y = xi (2)
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Require: A ∧ B is unsat
1: function bitp(A,B)
2: apply init
3: while itp does not apply do
4: if ∃s ∈ S. s ∧ B is sat then
5: I ← bitp(s ∧ B, s ∧ A)
6: s ← s ∧ ¬I
7: end if
8: apply sample
9: end while

10: return
∨

S is an interpolant
11: end function

Algorithm 2. Bidirectional interpolation

card(c) restricts sampling to models of size at most c. In practice, however,
we are typically operating on formulas from a specific domain, which might
have desirable properties that allow us to elide the potentially costly cardinality
restriction for completeness.

Consider, for example, epr formulas representing linear orders [14,21], which
can be used to model linked and doubly-linked lists. Linear orders restrict rela-
tions to be at most of binary arity and to be reflexive, transitive, and anti-
symmetric. We shall call this subset of formulas Llo. As very recently discov-
ered by Padon et al. [21], this epr theory forces a well-quasi-order on models.
This ensures that there is no infinite sequence of models that are incomparable
according to the substructure relation. Using this result, we can show that uitp
is complete for Llo, without the model cardinality restrictions from Theorem6.

Theorem 7 (Completeness under linear ordering). Given A,B ∈ Llo, if
uitp is invoked on (A,B), it eventually terminates.

Proof. We prove this by contradiction. Suppose that uitp does not terminate
on some (A,B). Then, there are infinitely many calls to sample, and therefore
an infinite sequence of computed models m1,m2, . . . of A. By Padon et al. [21,
Theorem 6.2], we know that this sequence of models forms a well-quasi-order
that is equivalent to the substructure relation: there exist models mi and mj ,
with i < j, such that mi � mj . This means that mj |= diag(mi), which cannot
happen by definition of sample: once we have considered mi, we only obtain
model mj if mj 
|= diag(mi). �

The proof of the above theorem only exploits the fact that models of Llo

form a well-quasi-order under the �∀∗ ordering of Padon et al. [21, Theorem 6.2].
Thus, as a direct corollary, we can show completeness of uitp for any theory
with such property—and not only linear orders.
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4.3 Bidirectional Interpolation

Algorithm Description. We now switch attention to computing alternation-
free interpolants in Laf, i.e., with Boolean combinations of formulas in L∃ and
L∀. Recall that, by solving the dual interpolation problem, we can compute uni-
versal interpolants using uitp. Bidirectional interpolation exploits this property
to compute interpolants in Laf. Specifically, bitp proceeds as if an L∃ interpolant
exists, and when it discovers that it is not the case, it recursively switches to
solving a dual interpolation problem in order to find the required subformulas
needed to strengthen the interpolant.

bitp is described in Algorithm 2. bitp uses the rules of uitp to construct
an interpolant, and, like uitp, maintains the set of diagrams S and a candidate
interpolant

∨
S. The algorithm begins by applying init and iteratively samples

models, using sample, until an interpolant is found. When an L∃ interpolant
exists, bitp behaves as a determinization of uitp’s rules. The difference from
uitp, however, is when a diagram s ∈ S overlaps with B.

Recall that sampling adds L∃ formulas to S. If one s ∈ S overlaps with B,
we attempt to strengthen it with a universally-quantified formula by recursively
calling bitp on (s ∧ B, s ∧ A) and negating the result (see lines 5 and 6). In
other words, we focus on the region in B that overlaps with s, and we attempt
to strengthen s in order to excise that region from the candidate interpolant.

4.4 Theoretical Properties of BITP

We now discuss soundness and completeness of bitp. Observe that calling bitp
in line 5 may require further recursive calls if no L∃ interpolant exists for (s ∧
B, s ∧ A)—i.e., the interpolant for (s ∧ B, s ∧ A) is still in Laf. If these recursive
calls never terminate by finding an L∃ interpolant at some depth, then the
algorithm produces an infinite sequence of models (at least one per recursive
call). We can show that the existence of such an infinite sequence is the exact
criterion to determine that no Laf interpolant exists for (A,B). Accordingly, we
prove the relative completeness of bitp—that when an Laf interpolant exists,
the algorithm terminates with such an interpolant.

The following lemma states the conditions required to show that the no Laf

interpolant exists for a pair of formulas (A,B).

Lemma 2 (Non-existence of Laf interpolants). Let A,B ∈ L, and suppose
there is an infinite alternating chain of models of A and B: mA

1 ,mB
2 ,mA

3 ,mB
4 , . . .

with the three properties

– mA
i |= A and mB

j |= B, for all odd i and even j

– diag(mA
1 ) ⇐ diag(mB

2 ) ⇐ diag(mA
3 ) ⇐ . . .

– |mA
1 | < |mB

2 | < |mA
3 | < . . .

Then, there is no Laf interpolant for (A,B).
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Proof. We will prove this lemma by showing that for every formula ϕ ∈ Laf s.t.
A ⇒ ϕ, we have that ϕ ∧ B is sat, thus implying that no Laf interpolant exists
for (A,B). The proof relies on Theorem 1 and Corollary 2.

First, define num(ϕ) = n + m + c, where ϕ ∈ L is a prenex normal form
formula ∃x1, . . . , xn.∀y1, . . . ym. φ and c is the number of free variables in ϕ. We
shall use |m| to denote the number of elements in the universe of a model m.

Let Φ = {ϕ ∈ Laf | ∀i.mA
i |= ϕ}. That is, the set Φ is that of all Laf

formulas whose models contain {mA
i }; thus the set of possible Laf interpolants

for (A,B) is contained in Φ. Assume each ϕi is written as a Boolean combination
of universal and existential subformulas. Now, pick some ϕ ∈ Φ and some model
mA

i such that |mA
i | > num(ϕ).

By definition of Φ, we know that mA
i |= ϕ and mA

i+2 |= ϕ. We now show that
this entails that mB

i+1 |= ϕ:

– Since the number of existentially quantified variables in ϕ is less than |mA
i |,

we know that mA
i and mA

i+2 satisfy the same existential subformulas of ϕ.
– Since mA

i � mB
i+1, by Theorem 1, mB

i+1 also satisfies all existential subformulas
of ϕ.

– Since mB
i+1 � mA

i+2, by Corollary 2, we know that mB
i+1 |= ϕ.

Therefore there is no Laf interpolant for (A,B), since any Laf formula I ∈ Φ,
where A ⇒ I, is such that I ∧ B is sat. �

We are now ready to state bitp’s soundness and relative completeness.

Theorem 8 (Soundness and relative completeness of BITP). Given two
formulas A,B ∈ L, where A ∧ B is unsat,

1. if bitp(A,B) returns a formula, then it is an interpolant of (A,B);
2. if A and B have an Laf interpolant, then bitp(A,B) returns a formula and

terminates.

Proof. If bitp returns an interpolant, then it is correct by construction.
We will prove relative completeness (point 2 in theorem statement) by the

contrapositive: If bitp(A,B) does not terminate, then there is no Laf interpolant
for (A,B). For the purposes of the proof, let us assume that the algorithm always
samples a model of the smallest cardinality possible. Now, suppose that the
algorithm does not terminate. This could happen in two places:

1. the loop (line 3) in some recursion depth d executes indefinitely, or
2. there is an infinite chain of recursive calls to bitp.

Case 1 : We first show that case 1 is impossible. Suppose that at recursive
depth d the algorithm is called on (A′, B′). Suppose the loop does not terminate.
Since models are sampled in increasing cardinality, at some point the variable I
is of the form

I ≡
∨

m|=A′ and |m|�num(A′)

diag(m) ∧ ¬bitp(diag(m) ∧ B′, diag(m) ∧ A′)
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Fig. 4. Illustration of an infinite, alternating sequence of models satisfying conditions
of Lemma 2, where A � ∀x. p(y, x) and B � ∀x.¬P (x, z)

In other words, at some point during the assumed infinite execution of the loop,
the variable I will contain all diagrams of models of size � num(A′) (and any
required strengthening). Since the loop keeps executing beyond this point, this
means there is a model m s.t. m |= A′ and m 
|= I. But since |m| > num(A′),
this means that there is a substructure m′ � m, where m′ |= A, |m′| � num(A),
and diag(m) ⇒ diag(m′). But since m′ |= I, it is also true that m |= I. By
contradiction, the loop terminates.

Case 2 : Now, consider case 2. Suppose there is an infinite chain of recursive
calls. By definition of bitp, there is an infinite sequence of models (samples) mA

1 ,
mB

2 , mA
3 , mB

4 , . . . such that

diag(mA
1 ) ⇐ diag(mB

2 ) ⇐ diag(mA
3 ) ⇐ . . . (3)

|mA
1 | < |mB

2 | < |mA
3 | < . . . (4)

for all mX
i , diag(mX

i ) ∧ A is sat and diag(mX
i ) ∧ B is sat (5)

This happens by construction due to the alternation of bitp: in the first recur-
sive call, it conjoins diag(mA

1 ) to A and B; then, in the second recursive call,
diag(mB

2 ) is conjoined to A and B, where mB
2 |= diag(mA

1 ), etc. As a result, we
get constraint 3. Constraint 4 is implied by the fact that A ∧ B is unsat. (If
there is i such that |mA

i | = |mB
i+1| or |mB

i | = |mA
i+1| this means that A and B

have the same model.) Constraint 5 is implied by the fact that the sequence is
infinite.

Following Lemma 2, non-termination means there is no Laf interpolant. �

4.5 BITP Examples

The following example illustrates a successful run of bitp.

Example 2. Consider the following formulas, and suppose we call bitp on (A,B).

A � ∃x.∀y. x = y ∧ p(x) B � ∃x, y. p(x) ∧ p(y) ∧ y 
= x

Initially, S = ∅ and the candidate interpolant
∨

S ≡ false. So, we start by
sampling (line 8) the model m with the following diagram, sm � ∃xu. p(xu). In
the next iteration around the loop, we will notice that sm ∧ B is sat (line 4);
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therefore, we call uitp on (sm ∧ B, sm ∧ A). The result we get is the following:
I ≡ ∃x, y. p(x) ∧ p(y) ∧ x 
= y. As shown in line 6, we now strengthen sm by
setting it to sm ∧ ¬I. At this point, sm is an interpolant, and therefore the
algorithm terminates. �

We now demonstrate bitp on an example with no Laf interpolant.

Example 3. We use the same example as in Sect. 2:

A � ∀x. p(y, x) B � ∀x.¬p(x, z)

bitp might begin by sampling the model mA
1 of A with diag(mA

1 ) � ∃c1. p(c1, c1).
Model mA

1 is shown pictorially on the left side of Fig. 4. bitp now recursively
looks for an interpolant of (B ∧ diag(mA

1 ), A ∧ diag(mA
1 )).

At this point, bitp samples from B ∧ diag(mA
1 ) the model mB

2 of cardinality
2 with the diagram:

diag(mB
2 ) � ∃c1, c2. c1 
= c2 ∧ p(c1, c1) ∧ ¬p(c1, c2) ∧ ¬p(c2, c2) ∧ p(c2, c1)

Note that diag(mB
2 ) ∧ (A ∧ diag(mA

1 )) is still satisfiable, so bitp will make yet
another recursive call to (A ∧ diag(mA

1 ) ∧ diag(mB
2 ), B ∧ diag(mA

1 ) ∧ diag(mB
2 )).

We will notice that the cardinality of sampled models keeps increasing as bitp
continues to run, and in fact, bitp will never terminate, since there is no Laf

interpolant for (A,B).
Specifically, bitp will end up constructing an infinite alternating sequence of

models mA
1 ,mB

2 ,mA
3 ,mB

4 , . . .. A possible infinite alternating sequence of mod-
els of A and B is illustrated in Fig. 4. Observe that this sequence satisfies the
conditions of Lemma 2 for non-existence of an Laf interpolant. �

5 Implementation and Evaluation

Implementation. We have implemented prototypes of uitp and bitp using the
Z3 smt solver [20] as a black box. To evaluate the performance and utility of our
algorithms, we built a simple interpolation-based verifier, itpv, for transition
systems in epr. itpv expects a transition system TS = (init, trans, bad). itpv
unrolls the transition relation and uses our interpolation algorithms to compute
interpolants and discover a safe inductive invariant for TS.

Evaluation. We applied itpv on singly- and doubly-linked-list benchmarks [15,
17]. We compared the performance of itpv against two tools: (i) pdrα [15],
a predicate-abstraction-based verifier based on property-directed reachability
(pdr), and (ii) pdr∀ [17], a pdr-based verifier that uses diagrams for generaliz-
ing counterexamples. To our knowledge, these are the only two other techniques
for automated verification of programs encoded in epr. Note, however, that both
pdrα and pdr∀ can only compute universally-quantified invariants (in L∀). We
considered a set of benchmarks that require L∀ invariants, and another a set
that require Laf invariants, as detailed below.
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Table 1. Experimental results: (a) L∀ benchmarks and (b) Laf benchmarks

Universal Proofs. Table 1(a) shows the results of applying itpv, pdrα, and
pdr∀ to proving memory safety of a set of list-manipulating benchmarks drawn
from [15,17].1 All of these benchmarks require inductive invariants in L∀. The
symbol ✗t indicates that the tool did not return a solution within a 10 min time
limit, and ✗α indicates that the predicate abstract domain of pdrα is not precise
enough to compute a safe inductive invariant. Column D indicates the depth of
the unrolling (pdr frames or transition relation unrollings) an algorithm required
to compute a safe inductive invariant.

Our results primarily indicate that our interpolation technique (i) is a viable
means for verifying non-trivial epr transition relations and (ii) results in a verifi-
cation tool that is comparable to the state-of-the-art in epr verification. Digging
deeper into the results, we see that itpv is almost consistently superior to pdrα.
Compared to pdr∀, we witness comparable performance. On benchmarks 8 and
15, however, we observe that itpv is slower than pdr∀. We discovered that
this occurs when one needs to interpolate over a deep unrolling of the transi-
tion relation in order to find an inductive invariant (on these examples, D is
6 and 7). This is an artifact of two factors: (i) the satisfiability algorithm in
Z3 and (ii) the algorithmic differences between interpolation-based verification
and property-directed reachability. pdr techniques do not explicitly unroll the
transition relation, and therefore tend to make more but smaller sat queries.

1 Time measurements for all tools do not contain Z3 expression manipulation time,
due to the avoidable substantial overhead incurred by the Python api.
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Interpolation techniques unroll the transition relation, resulting in large sat
queries. The performance of the epr satisfiability procedure in Z3 suffers when
we give it large formulas, leading to slower verification when deep unrollings are
needed. We thus hope that the benchmarks generated through this work would
influence the design of more efficient epr satisfiability procedures; for instance,
linear orders [14,17,21] can benefit from specialized quantifier instantiation that
exploits their transitivity and antisymmetry [6].

Alternating Proofs. Table 1(b) shows a set of benchmarks requiring inductive
invariants in Laf. The first two benchmarks are from [17], where it is shown
that pdr∀ declares that no universally-quantified invariant exists. The rest of
the benchmarks are modifications of the ones appearing in Table 1(a), where
we manually modified the program to require existential as well as universal
quantifiers in the proof. To our knowledge, itpv is the first tool to be able to
automatically compute inductive invariants over the rich class of Laf formulas.

6 Related Work

Interpolation and EPR. Our algorithm is inspired by the recent model-based
interpolation techniques that rely on sampling models of A and B to construct a
simple interpolant [2,28]. Thus far these techniques have been limited to linear
arithmetic. Whereas our work here also constructs an interpolant by generalizing
from models, the underlying methodology is very different.

The line of work by Itzhaky et al. [13–15] and Karbyshev et al. [17] showed
us how to encode linear data structures in epr. The model generalization tech-
nique our algorithm uses is similar to the notion of diagrams used in the recent
property-directed reachability [8] algorithm for epr [17]. Our interpolation tech-
nique enables construction of both universal, existential, and mixed quantifier
interpolants—and therefore invariants. This is in contrast to existing verification
techniques that only compute universal invariants. Additionally, the notion of
interpolants is general and of independent interest outside of safety checking.

Another close work to ours is that of Bjørner et al. [7]: in a short paper, the
authors sketch out a model-based epr interpolation algorithm. However, unlike
our work, it does not guarantee that the interpolants are alternation-free. There
are also a number of works on interpolation techniques for arrays and heap-
manipulating programs [1,3,16,31]. Our work differs in that it targets the epr
fragment of first-order logic, which none of those works apply to.

Symbolic Abstraction. Our work has connections with symbolic abstrac-
tion [27], in which a formula in a rich logic is abstracted into one that subsumes
it in a weaker logic. The approach of Reps et al. [27] performs this abstrac-
tion by sampling models and growing the abstraction starting from bottom.
Thakur defined the notion of abstract interpolants [30], which are interpolants in
a restricted logic, and showed how to use symbolic abstraction to compute them.
Our techniques can be viewed through this lens, as we restrict interpolants to
a sub-fragment of epr and iteratively grow interpolants. Another work in the
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same vein is that on learning quantified data automata [11] for verifying lin-
ear data structures. The similarity between our works is that both use a black
box teacher to learn quantified invariants. Our technique, however, can compute
invariants with combinations of quantifiers, and operates in the setting of epr.
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Abstract. We present an extension to the quantifier-free theory of inte-
ger arrays which allows us to express counting. The properties expressible
in Array Folds Logic (AFL) include statements such as “the first array
cell contains the array length,” and “the array contains equally many
minimal and maximal elements.” These properties cannot be expressed
in quantified fragments of the theory of arrays, nor in the theory of
concatenation. Using reduction to counter machines, we show that the
satisfiability problem of AFL is PSPACE-complete, and with a natural
restriction the complexity decreases to NP. We also show that adding
either universal quantifiers or concatenation leads to undecidability.

AFL contains terms that fold a function over an array. We demon-
strate that folding, a well-known concept from functional languages,
allows us to concisely summarize loops that count over arrays, which
occurs frequently in real-life programs. We provide a tool that can dis-
charge proof obligations in AFL, and we demonstrate on practical exam-
ples that our decision procedure can solve a broad range of problems in
symbolic testing and program verification.

1 Introduction

Arrays and lists (or, more generally, sequences) are fundamental data struc-
tures both for imperative and functional programs: hardly any real-life program
can work without processing sequentially-ordered data. Testing and verification
of array- and list-manipulating programs is thus a task of crucial importance.
Almost any non-trivial property about these data structures requires some sort
of universal quantification; unfortunately, the full first-order theories of arrays
and lists are undecidable. This has motivated researches to investigate fragments
with restricted quantifier prefixes, and has given rise to numerous logics that can
describe interesting properties of sequences, such as partitioning or sortedness.
These logics have efficient decision procedures and have been successfully applied
to verify some important aspects of programs working with arrays and lists: for
example, the correctness of sorting algorithms.

This research was supported in part by the European Research Council (ERC) under
grant 267989 (QUAREM) and by the Austrian Science Fund (FWF) under grants
S11402-N23 (RiSE and SHiNE) and Z211-N23 (Wittgenstein Award).

c© Springer International Publishing Switzerland 2016
S. Chaudhuri and A. Farzan (Eds.): CAV 2016, Part II, LNCS 9780, pp. 230–248, 2016.
DOI: 10.1007/978-3-319-41540-6 13



Array Folds Logic 231

min = max = a[0];

j = k = 0;

for(i=0;i<size(a);i++) {

if(a[i]<min) { min=a[i]; j=1; }

if(a[i]==min) j++;

}

for(i=0;i<size(a);i++) {

if(a[i]>max) { max=a[i]; k=1; }

if(a[i]==max) k++;

}

assert(j==k);

(a) C language

∃min,max , i1, i2, j, k .

0 ≤ i1 < |a| ∧ 0 ≤ i2 < |a| ∧
a[i1] = min ∧ a[i2] = max ∧
∀i.(a[i] ≥ min) ∧
∀i.(a[i] ≤ max) ∧
j = {i | a[i] = min} ∧
k = {i | a[i] = max} ∧
j = k

(b) Quantified arrays + cardinality

0 ≤ i1 < |a| ∧ 0 ≤ i2 < |a| ∧ a[i1] = min ∧ a[i2] = max ∧
folda

0
0

e=min ⇒ c1++
e>min ⇒ skip

)
= |a|

j ∧ folda
0
0

e=max ⇒ c1++
e<max ⇒ skip

)
= |a|

k

) ∧ j = k

(c) Array Folds Logic

Fig. 1. A toy array problem

However, an important class of properties, namely, counting over arrays,
has eluded researchers’ attention so far. In addition to the examples from the
abstract, this includes statements such as “the histogram of the input data sat-
isfies the given distribution,” or “the packet adheres to the requirements of the
given type-length-value (TLV) encoding (e.g., of the IPv6 options).” Such prop-
erties, though crucial for many applications, cannot be expressed in decidable
fragments of the first-order theory of arrays, nor in the decidable extensions of
the theory of concatenation.

In this paper we present Array Folds Logic (AFL), which is an extension of
the quantifier-free theory of integer arrays. But instead of introducing quantifiers,
we introduce counting in the form of fold terms. Folding is a well-known concept
in functional languages: as the name suggests, it folds some function over an
array, i.e., applies it to every element of the array in sequence, while preserving
the intermediate result.

To illustrate the kind of problems we are dealing with, consider the following
toy example: given an array, accept it if the number of minimum elements in
the array is the same as the number of maximum elements in the array. E.g.,
the array [1, 2, 7, 4, 1, 3, 7, 5] is accepted (because there are two 1’s and two 7’s),
while the array [1, 2, 7, 4, 1, 3, 6, 5] is rejected (because there is only one 7).

Written in a programming language like C, the problem can be solved by the
piece of code shown in Fig. 1a, but such explicit solution cannot express verifica-
tion conditions for symbolic verification and testing. We can use the quantified
theory of arrays mixed with assertions about cardinality of sets, as in Fig. 1b.
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Unfortunately, such a combination is undecidable (by a reduction from Hilbert’s
Tenth Problem: replace folds with cardinalities in the proof of Theorem2).

The solution we propose is shown in Fig. 1c: in the example formula, the first
fold applies a function to array a. The vector in the first parentheses gives initial
values for the array index and counter c1; the function is folded over the array
starting from the initial index. Index variable i is implicit, and it is incremented
at each iteration. The function itself is given in the second parentheses, and has
two branches. The first branch counts the number of positions with elements
equal to min in counter c1. The second branch skips when the current array
element e is greater than the (guessed, existentially quantified) variable min.
When e < min, the implicit break statement is executed, and the fold terminates
prematurely. The result of the fold is compared to the vector which asserts that
the final value of the array index equals to the array size |a| (which means no
break was executed), and the final value of c1 equals to j. The positions where
elements are equal to max , are counted in the second fold , and the equality
between these two counts is asserted. The ability to count over arrays with
unbounded elements is a unique feature of Array Folds Logic.

This paper makes the following contributions:
1. We define a new logic, called AFL, that can express interesting and non-

trivial properties of counting over arrays, which are orthogonal to the properties
expressible by other logics. Additionally, AFL can concisely summarize loops
with internal branching that traverse arrays and perform counting, enabling
verification and symbolic testing of programs with such loops.

2. We show that the satisfiability problem for AFL is PSPACE-complete,
and with a natural restriction the complexity decreases to NP. We provide a
decision procedure for AFL, which works by a reduction to the emptiness of
(symbolic) reversal-bounded counter machines, which in turn reduces to the
satisfiability of existential Presburger formulas. We show that adding either uni-
versal quantifiers or concatenation leads to undecidability.

3. We implemented tool AFolder [13] that can discharge proof obligations
in AFL, and we demonstrate on real-life examples that our decision procedure
can solve a broad range of problems in symbolic testing and program verification.

Related Work. Our logic is related to the quantified fragments of the theory
of arrays such as [4,10,21,22]. These logics allow restricted quantifier prefixes,
and their decision procedures work by rewriting to the (parametric) theories of
array indices and elements (Presburger arithmetic being the most common case)
[4,10], or by reduction to flat counter automata with difference bound constraints
[21,22]. An interesting alternative is provided in [35], where the quantification
is arbitrary, but array elements must be bounded by a constant given a pri-
ori; the decision procedure works by a reduction to WS1S. A separate line of
work is presented by the theory combination frameworks of [16,18], where the
quantifier-free theory of arrays is extended by injective predicate and domain
function [18], or with map and constant-value combinators [16]. The theory of
concatenation and its extensions [11,17,29] are also related; their decision proce-
dures work by reduction to Makanin’s algorithm for solving word equations [30].
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AFL can express some properties that are also expressible in these logics, such
as boundedness, partitioning, or periodicity ; other properties, such as sortedness,
are not expressible in AFL. The counting properties that constitute the core of
AFL are not expressible in any of the above logics. We compare the expressive
power of AFL and other logics in Sect. 2.3.

There are numerous works on loop acceleration and summarization [8,12,27],
also in the context of verification and symbolic testing [9,19,24,33] and array-
manipulating programs [3,5,7]. Our logic allows one to summarize loops with
internal branching and counting, which are outside of the scope of these works.

The decision procedure for AFL is based on decidability results for emptiness
of reversal-bounded counter machines [20,25,26], on the encoding of this problem
into Presburger arithmetic [23], and on the computation of Parikh images for
NFAs [34]. In Sect. 5 we extend the encoding procedure to symbolic counter
machines, and present some substantial improvements that make it efficient for
solving practical AFL problems.

2 Array Folds Logic

We assume familiarity with the standard syntax and terminology of many-sorted
first-order logics. We use vector notation: v = (v1, . . . , vn) denotes an ordered
sequence of terms. For two vectors u and v , we write their concatenation as uv .

Within this paper we consider the domains of arrays, array indices, and array
elements to be A = Z

∗, N = { 0, 1, . . . }, and Z = { . . . ,−1, 0, 1, . . . } respectively.
Presburger arithmetic has the signature ΣZ = { 0, 1,+, < }; we use it for

array indices and elements, as well as other arithmetic assertions, possibly with
embedded array terms. We write true and false to denote a valid and an unsat-
isfiable Presburger formula, respectively.

The theory of integer-indexed arrays extends Presburger arithmetic with
functions read , and write, and has the signature ΣA = ΣZ ∪ { ·[·], ·{· ← ·} }.
The read function a[i] returns the i-th element of array a, and the write function
a{i ← x} returns array a where the i-th element is replaced by x. These functions
should satisfy the read -over-write axioms as described by McCarthy [32].

2.1 Syntax

Array Folds Logic (AFL) extends the quantifier-free theory of integer arrays
with the ability to perform counting. The extension works by incorporating fold
terms into arithmetic expressions; such a term folds some function over the array
by applying it to each array element consecutively.

AFL contains the following sorts: array sort ASort, integer sort ISort, Boolean
sort BSort, and two enumerable sets of sorts for integer vectors VSortm and
functional constants FSortm = VSortm × ISort → VSortm, for each m ∈ N,
m > 0. The syntax of the AFL terms is shown in Table 1; a and b denote array
variables, x denotes an integer variable, n and m denote integer constants.
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Table 1. Syntax of AFL.

Array terms A of sort ASort are represented either by an array variable a, or
by the write term a{T ← T}.

Integer terms T of sort ISort can be integer constants n ∈ Z, integer variables
x, integer addition, read term a[T ] for the index represented as an integer term,
or the term |a|, which represents the length of array a.

Boolean terms B of sort BSort are formed by array equality, usual Presburger
and Boolean operators, and equality between vectors of sort VSortm.

Vector terms V m of sort VSortm are either a list of m integer terms, or a
fold term. The former is written as a vertical list in parentheses; they can be
omitted when m = 1. The latter, written as folda v f , represents the result of
the transformation of an input vector v of sort VSortm by folding a functional
constant f of sort FSortm over an array a. The first element of v specifies an
initial value of the array index; the remaining elements give initial values for the
counters that can be used inside f . The resulting vector after the transformation
gives the final values for the array index and the counters.

Functional constants (when no confusion can arise, we call them functions)
Fm of sort FSortm can only be a parenthesized list of branches (guarded com-
mands); the length of the list is unrelated to m. A function f of sort FSortm can
refer to the following implicitly declared variables: e for the currently inspected
array element; i for the current array index; c1, . . . , cm−1 for the counters; s
for the state (control flow) variable. All other variables that occur inside f are
considered as free variables of sort ISort.

Guards are conjunctions of atomic guards, which can compare array elements,
indices, and counters to integer terms; the state variable can only be compared
to integer constants. Updates are lists of atomic updates; they can increment or
decrease counters by a constant, assign a constant to the state variable, skip,
i.e. perform no updates, or execute a break statement, which terminates the
fold at the current position. Counter or state updates define a function Z → Z.
Guards and updates translate into logical formulas that either constraint the
current variable values, or relate the current and the next-state (primed) variable
values in the obvious way; we denote this translation by Φ. E.g., the update
upd ≡ (c1 +=n) defines the formula Φ(upd) ≡ (c′

1 = c1 + n).
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We require that guards of all branches are mutually exclusive. There is an
implicit “catch-all” branch with the break statement, whose guard evaluates to
true exactly when guards of all other branches evaluate to false. We also require
that each branch contains at most one update for each implicit variable.

We restrict the control flow in functions, which is defined by state variable s.
Notice that s is syntactically finite state. Thus, given a set of function branches
Br , we define an edge-labeled control flow graph G = 〈S,E, γ〉, where:

– states S =
{
0
} ∪ {

n | s←n ∈ Br
}
;

– edges E =
⋃

grd⇒upd ∈ Br

{
(s1, s2) | s1 |=grd ∧ s2= ite(s←n ∈ upd , n, s1)

}
;

– γ is the labeling of edges with the set of formulas Φ(grd) and Φ(upd) for each
guard or update which occurs in the same branch.

We require that edges in the strongly-connected components of G are labeled
with counter updates that are, for each counter, all non-decreasing, or all non-
increasing. Thus, G is a DAG of SCCs, where counters within each SCC behave
in a monotonic way. We use this restriction to derive from f a reversal-bounded
counter machine (see Definition 2).

The presented syntax is minimal and can be extended with convenience func-
tions and predicates such as {−, n·,≤,≥, ∨ , ++, --, -=n} in the usual way. We
allow to use ∗ to denote the absence of constraints: this is useful for vector nota-
tion. We replace each ∗ in the formula with a unique unconstrained variable.

2.2 Semantics

For a given AFL formula φ, we denote the sets of free variables of φ of sort
ASort and ISort by VarA and Var I , respectively. All free variables are implicitly
existentially quantified. For functions of sort FSortm, we denote by FV m the set
of their implicit variables {i, c1, . . . , cm−1, s}.

Array equalities partition the set of array variables into equivalence classes;
all other constraints are then translated into constraints over a representative of
the corresponding equivalence class.

An interpretation for AFL is a tuple σ = 〈λ, μ〉, where λ : Var I → Z assigns
each integer variable an integer, and μ : VarA → Z

∗ assigns each array variable
a finite sequence of integers.

The semantics of an AFL term t under the given interpretation σ is defined
by the evaluation [t]σ. Terms that constitute functions are evaluated in the
additional context κ. For a function f of sort FSortm, κ : FV m → Z

m+1 maps
internal variables of f to integers. The evaluation of Presburger, Boolean, and
array terms is standard; the remaining ones are shown in Table 2. We give some
explanations here (the remaining semantic rules are self-explanatory):

1. Vector equality resolves to a conjunction of equalities between components.
2. A fold term evaluates in the initial context that is defined by the given initial

vector of counters v, and assigns 0 to state variable s.
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Table 2. Semantics of AFL

3. A contextual fold term checks whether the array index is out of bounds, or
a break statement is executed in the current context (this is the only way for
[f ]σ,κ to contain false). If yes, fold terminates, and returns the current vector
v. Otherwise fold continues with the updated vector and context.

4. If an update upd(vj) for some variable vj is present in the function evaluation,
then it is applied. Otherwise, the old variable value is preserved.

5. An evaluation of a function, represented by a list of branches, is a union of
updates from its branch evaluations. Index i is always incremented by 1.

6. A guarded command evaluates to its update if its guard evaluates to true.
7. A comparison over an internal variable evaluates it in the context κ, and the

comparison term is evaluated in the interpretation σ.

2.3 Expressive Power

Here we give some example properties that are expressible in AFL, and compare
its expressive power to other decidable array logics.

1. Boundedness. All elements of array a belong to the interval [l, u].

folda

(
0
)(

l≤e≤u ⇒ skip
)

= |a|
2. Partitioning. Array a is partitioned if there is a position p such that all

elements before p are smaller or equal than all elements at or after p.

folda

(
0
)(i<p ∧ e≤a[p] ⇒ skip

i≥p ∧ e≥a[p] ⇒ skip

)
= |a|
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3. Periodicity. Array a is of the form (01)∗:

folda

(
0
)(

s=0 ∧ e=0 ⇒ s←1
s=1 ∧ e=1 ⇒ s←0

)
= |a|

4. Pumping. Array a is of the form 0n1n (a canonical non-regular language;
0n1n2n, a non-context-free language, is equally expressible):

folda

(
0
0
0

)(s=0 ∧ e=0 ⇒ c1++
s=0 ∧ e=1 ⇒ c2++ ∧ s←1
s=1 ∧ e=1 ⇒ c2++

)
=

(|a|
n
n

)

5. Equal Count. Arrays a and b have equal number of elements greater than
l: (|a|

n

)
= folda

(
0
0

)(
e>l ⇒ c1++
e≤l ⇒ skip

)
∧ (|b|

n

)
= foldb

(
0
0

)(
e>l ⇒ c1++
e≤l ⇒ skip

)

6. Histogram. The histogram of the input data in array a satisfies the distrib-
ution H

({i | a[i] < 10}) ≥ 2H
({i | a[i] ≥ 10})

:

folda

(
0
0

)(e<10 ⇒ c1++
e≥10 ⇒ skip

)
=

(
|a|
h1

)
∧ folda

(
0
0

)(e≥10 ⇒ c1++
e<10 ⇒ skip

)
=

(
|a|
h2

)
∧ h1 ≥ 2h2

7. Length of Format Fields. The array contains two variable-length fields.
The first two elements of the array define the length of each field; they are
followed by the fields themselves, separated by 0:

len1 = a[0] ∧ len2 = a[1] ∧ folda

(
2
0
0

)(s=0 ∧ e �=0 ⇒ c1++
s=0 ∧ e=0 ⇒ s←1
s=1 ∧ e �=0 ⇒ c2++

)
=

( |a|
len1
len2

)

Comparison with Other Logics. Most decidable array logics can specify universal
properties over a single index variable like (1) above; AFL uses folds to express
such universal quantification. Properties that require universal quantification
over several index variables, like sortedness, are inexpressible in AFL (it can
simulate some of such properties, like partitioning (2), using a combination of
folds with existential guessing). Periodic facts like (3) are inexpressible in [10],
but AFL as well as [17,21] can express it. Counting properties such as (4)–(7),
which constitute the core of AFL, are not expressible in other decidable logics
over arrays and sequences.

3 Motivating Example

As a motivating example to illustrate applications of our logic, we consider a
parser for the Markdown language as implemented in the Redcarpet project,
hosted on GitHub [2]. Redcarpet is a popular implementation of the language,
used by many other projects, in particular by the GitHub itself. Figure 2 shows
the excerpt from the function parse table header, which can be found in the
file markdown.c.

The function considered in the example parses the header of a table in the
Markdown format. The first line of the header specifies column titles; they are
separated by pipe symbols (‘|’); the first pipe is optional. Thus, the number of
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Fig. 2. An excerpt from the Redcarpet Markdown parser with AFL annotations
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pipes defines the number of columns in the table. The second line describes the
alignment for each column, and should contain the same number of columns;
in between each pair of pipes there should be at least three dash (‘-’) or colon
(‘:’) symbols. A colon on the left or on the right side of the dashes defines
left or right alignment; colons on both sides mean centered text. Thus, the
two lines “|One|Two|Three|” and “|:--|:--:|--:|” specify three columns
which are left-, center-, and right-aligned. Replacing the second line with either
“|:-|:--:|--:|” or “|:--|:--:|” would result in the ill-formed input: the for-
mer doesn’t contain enough dashes in the first column, while the latter doesn’t
specify the format for the last column.

Suppose, we are interested in the symbolic testing of the parser implemen-
tation; in particular, we want to cover all branches in the code for a reasonably
long input. For that we postulate that the first input line contains at least n
columns (we add the condition assert(col>=n) after line 19).

Now, consider the last conditional statement at line 19. The if branch is
satisfied by an empty second input line; and indeed, such concolic testers as
Crest can easily cover it. The else branch, however, poses serious problems.
In order to cover it, a well-formed input that respects all constraints should be
generated; in particular the smallest length of such input, e.g., for n equal to 3,
is 17. The huge number of combinations to test exceeds the capabilities of the
otherwise very efficient concolic tester: for n = 2 Crest needs 800 s to generate
a test, and for n = 3 it is not able to finish within 3 h.

Let us now examine the encoding of the implementation semantics in Array
Folds Logic. The AFL assertions are shown in Fig. 2 intertwined with the source
code: they encode the semantics of the preceding code lines in the SSA form. To
shorten the presentation we use the following conventions: variables i, a, pipes,
end, col, and dashes are represented by (SSA-indexed) logical variables i, a, p,
e, c, and d respectively; characters ‘\n’, ‘|’, ‘:’, ‘-’, and ‘+’ by logical constants
N , P , C, D, and A respectively; finally, the subscript denotes the SSA index of
a variable.

The Presburger constraints such as those after line 2 are standard and we do
not elaborate on them here. The first AFL-specific annotation goes after line 4:
it directly reflects the loop semantics. The fold term encodes the computation
of the number of pipes: they are computed in the counter c1, which gets its
initial value equal to p0, and its final value is equal to p1. Similarly, array index
i is initialized with i0; and its final value is asserted to be equal to i1. Both for
counter c1 and for index i (which is a special type of a counter) their initial and
final values can be both constant and symbolic: in fact, arbitrary Presburger
terms are allowed.

Notice that the loop at lines 3-4 is outside of the class of loops that can
be accelerated by previous approaches. In particular, the difficulty here is the
combination of the iteration over arrays with the branching structure inside the
loop. On the contrary, AFL can summarize the loop in a concise logical formula.

The next conditional statement at line 5, takes care of the optional pipe at
the beginning of the input. The annotation shown demonstrates that conditional
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statements are also easily represented by fold terms. In particular, here the
function is folded over a starting from 0; the final index is unconstrained. The
branch checks that the index is 0 (to prevent going further over the array), and
that the symbol at this position is ‘|’. Counter c1 is decremented only if these
two conditions are met; otherwise, the fold terminates. An equivalent encoding
using only array reads is possible: (a[0] = P ∧ p2 = p1−1)∨ (a[0] �= P ∧ p2 = p1),
but this encoding involves a disjunction.

The other program statements of the motivating example are encoded in a
similar fashion. The encoding shown is for one unfolding of the for loop at line
10; several unfoldings are encoded similarly. We have checked the resulting proof
obligations with our solver for AFL formulas, called AFolder; it can discharge
them and generate the required test input in less than 2 minutes for n = 3.

4 Complexity

A counter machine is a finite automaton extended by a vector η = (η1, . . . , ηk)
of k counters. Every counter in η stores a non-negative integer, and a counter
machine can compare it to constant, and increment/decrease its value by a con-
stant. For the formal definition of counter machines consult, e.g., [26].

We extend counter machines to symbolic counter machines (SCMs), which
accept sequences (arrays) of integers. We denote the symbolic value of an array
cell by a special integer variable xe. Let X be a set of integer variables, where
xe �∈ X. An atomic input constraint is of the form xe ≈ c or xe ≈ x, where c ∈ N,
x ∈ X, and ≈ ∈ {<,≤, >,≥,=, �=}. Similarly, an atomic counter constraint is
a formula of the form ηi ≈ c or ηi ≈ x. An input constraint (resp. a counter
constraint) is either a conjunction of n ≥ 1 atomic input constraints (resp.
atomic counter constraints), or the formula true. We denote by IC(X) (resp.
CCk(X)) the set of all input constraints (resp. counter constraints with counters
not greater than k) over variables in X.

Definition 1. A symbolic k-counter machine is a tuple M = (η,X,Q, δ, qinit),
where:

– η = (η1, . . . , ηk) is a vector of k counter variables,
– X is a finite set of integer variables,
– Q is a finite set of states,
– δ ⊆ Q × CCk(X) × IC(X) × Q × Z

k is a transition relation,
– qinit ∈ Q is the initial state.

A transition (q1, α, β, q2,κ) ∈ δ moves the SCM from state q1 to q2 if the
counters satisfy the constraint α and the inspected array cell satisfies β; the coun-
ters are incremented by κ, and the machine moves to the next cell. A machine is
called deterministic if δ is functional. A counter machine makes a reversal if it
makes an alternation between non-increasing and non-decreasing some counter.
A machine is reversal-bounded if there exists a constant c ≥ 0 such that on all
accepting runs every counter makes at most c reversal.
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Definition 2. We define the translation of a functional constant f of sort
FSortm, occurring in a formula φ, as an SCM M(f) = (η,X,Q, δ, qinit). Let
G = 〈S,E, γ〉 be the edge-labeled graph for f as defined in Sect. 2.1. Then
η = {i, c1, . . . , cm−1}, X are fresh free variables for each integer term T in
f , Q = S, qinit = 0, and for each edge (s1, s2) ∈ E, δ contains a transition from
s1 to s2 labeled with a conjunction of all constraints labeling the edge. For each
integer term T in f and the corresponding variable x ∈ X, we replace T by x in
f , and add the assertion (x = T ) as a conjunction at the outermost level of φ.
Due to the constraint on G, we have that M(f) is reversal-bounded.

Thus, we can translate a fold term into an SCM. A parallel composition of
SCMs captures the scenario when several folds operate over the same array.

Definition 3. The parallel composition (product) of two SCMs M1 and M2,
where Mi = (ηi,Xi, Qi, δi, q

init
i ), is an SCM M = (η,X,Q, δ, qinit) such that:

– η = η1η2,
– X = X1 ∪ X2,
– Q = Q1 × Q2,
– for each pair of transitions (qi, αi, βi, pi,wi) ∈ δi, where i = 1..2, there is the

transition
(
(q1, q2), α1 ∧ α2, β1 ∧ β2, (p1, p2),w1w2

) ∈ δ, which are the only
transitions in δ,

– qinit = (qinit1 , qinit2 ).

One of the fundamental questions that can be asked about a logic concerns
the size of its models. The following lemma shows that models of bounded size
are enough to check satisfiability of an AFL formula.

Lemma 1 (Small model property). There exists a constant c ∈ N, such that
an AFL formula φ is satisfiable iff there exists a model σ such that a) for each
integer variable x in φ, σ maps x to an integer ≤ 2|φ|c , and b) for each array
variable in φ, σ maps the variable to a sequence of ≤ 2|φ|c integers, where each
integer is ≤ 2|φ|c .

Proof (sketch; see [14] for the full proof). One direction of the proof is trivial. For
the other direction, assume that φ has a model σ. We construct a formula ψ that
is a conjunction of all atomic formulas of φ: in positive polarity if σ satisfies the
atomic formula, and in negative otherwise. Let s = |ψ|, and note that s ≤ 3|φ|.
We observe that (1) σ is a model of ψ, (2) every model of ψ is a model of φ.
In the remaining part of the proof we show that ψ has a small model, and as a
consequence so does φ.

Let a be some array in ψ. We translate each fold term over a to an SCM
Mj as in Definition 2; let SCM M be the product of all Mj . We extend the
technique of [20] to show that there exist a sufficiently short run of M. Under
the interpretation σ, all variables in counter constraints become constants. Let
c = (c1, . . . cn) be a non-decreasing vector of constants that appear in the counter
constraints of M after fixing σ. Vector c gives rise to the set of regions

R = {[0, c1], [c1, c1], [c1 + 1, c2 − 1], [c2, c2], . . . , [cl,∞]}.
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The size of R is at most 2 dim(c) + 1 ≤ 3s. A mode of M is a tuple in Rk

that describes the region of each counter. Let us observe that each counter can
traverse at most |R| modes before it makes an additional reversal. Thus, M in
any run can traverse at most max = r · k · |R| ≤ O(s3) different modes.

We take some accepting run Tr of M that traverses at most max modes,
and partition sequences of transition in Tr into equivalence classes. We create
an integer linear program LP that encodes an accepting run of M that traverses
at most max modes, as well as all non-fold constraints of ψ. The variables of LP
correspond to (1) the integer variables of ψ, (2) the counter values of M, (3) the
number of times sequences from each equivalence class are taken, and (4) the
solutions to each input constraint of M.

We show that LP has a solution p, where each variable is at most ≤ 2|φ|c ,
for a fixed c. We use p to construct a small model for ψ. From p we immediately
get interpretation for integer variables of ψ. Solution p implies that there is an
accepting run of M of length at most ≤ 2|φ|c , which also gives a bound on the
length of the input array. Finally, for every array cell we may use a solution to
the specific input constraint. ��

As a consequence of Lemma 1 we obtain a result on the complexity of AFL
satisfiability checking.

Theorem 1. The satisfiability problem of AFL is PSPACE-complete.

Proof. Membership. By Lemma 1, if an AFL formula φ is satisfiable, then it has a
model where integer variables have value ≤ 2|φ|c , and arrays have length ≤ 2|φ|c ,
and where each array cell stores a number ≤ 2|φ|c . A non-deterministic Turing
machine can use a polynomial number of bits to: (1) guess the value of integer
variables and store them using |φ|c bits, (2) guess one-by-one the value of at
most 2|φ|c array cells, and simulate the folds. The Turing machine needs |φ|c
bits for counting the number of simulated cells. The maximum constant used in
a counter increment can be at most 2|φ|. Then, the maximal value a fold counter
can store after traversing the array is at most 2|φ|c+1

, therefore polynomial space
is also sufficient to simulate fold counters.

Hardness. We reduce from the emptiness problem for intersection of determinis-
tic finite automata, which is PSPACE-complete [28]. We are given a sequence
A1, . . . , An of deterministic finite automata, where each automaton Ai accepts
the language L(Ai). The problem is to decide whether

⋂n
i=1 L(Ai) �= ∅. We simu-

late automata Ai with a fold expression fold i
a over a single counter, where input

constraints correspond to the alphabet symbols of the automata. The expression
fold i

a returns an even number on array a if and only if the interpretation of a
represents a word in L(Ai). To check emptiness of the automata intersection, it is
enough to check whether there exists an array such that all folds fold1

a, . . . , foldn
a

return an even number. The reduction can be done in polynomial time. ��

4.1 Undecidable Extensions

We show that two natural extensions to our logic lead to undecidability.
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Theorem 2. Array Folds Logic with an ∃∗∀∗ quantifier prefix is undecidable.

Proof. We prove by a reduction from Hilbert’s Tenth Problem [31]; since addition
is already in the logic, we only show how to encode multiplication. The following
∃∗∀∗ AFL formula has a model iff array a is a repetition of z segments, and each
segment is of length y and has the shape 00...01; thus, it asserts that x = y · z:

|a| = x ∧ folda

(
0
0

)(
e=0 ⇒ skip
e=1 ⇒ c1++

)
=

(|a|
z

) ∧
∀j . 0 ≤ j < |a| =⇒ folda

(
j
0

)(i≤ j+y ∧ e=0 ⇒ skip
i≤ j+y ∧ e=1 ⇒ c1++

)
=

(∗
1

)
��

In [11], the following is proved about the theory of concatenation:

Theorem 3 ([11], Corollary 4; see also [17], Proposition 1).
Solvability of equations in the theory 〈{1, 2}∗, e, ◦,Lg1,Lg2〉, where Lgp(x) ≡
{y ∈ p∗ | y has the same number of p’s as x}, is undecidable.

Corollary 1. Extension of AFL with concatenation operator ◦ is undecidable.

Proof. For an array x, we can define another array Lg1(x) in AFL as follows:
( |x|

|Lg1(x)|
)

= foldx

(
0
0

)(e=1 ⇒ c1++
e �=1 ⇒ skip

) ∧ (
|Lg1(x)|

)
= foldLg1(x)

(
0
)(

e=1 ⇒ skip
)

��

5 Decision Procedure

In Sect. 4 we described how a non-deterministic Turing machine can decide AFL
satisfiability in PSPACE. Now we present a deterministic procedure that trans-
lates AFL formulas to equisatisfiable quantifier-free Presburger formulas. As a
consequence of the procedure, we show that under certain restrictions satisfia-
bility of AFL is NP-complete.

Deterministic Procedure. We are given an AFL formula φ such that there
are at most m folds over each array; clearly m can be at most |φ|. We translate
φ to the quantifier-free Presburger formula ψ = ψn ∧ ψe ∧ ψl. For the procedure
we assume that there exists a fixed order x1 ≤ · · · ≤ xn on variables that appear
in the counter constraints.

Formula ψn. The formula ψn is the part of φ that does not contain folds.

Formula ψe. For an array aj in φ, let Fj = {fold1
a, . . . , foldm

a } be the set of
folds in φ over ai. We translate each fold i

a ∈ Fj to a symbolic counter machine
Mi

j . Each Mi
j has at most |φ| transitions, and the sum of the counters and

the number of reversals among all Mi
j is at most |φ|. Next, we construct the

symbolic counter machine Mj as the product of all machines Mi
j . The machine

Mj has at most k = |φ| counters, t = |φ|m transitions and makes at most r = |φ|
reversals.

We translate the reachability problem of Mj to the quantifier-free Presburger
formula ψj

e by applying an extension of the method described in [23]. In formula
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ψj
e, two configurations of Mj are described symbolically: initial ζ, and final ζ ′.

The formula ψj
e is satisfiable iff there is an array aj such that Mj reaches ζ ′

from ζ on reading aj . The formula ψe is the conjunction ψj
e for all arrays aj .

The formula ψj
e consists of two parts ψj

e = ψj
p ∧ψj

c . For simplicity we assume
that the counter constrains of Mj are defined only over variables {x1, · · · , xn}.
By assumption, there is a fixed order x1 ≤ . . . ≤ xn, which gives rise a to the
set of ≤ 2|φ|+1 regions R = {[0, x1], [x1, x1], [x1 +1, x2 − 1], · · · , [cl,∞]}. As an
optimization, we construct regions separately for each counter, which allows us
to obtain a tighter bound on the number of regions that need to be encoded.

Each counter may traverse at most |R| regions before it makes a reversal, so
an accepting computation of Mj traverses at most max = r · k · |R| = O(|φ|3)
modes. We construct an NFA Aj by making max copies of the control-flow
structure of Mj . Every run of Aj gives a correct sequence of states in Mj , but
may violate counter constraints. By using the procedure of [34] we can encode
the Parikh image of Aj as the formula ψp

j that is polynomial in the size of A.
Similar to [23], the formula ψj

c puts additional constraints on the Parikh image
to ensure that by executing the transitions of Aj we obtain counter values that
satisfy the counter constraints of Mj .

The size ψj
e is of the order O(|φ|3t) = O(|φ|m+3). The formula ψe is the

conjunction of formulas ψj
e for each array aj . There can be at most |φ| arrays,

so the size of ψe is O(|φ|m+4).

Formula ψl. Finally, formula ψl links the initial and final configurations in ψe

to the variables in ψp.

Formula size. The size of the formula ψ is O(|φ|m+4). By keeping m constant,
the encoding size is polynomial in the size of the AFL formula φ.

Restricted Fragment of AFL. We write m-AFL for formulas that have at
most m fold expressions per array. As a consequence of the deterministic decision
procedure, restriction on m reduces the complexity of deciding satisfiability.

Lemma 2. The m-AFL satisfiability problem, for a fixed m, is NP-complete.

Proof. Membership follows from the decision procedure above. For hardness
observe that any quantifier-free Presburger formula is an 0-AFL formula. ��

Model Generation. Given a Presburger encoding ψ of an AFL formula φ, we
may use the solution to ψ to generate a model of φ. The solution to ψ immediately
gives us interpretation for the integer variables in φ. To obtain an interpretation
for the array variables in φ, we observe that folds are implicitly encoded in ψ as
counter machines, and that the solution to ψ describes the Parikh vector for each
machine. We use the method of [34] to get a concrete sequence of transitions in
each counter machine that produces the specific Parikh vector. We construct a
multigraph by repeating each transition in Aj according to its Parikh image, and
then find an Eulerian path in the multigraph. From the sequence of transitions
in counter machines, and the interpretation of input constraints in ψ we obtain
an interpretation for the arrays in φ.
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6 Experiments

We implemented the decision procedure described in Sect. 5 in a prototype tool
AFolder; the tool is available at [13]. The tool is written in C++ and uses Z3 [15]
as the solver for Presburger formulas. We evaluated our decision procedure on a
number of testing and verification tasks described below.

The experimental results are shown in Table 3; all experiments were per-
formed on a Ubuntu-14.04 64-bit machine running on an Intel Core i5-2540M
CPU of 2.60 GHz. For every example we report the size |φ| of the AFL formula
measured as “the number of logical operators” + “the number of branches in
folds.” The table also shows the number of fold expressions in a formula, and
the maximum number of folds per array (MFPA). Next, we report the time for
translating the problem to a Presburger formula, the time for solving the for-
mula, and whether the formula is satisfiable. If this is the case, we report the
length of a satisfying array generated by our tool; in case of several arrays, we
show the longest.

Markdown. This program is described in Sect. 3. The experiments are parame-
trized by the required number n of columns in the input.

perf bench numa. This example is part of a benchmark program for non-
uniform memory access (NUMA) [1]. The program maintains a list of threads,

Table 3. Experimental results for AFolder.

Example |φ| Folds MFPA Transl. time Solving
time

Result Array
length

Markdown(1) 62 6 3 < 1 s < 1 s sat 8

Markdown(2) 69 7 4 1 s < 1 s sat 14

Markdown(3) 76 8 5 1.3 s 79 s sat 17

perf bench numa(10) 93 10 1 < 1s < 1 s sat 100

perf bench numa(20) 183 20 1 < 1s < 1 s sat 100

perf bench numa(40) 363 40 1 < 1s < 1 s sat 100

standard minInArray 10 3 3 < 1s < 1 s unsat -

linear sea.ch true 13 3 3 < 1s < 1 s unsat -

array call3 11 2 3 < 1 s < 1 s unsat -

standard sentinel 14 3 3 < 1s < 1 s unsat -

standard find 11 3 3 < 1 s < 1 s unsat -

standard vararg 11 3 3 < 1 s < 1 s unsat -

histogram(8) 58 8 8 < 1 s 1.3 s sat 9

histogram(9) 65 9 9 < 1 s 6.9 s sat 10

histogram(10) 72 10 10 2 s 55 s sat 11

histogram(11) 79 11 11 8 s 368 s sat 12

histogram unsat(11) 80 11 11 9 s 19 s unsat -
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and for each thread a separate array of size 100 that describes processors assigned
to the thread. The data is processed in a nested loop: the outer loop iterates
over threads, and the inner loop counts the number of assigned processors. The
outer loop also maintains the minimum, and maximum number of processors
assigned to any thread. We model a testing scenario like in Sect. 3, where a
symbolic execution tool unrolls the outer loop n times, and the inner loop is
summarized by a fold expression. The testing goal is to provide a valid processor
mapping such that each thread is assigned to exactly one processor. In Table 3
we show results for this benchmark parametrized by the number n of threads.
The example scales well, since there a single fold per each processor array (see
Lemma 2).

SV-COMP. Examples “standard minInArray” to “standard vararg” are taken
from the SV-COMP benchmarks suite [6]. They model simple verification prob-
lems for loops, such as finding the position of an element in array, finding the
minimum, or counting the number of positive elements. We model these pro-
grams as formulas that are unsatisfiable if the program is safe. Although the
programs are simple, most verification tools competing in SV-COMP fail to
prove their safety.

Histogram. We performed experiments on the histogram example in Sect. 2.3,
parametrized by the number of range values. We observe that solving time grows
rapidly with the number of folds. Example “histogram unsat” is an unsatisfiable
variation that requires two different counts in the same range.

7 Conclusion and Future Work

We presented Array Folds Logic (AFL), which extends the quantifier-free the-
ory of arrays with folding, a well-known concept from functional languages. The
extension allows us to express counting properties, occurring frequently in real-
life programs. Additionally, AFL is able to concisely summarize loops with inter-
nal branching and counting over arrays. We have analyzed the complexity of
satisfiability checking for AFL formulas, and presented an efficient decision pro-
cedure via an encoding to the quantifier-free Presburger arithmetic. Finally, we
have implemented a tool called AFolder, which efficiently discharges AFL proof
obligations, and demonstrated its practical applicability on numerous examples.

For the future work, we plan to investigate possible combinations with other
decidable fragments of the theory of arrays (to allow some restricted form of
quantifier alternation). We also plan to automate the generation of proof obliga-
tions and the summarization of loops, and want to improve the efficiency of our
decision procedure by implementing suitable optimizations and heuristics.
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cation of integer array programs. In: Bouajjani, A., Maler, O. (eds.) CAV 2009.
LNCS, vol. 5643, pp. 157–172. Springer, Heidelberg (2009)
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Abstract. In this paper we consider the controller synthesis problem
for multi-agent systems that consist of a set of controlled and uncon-
trolled agents. Controlled agents may need to cooperate with each other
and react to the actions of uncontrolled agents in order to fulfill their
objectives. Besides, the controlled agents may be imperfect, i.e., only
partially observe their environment, for example due to the limitations
in their sensors. We propose a framework for controller synthesis based
on compositional reactive synthesis. We implement the algorithms sym-
bolically and apply them to a robot motion planning case study where
multiple robots are placed on a grid-world with static obstacles and other
dynamic, uncontrolled and potentially adversarial robots. We consider
different objectives such as collision avoidance, keeping a formation and
bounded reachability. We show that by taking advantage of the struc-
ture of the system, compositional synthesis algorithm can significantly
outperform centralized synthesis approach, both from time and mem-
ory perspective, and can solve problems where the centralized algorithm
is infeasible. Our findings show the potential of symbolic and composi-
tional reactive synthesis methods as planning algorithms in the presence
of dynamically changing and possibly adversarial environment.

1 Introduction

Complex systems often consist of multiple agents (or components) interacting
with each other and their environment to achieve certain objectives. For exam-
ple, teams of robots are employed to perform tasks such as monitoring, surveil-
lance, and disaster response in different domains including search and rescue [1],
object transportation [2], and formation control [3]. With growing complexity
of autonomous systems and their safety-critical nature, the need for automated
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and reliable design and analysis methods and tools is increasing. To this end,
an ambitious goal in system design and control is to automatically synthesize
controllers for controllable parts of the system that guarantee the satisfaction
of the specified objectives. Given a model of the system describing the interac-
tion of a controllable plant with its environment and an objective in a formal
language such as linear temporal logic (LTL), controller synthesis problem seeks
to construct a finite-state controller that ensures that the system satisfies the
objective, regardless of how its environment behaves. In this paper we consider
the controller synthesis problem for multi-agent systems.

One of the main challenges in automated synthesis of systems is the scal-
ability problem. This issue becomes more evident for multi-agent systems, as
adding each agent can often increase the size of the state space exponentially.
The pioneering work by Pnueli et al. [4] showed that reactive synthesis from LTL
specifications is intractable which prohibited the practitioners from utilizing syn-
thesis algorithms in practice. Distributed reactive synthesis [5] and multi-player
games of incomplete information [6] are undecidable in general. Despite these
discouraging results, recent advances in this growing research area have enabled
automatic synthesis of interesting real-world systems [7], indicating the potential
of the synthesis algorithms for solving realistic problems. The key insight is to
consider more restricted yet practically useful subclasses of the general problem,
and in this paper we take a step toward this direction.

The main motivation for our work is the growing interest in robotic motion
planning from rich high-level specifications, e.g., LTL [8–10]. In most of these
works, all agents are controlled and operate in static and fully-observable envi-
ronments, and the applications of synthesis algorithms are restricted to very
small examples due to the well-known state explosion problem. Since the reac-
tive synthesis from LTL specifications is intractable, no algorithm will be efficient
for all problems. Nevertheless, one can observe that in many application domains
such as robot motion planning, the systems are structured, a fact that can be
exploited to achieve better scalability.

In this paper, we consider a special class of multi-agent systems that are
referred to as decoupled and are inspired by robot motion planning, decentral-
ized control [11,12], and swarm robotics [13,14] literature. Intuitively, in a decou-
pled multi-agent system the transition relations (or dynamics) of the agents are
decoupled, i.e., at any time-step, agents can make decisions on what action to
take based on their own local state. For example, an autonomous vehicle can
decide to slow down or speed up based on its position, velocity, etc. However,
decoupled agents are coupled through objectives, i.e., an agent may need to
cooperate with other agents or react to their actions to fulfill a given objective
(e.g., it would not be a wise decision for an autonomous vehicle to speed up when
the front vehicle pushes the break if collision avoidance is an objective.) In our
framework, multi-agent systems consist of a set of controlled and uncontrolled
agents. Controlled agents may need to cooperate with each other and react to
the actions of uncontrolled agents in order to fulfill their objectives. Besides, con-
trolled agents may be imperfect in the sense that they can only partially observe
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their environment, for example due to the limitations in their sensors. The goal
is to synthesize controllers for each controlled agent such that the objectives are
enforced in the resulting system.

To solve the controller synthesis problem for multi-agent systems one can
directly construct the model of the system by composing those of the agents,
and solve the problem centrally for the given objectives. However, the centralized
method lack flexibility, since any change in one of the components requires the
repetition of the synthesis process for the whole system. Besides the resulting
system might be exponentially larger than the individual parts, making this
approach infeasible in practice. Compositional reactive synthesis aims to exploit
the structure of the system by breaking the problem into smaller and more
manageable pieces and solving them separately. Then solutions to sub-problems
are merged and analyzed to find a solution for the whole problem. The existing
structure in multi-agent systems makes them a potential application area for
compositional synthesis techniques.

To this end, we propose a compositional framework for decoupled multi-agent
systems based on automatic decomposition of objectives and compositional reac-
tive synthesis using maximally permissive strategies [15]. We assume that the
objective of the system is given in conjunctive form. We make an observation
that in many cases, each conjunct of the global objective only refers to a small
subset of agents in the system. We take advantage of this structure to decom-
pose the synthesis problem: for each conjunct of the global objective, we only
consider the agents that are involved, and compute the maximally permissive
strategies for those agents with respect to the considered conjunct. We then inter-
sect the strategies to remove potential conflicts between them, and project back
the constraints to subproblems, solving them again with updated constraints,
and repeating this process until the strategies become fixed.

We implement the algorithms symbolically using binary decision diagrams
(BDDs) and apply them to a robot motion planning case study where multiple
robots are placed on a grid-world with static obstacles and other dynamic, uncon-
trolled and potentially adversarial robots. We consider different objectives such
as collision avoidance, keeping a formation and bounded reachability. We show
that by taking advantage of the structure of the system, the proposed composi-
tional synthesis algorithm can significantly outperform the centralized synthesis
approach, both from time and memory perspective, and can solve problems
where the centralized algorithm is infeasible. Furthermore, using compositional
algorithms we managed to solve synthesis problems for systems with multiple
agents, more complex objectives and for grid-worlds of sizes that are much larger
than the cases considered in similar works. Our findings show the potential of
symbolic and compositional reactive synthesis methods as planning algorithms
in presence of dynamically changing and possibly adversarial environment.

Contributions. The main contributions of the paper are as follow. We propose
a framework for modular specification and compositional controller synthesis for
multi-agent systems with imperfect controlled agents. We implement the meth-
ods symbolically using BDDs and apply them to a robot motion planning case
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study. We report on our experimental results and show that the compositional
algorithm can significantly outperform the centralized approach.

Related Work. Compositional reactive synthesis has been considered in some
recent works. Kupferman et al. [16] propose a compositional algorithm for LTL
realizability and synthesis based on a Safraless approach that transforms the
synthesis problem into a Büchi game. Baier et al. [17] give a compositional
framework for treating multiple linear-time objectives inductively. Sohail et al.
[18] propose an algorithm to compositionally construct a parity game from con-
junctive LTL specifications. Alur et al. [19] show how local specifications of
components can be refined compositionally to ensure satisfaction of a global
specification. Lustig et al. [20] study the problem of LTL synthesis from libraries
of reusable components. Alur et al. [21] propose a framework for compositional
synthesis from a library of parametric and reactive controllers. Filiot et al. [15]
reduce the LTL realizability problem to solving safety games. They show that,
for LTL specifications written as conjunction of smaller LTL formulas, the prob-
lem can be solved compositionally by first computing winning strategies for each
conjunct. Moreover, they show that compositional algorithms can handle fairly
large LTL specifications. To the best of our knowledge, algorithms in [15] seems
to be the most successful application of compositional synthesis in practice.

Two-player games of imperfect information are studied in [22–25], and it is
shown that they are often more complicated than games of perfect information.
The algorithmic difference is exponential, due to a subset construction that turns
a game of imperfect information into an equivalent game of perfect information.
In this paper, we build on the results of [15,25] and extend and adapt their
methods to treat multi-agent systems with imperfect agents. To the best of
our knowledge, compositional reactive synthesis is not studied in the context of
multi-agent systems and robot motion planning.

The controller synthesis problem for systems with multiple controllable
agents from a high-level temporal logic specification is also considered in many
recent works (e.g., [8,26,27]). A common theme is based on first computing a
discrete controller satisfying the LTL specification over a discrete abstraction of
the system, which is then used to synthesize continues controllers guaranteed
to fulfill the high-level specification. In many of these works (e.g., [28,29]) the
agents’ models are composed (either from the beginning or incrementally) to
obtain a central model. The product of the central model with the specifica-
tion automaton is then constructed and analyzed to compute a strategy. In [9],
authors present a compositional motion planning framework for multi-robot sys-
tems based on a reduction to satisfiability modulo theories. However, their model
cannot handle uncertain or dynamic environment. In [8,30] it is proposed that
systems with multiple components can be treated in a decentralized manner
by considering one component as a part of the environment of another com-
ponent. However, these approaches cannot address the need for joint decision
making and cooperative objectives. In this paper we consider compositional and
symbolic algorithms for solving games in presence of a dynamic and possibly
adversarial environment.
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2 Preliminaries

Linear temporal logic (LTL). We use LTL to specify system objectives. LTL
is a formal specification language with two types of operators: logical connectives
(e.g., ¬ (negation) and ∧ (conjunction)) and temporal operators (e.g., © (next),
U (until), � (eventually), and � (always)). Let V be a finite set of Boolean vari-
ables. A formula with no temporal operator is a Boolean formula or a predicate.
Given a predicate φ over variables V, we say s ∈ 2V satisfies φ, denoted by s |= φ,
if the formula obtained from φ by replacing all variables in s by true and all
other variables by false is valid. We call the set of all possible assignments to
variables V states and denote them by ΣV , i.e., ΣV = 2V . An LTL formula over
variables V is interpreted over infinite words w ∈ (ΣV)ω. The language of an
LTL formula Φ, denoted by L(Φ), is the set of infinite words that satisfy Φ, i.e.,
L(Φ) = {w ∈ (ΣV)ω | w |= Φ}. We assume some familiarity of the reader with
LTL. We often use predicates over V ∪ V ′ where V ′ is the set of primed versions
of the variables in V. Given a subset of variables X ⊆ V and a state s ∈ ΣV ,
we denote by s|X the projection of s to X . For a set Z ⊆ V, let Same(Z,Z ′)
be a predicate specifying that the value of the variables in Z stay unchanged
during a transition. Ordered binary decision diagrams (OBDDs) can be used for
obtaining concise representations of sets and relations over finite domains [31].
If R is an n-ary relation over {0, 1}, then R can be represented by the BDD for
its characteristic function: fR(x1, · · · , xn) = 1 if and only if R(x1, · · · , xn) = 1.
With a little bit abuse of notation and when it is clear from the context, we
treat sets and functions as their corresponding predicates.

Game Structures. A game structure G of imperfect information is a tuple
G = (V, Λ, τ,OBS, γ) where V is a finite set of variables, Λ is a finite set of
actions, τ is a predicate over V ∪Λ∪V ′ defining G’s transition relation, OBS is a
finite set of observable variables, and γ : ΣOBS → 2ΣV \∅ maps each observation
to its corresponding set of states. We assume that the set {γ(o) | o ∈ ΣOBS}
partitions the state space ΣV (this assumption can be weakened to a covering of
the state space where observations can overlap [24,25].) A game structure G is
called perfect information if OBS = V and γ(s) = {s} for all s ∈ ΣV . We omit
(OBS, γ) in the description of games of perfect information.

In this paper, we consider two-player turn-based game structures where
player-1 and player-2 alternate in taking turns. Let t ∈ V be a special vari-
able with domain {1, 2} determining which player’s turn it is during the game.
Without loss of generality, we assume that player-1 always start the game. Let
Σi

V =
{
s ∈ ΣV | s|t = i

}
for i = 1, 2 denote player-i’s states in the game struc-

ture. At any state s ∈ Σi
V , the player-i chooses an action � ∈ Λ such that there

exists a successor state s′ ∈ ΣV′ where (s, �, s′) |= τ . Intuitively, at a player-
i state, she chooses an available action according to the transition relation τ
and the next state of the system is chosen from the possible successor states.
For every state s ∈ ΣV , we define Γ (s) = {� ∈ Λ | ∃s′ ∈ ΣV′ . (s, �, s′) |= τ} to
be the set of available actions at that state. A run in G from an initial state
sinit ∈ ΣV is a sequence of states π = s0s1s2 · · · such that s0 = sinit and for
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all i > 0, there is an action �i ∈ Λ with (si−1, �i, s
′
i) |= τ , where s′

i is obtained
by replacing the variables in si by their primed copies. A run π is maximal if
either it is infinite or it ends in a state s ∈ ΣV where Γ (s) = ∅. The observation
sequence of π is the unique sequence Obs(π) = o0o1o2 · · · such that for all i ≥ 0,
we have si ∈ γ(oi).

Strategies. A strategy S in G for player-i, i ∈ {1, 2}, is a function S :
(ΣV)∗.Σi

V → Λ. A strategy S in G for player-2 is observation-based if for all pre-
fixes ρ1, ρ2 ∈ (ΣV)∗.Σ2

V , if Obs(ρ1) = Obs(ρ2), then S(ρ1) = S(ρ2). In this paper,
we are interested in the existence of observation-based strategies for player-2.
Given two strategies S1 and S2 for player-1 and player-2, the possible outcomes
ΩS1,S2(s) from a state s ∈ ΣV are runs: a run s0s1s2 · · · belongs to ΩS1,S2(s) if
and only if s0 = s and for all j ≥ 0 either sj has no successor, or sj ∈ Σi

V and
(sj , Si(s0 · · · sj), s′

j+1) |= τ where sj ∈ Σi
V .

Winning Condition. A game (G, φinit, Φ) consists of a game structure G, a
predicate φinit specifying an initial state sinit ∈ ΣV , and an LTL objective Φ for
player-2. A run π = s0s1 · · · is winning for player-2 if it is infinite and π ∈ L(Φ).
Let Π be the set of runs that are winning for player-2. A strategy S2 is winning
for player-2 if for all strategies S1 of player-1, we have ΩS1,S2(sinit) ⊆ Π, that is,
all possible outcomes are winning for player-2. Note that We assume the nonde-
terminism is always on player-1’s side. We say the game (G, φinit, Φ) is realizable
if and only if the system has a winning strategy in the game (G, φinit, Φ).

Constructing the Knowledge Game Structure. For a game structure
G = (V, Λ, τ,OBS, γ) of imperfect information, a game structure GK of per-
fect information can be obtained using a subset construction procedure such
that for any objective Φ, there exists a deterministic observation-based strategy
for player-2 in G with respect to Φ if and only if there exists a deterministic
winning strategy for player-2 in GK for Φ [22,25]. Intuitively, each state in GK

is a set of states of G that represents player-2’s knowledge about the possible
states in which the game can be after a sequence of observations. In the worst
case, the size of GK is exponentially larger than the size of G. We refer to GK as
the knowledge game structure corresponding to G. In the rest of this section, we
only consider game structures of perfect information.

Solving Games. In this paper, we use the bounded synthesis approach [15,32]
to solve the synthesis problems from LTL specifications. In [15], it is shown how
LTL formulas can be reduced to safety games. Formally, a safety game is a game
(G, φinit, Φ) with a special safety objective Φ = �(True). That is, any infinite
run in the game structure G starting from an initial state s |= φinit is winning
for player-2. We drop Φ from description of safety games as it is implicitly
defined. Intuitively, in a safety game, the goal of player-2 is to avoid the dead-
end states, i.e., states that there is no available action. We refer the readers
to [15,33] for details of reducing LTL formulas to safety games and solving
them. Composition of two game structures G1 = (V1, Λ1, τ1),G2 = (V2, Λ2, τ2)
of perfect information, denoted by G⊗ = G1 ⊗ G2, is a game structure G⊗ =
(V⊗, Λ⊗, τ⊗) of perfect information where V⊗ = V1 ∪ V2, Λ⊗ = Λ1 ∪ Λ2, and
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τ⊗ = τ1 ∧ τ2. To solve a game (G, φinit, Φ), we first obtain the game structure
GΦ corresponding to Φ using the methods proposed in [15], and then solve the
safety game (G ⊗ GΦ, φinit) to determine the winner of the game and compute a
winning strategy for player-2, if one exists.

Maximally Permissive Strategies. Safety games are memory-less deter-
mined, i.e., player-2 wins the game if and only if there exists a strategy
S : Σ2

V → Λ. Intuitively, a memory-less strategy only depends on the cur-
rent state and is independent from the history of the game. Let (G, φinit) be
a safety game, where G = (V , Λ, τ ) is a perfect information game. Assume
W ⊆ ΣV be the set of winning states for player-2, i.e., from any state s ∈ W
there exists a strategy S2 such that for any strategy S1 chosen by player-1,
all possible outcomes π ∈ ΩS1,S2(s) are winning. The maximally permissive
strategy S : Σ2

V → 2Λ for player-2 is defined as follows: for all s ∈ Σ2
V ,

S(s) = {� ∈ Λ | ∀r ∈ ΣV′ . (s, �, r) |= τs → r ∈ W}, i.e., the set of actions
� where all �-successors belong to the set of winning states. It is well-known
that S subsumes all winning strategies of player-2 in the safety game (G, Φinit).
Composition of two maximally permissive strategies S1,S2 : Σ2

V → 2Λ, denoted
by S = S1 ⊗ S2, is defined as S(s) = S1(s) ∩ S2(s) for any s ∈ ΣV , i.e., the set
of allowed actions by S at any state s ∈ ΣV is the intersection of the allowed
actions by S1 and S2. The restriction of the game structure G with respect to
its maximally permissive strategy S is the game structure G[S] = (V, Λ, τ ∧ φS)
where φS is the predicate encoding S, i.e., for all (s, �) ∈ Σ2

V × Λ, (s, �) |= φS if
and only if � ∈ S(s). Intuitively, G[S] is the same as G but player-2’s actions are
restricted according to S.

3 Multi-agent Systems

In this section we describe how we model multi-agent systems and formally
state the problem that is considered in the rest of the paper. Typically game
structures arise from description of open systems in a particular language [34]. In
our framework, we use agents to specify a system in a modular manner. An agent
a = (type, I,O, Λ, τ,OBS , γ) is a tuple where type ∈ {controlled,uncontrolled}
indicates whether the agent can be controlled or not, O (I) is a set of output
(input) variables that the agent can (cannot, respectively) control by assigning
values to them, Λ is a set of actions for the agent, and τ is a predicate over
I ∪ O ∪ Λ ∪ O′ that specifies the possible transitions of the agent where O′ is
the primed copies of the variables O, OBS is a set of observable variables, and
γ : ΣOBS → 2ΣI∪O is the observation function that maps agent’s observations to
its corresponding set of states. Intuitively, τ defines what actions an agent can
choose at any state s ∈ ΣI ×ΣO and what are the possible next valuations over
agent’s output variables for the chosen action. That is, (i, o, �, o′) |= τ for i ∈ ΣI ,
o ∈ ΣO, � ∈ Λ, and o′ ∈ ΣO′ means that at any state s of the system with s|I = i
and s|O = o, the agent can take action �, and a state with component o′ is a
possible successor. A perfect agent is an agent with OBS = I∪O and γ(s) = {s}
for all s ∈ ΣI × ΣO. We omit (OBS, γ) in the description of perfect agents.
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An agent a is called local if and only if its transition relation τ is a predicate
over O ∪ Λ ∪ O′, i.e., it does not depend on any uncontrolled variable v ∈ I.

A multi-agent system M = {a1, a2, · · · , an} is defined as a set of agents
ai = (typei, Ii,Oi, Λi, τi,OBSi, γi) for 1 ≤ i ≤ n. Let V =

⋃n
i=1 Oi be the set of

agents’ output variables. We assume that the set of output variables of agents are
pairwise disjoint, i.e., ∀1 ≤ i ≤ n. Oi ∩ Oj = ∅, and the set of input variables Ii

for each agent ai ∈ M is a subset of variables controlled by other agents, i.e., Ii ⊆
V\Oi. We further make some simplifying assumptions. First, we assume that all
uncontrolled agents are perfect, i.e., uncontrolled agent has perfect information
about the state of the system at any time-step. Second, we assume that all
controlled agents are cooperative while uncontrolled ones can play adversarially,
i.e., the controlled agents cooperate with each other and make joint decisions to
enforce the global objective. Finally, we assume that the observation variables
for controlled agents are pairwise disjoint, i.e., ∀1 ≤ i ≤ n. OBSi ∩ OBSj = ∅,
and that each controlled agent has perfect knowledge about other controlled
agents’ observations. That is, controlled agents share their observations with
each other. Intuitively, it is as if the communication between controlled agents
is instantaneous and error-free, i.e., they have perfect communication and tell
each other what they observe. This assumption helps us preserve the two-player
game setting and to stay in a decidable subclass of the more general problem
of multi-player games with partial information. Note that multiplayer games of
incomplete information are undecidable in general [6].

In this paper we focus on a special setting where all agents are local. A
multi-agent system M = {a1, a2, · · · , an} is dynamically decoupled (or decou-
pled in short) iff all agents a ∈ M are local. Intuitively, agents in a decoupled
multi-agent system can choose their action based on their own local state and
regardless of the local states of other agents in the system. That is, the avail-
ability of actions for each agent in any state of the system is only a function
of the agent’s local state. Such setting arises in many applications, e.g., robot
motion planning, where possible transitions of agents are independent from each
other. For example, how a robot moves around a room is usually based on its
own characteristics and motion primitives [9]. Note that this does not mean that
the controlled agents are completely decoupled, as the objectives might concern
different agents in the system, e.g., collision avoidance objective for a system con-
sisting of multiple controlled robots, which requires cooperation between agents.

In our framework, the user describes the agents and specifies the objective
as a conjunctive LTL formula. From description of the agents, a game structure
is obtained that encodes how the state of the system evolves. Formally, given
a decoupled multi-agent system M = Mu

⊎ Mc partitioned into a set Mu =
{u1, · · · , um} of uncontrolled agents and a set Mc = {c1, · · · , cn} of controlled
agents, the turn-based game structure GM induced by M is defined as GM =
(V , Λ, τ ,OBS , γ) where V = {t}∪⋃

a∈M Oa is the set of all variables in M with
t as a turn variable, Λ =

⋃
a∈M Λa is the set of actions, OBS =

⋃
c∈Mc OBSc is

the set of all observation variables of controlled agents (note that we assume all
uncontrolled agents are perfect,) and τ and γ are defined as follows:
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Fig. 1. Grid-world with static obstacles

τ = τe ∨ τs

τe = t = 1 ∧ t′ = 2 ∧
∧

u∈Mu

τu ∧
∧

c∈Mc

Same(Oc,O′
c)

τs = t = 2 ∧ t′ = 1 ∧
∧

c∈Mc

τc ∧
∧

u∈Mu

Same(Ou,O′
u)

γ =
∧

c∈Mc

γc

Intuitively, at each step, uncontrolled agents take actions consistent with
their transition relations, and their variables get updated while the controlled
agents’ variables stay unchanged. Then the controlled agents react concurrently
and simultaneously by taking actions according to their transition relations,
and their corresponding variables get updated while the uncontrolled agents’
variables stay unchanged.

Example 1. Let R1 and R2 be two robots in an n × n grid-world similar to
the one shown in Fig. 1. Assume R1 is an uncontrolled robot, whereas R2 can
be controlled. In the sequel, let i range over {1, 2}. At each time any robot
Ri can move to one of its neighboring cells by taking an action from the set
Λi = {upi, downi, righti, lefti}. Furthermore, assume that R2 has imperfect
sensors and can only observe R1 when R1 is in one of its adjacent cells. Let (xi, yi)
represent the position of robot Ri in the grid-world at any time1. We define
Oi = {xi, yi} and Ii = O3−i as the output and input variables, respectively.
Note that the controlled variables by one agent are the input variables of the
other agent. Transition relation τi =

∧
�∈Λi

τ� is defined as conjunction of four
parts corresponding to robot’s action where

τupi
= (yi > 1) ∧ upi ∧ (y′

i ↔ yi − 1) ∧ Same(xi, x
′
i)

τdowni
= (yi < n) ∧ downi ∧ (y′

i ↔ yi + 1) ∧ Same(xi, x
′
i)

τlefti
= (xi > 1) ∧ lefti ∧ (x′

i ↔ xi − 1) ∧ Same(yi, y
′
i)

τrighti
= (xi < n) ∧ righti ∧ (x′

i ↔ xi − 1) ∧ Same(yi, y
′
i)

1 Note that variables xi and yi are defined over a bounded domain and can be encoded
by a set of Boolean variables. To keep the example simple, we use their bounded
integer representation here.
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Intuitively, each τ� for � ∈ Λi specifies whether the action is available in the
current state and what is its possible successors. For example, τupi

indicates
that if Ri is not at the top row (yi > 1), then the action upi is available and if
applied, in the next state the value of yi is decremented by one and the value
of xi does not change. Next we define the observation function γ2 for R2. It
is easier and more intuitive to define γ−1

2 , and since observations partition the
state space γ2 = (γ−1

2 )−1 is defined. Formally,

γ−1
2 (a, b, c, d) =

{
(a, b, c, d) if a − 1 ≤ c ≤ a + 1 ∧ b − 1 ≤ d ≤ b + 1
(⊥,⊥, c, d) otherwise

Let OBS2 = {xo
1, y

o
1, x

o
2, y

o
2} where xo

1, y
o
1 ∈ {⊥, 1, 2, · · · , n} and xo

2, y
o
2 ∈

{1, · · · , n}. Intuitively, R2 observes its own local state perfectly. Furthermore,
if R1 is in one of its adjacent cells, its position is observed perfectly, oth-
erwise, R1 is away and its location cannot be observed. γ2 can be symbol-
ically encoded as

∨
o∈ΣOBS (o ∧ φγ(o)) where φγ(o) is the predicate specify-

ing the set γ(o). Finally, we let R1 = (uncontrolled, I1,O1, Λ1, τ1) and R2 =
(controlled, I2,O2, Λ2,OBS2, γ2). Note that R1 (R2) is modeled as a perfect
(imperfect, respectively) local agent.

The game structure GM of imperfect information corresponding to multi-
agent system M = {R1, R2} is a tuple GM = (V , Λ, τ ,OBS , γ) where V =
{t}∪O1 ∪O2, Λ = Λ1 ∪Λ2, τ = τe ∨ τs, τe = t = 1∧ t′ = 2∧ τ1 ∧Same(O2,O′

2),
τs = t = 2 ∧ t′ = 1 ∧ τ2 ∧ Same(O1,O′

1), OBS = OBS2, and γ = γ2. ��
We now formally define the problem we consider in this paper.

Problem 1. Given a decoupled multi-agent system M = Mu
⊎ Mc partitioned

into uncontrolled Mu = {u1, · · · , um} and controlled agents Mc = {c1, · · · , cn},
a predicate φinit specifying an initial state, and an objective Φ = Φ1 ∧ · · · ∧ Φk

as conjunction of k ≥ 1 LTL formulas Φi, compute strategies S1, · · · , Sn for
controlled agents such that the strategy S = S1 ⊗· · ·⊗Sn defined as composition
of the strategies is winning for the game (GM, φinit, Φ), where GM is the game
structure induced by M.

4 Compositional Controller Synthesis

We now explain our solution approach for Problem1 stated in Sect. 3.
Algorithm 1 summarizes the steps for compositional synthesis of strategies for
controlled agents in a multi-agent system. It has three main parts. First the syn-
thesis problem is automatically decomposed into subproblems by taking advan-
tage of the structure in the multi-agent system and given objective. Then the
subproblems are solved separately and their solutions are composed. The com-
position may restrict the possible actions that are available for agents at some
states. The composition is then projected back to each subproblem and the sub-
problems are solved again with new restrictions. This process is repeated until
either a subgame becomes unrealizable, or computed solutions for subproblems
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Algorithm 1. Compositional Controller Synthesis
Input: A decoupled multi-agent system M = {u1, · · · , um, c1, · · · , cn}, φinit

specifying initial state, and an objective Φ = Φ1 ∧ · · · ∧ Φk

Output: A set of strategies (S1, · · · , Sn) one for each controlled agent, if one
exists

1 /* Decompose the problem based on agents’ involvement in conjuncts*/
2 for all Φi, 1 ≤ i ≤ k do
3 INVi := Involved(Φi);
4 Gi := CreateGameStructure(INVi);
5 Xi :=

⋃
a∈INVi

Oa; /* the set of variables controlled by involved agents */

6 φi
init := Project(φinit, Xi);

7 GK
i := CreateKnowledgeGameStructure(Gi);

8 (Gd
i , φi

init) := ToSafetyGame(GK
i , φi

init, Φi);

9 /*Compositional synthesis*/
10 while true do
11 for i = 1 · · · k do

12 Sd
i := SolveSafetyGame(Gd

i , φi
init);

13 S :=
⊗m

i=1 Sd
i ; /* compose the strategies */

14 for i = 1 · · · k do

15 Let Yi = Vd
i ∪ Λd

i be the set of variables and actions in Gd
i ;

16 Ci := Project(S, Yi); /* project the strategies */

17 if ∀1 ≤ i ≤ k, Sd
i = Ci then

18 break; /* a fixed point is reached over strategies */
19 for i = 1 · · · k do

20 Gd
i := Gd

i [Ci]; /* Restrict the subgames for the next iteration */

21 (S1, · · · , Sn) :=Extract(S);
22 return (S1, · · · , Sn);

reach a fixed point. Finally, a set of strategies, one for each controlled agent, is
extracted by decomposing the strategy obtained in the previous step. Next, we
explain Algorithm 1 in more detail.

4.1 Decomposition of the Synthesis Problem

The synthesis problem is decomposed into subproblems in lines 2 − 9 of
Algorithm 1. The main idea behind decomposition is that in many cases, each
conjunct Φi of the objective Φ only refers to a small subset of agents. This obser-
vation is utilized to obtain a game structure from description of those agents that
are involved in Φi, i.e., only agents are considered to form and solve a game with
respect to Φi that are relevant. In other words, each subproblem corresponds to
a conjunct Φi of the global objective Φ and the game structure obtained from
agents involved in Φi.

For each conjunct Φi, 1 ≤ i ≤ k, Algorithm 1 first obtains the set INVi

of involved agents using the procedure Involved. Formally, let VΦi
⊆ V be

the set of variables appearing in Φi’s formula. The set of involved agents are
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those agents whose controlled variables appear in the conjunt’s formula, i.e.,
Involved(Φi) = {a ∈ M | Oa ∩ VΦi

�= ∅}.
A game structure Gi is then obtained from the description of the agents

INVi using the procedure CreateGameStructure as explained in Sect. 3. The
projection φi

init of the predicate φinit with respect to the involved agents is
computed next. The procedure Project takes a predicate φ over variables Vφ

and a subset X ⊆ Vφ of variables as input, and projects the predicate with
respect to the given subset. Formally, Project(φ,X ) =

{
s|X | s ∈ ΣVφ

}
.

The knowledge game structure GK
i corresponding to Gi is obtained at line 7.

Note that this step is not required if the system only includes perfect agents
that can observe the state of the game perfectly at any time-step. Finally, the
objective Φi is transformed into a game structure using the algorithms in [15,
33] and composed with GK

i to obtain a safety game (Gd
i , φi

init). The result of
decomposition phase is k safety games

{
(Gd

1 , φ1
init), · · · , (Gd

k , φk
init)

}
that form

the subproblems for the compositional synthesis phase.

Example 2. Let Ri for i = 1, · · · , 4 be four robots in an n × n grid-world, where
R4 is uncontrolled and other robots are controlled. For simplicity, assume that
all agents are perfect. At each time-step any robot Ri can move to one of its
neighboring cells by taking an action from the set {upi, downi, righti, lefti} with
their obvious meanings. Consider the following objective Φ = Φ1∧Φ2∧Φ3∧Φ12∧
Φ23 where Φi for i = 1, 2, 3 specifies that Ri must not collide with R4, and Φ12

(Φ23) specifies that R1 and R2 (R2 and R3, respectively) must avoid collision
with each other. Sub-formulas Φi, i = 1, 2, 3, only involve agents Ri and R4, i.e.,
INV(Φi) = {Ri, R4}. Therefore, the game structures Gi induced by agents Ri

and R4 are composed with the game structure computed for Φi to form a sub-
problem as a safety game. Similarly, we obtain safety games for objectives Φ12

and Φ23 with INV(Φ12) = {R1, R2} and INV(Φ23) = {R2, R3}, respectively. ��
Remark 1. The decomposition method used here is not the only way to decom-
pose the problem, neither it is necessarily optimal. More efficient decomposition
technique can be used to obtain quicker convergence in Algorithm 1 for example
by different grouping of conjuncts. Nevertheless, the decomposition technique
explained above is simple and it was effective in our experiments.

4.2 Compositional Synthesis

The safety games obtained in decomposition phase are compositionally solved
in lines 9 − 21 of Algorithm 1. At each iteration of the main loop, the subprob-
lems (Gd

i , φi
init) are solved, and a maximally permissive strategy Sd

i is computed
for them, if one exists. Computed strategies are then composed in line 11 of
Algorithm 1 to obtain a strategy S for the whole system. The strategy S is then
projected back to sub-games, and it is compared if all the projected strategies are
equivalent to the strategies computed for the subproblems. If that is the case,
the main loop terminates, while S is winning for the game (Gd, φinit) where
(Gd, φinit) is the safety game associated with the multi-agent system M and
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objective Φ. Otherwise, at least one of the subproblems needs to be restricted.
Each sub-game is restricted by the computed projection, and the process is
repeated. The loop terminates either if at some iteration a subproblem becomes
unrealizable, or if permissive strategies S1, · · · ,Sk reach a fixed point. In the
latter case, a set of strategies, one for each controlled agent is extracted from S
as explained below.

4.3 Computing Strategies for the Agents

Let V⊗ =
⋃k

i=1 VGd
i

be the set of all variables used to encode the game structures
Gd

i , and Λc = Λc1 × · · · × Λcn
be the set of controlled agents’ actions. Once a

permissive strategy S : ΣV⊗ → 2Λc

is computed, a winning strategy Sd : ΣV⊗ →
Λc is obtained from S by restricting the non-deterministic action choices of
the controlled agents to a single action. The strategy Sd is then decomposed
into strategies S1 : ΣV⊗ → Λc1 , · · · , Sn : ΣV⊗ → Λcn

for the agents simply
by projecting the actions over system transitions to their corresponding agents.
Formally, for any s ∈ ΣV⊗ such that S(s) is defined, let Sd(s) = σ ∈ S(s)
where σ = (σ1, · · · , σn) ∈ Λc is an arbitrary action chosen from possible actions
permitted by S in the state s. Agents’ strategies are defined as Si(s) = σi for
i = 1, · · · , n. Note that we assume each controlled agent has perfect knowledge
about other controlled agents’ observations. The following theorem establishes
the correctness of Algorithm 1.

Theorem 1. Algorithm1 is sound2.

Proof. Note that Algorithm 1 always terminates, that is because either eventu-
ally a fixed point over strategies is reached, or a sub-game becomes unrealizable
which indicates that the objective cannot be enforced. Consider the permissive
strategies Sd

i and their projections Ci. We have Ci(s) ⊆ Sd
i (s) for any s ∈ ΣV , and

as a result of composing and projecting intermediate strategies, we will obtain
more restricted sub-games. As the state space and available actions in any state
is finite, at some point, either a sub-game becomes unrealizable because the sys-
tem player becomes too restricted and cannot win the game, or all strategies
reach a fixed point. Therefore, the algorithm always terminates.

We now show that Algorithm 1 is sound, i.e., if it computes strategies
(S1, · · · , Sn), then the strategy S =

⊗n
i=1 Si is a winning strategy in the

game (GM, φinit, Φ), where GM is the game structure induced by M. Let
S∗ =

⊗k
i=1 Sd

i be the fixed point reached over the strategies. First note that
any run in Gd

i [Sd
i ] starting from a state s |= φi

init for 1 ≤ i ≤ k satisfies the
conjunct Φi since Sd

i is winning in the corresponding safety game. That is, the
restriction of the game structure Gd

i to the strategy Sd
i satisfies Φi. Consider

any run π = s0s1s2 · · · in the restricted game structure Gd[S∗] starting from the
2 In [15] it is shown that bounded synthesis is complete by proving the existence of a

sufficiently large bound. Following their result, it can be shown that Algorithm 1 is
also complete. However, in practice, the required bound is rather high and instead
an incremental approach is used for synthesis.
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initial state s0 |= φinit where Gd =
⊗k

i=1 Gd
i . Let πi = si

0s
i
1s

i
2 · · · for 1 ≤ i ≤ k

be the projection of π with respect to variables Vd
i of the game structure Gd

i , i.e.,
si

j = sj|Vd
i

for j ≥ 0. Since si
0 |= φi

init and Sd
i is equivalent to the projection of

S∗ with respect to variables and actions in the game structure Gd
i , it follows that

πi is a winning run in the safety game (Gd
i [Sd

i ], Φi), i.e., πi |= Φi. As πi |= Φi for
1 ≤ i ≤ k, we have π |= Φ =

∧k
i=1 Φi. It follows that S∗ is winning in the safety

game (Gd, φinit). Moreover, S∗ is also winning with respect to the original game
as (Gd, φinit) is the safety game associated with (GM, φinit, Φ) [15]. It is easy to
see that the set (S1, · · · , Sn) of strategies extracted from S∗ by Algorithm 1 is
winning for the game (GM, φinit, Φ). ��
Remark 2. Algorithm 1 is different from compositional algorithm proposed in
[15] in two ways. First, it composes maximally permissive strategies in contrast
to composing game structures as proposed in [15]. The advantage is that strate-
gies usually have more compact symbolic representations compared to game
structures3. Second, in the compositional algorithm in [15], sub-games are com-
posed and a symbolic step, i.e., a post or pre-image computation, is performed
over the composite game. In our experiments, performing a symbolic step over
composite game resulted in a poor performance, often worse than the central-
ized algorithm. Algorithm1 removes this bottleneck as it is not required in our
setting. This leads to a significant improvement in algorithm’s performance since
image and pre-image computations are typically the most expensive operations
performed by symbolic algorithms [35].

5 Case Study

We now demonstrate the techniques on a robot motion planning case study
similar to those that can be found in the related literature (e.g., [8–10].) Consider
a square grid-world with some static obstacles similar to the one depicted in
Fig. 1. We consider a multi-agent system M = {u1, · · · , um, c1, · · · , cn} with
uncontrolled robots Mu = {u1, · · · , um} and controlled ones Mc = {c1, · · · , cn}.
At any time-step, any controlled robot ci for 1 ≤ i ≤ n can move to one of its
neighboring cells by taking actions upi, downi, lefti, and righti, or it can stay
put by taking the action stop. Any uncontrolled robot uj for 1 ≤ j ≤ m stays
on the same row where they are initially positioned, and at any time-step can
move to their left or right neighboring cells by taking actions leftj and rightj ,
respectively. We consider the following objectives for the systems, (Φ1) collision
avoidance, i.e., controlled robots must avoid collision with static obstacles and
other robots, (Φ2) formation maintenance, i.e., each controlled robot ci must
keep a linear formation (same horizontal or vertical coordinate) at all times with
the subsequent controlled robot ci+1 for 1 ≤ i < n, (Φ3) bounded reachability,

3 Strategies are mappings from states to actions while game structures include more
variables and typically have more complex BDD representation as they refer to
states, actions, and next states.
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i.e., controlled robots must reach the bottom row in a pre-specified number of
steps. We consider two settings. First we assume all agents are perfect, i.e., all
agents have full-knowledge of the state of the system at any time-step. Then we
assume controlled agents are imperfect and can observe uncontrolled robots only
if they are nearby and occupying an adjacent cell, similar to Example 1.

We apply two different methods to synthesize strategies for the agents. In the
Centralized method, a game structure for the whole system is obtained first, and
then a winning strategy is computed with respect to the considered objective.
In the Compositional approach, the strategy is computed compositionally using
Algorithm 1. We implemented the algorithms in Java using the BDD package
JDD [36]. The experiments are performed on an Intel core i7 3.40 GHz machine
with 16 GB memory. In our experiments, we vary the number of uncontrolled and
controlled agents, size of the grid-world, and the objective of the system as shown
in Tables 1 and 2. The columns show the number of uncontrolled and controlled
robots, considered objective, size of the grid-world, number of variables in the
system, and the time and memory usage for different approaches, respectively.
Furthermore, we define Φ12 = Φ1 ∧ Φ2, Φ13 = Φ1 ∧ Φ3, and Φ = Φ1 ∧ Φ2 ∧ Φ3.

Table 1. Experimental results for systems with perfect agents

Centralized Compositional

|Mu| |Mc| Objective Size |V| Time Mem (MB) Time Mem (MB)

1 1 Φ1 64× 64 52 72ms 6.6 105ms 6.6

1 1 Φ1 128× 128 60 93ms 6.6 101ms 6.6

1 2 Φ13 16× 16 79 14.9min 365.5 4.2 s 19.3

1 2 Φ13 32× 32 95 mem out mem out 34.4 s 50.8

1 2 Φ 16× 16 79 400.3 s 239.7 5.1 s 19.4

1 2 Φ 32× 32 95 155.8min 1209 33.1 s 38.3

1 3 Φ13 4× 4 66 22 s 50.8 0.8 s 6.8

1 3 Φ13 8× 8 88 mem out mem out 98.4 s 101.2

2 1 Φ 8× 8 51 106.4 s 322 33ms 6.6

2 1 Φ 128× 128 107 mem out mem out 3.5 s 6.7

2 2 Φ 4× 4 56 3.2 s 19.4 201ms 6.6

2 2 Φ 8× 8 76 10.6min 460 14.4 s 19.4

2 3 Φ13 4× 4 75 19.1min 497.8 8.4 s 25.9

2 3 Φ13 8× 8 101 mem out mem out 30.2min 800.2

2 3 Φ 8× 8 101 mem out mem out 12.7min 302.6

Multi-agent Systems with Perfect Agents. Table 1 shows some of our
experimental results for the setting where all agents are perfect (more experimen-
tal data is provided in the technical report.) Note that the compositional algo-
rithm does not always perform better than the centralized alternative. Indeed,
if the conjuncts of objectives involve a large subset of agents, compositional
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Table 2. Experimental results for systems with imperfect agents

Centralized Compositional

|Mu| |Mc| Objective Size |V| Time Mem (MB) Time Mem (MB)

1 2 Φ12 4 × 4 127 1.7 s 6.7 0.6 s 6.7

1 2 Φ12 6 × 6 235 28.6 s 31.9 10.2 s 19.3

1 2 Φ12 8 × 8 235 229.7 s 126.6 95 s 57.1

1 2 Φ12 9 × 9 375 time out time out 306 s 94.9

1 2 Φ12 10 × 10 375 time out time out 9.7 min 176.7

1 2 Φ13 4 × 4 143 1.4 s 6.7 303 ms 6.7

1 2 Φ13 6 × 6 255 38.2 s 57.1 5 s 13

1 2 Φ13 8 × 8 255 8.9 min 252.2 38.3 s 51

1 2 Φ13 9 × 9 395 time out time out 114.9 s 88.6

1 2 Φ13 10 × 10 395 time out time out 279.9 s 157.8

1 2 Φ 4 × 4 143 2.3 s 6.7 0.7 s 6.7

1 2 Φ 6 × 6 255 46.2 s 50.8 10 s 19.3

1 2 Φ 8 × 8 255 344.5 s 202.1 129.9 s 57.1

1 2 Φ 9 × 9 395 time out time out 309.9 s 101.2

1 2 Φ 10 × 10 395 time out time out 9.6 min 176.7

1 3 Φ1 4 × 4 186 144.3 s 69.7 0.9 s 6.7

1 3 Φ1 6 × 6 346 time out time out 17.7 s 38.2

1 3 Φ1 8 × 8 346 time out time out 190.9 s 176.7

1 3 Φ1 10 × 10 554 time out time out 24.6 min 730.6

1 3 Φ13 4 × 4 210 265.8 s 214.5 0.9 s 6.7

1 3 Φ13 6 × 6 376 time out time out 49.2 s 57.1

1 3 Φ13 8 × 8 376 time out time out 483.9 s 214.5

1 3 Φ13 9 × 9 584 time out time out 31.7min 441.1

1 3 Φ 6 × 6 376 time out time out 36 s 50.8

1 3 Φ 8 × 8 376 time out time out 343.4 s 201.9

1 3 Φ 10 × 10 584 time out time out 39.6min 774.7

algorithm comes closer to the centralized algorithm. Intuitively, if the agents
are “strongly” coupled, the overhead introduced by compositional algorithm is
not helpful, and the central algorithm performs better. For example, when the
system consists of a controlled robot and an uncontrolled one along with a sin-
gle safety objective, compositional algorithm coincides with the centralized one,
and centralized algorithm performs slightly better. However, if the sub-problems
are “loosely” coupled, which is the case in many practical problems, the com-
positional algorithm significantly outperforms the centralized one, both from
time and memory perspective, as we increase the number of agents and make
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the objectives more complex, and it can solve problems where the centralized
algorithm is infeasible.

Multi-agent Systems with Imperfect Controlled Agents. Not surpris-
ingly, scalability is a bigger issue when it comes to games with imperfect infor-
mation due to the subset construction procedure, which leads to yet another
reason for compositional algorithm to perform better than the centralized alter-
native. Table 2 shows some of our experimental results for the setting where
controlled agents are imperfect. While the centralized approach fails to compute
the knowledge game structure due to the state explosion problem, the composi-
tional algorithm performs significantly better by decomposing the problem and
performing subset construction on smaller and more manageable game structures
of imperfect information.

6 Conclusions and Future Work

We proposed a framework for controller synthesis for multi-agent systems. We
showed that by taking advantage of the structure in the system to composi-
tionally synthesize the controllers, and by representing and exploring the state
space symbolically, we can achieve better scalability and solve more realistic
problems. Our preliminary results shows the potential of reactive synthesis as
planning algorithms in the presence of dynamically changing and adversarial
environment.

In our implementation, we performed the subset construction procedure sym-
bolically and we only constructed the part of it that is reachable from the initial
state. One of our observations was that by considering more structured observa-
tion functions for game structures of imperfect information, such as the ones con-
sidered in our case study where the robots show a “local” observation behavior,
the worst case exponential blow-up in the constructed knowledge game structure
does not occur in practice. In future, we plan to investigate how considering more
restricted yet practical observation functions can enable us to handle systems
with imperfect agents of larger size.
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4207, pp. 287–302. Springer, Heidelberg (2006)

26. Wongpiromsarn, T., Topcu, U., Murray, R.M.: Receding horizon temporal logic
planning. IEEE Trans. Autom. Control 57(11), 2817–2830 (2012)

27. Kress-gazit, H., Wongpiromsarn, T., Topcu, U.: Correct, reactive robot control
from abstraction and temporal logic specifications

28. Wongpiromsarn, T., Ulusoy, A., Belta, C., Frazzoli, E., Rus, D.: Incremental syn-
thesis of control policies for heterogeneous multi-agent systems with linear tem-
poral logic specifications. In: IEEE International Conference on Robotics and
Automation. IEEE (2013)

29. Kloetzer, M., Belta, C.: Automatic deployment of distributed teams of robots from
temporal logic motion specifications. IEEE Trans. Robot. 26(1), 48–61 (2010)

30. Ozay, N., Topcu, U., Murray, R.M.: Distributed power allocation for vehicle man-
agement systems. In: 50th IEEE Conference on Decision and Control and European
Control Conference. IEEE (2011)

31. Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge
(1999)

32. Schewe, S., Finkbeiner, B.: Bounded synthesis. In: Namjoshi, K.S., Yoneda, T.,
Higashino, T., Okamura, Y. (eds.) ATVA 2007. LNCS, vol. 4762, pp. 474–488.
Springer, Heidelberg (2007)

33. Ehlers, R.: Symbolic bounded synthesis. Formal Methods Syst. Des. 40(2), 232–262
(2012)

34. Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. J.
ACM 49(5), 672–713 (2002)

35. Bloem, R., Gabow, H.N., Somenzi, F.: An algorithm for strongly connected com-
ponent analysis in n log n symbolic steps. In: Johnson, S.D., Hunt Jr., W.A. (eds.)
FMCAD 2000. LNCS, vol. 1954, pp. 37–54. Springer, Heidelberg (2000)

36. Vahidi, A.: Jdd. http://javaddlib.sourceforge.net/jdd/index.html

http://javaddlib.sourceforge.net/jdd/index.html


Solving Parity Games via Priority Promotion

Massimo Benerecetti1, Daniele Dell’Erba1, and Fabio Mogavero2(B)
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Abstract. We consider parity games, a special form of two-player
infinite-duration games on numerically labelled graphs, whose winning
condition requires that the maximal value of a label occurring infi-
nitely often during a play be of some specific parity. The problem has
a rather intriguing status from a complexity theoretic viewpoint, since
it belongs to the class UPTime ∩ CoUPTime, and still open is the
question whether it can be solved in polynomial time. Parity games also
have great practical interest, as they arise in many fields of theoreti-
cal computer science, most notably logic, automata theory, and formal
verification. In this paper, we propose a new algorithm for the solution
of the problem, based on the idea of promoting vertices to higher pri-
orities during the search for winning regions. The proposed approach
has nice computational properties, exhibiting the best space complexity
among the currently known solutions. Experimental results on both ran-
dom games and benchmark families show that the technique is also very
effective in practice.

1 Introduction

Parity games [45] are perfect-information two-player turn-based games of infinite
duration, usually played on finite directed graphs. Their vertices, labelled by
natural numbers called priorities, are assigned to one of two players, named
Even and Odd or, simply, 0 and 1, respectively. The game starts at an arbitrary
vertex and, during its evolution, each player can take a move only at its own
positions, which consists in choosing one of the edges outgoing from the current
vertex. The moves selected by the players induce an infinite sequence of vertices,
called play. If the maximal priority of the vertices occurring infinitely often in
the play is even, then the play is winning for player 0, otherwise, player 1 takes
it all.

Parity games have been extensively studied in the attempt to find efficient
solutions to the problem of determining the winner. From a complexity theoretic
perspective, this decision problem lies in NPTime ∩ CoNPTime [18,19], since
it is memoryless determined [17,37,38,45]. It has been even proved to belong
to UPTime ∩ CoUPTime [31], a status shared with the factorisation problem
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[1,24,25]. They are the simplest class of games in a wider family with similar
complexities and containing, e.g., mean payoff games [16,30], discounted payoff
games [55], and simple stochastic games [15]. In fact, polynomial time reductions
exist from parity games to the latter ones. However, despite being the most likely
class among those games to admit a polynomial-time solution, the answer to the
question whether such a solution exists still eludes the research community.

The effort devoted to provide efficient solutions stems primarily form the fact
that many problems in formal verification and synthesis can be reformulated in
terms of solving parity games. Emerson, Jutla, and Sistla [18,19] have shown
that computing winning strategies for these games is linear-time equivalent to
solving the modal μCalculus model checking problem [20]. Parity games also
play a crucial role in automata theory [17,36,44], where, for instance, they can
be applied to solve the complementation problem for alternating automata [29]
and the emptiness of the corresponding nondeterministic tree automata [36].
These automata, in turn, can be used to solve the satisfiability and model check-
ing problems for expressive logics, such as the modal [53] and alternating [2,51]
μCalculus, ATL∗ [2,50], Strategy Logic [14,40,41,43], Substructure Temporal
Logic [4,5], and fixed-point extensions of guarded first-order logics [7,8].

Previous solutions mainly divide into two families: those based on decom-
posing the game into subsets of winning regions, called dominions, and those
trying to directly build winning strategies for the two players on the entire game.
To the first family belongs the divide et impera solution originally proposed by
McNaughton [39] for Muller games and adapted to parity games by Zielonka [54].
More recent improvements to that recursive algorithm have been proposed by
Jurdziński, Paterson, and Zwick [33,34] and by Schewe [48]. Both approaches rely
on finding suitably closed dominions, which can then be removed from a game
to reduce the size of the subgames to be recursively solved. To the second family
belongs the procedure proposed by Jurdziński [32], which exploits the connection
between the notions of progress measures [35] and winning strategies. An alter-
native approach was proposed by Jurdziński and Vöge [52], based on the idea of
iteratively improving an initial non-winning strategy. This technique was later
optimised by Schewe [49]. From a purely theoretical viewpoint, the best asymp-
totic behaviour obtained to date is the one exhibited by the solution proposed
in [48], which runs in time O

(
e · n

1
3k

)
, where n and e are the number of ver-

tices and edges of the underlying graph and k is the number of priorities. As far
as space consumption is concerned, we have two incomparable best behaviours:
O(k · n · log n), for the small progress measure procedure of [32], and O

(
n2

)
, for

the optimised strategy improvement method of [49]. Due to their inherent recur-
sive nature, the algorithms of the first family require O(e · n) memory, which
could be reduced to O

(
n2

)
, by representing subgames implicitly through their

sets of vertices. All these bounds do not seem to be amenable to further improve-
ments, as they appear to be intrinsic to the corresponding solution techniques.
Polynomial time solutions are only known for restricted versions of the prob-
lem, where one among the tree-width [22,23,46], the dag-width [6], the clique-
width [47] and the entanglement [9] of the underlying graph is bounded.
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The main contribution of the paper is a new algorithm for solving parity
games, based on the notions of quasi dominion and priority promotion. A quasi
dominion Q for player α ∈ {0, 1}, called a quasi α -dominion, is a set of vertices
from each of which player α can enforce a winning play that never leaves the
region, unless one of the following two conditions holds: (i) the opponent α can
escape from Q or (ii) the only choice for player α itself is to exit from Q (i.e.,
no edge from a vertex of α remains in Q). Quasi dominions can be ordered by
assigning to each of them a priority corresponding to an under-approximation of
the best value the opponent can be forced to visit along any play exiting from it.
A crucial property is that, under suitable and easy to check assumptions, a higher
priority quasi α-dominion Q1 and a lower priority one Q2, can be merged into a
single quasi α-dominion of the higher priority, thus improving the approximation
for Q2. For this reason we call this merging operation a priority promotion of
Q2 to Q1. The underlying idea of our approach is to iteratively enlarge quasi
α-dominions, by performing sequences of promotions, until an α-dominion is
obtained.

We prove soundness and completeness of the algorithm. Moreover, a bound
O

(
e · (3n−2

k−2 )k−1
)

on the time complexity and a O(n · log k) bound on the mem-
ory requirements are provided. Experimental results, comparing our algorithm
with the state of the art solvers, also show that the proposed approach perform
very well in practice, most often significantly better than existing ones, on both
random games and benchmark families proposed in the literature.

2 Parity Games

Let us first briefly recall the notation and basic definitions concerning parity
games that expert readers can simply skip. We refer to [3,54] for a comprehensive
presentation of the subject.

Given a partial function f : A ⇀ B, by dom(f) ⊆ A and rng(f) ⊆ B we denote
the domain and range of f, respectively.

A two-player turn-based arena is a tuple A =〈Ps0,Ps1,Mv〉, with Ps0∩Ps1 =
∅ and Ps � Ps0 ∪ Ps1, such that 〈Ps,Mv〉 is a finite directed graph. Ps0 (resp.
Ps1) is the set of positions of player 0 (resp., 1) and Mv ⊆ Ps × Ps is a left-
total relation describing all possible moves. A path in V ⊆ Ps is a finite or
infinite sequence π ∈ Pth(V) of positions in V compatible with the move relation,
i.e., (πi, πi+1) ∈ Mv , for all i ∈ [0, |π| − 1[. For a finite path π, with lst(π) we
denote the last position of π. A positional strategy for player α ∈ {0, 1} on
V ⊆ Ps is a partial function σα ∈ Strα(V) ⊆ (V ∩ Psα) ⇀ V, mapping each
α-position v ∈ dom(σα) to position σα(v) compatible with the move relation,
i.e., (v, σα(v)) ∈ Mv . With Strα(V) we denote the set of all α-strategies on V.
A play in V ⊆ Ps from a position v ∈ V w.r.t. a pair of strategies (σ0, σ1) ∈
Str0(V)×Str1(V), called ((σ0, σ1), v)-play, is a path π ∈ Pth(V) such that π0 = v
and, for all i ∈ [0, |π| − 1[, if πi ∈ Ps0 then πi+1 = σ0(πi) else πi+1 = σ1(πi).
The play function play : (Str0(V) × Str1(V)) × V → Pth(V) returns, for each
position v ∈ V and pair of strategies (σ0, σ1) ∈ Str0(V) × Str1(V), the maximal
((σ0, σ1), v)-play play((σ0, σ1), v).
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A parity game is a tuple � = 〈A,Pr, pr〉, where A is an arena, Pr ⊂ N is
a finite set of priorities, and pr : Ps → Pr is a priority function assigning a
priority to each position. The priority function can be naturally extended to
games and paths as follows: pr(�) � maxv∈Ps pr(v); for a path π ∈ Pth, we set
pr(π) � maxi∈[0,|π|[ pr(πi), if π is finite, and pr(π) � lim supi∈N pr(πi), otherwise.
A set of positions V ⊆ Ps is an α-dominion, with α ∈ {0, 1}, if there exists an α-
strategy σα ∈ Strα(V) such that, for all α-strategies σα ∈ Strα(V) and positions
v ∈ V, the induced play π = play((σ0, σ1), v) is infinite and pr(π) ≡2 α. In
other words, σα only induces on V infinite plays whose maximal priority visited
infinitely often has parity α. By �\V we denote the maximal subgame of �

with set of positions Ps′ contained in Ps\V and move relation Mv ′ equal to the
restriction of Mv to Ps′.

The α-predecessor of V, in symbols preα(V) � {v ∈ Psα : Mv(v) ∩ V �=
∅} ∪ {v ∈ Psα : Mv(v) ⊆ V}, collects the positions from which player α can
force the game to reach some position in V with a single move. The α-attractor
atrα(V) generalizes the notion of α-predecessor preα(V) to an arbitrary number
of moves. Thus, it corresponds to the least fix-point of that operator. When
V = atrα(V), we say that V is α-maximal. Intuitively, V is α-maximal if player
α cannot force any position outside V to enter this set. For such a V, the set
of positions of the subgame � \ V is precisely Ps \ V. Finally, the α-escape
of V, formally escα(V) � preα(Ps \ V) ∩ V, contains the positions in V from
which α can leave V in one move, while the dual notion of α-interior, defined
as intα(V) � (V ∩ Psα) \ escα(V), contains the α-positions from which α cannot
escape with a single move.

3 A New Idea

A solution for a parity game � = 〈A,Pr, pr〉 ∈ PG over an arena A = 〈Ps0,
Ps1,Mv〉 can trivially be obtained by iteratively computing dominions of some
player, namely sets of positions from which that player has a strategy to win
the game. Once an α-dominion D for player α ∈ {0, 1} is found, its α-attractor
atrα

�
(D) gives an α-maximal dominion containing D, i.e., α cannot force any

position outside D to enter this set. The subgame �\atrα
�
(D) can then be solved

by iterating the process. Therefore, the crucial problem to address consists in
computing a dominion for some player in the game. The difficulty here is that,
in general, no unique priority exists which satisfies the winning condition for a
player along all the plays inside the dominion. In fact, that value depends on the
strategy chosen by the opponent. Our solution to this problem is to proceed in a
bottom-up fashion, starting from a weaker notion of α-dominion, called quasi α-
dominion. Then, we compose quasi α-dominions until we obtain an α-dominion.
Intuitively, a quasi α-dominion is a set of positions on which player α has a
strategy whose induced plays either remain in the set forever and are winning
for α or can exit from it. This notion is formalised by the following definition.

Definition 1 (Quasi Dominion). Let � ∈ PG be a game and α ∈ {0, 1}
a player. A non-empty set of positions Q ⊆ Ps� is a quasi α-dominion in �
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if there exists an α-strategy σα ∈ Strα
�
(Q) such that, for all α-strategies σα ∈

Strα
�
(Q), with intα

�
(Q) ⊆ dom(σα), and positions v ∈ Q, the induced play π =

play�((σ0, σ1), v) satisfies pr�(π) ≡2 α, if π is infinite, and lst(π) ∈ escα
�
(Q),

otherwise.

The additional requirement that the opponent strategies be defined on all
interior positions discards those strategies in which the opponent deliberately
chooses to forfeit the play by declining to take any move at some of its positions.

We say that a quasi α-dominion Q is α-open (resp., α-closed) if escα
�
(Q) �= ∅

(resp., escα
�
(Q) = ∅). In other words, in a closed quasi α-dominion, player α has a

strategy whose induced plays are all infinite and winning. Hence, when closed, a
quasi α-dominion is a dominion for α in �. The set of pairs (Q, α) ∈ 2Ps� ×{0, 1},
where Q is a quasi α-dominion, is denoted by QD�, and is partitioned into the
sets QD−

�
and QD+

�
of open and closed quasi α-dominion pairs, respectively.

Note that quasi α-dominions are loosely related with the concept of snares,
introduced in [21] and used for completely different purposes, namely to speed
up the convergence of strategy improvement algorithms.

During the search for a dominion, we explore a suitable partial order, whose
elements, called states, record information about the open quasi dominions com-
puted so far. The search starts from the top element, where the quasi dominions
are initialised to the sets of nodes with the same priority. At each step, a query
is performed on the current state to extract a new quasi dominion, which is
then used to compute a successor state, if it is open. If, on the other hand,
it is closed, the search is over. Different query and successor operations can in
principle be defined, even on the same partial order. However, such operations
cannot be completely independent. To account for this intrinsic dependence, we
introduce a compatibility relation between states and quasi dominions that can
be extracted by the query operation. Such a relation also forms the domain of
the successor function. The partial order together with the query and successor
operations and the compatibility relation forms what we call a dominion space.

Definition 2 (Dominion Space). A dominion space for a game � ∈ PG
is a tuple D � 〈�,S,�,, ↓〉, where (1) S � 〈S,�,≺〉 is a well-founded partial
order w.r.t. ≺ ⊂ S × S with distinguished element � ∈ S, (2) � ⊆ S × QD−

�

is the compatibility relation, (3)  : S → QD� is the query function mapping
each element s ∈ S to a quasi dominion pair (Q, α) � (s) ∈ QD� such that,
if (Q, α) ∈ QD−

�
then s�(Q, α), and (4) ↓ : � → S is the successor function

mapping each pair (s, (Q, α)) ∈ � to the element s� � s ↓(Q, α) ∈ S with s�≺s.

The depth of a dominion space D is the length of the longest chain in the
underlying partial order S starting from �. Instead, by execution depth of D
we mean the length of the longest chain induced by the successor function ↓.
Obviously, the execution depth is always bound by the depth.

Different dominion spaces can be associated to the same game. Therefore, in
the rest of this section, we shall simply assume a function Γ mapping every
game � to a dominion space Γ (�). Given the top element of D = Γ (�),
Algorithm 1 searches for a dominion of either one of the two players by querying
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the current state s for a region pair (Q, α). If this is closed in �, it is returned as an
α-dominion. Otherwise, a successor state s ↓D (Q, α) is computed and the search
proceeds recursively from it. Clearly, since the partial order is well-founded, ter-
mination of the srcD procedure is guaranteed. The total number of recursive calls
is, therefore, the execution depth dD(n, e, k) of the dominion space D, where n, e,
and k are the number of positions, moves, and priorities, respectively. Hence, srcD
runs in time O(dD(n, e, k) · (T�(n, e) + T↓(n, e)), where T�(n, e) and T↓(n, e)
denote the time needed by the query and successor functions, respectively. Thus,
the total time to solve a game is O(e + n · dD(n, e, k) · (T�(n, e) + T↓(n, e))).
Since the query and successor functions of the dominion space considered in
the rest of the paper can be computed in linear time w.r.t. both n and e, the
whole procedure terminates in time O(n · (n + e) · dD(n, e, k)). As to the space
requirements, observe that srcD is a tail recursive algorithm. Hence, the upper
bound on memory only depends on the space needed to encode the states of a
dominion space, namely O(log ‖D‖), where ‖D‖ is the size of the partial order
S associated with D.

Soundness of the approach follows
from the observation that quasi α-
dominions closed in the entire game are
winning for player α and so are their
α-attractors. Completeness, instead, is
ensured by the nature of dominion
spaces. Indeed, algorithm srcD always
terminates by well-foundedness of the
underlying partial order and, when it
eventually does, a dominion for some
player is returned. Therefore, the cor-
rectness of the algorithm reduces to
proving the existence of a suitable
dominion space, which is the subject of
the next section.

4 Priority Promotion

In order to compute dominions, we shall consider a restricted form of quasi
dominions that constrains the escape set to have the maximal priority in the
game. Such quasi dominions are called regions.

Definition 3 (Region). A quasi α-dominion R is an α-region if pr(�) ≡2 α
and all the positions in escα

�
(R) have priority pr(�), i.e. escα

�
(R) ⊆ pr−1

�
(pr(�)).

As a consequence of the above definition, if the opponent α can escape from
an α-region, it must visit a position with the highest priority in the region, which
is of parity α. Similarly to the case of quasi dominions, we shall denote with Rg�

the set of region pairs in � and with Rg−
�

and Rg+
�

the sets of open and closed
region pairs, respectively. A closed α-region is clearly an α-dominion.
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At this point, we have all the tools to explain the crucial steps underlying
the search procedure. Open regions are not winning, as the opponent can force
plays exiting from them. Therefore, in order to build a dominion starting from
open regions, we look for a suitable sequence of regions that can be merged
together until a closed one is found. Obviously, the merging operation needs to
be applied only to regions belonging to the same player, in such a way that the
resulting set of position is still a region of that player. To this end, a mech-
anism is proposed, where an α-region R in some game � and an α-dominion
D in a subgame of � not containing R itself are merged together, if the only
moves exiting from α-positions of D in the entire game lead to higher prior-
ity α-regions and R has the lowest priority among them. As we shall see, this
ensures that the new region R� � R ∪ D has the same associated priority as R.
This merging operation, based on the following proposition, is called promotion
of the lower region to the higher one.

Proposition 1 (Region Merging). Let � ∈ PG be a game, R ⊆ Ps� an α-
region, and D ⊆ Ps�\R an α-dominion in the subgame � \ R. Then, R� � R ∪ D
is an α-region in �. Moreover, if both R and D are α-maximal in � and � \ R,
respectively, then R� is α-maximal in � as well.

Proof. Since R is an α-region, there is an α-strategy σR such that, for all α-
strategies σα ∈ Strα

�
(R), with intα

�
(R) ⊆ dom(σα), and positions v ∈ R, the play

induced by the two strategies is either winning for α or exits from R passing
through a position of the escape set escα

�
(R), which must be one of the position

of maximal priority in � and of parity α. Set D is, instead, an α-dominion in
the game � \ R, therefore an α-strategy σD ∈ Str�\R exists that is winning for
α from every position in D, regardless of the strategy σ′

α ∈ Strα
�\R(D), with

intα
�\R(D) ⊆ dom(σ′

α), chosen by the opponent α. To show that R� is an α-
region, it suffices to show that the following three conditions hold: (i) it is a
quasi α-dominion; (ii) the maximal priority of � is of parity α; (iii) the escape
set escα

�
(R�) is contained in pr−1

�
(pr(�)).

Condition (ii) immediately follows from the assumption that R is an α-region
in �. To show that also Condition (iii) holds, we observe that, since D is an α-
dominion in � \ R, the only possible moves exiting from α-positions of D in
game � must lead to R, i.e., escα

�
(D) ⊆ R. Hence, the only escaping positions

of R�, if any, must belong to R, i.e. escα
�
(R�) ⊆ escα

�
(R). Since R is an α-region

in �, it hods that escα
�
(R) ⊆ pr−1

�
(pr(�)). By transitivity, we conclude that

escα
�
(R�) ⊆ pr−1

�
(pr(�)).

Let us now consider Condition (i) and let the α-strategy σR� � σR ∪ σD

be defined as the union of the two strategies above. Note that, being D and R
disjoint sets of positions, σR� is a well-defined strategy. We have to show that
every path π compatible with σR� and starting from a position in R� is either
winning for α or ends in a position of the escape set escα

�
(R�).

First, observe that escα
�
(R�) contains only those positions in the escaping set

of R from which α cannot force to move into D, i.e. escα
�
(R�) = escα

�
(R)\preα

�
(D).
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Let now π be a play compatible with σR� . If π is an infinite play, then it
remains forever in R� and we have three possible cases. If π eventually remains
forever in D, then it is clearly winning for α, since σR� coincides with σD on
all the positions in D. Similarly, if π eventually remains forever in R, then it is
also winning for α, as σR� coincides with σR on all the positions in R. If, on
the other hand, π passes infinitely often through both R and D, it necessarily
visits infinitely often an escaping position in escα

�
(R) ⊆ pr−1

�
(pr(�)), which has

the maximal priority in � and is of parity α. Hence, the parity of the maximal
priority visited infinitely often along π is α and π is winning for player α. Finally,
if π is a finite play, then it must end at some escaping position of R from where
α cannot force to move to a position still in R�, i.e., it must end in a position of
the set escα

�
(R) \ preα

�
(D) = escα

�
(R�). Therefore, lst(π) ∈ escα

�
(R�). We can then

conclude that R� also satisfies Condition (i).
Let us now assume, by contradiction, that R� is not α-maximal. Then, there

must be at least one position v belonging to atrα
�
(R�) \ R�, from which α can

force entering R� in one move. Assume first that v is an α-position. Then there
is a move from v leading either to R or to D. But this means that v belongs to
either atrα

�
(R) \ R or atrα

�\R(D) \ D, contradicting α-maximality of those sets. If
v is a α-position, instead, all its outgoing moves must lead to R ∪ D. If all those
moves lead to R, then v ∈ atrα

�
(R) \ R, contradicting α-maximality of R in �. If

not, then in the subgame � \ R, the remaining moves from v must all lead to D.
But then, v ∈ atrα

�\R(D) \ D, contradicting α-maximality of D in � \ R.

During the search, we keep track of the computed regions by means of an
auxiliary priority function r ∈ Δ� � Ps� → Pr�, called region function, which
formalises the intuitive notion of priority of a region described above. Initially,
the region function coincides with the priority function pr� of the entire game �.
Priorities are considered starting from the highest one. A region of the same
parity α ∈ {0, 1} of the priority p under consideration is extracted from the
region function, by collecting the set of positions r−1(p). Then, its attractor
R � atrα

��(r−1(p)) is computed w.r.t. the subgame �
�, which is derived from �

by removing the regions with priority higher than p. The resulting set forms an
α-maximal set of positions from which the corresponding player can force a visit
to positions with priority p. This first phase is called region extension. If the
α-region R is open in �

�, we proceed and process the next priority. In this case,
we set the priority of the newly computed region to p. Otherwise, one of two
situations may arise. Either R is closed in the whole game � or the only α-moves
exiting from R lead to higher regions of the same parity. In the former case, R
is a α-dominion in the entire game and the search stops. In the latter case, R is
only an α-dominion in the subgame �

�, and a promotion of R to a higher region
R� can be performed, according to Proposition 1. The search, then, restarts from
the priority of R�, after resetting to the original priorities in pr� all the positions
of the lower priority regions. The region R� resulting from the union of R� and R
will then be reprocessed and, possibly, extended in order to make it α-maximal.
If R can be promoted to more than one region, the one with the lowest priority
is chosen, so as to ensure the correctness of the merging operation. Due to the
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property of maximality, no α-moves from R to higher priority α-regions exist.
Therefore, only regions of the same parity are considered in the promotion step.
The correctness of region extension operation above, the remaining fundamental
step in the proposed approach, is formalised by the following proposition.

Proposition 2 (Region Extension). Let � ∈ PG be a game and R� ⊆ Ps�

an α-region in �. Then, R � atrα
�
(R�) is an α-maximal α-region in �.

Proof. Since R� is an α-region in �, then the maximal priority in � is of parity
α and escα

�
(R�) ⊆ pr−1

�
(pr(�)). Hence, any position v in � must have priority

pr�(v) ≤ pr(�). Player α can force entering R� from every position in atrα
�
(R�) \

R�, with a finite number of moves. Moreover, R� is a quasi α-dominion and the
priorities of the positions in Ps�\R� are lower than or equal to pr(�) ≡2 α. Hence,
every play that remains in R forever either eventually remains forever in R� and
is winning for α, or passes infinitely often through R� and atrα

�
(R�) \ R�. In the

latter case, that path must visit infinitely often a position in escα
�
(R�) that has

the maximal priority in � and has parity α. Hence, the play is winning for α. If,
on the other hand, α can force a play to exit from R, it can do so only by visiting
some position in escα

�
(R�). In other words, escα

�
(R) ⊆ escα

�
(R�) ⊆ pr−1

�
(pr(�)).

In either case, we conclude that R is an α-region in �. Finally, being R the result
of an α-attractor, it is clearly α-maximal.

e/2

c/4

a/6

i/0

d/3

b/5

g/1

h/1 f/2

Fig. 1. Running example.

Table 1. PP simulation.

1 2 3 4 5 6 7

6 a↓ · · · · · · · · · · · · a,b,d,g,i↓ · · ·
5 b,f,h↓ · · · · · · b,d,f,g,h↓ · · ·
4 c↓ c,e↓ · · · c↓ c,e↓ c↓ c,e,f,h↑6

3 d↓ d↓ d,g↑5

2 e↑4 e↑4 e, f, h↑4

1 g↑3

0 i↑6

Figure 1 and Table 1 illustrate the search procedure on an example game,
where diamond shaped positions belong to player 0 and square shaped ones to
the opponent 1. Player 0 wins from every position, hence the 0-region containing
all the positions is a 0-dominion in this case. Each cell of the table contains
a computed region. A downward arrow denotes a region that is open in the
subgame where it is computed, while an upward arrow means that the region
gets to be promoted to the priority in the subscript. The index of each row
corresponds to the priority of the region. Following the idea sketched above, the
first region obtained is the single-position 0-region {a}, which is open because
of the two moves leading to d and e. At priority 5, the open 1-region {b, f, h}
is formed by attracting both f and h to b, which is open in the subgame where
{a} is removed. Similarly, the 0-region {c} at priority 4 and the 1-region {d}
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at priority 3 are open, once removed {a, b, f, h} and {a, b, c, f, h}, respectively,
from the game. At priority 2, the 0-region {e} is closed in the corresponding
subgame. However, it is not closed in the whole game, since it has a move leading
to c, i.e., to region 4. A promotion of {e} to 4 is then performed, resulting in
the new 0-region {c, e}. The search resumes at the corresponding priority and,
after computing the extension of such a region via the attractor, we obtain
that it is still open in the corresponding subgame. Consequently, the 1-region of
priority 3 is recomputed and, then, priority 1 is processed to build the 1-region
{g}. The latter is closed in the associated subgame, but not in the original
game, because of a move leading to position d. Hence, another promotion is
performed, leading to closed region in Row 3 and Column 3, which in turn triggers
a promotion to 5. Observe that every time a promotion to a higher region is
performed, all positions of the regions at lower priorities are reset to their original
priorities. The iteration of the region forming and promotion steps proceeds until
the configuration in Column 7 is reached. Here only two 0-regions are present:
the open region 6 containing {a, b, d, g, i} and the closed region 4 containing
{c, e, f, h}. The second one has a move leading to the first one, hence, it is
promoted to its priority. This last operation forms a 0-region containing all the
positions of the game. It is obviously closed in the whole game and is, therefore,
a 0-dominion.

Note that, the positions in 0-region {c, e} are reset to their initial priorities,
when 1-region {d, g} in Column 3 is promoted to 5. Similarly, when 0-region {i}
in Column 5 is promoted to 6, the priorities of the positions in both regions
{b, d, f, g, h} and {c, e}, highlighted by the grey areas, are reset. This is actually
necessary for correctness, at least in general. In fact, if region {b, d, f, g, h} were
not reset, the promotion of {i} to 6, which also attracts b, d, and g, would leave
{f, h} as a 1-region of priority 5. However, according to Definition 3, this is not a
1-region. Even worse, it would also be considered a closed 1-region in the entire
game, without being a 1-dominion, since it is actually an open 0-region. This
shows that, in principle, promotions to an higher priority require the reset of
previously built regions of lower priorities.

In the rest of this section, we shall formalise the intuitive idea described
above. The necessary conditions under which promotion operations can be
applied are also stated. Finally, query and successor algorithms are provided,
which ensure that the necessary conditions are easy to check and always met
when promotions are performed.

The PP Dominion Space. In order to define the dominion space induced by
the priority-promotion mechanism (PP, for short), we need to introduce some
additional notation. Given a priority function r ∈ Δ� and a priority p ∈ Pr,
we denote by r(≥p) (resp., r(>p) and r(<p)) the function obtained by restricting
the domain of r to the positions with priority greater than or equal to p (resp.,
greater than and lower than p). Formally, r(≥p) � r�{v ∈ dom(r) : r(v) ≥ p},
r(>p) � r�{v ∈ dom(r) : r(v) > p}, and r(<p) � r�{v ∈ dom(r) : r(v) < p}. By �

≤p
r

we denote the largest subgame contained in the structure � \ dom(
r(>p)

)
, which

is obtained by removing from � all the positions in the domain of r(>p).
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A priority function r ∈ R� ⊆ Δ� in � is a region function iff, for all priorities
q ∈ rng(r) with α � q mod 2, it holds that r−1(q) ∩ Ps

�
≤q
r

is an α-region in the
subgame �

≤q
r , if non-empty. In addition, we say that r is maximal above p ∈ Pr

iff, for all q ∈ rng(r) with q > p, we have that r−1(q) is α-maximal in �
≤q
r with

α � q mod 2.
To account for the current status of the search of a dominion, the states s of

the corresponding dominion space need to contain the current region function
r and the current priority p reached by the search in �. To each of such states
s � (r, p), we then associate the subgame at s defined as �s � �

≤p
r , representing

the portion of the original game that still has to be processed.
We can now formally define the Priority Promotion dominion space, by char-

acterising the corresponding state space and compatibility relation. Moreover,
algorithms for the query and successor functions of that space are provided.

Definition 4 (State Space). A state space is a tuple S� �〈S�,��,≺�〉, where
its components are defined as prescribed in the following:

1. S� ⊆ R� × Pr� is the set of all pairs s � (r, p), called states, composed of
a region function r ∈ R� and a priority p ∈ Pr� such that (a) r is maximal
above p and (b) p ∈ rng(r), and (c) r(<p) ⊆ pr�

(<p);
2. �� � (pr�, pr(�));
3. for any two states s1 � (r1, p1), s2 � (r2, p2) ∈ S�, it holds that s1≺�s2

iff either (a) there exists a priority q ∈ rng(r1) with q ≥ p1 such that
(a.i) r1(>q) = r2

(>q) and (a.ii) r−1
2 (q) ⊂ r−1

1 (q), or (b) both (b.i) r1 = r2 and
(b.ii) p1 < p2 hold.

The state space specifies the configurations in which the priority promotion
procedure can reside and the relative order that the successor function must
satisfy. In particular, for a given state s � (r, p), every region r−1(q), with priority
q > p, recorded in the region function r has to be α-maximal, where α = q mod 2.
This implies that r−1(q) ⊆ Ps

�
≤q
r

. Moreover, the current priority p of the state
must be the priority of an actual region in r. As far as the order is concerned,
a state s1 is strictly smaller than another state s2 if either there is a region
recorded in s1 at some higher priority that strictly contains the corresponding
one in s2 and all regions above are equal in the two states, or state s1 is currently
processing a lower priority than the one of s2.

At this point, we can determine
the regions that are compatible with
a given state. They are the only ones
that the query function is allowed to
return and that can then be used
by the successor function to make
the search progress in the dominion
space. Intuitively, a region pair (R, α)
is compatible with a state s � (r, p)
if it is an α-region in the current sub-
game �s. Moreover, if such region is α-open in that game, it has to be α-maximal,
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and it has to necessarily contain the current region r−1(p) of priority p in r. These
three accessory properties ensure that the successor function is always able to
cast R inside the current region function r and obtain a new state.

Definition 5 (Compatibility Relation). An open quasi dominion pair (R,
α) ∈ QD−

�
is compatible with a state s � (r, p) ∈ S�, in symbols s��(R, α), iff

(1) (R, α) ∈ Rg�s
and (2) if R is α-open in �s then (2.a) R is α-maximal in �s

and (2.b) r−1(p) ⊆ R.

Algorithm 2 provides a possible implementation for the query function com-
patible with the priority-promotion mechanism. Let s � (r, p) be the current
state. Line 1 simply computes the parity α of the priority to process in that
state. Line 2, instead, computes in game �s the attractor w.r.t. player α of the
region contained in r at the current priority p. The resulting set R is, according
to Proposition 2, an α-maximal α-region in �s containing r−1(p).

Before continuing with the description of the implementation of the successor
function, we need to introduce the notion of best escape priority for player α
w.r.t. an α-region R of the subgame �s and a region function r in the whole
game �. Informally, such a value represents the best priority associated with an
α-region contained in r and reachable by α when escaping from r. To formalise
this concept, let I � Mv� ∩ ((R ∩ Psα

�
) × (dom(r)\R)) be the interface relation

between R and r, i.e., the set of α-moves exiting from R and reaching some
position within a region recorded in r. Then, bepα

�
(R, r) is set to the minimal

priority among those regions containing positions reachable by a move in I.
Formally, bepα

�
(R, r) � min(rng(r�rng(I ))). Note that, if R is a closed α-region

in �s, then bepα
�
(R, r) is necessarily of parity α and greater than the priority

p of R. This property immediately follows from the maximality of r above p
in any state of the dominion space. Indeed, no move of an α-position can lead
to a α-maximal α-region. For instance, in the example of Fig. 1, for 0-region
R = {e, f, h} with priority equal to 2 in column 6, we have that I = {(e, c), (h, b)}
and r�rng(I ) = {(c, 4), (b, 6)}. Hence, bep1

�
(R, r) = 4.

In the following, to reset the pri-
ority of some the positions in the
game, after a promotion of a given
region is performed, we define the
completing operator � that, taken a
partial function f : A ⇀ B and a
total function g : A → B, returns the
total function g�f � (g\dom(f))∪f :
A → B. The result is equal to f on its
domain and assumes the same val-
ues of g on the remaining part of
the set A.

Algorithm 3 implements the suc-
cessor function informally described
at the beginning of the section. Given the current state s and a compatible
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region pair (R, α) open in the whole game as inputs, it produces a successor
state s� � (r�, p�) in the dominion space. It first checks whether R is open also
in the subgame �s (Line 1). If this is the case, it assigns priority p to region R
and stores it in the new region function r� (Line 2). The new current priority p�

is, then, computed as the highest priority lower than p in r� (Line 3). If, on the
other hand, R is closed in �s, a promotion merging R with some other α-region
contained in r is required. The next priority p� is set to the bep of R for player α
in the entire game � w.r.t. r (Line 4). Region R is, then, promoted to priority p�

and all the priorities below p� in the current region function r are reset (Line 5).
The correctness of this last operation follows from Proposition 1.

As already observed in Sect. 3, a dominion space, together with Algorithm 1,
provides a sound and complete solution procedure. The following theorem states
that the priority-promotion mechanism presented above is indeed a dominion
space. The proof will be provided in the extended version of the paper.

Theorem 1 (Dominion Space). For a game �, the structure D� � 〈�,S�,
��,�, ↓�〉, where S� is given in Definition 4, �� is the relation of Definition 5,
and � and ↓� are the functions computed by Algorithms 2 and 3 is a dominion
space.

Complexity of PP Dominion Space. To conclude, we estimate the size and
depth of dominion space R�. This provides upper bounds on both the time and
space needed by the search procedure srcR�

computing dominions. By looking at
the definition of state space S�, it is immediate to see that, for a game � with n
positions and k priorities, the number of states is bounded by kn. Indeed, there
are at most kn functions r : Ps� → Pr� from positions to priorities that can be
used as region function of a state. Note that the associated current priority is
uniquely determined by the content of the region function. Measuring the depth
is a little trickier. A coarse bound can be obtained by observing that there is an
homomorphism from S� to the well-founded partial order, in which the region
function r of a state is replaced by a partial function f : Pr� ⇀ [1, n] with the
following properties: it assigns to each priority p ∈ rng(r) the size f(p) of the
associated region r−1(p). The order (f1, p1)≺(f2, p2) between two pairs is derived
from the one on the states, by replacing r−1

2 (q) ⊂ r−1
1 (q) with f2(q) < f1(q).

This homomorphism ensures that every chain in S� corresponds to a chain in
the new partial order. Moreover, there are exactly

(
n+k

k

)
partial functions f

such that
∑

p∈dom(f) f(p) ≤ n. Consequently, every chain cannot be longer than
(
n+k

k

) ≤ (
e(n

k + 1)
)k, where e is the Euler constant. By further exploiting the

structure of the space, one can obtain a recurrence relation expressing a slightly
better upper bound, whose explicit solution is 3·∑k−2

i=0

(
n−2

i

)
. Then, by applying a

standard approximation via geometric series based on the inequality
(

h−i
n−h+i

)i

≤
(

m
h−i

)
/
(
m
h

) ≤
(

h
n−h+1

)i

, we derive the asymptotic bound stated by the following
theorem. A formal account of the recurrence relation will be provided in the
extended version of this article.
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Theorem 2 (Size & Depth Upper Bounds). The size of a PP dominion
space R with n ∈ N+ positions and k ∈ [1, n] priorities is bounded by kn.
Moreover, if 2 ≤ k, its depth is bounded by 3 · ∑k−2

i=0

(
n−2

i

)
, which is less than

3 n−k+1
n−2k+3

(
en−2

k−2

)k−2

, if k < n/2, and less than 3(2n−2 − c(n−2
k−2 )k−2), for a con-

stant c > 0, otherwise.

Unfortunately, due to the reset operations performed after each promotion,
an exponential worst-case can actually be built. Indeed, consider the game �m,h

having all positions ruled by player 0 and containing h chains of length 2m + 1
that converge into a single position of priority 0 with a self loop. The i-th chain
has a head of priority 4k − i and a body composed of m blocks of two positions
having priority 2i − 1 and 2i, respectively. The first position in each block also
has a self loop. An instance of this game with m = 2 and h = 4 is depicted in
Fig. 2. The labels of the positions correspond to the associated priorities and the
highlighted area at the bottom of the figure groups together the last blocks of
the chains. Intuitively, the execution depth of the PP dominion space for this
game is exponential, since the consecutive promotion operations performed on
each chain can simulate the increments of a counter up to m. Also, the priorities
are chosen in such a way that, when the i-th counter is incremented, all the j-th
counters with j ∈ ]i, h] are reset. Therefore, the whole game simulates a counter
with h digits taking values from 0 to m. Hence, the overall number of performed
promotions is (m + 1)h. The search procedure on �2,4 starts by building the
four open 1-regions {15}, {13}, {11}, and {9} and the open 0-region {8′, 7′′, 8′′},
where we use apices to distinguish different positions with the same priority.
This state represents the configuration of the counter, where all four digits are
set to 0. The closed 1-region {7′} is then found and promoted to 9. Consequently,
the previously computed 0-region with priority 8 is reset and the new region is
maximised to obtain the open 1-region {9, 7′, 8′}. Now, the counter is set to 0001.

0

13 1115 9

1 3 5 7

2 4 6 8

1 3 5 7

2 4 6 8

Fig. 2. The �
PP
2,4 game.

After that, the open 0-region {8′′} and the closed
1-region {7′′} are computed. The latter one is pro-
moted to 9 and maximised to attract position 8′′.
This completes the 1-region containing the entire
chain ending in 9. The value of the counter is
now 0002. At this point, immediately after the
construction of the open 0-region {6′, 5′′, 6′′}, the
closed 1-region {5′} is found, promoted to 11, and
maximised to absorb position 6′. Due to the pro-
motion, the positions in the 1-region with priority
9 are reset to their original priority and all the
work done to build it gets lost. This last operation
represents the reset of the least significant digit of
the counter, caused by the increment of the second
one, i.e., the counter displays 0010. Following sim-
ilar steps, the process carries on until each chain is
grouped in a single region. The corresponding state represents the configuration
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of the counter in which all digits are set to m. Thus, after an exponential number
promotions, the closed 0-region {0} is eventually obtained as solution.

Theorem 3 (Execution-Depth Lower Bounds). For all numbers h ∈ N,
there exists a PP dominion space Rh with k = 2h + 1 positions and priorities,
whose execution depth is 3 · 2h − 2 = Θ2k/2. Moreover, for all numbers m ∈ N+,
there exists a PP dominion space Rm,h with n = (2m + 1) · h + 1 positions and
k = 3h+1 priorities, whose execution depth is ((3m+1) · (m+1)h −1)/m−2 =
O

(
(3n/(2(k − 1)))k/3

)
.

Observe that, in the above theorem, we provide two different exponential
lower bounds. The general one, with k/3 as exponent and a parametric base,
is the result of the game �m,h described in the previous paragraph, where
k = 3h + 1. The other bound, instead, has a base fixed to 2, but the worse
exponent k/2. We conjecture that the given upper bound could be improved to
match the exponent k/2 of this lower bound. In this way, we would obtain an
algorithm with an asymptotic behaviour comparable with the one exhibited by
the small-progress measure procedure [32]. This study will be further pursued in
the extended version of the article.

5 Experimental Evaluation

In order to assess the effectiveness of the proposed approach, the new tech-
nique described above has been implemented in the tool PGSolver [28], which
collects implementations of several parity game solvers proposed in the litera-
ture. This software framework, implemented in OCaml, also provides a bench-
marking tool, which can generate different forms of parity games. The avail-
able benchmarks divide into concrete problems and synthetic ones. The concrete
benchmarks encode validity and verification problems for temporal logics. They
consist in parity games resulting from encodings of the language inclusion prob-
lem between automata, specifically a non-deterministic Büchi automaton and a
deterministic one, reachability problems, namely the Tower of Hanoi problem,
and fairness verification problems, the Elevator problem (see [28]). The synthetic
benchmarks divide into randomly generated games and various families corre-
sponding to difficult cases (clique and ladder-like games) and worst cases of the
solvers implemented in PGSolver. To fairly compare the different solution tech-
niques used by the underlying algorithms, the solvers involved in the experiments
have been isolated from the generic solver implemented in PGSolver, which
exploits game transformation and decomposition techniques in the attempt to
speed up the solution process. However, those optimisations can, in some cases,
solve the game without even calling the selected algorithm, and, in other cases,
the resulting overhead can even outweigh the solver time, making the compar-
ison among solvers virtually worthless [28]. Experiments were also conducted
with different optimisations enabled and the results exhibit the same pattern
emerging in the following experimental evaluation.
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The algorithms considered in the experimentation are the Zielonka algorithm
Rec [54], its two dominion decomposition variants, Dom [33,34] and Big [48], the
strategy improvement algorithm Str [52], and the one proposed in this article,
PP. Small progress measure [32] is not included, since it could not solve any of
the tested benchmarks within the available computational resources1.

Table 2. Execution times in seconds on several bench-
mark families. Time out (†) is set to 600 s and memory
out (‡) to 7.5 Gb.

Benchmark Size Dom Big Str Rec PP

Hanoi 6.3M 21.4 21.4 ‡ 17.4 14.2

Elevator 7.7M † ‡ ‡ ‡ 43.3

Lang. Incl 5M † ‡ ‡ 145.5 21.1

Ladder 4M † ‡ ‡ 35.0 17.1

Str. Imp 4.5M 81.0 82.8 † 71.0 50.0

Clique 8K † ‡ † † 21.7

MC. Lad 7.5M † ‡ ‡ 4.3 6.5

Rec. Lad 50K † ‡ 0.6 ‡ 311.2

Jurdziński 40K † † 188.2 † 314.4

Special Families. Table 2
displays the results of all
the solvers involved on the
benchmark families avail-
able in PGSolver. We
only report on the biggest
instances we could deal
with, given the available
computational resources2.
The parameter Size refers
to the number of posi-
tions in the games and
the best performance are
emphasised in bold. The
first three rows consider
the concrete verification problems mentioned above. On the Tower of Hanoi
problem all the solvers perform reasonably well, except for Str due its high
memory requirements. The Elevator problem proved to be very demanding in
terms of memory for all the solvers, except for our new algorithm and Dom,
which, however, could not solve it within the time limit of 10 min. Our solver
performs extremely well on both this benchmark and on Language Inclusion,
which could be solved only by Rec among the other solvers. On the worst case
benchmarks, it performs quite well also on Ladder, Strategy Improvement, and
Clique, which proved to be considerably difficult for all the other solvers. It was
outperformed only on the last three ones: the Modelchecker, the Recursive Lad-
der, and Jurdziński games. Despite this fact, the new solver exhibit the most
consistent behaviour overall on these benchmarks. Indeed, in all those bench-
marks, the priority promotion algorithm requires no promotions regardless of
the input parameters, except for the elevator problem, where it performs only
two promotions.

Random Games. Figure 3 compares the running times (left-hand side) and
memory requirements (right-end side) of the new algorithm PP against Rec and
Str on 2000 random games of size ranging from 5000 to 20000 positions and
1 Experiments were carried out on a 64-bit 3.1 GHz Intel R© quad-core machine, with

i5-2400 processor and 8 GB of RAM, running Ubuntu 12.04 with Linux kernel ver-
sion 3.2.0. PGSolver was compiled with OCaml version 2.12.1.

2 The instances were generated with the following PGSolver commands:
towersofhanoi 13, elevatorgame 8, langincl 500 100, laddergame 4000000,
stratimprgen -pg friedmannsubexp 1000, modelcheckerladder 2500000, clique
game 8000, recursiveladder 10000, and jurdzinskigame 100 100.
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Fig. 3. Time and auxiliary memory on random games with 2 moves per position.

2 outgoing moves per position. Interestingly, these random games proved to
be quite challenging for all the considered solvers. We set a time-out to 180 s
(3 min). Both Dom and Big perform quite poorly on those games, hitting the
time-out already for very small instances, and we decided to leave them out of
the picture. The behaviour of the solvers is typically highly variable even on
games of the same size and priorities. To summarise the results, the average
running time on clusters of games seemed the most appropriate choice in this
case. Therefore, each point in the graph shows the average time over a cluster
of 100 different games of the same size: for each size value n, we chose a number
k = n · i/10 of priorities, with i ∈ [1, 10], and 10 random games were generated
for each pair of n and k. The new algorithm perform significantly better than the
others on those games. The right-hand side graph also shows that the theoretical
improvement on the auxiliary memory requirements of the new algorithm has
a considerable practical impact on memory consumption compared to the other
solvers. We also experimented on random games with a higher number of moves
per position. The resulting games turn out to be much easier to solve for all the
solvers. This behaviour might depend on the specific random generator provided
by PGSolver. However, those experiments still show better performance by
the new algorithm w.r.t. the competitor ones. Due to the space constraints, the
corresponding results will be reported in the extended version of the paper.

6 Discussion

We considered the problem of solving Parity Games, a special form of infinite-
duration games over graphs having relevant applications in various branches of
Theoretical Computer Science. We proposed a novel solution technique, based
on a priority-promotion mechanism. Based on this approach, a new solution
algorithm have been presented and studied. We gave proofs of its correctness
and provided an accurate analysis of its time and space complexities.

As far as time complexity is concerned, an exponential upper bound in the
number of priorities has been given. A lower bound for the worst-case was also
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presented in the form of a family of parity games on which the new technique
exhibits an exponential behaviour. On the bright side, the new solution exhibits
the best space complexity among the currently known algorithms for parity
games. In fact, we showed that the maximal additional space needed to solve
a parity game is linear in the number of positions, logarithmic in the number
of priorities, and independent from the number of moves in the game. This is
an important result, in particular considering that in practical applications we
often need to deal with games having a very high number of positions, moves,
and, in some cases, priorities. Therefore, low space requirements are essential for
practical scalability.

To assess the effectiveness of the new approach, experiments were carried
out against concrete and synthetic problems. We compared the new algorithm
with the state-of-the-art solvers implemented in PGSolver. The results are very
promising, showing that the proposed approach is extremely effective in prac-
tice, often substantially better than existing ones. This suggests that the new
approach is worth pursuing further. Therefore, we are currently investigating
new and clever priority-promotion policies that try to minimise the number of
region resets after a priority promotion.

It would be interesting to investigate the applicability of the priority promo-
tion approach to related problems, such as prompt-parity games [42] and similar
conditions [12,26,27], and even in wider contexts like mean-payoff games [13,16]
and energy games [10,11].
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Abstract. In this paper, we develop an approach to find strategies that
guarantee a property in systems that contain controllable, uncontrol-
lable, and random vertices, resulting in probabilistic games. Such games
are a reasonable abstraction of systems that comprise partial control over
the system (reflected by controllable transitions), hostile nondetermin-
ism (abstraction of the unknown, such as the behaviour of an attacker
or a potentially hostile environment), and probabilistic transitions for
the abstraction of unknown behaviour neutral to our goals. We exploit
a simple and only mildly adjusted algorithm from the analysis of non-
probabilistic systems, and use it to show that the qualitative analysis of
probabilistic games inherits the much celebrated sub-exponential com-
plexity from 2-player games. The simple structure of the exploited algo-
rithm allows us to offer tool support for finding the desired strategy, if
it exists, for the given systems and properties. Our experimental evalu-
ation shows that our technique is powerful enough to construct simple
strategies that guarantee the specified probabilistic temporal properties.

1 Introduction

The automated synthesis of reactive protocols (strategies, policies) from tem-
poral specifications has recently attracted considerable attention in numerous
applications. Such a scenario can present both nondeterministic and probabilis-
tic behaviours, so the resulting model can be seen as a Markov Decision Process
(MDP) [31]. MDPs can also be viewed as 1 1

2−player games, where the full player
decides which action to perform when resolving nondeterministic choices, and the
1
2 -player (or: random player) resolves the probabilistic choices.

This game can be enriched with a second player, e.g. an environment player,
who controls some of the nondeterministic choices. Usually, the second player
acts in a hostile manner: he tries to prevent the first (full) player from reaching
her goal. The resulting game is known as a 21

2 − player game. Examples of 21
2 -

player games are security and communication protocols [24,28,29,34,35] and
robots playing in pursuit-evasion games [20].

A particular application in software engineering is the development of prob-
abilistic reactive protocols and interfaces for probabilistic components. Such an
c© Springer International Publishing Switzerland 2016
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interface would restrict the interactions a component offers to its environment.
This technically corresponds to choosing a strategy for the component in a game
with its environment, where the goal of the component is to satisfy its specifi-
cation, while the goal of the environment is to violate it.

The contribution of this paper is to provide an efficient algorithm to synthe-
sise strategies for the controllable player in 21

2 -player games that are equipped
with a parity winning condition. Parity conditions are very general winning con-
ditions that can be used to represent all ω-regular properties. In particular, par-
ity objectives contain temporal logics such as LTL (linear temporal logic [30]),
which are useful in specifying system and program properties. Because of this,
we can handle LTL with a probabilistic semantics, i.e. the qualitative fragment
of PLTL [1], in our synthesis framework.

We focus on computing the regions of the game, in which one of the players
is almost sure winning [9]. The algorithm from [9] is based on translating the
stochastic parity game into a simple parity game [8] (a parity game without ran-
dom vertices / a 2-player game) using a so called “gadget” construction, albeit
to the cost of a blow-up by a factor linear in the number of priorities. For a small
number of priorities, or colours, the complexity of this algorithm is better than
the algorithm we suggest here, because solving the blown-up simple parity game
with [21] or [32] provides better bounds. This advantage is, however, purely the-
oretical: even for non-stochastic parity games on which these algorithms can be
applied directly without requiring a costly transformation, they do not perform
well in practice [14], such that a nested fixed-point algorithm [13,27] would be
the natural choice for analysing the blown-up game.

Our algorithm is an adaptation of the classical nested fixed-point algorithm of
McNaughton [13,27] for the analysis of non-probabilistic systems. In particular,
it does not involve a translation of the game. Thus, we avoid the practical prob-
lems existing algorithms with good complexity have [14]. The simple structure
of the exploited algorithm also allows us to offer tool support by implementing
a protocol synthesiser.

Present algorithms with the best theoretical complexity bounds for solving
2-player parity games with a low or fixed number of priorities are described in
[21,32]. However, the ranking based approach from [21] does not perform very
well in practice [14], and the hybrid approach from [32] will inherit these practical
draw-backs.

The direct algorithm we describe has exponential worst-case complexity. In
the paper, we exploit the simple structure of our algorithm to lift the sub-
exponential algorithm for 2-players games of Jurdiński, Paterson, and Zwick
[22] to the qualitative analysis of 2 1

2 -player games.

Related Work. There is a rich body of literature of algorithms for parity games in
a two player setting [13,21,22,27,32,36], and a few for multi player games with
concurrent moves [3–5], in which players make simultaneous choices in every
move. All of these algorithms share an nO(n) running time.

Some experiments have suggested that the algorithm proposed in [13,27,
36] performs best among them, in particular because it can be implemented
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Fig. 1. Robot arena.

symbolically. In this paper, we are considering non-concurrent games. We have
adjusted McNaughton’s algorithm [13,27,36] for solving these 21

2 -player games.
Such games have also been considered in the literature, for instance in [2,6,9,
15,16]. Like 2-player games, they have pure memoryless optimal strategies.

Algorithms for solving probabilistic games have been implemented among
others in PRISM-games [11]. This tool can, however, only handle a restricted
class of properties, namely PCTL [19], which does not support nested temporal
operators. As mentioned above, our approach can handle properties specified in
the logics PLTL [1], as it translates such properties to parity objectives.

2 A Motivating Example

In a two-dimensional battlefield (cf. Fig. 1), there are two robots, R0 and R1,
and four marked zones, zone1, . . . , zone4. The battlefield is surrounded by a solid
wall and has a square tiled floor of n fields in breadth and width. Each tile can be
occupied by at most one robot. The robots act in strict alternation. When it is
the turn of a robot, this robot can move as follows: decide a direction and move
one field forward; decide a direction and attempt to move two fields forward. In
the latter case, the robot moves two fields forward with a probability of 50 %,
but only one field forward with a probability of 50 %. If the robot would run into
a wall or into the other robot, it stops at the field before the obstacle.
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We assume that we are in control of R0 but cannot control the behaviour
of R1. Our goal is to fulfil a certain objective depending on the zones with
probability 1, such as repeatedly visiting all zones infinitely often, visiting the
zones in a specific order, performing such visits without entering other zones in
the meanwhile, and so on. We have to ensure that these objectives are fulfilled
under any possible behaviour of R1. As an example, we can specify that the
robot eventually reaches zone1 and zone2, which can be specified using the LTL
formula F zone1 ∧ F zone2.

3 Preliminaries

3.1 Markov Parity Games

We now introduce the formal definition of the Markov parity games that model
the 2 1

2 -player games together with the other concepts and notations we use in
the remainder of the paper.

Definition 1. A finite Markov Parity Game, MPG for short, is a tuple P =
(V0, V1, Vr, E, pri), where

– V = V0 ∪ V1 ∪ Vr is the set of vertices, where V0, V1, and Vr are three finite
disjoint sets of vertices owned by the three players: Player 0, Player 1, and
Player random, respectively;

– E ⊆ V × V is a set of edges such that (V,E) is a sinkless directed graph, i.e.
for each v ∈ V there exists v′ ∈ V such that (v, v′) ∈ E; and

– pri : V → N is the priority function mapping each vertex to a natural number.
We call the image of pri the set of priorities (or: colours), denoted by C.

Note that, since the set of vertices V is finite, C is finite as well. For an MPG
P = (V0, V1, Vr, E, pri), we call the tuple A = (V0, V1, Vr, E) the arena of P. For
ease of notation, we sometimes use games when we refer to their arenas only. We
also use the common intersection and subtraction operations on directed graphs
for arenas and games: given an MPG P with arena A = (V0, V1, Vr, E),

– P ∩ V ′ denotes the Markov parity game P ′ we obtain when we restrict the
arena A to A ∩ V ′ = (V0 ∩ V ′, V1 ∩ V ′, Vr ∩ V ′, E ∩ (V ′ × V ′)).

– P \ V ′ denotes the Markov parity game P ′ with arena A \ V ′ = A ∩ (V \ V ′),
where V = V0 ∪ V1 ∪ Vr.

Note that the result of such an intersection may or may not be sinkless. While
we use these operations freely in intermediate constructions, we make sure that,
wherever they are treated as games, they have no sinks (cf. Lemma 4).

Plays. One can view the dynamics of a parity game as a board game, played by
moving a pebble over the game arena. When the pebble is on a vertex v, the next
vertex v′ is chosen by the player owning the vertex v, that is, by Player 0 if v ∈ V0,
by Player 1 if v ∈ V1, and by Player random if v ∈ Vr. The respective player
chooses a proper successor v′ of v, i.e. a vertex v′ with (v, v′) ∈ E, and pushes
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the pebble forward to v′. This way, they together construct an infinite play. If
V0 = ∅ or V1 = ∅, we arrive at the model of Markov decision processes (MDPs).

A play is an infinite sequence π = v0v1v2v3 . . . such that (vi, vi+1) ∈ E for all
i ∈ N. Each play is evaluated by the lowest priority that occurs infinitely often.
Player 0 wins a play π = v0v1v2v3 . . . if the lowest priority that occurs infinitely
often in the sequence pri(v0)pri(v1)pri(v2)pri(v3) . . ., pri(π) = lim infi→∞ pri(vi) is
even, while Player 1 wins if pri(π) is odd. Below, we formalise winning strategies
and winning regions for a given MPG:

Definition 2. For a given MPG P, we say

– For σ ∈ {0, 1}, a strategy fσ of Player σ is a mapping fσ : Vσ → V from the
vertices of Player σ to their successor states, i.e. for each v ∈ Vσ, (v, fσ(v)) ∈
E. A play π = v0v1v2v3 . . . is called fσ-conform if, for all i ∈ N, if vi ∈ Vσ,
then vi+1 = fσ(vi). A strategy fσ for the player σ defines an MDP, namely
the MDP where each vertex v ∈ Vσ has exactly one successor, fσ(v).

– Given a vertex v ∈ V , a strategy f0 for Player 0 is called v-winning if, starting
from v, Player 0 wins almost surely in the MDP defined by f0; a strategy f1 for
Player 1 is called v-winning if, starting from v, Player 1 wins with non-zero
probability in the MDP defined by f1, that is, Player 1 does not lose almost
surely in the MDP defined by f1.

– For σ ∈ {0, 1}, a vertex v in V is v-winning for Player σ if Player σ has a
v-winning strategy fσ. We call the set of v-winning vertices for Player σ the
winning region of Player σ, denoted Wσ.

As we concentrate on finding almost surely winning/losing regions, it suffices
to assume that there is an ε > 0, such that all choices of Player random are
made with probability of at least ε. We therefore omit the probabilities in our
model.

4 McNaughton’s Algorithm and Memoryless
Determinacy

In this section, we adjust the classic algorithm for solving 2-player parity games
to Markov parity games. The classic algorithm dates back to McNaughton [27]
and was first published in this form by Emerson and Lei [13] and Zielonka [36].

The algorithm is the algorithmic version of a simple proof of the memoryless
determinacy for parity games. The proof uses an inductive argument over the
number of vertices. As an induction basis, games with only one game vertex are
clearly memoryless determined: there is only one strategy, and it is memoryless.
The game is won by Player 0 if the priority of this vertex is even and by Player 1 if
the priority of this vertex is odd. We provide an algorithm for determining where
Player 0 wins almost surely, i.e. its winning region W0. Similarly, we compute the
winning region W1, in which Player 1 wins with non-zero probability. Adjusting
it to finding sure winning sets for Player 1 is straight forward.
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Procedure prob−McNaughton(P): (P = (V0, V1, Vr, E, pri))

1. if V = ∅ then return (∅, ∅) (note that V = V0 ∪ V1 ∪ Vr)
2. set c to the minimal priority occurring in P
3. if the image of pri is even then return (V, ∅)
4. if the image of pri is odd then return (∅, V )
5. if c is even then

(a) set W1 to ∅
(b) repeat

i. set P ′ to P \ satr0(pri−1(c),P)
ii. set (W ′

0,W
′
1) to prob−McNaughton(P ′)

iii. if W ′
1 = ∅ then

A. set W0 to V \ W1

B. return (W0,W1)
iv. set W1 to W1 ∪ satr1(W ′

1,P)
v. set P to P \ satr1(W ′

1,P)
6. set W0 to ∅
7. repeat

(a) set P ′ to P \ satr1(pri−1(c),P)
(b) set (W ′

0,W
′
1) to prob−McNaughton(P ′)

(c) if W ′
0 = ∅ then

i. set W1 to V \ W0

ii. return (W0,W1)
(d) set W0 to W0 ∪ watr0(W ′

0,P)
(e) set P to P \ watr0(W ′

0,P)
adding a sink vertex reachable from the random vertices adjacent to W0 (cf.
Lemma 7); this sink is a technicality and does not count when we check W ′

0 = ∅
in line 7.c

Fig. 2. The algorithm prob−McNaughton(P) returns the ordered pair (W0, W1) of
winning regions of Player 0 and Player 1, respectively. V and pri denote the states and
the priority function of the parity game P.

Lemma 1. If, for a game (V0, V1, Vr, E, pri), the image of pri consists only of
even priorities, then Player 0 wins (surely) from all vertices, and W0 = V .

If, for a game (V0, V1, Vr, E, pri), the image of pri consists only of odd prior-
ities, then Player 1 wins (surely) from all vertices, and W1 = V .

For general parity games P with lowest priority c, our adjustment of the
McNaughton’s algorithm, the procedure ‘prob−McNaughton’ shown in Fig. 2,
first determines the set pri−1(c) of vertices with priority c, i.e. the vertices with
minimal priority. If c is even, then Player 0 wins on all plays, where c occurs
infinitely often. The algorithm then constructs the region, from which Player 1
cannot almost surely avoid to reach a vertex with priority c. This is obtained
using attractors.
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4.1 Attractors

Attractors are usually defined for classical 2-player games. For an arena A =
(V0, V1, E), a set T ⊆ V of target vertices, and a player σ ∈ {0, 1}, the σ −
attractor of T is the set of game vertices from which Player σ can force the
pebble into the set T of target vertices. The σ-attractor A of a set T can be
defined as the least fixed point of sets that contain T and that contain a vertex
v of Player σ if it contains some successor of v and a vertex v of Player 1−σ if it
contains all the successors of v. Equivalently, the σ-attractor σ−Attractor(T,A)
of T in the arena A can be defined as A =

⋃
j∈N

Aj where

A0 = T,

Aj+1 = Aj ∪ { v ∈ Vσ | ∃v′ ∈ Aj . (v, v′) ∈ E }
∪ { v ∈ V1−σ | ∀(v, v′) ∈ E. v′ ∈ Aj }.

This definition also provides a memoryless strategy for Player σ to move the
pebble to T from all vertices in A: for a vertex v ∈ A, there is a minimal i ∈ N

such that v ∈ Ai. For i > 0 (i.e. for v /∈ T ) and v ∈ Vσ, v has a successor
in Ai−1, and Player σ can simply choose such a successor. (For v ∈ V1−σ, all
successors are in Ai−1.) Likewise, A itself provides a memoryless strategy to keep
the pebble out of A (and hence out of T ) for Player 1 − σ when starting from a
vertex v /∈ A, namely to never enter A.

For 21
2 -player games, we distinguish two different types of attractors: strong

attractors, where the random player co-operates with the player σ who wants to
push the pebble into the target set (denoted satrσ(T,P) when Player σ tries to
move the pebble to T in the arena of P); and weak attractors, where the target
needs to be reached almost surely. (The ‘strong’ and ‘weak’ in their names are
inspired by satrσ(T,P) ⊇ watrσ(T,P), which makes the first attractor stronger.)
Note that the principle of the attractor construction is not affected by the co-
operation for the strong attractor: we simply treat the random vertices as vertices
of player σ and apply the normal attractor construction from 2-player games.

Lemma 2. For an arena A and a set T of target states, the strong σ-attractor
of T can be constructed in time linear in the edges of A.

The construction of weak attractors is more complex since it requires solving
a singly nested fixed-point. Consider an MPG P, a set T ⊆ V , and the player
σ; the weak σ-attractor watrσ(T,P) of the set T is defined as follows:

S0 = satrσ(T,P),
Cj = satr1−σ(V \ Sj ,P \ T ),

Sj+1 = satrσ(T,P \ Cj),

watrσ(T,P) =
⋂

j∈N

Sj .

As a singly nested fixed point, constructing weak attractors can be reduced to
solving Büchi games, which can be done in O(n2) time [7]. (We have implemented
the classic O(m · n) iterated fixed point algorithm.)
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Lemma 3. For an arena A and a set T of target states, the weak σ-attractor of
T can be constructed in time quadratic in the states of A.

Note that the co-games of attractors are proper games: they have no sinks.

Lemma 4. For an arena A and a set T of target states, A′ = A \ satrσ(T,A)
and A′′ = A \ watrσ(T,A) are arenas for σ ∈ {0, 1}.

For strong attractors, this is because every vertex in (Vσ ∪ Vr) \ satrσ(T,A)
has the same successors in A′ and A, while every vertex in V1−σ \ satrσ(T,A) has
some successor in A′. For weak attractors, every vertex in Vσ \ watrσ(T,A) has
the same successors in A′′ and A, while every vertex in (V1−σ ∪Vr) \watrσ(T,A)
has some successor in A′.

4.2 Traps and Paradises

After constructing A = satrcmin mod 2(pri−1(cmin),P), the co-game P ′ = P \ A
of P is solved.

A σ−trap Tσ ⊆ V is a set of vertices Player σ cannot force to leave, not even
with some probability greater than 0 (she is trapped there). A set Tσ is a σ-trap
if it is the co-set of a strong σ-attractor, i.e. if it satisfies V \Tσ = satrσ(V \Tσ,P).

The co-game P ′ is smaller than P: compared to P, it has less vertices. By
induction hypothesis, it is therefore memoryless determined. By induction over
the size of the game, P ′ can therefore be solved by a recursive call of the algo-
rithm.

The following picture shows how the first part of the algorithm works. We first
determine the minimal priority in the game (line 2 of prob−McNaughton). Let
c := cmin denote the minimal priority, and select the target to be T = pri−1(c),
shown as the solid green area in the top right corner. We then construct the
respective strong attractor A = satrσ(T,P) with σ = c mod 2, shown as T plus
the NE hatched part around T , and consider the co-game P ′ (lines 5.b.i and 7.a
of prob−McNaughton).

We then solve P ′, resulting in the winning regions W ′
1−σ, shown in solid red,

and W ′
σ, the green SW hatched part below (lines 5.b.ii and 7.b of the procedure

prob−McNaughton) (Fig. 3).

pri−1(c)
A

W1−σ

Wσ

arena

Fig. 3. First part of the algorithm; c is the minimal priority and σ = c mod 2

We fix the target set T . We call a subset P0 ⊆ W0 of the winning region of
Player 0 a 0-paradise if it is a 1-trap and Player 0 has a memoryless strategy f ,
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which is v-winning for all v ∈ P0 in the game P ∩ P0, such that P0 cannot be
left in any f -conform play.

We call a subset P1 ⊆ W1 of the winning region of Player 1 a 1-paradise if
Player 1 has a memoryless strategy f , which is v-winning for all vertices v ∈ P1,
such that the probability measure of the plays π with odd pri(π) that never leave
P1 is non-zero for all vertices in P1. (Note that it suffices for this property to
define f on P1.) In particular, all vertices in v ∈ P1 are v-winning for Player 1.

Returning to the picture, W ′
1−σ—the solid red area—is a (1−σ)-paradise for

the game P.

Lemma 5. For a parity game P with a σ-trap Tσ and a (1 − σ)-paradise W1−σ

of P ′ = P ∩ Tσ, W1−σ is a (1 − σ)-paradise for P.

The lemma is obvious: Player 1−σ can simply use the same winning strategy
f for P as for P ′ on Tσ: as Tσ is a σ-trap, neither Player σ nor Player random
have additional moves in P, and every f -conform play that starts in W1−σ in P
is also an f -conform play in P ′. The winning region W ′

1−σ of P ′ is therefore a
(1 − σ)-paradise in P.

This property can be easily extended to paradises using attractor operations
(strong attractor for player odd and weak attractor for player even):

Lemma 6. The strong 1-attractor A = satr1(P1,P) of a 1-paradise P1 for a
parity game P is a 1-paradise for P, and the weak 0-attractor A = watr0(P0,P)
of a 0-paradise P0 for a parity game P is a 0-paradise for P. A winning strategy
for the respective player σ on A can be composed of the winning strategy for
Player σ on Pσ and an attractor strategy on A \ Pσ.

As a result, for a given 0-paradise P0 for Player 0 in a parity game P, we
can reduce solving P to computing the weak 0-attractor A = watr0(P0,P) of P0,
and solving P \ A.

Lemma 7. Let P be a parity game, P0 be a 0-paradise with weak 0-attractor
A = watr0(P0,P), and W ′

0 and W ′
1 be the winning regions of Player 0 and

Player 1, respectively, on P ′, which is obtained from the game P ′′ = P \ A by
adding a random vertex s, a sink with a self-loop and even priority, which is
reachable from the random vertices that have (in the parity game P) a successor
in A. Then

– W1 = W ′
1 is the winning region of Player 1 on P, and he can win by following

his winning strategy from P ′ on his winning region, and
– W0 = W ′

0 ∪ A \ {s} is the winning region of Player 0 and she can win by
following her winning strategy for A on A and her winning strategy from P ′

on W ′
0.

Proof. Player 0 wins with her strategy from every vertex in A by a composition
of the attractor strategy on A \P0 and her winning strategy on P0 by Lemma 6.

Let g0 be a winning strategy for Player 0 on W ′
0 in P ′. Consider a probability

distribution on P ′ that summarises the probabilities to transfer to A in each
situation to the same probability to transfer to s, and a fixed counter strategy f
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of her opponent. As the likelihood of winning is 1 after transferring to A (with
the strategy from above by Lemma 6) in P and in P ′ (as all plays that reach s
are winning), the chance of winning is equal in both cases. Vertices in W ′

0 \ {s}
are therefore winning for the composed strategy.

Similarly, let g1 be a winning strategy for Player 1 on W ′
1 in P ′. We consider

a probability distribution on P ′ that summarises the probabilities to transfer to
A in each situation to the same probability to transfer to s, and a fixed counter
strategy f of his opponent. Estimating the chance of winning to 0 after reaching
A results in the same likelihood of winning in P and P ′. As this is larger than 0,
Player 1 wins with an extension of the same strategy on his winning region. �

For our implementation, we have, instead of adding a sink with even priority,
reduced the priority of all random vertices having s as successor to 0 (it could
be set to any other even priority not greater than any priority of the vertices in
P \A). This change is safe to implement: both players have the same memoryless
strategies as in the game with the additional edges. Assume the players play
according to fixed memoryless strategies f (Player 0) and g (Player 1), such
that only stochastic decisions are left open. Player 0 will win almost surely
from a vertex v if, and only if, for all leaf SCCs reachable from v the minimal
priority among all priorities of the states in this leaf SCC is even. The leaf SCCs
reachable from a vertex v other than the singleton leaf SCC {s} from Lemma 7
are exactly those leaf SCCs reachable after re-prioritising, that do not contain a
vertex whose priority is changed to 0. Thus, the same leaf SCCs with minimal
odd priority are reachable. Consequently, the same vertices in A are winning for
Player 0 (and for Player 1) in both constructions.

Corollary 1. Let P be a parity game, P0 be a 0-paradise with weak 0-attractor
A = watr0(P0,P), and W ′

0 and W ′
1 be the winning regions of Player 0 and

Player 1, respectively, on P ′, which is obtained from the game P ′′ = P \ A by
changing the priority of the random vertices that have (in the parity game P) a
successor in A to 0. Then

– W1 = W ′
1 is the winning region of Player 1 on P, and he can win by following

his winning strategy from P ′ on his winning region, and
– W0 = W ′

0 ∪ A \ {s} is the winning region of Player 0 and she can win by
following her winning strategy for A on A and her winning strategy from P ′

on W ′
0.

Note that this change of priority is, like adding the sink s, introduced recur-
sively on a level in the call tree. While it is inherited in calls from there, the
changes introduced in a level of the call tree (in line 7.e) are revoked when
returning the values (in line 7.c.ii).

For a given 1-paradise P1 for Player 1 in a parity game P, we can reduce
the qualitative analysis of a parity game P to computing the strong 1-attractor
A = satr1(P1,P) of P1, and solving P \ A.

Lemma 8. Let P be a parity game, P1 be a 1-paradise with winning strategy f1
and strong 1-attractor A = satr1(P1,P), and W ′

0 and W ′
1 be the winning regions

of Player 0 and Player 1, respectively, on P ′ = P \ A. Then
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– W1 = W ′
1 ∪ A is the winning region of Player 1 on P, and he can win by

following his winning strategy for A on A and his winning strategy g1 from P ′

on W ′
1, and

– W0 = W ′
0 is the winning region of Player 0, and she can win by following her

winning strategy g0 from P ′ on W0.

Proof. Player 0 wins with her winning strategy, g0, on her complete winning
region W0 of P \ A, since Player 1 has no additional choices in W0 in P. Conse-
quently, the set of g0-conform plays in P that start in W0 coincides with the set
of g0-conform plays (with the same probability distribution on them) in P \ A
that start in W0.

Similarly, Player 1 wins with his strategy from every vertex in A, by a com-
position of his attractor strategy on A \ P1 and his winning strategy f1 on P1

by Lemma 6.
Let g1 be a winning strategy for Player 1 in P ′. Then every g1-conform play

in P that starts in a vertex in W ′
1 either eventually reaches A, and is then almost

surely followed by a tail (remainder of the play) in P that starts in A, which is
winning for Player 1 with a likelihood strictly greater than 0 by Lemma 6; or it
stays for ever in the sub-game P ′. But these plays are also won by Player 1 with
a non-zero likelihood. �

We now distinguish two cases: firstly, if W ′
1−σ is non-empty, we can reduce

solving P to constructing the weak or strong, respectively, (1−σ)-attractor U1−σ

of W ′
1−σ, and solving the co-game P ′′ = P \U1−σ by Lemma 7 or 8, respectively.

The co-game P ′′ is simpler than P: compared to P, it contains less vertices
(though not necessarily less priorities). By induction over the size of the game,
P ′′ can therefore be solved by a recursive call of the algorithm.

The figure below aligns this to our algorithm. We have seen that W ′
1−σ from

the previous picture, shown again in solid red, is a (1−σ)-paradise, and so is its
(weak or strong) (1−σ)-attractor U1−σ (the complete red area, full and hatched).
It is constructed in lines 5.b.iv and 7.d, respectively, of prob−McNaughton
(Fig. 4).

U1−σ

W1−σ
arena

Fig. 4. Attractor of the player 1 − σ where c is the minimal priority and 1 − σ = c
mod 2

Secondly, if W ′
1−σ is empty, we can compose the winning strategy for Player σ

on P ′ with his attractor strategy for pri−1(c) to a winning strategy on P.
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Lemma 9. Let P be a parity game with minimal priority c, σ = c mod 2 be the
player who wins if c occurs infinitely often, A be the strong σ-attractor of pri−1(c),
and f be an attractor strategy for Player σ on her vertices on A \ pri−1(c). If
Player σ has a winning strategy f ′ for every vertex in P ′ = P \ A, then f and
f ′ can be composed to a winning strategy for Player σ for every vertex in P.

Proof. Let g be a strategy for Player σ that agrees with f and f ′ on their respec-
tive domain. We distinguish two types of g-conform plays: those that eventually
stay in P ′, and those that visit A infinitely often. The latter plays almost surely
contain infinitely many vertices with priority c and are therefore almost surely
winning for Player σ. Games that eventually stay in P ′ consist of a finite prefix,
followed by an f ′-conform play in P ′. The lowest priority occurring infinitely
often is therefore almost surely even for σ = 0 and odd with a likelihood strictly
greater than 0 for σ = 1, respectively. �
Theorem 1. For each parity game P = (V0, V1, Vr, E, pri), the game vertices
are partitioned into a winning region W0 of Player 0 and a winning region W1

of Player 1. Moreover, Player 0 and Player 1 have memoryless strategies that
are v-winning for every vertex v in their respective winning region.

In the following proof, we do not count the sink that is added by Lemma 7.

Proof. Games with a single vertex are trivially won by the player winning on
the priority of this vertex (induction basis).

For the induction step, assume that the memoryless determinacy holds for
games with up to n vertices. For a parity game with n + 1 vertices, we can then
select the lowest priority cmin, set σ to cmin mod 2 to identify the Player σ who
wins if cmin occurs infinitely often (note that cmin is the dominating priority in
this case), and set A = satrσ(pri−1(cmin),P).

Then P ′ = P \ A is a—possibly empty—parity game with strictly less states
and priorities. (Note that, by the attractor construction, every vertex in P ′ has
a successor, and the co-set of A is a σ-trap.)

By induction hypothesis, P ′ vertices are partitioned into winning regions of
the two players, and both players have memoryless winning strategies on their
winning regions.

We can now distinguish three cases:

1. The winning region of Player 1−σ on P ′ is empty. In this case, Player σ wins
memoryless by Lemma 9.

2. σ = 0 and the winning region of Player 1 is non-empty.
Then W ′′

1 = satr1(W ′
1,P) is a 1-paradise for P by Lemmas 5 and 6. We can

therefore solve the remainder of the game, P \ W ′′
1 , individually and use the

respective winning regions and (by induction) memoryless winning strategies
of the players by Lemma 8.

3. σ = 1 and the winning region of Player 0 is non-empty.
Then W ′′

0 = watr0(W ′
1,P) is a 0-paradise for P by Lemmas 5 and 6. We can

therefore solve the remainder of the game, P \ W ′′
0 , individually and use the

respective winning regions and (by induction) memoryless winning strategies
of the players by Lemma 7.
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In case (1) we are done, in (2), (3) we reduced the problem to solving games
with less states. By induction, memoryless determinacy extends to the complete
game. �

The worst case running time of this extension to McNaughton’s algorithm
[13,27,36] (cf. Procedure prob−McNaughton of Fig. 2) occurs if U1−σ is always
small and exactly one vertex with minimal priority c belongs to U1−σ. For parity
games with c priorities, n vertices, and m edges, the adjusted algorithm based
on McNaughton’s requires O(

m · (
n
c + 1

)c−1) steps when the highest priority
of the game is even, like McNaughton’s algorithm itself [13,36]: the cost of the
attractor constructions is always dominated by the cost of the recursive calls,
and the complexity analysis is the same.

When the highest priority is odd, the higher complexity for the weak attrac-
tor construction leads to a O((

n
c +1

)c+1) complexity, and to an O(
m ·(n

c +1
)c)

complexity of our implementation, due to the cost of constructing weak attrac-
tors of O(n2) and O(m ·n) in our implementation, respectively. (The only point
where this complexity is not dominated by other steps is when only the highest
and the second highest priority are left. When the second highest priority is
even, only strong attractors are used.)

The presented algorithm has a theoretical drawback: its running time is expo-
nential in the number of priorities, which in turn can be as high as the number
of states. For parity games without random vertices, the development of a deter-
ministic subexponential algorithm [22] was considered a breakthrough, which
also led to better bounds for games with a small number of priorities [32].

Theorem 2. Parity games with n vertices can be solved in time nO(
√

n).

The proof is completely analogously to the one from [22]. It uses the fact
that the proofs do not rely on the way intermediate paradises are constructed.
It is therefore possible to try out all small sets of vertices (i.e. all sets of vertices
up to size

√
n) and check if they are paradises for the player who loses on the

minimal priority. This can be done using brute force and takes nO(
√

n) time.
Afterwards, one builds their union, computes the attractor for the set obtained
this way, and performs a recursive call to decide the remaining game.

The progress obtained in one step, consisting of trying out all small sets of
vertices, followed by a recursive call, is therefore at least

√
n – unless the call

returns an empty set, in which case we are finished. This provides a call tree of
size nO(

√
n), with cost nO(

√
n) on each node of the call tree, such that the total

cost is nO(
√

n) · nO(
√

n) = nO(
√

n).

5 Implementation and Experimental Results

5.1 Overview of the Algorithm

We have written a prototypical implementation for the approach of this paper.
In Fig. 5, we sketch how we analyse properties of formal models. Our tool reads
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Model
State space
exploration

Probabilistic
multi-player game

Coalition
building

Probabilistic
two-player game

Formula
Automaton
construction

B ihcü
automaton

Determinisation
Parity

automaton

Product
building

Product
parity game

Decision
algorithm

Yes/No

Fig. 5. Overview of the algorithm

a model specification in the input language of the probabilistic model checker
PRISM-games [11]. This input language is an extension of probabilistic guarded-
commands language of the probabilistic model checker PRISM [25]. We extend
the recent probabilistic model checker IscasMC [17,18] that also supports this
language. Each state of the model semantics is assigned to a specific player.
When being in a state, a player can choose from several guarded commands.
In each state, the player controlling this state can choose to execute one of
the commands the guard of which is valid in the state. Afterwards, one of the
possible effects of the command is chosen according to the probability of this
effect. The next state is decided according to this effect. The models specified
in this way may contain more than two players, and they do not contain any
winning condition.

The property specification we use in our tool is also inspired by PRISM-
games [11]. Its general form is 〈〈coalition〉〉P≥1[φ]. Here, coalition is a subset of
the players from the model specification, and P≥1[φ] is a qualitative probabilistic
LTL formula. This formula requires that the coalition of the players of coalition
(by subsuming all of them into a single player) can enforce that φ holds with
probability 1 under all possible behaviours of the players not in coalition. Vari-
ants like 〈〈coalition〉〉P>0[φ] requiring only positive probability can be computed
by minor adaptation of our algorithm.

To obtain the actual parity game to apply our algorithm on we proceed as
follows. We first construct the explicit-state semantics of the model originally
given in the high-level input language of PRISM-games. This semantics is thus
a probabilistic multi-player game without a winning condition. Then, in this
semantics we subsume the players of coalition to the single even player and
the remaining players to the odd player, so as to obtain a probabilistic two-
player game, still without a winning condition. We then transform φ into a
generalised Büchi automaton using the tool SPOT [12]. Afterwards, we transform
the Büchi into a deterministic parity automaton, using the algorithm from [33].
Simultaneously, we build a product of the model with this parity automaton,
so as to fix the winning condition according to the property we want to decide.
This on-the-fly approach allows us to only construct the states of the parity
automaton which will actually be needed to construct the product. A state of



A Simple Algorithm for Solving Qualitative Probabilistic Parity Games 305

this product is thus a tuple of a state from the two-player model and a state of
the parity automaton.

The algorithm from [33] produces automata whose priorities are on the transi-
tions (rather than on states). The product we produce is however a state-labelled
parity game as in Definition 1: when building the product of the model with the
automaton, the current state fixes the successor transition of the deterministic
parity automaton. Therefore, we can label the product state with the priority
of this successor transition. The first component of the successor states consists
of a successor state of the model state. The second one consists of the single
successor state of the parity automaton.

Finally, we can apply the algorithm discussed on the resulting MPG and
decide whether all initial states of the product are winning, which means deciding
whether the specification holds for all initial states of the model. If it does, we
also obtain a winning strategy.

As stated before, the mutually optimal strategies are memoryless. However,
this only holds for the game we are computing strategies for. If we map back
these strategies to the original PRISM-games model, indeed memory might be
required. This is because we have to remember the current state of the parity
automaton with which the model had been composed to obtain the product on
which we finally apply our algorithm.

5.2 Robots

Reconsider our robot example introduced in Sect. 2. We have applied our tool to
construct the state-space of several instantiations of this model which we have
modelled in the input language of PRISM-games. The machine we used is a
3.6 GHz Intel Core i7-4790 with 16 GB 1600 MHz DDR3 RAM of which 12 GB
assigned to the tool; the timeout has been set to 30 min. In Table 1 we provide
for each size “n” of the battlefield we consider, the number of vertices of the
corresponding multiplayer game (“vertices”) and the time in seconds required
to construct it (“tconstr”).

Table 1. Arena construc-
tion

n Vertices tconstr
12 370 656 1
16 1 175 040 3
20 2 872 800 6
24 5 961 600 13
28 11 049 696 25
32 18 855 936 47
36 30 209 760 69
40 46 051 200 112

We remark that the constructed game encodes
the behaviour of the robots on the battlefield with-
out winning conditions, i.e. without considering the
formula to be checked; as seen, the state-space con-
tains millions of vertices for larger battlefield sizes
n (it grows with O(n4)). Note that we cannot com-
pare to PRISM-games because it does not support
general PLTL formulas, and we are not aware of
other tools to compare with.

We have applied our tool on a number of proper-
ties that require the robot R0 to visit the different
zones in a certain order. In Table 2 we report the
performance measurements for these properties. In the column “property” we
state the PLTL formula we consider, column “n” states the width of the battle-
field instance, and “sat” shows whether the formula is satisfied. For the “game
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Table 2. Robots analysis: different reachability properties

Property n sat Game construction Gadget construction Solving time

vertices colours tprod vertices tgadg tgMcN tgJur tpMcN

Reachability 12 true 1 324 704 2 2 5 351 584 3 0 4 0

16 true 4 418 592 2 9 17 996 832 13 3 24 1

〈〈R0〉〉P≥1 20 true 11 050 656 2 22 45 166 752 28 8 84 3

[ F zone1 24 true 23 211 552 2 51 95 045 152 58 18 219 7

∧F zone2] 28 true 43 334 304 2 102 177 634 464 115 35 –MO– 14

32 true 74 294 304 2 197 - –MO– - - 24

36 - - - –MO– - - - - -

40 - - - –MO– - - - - -

Repeated 12 true 1 324 704 2 2 6 010 528 3 1 5 0

Reachability 16 true 4 418 592 2 9 20 085 792 15 3 25 1

20 true 11 050 656 2 20 50 273 952 29 9 85 3

〈〈R0〉〉P≥1 24 true 23 211 552 2 44 105 643 552 59 21 227 8

[ GF zone1 28 true 43 334 304 2 88 197 278 368 121 38 –MO– 15

∧GF zone2 32 true 74 294 304 2 180 - –MO– - - 27

∧GF zone3 36 - - - –MO– - - - - -

∧GF zone4] 40 - - - –MO– - - - - -

Repeated 12 true 693 048 5 0 4 009 976 2 0 3 0

Ordered 16 true 2 264 184 5 3 13 206 072 9 2 16 0

Reachability 20 true 5 611 320 5 6 32 844 792 17 6 50 1

24 true 11 729 784 5 14 68 787 512 62 13 129 4

〈〈R0〉〉P≥1 28 true 21 836 088 5 27 128 198 136 69 24 282 7

[GF(zone1 ∧ 32 true 37 367 928 5 54 219 543 096 135 –MO– –MO– 13

F zone2)] 36 true 59 984 184 5 65 - –MO– - - 21

40 true 91 564 920 5 121 - –MO– - - 36

Reach-avoid 12 true 1 616 400 4 2 7 656 720 4 1 –TO– 0

16 true 5 452 848 4 14 25 820 208 15 6 –TO– 1

〈〈R0〉〉P≥1 20 true 13 703 184 4 35 64 877 328 33 19 –TO– 5

[ ¬zone1U zone2 24 true 28 855 728 4 79 136 606 128 116 40 –TO– 11

∧¬zone4U zone2 28 true 53 951 760 4 171 255 402 000 135 –MO– –MO– 21

∧¬zone4U zone1 32 true 92 585 520 4 323 - –MO– - - 38

∧Fzone4] 36 - - - –MO– - - - - -

40 - - - –MO– - - - - -

construction” part, we present the number of “vertices” of the resulting MPG,
the number of “colours”, and the time “tprod” required to generate the MPG.
The construction of [8] to turn a stochastic parity game into a non-stochastic
parity game replaces each stochastic node by a so-called “gadget”, which consists
of a combination of player odd and even nodes. Applying this construction thus
leads to a game which can be solved using existing methods, although at the cost
of increasing the number of vertices and the time to perform the transformation.
The “gadget construction” part of the table shows the total number of “vertices”
after applying this construction and the time “tgadg” spent to do so.

Finally, the “solving time” part shows the time spent by the specific solvers:
tgMcN and tgJur correspond to the gadget construction solved by using the clas-
sical non-stochastic McNaughton and Jurdziński approach, respectively, while
tpMcN refers to our prob−McNaughton algorithm proposed in Fig. 2. Note that
these times represent only the actual time spent by the solver on the final MPG.
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Entries marked by “–TO–” and “–MO–” mean that the corresponding phase has
failed by time-out or has gone out of memory; entries marked by “-” mean that
the phase has not been executed due to a failure in a previous phase.

The results show that our approach can be used to solve games with several
million vertices, even though it is currently only implemented as an explicit-state
solver. In particular, the part of the process that consumes the largest share of
time is not the solution algorithm itself, but the preprocessing steps: most of
the time was spent on constructing the product of the battlefield and the parity
automaton. The largest amount of time spent in the solver was 38 s for a parity
game with more than 90 million vertices. Despite the exponential complexity
of the algorithm, our prototype performs quite well on the large state-spaces
of this model. One reason is that the maximal number of different priorities
seen was just 5, and the implementation was often able to use the lines 3 and
4 of the algorithm prob−McNaughton in Fig. 2 to terminate the construction
quickly. Indeed, we did not see more than 5 recursive calls of the algorithm. It
is worthwhile to remark that, even if all properties are satisfied, not all vertices
are winning for the robot R0: for instance, for the reach-avoid property, around
1/3 of the vertices are winning for the robot R1; R0 is anyway able to avoid such
vertices and win with probability 1.

In comparison, the solution methods based on the gadget construction have
an additional phase that takes quite some time and memory to be completed,
so this affects their performances as they have to work on much larger games.
While the classical non-stochastic McNaughton algorithm has a reasonable per-
formance on these games, it still consumes much more resources than our app-
roach prob−McNaughton. Jurdziński’s approach turns out to be really slow in
practice, confirming the previous results of [14]. As the results in the table show,
our approach really outperforms the methods based on gadget construction: for
instance for the reach-avoid property for n = 24, our approach takes only 11
seconds instead of 40 (plus 79 for the gadget construction) taken by the classical
McNaughton and the time-out of 30 min by the Jurdziński algorithm.

5.3 Two Investors

As a further small case study, which provides similar results regarding the per-
formance of the Jurdziński theoretical better algorithm, we consider an example
originally from [26] in the version of [10]. In this version of the model, there
are two investors, who are able to make investments in futures. Buying a future
means to reserve an amount of company shares at a certain point of time and
will be delivered at a later point of time to the market price the share has then.
In this version of the model, there are three players: investor 1, investor 2, and
the market. We considered a number of properties for which we provide results
in Table 3; the meaning of the formulas is as follows:

1. Investor 1 is able to ensure (against the market and the other investor) that
the share has eventually a value of at least 5 without ever stopping to invest.

2. She can ensure that the share repeatedly has a value of 5.
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3. She can guarantee a permanent value of at least 5.
4. She can ensure that the probability of this event is non-zero.
5. If all players collaborate, this event is certain.

The parity game constructed to decide these properties contains less than 1.5
million vertices. Therefore, the time to decide the properties is also almost negli-
gible: all experiments have taken a total of one or two seconds to complete, except
for the Jurdziński approach that went time-out on all except one property.

Table 3. Two investors analysis.

Property sat Game construction Gadget construction Solving time

vertices colours tprod vertices tgadg tgMcN tgJur tpMcN

1 〈〈investor1〉〉P≥1
[G¬done1 ∧ F

v ≥ 5]

true 410 531 4 0 1 001 645 1 0 –TO– 0

2 〈〈investor1〉〉P≥1
[G¬done1 ∧
GFv ≥ 5]

false 410 531 4 0 1 265 755 1 0 –TO– 0

3 〈〈investor1〉〉P≥1
[G¬done1 ∧
FGv ≥ 5]

false 413 171 5 0 1 486 783 1 0 –TO– 0

4 〈〈investor1〉〉P>0
[G¬done1 ∧
FGv ≥ 5]

true 413 171 5 0 1 486 783 1 0 0 0

5 〈〈investor1,
investor2,

market〉〉P≥1
[G¬done1 ∧
FGv ≥ 5]

false 413 171 5 0 1 486 783 1 0 –TO– 0

6 Conclusions and Future Work

We have introduced a simple and effective algorithm for solving Markov games
with a parity winning condition and implemented the algorithm as an explicit-
state prototype as an extension of the model checker IscasMC [17,18]. The algo-
rithm has proven to be capable of handling rather large examples, obtaining
strategies that almost surely obtain their goal or demonstrating that such strate-
gies do not exist. This is a very encouraging result for the automated construc-
tion of simple probabilistic reactive protocols, as they are already used in leader
election problems.

The construction of such protocols is already difficult for deterministic sys-
tems, and new protocols (as well as the old ones) had been discovered when
they had been recently synthesised [23]. Some complicated programming prob-
lems like mutual exclusion, leader election, and variations thereof, have complete
specifications. Yet, they are very difficult to implement, e.g. due to problems aris-
ing through context switches. While such problems have proven to be difficult
to implement for human developers due to parallelism and nondeterminism in
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traditional systems, allowing for randomness does—while potentially simplify-
ing the algorithm—add another layer of difficulty for the human developer. We
believe that this establishes the need for synthesis techniques, and in this light
it is a very good news that the solution we have developed in this paper shows
potential. In future work, we will extend this efficient technique to the quanti-
tative analysis of systems.
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Abstract. Limit-deterministic Büchi automata can replace determinis-
tic Rabin automata in probabilistic model checking algorithms, and can
be significantly smaller. We present a direct construction from an LTL
formula ϕ to a limit-deterministic Büchi automaton. The automaton is
the combination of a non-deterministic component, guessing the set of
eventually true G-subformulas of ϕ, and a deterministic component ver-
ifying this guess and using this information to decide on acceptance.
Contrary to the indirect approach of constructing a non-deterministic
automaton for ϕ and then applying a semi-determinisation algorithm,
our translation is compositional and has a clear logical structure. More-
over, due to its special structure, the resulting automaton can be used
not only for qualitative, but also for quantitative verification of MDPs,
using the same model checking algorithm as for deterministic automata.
This allows one to reuse existing efficient implementations of this algo-
rithm without any modification. Our construction yields much smaller
automata for formulas with deep nesting of modal operators and per-
forms at least as well as the existing approaches on general formulas.

1 Introduction

Translating Linear Temporal Logic (LTL) formulas into ω-automata is a funda-
mental problem of formal verification, which has been studied in depth. In the
automata-theoretic approach to model checking, after computing the automaton
for a formula one constructs its product with the state space of the system under
consideration and analyses it. Since the product has up to N ·m states, where N
and m are the number of states of the system and the automaton, respectively,
and typically N � m, it is important to construct automata as small as possible:
even a small reduction of m can lead to a much larger reduction of N · m.

Since non-deterministic ω-automata are typically much smaller than deter-
ministic ones, for standard LTL model checking one translates formulas into
non-deterministic Büchi automata. However, this is no longer possible for prob-
abilistic model checking, and the standard approach is to use deterministic Rabin
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automata (DRA) instead—this is for instance the approach of the PRISM tool
[3,22]. Translations of LTL into DRA have been thoroughly studied. Classical
translations take a detour through Büchi automata as intermediate step [24–26],
while more recent ones are direct translations [11,19].

It has been known for a long time that automata for probabilistic verification
do not need to be fully deterministic: the automata-theoretic approach still works
if restricted forms of non-determinism are allowed. For probabilistic verification
of Markov chains one can use unambiguous Büchi automata (separated UBA [7],
or even non-separated UBA [2]). The translation from LTL to separated UBA
involves a single exponential blowup, while the translation to DRA is known
to be double exponential. However, UBA cannot be used for the verification
of Markov Decision Processes (MDPs). For qualitative verification of MDPs1

one can use limit-deterministic Büchi automata (LDBA) [6,27] (also known as
semi-deterministic or deterministic-in-the-limit). For quantitative verification
of MDPs, limit-deterministic automata are not sufficient in general. However,
recently [14], a more complex algorithm for probabilistic model checking was
presented, considering products of the system and its parts with several different
automata, including LDBA.

The translation LTL→LDBA is double exponential, and so in principle as
expensive as the translation to DRA in the worst case. However, it is easy to
find examples where the LDBA is much smaller than the DRA; in particular, in
[16] it is shown that the LTL\GU fragment of LTL can be translated to LDBAs
with a single-exponential blowup, while the translation to DRA is still double
exponential. Further, efficient procedures for LDBA complementation exist [4].

In this paper, we give a compositional translation from full LTL to LDBAs,
based on the one from LTL to DRAs recently presented in [11]. We then show
that, due to the special form of the resulting LDBAs, the translation can also be
used for quantitative model checking of MDPs, and in fact by means of the same
algorithm as for DRAs. That is, in order to compute the maximal probability
that an MDP M satisfies a formula ϕ we can just construct the product of M
and the LDBA for ϕ obtained by our translation, and compute the maximal
probability of reaching an accepting end component [3].

The translation of [11] becomes much simpler with LDBAs as target, instead
of DRAs. In order to check if a word w satisfies a formula ϕ, our LDBAs use
their restricted non-determinism to guess the set of G-subformulas of ϕ that
are eventually satisfied by w (i.e., the subformulas Gϕ such that w |= FGψ),
and the point at which all these subformulas have already become true. At this
point the LDBA enters its deterministic component to check that the guess is
correct, and that w |= ϕ holds under the assumption that the guess is correct.
We show that our translation produces LDBA of at most double exponential
size, and exhibit a family of LTL formulas for which the smallest LDBA reaches
this double exponential bound.

We conclude the paper with an experimental evaluation of an implementation
of our construction on a large set of benchmarks. We compare the size of the
generated LDBA with the size of the DRA provided by the Rabinizer tool, the
DRA constructed by LTL2DSTAR, and the LDBA produced by the procedure of

1 Recall that qualitative verification checks if the property holds with probability 1.
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[6]: translate the formula into a Büchi automaton, apply the translation of Büchi
automata to LDBA described in [6], and simplify the result. For the comparison
we use the LTL3BA tool [1] and SPOT [8].

Outline. Sections 2 and 3 contain preliminaries. Section 4 presents an intuitive
overview of the translation by means of an example. Section 5 formally defines
the translation, Sect. 6 describes several optimisations, and Sect. 7 gives the com-
plexity bounds. Quantitative verification is discussed in Sect. 8. Experimental
results are presented in Sect. 9. Section 10 concludes and discusses future work.

2 Preliminaries

2.1 Linear Temporal Logic

We use a slightly unusual syntax for LTL. We consider formulas without nega-
tions and without the Release operator R— the dual of the Until operator U—
but with both F and G. Formulas in the usual syntax are transformed into equiv-
alent formulas in our syntax by pushing negations inside, and—in the absence
of R—using the equivalence ¬(ϕUψ) = (¬ψU(¬ψ ∧ ¬ϕ)) ∨ G¬ψ. This may
cause the formula to grow exponentially, when formulas are represented by their
syntax trees. However, if they are represented by their syntax DAGs, then the
transformation only causes a linear blowup.

Definition 1 (LTL). A formula of LTL in negation normal form is given by
the syntax:

ϕ::= tt | ff | a | ¬a | ϕ ∧ ϕ | ϕ ∨ ϕ | Xϕ | Fϕ | Gϕ | ϕUϕ

where a ∈ Ap. An ω-word w is an infinite sequence of letters w[0]w[1]w[2] . . . .
We denote the infinite suffix w[i]w[i + 1] . . . by wi. The satisfaction relation |=
between ω-words and formulas is inductively defined as follows:

w |= tt w �|= ff
w |= a iff a ∈ w[0]
w |= ¬a iff a �∈ w[0]
w |= ϕ ∧ ψ iff w |= ϕ and w |= ψ
w |= ϕ ∨ ψ iff w |= ϕ or w |= ψ

w |= Xϕ iff w1 |= ϕ
w |= Fϕ iff ∃k.wk |= ϕ
w |= Gϕ iff ∀k.wk |= ϕ
w |= ϕUψ iff ∃k.wk |= ψ and

∀0 ≤ j < k.wj |= ϕ

Given two formulas ϕ and ψ, we denote by ϕ[Φ/ψ] the result of substituting
ψ for each maximal occurrence of a formula of Φ in ϕ (an occurrence is maximal
if it is not a subformula of another occurrence). For example, G(a∨Gb)[{G(a∨
Gb),Gb}/tt] = tt. Two formulas are equivalent if they are satisfied by the same
words. We under-approximate this using propositional equivalence.

Definition 2 (Propositional Equivalence). A subformula ψ of ϕ is called
proper, if the root of its syntax tree is labelled by either a, ¬a, F, G, U or
X. Given a formula ϕ, we assign to it a propositional formula ϕP as follows:
replace every maximal proper subformula ψ by a propositional variable xψ. Two
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formulas ϕ,ψ are propositionally equivalent, denoted ϕ ≡P ψ, iff ϕP and ψP

are equivalent formulas of propositional logic. We denote by [ϕ]P the set of all
formulas propositional equivalent to ϕ.

For example, if ϕ = Xb∨(G(a∨Xb)∧Xb) with ψ1 = Xb and ψ2 = G(a∨Xb),
then ϕP = xψ1 ∨ (xψ2 ∧ xψ1) ≡ xψ1 . Thus Xb is propositionally equivalent to ϕ
and Xb ∈ [ϕ]P .

2.2 Formula Expansion

Our translation relies on the “After Function” af (ϕ,w), read “ϕ after w” [11].
Intuitively, ϕ holds for ww′ iff af (ϕ,w) holds “after reading w”, that is, if w′ |=
af (ϕ,w).

Definition 3. Let ϕ be a formula and ν ∈ 2Ap a single letter. af (ϕ, ν) is then
defined as follows:

af (tt, ν) = tt
af (ff , ν) = ff

af (a, ν) =
{

tt if a ∈ ν
ff if a /∈ ν

af (¬a, ν) =
{

ff if a ∈ ν

tt if a /∈ ν

af (ϕ ∧ ψ, ν) = af (ϕ, ν) ∧ af (ψ, ν)
af (ϕ ∨ ψ, ν) = af (ϕ, ν) ∨ af (ψ, ν)
af (Xϕ, ν) = ϕ
af (Gϕ, ν) = af (ϕ, ν) ∧ Gϕ
af (Fϕ, ν) = af (ϕ, ν) ∨ Fϕ
af (ϕUψ, ν) = af (ψ, ν) ∨ (af (ϕ, ν) ∧ ϕUψ)

Furthermore, we generalize the definition to finite words: af (ϕ, ε) = ϕ; and
af (ϕ, νw) = af (af (ϕ, ν), w) for every ν ∈ 2Ap and every finite word w. Finally,
we define the set of from ϕ reachable formulas as Reach(ϕ) = {[ψ]P | ∃w. ψ =
af (ϕ,w)}.
Example 1. Let Ap = {a, b, c} and ϕ = a ∨ (b U c). We have af (ϕ, {a}) = tt
af (ϕ, {b}) = (b U c), af (ϕ, {c}) = tt, and af (ϕ, ∅) = ff .

The following lemmas show that af has indeed the claimed property, and
others.

Lemma 1 ([11] Lemma 7). Let ϕ be a formula, and let ww′ ∈ (2Ap)ω be an
arbitrary word. Then ww′ |= ϕ iff w′ |= af (ϕ,w).

Lemma 2 ([11] Lemma 11). Let ϕ be a G-free formula and let w be a word.
Then w |= ϕ iff there exists i > 0 such that af (ϕ,w0j) ≡P tt for every j ≥ i.

We now show that Reach(ϕ) — a building block for the construction — is
finite, and contains at most a double exponential number of elements.

Lemma 3. For every formula ϕ and every finite word w ∈ (2Ap)∗:

(1) af (ϕ,w) is a boolean combination of proper subformulas of ϕ.
(2) If ϕ has n proper subformulas, then Reach(ϕ) has at most size 22

n

.
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Proof. (1) By definition, every formula is a boolean combination of its proper
subformulas. So it suffices to prove that every proper subformula of af (ϕ,w) is
also a proper subformula of ϕ. For w = ν this follows by an easy induction on
ϕ, and for an arbitrary w by induction on |w|.

(2) By (1), every equivalence class [ψ]P ∈ Reach(ϕ) can be uniquely identified
with a Boolean function over n variables, one for each proper subformula of ϕ.
Since there are 22

n

Boolean functions over n variables, we have at most so many
equivalence classes. ��
Remark 1. It is easy to show by induction that ϕ ≡P ψ implies af (ϕ,w) ≡P

af (ψ,w) for every finite word w. We extend af to equivalence classes by defining
af ([ϕ]P , w) := [af (ϕ,w)]P . Sometimes we abuse language and identify a formula
and its equivalence class. For example, we write “the states of the automaton
are pairs of formulas” instead of “pairs of equivalence classes of formulas”.

3 Limit-Deterministic Büchi Automata

For convenience, we use Büchi automata with an accepting set of transi-
tions, instead of an accepting set of places. We also consider generalized Büchi
automata with several sets of accepting transitions. It is well known that all these
classes accept the ω-regular languages and there are polynomial-time translations
between them.

Definition 4 (Transition-Based Generalized Büchi Automata). A
generalized transition-based Büchi automaton (TGBA) is a tuple B =
(Σ,Q,Δ, q0, α) where Σ is an alphabet, Q is a finite set of states, Δ : Q×Σ → 2Q

is a transition function, q0 is the initial state, and α = {F1, F2, . . . Fn} with
Fi ⊆ Q × Σ × Q is an accepting condition.

A run r of a TGBA B on the ω-word w is an infinite sequence of transitions
r = (q0, w[0], q1)(q1, w[1], q2) . . . respecting the transition function, i.e. r[i] ∈ Δ
for every i ≥ 0. We denote by inf(r) the set of transitions occurring infinitely
often in the run. A run is called accepting if for each set of transitions F ∈ α there
is at least one transition in the run occurring infinitely often, i.e. if inf(r)∩F �= ∅.
An infinite word w is accepted by B and is in the language L(B) if there exists
an accepting run r for w.

Intuitively, a TGBA is limit-deterministic if it can be split into a non-
deterministic component without accepting transitions, and a deterministic
component. The automaton can only accept by “jumping” from the non-
deterministic to the deterministic component, but after the jump must stay
in the deterministic component forever.

Definition 5 (Limit-Determinism). A TGBA B = (Σ,Q,Δ, q0, α) is limit-
deterministic if Q can be partitioned into two disjoint sets Q = QN � QD, s.t.

1. Δ(q, ν) ⊆ QD and |Δ(q, ν)| = 1 for every q ∈ QD, ν ∈ Σ and
2. F ⊆ QD × Σ × QD for all F ∈ α
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4 Overview of the Construction

We first explain the main ideas underlying our construction on the formula
ϕ = c∨XG(a∨Fb), and then show how to generalise them to arbitrary formulas.
We abbreviate ψ := (a ∨ Fb), and so we write ϕ = c ∨ XGψ. The complete
automaton for the formula is shown in Fig. 1.

Each state of the automaton for ϕ is labelled with a formula (the state is
the equivalence class of this formula w.r.t. propositional equivalence). The words
accepted from the state are exactly those satisfying the formula. We describe the
initial and accepting components of the automaton, separated in Fig. 1 by the
dashed line.

The Initial Component. The states of the initial component are the formulas
of Reach(ϕ), with ϕ as initial state. The non-ε transitions are given by the af -
function: for every state ϕ′ and letter ν there is a transition labelled by ν leading
to af (ϕ′, ν). With these transitions the component keeps track of the formula
that must be satisfied by the rest of the word.

The only non-determinism is introduced by the “ε-jumps” into the accepting
component. Imagine the automaton is currently at state ϕ′. The automaton

q0 : ϕ

q1 : Gψ

q2 : Gψ ∧ Fb

q3 : tt

p6 : 〈c, ·〉

p7 : 〈tt, ·〉

p0 : 〈Fb, (ψ, tt)〉

p1 : 〈Fb, (Fb, ψ)〉

p2 : 〈Fb, (Fb,Fb)〉

p3 : 〈tt, (ψ, tt)〉

p4 : 〈tt, (Fb, ψ)〉

p5 : 〈tt, (Fb,Fb)〉

c̄

c

ε

ε

a + b

āb̄

ε

b

ε

b̄

tt

ε

ε

āb̄

b
ab̄

āb̄

b

ab̄

b̄

b

āb̄

a + b

āb̄

b

ab̄

b̄

b

c

tt

Fig. 1. Automaton A for ϕ = c ∨XG(a ∨Fb). Non-accepting sinks (〈ff , ·〉) and transi-
tions to them have been removed. The initial component is above the dashed line, the
accepting component below. States in the lower part are tuples of an auxiliary monitor
and G-monitors.
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has to check that ϕ′ holds (more formally, that the rest of the run satisfies
ϕ′). Intuitively, taking an ε-jump corresponds to picking a subset G of the G-
subformulas of ϕ′, guessing that they currently hold, and guessing further that
ϕ′ holds even if no other G-subformula becomes true in the future. In order to
see how the automaton can check this guess, we introduce some notation.

Definition 6. Given a formula ϕ and a set G of G-formulas, we denote ϕ[G]
the result of substituting tt for every G-subformula of G and ff for every other
G-subformula.

We claim that after the jump the accepting component can check the guess
by checking if (a) G

(
ψ[G]) holds for every Gψ ∈ G, and (b) ϕ′[G] holds.

Indeed, if Gψ ∈ G holds now, then it always holds in the future, and so it can
be replaced by tt. Similarly, if Gψ /∈ G, then ϕ′ should hold even if Gψ never
holds in the future, which—since formulas are in negation normal form—is the
case if ϕ′ holds even after Gψ is replaced by ff .

The crucial point now is that the formulas of (a) are of the form Gψ′, where
ψ′ is G-free, and the formula in (b) contains no occurrence of G at all. So for the
accepting component (described below) it suffices to find deterministic automata
for such formulas.

As a concrete example, consider the two ε-transitions of Fig. 1 leaving the
state q0. Since Gψ is the only G-subformula of ϕ, the two possible choices for G
are G = {Gψ} and G = ∅. In the first case, the ε-transition for G = {Gψ} must
lead to a state in charge of checking that (a) G(ψ[G]) = G(a ∨ Fb) holds, and
(b) ϕ[Gψ/tt] = c ∨ Xtt ≡P true holds (in this case (b) is trivial). This is the
state p3, whose successors are the part of the accepting component in charge of
checking G(a ∨ Fb). The ε-transition for G = ∅ must lead to a state in charge of
checking ϕ[Gψ/ff ] = c ∨ Xff ≡P c (if this holds, then ϕ′ holds, independently
of whether Gψ holds or not). This is state p6.

The Accepting Component. The accepting component consists of several sub-
components, one for each set G of G-formulas. In Fig. 1 there are two subcom-
ponents, one with states {p0, . . . , p5} for G = {Gψ}, and the other with states
{p6, p7} for G = ∅. A subcomponent is a product of deterministic automata: a
G-monitor for every formula Gψ ∈ G, in charge of checking G

(
ψ[G]), and an

auxiliary monitor for each state ϕ′ of the initial component, in charge of checking
ϕ′[G]. Consider for instance the subcomponent with states {p0, . . . , p5}. It is the
product of a three-state G-monitor for Gψ, and a two-state auxiliary monitor
for checking Fb.

Since ϕ′[G] contains no occurrence of G, it is easy to give a deterministic
auxiliary monitor, and we do so in Sect. 5.2. For the G-monitor for G

(
ψ[G]) we

use a breakpoint construction. Intuitively, the monitor must check that every
suffix of the monitored word satisfies ψ′, and so after each step it receives ψ′

as new “proof obligation”. Its states are pairs of formulas (ρ1, ρ2). At state
(ρ1, ρ2) the monitor is currently taking care of the proof obligation ρ1, and
has put ρ2 on hold. Initially ρ1 = ψ and ρ2 = tt. Transitions of the form
δ((ρ1, ρ2), a) = (af (ρ1, a), af (ρ2, a)∧ψ′). update the proof obligations according
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to the af -function, adding ψ′ to the proof obligation on hold. If ρ1 = tt then
the current proof obligation can be discarded, and the monitor can take care of
the one on hold; this is done by a transition δ((tt, ρ2), a) = (af (ρ2, a) ∧ ψ′, tt).
These “discarding” transitions are accepting. If they are taken infinitely often,
then all of the infinitely many proof obligations are eventually discarded.

5 Construction

For the formal presentation of the construction, let ϕ be a fixed formula and let
Ap be the corresponding set of atomic propositions. Further, let G be the set of
G-subformulas of ϕ, i.e. the subformulas of ϕ of the form Gψ. We first describe
the initial component without ε-transitions, then the accepting component, and
then the ε-transitions linking the two.

5.1 Initial Component

As already sketched, the component keeps track in its state of the formula that
must be satisfied by the rest of the word.

Definition 7. The initial component for a formula ϕ is the transition system:

N = (2Ap,Reach(ϕ), af , ϕ)

5.2 Accepting Component

The accepting component for a subset G ⊆ G of G-subformulas is the product
of one auxiliary monitor and one G-monitor for each Gψ ∈ G. First, we show
how to build a G-monitor U for a single G-free formula. Second, we construct a
product P of these G-monitors.

G-Monitor. Let ψ be a G-free formula. We construct a deterministic Büchi
automaton U , called the G-monitor for Gψ, recognising L(Gψ). We first give
the definition, and then explain the intuition behind it.

Definition 8 (G-Monitor). Let ψ be a G-free formula. The G-monitor for ψ
is the deterministic Büchi automaton

U(Gψ) = (2Ap,Reach(ψ) × Reach(ψ), δ, (ψ, tt), F )

where

– δ((ξ, ζ), ν) =

{
(af (ζ, ν) ∧ ψ, tt) if af (ξ, ν) ≡P tt
(af (ξ, ν), af (ζ, ν) ∧ ψ) otherwise

– F = {((ξ, ζ), ν, p) ∈ Q × 2Ap × Q | af (ξ, ν) ≡P tt}
The states of the monitor are pairs (φ1, φ2) of formulas. Intuitively, from state

(φ1, φ2) the automaton checks if the rest of the run satisfies φ1 ∧φ2, but starting
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with φ1 and putting φ2 “on hold”. The initial state is (ψ, tt). After reading a
letter, say ν1, the automaton moves to δ(ψ, tt) = (af (ψ, ν1), ψ). The meaning is:
the automaton checks if the rest of the run satisfies af (ψ, ν1)∧ψ, but putting the
check of ψ “on hold”. If the next letter is, say, ν2, then the automaton moves to
(af (ψ, ν1ν2), af (ψ, ν2)∧ψ), keeping the check of af (ψ, ν2)∧ψ on hold. However,
if af (ψ, ν1ν2) = tt, then, the automaton knows already that the word ν1ν2 . . .
satisfies ψ, the first check is complete, and the automaton “transfers” the checks
kept on hold to the first position, moving to the state (af (ψ, ν2) ∧ ψ, tt). The
accepting transitions are those at which the automaton completes a check. If the
automaton completes infinitely many checks, then all suffixes of the run satisfy
ψ, and so the run satisfies Gψ.

Lemma 4. Let ψ be a G-free formula and let w be a word, then w |= Gψ iff
U(Gψ) accepts w.

Proof. Assume w |= Gψ. Hence ∀i. wi |= ψ. Since ψ is a G-free formula, af
will eventually derive tt due to Lemma 2, that is, ∀i.∃j. af (ψ,wij) ≡P tt. Hence
U(Gψ) visits infinitely many states (ξ, ζ) such that ξ ≡P tt, and so it accepts.

Assume w �|= Gψ. Let i be a point where w fails to satisfy ψ (wi �|= ψ).
Thus af (ψ,wij) �≡P tt for any j. Once af (ψ,wij) is propagated from the second
component to the first, U(Gψ) never uses an accepting transition again and
hence does not accept. ��
Example 2. The G-monitor for Gψ = G(a ∨ Fb) is the automaton of Fig. 2.

p0 : (ψ, tt)

p1 : (Fb, ψ)

p2 : (Fb,Fb)

āb̄

a + b

āb̄

b

ab̄

b̄

b

Fig. 2. G-monitor for Gψ = G(a ∨ Fb).

Product of G-Monitors. Let ϕ be a formula, and let G be the set of all G-
subformulas of ϕ. Fix a set G = {Gψ1, . . . ,Gψn} ⊆ G. For every index 1 ≤ i ≤ n,
let Ui be the G-monitor for the formula G(ψi[G]).

Definition 9 (Product of G-Monitors). Let U1, . . . ,Un as above, and let
Ui = (2Ap , Qi, δi, q0i, Fi). The product of G-monitors of ϕ with respect to G is
the generalized deterministic Büchi automaton

P(G) = ( 2Ap,
n∏

i=1

Qi,
n∏

i=1

δi, (q01, . . . , q0n), {F ′
1, . . . , F

′
n} )

where ( (q1, . . . , qn), ν, (q′
1, . . . , q

′
n) ) ∈ F ′

i iff (qi, ν, q′
i) ∈ Fi.
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Lemma 5. Let G be a set of G-formulas and let w be a word. We have: P(G)
accepts w iff w |= G(ψ[G]) for all Gψ ∈ G.

Proof. Let G = {Gψ1, . . . ,Gψn}, and assume that the formulas are ordered so
that if Gψi is a subformula of ψj then j < i (so, in particular, Gψn is not a
subformula of any of ψ1, . . . , ψn−1).

Assume P(G) accepts w. We prove w |= G(ψi[G]) for every 1 ≤ i ≤ n by
induction on n = |G|. If n = 0, then P(∅) trivially accepts all words, and we are
done. Let now n > 0. Since Gψn is not a subformula of any of ψ1, . . . , ψn−1,
taking G′ := G \ {Gψn} we have ψi[G] = ψi[G′] for every ψi ∈ G. In particular,
P(G) accepts w, then both P(G′) and U(G(ψn[G′])) accept w too. By induction
hypothesis we have w |= G(ψi[G′]) for every 1 ≤ i ≤ n − 1. By Lemma 4 we
obtain w |= G(ψn[G′]). Finally, since ψi[G] = ψi[G′] for every ψi ∈ G, we get
w |= G(ψi[G]) for every 1 ≤ i ≤ n.

The other direction is analogous. ��

5.3 Connecting the Initial and Accepting Components

We now define the ε-transitions leading from states in the initial component to
states in the accepting component. Intuitively, each ε-transition corresponds to a
guess G, and starts the corresponding product P(G). However, recall that if the
source of the transition is the state ϕ′, then the accepting component must also
check that the formula ϕ′[G]) holds. For example, for the state q2 of Fig. 1 we have
ϕ′ = Gψ∧Fb, and choosing G = Gψ we get ϕ′[G] ≡P Fb. So, intuitively, the state
p0 starts not only P(G), but also a deterministic automaton for Fb. More formally,
p0 is the initial state of the product of P(G) and this deterministic automaton.

The deterministic automaton for ϕ′′ := ϕ′[G] is very simple. Since ϕ′′

contains no occurrences of G, by Lemma 2 we can just take the automaton
(2Ap,Reach(ϕ′′), af , ϕ′′, {tt}). That is, the automaton keeps tracking the for-
mula that the rest of the run must satisfy, and accepts iff eventually the formula
is tt. Comparing with the initial component N , we observe that this automa-
ton is nothing but N with tt as single accepting state, meaning all outgoing
transitions are accepting. We can now define the complete limit-deterministic
automaton for a formula ϕ.

Definition 10. Let ϕ be a formula. Let N = (2Ap, QN , δN , q0N ) be the transi-
tion system of Definition 7. Furthermore, for every set G of G-subformulas of
ϕ, let P(G) = (2Ap, QP(G), δP(G), q0P(G), {F(G,Gψ) | Gψ ∈ G}) be the product of
Definition 9. The limit-deterministic automaton A is defined as

A = (2Ap, QN ∪ QAcc , δN ∪ Δε ∪ ΔAcc , ϕ, {Fξ | ξ ∈ G})

where

QAcc =
⋃

G⊆G

(QN × QP(G)) and ΔAcc =
⋃

G⊆G

(δN × δP(G))

Δε = {(χ, ε, (χ[G], q0G)) | χ ∈ QN ,G ⊆ G}
Fξ =

⋃

G⊆G

{
((tt, q), ν, (tt, q′)) | (q, ν, q′) ∈ F(G,ξ)

}
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Example 3. The complete automaton A for ϕ = c ∨ XG(a ∨ Fb), displayed in
Fig. 1, consists of the initial component above the dashed line, and the products
of the auxiliary monitor with the product automata P for G1 = {} and G2 =
{Gψ} (below the dashed line)

5.4 Correctness

We prove a stronger correctness statement: For every state ψ ∈ QN of the initial
component, the words w accepted from ψ are exactly those that satisfy ψ. Before
we proceed, we need the notion of a stable set of G-subformulas.

Definition 11. A set G ⊆ G of G-subformulas of ϕ is stable for a word w if
the following holds:

∀Gψ ∈ G. ∀i ≥ 0. wi |= Gψ

∀Gψ ∈ G \ G. ∀i ≥ 0. wi �|= Gψ

Observe that at most one set is stable for a given word, and some words have
no stable set. Further, if a set is stable for a word, then it is stable for all its
suffixes.

Lemma 6. Let ϕ be a formula, and let w be a word with stable set G. Then
w |= ϕ iff w |= ϕ[G].

Proof. (Induction on ϕ) The only non-trivial case is ϕ = Gϕ′. Consider two
subcases. If Gϕ′ ∈ G, then by the definition of stable set we have w |= ϕ and by
the definition of ϕ[G] we get ϕ[G] = tt, so w |= ϕ[G]. If Gϕ′ �∈ G, then w �|= Gϕ′

and ϕ[G] = ff , so w �|= ϕ[G]. ��
Lemma 7. Let ϕ be a formula, and let w be a word with stable set G. If w |= ϕ
holds, then A has an accepting run r for w starting at ϕ. Moroever, r immediately
switches from ϕ ∈ QN to the accepting component for G.

Proof. Assume w |= ϕ and assume G is the stable set for w. Let r be the run
starting at ϕ that immediately uses the ε-transition to jump to the accepting
component for G. We show that r is accepting. Since G is a stable set for w, the
product automaton P(G) accepts w due to Lemma 5. It remains to prove that the
auxiliary monitor eventually reaches tt. By Lemma 6 we have w |= ϕ[G]. Since
ϕ[G] is G-free, we can apply Lemma 2 and obtain that the auxiliary monitor
eventually reaches tt. ��
Lemma 8. Let w be a word and let ϕ ∈ QN be a state in the initial component
of A. We have: w |= ϕ iff A has an accepting run r for w starting at ϕ.

Proof. Assume w |= ϕ. Let G = {Gψ ∈ G | w |= FGψ} be the set of eventually
true G-subformulas, and let i be an index such that wi |= Gψ for every Gψ ∈ G.
Then G is a stable set for wi. Consider the run that first reads w0(i−1) in the initial
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component, reaching a state ϕ′, and then jumps to the accepting component for
the G. By Lemma 1 we have wi |= ϕ′, and by Lemma 7 the run is accepting.

Assume A accepts w. Let r be an accepting run. Let i be the point at which r
switches to the accepting component for some set G. By Lemma 5 we have wi |= ξ
for each ξ ∈ G. Since accepting transitions are only taken when the remaining
obligations are fulfilled (that is, when the formula in the first position of the tuple
is replaced by tt), we also obtain from Lemma 1 wi |= af (ϕ,w0(i−1))[G]. Because
the formulas are in NNF and G ⊆ {ξ ∈ G | wi |= ξ}, we have wi |= af (ϕ,w0(i−1)),
and, by Lemma 1, we finally get w |= ϕ. ��

From this lemma we immediately obtain the correctness:

Theorem 1. Let w be a word, then w |= ϕ iff A accepts w.

Further, staying for an arbitrary number of steps in the initial component is
safe, because is it always possible to switch to a successful accepting component:

Lemma 9. Let w be a finite word and let ϕ be a formula. We denote by L(q)
the language accepted from state q ∈ QA. Then the following inclusion holds:

⋃

q∈δ(ϕ,w)

L (q) ⊆ L (δN (ϕ,w))

Proof. Let q ∈ δ(ϕ,w) be an arbitrary state in the accepting component reached
after reading w. Let w′ ∈ L(q) and let r′ be an accepting run for w′. We extend
r′ to a run r for ww′ starting in ϕ ∈ QN by taking the path from ϕ to q as a
prefix for r′. Iteratively applying Lemmas 1 and 8 yields w′ ∈ L(δN (ϕ,w)):

ww′ ∈ L(ϕ) iff ww′ |= ϕ iff w′ |= af (ϕ,w) iff w′ ∈ L(δN (ϕ,w))

Thus L(q) ⊆ L(δN (ϕ,w)) for all q ∈ δ(ϕ,w). ��

6 Optimisations

For the experimental evaluation we apply several optimisations to the presented
construction:

First, ε-transitions are removed and replaced by the outgoing edges of the
successor state. Second, non-accepting sinks are removed, as they can be easily
recognised: from the state ff accepting edges are unreachable. Third, not all “ε-
jumps” are necessary: A run starting in Gψ1 ∧ Gψ2 cannot be accepting in the
component for ∅ or {Gψ1}, since the auxiliary monitor cannot reach tt from ff
or Gψ1 ∧ χ. Hence only jumps for (minimal) satisfying assignments of a state
label (restricted to Gs) are constructed. Fourth, we call a state transient if every
run can only visit the state at most once, e.g. it is labelled by Xϕ. As shown in
Lemma 9 a jump to the accepting component can safely be delayed. Thus jumps
for transient states are not constructed.

While these four optimisations suppress the construction of states and edges,
also the state labels can be optimised: Fifth, G-monitors can safely replace (ξ, ζ)
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by (ξ, tt) if ξ implies ζ. In a similar way the auxiliary component removes terms
already taken care of by G-monitors. Sixth, all modal operators in state labels
are unfolded, reducing the number of states: FGa is rewritten to (FGa) ∨ (Ga)
and merged with existing states.

7 Complexity

Upper Bound. Let n be the length of the formula ϕ. Since QU(Gψ) and QN are
defined using Reach, the size for QU(Gψ) and QN is O(22

n

). For each G ⊆ G the
accepting component has at most |G| G-monitors and one auxiliary monitor.
Hence the size of the accepting component for a single G is at most (|G| + 1) ·
O(22

n

) = O(22
n+log log n

). Summing up to:

O(22
n

) + 2|G| · O(22
n+log log n

) = O(22
n+log n+log log n

)

Lower Bound. This upper bound is matched by a double exponential (not tight)
lower bound. The language used in the proof is an adaptation of [21].

Theorem 2. There is a family of formulas φn of size O(n2) such that the
smallest limit-deterministic state-based Büchi automaton recognising L(φn) has
at least 22

n

states.

Proof. For every n ∈ N, let rn be the regular expression over the alphabet
Σ = {0, 1,#, $,%}, defined as

rn :=
∑

w∈{0,1}n

% (0|1|#)∗ # w # (0|1|#)∗ $ w

Since the language L(rω
n) can be expressed by an LTL formula of size O(n2)

(Lemma 10) and the smallest limit-deterministic state-based Büchi automaton
recognising L(rω

n) has at least 22
n

states (Lemma 11), the claim holds. ��
Lemma 10. There exists an LTL formula of size O(n2) defining L(rω

n).

Proof. The conjunction of the following LTL formulas of size O(n2) defines L(rω
n):

% ∧ G($ → Xn+1%) ∧ G(
∨

α∈Σ

(α ∧
∧

β∈Σ\{α}
¬β)) (1)

G(% → X((0 ∨ 1 ∨ #)U(
∧

1≤i≤n

(ϕ(i, 0) ∨ ϕ(i, 1)) ∧ Xn+1#))) (2)

with ϕ(i, α) := Xiα∧((0∨1∨#)U($∧Xiα)). Formula 1 ensures the basic syntac-
tic properties of rn, and Formula 2 enforces that the literal % is always succeeded
by a string of the form (0|1|#)∗#w#(0|1|#)∗$w using ϕ(i, α) to guarantee the
existence of matching substrings #w# and $w. ��
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Lemma 11. The smallest limit-deterministic state-based Büchi automaton
recognising L(rω

n) has at least 22
n

states.

Proof. Let An be a limit-deterministic state-based Büchi automaton recognis-
ing L(rω

n). A state q is called a $-successor if there exists an accepting run r
containing the transition (p, $, q) and q is in the deterministic component of An.
For every $-successor q we denote by W(q) = {u ∈ {0, 1}n | ∃w. uw ∈ L(q)} the
set of prefixes of length n of L(q). We show that An has at least one distinct
$-successor q for each subset ∅ �= S ⊆ {0, 1}n, such that W(q) = S. Thus An

has at least 22
n

states, since not all states can be $-successors. We expose these
states by the recursively defined sequence s. Let S = {w1, w2, . . . wi} be such a
subset and let k := |Qn|:

s(S) := s|S|(S)
s1(S) := %#w1# . . . #wi#$w1

sj(S) := sj−1(S)k · sj−2(S)k · . . . · s1(S)k %#w1# · . . . · #wi#$wj ∀1 < j ≤ i

Since s(S)ω ∈ L(rω
n) holds for all non-empty S, there exists for each s(S) an

accepting run r, such that the sequence is read in the deterministic component.
Furthermore by construction we have for each $-successor q encountered reading
s(S): W(q) ⊆ S. Showing that the converse also holds concludes the proof:

Proposition 1. Let S = {w1, . . . wi}, and let 1 ≤ j ≤ i. Furthermore, assume
the sequence sj(S) is read in the deterministic part during an accepting run. Let
qj be the $-successor transitioned to after the last $ of sj(S). Then qj satisfies
W(qj) ⊇ {w1, . . . , wj}.
Proof (By induction on j). Case j = 1 is trivial. Case j > 1: By construction
sj(S) is equal to sj−1(S)k+1 up to the last $ and ends with wj instead of wj−1.
Since k = |Qn| and the sequence is read in the deterministic component, qj

occurred previously in the run on sj−1(S) as a $-successor. Hence we apply the
induction hypothesis to qj and obtain: W(qj) ⊇ {w1, . . . , wj−1}. Since wj occurs
after the last $-symbol in sj(S), we have W(qj) ⊇ {w1, . . . , wj}. ��

8 Quantitative Probabilistic Model Checking

The problem of LTL probabilistic model checking [3] is to determine the proba-
bility that an LTL formula ϕ holds on a run generated by a given Markov chain
M, i.e., PM{run ρ | ρ |= ϕ}, or more generally, for Markov decision process
M the maximal probability that ϕ is satisfied, i.e., supσ PMσ{run ρ | ρ |= ϕ},
where σ ranges over schedulers resolving the non-determinism of M, and Mσ is
the Markov chain resulting from application of σ to M.

The automata-theoretic approach to model checking LTL over Markov deci-
sion processes amounts to (1) constructing the product M×A of the system M
and an automaton A for the LTL formula, (2) computing maximal end compo-
nents (MECs) in the product, (3) determining which MECs are accepting, and
(4) determining the maximal probability to reach the accepting MECs.
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However, as opposed to the non-probabilistic model checking case, in general
the automaton A cannot be used if it is non-deterministic. Intuitively, resolving
non-determinism of the automaton may depend on the yet unknown, probabilis-
tically given future. For the same reason, limit-deterministic automata are in
general applicable only to qualitative probabilistic model checking, i.e., deter-
mining whether the satisfaction probability is 0, 1, or neither. We show that
our limit-deterministic automata can be used even in the quantitative-analysis
algorithm outlined above without conversion to a fully deterministic automaton.

Notice that the only non-deterministic transitions present in our construc-
tion are ε-transitions. This allows us to represent the non-deterministic choice
in our LDBA A by means of additional ε-actions in the product MDP where
each ε-action only changes the automaton state. Formally, given a Markov deci-
sion process M = (S,Act,P, s0,Ap, L) with set of states S, set of actions Act,
transition probability function P : S × Act × S → [0, 1], initial state s0 ∈ S
and labelling function L, and given an automaton A = (2Ap, Q, δ, q0,Acc) we
define the product (M × A) =

(
(S × Q),Act′,P′, (s0, q0),Ap, L′) of M and A

as follows. Firstly, for every potential ε-transition in A to some state q ∈ Q we
add a corresponding action εq in the product:

Act′ := Act ∪ {εq | q ∈ Q}
As usual, we define for all (s, q), (s′, q′) ∈ S × Q and α ∈ Act:

L′ ((s, q)) := L(s)

P′ ((s, q), α, (s′, q′)) :=

{
P(s, α, s′) if q

L(s′)−→ q′

0 otherwise

Additionally, for all (s, q), (s′, q′) ∈ S × Q, the transition probabilities of the
ε-actions are given by

P′ ((s, q), εq̂, (s′, q′)) :=

{
1 if s = s′ and q

ε−→ q′ = q̂

0 otherwise

Now we are going to show that our product can indeed be used for quanti-
tative model checking using the standard techniques.

Theorem 3. For any formula ϕ, the automaton A can be used in the standard
probabilistic model checking algorithm, i.e., for any Markov decision process M,

sup
σ

PMσ [L(A)] = sup
σ

P(M×A)σ [�X]

where �X is the set of runs that reach an accepting MEC of M × A.

Proof. The inequality “≥” is trivial even for general non-deterministic automata.
Indeed, every scheduler over M×A induces a scheduler over M (by elimination of
ε-transitions and subsequent projection) such that for every run (ρ, π) reaching
X, where acceptance is guaranteed, we have a run ρ of M that is accepted
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by A due to π. The scheduler thus resolved the non-determinism also of the
automaton.

While the inequality “≤” generally holds only for deterministic automata,
we prove it also for our A. We define a random variable index mapping a run ρ
of M, corresponding to a word w, as follows: index (ρ) := min{i | ∀Gψ ∈ G. w |=
FGψ =⇒ wi |= Gψ}. Observe that every run has a finite index. From this
point on, the run satisfies all G-formulas that it will ever eventually satisfy; we
call the set of these formulas G(ρ).

Given a scheduler σ, a state m of Mσ is called decided if almost all runs
starting in m have index 0. In other words, almost all runs of Mσ starting in
m satisfy each G-formula already at the beginning or never. Intuitively, G is
determined by m.

Lemma 12. Let C be a bottom strongly connected component (BSCC) of a
Markov chain. Then all states of C are decided and almost all runs ρ in C
have the same G(ρ).

Proof. Let Ps[L] denote the probability that a run of the Markov chain starting
in state s induces a word from language L. Now let Gψ ∈ G. If for all c ∈ C,
Pc[L(Gψ)] = 1, then we are done. Let now c ∈ C be such that Pc[L(Gψ)] < 1. We
show that for all d ∈ C, we have Pd[L(Gψ)] = 0, thus also proving Pd[L(FGψ)] =
0. Since Pc[L(Gψ)] < 1, we have Pc[L(F¬ψ)] > 0. Therefore, with every visit of
c there is a positive probability p that ψ will be violated in the next n steps for
some n ∈ N. Since c is in a BSCC it will be visited infinitely often with probability
1 from any d ∈ C. Consequently, Pd[L(Gψ)] ≤ limk→∞(1 − p)k = 0. ��

We are now ready to prove the inequality “≤”. Given a scheduler σ of M,
we define a scheduler σ′ of M × A such that PMσ [L(A)] ≤ P(M×A)σ′ [�X]. The
scheduler σ′ follows the behaviour of σ up to the point where a BSCC is reached
in Mσ. A run on Mσ will almost surely reach some BSCC in Mσ. Let m be
the first visited state in a BSCC of Mσ. By Lemma 12, m has unique decided G,
and σ′ then chooses the unique ε-action εq such that q ∈ QN × QP(G). Having
performed this ε-action, the scheduler σ′ then continues to follow the behaviour
of σ indefinitely. Note that apart from emulating σ, the constructed scheduler
σ′ only decides when to switch to the accepting component and with which G.

Notice that by construction every run ρσ on Mσ corresponds to a run ρσ′

on (M × A)σ′
with equal transition probabilities, except for the probability of

the ε-action, which has neutral probability 1. It thus only remains to show that
if a trace of ρσ is accepted by A then the corresponding run ρσ′ , projected to
the second component, is also an accepting run on A. To this end, let All be
the set of states where A can be after reading the run up to the point where
m is reached. In particular, let init , acc ∈ All be the source and the target of
the ε-transition taken if σ′ is followed, i.e. when the transition from (m, init) to
(m, acc) under action εacc is taken. Note that other elements of All correspond to
runs of A that either switch at another time or to an accepting part QN ×QP(G′)
for a different G′. In order to show that σ′ always chooses an accepting run of A
if there is one, we have to show that the following constraints are satisfied:
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– Lingering in the initial part and delaying the switch to the acceptance part is
safe. Formally:

L(init) ⊇
⋃

a∈All

L(a) (1)

This is shown in Lemma 9.
– Switching to the acceptance part is safe upon reaching the BSCC. Formally:

Pm[L(init)] = Pm[L(acc)] (2)

From Lemma 12 we obtain a unique G for almost all runs starting in m. Let
L(G) denote the set of runs satisfying FGψ for all Gψ ∈ G and not satisfying
FGψ for all Gψ �∈ G. Further, the set of runs not in L(G) has zero probability,
formally Pm[L(G)] = 0. Hence it is sufficient to show L(init)∩L(G) = L(acc)∩
L(G). Here ⊇ is trivial and for ⊆ let w ∈ L(init) ∩ L(G). Observe that G is a
stable set for w. Let ϕinit be the formula label of init. Because w ∈ L(init),
w |= ϕinit. Thus we can apply Lemma 7 and obtain w ∈ L(acc). ��

Remark 2. The limit-deterministic automata of [6] (making its first part deter-
ministic, which is informally mentioned as an option in the paper) and the one of
[14] (which is essentially the same) satisfy condition (1). Moreover, they satisfy
condition (2), not necessarily upon reaching the BSCC of Mσ, but at the latest
upon reaching the BSCC of its product with the initial part of the automaton,
see [14]. So they can also be used for quantitative probabilistic model check-
ing using the standard algorithm, as implicitly suggested by the more complex
on-the-fly variant of the algorithm of [14].

9 Experimental Evaluation

In our experimental evaluation we measure the state size and the number of
acceptance sets. We compare our translation to state-of-the-art LTL-to-Büchi
and LTL-to-deterministic-Rabin translators.

For the first group we use the semi-determinisation of [6] to obtain limit-
deterministic systems where the first component only uses the non-determinism
for jumping into the second component, starting a breakpoint construction. This
approach enables quantitative model checking (see Remark 2). The algorithm is
only applied when the automaton is non-deterministic and this translation is
necessary. Apart from selecting state-based Büchi automata as output, the tools
are left in their default configuration.

We compared the following tools2 where each tool is given at most 4 GB of
memory and 5 min computing time:

L3 (ltl3ba, 1.1.2) - An enhanced fork of ltl2ba with formula rewriting [1].
S (ltl2tgba, 1.99.6) - The LTL translator from Spot. Features advanced

formula simplification and several post-processing optimisations [9].

2 ltl2ba was left out and the improved “successor” ltl3ba was used.
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L2D (ltl2dstar, 0.5.3) - Translates LTL to deterministic Streett and Rabin
automata. Configured to use Spot as a translator from LTL to NBA [17].

R (Rabinizer, 3.1) - Constructs deterministic generalized Rabin automata
avoiding Safra’s construction. Configured to produce Rabin automata [19].

LD (ltl2ldba) - Implementation of the proposed construction without any
post-processing. Available at: www7.in.tum.de/∼sickert/projects/ltl2ldba.

Table 1. Number of states and number of acceptance sets in parenthesis for the con-
structed automata. The smallest and second smallest state spaces are highlighted.
Each resource exhaustion is marked with an additional *. Abbreviated formulas:
ϕ1 = GF(Fa ∨ Gb ∨ FG(a ∨ (Xb)), ϕ2 = FG(Ga ∨ F¬b ∨ GF(a ∧ Xb)), ϕ3 =
GF(Fa ∨ GXb ∨ FG(a ∨ XXb))

We consider the following five groups of formulas:

1. The first group of formulas in Table 1 are from the GR(1) fragment of LTL
and parametrised by j:

∧j
i=1(GFai) =⇒ ∧j

i=1(GFbi). These have been
previously used in [20].

2. The second group of formulas are fairness constraints, taken from [11], and
are parametrised by k:

∧k
i=1(GFai ∨ FGbi)

3. The third section looks at formulas with light nesting of modal operators.

www7.in.tum.de/~sickert/projects/ltl2ldba
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4. In the fourth section we explore the effect of deeply nesting modal operators
using the parametrised formula f .

f(0, j) = (GFa0)U(Xjb) f(i + 1, j) = (GFai+1)U(Gf(i, j))

While the automata sizes are close to each other for i, j = 0, this immediately
changes after increasing the parameters controlling the nesting depth.

5. The last entry is cumulative and sums up results for 359 formulas. These
formulas are from the collection used in [5]. The authors collected these from
existing sources, such as [10,12,13,23], and additionally included randomly
generated formulas.

10 Conclusion

We present a direct translation from LTL formulas to limit-deterministic Büchi
automata. The approach relies on decomposing the formula, constructing small
automata for each G and building a product deciding acceptance. The complex-
ity analysis shows that translating LTL to limit-deterministic automata is in
the worst case double exponential, which is matched by existing constructions
and the novel approach. The experimental section shows that for deeply nested
formulas the presented approach outperforms existing tools and in the general
case is as good as the other tools.

There are several open questions we want to investigate. First, we have not
included the Release-operator in the syntax. While this does not have an impact
on the expressiveness of the logic, direct support for it would be favourable.
Second, it is open, if is possible to adapt the construction such that for the
LTL\GU fragment the size is also exponential as in [16]. Third, we would like
to investigate the impact of specialised and standard post-processing steps on
the size of the automaton. Fourth, we want to study the performance impact of
using this construction for quantitative model checking.

Finally, in the area of reactive synthesis DRAs can be replaced by good for
games Büchi automata [15,18]. Studying the connection to our translation, and
a possibility of adapting our work for reactive synthesis is open.
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language for proving the lower complexity bound. This work is partially funded by
the DFG Research Training Group “PUMA: Programm- und Modell-Analyse” (GRK
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12. Gastin, P., Oddoux, D.: Fast LTL to Büchi automata translation. In: Berry, G.,
Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 53–65. Springer,
Heidelberg (2001)

13. Geldenhuys, J., Hansen, H.: Larger automata and less work for LTL model check-
ing. In: Valmari, A. (ed.) SPIN 2006. LNCS, vol. 3925, pp. 53–70. Springer,
Heidelberg (2006)

14. Hahn, E.M., Li, G., Schewe, S., Turrini, A., Zhang, L.: Lazy probabilistic model
checking without determinisation. In: Aceto, L., de Frutos Escrig, D. (eds.) CON-
CUR 2015. LIPIcs, vol. 42, pp. 354–367. Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik, Dagstuhl (2015)

15. Henzinger, T.A., Piterman, N.: Solving games without determinization. In: Ésik,
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Abstract. Applying reactive synthesis in practice often requires modi-
fications of the synthesis algorithm in order to obtain useful implemen-
tations. We present slugs, a generalized reactivity(1) synthesis tool that
has a powerful plugin architecture for modifying any aspect of the synthe-
sis process to fit the application. Slugs comes pre-equipped with a vari-
ety of plugins that improve the quality of the synthesized solutions along
criteria such as quick response, cost-optimality, and error-resilience. We
demonstrate the utility and scalability of the tool on an example from
robotics.

1 Introduction

Reactive synthesis automates the task of developing correct-by-construction
finite-state machines: rather than writing an implementation and a specification
for verifying the system, the engineer need only devise the specification, and the
implementation is computed automatically. Of the many synthesis approaches
available to the practitioner, generalized reactivity(1) synthesis [1], which is com-
monly abbreviated as GR(1) synthesis, has found widespread use for applications
in robotics and control. Reasons for this success include its comparatively low,
singly-exponential time complexity, and its amenability to symbolic computation
using binary decision diagrams (BDDs).

The basic idea behind reactive synthesis is to capture all of the require-
ments of the desired implementation in the specification, and to then accept any
implementation that satisfies the requirements. On a theoretical level, this is
a compelling premise: if the obtained implementation is not good enough, the
engineer can simply add additional requirements until it is. However, on a prac-
tical level, this approach is problematic: in many cases, system properties such
as “quick response” or “few states” cannot be captured precisely in the specifi-
cation without resorting to synthesis with a cost or payoff function. Introducing
costs leads to a higher computational complexity, loss of ability to efficiently use
BDDs as a computational data structure, and unfavourable theoretical proper-
ties, such as suboptimality of finite memory solutions. Having several optimiza-
tion criteria in the specification can also create undecidable synthesis problems.
Finally, some optimization criteria cannot be expressed quantitatively. Examples
include minimizing the time spent waiting for environment fairness conditions

c© Springer International Publishing Switzerland 2016
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(i.e. environment actions that can be assumed to be performed infinitely often)
to hold, and cooperation with the environment on preserving the environment
assumptions.

All these arguments advocate for a different approach to practical reactive
synthesis: rather than encoding every qualitative requirement for the synthesized
controller into the specification, why not adapt the synthesis algorithm itself to
compute implementations that have the properties needed for practical applica-
tions? The simplicity of generalized reactivity(1) synthesis makes it particularly
suitable as a starting point for demonstrating this approach to synthesis. Modifi-
cations of the standard GR(1) algorithm for synthesizing eager and cost-optimal
implementations [2] or cooperative implementations [3] that still support sym-
bolic computation have already been proposed in the past, along with semantic
modifications for robotics applications [4] and techniques for debugging sup-
port [5].

The presented tool slugs offers a framework for GR(1) synthesis and its
modifications. It has a small simple core implementation of the GR(1) synthe-
sis algorithm that can be extended by user-written plugins. The architecture
of slugs allows one to use multiple plugins at the same time, where each plu-
gin only modifies a part of the synthesis process. A focus of the tool lies on
conciseness and readability of the code, to make it easier for algorithms to be
adapted for specific application domains. For example the realizability check on
a specification, which amounts to evaluating the main fixpoint formula from [1],
takes only 23 lines of code, and yet is very readable. The slugs synthesis tool
comes with a specification debugger, using which the cause for realizability and
unrealizability of a specification can be determined in an interactive fashion. The
tool is written in C++ and is available under the permissive MIT open source
license.

This paper is structured as follows: in the next section, we describe the
particular view of GR(1) synthesis that slugs takes. Section 3 then provides
an overview of slugs’s architecture and the available plugins. Finally, Sect. 4
demonstrates slugs’s performance on an example specification.

2 GR(1) Synthesis

Synthesis of reactive systems has been identified to have a high computational
complexity for many specification logics. For generalized reactivity(1) specifica-
tions, the synthesis problem has a complexity that is only exponential in the
number of atomic propositions in the specification (or polynomial in the size of
the the state space of the game structure built in the synthesis process). Given
sets of input positions I and O, specifications in this fragment of linear temporal
logic (LTL) are of the form

(ϕa
i ∧ ϕa

s ∧ ϕa
l ) → (ϕg

i ∧ ϕg
s ∧ ϕg

l ),

where ϕa
i , ϕa

s , and ϕa
l are called the assumptions, and ϕg

i , ϕg
s , and ϕg

l are called
the guarantees of the specification. The assumptions are used to state what we
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know about the behavior of the environment in which the synthesized system
is intended to operate, whereas the guarantees contain the properties that the
synthesized system needs to satisfy if the environment behaves as expected. In
GR(1) specifications, all assumptions and guarantees must have a certain shape.
The initialization assumptions ϕa

i and ϕg
i must be free of temporal operators

and state valid variable valuations for I and O when the synthesized controller
starts to operate. The safety properties ϕa

s and ϕg
s state how the proposition

valuations for I and O can evolve during a step of the synthesized controller’s
execution. The liveness properties ϕa

l and ϕg
l state which transitions of (I ∪O)’s

valuations are supposed to happen infinitely often.
Synthesis from generalized reactivity(1) specifications is often reduced to

solving a fixpoint equation on a game structure that is built from the specifica-
tion. The transitions in the game structure are given by the safety assumptions
and guarantees, and the liveness properties are translated to environment and
system goals, which the system and environment player try to satisfy infinitely
often in a play of the game, respectively. In contrast to [1], we use a modified
fixpoint equation with only a single occurrence of the enforceable predecessor
operator EnfPre to compute from which positions the system player can win the
game:

W = νZ.

n∧

j=1

μY.

m∨

i=1

νX.EnfPre((ϕg
l,j ∧ Z ′) ∨ Y ′ ∨ (¬ϕa

l,i ∧ X ′))

Here, ν is the greatest fixpoint operator whereas μ is the least fixpoint operator,
while the number of liveness assumptions and guarantees are m and n, respec-
tively. The EnfPre operator takes as input a set of transitions (the corresponding
operator in [1] takes a set of states), and computes the set of positions of the
game from which the system player can ensure that, after the next valuations
to I and O have been selected by the environment and system players, respec-
tively, the resulting transition is in the set of given transitions. The specification
formula only explicitly mentions the liveness assumptions and guarantees of the
specification, as the safety constraints are encoded in the game structure, and
the initialization constraints only need to be considered after computing the set
of winning positions in the game, W . If for every first environment player move,
the system player can ensure that the resulting position satisfies ϕa

i → ϕg
i and

is in W , then there exists an implementation for the specification, and it can
be extracted from the sequence of transitions given to EnfPre during the evalua-
tion of the least fixpoint, after all the greatest fixpoint operators have been fully
evaluated.

The modified fixpoint formula makes it easier to alter the synthesis algo-
rithm, as it channels the possible actions of the implementation to be synthesized
through a single invocation of the EnfPre operator. Restricting or extending this
set of actions thus amounts to simply adding or removing transitions from the
operand of EnfPre. Also, the modified fixpoint formula makes the aims of the
system player more explicit: in every step of the system’s execution, the system
should either reach a system goal (which need to be reached infinitely often for
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the liveness guarantees to hold), get closer to the system goal, or wait for some
environment goal to be reached: this last option is only available until the cur-
rent environment goal has been reached. Except in very simple specifications, it
is commonly not under the control of the system which of these cases holds. The
system must, however, ensure that at least one of them holds at every point in
time. The conjunctions and disjunctions over i and j make sure that all liveness
assumptions and guarantees are considered in order.

The presented tool slugs does not build the game structure explicitly, but
rather uses binary decision diagrams (BDDs) as symbolic data structure. As
the synthesis games have all valuations of I ∪ O as positions, position sets and
transitions relations can be represented efficiently as BDDs with |I|+|O| many or
twice as many variables (one for each ‘end’ of a transition). All BDD operations
are performed by the CUDD library [6].

3 Modifying GR(1) Synthesis

Reactive synthesis has many applications, but most of them require the adapta-
tion of the synthesis approach in order to yield useful implementations and to
scale to problems of relevant size at the same time.

As one example, when performing automated high-level planning in robot-
ics, liveness assumptions are often used to model that doors in some workspace
must be open infinitely often. For a robot that needs to perform a certain task,
this allows the robot to wait for a door to open, for example if it has to pass
through the door in order to perform its task. Yet, high-level robot controllers
are often observed to wait needlessly for doors to open when alternative paths
exist; this is considered to decrease the quality of the controller, even if the spec-
ification is satisfied. While lifting the specification to a weighted one could solve
the problem, solving (synthesis) games symbolically with costs is substantially
harder and leads to unfavourable theoretical properties (e.g. optimal strategies
require infinitely many states for mean-payoff games with liveness objectives).
As an alternative, slugs contains a simple modification to the GR(1) fixpoint
formula that penalizes such “waiting”: the implementation in slugs takes just 7
lines of C++ code.

As another example, in high-level robotics applications [7], the position of
a robot in a workspace is commonly under the control of the robot. Safety
guarantees constrain the motion of the robot such that it can only move to
adjacent regions of a workspace. However, the robot does not have control over
where in the workspace it is deployed. A synthesized controller should thus be
able to deal with any initial robot position. This makes the initial position
an input to the controller that is used exactly once, namely when the controller
starts. Integrating this additional input into the specification would lead to many
more variables in the BDDs during synthesis, which decreases performance. As
an alternative, we can confirm that all possible initial locations for the robot are
winning by testing for membership in W . This change in the synthesis process
needs a single line of code.
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The slugs tool offers many plugins that implement other such modifica-
tions to the synthesis process. It was designed exactly with such modifications
in mind and is optimized towards being easily extensible. In particular, all core
parts of the synthesis process have been kept short and easily readable, to enable
modifying them with the least effort possible. Slugs uses C++ features such as
operator overloading to make all BDD operations concise and easily readable.
Furthermore, the input language of slugs is very simple to parse. This facili-
tates modifications of the synthesis process that are based on preprocessing the
specification. An additional script to translate from a richer input language to
slugs’ simpler language is also provided for convenience.

The slugs distribution can be obtained from https://github.com/
VerifiableRobotics/slugs and comes equipped with a few plugins that implement
techniques that can be found in the literature on GR(1) synthesis:

– The two plugins mentioned above (producing implementations that wait less
for the environment and system initialization robotics semantics).

– A plugin to compute implementations that cooperate with the environment
to satisfy the environment assumptions [3].

– A plugin to compute a counterstrategy from an unrealizable specification.
– Plugins to compute symbolic and explicit implementations, the former being

represented as BDDs.
– A plugin to compute estimators for incomplete information synthesis [8].
– A plugin that lets slugs execute a controller in an interactive way, such that

it can be used as a tool for simulating the controller called from other tools.
– Various plugins to compute specification reports, which help with debugging

formal specifications as in [5].
– A plugin that allows output variables to be divided into two classes, “fast”

and “slow”, and ensures that each transition in the solution is safe even if the
faster actions complete first [9].

– A plugin that computes implementations with recovery transitions, which
allow the system to continue operating after safety assumption failures that
can be compensated, similarly to the approach in [10].

– A plugin that computes the permissive implementations from [11].
– A plugin implementing the two-dimensional cost notion from [2].
– A plugin that computes a weakening of the assumptions in case of a realizable

specification such that the specification stays realizable under the weakening.

In addition, the slugs distribution comes with several Python scripts that aug-
ment its functionality:

– A script to modify a specification such that it encodes the error-resilient syn-
thesis problem for the original specification [12].

– A debugger to simulate implementations for realizable specifications and to
simulate a falsifying environment for unrealizable specifications.

– A compiler that converts specifications with integer variables and constraints
to purely boolean specifications.

– A specification report generator similar to the one described in [5].

https://github.com/VerifiableRobotics/slugs
https://github.com/VerifiableRobotics/slugs
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Fig. 1. A robot workspace and two paths to reach the respective next goal. The naive
one is dotted, whereas the optimized one is not.

The slugs tool also allows to combine multiple plugins, provided that they have
been marked as being compatible.

4 Slugs in Action

We now describe a concrete application made possible by a slugs plugin.
Consider the synthesis problem for a high level robot controller in which the

robot operates on the workspace depicted in Fig. 1. The workspace is partitioned
into regions, which all have different sizes. The position of the robot is under its
control, but it can only move to adjacent cells in each step. There are four goals
for the robot that each have to be visited infinitely often. For two of the goal
regions, we have additional input bits. Those regions do not have to be reached
if their respective input bit is false. The standard GR(1) synthesis algorithm
does not use the relative sizes of the regions, and therefore the strategy that we
synthesize in this setting is not optimal with respect to the physical grounding
of the scenario. The figure shows one relatively complex path for getting from
one gray region to another one that is part of the synthesized strategy.

To ensure that the physically more efficient strategy is obtained, the synthe-
sis algorithm must be modified to incorporate worst-case costs on transitions
between rooms. For this example, we use the difference between region centers
as cost measure. Slugs comes with a plugin that implements GR(1) synthesis
with a cost function, similar to the modifications described in [2]. The alterna-
tive path is shown in Fig. 1 as well. Note that the notion of optimality here is
somewhat specific to the application domain, as we always optimize the cost for
reaching the next goal of the robot, rather than using an optimization criterion
such as mean-payoff.
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To solve the realizability problem of the scenario, slugs needs 0.03 s on a
i5 1.6 GHz computer. Extracting an explicit-state implementation takes 0.1 s in
addition (1015 states), and synthesizing the optimal strategy takes another 14.9 s
(resulting in 3315 states).
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Abstract. Fault sensitivity analysis (FSA) is a side-channel attack
method that injects faults to cryptographic circuits through clock glitch-
ing and applies statistical analysis to deduce sensitive data such as the
cryptographic key. It exploits the correlation between the circuit’s sig-
nal path delays and sensitive data. A countermeasure, in this case, is
an alternative implementation of the circuit where signal path delays
are made independent of the sensitive data. However, manually devel-
oping such countermeasure is tedious and error prone. In this paper, we
propose a method for synthesizing the countermeasure automatically to
defend against FSA attacks. Our method uses a syntax-guided inductive
synthesis procedure combined with a light-weight static analysis. Given
a circuit and a set of sensitive signals as input, it returns a functionally-
equivalent and FSA-resistant circuit as output, where all path delays
are made independent of the sensitive signals. We have implemented our
method and evaluated it on a set of cryptographic circuits. Our experi-
ments show that the method is both scalable and effective in eliminating
FSA vulnerabilities.

1 Introduction

The rising security risks in embedded computing devices in cyber physical sys-
tems (CPS) and the Internet of Things (IoT) have led to the pervasive use
of cryptographic modules, often implemented in hardware, to guarantee secure
authentication, privacy, and integrity [3]. In particular, various light-weight cryp-
tographic primitives have been recommended for securing resource-constrained
devices such as Smartcards and RFID tags [10,27]. Although these cryptographic
algorithms are designed to be secure against brute-force attacks, their actual
implementations may not be as secure. Indeed, there have been many reported
cases of attacks on cryptographic modules in embedded systems, the majority
of which were through side-channel attacks [5,33,36].

Fault sensitivity analysis (FSA) is a side-channel attack [20,32,37] that
exploits the correlation between secret data and the time needed to propagate
these data through a cryptographic circuit. In particular, there is a large number
of reported cases of such attacks on lightweight block ciphers [4,21,23,24,29,30,
38,39,42]. With physical access to the circuit, an attacker can introduce clock
c© Springer International Publishing Switzerland 2016
S. Chaudhuri and A. Farzan (Eds.): CAV 2016, Part II, LNCS 9780, pp. 343–363, 2016.
DOI: 10.1007/978-3-319-41540-6 19
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glitches until logical errors occur in the output. The attacker measures the fault
intensity critical level [24], which is the lowest fault intensity level where a faulty
output first occurs. This critical level can be compared, via a statistical analy-
sis [9], with a set of simulated critical levels computed a priori, to determine the
most likely values of the secret signals [41].

A countermeasure is an alternative implementation of the circuit where all
signal path delays are made independent of the sensitive data. However, man-
ually developing such countermeasure is tedious and error prone. Therefore, we
propose a new method for constructing the countermeasure automatically. Given
a circuit C and a set S of sensitive signals as input, our method relies on inductive
synthesis [2,25,40] to compute a functionally equivalent circuit that is guaran-
teed to be resistant to FSA attacks. More specifically, it first generates a candi-
date circuit C ′ that, at least for some input values, produces the same output as
C, and is likely to have balanced delay along the sensitive paths. Then, it invokes
a verification subroutine to check that C ′ and C are functionally equivalent for
all input values and C ′ is FSA-resistant. If C ′ passes this verification step, then
a countermeasure has been synthesized. Otherwise, we block this bad counter-
measure and generate another candidate circuit. The iterative guess-and-check
procedure continues until a valid solution is found, or it runs out of time or
memory.

Although inductive synthesis has been successfully applied in main
domains [2,13,25,26,31,40], this is the first time that it is used to mitigate
fault attacks on cryptographic circuits. In practice, however, the bottleneck of
applying inductive synthesis to practical applications is the limited scalability of
the synthesis tool. Since the design space is enormous, directly applying induc-
tive synthesis to large circuits often does not work. Fortunately, in this applica-
tion, FSA-resistant circuits are amenable to compositional analysis. That is, the
delay of a path in a circuit is the summation of the delays of its individual path
segments. Based on this observation, we have developed a divide-and-conquer
approach, which first divides the circuit into pieces, then synthesizes a counter-
measure for each piece, and finally composes them to form the final solution.
In this context, our verification subroutine is implemented as an equivalence
checker for C ′ and C augmented with a static analysis procedure for computing
the delays along their sensitive paths.

We have implemented our method and evaluated it on a set of realistic cryp-
tographic circuits, including a set of nonlinear components of AES and MAC-
Keccak. Our experimental results show that the new method is both scalable
and effective in eliminating FSA vulnerabilities. Furthermore, the resulting cir-
cuits are consistently smaller than the countermeasures obtained by competing
techniques. To summarize, this paper makes the following contributions:

– We propose the first fully automated method for synthesizing FSA-resistant
cryptographic circuits.

– We develop a new partitioned synthesis procedure to improve the scalability
of our method.
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– We demonstrate the effectiveness of our new method on realistic cryptographic
benchmarks.

The remainder of this paper is organized as follows. First, we illustrate our
main ideas using examples in Sect. 2. Then, we establish the notation in Sect. 3
and present our baseline inductive synthesis algorithm in Sect. 4. We present our
partitioned synthesis procedure in Sects. 5 and 6 and our experimental results
in Sect. 7. We review related work in Sect. 8 and finally give our conclusions in
Sect. 9.

2 Motivation

In this section, we illustrate the main ideas behind our countermeasure synthesis
method using examples. Specifically, we use the PPRM1 AES S-box implementa-
tion proposed by Morioka and Satoh [34] as the original circuit, shown partially
in Fig. 1. The standard Advanced Encryption Standard (AES) algorithm has
four main functions that are repeated for a number of rounds depending on the
required length of the secret key. Among the four functions, S-box is the only
nonlinear function. In cryptographic engineering, nonlinear functions are often
the hardest to implement and protect against side-channel attacks. In particular,
the S-box implementation scheme in Fig. 1 is a widely used benchmark in the
cryptography field. The entire circuit is constructed from two parts: a network of
XOR gates and a network of AND gates. For simplicity, we only use the network
of AND gates to illustrate our synthesis algorithm. Later in this paper, we will
explain how our method can be applied to larger circuits, by first partitioning a
circuit into smaller regions, then synthesizing a countermeasure for each region,
and finally composing the partial solutions to form the countermeasure for the
whole circuit.
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Fig. 1. PPRM1 AES S-box that is vulnerable to
FSA.

The circuit in Fig. 1 is vul-
nerable to FSA attacks because
the time taken for computing
the output signals depends not
only on the structure of the cir-
cuit but also on the values of
the sensitive input signals (e.g.,
bits in the cryptographic key).
Consider the output signal O0 of
the AND network and the two
input signals In2 and Ichain . Let
τ(Ichain) and τ(In2) be the sig-
nal arrival times of Ichain and
In2, respectively. If we assume
that all input signals In0-In7 have the same arrival time, we have τ(Ichain) >
τ(In2). Furthermore, the value of τ(Ichain) depends on the value of the input
signals In0, In1, In3, In4, In5, In6 as well as the number of gates along the path.
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If we assume that In2 is a sensitive signal, the aforementioned mismatch in the
arrival time of the input signals of the last AND gate will make signal O0 sensitive
as well.

In the context of FSA attacks, we say that the output O0 is statistically
dependent on the sensitive variable In2 for the following reasons. When the
value of In2 is logical 1, the delay τ(O0) is determined by τ(Ichain). In contrast,
when the value of In2 is logical 0, the delay τ(O0) is determined by τ(In2). Since
τ(Ichain) > τ(In2), the dependency relation and the secret value of In2 cause
a leak of the sensitive information, which is recoverable by correlation-based
statistical analysis techniques [32,37].

Previously published countermeasures for FSA, typically hand-crafted by
cryptographic system engineers [19,22], rely on adding buffers (delay components)
to certain input-output paths to eliminate such information leaks. For example,
a recently-published countermeasure in Fig. 2 was implemented by manually ana-
lyzing the input-output signal paths for each output gate, and then adding buffers
accordingly to make the delay along all sensitive paths equal. However, such coun-
termeasures often result in an unnecessarily large number of logic gates inserted
into the circuit, thus leading to higher area cost and energy cost.
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Fig. 2. S-box with buffered countermeasure [22].

Our method, in contrast,
can generate more efficient
countermeasures. Figure 3 illus-
trates the circuit synthesized by
our method, which is function-
ally equivalent to the original
circuit and at the same time
guarantees to be FSA-resistant.
That is, the path delays are
independent of the sensitive
inputs. Furthermore, it is more
efficient than the prior solution
in Fig. 2 in terms of area cost as
well as the latency of the circuit.
In fact, our new solution uses
only 13 logic gates as opposed to
the 41 gates used by the hand-
crafted circuit in Fig. 2, and the
21 gates used by the original circuit in Fig. 1.

It is worth pointing out that, currently, no EDA tool can be used to generate
FSA-resistant circuits such as the one shown in Fig. 3. For example, traditional
logic synthesis and optimization techniques, such as two- and multi-level mini-
mizations [28], do not have the capability of identifying sensitive signal paths or
ensuring that these paths exhibit the same delay. We will demonstrate this in
the experiments section and explain why it is difficult to leverage state-of-the-art
EDA algorithms, such as the ones implemented in the ABC tool [12], to generate
FSA-resistant circuits.
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Fig. 3. S-box with our new countermeasure.

Our new method leverages
the idea of syntax-guided induc-
tive synthesis to generate FSA
countermeasures. Although in-
ductive synthesis has been
applied to many domains [2,
13,25,26,31,40], this is the first
time it is used to eliminate FSA
vulnerabilities in cryptographic
circuits. When inductive syn-
thesis techniques are applied to
large circuits, however, scalabil-
ity becomes a problem because
the synthesis procedure has to search an extremely large design space for an
alternative and FSA-resistant implementation of the given circuit. As mentioned
earlier, we propose to solve this scalability problem using a partitioned synthesis
procedure. After establishing the notion and present our baseline synthesis algo-
rithm in Sects. 3 and 4, we will explain how to leverage the divide-and-conquer
principle to scale our synthesis method to large circuits.

3 Preliminaries

Fault attacks are typically conducted by changing the physical environment of
the circuit to introduce logical errors. Although various fault injection techniques
have been used in practice, in this work, we focus on faults injected by disturb-
ing the external clock, and more specifically, by increasing the clock frequency
beyond its normal range.

Fault Sensitivity Analysis (FSA). In digital circuits, the time taken by the output
to change from logical 1 to logical 0 (or vice versa) in response to changes in the
inputs may depend on the circuit structure as well as values of the input/internal
signals. This is important to attackers, because it means the impact of an injected
fault will be significantly different depending on the internal states of the circuit.
Consider the AND gate in Fig. 4, where TA and TB are the arrival time of input
signals A and B, respectively, and TAND is the gate’s propagation delay. When
TA < TB, i.e., signal B arrives later than signal A, the time taken for signal C
to stabilize (Tc) depends on the value of signal A. Specifically,

– when A is logical 0, we have Tc = TA + TAND; and
– when A is logical 1, we have Tc = TB + TAND.

In other words, by observing the difference in Tc we can deduce the (sensitive)
value of A based on our knowledge of the circuit structure. Such dependency is
not unique to AND gates; other logic gates have similar properties. For a large
circuit, it is not uncommon for delays along input-to-output paths to depend
on the values of sensitive signals. However, to launch a successful attack, merely
injecting faults is not enough; these faults must become observable.
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C = A ∧ B

Fig. 4. Fault sensitiv-
ity of an AND gate.

In practice, the chance of producing a faulty output
depends on the intensity of the faults injected to the cir-
cuit, for example, through over-clocking [20,23], as shown
in Fig. 5. Note that the information leak is specific to
the faults as opposed to generic timing attacks. Without
fault injection, the tiny delay variation in the combina-
tional logic part of this sequential circuit (C(i, o)) would
not be visible to attackers. This is because the output signals (o) are always syn-
chronized by the flip-flops before they are propagated to the next clock cycle.
However, faults injected via clock glitching may destabilize the flip-flop based
synchronization scheme, causing the information leak.

En

Clk_0

Clk_1

C (i,o)i o

En

Clock

Clk_1

Clk_0

Fig. 5. Injecting faults via clock glitching [20,23]: (a) the circuit and (b) the timing
diagram.

Following Ghalaty et al. [23], we define the fault intensity and fault sensi-
tivity of a circuit as follows. The fault intensity is the strength of the faults
by which a circuit is pushed outside of its normal operating condition. Since
faults are introduced through clock-glitching, the fault intensity corresponds to
the shortened clock cycle. The fault sensitivity is defined as the fault intensity
where the circuit starts to generate faulty output. In our work, the fault inten-
sity corresponds to the critical paths in the circuit. FSA, in particular, relies on
exploiting the dependency between the values of sensitive input signals and the
fault sensitivity critical level, or simply the critical level, under which injected
faults become observable in the circuit’s output.

Attacks and Countermeasures. We assume the attacker has knowledge of the
circuit under attack. In this case, an FSA attack often consists of three steps:

1. The attacker injects faults through clock-glitching and measures the critical
level of the circuit for a set of N randomly generated plaintexts (inputs);

2. The attacker computes, using computer simulation, the critical level for each
of the N selected plaintexts and combinations of the sensitive data values;

3. The attacker performs a correlation analysis between the measured critical
level and the simulated critical level for each combination of sensitive data
values.
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In the third step above, the sensitive data value combination that results in the
highest correlation coefficient will be identified and used to deduce the sensitive
data value.

Since the necessary condition for FSA attacks is having easily distinguish-
able fault sensitivity critical levels for various sensitive data value combinations,
the goal of a countermeasure is to disable this condition. Generally speaking,
among output signals whose arrival time depend on the sensitive data, the greater
the difference in their arrival times, the more distinguishable the critical levels,
and consequently, the higher the chance that attackers can successfully deduce
the sensitive data. Therefore, the ideal countermeasure is an alternative and
functionally-equivalent implementation of the original circuit that has the same
delay for all its sensitive input-output signal paths.

Previously published FSA countermeasures [19,22] mainly rely on adding
delay elements to certain parts of the circuit to make the arrival time of all
output signals independent of the sensitive data. However, this approach may
add an unnecessarily large number of delay elements (buffers), which results in
higher area cost and power cost (Fig. 2). In contrast, our method can gener-
ate a potentially more efficient countermeasure (Fig. 3) using the new inductive
synthesis technique.

4 Synthesis of FSA Countermeasures

Our method takes a circuit C and a set S of sensitive signals as input and returns
an FSA-resistant circuit C ′ as output. It consists of a synthesis subroutine and
a verification subroutine, where the synthesis subroutine guesses a candidate
solution and the verification subroutine checks whether it is a valid solution.
In this work, the verification subroutine has to check two properties: (1) the
new circuit C ′ is functionally equivalent to C; and (2) the new circuit C ′ is
FSA-resistant.

More formally, we say that two circuits C(i, o) and C ′(i′, o′) are functionally
equivalent if (i = i′) → (o = o′). Let πA(i′A, o′

C) and πB(i′B , o′
C) be two sensitive

paths in C ′, where i′A, i′B ∈ S are the sensitive inputs and i′A �= i′B . Let τv(π)
be the delay of the path π under the input valuation v – different input values
can lead to different delays of the same path. We say that C ′ is FSA-resistant
if τv(πA(i′A, o′

C)) = τv(πB(i′B , o′
C)) for any two such paths πA and πB and any

valuation v of the input signals.
To reduce the computational cost, we choose to formulate the synthesis sub-

problem in a way that every solution C ′ is guaranteed to be FSA-resistant. There-
fore, the verification subroutine only needs to check the functional equivalence
of C and C ′. The main idea behind our synthesis subroutine is to construct a
template circuit, whose instantiations are guaranteed to be FSA-resistant. With-
out loss of generality, we assume all logic gates have unit propagation delay, and
being FSA-resistant means that all paths from sensitive signals to the output
have an equal number of logic gates. Consider the example in Fig. 1 again, whose
template circuit is shown in Fig. 6. Gates and input/output signals in this dia-
gram are distributed to five different levels, where Level 0 consists of only output
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signals, Level 4 consists of only input signals, and in between the two levels are
the logic gates of various types. This is a template because neither the types of
internal logic gates nor the connections between the gates have been fixed.

In1 In7

AND ANDOR

O2 O3 O4 AND ANDOR

O5 AND ANDOR

In0

O0 O1

Level 0

Level 1

Level 2

Level 3

Level 4

Fig. 6. FSA-resistant template circuit structure.

To make sure all instan-
tiations of this template cir-
cuit are FSA-resistant, we
require that (1) all sensi-
tive input nodes are placed
on the same level–although
they do not have to be at
the bottom level–and (2) the
output and input of each
node are constrained to be
connected, respectively, to
either a node of one level
higher or a node of one level
lower, to ensure that the
level assigned to this node
remains valid. Implicitly, the
above constraints guarantee
an equal number of gates
between each output signal
and the corresponding sen-
sitive inputs. Note that the
circuit only needs to have equal-delay paths for each output; it does not need to
have the same delay for all outputs.

To reduce the computational overhead within the SyGuS tools, we also sta-
tically estimate the level where the output signals should be placed in the tem-
plate circuit, based on the number of inputs they are connected to and the
level required for each input. Since this is only an estimation, initially we assign
the minimal depth needed to separate an output node from the sensitive input
nodes to fit all nodes in between. If the depth turns out to be insufficient, the
synthesis subroutine would fail to return a solution, in which case we shift the
output nodes one level up to enlarge the design space, and invoke the synthesis
subroutine again.

In principle, this synthesis subproblem can be specified using the SyGuS
specification language and solved using the associated tools developed by Alur
et al. [2] (or the Sketch tool by Solar-Lezama [40]). In practice, however, there
are two significant challenges. The first challenge is due to a limitation in the
implementation of SyGuS tools. Specifically, they are designed for synthesizing
a function with a single output, whereas we need to synthesize a circuit with
multiple output signals, and these output signals must share logic gates that fall
in their cone-of-influence as much as possible. Although SyGus allows the use of
multiple functions (each with a single output) to mimic a circuit with multiple
output signals, in such case, the SyGuS tools would not return a solution where
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the internal nodes are shared among these functions. Therefore, we need to
modify the SyGuS tools, so that internal nodes can be shared among multiple
functions.

Figure 7 shows an example SyGuS specification. The original circuit is given
by the function Spec, which defines the output signals Oo and O1 of the circuit
in Fig. 1. Note that ite is a special operator that we use as a work-around since
SyGuS does not allow the output to be a concatenation of bits. Inside the SyGuS
tool, we made some modification to permit the solver to return a circuit where
different output signals share the same set of intermediate logic gates – this is
crucial for us to generate a compact circuit. The template of the output circuit
is given by the function Impl, which specifies the pool of components that can
be used by the synthesizer, including the output node Start, and nodes on the
remaining three levels: d0, d1 and d2. On each level, both AND and OR gates
may be used. The primary inputs are i0 − i6. The constraint at the bottom
of the file states that the two circuits are functionally equivalent. Given this
specification as input, the SyGuS tool will generate the desired countermeasure.

Fig. 7. Automatically generated synthesis subproblem for O0 and O1 (Fig. 1) in SyGuS
language.

The second challenge is to scale up this new synthesis method to large cir-
cuits. Even with the optimizations mentioned above, state-of-the-art SyGuS
tools can only handle small circuits, since as the circuit size increases, the design
space that SyGuS has to search through increase dramatically. Although we
believe the performance of SyGuS tools will continue to improve in the coming
years, such improvement alone is unlikely to be sufficient for handling realis-
tic circuits. Therefore, we propose a new method based on the idea of divide-
and-conquer. It leverages a nice compositionality property of the FSA-resistant
circuit: If each partition of a circuit is FSA-resistant, then the whole circuit is
guaranteed to be FSA-resistant as well.
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5 The Partitioned Synthesis Approach

To partition the given circuit, we first represent the combinational part as a
directed acyclic graph (DAG), whose input nodes are either primary inputs or
pseudo primary inputs (outputs of latches from the previous clock cycle). Then,
we traverse the DAG in a topological order to identify the vulnerable (sensitive)
output signals. Specifically, if there are discrepancies between the delays along
different paths to the output from different sensitive inputs, we consider it to
be vulnerable. For each vulnerable output signal, we build a circuit region by
iteratively including logic gates in its fanin and fanout cones until the region size
reaches a predefined limit. We invoke the SyGuS tool on each circuit region to
synthesize the replacement circuit. By replacing the old circuit region with the
new circuit, we can eliminate the vulnerability. This process of extracting, syn-
thesizing, and replacing vulnerable circuit regions is repeated until no vulnerable
circuit region exists any more.

5.1 The Overall Algorithm

The pseudocode of our partitioned synthesis procedure is shown in Algorithm1,
where P denotes the original circuit, InputSort denotes a map from each input
of P to a type (sensitive or non-sensitive), GatesPD denotes a map from each
gate in P to its propagation delay, and GatesSyn denotes a set of logic gates
(components) to be used by SyGuS for synthesizing the new circuit. The para-
meter lev is a bound on the maximum number of levels of the new circuit region
to be synthesized.

Algorithm 1. Partitioned FSA-countermeasure synthesis procedure.
1: gen-countermeasure (P, InputSort,GatesPD, GatesSyn, lev) {
2: while ( true ) {
3: for each ( gate g ∈ P ) {
4: MaxPD[g] ← GetMaxPD (g,GatesPD, P )
5: MinAr [g] ← GetMinAr (g,GatesPD, P )
6: MaxAr [g] ← GetMaxAr (g,GatesPD, P )
7: }
8: sGate ← GetSensitive (MaxPD,MinAr ,MaxAr , P )
9: if (sGate = ∅)
10: return P ;
11: n ← 2lev − 1
12: newReg ← ∅
13: while (newReg = ∅) {
14: reg ← GetReg (sGate,MinAr ,MaxAr , P, n)
15: newReg ← Synthesize (reg,MinAr , GatesSyn, lev)
16: n ← n − 1
17: }
18: P ← UpdateRegion (P, reg,newReg)
19: }
20: }

Our method first identifies a sensitive gate sGate ∈ P (Lines 3–8), based on
which it generates small circuit regions (Line 14). It starts by analyzing each
gate g ∈ P while creating three auxiliary tables:
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– MaxPD [g] denotes the maximum path delay from g to the output of P ,
– MinAr [g] denotes the minimum arrival time of any sensitive input to g, and
– MaxAr [g] denotes the maximum arrival time of any sensitive input to g.

The subroutine GetSensitive returns the next sensitive gate sGate, which is a
gate g ∈ P such that the maximum arrival time MaxAr [g] differs from the mini-
mum arrival time MinAr [g]. In the presence of multiple choices, this subroutine
returns a gate with the smallest propagation delay from the sensitive inputs.
In the case of a tie, the gate with the maximum propagation delay MaxPD [g]
to the primary output is selected. This heuristic helps our method find a small
countermeasure circuit.

Next, it invokes the subroutine GetReg to extract a circuit region reg,
consisting of logic gates in the fanin and fanout cones of sGate. From reg, we
synthesize a new circuit newReg , which is functionally equivalent to reg and, at
the same time, FSA-resistant. If the synthesis subroutine fails to find newReg
for reg, it will be invoked again for a circuit region reg with a smaller number of
gates. There may not always exist an FSA-resistant newReg , for example, when
the mismatch between the maximum and minimum arrival times of the inputs of
reg exceeds the maximum depth of newReg defined by lev. In such case, newReg
is synthesized with the goal of reducing the mismatch between the arrival times,
and the residual mismatch will be eliminated in a later iteration. After finding
the new region, we replace it with the old region in P . We keep updating P until
no more sensitive gates remain in the circuit. At this point, the new circuit P is
returned.

5.2 Region Selection

Inside the subroutine GetReg, the sensitive gate sGate is added to reg first.
Then, we expand reg by adding the sensitive fanout gates transitively. When no
sensitive fanout gate exists, we add the sensitive fanin gates of sGate transitively.
When there are multiple sensitive fanin gates, we always add the gate with the
minimum arrival time first, until reg reaches a predefined size limit n. This
heuristic ensures that we follow a topological order and therefore avoids the
need to re-synthesize countermeasures for the same gate. It also reduces the
maximum mismatch in the arrival time by decreasing the circuit’s maximum
depth.

In3

In1 In2
Depth 2

Depth 1

Depth 0
Arrival = a + 2PD

Arrival = a + 1PD

Arrival = a

Out

Fig. 8. The size of the new
region.

Given lev, which is controlled by the user,
each new region would have a maximum size of
2lev − 1 gates. The maximum size occurs when
all region inputs have equal arrival time from
the inputs of P . If the region inputs have differ-
ent arrival time, however, they will be assigned
to different levels in the template circuit, which
means the total number of gates would be less
than 2lev − 1.
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For example, the region in Fig. 8 has lev = 2, but since the three inputs have
arrival time of a, a and a + 1, respectively, the template circuit would have two
nodes as opposed to the maximum (22 − 1) = 3 nodes.

In Algorithm 1, both GatesSyn and lev are parameters that may be con-
trolled by the user. They are used to identify a sweet spot for the application
with respect to several optimization factors. For example, by including more
types of gates in GatesSyn, the number of solutions to be examined by the
SyGuS tool will increase. It may lead to a more compact solution, but may also
increase the search time. Similarly, having a larger lev will improve the quality of
the synthesized circuit, since gate sharing is more likely in a larger circuit than
in a smaller circuit. On the other hand, having a larger lev will significantly slow
down the synthesis procedure.

6 The Synthesis Subroutine

Given a circuit region reg, the subroutine Synthesize searches for a functionally
equivalent new circuit newReg that is also FSA-resistant. The pseudocode of
this subroutine is shown in Algorithm2, where the input consists of reg, the
map MinAr , the set GatesSyn of logic gates (components) to used in creating
newReg , and lev.

Algorithm 2. The synthesis subroutine based on SyGuS.
1: Synthesize (reg,MinAr , GatesSyn, lev) {
2: testEx ← ∅
3: Depth ← getInputDepth (reg, lev,MinAr)
4: while (true) {
5: newReg ← genNewRegion (reg, testEx, Depth, GatesSyn, lev)
6: if (newReg exists) {
7: test ← checkEquivalence (reg,newReg)
8: if (test = ∅)
9: return newReg;
10: testEx ← testEx ∪ {test}
11: }
12: else
13: return ∅;
14: }
15: }

The subroutine starts by initializing the set testEx to an empty set. This is
a set of input values used by SyGuS to generate a partially equivalent candidate
circuit. That is, at least for these test input values, newReg and reg guaranteed
to produce the same output. Later, we will invoke the verification subroutine to
check if newReg and reg produce the same output for all possible input values.

Subroutine GetInputDepth computes the appropriate depth for each of
the input signals in order to reduce the discrepancies among their arrival time
at the outputs. At Line 4, the subroutine enters a while-loop that contains two
main steps. In the first step, it calls SynNewRegion to search for newReg . In
the second step, it calls checkEquivalence to prove the functional equivalence
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of reg and newReg . If they are not equivalent, a counterexample, denoted test,
will be returned. This new input value will be added to testEx before the while-
loop enters the next iteration. The larger the set testEx, the more likely that
the next newReg is functionally equivalent to reg.

Computing the Input Depth. The subroutine GetInputDepth computes, for
each input signal in reg, the allowed depth in newReg (the level as described in
Fig. 6). Recall that each input signal in reg may have a different arrival time.
Therefore, inside newReg , they need to be placed at different levels (or have
different depths) in order to eliminate the mismatch in the time taken for them
to arrive at the output. Consider, for example, the circuit in Fig. 9, which has
different delay along different input-to-output paths in reg (boxed region). To
eliminate the mismatch in newReg , node X should be placed one level closer to
the output O than nodes A and B. The pseudocode for computing the depths
of all input signals (for creating newReg) is shown in Algorithm3.

BC
D

A
OX

Fig. 9. Example of circuit reg.

C
D X

B
A

O

Fig. 10. Example of the newReg.

Algorithm 3. Computing the depths of the input nodes in newReg .
1: getInputDepth (reg, lev,MinAr) {
2: minMinAr ← minimum of MinAr [in] for all input in
3: for each (input signal in ∈ reg) {
4: ΔAr ← MinAr [in] − minMinAr
5: newRegDepth[in] ← max(2, (lev − ΔAr))
6: }
7: return newRegDepth;
8: }

Generating the Candidate Circuit. Subroutine SynNewRegion computes a
candidate circuit that behaves the same as reg at least for the test cases in
testEx. It follows our description in Sect. 4, where the template circuit is con-
structed using the SyGuS specification language. Then, it invokes the solvers in
the SyGuS tool [2] to compute a solution. For example, a solution returned by
SyGuS for the example in Fig. 9 is shown in the boxed region in Fig. 10. The
resulting circuit, denoted newReg , is checked by the verification subroutine. If no
candidate circuit exists and the subroutine SynNewRegion returns an empty
set, Algorithm 1 will invoke it again on a smaller region.
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More formally, using the SyGuS specification language, we construct a log-
ical formula Φ for reg, whose satisfying assignment directly corresponds to a
candidate solution for newReg . The logical formula Φ is defined as follows:

Φ = Φreg ∧ Φtemplate ∧ ΦEqI ∧ ΦEqO ∧ ΦtestEx ,

where Φreg encodes the input-output relation of the original circuit reg, Φtemplate

encodes the input-output relation of the template circuit (as in Fig. 6), ΦEqI

asserts that reg and the template circuit share the same input values, ΦEqO

asserts that reg and the template circuit have the same output, and ΦtestEx

restricts the input values to the examples in testEx .

Verifying the Equivalence. For each candidate circuit newReg , we also need to
verify that it is equivalent to reg for all input values (not just the input values in
testEx ). This is a standard equivalence checking problem, for which we construct
a logical formula Ψ such that Ψ is satisfiable if and only if newReg and reg are
not equivalent. The new formula Ψ is defined as follows:

Ψ = Ψreg ∧ ΨnewReg ∧ ΨEqI ∧ ΨUneqO,

where Ψreg encodes the input-output relation of reg, ΨnewReg encodes the input-
output relation of newReg , ΨEqI asserts that reg and newReg share the same
input values, and ΨUneqO asserts that reg and newReg have different output
values.

If Ψ is satisfiable, a test case (input value) will be generated to show why
two regions are not equivalent. In such case, we add the new test to testEx
so that the bad solution will not be computed in the future. Then, we invoke
SynNewRegion again.

7 Experiments

We have implemented our method using the SyGuS solvers [2] and conducted
experiments on a set of circuits that implement various parts of the Advanced
Encryption Standard (AES) and MAC-Keccak, which is the SHA-3 crypto-
hashing algorithm recently standardized by NIST. Table 1 shows the statistics
of these benchmarks, including the name, a brief description, the circuit size,
as well as the number of input and output signals (bits). The source code of
our synthesis tool as well as the input files and instructions to reproduce our
experiments are available for artifact evaluation.

During the experiments, we used the AND, XOR, OR and NOT gates as
components in GatesSyn for synthesizing new regions. We set the depth lev to 3.
To compare with state-of-the-art techniques, we implemented the buffer insertion
method as described in [19,22]. We also applied the logic optimization algorithms
in the ABC tool [12], to check if standard algorithms in EDA tools can be used
to generate FSA-resistant circuits (the answer is no). All our experiments were
conducted on a computer with a 3.4 GHz Intel i7-2600 processor and 4 GB RAM.
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Table 1. Statistics of the set of benchmark circuits used in our experiments.

Name Circuit description Nodes Inputs Outputs

C1 MAC-Keccak nonlinear masked Chi function 1 [8] 35 10 1

C2 MAC-Keccak nonlinear masked Chi function 2 [8] 35 10 1

C3 Generated MAC-Keccak nonlinear masked Chi
function 1 [14]

44 10 1

C4 Generated MAC-Keccak nonlinear masked Chi
function 2 [14]

44 10 1

C5 Unmasked MAC-Keccak nonlinear Chi function [8] 6 3 1

C6 AES S-Box design of nonlinear invg4 function [11] 83 4 4

C7 AES S-Box design of nonlinear mul4 function [11] 63 8 4

C8 AES S-Box single round nonlinear functions [11] 209 8 8

C9 Complete AES PPRM1 S-box design [34] 8,054 8 8

C10 Complete AES Boyar-Peralta S-box design [11] 156 8 8

Table 2 shows our experimental results. Columns 1-2 show the benchmark
name and the number of nodes in the original circuit. Columns 3-4 show the
number of nodes in the new circuit obtained by buffer insertion, and the node
increase in percentage. Columns 5-6 show the number of nodes in the new circuit
obtained by our method, and the node increase in percentage.

Table 2. Comparing our synthesis method with buffer insertion [19,22].

Name Nodes Buffer insertion New method

Nodes Increase Nodes Increase

C1 35 51 45 % 42 20 %

C2 35 48 37 % 40 14 %

C3 44 54 22 % 48 9 %

C4 44 59 34 % 45 2 %

C5 6 9 50 % 9 50 %

C6 83 134 61 % 98 18 %

C7 63 79 25 % 73 15 %

C8 209 292 39 % 244 16 %

C9 8,054 77,717 864 % 8,943 11 %

C10 156 9,585 6044 % 370 137 %

The results in Table 2 demonstrate the effectiveness of our method in syn-
thesizing more compact countermeasures against FSA attacks. Compared to the
buffer insertion method, the circuits produced by our method are consistently
smaller. For example, our new circuit for C9 has only 11 % more nodes than the
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original circuit, whereas the circuit produced by the buffer insertion method has
864 % more nodes.

Table 3 shows the statistics of our iterative synthesis method, where Column 2
is the number of calls that we made to SyGuS to generate the new circuit regions.
Among them, Column 3 shows the number of successful calls and Column 4
shows the number of failed calls. The results shows that calls to SyGuS almost
always succeed – recall that when the SyGuS solver fails, the size of reg has to be
reduced before we try again. Column 5 is the total time taken by our synthesis
method to generate the final result.

Table 3. Statistics of our new synthesis method.

Name Synthesis iterations Successful iterations Failed iterations Total time [s]

C1 7 7 0 1.22

C2 5 5 0 0.10

C3 4 4 0 0.09

C4 2 2 0 0.06

C5 4 3 1 0.13

C6 23 23 0 0.48

C7 12 12 0 0.26

C8 47 47 0 1.11

C9 2,627 2,627 0 412.3

C10 219 217 2 13.7

For most benchmark circuits, the time taken by our method to synthesize
the countermeasure is negligible. Furthermore, the synthesis time only increases
moderately as the countermeasure circuit size increases. Finally, compared to
prior techniques such as the buffer insertion method, our new method is more
effective in reducing the area cost: as the circuit size increases, the saving also
increases.

To confirm that standard EDA algorithms cannot generate FSA-resistant
circuits, we also applied the ABC tool [12] to all the benchmark circuits. Specif-
ically, ABC has a command called balance, which is designed to balance the
delay along input-output paths in a circuit. To preform balancing, ABC starts
by converting the circuit into an And-Inverter-Graph (AIG). This results in a
circuit containing only AND gates and Inverters. Then ABC heuristically opti-
mizes the new circuit by balancing the number of two-input AND gates between
the circuit output and the primary inputs.

Unfortunately, ABC does not distinguish sensitive input signals from insen-
sitive ones. As such, it cannot be used to target only the sensitive input-output
paths. For the sake of comparison, we conducted the experiments using a vari-
ant of our method (a weakened version) that does not differentiate between the
type of the primary inputs either. That is, as in ABC, we pretend that all input
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signals of the circuit are sensitive. Table 4 shows the results of our experiments.
Here, the focus is on comparing the size of the new circuits and the depth of the
circuits (longest path).

Table 4. Comparing our method with the balance command of ABC [12].

Name Depth ABC Our new method

Node increase Depth Node increase Depth

C1 8 300 % 27 20 % 5

C2 7 300 % 27 31 % 6

C3 7 273 % 25 20 % 6

C4 8 273 % 28 18 % 6

C5 3 233 % 7 50 % 3

C6 9 285 % 31 18 % 7

C7 7 322 % 21 16 % 7

C8 17 308 % 33 17 % 15

C9 156 80 % 586 11 % 17

C10 24 476 % 64 137 % 23

The results in Table 4 show a noticeable difference in the quality of the syn-
thesized circuits. First, in all cases, our new circuits are significantly smaller than
those obtained by ABC. Indeed, the node increase percentage by ABC ranges
from 80 % to 476 % (the average is 285 %), whereas in our method, it only ranges
from 2 % to 137 % (the average is 33 %). In addition, the longest path (Depth),
measured by largest number of gate levels between any primary input and the
circuit output, is also significantly smaller in the our new circuits.

8 Related Work

As we have mentioned earlier, our method is the first inductive synthesis based
method for synthesizing FSA-resistant circuits. Although there is a large body
of work on logic synthesis and optimization, traditional EDA algorithms cannot
be used to solve this problem. Since our method relies on inductive synthesis, as
opposed to matching some known patterns and then applying predefined trans-
formations, it can search through a larger design space and therefore generate
solutions that are better than hand-crafted countermeasures. In addition, our
solutions are provably secure.

Ghalaty et al. [22] proposed a method for implementing FSA countermea-
sures based on the addition of delay elements at the inputs of certain gates in
the circuit, to equalize the path delays from sensitive inputs. As we have demon-
strated through experiments, their method can lead to countermeasures with
significantly more logic gates. Furthermore, it does not guarantee to eliminate
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the mismatch in the arrival time of the input signals for all gate types; in par-
ticular, it ignores the XOR gates. Due to this reason, their countermeasure may
still be vulnerable to FSA attacks.

Endo et al. [19] proposed another countermeasure to defend against FSA
attacks based on adding a configurable buffer circuitry to delay the propagation
of the output signals from the cryptographic module. However, their method is a
post-silicon solution, which means it does not seek to modify the implementation
of the original circuit as in our case. In general, a post-silicon solution is more
expensive to implement, since the delay period needs to be configured after the
chip is manufactured. To configure the delay, they first measure the delay needed
for securing the manufactured cryptography module and then store the delays
in an on-chip memory. As for the experimental evaluation, they implemented
the countermeasure only for the benchmark C9, and reported a gate overhead
of 10 % to 16 %, which is similar to our solution. However, their countermeasure
was designed manually, whereas ours is generated automatically.

There is also a large body of work on verifying and synthesizing counter-
measures against other types of side-channel attacks. They include, for exam-
ple, the verification tools developed by Bayrak et al. [7], the SC Sniffer tool
developed by Eldib et al. [15–18], the compiler assisted masking tool developed
by Moss et al. [35], the code morphing method proposed by Agosta et al. [1],
and the tool developed by Eldib et al. [14] for synthesizing masking counter-
measures for cryptographic software. However, none of these existing tools can
handle fault injection based attacks on cryptographic circuits. Although Barthe
et al. [6] developed a method for systematic analysis of the security of crypto-
graphic implementations against fault attacks, their focus was on finding fault
attacks against cryptographic implementations, as opposed to synthesizing the
countermeasures.

9 Conclusions

We have presented a new method for synthesizing cryptographic circuits to
defend against fault sensitivity analysis based attacks. Our method relies on
syntax-guided inductive synthesis to search for a new circuit that is functionally
equivalent to the original circuit and at the same time FSA-resistant. It has the
potential to discover more compact and efficient implementations than existing
techniques. We have implemented the method and evaluated it on a set of cryp-
tographic circuits. Our experiments show that the method is both scalable and
effective in eliminating FSA vulnerabilities. For future work, we plan to evaluate
the countermeasures synthesized by our new method on real hardware to assess
its resistance against FSA attacks.
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Abstract. Reactive synthesis techniques based on constructing the win-
ning region of the system have been shown to work well in many cases
but suffer from state explosion in others. A different approach, proposed
recently, applies SAT solvers in a counterexample guided framework to
solve the synthesis problem. However, this method is limited to synthe-
sising systems that execute for a bounded number of steps and is incom-
plete for synthesis with unbounded safety and reachability objectives.
We present an extension of this technique to unbounded synthesis. Our
method applies Craig interpolation to abstract game trees produced by
counterexample guided search in order to construct a monotonic sequence
of may-losing regions. Experimental results based on SYNTCOMP 2015
competition benchmarks show this to be a promising alternative that
solves some previously intractable instances.

1 Introduction

Reactive systems are ubiquitous in real-world problems such as circuit design,
industrial automation, or device drivers. Automatic synthesis can provide a cor-
rect by construction controller for a reactive system from a specification. Reactive
synthesis is formalised as a game between the controller and its environment.
In this work we focus on safety games, in which the controller must prevent the
environment from forcing the game into an error state.

The reactive synthesis problem is EXPTIME-complete (when starting from a
symbolic representation of the game graph) so näıve algorithms are infeasible on
anything but simple systems.There are several techniques that aim tomitigate this
complexity by representing states and transitions of the system symbolically [4,17,
19]. These techniques incrementally construct a symbolic representation of the set
of discovered winning states of the game. The downside of this approach is that
keeping track of all discovered winning states can lead to a space explosion even
when using efficient symbolic representation such as BDDs or CNFs.
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An alternative approach, proposed by Narodytska et al. [18], is to eschew
states and focus on runs of the game. The method works by exploring a subset
of the concrete runs of the game and proving that these runs can be generalised
into a winning strategy on behalf of one of the players. In contrast to other
existing synthesis methods, it does not store, in either symbolic or explicit form,
the set of winning states. Instead, it uses counterexample guided backtracking
search to identify a small subset of runs that are sufficient to solve the game.

This method has been shown to outperform BDDs on certain classes of games;
however it suffers from an important limitation: it is only able to solve games
with a bounded number of rounds. In case of safety games, this means proving
that the controller can keep the game within the safe region for a bounded
number of steps. This is insufficient in most practical situations that require
unbounded realisability.

In this paper, we extend the method by Narodytska et al. [18] to unbounded
safety games. To this end we enhance the method with computational learning:
every time the search algorithm discovers a new counterexample, the learning
procedure analyzes the counterexample, extracting a subset of states winning
for one of the players from it. The learning procedure ensures that reaching a
fixed point in these sets is sufficient to establish unbounded realisability. Our
method can be seen as a hybrid between the counterexample guided algorithm
by Narodytska et al. and methods based on losing set computation: we use the
former to guide the search, while we rely on the latter to ensure convergence.

We evaluate our method on the benchmarks of the 2015 synthesis competition
(SYNTCOMP’15). While our solver solves fewer total instances than competi-
tors, it solves the largest number of unique instances, i.e., instances that could
not be solved by any other sequential solver. These results confirm that there
exist classes of problems that are hard for traditional synthesis techniques, but
can be efficiently solved by our method. While further performance improve-
ments are clearly needed, in its current state the method may be a worthwhile
addition to a portfolio solver.

Section 2 outlines the original bounded synthesis algorithm. In Sect. 3 we
describe and prove the correctness of our extension of the algorithm to
unbounded games. In the following sections we evaluate our methodology, and
compare our approach to other synthesis techniques.

2 Background

A safety game, G = 〈X,U,C, δ, I, E〉, is defined over boolean state variables X,
uncontrollable action variables U , and controllable action variables C. We use
X , U , and C to denote sets of valuations of variables X, U , and C respectively.
I is the initial state of the game given as a valuation of state variables. E(X) is
the set of error states represented by its characteristic formula. The transition
relation δ(X,U,C,X ′) of the game is a boolean formula that relates current state
and action to the set of possible next states of the game. We assume deterministic
games, where δ(x, u, c, x′

1) ∧ δ(x, u, c, x′
2) =⇒ (x′

1 = x′
2).
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At every round of the game, the environment picks an uncontrollable
action, the controller responds by choosing a controllable action and the
game transitions into a new state according to δ. A run of a game
(x0, u0, c0), (x1, u1, c1) . . . (xn, un, cn) is a chain of state and action pairs
s.t. δ(xk, uk, ck, xk+1). A run is winning for the controller if x0 = I ∧ ∀i ∈
{1..n}(¬E(xi)). In a bounded game with maximum bound κ all runs are
restricted to length κ, whereas unbounded games consider runs of infinite length.
Since we consider only deterministic games, a run is uniquely described by a list
of assignments to U and C.

A controller strategy πc : X × U → C is a mapping of states and uncontrol-
lable inputs to controllable actions. A controller strategy is winning in a bounded
game of maximum bound κ if all runs (x0, u0, π

c(x0, u0)), (x1, u1, π
c(x1, u1)) . . .

(xn, un, πc(xn, un)) are winning. Bounded realisability is the problem of deter-
mining the existence of such a strategy for a bounded game.

An environment strategy πe : X → U is a mapping of states to uncontrol-
lable actions. A bounded run is winning for the environment if x0 = I ∧ ∃i ∈
{1..n}(E(xi)) and an environment strategy is winning for a bounded game if
all runs (x0, π

e(x0), c0), (x1, π
e(x1), c1) . . . (xn, πe(xn), cn) are winning for the

environment. Safety games are zero sum, therefore the existence of a winning
controller strategy implies the nonexistence of a winning environment strategy
and vice versa.

2.1 Counterexample Guided Bounded Synthesis

We review the bounded synthesis algorithm by Narodytska et al. [18], which is
the main building block for our unbounded algorithm.

Example. We introduce a running example to assist the explanation. We con-
sider a simple arbiter system in which the environment makes a request for
a number of resources (1 or 2), and the controller may grant access to up to
two resources. The total number of requests grows each round by the number
of environment requests and shrinks by the number of resources granted by the
controller in the previous round. The controller must ensure that the number
of unhandled requests does not accumulate to more than 2. Figure 1 shows the
variables (Fig. 1a), the initial state of the system (Fig. 1b), and the formulas for
computing next-state variable assignments (Fig. 1c) for this example. We use
primed identifiers to denote next-state variables and curly braces to define the
domain of a variable.

This example is the n = 2 instance of the more general problem of an arbiter
of n resources. For large values of n, the set of winning states has no compact
representation, which makes the problem hard for BDD solvers. In Sect. 3 we will
outline how the unbounded game can be solved without enumerating all winning
states.

Our bounded synthesis algorithm constructs abstractions of the game that
restrict actions available to one of the players. Specifically, we consider abstrac-
tions represented as trees of actions, referred to as abstract game trees (AGTs).
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Controllable Uncontrollable State

request : {1, 2} grant0 = {0, 1} resource0 = {0, 1}
grant1 : {0, 1} resource1 = {0, 1}

nrequests : {0, 1, 2, 3}
(a) Variables

resource0 = 0; resource1 = 0; nrequests = 0;

(b) Initial State

resource0’ = grant0;

resource1’ = grant1;

nrequests’ = (nrequests + request >= resource0 + resource1)

? (nrequests + request - resource0 - resource1) : 0;

(c) Transition Relation

Fig. 1. Example

Figure 2b shows an example abstract game tree restricting the environment
(abstract game trees restricting the controller are similar). In the abstract game,
the controller can freely choose actions whilst the environment is required to
pick actions from the tree. After reaching a leaf, the environment continues
playing unrestricted. The tree in Fig. 2b restricts the first environment action to
request=1. At the leaf of the tree the game continues unrestricted.

The root of the tree is annotated by the initial state s of the abstract game
and the bound k on the number of rounds. We denote nodes(T ) the set of all
nodes of a tree T , leaves(T ) the subset of leaf nodes. For edge e, action(e)
is the action that labels the edge, and for node n, height(k, n) is the distance
from n to the last round of a game bounded to k rounds. height(k, T ) is the
height of the root node of the tree. For node n of the tree, succ(n) is the set of
pairs 〈e, n′〉 where n′ is a child node of n and e is the edge connecting n and n′.

Given an environment (controller) abstract game tree T a partial strategy
Strat : nodes(T ) → C (Strat : nodes(T ) → U) labels each node of the tree with
the controller’s (environment’s) action to be played in that node. Given a partial
strategy Strat, we can map each leaf l of the abstract game tree to 〈s′, i′〉 =
outcome(〈s, i〉, Strat, l) obtained by playing all controllable and uncontrollable
actions on the path from the root to the leaf. An environment (controller) partial
strategy is winning against T if all its outcomes are states that are winning for
the environment (controller) in the concrete game.

Example: Intuition behind the algorithm. We present the intuition behind
our bounded synthesis method by applying its simplified version to the running
example. We begin by finding a trace of length k (here we consider k = 3) that is
winning for the controller, i.e., that starts from the initial state and avoids the
error set for three game rounds (see Fig. 2a). We use a SAT solver to find such
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gr0=0 gr1=0

req=1

gr0=0 gr1=0

req=1

gr0=1 gr1=0

req=1

〈s, 3〉

(a) Controller
winning trace

gr0=1 gr1=0

〈s, 3〉

(b) AGT

gr0=0 gr1=0

req=1

gr0=0 gr1=0

req=1

gr0=1 gr1=0

req=2

〈s, 3〉

(c) Environment
winning trace

gr0=1 gr1=0

req=2

〈s, 3〉

(d) Partial
Strategy

Fig. 2. Abstract game trees.

a trace, precisely as one would do in bounded model checking. Given this trace
we make an initial conjecture that any trace starting with action gr0=1 gr1=0 is
winning for the controller. This conjecture is captured in the abstract game tree
shown in Fig. 2b. We validate this conjecture by searching for a counterexample
trace that reaches an error state with the first controller action fixed to gr0=1
gr1=0. Such a trace, that refutes the conjecture, is shown in Fig. 2c. In this trace,
the environment wins by playing req=2 in the first round. This move represents
the environment’s partial strategy against the abstract game tree in Fig. 2b. This
partial strategy is shown in Fig. 2d.

Next we strengthen the abstract game tree taking this partial strategy into
account. To this end we again use a SAT solver to find a trace where the con-
troller wins while the environment plays according to the partial strategy. In the
resulting trace (Fig. 3a), the controller plays gr0=1 gr1=1 in the second round.
We refine the abstract game tree using this move as shown in Fig. 3b. The envi-
ronment’s partial strategy was to make two requests in the first round, to which
the controller responds by now granting an additional two resources in the second
round.

When the controller cannot refine the tree by extending existing branches, it
backtracks and creates new branches. Eventually, we obtain the abstract game
tree shown in Fig. 3c for which there does not exist a winning partial strategy on
behalf of the environment. We conclude that the bounded game is winning for
the controller.

The full bounded synthesis algorithm is more complicated: upon finding a
candidate partial strategy on behalf of player p against abstract game tree T ,
it first checks whether the strategy is winning against T . By only considering
such strong candidates, we reduce the number of refinements needed to solve the
game. To this end, the algorithm checks whether each outcome of the candidate
strategy is a winning state for opponent(p) by recursively invoking the synthesis
algorithm on behalf of the opponent. Thus, our bounded synthesis algorithm
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gr0=0 gr1=0

req=1

gr0=1 gr1=1

req=1

gr0=1 gr1=0

req=2

〈s, 3〉

(a) Controller
winning trace

gr0=1 gr1=1

gr0=1 gr1=0
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(b) First refined AGT

gr0=1 gr1=1

gr0=1 gr1=1

gr0=1 gr1=0
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(c) Final Refined AGT

Fig. 3. Refined abstract game trees.

can be seen as running two competing solvers, for the controller and for the
environment.

The full procedure is illustrated in Algorithm1. The algorithm takes a con-
crete game G with maximum bound κ as an implicit argument. In addition, it
takes a player p (controller or environment), state s, bound k and an abstract
game tree T and returns a winning partial strategy for p, if one exists. The ini-
tial invocation of the algorithm takes the initial state I, bound κ and an empty
abstract game tree ∅. Initially the solver is playing on behalf of the environment
since that player takes the first move in every game round. The empty game
tree does not constrain opponent moves, hence solving such an abstraction is
equivalent to solving the original concrete game.

The algorithm is organised as a counterexample-guided abstraction refine-
ment (CEGAR) loop. The first step of the algorithm uses the findCandidate
function, described below, to come up with a candidate partial strategy that
is winning when the opponent is restricted to T . If it fails to find a strategy,
this means that no winning partial strategy exists against the opponent playing
according to T . If, on the other hand, a candidate partial strategy is found, we
need to verify if it is indeed winning for the abstract game T .

The verify procedure searches for a spoiling counterexample strategy in
each leaf of the candidate partial strategy by calling solveAbstract for the
opponent. The dual solver solves games on behalf of the opponent player.

If the dual solver can find no spoiling strategy at any of the leaves, then the
candidate partial strategy is a winning one. Otherwise, verify returns the move
used by the opponent to defeat a leaf of the partial strategy, which is appended
to the corresponding node in T in order to refine it in line (9).

We solve the refined game by recursively invoking solveAbstract on it.
If no partial winning strategy is found for the refined game then there is also
no partial winning strategy for the original abstract game, and the algorithm
returns a failure. Otherwise, the partial strategy for the refined game is projected
on the original abstract game by removing the leaves introduced by refinements.
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Algorithm 1. Bounded synthesis
1: function solveAbstract(p, s, k, T )
2: cand ← findCandidate(p, s, k, T ) � Look for a candidate
3: if k = 1 then return cand � Reached the bound
4: T ′ ← T
5: loop
6: if cand = NULL then return NULL � No candidate: return with no solution
7: 〈cex, l, u〉 ← verify(p, s, k, T, cand) � Verify candidate
8: if cex = false then return cand � No counterexample: return candidate
9: T ′ ← append(T ′, l, u) � Refine T ′ with counterexample

10: cand ← solveAbstract(p, s, k, T ′) � Solve refined game tree
11: end loop
12: end function

13: function findCandidate(p, s, k, T )
14: T̂ ← extend(T ) � Extend the tree with unfixed actions
15: f ← if p = cont then treeFormula(k, T̂ ) else treeFormula(k, T̂ )
16: sol ← SAT(s(XT̂ ) ∧ f)
17: if sol = unsat then
18: if unbounded then � Active only in the unbounded solver
19: if p = cont then learn(s, T̂ ) else learn(s, T̂ )
20: end if
21: return NULL � No candidate exists
22: else
23: return {〈n, c〉|n ∈ nodes(T ) , c = sol(n)} � Fix candidate moves in T
24: end if
25: end function

26: function verify(p, s, k, T, cand)
27: for l ∈ leaves(gt) do
28: 〈k′, s′〉 ← outcome(s, k, cand, l) � Get bound and state at leaf
29: u ← solveAbstract(opponent(p), s′, k′, ∅) � Solve for the opponent
30: if u �= NULL then return 〈true, l, u〉 � Return counterexample
31: end for
32: return 〈false, ∅, ∅〉
33: end function

The resulting partial strategy becomes a candidate strategy to be verified at the
next iteration of the loop. In the worst case the loop terminates after all actions
in the game are refined into the abstract game.

The CEGAR loop depends on the ability to guess candidate partial strategies
in findCandidate. For this purpose we use the heuristic that a partial strategy
may be winning if each outcome of the strategy can be extended to a run of the
game that is winning for the current player. Clearly, if such a partial strategy does
not exist then no winning partial strategy can exist for the abstract game tree.
We can formulate this heuristic as a SAT query, which is constructed recursively
by treeFormula (for the controller) or treeFormula (for the environment)
in Algorithm 2.
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The tree is first extended to the maximum bound with edges that are labeled
with arbitrary opponent actions (Algorithm1, line 14). For each node in the tree,
new SAT variables are introduced corresponding to the state (XT ) and action
(UT or CT ) variables of that node. Additional variables for the opponent actions
in the edges of T are introduced (Ue or Ce) and set to action(e). The state
and action variables of node n are connected to successor nodes succ(n) by an
encoding of the transition relation and constrained to the winning condition of
the player.

Algorithm 2. Tree formulas for Controller and Environment respectively
1: function treeFormula(k, T )
2: if height(k, T ) = 0 then
3: return ¬E(XT )
4: else
5: return ¬E(XT )∧
6: ∧

〈e,n〉∈succ(T )

(δ(XT , Ue, CT , Xn) ∧ Ue = action(e) ∧ treeFormula(k, n))

7: end if
8: end function

9: function treeFormula(k, T )
10: if height(k, T ) = 0 then
11: return E(XT )
12: else
13: return E(XT )∨
14:

∨

〈e,n〉∈succ(T )

(δ(XT , UT , Ce, Xn) ∧ Ce = action(e) ∧ treeFormula(k, n))

15: end if
16: end function

3 Unbounded Synthesis

Bounded synthesis can be used to prove the existence of a winning strategy
for the environment on the unbounded game by providing a witness. For the
controller, the strongest claim that can be made is that the strategy is winning
as long as the game does not extend beyond the maximum bound.

It is possible to set a maximum bound such that all runs in the unbounded
game will be considered. The näıve approach is to use size of the state space as
the bound (|X |) so that all states may be explored by the algorithm. A more
nuanced approach is to use the diameter of the game [3], which is the smallest
number d such that for any state x there is a path of length ≤d to all other
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Fig. 4. Splitting of an abstract game tree by the learning procedure.

reachable states. However, the diameter is difficult to estimate and can still lead
to infeasibly long games.

We instead present an approach that iteratively solves games of increasing
bound while learning bad states from abstract games using interpolation. We
show that reaching a fixed point in learned states is sufficient for completeness.

3.1 Learning States with Interpolants

We extend the bounded synthesis algorithm to learn states losing for one of the
players from failed attempts to find candidate strategies. The learning proce-
dure kicks in whenever findCandidate cannot find a candidate strategy for
an abstract game tree. We can learn additional losing states from the tree via
interpolation. This is achieved in lines 18–20 in Algorithm1, enabled in the
unbounded version of the algorithm, which invoke learn or learn to learn
controller or environment losing states respectively (Algorithm 3).

Example: Why we use interpolants. Consider node n in Fig. 4a. At this
node there are two controller actions that prevent the environment from forcing
the game into an error state in one game round. We want to use this tree to
learn the states from which the controller can win playing one of these actions.

One option is using a BDD solver, working backwards from the error set, to
find all losing states. One iteration of this operation on our example would give
the set: nrequests = 3 ∨ (nrequests = 2 ∧ (resource0 = 0 ∨ resource1 =
0)) ∨ (nrequests = 1 ∧ (resource0 = 0 ∧ resource1 = 0)). In the general case
there is no compact representation of the losing set, so we try to avoid computing
it by employing interpolation instead. The benefit of interpolation is that it allows
approximating the losing states efficiently by obtaining an interpolant from a SAT
solver.

Given two formulas F1 and F2 such that F1∧F2 is unsatisfiable, it is possible
to construct a Craig interpolant [9] I such that F1 → I, F2 ∧ I is unsatisfiable,
and I refers only to the intersection of variables in F1 and F2. An interpolant
can be constructed efficiently from a resolution proof of the unsatisfiability of
F1 ∧ F2 [20].
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Algorithm 3. Learning algorithms
Require: s(XT )∧ treeFormula(k, T ) ≡ ⊥
Require: Must-invariant holds
Ensure: Must-invariant holds
Ensure: s(XT ) ∧ BM �≡ ⊥ � s will be added to BM

1: function learn(s, T )
2: if succ(T ) = ∅ then return
3: n ← non-leaf node with min height
4: 〈T1, T2〉 ← gtSplit(T, n)
5: I ← interpolate(s(XT )∧ treeFormula(k, T1), treeFormula(k, T2))
6: BM ← BM ∨ I
7: learn(s, T1)
8: end function

Require: s(XT )∧ treeFormula(k, T ) ≡ ⊥
Require: May-invariant holds
Ensure: May-invariant holds
Ensure: s(XT ) ∧ Bm[height(k, T )] ≡ ⊥ � s will be removed from Bm

9: function learn(s, T )
10: if succ(T ) = ∅ then return
11: n ← non-leaf node with min height
12: 〈T1, T2〉 ← gtSplit(T, n)
13: I ← interpolate(s(XT )∧ treeFormula(k, T1), treeFormula(k, T2))
14: for i = 1 to height(k, n) do
15: Bm[i] ← Bm[i] \ I
16: end for
17: learn(s, T1)
18: end function

We choose a non-leaf node n of T with maximal depth, i.e., a node
whose children are leafs (Algorithm3, line 3). We then split the tree
at n such that both slices T1 and T2 contain a copy of n (line 4).
Figure 4b shows T1, which contains all of T except n’s children, and T2

(Fig. 4c), which contains only n and its children. There is no candidate
strategy for T so s ∧ treeFormula(k, T ) is unsatisfiable. By construc-
tion, treeFormula(k, T ) ≡ treeFormula(k, T1)∧treeFormula(k, T2) and
hence s ∧ treeFormula(k, T1) ∧ treeFormula(k, T2) is also unsatisfiable.

We construct an interpolant with F1 = s(XT ) ∧ treeFormula(k, T1) and
F2 = treeFormula(k, T2) (line 5). The only variables shared between F1 and
F2 are the state variable copies belonging to node n. By the properties of the
interpolant, F2 ∧ I is unsatisfiable, therefore all states in I are losing against
abstract game tree T2 in Fig. 4c. We also know that F1 → I, thus I contains all
states reachable at n by following T1 and avoiding error states.

Example. At node n, the interpolant nrequests = 1∧resource1 = 1 captures
the information we need. Any action by the environment followed by one of the
controller actions at n will be winning for the controller.
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Algorithm 4. Amended tree formulas for Controller and Environment
1: function treeFormula(k, T )
2: if height(k, T ) = 0 then
3: return ¬BM (XT )
4: else
5: return ¬BM (XT )∧
6: ∧

〈e,n〉∈succ(T )

(δ(XT , Ue, Cn, Xn) ∧ Ue = action(e) ∧ treeFormula(k, n))

7: end if
8: end function

9: function treeFormula(k, T )
10: if height(k, T ) = 0 then
11: return E(XT )
12: else
13: return Bm[height(k, T )](XT ) ∧
14:
(
E(XT )∨

∨

〈e,n〉∈succ(T )

(δ(XT , Un, Ce, Xn)∧Ce = action(e)∧treeFormula(k, n))

)

15: end if
16: end function

We have discovered a set I of states losing for the environment. Environment-
losing states are only losing for a particular bound: given that there does not
exist an environment strategy that forces the game into an error state in k rounds
or less; there may still exist a longer environment-winning strategy. We therefore
record learned environment-losing states along with associated bounds. To this
end, we maintain a conceptually infinite array of sets Bm[k] that are may-losing
for the controller, indexed by bound k. Bm[k] are initialised to E for all k.
Whenever an environment-losing set I is discovered for a node n with bound
height(k, n) in line 13 of Algorithm 3, this set is subtracted from Bm[i], for all
i less than or equal to the bound (lines 14–16).

The treeFormula function is modified for the unbounded solver (Algo-
rithm 4) to constrain the environment to the appropriate Bm. This enables fur-
ther interpolants to be constructed by the learning procedure recursively splitting
more nodes from T1 (Algorithm 3, line 7) since the states that are losing to T2

are no longer contained in Bm.
Learning of states losing from the controller is similar (learn in Algo-

rithm 3). The main difference is that environment-losing states are losing for
all bounds. Therefore we record these states in a single set BM of must-losing
states (Algorithm 3, line 6). This set is initialised to the error set E and grows as
new losing states are discovered. The modified treeFormula function (Algo-
rithm 4) blocks must-losing states, which also allows for recursive learning over
the entire tree.
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3.2 Main Synthesis Loop

Figure 5 shows the main loop of the unbounded synthesis algorithm. The algo-
rithm invokes the modified bounded synthesis procedure with increasing bound
k until the initial state is in BM (environment wins) or Bm reaches a fixed point
(controller wins). We prove correctness in the next section.

Algorithm 5. Unbounded Synthesis
1: function solveUnbounded(T )
2: BM ← E
3: Bm[0] ← E
4: for k = 1 . . . do
5: if SAT(I ∧ BM ) then return unrealisable � Losing in the initial state
6: if ∃i < k. Bm[i] ≡ Bm[i + 1] then � Reached fixed point
7: return realisable

8: Bm[k] ← E
9: checkBound(k)

10: end for
11: end function

Require: May and must invariants hold
Ensure: May and must invariants hold
Ensure: I �∈ Bm[k] if there exists a winning controller strategy with bound k
Ensure: I ∈ BM if there exists a winning environment strategy with bound k
12: function checkBound(k)
13: return solveAbstract(env, I, k, ∅)
14: end function

3.3 Correctness

We define two global invariants of the algorithm. The may-invariant states that
sets Bm[i] grow monotonically with i and that each Bm[i+1] overapproximates
the states from which the environment can force the game into Bm[i]. We call
this operation Upre, the uncontrollable predecessor. So the may-invariant is:

∀i < k. Bm[i] ⊆ Bm[i + 1], Upre(Bm[i]) ⊆ Bm[i + 1].

The must-invariant guarantees that the must-losing set BM is an underap-
proximation of the actual losing set B:

BM ⊆ B.

Correctness of solveUnbounded follows from these invariants. The must-
invariant guarantees that the environment can force the game into an error state
from BM , therefore checking whether the initial state is in BM (as in line 5) is
sufficient to return unrealisable. The may-invariant tells us that if Bm[i] ≡
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Bm[i + 1] (line 6) then Upre(Bm[i]) ⊆ Bm[i], i.e. Bm[i] overapproximates the
winning states for the environment. We know that I �∈ Bm[k] due to the post-
condition of checkBound, and since the may-invariant tells us that Bm is
monotonic then I must not be in Bm[i]. If I �∈ Bm[i] then I is not in the
winning states for the environment and the controller can always win from I.

Both invariants trivially hold after Bm and BM have been initialised in
the beginning of the algorithm. The sets Bm and BM are only modified by
the functions learn and learn. Below we prove that learn maintains the
invariants. The proof of learn is similar.

3.4 Proof of learn

We prove that postconditions of learn are satisfied assuming that its precon-
ditions hold.

Lines (11 and 12) splits the tree T into T1 and T2, such that T2 has
depth 1. Consider formulas F1 = s(XT ) ∧ treeFormula(k, T1) and F2 =
treeFormula(k, T2). These formulas only share variables Xn. Their conjunc-
tion F1 ∧ F2 is unsatisfiable, as by construction any solution of F1 ∧ F2 also
satisfies s(XT )∧treeFormula(k, T ), which is unsatisfiable (precondition (b)).
Hence the interpolation operation is defined for F1 and F2.

Intuitively, the interpolant computed in line (13) overapproximates the set
of states reachable from s by following the tree from the root node to n, and
underapproximates the set of states from which the environment loses against
tree T2.

Formally, I has the property I ∧ F2 ≡ ⊥. Since T2 is of depth 1, this means
that the environment cannot force the game into Bm[height(k, n) − 1] playing
against the counterexample moves in T2. Hence, I ∩ Upre(Bm[height(k, n) −
1]) = ∅. Furthermore, since the may-invariant holds, I ∩ Upre(Bm[i]) = ∅, for
all i < height(k, n). Hence, removing I from all Bm[i], i ≤ height(k, n) in
line (15) preserves the may-invariant, thus satisfying the first post-condition.

Furthermore, the interpolant satisfies F1 → I, i.e., any assignment to Xn

that satisfies s(XT ) ∧ treeFormula(k, T1) also satisfies I. Hence, removing I
from Bm[height(k, n)] makes s(XT ) ∧ treeFormula(k, T1) unsatisfiable, and
hence all preconditions of the recursive invocation of learn in line (17) are
satisfied.

At the second last recursive call to learn, tree T1 is empty, n
is the root node, treeFormula(k, T1) ≡ Bm[height(k, T1)](XT ); hence
s(XT )∧treeFormula(k, T1) ≡ s(XT ) ∧ Bm[height(k, T1)](XT ) ≡ ⊥. Thus
the second postcondition of learn holds.

The proof of learn is similar to the above proof of learn. An inter-
polant constructed from F1 = s(XT ) ∧ treeFormula(k, T1) and F2 =
treeFormula(k, T2) has the property I ∧F2 ≡ ⊥ and the precondition ensures
that the controller is unable to force the game into BM playing against the coun-
terexample moves in T2. Thus adding I to BM maintains the must-invariant
satisfying the first postcondition.
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Likewise, in the second last recursive call of learn with the empty tree
T1 and root node n: treeFormula(k, T1) ≡ ¬BM (XT ). Hence s(XT ) ∧
treeFormula(k, T1) ≡ s(XT )∧¬BM (XT ) ≡ ⊥. Therefore s(XT )∧BM (XT ) �≡
⊥, the second postcondition, is true.

3.5 Proof of Termination

We must prove that checkBound terminates and that upon termination its
postcondition holds, i.e., state I is removed from Bm[κ] if there is a winning
controller strategy on the bounded safety game of maximum bound κ or it is
added to BM otherwise. Termination follows from completeness of counterex-
ample guided search, which terminates after enumerating all possible opponent
moves in the worst case.

Assume that there is a winning strategy for the controller at bound κ. This
means that at some point the algorithm discovers a counterexample tree of bound
κ for which the environment cannot force into E. The algorithm then invokes the
learn method, which removes I from Bm[κ]. Alternatively, if there is a winning
strategy for the environment at bound κ then a counterexample losing for the
controller will be found. Subsequently learn will be called and I added to BM .

3.6 Optimisation: Generalising the Initial State

This optimisation allows us to learn may and must losing states faster. Starting
with a larger set of initial states we increase the reachable set and hence increase
the number of states learned by interpolation. This optimisation requires a mod-
ification to solveAbstract to handle sets of states, which is not shown.

The optimisation is relatively simple and is inspired by a common greedy
heuristic for minimising unsat cores. Initial state I assigns a value to each
variable in X. If the environment loses 〈I, k〉 then we attempt to solve for a
generalised version of I by removing one variable assignment at a time. If the
environment loses from the larger set of states then we continue generalising. In
this way we learn more states by increasing the reachable set. In our benchmarks
we have observed that this optimisation is beneficial on the first few iterations
of checkBound.

4 Evaluation

We evaluate our approach on the benchmarks of the 2015 synthesis competition
(SYNTCOMP’15). Each benchmark comprises of controllable and uncontrollable
inputs to a circuit that assigns values to latches. One latch is configured as the
error bit that determines the winner of the safety game. The benchmark suite is a
collection of both real-world and toy specifications including generalised buffers,
AMBA bus controllers, device drivers, and converted LTL formulas. Descriptions
of many of the benchmark families used can be found in the 2014 competition
report [14].
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Algorithm 6. Generalise I optimisation
function checkBound(k)

r ← solveAbstract(env, I, k, ∅)
if r �= ∅ then return r
s′ ← I
for x ∈ X do

r ← solveAbstract(env, s′ \ {x}, k, ∅)
if r = NULL then s′ ← s′ \ {x} � Removes the assignment to x from s′

end for
return NULL

end function

The implementation of our algorithm uses Glucose [2] for SAT solving and
Periplo [21] for interpolant generation. We intend to open source the tool for
SYNTCOMP’16. The benchmarks were run on a cluster of Intel Quad Core Xeon
E5405 2 GHz CPUs with 16 GB of memory. The solvers were allowed exclusive
access to a node for one hour to solve an instance.

The results of our benchmarking are shown, along with the synthesis competi-
tion results [1], in Table 1. The competition was run on Intel Quad Core 3.2 GHz
CPUs with 32 GB of memory, also on isolated nodes for one hour per instance.
The competition results differ significantly from our own benchmarks due to
this more powerful hardware. For our benchmarks we report only the results for
solvers we were able to run on our cluster. The unique column lists the number
of instances that only that tool could solve in the competition (excluding our
solver). In brackets is the number of instances that only that tool could solve,
including our solver.

Table 1. Synthesis competition 2015 results

Solver Solved (Competition) Solved (Benchmarks) Unique

Simple BDD Solver (2) 195 189 10 (6)

AbsSynthe (seq2) 187 139 2

Simple BDD Solver (1) 185 175

AbsSynthe (seq3) 179 134

Realizer (sequential) 179

AbsSynthe (seq1) 173 139 1

Demiurge (D1real) 139 136 5 (2)

Aisy 98

Unbounded Synthesis 103 12

Our implementation was able to solve 103 out of the 250 specification in the
allotted time, including 12 instances that were not solved by any other solver



A SAT-Based Counterexample Guided Method for Unbounded Synthesis 379

in the sequential track of the competition. The unique instances we solved are
listed in Table 2.

Table 2. Instances uniquely solved by our approach

1. 6s216rb0 c0to31 7. driver c10n

2. cnt30y 8. stay18y

3. driver a10n 9. stay20n

4. driver a8n 10. stay20y

5. driver b10y 11. stay22n

6. driver b8y 12. stay22y

Five of the instances unique to our solver are device driver instances and
another five are from the stay family. This supports the hypothesis that different
game solving methodologies perform better on certain classes of specifications.

We also present a cactus plot of the number of instances solved over time
(Fig. 5). We have plotted the best configuration of each solver we benchmarked.
The solvers shown are Demiurge [4], the only SAT-based tool in the compe-
tition, the winner of the sequential realisability track Simple BDD Solver
2 [22], and AbsSynthe (seq3) [6].
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Fig. 5. Number of instances solved over time. (Color figure online)
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Whilst our solver is unable to solve as many instances as other tools, it was
able to solve more unique instances than any solver in the competition. This
confirms that our methodology is able to fill gaps in a state of the art synthesis
toolbox by more efficiently solving instances that are hard for other techniques.
For this reason our solver would be a worthwhile addition to a portfolio solver.
In the parallel track of the competition, Demiurge uses a suite of 3 separate
but communicating solvers. The solvers relay unsafe states to one another, which
is compatible with the set BM in our solver. This technique can already solve
each of the unique instances solved by our solver but there may still be value in
the addition of this work to the portfolio. It remains future work to explore this
possibility.

5 Related Work

Synthesis of safety games is a thoroughly explored area of research with most
efforts directed toward solving games with BDDs [7] and abstract interpretation
[6,22]. Satisfiability solving has been used previously for synthesis in a suite of
methods proposed by Bloem et al. [4]. The authors propose employing competing
SAT solvers to learn clauses representing bad states, which is similar to our
approach but does not unroll the game. They also suggest QBF solver, template-
based, and Effectively Propositional Logic (EPR) approaches.

SAT-based bounded model checking approaches that unroll the transition
relation have been extended to unbounded by using conflicts in the solver [15],
or by interpolation [16]. However, there are no corresponding adaptations to
synthesis.

Incremental induction [5] is another technique for unbounded model check-
ing that inspired several approaches to synthesis including the work presented
here. Morgenstern et al. [17] proposed an technique that computes sets of states
that overapproximate the losing states (similar to our Bm) and another set of
winning states (similar to the negation of BM ). Their algorithm maintains a
similar invariant over the sets of losing states as our approach and has the same
termination condition. It differs in how the sets are computed, which it does
by inductively proving the number of game rounds required by the environment
to win from a state. Chiang and Jiang [8] recently proposed a similar approach
that focusses on computing the winning region for the controller forwards from
the initial state in order to take advantage of reachability information and bad
transition learning without needing to discard learnt clauses.

There are different approaches to bounded synthesis than the one described
here. The authors of [13] suggest a methodology directly inspired by bounded
model checking and it has been adapted to symbolic synthesis [11]. Lazy synthesis
[12] is a counterexample guided approach to bounded synthesis that refines an
implementation for the game instead of an abstraction of it.

The original bounded synthesis algorithm of Narodytska et al. [18] solves
realisability without constructing a strategy. In [10] the realisability algorithm
is extended with strategy extraction. The technique relies on interpolation over
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abstract game trees to compute the winning strategy. In the present work we
use interpolation in a different way in order to learn losing states of the game.
In addition, this method could be easily adapted to the unbounded realisability
algorithm presented here to generate unbounded strategies.

6 Conclusion

We presented an extension to an existing bounded synthesis technique that pro-
motes it to unbounded safety games. The approach taken as whole differs from
other synthesis techniques by combining counterexample guided game solving
with winning set computation. Intuitively, the abstraction refinement frame-
work of the bounded synthesis algorithm restricts the search to consider only
moves that may lead to winning strategies. By constructing sets of bad states
during this search we aim to consider only states that are relevant to a winning
strategy while solving the unbounded game.

The results show that our approach is able to solve more unique instances
than other solvers by performing well on certain classes of games that are hard
for other methodologies.

Future work includes incorporating the solver into a parallel suite of com-
municating solvers [4]. There is evidence that different solvers perform well on
different classes of games. Thus we hypothesise that the way forward for synthe-
sis tools is to combine the efforts of many different techniques.
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Abstract. The goal of automatic program repair is to identify a set of
syntactic changes that can turn a program that is incorrect with respect
to a given specification into a correct one. Existing program repair tech-
niques typically aim to find any program that meets the given specifica-
tion. Such “best-effort” strategies can end up generating a program that
is quite different from the original one. Novel techniques have been pro-
posed to compute syntactically minimal program fixes, but the smallest
syntactic fix to a program can still significantly alter the original pro-
gram’s behaviour. We propose a new approach to program repair based
on program distances, which can quantify changes not only to the pro-
gram syntax but also to the program semantics. We call this the quan-
titative program repair problem where the “optimal” repair is derived
using multiple distances. We implement a solution to the quantitative
repair problem in a prototype tool called Qlose (Quantitatively close),
using the program synthesizer Sketch. We evaluate the effectiveness of
different distances in obtaining desirable repairs by evaluating Qlose on
programs taken from educational tools such as CodeHunt and edX.

1 Introduction

Recent years have seen the emergence of computer-aided personalized education
as a new, important research field. Sophisticated techniques relying on formal
methods, programming languages, and program synthesis have been designed
to assist teachers in grading and providing feedback for introductory program-
ming assignments [24], automata constructions [1], and geometric construc-
tions [10,13]. In this paper, we propose a novel program repair framework that
enhances the state of the art in automated feedback generation for students in
introductory programming courses.
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The goal of automatic program repair is to identify a set of syntactic changes
that can turn a program that is incorrect with respect to a given specification
into a correct one. In the context of automated feedback generation, repairing a
program corresponds to finding a “fix” to the student’s incorrect solution. The
specification can be as simple as a set of test cases.

Existing program repair techniques are typically “best-effort” and aim to find
any repair that meets the given specification. Such techniques can end up gener-
ating a program that is quite different from the original one. Although this may
be acceptable in some settings, in the context of education, the goal should be to
slowly guide the students towards a correct solution. In particular, if a student
solution is close to a correct one, a teacher wouldn’t point the student to a com-
pletely different program, but would rather show how the student solution can
be corrected with small changes. Advanced program repair techniques address
this problem by computing syntactically minimal program repairs [19,23,24].

In this paper, we argue that even the smallest syntactic fix to a program can
significantly alter its behaviour. We propose a new approach to program repair
based on program distances, which quantify changes not only to the program
syntax but also to the program semantics. While syntactic distances capture
the number of edits to the program, semantic distances quantify the number of
changes to the “behaviour” of a program with respect to a given set of tests. We
formalize the quantitative program repair problem in which the “optimal” repair
is defined as a correct program that minimizes an objective function over multiple
program distances. Although our framework is general, we present two types of
syntactic distances, three types of semantic distances, and propose a solution to
the quantitative program repair problem with respect to these distances.

We have implemented our techniques in a prototype tool called Qlose
(Quantitatively close), which is built on top of the Sketch synthesis system [26].
In Qlose, we encode the functional correctness property of the student solution
with respect to a set of tests as a hard constraint and the syntactic and semantic
distances with respect to the original solution as soft constraints. The repair
generated by Sketch maximizes the number of soft constraints that can be
satisfied, while satisfying the hard constraints. We evaluate Qlose on 11 repre-
sentative benchmark programs taken from student submissions to the Microsoft
CodeHunt platform [29] and the Introduction to Programming course on the
edX platform. Our preliminary results show that encoding quantitative program
repair using syntactic and semantic distances is practically feasible for small
student solutions and leads to more desirable repairs.

Contributions. This paper makes the following key contributions.

– We define new notions of syntactic and semantic distances between programs
with respect to a given set of tests and use these notions to formalize the
quantitative program repair problem (Sects. 3, 4).

– We encode the quantitative repair problem in a prototype tool called Qlose,
which is built on top of the Sketch synthesis system (Sect. 5).

– We evaluate Qlose and the strengths of the different distances on 11 repre-
sentative student submissions taken from education platforms (Sect. 6).
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2 Motivating Example

We use the example in Fig. 1 to show that semantic distances can sometimes yield
more intuitive program repairs than syntactic distances.1 Figure 1 contains a set
of tests that is representative of the intended semantics of a desired program.
Given this test set, the student has come up with the program FindCBuggy in
Fig. 1(a) which fails the first test but passes the other ones. The desired program
is one that given a string s, a character c, and an integer k outputs whether the
character c appears in s at some position j ≤ k. Besides a small imprecision,
the student solution captures the intended algorithm in the sense that successful
executions of the program are not far from those in the correct algorithm.

Fig. 1. A buggy program (a) with two possible syntactic repairs (b) and (c).

Limitation of syntactic distances. To give feedback to the student, one can try
fixing the student solution using existing program repair techniques that mini-
mize the number of syntactic changes to an incorrect program. Techniques like
the ones presented in [19,24] would return one of the two programs at the bottom
of Fig. 1. Both of these programs differ from the one in Fig. 1(a) by exactly one
expression. However, one of the repaired programs is, in some sense, more “dis-
ruptive” than the other. In particular, although the program in Fig. 1(b) simply
changes the guard of the if-statement, its executions on previously correct tests
are now very different: on all tests the loop is now executed only once! On the
other hand, for the program in Fig. 1(c), the executions on correct tests are the
same as for the original program. Syntactic program distances cannot distinguish
between these two candidate repairs and are inadequate for this example.

Semantic distances. One can capture the intuition that the program in Fig. 1(c)
is a better repair for the student solution than the program in Fig. 1(b) by
examining the execution of these programs on successful tests. For example, if
1 This example is a slight variation of the one appearing in Fig. 3 of [19].
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we were to track the locations (lines of code) traversed by the three programs on
the second input test with s = aba?gc we would get the following sequences of
locations: (a) 2, 3, 2, 3, 2, 3, 2, 3, 4; (b) 2, 3, 4; and (c) 2, 3, 2, 3, 2, 3, 2, 3, 4. These
sequences highlight that the program in Fig. 1(c) is semantically closer to the
student solution.

A similar argument can be made for repairing using only a semantic distance
as the repaired program may be syntactically very far from the original one. In
summary, in order to repair programs in a meaningful way, it is often necessary
to take into account multiple quantitative objectives such as the number of
syntactic edits and the distance between program behaviours.

3 Program Repair

In this section, we formalize programs, correctness specifications, and permissible
program edits. We then use these notions to define the program repair problem.

3.1 Programs

We fix a simple imperative programming language, in which a program P consists
of a function definition f(i1, . . . , iq) : o, a set of program variables V , and a
sequence of labeled statements σ = s1 . . . sn. A statement is one of the following:
skip, return, assignment, conditional or loop statement.2 Each statement in σ
is labeled with a unique location identifier from the set L = {�0, �1, . . . , �p, exit}.
The function f has a designated set of input variables I = {i1, . . . , iq} and a
designated output variable o. The program statements are allowed to use an
auxiliary set of variables V = {v1, . . . , vr}. We assume a universe U of values.
We also assume that all variables are associated with a given type and are only
assigned values from U with the proper types.

We now define the semantics of our programs. The semantics of program
statements is standard. Without loss of generality, we assume execution of a
return statement assigns a value to the output variable and transfers control to
a designated location exit.

A program configuration η is a pair (�, ν) where � ∈ L is a location and
ν : I ∪ {o} ∪ V �→ U ∪ {nd} is a valuation function that assigns values to all
variables. The element nd indicates that a variable has not been assigned a value
yet or is out of scope. We write (�, ν) → (�′, ν′) if execution of the statement at
location � under variable valuation ν transfers control to location �′ with variable
valuation ν′.

The execution π(ν) of program P on a valuation ν is a sequence of configu-
rations η0, η1, . . . , where η0 = (�0, ν) and for each h, ηh → ηh+1. An execution
terminates once the location exit is reached.

Here we are only interested in executions for which the initial valuation ν is
such that for every input variable x ∈ I, ν(x) �= nd, and for every non-input
2 Our implementation supports a richer subset of the Python language including lists,

strings, and function calls.
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variable y ∈ V ∪ {o}, ν(y) = nd. Given a partial valuation νI : I �→ U assigning
values to the input variables, let ν+

I be the valuation such that for every input
variable x ∈ I, ν+

I (x) = νI(x), and for every other variable y �∈ I, ν+
I (y) = nd.

We denote by [[P ]] : (I �→ U) �→ U the partial function computed by a program
P , and define it as [[P ]](νI) = res iff π(ν+

I ) terminates with output valuation ν′

and ν′(o) = res.

Example 1. Consider the program FindCBuggy in Fig. 1(a). The input vari-
ables I are {s, c, k} and the designated output variable is o. The set of program
variables is the singleton {j}. The execution of FindCBuggy on ν such that
νI(s) = ab?, νI(c) = ?, νI(k) = 2 is illustrated in the following table:

η0 η1 η2 η3 η4 η5 η6

loc 2 3 2 3 2 5 exit

s ab? ab? ab? ab? ab? ab? ab?

c ? ? ? ? ? ? ?

k 2 2 2 2 2 2 2

j nd 0 0 1 1 2 nd

o nd nd nd nd nd nd false

We thus have [[FindCBuggy]](ab?, ?, 2) = false.

3.2 Test Sets as Specifications

A test t is a pair (νI , res), where νI : I �→ U is a valuation over the input
variables, and res ∈ U is the expected output value. A program P satisfies a test
t if [[P ]](νI) = res. A program P satisfies a test set T if it satisfies all the tests
t ∈ T .

We use π̇(t), read as “execution of a program on a test t”, to refer to π(ν+
I ).

Example 2. Consider the test set and the program FindCBuggy in Fig. 1.
Clearly, FindCBuggy does not satisfy the test set. In particular, on the first
test from Example 1 we have [[FindCBuggy]](ab?, ?, 2) �= true.

3.3 The Program Repair Problem

In our repair model we permit program expressions to be changed, but not
program statements. For example, we permit replacement of loop guards and
right-hand sides of assignments and disallow replacement of an assignment with
a return statement. Formally, a permissible program edit applied to a labeled
statement � : stmt in program P is any modification of stmt that replaces an
expression in stmt with another expression over the same domain, and leaves
the label � unchanged.
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Given program P and a subset of locations loc ⊆ L of P , let Rloc(P ) be
the set of all programs that can be obtained by applying permissible program
edits to labeled statements with labels in loc. The following proposition holds
trivially.

Proposition 1. Given programs P , P ′, with locations L, L′, the following state-
ments are equivalent:

(i) there exists unique loc ⊆ L such that P ′ ∈ Rloc(P )
(ii) there exists unique loc′ ⊆ L′ such that P ∈ Rloc′(P ′)
(iii) L = L′ and there exists unique loc ⊆ L such that P ′ ∈ Rloc(P ) and

P ∈ Rloc(P ′).

Example 3. In Fig. 1, FindCBadFix ∈ R{3}(FindCBuggy) as FindCBadFix
replaces the guard s[j] == c in location 3 of FindCBuggy with the guard
c ==?. Similarly, FindCGoodFix ∈ R{2}(FindCBuggy) as FindCGoodFix
replaces the loop guard j < k in location 2 of FindCBuggy with the guard
j ≤ k3.

Given a program P and a test set T such that P does not satisfy T , the goal
of program repair is to compute P ′ such that: (1) P ′ satisfies T , and (2) there
exists loc ⊆ L such that P ′ ∈ Rloc(P ).

Example 4. Consider the programs in Fig. 1. The programs FindCBadFix and
FindCGoodFix are possible repairs of the program FindCBuggy with respect
to the test set shown in the figure. They are both correct on the test set and,
from Example 3, FindCBadFix ∈ R{3}(FindCBuggy) and FindCGoodFix ∈
R{2}(FindCBuggy).

4 Quantitative Program Repair

In this section, we define program distances and the quantitative program repair
problem. Given two programs P , P ′ and a test set T , a program distance4 is
a function over P , P ′ and T that quantifies how close are P and P ′ w.r.t. T .
We classify program distances as syntactic and semantic distances. A syntactic
program distance simply tracks the syntactic change between P and P ′, inde-
pendent of the test set T . Hence, a syntactic program distance is a function over
P and P ′. A semantic program distance tracks the semantic differences between
P and P ′ with respect to executions on the test set T . In particular, a semantic
program distance tracks the differences in the executions of P and P ′ on all tests

3 In our implementation, each location is associated with a single expression. To
keep our presentation simple, we associate all 3 expressions in the for loop in
FindCBuggy with location 2, instead of mapping each expression to a different
location.

4 Our program distances are not necessarily distance metrics. In particular, some of
them are not symmetric in P and P ′.
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t such that both P and P ′ satisfy t. In what follows, we define several syntactic
and semantic distances. One could easily define more sophisticated distances and
we invite the reader to do so. The following distances sufficed for our “proof of
concept” experiments with quantitative program repair.

4.1 Syntactic Distances

A syntactic distance between programs P and P ′ is defined modulo an expression
distance ε. An expression distance tracks the syntactic difference between two
expressions. In this work, we use two simple expression distances, defined below.

Boolean expression distance, εbool, is a Boolean-valued distance that simply
tracks if two expressions are equal or not:

εbool(expr, expr′) =

{
0 if expr = expr′

1 otherwise.

Expression-size distance, εsize, tracks the size of the repaired expression:

εsize(expr, expr′) =

{
0 if expr = expr′

size(expr′) otherwise,

where size(expr′) can be defined in different ways. For example, size(expr′)
could be the total number of symbols and operators in expr′. In Sect. 5, we
present the definition of size(expr′) used in our implementation. Note that
εsize(expr, expr′) is not a symmetric function.

A syntactic program distance between programs P and P ′ is finite only if
P and P ′ can be obtained from each other by applying a set of permissible
program edits. Given an expression distance ε, a syntactic program distance
accumulates the expression distance across all expression changes between P
and P ′. Formally:

dε
syn(P, P ′) =

⎧
⎨

⎩

∞ if ∀loc : P ′ �∈ Rloc(P )
∑

�∈loc:P ′∈Rloc(P )

ε(expr�, expr′
�) otherwise.

Note that Proposition 1 ensures the uniqueness of loc in the second case. Here,
expr�, expr′

� denote expressions in �-labeled statements of P , P ′, respectively.
Thus, if ε = εbool, dε

syn(P, P ′) equals the number of permissible program edits
required to transform P to P ′. Similarly, if ε = εsize, dε

syn(P, P ′) equals the total
size of all new expressions in P ′.

Example 5. Consider the programs in Fig. 1. For ε = εbool, one can see that
dε

syn(FindCBuggy,FindCBadFix) and dε
syn(FindCBuggy,FindCGood

Fix) both equal 1, as there is exactly one permissible program edit in each
case. For ε = εsize, if expression size is given by the total number of symbols
and operators, dε

syn(FindCBuggy,FindCBadFix) and dε
syn(FindCBuggy,

FindCGoodFix) both equal 3. Neither syntactic distance can distinguish
between FindCBadFix and FindCGoodFix.
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4.2 Semantic Distances

The semantic distance between programs P and P ′ with respect to a test set
T is defined modulo an execution distance ζ. An execution distance tracks the
differences between two executions. In this paper, we consider three types of
execution distances, defined on terminating executions.

Let Tsat ⊆ T consist of all tests t such that P and P ′ both satisfy t. Given a
test t in Tsat, let π̇(t), π̇′(t) denote executions of P , P ′, respectively on t. In what
follows, we fix π̇(t) = η0, η1, . . . , ηM and π̇′(t) = η′

0, η′
1, . . ., η′

K . Recall that a
configuration ηh is a tuple of the form (�h, νh).

Our execution distances essentially compute the Hamming distance between
two executions, using different abstractions of configurations. For executions of
equal lengths, this distance equals the minimum number of configuration sub-
stitutions required to transform one execution into another. For executions of
differing lengths, this distance additionally includes the difference in the execu-
tion lengths. All three execution distances can be defined as follows:

ζ(π̇(t), π̇′(t)) =

{
|M − K| +

∑min(M,K)
h=0 diff(ηh, η′

h) if M,K < ∞
∞ otherwise,

where the definition of diff(ηh, η′
h) varies for each execution distance.

Concrete execution distance, ζconc, compares both locations and variable values
in two executions: diffconc(ηh, η′

h) = 0 if ηh = η′
h and 1 otherwise.

Value execution distance, ζval, only compares the variable values in two execu-
tions: diffval(ηh, η′

h) = 0 if νh = ν′
h and 1 otherwise.

Location execution distance, ζlocs, only compares the locations in two executions:
diffloc(ηh, η′

h) = 0 if �h = �′
h and 1 otherwise.

A semantic program distance between programs P , P ′ w.r.t. test set T is
finite only if P and P ′ can be obtained from each other by applying a set of
permissible program edits and Tsat is not empty. Given an execution distance ζ
and the set Tsat, a semantic program distance accumulates the execution distance
between executions of P and P ′ on tests in Tsat. Formally:

dζ
sem(P, P ′, T ) =

⎧
⎨

⎩

∞ if ∀loc : P ′ �∈ Rloc(P ) or Tsat is empty
∑

t∈Tsat

ζ(π̇(t), π̇′(t)) otherwise.

Example 6. The executions of FindCBuggy and FindCBadFix from Fig. 1 on
ν such that νI(s) = aba?gc, νI(c) = ?, νI(k) = 5 are shown in Fig. 2. The last 3
rows of the table show diff(ηh, η′

h) for h = 0, 1, 2, 3. Note that diffval doesn’t
distinguish between η2 and η′

2 as these configurations share the same variable
values. The difference in lengths of the given two executions is 6. Thus, for these
executions, ζconc = ζlocs = 6 + 2 = 8, and ζval = 6 + 1 = 7.
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Fig. 2. Semantic distances between executions. We do not show the input variables s,
c, and k as their values are never modified.

The execution of FindCGoodFix on the same ν with νI(s) =
aba?gc, νI(c) = ?, νI(k) = 5 is exactly the same as the execution of Find-
CBuggy shown in Fig. 2. Hence, ζconc = ζlocs = ζval = 0 for the executions
of FindCBuggy and FindCGoodFix. Our semantic program distances can
distinguish between FindCBadFix and FindCGoodFix.

4.3 The Quantitative Program Repair Problem

Given a program P and a test set T such that P does not satisfy T , syntac-
tic distance functions d1syn, . . . , dx

syn, semantic distance functions d1sem, . . . , dy
sem,

and objective functions f1, . . . , fz over d1syn, . . . , dx
syn, d1sem, . . . , dy

sem, the goal of
quantitative program repair is to compute P ′ such that:

(1) P ′ satisfies T ,
(2) there exists loc ⊆ L such that P ′ ∈ Rloc(P ), and
(3) P ′ = arg min

∃l̂oc⊆L:P̂∈Rl̂oc(P )

aggregate
1≤i≤z

{fi(d1syn(P, P̂ ), . . . , dy
sem(P, P̂ , T ))}.

Here aggregate allows multiple objective functions to be combined. For exam-
ple, aggregate could enforce Pareto optimality.

Example 7. Consider the programs in Fig. 1. In Example 4, we showed that both
FindCBadFix and FindCGoodFix satisfy conditions (1) and (2) of the quan-
titative program repair problem for program FindCBuggy and the test set
shown in Fig. 1.

In Example 5, we showed that both dε
syn(FindCBuggy,FindCBadFix)

and dε
syn(FindCBuggy,FindCGoodFix) equal 1 for ε = εbool. For ε =

εsize, dε
syn(FindCBuggy,FindCBadFix) and dε

syn(FindCBuggy,Find
CGoodFix) both equal 3.

The set Tsat consists of the last two tests in the test set T in Fig. 1. Let the
test with s = aba?gc be denoted t1 and the test with s = ?aba be denoted t2. Let
π̇(t1) and π̇(t2) denote the executions of FindCBuggy on t1 and t2, respectively.
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Let π̇′(t1), π̇′(t2) and π̇′′(t1), π̇′′(t2) denote the executions of FindCBadFix and
FindCGoodFix on t1, t2, respectively.

We have seen in Example 6 that ζconc(π̇(t1), π̇′(t1)) = 8 and
ζconc(π̇(t1), π̇′′(t1)) = 0. It’s not hard to see that ζconc(π̇(t2), π̇′(t2)) = 0
and ζconc(π̇(t2), π̇′′(t2)) = 0. Thus, we can compute dζconc

sem (FindCBuggy,
FindCBadFix, T ) = 8 and dζconc

sem (FindCBuggy,FindCGoodFix, T ) = 0.
If we choose dεbool

syn , dεsize
syn as our syntactic distances, dζconc

sem as our semantic
distance and our objective function f to simply be the sum of dεbool

syn , dεsize
syn and

dζconc
sem , the value of f is 4 for FindCGoodFix and is 12 for FindCBadFix.

Hence, this instance of the quantitative program repair problem will prefer the
program FindCGoodFix as a repair candidate.

5 Quantitative Program Repair Using Sketch

In this section, we describe the formulation of the quantitative program repair
problem as an instance of the MAX-SMT problem. We encode the program
semantics using a symbolic Boolean encoding and specify the functional cor-
rectness of the program w.r.t the given test set T as a hard constraint. The
syntactic and semantic distances are encoded using soft constraints. The repair
generated by the MAX-SMT solver maximizes the number of soft constraints
that can be satisfied while ensuring the satisfaction of the hard constraints.
We perform a syntax-directed translation from the source imperative language
to Sketch [26], and use the minimization algorithm in Sketch to solve the
MAX-SMT constraints. Instead of using a general MAX-SMT solver, we use
the Sketch solver because of the ease in translation of the buggy programs
into constraints. The Sketch solver allows for optimization constraints similar
to MAX-SMT, but uses several algorithmic optimizations before encoding the
problem into low-level SMT constraints. We now describe the key ideas in the
formulation and translation of the quantitative program repair problem using
the Sketch system.

5.1 Background on Sketch

Sketch is a synthesis system for writing partial programs (with holes) together
with some high-level specifications of the programs. The synthesis algorithm
fills the holes automatically using a constraint-based, counterexample-guided
inductive synthesis (CEGIS) algorithm such that the completed program satisfies
the given specifications. For example, consider the Sketch program shown in
Fig. 3(a). One possible completion synthesized by the Sketch system is shown
in Fig. 3(b). The hole expressions ?? can take any constant integer value, and
they can further be composed to construct more complex unknown expressions.

5.2 Space of Expression Edits

For our quantitative program repair encoding, we restrict the class of expres-
sions that can potentially be modified by the solver to (i) the set of conditional
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Fig. 3. (a) A simple Sketch program and (b) a possible completion.

expressions and (ii) the right hand side expressions of assignment statements.
Furthermore, to restrict the space of possible repairs, we use an expression tem-
plate corresponding to a linear combination of constants and all program vari-
ables in scope at the program location. In Sketch, the modifiable expressions
are replaced by functions that either allow for returning the original unmodified
expression in the program or some instantiation of the expression template.

For example, the Sketch translation for the buggy program in Fig. 1(a) is
shown in Fig. 4(a). The conditional expressions and the right hand side expres-
sions of the assignment statements are translated to change functions fi. An
example change function f1 is shown in Fig. 4(b). Each change function fi is
associated with a Boolean variable bfi

that indicates if the original expression is
selected (bfi

= 0) or some new expression is selected for the completion of the
function fi (bfi

= 1). Each set of possible new expressions is represented as a
linear combination of program variables of appropriate types where the coeffi-
cients of the variables are denoted using unknown values ??i,j . For expressions
involving strings, the change function restricts the edit expression to consist of
only 1 character from that string. The characters are then interpreted as integers
in Sketch.

Fig. 4. The Sketch translation for the FindCBuggy program from Fig. 1(a).

5.3 Encoding Distances

We now describe how the syntactic and semantic distances are encoded as con-
straints in the Sketch system.
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Syntactic Distances. We encode our syntactic distances modulo our two
expression distances in Sketch as follows.

– Boolean expression distance: The syntactic distance dε
syn for ε = εbool com-

putes the number of expression changes that are performed by the solver and
is computed as Σibfi

. The Boolean variable bfi
is set to 0 if the expression

corresponding to function fi remains unchanged in the final solution and is
set to 1 otherwise.

– Expression-size distance: The syntactic distance dε
syn for ε = εsize computes

the total size of modified expressions, where the size of a modified linear
arithmetic expression corresponding to fi is computed as the sum of all of its
coefficients |??i,j |. Thus, dεsize

syn is defined as ΣiΣj |??i,j |.

Semantic Distances. We encode our semantic distance modulo the concrete
execution distance. The Sketch translation is instrumented to capture program
states at different program locations as shown in Fig. 5(a), where St

�[j] denotes
the program state for jth loop iteration at program location � for a test case t.
The concrete execution distance ζconc between the original program and the
modified program on a test case t in Tsat is computed as Σ�,jφ(St

�[j], S
orig,t
� [j]),

where the function φ counts the number of variables that do not have equal
values across two states St

�[j] and Sorig,t
� [j], as shown in Fig. 5(b). Our encoding

enforces a bound on the length of program executions by unrolling loops a fixed
number of times.

Fig. 5. Encoding semantic distance in Sketch.

Quantitative Objective. The final quantitative objective in the Sketch
translation is encoded as the following constraint:

assert dεbool
syn < N ∧ minimize (dεsize

syn + dζconc
sem )

We use a linear search to first find the minimum number of expression
changes N that are needed to repair the buggy program using a linear iterative
search. After computing the value n, we then add the minimization constraint
to find a repair with minimum semantic distance dζconc

sem and simpler expression
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modifications dεsize
syn . The Sketch solver uses an incremental search methodol-

ogy to compute the repair that corresponds to the minimum objective function
value [24]. The hard constraints specifying functional correctness w.r.t a test set
T is encoded in a standard way using assert statements in Sketch. If we refer
back to the definition of quantitative program repair in Sect. 4.3, the resulting
repaired program is

P ′ = arg min
∃l̂oc⊆L:P̂∈Rl̂oc(P )

〈dεbool
syn (P, P̂ ), dεsize

syn(P, P̂ ) + dζconc
sem (P, P̂ )〉.

In this case, the aggregation operator is the one that first minimizes the left
element of the pair and then the right one.

6 Evaluation

We implemented a prototype tool Qlose that given a (simplified) C# program,
a set of test cases, and the desired types of distances, constructs a Sketch
program with the corresponding constraints to encode the quantitative program
repair problem. We evaluated Qlose on 11 representative benchmark programs
using the distances presented in Sect. 5. Our preliminary results suggest that
Qlose is practically feasible for small student solutions and generates more
desirable repairs while using a combination of syntactic and semantic distances.5

6.1 Benchmarks

Our benchmark set consists of 11 representative buggy programs taken from
student submissions to introductory programming courses and recent program
repair literature. The LargestGap problem is taken from the Microsoft Code-
Hunt platform [29] and asks students to write a program to compute the largest
difference amongst any two values in a given input array of integers. The FindC
program is the same as FindCBuggy in Fig. 1. The tcas-semfix benchmark
is taken from the SemFix [20] system and corresponds to a code excerpt from
the Tcas benchmark6. The max3 problem asks students to compute the max-
imum of 3 integers. The iterPower, epoly, and multIA problems are taken
from the Introduction to Programming course taught on the edX platform. The
iterPower problem asks students to write an iterative program that, given two
integers m and n, computes the value mn. The epoly problem evaluates a poly-
nomial (defined using an array of integer coefficients) on an integer value, and the
multIA problem requires students to write a program to compute multiplication
of two integers using successive additions.

5 The experiments were performed on a 40-core 2.4 GHz Intel Xeon CPU with 100GB
RAM, with a timeout of 20 min. Although this is powerful hardware, we point out
that Sketch only uses a single core and in our experiments the maximum memory
usage was less than 500MB RAM.

6 http://www.irit.fr/wiki/doku.php?id=wtc:benchmarks:tcas.

http://www.irit.fr/wiki/doku.php?id=wtc:benchmarks:tcas
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The number of lines of code (LOC), the number of variables (|Vars|), and
the number of test input-output pairs (|Tsat|) for each benchmark problem7

is shown in Fig. 6. The number of lines in the benchmarks varied from 4 to
10 lines, whereas the number of variables and the number of test cases varied
from 3 to 5. For the CodeHunt benchmarks, we reused the test input-output
pairs automatically generated by the CodeHunt engine. For the tcas-semfix
benchmark, we use the tests from the SemFix paper [20]. For the benchmarks
obtained from the edX class, we manually selected the relevant test cases that
exposed different corner case behaviors.

Fig. 6. Solving times and the desiredness of the generated repairs for different distances.
TO denotes that the solver timed out (> 20 min), The symbol ✓ (resp. ✗) denotes that
the generated repair was (resp. wasn’t) the desired one.

6.2 Desired Repairs

The experimental results obtained by running Qlose on different benchmarks
using different distances are shown in Fig. 6. We manually inspected the repairs
generated using different distance metrics and classified them into desired (✓) or
not (✗). For performing this classification, we did not inspect the reference code
for the problem, but instead inspected the original buggy program and manually
inferred the algorithm the student (or programmer) likely intended to implement.
We then checked whether the repaired program matched the intended algorithm.

We can observe that using only syntactic or semantic distance sometimes
leads to undesired repairs whereas combining the two distances always leads
to the desired fixes in our benchmark set. For example, for the LargestGap-2
program shown in Fig. 7(a), the syntactic distance encoding causes the solver to

7 The benchmark problems and the translated Sketch files are available at:
bit.ly/cav16-qlose.

http://bit.ly/cav16-qlose
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come up with a fix that sets the loop initialization variable i to 0 instead of 1.
Although, this repair is correct on the test cases, it is less desirable than the repair
that assigns a[0] to the low variable l, which corresponds to the solution that
student had in mind. Qlose generates this repair when it uses both syntactic
and semantic distances. A similar example of a desirable repair generated by
Qlose using both syntactic and semantic distances is illustrated in Fig. 7 for
the ePoly-1 benchmark.

Fig. 7. (a) The original LargestGap-2 and ePoly-1 programs, (b) the repair generated
by the syntactic distance, and (c) the repair generated by the combination of syntactic
and semantic distances that corresponds to the desired repair.

6.3 Solving Time

The solving times for different combinations of syntactic and semantic dis-
tances are shown in Fig. 6. As expected, the syntactic distances take the smallest
amount of time to resolve the sketches. For some problems, the semantic dis-
tances also resolve within a few seconds, but there are some cases where the
solver takes much longer (including a case where the solver times out at 20 min).
Our hypothesis for this phenomenon is that the semantic constraints by them-
selves under-constrain the space of repairs, which causes the solver to search a
larger space for finding the optimal solution for the minimization objective. On
the other hand, by combining syntactic and semantic distances, Qlose can solve
the sketches with minimization constraints within 20 s for each benchmark.

6.4 Repairs with Different Test Sets

In this experiment, we evaluate the effect of using different sets of tests on the
repairs generated by Qlose. We empirically observe that the combination of
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Fig. 8. Repairs obtained for FindC with syntactic distance for different test sets.

syntactic and semantic distances is more robust with respect to changes in the
test set as compared to individual distances. For example, if we look at Fig. 8,
we can see that when we vary the test set for the FindC benchmark, using only
syntactic distances yields different and undesired repairs. On the contrary, we
obtain the same desired repair using the combined distance for these test sets.

7 Related Work

We review relevant work focussing on sequential, imperative software programs.
The authors in [30] were the first to emphasize the need to look for repaired

programs that are semantically close to the original program. But they did not
develop a quantitative formulation of the problem and relied on choosing sets of
traces of the original program to be preserved exactly. There are several program
repair approaches that aim to find repairs that are syntactically close to the
original program [16,19,23,24]. As we have discussed in the paper, focussing
just on syntactic changes can lead to non-intuitive repairs. The AutoProf
system [24] uses the Sketch solver to compute the minimum number of syntactic
changes to incorrect student solutions based on a manual error model. Qlose, on
the other hand, uses additional syntactic and semantic distances, and generalizes
the set of expression modifications using linear combinations of constants with
program variables.

There is also a growing and interesting body of work on quantitative notions
for verification and synthesis [4,5,11], which formalize distances between speci-
fications and systems or between systems themselves. However, these distances
mostly apply to reactive systems and temporal logic specifications. There have
also been many proposals for scaling program repair and synthesis to large pro-
grams. These are based on techniques ranging from constraint-solving [20,27,28],
winning strategies in games [14], abstractions [9,18,22], mutations [7], genetic
algorithms [2,8], using contracts [31], and focusing on data structure manipula-
tions [25,32]. As we develop Qlose further, we hope to leverage some of these
techniques and improve the scope of our approach.

Many fault localization algorithms are based on analyzing error traces [3,6,
15,33]. Some of these techniques can be used as a preprocessing step to improve
the efficiency of our algorithm. A recent paper [17] finds the root cause of an
equivalence failure in binaries using a notion of semantic similarity between
programs. The problem setting is quite different from ours and the notions of
similarity mostly refer to the program abstract semantics rather than to concrete
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executions. We wish to explore whether the distances proposed in [17] can be
instantiated in our framework.

A more general question is whether the notions of program distances appear-
ing in quantitative program analysis and program repair can be modeled in
Qlose. While simple limits on the number of syntactic edits clearly fall in our
framework [19], some complex distances could take into account features that we
currently do not model. For example [23] uses location-specific costs that cannot
be captured using our current definitions. Extending Qlose to more complex
distances is an interesting research direction.

In this paper we use manual code inspection to decide which repair is most
natural. Recently, many data-driven techniques have been proposed to reason
about code naturalness [12,21]. These techniques learn language models of source
code from a large code corpus and then use these models for several applica-
tions such as learning natural coding conventions, code suggestions and auto-
completion, improving code style, suggesting variable and method names etc.
Using such automatic techniques to classify repairs is an interesting direction.

8 Limitations and Conclusion

We introduce the quantitative program repair problem informally described as
follows: given a set D of syntactic and semantic distances, a program P , and a
set of test cases T , find the closest program P ′ (with respect to some function over
the distances in D) such that P ′ is correct on all the tests in T . We differentiated
ourselves from previous approaches by showing that, to find “natural” program
repairs, both semantic and syntactic distances are necessary. Our techniques
have been implemented in a prototype tool Qlose, but some limitations need
to be addressed. The most important ones are that the distances are tailored
to specifications given as test sets and that Qlose only handles programs with
tens of lines of code. Addressing these limitations is part of our research agenda.
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Abstract. Boolean functional synthesis is the process of automatically
obtaining a constructive formalization from a declarative relation that
is given as a Boolean formula. Recently, a framework was proposed for
Boolean functional synthesis that is based on Craig Interpolation and in
which Boolean functions are represented as And-Inverter Graphs (AIGs).
In this work we adapt this framework to the setting of Binary Deci-
sion Diagrams (BDDs), a standard data structure for representation
of Boolean functions. Our motivation in studying BDDs is their com-
mon usage in temporal synthesis, a fundamental technique for construct-
ing control software/hardware from temporal specifications, in which
Boolean synthesis is a basic step. Rather than using Craig Interpola-
tion, our method relies on a technique called Self-Substitution, which can
be easily implemented by using existing BDD operations. We also show
that this yields a novel way to perform quantifier elimination for BDDs.
In addition, we look at certain BDD structures called input-first, and
propose a technique called TrimSubstitute, tailored specifically for such
structures. Experiments on scalable benchmarks show that both Self-
Substitution and TrimSubstitute scale well for benchmarks with good
variable orders and significantly outperform current Boolean-synthesis
techniques.

1 Introduction

Boolean functions appear in all levels of computing, and can fairly be considered
as one of the most fundamental building block of modern digital computers.
Often, the most intuitive way of defining a Boolean function is not construc-
tively, describing how the outputs can be computed from the inputs, but rather
declaratively, as a relation between input and output values that must be sat-
isfied [4]. Nevertheless, in order to implement a function in a practical format,
such as in a circuit or program, a declarative definition is not enough, and a con-
structive description of how to compute the output from the input is necessary.
The process of going from a declarative formalization to a constructive one is
called functional synthesis [14]. This transformation is a challenging algorithmic
problem, which we focus on in this paper.

In this work, we follow a framework proposed in [16,17] for algorithmically
synthesizing a correct-by-construction constructive representation of a desired
Boolean function from a relational specification. Such relation is given as a

c© Springer International Publishing Switzerland 2016
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propositional formula that relates input and output variables. Our construc-
tion ensures that when the input is realizable, that is, there is a corresponding
output for that specific input, the function that we synthesize produces this out-
put. More formally, given a specification in the form of a characteristic function
f : B

m × B
n → B, where f(x ,y) = 1 iff y is a correct output for the input

x , we synthesize functions rf : Bm → B and g : Bm → B
n with the guaran-

tee that rf (x ) = 1 precisely when there exists some y for which f(x ,y) = 1
and f(x , g(x )) = 1 for every input vector x for which rf (x ) = 1. As such, our
framework consists of two phases. The first phase is the realizability phase, and
requires the computation of the Boolean realizability function rf . The second
phase is the function-construction phase, in which we construct the function g.

The proposed framework in [17] is based on representing Boolean functions
by means of And-Inverter Graphs (AIGs) [20]. In this paper we adapt this frame-
work to the setting of Reduced Ordered Binary Decision Diagrams (BDDs) [6],
a data structure designed for the efficient representation and manipulation of
Boolean functions. BDDs provide easy-to-manipulate canonical (and minimal)
representations of Boolean functions in which Boolean operations can be imple-
mented efficiently. BDDs have found numerous applications in a variety of set-
tings, including model checking [7], equivalence checking [24], and others. Our
main motivation for using BDDs is that Boolean functional synthesis is also a
basic step in temporal synthesis, a fundamental technique for constructing control
software/hardware from temporal specifications [26], which is most often imple-
mented by using BDDs, cf. [3]. Thus, our approach can be easily incorporated
to temporal-synthesis tools. We discuss the differences between the AIG-based
and BDD-based approaches below.

At the heart of our approach there is a technique we call Self-Substitution, a
simplification of the Craig Interpolation-based approach that appears in [17]. A
single-step Self-Substitution enables us to extract a function g syntactically from
the function f for a case in which there is a single output variable. When there
are multiple output variables, we iterate the single-step for each of the output
variables. In this way we can use Self-Substitution both for quantifier elimination,
in the realizability phase, and for constructing a function g, one output variable
at a time. We use the software tool CUDD [28] for our implementation, and
show that Self-Substitution can be efficiently implemented through basic BDD
operations by using the CUDD API. Thus, Self-Substitution provides a novel
way to perform quantifier elimination for BDDs, where the standard technique
has been Shannon Expansion [6].

We begin the synthesis process by converting the relational specification
f into a BDD. To obtain rf we quantify out the output variables existen-
tially one by one, which can be done by either Shannon Expansion or Self-
Substitution. Eliminating the output variables one by one yields a realizabil-
ity sequence fn, . . . , f0 of BDDs, where fn is the specification f , and f0 is the
desired realizability function rf . In the function-construction phase again we use
Self-Substitution, leveraging the realizability sequence f1, . . . , fn to construct a
function, represented as a BDD, for each output variable. At the end, we obtain
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an n-rooted BDD for the implementation function g, where each root repre-
sents a single output variable. Motivated by [22], we study Self-Substitution on
a specific BDD order called input-first. In input-first BDDs, all input variables
precede output variables. We develop a novel method, TrimSubstitute, which
tailors Self-Substitution for input-first BDDs.

Our experimental evaluation relies on scalable problem instances rather than
a random collection of problem instances, so we can evaluate the scalability of
our techniques. Our evaluations demonstrate that the proposed framework scales
well when the problem admits a good variable order, which is a well-established
property of BDDs [6]. Our comparisons also showed that our method outperforms
the previous AIG-based approach and other state-of-the-art tools by orders of
magnitude. We also compare Self-Substitution as a quantifier-elimination tech-
nique against the standard Shannon-Expansion technique, and show that in
many cases Self-Substitution scales better than Shannon Expansion. In addi-
tion, we show that TrimSubstitute outperforms Self-Substitution on input-first
BDDs. The tool we built to implement our framework, RSynth, is available
on-line1.

The contributions of this paper are as follows: We offer a BDD-based app-
roach for Boolean Synthesis that is simple and requires only basic BDD proce-
dures. We show that our method outperforms other synthesis tools on scalable
benchmarks. Our method also suggests a novel way for BDD based quantifier
elimination. In addition we also offer a technique for input-first BDD in which we
tailor our method specifically to this BDD order and show that we outperform
all others tools.

Related Work. Functional Boolean synthesis has been the goal of a number of
different works over the years, focusing on different applications in both hardware
and software design. In some literature, our definition of functional synthesis is
also called uniformization [13]. Note however, that our definition is different
than that of logic synthesis, which is used in tools such as ABC, in which a given
circuit structure is transformed to meet certain criteria [5].

Several approaches have been proposed for functional Boolean synthesis,
but one trend that can be observed among them is that BDDs seem to be
a popular choice of data structure to use for the underlying representation of
Boolean functions, despite a common concern regarding their scalability. Kuncak
et al. developed a general framework for functional synthesis, focusing mainly
on unbounded domains, such as integer arithmetic and sets with size constraints
[22]. For Boolean logic, they suggest to start with a BDD following what we call
an input-first order. Our work on input-first BDDs can be viewed as an elabo-
ration of their work. Tronci considered synthesis of Boolean functions in a work
that is focused on synthesizing optimal controllers [29]. He mentioned a basic
form of Self-Substitution for function construction to extract an implementation
function from a relational specification, but did not develop the idea and did
not exploit Self-Substitution as a quantifier-elimination technique. Kukula and
1 http://www.cs.rice.edu/∼lm30/RSynth/.

http://www.cs.rice.edu/~lm30/RSynth/
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Shiple [21] were the first to address explicitly the issue of converting relational to
functional specifications. They present a direct mapping of a BDD for a relation
to a circuit, where each node of the BDD is converted into a hardware module
composed of several logic gates. Their approach is quite complex, and was not
accompanied by an empirical evaluation. Bañeres, Cortadella, and Kishinevsky
also addressed the problem for converting relational to functional specifications
[1]. Their approach is based on a recursive search in which the cost function is
a parameter. In this sense, their work is focused on optimizing the output size,
rather than scalability, as in our work. Another search-based synthesis tool is
Sketch [27], where the user specifies the behavior of a desired function, which
the tool finds by searching through the space of possible implementations. A
very recent work of [19] adapts [17] to synthesis for relations specified as large
conjunctions of small formulas. Their work also makes use of Self-Substitution
for function construction, but does not use BDDs. Certain QBF solvers [2,15]
include the capability of producing witnesses from the proof of validity of a for-
mula. For valid QBF formulas these witnesses can be computed fairly efficiently,
but cannot be applied when the formula is not valid.

Boolean synthesis lies at the heart of temporal synthesis, as temporal synthe-
sis for the temporal formula �f (“globally f”), where f is a Boolean formula,
essentially requires functional Boolean synthesis for the formula f . There are
several tools for temporal synthesis [10,18,25], yet the focus of such tools is
on dealing with temporal formulas, while dealing with the underlying Boolean
formulas is ignored or delegated to Boolean-synthesis tools.

Our framework is based on that of Jiang [16,17], also concerned with extract-
ing functions from Boolean relations. That work uses and-inverters graphs
(AIGs) as the basic data structure, and uses Craig Interpolation for quanti-
fier elimination and witness extraction. As seen below, our experiments have
shown that this interpolation-based approach does not scale well and is very
unpredictable. This has also been noted in [19].

Since our approach can also be used for quantifier elimination, we compare it
with the standard quantifier elimination technique of Shannon Expansion. Other
quantifier elimination techniques such as Goldberg and Manolios [12], require
the formulas to be in CNF form, rather than the BDD representation we use. In
addition, these techniques eliminate variables in blocks, while to compute each
witness variable separately, our synthesis requires the variables to be eliminated
individually.

2 Preliminaries

Boolean Functions. We denote by B = {0, 1} the set of Boolean values.
For simplicity, we often conflate an m-ary Boolean function f : B

m → B

with its representation by means of a Boolean formula f with m proposi-
tional variables. Then f(σ) = 1 if and only if σ ∈ B

m is a satisfying assign-
ment for f . Two formulas f(x ) and f ′(x ) are logically equivalent, denoted
f ≡ f ′, if f(σ) = f ′(σ) for every assignment σ for x . Given formulas
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f(x1, . . . , xm) and f ′(y1, . . . , yn), we use f [xi �→ f ′] to denote the formula
f(x1, . . . , xi−1, f

′(y1, . . . , yn), xi+1, . . . , xm), representing the functional compo-
sition of f in variable xi with f ′. A Quantified Boolean Formula, or QBF, is
a Boolean formula in which some variables can be universally or existentially
quantified. In this work we assume that all the QBF are in prenex normal
form in which all the quantifiers are grouped together before the quantifier-
free part of the formula. Every QBF can be converted into a logically equiv-
alent quantifier-free formula through a process called quantifier elimination.
This is usually performed using the technique of Shannon Expansion [6], where
∀xf ≡ f [x �→ 0] ∧ f [x �→ 1], and ∃xf ≡ f [x �→ 0] ∨ f [x �→ 1]. Given a QBF
in prenex normal form, we can obtain its equivalent quantifier-free formula by
eliminating the quantifiers from the inside out.

Binary Decision Diagrams. A [Reduced Ordered] Binary Decision Diagram,
or BDD, is a data structure that represents a Boolean function as a directed
acyclic graph [6]. BDDs can be seen as a reduced representation of a binary deci-
sion tree of a Boolean function. We require that variables are ordered the same
way along every path of the BDD (“ordered”) and that the BDD is minimized
to eliminate duplication (“reduced”). For a given variable order, the reduced
BDD is canonical. The variable order used can have a major impact on its
size, and two BDDs representing the same function but with different orders
can have an exponential difference in size. Consequently, finding a good vari-
able order is essential for BDD-based Boolean reasoning. Since BDDs represent
Boolean functions, they can be manipulated using standard Boolean operations.
We overload the notation of the operators ¬, ∧, ∨ and functional composition
(e.g. B[xi �→ B′]) with equivalent semantics to their counterparts for Boolean
formulas.

3 Theoretical Framework

3.1 Realizability and Synthesis

The problem of synthesis of Boolean functions is formally defined as follows.

Problem 1. Given a relation between two vectors of Boolean variables repre-
sented by the characteristic function f : B

m × B
n → B, obtain a function

rf : B
m → B such that rf (x ) = 1 exactly for the inputs x ∈ B

m for which
∃yf(x ,y), and a function g : Bm → B

n such that f(x , g(x )) = 1 if and only if
rf (x ) = 1.

In the context of this problem, f is called the specification, g is called the
implementation or witness function, and rf is called a realizability function. The
specification is interpreted as describing a desired relationship between inputs
and outputs of a function, and the implementation describes how to obtain
an output from an input such that this relationship is maintained. The real-
izability function indicates for which inputs the specification can be satisfied.
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in the expression f(x ,y), x = (x1, . . . , xm) are called the input variables, and
y = (y1, . . . , yn) the output variables. The function that gives the i-th bit of
g(x ) is called a witness-bit function, and is denoted by gi(x ). A Boolean func-
tion f(x ,y) is said to be realizable for an input σ if ∃yf(σ,y) ≡ 1. We say that
f is realizable if ∀x∃yf(x ,y) ≡ 1. For every assignment σ for x such that f is
realizable for σ we will have that rf (σ) = 1. In this case, g(σ) is called a witness
for σ. In case rf (σ) = 0 we are not concerned about the output of g since f is
unrealizable for σ.

Following [17], the structure of our solution takes two steps, (1) Realizability,
where we obtain rf by constructing a sequence of formulas with progressively
fewer output variables, and (2) Function construction, in which we synthesize a
witness-bit function from every formula in the sequence obtained in the realiz-
ability step.

To perform both steps, we suggest a novel method called Self-Substitution. In
Sect. 2 we observed that Boolean quantifier elimination is usually performed via
Shannon Expansion. More recently, it was proposed to use Craig Interpolation
for quantifier elimination (see [16]). We now introduce Self-Substitution as an
alternative quantifier-elimination technique.

Lemma 1 (Self-Substitution for Quantifier Elimination). Let ϕ = Qyf(x, y) be
a QBF formula, where Q is either a universal or existential quantifier and f
is quantifier-free. Let q be 0 if Q is universal and 1 if Q is existential. Then,
Qyf(x, y) is logically equivalent to f(x, f(x, q)), and is also logically equivalent
to f(x,¬f(x,¬q)).

Proof. If Q is an existential quantifier, we prove that for every assignment σ for
x , ∃yf(σ, y) = 0 iff f(σ, f(σ, 1)) = 0: If ∃yf(σ, y) = 0, then f(σ, y) = 0 for all
possible assignments of y. Since this includes f(σ, 1), then f(σ, f(σ, 1)) = 0. On
the other hand, if f(σ, f(σ, 1)) = 0, then it cannot be the case that f(σ, 1) = 1
(otherwise f(σ, f(σ, 1)) = f(σ, 1) = 1). Therefore, f(σ, 1) = 0, and so f(σ, 0) =
f(σ, f(σ, 1)) = 0. Since both f(σ, 1) = 0 and f(σ, 0) = 0, then ∃yf(σ, y) = 0.
The claim that for every assignment σ, ∃yf(σ, y) = 0 iff f(σ,¬f(σ, 0)) = 0
is proved analogously. The proof when Q is a universal quantifier is derived by
using the identity ∀yf(x , y) ≡ ¬∃y¬f(x , y). 
�

Following Lemma 1, quantifier elimination can be performed by replacing
quantified formulas by their quantifier-free equivalents. Table 1 compares the
formulas produced by quantifier elimination using Shannon Expansion and Self-
Substitution.

The Self-Substitution method looks surprising at first glance. In the Shannon-
Expansion method it is easy to see that the size of the quantifier-free for-
mula becomes exponential compared to its quantified version, as it is a dis-
junction of all possible assignments. In Self-Substitution such a blow-up also
takes place, but the encapsulation of all assignments is more subtle. The
depth of the nested functions for a formula with n quantified variables is
n + 1. Therefore all the possible assignments for the quantified variables can
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Table 1. Equivalent formulas using each method of quantifier elimination

∀yf(x , y) ∃yf(x , y)

Shannon Expansion f(x , 0) ∧ f(x , 1) f(x , 0) ∨ f(x , 1)

Self-Substitution 1 f(x , f(x , 0)) f(x , f(x , 1))

Self-Substitution 2 f(x, ¬f(x , 1)) f(x , ¬f(x , 0))

be obtained recursively. For example let qi = 1 if the quantifier Qi is exis-
tential, and qi = 0 if Qi is universal. Then a possible expansion for two
quantified variables is Q1y1Q2y2f(x , y1, y2) = Q1y1f(x , y1, f(x , y1, q2)) =
f(x , f(x , q1, f(x , q1, q2)), f(x , f(x , q1, f(x , q1, q2)), q2)).

The following lemma which appeared in many forms in various places, e.g. [1,
17,29], is derived from Lemma 1 and shows how Self-Substitution can be used
for synthesis purposes.

Lemma 2 (Synthesis by Self-Substitution). Let f(x, y) be a Boolean formula
with free variables x and y. Then f(x, 1) and ¬f(x, 0) are witness functions to
f(x, y).

Proof. By Lemma 1, ∃yf(x , y) is logically equivalent to f(x , f(x , 1)) and to
f(x ,¬f(x , 0)). Since rf (x ) = 1 exactly for those x for which ∃yf(x , y) holds,
both f(x , f(x , 1)) and f(x ,¬f(x , 0)) return 1 if and only if rf (x ) = 1. Thus,
f(x , 1) and ¬f(x , 0) are witness functions to f(x , y). 
�

The witness f(x , 1) is called the default-1 witness, while the witness ¬f(x , 0)
is called the default-0 witness. The observation in [17] is that when f is real-
izable for all x , the conjunction of the two formulas ¬f(x , 0) and ¬f(x , 1) is
unsatisfiable. From a resolution proof of this unsatisfiability, one can extract a
Craig interpolant, which may be smaller than either f(x , 1) or ¬f(x , 0). Our
experimental evaluation for our benchmarks does not support this expectation,
where we show the advantage of using the witness function f(x , 1) for synthesis
and f(x , f(x , 1)) for existential-quantifier elimination.

3.2 Realizability and Function-Construction Using BDDs

Similarly to [17], we separate the synthesis approach into two phases. We call the
first the realizability phase, and the second the function construction phase. We
assume that the input is in the form of a BDD Bf that describes the function
f(x ,y). When f is obvious from the reference, we denote Bf by B.

Realizability. Our definition of rf requires that rf returns 1 exactly for those
assignments of x for which ∃yf(x ,y). This means rf can be obtained by apply-
ing quantifier elimination on the output variables. Recall that f has n output
variables y1, . . . , yn. Typically, the order of variables makes a major difference
in constructing a BDD. However, in this section we assume no specific order.
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The basic idea is as follows: from the input BDD B, we construct a sequence
B = {Bn, Bn−1, . . . B1, B0} of BDDs, where Bn = B, such that Bi−1 is log-
ically equivalent to ∃yiBi. Therefore, the BDD Bi−1 is constructed from Bi

by eliminating the existentially quantified variable yi. The elimination process
guarantees that B0 represents the realizability function rf .

The elimination of yi from Bi can be done via either Shannon Expansion,
or via Self-Substitution. For Shannon Expansion, we define Bi−1 = Bi[yi �→
0] ∨ Bi[yi �→ 1]. To use the Self-Substitution method, we define either Bi−1 =
Bi[yi �→ Bi[yi �→ 1]] to construct the default-1 witness for yi or Bi−1 = Bi[yi �→
¬Bi[yi �→ 0]] to construct the default-0 witness for yi.

Function Construction. We next use the BDD sequence obtained in the real-
izability process to construct a sequence of BDDs W = {Wn,Wn−1, . . . ,W1},
each emitting an output bit.

By using Lemma 2, we perform the function-construction step as follows. Let
B = {Bn, Bn−1, . . . , B1, B0} be the BDD sequence obtained in the realizability
step, and note that the output variables in the BDD Bi are y1, . . . , yi. We first
construct W1 from B1 by setting W1 = B1[y1 �→ 1] for a default-1 witness for y1
or W1 = ¬B1[y1 �→ 0] for a default-0 witness for y1. The structure of BDDs allows
us to define both B1 and ¬B1 without extra effort. Next, we inductively define
either Wi = Bi[y1 �→ W1, . . . , yi−1 �→ Wi−1, yi �→ 1] for a default 1 witness for
yi, or Wi = ¬Bi[y1 �→ W1, . . . , yi−1 �→ Wi−1, yi �→ 0] for a default 0 witness for
yi. Thus, every Wi has only the input variables x , and represents the witness-bit
function gi(x ). Thus, the proof for the following theorem follows from Lemma 2.

Theorem 1. For every assignment σ for y, the sequence (g1(σ), . . . gn(σ)) is a
witness to σ. Thus W describes a witness function for B.

In practice, we chose, for simplicity, to use only the default-1 witnesses. In
principle, one could always choose the best among the default-0 and default-1
witnesses. Since, however, we have n output variables, and the assignment of one
of them affects the others, finding the optimal combination of bit-witness func-
tions requires optimizing over an exponentially large space, which is an expensive
undertaking. Finding such combinations of functions is a matter of future work.

3.3 Synthesis of Input-First BDD

An input-first BDD is a BDD in which all the input (universal) variables precede
all the output (existential) variables. Synthesis using input-first BDDs was sug-
gested in [22], but an explicit way to do it was not provided. This specific order
of variables of input-first BDDs has led us to develop a method called Trim-
Substitute for synthesis of input-first BDDs, in which we tailor Self-Substitution
specifically for the input-first order. Given the input BDD, the running time of
TrimSubstitute is at most quadratic in its size. In Sect. 4 we show that Trim-
Substitute indeed outperforms Self-Substitution on input-first BDDs. In this
section we give an outline of our method. Full proof with an example appears
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in the appendix. For simplicity TrimSubstitute produces default-1 witnesses.
With minor modification the TrimSubstitute method can produce any desired
combination of bit-witness functions.

An output node (resp. input node) in a BDD B is a node labeled with an
output (resp. input) variable. Recall that every non-terminal node in B has
exactly two children called high-child and low-child. Let B be an input-first BDD.
We define Fringe(B) to be the collection of all output nodes and terminal nodes
in B that have an input node as an immediate parent. Note that Fringe(B)
can be found by performing standard graph-search operations (e.g. Depth-First-
Search) on B. Also note that B is realizable exactly for those assignments for
which the corresponding node in Fringe(B) is not the terminal node 0.

Given an input-first BDD B, we assume without loss of generality that the
order of the output variables in B is y1, . . . yn. We construct a sequence of witness
BDDs W = (W1, . . . ,Wn), in which every Wi contains only input variables, and
is the witness-bit function gi(x ). To obtain W , we construct a sequence of
BDDs B’ = (B′

1, . . . , B
′
n) in which every B′

i is an input-first BDD that contains
all input variables, plus only output variables from yi, . . . , yn. We obtain Wi

from B′
i by an operation called “trim”, and obtain B′

i+1 from B′
i and W ′

i by
an operation called “substitute”, hence our method’s name TrimSubstitute. We
next describe how B’ and W are obtained.

We assume by induction on i ≤ n that B′
i is an input-first BDD that is

realizable for exactly the same inputs as B, and that contains input variables
plus only output variables from yi, . . . , yn. Setting B′

1 = B, we already satisfy
these assumptions for the base case. We first construct Wi by “trimming” B′

i,
which means replacing each node v in Fringe(B′

i) with either the terminal node
0 or 1. Intuitively we construct Wi to produce an output bit for yi in the “default-
1” sense, i.e., Wi always produces 1 unless 1 is not a possible output bit for yi.
Formally, this is done as follows.

Note that if a v ∈ Fringe(B′
i) is the terminal node 0, then the assignment

to yi is irrelevant since the path to v corresponds to an unrealizable input, and
so it can be left as 0. If v is a variable node, it cannot be that both children of v
are the terminal node 0, as otherwise v itself would be reduced to 0. Therefore,
if v is labeled by yi, and the high-child of v is not the terminal node 0, replace v
with the terminal node 1. Otherwise, if v is labeled by yi and the high-child of
v is 0 (then the low-child of v is not 0), replace v with the terminal node 0. For
all other cases (v is labeled yj , where j > i, or v is the terminal node 1), replace
v with the terminal node 1. Note that Wi has only input variables.

Finally, we use B′
i and Wi to construct B′

i+1. To do that, we define B′
i+1 =

B′
i[yi �→ Wi]. That is, B′

i+1 is constructed from B′
i by “substituting” yi with

Wi. By construction we have that B′
i+1 is an input-first BDD that is realizable

for the same inputs as B and that contains input variables plus only output
variables from yi+1, . . . , yn. Therefore, the induction assumption is maintained.
An example of the construction can be found in the appendix.

Theorem 2. The BDD sequence W = (W1, . . . ,Wn) describes a witness func-
tion for B.
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In the last induction step we obtain an additional BDD B′
n+1 which is realiz-

able for the same inputs as B, but contains only input variables. As such, B′
n+1

encodes the realizability function rf .

4 Experimental Evaluation

We compare our approach with two current state-of-the-art methods: the Craig
Interpolation-based approach [17] and Sketch [27]. In addition, we compare
between Shannon Expansion and Self-Substitution as quantifier-elimination
methods to be used for the realizability phase. Finally, we see how the Trim-
Substitute method, specialized to input-first BDDs, compares with the generic
Self-Substitution method when using this type of BDD.

Rather than using a random collection of problem instances for our experi-
ments, we selected a collection of scalable benchmarks, presented in Table 2, that
operate over vectors of Boolean variables. Each entry in the table represents a
class of benchmarks parameterized by the length n of the vectors. This allows
us to produce benchmarks of different size to measure how our techniques scale.
For our experiments we vary n in powers of 2 between 8 and 1024, totaling 42
benchmark instances. The first five benchmark classes represent linear-arithmetic
functions in which the vectors encode the binary representation of integers in n
bits, while the sixth represents the sorting of a bit array of size n. The first col-
umn in Table 2 describes the function we synthesize, where x and x ′ are vectors
of input variables and y is a vector of output variables. The relational specifica-
tion of these functions are shown in the second column. These specifications are
translated to propositional-logic formulas (see appendix for details) and given as
input to the algorithm, which then constructs a BDD for the relational specifica-
tion and synthesizes the implementation function. All benchmarks are realizable
for every input2, therefore the realizability function is just the constant 1.

Table 2. Benchmark classes used for synthesis. See the appendix for translation into
propositional-logic formulas.

Function to synthesize Specification

Subtraction y = x’ − x y + x = x’

Maximum y = max(x , x’ ) (y ≥ x ) ∧ (y ≥ x’ ) ∧ ((y = x ) ∨ (y = x’ ))

Minimum y = min(x , x’ ) (y ≤ x ) ∧ (y ≤ x’ ) ∧ ((y = x ) ∨ (y = x’ ))

Floor of average y = �x + x’

2
	 (2y = x + x ′) ∨ (2y + 1 = x + x’ )

Ceiling of average y = 
x + x’

2
� (2y = x + x’ ) ∨ (2y = x + x’ + 1)

Sorting y = sort(x ) sorted(y) ∧ (Σn
i=1xi = Σn

j=1yj)

2 The Subtraction class of benchmarks is defined for subtraction modulo 2n, or equiv-
alently subtraction in two’s complement, which is realizable for all inputs.
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For purposes of evaluation we have constructed a tool, called RSynth, imple-
mented in C++11 using the CUDD BDD library [28]. Self-Substitution was
implemented using the built-in method Compose for BDD composition. That
way, for a BDD B representing a function f(x , y), the BDD for f(x , f(x , 1))
is computed as B.Compose(i, B.Compose(i, bddOne)), where bddOne is the
BDD for the constant 1 and i is the index of variable y. All the experiments in
this paper were carried out on a computer cluster consisting of 192 Westmere
nodes of 12 processor cores each, running at 2.83 GHz with 4 GB of RAM per
core, and 6 Sandy Bridge nodes of 16 processor cores each, running at 2.2 GHz
with 8 GB of RAM per core. Since the algorithm has not been parallelized, the
cluster was used solely to run different experiments simultaneously. The execu-
tion of each benchmark for a given n had a maximum time limit of 8 h.

Scalability Comparison with Previous Approaches. We compared the
performance of RSynth with the Craig Interpolation approach from [17] that
synthesizes functions in the format of AIGs, and the Sketch synthesis tool [27]
that uses syntax-guided search-based synthesis. The original tool for Craig Inter-
polation from [17] was not available, therefore we used an implementation of the
same method, which is called MonoSkolem, from [19].

Since BDD sizes can blow up if a poor variable order is chosen, causing initial
BDD construction time to dominate the overall running time, we selected a vari-
able order that can be expected to produce efficient BDDs for our benchmarks.
For that, we chose an order called fully interleaved, in which the variables are
ordered according to their index, alternating input and output variables.

We show the results of the comparison for the Subtraction, Maximum and
Ceiling of Average benchmark classes in Fig. 1. Similar results were obtained for
the other arithmetic benchmarks. Recall that n is the number of variables in
each vector x , x’ and y , therefore the total number of variables in each case is
3n, with 2n input variables and n output variables.

Sketch is omitted from Fig. 1 because it was unable to synthesize the bench-
marks for any n greater than 3, in all cases either timing out or running out of
memory. For the two remaining approaches, it is noticeable that RSynth outper-
formed MonoSkolem by orders of magnitude, and scaled significantly better.

Although these results seem to lean considerably in favor of our approach,
note that the benchmark classes used so far are deterministic (relations that
have a unique implementation), while Craig Interpolation is reported to produce
better results for non-deterministic relations by exploiting the flexibility in the

Table 3. Non-deterministic benchmark classes

Input Output Specification

Decomposition x y , y’ x = y + y’

Equalization x , x’ y , y’ x + y = x’ + y’

Intermediate value x , x’ y (x ≤ y ∧ y ≤ x’ ) ∨ (x’ ≤ y ∧ y ≤ x )
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Fig. 1. Comparison of running time of RSynth against MonoSkolem

choice of witness. To address these factors, we added to the same setting an
additional collection of linear arithmetic operations, represented in Table 3, this
time of non-deterministic benchmarks.

Contrary to expectations, as Fig. 2 shows, our method gives better perfor-
mance for the non-deterministic benchmark classes as well. From this we can
conclude that despite the flexibility that Craig Interpolation provides, it does
not necessarily exploit the don’t-cares of the input specification efficiently. These
results are supported by the ones obtained in [19], which reported that the qual-
ity of the results obtained when using Craig Interpolation depended strongly on
the interpolation procedure of finding good interpolants, something which is not
guaranteed to happen. Comparison of the size of the implementation between
RSynth and MonoSkolem also showed that the functions constructed by Craig
Interpolation are much larger.

These results allow us to conclude that with a good variable order to the
function being synthesized, our method scales well and outperforms previous
approaches. For linear arithmetic operations, we can identify fully-interleaved to
be such an order.

Shannon Expansion vs. Self-Substitution. As mentioned in Sect. 3.2, the
first step of the synthesis, realizability, requires quantifier elimination, which
can be performed by either Shannon Expansion or Self-Substitution. We com-
pared these two techniques by measuring the running time of the realizability
phase using each of them. Our experiments show that the realizability step is
responsible for only a small fraction of the running time of the synthesis. For
the arithmetic benchmarks with fully-interleaved order, this step is performed in
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Fig. 2. Comparison of running time using non-deterministic benchmarks. The results
for Equalization using MonoSkolem are not shown due to the synthesis timing out for
n > 8.

under 1s in all cases, even for n = 1024. In order to better observe the difference
between the two quantifier-elimination techniques, we measured them using the
Sorting benchmark class, for which the BDD representation is not as efficient.

As can be seen in Fig. 3, as n grows Self-Substitution tends to perform better
than Shannon Expansion, taking approximately 40% less time to perform the
realizability step for n = 256 (the same behavior was observed on the arithmeti-
cal benchmarks, using different variable orders). Thus, our experiments show an
advantage in using Self-Substitution for quantifier elimination in the realizability
step. Note that both Self-Substitution and Shannon Expansion are semantically
equivalent, and thus produce identical BDDs. Therefore, the difference in per-
formance between the two methods originates solely from the application of the
CUDD operation itself over the constructed BDD. Shannon Expansion is cur-
rently the standard way of performing quantifier elimination on BDDs, but our
experiments indicate that Self-Substitution interacts more efficiently with this
type of data structure and should be considered as an alternative for practical
applications.

Synthesis for Input-First BDDs. Following a suggestion in [22] for synthesis
of propositional logic, we presented in Sect. 3.3 the TrimSubstitute method for
BDDs that follow an input-first order. We compared the performance of Trim-
Substitute with Self-Substitution (using Self-Substitution for both realizability
and function construction) on input-first BDDs.
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Fig. 3. Comparison of Shannon expansion and self-substitution for realizability, for the
Sorting benchmark class

We first observed that construction time of the input-first BDD for the arith-
metic benchmark classes scales poorly and was very large even for a relatively
small n. The reason is that in the input-first order, the BDD is forced to keep
track of all relevant information about the input before looking at the output
variables. Thus, the constructed BDD must have a path for every possible out-
put of the function being synthesized. Since in the arithmetic benchmarks, the
number of such paths is 2n, it does not pay off to use an input-first order for
these benchmarks, regardless of the efficiency of the synthesis algorithm used.

On the other hand, for other classes of specifications the amount of informa-
tion that must be memorized about the input can be polynomial or even linear
in size. An example for that is the Sorting benchmark class, in which it is only
necessary to keep track of the number of 1s in the input; thus, only n paths
are required in the constructed BDD. In this case, although the construction
time of the initial BDD still dominates the running time (experiments showed
construction to take around 1200 s for n = 256), the size of the constructed BDD
scales much better and makes synthesis feasible for a larger number of bits. The
development of techniques to lessen the impact of construction time is a matter
of future work.

Figure 4 shows a comparison of running time between the Self-Substitution
and TrimSubstitute methods for Sorting. We can see that TrimSubstitute greatly
improves over Self-Substitution, performing around 50 times faster for n = 256.
These results imply that when the specification can be efficiently represented as
an input-first BDD, TrimSubstitute can be used to obtain a significant improve-
ment in synthesis time.
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Fig. 4. Comparison of methods for synthesis using input-first BDDs for the Sorting
benchmark class

5 Concluding Remarks

In this work we introduced BDD-based methods for synthesizing Boolean
functions from relational specifications. We suggested a method called Self-
Substitution for both quantifier elimination and function construction. We also
suggested a method called TrimSubstitute, which outperforms Self-Substitution
on input-first BDDs. We demonstrated that our methods scale well for bench-
marks for which we have good BDD variable order, and outperform prior tech-
niques.

A key challenge venue is to lessen the impact of the BDD size in the syn-
thesis process. Factored representation of BDDs and early-quantification tech-
niques, used in both symbolic model checking [8] and satisfiability testing [23],
may be also helpful for synthesis. Another research direction is to find a good
combination of bit-witness functions for specific benchmarks. There may also
be BDD variants that can bring benefits in this area. For example, Free Binary
Decision Diagrams (FBDDs) [11] relax the variable-order requirement in BDDs
by allowing separate paths to use different orders. This might allow for more
efficient representation of specifications in cases where an efficient global order
is difficult to find. The Self-Substitution method as a technique for quantifier
elimination calls for further research, both in applied settings, for example, in
symbolic model checking [8], and in theoretical settings, for example, in the study
of Post classes and algebraic clones [9]. Finally, we plan to explore the extension
of our techniques to the setting of temporal synthesis.
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A APPENDIX

A.1 Proof of TrimSubstitute

We prove Theorem 2. Let B be an input-first BDD, and let B’ = (B′
1, . . . , B

′
n)

and W = (W1, . . . ,Wn) as defined in Sect. 3.3. Figure 5 depicts our construction.
Given a BDD D, and a node v in D, the subgraph Dv of D is obtained by
restricting D to all the nodes that can be reached from v. Assume z1, . . . zk are
the variables of D. Then by following a partial assignment ν to the variables of
z1, . . . zi for some i, we follow a unique path in D that ends up in a node v. Then
the subgraph Dv is called the subgraph reached by following ν in D.

Theorem 2. The BDD sequence W = (W1, . . . ,Wn) describes a witness func-
tion for B.

Proof. Let gi : Bm → B be the function that describes Wi. The following facts
are easily proved by induction on i.

1. Following the construction of Wi, for every realizable assignment σ to the
input variables, the path followed by (σ, gi(σ)) in B′

i does not end in the
terminal node 0.

2. Following fact (1), and the construction of B′
i+1, we have that for every real-

izable assignment σ to the input variables, the subgraph reached by following
σ in B′

i+1 is identical to the subgraph reached by following (σ, gi(σ)) in B′
i.

Therefore B′
i+1 is realizable for σ as well.

As a result, we specifically have that for every realizable assignment σ to the
input variables, the assignment (σ, g1(σ), . . . , gn(σ)) leads to the terminal node
1. This means that the BDD sequence W = (W1, . . . ,Wn) describes a witness
function for B. 
�

A.2 Encoding of Specifications in Propositional Logic

For completeness we show how to encode the specification given in Sect. 4,
Table 2, into propositional logic formulas (later represented as a BDD).
We assume that an integer is described by a vector of variables z =
(zn, zn−1, . . . , z2, z1), where zn represents the most significant bit and z1 the
least significant bit. We now describe how specific operations used in the high-
level specifications are encoded in propositional logic.
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x1

x2 x2

y1 y1

y2 y2

0 1

(a) B′
1 = B

x1

x2

0 1

(b) W1

x1

x2

y2 y2

0 1

(c) B′
2

x1

x2

0 1

(d) W2

Fig. 5. Example of the TrimSubstitute method for a BDD representing the formula
(((x1 → ¬y1) ∧ (x1 ⊕ x2) ∧ (x1 ⊕ y2)) ∨ ((x1 ↔ x2) ∧ (y1 ⊕ y2))). Nodes with bold
outlines are in Fringe(B′

i), and are either white if they should be replaced by the leaf
node 0 or gray if they should be replaced by the leaf node 1.



BDD-Based Boolean Functional Synthesis 419

Relational Operations. The formulas (z = z′), (z ≤ z′) and (z ≥ z′) are
encoded respectively as ϕ=, ϕ≤ and ϕ≥, as follows:

ϕ= =
n∧

i=1

(zi ↔ z′
i) (1)

ϕ≤ = ϕn, where ϕi = (¬zi ∧ z′
i) ∨ ((zi ↔ z′

i) ∧ ϕi−1) and ϕ0 = 1 (2)

ϕ≥ = ϕn, where ϕi = (zi ∧ ¬z′
i) ∨ ((zi ↔ z′

i) ∧ ϕi−1) and ϕ0 = 1 (3)

Addition. Since addition is an operation that returns an integer rather than
a Boolean it cannot be implemented as a single Boolean formula. Rather, it
produces n formulas ϕ+

n , . . . , ϕ+
1 representing a new integer, which can be later

combined into a single formula through one of the relational operators above.
The encoding for the + operator follows the usual representation of addition in
binary: ϕ+

i = zi ⊕ z′
i ⊕ ci−1 where ci = (zi ∧ z′

i) ∨ (zi ∧ ci−1) ∨ (z′
i ∧ ci−1).

In this encoding, ci represents the carry-out from the addition in the i-th
position. The carry-in for the first position, c0, is normally 0, but can be set to 1
to add an extra term of 1 to the sum, which is useful in the formulas for average.

Recall that in the Subtraction benchmark class, + is interpreted as addition
modulo n. On the other hand, in the high-level formulas for average we need the
result of the addition with an extra bit added if necessary. This extra bit can be
obtained by simply taking cn. Therefore the comparisons in these formulas are
actually performed over (n + 1)-bit integers.

Sorting. The specification for the Sorting benchmark class requires a more
careful encoding. Recall that its high-level specification is given as sorted(y) ∧
(Σn

i=1xi = Σn
j=1yj) where x and y are interpreted as bit arrays. The first con-

junct says that the output must be sorted, meaning that all 0 bits must precede
all 1 bits. This is defined recursively for a range of consecutive positions yi, . . . , yj
by saying that either all the variables are assigned to 1, or the first is 0 and the
rest are sorted. The function sorted(y) is defined as sorted(yi, . . . , yj) = 1 if
i = j and (

∧j
k=i yk) ∨ (¬yi ∧ sorted(yi+1, . . . , yj)) otherwise.

The second conjunct in the Sorting specification says that the output must
have the same number of bits set to 1 as the input. In the high-level represen-
tation, this can be represented by Σn

i=1xi = Σn
j=1yj , but in practice it is not

necessary to use summation in the encoding. Instead, the propositional logic
formula for this property can be represented by a recurrence and constructed
using dynamic programming:

ϕ0,0 = 1
ϕi,0 = ¬xi ∧ ϕi−1,0

ϕ0,j = ¬yj ∧ ϕ0,j−1

ϕi,j = ((xi ↔ yj) ∧ ϕi−1,j−1) ∨ (xi ∧ ¬yj ∧ ϕi,j−1) ∨ (¬xi ∧ yj ∧ ϕi−1,j) (4)
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In this encoding, ϕi,j means that x1, . . . , xi has the same number of 1s as
y1, . . . , yj . This is obtained by matching each bit that is set to 1 in the input
with a bit that is set to 1 in the output, and skipping bits that are set to 0.

Note that some of these encodings can be optimized, for example the spec-
ification for Sorting can be reduced by testing at the same time if the input is
sorted and it has the same number of 1s as the output. This can shorten the
construction time, but since it is logically equivalent to the original formula, by
the canonicity property of BDDs, the resulting BDD for the specification will be
the same.
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Abstract. Soufflé is an open source programming framework that
performs static program analysis expressed in Datalog on very large code
bases, including points-to analysis on OpenJDK7 (1.4M program vari-
ables, 350K objects, 160K methods) in under a minute. Soufflé is being
successfully used for Java security analyses at Oracle Labs due to (1)
its high-performance, (2) support for rapid program analysis develop-
ment, and (3) customizability. Soufflé incorporates the highly flexible
Datalog-based program analysis paradigm while exhibiting performance
results that are on-par with manually developed state-of-the-art tools.
In this tool paper, we introduce the Soufflé architecture, usage and
demonstrate its applicability for large-scale code analysis on the Open-
JDK7 library as a use case.

1 Introduction

Among the reasons for the slow industrial adoption of static program analysis
is the lack of sufficient customizability and scalability in tools. Recently, the
use of Datalog-like languages, has had a resurgence in several computer science
communities [9], particularly, in the area of program analysis [2–4,12,16,18]
where tools such as µZ [10], LogicBlox [11] and bddbddb [18] have shown great
promise. In these tools, Datalog acts as a domain specific language to express
custom program analyses concisely, reducing the complexity of developing pro-
gram analyzers. The drawback of this approach is that program analyses speci-
fied in Datalog typically experience reduced performance compared to manually
implemented tools. A notable reason for this decrease in performance appears to
be the “one size fits all” approach of evaluating Datalog programs, i.e., Datalog
engines generally lack the ability to specialize their evaluation process for a given
instance of a program analysis specification.

To close the performance gap, we have developed a tool called Soufflé that
overcomes the performance limitations of standard Datalog evaluation by per-
forming an efficient synthesis of Datalog specifications to executable C++ pro-
grams. As a result, Soufflé is able to perform analyses on-par with state-of-the-
art manual tools while retaining the advantages of employing a domain specific
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Fig. 1. Comparison: standard Datalog evaluation versus the architecture of Soufflé

language for expressing static program analyses. For example, [6] reports the
ground-breaking capability of obtaining points-to analysis results for the Open-
JDK library in under a minute. With the same dataset, Soufflé can obtain a
similar performance (35s) using a general purpose analysis infrastructure on a
multi-core commodity desktop system.

In this tool paper, we give an overview of the Soufflé framework;
notably its architecture, optimizations and expected performance on very large
code bases. We conclude with a summary of on-going developments of the
Soufflé infrastructure.

2 How It Works

A Datalog program [1] consists of an extensional database, which is defined by
facts, and an intensional database, which is defined by rules. In a setup for static
program analysis, the extensional database represents an input program in rela-
tional form. The relational representation of an input program is obtained from
an extractor [15] describing the relevant semantics of the input program for a
given program analysis. The intensional database represents the program analy-
sis specification phrased as Horn clause formulae over finite domains. Figure 1(a)
illustrates the workflow for static program analysis in Datalog. The query result
of the Datalog execution represents the actual result of the program analysis.
While standard schemes for evaluating Datalog are generally optimized for reduc-
ing the amount of redundant computation, e.g., the conventional, interpreter-
based semi-näıve evaluation scheme [1] as shown in Fig. 1(b), they lack the ability
to specialize their evaluation for a given program analysis specification instance.

Soufflé takes a different approach: Instead of evaluating a Datalog pro-
gram on-the-fly, we treat a Datalog program as a specification that is synthe-
sized to a C++ program. The C++ program is compiled, and executed with
the extensional database (i.e. facts) as an input. Essentially, the generated exe-
cutable becomes an analyzer in its own right. Figure 1(c) depicts our translation
scheme, where the Datalog specification is first parsed and semantically checked.
The input specification is then translated internally to an imperative Relational
Algebra Machine (RAM) program. The RAM program is further translated to a
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Fig. 2. Specialization Hierarchy and First Futamura Projection of Semi-Näıve
Evaluation

C++ program with OpenMP annotations for parallel execution and C++ tem-
plate based meta-programming elements. In the last stage, an OpenMP/C++
compiler translates the generated code to a highly optimized, parallel program.

2.1 A Hierarchy of Specializations

To achieve a synthesis of Datalog specifications to C++, we follow a staged
specialization hierarchy as depicted in Fig. 2(a). At each stage, a specialization
step, as characterized by Futamura projections [8], is applied. The foundation
is provided by an abstract transformation Mix that, given an interpreter Int
and a source program Source, yields a specialized program amalgamating the
interpreter and the source program. The specialized program performs the same
computation as the source program (executed by the interpreter) – yet more
efficiently. In Fig. 2(b), the semantic equivalence is shown between evaluation
under an interpreter Int and the program produced by the Mix transforma-
tion [8]. What is of particular interest, is that at each specialization phase,
information is revealed that enables opportunities for code optimizations that
were not possible at earlier stages. As a consequence, the binary code produced
by our specialization hierarchy is on-par in terms of run-time and memory usage
with state-of-the-art hand crafted code.

The first specialization PRAM=Mix(Intdl,Idb) sees the Semi-Näıve Evalua-
tion [1] as the interpreter, Intdl. It is specialized with the intensional database,
Idb, corresponding to the analysis specification. As a result, we receive a rela-
tional algebra machine program PRAM that expresses the computation of the
specified analysis as a series of fix-point computation steps over relational alge-
bra operations. From a high-level viewpoint, the specialization of the Semi-Näıve
evaluation is a translation of a declarative Datalog program to an imperative
relational algebra program.

The next application of Futamura’s projection is performed on the RAM
program, i.e., PC++<>

= Mix(IntRAM,PRAM), that has been generated by the
first stage and the RAM interpreter IntRAM. The conducted specializations tar-
get the efficient structuring of loop-based join operations and the identification
of optimal index support, in order to reduce the worst-case runtime complexity
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Fig. 3. Java-like input program, a graphical representation of its control-flow, and
security specification in Soufflé

of the RAM program. However, index management is expensive and a minimal
number of indices is desirable. In Soufflé we employ a novel, optimal and
polynomial-time algorithm that is inspired by Dilworth’s theorem [7] to com-
pute only necessary indices. The idea of the algorithm is to compute partitions
of chains in a lattice of indices. From each chain, a maximum index is computed
that subsumes all other indices in the chain. This optimization results in a large
run-time improvement in the resulting analyzer. After specializing the relational
algebra program, C++ code that makes extensive use of templates is generated.

The final specialization step, PC++ = Mix(Int<>,PC++<>
), is performed

while compiling the generated C++ program. This Futamura projection is imple-
mented using template-based meta-programming techniques [17]. With meta-
programming techniques, data structures and algorithms are specialized by sta-
tic information, thereby hoisting computations from run-time to compile-time.
E.g., data structure interfaces are realized in form of C++ concepts rather than
polymorphic C++ base classes to eliminate virtual-call dispatches and run-time
type checks. The generated data structures are highly specialized towards the
use of the corresponding relations in the input program. We employ efficient par-
allel variations of B-trees and Tries, with customized data element, node, and
iterator types. Additionally, primary and secondary index support is provided
for efficient operations on the represented relation in the program. For exam-
ple, one of the most time-consuming operations with the use of indices is the
comparison of two tuples. For this purpose we instantiate specialized versions
of templatized lexicographical order functions in order to removing unnecessary
control-flow and memory access overhead from the analysis run-time.

Our staged-translation approach using a specialization hierarchy coupled
with standard Datalog optimizations and specialized relational data structures
allows Soufflé to analyze very large code bases, previously considered to be
impractical for Datalog-based engines. The generated C++ code is packaged in
form of header files for a smooth integration with host applications.

2.2 An Example of the Specialization Process

Figure 3 illustrates a simple security analysis for an example assuming that there
is a low and high security state in a program. The invocation of a security
sensitive method vulnerable is permitted only in the high-security state. A call
to the method protect transfers the security state from low to high if permitted.
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The example code of Fig. 3 would not violate the imposed security policy if it
can be assumed that i < j whenever m is invoked. However, since this can not
be ensured, m exhibits a security violation which we would like to detect. The
control-flow graph of m is shown next to the code fragment. It has the start
nodes s, and nodes �1,�2, and �3 representing statements in the input program.
An edge (x, y) ∈ E between two nodes represents a potential transfer of control.
A statement x ∈ P raises the security level.

A simple analysis verifying the imposed security policy computes all state-
ments that can be reached without passing the protect function. If a call to
vulnerable is included in this set, the security policy is violated. Such a secu-
rity analysis is be specified by the Soufflé code listed next to the control-flow
graph in Fig. 3. The first section of the program declares relations used in the
Soufflé program. The relation E is defined as a binary relation between two
Node elements and the sets P and I contain elements of type Node. The qualifier
input denotes that the relations are an extensional database and are provided
as an input when executing the analysis. The set I contains all nodes in the
control-flow that are not secure and is denoted as a result of the analysis using
the qualifier output. In particular, if node �3 which is a vulnerable call is in
set I, the method m does not fulfill the security policy to be enforced and would
thus be identified as insecure.

The analysis always assumes the entry node s to be insecure by adding it to
set I via I("s"). The propagation rule

I(y) :- I(x), E(x,y), !P(y).

adds node y to the set of insecure nodes if (1) node x is insecure, (2) there is a
control-flow from x to y, and (3) the target node y does not raise the security
level.

Soufflé translates the given analysis specification in stages. The specializa-
tion hierarchy first fuses the semi-näıve evaluation with rules from the analysis
as shown in Fig. 4: For the recursively defined set I code computing a fixed-point
is generated. The set I is thereby supported by two auxiliary sets I′ and Δ I. The
set I′ represents the newly gained knowledge within an iteration of the fix-point
computation and set Δ I represents the newly gained knowledge of the previous
iteration. The fix-point computation is performed in the while loop from line 2
to line 9 of the RAM program listed by Fig. 4(a). The first section of the loop
body (lines 3 - 7) computes I′ using Δ I as an input. The loop starting in line 4
iterates over all nodes in Δ I and the nested loop starting in line 5 iterates over
all edges in the control flow graph. If any of those edges links some node x to a
previously discovered insecure node y present in Δ I, where x is not a protect
call itself and has not been marked as insecure before, it is add to the newly
deduced set of insecure nodes I′ (lines 6 and 7). In the last two statements of
the loop body (i.e. lines 8 and 9) the newly gained knowledge of relation I′ is
added to relation I and I′ becomes Δ I. The fixed-point calculation terminates
if no new insecure nodes could be identified.

The pseudo-code of the Futamura projection is not optimal since it might
have a worst-case complexity of O(n · m) where n is the number of nodes in the
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Fig. 4. Running example

control-flow graph and m is the number of edges in the control-flow graph. To
improve the performance of the program, we specialize the loop traversal of the
loop in line 5 by employing an index. The index filters out all pairs in the edge
relation whose source is not node u, i.e., all the edges are selected which emanate
of node u denoted by the set E(u, ). This specialization requires an index on
relation E, yet significantly reduces the runtime complexity. Typical analyses
result in potentially hundreds of indices, making index management expensive
if performed naively. We therefore employ an optimal, minimal index selection
technique based on Dilworth’s theorem [7] to select only necessary indices since
an index may subsume several indices. Suppose we had another access to relation
E on both u and v attributes, i.e., E(u, v). A naive implementation would be to
have two indices defined by the lexicographical orders u and u<v, however, the
minimal solution would be to have only one index, namely, u<v as it subsumes
the index with only u. Some information to our solution to this combinatorial
problem can be found in [13].

To implement indices from the previous step, we employ templatized B-Trees
that require a comparison function for two tuples in the relation. The comparison
function is implemented as a lexicographical order in the form of a template as
sketched below,

template<int...> struct Comperator;
template<int i, int ... tail > struct Comperator<i,tail...> {
static bool cmp(const tuple& a, const tuple& b){
return a[ i ] < b[i ] || (a[ i ] == b[i] && Comperator<tail...>::cmp(a,b));
}
};
template<> struct Comperator<> {

static bool cmp(const tuple&, const tuple&){ return true; }
};

The variadic template for the struct Comperator is parametrized by the columns
in order. E.g., the call Comperator<2,0>::cmp(a,b) compares the tuples a and
b by checking whether the third element of a is less than the third element of b.
If the comparison results in a tie, the first elements of both tuples are compared
to determine the order between the two tuples a and b. The operator is defined
recursively: the base case is given by the struct Comperator<> considering
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every tuple equal, and the inductive case by struct Comperator<i,tail...>,
comparing the i-th components and, if equal, delegating the comparison to
Comperator<tail...>. The expansion of the template for a given instance such
as Comperator<2,0> is performed at compile-time and delivers, in combination
with function inlining, significant performance gains for index construction and
retrieval. Without applying meta-programming techniques that rely on program
specializations, i.e., pushing computations from runtime to compile-time, these
performance gains would not be achievable.

3 Case Study: OpenJDK7

In this section we present our experience using Soufflé as a Java security
analysis tool on the Java Development Kit (JDK). We point the reader to [5]
for information on the Java vulnerabilities work at Oracle. For more detailed
performance data on the techniques used in Soufflé, we refer the reader to [13].

In Table 1 we present three types of analyses performed on the OpenJDK7-
b147. Due to the sheer size of OpenJDK7 (1.4M variables, 350K heap objects,
160K methods, 590K invocations and 17K types) such analyses are typically
regarded as either impractical for most tools or at the very least, extremely
challenging. The CI column refers to a context-insensitive points-to analysis
and the CS refers to a context-sensitive points-to analysis. Points-to analysis is
the main building block of most security analyses performed and are typically
dominating the overall execution time. The last column, Security, refers to a
large, composite security analysis similar to the caller sensitive method analysis
in [5].

For our evaluation, we compare the performance of bddbddb [18], Z3’s Data-
log extension µZ [10], an SQLite based Datalog engine [14], and a 8-core parallel
version of Soufflé. Each analysis has been ported to the respective Datalog
variation of the evaluated tools. The resulting specifications typically comprise
a few thousand lines of code. For the Soufflé based specifications, Soufflé’s
module system has been utilized to facilitate the reuse of code among the three
analysis, reducing the necessary development effort.

Our experiments reveal the limited capability of pre-existing Datalog-based
tools when analyzing very large code bases. The CI analysis represents a very
simple points-to analysis that does not construct the call-graph on the fly. A

Table 1. Comparison of Datalog evaluation tools for analyses on the OpenJDK7 b147
library, executing on an 8 core Intel Xeon E5-2690 v2 @ 3.0 GHz server system. DNF
= Did Not Finish within 18 h.

CI CS Security

Tool Δt [hh:mm::ss] Memory [GB] Δt [hh:mm::ss] Memory [GB] Δt [hh:mm::ss] Memory [GB]

bddbddb 0:30:00 5.7 DNF DNF DNF DNF

SQLite 6:20:00 40.2 DNF DNF DNF DNF

µZ DNF DNF DNF DNF DNF DNF

Soufflé 0:00:35 8.5 6:44:08 206.4 14:45:01 75.3
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hand-crafted version of this analysis is reported to run under a minute [6]. For
the CI analysis, bddbddb performs the analysis in a reasonable amount of time.
However Soufflé outperforms bddbddb in terms of run-time by more than 50×
consuming a comparable amount of memory. In the case of the CS and Security
analyses, Soufflé is the only tool capable of performing the analyses within
the 18 h time limit imposed by the computation resources available to us for our
evaluations. The Z3 based versions did not manage to finish any of our evaluated
analyses in time.

4 Conclusion and Current Developments

We have presented Soufflé, a Datalog-based analysis tool that instead of evalu-
ating Datalog, performs several specialization and optimization steps to produce
a compiled, binary analyzer that can handle very large code bases. Soufflé is
publicly available1 and is actively developed by both Oracle and several uni-
versities. Soufflé supports a range of Datalog language extensions to aid in
the specification of program analyses and resulting analyzers may be directly
included into host applications as a header-only library.

Acknowledgement. We would like to thank Cristina Cifuentes, Paddy Krishnan,
and all our other colleagues from Oracle Labs, Brisbane. We would also like to thank
Byron Cook, Yannis Smaragdakis, and our anonymous reviewers.

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley,
Boston (1995)

2. Allen, N., Krishnan, P., Scholz, B.: Combining type-analysis with points-to analysis
for analyzing java library source-code. In: Møller, A., Naik, M. (eds.) Proceedings of
the 4th ACM SIGPLAN International Workshop on State of the Art in Program
Analysis, SOAP@PLDI 2015, Portland, OR, USA, 15–17 June 2015, pp. 13–18.
ACM (2015)

3. Allen, N., Scholz, B., Krishnan, P.: Staged points-to analysis for large code bases.
In: Franke, B. (ed.) CC 2015. LNCS, vol. 9031, pp. 131–150. Springer, Heidelberg
(2015)
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Abstract. We present a novel approach for automated incremental ver-
ification that employs both reusable and relational specifications of soft-
ware to incrementally verify pairs of programs with possibly nested loops.
It analyzes two programs, P - the one already verified, and Q - the one
needed to be verified, and proceeds by detecting an abstraction αP of
P and a simulation ρ, such that αP simulates Q via ρ. The key idea
behind our simulation synthesis is to drive construction of both αP and
ρ by the safe inductive invariants of P , thus guaranteeing the property
preservations by the results. Finally, our approach allows effective lifting
of the safe inductive invariants of P to Q using only αP and ρ. Based
on our evaluation, in many cases when the absolute equivalence between
programs cannot be proven, our approach is able to establish the property
directed equivalence, confirming that the program Q is safe.

1 Introduction

Software development is a continuous process that repeatedly iterates between
the stages of implementing a program and checking its safety. To satisfy quality
standards, a software product should pass through a myriad of intermediate
verification stages, each of which assures safety of a particular change against its
baseline version. One of the most successful techniques to verify isolated software
versions fully automatically and exhaustively is Model Checking.

Without detracting from the merits of the recent model checking solutions,
there is a demand for new methods to make other steps in the typical “verify-
bugfix-verify” workflow automated and exhaustive. In particular, there is a clear
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need for new techniques that would make the software analysis more efficient
by (1) finding a reusable specification of an already verified program version to
be used while verifying another program version; and (2) finding a relational
specification between program versions that describes how the versions relate
to each other. When discovered, these specifications enable formal analysis of
sequences of program versions called Formal Incremental Verification (FIV) and
can be used for various tasks such as upgrade checking, compositional (modular)
verification, change impact calculation, program repair, etc.

Model checkers for the programs with unbounded (and possibly nested) loops
reduce the verification tasks to finding safe inductive invariants. Such invariants
over-approximate all safe behaviors of the program and constitute so called proof
certificates. Since the problem of inferring proofs is known to be undecidable in
general [29], individual model-checking solutions are not guaranteed to deliver an
appropriate invariant. On the other hand, in cases if model checking succeeded,
the synthesized proof provides an important reusable specification that comes in
handy whenever the program gets modified. In this paper, we address a challenge
of migrating proofs across the different program versions.

Simulation is known to be the most general mapping to transfer proofs
between program versions [17,26,27]. However, discovering a simulation relation
is difficult and usually requires a manual guidance. One of the recent promising
approaches for the simulation synthesis is SimAbs introduced in [16]. Despite
providing a fully automated schema, it is unable to find simulations for pairs of
program versions obtained after non-trivial program transformations. We exper-
imented with SimAbs and observed that it discovered precise simulations only
in 9 % of cases1, while in the rest it either provided an abstract simulation (i.e.,
an abstraction of the already verified program version that simulates the pre-
cise modified program version) or diverged. In general, abstract simulations are
not applicable for migrating proofs, since the delivered abstraction might not
preserve all important safety properties of the verified program version.

In this paper, for the task of migrating proofs, we show that the precise
simulation relation between program versions is not even needed. Instead, it is
enough to deal with abstract simulations, but created in a particular way. It is
crucial to ensure that the given invariant is safe for the delivered abstraction. For
this reason, we propose to guide the abstraction generation by the proofs. If a
simulation for such a proof-based abstraction is found then the proof can be lifted
directly. We present an algorithm called ASSI (stands for Abstract Simulation
Synthesis with Invariants) and an algorithm called PDE (stands for Property
Directed Equivalence) that perform such reasoning completely automatically.

A distinguishing feature of ASSI and PDE is the ability to migrate the
invariants through abstractions even if the abstractions do not preserve safety.
PDE attempts to lift as much information from the invariant as possible and
then strengthens it using a Horn-clause-based unbounded model checker.

We contribute the implementation of ASSI and PDE on the top of the
LLVM-based model checker UFO [1] and provide extensive evaluation of

1 See Sect. 6 for more details.
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non-trivial LLVM-optimizations. In the same experimental setting as for
SimAbs, ASSI discovered non-trivial abstract simulations in 82 % of cases, that
further allowed PDE to migrate the proofs completely (34 %) or at least partially
(48 %). Guided by the proofs, ASSI outperformed SimAbs by up to 2000X. In
other words, it enabled scaling the entire simulation synthesis technology to solve
more difficult problems and to do it more efficiently.

To sum up, PDE can be seen as the first technique to effectively exploit both,
the reusable specification (by means of the proofs) and the relational specification
(by means of the abstract simulations), to incrementally verify sequences of pro-
gram versions with non-trivial loop structures and non-trivial transformations.
The most important contributions can be classified as follows:

– A concept and a formalization of the PDE framework to incremental verifi-
cation through abstract simulation and invariants.

– An algorithm ASSI for abstract simulation synthesis, designed to take the
proofs into account and consider the proof-based abstractions.

– An LLVM-based evaluation on Software Verification Competition benchmarks
that succeeds in establishing the property directed equivalence in many cases
when the absolute equivalence between programs cannot be proven. In some
other cases PDE was able to lift the proof partially and strengthen it further
by means of the model checker UFO.

The rest of the paper is structured as follows. We start with a brief overview
of the related methods (Sect. 2) followed by the background of unbounded veri-
fication (Sect. 3). Then, we formalize the underlying concepts behind simulation
synthesis (Sect. 4) and use them to build the algorithms for ASSI and PDE
(Sect. 5). Finally, we outline the evaluation of ASSI and PDE (Sect. 6) and
conclude the paper (Sect. 7).

2 Related Work

We aim at checking the property directed equivalence (i.e., equivalence of pro-
grams with respect to some common property) automatically since it has a
direct application in model checking. This is an alternative property to absolute
equivalence (i.e., equivalence of programs with respect to any possible prop-
erty) [3,12,19,21,28] that is rare in practice. The first automatic solutions to
equivalence checking date back to hardware verification. Based on BDDs and
SAT solving, the methods [5,9,30] aim at searching for a counter-example wit-
nessing inequivalence of the two circuits. Most of them exploit structural simi-
larities between the circuits that make them able to scale well with the circuit
size. The further application of equivalence checking is to prove validity of com-
piler optimizations (e.g., [3,28,33]). The basis of most of work on Translation
Validation is the idea of guessing a simulation relation between programs. Our
algorithm also guesses relations, but before using them for PDE, it formally
checks their validity with ASSI and drops those for which the check fails.
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A step towards equivalence checking of software was made in [12] that pro-
posed to check equivalence of a Verilog circuit and a C program through encoding
and solving a quantifier-free SAT formula. A more recent solution [19] employs
Bounded Model Checking [10] (BMC) to establish absolute equivalence between
C programs. The method traverses the call graph bottom-up and separately
checks whether identity of inputs implies identity of outputs for each pair of
matched (e.g., by type annotation) functions, while all the nested calls are
abstracted away using the same uninterpreted functions. A similar but language-
agnostic approach is implemented in the SymDiff tool [21].

The problem of checking non-absolute equivalence between programs (also
referred to as incremental verification) was addressed in a number of works,
e.g. [2,4,7,13,15,18,24,31,34]. The main motivating idea behind this line of
research is the ability of reusing efforts between verification runs, thus achieving
performance speedup compared to verification of programs in isolation. eVol-
Check [31] extracts the over-approximating function summaries from one pro-
gram satisfying the given property and then re-checks if summaries still over-
approximate function behavior in another program. However, eVolCheck is
based on BMC and relies on the user-provided bounds for loops and recursive
function calls. Unbounded incremental verifier OptVerify [15] is designed to
lift inductive invariants across program transformations using a guessed vari-
able mapping. Contrary to our approach, OptVerify can be applied only to
programs sharing the same loop-structure. A similar and generalized approach
for CEGAR-based verification was proposed in [7]. It stores the level of abstrac-
tion needed to prove safety of one program (e.g., which predicates to use in
predicate analysis). The predicates are then transferred and adapted to another
program to obtain the initial level of abstraction from which the analysis starts
(not from scratch). Note that none of the mentioned techniques relies on auto-
matically derived relational specifications (like a mapping between variables or
a type annotation) so they all require re-validating the artifacts migrated from
the verified programs. In contrast, the technique presented in this paper benefits
from using certified simulation relations between programs, thus confirming that
the migrated invariants are always sound.

Alternatively, there are approaches [25,34] to reason not only about dif-
ferences between behaviors, but also to analyze differences between proper-
ties in different programs. The technique called Verification Modulo Versions
(VMV) [25] transforms assertions from one program into assumptions for another
program. VMV then tries to find (or prove absence of) bugs that are present
only in the latter program. The technique called Directed Incremental Symbolic
Execution (DISE) [34] is driven by the change impact which in fact is the pro-
gram slice obtained by symbolic execution of the syntactic delta between the
programs. The change impact is, however, property-independent, so DISE still
requires further analysis whether the requested properties hold or do not in
both programs. PDE is also able to calculate the change impact as a side effect
of incremental verification. In contrast, our change impact is always property-
dependent that would make it potentially useful to identify program locations
responsible for the particular property violations.
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3 Programs, Abstractions and Proofs

In this paper, we consider “large-block” encoding (LBE) [6] of programs that
allows representing complex control-flow graphs compactly. A program is a tuple
P = 〈Vars,CP , en, err , E, τ〉, where Vars is a set of real and boolean variables,
CP is a set of cutpoints (i.e., program locations which represent heads of loops);
en, err ∈ CP are respectively designated locations of the program entry and
the error (i.e., the violation of some property of interest); E ⊆ CP × CP is the
cutpoint-relation corresponding to the largest loop-free program fragments, and
τ : E → Expr(Vars) maps each element of E to a formula in first-order logic
that encodes a transition relation of the corresponding program fragment. We
refer to the graph 〈CP , E〉 as a Cutpoint graph (CPG) of the program P .

Throughout the paper, we consider only variables that appear as source-
and destination arguments for the edges E of the program P . In the formulas
encoding transition relations τ , the other (local) variables are implicitly exis-
tentially quantified. Let V : E → 2Vars be the function that, given a cutpoint,
returns a set of variables live at that cutpoint. We use primed notation for Vars ′

to distinguish between the source and the destination arguments of each edge.
To enable existential quantification over variables in a formula e ∈ Expr , we
explicitly declare the variable sets over which e is expressed.

The goal of formal verification is to check whether the location err is unreach-
able by any program behavior starting at the location en. One of the most com-
mon ways of proving safety of a program is to construct an inductive invariant
that over-approximates the sets of reachable states in the program, and to prove
the unreachability of err for the invariant. In the context of LBE, (safe) inductive
invariants are represented by a labeling of the cutpoints with logical formulas
such that the condition(s) of the following definition hold.

Definition 1. Given a program P , a mapping ψ : CP → Expr(Vars) is an
inductive invariant if:

ψ(en) = � (1)

∀(u, v) ∈ E .
(
ψ(u)(�x) ∧ τ(u, v)(�x, �x′) =⇒ ψ(v)(�x′)

)
(2)

ψ is a proof (or a safe inductive invariant) of P if additionally:

ψ(err)(�x′) =⇒ ⊥ (3)

In (2), ψ(u) is expressed over the source arguments of the CPG-edge (u, v),
namely �x. In contrast, ψ(v) is expressed over the destination arguments of
the CPG-edge (u, v), namely �x′. Throughout the paper, we add the following
mnemonic notation to emphasize whether (3) holds for an inductive invariant: |ψ|
(with vertical bars) to indicate that (1)–(2) hold, but (3) does not, and ψ̂ (with a
hat) to indicate that all three conditions hold. If ψ is used without this mnemonic
notation then in the current context it does not matter if (3) holds or not.

Since an inductive invariant over-approximates the sets of reachable states
for each cutpoint of a program P , it allows more behaviors of P than specified
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P0 Q0 Q1

Fig. 1. Programs P0 and Q0 and the loop-splitting optimization of Q0.
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Fig. 2. Cutpoint graphs of P0, Q0 and Q1.

Fig. 3. Transition relations τP0 , ταP0 , τβP0 and proof ψ̂ of P0.

by its transition relation τ . It can be used to represent programs that share the
CPG-structure with P , but have less accurate transition relations. We say that
such programs are the abstractions of P and describe them formally as follows.

Definition 2. Given two programs P = 〈Vars,CP , en, err , E, τ〉 and αP =
〈Vars,CP , en, err , E, τα〉, αP is an abstraction of P if for some inductive
invariant ψ of P ,

∀(u, v) ∈ E .
(
ψ(u)(�x) ∧ τ(u, v)(�x, �x′) =⇒ τα(u, v)(�x, �x′)

)
(4)

The use of an inductive invariant ψ in (4) makes the way of creating abstrac-
tions more flexible. Indeed, for each cutpoint u ∈ CP , the formula ψ(u) might
bring any additional information about the pre-states at the edge (u, v) ∈ E
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learned inductively from the dependent CPG-edges. Note that τ(u, v) might be
incomparable (and even inconsistent) with ψ(u).

The simplest way to construct a program abstraction from the given inductive
invariant ψ is to assign the transition relation of each CPG-edge by the invariant
at the post-state of that edge. Thus, an abstraction of P can be constructed
directly from ψ, and in rest of the paper we refer to it as to αψP . The following
lemma assures that αψP satisfies Definition 2.

Lemma 1. Given P = 〈Vars,CP , en, err , E, τ〉 and its invariant ψ, let αψP =
〈Vars,CP , en, err , E, τψ

α 〉 be defined as:

∀(u, v) ∈ E .
(
τψ
α (u, v)(�x, �x′) � ψ(v)(�x′)

)
(5)

Then αψP is an abstraction of P .

If ψ is not trivial (i.e., ∃u ∈ CP . ψ(u) = �) and some abstraction αP is
as accurate as αψP then αP provides a particular interest for incremental ver-
ification that is explained in Sect. 5. However, for the sake of completeness of
presentation, we must admit that Definition 2 also allows other types of abstrac-
tions, abstract transition relation of which does not necessarily satisfy ψ(v) for
all post-states at (u, v).

Example 1. Consider a program P0 shown in Fig. 1(a) that increments an integer
counter2 x, initially assigned to 0. The CPGP0 is shown in Fig. 2(a) and consists
of CP = {en,CP0, err} and E = {(en,CP0), (CP0,CP0), (CP0, err)}. Figure 3
shows: (1) transition relation τP0 labeling each edge in E, (2) the proof ψ̂ labeling
each cutpoint in CP , (3–4) transition relations of two abstractions αP0 and βP0

respectively. Compared to αP0, βP0 allows variable x to be equal to 13 in the
cutpoint err . ��

4 Simulation Relations in LBE with Invariants

Given a pair of programs P = 〈VarsP ,CPP , enP , errP , EP , τP 〉 and Q =
〈VarsQ,CPQ, enQ, errQ, EQ, τQ〉. A simulation relation between P and Q spec-
ifies a matching of every program behavior of Q by some program behavior
of P . In LBE, finding simulation relations is the two-steps procedure. First,
it requires finding a simulation σ at the level of CPGs (further referred to as
CPG-simulation). Second, it requires finding a simulation ρ at the level of pairs
of CPG-edges (further referred to as edge-simulation).

Definition 3. Given two programs P and Q, we say that CPGP simulates
CPGQ iff there exists a left-total relation σ : CPQ → CPP such that:

∀uQ, vQ ∈ CPQ, uP ∈ CPP . (uQ, vQ) ∈ EQ ∧ uP = σ(uQ) =⇒
∃vP ∈ CPP . (uP , vP ) ∈ EP ∧ vP = σ(vQ)

(6)

2 Here and later in the paper we assume no arithmetic overflow.
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When clear from the context, we omit the subscripts from uQ, vQ, etc.

Definition 4. Program P simulates program Q iff (1) CPGP simulates CPGQ

via some σ, and (2) for that σ and some inductive invariant ψ of P , there exists
a left-total relation ρ : CPQ × CPP → Expr(VarsQ ∪ VarsP ) such that:

∀(u, v) ∈ EQ .
(
ψ

(
σ(u)

)
(�y) ∧ ρ

(
u, σ(u)

)
(�x, �y) ∧ τQ

(
u, v

)
(�x, �x′) =⇒

∃�y′ . ρ
(
v, σ(v)

)
(�x′, �y′) ∧ τP

(
σ(u), σ(v)

)
(�y, �y′)

) (7)

For each edge (u, v) in (7), the existential quantifier in front of �y′ is served to
encode existence of a valuation of the variables in V ′

P

(
σ(v)

)
. In contrast, valu-

ations of the variables �x, �x′, �y respectively of VQ(u), VQ(v) and VP

(
σ(u)

)
are

implicitly universally quantified. Thus, for each �x and �y matched by ρ(u, σ(u))
and �x′, there should exists �y′ such that �x′ and �y′ are matched by ρ(v, σ(v)).
Additionally, the pairs �x and �x′, and �y and �y′ should belong to valid behaviors
corresponding to their transition relations τQ(u, v) and τP (σ(u), σ(v)) respec-
tively. Note that those transition-relation formulas are conjoined with the differ-
ent sides of the implication, so the validity of the ∀∃-formula means that each
behavior of τQ(u, v) is matched by a behavior of τP (σ(u), σ(v)) (but it is still
allowed to have unmatched behaviors of τP (σ(u), σ(v)). For this, the simulation
relation induced by formulas ρ(u, σ(u)) and ρ(v, σ(v)) is required to be left-total.

Whenever for a given pair of programs P and Q, there exists the pair of
relations 〈σ, ρ〉 such that P simulates Q, we write Q �〈σ,ρ〉 P , or simply Q � P
if 〈σ, ρ〉 are clear from the context.

It is important to note that our definition of simulation relation exploits an
inductive invariant ψ of P that over-approximates the sets of reachable states for
each cutpoint of P . In particular, for each CPG-edge (u, v) of Q, the condition
of Definition 4 restricts the set of pre-states of τP (σ(u), σ(v)) on ψ(σ(u)). Such
restriction is sound, since it does not drop any behavioral information of P that
can be potentially useful while constructing and checking a simulation of Q.
Furthermore, for each behavior of Q requiring to be matched by some behavior
of P , the invariant ψ reduces the search space of this matching.

Simulations are used to lift the proofs between programs. In fact, if the error
location errP is proven unreachable in P , and P simulates Q, then the error
location errQ is unreachable in Q. Interestingly, this fact can be further prop-
agated to the level of inductive invariants [22,26] making the following lemma
hold:

Lemma 2. Given programs P and Q, let ψ be a (safe) inductive invariant of P
and Q �〈σ,ρ〉 P . Consider a mapping ϕ : CPQ → Expr(VarsQ) defined for each
u ∈ CPQ such that:

ϕ(u)(�x) � ∃�y . ρ
(
u, σ(u)

)
(�x, �y) ∧ ψ

(
σ(u)

)
(�y) (8)

Then ϕ is a (safe) inductive invariant of Q.
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Fig. 4. Simulation relation between Q0 and βP0, and lifted invariants.

Fig. 5. Simulation relation between Q1 and Q0, and lifted invariants.

Example 2. Suppose that P0 (shown in Fig. 1(a)) evolved to a “lucky” program
Q0 (shown in Figs. 1(b), 2(b)) such that the counter jumps over the value “13”:
the new variable y appeared instead of x, and the program fragment correspond-
ing to the looping edge (CP0,CP0) is replaced by if (y==12) then {y=y+2}
else {y++}. More importantly, the property to hold in Q0 is stronger than the
one in P1: in addition to be positive, y is restricted to be not equal to 13. CPGP0

and CPGQ0 are identical. Note that Q0 � P0, Q0 � αP0, but Q0 � βP0. Figure 4
shows: (1) transition relation τQ0 , (2) CPG-simulation between Q0 and P0 via
the identity relation σ; (3) edge-simulation between Q0 and βP0 via ρ, (4) lifted
inductive (but not safe) invariant |ϕ| labeling each cutpoint in CP of Q0, and
(5) proof ϕ̂ of Q0 obtained from |ϕ| by some strengthening procedure. ��

In order to obtain the inductive invariant |ϕ| for Example 2, we first need to
weaken ψ̂ (as in Example 1) to be an inductive invariant of βP0. Weakening can
be done, e.g., by replacing the labeling ψ̂(err) by a formula x = 13. Then |ϕ| can
be strengthened to ϕ̂ using an induction-based model checker to become safe.

Example 3. Consider a loop-splitting optimization Q1 of Q0 (shown in Figs. 1(c)
and 2(c) respectively) produced by inserting an if-conditional out of the while-
loop and a renaming of y to z. Thus, an extra loop (and an extra cutpoint CP1)
appeared in Q1, but both loops were simplified to contain only an increment
z++. Note that Q1 � Q0. Figure 5 shows: (1) transition relation τQ1 , (2) CPG-
simulation between Q1 and Q0 via σ, (3) edge-simulation between for Q1 and
Q0 via ρ, and (4) lifted inductive (and safe) invariant π̂ of Q1. ��
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In the next section we elaborate on the way of computing simulation relations
and lifting proofs, the results of which were demonstrated in Examples 2 and 3.

5 Property Directed Equivalence

Our key result is a new technique that exploits both, the reusable specification
and the relational specification, to incrementally verify pairs of programs. We
instantiate reusable specifications by the safe inductive invariants, and relational
specification by the simulation relations. To the best of our knowledge, PDE is
unique in a sense that all the competitors in the scope of FIV operate either by
reusable or by relational specifications, but not by both.

Given an abstraction αP of P and a proof ψ̂ of P , we say that αP is ψ̂-safe
iff ψ̂ is also a proof of αP . Not every abstraction of P is ψ̂-safe, but there might
exist several ψ̂-safe abstractions of P of different precision, and the most precise
one of those is P itself. Formally, it is reflected in the following definition.

Definition 5. Given a program P and a proof ψ̂, an abstraction αP =
〈Vars,CP , en, err , E, τα〉 of P is ψ̂-safe iff the following holds:

∀(u, v) ∈ E . ψ̂(u)(�x) ∧ τα(u, v)(�x, �x′) =⇒ ψ̂(v)(�x′) (9)

Definition 6. Programs P and Q are ψ̂-equivalent iff there exists another pro-
gram R such that P � R, Q � R, and ψ̂ is a proof of R.

Note that Definition 6 allows R to be either P or Q, in cases when ψ̂ is a proof
of P or Q, respectively. Similarly, R is allowed to be an abstraction of P or Q.

Example 4. Programs P0 and Q0 (shown in Fig. 1(a) and (b) respectively) are
not ψ̂-equivalent, since we cannot find a ψ̂-safe abstraction of P0 (αP0 is ψ̂-
safe, but Q0 � αP0, and βP0 is not ψ̂-safe). Contrary to them, Q0 and Q1

(shown in Fig. 1(b) and (c) respectively) are ψ̂-equivalent, since we have shown
in Example 3 that Q1 � Q0. ��

The FIV-problem for P , Q and ψ̂ can be formulated as establishing a ψ̂-
equivalence between P and Q. In this paper, we want to provide not only a
generic, but also an efficient solution to the FIV-problem. One crucial obstacle
on the way towards efficiency is that the simulation synthesis in general requires
more efforts for solving than needed to verify Q from scratch. However, PDE
does not require Q to be simulated by the precise program P via some total
〈σ, ρ〉. Instead, PDE aims at finding a ψ̂-safe abstraction αP that simulates Q
via some abstract 〈σ, ρα〉. Detecting ρα is expected to be easier than detecting
ρ and to have more chances to converge.

Theorem 1. Given programs P , αP and Q, let ψ̂ be a proof of P , and αP be
a ψ̂-safe abstraction of P . If Q � αP then P and Q are ψ̂-equivalent.

The tie that binds the abstraction and the simulation in Theorem1 is the
proof ψ̂. In practice, synthesis of αP and 〈σ, ρα〉 benefits from the guidance by
ψ̂. Furthermore, when discovered, 〈σ, ρα〉 is directly used to migrate ψ̂ from P
to Q. In the rest of the section, we elaborate on these routines in more detail.
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5.1 Simulation Synthesis

In our previous work [16], we presented SimAbs, the first algorithm to synthe-
size simulation relations completely automatically. Given programs P and Q,
SimAbs attempts to deliver a total simulation relation3 〈σ, ρ〉 between P and
Q such that Q �〈σ,ρ〉 P . If such concrete simulation cannot be found, SimAbs
iteratively performs abstraction-refinement reasoning to detect an abstract sim-
ulation, i.e., an abstraction αP of P that simulates Q via some 〈σ, ρα〉.

However, the results of SimAbs are not always useful for PDE, since it does
not provide any guarantees of the strength and the property preservation of αP .
In particular, SimAbs can unadvisedly abstract away some important details
of P , so αP becomes not ψ̂-safe, and Theorem 1 becomes inapplicable. In this
section, we present a novel algorithm ASSI that guides the simulation discovery
by the invariants of P . Furthermore, ASSI supports a more general case when
CPGQ �σ CPGP , and σ is not necessarily the identity relation. We outline
ASSI and highlight its distinguishing features in Algorithm1.

Synthesizing a CPG-simulation. The algorithm starts (lines 2–9) with synthesiz-
ing a CPG-simulation σ. It maintains a temporary graph G which is expected to
be equivalent to CPGP and by the end of the algorithm to become a supergraph
of CPGQ. Thus, G is initiated by CPGP , and in the first iteration, ASSI checks
whether G is a supergraph of CPGQ. If the check succeeds, CPGP simulates
CPGQ via identity, and ASSI directly proceeds to synthesizing ρ.

If G is not a supergraph of CPGQ then ASSI attempts to grow G by intro-
ducing redundant nodes and edges, thus ensuring that G remains equivalent to
CPGP . The method CloneLoops has a relatively straightforward meaning: it
finds a node in G with a looping edge (u, u), creates a new node u′ and an
edge (u′, u′). Finally, it clones all the outgoing edges of u: (u, v) to (u′, v) and
all incoming edges of u: (v, u) to (v, u′). The information that u′ obtains after
copying u is book-kept and further used to recurrently create σ.

Checking whether one graph is a supergraph of another one is reduced to
checking CPG-simulation via the identity relation and in turn to checking valid-
ity of the ∀∃-formula (6). However, in the worst-case scenario, the procedure of
cloning loops may keep iterating forever. Therefore, in practice, it makes sense
to bound the iterations either by using some maximal number of cloned loops
or by a timeout (method CanGrow).

The algorithm gets another challenge when Q has multiple loops that would
require cloning different loops in a branch-and-bound manner. In general, it may
lead to establishing multiple possible CPG-simulations, and each of those could
be used to further establish its own edge-simulation ρ. To simplify presenta-
tion, we do not consider this case in the paper and assume that it is a rather
engineering question of enhancing ASSI with backtracking to support multiple
simulations.

3 σ is limited to be the identity relation in the original algorithm.
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Algorithm 1. ASSI (Q,P, ψ)

Input: programs Q and P , inductive invariant ψ of P
Output: abstraction αP , relation 〈σ, ρα〉 such that Q �〈σ,ρα〉 αP
Data: universal abstraction U, temporary graph G

1 G ← CPGP ;
2 while (�) do � Synthesize σ

3 if (isSupergraph(G,CPGQ)) then � Wait until G is big enough

4 σ ←GrowingHistory(CPGP , G); � Restore all changes in G since CPGP

5 break; � And go to line 10

6 if (CanGrow(G)) then � If G does not cover CPGQ

7 G ← CloneLoops(G); � Try growing G by cloning loops

8 else � Until no more loops can be cloned

9 return U, ∅; � Or a timeout is exceeded

10 while (�) do � Use σ to synthesize ρ

11 ρ ← Guess(P, Q, σ); � Guess some relation ρ over variables at each cutpoint

12 if (Q �〈σ,ρ〉 P ) then � Use ρ and σ in (7) and check ∀∃-validity
13 return P, 〈ρ, σ〉; � If ρ is an edge-simulation then the algorithm terminates

14 else � If not, iteratively replace P by some of its abstractions:

15 P ← Abstract(P, ψ); � Try αψ first, then αψ∃

Algorithm 2. PDE (P,Q, ψ̂)

Input: Programs P and Q, proof ψ̂ of P

Output: Verification result res ∈ {Safe, Buggy}, proof ϕ̂ of Q

1 αP, 〈σ, ρα〉 ← ASSI (Q, P, ψ̂); � Find αP such that Q � αP

2 if (isPsiSafe(αP, ψ̂)) then � Check if (9) holds

3 return 〈Safe, ∃〈σ, ρα〉ψ̂〉; � If αP is ψ̂-safe then lift the proof completely (Theorem1)
4 else � If not, attempt to lift the proof partially

5 |ψ| ← Weaken(ψ̂); � Weaken ψ̂ to |ψ| such that |ψ| is inductive for αP
6 |ϕ| ← ∃〈σ, ρα〉|ψ|; � Lift |ψ| to |ϕ| such that |ϕ| is inductive for Q (Lemma 2)
7 return Verify(Q, |ϕ|); � Strengthen |ϕ| to become safe for Q (if possible)

Synthesizing an edge-simulation. The further reasoning of ASSI (lines 10–15)
proceeds by finding an edge-simulation ρ. Note that at this point σ is already
synthesized, and each pair of CPG-edges is fixed due to valid ∀∃-formula (6).
Now, ASSI has to iteratively decide validity of another set of ∀∃-formulas (7).
Each such formula requires a guessed relation ρ over live variables at each pair
of cutpoints matched by σ. ASSI makes a guess based on similarity (ideally,
equality) of the variable names.

In cases when there is an invalid formula among (7), ASSI attempts to
lower the precision of P by abstracting some (preferably, minimal amount of)
details away. Intuitively, the goal is to weaken τP which is placed on the right-
hand-side of the ∀∃-formula such that the formula becomes valid. In general,
ASSI is parametrized by the method Abstract which performs such weakening
automatically.
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Due to an infinite number of possible abstractions, an arbitrary chosen imple-
mentation of Abstract might not converge. The most distinguishing feature of
ASSI compared to SimAbs, is that it guides the whole process of edge-simulation
synthesis by invariants. That is, an invariant ψ is not only plugged into the for-
mulas (7), but also used to create the abstraction αψP (defined in Lemma 1). In
practice, αψP dramatically weakens τP , and ASSI earns much higher number of
valid ∀∃-formulas than SimAbs earns from the existential abstraction α∃P [11].
The latter simply treats some program variables nondeterministically and does
not change the transition relation itself.

Since depending on the semantic delta between P and Q, the simulation
check between Q and αψP is still not guaranteed to succeed. In such cases, the
other variants of Abstract (e.g., the existential abstraction α∃) might come in
handy. In our implementation, we apply α∃ to the result of a previous application
of αψ̂, thus delivering not ψ̂-safe abstractions of P (denoted αψ̂∃P ).

Contrary to SimAbs, ASSI lacks a so called Skolem-based refinement that
would attempt strengthening of abstract simulations, but still would not guar-
antee any success. But since ASSI is designed to deal with PDE, a necessary
strengthening is performed on the level of proof generation. In the next Sect. 5.2,
we show how weak abstractions could be still useful for lifting proofs partially.

5.2 Lifting Proofs Completely and Partially

The main practical importance of PDE is that it allows lifting a proof ψ̂ of
program P directly to a proof ϕ̂ of program Q if there exists a ψ̂-safe abstraction
of P that simulates Q (recall Theorem 1). In such a case, no additional analysis
of Q is required unless one wants to eliminate existential quantifiers from the
adapted proof. However, if the conditions of Theorem1 are not met, we are
still interested in accelerating the verification process for Q. In particular, if the
detected abstraction αP of P is not ψ̂-safe, we still may be able to lift some (not
safe, but) inductive invariant to be further strengthened by a Horn-clause-based
model checker.

We address the problem of verifying Q using P and ψ̂. Our solution is outlined
in Algorithm 2. PDE proceeds as follows. First (line 1) it invokes the two-steps
procedure of ASSI: (1) obtaining a relation σ between cutpoints of P and Q
via iterative growing of CPGP and checking validity of the implication (6); (2)
discovering an abstraction αP of P and a relation ρα such that Q �〈σ,ρα〉 αP .

The discovered abstraction αP is then checked for being ψ̂-safe (line 2).
This is done by deciding validity of a set of implications (9) for each edge of
CPGP . If this check succeeds then the simulation relation ρα discovered by
means of ASSI is combined with ψ̂ using existential quantification to obtain an
inductive invariant ∃〈σ, ρα〉ψ̂ (a shortcut for the invariant defined in Lemma 2).
By Theorem 1, ∃〈σ, ρα〉ψ̂ is also a safe inductive invariant, which entails that
the program Q is safe.

If the abstraction αP delivered by ASSI is not ψ̂-safe then ρα cannot be
directly used to lift invariants. But since P � αP via the identity relation, ψ̂
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can be weakened to become an inductive invariant |ψ| of αP (line 5). Method
Weaken can implement different methods including simple generation of the
strongest postcondition (as in Example 5), or a counter-example-guided inductive
weakening (method MkInd [15]) that constructs an inductive invariant out of a
set of conjunctions of candidate formulas (also referred to as lemmas).

MkInd performs inductive weakening using an incremental SMT solver.
MkInd assumes that each candidate invariant is represented by a conjunction
of lemmas, and the weakening by itself is performed by dropping some lemmas
from this conjunction. MkInd iterates over the set of CPG-edges in the Weak
Topological Ordering [8] (in which inner loops are traversed before outer loops).
For each edge, MkInd checks whether ψ̂ is inductive (i.e., formula (2) holds). If
the check for some edge (u, v) fails, MkInd uses a counter-example provided by
the SMT solver to identify all lemmas to be dropped from ψ̂(v). Afterwards, the
check is propagated to all the CPG-edges (v, w) outgoing from v. Effectiveness of
MkInd requires the sets of candidate invariants to contain many small lemmas.

Example 5. Consider programs P0 and Q0 (shown in Fig. 1(a) and (b) respec-
tively). Suppose, P0 is verified and has a proof ψ̂ (shown in Fig. 3). Let us show
how PDE operates in order to derive the proof ϕ̂ of Q0 (envisioned in Fig. 4).
First, PDE invokes ASSI to iteratively abstract P0, e.g., to αP0 and to βP0

(both shown in Fig. 3) and check whether the abstraction simulates Q0: the for-
mer does not, but the latter does. Second, PDE confirms that βP0 is not ψ̂-safe
and thus attempts to lift the proof partially.

The next step is to do Weaken and to obtain the inductive invariant |ψ| of
βP0. For this, PDE exploits the efforts spent on checking that βP0 is not ψ̂-safe.
In particular, for all CPG-edges for which that check succeeded, the invariants
at the pre- and post-states remain the same as specified by ψ̂ (i.e., ψ̂(CP0) =
|ψ|(CP0)). But ψ̂ is broken for the edge (CP0, err), i.e., the implication (x ≥
0) ∧ (

(x < 0) ∨ (x = 13)
)

=⇒ ⊥ is invalid. This means that ⊥ is too strong to
label err in |ψ|, and a weaker formula should be discovered. Following MkInd,
the labeling |ψ| of cutpoint err would be aggressively assigned to �, which would
in turn require re-verification of Q0 from scratch.

Alternatively, it can be assigned to |ψ|(err) = (x = 13), which is the
strongest postcondition for τβP0(CP0, err) = (x < 0) ∨ (x = 13) and precon-
dition |ψ|(CP0) = (x ≥ 0). It is easy to see that |ψ| constitutes an inductive
invariant |ψ| of βP0. Finally, |ψ| is lifted to become inductive invariant |ϕ| (shown
in Fig. 4) of Q0 using the already established abstract simulation ρα. ��

The last bit in PDE is done by method Verify (line 7). At that stage, the
partially lifted invariant ∃〈σ, ρα〉|ψ| needs to be strengthened to finally become a
proof of Q. Method Verify can exploit an off-the-shelf model checker as long as
it is able to fight against the following two challenges. First, the model checker
should deal with induction and avoid re-verifying Q from scratch. Second, the
model checker should deal with existentially quantified variables of P and avoid
expensive quantifier elimination.
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5.3 Finding Inductive Invariants Without Quantifier Elimination

In this section, we focus on method Verify that strengthens an inductive invari-
ant ∃〈σ, ρα〉ψ for PDE. The key idea is based on the fact that adding invariants
to the transition relation does not affect any behaviors of the program. In a
nutshell, the invariants are extra constraints about pre- and post-states of each
CPG-edge (u, v) ∈ E.

Given (u, v) ∈ E and τ : E → Expr(V (u)∪V ′(v)), let τ̂ : E → Expr(V (u)∪
V ′(v)) denote the relation constrained by the invariants ∃〈σ, ρα〉ψ, i.e.:

τ̂(u, v) = ∃�y . ρα

(
u, σ(u)

)
(�x, �y) ∧ ψ(u)(�y) ∧ τ(u, v)(�x, �x′)∧

∃�y′ . ρα

(
v, σ(v)

)
(�x′, �y′) ∧ ψ(v)(�y′)

(10)

It is easy to see that a program Q̂ = 〈Vars,CP , en, err , E, τ̂〉 is equivalent
to program Q = 〈Vars,CP , en, err , E, τ〉, and the proof ψ̂ of Q is sufficient for
Q̂. However, the opposite is not true, i.e., a proof ψ̂ of Q̂ might not be sufficient
for Q.

Theorem 2. Given Q and inductive invariant ∃〈σ, ρα〉ψ of Q, let Q̂ be as
in (10). If ϕ̂ is the proof of Q̂ then ϕ = ϕ̂ ∧ ∃〈σ, ρα〉ψ is the proof of Q.

Method Verify reduces the task of obtaining ϕ̂ to solving a system of
Constrained Horn Clauses [20]. This system consists of the rules that have a
form (1), (2) or (3). The quantifier elimination is done lazily inside the solving
engine. Note that such a model-checking approach is also applicable in cases
when ∃〈σ, ρα〉ψ is not only inductive, but also safe. If so, a constant mapping
ϕ̂(u, v) = � for any (u, v) is a solution for the Horn system, and solving termi-
nates immediately.

5.4 Calculating the Change Impact

In case when PDE (and in turn Verify) cannot prove safety (i.e., fails to
strengthen the inductive invariant), it generates a so called change impact – an
indication whether the change of the code in a particular edge of the CPGP

broke the proof. Change impact can be calculated cheaply as a by-product of
checking whether an abstraction αP of P is ψ̂-safe for the proof ψ̂.

Definition 7. Given P , Q, a proof ψ̂ of P and abstraction αP of P such that
Q �〈σ,ρα〉 αP , the change impact δ of program Q is a mapping δ : EQ → {�,⊥}
such that for each (u, v) ∈ EQ :

δ(u, v) ≡
{

� if ψ̂
(
σ(u)

)
(�x) ∧ τα

(
σ(u), σ(v)

)
(�x, �x′) =⇒ ψ̂

(
σ(v)

)
(�x′)

⊥ else
(11)

If calculated this way, the change impact is precise enough to indicate
all CPG-edges that are responsible for a property violation. Together with a
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counter-example witnessing the property violation, the change impact is a step
towards shrinking the search space of a possible bugfix.

Let us denote the set of edges Δ = {(u, v) ∈ EQ | δ(u, v) = ⊥}. In order
to fix the given bug, the encoding τ of some of the CPG-edges from Δ must
be rewritten, but the encoding τ of the edges in EQ \ Δ can remain unchanged.
In other words, program Q can be used to create a partial program QΔ that
preserves the encoding of the edges EQ \ Δ and contains holes to represent
the absence of the encoding of Δ. Then, such a partial program QΔ is given
as input to a program synthesizer, such as Sketch [32] to automatically find
instantiations of the holes. In our future work we plan to integrate an automatic
program repairer with PDE.

6 Evaluating ASSI and PDE

We built PDE on the top of the model checker UFO [1] and the simulation syn-
thesizer SimAbs. UFO relies on LLVM to create verification conditions for the
input programs that involves inlining procedures, lowering memory to registers,
extracting a CPG-representation. UFO synthesizes a proof by running the PDR
engine [23] implemented in Z3 [14].

We evaluate ASSI and PDE for benchmarks from SVCOMP4. We focus our
attention only on safe programs, i.e., those for which it is possible to generate a
proof ψ̂. We further consider a program transformation from an original version
P to a transformed version Q. Finally, we use ψ̂ to (1) find an abstraction αP

of P that simulates Q via some ρα, (2) check whether αP is ψ̂-safe, and (3) use
ψ̂ and ρα to incrementally verify Q.

One of the essential applications of discovering simulation relations is proving
correctness of program optimizations. The users often perform optimizations
and refactoring manually, and usually end up with the semantically different
programs. Similarly, optimizations are performed silently, by compilers. PDE
is insensitive to the source of program transformation and could be applicable
to both types of optimizations. In our experiments, we focused on compiler
optimizations, as a larger base of benchmarks.

For evaluation, we used two non-trivial LLVM-optimizations: indvars and
licm. The indvars (stands for Canonicalize Induction Variables) transforms the
loops to have a single canonical induction variable initially assigned to zero and
being incremented by one. The licm (stands for Loop Invariant Code Motion)
detects loop invariants and moves them outside of the loop body. Note that
the combination of these optimizations is aggressive, and does not necessarily
preserve the loop structure of the given program. We considered 115 programs,
for which UFO is able to discover a proof ψ̂ within a given timeout of 700 s, and
the correspondent LLVM-optimizations. The size of the programs ranges from
91 to 2904 lines of code, and the syntactic delta between versions ranges from 3
to 345 instructions.

4 Software Verification Competition, http://sv-comp.sosy-lab.org/.

http://sv-comp.sosy-lab.org/
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Fig. 6. Simulation synthesis by ASSI+ compared to SimAbs.

Evaluating ASSI. We compared our novel algorithm ASSI+ with SimAbs
(Fig. 6). In our experiment5, SimAbs delivers precise simulations only in 13
cases, and this result can be interpreted as the absolute equivalence between the
original and the optimized programs. In 38 more cases, SimAbs ended up with
an abstraction of P that simulates Q In the remaining 64 cases, SimAbs exceeds
the timeout or diverged.

In contrast to SimAbs, ASSI+ adds ψ̂ to the low-level ∀∃-formulas and
manipulates directly with the ψ̂-safe abstraction αψ̂P of P . These two improve-
ments made the low-level ∀∃-formulas smaller, as encoding of the original transi-
tion relation of P got replaced by more compact formulas representing ψ̂. All 115
experiments terminated. There were 39 ψ̂-safe abstractions (i.e., that are used to
adapt the proof completely); 55 weaker abstractions (i.e., that are used to adapt
the proof at least partially), and only 21 abstractions were trivial (i.e., too weak
to adapt any invariant). Performance-wise, ASSI+ was in order of magnitude
faster than SimAbs, and in some cases outperformed its competitor by 2000X.

One can observe an interesting phenomenon that despite ASSI+ never deliv-
ers concrete simulations, it is in general more precise than SimAbs. It can be
explained by the fact that ASSI+ is able to safely ignore some details of P that
can break simulation synthesis in SimAbs. It is important to note that in cases
when αP is trivial, ASSI+ does not produce big overhead. In our experiments,
the running time for such scenarios is less than 10 s.

Evaluating PDE. We compared the performance of PDE with the performance
of the model checker UFO that verifies the optimized program from scratch
(shown in the upper chart of Fig. 7). Provided with the proof and the abstract
simulation, PDE outperformed UFO in 90 out of 115 cases. In the remaining
cases, the performed optimizations dramatically simplified the program so it
became easier to verify the optimized program from scratch.
5 Full results are available at http://www.inf.usi.ch/phd/fedyukovich/niagara.

http://www.inf.usi.ch/phd/fedyukovich/niagara
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Fig. 7. Verification by PDE (with and without ASSI+) compared to UFO.

Both simulation discovery and incremental verification (ASSI + PDE) were
faster than UFO in 60 cases (shown in the lower chart of Fig. 7). This includes 1
case in which UFO exceeded timeout (i.e., PDE solved the problems that cannot
be solved by UFO). In future, as a possible performance improvement, we may
run ASSI + PDE and UFO in parallel, and terminate both processes whenever
one of them returned a result. Thus, we can exploit benefits of incremental and
non-incremental verification at the same time.

To summarize our case studies, we must mention that being an SMT-based
framework, PDE currently supports only Linear Rational Arithmetic that makes
it difficult to evaluate programs handling arrays, floating point arithmetic, bit-
vectors and so on. PDE shown its potential to be the first working framework
that is able to connect reusable and relational specifications of the versioned
software, and we envision multiple improvements of its workflow in future.
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7 Conclusion

In this paper, we formalized the concept of PDE that allows migrating safe
inductive invariants across program transformations. We presented an algorithm
ASSI for simulation relation synthesis with invariants and an algorithm PDE
to address the FIV-problem using ASSI. We evaluated ASSI and PDE on the
benchmarks from SVCOMP and LLVM-optimizations. It confirmed that in many
cases when the absolute equivalence between programs cannot be proven, our
approach is able to establish the property directed equivalence. In cases when the
proof can be lifted only partially, our approach allows its further strengthening
by means of a Horn-clause-based model checker.
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Abstract. We combine model learning and model checking in a challeng-
ing case study involving Linux, Windows and FreeBSD implementations
of TCP. We use model learning to infer models of different software com-
ponents and then apply model checking to fully explore what may happen
when these components (e.g. a Linux client and a Windows server) inter-
act. Our analysis reveals several instances in which TCP implementations
do not conform to their RFC specifications.

1 Introduction

Our society has become completely dependent on network and security proto-
cols such as TCP/IP, SSH, TLS, BlueTooth, and EMV. Protocol specification or
implementation errors may lead to security breaches or even complete network
failures, and hence many studies have applied model checking to these protocols
in order to find such errors. Since exhaustive model checking of protocol imple-
mentations is usually not feasible [24], two alternative approaches have been
pursued in the literature. This article proposes a third approach.

A first approach, followed in many studies, is to use model checking for
analysis of models that have been handcrafted starting from protocol standards.
Through this approach many bugs have been detected, see e.g. [8,11,21,26,28,
45]. However, as observed in [10], the relationships between a handcrafted model
of a protocol and the corresponding standard are typically obscure, undermining
the reliability and relevance of the obtained verification results. In addition,
implementations of protocols frequently do not conform to their specification.
Bugs specific to an implementation can never be captured using this way of
model checking. In [18], for instance, we showed that both the Windows 8 and
Ubuntu 13.10 implementations of TCP violate the standard. In [40], new security
flaws were found in three of the TLS implementations that were analyzed, all due
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to violations of the standard. In [13,46] it was shown that implementations of a
protocol for Internet banking and of SSH, respectively, violate their specification.

A second approach has been pioneered by Musuvathi and Engler [31]. Using
the CMC model checker [32], they model checked the “hardest thing [they] could
think of”, the Linux kernel’s implementation of TCP. Their idea was to run the
entire Linux kernel as a CMC process. Transitions in the model checker corre-
spond to events like calls from the upper layer, and sending and receiving packets.
Each state of the resulting CMC model is around 250 kilobytes. Since CMC can-
not exhaustively explore the state space, it focuses on exploring states that are
the most different from previously explored states using various heuristics and
by exploiting symmetries. Through their analysis, Musuvathi and Engler found
four bugs in the Linux TCP implementation. One could argue that, according
to textbook definitions of model checking [7,17], what Musuvathi and Engler do
is not model checking but rather a smart form of testing.

The approach we explore in this paper uses model learning. Model learning,
or active automata learning [1,6,44], is emerging as a highly effective technique
to obtain models of protocol implementations. In fact, all the standard violations
reported in [13,18,40,46] have been discovered (or reconfirmed) with the help
of model learning. The goal of model learning is to obtain a state model of a
black-box system by providing inputs to and observing outputs. This approach
makes it possible to obtain models that fully correspond to the observed behav-
ior of the implementation. Since the models are derived from a finite number of
observations, we can (without additional assumptions) never be sure that they
are correct: even when a model is consistent with all the observations up until
today, we cannot exclude the possibility that there will be a discrepancy tomor-
row. Nevertheless, through application of conformance testing algorithms [27],
we may increase confidence in the correctness of the learned models. In many
recent studies, state-of-the-art tools such as LearnLib [44] routinely succeeded
to learn correct models efficiently. In the absence of a tractable white-box model
of a protocol implementation, a learned model is often an excellent alternative
that may be obtained at relatively low cost.

The main contribution of this paper is the combined application of model
checking, model learning and abstraction techniques in a challenging case study
involving Linux, Windows and FreeBSD implementations of TCP. Using model
learning and abstraction we infer models of different software components and
then apply model checking to explore what may happen when these components
(e.g. a Linux client and a Windows server) interact.

The idea to combine model checking and model learning was pioneered in [36],
under the name of black box checking. In [30], a similar methodology was intro-
duced to use learning and model checking to obtain a strong model-based testing
approach. Following [30,36], model checkers are commonly used to analyze mod-
els obtained via automata learning. However, most of these applications only con-
sider specifications of a single system component, and do not analyze networks
of learned models. An exception is the work of Shahbaz and Groz [42] on inte-
gration testing, in which learned component models are composed and then ana-
lyzed using reachability analysis in order to find integration faults. Our results
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considerably extend our previous work on learning fragments of TCP [18] since
we have (1) added inputs corresponding to calls from the upper layer, (2) added
transmission of data, (3) inferred models of TCP clients in addition to servers, and
(4) learned models for FreeBSD in addition to Windows and Linux. Abstraction is
the key for scaling existing automata learning methods to realistic applications. In
order to obtain tractablemodelswe use the theory of abstractions from [2], which in
turn is inspired by earlier work on predicate abstraction [16,29]. Our use of abstrac-
tions is similar to that of Cho et al. [14], who used abstractions to infer models of
realistic botnet command and control protocols. Whereas in our previous studies
on model learning the abstractions were implemented by ad-hoc Java programs, we
now define them in a more systematic manner. We provide a language for defining
abstractions, and from this definition we automatically generate mapper compo-
nents for learning and model checking.

Our method may be viewed as a smart black-box testing approach that com-
bines the strengths of model learning and model checking. The main advantage
of our method compared to approaches in which models are handcrafted based
on specifications is that we analyze the “real thing” and may find “bugs” in
implementations. In fact, our analysis revealed several instances in which TCP
implementations do not conform to the standard. Compared to the white-box
approach of Musuvathi and Engler [31], our black-box method has several advan-
tages. First of all, we obtain explicit component models that can be fully explored
using model checking. Also, our method appears to be easier to apply and is more
flexible. For instance, once we had learned a model of the Linux implementa-
tion it took just two days to learn a model of the Windows implementation.
In the approach of [31], one first would need to get access to the proprietary
code from Microsoft, and then start more or less from scratch from an entirely
different code base. In contrast, using our approach it is possible to learn a
model of any TCP implementation within a few days. Besides these practical
benefits, there is also an important philosophical advantage. If one constructs a
model of some real-world phenomenon or system and makes claims based on this
model then, in line with Popper [37], we think this model ought to be falsifiable.
Our model of the Windows8 TCP client is included in the paper in Fig. 2, and
all Mealy machine and nuSMV models are available at http://www.sws.cs.ru.
nl/publications/papers/fvaan/FJV16/. Our notion of state is clear and based
on the Nerode congruence [33]: two traces lead to the same state unless there
is a distinguishing suffix. Any researcher can study our models and point out
mistakes. In contrast, the model of Musuvathi is specified implicitly through
heuristics (when have we seen a state before?) that are programmed on top of
the Linux implementation. As a result, falsification of their model is virtually
impossible.

2 Background on Model Learning

Mealy Machines. During model learning, we represent protocol entities as
Mealy machines. A Mealy machine is a tuple M = 〈I,O,Q, q0,→〉, where I, O,

http://www.sws.cs.ru.nl/publications/papers/fvaan/FJV16/
http://www.sws.cs.ru.nl/publications/papers/fvaan/FJV16/
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and Q are finite sets of input actions, output actions, and states, respectively,
q0 ∈ Q is the initial state, and →⊆ Q × I × O × Q is the transition relation.

We write q
i/o−−→ q′ if (q, i, o, q′) ∈→. We assume M to be input enabled (or

completely specified) in the sense that, for each state q and input i, there is a

transition q
i/o−−→ q′, for some o and q′. We call M deterministic if for each state

q and input i there is exactly one output o and one state q′ such that q
i/o−−→ q′.

We call M weakly deterministic if for each state q, input i and output o there

is exactly one state q′ with q
i/o−−→ q′.

Let σ = i1 · · · in ∈ I∗ and ρ = o1 · · · on ∈ O∗. Then ρ is an observation
triggered by σ in M, notation ρ ∈ AM(σ), if there are q0 · · · qn ∈ Q∗ such that

q0 = q0 and qj−1
ij/oj−−−→ qj , for all j with 0 ≤ j < n. If M and M′ are Mealy

machines with the same inputs I and outputs O, then we write M ≤ M′ if,
for each σ ∈ I∗, AM(σ) ⊆ AM′(σ). We say that M and M′ are (behaviorally)
equivalent, notation M ≈ M′, if both M ≤ M′ and M′ ≤ M.

If M is deterministic, then AM(σ) is a singleton set for each input sequence σ.
In this case, M can equivalently be represented as a structure 〈I,O,Q, q0, δ, λ〉,
with δ : Q × I → Q, λ : Q × I → O, and q

i/o−−→ q′ ⇒ δ(q, i) = q′ ∧ λ(q, i) = o.

MAT Framework. The most efficient algorithms for model learning all follow
the pattern of a minimally adequate teacher (MAT) as proposed by Angluin [6].
In the MAT framework, learning is viewed as a game in which a learner has
to infer an unknown automaton by asking queries to a teacher. The teacher
knows the automaton, which in our setting is a deterministic Mealy machine
M. Initially, the learner only knows the inputs I and outputs O of M. The task
of the learner is to learn M through two types of queries:

– With a membership query, the learner asks what the response is to an input
sequence σ ∈ I∗. The teacher answers with the output sequence in AM(σ).

– With an equivalence query, the learner asks whether a hypothesized Mealy
machine H is correct, that is, whether H ≈ M. The teacher answers yes if
this is the case. Otherwise it answers no and supplies a counterexample, which
is a sequence σ ∈ I∗ that triggers a different output sequence for both Mealy
machines, that is, AH(σ) �= AM(σ).

Starting from Angluin’s seminal L∗ algorithm [6], many algorithms have been
proposed for learning finite, deterministic Mealy machines via a finite number of
queries. We refer to [23] for recent overview. In applications in which one wants
to learn a model of a black-box reactive system, the teacher typically consists
of a System Under Learning (sul) that answers the membership queries, and a
conformance testing tool [27] that approximates the equivalence queries using a
set of test queries. A test query consists of asking to the sul for the response to
an input sequence σ ∈ I∗, similar to a membership query.
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Abstraction. We recall relevant parts of the theory of abstractions from [2].
Existing model learning algorithms are only effective when applied to Mealy
machines with small sets of inputs, e.g. fewer than 100 elements. Practical
systems like TCP, however, typically have huge alphabets, since inputs and
outputs carry parameters of type integer or string. In order to learn an over-
approximation of a “large” Mealy machine M, we place a transducer in between
the teacher and the learner, which translates concrete inputs in I to abstract
inputs in X, concrete outputs in O to abstract outputs in Y , and vice versa.
This allows us to abstract a Mealy machine with concrete symbols in I and O
to a Mealy machine with abstract symbols in X and Y , reducing the task of the
learner to inferring a “small” abstract Mealy machine.

Formally, a mapper for inputs I and outputs O is a deterministic Mealy
machine A = 〈I∪O,X∪Y,R, r0, δ, λ〉, where I and O are disjoint sets of concrete
input and output symbols, X and Y are disjoint sets of abstract input and output
symbols, and λ : R×(I ∪O) → (X ∪Y ), the abstraction function, respects inputs
and outputs, that is, for all a ∈ I ∪ O and r ∈ R, a ∈ I ⇔ λ(r, a) ∈ X.

Basically, the abstraction of Mealy machine M via mapper A is the Cartesian
product of the underlying transition systems. Let M = 〈I,O,Q, q0,→M〉 be a
Mealy machine and let A = 〈I ∪ O,X ∪ Y,R, r0, δA, λA〉 be a mapper. Then
αA(M), the abstraction of M via A, is the Mealy machine 〈X,Y ∪ {⊥}, Q ×
R, (q0, r0),→α〉, where ⊥�∈ Y is a fresh output and →α is given by the rules

q
i/o−−→M q′, r

i/x−−→A r′ o/y−−→A r′′

(q, r)
x/y−−→α (q′, r′′)

� ∃i ∈ I : r
i/x−−→A

(q, r)
x/⊥−−−→α (q, r)

To understand how the mapper is utilized during learning, we follow the
execution of a single input of a query. The learner produces an abstract input x,
which it sends to the mapper. By inversely following abstraction function λA, the
mapper converts this to a concrete input i and updates its state via transition

r
i/x−−→A r′. The concrete input i is passed on to the teacher, which responds

with a concrete output o according to q
i/o−−→M q′. This triggers the transition

r′ o/y−−→A r′′ in which the mapper generates the corresponding abstract output y
and updates its state again. The abstract output is then returned to the learner.

We notice that the abstraction function is utilized invertedly when translating
inputs. More precisely, the abstract input that the learner provides is an output
for the mapper. The translation from abstract to concrete involves picking an
arbitrary concrete value that corresponds with the given abstract value. It could
be that multiple concrete values can be picked, in which case all values should
lead to the same abstract behavior in order to learn a deterministic abstract
model. It can also be that no values correspond to the input abstraction, in which
case, by the second rule, ⊥ is returned to the learner, without consulting the
teacher. We define the abstraction component implementing αA as the transducer
which follows from the mapper A, but inverts the abstraction of inputs.

From the perspective of a learner, a teacher for M and abstraction component
implementing αA together behave exactly like a teacher for αA(M). If αA(M) is
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deterministic, then the learner will eventually succeed in learning a deterministic
machine H satisfying αA(M) ≈ H. In [2], also a concretization operator γA is
defined. This operator is the adjoint of the abstraction operator: it turns any
abstract machine H with symbols in X and Y into a concrete machine with
symbols in I and O. If H is deterministic then γA(H) is weakly deterministic.

As shown in [2], αA(M) ≤ H implies M ≤ γA(H). This tells us that when
we apply mapper A during learning of some “large” Mealy machine M, even
though we may not be able to learn the behavior of M exactly, the concretization
γA(H) of the learned abstract model H is an over-approximation of M, that is,
M ≤ γA(H). Similarly to the abstraction component, a concretization compo-
nent for mapper A implements γA. This component is again fully defined by a
mapper, but handles abstraction of outputs invertedly. During model checking,
the composition of the abstract model H and the concretization component for
A provides us with an over-approximation of M.

Framework for Mapper Definition. In order to apply our abstraction app-
roach, we need an abstraction and a concretization component for a given mapper
A. We could implement these components separately in an arbitrary program-
ming language, but then they would have to remain consistent with A. Moreover,
ensuring that translation in one component inverts the corresponding transla-
tion in the other is non-trivial, and difficult to maintain, as changes in one would
have to be applied invertedly in the other.

We used an alternative approach, in which we first define a mapper and then
derive the abstraction and concretization components automatically. To this end,
we built a language for defining a mapper in terms of (finite) registers, and func-
tions to encode transitions and outputs. Our language supports case distinctions
with programming-style if-else-statements, and requires that every branch leads
to exactly one output and updates registers exactly once, such that the transla-
tions are complete. Except for the restrictions of finiteness and determinism, our
language has the expressiveness of a simple programming language and should
thus be usable to abstract (and concretize reversely) a wide range of systems
and protocols. Listing 1 shows the example of a mapper for a simple login sys-
tem. The mapper stores the first password received, and compares subsequent
passwords to it. The abstract passwords used by the learner are {true, false},
denoting a correct or incorrect password, respectively. At the first attempt, true
invertedly maps to any concrete password, and false maps to ⊥. Later on true
invertedly maps to the value picked the first time, while false maps to any other
value. For TCP, we define multiple abstraction functions for inputs and outputs,
in terms of multiple parameters per input or output.

To derive the components, we need to implement the inverse of the abstrac-
tion function, for both inputs and outputs. This can be achieved using a con-
straint solver or by picking random concrete values and checking if they are
translated to the sought after abstraction, by translating them with the map-
per in the forward direction. The latter approach may be hard, as the concrete
domain is usually very large. In addition to finding a corresponding concrete
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Listing 1. A simple example mapper for a login system, in a simplified syntax
integer stored := −1;
map enter(integer password → boolean correct)

if (stored = −1 ∧ password ≥ 0) ∨ stored = password then
correct := true

else
correct := false

end if
end map
update

if stored = −1 ∧ password ≥ 0 then
stored := password

else
stored := stored � Every path explicitly assigns a value

end if
end update

value, another purpose of executing abstractions invertedly is to test the abstrac-
tion: different possible values should lead to the same abstract behavior, as the
learner cannot handle non-determinism. A constraint solver usually picks values
in a very structured and deterministic way, which does not test the abstraction
well. Picking concrete values randomly and checking the corresponding abstract
value allows more control over obtaining a good test coverage, but is in general
less scalable.

3 Learning Setup

3.1 TCP as a System Under Learning

In TCP there are two interacting entities, the server and the client , which com-
municate over a network through packets, comprising a header and application
data. On both sides there is an application, initiating and using the connection
through socket calls. Each entity is learned separately and is a sul in the learn-
ing context. This sul thus takes packets or socket calls as inputs. It can output
packets or timeout , in case the system does not respond with any packet. RFC
793 [38] and its extensions, most notably [9,34], specify the protocol.

Packets are defined as tuples, comprising sequence and acknowledgement num-
bers, a payload and flags. By means of abstraction, we reduce the size of sequence
and acknowledgement number spaces. Each socket call also defines an abstract and
concrete input. Whereas packet configurations are the same for both client and
server, socket calls differ. The server can listen for connections and accept them,
whereas the client can actively connect. Both parties can send and receive data,
or close an established connection (specifically, a half-duplex close [9, p. 88]). The
server can additionally close its listening socket. Values returned by socket calls
are not in the output alphabet to reduce setup complexity.
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Fig. 1. Overview of the learning setup.

Figure 1 displays the learning setup used. The learner generates abstract
inputs, representing packets or socket calls. The abstraction component con-
cretizes each input by translating abstract parameters to concrete, and then
updates its state. The concrete inputs are then passed on to the network adapter ,
which in turn transforms each input into a packet, sending it directly to the sul,
or into a socket call, which it issues to the sul adapter. The sul adapter runs
on the same environment as the sul and its sole role is to perform socket calls
on the sul. Each reponse packet generated by the sul is received by the net-
work adapter , which retrieves the concrete output from the packet or produces
a timeout output, in case no packet was received within a predefined time inter-
val. The output is then sent to the abstraction component, which computes the
abstraction, updates its state again, and sends the abstract output to the learner.

The learner is based on LearnLib [39], a Java library implementing L∗ based
algorithms for learning Mealy machines. The abstraction component is also writ-
ten in Java, and interprets and inverts a mapper. The network adapter is a
Python program based on Scapy [41], Pcapy [35], and Impacket [22]. It uses
Scapy to craft TCP packets, and Scapy together with a Pcapy and Impacket
based sniffer to intercept responses. The network adapter is connected to the sul
adapter via a standard TCP connection. This connection is used for communi-
cating socket calls to be made on the sul. Finally, the sul adapter is a program
which performs socket calls on command, written in C to have low level access
to socket options.

3.2 Viewing the SUL as a Mealy Machine

TCP implementations cannot be fully captured by Mealy Machines. To learn a
model, we therefore need to apply some restrictions. As mentioned, the number
of possible values for the sequence and acknowledgement numbers is reduced by
means of abstractions. Furthermore, payload is limited to either 0 or 1 byte.
Consequently, 1 byte of data is sent upon a send -call. Flags are limited to only
the most interesting combinations, and we also abstract away from all other
fields from the TCP layer or lower layers, allowing Scapy to pick default values.

TCP is also time-dependent. The sul may, for instance, retransmit packets
if they are not acknowledged within a specified time. The sul may also reset if
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it does not receive the acknowledgement after a number of such retransmissions,
or if it remains in certain states for too long. The former we handled by having
the network adapter ignore all retransmissions. For the latter, we verified that
the learning queries were short enough so as not to cause these resets.

TCP is inherently concurrent, as a server can handle multiple connections at
any time. This property is difficult to capture in Mealy Machines. Overcoming
this, the sul adapter ensures that at most one connection is accepted at any
time by using a set of variables for locking and unlocking the accept and connect-
calls. Only one blocking socket call can be pending at any time, but non-blocking
socket calls can always be called.

Furthermore, the backlog size parameter defines the number of connections
to be queued up for an eventual accept-call by the server sul. The model grows
linearly with the this parameter, while only exposing repetitive behavior. For
this reason we set the backlog to the value 1.

3.3 Technical Challenges

We overcame several technical challenges in order to learn models. Resetting the
sul and setting a proper timeout value are solved similarly to [18].

Our tooling for sniffing packets sometimes missed packets generated by the
sul, reporting erroneous timeout outputs. This induced non-deterministic behav-
ior, as a packet may or may not be caught, depending on timing. Each observa-
tion is therefore repeated three times to ensure consistency. Consistent outputs
are cached to speed up learning, and to check consistency with new observations.
It also allows to restart learning with reuse of previous observations.

In order to remove time-dependent behavior we use several TCP settings.
Most notably, we disable slow acknowledgements and enable quick acknowledge-
ments where possible (on Linux and FreeBSD). The intuition is that we want the
sul to send acknowledgements whenever they can be issued, instead of delaying
them. We also had to disable syn cookies in FreeBSD, as this option caused
generation of the initial sequence number in a seemingly time dependent way,
instead of using fresh values. For Linux, packets generated by a send -call were
occasionaly merged with previous unacknowledged packets, so we could only
learn a model by omitting send -call, although data packets could still be sent
from the learner to the sul.

3.4 Mapper Definition

The mapper is based on the work of Aarts et al. [5], and on the RFCs. Socket
calls contain no parameters and do not need abstraction, so they are mapped
simply with the identity relation. TCP packets are mapped by mapping their
parameters individually. Flags are again retained by an identity relation. The
sequence and acknowledgement numbers are mapped differently for inputs and
outputs; input numbers are mapped to {valid, invalid}, and outputs are mapped
to {current,next, zero, fresh}. After a connection is set up, the mapper keeps
track of the sequence number which should be sent by the sul and learner.
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Valid inputs are picked according to this, whereas current and next represent
repeated or incremented numbers, respectively. The abstract output zero simply
denotes the concrete number zero, whereas fresh is used for all other numbers.
If no connection is established, any sequence number is valid (as the RFCs then
allow a fresh value), and the only valid acknowledgement number is zero.

Note that all concrete inputs with the same abstract value, should lead to an
equivalent abstract behavior. Valid inputs are defined according to the RFC’s.
However, this is very hard for invalid inputs, as they may be accepted, ignored,
they may lead to error recovery, or even undefined behavior. To learn the behav-
ior for these inputs, abstractions should be defined precisely according to these
behaviors, which is unfeasible to do by hand. As a result, we have excluded
invalid inputs from the learning alphabet. To translate valid inputs, we first
used a constraint solver which finds solutions for the transition relation. This is
done by taking the disjunction of all path constraints, similar to symbolic execu-
tion techniques [25]. However, this did not test the abstraction well, as the con-
straint solver always picks zero if possible, for example. We therefore randomly
picked concrete values to test with, and used values with the right corresponding
abstract value, instead. Concrete values were picked with a higher probability
if they were picked or observed previously during the same run, as well as the
successors of those values. This approach sufficed to translate all values for our
experiments.

4 Model Learning Results

Using the abstractions defined in Sect. 2, we learned models of the TCP client and
server for Windows 8, Ubuntu 14.04 and FreeBSD 10.2. For testing we used the
conformance testing algorithm described in [43] to generate efficient test suites
which are parameterized by a middle section of length k . Generated exhaustively,
these ensure learned model correctness, unless the respective implementation
corresponds to a model with at least k more states. For each model, we first
executed a random test suite with k of 4, up to 40000 tests for servers, and
20000 tests for clients. We then ran an exhaustive test suite with k of 2 for
servers, respectively 3 for clients.

Table 1 describes the setting of each of these experiments together with sta-
tistics on learning and testing: (1) the number of states in the final model,

Table 1. Statistics for learning experiments

SUL States Hyp. Memb. Queries Tests to last Hyp. Tests on last Hyp.

Client Windows 8 13 2 1576 1322 50243

Server Windows 8 38 10 11428 9549 65040

Client Ubuntu 14.04 15 2 1974 15268 56174

Server Ubuntu 14.04 57 14 17879 15681 66523

Client FreeBSD 10.2 12 2 1456 1964 47387

Server FreeBSD 10.2 55 18 22287 12084 75894
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(2) the number of hypotheses found, (3) the total number of membership queries,
(4) the total number of unique test queries run on the sul before the last hypoth-
esis, (5) the number of unique test queries run to validate the last hypothesis.

Figure 2 shows the model learned for the Windows 8 client. This model covers
standard client behavior, namely connection setup, sending and receiving data
and connection termination. Based on predefined access sequences, we identify
each state with its analogous state in the RFC state diagram [38, p. 23], if such
a state exists. Transitions taken during simulated communication between a
Windows client and a server are colored green. These transitions were identified
during model checking, on which we expand in Sect. 5.

Table 1 shows that the models for the Linux and FreeBSD servers have more
states than for Windows, and all models have more states than described in the
specification. We attribute this to several factors. We have already mentioned
that model sizes grow linearly with the value of the backlog-parameter. While we
set it to 1, the setting is overriden by operating system imposed minimum value
of 2 for FreeBSD and Linux. Moreover, sul behavior depends on blocking system
calls and on whether the receive buffer is empty or not. Although specified, this
is not modelled explicitly in the specification state diagram. As an example,
the established and close wait states from the standard each have multiple
corresponding states in the model in Fig. 2.

Non-conformance of Implementations. Inspection of learned models
revealed several cases of non-conformance to RFC’s in the corresponding imple-
mentations.

A first non-conformance involves terminating an established connection with
a close. The resulting output should contain a fin if all data up to that point has
been received. If there is data not yet received, the output should contain a rst,
which would signal to the other side an aborted termination [9, p. 88]. Windows
does not conform to this, as a close can generate a rst instead of a fin even in
cases where there is no data to be received, namely, in states where a rcv call
is pending. Figure 2 marks this behavior in red. FreeBSD implementations are
also non-compliant, as they always generate fin packets on a close, regardless
if all data has been received. This would arguably fall under the list of common
bugs [34], namely “Failure to send a RST after Half Duplex Close”. The learned
Linux models fully comply to these specifications.

A second non-conformance has to do with the processing of syn packets. On
receiving a syn packet in a synchronized state, if the sequence number is in “the
window” (as it always is, in our case), the connection should be reset (via a
corresponding rst packet) [38, p. 71]. Linux implementations conform for syn
packets but not for syn+ack packets, to which they respond by generating an
acknowledgement with no change of state. Both Windows and FreeBSD respect
this specification.

We note a final non-conformance in Windows implementations. In case the
connection does not exist (closed), a reset should be sent in response to any
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Fig. 2. Learned model for Windows 8 TCP Client. To reduce the size of the diagram,
we eliminate all self loops with timeout outputs. We replace flags and abstractions by
their capitalized initial letter, hence use s for syn, a for ack, n for next, etc. We omit
input parameter abstractions, since they are the same for all packets, namely valid for
both sequence and acknoweldgement numbers. Finally, we group inputs that trigger a
transition to the same state with the same output. Timeouts are denoted by ‘-’.

incoming packet except for another reset [38, p. 36], but Windows 8 sends nothing.
FreeBSD can be configured to respond in a similar way to Windows, by changing
the blackhole setting.1 This behavior is claimed to provide “some degree of proten-
tion against stealth scans”, and is thus intentional.

1 https://www.freebsd.org/cgi/man.cgi?query=blackhole.

https://www.freebsd.org/cgi/man.cgi?query=blackhole
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5 Model Checking Results

5.1 Model Checking the Learned Behaviour

We analyzed the learned models of TCP implementations using the model
checker NuSMV [15]. We composed pairs of learned client and server models
with a hand-made model of a non-lossy network, which simply delivers output
from one entity as input for the other entity. Since the abstract input and out-
put domains are different, the abstract models cannot communicate directly,
and so we had to encode the concretized models within NuSMV code. We wrote
a script that translated the abstract Mealy machine models from LearnLib to
NuSMV modules, and another script that translated the corresponding mappers
to NuSMV modules. TCP entities produce abstract outputs, which are trans-
lated to concrete. The network module then passes along such concrete messages.
Before being delivered to the other entity, these messages are again transformed
into abstract inputs. By encoding mapper functions as relations, NuSMV is able
to compute both the abstraction function and its inverse, i.e., act as a concretiza-
tion component. The global structure of the model is displayed in Fig. 3.

In Mealy machines, transitions are labeled by an input/output pair. In
NuSMV transitions carry no labels, and we also had to split the Mealy machine
transitions into a separate input and output part in order to enable synchro-

nization with the network. Thus, a single transition q
i/o−−→ q′ from a (concrete)

Mealy machine is translated to a pair of transitions in NuSMV:

(loc = q, in = .., out = ..) → (loc = q, in = i, out = ..) → (loc = q′, in = i, out = o).

Sequence and acknowledgement numbers in the implementations are 32-
bit numbers, but were restricted to 3-bit numbers to reduce the state space.
Whereas concrete messages are exchanged from one entity to the other, socket
call inputs from the application are simulated by allowing system-calls to occur
non-deterministically. A simplification we make is that we do not allow paral-
lel actions: an action and all resulting packets have to be fully processed until
another action can be generated. Consequently, there can be at most one packet
in the composite model at any time. For example, once a three way handshake

Fig. 3. Schematic overview of NuSMV-model. Only half of the setup is shown in detail,
as the model is symmetric and another TCP-entity model is connected to the network.



Combining Model Learning and Model Checking 467

is initiated between a client and a listening server via a connect-call, no more
system-calls can be performed until the handshake is finalized.

5.2 Checking Specifications

After a model is composed, the interaction between TCP entities can be analyzed
using the NuSMV model checker. However, it is important to realize that, since
we used abstractions, the learned models of TCP servers and clients are over-
approximations of the actual behaviors of these components. If Mealy machine
M models the actual behavior of a component, A is the mapper used, and H is
the abstract model that we learned then, as explained in Sect. 2, correctness of
H implies M ≤ γA(H). Since γA(H) is weakly deterministic, in this case there
exists a forward simulation relation from M to γA(H). This forward simula-
tion is preserved by the translation from Mealy machines to NuSMV. Results
from Grumberg and Long [20] then imply that, for any ∀CTL∗-formula (which
includes all LTL-formulas) we can transfer model checking results for γA(H) to
the (unknown) model M. Since simulations are preserved by composition, this
result even holds when γA(H) is used as a component in a larger model.

Another essential point is that only a subset of the abstract inputs is used
for learning. Hence invalid inputs (i.e. inputs with invalid parameters) are not
included in our models. Traces with these inputs can therefore not be checked.
Hence, the first property that we must check is a global invariant that asserts
that invalid inputs will never occur. In case they do, NuSMV will provide a
counterexample, which is used to find the cause of invalidity. During our initial
experiments, NuSMV found several counterexamples showing that invalid inputs
may occur. Based on analysis of these counterexamples we either refined/cor-
rected the definition of one of the mappers, or we discovered a counterexample for
the correctness of one of the abstract models. After a number of these iterations,
we obtained a model in which invalid inputs can no longer occur. As mappers
construction is done manually, these iterations are also not yet automated.

With only valid inputs, composite model may be checked for arbitrary ∀CTL∗

formulas. Within these formulas, we may refer to input and output packets and
their constituents (sequence numbers, acknowledgements, flags,..). This yields a
powerful language for stating properties, illustrated by a few examples below.
These formulas are directy based on the RFC’s.

Many properties that are stated informally in the RFC’s refer to control states
of the protocol. These control states, however, cannot be directly observed in our
black-box setting. Nevertheless, we can identify states, e.g. based on inputs and
outputs leading to and from it. For example, we base the proposition established
on RFC 793, which states that: “The connection becomes ‘established’ when
sequence numbers have been synchronized in both directions” [38, p. 11], and
that only a close or abort socket call or incoming packets with a rst or fin
can make an entity leave the established state [38, Sect. 3.9].
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We first show a simple safety formula checking desynchonization: if one entity
is in the established state, the other cannot be in syn sent and time wait:

G¬(tcp1 − state = established ∧ (tcp2 − state = syn sent ∨ tcp2 − state = time wait))

The next specification considers terminating an established connection with
a close-input. The output should contain a fin, except if there is unread data
(in which case it should contain a rst). This corresponds to the first non-
conformance case explained in Sect. 4. The specification is captured by the fol-
lowing formula, in which T is the triggered-operator as defined in NuSMV.

G(state = established → ((input = rcv T input �= packet with data) ∧ input = close)

→ (F output = packet with fin)))

We have formalized and checked, in a similar way, specifications for all other
non-conforming cases as well as many other specifications.

We have also checked which transitions in the abstract models are reachable
in the composed system. For every transition, we take its input and starting state,
and check whether they can occur together. In this way we can find the reachable
parts of model. This proves useful when analysing models, as the reachable parts
likely harbor bugs with the most impact. Similarly, comparing reachable parts
helps reveal the most relevant differences between implementations. The first and
third non-conformances in Sect. 4 occur in the reachable parts of the respective
models. Figure 2 marks these parts in green.

6 Conclusions and Future Work

We combined model learning, model checking and abstraction techniques to
obtain and analyze models of Windows, Linux and FreeBSD TCP server and
client implementations. Composing these models together with the model of
a network allowed us to perform model checking over the composite setup and
verify that any valid number generated by one TCP entity is seen as valid number
by the other TCP entity. We have also identified breaches of the RFC’s in all
operating systems, and confirmed them by formulating temporal specification
and checking them. Our work suggests several directions for future work.

Based on our understanding of TCP, we manually defined abstractions (map-
pers) that made it possible to learn models of TCP implementations. Getting
the mapper definitions right turned out to be tricky. In fact, we had to restrict
our learning experiments to valid abstractions of the sequence and acknowl-
edgement numbers. This proved limiting when searching for interesting rules
to model check, like for example those that would expose known implementa-
tion bugs. Such rules often concern invalid parameters, which do not appear
in the models we learned. Additionaly, we had to manually refine our mapper
due to counterexamples found by the model checker. Learning algorithms that
construct the abstractions automatically could potentially solve this problem.
We hope that extensions of the learning algorithms for register automata as
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implemented in the Tomte [4] and RALib [12] tools will be able to construct
abstractions for TCP fully automatically.

Our work was severely restricted by the lack of expressivity of Mealy
machines. In order to squeeze the TCP implementation into a Mealy machine,
we had to eliminate timing based behavior as well as re-transmissions. Other
frameworks for modeling state machines might facilitate modelling these aspects.
Obviously, we would also need learning algorithms capable of generating such
state machines. There has been some preliminary work on extending learning
algorithms to timed automata [19,47], and to I/O transition systems [3,48], with
the additional benifit of approximate learning. Approximate learning learns an
upper and lower boundary to the behaviour of the system, instead of an exact
model. This may allow to abstract away the corner-cases in the model and the
mapper, if they are not relevant for the specifications. Extensions of this work
could eliminate some of the restrictions that we encountered.

References

1. Aarts, F.: Tomte: Bridging the Gap between Active Learning and Real-World
Systems. Ph.D. thesis, Radboud University Nijmegen, October 2014

2. Aarts, F., Jonsson, B., Uijen, J., Vaandrager, F.W.: Generating models of infinite-
state communication protocols using regular inference with abstraction. Formal
Methods Syst. Des. 46(1), 1–41 (2015)

3. Aarts, F., Vaandrager, F.: Learning I/O automata. In: Gastin, P., Laroussinie, F.
(eds.) CONCUR 2010. LNCS, vol. 6269, pp. 71–85. Springer, Heidelberg (2010)

4. Aarts, F., Fiterau-Brostean, P., Kuppens, H., Vaandrager, F.: Learning register
automata with fresh value generation. In: Leucker, M., Rueda, C., Valencia, F.D.
(eds.) ICTAC 2015. LNCS, vol. 9399, pp. 165–183. Springer, Heidelberg (2015).
doi:10.1007/978-3-319-25150-9 11

5. Aarts, F., Jonsson, B., Uijen, J., Vaandrager, F.W.: Generat-ing models of infinite-
state communication protocols using regular inference withabstraction. Formal
Methods Syst. Des. 46(1), 1–41 (2015)

6. Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput.
75(2), 87–106 (1987)

7. Baier, C., Katoen, J.-P.: Principles of Model Checking. MIT Press, Cambridge
(2008)

8. Berendsen, J., Gebremichael, B., Vaandrager, F.W., Zhang, M.: Formal specifica-
tion and analysis of Zeroconf using Uppaal. ACM Trans. Embed. Comput. Syst.
10(3), 1–32 (2011)

9. Braden, R.: RFC 1122 Requirements for Internet Hosts - Communication Layers.
Internet Engineering Task Force, October 1989

10. Brinksma, E., Mader, A.: On verification modelling of embedded systems. Technical
report TR-CTIT-04-03, Centre for Telematics and Information Technology, Univ.
of Twente, The Netherlands, January 2004

11. Bruns, G., Staskauskas, M.G.: Applying formal methods to a protocol standard
and its implementations. In: Proceedings International Symposium on Software
Engineering for Parallel and Distributed Systems (PDSE 1998), 20–21 April 1998,
Kyoto, Japan, pp. 198–205. IEEE Computer Society (1998)

http://dx.doi.org/10.1007/978-3-319-25150-9_11
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Abstract. Efficient algorithms have been developed to model check live-
ness properties, such as the well-known Nested Depth-First Search, which
uses a depth-first search (DFS) strategy. However, in some settings, DFS
is not a suitable option. For instance, when considering distributed model
checking on a cluster, or many-core model checking using a Graphics
Processing Unit (GPU), Breadth-First Search (BFS) is a more natural
choice, at least for basic reachability analysis. Liveness property check-
ing, however, requires the detection of (accepting) cycles, and BFS is
not very suitable to detect these on-the-fly. In this paper, we consider
how a model checker that completely runs on a GPU can be extended to
efficiently verify whether finite-state concurrent systems satisfy liveness
properties. We exploit the fact that the state space is the product of the
behaviour of several parallel automata. The result of this work is the
very first GPU-based model checker that can check liveness properties.

1 Introduction

Model checking [2] is a formal verification technique to ensure that a model
satisfies desired functional properties. Some of these properties may address
infinite system behaviour. Such properties are called liveness properties; they
express that some desired behaviour eventually happens [1].

In finite-state systems, infinite behaviour is only possible if some of the states
are visited infinitely often. Therefore, in the state space of such a system, infinite
behaviour is represented by a cycle and a path from the initial state leading to it.
A counter-example to a liveness property is also some infinite behaviour through
the product of the system behaviour and an automaton accepting any infinite
behaviour that violates the property [2]. Linear-time properties, for instance
expressed in the LTL temporal logic, can be represented by such automata, for
instance Büchi and Rabin automata.

For explicit-state model checking, there are efficient algorithms to find
counter-examples to liveness properties, e.g. [10,14,17,29,30]. All of these per-
form a search through the state space using a Depth-First Search (DFS) strategy.
However, in some settings, Breadth-First Search (BFS) is a more natural choice
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for graph traversals than DFS. For instance, when model checking is done by sev-
eral machines collaboratively in a network [5,7,11], and when General Purpose
Graphics Processing Units (GPGPUs or GPUs) are employed for model check-
ing. In the former case, information obtained through DFS traversals cannot
efficiently by synchronised between workers. In the latter case, the availability
of thousands of threads, and the requirement to occupy these to fully harness
the computing power of the GPU, is at odds with a DFS-based search, in which
a stack is used and the focus is always on the state at the top of the stack.
One might consider running multiple randomised DFSs in parallel [12,23], but
maintaining thousands of stacks would require too much overhead.

GPUs are being used to dramatically speed up computations. For explicit-
state model checking, GPUs are used for on-the-fly state space exploration
and safety property checking [6,35,36,39], offline property checking [3,8,9,34],
counterexample generation [38], and state space decomposition and minimisa-
tion [33,37].

The next challenge in GPU model checking is the on-the-fly checking of
general linear-time properties. In this paper, we consider doing this using a
BFS-based approach. The best known way to find cycles using a BFS-like search
is by topological sorting of the states [19], but it does not work on-the-fly, i.e.
while discovering the state space. A more suitable algorithm is a heuristic search
called piggybacking [13,16], in which a state that may be in a cycle of a counter-
example, is carried (piggybacked) along the search. If at any point, a state is
visited which is at that time also piggybacked, then a cycle is found. However,
the algorithm is not complete; in many situations, it may fail to detect a cycle.

Contributions. Firstly, we define, to the best of our knowledge, for the first time
a variant of piggybacking using Rabin automata to express properties. Secondly,
we propose several new algorithms that can efficiently analyse the input model
before the checking is started, to extract structural information that tends to
make the piggybacking algorithm more effective. Thirdly, in earlier work [13], a
post-processing phase was proposed to further analyse particular states that can
be identified as ‘promising’ during piggybacking. This phase makes piggybacking
complete for bounded suffix model checking, in which cycle detection is limited to
cycles of a predetermined number of transitions. In [13], a depth-bounded DFS
was initiated from each of those promising states to search for a cycle containing
them. In this paper, we show that with the extracted structural information,
the number of promising states can be reduced, thereby potentially speeding
up the post-processing phase. Fourthly, we discuss how piggybacking can be
implemented in a GPU model checking approach, focussing primarily on the data
structures. Finally, we validate the effectiveness of our approach as a whole, and
the application of the different algorithms in particular, on an implementation
in the GPU model checker GPUexplore [35,36].

It should be stressed that, even though we focus on using GPUs, our pro-
posed enhancements of piggybacking may be of use in other contexts as well.
For instance, in [25], several heuristics are used to incrementally verify liveness
properties symbolically using saturation. Our proposed heuristics seem to be
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more refined than the ones they use; for instance, they consider every visiting of
a state in a non-trivial strongly connected component to be an event that may
close a cycle in the state space, whereas we can distinguish situations where this
cannot be the case from cases where it can.

Piggybacking was first proposed in [16] and extended in [13], and a similar
approach is used as an on-the-fly heuristic in the OTF-OWCTY algorithm [4].
Various different strategies to select and remove piggybacking states have been
proposed, including piggybacking not one, but multiple states, to improve the
algorithm. However, these variations tend to not fundamentally improve the
original algorithm. We are the first to try to exploit the fact that the state space
is the combination of behaviour of several interacting processes in the input
model. One of the new algorithms, to identify so-called essential states, is inspired
by [22]. They statically analyse cycles in processes to improve partial order
reduction, and they consider state-based models. as opposed to our algorithm,
which works for action-based models.

The structure of the paper is as follows. In Sect. 2, we discuss the basic
notions. Section 3 presents the piggybacking algorithm and various algorithms
to statically analyse input models. How these algorithms affect GPU model
checking is explained in Sect. 4. Experimental results are given in Sect. 5, and
finally, our conclusions are presented in Sect. 6.

2 Preliminaries

In this section, we discuss the basic notions involved to understand the problem,
namely Lts, network of Ltss, and an action-based version of Rabin automata.

Labelled Transition Systems. We use Labelled Transition Systems (Ltss) to rep-
resent the semantics of finite-state systems. They are action-based descriptions,
indicating how a system can change state by performing particular actions.

Definition 1 (Labelled Transition System). An Lts G is a tuple 〈S,A,T ,s〉,
with

– S a finite set of states;
– A a set of action labels;
– T ⊆ S × A × S a transition relation;
– s ∈ S the initial state.

Actions in A are denoted by a, b, c, etc. We use s1
a−→s2 to denote 〈s1, a, s2〉 ∈

T . If s1
a−→s2, this means that an action a can be performed in state s1, leading to

state s2; we call s2 a successor of s1. We refer with →∗ and →+ to the reflexive,
transitive closure, and the transitive closure of →, respectively. We call s1→∗s2
and s1→+s2 paths through G, and for a path π, we refer with S(π) to the set of
states that are part of π. A cycle is a path consisting of at least one transition,
from a state s1 to itself, i.e. s1→+s1. Finally, inf(π) is the set of states in S(π)
that are part of a cycle in π. In particular, if π is a cycle, we have S(π) = inf(π).
In finite-state Ltss, a path involving a cycle is called an infinite path.
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Lts Networks. We use Lts networks (Definition 2) to describe concurrent sys-
tems. They consist of a finite number of concurrent process Ltss and a set of
synchronisation rules that define the possible interaction between the processes.
We write 1..n for the set of integers ranging from 1 to n. A vector v̄ of size n
contains n elements indexed from 1 to n. For all i ∈ 1..n, v̄i represents the ith

element of vector v̄.

Definition 2 (LTS network). An Lts network N of size n is a pair 〈Π,V〉,
where

– Π is a vector of n concurrent process Ltss. For each i ∈ 1..n, we write Πi =
〈Si,Ai, Ti, si〉.

– V is a finite set of synchronisation rules. A synchronisation rule is a tuple
〈a, T 〉, where a is an action label and T ⊆ 1..n.

The synchronisation rules define how the processes can synchronise with each
other. These rules allow m among n synchronisation between transitions of the
same label. The fact that they must have the same label is a restriction of our
definition of Lts networks, by which it differs from the one in [24]. Our rules can,
for instance, express that a-transitions of different processes need to synchronise,
and not that a- and b-transitions must synchronise with each other, and produce
a transition with some other label, say c. The reason for having the restriction
is due to our desire to compactly represent synchronisation rules in the GPU
model checker [35,36]. It does not restrict our ability to specify concurrent system
behaviour, since any network with rules that do not adhere to this restriction
can be rewritten to a network without such rules. It does remove the ability to
rename transition labels, but on the other hand, this is not a limitation for the
current application, in which renaming is never applied.

The explicit behaviour of an Lts network is defined by its system Lts
(Definition 3).

Definition 3 (System LTS). Given an Lts network N = 〈Π,V〉, its system
Lts is defined by NG = 〈SN ,AN , TN , sN 〉, with

– SN = S1 × · · · × Sn;
– AN =

⋃
i∈1..n Ai;

– sN = 〈s1, . . . , sn〉, and
– TN is the smallest relation satisfying:

∀s̄ ∈ SN , 〈a, T 〉 ∈ V.(∀i ∈ 1..n.

(
(i �∈ T ∧ s̄i = s̄′

i)

∨ (i ∈ T ∧ s̄i
a−→ s̄′

i)

)

) =⇒ s̄
a−→ s̄′

The system Lts is obtained by combining the processes in Π according to
the synchronisation rules in V. In the following, we assume that the so-called
independent transitions of a process, i.e. those that do not require synchronisa-
tion with other transitions, are always enabled. In other words, for each process
Πi (i ∈ 1..n) and independent action a ∈ Ai, we assume that 〈a, {i}〉 ∈ V.
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Rabin Automata. Model checking linear-time functional properties involves
checking whether a system satisfies a property ϕ, written in some linear-time
temporal logic. The property can be a liveness property addressing infinite sys-
tem behaviour (“something good eventually happens”). Since we use the action-
based Lts network formalism to express system behaviour, we also require an
action-based way to express our properties (which can, for instance, be done
using action-based LTL). For this, we extend the definition of Lts to obtain an
action-based Rabin automaton [28].

Definition 4 (Rabin automaton). A Rabin automaton (RA) R is a tuple
〈S,A, T , s,F〉, with

– 〈S,A, T , s〉 an Lts;
– F a set of k pairs of state sets {(Li,Ki) | 0 ≤ i < k}, with Li,Ki ⊆ S.

An RA has an acceptance condition: an infinite path π is accepted iff there
exists a pair (Li,Ki) ∈ F such that inf(π) ∩ Li = ∅ and inf(π) ∩ Ki �= ∅ [2,21].
RAs are as expressive as ω-regular languages (and many linear-time properties
are ω-regular). In fact, contrary to Büchi automata, deterministic versions of
RAs already have the full power of ω-regular languages [15]. A deterministic
automaton defines for each state and action label at most one successor state.

Verifying Linear-Time Properties. When checking functional properties, one
must solve the emptiness problem for the product of NG and the property
automaton R¬ϕ, where R¬ϕ refers to the RA accepting all infinite paths
described by the negation of ϕ [32]. In fact, this product is the system Lts
PG of an Lts network P = 〈Π ′,V ′〉 combining N and R¬ϕ, in which for
each i ∈ 1..n, Π ′

i = Πi, Π ′
n+1 = R¬ϕ, and the synchronisation rules of N

have been extended in V ′ to always involve synchronisation with R¬ϕ, i.e.
V ′ = {〈a, T ∪ {n + 1}〉 | 〈a, T 〉 ∈ V}.

Fig. 1. Request-
response automata

A counter-example for ϕ in PG exists iff there exists
some path π = 〈sN , t〉 →∗ 〈s̄, t〉, with t the initial state of
R¬ϕ, and a path π′ = 〈s̄, t〉→+〈s̄, t〉, that is accepted by
R¬ϕ. Let C = {t′ | 〈s̄′, t′〉 ∈ S(π′)}, then the combination
of π and π′ is accepted iff there exists an (Li,Ki) ∈ F
such that C ∩ Li = ∅ and C ∩ Ki �= ∅. If this is the case,
then π′ is referred to as an accepting cycle. In other words,
solving the emptiness problem boils down to checking for
the reachability of accepting cycles.

Figure 1 shows a Büchi automaton B¬ψ (a), which
accepts all paths that traverse through s1 infinitely often,
and a Rabin automaton R¬ψ (b). Both express the nega-
tion of a property ψ = “after p, eventually q happens”.1

This property is of a very commonly used type, namely
request-response. For our application, Rabin automata are often more suitable
than Büchi automata. In GPU model checking (Sect. 4), the outgoing transitions
of each state vector are constructed using multiple threads. In general, for this
1 Note that this is an action-based property referring to the transition-labels, as

opposed to a state-based property referring to state predicates.
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construction, the more independent transitions are present in the processes, the
more potential there is to explore them in parallel, which speeds up the suc-
cessor construction. When using non-deterministic Büchi automata, we observe
that the potential to avoid synchronisation is often smaller than when using
(deterministic) Rabin automata. For instance, in R¬ψ, we can ignore the self-
loops, and combine R¬ψ with NG in such a way that p and q-transitions of NG
need to synchronise with p and q-transitions of R¬ψ, but other transitions do
not, thereby avoiding many synchronisations. In B¬ψ, however, we have a self-
loop ¬q at state s1, which cannot be ignored in the same way, since we depend
on q-transitions in NG being blocked whenever R¬ψ is in state s1 in PG . This
could be solved by extending B¬ψ, but an additional drawback is that unlike
R¬ψ, B¬ψ is non-deterministic for p at state s0, thereby creating two branches
in PG whenever a p-transition can be fired, which may increase the state space
size. On the other hand, it should be noted that in general, Rabin automata tend
to be larger than Büchi automata expressing the same property, but multiple
techniques exist to keep the former reasonably small [20].

3 On-The-Fly BFS-Based Property Checking

3.1 A Piggyback Algorithm for Rabin Automata

It is well-known that
BFS-based graph
search algorithms are
not as efficient in
detecting cycles as
DFS-based algorithms.
This is because unlike
in DFS, where a
stack is employed
that keeps track of
the currently explored
path, information on
the individual paths
in the state space is
not maintained dur-
ing a BFS. However,
there is one excep-
tion to this, relat-
ing to the state s
from which the BFS
is initiated: if at any
point in the BFS, s
is reached again, we
know that a cycle
involving s exists.
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This observation is the basis for the piggyback algorithm in [16], which was
initially designed to perform bounded liveness checking, and improved in [13]
to handle liveness properties with a bounded suffix (i.e. the cycle in the state
space is bounded in size, as opposed to the cycle in the property automaton).
In Algorithm 1, we present a version of the piggyback algorithm tailored for the
use of Rabin automata, which is, to the best of our knowledge, the first time
this is done. At lines 1, 9 and 12, the acceptance condition for Rabin automata
is checked, and the results of those checks are, where applicable, piggybacked
along with the piggybacked state. This is the key difference between this and
previous versions of the piggyback algorithm.

In Algorithm 1, α refers to the state that is piggybacked along with the state
being visited or explored. The notation • refers to a value representing ‘no state’.
At lines 1–2, the initial state of PG is selected as a piggyback value if the initial
state of R¬ϕ is in at least one Ki (indicated by I), i.e. potentially makes a cycle
involving that state accepting. State α, together with the indices in I of the
involved (Li,Ki) are combined with the state. The combination is added to sets
Open and Closed (line 3), where Open is the set of states that have been visited,
but not yet explored, and Closed is the set of explored states.

Next, while Open is not empty, states are taken from that set, to be explored
(lines 4–5). At line 6, the out function returns the outgoing transitions of s̄,
i.e. out(s̄) = {〈a, s̄′〉 | s̄

a−→s̄′}. At line 7, the early termination condition of the
algorithm is checked: if at any time, one of the successors of a state is the state
being piggybacked, we have clearly detected a cycle. At lines 9–10, it is checked
whether successor s̄′ can still be in an accepting cycle. This is the case if for at
least one of the (Li,Ki) ∈ F relevant for the piggybacked state, s̄′ is not in Li. If
such an (Li.Ki) no longer exists, we remove the current piggybacked state, and
consider s̄′ as a new piggybacked value (lines 11–13). At line 14, the presence of s̄′

in Closed is checked. If it is not present, s̄′ is added to Open and Closed with the
updated piggybacked information (lines 15–16). Else, if currently a state is being
piggybacked, we have to consider re-exploration of s̄′: if the piggybacked value
of s̄′ encountered in Closed is •, we reopen the state and update its information
(lines 19–20). Else, we indicate at line 22 that a so-called blocking situation
has occurred (which we discuss next). In the end, these situations are further
analysed at lines 23–24. Note that re-exploration of a state can be done at most
once: if it is in Closed without a piggybacked value, and it is reached from a
state with a piggybacked value, it will be explored again, and added to Closed
with the piggybacked value. Hence, the complexity of the algorithm is O(|SP |).

Unfortunately, the piggyback algorithm is not complete; in many situations,
it fails to detect accepting cycles. Figure 2 illustrates two types of problems,
where, for convenience, we consider one pair of state sets (L,K)∈F . In the figure,
double-lined states are in K, while no states are in L. Piggybacked states are
listed between square brackets, and the search enters via incoming transitions.
In Fig. 2a, when reaching s̄1 ∈ K, this state cannot be piggybacked, since s̄0
already is. This may cause a situation called shadowing [13]: the accepting cycle
s̄1→+s̄1 is not recognised due to a different state being piggybacked.
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Fig. 2. Shadowing and blocking

Figure 2b illustrates a problem
called blocking [13]. The search enters
the cycle from s̄0 and s̄1, and pig-
gybacks both. This means that when
exploring s̄2, s̄0 is encountered with
a different piggybacked value, and
hence, the search is blocked (line 22 of
Algorithm 1), i.e. it cannot continue
along that path. Similarly, the search
from s̄0 is blocked. The result is that
the cycle is not detected.

However, the occurrence of block-
ing does not necessarily indicate the
presence of cycles. Another cause for blocking is due to the confluence of paths,
which tends to occur very frequently in state spaces, due to the interleaving
semantics of the input models [27]. This is illustrated in Fig. 2c: from s̄0, value α
is piggybacked to s̄2, due to which a search from s̄1 with value β �= α is blocked.

In a way, one can interpret shadowing as a specific form of blocking; in
Fig. 2a, the search is blocked at s̄2 due to reaching state s̄1 which already has a
piggybacked value not equal to s̄1 itself. In [13], it is proposed to keep track of
blocking occurrences during piggybacking, and post-processing those occurrences
by starting a DFS with depth-bound b is launched from every point in the state
space where blocking occurs, to determine whether or not a cycle of at most
size b exists. However, not all blocking occurrences require further analysis. We
observe the following, which is formalised in a lemma.

Lemma 1. Consider an accepting cycle π = s1→∗s2→s3→∗s1 with, for some
(Li, Ki) ∈ F , S(π) ∩ Ki �= ∅ and S(π) ∩ Li = ∅. Say that a search enters π
via s1, and piggybacks a value α along π, but is being blocked at s3, because the
latter already has a piggyback value β. Then, eventually, blocking will also occur
at s1, or an accepting cycle containing s1 is discovered.

Proof. By induction on the length m of s3→∗s1.

– m = 0: we have s3 = s1, therefore blocking at s1 happened when considering
the successors of s2.

– m = 1: s1 is a successor of s3. We either have β = s1, in which case an accepting
cycle containing s1 is discovered (line 7 of Algorithm 1), or the search is blocked
at s1, since s1 is in Closed, β �= •, and α �= • (line 22 of Algorithm 1).

– m = m′ +1: let s4 be the successor of s3 in π. There are now two possibilities:
1. either s4 has no piggyback value, in which case s4 will be added with

piggyback value β to Open, either at line 16 or 20 of Algorithm 1, and by
the induction hypothesis, eventually blocking will occur at s1, or another
accepting cycle through s1 is discovered.

2. or s4 has a piggyback value γ �= β. Then, another search along s4→∗s1
(with length m′) is being conducted with piggyback value γ. By the induc-
tion hypothesis, either blocking will occur at s1, or, in case γ = s1 and
exploration continues to s1, an accepting cycle containing s1 and s4 will
be discovered. ��
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In Sect. 4, we discuss how we analyse blocking occurrences on the GPU.
Lemma 1 is a key observation to reduce the number of occurrences that need
to be resolved. In particular, it suffices to look at those blocking occurrences
at states by which the search has entered a cycle and has closed process-local
cycles. Distinguishing these from others depends on knowing where the cycles
are, which we do not. However, in the next section, several new algorithms are
presented to statically analyse Lts networks to determine via which states in
the Π ′

i a search enters a local cycle. If in PG a given state does not enter a local
cycle in any of the Π ′

i, then it also cannot enter a cycle in PG . This relation
between cycles in the Π ′

i and cycles in PG is discussed next.

3.2 Static Analysis of Lts Networks

In this section, we present several algorithms to statically analyse networks under
analysis, with the goal to extract information that can improve the effective-
ness of the piggyback algorithm. These algorithms analyse the different Π ′

i in
isolation, and have a complexity which is at most quadratic in the size of an
individual Π ′

i. This is often much lower than the complexity of computing PG ,
which is O(|S1| × · · · × |Sn+1|). Lemma 2 serves as the starting point for our
reasoning.

Lemma 2. Consider an Lts network P = 〈Π ′,V ′〉. For every cycle π = s̄ →+ s̄
in PG, the following holds for each of the Π ′

i (i ∈ 1..n + 1):

1. either ∀s̄′ ∈ S(π).s̄′
i = s̄i

2. or ∃πi = s̄i →+ s̄i.∀s ∈ S(πi).∃〈s̄′, s〉 ∈ S(π)

Furthermore, for at least one Π ′
i, case 2 holds.

Lemma 2 follows from the following observation. Consider a state vector
s̄ = 〈s0, . . . , sn〉 ∈ SP that is part of a cycle π. If we traverse π all the way back
to s̄, then locally in each Π ′

i, we have moved from si to si, meaning that either
we did not move at all (case 1) or we have traversed a local cycle in Π ′

i (case 2).
Of course, for at least one of the Π ′

i, case 2 must hold, otherwise π would not
contain any transitions, and hence not be a cycle.

Independent Cycles. Lemma 2 implies that if for at least one of the Πi, si is
contained in a non-trivial, independent strongly connected component (SCC),
then s̄ (and, in fact, any state vector containing si) is part of a cycle in NG .
An SCC is a subgraph in which every state is reachable from every other state
in the SCC. It is non-trivial if it contains at least one transition.2 Finally, it
is independent if it consists of transitions that require no synchronisation with
other transitions in the network. Since we avoid the need to synchronise with
the property automaton whenever possible (see Sect. 2), there can be SCCs in a

2 Alternatively, an SCC is called trivial if it contains exactly one state, but here we
use the criterion that an SCC is trivial if it contains no transitions.
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process Lts that require no synchronisation with any other process Lts, includ-
ing the property automaton. Being aware of reaching independent cycles during
model checking can be very helpful: if we ever reach a state vector containing at
least one state in an independent cycle, and an accepting property state, then
we immediately know that there is an accepting cycle.

Independent SCCs can be detected in each Π ′
i by employing a variant of the

well-known SCC algorithm of Tarjan [31], in which we limit ourselves to the
exploration of independent transitions, and we launch Tarjan’s algorithm once
from each of the states si∈S ′

i, while never reexploring those states that were
visited during previous explorations.

This approach runs in a time linear to the number of states, since Tarjan’s
algorithm runs in linear time, and each state is explored at most once. In the
end, trivial SCCs are removed from the results.

Cycle Entry States. From Lemma 2, we know that during a search, a cycle in
PG can only have been completely traversed as soon as at least one local cycle
in one of the Π ′

i is traversed. Because of that fact, we would like to analyse the
Π ′

i to determine which states are possible entry points to cycles (and therefore
points where a cycle can also be closed).

There exist algorithms to identify all elementary cycles, i.e. cycles in which
no state is present more than once, in a directed graph, for instance [18,31].
However, these algorithms have a time complexity which is exponential in the
number of vertices, and therefore larger than we can allow, i.e. larger than com-
puting PG . Because of this, we propose a new algorithm (Algorithm 2), which
does not identify all elementary cycles individually, but instead identifies all
states by which at least one elementary cycle can be entered via some path from
the initial state. Besides this, for every such state, it keeps track of the transi-
tion labels that require synchronisation in P and are associated to at least one
transition of a cycle entered via that state. These labels are elements of what
we call the action dependency set associated with a state. The algorithm has a
worst case complexity of O(n2), with n the number of states.

Fig. 3. Cycle entries

As an example, consider the Lts in Fig. 3. The cycle
entry states are marked black. If a search starts from s0,
then s1, s4, and s3 are entry states: path s0→s1 leads
to cycles s1→s2→s3→s1 and s1→s2→s4→s3→s1, path
s0→s4 leads to s4→s3→s1→s2→s4, and path s0→s4→s3
leads to s3→s1→s2→s3. The action dependency sets are
{a, b, c, d, e} for s1, {e, c, a, d} for s4, and {c, a, b} for s3.
Note that an SCC detection algorithm does not provide
us the desired result. For instance, Tarjan’s algorithm will
identify s1, . . . , s4 as an SCC, with either s1 or s4 as root
state, depending on the DFS-order, but it will not distin-
guish s2 from the other states.

The DFS-based algorithm is described in procedure
dfsCheckEntries (line 5), which is applied to each of
the initial states in P (line 6), after some global sets have
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been initialised. There are three Closed sets, i.e. sets consisting of fully explored
states: Closedco, containing closed states that are in a cycle which is currently
open, i.e. partially on the DFS stack, Closedcc, containing states that are on a
closed cycle, and Closed, containing states not on a cycle. Furthermore, for each
of the Π ′

i, there are several sets:

– cycleentriesi contains the states in S ′
i that have been identified as cycle entry

states;
– crepsi contains a subset of cycleentriesi of so-called representatives. For each

cycle in Π ′
i, at least one of its states is representative;

– sdepsi records prioritised connections between states and representatives, to
keep track of which states are directly connected via a transition to a represen-
tative, and which states are indirectly connected via states that are directly
connected;

– asetsi contains the action dependency sets of the cycle entry states, i.e. states
in cycleentriesi.

Finally, cclosing contains cycle entry states of open cycles, and curdeps con-
tains the currently recorded connections between the state at the top of the DFS
stack and representatives.

For each transition s
a−→s′ of state s for which dfsCheckEntries is called,

i.e. which is at the top of the DFS stack, a number of distinct situations is
considered (we refer to the DFS stack as stack in Algorithm 2):

1: (Line 10): if s′ is on the DFS stack (s′∈stack), then s′ is clearly a cycle
entry state, since si→∗s→s′ leads to cycle s′→+s′. Hence, we add s′ to cclosing
(the cycle is still open) and cycleentriesi. We record in curdeps that s relates to
(representative) s′ with priority 1, indicating a direct connection.

2: (Line 13): if s′ is in Closedco, then we relate s to all representatives that have
been related to s′, but now with an incremented priority, representing an indirect
connection (sdepsi(s)(t) =⊥ at line 15 means that sdepsi(s)(t) is undefined). For
example, if through the Lts of Fig. 3, the algorithm first explores s0→s1→s2→s3,
then identifies s1 as cycle entry, records 〈s1, 1〉 as a direct connection for s3,
backtracks over s3, and then reaches s3 again via s4, then s4 gets the connection
〈s1, 2〉, signifying that s4 relates to s1 via s3.

3: (Line 17): if s′ is in Closedcc, then s′ is a cycle entry state. At line 19, D
records those representatives to which s′ has a more direct connection than s
(with ‘undefined’ being the weakest connection). If D is not empty, then at lines
21–22, the relevant representatives get connected to s′. If any of the involved
connections of s′ is not direct, then reopening of s′ is required (line 24). Finally,
at lines 25–26, those connections are set to 1, by which repeated reopening of s′

based on those connections is prevented.
Continuing the example from the previous item, if the search backtracks all

the way back to s0, then s1, . . . , s4 are all in Closedcc. If then, s4 is reached again
from s0, s4 is identified as cycle entry. However, the path s0→s4 can be extended
such that s3 is cycle entry, but this still needs to be detected. Since 〈s1, 2〉 is an
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indirect connection of s4, it will be reexplored. This leads us to s3, which will
now be identified as cycle entry, at which point the search backtracks, since s3
has no indirect connections.

4: (Line 27): if s′ is nei-
ther on the stack, nor in
any Closed set, then the
search continues via s′,
and the connections of s′

are connections for s as
well.

Once s′ has been exp-
lored, a is added to the
action dependency set of
the states in curdeps, if
a-transitions require syn-
chronisation (lines 30–
31). Finally, curdeps is
used to update sdepsi(s):
for every representative in
either of the two sets,
we keep the strongest
recorded connection in
sdepsi(s).

When s is fully exp-
lored, s is added to Closed
if there are no connec-
tions, i.e. s is not part
of a cycle (lines 33–34).
Otherwise, s is part of
an open cycle (lines 35–
36), and hence added
to Closedco. Finally, if s
represents at least one
open cycle, we move s
to the set of represen-
tatives crepsi. Backtrack-
ing over s means that
the associated open cycles
are now closed. All states
no longer related to an
open cycle are moved to
Closedcc (lines 37–41).

Essential Cycle Entries.
Finally, having detected all cycle entry states for each of the Π ′

i, we can consider
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how the Π ′
i may synchronise. For instance, if a local cycle π = s0

a−→s0 exists in
Π ′

1, and a requires synchronisation, and there is only one other cycle π′ con-
taining an a-transition in Π ′

2, then any cycle containing a in PG must be the
result of combining π and π′. Therefore, to be aware of the possibility of a cycle
occurring in PG during a search, it suffices to keep track of only one of the two
cycles π and π′, i.e. only the cycle entry states of one of the two.

Algorithm 3 selects
among the cycle entry
states a subset con-
taining what we call
the essential cycle entry
states, or essential states.
At lines 1–2, we con-
struct an integrated and
sorted version of all the
crepsi, in which the rep-
resentatives of all Π ′

i

are sorted by the num-
ber of actions in their
action dependency set,
from small to large. Then, all representatives are at first selected (lines 3–5).
The selection procedure is covered at lines 6–8: if for a representative s of Π ′

i,
none of its actions is shared with a removed representative from some other Π ′

j ,
then s can be safely removed. Finally, at lines 9–10, all cycle entry states with
connections to essential representatives are marked as being essential as well.

Note that the approach suggested here only approximates the real relation
between elementary cycles in the network, since multiple cycles may share cycle
entry states, and in those cases, their synchronising actions may be lumped
together in one action dependency set. However, improving on this would involve
the detection of all individual elementary cycles, which is too time-consuming.

3.3 Using the Static Analysis Results in the Piggyback Algorithm

The algorithms described in Sect. 3.2 can be used in a pre-processing phase
to provide additional structural information for the piggyback algorithm. We
describe here how and when that information can be used, referring back to
Algorithm 1.

First of all, detecting independent cycles in the process Ltss results in a set
of states Ci, for each Π ′

i, consisting of all the states that are in at least one
independent cycle. Whenever the piggyback algorithm reaches a state vector
s̄′ for which 1) there exists at least one i ∈ 1..n such that s̄′

i ∈ Ci and 2)
{j | (Lj ,Kj) ∈ F∧s̄′

n+1 ∈ Kj} �= ∅, then an accepting cycle has been found, since
one can construct from s̄′ a cycle by following the transitions in the independent
cycle in Π ′

i. This can be checked directly after line 6 in Algorithm 1.
Second of all, knowing the cycle entry states for each Π ′

i can help to distin-
guish blocking situations occurring due to the confluence of paths from situations
occurring due to the closing of a cycle. When blocking occurs on a state s̄ in
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which no process state enters a process-local cycle, i.e. no state is a cycle entry
state, we can conclude that the blocking cannot have been caused by closing
a global (system-level) cycle. This check can be added to Algorithm 1 at line
21. Only if the check evaluates to true, will the blocking occurrence be marked.
This can be even further improved if we also keep track of when we are closing
process-local cycles, starting from the moment when the current piggyback value
was picked up. Only in those cases where at least one such cycle is closed, is it
possible that we are also closing a cycle in PG . Besides this advantage, one can
as well improve the selection of piggyback values in those cases where the Rabin
automaton only contains cycles in which the cycle entry states are all in some
Ki (1 ≤ i ≤ |F|): only when a state s̄ contains an accepting property state and
has at least one cycle entry state should it be selected for piggybacking. This
can be used as an additional condition in Algorithm 1 at lines 2 and 12.

Finally, knowing the essential states for each Π ′
i helps us to further distin-

guish promising from unpromising situations: only blocking situations involving
essential states are interesting for post-processing, since a cycle in PG must be
closed by revisiting a state s̄ containing an essential state. Furthermore, under
the same assumption about the Rabin automaton as described above, informa-
tion on the essential states can help to make more informed decisions regarding
the selection of piggyback values. This affects Algorithm 1 at the same lines as
the ones mentioned above for cycle entry information.

4 GPU Model Checking

GPUexplore [35,36] is an explicit-state model checker that practically runs
entirely on a GPU (only the general progress is checked on the host side, i.e.
by a thread running on the Central Processing Unit (CPU)). It is written in
CUDA C, an extension of C offered by Nvidia. It provides the Compute Unified
Device Architecture interface to write applications for Nvidia’s GPUs. GPU-
explore takes an Lts network as input, and can construct the system Lts
using many threads in a BFS-based exploration, while checking on-the-fly for
the presence of deadlocks and violations of safety properties. A safety property
can be added as an automaton to the network. The general approach of GPU-
explore is discussed here, leaving out many of the details that are not relevant
for understanding the current work. The interested reader is referred to [35,36].

Fig. 4. GPUexplore overview

In a CUDA program, the host launches
CUDA functions called kernels, that are to be
executed many times in parallel by a specified
number of GPU threads. Usually, all threads
run the same kernel using different parts of the
input data, although some GPUs allow multi-
ple different kernels to be executed simulta-
neously (GPUexplore does not use this fea-
ture). Each thread is executed by a streaming
processor (SP), see Fig. 4. Threads are grouped
in blocks of a predefined size. Each block is
assigned to a streaming multiprocessor (SM).
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Each thread has a number of on-chip registers that allow fast access. The
threads in a block together share memory to exchange data, which is located
in the (on-chip) shared memory of an SM. Finally, the blocks can share data
using the global memory of the GPU, which is relatively large, but slow, since it
is off-chip. The global memory is used to exchange data between the host and
the kernel. The GTX Titan X, which we used for our experiments, has 12 GB
global memory and 24 SMs, each having 128 SPs, which is in total 3,072 SPs.

Writing well-performing GPU applications is challenging, due to the execu-
tion model of GPUs, which is Single Instruction Multiple Threads. Threads are
partitioned in groups of 32 called warps. The threads in a warp run in lock-step,
sharing a program counter, so they always execute the same program instruc-
tion. Hence, thread divergence, i.e. the phenomenon of threads being forced to
execute different instructions (e.g., due to if-then-else constructions) or to access
physically distant parts of the global memory, negatively affects performance.

Model checking tends to introduce divergences frequently, as it requires com-
bining the behaviour of the processes in the network, and accessing and storing
state vectors of the system state space in the global memory. In GPUexplore,
this is mitigated by combining relevant network information as much as possible
in 32-bit integers, and storing these as textures, that only allow read access and
use a dedicated cache to speed up random accesses. Furthermore, in the global
memory, a hash table is used to store state vectors (Fig. 4). The hash table
has been designed to optimise accesses of entire warps: the space is partitioned
into buckets consisting of 32 integers, precisely enough for one warp to fetch a
bucket with one combined memory access. State vectors are hashed to buckets,
and placed within a bucket in an available slot. If the bucket is full, another
hash function is used to find a new bucket. Each block accesses the global hash
table to collect vectors that still require exploration. To each state vector with n
process states, a group of n threads is assigned to construct its successors using
fine-grained parallelism. Since access to the global memory is slow, each block
uses a dedicated state cache (Fig. 4). It serves to collect newly produced state
vectors, that are subsequently stored in the global hash table in batches. With
the cache, block-local duplicates can be detected. The approach allows to work
with vectors that require any number of integers smaller than 32 to be stored.

Fig. 5. Encodings of an Lts and a state
vector with bookkeeping

The data structures used are illus-
trated in Fig. 5. At the top, an encod-
ing of the Lts in Fig. 3 is given. The
State offsets array contains the offsets
needed to read the outgoing transi-
tions of a state i in Transitions: they
are stored from position State offsets[i]
up to (not including) State offsets[i+1].
A transition is a pair of integers, the
first being the (index of) a transition
label, and the second being the target
state. When possible, multiple target

states are listed in one entry (in the case of non-determinism). Transitions are
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stored as compactly as possible: for a transition of Π ′
i, the log2(|Ai|) bits needed

to store the label index are combined with the log2(|Si|) bits needed to store the
target state in one 32-bit integer.

Below the Lts encoding, the encoding of a state vector can be seen. The top
part corresponds to how GPUexplore originally used to encode state vectors:
the state ID’s for the individual process Ltss are concatenated. For each of the
Π ′

i, log2(|Si|) bits are reserved in the vector. If required, multiple 32-bit integers
are used to store a vector. At the bottom of Fig. 5, the structure of a state vector
extended with bookkeeping bits is displayed. Besides the states of the Π ′

i:

– n bits are reserved to indicate which of the processes have already fully tra-
versed a local cycle since the last piggyback value was picked up (CC?);

– n bits are reserved to indicate which of the states are essential (Es.?);
– Two bits are reserved to indicate whether the property automaton is in a state

that requires infinite visits, finite visits, or neither (∞?);
– One bit is used to indicate whether blocking occurred on the vector (Bl.?);
– One bit indicates whether the vector is new, i.e. requires exploration (Nw.?);
– Thirty-two bits are reserved to store a piggyback value (PB).

Instead of piggybacking vectors, which is costly space-wise, pointers to the
global hash table are piggybacked. One 32-bit integer suffices: in 27 bits, we store
the index of a bucket (in 12 GB, about 100 million buckets can be stored), and
with the remaining 5 bits, the position of a vector within the bucket is given.

GPUexplore is extended as follows to support the checking of linear-time
properties. First of all, the network data contains the information we obtained
through static analysis, plus the status of the property states (requires infinite
visits, finite visits, or neither). The current implementation supports the use of
Rabin automata in which F is a singleton; this can be straightforwardly extended
by increasing the number of bookkeeping bits. Furthermore, transitions that
lead to a cycle entry state and close a cycle are marked, and essential states
are marked. Second of all, using that information, we mark state vectors in the
obvious way, i.e. the status of the individual process states is kept in the vector.
To do this correctly, it is important that these markings are at times merged;
different groups may construct the same successor state with different markings.
Both when storing states in the local state cache, and in the global hash table,
this merging is performed.

The overall approach follows Algorithm 1 and the extensions discussed in
Sect. 3.3. If all cycles in the Rabin automaton can only be entered via states in
K (F = {(L,K)}), then visiting a vector state with a property state in K is only
selected as a piggyback value if at least one state in the vector is essential. This
can avoid some of the issues of standard piggybacking, in particular shadowing
such as in Fig. 2a, since s̄0 will not be selected as a piggyback value if no state
in it is essential.

When blocking occurs on a state vector s̄, this is marked (in Bl.?) only if s̄
contains an essential state (Es.?) and at least one local cycle has been traversed
(CC?). By Lemma 1, this is sufficient. Once the state space has been completely
explored without detection of a counter-example, post-processing of the blocking
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occurrences must be conducted. Since DFSs cannot be performed efficiently on
a GPU, we need to perform this post-processing in a way different from the
technique in [13]. Instead, we launch up to sixteen parallel BFSs at a time, each
performed by several thread blocks from one of the marked states. During each
BFS, visited and explored states are marked in the global hash table using two
bits. The space previously occupied to store a piggyback value pointer can be
reused for this purpose, hence the space for 32/2 parallel BFSs. Each BFS is
bounded by the fact that the global hash table is scanned completely for open
states up to a predefined number of times. The search in each BFS can be limited
to those processes for which it was indicated that they fully traversed a local
cycle (in the CC? bits). The sixteen groups of thread blocks process all marked
states in this way, until either none are left, or an accepting cycle has been
detected.

5 Experimental Results

GPUexplore is equipped with a separate preprocessor, written in Python.
It can read Lts networks and produces an output file that configures the
GPU model checker. To the preprocessor, we added the ability to read Rabin
automata, which are stored as normal Ltss with some additional information
regarding F . Also, we implemented the algorithms explained in Sect. 3. Results
on cycle entry states and essential states is added to the configuration file, while
results in independent SCCs are added by adapting the Ltss in the network:
any state appearing in such an SCC is equipped with an independent selfloop.
This allows the model checker to efficiently determine whether a state is in an
independent SCC or not, just by looking at the outgoing transitions of that
state.

We conducted experiments using input models from various sources, namely
the BEEM database [26], the VLTS benchmark suite3, the mCRL2 website4,
and two models (ABP and broadcast) designed by us.

To conduct the experiments, a machine with an AMD A6-3670 CPU, 16
GB memory, and an Nvidia GeForce Titan X GPU, running Linux Mint
17.2 was used. GPUexplore used 3120 blocks, 512 threads per block, which
turned out to be optimal for reachability analysis [35,36]. Table 1 provides the
runtime results in seconds. Besides reachability analysis (Rch.) and standard
piggybacking (PB), several variants of the algorithm have been used, namely:

– +iSCC: A version using only the information on independent SCCs;
– +SPB: +iSCC plus smart piggyback value selection based on essential states;
– +SBR: +SPB with smart blocking resolution, i.e. only blockings with essential

states and the closing of a local cycle are considered.

3 http://cadp.inria.fr/resources/vlts.
4 http://www.mcrl2.org.

http://cadp.inria.fr/resources/vlts
http://www.mcrl2.org
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Table 1. GPU runtimes (in seconds) for various piggyback variants

Model Prop. |SPG | Rch. PB +iSCC +SPB +SBR

Time ? Time ? Time ? Time ?

1394 request-response 200K 2.68 5.01 ✓ 5.05 ✓ 4.10 ✓ 3.02 ✓

1394.1 request-response 36.9M 10.42 16.39 ✓ 16.37 ✓ 13.20 ✓ 12.11 ✓

acs lock eventually freed 4.8K 1.61 0.40 ✗ 0.37 ✗ 0.38 ✗ 0.35 ✗

acs.1 lock eventually freed 200K 2.14 0.45 ✗ 0.45 ✗ 0.46 ✗ 0.43 ✗

wafer stepper.1 �♦ all wafers

exposed

3.8M 6.61 35.34 ✓ 35.32 ✓ 23.51 ✓ 12.63 ✓

ABP request-response 481.8M 968.44 253.57 ✗ 258.21 ✗ 230.58 ✗ 180.35 ✗

broadcast �♦ communication

succeeds

105.4M 151.05 53.43 ✗ 57.36 ✗ 48.35 ✗ 47.36 ✗

transit �♦ message sent or

buffered

4.4M 9.06 0.99 ✗ 0.81 ✗ t.o.p. - t.o.p. -

asyn3 �♦ leader announced

or reset

17.2M 49.65 2.84 ✗ 2.75 ✗ 2.75 ✗ 2.70 ✗

asyn3.1 �♦ leader announced

or reset

215.4M 472.43 2.39 ✗ 2.52 ✗ 2.40 ✗ 2.43 ✗

ODP �♦ WORK executed 178K 4.65 1.14 ✗ 1.11 ✗ 1.11 ✗ 1.12 ✗

ODP.1 �♦ WORK executed 10.1M 13.49 1.99 ✗ 2.02 ✗ 2.03 ✗ 1.91 ✗

lamport.8 �♦P0@CS 35.1M 35.89 2.33 ✗ 2.32 ✗ 2.26 ✗ 2.27 ✗

lann.6 �♦P0@CS 144M 136.23 1.62 ✗ 1.64 ✗ 4.03 ✗ 1.64 ✗

lann.7 �♦P0@CS 160M 202.46 1.56 ✗ 1.50 ✗ 1.51 ✗ 1.51 ✗

peterson.7 �P0 wait

=⇒ ♦P0@CS

142.5M 4223.36 368.30 ✗ 384.12 ✗ 502.53 ✗ 712.63 ✗

szymanski.5 �P0 wait

=⇒ ♦P0@CS

79.5M 323.34 91.30 ✗ 102.27 ✗ 165.52 ✗ 181.54 ✗

In Table 1, for each model, a brief description of the property is given, where
‘�’ and ‘♦’ are shorthand for ‘always’ and ‘eventually’, in line with the LTL
operators. For each experiment, its result is reported, where ✓ indicates that
the property is satisfied, and ✗ means that it is not.

We do not compare the GPUexplore runtimes with those of a standard
CPU model checker. It has been established that on the same benchmarks, GPU-
explore outperforms state-of-the-art (single-core) explicit-state model checkers
by one to two orders of magnitude [35,36]. If we can establish that the checking
of linear-time properties can be done in comparable runtimes, then we can safely
conclude that the GPU can be effectively applied for this as well.

Table 1 does not provide the runtimes of the preprocessing steps for each
experiment, which involve the relevant algorithms described in Sect. 3. In prac-
tically all the cases, preprocessing took only a fraction of the subsequent explo-
ration time. An exception to this is the transit model, for which the detection
of cycle entry states and essential states caused a time-out (t.o.p. = time-out
during preprocessing in Table 1). In that model, one process Lts is much larger
than the others, making it costly to analyse it in comparison to directly exploring
the system Lts.

First of all, we experienced that for most of the analysed models, the stan-
dard piggyback algorithm is already very efficient, and we can conclude that it
is suitable to check liveness properties with a GPU. Concerning the proposed
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extensions, there are two types of situations where we experienced improved run-
times. The first situation is when post-processing has to be performed. In the
cases 1394, 1394.1, and wafer stepper.1, the extensions were more efficient,
due to being less prone to mark blocking occurrences. The second situation is
when the infinitely visitable states in the Rabin automaton are not immediately
reached in the state space search. More precisely, in those cases where there is
a non-empty prefix in the property automaton before the suffix expressing the
infinite behaviour part, the extensions made more informed decisions. This was
the case for acs and broadcast. The ability to identify independent SCCs was
also helpful in some cases: for transit, ODP, and lann.7, +iSCC was the most
efficient option.

Finally, it should be noted that for peterson.7 and szymanski.5, two cases
from the BEEM database, the extensions actually lead to worse results. It turns
out that the infinitely visitable states of the Rabin automata are reachable
already very early on during the state space search, leading to many possi-
ble candidates for piggybacking. This holds for all the extensions. In general,
on the GPU, the extensions have one major drawback compared to standard
piggybacking, which is the fact that vector markings have to be maintained in
the global hash table. This means that additional writes to the global memory
must be done frequently. In case this additional marking work does not pro-
ductively contribute to finding a counter-example, the runtime only increases.
It would be interesting to investigate whether the same can be observed when
model checking is done on the CPU.

Concluding, the piggyback algorithm is very suitable to efficiently check live-
ness properties with a GPU. Under certain circumstances, the suggested exten-
sions improve on these results, in particular when post-processing needs to be
performed, and when the property has a non-empty prefix. In several cases, how-
ever, applying the extensions actually negatively influenced the runtimes. To
overcome this, it seems that a good strategy would be to first run the standard
piggyback algorithm, and stop it if post-processing would be required. Instead
of post-processing, one could then launch the most informed variant (+SBR), to
try to find a counter-example in that way. In case the latter is also not successful,
post-processing is still possible.

6 Conclusions

We presented a method to check linear-time properties using a BFS-based search
technique. It employs the piggybacking algorithm, adapted to take new insights
regarding blocking into account. Furthermore, it uses structural information of
the input model obtained by applying new preprocessing algorithms. Like stan-
dard piggybacking, it is complete for bounded-suffix model checking, i.e. for
finding counter-examples involving cycles no longer than a given bound.

We demonstrated that both the original piggyback algorithm and the pro-
posed extensions generally work effectively in a GPU model checker, but we
expect that the extensions also work well in other settings where BFS-based
techniques need to be applied.
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Future Work. We plan to involve fairness constraints, to rule out specific counter-
examples, and reduction techniques, such as partial order reduction [2].
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Abstract. BigraphER is a suite of open-source tools providing an effi-
cient implementation of rewriting, simulation, and visualisation for
bigraphs, a universal formalism for modelling interacting systems that
evolve in time and space and first introduced by Milner. BigraphER con-
sists of an OCaml library that provides programming interfaces for the
manipulation of bigraphs, their constituents and reaction rules, and a
command-line tool capable of simulating Bigraphical Reactive Systems
(BRSs) and computing their transition systems. Other features are native
support for both bigraphs and bigraphs with sharing, stochastic reaction
rules, rule priorities, instantiation maps, parameterised controls, pred-
icate checking, graphical output and integration with the probabilistic
model checker PRISM.

1 Introduction

Bigraphs were first introduced by Robin Milner as a universal mathematical
model for representing the spatial configuration of physical or virtual objects,
their interaction capabilities and temporal evolution. They were subsequently
extended to stochastic bigraphs [11] and bigraphs with sharing [16], and have
been applied in areas such as wireless protocols, home network management,
mixed reality systems, cloud computing, security and as meta-models to encode
process calculi (e.g. Mobile Ambients, CSS).

BigraphER is a modelling and reasoning environment for bigraphs consisting
of an OCaml library and a command-line tool. The functionality includes:

– native support for both bigraphs and bigraphs with sharing;
– a rewrite engine with support for stochastic reaction rules, rules with instanti-

ation maps, rule priorities (stochastic) simulation and exhaustive state space
exploration;

– predicate checking;
– efficient matching engine based on SAT (used to implement rewriting and

predicate checking);
– support for parameterised controls and parameterised reaction rules;
– export labelled transition systems to probabilistic model checker PRISM [12];
– graphical output of bigraphs, reaction rules and transition systems (see Fig. 1

(right) for an example bigraph and graphical layout).
c© Springer International Publishing Switzerland 2016
S. Chaudhuri and A. Farzan (Eds.): CAV 2016, Part II, LNCS 9780, pp. 494–501, 2016.
DOI: 10.1007/978-3-319-41540-6 27
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Fig. 1. Left: wireless network with a router and a machine; signal coverage is repre-
sented by coloured circles. Right: corresponding bigraphical representation automati-
cally generated by BigraphER (S = signal, R = router, M = machine). (Color figure
online)

Example Applications. While many early applications of bigraphs have been
to meta-modelling, e.g. for encodings of the π-calculus, λ-calculus, and CCS (Cal-
culus of Communicating Systems), applications in other domains are recently
beginning to emerge. Some examples are: security for cyber-physical systems [18],
quantitative analysis of biological processes [11], cloud computing [19], and a
framework to control systems of networked mobile robotic systems [14]. Bigra-
phER has been used to specify and analyse a wide range of case studies in many
different application domains: wireless network protocols [6], wireless mesh net-
works [4], run-time policy management for domestic networks [5], and human-
computer interaction in mixed-reality systems [2]. Example analysis has ranged
from detecting basic “programming” errors (e.g. through type checking) in [2],
to generation of example state spaces, and run-time checking of invariants (i.e.
predicates), implemented on a router in [5].

Related Tools. BigMC [15] is an explicit-state model checking tool for BRSs
based on the BPL matching engine [3]. Currently, it does not support stochastic
bigraphs nor bigraphs with sharing and can only check reachability properties.
Big Red [9] is a visual editor for bigraphs and bigraphical reaction rules imple-
mented as an Eclipse plugin; it does not implement rewriting. DBtk [1] is an
implementation of matching for directed bigraphs, a variant of bigraphs with a
directed link structure; there is no support for rewriting and BRS execution.

2 Bigraphical Reactive Systems – Overview

A bigraph [13] is a pair of relations over the same set of nodes: a directed forest,
called place graph, representing topological space in terms of node containment
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and a hypergraph, called link graph, representing the interactions and (non-
spatial) relationships among nodes. There is both an algebraic and graphical
form. The graphical representation of an example bigraph is in Fig. 1 (right);
it models the simple network in Fig. 1 (left) with a router, a machine, and the
range of their wireless signals.

Nodes are indicated by circles and ovals and are assigned a type called con-
trol indicated here by S (for signals), M (the machine), R (the router), etc. The
place graph is specified by black arrows. Bigraphs with sharing [16] extend the
original theory by defining the place graph as a Directed Acyclic Graph (DAG),
thus allowing a natural representation of overlapping or intersecting locations.
For instance, the M-node in the example is contained by both nodes of control
S, meaning the machine is in a spatial location covered by both wireless sig-
nals. The link graph is represented by green edges called links. Links may be
only partially specified, in which case they connect a name. Names are links
(or potential links) to other bigraphs representing the external environment or
context. By convention, names are drawn above the bigraph. In the example,
names l in and l out are used to name incoming and outgoing (potential) links
to remote resources. The number of links of a node, also called arity, depends
on its control, i.e. entities with the same control have the same number of links.
Dashed rectangles denote regions of adjacent parts of the system and sites are
used to model parts of the model that have been abstracted away (see Fig. 3
(top)). A bigraph with node identifiers is said to be concrete. When all the iden-
tifiers are ignored, we obtain an abstract bigraph which can be interpreted as an
equivalence class of bigraphs with the same structure.

A BRS consists of a set of reaction rules together with an initial bigraph
on which the rules operate. In stochastic bigraphs [11], a rate is associated with
each rule.

3 BigraphER Specification Language

The BigraphER specification language almost corresponds to the standard alge-
braic notation for bigraphical expressions [13,16]. In the following, we highlight
some of the distinctive features of the BigraphER language by presenting a sim-
ple model for wireless networks inspired by [5]. The model is specified by the
code in Fig. 2. A valid BRS model consists of four separate blocks of definitions:
a signature containing all the controls in the model, a set of bigraphs, a set of
reaction rules and a reactive system specifying the initial state of the BRS, the
priority hierarchy among reaction rules and a set of predicates.

Controls are defined in lines 1–2 by using keyword ctrl. The integer on
the right-hand side of each definition indicates the arity of each control. The
keyword atomic specifies that a node may not contain other nodes. Bigraph def-
initions are in lines 4–8. Line 5 defines bigraph s0. Expression M{w,s} denotes
a node of control M with names w and s. Operators . and | denote nesting
and merge product, respectively. Nesting is the operation allowing to place a
bigraph inside another one; merge product is the operation placing two bigraphs
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1 ctrl M = 2; ctrl R = 2; ctrl S = 1;
2 atomic ctrl In = 1; atomic ctrl Out = 1; atomic ctrl Block = 1;
3

4 big links = In{l_in} | Out{l_out };
5 big s0 = /s0 /s1 (share (/w (M{w,s0}.links || R{w,s1}.links))
6 by ([{0,1}, {0,1}], 2)
7 in (id{s0 ,s1,l_in ,l_out} | S{s0} | S{s1}));
8 big is_in_blocked = M{w,s}.(In{l} | Block{l} | id);
9

10 react block_in =
11 M{w,s}.(In{l} | id) --> M{w,s}.(In{l} | Block{l} | id);
12

13 react leave_net =
14 /s (share (M{w,s} || id) by ([{0, 1}, {1}], 2) in (id(1,{w,s}) || S{s}))
15 --> ({w} || 1 || 1 || 0 || 0);
16

17 brs
18 init s0;
19 rules = [ { block_in , leave_net } ];
20 preds = { is_in_blocked };
21 endbrs

Fig. 2. Specification of a BRS in the BigraphER language.

Fig. 3. Reaction rule block in for blocking a machine’s incoming traffic.

side-by-side inside the same region. Closures like /s0 indicate that a link has
no names (see link between M and S). Sharing is introduced by ternary opera-
tor share ... by ... in .... The first argument specifies the entities to be
shared, e.g. machine M and router R. The second argument specifies how they
are shared: {0, 1} indicates that M is shared by the first and the second signals
(counting from left to right). The third argument specifies the entities containing
the shared entities, e.g. signals Ss0 and Ss1. The graphical representation of s0,
automatically generated by BigraphER is shown in Fig. 1 (right).

The code in lines 10–11 defines reaction rule block in. Operator --> is used
to separate the left-hand side from the right-hand side of the rule. Expression id
indicates the identity bigraph, i.e. the bigraph with one site inside one region.
This reaction rule models a firewall rule blocking a machine’s incoming traffic.
The corresponding graphical representation is in Fig. 3. Reaction rule leave net
defined in lines 13–15 models a machine leaving the network.
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Finally, lines 17–21 contain the reactive system definition. A BRS is defined
by construct brs ... endbrs. Keyword init specifies the initial state of the
system. In the example, this is bigraph s0. Construct rules = [...] defines a
list of priority classes in descending order of priority. A priority class is specified
by construct {...} and may only contain reaction rules identifiers. Construct
preds = {...} defines a set of predicates. Predicate is in blocked (defined
in line 8) can be used to tag states in which there are machines with blocked
incoming traffic. In a more extensive model like in [5], this predicate can be used
to verify network invariants after network policies are enforced by users.

This simple example highlights the main features; more complex examples
including stochastic reaction rules, reducible priority classes and instantiation
maps can be accessed at http://www.dcs.gla.ac.uk/∼michele/bigrapher.html.

4 Components and Features

The BigraphER command-line tool is composed of three distinct modules: the
compiler, the matching engine and the rewriting engine. All are coded in OCaml.

Compiler. The compiler translates an input source file in the BigraphER lan-
guage into a run-time representation of the model. Each declaration specifies the
binding of an identifier to a data type representing either a control, a bigraph
or a (stochastic) reaction rule. Each bigraph is stored in memory as a pair of
specialised data structures: a sparse boolean matrix encoding the DAG’s adja-
cency matrix of the place graph, and a set of hyperedges (i.e. multisets with
nodes and names as elements) for the representation of the link graph. Although
the BigraphER language only defines abstract bigraphs, the compiler operates
on the corresponding concrete bigraphs by assigning arbitrary node labellings.
This is required to allow the enumeration of all distinct occurrences of a reaction
rule and thus to compute exit rates in stochastic BRSs. Additional features are:
type-checking of parameterised definitions, combinatorial generation of paramet-
ric reaction rules, graphical representation of all the bigraph defined in the input
model (useful for debugging).

Matching Engine. The bigraph matching problem determines whether a
bigraph, called pattern, occurs in another bigraph, called target. The BigraphER
matching engine implements the algorithm introduced in [16]: a SAT encoding
of a specialisation of the sub-graph isomorphism problem. For each instance of
the problem, the matching engine generates a set of constraints (formulas in
Conjunctive Normal Form (CNF)) encoding the instance. Solutions are then
obtained by passing all the constraints through the OCaml bindings for the
MiniSat solver [7]. Solutions are expressed as total maps from the nodes of the
pattern to sub-sets of the nodes of target. Because the matching problem is NP-
complete, two techniques to optimise performance have been adopted in the
implementation. The first is to reduce the size of the SAT instances by applying
Tseitin transformation [17] to constraints. The second is to minimise instances
by exploiting the symmetries in the structure of the pattern: when enumerat-
ing all the occurrences, the automorphisms of the pattern are used to generate

http://www.dcs.gla.ac.uk/~michele/bigrapher.html
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all the symmetric solutions starting from a computed solution. The matching
engine also implements specialised constraints to support bigraph equality and
predicate checking.

Rewrite Engine. This component computes the dynamic evolution of the (sto-
chastic) BRS specified in the input file by iteratively applying all the reaction
rules to each bigraph (state) until either a fixpoint or a user-defined bound on
the number of states is reached.1 The transition system generated by a BRS is
represented internally by BigraphER as a directed graph; the Continuous Time
Markov Chain resulting from a stochastic BRS as a labelled directed graph. Rule
application consists of two steps: first the matching engine is queried for occur-
rences of the left-hand side of a reaction rule, then, for each distinct occurrence,
a new state is computed by replacing the occurrence with the right-hand side of
the rule (see Fig. 3). BigraphER also supports reaction rules with instantiation
maps2 allowing to easily duplicate or discard parts of a bigraph when a reac-
tion rule is applied. The rewriting engine incrementally builds the state space in
a breadth-first search (BFS). Support for simulation is obtained by computing
only one random path of the transition system. Simulation for stochastic BRSs
implements Gillespie’s Stochastic Simulation Algorithm (SSA) [10]. Besides stan-
dard rule priorities, BigraphER admits reducible classes3 i.e. priority classes in
which rules are treated like rewriting within an equivalence class. This means
that after applying all possible rules in an arbitrary order only a canonical form
is stored. This feature allows, for instance, to reduce the number of intermediate
states generated by the application of instantaneous stochastic reaction rules.
Predicates expressed as matches are checked during the generation of the tran-
sition system: every time a new state is discovered, all the predicates specified
in the input model are checked against it and the labelling function is updated.
The rewriting engine can return either a textual or a graphical representation
of the (labelled) transition system and its states. Graphical output is computed
by the open-source graph layout generator Graphviz [8]. Textual output is com-
patible with the PRISM probabilistic model checker, thus enabling quantitative
verification for BRSs.

OCaml Library. This component provides programming interfaces for the data
structures used internally by the BigraphER command-line tool. For instance,
it allows manipulation of bigraphs and their constituents by providing imple-
mentation for the following operations: composition, tensor product, parallel
product, merge product and nesting. The library also provides APIs to check
predicates, construct reaction rules and apply them to rewrite bigraphs. The full
library documentation can be accessed at http://www.dcs.gla.ac.uk/∼michele/
docs/bigraph/index.html.

1 Note that a model may have an infinite state space.
2 An instantiation map is a function associating each site in the right-hand side to

sites in the left-hand side.
3 The reaction rules belonging to a reducible class are assumed confluent i.e. they

yield the same result regardless of the order in which they are applied.

http://www.dcs.gla.ac.uk/~michele/docs/bigraph/index.html
http://www.dcs.gla.ac.uk/~michele/docs/bigraph/index.html
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Technical Details and Availability. BigraphER is free and open source (BSD)
and runs on all major operating systems. It is available for download from http://
www.dcs.gla.ac.uk/∼michele/bigrapher.html.

Acknowledgments. This work was supported by EPSRC project Homework
(EP/F064225/1) and an EPSRC Doctoral Prize Research Fellowship.
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Verification-Aided Debugging: An Interactive
Web-Service for Exploring Error Witnesses

Dirk Beyer and Matthias Dangl

University of Passau, Passau, Germany

Abstract. Traditionally, a verification task is considered solved as soon
as a property violation or a correctness proof is found. In practice, this is
where the actual work starts: Is it just a false alarm? Is the error repro-
ducible? Can the error report later be re-used for bug fixing or regres-
sion testing? The advent of exchangeable witnesses is a paradigm shift
in verification, from simple answers true and false towards qualitatively
more valuable information about the reason for the property violation.
This paper explains a convenient web-based toolchain that can be used
to answer the above questions. We consider as example application the
verification of C programs. Our first component collects witnesses and
stores them for later re-use; for example, if the bug is fixed, the witness
can be tried once again and should now be rejected, or, if the bug was
not scheduled for fixing, the database can later provide the witnesses in
case an engineer wants to start fixing the bug. Our second component
is a web service that takes as input a witness for the property violation
and (re-)validates it, i.e., it re-plays the witness on the system in order
to re-explore the state-space in question. The third component is a web
service that continues from the second step by offering an interactive
visualization that interconnects the error path, the system’s sources, the
values on the path (test vectors), and the reachability graph. We evalu-
ated the feasibility of our approach on a large benchmark of verification
tasks.

1 Introduction

The answer of a verification tool to a given verification task (consisting of a spec-
ification and a system) is either that the system satisfies the specification or that
the system violates the specification (or the answer ‘unknown’ is returned) [9].
If a violation of the specification is detected, an error path through the system
is reported that exhibits the problem, such that the user can understand the
problem and fix the bug: counterexamples to verification have been described as
invaluable to debugging complex systems and have been a common feature of
model checkers for several decades [7]. In particular, the successful technique of
counterexample-guided abstraction refinement (CEGAR) [8] is based on analyz-
ing error paths through the system.

c© Springer International Publishing Switzerland 2016
S. Chaudhuri and A. Farzan (Eds.): CAV 2016, Part II, LNCS 9780, pp. 502–509, 2016.
DOI: 10.1007/978-3-319-41540-6 28
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In the past few years, there was a strong focus in the community on using
common exchange formats and reproducing errors described by previously com-
puted counterexamples. Esbmc was extended to reproduce errors via instanti-
ated code [11], and CPAchecker was used to re-check previously computed error
paths by interpreting them as automata that control the state-space search [6].
While these internal approaches to witness validation can reduce the amount of
false alarms reported by a tool, they establish no additional trust in a report
produced and validated by an untrusted verifier. The advantages of considering
error witnesses as a valuable verification artifact were explained and supported
by two completely different implementations of witness validators [4], namely
CPAchecker and Automizer. Also, competitions in the community required
exchangeable witnesses: the competition on termination uses a certification-
problem format (CPF)1 and the competition on software verification uses a
machine-readable, exchangeable format for error witnesses2. Our toolchain is
based on the common exchange format that was used in SV-COMP [2,4], which
allows specifying counterexample traces using control-flow paths and data values.
Previous efforts towards helping users understand the counterexamples have lead
to interactive trace visualizations [1,5,10], but the user was locked-in to a cer-
tain toolchain. The introduction of machine-readable error witnesses has opened
up new possibilities for collecting, accumulating, and validating counterexam-
ple traces from different verifiers [4]. A wide range of software verifiers already
supports a common exchange format, as shown by the competition on software
verification3, which has adopted error-witness validation already two years ago.

Error witnesses support traditional debugging very well: the test values that
a witness might contain can direct a classic debugger through the system to
the problematic part of the implementation or model. But the exchangeable
witnesses support even a more abstract form of debugging, based on a graphical
visualization of error paths and reachability graphs.

Figure 1 gives an overview over the components involved in our toolchain.
There are three subsystems that the user interacts with: (1) We developed a
witness store for persistently keeping error witnesses that different verification
tools have produced. The database enables the user to select and retrieve specific
witnesses for a given set of verification tasks. One possible use case is to fetch
all witnesses that document a bug in a specific C program, to help the devel-
oper better understand the issue. (2) We offer an online witness validator with
a convenient web-service API that enables validation without the need to install
software. A bug report that a verifier returns can potentially be a false alarm,
so it is convenient for the user to first automatically cross-examine the report,
before manual effort is invested (and perhaps wasted). To validate an error wit-
ness, the user can send the validation task, which consists of the source-code file,
the property, and a corresponding error witness (potentially obtained from the

1 http://cl-informatik.uibk.ac.at/software/cpf
2 http://sv-comp.sosy-lab.org/2016/witnesses/
3 For example, see the list of systems in SV-COMP 2016 http://sv-comp.sosy-lab.org/

2016/systems.php.

http://cl-informatik.uibk.ac.at/software/cpf
http://sv-comp.sosy-lab.org/2016/witnesses/
http://sv-comp.sosy-lab.org/2016/systems.php
http://sv-comp.sosy-lab.org/2016/systems.php
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Fig. 1. System overview, blue parts are discussed in this paper (Color figure online)

witness database), to the validation service. The service then validates the error
witness. If the witness is rejected, the user is advised to prioritize other tasks,
because the specific error path that the witness describes has been declared
as infeasible. If, instead, the witness is validated, the validation service feeds
all information gained about the bug into the third component, the interac-
tive report. (3) Successful witness validations produce a detailed and interactive
web-based bug report. The report contains a debugger-like feature for stepping
through the error path, while providing several context-sensitive representations
of the buggy program. The report also encompasses all information required to
reproduce the validation externally.

Application Example. Our application example is the verification of system pro-
grams written in the language C. While the concepts of our toolchain can be
applied to other programming languages, we restrict our tools to C. The web
service that we describe is available on the internet, and our primary target is to
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support open-source projects. Organizations that develop proprietary software
can still benefit from our system, because it is easily installed on a local web
server that is restricted to the organization’s intranet.

Data to Experiment. As part of our evaluation, we ran several verification tools
that participated in the competition on software verification (because those tools
are known to generate useful witnesses) and fed the witnesses into our database.
For the reader to assess our toolchain, we have compiled an archive with wit-
nesses, validation results and error-path visualizations for offline use. The archive
is available as supplement, and the validation results and visualization results can
be reproduced via our live web service or offline using the CPAchecker-based
witness validator4 The archive contains reports for a total of 1 382 witnesses for
26 verification tasks that contain a bug. The average number of witnesses that
we collected is 53 witnesses per verification task, the program with the fewest
has 4, the program with the most has 114 witnesses in our database.

2 Collection of Error-Paths in a Witness Store

We consider witnesses as a prime-value verification artifact, because they can
make it (a) efficient to re-run a partial verification to explore the bug again and
(b) easy to use different verification tools for validation.

Permanently storing witnesses opens many new practical applications to let
verification technology have a larger impact on system development. Our witness
store provides a means to take advantage of the various beneficial properties of
machine-readable witnesses in a common exchange format:

– Witness Validation: Imprecise verifiers may sometimes produce false alarms
and thus waste valuable developer time. With witness validation, users no
longer need to trust the answer False. Instead, they can concentrate on paying
attention to witnesses that are confirmed by an automatic witness validator.
Each validation run that confirms a witness can increase the user’s confidence
in the bug report.

– Witness Inspection: Witness validators with complementing strategies can be
applied to a witness, each leveraging its strengths to add diagnostic informa-
tion that the others may be incapable to derive. Therefore, witness validation
can be understood as a chain of ever refining details for identifying, under-
standing, and fixing the bug.

– Bug Reports: In bug reports, attached witnesses can be used to provide a
precise description of the erroneous behavior, including test-vector values.

– Re-Verification: Working with error witnesses is cheap in terms of resources,
because the verification result can often be re-established with reduced effort.

4 The URL to our supplementary web page, which includes the live web service, the
archive for offline use, and a virtual machine set up for validating the witnesses
and reproducing the results using CPAchecker 1.6, is: https://www.sosy-lab.org/
∼dbeyer/witness-based-debugging/.

https://www.sosy-lab.org/~dbeyer/witness-based-debugging/
https://www.sosy-lab.org/~dbeyer/witness-based-debugging/
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This is not only beneficial for validating a given witness, but also when check-
ing for regressions: If the witness is still valid for a changed version of the
system, the bug has been reintroduced or was not yet fixed [6].

3 Convenient Witness Validation

A witness validator is a verifier that analyzes the synchronized product of the sys-
tem with the witness automaton, where transitions are synchronized using sys-
tem operations and transition annotations. This means that the witness automa-
ton observes the system paths that the verifier wants to explore: if the operation
on the system path does not match the transition of the witness automaton, then
the verifier is forbidden to explore that path further; if the operation on the path
matches, then the witness automaton and the system proceed to the next state,
possibly restricting the system’s state such that the assumptions given in the
data annotation are satisfied. Implementations of witness validators are avail-
able, see for example CPAchecker and Automizer [4]. Our validation service
uses the CPAchecker witness validator as back-end. CPAchecker supports
and combines many different verification strategies, for example value analy-
sis, predicate abstraction, CEGAR, bounded model checking, k-induction, and
concrete memory graphs. The specific configuration that is effectively used to
validate the witnesses via our web service is bit-accurate and combines value
analysis and predicate abstraction. Our web service does not yet support arrays,
concurrency, and termination analysis.

Conceptually, an error-witness automaton is a protocol automaton, and an
error-witness analysis is a protocol analysis for an error-witness automaton [4],
which runs as a component of a composite program analysis. Unlike observer
automata [3], which can be used to represent the specification the analyzed
program is verified with, error-witness automata not only observe the state-space
exploration of the program analysis, but also restrict it to those successor states
that lead the exploration toward a specification violation, whereas an observer
automaton follows all abstract successor states. Therefore, the program analysis
is guided by the error-witness automaton to explore the state space that violates
the specification.

The process of determining if it is possible to independently re-establish
a verification result, given the program, specification, result, and witness, is
called witness validation. One way of implementing error-witness validation is by
constructing a composite program analysis that has both a witness analysis and
a specification analysis as components, which simultaneously restrict and observe
the state-space exploration: the specification analysis checks if an analyzed path
actually violates the specification, and the search of the composite program
analysis is restricted by the witness validation such that only paths that the
error-witness automaton can match are explored. For example, the analysis stops
exploring a path, if, during the analysis of that path, the witness automaton
takes a transition to a sink state. An error witness is confirmed by the witness
validator if both, the witness automaton and the specification automaton, take
a transition to their respective (accepting) error state [4].
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4 Visualizing and Interactively Exploring Error-Paths

Figure 2 shows a screenshot of an interactive counterexample report. The screen
is divided into two columns: The left column provides detailed information that
is specific to the error path, namely the source code on the path to the property
violation, and, like in a debugger, the program locations are decorated with test
values that were computed by the witness validator. The right column embeds
the specific information from the left column into the general context of the
system and the analysis. It contains control-flow automata (CFA) for each of the
functions, the abstract reachability graph (ARG) of the verification, full source
code of the verification task, the verification log, statistics, and configuration
parameters of the validation run. In all CFA and the ARG, the states on the
path to the property violation are marked in red. Double clicking on a control-
flow state that precedes a function call displays the CFA of the called function.
Both columns, however, are not only useful in isolation: clicking on a line of
code in the left column while viewing the ARG or CFA will navigate to the state
corresponding to the clicked line of source code.

Fig. 2. Typical view of the error-path visualizer: program source code with violating
test vector (left, green) and CFA with violating path (right, red); left view top shows
the menu for debugger-like step-through, right view top shows the display options:
CFA, ARG, Source, Log, Statistics, Configurations (Color figure online)
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The visualization is built upon the JavaScript framework AngluarJS and
the jQuery and Bootstrap web-development libraries. The layout of the
graphs is computed using GraphViz and exchanged in SVG format. The complete
data for one such error-path visualization takes on average 120 kB of memory.

5 Conclusion

Over the past decades, the algorithmic abilities of verification tools were consid-
erably increased, but in practice, verification technology is still not as popular as
testing. Why? Because it is inconvenient to use. Our work contributes to closing
this gap, by considering not only the true/false answers as value, but actively
using other results of the verification process, most prominently the error wit-
nesses. We have presented a toolchain that supports engineers in understanding
the error reports of verification systems. First, we archive verification witnesses
permanently in a database. Second, we provide a convenient web service for wit-
ness validation, i.e., a verification task together with a witness can be given as
input, and the results are presented via the web API (for manual inspection or
automatic retrieval). Third, we explain an error-path visualization that supports
an interactive investigation of the source code, the control-flow graph, the reach-
ability graph, and test values. We believe that the proposed method is a step
towards a more convenient usage of verification results.
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Abstract. Kind 2 is an open-source, multi-engine, SMT-based model
checker for safety properties of finite- and infinite-state synchronous reac-
tive systems. It takes as input models written in an extension of the
Lustre language that allows the specification of assume-guarantee-style
contracts for system components. Kind 2 was implemented from scratch
based on techniques used by its predecessor, the PKind model checker.
This paper discusses a number of improvements over PKind in terms of
invariant generation. It also introduces two main features: contract-based
compositional reasoning and certificate generation.

1 Introduction

Kind 2 is an SMT-based model checker for synchronous reactive systems. It
relies on off-the-shelf SMT solvers to prove or disprove quantifier-free regular
safety properties of models written in an extension of the synchronous dataflow
language Lustre [11]. These properties can be expressed, in a separate annotation
language, as invariants or as assume-guarantee-style contracts. Kind 2 is inspired
by its predecessor PKind [14] and uses several of the same techniques. However,
it was engineered and implemented from scratch. Both checkers have several
model checking engines, based on various techniques, which run concurrently and
in cooperation, with the goal of proving or disproving properties and contracts.

Kind 2 is open-source and distributed in binary and source-code form under
a liberal license at http://kind.cs.uiowa.edu. This paper focuses on its novel
features, in particular, powerful invariant generation techniques, contract-based
compositional reasoning, and proof certificate generation.

2 Functionality and Main Features

We start with a summary of Kind 2’s basic functionality, i.e., (dis)proving
safety properties of reactive systems, and then describe Kind 2’s distinguishing
features.

The development of Kind 2 was partially funded by AFRL grant FA8750-13-C-0051,
NASA grants NNA13AA21C, NNX14AI09G, and NNL14AA06C, and by Rockwell-
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Safety Analysis. Lustre is a dataflow language that allows one to define sys-
tem components as nodes, each of which maps a continuous flow of inputs (of
various basic types) to continuous flows of outputs based on both current input
values and previous input and output values (see Fig. 1 for a simple example).
Bigger components can be built by parallel composition of smaller ones, achieved
syntactically with node calls. Through the use of observers [12], any (LTL) reg-
ular safety property can be expressed in Lustre as an invariant property, hence
Kind 2 focuses on checking just invariant properties.

Fig. 1. Example of annotated Lustre.
Node sofar encodes the “always in the
past” operator of pLTL.

After various transformations and
slicing, Kind 2 encodes Lustre nodes
internally as state transition systems
〈s, I(s), T (s, s′)〉 where s is the vec-
tor of typed state variables, I the
initial state predicate, and T is a
two-state transition predicate (with s′

being a renamed version of s). An
invariant property P for such a system
is a predicate over the variables s that
must hold in every reachable state of
the system. Instances of I, T and P are quantifier-free first-order formulas over
the theories of equality with uninterpreted functions and linear integer and real
arithmetic.

The node construct allows one to specify modular and hierarchical systems.
Kind 2 takes advantage of this by performing modular reasoning over nodes.
Each node can be assigned its own properties and verified individually. The
results of the verification process (e.g., proven properties and auxiliary invari-
ants) can be reused in the analysis of other components calling that node. Kind 2
takes this approach further by allowing the user to specify assume-guarantee-
style contracts for each node, effectively enabling compositional reasoning by
fine-grained abstraction of sub-components.

At the component level, given an encoding S � 〈s, I(s), T (s, s′)〉 of a Lustre
node and a property P , Kind 2 tries to verify that P is invariant for S using
a combination (described in Sect. 2) of different induction-based model check-
ing engines: k-induction [16], IC3 [3] and various auxiliary invariant generation
methods. K-induction is a generalization of standard induction and consists in
finding a value k for which P holds in all reachable states within k − 1 steps
(base case), and is preserved by transition chains of length k (step case). IC3 is
a popular directed reachability approach that iteratively strengthens the given
property until it becomes inductive. We use an extension of IC3 to infinite-state
systems which is based on an efficient form of approximate quantifier elimina-
tion. In our experience, IC3 is often complementary to k-induction as it can
prove properties that are not k-inductive for any k while k-induction can handle
properties that IC3 finds hard to strengthen to an inductive one. The invari-
ant generation engines of Kind 2 produce on the fly auxiliary invariants that
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are used to incrementally strengthen the transition relation T , increasing the
chances of proving the step case of k-induction and facilitating the job of IC3.
Incremental and Modular Invariant Generation. PKind introduced an
invariant generation technique parameterized by a partial order � over some
(equality) type τ [13]. It starts from a set of candidate terms C of type τ over
a system S and heuristically produces invariants of the form c � c′ and c = c′

where c, c′ ∈ C. For the bool type, used in Lustre both for Boolean state variables
and for properties, � is implication and C is constructed by mining the initial
state predicate and the transition relation of S for Boolean terms. The approach
maintains an index k and a directed acyclic graph (DAG), whose vertices are
sets of terms from a partition of C. A vertex V = {c1, c2, . . . , cn} denotes the
chain of equalities c1 = c2 = · · · = cn. An edge from node V to V ′ denotes
the inequality c � c′ for any term c in V and c′ in V ′. The DAG is a compact
representation of a set of invariant conjectures about S. Initially, k = 0 and the
DAG has a single node C, conjecturing that all the terms in C are equivalent
in every reachable state of S. This conjecture is tested with a Bounded Model
Checking-style query to an SMT solver for a counterexample k states away from
an initial state. If none is found, the conjecture is correct for states reachable in
up to k steps from an initial one, and k is incremented. Otherwise, the DAG is
modified by removing edges or splitting nodes so that its refined conjecture is
consistent with the latest counterexample and all previous ones. The algorithm
refines its DAG and increments k until k reaches a user-specified upper bound d.
It then performs a multi-property (d+1)-induction step check over each element
of the conjecture. Any equality or inequality between two candidate terms in
the conjecture that is i-inductive for i ≤ d will be proved and communicated as
invariant.

We have modified this technique so that it progresses in lockstep. When
the conjecture is correct at depth k, the invariant generation engine of Kind 2
performs the (k + 1)-induction step check right away. This allows it to output
invariants that are k-inductive for a small k faster. An additional benefit is
that there is no need for a user-defined upper bound d, whose value can vastly
influence runtimes—for instance on large systems, where unrolling the transition
predicate several times can be extremely expensive.

Furthermore, Kind 2 can execute this invariant generation technique
modularly when the input system is defined as the composition of two or more
nodes. In that case, the subsystem hierarchy is traversed bottom-up. For each
subsystem S, a set of (k+1)-inductive invariants (with k initially 0) is obtained
as discussed above. Those invariants are then instantiated in every subsystem
that has S as a direct subcomponent, recursively. Once the process reaches the
top-level system, any invariants discovered at that level are communicated to
the other reasoning engines of Kind 2. At that point a new bottom-up traversal
starts with a greater value of k. This approach has two significant advantages
with respect to running invariant generation on the full system monolithically:
(i) it discovers invariants for subsystems more easily and quickly; (ii) it is self-
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reinforcing since instances of the invariants discovered for a subsystem of a com-
ponent S can be used to help prove invariant conjectures for S.
Compositional Reasoning. Compositional reasoning is a popular technique
to improve the scalability of verification tools on systems defined as hierarchies of
components.1 Components have contracts enforcing their use in a certain context
in order for them to guarantee certain properties (Fig. 2 for an example). Ana-
lyzing a component consists in checking that its contract holds after abstracting
at call-site all of its (possibly complex) sub-components by their own contract. A
contract for a system S � 〈s, I(s), T (s, s′)〉 is a pair C � 〈A(s), G(s)〉 where,
informally, the assumption predicate A describes properties that S expects its
inputs to have, while the guarantee predicate G expresses how the component
behaves when A holds at all times. A contract can introduce local variables
(streams), refer to previous values of streams, and call arbitrary Lustre nodes.

Fig. 2. Lustre nodes with contracts.

This makes Kind 2’s contract language
expressive enough to represent any regu-
lar safety properties, once they are recast
in terms of past temporal logic (see [6] for
more details on the contract language and
its use). In Kind 2, verifying that S sat-
isfies its contract reduces to verifying that
G(s) is an invariant for the system SA =
〈 s, I(s)∧A(s), A(s)∧T (s, s′)∧A(s′) 〉. If
S is a component of some larger system S′,
which provides it with input values, then
S can be abstracted by its guarantee G at
call-site in S′ as long as the assumption A
at call-site is an invariant for S′. If it is,
we say the call is safe. If the call is unsafe,
then so is S′ since it does not respect the
contract of S. If all components of a system verify their contract and make only
safe calls then the overall system is safe. Kind 2 can construct this argument via
a modular analysis, where system components are analyzed bottom-up in the
subsystem hierarchy with a process similar to modular invariant generation.

Refinement. Kind 2’s modular and compositional analysis of multi-component
systems resorts to contract refinement when needed. Consider a system S1

with contract C1 = 〈A1(s1), G1(s1)〉 that uses a subsystem S2 with contract
C2 = 〈A2(s2), G2(s2)〉. Suppose that Kind 2 cannot prove S1’s contract com-
positionally, that is, by abstracting S2 by its contract. A reason for this might
be that the abstraction provided by C2 is too weak. Kind 2 will then refine S1

in the analysis by replacing S2’s contract with S2 itself, provided, however, that
the following conditions are met: (i) S2 is safe (i.e., it verifies its contract and
does not make unsafe calls), and (ii) all calls to S2 in S1 are provably safe. If

1 For simplicity, we describe here only the case of asymmetric parallel composition,
where there are no feedback loops between components, although Kind 2 can deal
with the general case.
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the new analysis succeeds, the user is notified of the specific contract abstraction
under which the result was obtained. Otherwise, the refinement process contin-
ues recursively until no more contract refinement is possible. When a system like
S2 is used instead of its contract C2 it is because it provably admits a smaller
set of execution traces than C2. Because of this, when analyzing a newly refined
system, Kind 2 retains any invariant/property already proved and any informa-
tion on properties that are still unproven or falsified. This means that when the
analysis restarts after refinement, Kind 2 will only check the proof obligations
that were not previously discharged, in effect restarting precisely from where the
previous analysis had stopped.

Certification. Having to trust the results of complex model checkers like Kind 2
is a source of concern for some users. To address this problem, Kind 2 can
produce an independently checkable proof certificate for the properties that it
claims to have proven for a (sub)system.2 This certificate is in the form of a
k-inductive invariant (expressed as a formula together with a specific value of
k) that implies all the proven properties. This form is general enough that it can
be effectively produced by all the model checking engines described previously.
Certificates coming from these engines are combined conjunctively thanks to the
fact that a k-inductive invariant is also k′-inductive for any k′ ≥ k. Individual
certificates are initially generated by single engines based on their deductions
regarding some set of properties and invariants. The combined certificate is then
simplified along two dimensions, the value of k and the size and complexity of
the invariant itself, using various fixpoint-based heuristics relying on unsat cores
and counterexamples to induction. The final certificate output by Kind 2 is writ-
ten in SMT-LIB 2 format and embedded in an SMT-LIB 2 script that checks
that the certificate is k-inductive and implies the proven input properties. As
a first approximation, any SMT-LIB 2-compliant solver can then be used as a
certificate checker . This essentially shifts the burden of trust from Kind 2 to
the SMT solver, reducing the trusted core to the latter. In our initial empirical
evaluation, this approach allows Kind 2 to generate and check certificates, with
an SMT solver, with a reasonable overhead (in all cases, less than an order of
magnitude). We are currently working on eliminating the SMT solver as well
from the trusted core by capitalizing on the proof-producing capabilities of cer-
tain SMT solvers. Specifically, in collaboration with the developers of the CVC4
solver [2], we are instrumenting Kind 2 to generate from CVC4 a final certificate
in the LFSC language [17]. This way, the trusted core will reduce even further,
to the much simpler LFSC proof checker.

Architecture. Kind 2 is written in OCaml and has a concurrent architecture
similar to that of PKind. Its various engines (base case and inductive step of
k-induction, IC3, invariant generation, and so on) run simultaneously and in
cooperation. They exchange information, mostly about properties proved or dis-
proved to be invariant, through a message passing interface implemented on

2 Currently, certificate generation is available only for monolithic analyses. An exten-
sion to compositional ones is planned as future work.
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Fig. 3. Comparison between
Kind 2 and other infinite-state
model checkers. (Colour figure
online)

Table 1. Techniques implemented
in the tools.

Tool k-induction IC3

PKind yes+ig no

Zustre no yes+i

Kind 2 yes+m+ig yes

JKind yes+ig yes+ia

nuXmv no yes+ia

top of the ZeroMQ library. The concurrent execution of the base (BMC) of k-
induction with the step case makes Kind 2 efficient at disproving properties.
This architecture provides superior support for systems with multiple com-
ponents and properties since it allows Kind 2 to check several properties per
component at the same time and output counterexamples or proven properties
incrementally, as it discovers them. Various off-the-shelf SMT solvers (currently,
CVC4 [2], Yices [9], and Z3 [8]) are used as backend reasoning engines.

3 Experimental Evaluation

Compositionality and certificate generation make Kind 2’s internal architecture
more complex, and with a higher potential overhead, than comparable model
checkers. So we provide an evaluation of Kind 2’s performance as a monolithic
model-checker first (without certificate generation), before discussing the perfor-
mance of its compositional reasoning features.

Comparison with Other Tools. We compared Kind 2 with a number of
recent model checkers for infinite-state systems: PKind [14]; JKind [10], a model
checker similar to PKind developed in Java by Rockwell-Collins; Zustre, a
Lustre front end for the Z3-based model checker Spacer [15]; and nuXmv [5],
a general purpose model checker for synchronous finite-state and infinite-state
systems. Table 1 shows the techniques implemented by each tool among a mod-
ular version (m) of k-induction with or without invariant generation (ig), and
IC3 possibly augmented with interpolation (i) or implicit predicate abstrac-
tion [7] (ia). We ran each tool on a Linux machine with two 12-core 64-bit AMD
Opteron processors and 32GB of memory on a set of single-property benchmarks
that includes those discussed in [14].3 nuXmv was given encoded versions of the
original Lustre problems in its own input language, which were provided to use
by its developers. We gave a timeout of five minutes for each problem. Figure 3
3 The set is publicly available at https://github.com/kind2-mc/kind2-benchmarks.

https://github.com/kind2-mc/kind2-benchmarks
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shows that Kind 2 is very competitive with its peers, outperforming its prede-
cessor PKind and providing an answer (either valid or a counterexample) in
more cases than any other tool.
Compositional vs. Monolithic Verification. We evaluated compositional
reasoning in Kind 2 on the TCM (Transport Class Model) for medium-sized
aircraft discussed and verified compositionally by hand by Brat et al. [4]. The
subsystem of the TCM we had access to, which is modeled in Lustre, includes
components for the latitudinal and longitudinal controllers, and for the mode
logic that decides which controller should be active at any time. The controllers
are heavily numerical and contain non-linear expressions, which are problematic
for current SMT solvers. We wrote contracts corresponding to Federal Aviations
Regulations [4] for most of the components of the subsystem. We also abstracted
non-linear expressions by components with a linear contract.

The runtime to verify every component of the system bottom-up, including
the abstractions of non-linear expressions, is about 400 s on a 2014 i7 CPU
running OSX. A comparison with a purely monolithic approach is not possible
because of the presence of non-linearity. All SMT solvers we tried would return
unknown, even for checks dealing with a single, relatively simple component. As
a consequence, we did a monolithic analysis of a modified TCM system where
the non-linear expressions are replaced by their linear contract but otherwise
nothing else is abstracted. In this setting, the analysis of the top level of the
system ran for two hours without reaching a conclusion. We refer the interested
reader to Champion el al. [6] for a more in-depth discussion.

4 Applications

Kind 2 is used in academia and in a variety of industrial settings. For the latter,
it is for instance one of the backend model checkers in the AGREE framework for
compositional verification of AADL models [1] at Rockwell-Collins. It has been
used at General Electric for model-based test case generation. It is also used in an
open-source model-checking plugin for Simulink developed by NASA Ames and
CMU, which relies on Lustre model checkers and produces user feedback at the
Simulink block level. Kind 2’s proof certificates are leveraged as an innovative
way to approach tool qualification with respect to DO-178C requirements in a
NASA and FAA funded project.
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