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Abstract We consider a mathematical model describing Intermittent Androgen
Suppression therapy (IAS therapy) of prostate cancer. The system has a hybrid struc-
ture, i.e., the system consists of two different systems by the medium of an unknown
binary function denoting the treatment state. In this paper, we shall prove that the
hybrid system has a unique solution with the property that the binary function keeps
on changing its value. In the clinical point of view, the result asserts that one can plan
the IAS therapy for each prostate cancer patient, provided that the tumor satisfies a
certain condition.
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1 Introduction

Prostate cancer is one of the diseases ofmale. By the fact that prostate cells proliferate
by amale hormone so-called androgen, it is expected that prostate tumors are sensitive
to androgen suppression. Huggins and Hodges [10] demonstrated the validity of the
androgen deprivation. Since then, the hormonal therapy has been a major therapy
of prostate cancer. The therapy aims to induce apoptosis of prostate cancer cells
under the androgen suppressed condition. For instance, the androgen suppressed
condition can be kept by medicating a patient continuously [22], and the therapy is
called Continuous Androgen Suppression therapy (CAS therapy). However, during
several years of the CAS therapy, the relapse of prostate tumor often occurs. More
precisely, the relapse means that the prostate tumor mutates to androgen independent
tumor. Then the CAS therapy is not effective in treating the tumor [5]. The fact was
also verified mathematically by [13, 14]. It is known that there exist Androgen-
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Dependent cells (AD cells) and Androgen-Independent cells (AI cells) in prostate
tumors. AI cells are considered as one of the causes of the relapse. For, AD cells can
not proliferate under the androgen suppressed condition, whereas AI cells are not
sensitive to androgen suppression and can still proliferate under the androgen poor
condition [2, 18]. Thus the relapse of prostate tumors is caused by progression to
androgen independent cancer due to emergence of AI cells.

In order to prevent or delay the relapse of prostate tumors, Intermittent Androgen
Suppression therapy (IAS therapy) was proposed and has been studied clinically
by many researchers (e.g., see [1, 3, 19], and the references therein). In contrast to
the CAS therapy, the IAS therapy does not aim to exterminate prostate cancer. We
mention the typical feature of the clinical phenomenon. Since prostate cancer cells
produce large amount of Prostate-Specific Antigen, the PSA is regarded as a good
biomarker of prostate cancer [21], and the plan of IAS therapy is based on the level:

(F) In the IAS therapy, the medication is stopped when the serum PSA level falls
enough, and resumed when the serum PSA level rises enough.

Indeed, if one can optimally plan the IAS therapy, then the size of tumor remains in
an appropriate range by way of on and off of the medication. In order to comprehend
qualitative property of prostate tumors under the IAS therapy, several mathematical
models were proposed and have been studied in the mathematical literature, for
instance, ODE models ([9, 11, 12, 20], and references therein) and PDE models [8,
15, 23–25]. Due to (F), an unknown binary function, denoting the treatment state,
appears in the models. The discontinuity of the binary function is the difficulty in
mathematical analysis on the models. To the best of our knowledge, there is no result
dealing with switching phenomena of the binary function in the PDE models.

The purpose of this paper is to prove the existence of a solution with the switching
property for the PDE model introduced by Tao et al. [23]:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

da

dt
(t) = −γ (a(t) − a∗) − γ a∗S(t) in R+,

∂t u(ρ, t) − L (v, R)u(ρ, t) = Fu(u(ρ, t), w(ρ, t), a(t)) in I∞,

∂t w(ρ, t) − L (v, R)w(ρ, t) = Fw(u(ρ, t), w(ρ, t), a(t)) in I∞,

v(ρ, t) = 1

ρ2

∫ ρ

0
Fv(u(r, t), w(r, t), a(t))r2 dr in I∞,

d R

dt
(t) = v(1, t)R(t) in R+,

S(t) =
{
0 → 1 when R(t) = r1 and R′(t) > 0,

1 → 0 when R(t) = r0 and R′(t) < 0,
in R+,

∂ρu(ρ, t)|ρ∈{0,1} = ∂ρw(ρ, t)|ρ∈{0,1} = 0, v(0, t) = 0, in R+,

(a, u, w, R, S)|t=0 = (a0, u0(ρ), w0(ρ), R0, S0) in I,

(IAS)
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where I = ( 0, 1 ), R+ = {t ∈ R | t > 0}, I∞ = I × R+, and

L (v, R)ϕ = D

R(t)2
1

ρ2
∂ρ[ρ2∂ρϕ] + ρv(1, t)∂ρϕ − 1

ρ2
∂ρ[ρ2v(ρ, t)ϕ], (1)

Fu = f1(a)u − c1uw, Fw = f2(a)w − c2uw, Fv = Fu + Fw. (2)

The unknownsa,u,w, v, R, and S denote respectively the androgen concentration, the
volume fraction of AD cells, the volume fraction of AI cells, the advection velocity
of the cancer cells, the radius of the tumor, and the treatment state. Here S = 0 and
S = 1 correspond to the medication state and the non-medication state, respectively.
The authors of [23] assumed that the prostate tumor is radially symmetric and densely
packed by AD andAI cells. Moreover they regarded the tumor as a three dimensional
sphere. Thus the unknowns u, w, and v are radially symmetric functions defined on
the unit ball B1 = {x ∈ R

3 | |x | < 1}, i.e., ρ = |x |. The unknown S(t) is governed
by R(t), for they formulated the serumPSA level as the radius of the tumor. Although
the condition on S in (IAS) is a concise form, the precise form is expressed as follows:
S(t) ∈ {0, 1} and

S(t)=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

{0, 1} \ lim
τ↑t

S(τ ) if

⎧
⎨

⎩

lim
τ↑t

R′(τ )>0, lim
τ↑t

R(τ )=r1, and lim
τ↑t

S(τ )=0,

lim
τ↑t

R′(τ )<0, lim
τ↑t

R(τ )=r0, and lim
τ↑t

S(τ )=1,

lim
τ↑t

S(τ ) otherwise.

The parameters a∗, γ , c1, c2, r0, and r1 denote the normal androgen concentration, the
reaction velocity, the effective competition coefficient fromAD to AI cells, and from
AI to AD cells, the lower and upper thresholds, respectively. The given functions
f1 : [ 0, a∗ ] → R and f2 : [ 0, a∗ ] → R describe the net growth rate of AD and AI
cells, respectively. Although the typical form of fi were given by [23], we deal with
general fi satisfying several conditions, which are stated later.

In [23], it was shown that, for each initial data u0 ∈ W 2
p(I ), there exists a short

time solution u ∈ W 2,1
p (I × ( 0, T )) of (IAS). However, the result is not sufficient

to construct a “switching solution”. For, if (u, w, v, R, a, S) is a switching solution
of (IAS), then (IAS) must be solvable at least locally in time for each “initial data”
(u, w, R, a, S)|{t=t j }, where t j is a switching time. Nevertheless, the result in [23]
does not ensure the solvability.

The existence of switching solutions of (IAS) is a mathematically outstanding
question. We are interested in the following mathematical problem:

Problem 1.1 Does there exist a switching solution of (IAS) with appropriate thresh-
olds 0 < r0 < r1 < ∞? Moreover, what is the dynamical aspect of the solution?

We consider the initial data (u0, w0, R0, a0, S0) satisfying the following:

{
u0, w0 ∈ C2+α(B1), ∂ρu0(ρ)|ρ∈{0,1} =∂ρw0(ρ)|ρ∈{0,1} =0,

u0 ≥ 0, w0 ≥ 0, u0 + w0 ≡ 1, R0 > 0, 0 < a0 < a∗, S0 ∈ {0, 1}, (3)
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where α ∈ ( 0, 1 ). Let f1 and f2 satisfy

{
f1(a∗) > 0, f1(0) < 0, f1 ∈ C1([ 0, a∗ ]), f ′

1 > 0 in [ 0, a∗ ],
f2(0) > 0, f2 ∈ C1([ 0, a∗ ]), f ′

2 ≤ 0 in [ 0, a∗ ]. (A0)

We note that (A0) is a natural assumption in the clinical point of view, and typical f1
and f2, which were given in [23], also satisfy (A0). In order to comprehend the role
of fi and ci , we classify asymptotic behavior of non-switching solutions of (IAS) in
terms of fi and ci under (A0) (see Theorems3.2–3.5). Following the results obtained
by Theorems3.2–3.5, we impose (A0) and the following assumptions on fi and ci :

f1(a∗) − f2(a∗) − c1 > 0; (A1)

f1(0) − f2(0) + c2 > 0. (A2)

From now on, let QT := B1 × ( 0, T ). We denote by C2κ+α,κ+β(QT ) the Hölder
space on QT , where κ ∈ N ∪ {0}, 0 < α < 1, and 0 < β < 1 (for the precise defin-
ition, see [16]).

Then we give an affirmative answer to Problem1.1:

Theorem 1.1 Let fi and ci satisfy (A0)–(A2). Let (u0, w0, R0, a0, S0) satisfy (3),
u0 > 0 in B1, and S0 = 0. Then, there exists a pair (r0, r1) with 0 < r0 < r1 < ∞
such that the system (IAS) has a unique solution (u, w, v, R, a, S) in the class

u, w ∈ C2+α,1+α/2(Q∞), v ∈ C1+α,α/2([ 0, 1 ) × R+) ∩ C1([ 0, 1 ) × R+),

R ∈ C1(R+), a ∈ C0,1(R+).

Moreover, the following hold :
(i) There exists a strictly monotone increasing divergent sequence {t j }∞j=0 with

t0 = 0 such that a ∈ C1(( t j , t j+1 )) and

S(t) =
{
0 in [ t2 j , t2 j+1 ),

1 in [ t2 j+1, t2 j+2 ),
for any j ∈ N ∪ {0};

(ii) There exist positive constants C1 < C2 such that

C1 ≤ R(t) ≤ C2 for any t ≥ 0.

We mention the mathematical contributions of Theorem1.1 and a feature of the
system (IAS). The system is composed of two different systems (S0) and (S1) by the
medium of the binary function S(t), where (S0) and (S1) respectively denote (IAS)
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with S(t) ≡ 0 and S(t) ≡ 1. Generally the systemwith such structure is called hybrid
system. Regarding (S0), the assumption (A1) implies that R(t) diverges to infinity
as t → ∞ (see Theorem3.4). On the other hand, regarding (S1), we can show that
the assumption (A2) implies the following: (i) R(t) diverges to infinity as t → ∞
if u0 is sufficiently small (Theorem3.2); (ii) R(t) converges to 0 as t → ∞ if u0 is
sufficiently close to 1 (Theorem3.3). It is natural to ask whether a solution R(t) of
(IAS) is bounded or not. One of the contributions of the present paper is to show
how to determine thresholds 0 < r0 < r1 < ∞ such that (IAS) with the thresholds
has a bounded solution with infinite opportunities of switching. Furthermore, due to
the discontinuity of S(t), it is expected that the switching solution is not so smooth.
However, Theorem1.1 indicates that the switching solution gains its regularity with
the aid of the “indirectly controlled parameter” a(t). The other contribution of this
paper is to mathematically clarify the immanent structure of the hybrid system (IAS).

We mention the clinical contribution of Theorem1.1. Although one can expect
that the system (IAS) gives us how to optimally plan the IAS therapy for each prostate
cancer patient, it is not trivial matter. To do so, first we have to prove the existence
of admissible thresholds for each patient. Moreover, if the admissible threshold is
not unique, then we investigate the optimality of the admissible thresholds. Here, we
say that the thresholds is admissible for a prostate cancer patient, if for the initial
data (IAS) with the thresholds has a switching solution. Although [23] indicated
that the problem, even the existence, is difficult to analyze mathematically, they
numerically showed that (i) the IAS therapy fails for unsuitable thresholds, more
precisely, the radius of tumor diverges to infinity after several times of switching
opportunities, and while, (ii) the IAS therapy succeeds for suitable thresholds, i.e.,
the radius of tumor remains in a bounded range by way of infinitely many times
of switching opportunities. One of the clinical contribution of Theorem1.1 is to
prove the existence of admissible thresholds for each patients, provided that (A0)–
(A2) are fulfilled. Moreover, Theorem1.1 also implies that the IAS therapy has an
advantage over the CAS therapy for some patients. Indeed, Theorem3.2 gives an
instance showing a failure of the CAS therapy, whereas Theorem1.1 asserts that the
patient can be treated successfully by the IAS therapy. The fact is an example that
switching strategy under the IAS therapy is able to be a successful strategy. On the
other hand, the pair of admissible thresholds given by Theorem1.1 is not uniquely
determined. Thus, in order to optimally plan the IAS therapy, we have to investigate
its optimality. However the optimality of the admissible thresholds is an outstanding
problem.

The paper is organized as follows: In Sect. 2, we give a modified system of (IAS)
and reduce the system to a simple hybrid system.Making use of the modified system,
we prove the short time existence of the solution to (IAS). In Sect. 3, we show the
existence of the non-switching solution of (IAS) for any finite time. Moreover, we
classify the asymptotic behaviors of the non-switching solutions in terms of fi and ci .
In Sect. 4, we prove Theorem1.1, i.e., we show the existence of a switching solution
of (IAS) and give its property.
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2 Short Time Existence

The main purpose of this section is to show the short time existence of the solution of
(IAS). As [23] mentioned, it is difficult to prove that (IAS) has a short time solution
in the Hölder space (see Remark 4.1 in [23]). The difficulty rises from the singularity
of v/ρ at ρ = 0. Indeed, the singularity prevents us from applying the Schauder
estimate. To overcome the difficulty, first we consider a modified hybrid system.
More precisely, we replace the “boundary condition”

v(0, t) = 0 in R+ (4)

by

v(ρ, t)

ρ

∣
∣
∣
ρ=0

= 1

3
Fv(u(0, t), w(0, t), a(t)) in R+.

Then the modified hybrid system is expressed as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

da

dt
(t) = −γ (a(t) − a∗) − γ a∗S(t) in R+,

∂t u(ρ, t) − L (v, R)u(ρ, t) = Fu(u(ρ, t), w(ρ, t), a(t)) in I∞,

∂t w(ρ, t) − L (v, R)w(ρ, t) = Fw(u(ρ, t), w(ρ, t), a(t)) in I∞,

v(ρ, t) = 1

ρ2

∫ ρ

0
Fv(u(r, t), w(r, t), a(t))r2 dr in I∞,

d R

dt
(t) = v(1, t)R(t) in R+,

S(t) =
{
0 → 1 when R(t) = r1 and R′(t) > 0,

1 → 0 when R(t) = r0 and R′(t) < 0,
in R+,

∂ρu(ρ, t)|ρ∈{0,1} = ∂ρw(ρ, t)|ρ∈{0,1} = 0 in R+,

v(ρ, t)

ρ

∣
∣
∣
ρ=0

= 1

3
Fv(u(0, t), w(0, t), a(t)) in R+,

(a, u, w, R, S)|t=0 = (a0, u0(ρ), w0(ρ), R0, S0) in I.

(mIAS)

To begin with, we show that u + w is invariant under (mIAS).

Lemma 2.1 Let (u0, w0, R0, a0, S0) be an initial data satisfying (3). Assume that
(u, w, v, R, a, S) is a solution of (mIAS)with u, w ∈ C2+α,1+α/2(QT ) and S(t) ≡ S0
in [ 0, T ). Then u + w ≡ 1 in B1 × [ 0, T ).

Proof Setting V := u + w, we reduce (mIAS) to the following system:
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

da

dt
(t) = −γ (a(t) − a∗) − γ a∗S0 in R+,

∂t V (ρ, t) − L (v, R)V (ρ, t) = 1

ρ2
∂ρ[ρ2v(ρ, t)] in I∞,

v(ρ, t) = 1

ρ2

∫ ρ

0
Fv(u(r, t), w(r, t), a(t))r2 dr in I∞,

d R

dt
(t) = v(1, t)R(t) in R+,

∂ρV (ρ, t)|ρ∈{0,1}= 0,
v(ρ, t)

ρ

∣
∣
∣
ρ=0

= 1

3
Fv(u(0, t),w(0, t),a(t)), in R+,

V (ρ, 0) = 1, a(0) = a0, R(0) = R0, in I.

(5)

In the derivation of the second equation in (5), we used the fact Fu + Fw = Fv and
the equation on v. We shall prove that V ≡ 1 in B1 × [ 0, T ). The second equation
in (5) is written as

∂t V = D

R(t)2
Δx V − x

ρ
· ∇x {v(V − 1)} + v(1, t)x · ∇x V − 2

ρ
v(V − 1) (6)

in terms of the three-dimensional Cartesian coordinates, where ρ = |x |. In what
follows, we use ∇ and Δ instead of ∇x and Δx , respectively, if there is no fear of
confusion. First, we observe from (6) that

d

dt
‖V − 1‖2L2(B1)

= − 2D

R(t)2
‖∇(V − 1)‖2L2(B1)

− 2
∫

B1

(V − 1)
x

ρ
· ∇{v(V − 1)} dx

+ 2
∫

B1

(V −1)v(1, t)x · ∇V dx − 2
∫

B1

v

ρ
(V − 1)2 dx =: J1 + J2 + J3 + J4.

We start with an estimate of J1. Since it follows from the third and fourth equations
in (5) that

R(t) = R0 exp
[ ∫ t

0
v(1, s)ds

]
≤ R0eκT ,

we have

J1 ≤ − 2D

R2
0e2κT

‖∇(V − 1)‖2L2(B1)
,

where κ is a positive constant given by

3κ := ‖ f1(a)u + f2(a)w − (c1 + c2)uw‖L∞(QT ).

We turn to J2. By the relation
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∂ρv = −2
v

ρ
+ f1(a(t))u + f2(a(t))w − (c1 + c2)uw,

the integral J2 is reduced to

J2 = 4
∫

B1

v

ρ
|V − 1|2 dx − 2

∫

B1

(V − 1)
v

ρ
x · ∇V dx

− 2
∫

B1

{ f1(a(t))u + f2(a(t))w − (c1 + c2)uw}|V − 1|2 dx .

Observing that

∣
∣
∣

v(ρ, t)

ρ

∣
∣
∣≤ 1

ρ3

∫ ρ

0
| f1(a(t))u + f2(a(t))w − (c1 + c2)uw|r2 dr ≤ κ,

and using Hölder’s inequality and Young’s inequality, we find

|J2| ≤ ε‖∇(V − 1)‖2L2(B1)
+ C(ε)‖V − 1‖2L2(B1)

.

Regarding J3 and J4, the same argument as in the estimate of J2 asserts that

|J3| ≤ ε‖∇(V − 1)‖2L2(B1)
+ C(ε)‖V − 1‖2L2(B1)

, |J4| ≤ 2κ‖V − 1‖2L2(B1)
.

Thus, letting ε > 0 small enough, we obtain

d

dt
‖V − 1‖2L2(B1)

≤ C‖V − 1‖2L2(B1)
. (7)

Since V (·, 0) = 1, applying Gronwall’s inequality to (7), we obtain the conclusion.
��

Here we reduce the system (mIAS) to the following hybrid system:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

da

dt
(t) = −γ (a(t) − a∗) − γ a∗S(t) in R+,

∂t u(ρ, t) − L ′(v, R)u(ρ, t) = P(u(ρ, t), a(t)) in I∞,

v(ρ, t) = 1

ρ2

∫ ρ

0
F(u(r, t), a(t))r2 dr in I∞,

d R

dt
(t) = v(1, t)R(t) in R+,

S(t) =
{
0 → 1 when R(t) = r1 and R′(t) > 0,

1 → 0 when R(t) = r0 and R′(t) < 0,
in R+,

∂ρu(ρ, t)
∣
∣
ρ∈{0,1} = 0,

v(ρ, t)

ρ

∣
∣
∣
ρ=0

= 1

3
F(u(0, t), a(t)), in R+,

a(0) = a0, u(ρ, 0) = u0(ρ), R(0) = R0, S(0) = S0, in I,

(P)
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where

L ′(v, R)ϕ = D

R(t)2
1

ρ2
∂ρ[ρ2∂ρϕ] − [v(ρ, t) − ρv(1, t)] ∂ρϕ, (8)

P(u, a) = { f1(a) − f2(a) − c1 + (c1 + c2)u} u(1 − u),

F(u, a) = f1(a)u + { f2(a) − (c1 + c2)u} (1 − u).

The reduction is justified as follows:

Lemma 2.2 The system (mIAS) is equivalent to (P).

Proof If (u, w, v, R, a, S) satisfies (mIAS), then Lemma2.1 implies that u + w ≡ 1.
Using w = 1 − u, we can reduce (mIAS) to (P). On the other hand, if (u, v, R, a, S)

satisfies (P), then, setting w := 1 − u, we obtain (mIAS) from (P). ��
In order to prove the short time existence of a solution to (mIAS), we first consider

the following system, which is formally derived from (P) provided S(t) ≡ S0.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

da

dt
(t) = −γ (a(t) − a∗) − γ a∗S0 in R+,

∂t u(ρ, t) − L ′(v, R)u(ρ, t) = P(u(ρ, t), a(t)) in I∞,

v(ρ, t) = 1

ρ2

∫ ρ

0
F(u(r, t), a(t))r2 dr in I∞,

d R

dt
(t) = v(1, t)R(t) in R+,

∂ρu(ρ, t)
∣
∣
ρ∈{0,1} = 0,

v(ρ, t)

ρ

∣
∣
∣
ρ=0

= 1

3
F(u(0, t), a(t)), in R+,

a(0) = a0, u(ρ, 0) = u0(ρ), R(0) = R0, in I.

(PS0)

Lemma 2.3 Let (u0, R0, a0, S0) satisfy (3). Then there exists T > 0 such that the
system (PS0) has a unique solution (u, v, R, a) in the class

C2+α,1+ α
2(QT )×(C1+α, α

2([ 0, 1 )×( 0, T ))∩C1([ 0, 1 )×( 0, T )))×(C1(( 0, T )))2.

Proof We shall prove Lemma2.3 by the contractionmapping principle. Let us define
a metric space (X M , ‖ · ‖X ) as follows:

X M = {u ∈ Cα, α
2 (QT ) | u(x, t) = u(|x |, t), u|t=0 = u0, ‖u‖X ≤ M},

where ‖u‖X = ‖u‖Cα,α/2(QT ). We will take the constants T > 0 and M > 0 appropri-
ately, later.

Step 1: We shall construct a mapping Ψ : X M → X M . Let u ∈ X M . For u(ρ, t), let
us define (v(ρ, t), R(t)) as the solution of the following system:
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

v(ρ, t) = 1

ρ2

∫ ρ

0
F(u(r, t), a(t))r2 dr in I × [ 0, T ),

d R

dt
(t) = v(1, t)R(t) in ( 0, T ),

v(ρ, t)

ρ

∣
∣
∣
ρ=0

= 1

3
F(u(0, t), a(t)) in [ 0, T ),

R(0) = R0.

(9)

For (v, R) defined by (9), let ũ(x, t) = ũ(|x |, t) = ũ(ρ, t) denote the solution of

⎧
⎪⎨

⎪⎩

∂t ũ(ρ, t) − L ′(v, R)ũ(ρ, t) = P(u(ρ, t), a(t)) in I × ( 0, T ),

∂ρ ũ(0, t) = ∂ρ ũ(1, t) = 0 in ( 0, T ),

ũ(ρ, 0) = u0(ρ) in I.

(10)

Ifwe consider the problemas an initial-boundary value problem for a onedimensional
parabolic equation, the parabolic equation has a singularity at ρ = 0. In order to
eliminate the singularity, we rewrite the problem in terms of the three dimensional
Cartesian coordinate as follows:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂t ũ(|x |, t)+
[ v(|x |, t)

|x | − v(1, t)
]

x · ∇ũ(|x |, t)

= D

R(t)2
Δũ(|x |, t) + P(u(|x |, t), a(t)) in QT ,

∂ρ ũ(0, t) = ∂ρ ũ(1, t) = 0 in ( 0, T ),

ũ(|x |, 0) = u0(|x |) in B1.

(11)

We prove that ũ ∈ X M by applying the Schauder estimate to (11). Since u ∈ X M ,
it is clear that F(u, a) ∈ Cα,α/2(QT ), P(u, a) ∈ Cα,α/2(QT ), and

v(1, t) =
∫ 1

0
F(u(r, t), a(t))r2 dr ∈ C

α
2 (( 0, T )). (12)

Moreover, since R(t) > 0 in [ 0, T ), the fact (12) implies 1/R(t)2 ∈ Cα/2

(( 0, T )). In the following, we will show

V (ρ, t) := v(ρ, t)

ρ
∈ Cα, α

2 (QT ). (13)

(i) Let us fix ρ ∈ ( 0, 1 ) arbitrarily. Since now V satisfies, for any 0 < t < s < T ,

V (ρ, s) − V (ρ, t) = 1

ρ3

∫ ρ

0
{F(u(r, s), a(s)) − F(u(r, t), a(t))}r2 dr, (14)

we estimate the integrand. It follows from u ∈ X M that
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|F(u(r, s), a(s)) − F(u(r, t), a(t))| (15)

≤ C(M)

{

|u(r, s) − u(r, t)| +
2∑

i=1

| fi (a(s)) − fi (a(t))|
}

≤ C(M)

{

M |s − t | α
2 +

2∑

i=1

| fi (a(s)) − fi (a(t))|
}

.

Furthermore, the mean value theorem implies

| fi (a(s)) − fi (a(t))| ≤ C |s − t | for i = 1, 2,

where C = C( fi , a∗, γ ). Combining the estimate with (15), we find

|F(u(r, s), a(s)) − F(u(r, t), a(t))| ≤ C(M)|s − t | α
2 .

Consequently, we deduce from (14) that

|V (ρ, s) − V (ρ, t)| ≤ C(M)|s − t | α
2 .

(ii) Let ρ = 0. Then by the same argument as in (i), we see that

|V (0, s) − V (0, t)| = 1

3
|F(u(0, s), a(s)) − F(u(0, t), a(t))| ≤ C(M)|s − t | α

2

for any 0 < t < s < T .
(iii) Fix 0 < t < T arbitrarily. Then, for any 0 < ρ < σ < 1, it holds that

V (σ, t) − V (ρ, t) = {V (σ, t) − V (0, t)} − {V (ρ, t) − V (0, t)}
= 1

σ 3

∫ σ

ρ

{F(u(r, t), a(t)) − F(u(0, t), a(t))}r2 dr

+
(

1

σ 3
− 1

ρ3

)∫ ρ

0
{F(u(r, t), a(t)) − F(u(0, t), a(t))}r2 dr.

Since u ∈ X M , we observe that

|F(u(ρ, t), a(t)) − F(u(0, t), a(t))| ≤ C(M)|u(ρ, t) − u(0, t)| ≤ C(M)ρα.

Therefore we obtain

|V (σ, t) − V (ρ, t)| ≤ C(M)
1

σ 3

∫ σ

ρ

r2+α dr + C(M)

∣
∣
∣

ρ3 − σ 3

σ 3ρ3

∣
∣
∣

∫ ρ

0
r2+α dr

≤ C(M)

∣
∣
∣

σ 3 − ρ3

σ 3−α

∣
∣
∣≤ C(M)|σ − ρ|α.
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(iv) Let us fix 0 < t < T arbitrarily. The same argument as in (iii) implies that

|V (ρ, t) − V (0, t)| ≤ C(M)
1

ρ3

∫ ρ

0
r2+α dr ≤ C(M)ρα for any ρ ∈ ( 0, 1 ).

From (i)–(iv), we conclude (13). Hence, by virtue of (11) we can apply the Schauder
estimate (Theorem 5.3, [16]) to (10):

‖ũ‖C2+α,1+α/2(QT ) ≤ C
(‖P‖X + ‖u0‖C2+α(B1)

) ≤ C(M) + C‖u0‖C2+α(B1).

On the other hand, it follows from the mean value theorem that

‖ũ − u0‖X ≤ max
{
T, T 1− α

2
} ‖ũ‖C2+α,1+α/2(QT ). (16)

Therefore, for T < 1, we obtain

‖ũ‖X ≤ T 1− α
2 ‖ũ‖C2+α,1+α/2(QT ) + ‖u0‖C2+α(B1)

≤ T 1− α
2 {C(M) + C‖u0‖C2+α(B1)} + ‖u0‖C2+α(B1).

Consequently, for M := 1 + ‖u0‖C2+α(B1), setting T < 1 small enough as

T 1− α
2 {C(M) + C‖u0‖C2+α(B1)} < 1, (17)

we deduce that ũ ∈ X M . We define a mapping Ψ : X M → X M as Ψ (u) = ũ.

Step 2: We show that Ψ is a contraction mapping. Let ui ∈ X M . We denote by
(vi (ρ, t), Ri (t)) the solution of (9) with u = ui , where i = 1, 2. For ũi := Ψ (ui ),
set U := ũ1 − ũ2. By a simple calculation, we see that U satisfies

⎧
⎪⎨

⎪⎩

∂tU (ρ, t) − L ′(v2, R2)U (ρ, t) = G(u1, u2) in I × ( 0, T ),

∂ρU (0, t) = ∂ρU (1, t) = 0 in ( 0, T ),

U (ρ, 0) = 0 in I,

where G(u1, u2) is given by

G(u1, u2) = {L ′(v1, R1) − L ′(v2, R2)}ũ1 + {P(u1) − P(u2)}.

Adopting a similar argument as in Step 1, we find G(u1, u2) ∈ Cα,α/2(QT ) and

‖G(u1, u2)‖X ≤ C(T, u0, R0)‖u1 − u2‖X .

Then the Schauder estimate asserts that

‖U‖C2+α,1+α/2(QT ) ≤ C(T, u0, R0)‖u1 − u2‖X .
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By the fact that U (|x |, 0) = 0 in B1 and a similar argument as in (16), it holds that

‖Ψ (u1) − Ψ (u2)‖X = ‖U‖X ≤ T 1− α
2 ‖U‖C2+α,1+α/2(QT ) ≤ T 1− α

2 C‖u1 − u2‖X ,

whereC = C(T, u0, R0). Thus, lettingT small enough asT 1−α/2C < 1,we conclude
that Ψ is a contraction mapping. Then Banach’s fixed point theorem indicates that
there exists u ∈ X M uniquely such that Ψ (u) = u. By the definition of Ψ , u is a
unique solution of (PS0) on [ 0, T ). Moreover, we infer from the above argument
that u ∈ C2+α,1+α/2(QT ).

Finally we prove that v ∈ C1+α,α/2([ 0, 1 ) × ( 0, T )) ∩ C1([ 0, 1 ) × ( 0, T )). By
a direct calculation, we have v ∈ C([ 0, T ); H 1(I )). Combining the fact with
the Sobolev embedding theorem H 1(I ) ↪→ C0,1/2( Ī ), we obtain v ∈ C([ 0, T );
C0,1/2( Ī )), in particular v ∈ C( Ī × [ 0, T )). Thus it follows from the continuity that

v(0, t) = lim
ρ↓0 v(ρ, t) = 0 for any t ∈ [ 0, T ). (18)

Then, along the same line as in [23], we see that v ∈ C1([ 0, 1 ) × ( 0, T )).Moreover,
applying the same argument as in (13) to

∂ρv(ρ, t) =

⎧
⎪⎨

⎪⎩

− 2

ρ3

∫ ρ

0
F(u(r, t), a(t))r2 dr + F(u(ρ, t), a(t)) if ρ > 0,

1

3
F(u(0, t), a(t)) if ρ = 0,

we find v ∈ C1+α,α/2([ 0, 1 ) × ( 0, T )). This completes the proof. ��

Theorem 2.1 Let (u0, w0, R0, a0, S0) satisfy (3). Then there exists T > 0 such that
the system (IAS) has a unique solution (u, w, v, R, a, S) with S(t) ≡ S0 in [ 0, T )

in the class
{

u, w ∈ C2+α,1+ α
2 (QT ), R, a ∈ C1(( 0, T )),

v ∈ C1+α, α
2 ([ 0, 1 ) × ( 0, T )) ∩ C1([ 0, 1 ) × ( 0, T )).

(19)

Proof Let (u, v, R, a) be the solution of (PS0). According to Lemma2.3, we see that
the solution (u, v, R, a) belongs to the class

C2+α,1+ α
2(QT )×(C1+α, α

2([ 0, 1 )×( 0, T ))∩C1([ 0, 1 )×( 0, T )))×(C1(( 0, T )))2

for some T > 0. To begin with, we prove the existence of a short time solution to (P).
If there exists T1 ∈ ( 0, T ] such that R(t) ≡ R0 in [ 0, T1 ), then (u, v, R, a, S) with
S(t) ≡ S0 is a solution of (P), for the fact that d R/dt = 0 in ( 0, T1 ) implies that
S(t) does not switch in ( 0, T1 ). On the other hand, if there exists no such T1, there
exists T2 ∈ ( 0, T ] such that R(t) /∈ {r0, r1} in ( 0, T2 ), for R(t) is continuous. Then
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it is clear that (u, v, R, a, S)with S(t) ≡ S0 satisfies (P) in ( 0, T2 ). Thus we see that
(u, v, R, a, S) with S(t) ≡ S0 is a solution of (P) in ( 0, T ∗ ) for some T ∗ ∈ ( 0, T ].

We show the uniqueness. Let (u1, v1, R1, a1, S1) �= (u2, v2, R2, a2, S2) be solu-
tions of (P) satisfying (19). Along the same line as above, we see that S1(t) = S2(t) =
S0 in [ 0, T̃ ) for some T̃ ∈ ( 0, T ∗ ]. Then the uniqueness of the solution of (PS0)
leads a contradiction.

Thanks to Lemma2.2, we observe that (mIAS) has a unique solution.Moreover, it
follows from (18) that the solution satisfies (IAS). Finally we show the uniqueness of
solutions of (IAS). Suppose that (ui , wi , vi , Ri , ai , S0) are solutions of (IAS) in the
class (19), where i = 1, 2. Then, by the proof of Lemma2.2, we observe that (IAS)
is reduced to (P) replaced the condition on v/ρ by (4). It is clear that a1(t) = a2(t)
in [ 0, T ). Set U := u1 − u2. Then it follows from Step 2 in the proof of Lemma2.3
that

‖U‖C2+α,1+ α
2 (QT )

≤ C‖U‖Cα, α
2 (QT )

. (20)

Moreover, we find

‖U‖Cα, α
2 (QT )

≤ T 1− α
2 ‖U‖C2+α,1+ α

2 (QT )
≤ CT 1− α

2 ‖U‖Cα, α
2 (QT )

. (21)

Letting T be small enough such that CT 1−α/2 < 1, we observe from (21) that
‖U‖Cα,α/2 = 0. Combining the fact with (20), we obtain the conclusion. ��

In order to prove u, w ∈ [ 0, 1 ] in B1 × [ 0, T ), we apply a parabolic compar-
ison principle to (IAS). Using (u, v, R, a, S), which is the solution of (P) in QT

constructed by Theorem 2.1, we define the operator

Pi : C2,1(B1 × ( 0, T )) ∩ C(B1 × [ 0, T )) → C(B1 × ( 0, T ))

as follows:

P1z := ∂t z −L ′(v, R)z − P(z, a), P2z := ∂t z −L ′(v, R)z + P(1 − z, a).

Regarding the operatorPi , the following parabolic comparison principle holds:

Lemma 2.4 Assume that z, ζ ∈ C2,1(B1 × ( 0, T )) ∩ C(B1 × [ 0, T )) satisfy

⎧
⎪⎨

⎪⎩

Pi z ≥ Piζ in B1 × ( 0, T ),

∂νz ≥ ∂νζ on ∂ B1 × ( 0, T ),

z ≥ ζ in B1 × {t = 0}.

Then z ≥ ζ in B1 × [ 0, T ).

Proof Since the proof of Lemma2.3 implies that the coefficients in the operator
L ′(v, R) are bounded, we can prove Lemma2.4 along the standard argument (e.g.,
see [4, 17]). ��
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By virtue of Lemma2.4, one can verify 0 ≤ u ≤ 1 and 0 ≤ w ≤ 1:

Lemma 2.5 Let (u, w, v, R, a, S) be a solution of (IAS) obtained by Theorem2.1.
Then, 0 ≤ u ≤ 1 and 0 ≤ w ≤ 1 in B1 × [ 0, T ).

We close this section with a property of certain quantities of u and w.

Lemma 2.6 Let us define

⎧
⎪⎪⎨

⎪⎪⎩

U (t) := 4π R3(t)
∫ 1

0
u(ρ, t)ρ2 dρ,

W (t) := 4π R3(t)
∫ 1

0
w(ρ, t)ρ2 dρ,

⎧
⎪⎪⎨

⎪⎪⎩

V1(t) :=
∫ 1

0
u(ρ, t)ρ2 dρ,

V2(t) :=
∫ 1

0
w(ρ, t)ρ2 dρ.

Then U, W , V1, and V2 satisfy

dU

dt
(t) = 4π R3(t)

∫ 1

0
c1u(ρ, t)2ρ2dρ + { f1(a(t)) − c1}U (t), (22)

dW

dt
(t) = 4π R3(t)

∫ 1

0
c2w(ρ, t)2ρ2dρ + { f2(a(t)) − c2}W (t), (23)

dV1

dt
(t)

{
≤ g(a(t))V1(t) + 3{−g(a(t)) + c1 + c2}V1(t)2,

≥ {g(a(t)) − c1}V1(t) − 3{g(a(t)) − c1}V1(t)2,
(24)

dV2

dt
(t)

{
≤ −g(a(t))V2(t) + 3{g(a(t)) + c1 + c2}V2(t)2,

≥ −{g(a(t)) + c2}V2(t) + 3{g(a(t)) + c2}V2(t)2,
(25)

respectively, where g is a function defined by

g(z) := f1(z) − f2(z). (26)

Proof The Eqs. (22) and (23) were obtained by [23]. We shall show (24) and (25).
It follows from Jensen’s inequality and Lemma2.5 that

3V1(t)
2 ≤

∫ 1

0
u(ρ, t)2ρ2 dρ ≤ V1(t), 3V2(t)

2 ≤
∫ 1

0
w(ρ, t)2ρ2 dρ ≤ V2(t). (27)

Combining (27) with the same argument as in [23], we obtain the conclusion. ��
Remark 2.1 The function g denotes the difference of net growth rate of AD cells
and AI cells. We employ the notation frequently in the rest of the paper.



206 K. Hiruko and S. Okabe

3 Asymptotic Behavior of Non-switching Solutions

We devote this section to investigating the asymptotic behavior of “non-switching”
solutions of (IAS). To begin with, we shall show the long time existence of the
non-switching solutions of (IAS).

Theorem 3.1 Let (u0, w0, R0, a0, S0) satisfy (3) and S0 = 1. Then the system (IAS)
with r0 = 0 has a unique solution (u, w, v, R, a, S) with S(t) ≡ 1 in [ 0,∞ ) in the
class

{
u, w ∈ C2+α,1+ α

2 (Q∞), R, a ∈ C1(R+),

v ∈ C1+α, α
2 ([ 0, 1 ) × R+)) ∩ C1([ 0, 1 ) × R+).

Proof It follows from Theorem2.1 that (IAS) with r0 = 0 has a unique solution with
S(t) ≡ 1 in QT for some T > 0. Since

R(t) = R0 exp
[ ∫ t

0
v(1, s) ds

]
,

we observe from the continuity of the solution that R(t) is positive, i.e. S(t) ≡ 1,
while the solution exists. Thus, by a standard argument (e.g., see [6]), we prove that
the solution can be extended beyond for any T > 0. Indeed, if there exists T̃ > 0
such that the solution can not be extended beyond T̃ , then the proof of Theorem2.1
implies that

‖u(·, t)‖C2+α(B1) → ∞ as t ↑ T̃ . (28)

On the other hand, since u is a solution of (PS0) on [ 0, T̃ ), it holds that

‖u(·, t)‖C2+α(B1) ≤ ‖u‖C2+α,1+α/2
x,t (QT̃ )

≤ C(C(T̃ ) + ‖u0‖C2+α(B1)). (29)

Since (29) contradicts (28), we obtain the conclusion. ��
Remark 3.1 The system (IAS) with r0 = 0 and S0 = 1 describes a tumor growth
under the CAS therapy.

Corollary 3.1 Let (u0, w0, R0, a0, S0) satisfy (3) and S0 = 0. Then the system (IAS)
with r1 = ∞ has a unique solution (u, w, v, R, a, S) with S(t) ≡ 0 in [ 0,∞ ) in the
class

{
u, w ∈ C2+α,1+ α

2 (Q∞), R, a ∈ C1(R+),

v ∈ C1+α, α
2 ([ 0, 1 ) × R+)) ∩ C1([ 0, 1 ) × R+).

In the following, we classify the asymptotic behavior of non-switching solutions
obtained by Theorem3.1 and Corollary3.1. Recalling Lemma2.2 and Theorem2.1,
we may consider (P) instead of (IAS).
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If u0 is trivial, i.e., u0 ≡ 0 or u0 ≡ 1, then Lemma2.4 asserts that u is also trivial
in QT . Thus it is sufficient to consider the initial data (u0, R0, a0, S0) satisfying

{
u0 ∈ C2+α(B1), ∂ρu0(0) = ∂ρu0(1) = 0, 0 ≤ u0 ≤ 1,

u0(ρ) �≡ 0, u0(ρ) �≡ 1, 0 < a0 < a∗, R0 > 0, S0 ∈ {0, 1}, (IC)

where 0 < α < 1. Regarding fi and ci , we assume (A0) throughout this section.
From now on, for a function h : [ 0, a∗ ] → R, we define ‖h‖∞ by

‖h‖∞ := sup
z∈[ 0,a∗ ]

|h(z)|. (30)

First we consider the asymptotic behavior of solutions to (P) with S ≡ 1.

Theorem 3.2 Let r0 = 0. Let (u0, R0, a0, S0) satisfy (IC) and S0 = 1. Assume that
either of two assumptions holds :

(i) g(0) + c2 < 0;
(ii) g(0) + c2 > 0 and

∫ 1

0
u0(ρ)ρ2 dρ <

1

3

−g(0)

−g(0) + c1 + c2
exp

[
−a0

γ
‖g′‖∞

]
. (31)

Then the solution (u, v, R, a, S) of (P) satisfies R(t) → ∞ as t → ∞.

Proof To begin with, we note that S(t) ≡ 1 under (P) with r0 = 0 and S0 = 1.
We prove the case (i). Since S ≡ 1 yields the monotonicity of a(t), especially that

of fi (a(t)), from the assumptions (A0) and (i), we find s1 > 0 such that

f1(a(t)) < 0, f2(a(t)) > 0, −g(a(t)) − c2 > 0 for any t ≥ s1.

Recalling that u0 �≡ 1 yields V2(t) > 0 for any t ≥ 0 and setting Ṽ2(t) := 1/V2(t),
we observe from (25) that

dṼ2

dt
(t) ≤ {g(a(t)) + c2}Ṽ2(t) − 3{g(a(t)) + c2}. (32)

Applying Gronwall’s inequality to (32), we have

Ṽ2(t) ≤ 3 + (
Ṽ2(0) − 3

)
exp

[ ∫ t

0
{g(a(s)) + c2} ds

]
.

Since

∫ t

0
{g(a(s)) + c2} ds =

∫ s1

0
{g(a(s)) + c2} ds +

∫ t

s1

{g(a(s)) + c2} ds

≤ (g(a0) + c2)s1 − {−g(a(s1)) − c2}(t − s1) → −∞ as t → ∞,
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one can verify that lim supt→∞ Ṽ2(t) ≤ 3. On the other hand, since w ≤ 1 yields
Ṽ2(t) ≥ 3 in [ 0,∞ ), wefind lim inf t→∞ Ṽ2(t) ≥ 3. Thuswe have limt→∞ Ṽ2(t) = 3
and then

‖w(·, t) − 1‖L∞(B1)
→ 0 as t → ∞. (33)

By way of u + w ≡ 1, it follows from (33) that for any ε with

0 < ε <
f2(s1)

−g(0) + c1 + c2
, (34)

there exists T1 > s1 such that

‖u(·, t)‖L∞(B1)
< ε for any t > T1. (35)

In what follows, let t > T1. Since R satisfies

R(t) = R0 exp
[ ∫ T1

0
v(1, s) ds

]
exp

[ ∫ t

T1

v(1, s) ds
]
, (36)

it is sufficient to estimate the integrals in the right-hand side of (36). We observe
from the continuity of v(1, ·) that

∫ T1

0
v(1, s) ds ≥ −CT1

for some C > 0. Moreover, we obtain

∫ t

T1

v(1, s) ds =
∫ t

T1

∫ 1

0
F(u(ρ, s), a(s))ρ2 dρ ds

≥
∫ t

T1

∫ 1

0
[−{−g(a(t)) + c1 + c2}u + f2(a(T1))]ρ2 dρ ds

≥ 1

3
{−(−g(0) + c1 + c2)ε + f2(a(s1))}(t − T1).

Hence, it follows from (34) and (35) that lim inf t→∞ R(t) = ∞.
Next we turn to the case (ii). By the assumption (A0) and the monotonicity of

fi (a(·)), there exists s2 ≥ 0 such that

f2(a(t)) > 0, g(a(t)) < 0, for any t ≥ s2.

Recalling V1(t) > 0 in [ 0,∞ ) and setting Ṽ1(t) := 1/V1(t), we reduce (24) to
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dṼ1

dt
(t) ≥ −g(a(t))Ṽ1 − 3{−g(a(t)) + c1 + c2}.

Since it follows from the same argument as in (i) that

Ṽ1(t) ≥ e− ∫ t
0 g(a(s)) ds

[
3(g(0) − c1 − c2)

∫ t

0
e
∫ s
0 g(a(τ )) dτ ds + Ṽ1(0)

]
, (37)

we estimate the integral in the right-hand side of (37). Noting that a(·) is monotone
decreasing, we use the change of variable a(s) = z, and then

∫ t

0
g(a(s)) ds = − 1

γ

∫ a(t)

a0

g(z)

z
dz = − 1

γ

∫ a(t)

a0

[ g(0)

z
+ g′(z̃)

]
dz (38)

≤ −g(0)

γ
log

a(t)

a0
+ a0

γ
‖g′‖∞,

where z̃ ∈ ( 0, a0 ). Combining (37) with (38), we obtain

Ṽ1(t) ≥
( a(t)

a0

) g(0)
γ

[
3(g(0) − c1 − c2)

∫ ∞

0

( a0

a(s)

) g(0)
γ

ds +Ṽ1(0)e
−a0

γ
‖g′‖∞

]

≥
( a(t)

a0

) g(0)
γ

[ −3(−g(0) + c1 + c2)

−g(0)
+ Ṽ1(0)e

− a0
γ

‖g′‖∞
]

.

Under (A0) and (31), the inequality implies that Ṽ1 → ∞ as t → ∞, i.e., V1(t) → 0
as t → ∞. Thus for any ε with

0 < ε <
f2(a(s2))

−g(0) + c1 + c2
, (39)

there exists T2 ≥ s2 such that

‖u(·, t)‖L∞(B1)
< ε for any t > T2. (40)

By virtue of (39) and (40), we have

∫ t

T2

v(1, s) ds ≥
∫ t

T2

∫ 1

0
{−(−g(0) + c1 + c2)u + f2(a(T2))}ρ2 dρ ds

≥ 1

3
{−(−g(0) + c1 + c2)ε + f2(a(s2))}(t − T2).

Thus we see that lim inf t→∞ R(t) = ∞ along the same line as in (i). ��
Next we give the asymptotic behavior of solutions to (P) with r0 = 0 and S0 = 1.

Theorem 3.3 Let r0 = 0. Let (u0, R0, a0, S0) satisfy (IC) and S0 = 1. Assume that
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g(0) + c2 > 0 (41)

and

min
ρ∈[ 0,1 ] u0(ρ) > 1 − g(0) + c2

g(0) + c1 + 2c2
. (42)

Then the solution (u, v, R, a, S) of (P) satisfies R(t) → 0 as t → ∞.

Proof Recalling that S ≡ 1 under (P) with r0 = 0 and S0 = 1, and using (A0), we
find s3 ≥ 0 such that

f1(a(t)) < 0 for any t ≥ s3. (43)

Let w be the solution of the following initial value problem:

⎧
⎨

⎩

dw

dt
(t) = −{g(a(t)) + c2}w(t) + {g(a(t)) + c1 + 2c2}w(t)2,

w(0) = 1 − min
ρ∈[ 0,1 ] u0(ρ).

Then Lemma2.4 asserts that

0 ≤ w(ρ, t) ≤ w(t) for any (ρ, t) ∈ [ 0, 1 ] × [ 0,∞ ), (44)

i.e., w is a supersolution of w. Since w0 �≡ 0, the relation (44) implies w(t) > 0 for
any t ≥ 0. Setting ω := 1/w, we see that ω is expressed by

ω = e
∫ t
0 {g(a(s))+c2} ds

[
−
∫ t

0
{g(a(s)) + c1 + 2c2}e− ∫ s

0 {g(a(τ ))+c2} dτ ds + 1

w(0)

]
.

Here we have

∫ t

0
{g(a(s)) + c1 + 2c2}e− ∫ s

0 {g(a(τ ))+c2} dτ ds

=
∫ t

0
{g(a(s)) + c2}e− ∫ s

0 {g(a(τ ))+c2} dτ ds + (c1 + c2)
∫ t

0
e− ∫ s

0 {g(a(τ ))+c2} dτ ds

≤ −e− ∫ t
0 {g(a(τ ))+c2} dτ + 1 + (c1 + c2)

∫ t

0
e−{g(0)+c2}s ds

≤ 1 + c1 + c2
g(0) + c2

(
1 − e−{g(0)+c2}t) ≤ g(0) + c1 + 2c2

g(0) + c2
.

Since it follows from (41) that

lim inf
t→∞ exp

[ ∫ t

0
{g(a(s)) + c2} ds

]
≥ lim inf

t→∞ exp [(g(0) + c2)t] = ∞,
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we observe from (42) that limt→∞ ω(t) = ∞, i.e., limt→∞ w(t) = 0, where we used
the positivity of w. With the aid of (44), for any ε with

0 < ε <
− f1(a(s3))

−g(0)
, (45)

there exists T3 > s3 such that

‖w(·, t)‖L∞(B1)
< ε for any t > T3.

Recalling u = 1 − w and using the same argument as in the proof of Theorem 3.2 (i),
we can verify that

R(t) ≤ R0eCT3e
∫ t

T3
v(1,s) ds ≤ R0eCT3 exp

[ ∫ t

T3

{−g(a(s))w + f1(a(s))} ds
]

≤ R0eCT3 exp
[ 1

3
{−g(0)ε + f1(s3)}(t − T3)

]
.

Then (45) yields lim supt→∞ R(t) = 0. ��
We turn to the case of (P) with r1 = ∞ and S0 = 0. We note that (P) with r1 = ∞

and S0 = 0 describes the behavior of prostate tumor under non-medication.

Theorem 3.4 Let r1 = ∞. Let (u0, R0, a0, S0) satisfy (IC) and S0 = 0. We suppose
that one of the following assumptions holds :
(i) f1(a∗) − c1 > 0; (ii) f2(a∗) − c2 > 0; (iii) g(a∗) − c1 > 0;
(iv) −g(a∗) + c1 > 0, f2(a∗) > 0, and

max
ρ∈[ 0,1 ] u0(ρ) <

−g(a∗) + c1
−g(a∗) + 2c1 + c2

; (46)

(v) g(a∗) + c2 > 0 and

min
ρ∈[ 0,1 ] u0(ρ) > 1 − g(a∗) + c2

g(a∗) + c1 + 2c2
exp

[
−a∗

γ
‖g′‖∞

]
.

Then the solution (u, v, R, a, S) of (P) satisfies R(t) → ∞ as t → ∞.

Proof We prove the case (i). Remark that S ≡ 0 yields the monotonicity of a(t),
especially that of fi (a(t)). Under the assumption (i), we find s4 ≥ 0 such that
f1(a(t)) − c1 > 0 for any t ≥ s4. Since it follows from (22) that

dU

dt
≥ { f1(a(t)) − c1}U (t) for any t ≥ 0,
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making use of Gronwall’s inequality and the monotonicity of f1(a(·)), we find

U (t) ≥ U (s4) exp
[ ∫ t

s4

{ f1(a(s)) − c1} ds
]

≥ U (s4) exp [{ f1(a(s4)) − c1}(t − s4)] for any t ≥ s4.

Consequently we see that

lim inf
t→∞

4

3
π R3(t) = lim inf

t→∞ {U (t) + W (t)} ≥ lim inf
t→∞ U (t) = ∞.

Regarding the other cases, we obtain the conclusion along the same line as in the
proof of Theorem3.2. ��

By the same argument as in the proof of Theorem3.3, we obtain the following:

Theorem 3.5 Let r1 = ∞. Let (u0, R0, a0, S0) satisfy (IC) and S0 = 0. Assume that

−g(a∗) + c1 > 0, f2(a∗) < 0, (47)

and (46). Then the solution (u, v, R, a, S) of (P) satisfies R(t) → 0 as t → ∞.

4 Proof of the Main Theorem

The purpose of this section is to prove the existence of a switching solution of (IAS)
and investigate its property under the assumption (A0)–(A2). Here we note that (A1)
and (A2) are written as g(a∗) − c1 > 0 and g(0) + c2 > 0, respectively, where g
was defined by (26). For this purpose, we may deal with (P) instead of (IAS), for
the solution of (P) constructed in Sect. 2 also satisfies (IAS). In the following, we fix
(u0, R0, a0, S0) satisfying (IC), u0 > 0, and S0 = 0, arbitrarily.

To begin with, we shall study the behavior of solutions of (P) with S ≡ 0. More
precisely, for each “initial data” (ũ0, R̃0, ã0), we consider the following system:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d ã

dt
(t) = −γ (ã(t) − a∗) in R+,

∂t ũ(ρ, t) − L ′(ṽ, R̃)ũ(ρ, t) = P(ũ(ρ, t), ã(t)) in I∞,

ṽ(ρ, t) = 1

ρ2

∫ ρ

0
F(ũ(r, t), ã(t))r2 dr in I∞,

d R̃

dt
(t) = ṽ(1, t)R̃(t) in R+,

∂ρ ũ(ρ, t)
∣
∣
ρ∈{0,1} = 0,

ṽ(ρ, t)

ρ

∣
∣
∣
ρ=0

= 1

3
F(ũ(0, t), ã(t)), in R+,

ã(0) = ã0, ũ(ρ, 0) = ũ0(ρ), R̃(0) = R̃0, in I,

(P0)
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where the operatorL ′ was defined by (8). We characterize the time variable in terms
of the solution ã(·) to (P0). Recalling that f1 is monotone, we define a function
τ0 : ( 0, f1(a∗) − f1(ã0) ] → [ 0,∞ ) as

τ0(ε) = ã−1( f −1
1 ( f1(a∗) − ε)), (48)

where ã−1 and f −1
1 denote the inverse functions of ã and f1, respectively. Note that,

since ã(t) ↑ a∗ as t → ∞, ε ↓ 0 is equivalent to τ0(ε) → ∞.
From now on, we will follow the notation ‖ · ‖∞ defined in (30).

Lemma 4.1 Assume that there exist constants A ∈ ( 0, 1 ) and κ ∈ ( 0, a∗ ) such that
(ũ0, R̃0, ã0) satisfies (IC) and the following :

min
ρ∈[ 0,1 ] ũ0(ρ) ≥ A; (49)

ã0 ≤ κ. (50)

Then there exists a strictly monotone increasing continuous function

Γ0(ε; A, κ) : ( 0, f1(a∗) − f1(0) ] → R+

with Γ0(ε; A, κ) ↓ 0 as ε ↓ 0 such that the solution of (P0) satisfies

‖ũ(·, τ0(ε)) − 1‖L∞(B1)
≤ Γ0(ε; A, κ) in ( 0, f1(a∗) − f1(ã0) ].

Proof Let us consider

⎧
⎨

⎩

dw

dt
= −(g(ã(t)) − c1)(1 − w)w,

w(0) = 1 − min
ρ∈[ 0,1 ] ũ0(ρ).

(51)

By way of Lemma2.4, one can easily verify that w is a supersolution of 1 − ũ.
Solving (51) and setting t = τ0(ε), we find

ω(τ0(ε)) = 1 + (ω(0) − 1) exp
[ ∫ τ0(ε)

0
{g(ã(s)) − c1} ds

]
,

where ω = 1/w. From the change of variable ã(s) = z, we have

∫ τ0(ε)

0
{g(ã(s)) − c1}ds = − 1

γ

∫ ã(τ0(ε))

ã0

[ g(z) − g(a∗)
z − a∗

+ g(a∗) − c1
z − a∗

]
dz (52)

≥ − ã(τ0(ε)) − ã0

γ
‖g′‖∞ + g(a∗) − c1

γ
log

a∗ − ã0

a∗ − ã(τ0(ε))

≥ −a∗
γ

‖g′‖∞ + g(a∗) − c1
γ

log
a∗ − ã0

a∗ − ã(τ0(ε))
,
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where we used (A1) in the last inequality. Therefore, using (49) and (50), we define
the required function Γ0(ε; A, κ) as follows:

w(τ0(ε)) ≤
[
1 + Ae− a∗

γ
‖g′‖∞

( a∗ − κ

a∗ − f −1
1 ( f1(a∗) − ε)

) g(a∗)−c1
γ

]−1=: Γ0(ε; A, κ).

This completes the proof. ��
Lemma 4.2 Under the same assumption as in Lemma4.1, there exists a constant
ε1 ∈ ( 0, f1(a∗) ), independent of (ũ0, R̃0, ã0), such that the solution of (P0) satisfies

d R̃

dt
(τ0(ε)) > 0 for any ε ∈ ( 0, ε1 ].

Proof Since d R̃/dt is written by

d R̃

dt
(t) = R̃(t)ṽ(1, t) = R̃(t)

∫ 1

0
F(ũ(ρ, t), ã(t))ρ2 dρ, (53)

we observe that the sign of d R̃/dt is determined by that of the integral in (53). In
particular, we focus on the sign of F . From ∂2

z F(z, α) = 2(c1 + c2) > 0, we find

F(z, α) > F(1, α) + ∂z F(1, α)(z − 1) (54)

≥ F(1, α) + ∂z F(1, a∗)(z − 1) =: y(z;α) in [ 0, 1 ) × [ 0, a∗ ],

where we used the monotonicity of ∂z F(1, α) = g(α) − c1 − c2 in the second
inequality. Here, noting the positivity of ∂z F(1, a∗), we denote by z0(α) the zero
point of y(z;α) given by

z0(α) = −F(1, α) + ∂z F(1, a∗)
∂z F(1, a∗)

.

Since (48) yields that

F(1, ã(τ0(ε))) = f1(a∗) − ε > 0 for any ε ∈ ( 0, f1(a∗) ), (55)

we see that

z0(ã(τ0(ε))) < 1, y(1, ã(τ0(ε))) > 0, for all ε ∈ ( 0, f1(a∗) ). (56)

Then, for each ε ∈ ( 0, f1(a∗) ), we observe from (56) that y(z, ã(τ0(ε))) ≥ 0 for all
z ∈ [ z0(ã(τ0(ε))), 1 ]. Combining the fact with (54)–(55), we infer that

F(z, ã(τ0(ε))) > 0 for all z ∈ [ z0(ã(τ0(ε))), 1 ], if ε ∈ ( 0, f1(a∗) ). (57)
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In order to complete the proof of Lemma4.2, it is sufficient to prove the claim:
there exists a constant ε1 ∈ ( 0, f1(a∗) ), independent of (ũ0, R̃0, ã0), such that the
solution (ũ, ṽ, R̃, ã) of (P0) satisfies

min
ρ∈[ 0,1 ] ũ(ρ, ã(τ0(ε))) ≥ z0(ã(τ0(ε))) for any ε ∈ ( 0, ε1 ].

Indeed, combining the claim with (57), we clearly obtain the conclusion. We shall
show the claim by way of Lemma4.1. Since z0(ã(τ0( f1(a∗))) = 1 and

z0(ã(τ0(ε))) ↓ z0(a∗) < 1, 1 − Γ0(ε; A, κ) ↑ 1, as ε ↓ 0,

from the monotonicity of z0(ã(τ0(ε))) and 1 − Γ0(ε; A, κ), we find a constant ε̃1 ∈
( 0, f1(a∗) ) uniquely, independent of (ũ0, R̃0, ã0), such that

1 − Γ0(ε; A, κ) ≥ z0(ã(τ0(ε))) for any ε ∈ ( 0, ε̃1 ]. (58)

Recalling (50) implies that f1(κ) ≥ f1(ã0) and setting ε1 := min{ε̃1, f1(a∗) − f1(κ)},
we observe from (58) and Lemma4.1 that

min
ρ∈[ 0,1 ] ũ(ρ, ã(τ0(ε))) ≥ 1 − Γ0(ε; A, κ) ≥ z0(ã(τ0(ε))) for any ε ∈ ( 0, ε1 ].

Then the claim holds true and we have completed the proof. ��
Lemma 4.3 Let (ũ0, R̃0, ã0) = (u0, R0, a0). Then there exist monotone decreasing
functions M− and M+ defined on ( 0, f1(a∗) − f1(0) ] such that the solution of (P0)
satisfies

R0 exp M−(ε) ≤ R̃(τ0(ε)) ≤ R0 exp M+(ε) in ( 0, f1(a∗) − f1(a0) ], (59)

where the second inequality is strict for any ε ∈ ( 0, f1(a∗) − f1(a0)). Moreover,
M− and M+ satisfy the following :

−∞ < M−(ε) ≤ M+(ε) < ∞ in ( 0, f1(a∗) − f1(0) ]; (60)

lim
ε↓0 M−(ε) = ∞. (61)

Proof Since R̃(τ0(ε)) is given by

R̃(τ0(ε)) = R0 exp
[ ∫ τ0(ε)

0
ṽ(1, s) ds

]
in ( 0, f1(a∗) − f1(a0) ], (62)
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we will estimate the integral in (62). To this aim, setting w̃ = 1 − ũ, we decompose
the integral as follows:

∫ τ0(ε)

0
ṽ(1, s) ds = (c1 + c2)

∫ τ0(ε)

0

∫ 1

0
w̃2ρ2 dρds (63)

−
∫ τ0(ε)

0

∫ 1

0

[
g(ã(s)) + c1 + c2

]
w̃ρ2 dρds + 1

3

∫ τ0(ε)

0
f1(ã(s)) ds =: I1 + I2 + I3.

First we construct M−. Regarding I1, it follows from Jensen’s inequality that

I1 ≥ c1 + c2
3

∫ τ0(ε)

0

(∫ 1

0
w̃ρ2 dρ

)2

ds =: c1 + c2
27

∫ τ0(ε)

0
W (s)2 ds. (64)

Employing a differential inequality in (25), we see that W satisfies

W (s) ≥ 1

1 +
(

1
W (0) − 1

)
exp

[∫ s
0 {g(ã(τ )) + c2} dτ

] . (65)

Furthermore, the same argument as in (52) yields

∫ s

0
{g(ã(τ )) + c2} dτ ≤ g(a∗) + c2

γ
logTa0(ã(s)), (66)

where

Tz1(z2) := a∗ − z1
a∗ − z2

. (67)

Hence, combining (64) with (65)–(66), we have

I1 ≥ c1 + c2
27

∫ τ0(ε)

0

[
1+

[ 1

W (0)
− 1

]
Ta0(ã(s))

g(a∗)+c2
γ

]−2
ds =: I11.

Changing the variable

η = 1 +
(

1

W (0)
− 1

)

Ta0(ã(s))
g(a∗)+c2

γ

and setting

η0 := 1

W (0)
, ηε := 1 +

(
1

W (0)
− 1

)

Ta0(ã(τ0(ε)))
g(a∗)+c2

γ ,
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we can define M−
1 : ( 0, f1(a∗) − f1(a0) ] → R as follows:

I11 = C1

∫ ηε

η0

dη

(η − 1)η2
≥ C1

[

log
η0(ηε − 1)

ηε(η0 − 1)
− 1

η0

]

= − C1

[
log

[
U0 + (1 − U0)Ta0(ã(τ0(ε)))

− g(a∗)+c2
γ

]
+ 1 − U0

]

≥ − C1

[
log

[
1 + (1 − U0)Tκ0(ã(τ0(ε)))

− g(a∗)+c2
γ

]
+ 1 − U0

]
=: M−

1 (ε),

where C1 = (c1 + c2)/(27(g(a∗) + c2)), and

U (s) := 3
∫ 1

0
ũ(ρ, s) ρ2 dρ, U0 := U (0), κ0 := max{a0, f −1

1 (0)}. (68)

Regarding I2, it follows from w̃ = 1 − ũ that

I2 ≥ −g(a∗) + c1 + c2
3

∫ τ0(ε)

0
{1 − U (s)} ds.

Using (24) and the same calculation as in (66), we have

U (s) ≥
[
1 + (U −1

0 − 1)Ta0(ã(s))−
g(a∗)−c1

γ

]−1
.

Then, by the same argument as in the derivation of M−
1 , we obtain

I2 ≥ −g(a∗) + c1 + c2
3

∫ τ0(ε)

0

(
U −1

0 − 1
)
Ta0(ã(s))−

g(a∗)−c1
γ

1 + (U −1
0 − 1)Ta0(ã(s))−

g(a∗)−c1
γ

ds

= 1

3

g(a∗) + c1 + c2
g(a∗) − c1

log
[
U0 + (1 − U0)Ta0(ã(τ0(ε)))

− g(a∗)−c1
γ

]

≥ 1

3

g(a∗) + c1 + c2
g(a∗) − c1

logU0 =: M−
2 (ε).

It follows from the same argument as in (52) that

I3 = f1(a∗)
3γ

logTa0(ã(τ0(ε))) − 1

3γ

∫ ã(τ0(ε))

a0

f ′(z̃) dz (69)

≥ f1(a∗)
3γ

logTκ0(ã(τ0(ε))) − a∗
3γ

‖ f ′
1‖∞ =: M−

3 (ε),

where z̃ ∈ (a0, a∗). Setting M−(ε) = ∑3
i=1 M−

i (ε) and recalling (48), we see that
M− is well-defined on ( 0, f1(a∗) − f1(a0) ].
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We shall derive M+. Since w̃ = 1 − ũ ≤ 1, the same argument as in M−
2 yields

I1 ≤ (c1 + c2)
∫ τ0(ε)

0

∫ 1

0
w̃ρ2 dρds = c1 + c2

3

∫ τ0(ε)

0
{1 − U (s)} ds

≤ −1

3

c1 + c2
g(a∗) − c1

log
[
U0 + (1 − U0)Ta0(ã(τ0(ε)))

− g(a∗)−c1
γ

]

≤ −1

3

c1 + c2
g(a∗) − c1

logU0 =: M+
1 (ε).

Regarding I2, we have

I2 ≤ −g(0) + c1 + c2
3

∫ τ0(ε)

0
W (s) ds ≤ 0 =: M+

2 (ε).

Eliminating the negative term from the first line in (69), we find

I3 ≤ f1(a∗)
3γ

logTa0(ã(τ0(ε))) ≤ f1(a∗)
3γ

logT0(ã(τ0(ε))) =: M+
3 (ε),

where the first inequality is followed from the monotonicity of f1, and it is strict
for any ε ∈ ( 0, f1(a∗) − f1(a0)). Setting M+(ε) := ∑3

i=1 M+
i (ε), we observe that

M+(ε) is well-defined on ( 0, f1(a∗) − f1(a0) ].
From the definition of M− and M+, we see that (59) and (61) hold true.Moreover,

thanks to ã(τ0(ε)) = f −1
1 ( f1(a∗) − ε), we infer that M− and M+ can be extended

on ( 0, f1(a∗) − f1(0) ] and (60) holds. This completes the proof. ��
Lemma 4.4 Let M± : ( 0, f1(a∗) − f1(0) ] → R be the functions constructed by
Lemma 4.3. Let (ũ0, R̃0, ã0) satisfy

∫ 1

0
ũ0(ρ)ρ2 dρ ≥

∫ 1

0
u0(ρ)ρ2 dρ, (70)

ã0 ≤ κ0, (71)

and (IC), where κ0 is defined by (68). Then the solution of (P0) satisfies

R̃0 exp M−(ε) ≤ R̃(τ0(ε)) ≤ R̃0 exp M+(ε) in ( 0, f1(a∗) − f1(ã0) ], (72)

where the second inequality is strict for any ε ∈ ( 0, f1(a∗) − f1(ã0) ).

Proof In the same manner as in the proof of Lemma4.3, we see that (59) replaced
(M−, M+, a0) by (M̃−, M̃+, ã0) holds true, where M̃− and M̃+ are respectively
determined by M− and M+, replaced (u0, a0) by (ũ0, ã0). Since (70) and (71) imply
that
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Ũ0 := 3
∫ 1

0
ũ0(ρ)ρ2 dρ ≥ 3

∫ 1

0
u0(ρ)ρ2 dρ = U0

and

Tκ0(α) ≤ Tã0(α) ≤ T0(α) for any α ∈ [ 0, a∗ ],

we find

M̃+(ε) ≤ M+(ε), M̃−(ε) ≥ M−(ε), in ( 0, f1(a∗) − f1(0) ].

Thus we obtain (72). ��
In order to investigate the behavior of solutions of (P) with S ≡ 1, for each “initial

data” (ũ0, R̃0, ã0), we consider the following system:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d ã

dt
(t) = −γ ã(t) in R+,

∂t ũ(ρ, t) − L ′(ṽ, R̃)ũ(ρ, t) = P(ũ(ρ, t), ã(t)) in I∞,

ṽ(ρ, t) = 1

ρ2

∫ ρ

0
F(ũ(r, t), ã(t))r2 dr in I∞,

d R̃

dt
(t) = ṽ(1, t)R̃(t) in R+,

∂ρ ũ(ρ, t)
∣
∣
ρ∈{0,1} = 0,

ṽ(ρ, t)

ρ

∣
∣
∣
ρ=0

= 1

3
F(ũ(0, t), ã(t)), in R+,

ã(0) = ã0, ũ(ρ, 0) = ũ0(ρ), R̃(0) = R̃0, in I.

(P1)

We characterize the time variable in terms of the solution ã(·) to (P1). Following the
same manner as in (48) and recalling the monotonicity of f1, we define a function
τ1 : ( 0, f1(ã0) − f1(0) ] → [ 0,∞ ) as

τ1(δ) = ã−1( f −1
1 ( f1(0) + δ)). (73)

Since ã(t) ↓ 0 as t → ∞, δ ↓ 0 is equivalent to τ1(δ) → ∞.

Lemma 4.5 Let (ũ0, R̃0, ã0) satisfy (IC) and

min
ρ∈[ 0,1 ] ũ0(ρ) > 1 − g(0) + c2

g(0) + c1 + 2c2
=: 1 − Cg. (74)

Then the solution (ũ, ṽ, R̃, ã) of (P1) satisfies

min
ρ∈[ 0,1 ] ũ(ρ, τ1(δ)) ≥ min

ρ∈[ 0,1 ] ũ0(ρ) in ( 0, f1(ã0) − f1(0) ].
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Proof Recalling that (A2) and (74) respectively correspond to (41) and (42), we can
construct the supersolution w of w̃ = 1 − ũ along the same argument as in the proof
of Theorem3.3. Using the change of variable ã(t) = z, we have

w(τ1(δ)) ≤
[

1

Cg
+

[ 1

w(0)
− 1

Cg

][ ã0

f −1
1 ( f1(0) + δ)

] g(0)+c2
γ

]−1

=: Γ1(δ)

for any δ ∈ ( 0, f1(ã0) − f1(0) ]. Thenu := 1 − Γ1 is a subsolutionof ũ. In particular,
the monotonicity of Γ1(·) gives us the conclusion. ��

Next we construct an analogue of Lemma4.2 for (P1). To this aim, we note that

F(z, α) = (c1 + c2)
(
z − K ∗(α)

)2 − (c1 + c2)K ∗(α) + f2(α),

where

K ∗(α) := −g(α) + c1 + c2
2(c1 + c2)

. (75)

Lemma 4.6 Let (ũ0, R̃0, ã0) satisfy (IC), (74), and the following :

min
ρ∈[0,1] ũ0(ρ) ≥ K ∗(0); (76)

ã0 > f −1
1 (0). (77)

Then the solution (ũ, ṽ, R̃, ã) of (P1) satisfies

d R̃

dt
(τ1(δ)) < 0 for any δ ∈ ( 0,− f1(0) ).

Proof In order to verify the sign of d R̃/dt , we use a similar way in Lemma4.2, i.e.,
focus on the sign of F(ũ, ã). First we note that (77) is equivalent to f1(ã0) > 0.
Recalling the relation ( 0,− f1(0) ) ⊂ ( 0, f1(ã0) − f1(0) ], we find

F(1, ã(τ1(δ))) = f1(ã(τ1(δ))) = f1(0) + δ < 0 in ( 0,− f1(0) ). (78)

Since (A2) implies K ∗(0) < 1, the monotonicity of K ∗(·) and (78) asserts that

F(z, α) < 0 for any z ∈ [ K ∗(0), 1 ] × ( 0,− f1(0) ). (79)

By virtue of (74), we can apply Lemma4.5 to the solution ũ and then (76) implies
that
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min
ρ∈[ 0,1 ] ũ(ρ, τ1(δ)) ≥ min

ρ∈[ 0,1 ] ũ0(ρ) ≥ K ∗(0) for any δ ∈ ( 0, f1(ã0) − f1(0) ].
(80)

Therefore we have completed the proof. ��
Lemma 4.7 Let (ũ0, R̃0, ã0) satisfy

min
ρ∈[0,1] ũ0(ρ) ≥ 1 − 1

2
Cg, (81)

ã0 ≥ f −1
1 (0), (82)

and (IC). Then there exist monotone increasing functions L− and L+ defined on the
interval ( 0, f1(a∗) − f1(0) ], independent of (ũ0, R̃0, ã0), such that the solution of
(P1) satisfies

R̃0 exp L−(δ) ≤ R̃(τ1(δ)) ≤ R̃0 exp L+(δ) in ( 0, f1(ã0) − f1(0) ], (83)

in particular, the first inequality in (83) is strict in ( 0, f1(ã0) − f1(0) ). Moreover,
L− and L+ satisfy the following :

−∞ < L−(δ) ≤ L+(δ) < ∞ in ( 0, f1(a∗) − f1(0) ]; (84)

lim
δ↓0 L+(δ) = −∞. (85)

Proof Along the same line as in the proof of Lemma4.3, we will estimate the fol-
lowing:

I1 + I2 + I3 := (c1 + c2)
∫ τ1(δ)

0

∫ 1

0
w̃2ρ2 dρ

−
∫ τ1(δ)

0

∫ 1

0
(g(ã(s)) + c1 + c2)w̃ρ2 dρds + 1

3

∫ τ1(δ)

0
f1(ã(s)) ds,

where w̃ = 1 − ũ. First, since I1 ≥ 0, we set L−
1 (δ) ≡ 0. Using the supersolution w

of w̃ constructed in the proof of Theorem3.3 and its estimate, we observe from (81)
that

I2 ≥ −g(a∗) + c1 + c2
3

∫ τ1(δ)

0
w(s) ds (86)

≥ −g(a∗) + c1 + c2
3

Cg

∫ τ1(δ)

0
exp

[

−
∫ s

0
{g(ã(τ ′)) + c2} dτ ′

]

ds.

Since the change of variable ã(τ ′) = s ′ yields
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−
∫ s

0
{g(ã(τ ′)) + c2} dτ ′ ≤ g(0) + c2

γ
log

ã(s)

ã0
,

the inequality (86) is reduced to

I2 ≥ −g(a∗) + c1 + c2
3

Cg

∫ τ1(δ)

0

( ã(s)

ã0

) g(0)+c2
γ

ds

≥ −Cg

3

g(a∗) + c1 + c2
g(0) + c2

{

1−
( ã(τ1(δ))

a∗

) g(0)+c2
γ

}

=: L−
2 (δ).

Moreover, we find

I3 = − f1(0)

3γ
log

ã(τ1(δ))

ã0
+ 1

3γ

∫ ã0

ã(τ1(δ))

f ′
1(z̃) dz (87)

≥ − f1(0)

3γ
log

ã(τ1(δ))

a∗
=: L−

3 (δ),

where z̃ ∈ (0, ã0). The last inequality is followed from the monotonicity of f1, and it
is strict for any δ ∈ ( 0, f1(ã0) − f1(0) ). Setting L−(δ) := ∑3

i=1 L−
i (δ) and recalling

(73), we observe that L− is well-defined on ( 0, f1(ã0) − f1(0) ].
Next, we derive L+. By a similar argument as in the derivation of L−

2 , we obtain

I1 ≤ c1 + c2
3

∫ τ1(δ)

0
w(s)2 ds ≤ c1 + c2

3
C2

g

∫ τ1(δ)

0

( ã(s)

ã0

)2 g(0)+c2
γ

ds

≤ Cg

6

c1 + c2
g(0) + c1 + 2c2

=: L+
1 (δ).

Since I2 ≤ 0, we set L+
2 (δ) ≡ 0. From the first equality in (87), we have

I3 ≤ − f1(0)

3γ
log

ã(τ1(δ))

f −1
1 (0)

+ a∗
3γ

‖ f ′
1‖∞ =: L+

3 (δ).

Setting L+(δ) := ∑3
i=1 L+

i (δ), we see that L+ is well-defined on ( 0, f1(ã0) −
f1(0) ].
From the definitions of L− and L+, it is clear that (83), (84), and (85) hold true.

We have completed the proof. ��
We are in the position to prove Theorem1.1.

Proof of Theorem1.1. To begin with, we prove the existence of switching solution
of (IAS). The key of the proof is how to determine the appropriate thresholds r0
and r1. We divide the proof of the existence into 4 steps. Finally we shall prove a
boundedness of the switching solution and its regularity.

Step 1: Fix r0 ∈ ( 0,∞ ) arbitrarily. Let r1 satisfy
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r1 ≥ r0 exp
[−L−(− f1(0))

]
, (88)

where remark that L−(− f1(0)) < 0. We claim the following: if (ũ0, R̃0, ã0) satisfies

min
ρ∈[ 0,1 ] ũ0(ρ) ≥ ω := max{K ∗(0), 1 − 1

2
Cg}, R̃0 = r1, ã0 > f −1

1 (0), (89)

and (IC), then there exists β1 ∈ ( 0,− f1(0) ) such that the solution of (P1) satisfies

R̃(τ1(β1)) = r0,
d R̃

dt
(τ1(β1)) < 0. (90)

Let δ0 := f1(ã0) − f1(0), i.e., ã(τ1(δ0)) = ã0. Remark that the third inequality
in (89) yields δ0 > − f1(0). Since (89) allows us to apply Lemma4.7, there exists
β ′
1 ∈ (0, δ0 ) such that

R̃(τ1(β
′
1)) = r0 and R̃(τ1(δ)) > r0 for any δ ∈ ( β ′

1, δ0 ].

Moreover, we infer from (89) that Lemma4.6 implies that

d R̃

dt
(τ1(δ)) < 0 for any δ ∈ ( 0,− f1(0) ).

Therefore it is sufficient to prove that β ′
1 < − f1(0). Then β ′

1 is nothing but the
required constant β1. Combining the relation (83) with (88), we have

r0 = R̃(τ1(β
′
1)) > r1 exp L−(β ′

1) ≥ r0 exp
[
L−(β ′

1) − L−(− f1(0))
]
.

Then the monotonicity of L− yields β ′
1 < − f1(0).

Step 2: We shall show that, there exists ε∗
1 ∈ ( 0, f1(a∗) − f1(0) ) such that for any

r0 ∈ ( 0,∞ ) and r1 ≥ r0 exp[M+(ε∗
1)], the following holds: if (ũ0, R̃0, ã0) satisfies

min
ρ∈[ 0,1 ] ũ0(ρ) ≥ U0 = 3

∫ 1

0
u0(ρ)ρ2 dρ, R̃0 = r0, ã0 < f −1

1 (0), (91)

and (IC), then there exists β2 ∈ ( 0, ε∗
1 ) such that the solution of (P0) satisfies

R̃(τ0(β2)) = r1,
d R̃

dt
(τ0(β2)) > 0. (92)

Let ε0 := f1(a∗) − f1(ã0), i.e., ã(τ0(ε0)) = ã0. Remark that ε0 > f1(a∗) by the
third inequality in (91). By Lemma4.4, there exists a constant β ′

2 ∈ ( 0, ε0 ) such that

R̃(τ0(β
′
2)) = r1 and R̃(τ0(ε)) < r1 for any ε ∈ ( β ′

2, ε0 ]. (93)
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We define ε∗
1 as ε1 in Lemma4.2 with A = U0 and κ = f −1

1 (0), i.e.,

1 − Γ0(ε
∗
1;U0, f −1

1 (0)) = z0( f −1
1 ( f1(a∗) − ε∗

1)). (94)

Then Lemma4.2 asserts that ε∗
1 ∈ ( 0, f1(a∗) ) and

d R̃

dt
(τ0(ε)) > 0 for any ε ∈ ( 0, ε∗

1 ].

Thus it is sufficient to prove that β ′
2 ∈ ( 0, ε∗

1 ). Then β ′
2 is nothing but the required

constant β2. Letting r1 satisfy

r0 exp M+(ε∗
1) ≤ r1, (95)

we show that β ′
2 ∈ ( 0, ε∗

1 ). Indeed, since the relation (72) in Lemma4.4 holds true,
we observe from (95) that

r0 exp M+(ε∗
1) ≤ r1 = R̃(τ0(β

′
2)) < r0 exp M+(β ′

2).

Then the monotonicity of M+ clearly yields ε∗
1 > β ′

2.

Step 3: We shall prove that, there exists ε∗
0 ∈ ( 0, f1(a∗) − f1(0) ) such that for

any r0 ∈ ( 0,∞ ) and r1 ≥ R0 exp M+(ε∗
0), the following holds: if (ũ0, R̃0, ã0) =

(u0, R0, a0), then there exists β0 ∈ ( 0, ε∗
0 ) such that the solution of (P0) satisfies the

following:

R̃(τ0(β0)) = r1,
d R̃

dt
(τ0(β0)) > 0; (96)

min
ρ∈[ 0,1 ] ũ(ρ, τ0(β0)) ≥ max{ω,U0}, ã(τ0(β0)) > f −1

1 (0). (97)

Setting ε̃1 as ε1 in Lemma4.2 with A = minρ∈[ 0,1 ] u0(ρ) and κ = a0, we have

d R̃

dt
(τ0(ε)) > 0 for any ε ∈ ( 0, ε̃1 ] with ε̃1 ∈ ( 0, f1(a∗) ).

By way of the function Γ ∗
0 defined by

Γ ∗
0 (ε) := Γ0(ε;min{ min

ρ∈[ 0,1 ] u0(ρ), ω},max{a0, f −1
1 (0)}),

we define ε̃2 as follows:

1 − Γ ∗
0 (ε̃2) = max{ω,U0, 1 − Γ ∗

0 ( f1(a∗) − f1(0))}. (98)
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From now on, we set ε∗
0 := min{ε̃1, ε̃2} and let r1 satisfy r1 ≥ R0 exp M+(ε∗

0). Let
ε′
0 := f1(a∗) − f1(a0), i.e., ã(τ0(ε

′
0)) = a0. With the aid of Lemma4.3, we find a

constant β ′
0 ∈ ( 0, ε′

0 ) such that (93) holds for β ′
2 = β ′

0. Noting that the latter relation
in (97) is equivalent toβ ′

0 < f1(a∗) and recalling ε∗
0 ≤ ε̃1 < f1(a∗), we haveβ ′

0 < ε∗
0 .

The same argument as in Step 2 implies that

R0 exp M+(ε∗
0) ≤ r1 = R̃(τ0(β

′
0)) < R0 exp M+(β ′

0),

where the last inequality is followed from Lemma4.3. Then the monotonicity of M+
gives us the required relation. Finally we prove the former relation in (97). Thanks
to the monotonicity of Γ0, we observe from Lemma4.1 that, for any ε ∈ [ β ′

0, ε̃2 ],

min
ρ∈[ 0,1 ] ũ(ρ, τ0(ε)) ≥ 1 − Γ0(ε; min

ρ∈[ 0,1 ] u0(ρ), a0) ≥ 1 − Γ ∗
0 (ε) ≥ max{ω,U0}.

Therefore β ′
0 is nothing but the required constant β0.

Step 4: We shall prove that, for a suitable pair of theresholds (r0, r1), the system (P)
has a unique solution with the property (i) in Theorem1.1. Fix r0 ∈ ( 0,∞ ) and let
r1 satisfy

r1 ≥ max
{

R0 exp M+(ε∗
0), r0 exp M+(ε∗

1), r0 exp
[−L−(− f1(0))

]}
. (99)

We note that (99) yieldsmax{r0, R0} < r1, for M+ is positive in ( 0, f1(a∗) − f1(0) ].
With the aid of Step 3, there exist β0 ∈ ( 0, ε∗

0 ) and a unique solution (ũ, ṽ, R̃, ã)

of (P0) with (ũ0, R̃0, ã0) = (u0, R0, a0) such that (96) and (97) hold. Since β0 is
uniquely determined, setting (u, v, R, a) = (ũ, ṽ, R̃, ã) in Ī × [ 0, t1 ], we observe
from (96) and the proof of Theorem3.1 that (u, v, R, a, S) is a unique solution of
(P) in Ī × [ 0, τ0(β0) ) such that S(t) = 0 in [ 0, t1 ) and S(t) switches from 0 to 1 at
t1, where t1 := τ0(β0).

Since (96)–(97) asserts that (89) holds for (ũ0, R̃0, ã0) = (u, R, a)|t=t1 , it follows
from Step 1 that there exist β1 ∈ ( 0,− f1(0) ) and a unique solution (ũ1, ṽ1, R̃1, ã1)

of (P1), with (ũ0, R̃0, ã0) = (u, R, a)|t=t1 , satisfying (90). Since β1 is uniquely deter-
mined, setting (u, v, R, a) = (ũ1, ṽ1, R̃1, ã1) in Ī × [ t1, t2 ] and S(t) = 1 in [ t1, t2 ),
we deduce from (90) and the proof of Theorem3.1 that (u, v, R, a, S) is a unique
solution of (P) in Ī × [ 0, t2 ) satisfying the following: S(t) = 1 in [ t1, t2 ); S(t)
switches from 1 to 0 at t2, where t2 is the time determined by τ1(β1).

Here we claim that (91) holds for (ũ0, R̃0, ã0) = (u, R, a)|t=t2 . Since (96)–(97)
implies that minρ∈[ 0,1 ] u(ρ, t1) ≥ max{ω,U0}, we infer from Lemma4.5 that

min
ρ∈[ 0,1 ] u(ρ, t2) ≥ max{ω,U0}.

Thus the claim holds true. Then it follows fromStep 2 that there exist β2 ∈ ( 0, ε∗
1 )

and a unique solution (ũ2, ṽ2, R̃2, ã2) of (P0), with (ũ0, R̃0, ã0) = (u, R, a)|t=t2 , sat-
isfying (92). Thanks to the uniqueness of β2, setting
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(u, v, R, a) = (ũ2, ṽ2, R̃2, ã2) in Ī × [ t2, t3 ],

where t3 is the time determined by τ0(β2), we deduce from the same argument as
above that (u, v, R, a, S) is a unique solution of (P) in Ī × [ 0, t3 ) satisfying the
following: S(t) = 1 in [ t2, t3 ); S(t) switches from 0 to 1 at t3.

In order to apply Step 1 again, we verify that u(·, t3) satisfies the first property in
(89). Combining Lemma4.4 with (99), we see that

R0 exp M+(ε∗
0) ≤ r1 = R̃2(τ0(β2)) < r0 exp M+(β2) ≤ R0 exp M+(β2), (100)

and then the monotonicity of M+ yields ε∗
0 > β2. Recalling the monotonicity of Γ0

and using Lemma4.1, we have for any ε ∈ [ β2, ε
∗
0 ]

min
ρ∈[ 0,1 ] u(ρ, τ0(ε)) ≥ 1 − Γ0(ε;max{ω,U0}, f −1

1 (0))

≥ 1 − Γ ∗
0 (ε) ≥ 1 − Γ ∗

0 (ε∗
0) ≥ max{ω,U0}.

Thus Step 1 is applicable again. Therefore we can construct inductively a solution
of (P) with the property (i) in Theorem1.1.

Step 5: We prove the property (ii) in Theorem1.1. Using the sequence {t j }∞j=0

obtained by Step 4, we inductively define sequences {ε2 j
0 }∞j=0, {δ2 j+1

0 }∞j=0, and
{β j }∞j=0. Let ε

0
0 := f1(a∗) − f1(a0), i.e., τ0(ε00) = t0 = 0. Set

β0 := f1(a∗) − f1(a(t1)). (101)

By the definition of τ0, the relation (101) is equivalent to a(τ0(β0)) = a(t1). We set

δ10 := f1(a∗) − f1(0) − β0.

The definitions of τ0 and τ1 yield a(τ1(δ
1
0)) = a(τ0(β0)). Since a(·) is monotone in

[ 0, t1 ], it holds that τ0(β0) = t1 = τ1(δ
1
0). Next we set

β1 := f1(a(t2)) − f1(0); (102)

ε20 := f1(a∗) − f1(0) − β1. (103)

Then, from (102) and (103), we find a(τ1(β1)) = a(t2) and a(τ0(ε
2
0)) = a(τ1(β1)).

The monotonicity of a(·) in [ t1, t2 ] gives us the relation τ1(β1) = τ0(ε
2
0). Along the

same manner as above, we define inductively ε
2 j
0 , δ

2 j+1
0 , and β j for each j ≥ 2 as

follows:

β j :=
{

f1(a∗) − f1(a(t j+1)) if j is even,

f1(a(t j+1)) − f1(0) if j is odd,

δ
2 j−1
0 := f1(a∗) − f1(0) − β2 j−2, ε

2 j
0 := f1(a∗) − f1(0) − β2 j−1.
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We note that the monotonicity of a(·) in [ t j , t j+1 ] implies τ0(β2 j ) = τ1(δ
2 j+1
0 ) and

τ1(β2 j+1) = τ0(ε
2 j+2
0 ) for each j ∈ N ∪ {0}. Then, it follows from the definitions of

the sequences that, for any j ∈ N ∪ {0},

R(τ0(β2 j )) = r1, R(τ0(ε)) < r1 and S(τ0(ε)) ≡ 0, on ( β2 j , ε
2 j
0 ]; (104)

R(τ1(β2 j+1)) = r0, R(τ1(δ)) > r0 and S(τ1(δ)) ≡ 1, on ( β2 j+1, δ
2 j+1
0 ].

(105)

We give the lower and upper bounds of R when S ≡ 0, i.e., for the case of (104).
We note that, for the case of j = 0, it clearly follows from Lemma4.3 that

R0 exp M−( f1(a∗) − f1(a0)) ≤ R(τ0(ε)) < r1 on ( β0, ε
0
0 ], (106)

where the first inequality was obtained by the monotonicity of M−. For any j ∈ N,
we observe from Lemma4.3 that

r0 exp M−(ε
2 j
0 ) ≤ r0 exp M−(ε) ≤ R(τ0(ε)) < r1 on ( β2 j , ε

2 j
0 ]. (107)

Here, by (105) and Lemma4.7, we find log (r0/r1) ≤ L+(β2 j−1). Since L+(δ) is
monotone and diverges to −∞ as δ ↓ 0, there exists δ̂ ∈ ( 0, β2 j−1 ], independent
of j , such that L+(δ̂) = log(r0/r1). Thus, setting ε̂ := f1(a∗) − f1(0) − δ̂, we obtain

f1(a∗) − ε̂ = f1(0) + δ̂ ≤ f1(0) + β2 j−1 = f1(a∗) − ε
2 j
0 , i.e., ε̂ ≥ ε

2 j
0 . (108)

Since j ∈ N is arbitral, we observe from (107) and (108) that

r0 exp M−(ε̂) ≤ R(τ0(ε)) < r1 on ( β2 j , ε
2 j
0 ] for any j ∈ N. (109)

In particular, we see that

r0 = R(τ0(ε
2 j
0 )) ≥ r0 exp M−(ε

2 j
0 ) ≥ r0 exp M−(ε̂). (110)

Next, we derive the lower and upper bounds of R when S ≡ 1, i.e., for the case
of (105). For any j ∈ N ∪ {0}, we observe from (105) and Lemma4.7 that

r0 < R(τ1(δ)) ≤ r1 exp L+(δ) ≤ r1 exp L+(δ
2 j+1
0 ) on ( β2 j+1, δ

2 j+1
0 ], (111)

where the last inequality was followed from the monotonicity of L+. Here, it fol-
lows from (104) and Lemma4.3 that M−(β2 j ) ≤ log(r1/min{R0, r0}). Since M−(ε)

is monotone and diverges to ∞ as ε ↓ 0, there exists ε̄ ∈ ( 0, β2 j ], independent
of j , such that M−(ε̄) = log(r1/min{R0, r0}). Setting δ̄ := f1(a∗) − f1(0) − ε̄, we
deduce from a similar argument as in (108) that the relation δ̄ ≥ δ

2 j+1
0 holds. Com-

bining the fact with (111), we have
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r0 < R(τ1(δ)) ≤ r1 exp L+(δ̄) on ( β2 j+1, δ
2 j+1
0 ] for any j ∈ N ∪ {0}. (112)

In particular, we see that

r1 = R(τ1(δ
2 j+1
0 )) ≤ r1 exp L+(δ

2 j+1
0 ) ≤ r1 exp L+(δ̄). (113)

Consequently, by virtue of (106), (109)–(110), and (112)–(113), we conclude that
the property (ii) in Theorem1.1 holds for

C1 = min{R0 exp M−( f1(a∗) − f1(a0)), r0 exp M−(ε̂)}, C2 = r1 exp L+(δ̄).

Step 6: Finally we prove the regularity of the switching solution constructed by the
above arguments. The equation of a implies

∣
∣
∣

da

dt
(t)

∣
∣
∣= |γ (a∗ − a(t)) − γ a∗S(t)| ≤ 2γ a∗ in [ 0,∞ ) \ {t j }∞j=0.

Fix j ∈ N arbitrarily. Then, for any t and s with t j−1 ≤ t < t j < s < t j+1, we have

|a(t) − a(s)| ≤ |a(t) − a(t j )| + |a(t j ) − a(s)| (114)

=
∣
∣
∣

da

dt
(τ1)

∣
∣
∣ |t − t j |+

∣
∣
∣

da

dt
(τ2)

∣
∣
∣ |t j − s| ≤ 4γ a∗|t − s|,

where τ1 ∈ ( t, t j ) and τ2 ∈ ( t j , s ). Since j is arbitrary, we see that a ∈ C0,1(R+).
We consider the following initial boundary problem:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂t ũ(ρ, t) − L ′(ṽ, R̃)ũ = P(ũ(ρ, t), a(t)) in I∞,

ṽ(ρ, t) = 1

ρ2

∫ ρ

0
F(ũ(r, t), a(t))r2 dr in I∞,

d R̃

dt
(t) = ṽ(1, t)R̃(t) in R+,

∂ρ ũ(0, t) = ∂ρ ũ(1, t) = 0,
ṽ

ρ

∣
∣
∣
ρ=0

= 1

3
F(ũ(0, t), a(t)) in R+,

ũ(ρ, 0) = u0(ρ), R̃(0) = R0, in I.

(P)

Since a ∈ C0,1(R+), the proofs of Lemma2.3 and Theorem3.1 indicate that (P)
has a unique solution (ũ, ṽ, R̃) in the class

C2+α,1+ α
2 (Q∞) × (C1+α, α

2 ([ 0, 1 ) × R+) ∩ C1([ 0, 1 ) × R+)) × C1(R+).

Recalling that (u, v, R), which is obtained by Step 4, also satisfies (P), we observe
from the uniqueness that (ũ, ṽ, R̃) = (u, v, R) in Q∞. We obtain the conclusion. �
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