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Preface

This monograph contains the contributions from the speakers at the 4th
Italian-Japanese workshop on Geometric Properties for Parabolic and Elliptic
PDE’s, which was held in Palinuro (Italy) during the week of 25–29 May 2015.
The first three workshops were held in Sendai (Japan, 2009), Cortona (Italy, 2011)
and Tokyo (Japan, 2013) and on all the three occasions the proceedings were
subsequently published: see, respectively, Discrete Contin. Dyn. Syst. Ser. S 4
(2011), Springer INdAM Ser. 2 (2013) and Kodai Math. J. 37 (2014). Based on the
success of the previous workshops and the associated publications, we believe that
this monograph will be of great interest for the mathematical community and in
particular for researchers studying parabolic and elliptic PDE’s.

As would be expected from such a wide topic, the contributions are very diverse.
They cover many different fields of current research as follows: nonlinear parabolic
and elliptic equations, Hardy–Rellich inequalities, overdetermined problems, opti-
mal transport, anisotropic equations, symmetry problems on isothermic surfaces,
dynamic hybrid systems, Littlewood’s fourth principle, eigenvalue problems, sin-
gular solutions, stability of Delaunay surfaces, non-Archimedean mathematics. In
order to guarantee quality, all the papers have been submitted to two referees,
chosen among the experts on related topics.

Milan, Italy Filippo Gazzola
Sendai, Japan Kazuhiro Ishige
Naples, Italy Carlo Nitsch
Florence, Italy Paolo Salani
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Estimates for Solutions to Anisotropic
Elliptic Equations with Zero Order Term

Angela Alberico, Giuseppina di Blasio and Filomena Feo

Abstract Estimates for solutions to homogeneous Dirichlet problems for a class of
elliptic equations with zero order term in the form L(u) = g(x, u) + f (x), where the
operator L fulfills an anisotropic elliptic condition, are established. Such estimates
are obtained in terms of solutions to suitable problems with radially symmetric data,
when no sign conditions on g are required.

Keywords Anisotropic symmetrization · A priori estimate · Anisotropic Dirichlet
problems

1 Introduction

We are concerned with a comparison result via symmetrization for solutions to a
class of anisotropic Dirichlet problems, whose prototype can be written as follows

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

N∑

i=1

αi (|∂xi u|pi −2∂xi u)xi = c(x)|u| p̄−2u + f (x) in Ω

u = 0 on ∂Ω,

(1)
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2 A. Alberico et al.

where Ω is a bounded, smooth open subset of RN , N ≥ 2, αi > 0 for i = 1, . . . , N ,
1 ≤ p1, . . . , pN < ∞ such that their harmonic mean p̄ is greater than 1, and f
belongs to a suitable Lebesque space.

In the last years anisotropic problems have been largely studied by many authors
(see e.g. [6, 10, 15, 20–22, 27]).

We observe that when pi = p �= 2 for every i = 1, . . . , N , the principal part
operator in problem (1) coincides with the so-called pseudo-Laplacian operator,
whereas when pi = 2 for every i = 1, . . . , N the operator coincides with the usual
Laplacian.

Symmetrization methods in comparison results for solutions to isotropic elliptic
problems with a zero lower order term were used in several papers (see e.g. [5, 18,
19, 28], and bibliography therein). In the quoted papers the authors require either
sign assumptions on c(x) or not.

In the same spirit of [19], we are interested in studying the anisotropic problem (1)
when no sign assumption ismade on c(x). Using symmetrization techniques wewant
estimate a solution to problem (1) with the solution to an appropriate symmetrized
problem which takes into account also of the influence of the zero order term.

More precisely, we compare the decreasing rearrangement u∗ of a solution u to
problem (1) with the decreasing rearrangement v∗ of the solution v to the following
symmetrized problem

⎧
⎨

⎩

−div
(
Λ|∇v| p̄−2∇v

)= ĉ|v| p̄−2v + f � in Ω�

v = 0 on ∂Ω�.

(2)

In (2) the datum f � is the spherically symmetric decreasing rearrangement of
f , Ω� is the ball centered at the origin such that

∣
∣Ω�∣∣ = |Ω|, Λ is a suitable

positive constant, p̄ is the harmonic mean of p1, . . . , pN and the coefficient ĉ is
linked to the rearrangements of the positive and negative part of c(x), i.e. it is linked
to c+(x) = max{c(x), 0} and c−(x) = max{−c(x), 0}. In contrast to the isotropic
case not only the domain and the data of problem (2) are symmetrized, but also the
ellipticity condition is subject to an appropriate symmetrization. Indeed the operator
in problem (2) is the isotropic p̄-Laplacian.

Since no sign condition on c(x) is required, in order to assure the existence of a
unique nonnegative weak solution v to problem (2), we have to impose a smallness
condition on c+(x), namely,

∥
∥c+∥∥

L∞ < Λ λ(Ω�), (3)

where λ(Ω�) is the first eigenvalue of the Dirichlet problem

⎧
⎨

⎩

−div
(|∇v| p̄−2∇v

) = λ|v| p̄−2v in Ω�

v = 0 on ∂Ω�.
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If the smallness condition (3) holds,weprove that the followingpointwise estimate

u∗ (s) ≤ v∗ (s)

holds in [0, s0] with s0 = inf
{
s ∈ [0, |Ω|] : (c−)

∗ (s) > 0
}
and the following com-

parison between concentration

∫ s

0

(
u∗ (σ )

) p̄−1
dσ ≤

∫ s

0

(
v∗ (σ )

) p̄−1
dσ

holds in [s0, |Ω|].
On the other hand, if (3) is not verified, a comparison result is not assured (see

Remark 1).
We emphasize that problem (1) belongs to a larger class of anisotropic problems

⎧
⎨

⎩

− div(a(x, u,∇u)) = F(x, u) in Ω

u = 0 on ∂Ω,

where the ellipticity condition is given in term of a N -dimensional Young function
Φ :RN → [0,+∞), i.e., for a.e. x ∈ Ω ,

a(x, s, ξ) · ξ ≥ Φ (ξ) for (s, ξ) ∈ R × R
N . (4)

In this case the anisotropy is governedbyageneral N -dimensional convex function
of the gradient not necessary of polynomial type as in problem (1).

Problems governed by fully anisotropic growth conditions as in (4) have been
recently studied in [1–3, 12, 13]. There is also a large number of papers related to a
different type of anisotropy (see e.g. [4, 8, 14]).

2 Preliminaries

2.1 Anisotropic Spaces

LetΩ be abounded, smoothopen subset ofRN with N ≥ 2, and let 1 ≤ p1, . . . , pN <

∞ be N real numbers. Recall that the anisotropic Sobolev space (see e.g. [29])
defined by

W 1,−→p (Ω) = {
u ∈ W 1,1(Ω) : ∂xi u ∈ L pi (Ω), i = 1, . . . , N

}
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is a Banach space with respect to the norm

‖u‖W 1,−→p (Ω) = ‖u‖L1(Ω) +
N∑

i=1

∥
∥∂xi u

∥
∥

L pi (Ω)
. (5)

The space W 1,−→p
0 (Ω) is the closure of C∞

0 (Ω) with respect to the norm (5).
In this anisotropic setting a Poincaré-type inequality holds (see [20]). If u ∈

W 1,−→p
0 (Ω), then for every q ≥ 1 there exists a constant CP , depending on q and

i , such that
‖u‖Lq (Ω) ≤ CP

∥
∥∂xi u

∥
∥

Lq (Ω)
for i = 1, . . . , N . (6)

Denoted by p̄ the harmonic mean of p1, . . . , pN , i.e.

1

p̄
= 1

N

N∑

i=1

1

pi
, (7)

a Sobolev-type inequality tells us that whenever u belongs to W 1,−→p
0 (Ω), there exists

a constant CS such that

‖u‖Lq (Ω) ≤ CS

N∑

i=1

∥
∥∂xi u

∥
∥

L pi (Ω)
(8)

(see [29]). If in plus p̄ < N , inequality (8) implies the continuous embedding of

the space W 1,−→p
0 (Ω) into Lq(Ω) for every q ∈ [1, p̄∗]. On the other hand, the con-

tinuity of the embedding W 1,−→p
0 (Ω) ⊂ L p+(Ω) with p+ := max{p1, . . . , pN } relies

on inequality (6). It may happen that p̄∗ < p+ if the exponents pi are not closed
enough. In this case p∞ := max{ p̄∗, p+} turns out to be the critical exponent in the
anisotropic Sobolev embedding.

2.2 Symmetrization

Aprecise statement of our result requires the use of classical notions of rearrangement
and of suitable symmetrization of a N -dimensional Young function introduced by
Klimov in [25].

Let u be a measurable function (continued by 0 outside its domain) fulfilling

∣
∣{x ∈ R

N : |u(x)| > t}∣∣ < +∞ for t > 0. (9)

The symmetric decreasing rearrangement ofu is the functionu� : RN →[0,+∞[
satisfying
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{x ∈ R
N : u�(x) > t} = {x ∈ R

N : |u(x)| > t}� for t > 0. (10)

The decreasing rearrangement u∗ of u is defined as

u∗(s) = sup{t > 0 : |{x ∈ R
N : |u(x)| > t}| > s} for s ≥ 0. (11)

Analogously, if

|{x ∈ R
N : |u(x)| < t}| < +∞ for t > 0,

we define the symmetric increasing rearrangement u� and the increasing rearrange-
ment u∗ on replacing “>” by “<” in equalities (10) and (11), respectively.

Moreover, for a.e. x ∈ R
N ,

u�(x) = u∗(ωN |x |N )

and
u�(x) = u∗(ωN |x |N )

with ωN the measure of the N -dimensional unit ball.
For more details on rearrangements see, for example, [9, 11, 23]. We just recall

the following properties of rearrangements which will be useful in the sequel.

Lemma 1 (Proposition 3.6, Chap. 2 of [9]) Let f1(s) and f2(s) be measurable,
positive functions such that

∫ s

0
f1(t) dt ≤

∫ s

0
f2(t) dt for s ∈ [0, α].

If f3 ≥ 0 is a decreasing function, then

∫ s

0
f1(t) f3(t) dt ≤

∫ s

0
f2(t) f3(t) dt for s ∈ [0, α].

Lemma 2 (Theorem 4.6, Chap. 2 of [9]) If f1(s) and f2(s) belong to L p(Ω) for
1 ≤ p ≤ ∞, and

∫ s

0
f ∗
1 (t) dt ≤

∫ s

0
f ∗
2 (t) dt for s ∈ [0, |Ω|],

then
‖ f1‖L p(Ω) ≤ ‖ f2‖L p(Ω).

Nowwe introduce a suitable symmetrization of a N -dimensional Young function.
LetΦ : RN → [0,+∞[ be a N -dimensional Young function, namely an even convex
function such that
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Φ (0) = 0 and lim|ξ |→+∞
Φ (ξ) = +∞.

The Young inequality tells us that

ξ · ξ ′ ≤ Φ (ξ) + Φ•
(
ξ ′) for ξ, ξ ′ ∈ R

N ,

where Φ• is the Young conjugate function of Φ given by

Φ•
(
ξ ′) = sup

{
ξ · ξ ′ − Φ (ξ) : ξ ∈ R

N
}

for ξ ′ ∈ R
N .

Here, “ · ” stands for scalar product inRN .We observe that the functionΦ• enjoys
the same properties as Φ and is a N -dimensional Young function if

lim|ξ |→+∞
Φ (ξ)

|ξ | = +∞.

Wedenote byΦ� : R → [0,+∞[ the symmetrization ofΦ introduced byKlimov
in [25]. It is the one-dimensional Young function fulfilling

Φ�(|ξ |) = Φ•�• (ξ) for ξ ∈ R
N ,

namely it is the composition of Young conjugation, symmetric increasing rearrange-
ment and Young conjugate again. We stress that the functions Φ� and Φ� are not
equal in general. However, Φ� and Φ� are always equivalent, in the sense that
constants k1 = k1(n) and k2 = k2(n) exist such that

Φ�(k1ξ) ≤ Φ�(|ξ |) ≤ Φ�(k2ξ) for ξ ∈ R
N

(see [24, Lemma 7]). Moreover Φ�(| · |) = Φ� ( · ) if and only if Φ is radial, i.e.
Φ = Φ�.

In this paper we will consider

Φ (ξ) =
N∑

i=1

αi |ξi |pi (12)

for ξ = (ξ1, . . . , ξN ) ∈ R
N and some αi > 0 for i = 1, . . . , N . Easy calculations

show that

Φ• (ξ) =
N∑

i=1

|ξi |p′
i

(piαi )
p′

i /pi

for ξ ∈ R
N , where p′

i = pi

pi −1 with the usual conventions if pi = 1. In [13] it is proved
that

Φ�(|ξ |) = Λ |ξ | p̄ , (13)
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where p̄ is defined in (7) and

Λ = 2 p̄ ( p̄ − 1) p̄−1

p̄ p̄

⎡

⎢
⎢
⎢
⎣

N∏

i=1
p

1
pi

i

(
p′

i

) 1
p′
i Γ (1 + 1/p′

i )

ωN Γ (1 + N/ p̄′)

⎤

⎥
⎥
⎥
⎦

p̄
N

(
N∏

i=1

α
1
pi

i

) p̄
N

(14)

with Γ the Gamma function.
We recall that in the anisotropic setting a Polya-Szegö principle holds (see

[13]). Let u be a weakly differentiable function in R
N satisfying (9) and such that∫

RN Φ (∇u) dx < +∞, then u� is weakly differentiable in R
N and

∫

RN

Φ�
(|∇u�|) dx ≤

∫

RN

Φ (∇u) dx . (15)

3 Comparison Results

We consider the following class of problems

⎧
⎨

⎩

− div(a(x, u,∇u)) = g(x, u) + f (x) in Ω

u = 0 on ∂Ω,

(16)

whereΩ is a bounded, smooth open subset ofRN with N ≥ 2, 1 ≤ p1, . . . , pN < ∞
such that p̄ > 1, a : Ω × R × R

N → R
N and g : Ω × R → R are Carathéodory

functions such that for a.e. x ∈ Ω , for every s ∈ R, ξ ∈ R
N and for j = 1, . . . , N

(A1) a(x, s, ξ) · ξ ≥
N∑

i=1
αi |ξi |pi with αi > 0;

(A2)
∣
∣a j (x, s, ξ)

∣
∣ ≤ β

[

h(x) + |s| p̄ +
N∑

i=1
|ξi |pi

] 1
p′

j

with β > 0,

h ≥ 0, h ∈ L1(Ω);
(A3) |g(x, s)|≤ γ |s| p̄−1 with γ > 0;
(A4) g(x, s)s ≤ c(x) |s| p̄ with c ∈ L∞(Ω).

Moreover on the data f we will make suitable summability assumptions.
Let us recall the definition of a weak solution to problem (16).

Definition 1 Aweak solution to problem (16) is a function u ∈ W 1,−→p
0 (Ω) such that

∫

Ω

a(x, u,∇u) · ∇ϕ(x) dx =
∫

Ω

[g(x, u) + f (x)]ϕ(x) dx ∀ϕ ∈ W 1,−→p
0 (Ω).

(17)
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Our aim is to obtain an estimate for solution to problem (16) in term of the solution
to a suitable problem which takes into account of the influence of zero order term.

Theorem 1 Let us suppose that f ∈ L∞(Ω), f �≡ 0, and conditions (A1)–(A4)
and (3) hold. Putting

s0 = inf
{
s ∈ [0, |Ω|] : (c−)

∗ (s) > 0
}
, (18)

if u is a weak solution to problem (16), we have

u∗ (s) ≤ v∗ (s) for s ∈ [0, s0] (19)

and ∫ s

0

(
u∗ (σ )

) p̄−1
dσ ≤

∫ s

0

(
v∗ (σ )

) p̄−1
dσ for s ∈ [s0, |Ω|] , (20)

where v (x) is the solution to problem

⎧
⎨

⎩

−div
(
Λ |∇v| p̄−2 ∇v

)= ĉ |v| p̄−2 v + f � in Ω�

v = 0 on ∂Ω�
(21)

with Λ and p̄ defined as in (14) and in (7), respectively, and ĉ(x) := (
c+)� (x) −(

c−)
� (x) for x ∈ Ω�.

Proof We split the proof in several steps.

Step 1: We define the functions uκ,t : Ω → R as

uκ,t (x) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if |u (x)| ≤ t,
(|u (x)| − t) sign (u (x)) if t < |u (x)| ≤ t + κ

κ sign (u (x)) if t + κ < |u (x)|
(22)

for any fixed t and κ > 0. Observing that uκ,t belongs to W 1,−→p
0 (Ω), and ∇uκ,t =

χ{t<|u|≤t+κ}∇u a.e. in Ω , function uκ,t can be chosen as test function in (17) and by
(A1) we get

1

κ

∫

t<|u|≤t+κ

Φ(∇u) dx ≤ 1

κ

∫

t<|u|≤t+κ

a(x, u,∇u) dx (23)

= 1

κ

∫

t<|u|≤t+κ

(g(x, u) + f (x)) (|u(x)| − t)sign(u(x)) dx

+
∫

|u|>t+κ

(g(x, u) + f (x)) sign(u(x)) dx .
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Arguing as in [13], we apply Polya-Szegö principle (15) to function uκ,t continued
by 0 outside Ω , obtaining

∫

t<|u|≤t+κ

Φ(∇u) dx =
∫

RN

Φ(∇ut,κ ) dx ≥
∫

RN

Φ�(|∇(ut,κ )
�|) dx

=
∫

RN

Φ�(|∇(u�)t,κ |) dx =
∫

t<u�≤t+κ

Φ�(|∇u�|) dx,

where (ut,κ )
� = (u�)t,κ a.e. in R

N and the function (u�)t,κ is defined as in (22)
with u replaced by u�.
Since the functions

t −→
∫

|u|>t
Φ(∇u) dx , t −→

∫

u�>t
Φ�(|∇u�|) dx

are Lipschitz continuous on (0,+∞), by (12) and (13), we have

− d

dt

∫

u�>t
Λ|∇u�| p̄dx = − d

dt

∫

u�>t
Φ�(|∇u�|) dx (24)

≤ − d

dt

∫

|u|>t
Φ(∇u) dx = − d

dt

∫

|u|>t

N∑

i=1

αi

∣
∣
∣
∣
∂u

∂xi

∣
∣
∣
∣

pi

dx .

Step 2: By (23), (24) and (A4) we get

− d

dt

∫

u�>t
Λ|∇u�| p̄dx ≤

∫

|u|>t
c (x) |u (x)| p̄−1 dx +

∫

|u|>t
| f (x)| dx (25)

≤
∫ μu (t)

0

[(
c+)∗ (s) − (

c−)
∗ (s)

] (
u∗ (s)

) p̄−1 ds +
∫ μu (t)

0
f ∗ (s) ds,

where μu(t) = |{x ∈ Ω : |u(x)| > t}| and the last inequality follows by Hardy-
Littlewood inequality. By Coarea formula, recalling that the level set of u� are
balls and using Hölder inequality, we get

(

− d

dt

∫

u�>t
|∇u�| p̄dx

)1/ p̄

≥ Nω
1/N
N μu (t)1/N ′ (−μ′

u (t)
)1/ p̄′

a.e. t > 0.

(26)
Using (26) in (25) we get

(
Nω

1/N
N μu (t)1/N ′ (−μ′

u (t)
)1/ p̄′) p̄ (27)

≤ 1

Λ

∫ μu(t)

0

{[(
c+)∗ (s) − (

c−)
∗ (s)

] (
u∗ (s)

) p̄−1 + f ∗ (s)
}

ds.
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The last inequality can be rewritten as

1 ≤ −μ′
u (t) Λ

− 1
p̄−1

(
Nω

1/N
N (μu (t))1/N ′

) p̄′ [F (μu (t)) + U (μu (t))]1/( p̄−1) a.e. t > 0, (28)

where

∼
c (s) = (

c+)∗ (s) − (
c−)

∗ (s) ,

U (s) =
∫ s

0

∼
c (t)

(
u∗ (t)

) p̄−1
dt, (29)

F (s) =
∫ s

0
f ∗ (t) dt

with s ∈ [0, |Ω|]. An integration gives

(−u∗ (s))′ ≤ γ (s) [F (s) + U (s)]1/( p̄−1) a.e. s ∈ (0, |Ω|), (30)

with γ (s) = Λ
− 1

p̄−1

(
Nω

1/N
N s1/N ′

)− p̄′
.

Now let us consider problem (21). The solution v of problem (21) is unique and the
symmetry of data assure that v(x) = v(|x |), i.e. v is positive and radially symmetric.
Moreover, putting s = ωN |x |N and

∼
v (s) = v((s/ωN )1/N ), we get for all s ∈ [0, |Ω|]

− Λ|∼v (s) | p̄−2∼
v

′
(s)

= s−p/N ′

(NωN
1/N ) p̄

∫ s

0

{
[(

c+)∗ (σ ) − (
c−)

∗ (σ )
] (∼

v
∗
(σ )

) p̄−1 + f ∗ (σ )

}

dσ.

It is possible to show (see Lemma 3.2 of [18]) that the above integral is positive
and this assure that v(x) = v�(x). By the properties of v we can repeat arguments
used to prove (30) replacing all the inequalities by equalities and obtaining

(−v∗ (s))′ = γ (s) [F (s) + V (s)]1/( p̄−1) a.e. s ∈ (0, |Ω|), (31)

where

V (s) =
∫ s

0

∼
c (t)

(
v∗ (t)

) p̄−1
dt ∀s ∈ [0, |Ω|] . (32)

Step 3: From now on, the proof runs as the proof of Theorem 4.1 in [19]. Here, we
give a sketch for the convenience of the reader. Since f �≡ 0, we claim that

∫ s

0
(c−)∗(t)(u∗(t)) p̄−1 dt ≤

∫ s

0
(c−)∗(t)(v∗(t)) p̄−1 dt for s ∈ [s0, |Ω|] (33)
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with s0 defined in (18). By Lemma 1, we obtain

∫ s

s0

(u∗(t)) p̄−1 dt ≤
∫ s

s0

(v∗(t)) p̄−1 dt for s ∈ [s0, |Ω|]. (34)

Then, Lemma 2 assures
u∗(s0) ≤ v∗(s0). (35)

Since (c−)∗(s) = 0 if s ∈ [0, s0), equality (29) becomes U (s) = ∫ s
0 (c+)∗(t)

(u∗(t)) p̄−1 dt and equality (32) becomes V (s) = ∫ s
0 (c+)∗(t)(v∗(t)) p̄−1 dt , for s ∈

[0, s0]. Now, we state that the following inequality holds

U (s) ≤ V (s) for s ∈ [0, s0]. (36)

By estimates (30), (31) and (36) we obtain

(−u∗(s))′ ≤ (−v∗(s))′ fors ∈ [0, s0]. (37)

Thanks to (35) and (37), it follows

u∗(s) − v∗(s0) ≤ u∗(s) − u∗(s0) ≤ v∗(s) − v∗(s0) for s ∈ (0, s0),

namely (19). Finally, (19) and (34) give desiderated inequality (20).

Step 4: In order to complete the proof, we need to prove inequalities (33) and (36).
We argue by absurdum, starting from (30) and (31) and using elementary tools of
calculus. We remark that it is necessary to distinguish different cases, thus, for more
details, we refer the reader to Lemma 4.3 and Lemma 4.4 in [19]. �

Remark 1 We stress that if
∥
∥c+∥∥

L∞ = ∥
∥̂c+∥∥

L∞ , assumption (3) implies that problem
(21) has a unique nonnegative radially decreasing symmetric solution. If (3) is not
verified, then, in general, a comparison result can not be expected. Indeed, let us
consider the following problem

⎧
⎨

⎩

− div(∇u)= λ(Ω�)u + f in Ω

u = 0 on ∂Ω

(38)

with f ∈ L∞(Ω) and f > 0. Problem (38) belongs to the class of problems (16)
with pi = 2 for every i = 1, . . . , N , f positive and c(x) = λ(Ω�). Note that here
p̄ = 2.

Denoted by λ(Ω) the first eigenvalue of the following Dirichlet problem

⎧
⎨

⎩

−div (∇w) = λw in Ω

w = 0 on ∂Ω,
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the well-known Faber-Krahn inequality (see e.g. [7, 23]) says that

λ(Ω�) ≤ λ(Ω). (39)

If Ω is not a ball, by (39) and by the characterization of eigenvalue, problem (38)
has a unique solution.Whereas the uniqueness fails for related symmetrized problem

⎧
⎨

⎩

− div(∇v)= λ(Ω�)v + f � in Ω�

v = 0 on ∂Ω� .

Remark 2 In the case c(x) ≤ 0, it is possible to prove a pointwise estimate of the
solution u to problem (16). More precisely,

u∗ (s) ≤ w∗ (s) for s ∈ [0, |Ω|] ,

where w is the solution to the following problem

⎧
⎨

⎩

−div
(
Λ |∇w| p̄−2 ∇w

)= f � in Ω�

w = 0 on ∂Ω�
(40)

with Λ and p̄ defined as in (14) and in (7), respectively. Indeed, the proof runs as in
the proof of Theorem 1 with (28) replaced by

1 ≤ −μ′
u (t) Λ

− 1
p̄−1

(
Nω

1/N
N (μu (t))1/N ′

) p̄′ [F (μu (t))]1/( p̄−1) a.e. t > 0.

In this case the symmetrized problem (40) does not take into account of the
presence of zero order term.

Now we are interested in a slight extension of Theorem 1 when the datum in
problem (21) is not the rearrangement of datum f of problem (16), but it is a function
that dominates f .

Corollary 1 Assume the same hypothesis of Theorem 1. Let u be a weak solution to
problem (16) and v (x) be the solution to the following problem

⎧
⎨

⎩

−div
(
Λ |∇w| p̄−2 ∇w

)= ĉ |w| p̄−2 w + f̃ in Ω�

w = 0 on ∂Ω�,

where f̃ = f̃ � is a function such that
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∫ s

0
f ∗(σ )dσ ≤

∫ s

0
f̃ ∗(σ ) dσ for s ∈ [0, |Ω|] . (41)

Then we have
u∗ (s) ≤ w∗ (s) for s ∈ [0, s0] (42)

and ∫ s

0

(
u∗ (σ )

) p̄−1
dσ ≤

∫ s

0

(
w∗ (σ )

) p̄−1
dσ for s ∈ [s0, |Ω|] , (43)

where s0 is defined as in (18).

Proof The results follow arguing as in the proof of Theorem 1. In this case, instead
of (28), we obtain the following inequality

1 ≤ −μ′
u (t) Λ

1
p̄−1

(
Nω

1/N
N (μu (t))1/N ′

) p̄′
[
F̃ (μu (t)) + U (μu (t))

]1/( p̄−1)
a.e. t > 0 (44)

with F̃ (s) = ∫ s
0 f̃ ∗ (t) dt . Here (44) follows using (41) in (27). �

Now we are interested to obtain a comparison result requiring less summability
on f . To this end we have to impose a sign condition on coefficient c(x).

As usual, in order to assure the existence of a weak solution u ∈ W 1,−→p
0 (Ω) to

problem (16) with f ∈ L( p̄∗)′(Ω) (see [26]), we consider the additional assumption

(A5)
(
a(x, s, ξ) − a(x, s, ξ ′)

) · (ξ − ξ ′) > 0 with ξ �= ξ ′, a.e. x ∈ Ω,

∀s ∈ R
N , ξ ∈ R

N .

As regards existence, uniqueness and regularity to anisotropic problems we refer
also to [6, 15–17] and the bibliography therein.

Corollary 2 Let us suppose that f ∈ L( p̄∗)′(Ω), and conditions (A1)–(A5) and
c(x) ≤ 0 hold. If u is a weak solution to problem (16), we have

∫ s

0

(
u∗ (σ )

) p̄−1
dσ ≤

∫ s

0

(
v∗ (σ )

) p̄−1
dσ for s ∈ [0, |Ω|] , (45)

where v is the weak solution to the following problem

⎧
⎨

⎩

−div
(
Λ |∇v| p̄−2 ∇v

)= −c� |v| p̄−2 v + f � in Ω�

v = 0 on ∂Ω�

with Λ and p̄ defined in (14) and in (7), respectively.



14 A. Alberico et al.

Proof The case f ≡ 0 is trivial. If f �≡ 0, arguments similar to those used in
Theorem 1 run also for f ∈ L( p̄∗)′(Ω) (see also [18]). Indeed, if c(x) ≤ 0, it
follows that ĉ(x) = − (

c−)
� (x), s0 = 0 and inequality (45) holds for s ∈ [0, |Ω|].

�
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Abstract Non-Archimedean mathematics (in particular, nonstandard analysis)
allows to construct some useful models to study certain phenomena arising in PDE’s;
for example, it allows to construct generalized solutions of differential equations and
variational problems that have no classical solution. In this paperwe introduce certain
notions of Non-Archimedean mathematics (and of nonstandard analysis) by means
of an elementary topological approach; in particular, we construct Non-Archimedean
extensions of the reals as appropriate topological completions of R. Our approach
is based on the notion of Λ-limit for real functions, and it is called Λ-theory. It can
be seen as a topological generalization of the α-theory presented in [6], and as an
alternative topological presentation of the ultrapower construction of nonstandard
extensions (in the sense of [21]). To motivate the use ofΛ-theory for applications we
show how to use it to solve a minimization problem of calculus of variations (that
does not have classical solutions) by means of a particular family of generalized
functions, called ultrafunctions.
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1 Introduction

In a previous series of papers [5, 9–14] we have introduced and studied a new
family of generalized functions called ultrafunctions and its applications to certain
problems in mathematical analysis, including some applications to PDE’s in [14].
The development of a rigorous study of (a large class of) PDE’s in ultrafunction
theory is the object of [15], where we exemplify our approach by studying in detail
Burgers’ equation. Henceforth, it is our feeling that many problems in PDE’s theory
could be fruitfully studied by means of the theory of ultrafunctions.

However, onemight have the impression that a drawback of our approach is the use
of the machinery of NSA, which is not a “common working tool” for most analysts.
Even if NSA has already been applied to many different fields of mathematics (such
as functional analysis, probability theory, combinatorial number theory, mathemati-
cal physics and so on) to obtain important results, the original formalismofRobinson,
based on model theory (see e.g. [25]), appears too technical to many researchers, and
not directly usable by most mathematicians. Since Robinson’s work first appeared,
a simpler semantic approach (due to Robinson himself and Elias Zakon) has been
developed using the purely set-theoretic notion of superstructure (see [27]); we recall
also the pioneering work by Luxemburg (see [23]), where a direct use of ultrapowers
was made (see [6, 8] for a complete presentation of alternative simplified approaches
to NSA). However, many researcher working in NSA have the feeling that also these
technical notions are not needed in order to carry out calculus with actual infinites-
imals, as well as to carry out several applications of NSA. As a consequence, there
have been many attempts to simplify and popularize NSA by means of simplified
presentations. We recall here in particular the approaches of Henson [20], Keisler
[21] and Nelson [24]; other attempts have been made by Benci, Di Nasso and Forti
with algebraic (see [3, 4, 7, 17]) and topological approaches (see [8, 16]). We also
suggest [22] where NSA is introduced in a simplified way suitable for many applica-
tions. In our previous papers, we tried to address the same issue bymeans ofΛ-limits
(see e.g. [11] for an axiomatic presentation of this approach to NSA). The basic idea
of Λ-limits is to present nonstandard objects as limits of standard ones. However, in
our previous works the word “limits” was not intended in a topological sense: the
“limits” where defined axiomatically and no explicit topology was involved in the
constructions.

The main aim of this paper is to show that, actually, Λ-limits can be precisely
characterized as topological limits. This approachwill be calledΛ-theory; it allows to
construct a topological approach toNSA (related to but different from the approach of
Benci, DiNasso andForti in [8, 16]) that, in our opinion, iswell-suited for researchers
that are not experts in NSA and are interested to use certain Non-Archimedean
arguments to study problems in analysis. In fact, it is our feeling that presenting
nonstandard constructions and results by means of a topological approach might
help such researchers to use them. For example, we construct extensions of the reals
(in the sense of NSA) as appropriate topological completions of R.
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Λ-theory can be seen as a topological generalization of the α-theory presented in
[6]. The idea behind our approach is to embed R in particular Hausdorff topological
spaces in which it is possible to formalize the intuitive idea of hyperreals as topo-
logical limits (in a sense that we will make precise in Sect. 2.1) of real functions.
From this point of view, our construction of the hyperreals starting from R shares
some features with the construction of R as the Cauchy completion of Q. We also
extend our construction to define a topology on the superstructure V (R) on R, that
we use to defineΛ-limits of bounded functions defined on V (R). Our construction is
substantially equivalent to the ultrapower approach, and we will prove in Sect. 3 that
within Λ−theory it is possible to construct a nonstandard universe in the sense of
[21]. To motivate our feeling that Λ-theory can be fruitfully applied to study certain
problems in Analysis, in Sect. 4 we apply Λ-theory to solve a minimization problem
of calculus of variations that does not have classical solutions.

We want to remark that readers expert in NSAwill easily recognize thatΛ-theory
is essentially equivalent to the ultrapower construction (we prove this fact in Sect. 3).
Anyhow, in this paper, we do not assume the knowledge of NSA by the reader.

2 Λ-theory

2.1 The Λ-limit

The only technical notion that we need to develop our approach to Non-Archimedean
mathematics is that of ultrafilter:

Definition 1 Let X be a set. An ultrafilter U on X is a family of subsets of X that
has the following properties:

1. X ∈ U , ∅ /∈ U ;
2. for every A, B ⊆ X if A ∈ U and A ⊆ B then B ∈ U ;
3. for every A, B ∈ U , A ∩ B ∈ U ;
4. for every A ⊆ X we have that A ∈ U or Ac ∈ U .

An ultrafiler U on X is principal if there exists an element x ∈ X such that
U = {A ⊆ X | x ∈ A}. An ultrafilter is free if it is not principal. From now on we
let L be an infinite set equipped with a free ultrafilter U . Every set Q ∈ U will be
called qualified set. We will say that a property P is eventually true for the function
ϕ(λ) if it is true for every λ in a qualified set, namely if there exists Q ∈ U such that
P(ϕ(λ)) holds for every λ ∈ Q. We let Λ /∈ L and we consider the space L ∪ {Λ}.
We equip L ∪ {Λ} with a topology in which the neighborhoods of Λ are of the form
{Λ} ∪ Q, Q ∈ U . In this sense, one can imagine Λ as being a “point at infinity”
for L (in this sense, it plays a similar role to that of α in the Alpha-Theory, see [6]).
With respect to this topology, the notion of limit of a function at Λ is specified as
follows:
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Definition 2 Let (X, τ ) be a Hausdorff topological space, let x0 ∈ X and let ϕ :
L → X be a function. We say that x0 is the Λ-limit of the function ϕ, and we write

lim
λ→Λ

ϕ(λ) = x0, (1)

if for every neighborhood V of x0 the function ϕ is eventually in V , namely if there
is a qualified set Q such that ϕ(Q) ⊂ V .

Remark 1 We use the notation limλ→Λ ϕ(λ) since, as we already noticed, one may
think of Λ /∈ L as a “point at ∞” and to the sets in U as neighborhoods of Λ; it is
conceptually similar to the point∞when one considersR ∪ {+∞}. We prefer to use
the symbol Λ rather than ∞ since one may think of Λ as a function of U , namely
Λ = Λ(U ). Thus the explicit mention of Λ is a reminder that the Λ-limit depends
on U .

Remark 2 Another way to look at the limit (1) is to consider the Stone-Čech com-
pactification βL of L with the relative topology and to think of Λ ∈ βL as of a
nontrivial element of this compactification.

Limits as given by Eq. (1) will be called Λ−limits, and we will call Λ-theory the
approach to Non-Archimedean mathematics based on the notion of Λ-limit.

Our main result is the following:

Theorem 1 There exists a Hausdorff topological space (RL, τ ) such that

1. RL = clτ (L × R);
2. R ⊆ RL and ∀c ∈ R

lim
λ→Λ

(λ, c) = c;

3. for every function ϕ : L → R, the limit

lim
λ→Λ

(λ, ϕ(λ))

exists in (RL, τ );
4. two functions ϕ,ψ are eventually equal if and only if

lim
λ→Λ

(λ, ϕ(λ)) = lim
λ→Λ

(λ,ψ(λ)) .

Proof We set

I = {ϕ ∈ F (L, R) | ϕ(x) = 0 in a qualified set} .

It is not difficult to prove that I is a maximal ideal in F (L, R); then

K := F (L, R)

I
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is a field. In the following, we shall identify a real number c ∈ Rwith the equivalence
class of the constant function ϕ : L → R such that ϕ(λ) = c for every λ ∈ L.
We set

RL = (L × R) ∪ K.

We equip RL with the following topology τ . A basis for τ is given by

b(τ ) = {
Nϕ,Q | ϕ ∈ F (L, R) , Q ∈ U

} ∪ P(L × R)

where
Nϕ,Q := {(λ, ϕ(λ)) | λ ∈ Q} ∪ {[ϕ]I }

is a neighborhood of [ϕ]I for every Q ∈ U .
In order to show that b(τ ) is a basis for a topology, we have to show that

∀A, B ∈ b(τ ) ∀x ∈ A ∩ B ∃C ∈ b(τ ) such that x ∈ C ⊂ A ∩ B.

Let A, B ∈ b(τ ). Let x ∈ A ∩ B. If x /∈ K then we can just setC = A ∩ B ∩ L ×
R, as the topology is discrete on L × R. If x ∈ K then there exist R, S ∈ U such
that A = Nϕ,R and B = Nψ,S with [ϕ]I = [ψ]I = x . Hence there exists Q ∈ U such
that

∀λ ∈ Q, ϕ(λ) = ψ(λ).

Thus if we set C := Nϕ,R∩S∩Q we have that x ∈ C ⊂ A ∩ B.
Let us show that τ is a Hausdorff topology. Clearly it is sufficient to check it for

points in K, so let ξ �= ζ ∈ K. Since ξ �= ζ , there exists ϕ,ψ ∈ F (L, R) , Q ∈ U
such that

ξ = [ϕ]I , ζ = [ψ]I and ∀λ ∈ Q, ϕ(λ) �= ψ(λ).

Therefore
Nϕ,Q ∩ Nψ,Q = ∅.

Let us observe that, by construction, for every function ϕ : L → R we have that

lim
λ→Λ

(λ, ϕ(λ)) = [ϕ]I . (2)

In fact, given a neighborhood Nϕ,Q of [ϕ]I , we have that {ϕ(λ) | λ ∈ Q} ⊆ Nϕ,Q ,
so [ϕ]I is a Λ-limit of the function (λ, ϕ(λ)). Since the space is Hausdorff, the limit
is unique, so limλ→Λ (λ, ϕ(λ)) = [ϕ]I .

Let us prove that (RL, τ ) has the desired properties:

• property (1) follows directly by the definition of τ ;
• property (2) follows by the identification of every real number c ∈ R with the
equivalence class of the constant function [c]I ;

• properties (3) and (4) follow by Eq. (2).
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Remark 3 In [8, 16], nonstandard extensions are constructed by means of similar,
but different, topological considerations based on the choice of the ultrafilter U .
However the authors showed (see Theorem 4.5 in [16]) that such extensions are
Hausdorff if and only if the ultrafilter U is Hausdorff (see again [16], Sects. 4 and
6), and in [2] Bartoszynski and Shelah proved that it is consistent with ZFC that there
are no Hausdorff ultrafilters. By contrast, in our topological approach the extensions
are always constructed inside Hausdorff topological spaces under the much milder
request of U being free. This is possible because we incorporate the set of indices
L in the space.

Motivated by the philosophical similarity between the properties expressed in
Theorem1 and the construction of R as the Cauchy completion of Q, we introduce
the following definition:

Definition 3 A Hausdorff topological space (RL, τ ) that satisfies conditions (1)–(4)
of Theorem1 will be called a (L,U )-completion of R.

2.2 The Hyperreal Field

Let (RL, τ ) be a (L,U )-completion of R. Let us fix some notation: we will denote
by K the set

K =
{

lim
λ→Λ

(λ, ϕ(λ)) | ϕ ∈ F (L, R)

}

.

The aim of this section is to study the basic properties of K.

Proposition 1 (L × R) ∩ K = ∅.

Proof Let us suppose by contrast that there exists ϕ : L →X such that

lim
λ→Λ

(λ, ϕ(λ)) = (λ0, r) ∈ L × R.

Since {(λ0, r)} is open, by definition there exists Q ∈ U such that ∀λ ∈ Q,

(λ, ϕ(λ)) = (λ0, r). Therefore Q = {λ0}, and this is absurd since U is free.

From condition (1) in Theorem1 we know that (L × R)  K ⊆ RL. In general,
this inclusion might be proper; henceforth we introduce the following definition:

Definition 4 We say that (RL, τ ) is a minimal (L,U )-completion of R if RL =
(L × R)  K.

It is immediate to see that any (L,U )-completionofR contains aminimal (L,U )-
completion of R, and that any minimal (L,U )-completion of R does not properly
contain another minimal (L,U )-completion of R (and this is what motivates the
choice of the name “minimal” for such extensions).
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From now on we will be only interested in minimal (L,U )-completions.

By condition (2) in the definition of (L,U )-completions it follows that R ⊆ K.
Moreover we have the following result:

Proposition 2 For every finite subset F ⊆ R, for every function ϕ : L → F we have
that

lim
λ→Λ

(λ, ϕ(λ)) ∈ F.

Proof Let F = {x1, ..., xn}. For every i ≤ n let

Ai = {λ ∈ L | ϕ(λ) = xi }.

SinceU is an ultrafilter, there exists exactly one index i0 ≤ n such that Ai0 ∈ U .
Now let ξ = limλ→Λ (λ, ϕ(λ)). Let us suppose that ξ �= xi0 . Let O1, O2 be disjoint
open sets such that ξ ∈ O1, xi0 ∈ O2. Since xi0 is the limit of the constant function
with value xi0 , there exists B ∈ U such that

{(λ, xi0) | λ ∈ B} ⊆ O2.

LetC ∈ U be such that {(λ, ϕ(λ)) | λ ∈ C} ⊆ O1. Then by construction we have
that

∀λ ∈ Ai0 ∩ B ∩ C (λ, ϕ(λ)) = (λ, xi0) ∈ O1 ∩ O2,

and this is a contradiction since O1 ∩ O2 = ∅. Therefore limλ→Λ (λ, ϕ(λ))= xi0 ∈ F .

There is a natural way to define sums and products of elements of K:

Definition 5 We set

lim
λ→Λ

(λ, ϕ(λ)) + lim
λ→Λ

(λ,ψ(λ)) : = lim
λ→Λ

(λ, ϕ(λ) + ψ(λ)) ;
lim
λ→Λ

(λ, ϕ(λ)) · lim
λ→Λ

(λ,ψ(λ)) : = lim
λ→Λ

(λ, ϕ(λ) · ψ(λ)) .
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Theorem 2 (K,+, ·, 0, 1) is a field which contains R.

Proof That R ⊆ K follows by condition (2) of the definition of (L,U )-completion.
The only non trivial property that we have to prove to show that K is a field is the
existence of a multiplicative inverse for every x �= 0. Let x ∈ K, x �= 0. Since the
topology is Hausdorff and x �= 0, there is a set Q ∈ U such that

∀λ ∈ Q, ϕ(λ) �= 0.

Let φ : L → R be defined as follows:

φ(λ) =
{

1 if λ /∈ Q;
1

ϕ(λ)
if λ ∈ Q.

Then ϕ(λ) · φ(λ) = 1 for every λ ∈ Q, thus limλ→Λ (λ, ϕ(λ)) ·
limλ→Λ (λ, φ(λ)) = limλ→Λ (λ, ϕ(λ) · φ(λ)) = 1, namely

x−1 := lim
λ→Λ

(λ, φ(λ))

is the inverse of x .

The ordering of R can be extended to K by setting

lim
λ→Λ

(λ, ϕ(λ)) < lim
λ→Λ

(λ,ψ(λ)) ⇔ ϕ(λ) < ψ(λ) eventually, (3)

namely iff {(λ, ϕ(λ) − ψ(λ)) | ϕ(λ) − ψ(λ) ≥ 0} ∪ [ϕ − ψ] is open (i.e. iff {λ ∈
L |ϕ(λ) < ψ(λ)} is qualified). This ordering is clearly an extension of the ordering
relation defined on R since, for every x, y ∈ R, if x ≤ y and ϕx , ϕy : L → R are the
constant sequences with values resp. x, y then

{λ ∈ L |ϕx (λ) < ϕy(λ)} = L,

which is qualified.

Remark 4 Usually, the inclusion R ⊆ K is proper: e.g., let U be a countably
incomplete ultrafilter.1 Let 〈An | n ∈ N〉 be a family of elements of U such that⋂

n∈N An = ∅, let Bn = ⋂
i≤n An for all n ∈ N and let φ : L → R be defined as

follows: for every λ ∈ L,

φ(λ) = n ⇔ λ ∈ Bn\Bn+1.

1An ultrafilter U is countably incomplete if there exists a family 〈An | n ∈ N〉 of elements of U
such that

⋂
n∈N An = ∅.
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Then limλ→Λ (λ, φ(λ)) /∈ R: in fact, limλ→Λ (λ, φ(λ)) > n for every n ∈ N

(and so, in particular, this limit is infinite). This holds since, for every n ∈ N, by
construction we have that

{λ ∈ L | φ(λ) ≥ n} = Bn ∈ U .

When the inclusion R ⊆ K is proper we have that K is a superreal non
Archimedean field.2 In this case, it will be called a hyperreal field. The termi-
nology will be motivated by Corollary1, where we make precise the relationship
(as fields) between the hyperreal field K and the ultrapower R

L
U . Let us recall the

definition of R
L
U :

Definition 6 Let≡U be the equivalence relation onR
L defined as follows: for every

ϕ,ψ : L → R

ϕ ≡U ψ ⇔ {λ ∈ L | ϕ(λ) = ψ(λ)} ∈ U .

The equivalence class of every function ϕ : L → R will be denoted by [ϕ]U . The
ultrapower R

L
U is the quotient R

L/ ≡U .
The operations on R

L
U are defined componentwise: for every ϕ,ψ : L → R we

set

[ϕ]U + [ψ]U := [ϕ + ψ]U ; [ϕ]U + [ψ]U := [ϕ · ψ]U .

Awell-known result (see e.g. [21]) is that (RL
U , [0]U , [1]U ,+, ·) is a field.More-

over, we have the following:

Corollary 1 K and R
L
U are isomorphic as fields.

Proof The isomorphism is given by the map Ψ : K → R
L
U such that, for every

ϕ : L →R,

Ψ

(

lim
λ→Λ

(λ, ϕ(λ))

)

= [ϕ]U .

Condition (4) in the definition of (L,U )-completion entails that Ψ is injective,
whereas the definition of K as the set of all possible Λ-limits entails that Ψ is
surjective. Since it is immediate to see that Ψ also preserves the operations, we have
that it is an isomorphism.

We will strengthen Corollary1 in Theorem4. By Corollary1 it clearly follows
that, if the (L,U ) -completion is minimal, as sets RL

∼= (L × R)  R
L
U .

Remark 5 Let us note that ((L × R)  R
L
U , τ ) is a (L,U )-completion of R for

different choices of τ . One such choice is the topology τU introduced in the proof of
Theorem1; a different topology can be constructed as follows: let us fix a function ϕ

with limλ→Λ (λ, ϕ(λ)) /∈ R, a nonempty infinite set B /∈ U , a free filterF on B and

2A superreal non Archimedean field is an ordered field that properly contains R.
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let us consider the following topology τ̃on (L × R)  R
L
U : if ξ �= limλ→Λ (λ, ϕ(λ))

then a family of open neighborhoods of ξ is

{

Oψ,Q | Q ∈ U , ψ function with ξ = lim
λ→Λ

(λ,ψ(λ))

}

;

if ξ = limλ→Λ (λ, ϕ(λ)) then a family of open neighborhoods of ξ is

{OF,Q | F ∈ F , Q ∈ U }

where, for every F ∈ F , Q ∈ U we set

OF,Q = Oϕ,Q ∪ {(λ, x) | λ ∈ F, x ∈ R}.

By construction,
(
(L × R)  R

L
U , τ̃

)
is a (L,U )-completion of R.

A consequence ofRemark5 is that there are infinitelymany topologies τ thatmake
((L × R)  R

L
U , τ ) a (L,U )-completion of R. However, the topology introduced

in the proof of Theorem1 plays a central role in our approach. For this reason, we
introduce the following definition.

Definition 7 Let (RL, τ ) be a (L,U )-completion of R. We call slim topology, and
we denote by τU , the topology on RL generated by the family of open sets

{
Nϕ,Q | ϕ ∈ F (L, R) , Q ∈ U

} ∪ P(L × R)

where, for every ϕ ∈ F (L, R) , Q ∈ U we set

Nϕ,Q := {(λ, ϕ(λ)) | λ ∈ Q} ∪
{

lim
λ→Λ

(λ, ϕ(λ))

}

.

Proposition 3 The slim topology τU is finer than any topology τ that makes(
(L × R)  R

L
U , τ

)
a (L,U )-completion of R.

Proof Let τ be given, let O be an open set in τ and let x ∈ O . If x ∈ L × R then {x} is
an open neighborhood of x in τU contained in O; if x = limλ→Λ (λ, ϕ(λ)) for some
function ϕ : L →R then let B ∈ U be such that {(λ, ϕ(λ)) | λ ∈ B} ⊆ O; therefore,
by construction, Oϕ,B is an open neighborhood of x in τU entirely contained in O .
This proves that O is an open set in τU , therefore τU is finer than τ .

The slim topology can also be characterized in terms of closure of subsets of
(L × R):
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Proposition 4 Let
(
(L × R)  R

L
U , τ

)
be a (L,U )-completion of R. The following

facts are equivalent:

1. τ = τU ;
2. for every set B ⊆ (L × R) we have that

clτ (B) = B ∪
{

lim
λ→Λ

(λ, ϕ(λ)) | ∃A ∈ U ∀λ ∈ A (λ, ϕ(λ)) ∈ B

}

.

Proof (1) ⇒ (2) Let ϕ : L → R, let B ⊆ (L × R) and let ξ = lim
λ→Λ

(λ, ϕ(λ)). Let

A = {λ ∈ L | (λ, ϕ(λ)) ∈ B}. If A ∈ U then for every open neighborhood O of ξ

we have that O ∩ B �= ∅ by construction, so ξ ∈ clτU (B); if A /∈ U then Oϕ,A is a
neighborhood of ξ such that Oϕ,A ∩ B = ∅, therefore ξ /∈ clτU (B).

(2) ⇒ (1) Let A ∈ U , let ϕ : L → R and let ξ = limλ→Λ (λ, ϕ(λ)). Let us con-
sider B = (L × R) \OA,ϕ . By hypothesis and construction

clτ (B) = [
(L × R)  R

L
U

] \OA,ϕ.

Therefore OA,ϕ is open for every A ∈ U , ϕ : L → R, so τ is finer than τU which,
as a consequence of Proposition3, entails that τ = τU .

Definition 8 We will call
(
(L × R)  R

L
U , τU

)
the canonical (L,U )-completion

of R.

From the next section on we will work only with the minimal canonical (L,U )-
completion of R.

2.3 Natural Extension of Sets and Functions

Fromnowon, (·)will denote the closure operator in the canonical (L,U )-completion
of R.

Definition 9 For every E ⊆ R we set

EL := L × E .

A different and related (as we will show in Proposition5) extension of E is the
following:

Definition 10 Given a set E ⊂ R, we set

E∗ :=
{

lim
λ→Λ

(λ,ψ(λ)) |ψ(λ) ∈ E

}

;

E∗ is called the natural extension of E .
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Let us observe that by property (2) of the definition of (L,U )-completions it
follows that E ⊆ E∗. Following the notation introduced in Definition10, from now
on we will denote K by R

∗.
It is easy to modify the proof of Proposition1 to obtain the following result:

Proposition 5 For every E ⊆ R we have that EL = (L × E)  E∗.

It is also possible to extend functions to RL. To this aim, given a function

f : A → B

we will denote by
fL : L × A → L × B

the function defined as follows:

fL (λ, x) = (λ, f (x)) .

Lemma 1 For every A, B ⊆ R, for every function f : A → B, f can be extended
to a continuous function

fL : AL → BL.

Moreover, the restriction of fL to A coincides with f .

Proof The extension of f to L × A is given by fL. Therefore to get the desired
extension to AL it is sufficient to extend fL on A∗. For every ϕ ∈ AL we set

fL

(

lim
λ→Λ

(λ, ϕ(λ))

)

= lim
λ→Λ

(λ, f (ϕ(λ))) .

Let us note that the definition is well posed and that fL (limλ→Λ (λ, ϕ(λ))) ∈ B∗
since, for every ϕ ∈ AL, the function f ◦ ϕ ∈ BL. This extension is continuous: let
Ω be a basis open subset of BL. If Ω = {(λ, x)} then

fL
−1

(Ω) =
⋃

y∈ f −1(x)

(λ, y),

which is open. If Ω = Nϕ,Q for some ϕ : L → R, Q ∈ U then let ξ ∈ fL
−1

(Ω).
If ξ = (λ, x) for some x ∈ A then {(λ, x)} is a neighborhood of (λ, x) included in

fL
−1

(Ω); if ξ = limλ→Λ(λ,ψ(λ)) then fL(ξ) = limλ→Λ(λ, ϕ(λ)), therefore there
exists Q1 ∈ U such that f (ψ(λ)) = ϕ(λ) for all λ ∈ Q1, hence if we set Q2 =
Q ∩ Q1 we have that Nψ,Q2 is a neighborhood of ξ included in fL

−1
(Ω), thus

fL
−1

(Ω) is open, and this proves that fL is continuous.



A Topological Approach to Non-Archimedean Mathematics 29

Finally, fL restricted to A coincides with f since, for every a ∈ A, by definition

fL(a) = fL

(

lim
λ→Λ

(λ, a)

)

= lim
λ→Λ

(λ, f (a)) = f (a).

Lemma1 entails that the following definition is well posed:

Definition 11 Given a function

f : A → B

the restriction of fL to A∗ is called the natural extension of f and it will be
denoted by

f ∗ : A∗ → B∗.

In particular, f ∗(a) = f (a) for every a ∈ A.

2.4 The Λ-limit in V∞(R)

In this section we want to extend the notion ofΛ-limit to a wider family of functions.
To do that, we have to introduce the notion of superstructure on a set (see also [21]):

Definition 12 Let E be an infinite set. The superstructure on E is the set

V∞(E) =
⋃

n∈N
Vn(E),

where the sets Vn(E) are defined by induction by setting

V0(E) = E

and, for every n ∈ N,

Vn+1(E) = Vn(E) ∪ P (Vn(E)) .

Here P (E) denotes the power set of E . Identifying the couples with the
Kuratowski pairs and the functions and the relations with their graphs, it follows
that V∞(E) contains almost every usual mathematical object that can be constructed
startingwith E ; in particular,V∞(R) contains almost every usualmathematical object
of analysis.

Sometimes, following e.g. [21], we will refer to

U := V∞(R)
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as to the standarduniverse. Amathematical entity (number, set, function or relation)
is said to be standard if it belongs to U.

Now we want to formally define the Λ-limit of (λ, ϕ(λ)) where ϕ(λ) is any
bounded function of mathematical objects in V∞(R) (a function ϕ : L → V∞(R) is
called bounded if there exists n such that ∀λ ∈ L, ϕ(λ) ∈ Vn(R)). To this aim, let
us consider a function

ϕ : L → Vn(R). (4)

We will define limλ→Λ(λ, ϕ(λ)) by induction on n.

Definition 13 For n = 0, limλ→Λ(λ, ϕ(λ)) exists by Theorem1; so by induction we
may assume that the limit is defined for n − 1 and we define it for the function (4)
as follows:

lim
λ→Λ

(λ, ϕ(λ)) =
{

lim
λ→Λ

(λ,ψ(λ)) | ψ : L → Vn−1(R) and ∀λ ∈ L, ψ(λ) ∈ ϕ(λ)

}

.

Clearly limλ→Λ(λ, ϕ(λ)) is a well defined set in V∞(R∗).

Definition 14 Amathematical entity (number, set, function or relation) which is the
Λ-limit of a function is called internal.

Notice that V∞(R∗) contains sets which are not internal.

Example 1 Each real number is standard and internal. However the set of real num-
bers R ∈ V∞(R∗) is standard, but not internal. In order to see this let us suppose that
there is a function ϕ : L → V1(R) such that R = limλ→Λ(λ, ϕ(λ)). Therefore, by
definition, we would have

R =
{

lim
λ→Λ

(λ,ψ(λ)) | ψ : L → R and ∀λ ∈ L, ψ(λ) ∈ ϕ(λ)

}

.

In particular, for every constant c ∈ Rwe have that c ∈ ϕ(λ); therefore, ϕ(λ) = R

for every λ ∈ L, and this is absurd because

lim
λ→Λ

(λ, R) = R
∗,

and (except trivial cases) R
∗ properly includes R. Let us explicitly observe that

(except trivial cases), while for every c ∈ R the function λ → (λ, c) converges to c,
given A ∈ Vn(R), for n ≥ 1 the function λ → (λ, A) converges to a proper superset
of A.

Definition 15 Amathematical entity (number, set, function or relation) which is not
internal is called external.

As it is given, the definition of limit given by Definition13 is not related to any
topology. Thus a question arises naturally: is there a topological Hausdorff space
such that the limit given by Definition13 is the topological limit of a function?
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The answer is affirmative, and it is a consequence of the possibility to topologize
the set

UL = [L × V∞(R)]  V∞(R∗).

To topologize UL we take as open sets:

• every subset of L × V∞(R);
• {x} for every x ∈ V∞(R∗) that is external;
• Nϕ,Q := {(λ, ϕ(λ)) |λ ∈ Q} ∪ {x} for every x internal such that ϕ is a bounded
sequence with

x = lim
λ→Λ

(λ, ϕ(λ)) .

We let σU be the topology on UL generated by these open sets. It is clear that
this topology is Hausdorff and that the Λ-limit is a limit in this topology.

The set
UL = [L × V∞(R)] ∪ V∞(R∗)

will be called the expanded universe. Let us note that, by construction, UL ⊆
V∞(RL).

The results about extensions of subsets of R and of functions f : A → B,
A, B ⊆ R, can be generalized to our new general setting. Since a function f can
be identified with its graph then the natural extension of a function is defined by
the above definition. Moreover we have the following result, that can be proved as
Lemma1:

Theorem 3 For every sets E, F ∈ V∞(R) and for every function f : E → F the
natural extension of f is a continuous function

f ∗ : E∗ → F∗,

and for every function ϕ : L → E we have that

lim
λ→Λ

f (λ, ϕ(λ)) = f ∗
(

lim
λ→Λ

(λ, ϕ(λ))

)

.

3 Comparison Between Λ-theory and Ultrapowers

3.1 Λ-theory and Nonstandard Universes

It should be evident to any reader with a background in NSA that Λ -theory (when
restricted to minimal canonical extensions) is closely related to ultrapowers (which,
from a purely logical point of view, are even easier to define). In this section we want
to detail the relationship betweenΛ-theory and NSA.We will show thatUL contains
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a nonstandard universe in the sense of Keisler [21]. We recall the main definitions
of [21].

Definition 16 A superstructure embedding is a one to one mapping ∗ of V∞(R)

into another superstructure V∞(S) such that

1. R is a proper subset of S, r∗ = r for all r ∈ R, and R
∗ = S;

2. for x, y ∈ V∞(R), x ∈ y if and only if x∗ ∈ y∗.

To avoid confusion, in this section we will use the letter K to denote the Non-
Archimedean field constructed in Sect. 2.2, whileR

∗ will be used as in Definition16.
Let us denote by L a formal language relative to a first order predicate logic

with the equality symbol, a binary relation symbol ∈, and a constant symbol for each
element in V∞(R). We recall that a sentence p ∈ L is bounded if every quantifier
in p is bounded (see e.g. [21]). The notion of bounded sequence allows to define the
notion of nonstandard universe.

Definition 17 Anonstandarduniverse is a superstructure embedding∗ :V∞(R) →
V∞(R∗) which satisfies Leibniz’ Principle, which is the property that states that for
each bounded sentence p ∈ L , p is true in V∞(R) if and only if p∗ is true3 in
V∞(R∗).

Definition 18 We let ∗ : V∞(R) → V∞(K) be the map defined as follows: for every
element x ∈ V∞(R) we set

x∗ = lim
λ→Λ

(λ, x).

Remark 6 Following Keisler (see [21]), in Definition17 we have called nonstandard
universe just the superstructure embedding; however, in our approach, probably, it
would be more appropriate to call nonstandard universe the set V∞(K); in this case
the global picture would be the following one: the extended universe

UL = [L × V∞(R)]  V∞(K)

contains pairs (λ, x) and elements of the nonstandard universe V∞(K); the latter
contains the following objects:

• standard elements, namely objects x ∈ V∞(R) ⊂ V∞(K);
• nonstandard elements, namely objects x ∈ V∞(K)\V∞(R);
• hyperimages, namely objects x such that there exists y ∈ V∞(R) with x = y∗;
• internal objects, namely Λ-limits of bounded functions;
• external objects.

To give some examples: 7, R,P(R × P(R)) are all standard elements; 7 is also
an hyperimage, while R, P(R × P(R)) are not; K, P(R)∗ and limλ→Λ(λ, ϕ(λ))

3p∗ is the bounded sentence obtained by changing every constant symbol c ∈ V∞(R) that appears
in p with c∗.
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for every ϕ : L → R which is not eventually constant are nonstandard elements, and
they are all internal; R and K\R are external objects.

An interesting class of internal objects, particularly important for our applications
to PDEs, is that of hyperfinite objects4:

Definition 19 An object ξ ∈ V∞(K) is hyperfinite if there exists a natural number
n and a bounded function ϕ : L → P f in(Vn(R)) such that ξ = limλ→Λ(λ, ϕ(λ)).

Hyperfinite objects are the analogue, in the universe V∞(K), of finite objects
in V∞(R). The notion of hyperfinite object will be used in Sect. 4 to show some
applications of Λ-theory.

To detail the relationship between Λ-theory and nonstandard universes in the
sense of Keisler we need to specify how we interpret formulas in V∞(K)5:

Definition 20 Let p(x1, . . . , xn) ∈ L be a bounded formula having x1, . . . , xn as
its only free variables. Let ξ1 = limλ→Λ(λ, ϕ1(λ)), . . . , ξn = limλ→Λ(λ, ϕn(λ)). We
say that p∗(ξ1, . . . , ξn) holds in V∞(K) iff p(ϕ1(λ), . . . , ϕn(λ)) is eventually true in
V∞(R), namely iff

{(λ, (ϕ1(λ), . . . , ϕn(λ)) | p(ϕ1(λ), . . . , ϕn(λ)) holds in V∞(R)} ∪ {(ξ1, . . . , ξn)}

is open in σU .

Theorem 4 Let ∗ be defined as in Definition18; then

(V∞(R), V∞(K), ∗)

is a nonstandard universe.

Proof That ∗ : V∞(R) → V∞(K) is a superstructure embedding follows clearly
from the definitions.

Moreover, for every bounded formula p(x1, . . . , xn) ∈ L having x1, . . . , xn as its
only free variables, for every ξ1 = limλ→Λ(λ, ϕ1(λ)), . . . , ξn = limλ→Λ(λ, ϕn(λ)),
we have that

p(ξ1, . . . , ξn) holds in V∞(K) ⇔
{(λ, (ϕ1(λ), . . . , ϕn(λ)) | p(ϕ1(λ), . . . , ϕn(λ)) holds in V∞(R)} ∪ {(ξ1, . . . , ξn)}

is open in σU ⇔
{λ ∈ L | p(ϕ1(λ), . . . , ϕn(λ)) holds in V∞(R)} ∈ U ⇔

p([ϕ1], . . . , [ϕn]) holds in R
L
U .

This equivalence can be used to easily prove the transfer property for ∗ :
V∞(R) → V∞(K) by induction on the complexity of formulas.

4See e.g. [1], where many different applications of hyperfinite objects and other nonstandard tools
are developed.
5Once again, it should be evident to readers expert in NSA that our definition is precisely analogous
to the one that is given for ultrapowers.
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3.2 General Remarks

Theorem4 makes precise the intuition that the topological approach to
Non-Archimedean mathematics given by Λ-theory is closely related with NSA as
presented by Keisler in [21]. As we said in the introduction, we think of Λ-theory as
a way to present to a non-expert reader many basic ideas of NSA in a more familiar
language. Nevertheless, we think that from a philosophical point of view point there
are some differences between Λ-theory and the ultrapower approach:

1. in Λ-theory we assume the existence of a unique mathematical universe UL ⊂
V∞(L ∪ K). Inside this universe there are entities that do not appear in traditional
mathematics but that can be obtained as limits of traditional objects, namely the
internal elements. Moreover, there are also external objects, and some of them
are objects of traditional mathematics (e.g., R);

2. in NSA the primitive concept is that of hyperimage, the other concepts (e.g.,
the concept of internal object) are derived by that one; in Λ -theory, the primitive
concept is that ofΛ-limit, while the concept of hyperimage is derived by the limit.
So, within Λ-theory the notion of internal object (being defined as a Λ-limit) is
more primitive than that of hyperimage;

3. the construction of the hyperreal field in our approach has a topological “flavour”
which is similar to other constructions in traditional mathematics. In fact, e.g.
whitin our approach the construction of R

∗ as “set of limits of functions with
values in L × R” has some similarities with the construction of R as set of limits
of Cauchy sequences with values in Q.

4 Generalized Solutions

In many circumstances, the notion of function is not sufficient to the needs of a
theory and it is necessary to extend it. Many different constructions have been con-
sidered in the literature to deal with this problem, both with standard (for example,
Colombeau’s Theory, see e.g. [19] and references therein for a complete presenta-
tion of the theory and [18] and reference therein for some new developments of the
theory with applications to generalized ODE’s) and nonstandard techniques (see e.g.
[26]). In this section we want to apply Λ-theory to construct spaces of generalized
functions called ultrafunctions (see also [5, 9–14], and to use them to study a simple
class of problems in calculus of variations. As we are going to show, ultrafunctions
are constructed by means of a particular version of the hyperfinite approach which
can be naturally introduced by means of Λ-theory.

In this section we will use the following shorthand notation: for every bounded
function ϕ : L → V∞(R) we let

lim
λ↑Λ

ϕ(λ) := lim
λ→Λ

(λ, ϕ(λ)) .
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4.1 Ultrafunctions

Let N be a natural number, let Ω be a set in R
N and let V (Ω) be a function vector

space. We want to define the space of ultrafunctions generated by V (Ω). We assume
that

L = P f in (V (Ω)) ,

and we let U be a fine ultrafilter6 on L. For any λ ∈ L, we set

Vλ(Ω) = Span {λ ∩ V (Ω)} .

Let us note that, by construction, Vλ(Ω) is a finite dimensional vector subspace
of V (Ω).

Definition 21 Given the function space V (Ω) we set

VΛ(Ω) := lim
λ↑Λ

Vλ(Ω) =
{

lim
λ↑Λ

uλ | uλ ∈ Vλ(Ω)

}

.

VΛ(Ω) will be called the space of ultrafunctions generated by V (Ω).

Given any vector space of functions V (Ω), we have the following three properties:

1. the ultrafunctions in VΛ(Ω) are Λ-limits of functions valued in V (Ω), so they
are all internal functions;

2. the space of ultrafunctions VΛ(Ω) is a vector space of hyperfinite dimension;
3. if we identify a function f with its natural extension f ∗ then VΛ(Ω) includes

V (Ω), hence we have that

V (Ω) ⊂ VΛ(Ω) ⊂ V (Ω)∗.

Remark 7 Notice that the natural extension f ∗ of a function f is an ultrafunction if
and only if f ∈ V (Ω).

Proof The proof of this result is trivial.7

Ultrafunctions can be used to give generalized solutions to some problems in the
calculus of variations (see e.g. [11]). Usually this kind of problems have a “natural
space” where to look for solutions: the appropriate function space has to be a space in
which the problem is well posed and (relatively) easy to solve. For a very large class
of problems the natural space is a Sobolev space. However, many times even the best
candidates to be natural spaces are inadequate to study the problem, since there is no
solution in them. So the choice of the appropriate function space is part of the problem

6Let us recall that an ultrafilter U on L is fine if for every λ ∈ L the set {μ ∈ L | μ ⊆ λ} ∈ U . We
also point out that, formore complicated applications, it would be better to takeL = P f in (V∞(R)).
7Any interested reader can find it in [10].
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itself; this choice is somewhat arbitrary and it might depend on the final goals. In
the framework of ultrafunctions this situation persists. The general rule is: choose
the “natural space” V (Ω) and look for a generalized solution in VΛ(Ω). For many
applications, an hypothesis8 thatwe need to assume is that D(Ω) ⊆ V (Ω) ⊆ L2(Ω).
In this case, sinceVΛ(Ω) ⊂ [

L2(Ω)
]∗
,we can equipVΛ(Ω)with the following scalar

product:

(u, v) =
∫ ∗

u(x)v(x) dx, (5)

where
∫ ∗ is the natural extension of the Lebesgue integral considered as a functional

∫

: L1(Ω) → R.

The norm9 of an ultrafunction will be given by

‖u‖ =
(∫ ∗

|u(x)|2 dx

) 1
2

.

Moreover, using the inner product (5), we can identify L2(Ω) with a subset
of V ′(Ω) and hence

[
L2(Ω)

]∗
with a subset of

[
V ′(Ω)

]∗
; in this case, ∀ f ∈

[
L2(Ω)

]∗
, we let f̃ be the unique ultrafunction such that, ∀v ∈ VΛ(Ω),

∫ ∗
f̃ (x)v(x) dx =

∫ ∗
f (x)v(x) dx,

namely we associate to every f ∈ L2(Ω)∗ the function f̃ = PΛ( f ), where

PΛ : [
L2(Ω)

]∗ → VΛ(Ω)

is the orthogonal projection.

Remark 8 There are a few different ways to prove the existence of an orthogonal
projection of L2(Ω)∗ on VΛ(Ω). For example, consider, for every λ ∈ L, the orthog-
onal projection Pλ : L2(Ω) → Vλ(Ω). Let F := limλ↑Λ Pλ. It is immediate to see
that F : L2(Ω)∗ → VΛ(Ω) is an orthogonal projection.

Let us note that the key property to associate an ultrafunction to every function in[
L2(Ω)

]∗
is that

[
L2(Ω)

]∗
can be identified with a subset of

[
V ′(Ω)

]∗
. Therefore,

using a similar idea, it is also possible to extend a large class of operators:

8E.g., in [12] a (slightly modified) version of this hypothesis is used to construct an embedding of
the space of distributions in a particular algebra of functions constructed bymeans of ultrafunctions.
9Let us observe that both the scalar product and the norm take values in R

∗.
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Definition 22 Given an operator

A : V (Ω) → V ′(Ω),

we can extend it to an operator

Ã : VΛ(Ω) → VΛ(Ω)

in the following way: given an ultrafunction u, AΛ(u) is the unique ultrafunction
such that

∀v ∈ VΛ(Ω),

∫ ∗
Ã (u)vdx =

∫ ∗
A ∗(u)vdx;

namely
Ã = PΛ ◦ A ∗,

where PΛ is the canonical projection.

This association can be used, e.g., to define the derivative of an ultrafunction, by
setting

Du := ∂̃u = PΛ(∂∗u)

for every ultrafunction u ∈ VΛ(Ω) ∩ C 1(Ω)∗.

4.2 Applications to Calculus of Variations

To give an example of application of ultrafunctions to calculus of variations, we will
show the ultrafunction interpretation of the Lavrentiev phenomenon. Let us consider
the following problem: minimize the functional

J0(u) =
∫ 1

0

[(|∇u|2 − 1
)2 + |u|2

]
dx

in the function space C 1
0 (Ω) = C 1(Ω) ∩ C0(Ω). We assume Ω to be bounded to

avoid problems of summability.10

It is not difficult to realize that any minimizing sequence un converges uniformly
to 0 and that J0(un) → 0, but J0(0) > 0 for any u ∈ C 1

0 (0, 1). Hence there is no
minimizer in C 1

0 (Ω).

10This example has already been studied in greater detail in [11].
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On the contrary, it is possible to show that this problem has a minimizer in the
space of ultrafunctions

V 1
0 (Ω) = [

C 1(Ω) ∩ C0(Ω)
]

Λ
.

In V 1
0 (Ω) our problem becomes

find v ∈ V 1
0 (Ω) s.t. J̃0(v) = min

u∈V 1
0 (Ω)

J̃0(u). (P)

To solve (P), let us prove the following “ultrafunction version” of an existence result
for minimizers of coercive continuous operators; the proof is based on a variant of
Faedo-Galerkin method.

Theorem 5 Let V (Ω) ⊆ L2(Ω) be a vector space and let

J : V (Ω) → R

be an operator continuous and coercive on finite dimensional spaces. Then the oper-
ator

J̃ : VΛ (Ω) → R
∗

has a minimum point. If J itself has a minimizer u, then u∗ is a minimizer of J̃ .

Proof Take λ ∈ L; since the operator

J |Vλ
: Vλ(Ω) −→ R

is continuous and coercive, it has a minimizer; namely

∃uλ ∈ Vλ ∀v ∈ Vλ J (uλ) ≤ J (v).

We set
uΛ = lim

λ↑Λ
uλ.

We show that uΛ is a minimizer of J̃ . Let v ∈ VΛ (Ω). Let us suppose that v =
limλ↑Λ vλ; then by construction

∀λ ∈ L J (uλ) ≤ J (vλ),

therefore
J̃ (uΛ) ≤ J̃ (v).
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If J itself has a minimizer u, then uλ is eventually equal to u and hence uΛ = u∗.

As a consequence, problem (P) has a solution, since the functional J0 satisfies the
hypothesis of Theorem5. So there exists an ultrafunction u ∈ V 1

0 (Ω) that minimizes
J̃0. Moreover, it can be represented as the Λ-limit of a function of minimizers of
the approximate problems on the spaces

[
C 1(Ω) ∩ C0(Ω)

]

λ
. By using this charac-

terization, it is also possible to derive some qualitative properties of u, e.g. it is not
difficult to show that, ∀x ∈ (0, 1)∗, the minimizer uΛ(x) ∼ 0 and that J̃0(uΛ) is a
positive infinitesimal.
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A Note on an Overdetermined Problem
for the Capacitary Potential

Chiara Bianchini and Giulio Ciraolo

Abstract We consider an overdetermined problem arising in potential theory for
the capacitary potential and we prove a radial symmetry result.

Keywords Overdetermined boundary value problems · Electrostatic potential ·
Symmetry · Capacity

1 Introduction

In this note we deal with an overdetermined problem for the electrostatic potential.
The electrostatic capacity of a bounded set Ω ⊂ R

n , n ≥ 3, is defined by

Cap(Ω) = inf

{∫

Rn

|Dv|2dx : v ∈ C∞
c (Rn) , v(x) ≥ 1 ∀x ∈ Ω

}

, (1)

where C∞
c (Rn) denotes the set of C∞ functions having compact support. It is well-

known that it can be equivalently obtained via the asymptotic expansion of the so-
called electrostatic potential of Ω (or capacitary function of Ω), i.e.

Cap(Ω) = (n − 2)ωn lim|x |→∞ u(x)|x |n−2 , (2)

where ωn denotes the surface area of the unit sphere in R
n , and u is a minimizer of

problem (1) and hence it satisfies
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⎧
⎪⎨

⎪⎩

Δu = 0 in Rn \ Ω ,

u = 1 on ∂Ω ,

lim|x |→+∞ u(x) = 0 .

(3)

We mention that the electrostatic potential u represents the potential energy of the
electrical field induced by the conductorΩ , normalized so that the voltage difference
between ∂Ω and infinity is one, and henceCap(Ω) represents the total electric charge
needed to induce the potential u (see for instance [9]).

A classical question in potential theory is the study of symmetry properties for
problem (3). More precisely, one imposes an extra assumption to Problem (3) and
studies how such an overdetermination reflects on the domain Ω . In particular, one
can ask whether certain geometric properties of the constraint are inherited by the
domainΩ . In this respect, a typical problem is the so-called Serrin’s exterior problem,
where one assumes that

|Du| = c on ∂Ω , (4)

where c is a positive constant, and one proves that a solution to (3) and (4) exists
if and only if the domain Ω is a ball. This result has been established in [10] by
using the method of moving planes. Other similar problems and related results can
be found in [2, 3, 7, 11, 13, 14].

In this note we discuss two kinds of overdetermining conditions involving the
mean curvature H∂Ω of ∂Ω (that is the average of the principal curvatures of ∂Ω).
More precisely, we prove the following theorem.

Theorem 1 Let Ω ⊂ R
n be a bounded domain with boundary of class C3,α and let

u be the solution of (3). If u and Ω are such that either

∫

∂Ω

|Du|2
[

H∂Ω − |Du|
n − 2

]

dH n−1 ≤ 0, (5)

or

∫

∂Ω

|Du|2
[

(n − 1)H∂Ω − n|Du|
2(n − 2)

]

dH N−1 ≤ (n − 2)3

2
ωn

(
Cap(Ω)

(n − 2)ωn

) n−4
n−2

,

(6)
then Ω is a ball and u is radially symmetric.

We mention that in the case that constraint (5) holds, Theorem 1 was already
proven in [1]. Indeed, in [1, Theorem1.1] the authors prove the symmetry result
by using a conformal reformulation of the problem and by proving the rotational
symmetry via a splitting argument. In this respect, we give a different proof of this
theorem.

Our approach is very simple and use a chain of integral identities and a basic
inequality for symmetric elementary functions (known as Newton’s inequality), as
in the spirit of [4–6]. More precisely, by considering the auxiliary problem for the
function



A Note on an Overdetermined Problem for the Capacitary Potential 43

v = u− 2
n−2 ,

where u solves (3), we prove that vmust be quadratic, and hence the capacitary func-
tion u has radial symmetry. This approach is very flexible and it has been extended
to more general settings [2, 3].

It is interesting to notice that from the proof of Theorem 1 (see Step 1 in Sect. 3)
we immediately obtain the following lower bound for the capacity, for n = 3:

Cap(Ω)

∫

∂Ω

|Du|2 [4H∂Ω − 3|Du|] dH 2 ≥ 4π . (7)

This lower bound is optimal, in the sense that the equality sign is attained when Ω

is a ball.

2 Preliminaries

We use the following notation. Let A = (ai j ) be a real n × n symmetric matrix. We
denote by Sk(A), k ∈ {1, . . . , n}, the sum of all the principal minors of A of order
k, so that S1(A) = tr(A) and Sn(A) = det (A). Denoting by

Ski j (A) = ∂

∂ai j
Sk(A),

it holds

Sk(A) = 1

k
Ski j (A)ai j ,

where here and later the Einstein summation convention is applied. In particular for
k = 2

S2i j (A) = ∂

∂ai j
S2(A) =

{
−a ji i 	= j
∑

k 	=i akk i = j .

Notice that Sk(A) are the k-th elementary symmetric function of the eigenvalues
of A; so that

Sk(A) = Sk(λ1, . . . , λn) =
∑

1≤i1<···<ik≤n

λi1 · ... · λin ,

where λi are the eigenvalues of the matrix A.
When A = D2v it was proven in [12] that

Sk(D
2v) = 1

k
div(Ski j (D

2v)v j ) , (8)



44 C. Bianchini and G. Ciraolo

which follows from the fact that the vector (Ski1(D
2v), . . . , Skin(D

2v)) is divergence
free for i = 1, . . . , n, i.e.

∂

∂x j
Ski j (D

2v) = 0, i = 1, . . . , n.

In particular, for k = 2 we have

S2(D
2v) = 1

2
S2i j (D

2v)vi j = 1

2
div

(
S2i j (D

2v)v j
)

,

where

S2i j (D
2v) = ∂

∂vi j
S2(D

2v) =
{

−v ji i 	= j

Δv − vii i = j .

Notice that if Lt = {v > t} is a super level set of v, then

|Dv|2Δv = (n − 1)H∂Lt |Dv|3 + vi vi j v j on ∂Lt , (9)

so that, if ∂Lt is oriented such that ν = Dv/|Dv|, then

S2i j (D
2v)vi v j = (n − 1)H∂Lt |Dv|3 on ∂Lt . (10)

Two crucial ingredients for the proof of Theorem 1 are contained in next lemmas.

Lemma 1 (Newton Inequality) Let A be a symmetric matrix in Rn×n; it holds

S2(A) ≤ n − 1

2n
Tr(A)2 . (11)

Moreover, if Tr(A) 	= 0 and equality holds in (11), then

A = Tr(A)

n
I .

Lemma 2 For any smooth positive function v and γ ∈ R we have the following
identity:

2vγ S2(D
2v) =

= div
(γ

2
vγ−1|Dv|2Dv + vγ S2i j (D

2v)vi
)

− 3

2
γ vγ−1|Dv|2Δv − γ (γ − 1)

2
vγ−2|Dv|4 .

(12)

Proof We notice that for γ = 0 (12) is just the definition of S2 and then we may
assume γ 	= 0. Identity (12) immediately follows from the following two identities:

div(vγ S2i j (D
2v)vi ) = 2vγ S2(D

2v) + γ vγ−1S2i j (D
2v)vi v j , (13)
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and

vγ−1S2i j (D
2v)vi v j = 3

2
vγ−1|Dv|2Δv + γ − 1

2
vγ−2|Dv|4 − 1

2
div(vγ−1|Dv|2Dv) .

(14)
Identity (13) is readily obtained from γ vγ−1vi = (vγ )i , (8) and

S2(D
2v) = 1

2
S2i j (D

2v)vi j = 1

2
div(S2i j (D

2v)vi ) .

To prove (14) we notice that, since

S2i j (D
2v)vi v j = |Dv|2Δv − vi v j vi j ,

we have that

vγ−1S2i j (D
2v)vi v j = vγ−1|Dv|2Δv − vγ−1vi v j vi j

= vγ−1|Dv|2Δv + 1

2

[ − div(vγ−1|Dv|2Dv) + (γ − 1)vγ−2|Dv|4

+ vγ−1|Dv|2Δv
]

= 3

2
vγ−1|Dv|2Δv + γ − 1

2
vγ−2|Dv|4 − 1

2
div(vγ−1|Dv|2Dv) ,

which gives (14).

We conclude this section by recalling some well-known properties of the capaci-
tary potential (see [9]) which will be useful for the proof of Theorem 1:

u = Cap(Ω)

(n − 2)ωn
|x |2−n + o(|x |2−n) ,

ui = −Cap(Ω)

ωn
|x |−nxi + o(|x |1−n) ,

ui j = Cap(Ω)

ωn
|x |−n

(

n
xi x j

|x |2 − δi j

)

+ o(|x |−n) ,

(15)

as |x | → +∞.

3 Proof of Theorem 1

Step 1. We prove that the reverse inequality holds in (5) and (6). More precisely, we
shall prove that if u is a solution of (3), then it satisfies

∫

∂Ω

|Du|2
(

H∂Ω − 1

n − 2

|Du|
u

)

dH N−1 ≥ 0 , (16)
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and

∫

∂Ω
|Du|2

(

(n − 1)H∂Ω − n

2(n − 2)

|Du|
u

)

dH N−1 ≥ (n − 2)3

2
ωn

(
Cap(Ω)

(n − 2)ωn

) n−4
n−2

.

(17)

The proof of (16) and (17) is based on Lemma 2 and the Newton Inequality (11)
applied to the Hessian matrix of the function v = u− 2

n−2 . Notice that v solves

⎧
⎪⎨

⎪⎩

Δv = n
2

|Dv|2
v in Rn \ Ω,

v = 1 on ∂Ω,

v → ∞ as |x | → +∞.

(18)

Moreover, it follows from (15) that v satisfies

v =
(

Cap(Ω)

(n − 2)ωn

)− 2
n−2

|x |2 + o(|x |2) ,

vi = 2

(
Cap(Ω)

(n − 2)ωn

)− 2
n−2

xi + o(|x |) ,

vi j = 2

(
Cap(Ω)

(n − 2)ωn

)− 2
n−2

δi j + o(1) ,

(19)

as |x | → +∞. We notice that, since ∂Ω is of class C3,α , by Schauder’s theory we
have that u, v ∈ C3,α(Rn \ Ω) (see [8]).

We are ready to give the proof of (16) and (17). Let γ be a fixed parameter to be
chosen later and apply (12) to the solution v of (18). From (11) we have that

vγ n − 1

n
(Δv)2 ≥

≥ div(vγ S2i j (D
2v)vi ) + γ

2
div(vγ−1|Dv|2Dv) − 3

2
γ vγ−1|Dv|2Δv − γ

2
(γ − 1)vγ−2|Dv|4.

Since v satisfies (18), we obtain that

div(vγ S2i j (D
2v)vi ) + γ

2
div(vγ−1|Dv|2Dv) ≤ |Dv|4vγ−2

(
n

4
(n − 1) − γ

2
(1 − γ ) + 3

2
γ
n

2

)

.

(20)

Now, we make our choiche of γ so that the right hand side of the above inequality
vanishes. This is achieved for γ1 = 1 − n and γ2 = −n/2. Hence, by choosing γ =
γi , i = 1, 2, we obtain that v satisfies the following inequality in R

n \ Ω:

div(vγ S2i j (D
2v)vi ) + γ

2
div(vγ−1|Dv|2Dv) ≤ 0.
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Let R > 0 be such that Ω ⊂ BR . Since v ∈ C3,α(Rn \ Ω), we can integrate the
last inequality over BR \ Ω and apply the divergence theorem. Notice that Dv 	= 0
on ∂Ω and ν = Dv/|Dv| on ∂Ω , so from (10) we have that

∫

∂Ω

(
vγ (n − 1)H∂Ω |Dv|2 + γ

2
vγ−1|Dv|3

)
dH N−1 ≥

≥
∫

∂BR

(
vγ S2i j (D

2v)viν
j
BR

+ γ

2
vγ−1|Dv|2v jν j

BR

)
dH N−1 , (21)

where νBR denotes the outer unit normal vector to BR . Now we notice that if γ = γ1,
then (19) implies that

lim
R→∞

∫

∂BR

vγ1 S2i j (D
2v)viν

j
BR

+ γ1

2
vγ1−1|Dv|2viνi

BR
= 0, (22)

while if γ = γ2 then (19) yields

lim
R→∞

∫

∂BR

vγ2 S2i j (D
2v)viν

j
BR

+ γ2

2
vγ2−1|Dv|2viνiBR

= 2(n − 2)ωn

(
Cap(Ω)

(n − 2)ωn

) n−4
n−2

,

(23)

since ∂BR is asymptotically a level set of v. Indeed the superlevel sets of v are convex
sets which recover the whole RN .

By using the fact that v = 1 on Ω and coupling (21) and (22), we obtain

∫

∂Ω

|Dv|2
(

H∂Ω − 1

2

|Dv|
v

)

≥ 0 ,

while from (21) and (23) we find

∫

∂Ω

|Dv|2
(

(n − 1)H∂Ω − n

4

|Dv|
v

)

≥ 2(n − 2)ωn

(
Cap(Ω)

(n − 2)ωn

) n−4
n−2

.

By recalling that v = u− 2
n−2 , from the last two inequalities we immediately obtain

(16) and (17).
Step 2. From Step 1 we have that the equality sign holds in (5) and (6). This

means that the equality sign holds in Newton inequality, which implies that for every
x ∈ R

n \ Ω there exists a constant λ(x) such that

D2v(x) = λ(x)I d.

It is easy to see that λ must be constant. Indeed, let i ∈ {1, . . . , n} be fixed and chose
any j 	= i ; we have that

∂xi λ(x) = ∂xi ux j x j = ∂x j ux j xi = 0 ,
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which implies that λ is constant. Hence,

D2v = cId . (24)

From (18) we find that |Dv| is constant on every level surface of v. In particular, |Dv|
is constant on ∂Ω and hence from (9) and (24) we find that H∂Ω is constant and by
using Alexandrov Theorem we conclude that Ω is a ball. The proof is complete.
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A Note on Some Poincaré Inequalities
on Convex Sets by Optimal Transport
Methods

Lorenzo Brasco and Filippo Santambrogio

Abstract We show that a class of Poincaré-Wirtinger inequalities on bounded con-
vex sets can be obtained by means of the dynamical formulation of Optimal Trans-
port. This is a consequence of a more general result valid for convex sets, possibly
unbounded.

Keywords Poincaré inequalities · Wasserstein distances
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1 Introduction

1.1 Overview

Let 1 < p < ∞ and 0 < r < ∞. For an open setΩ ⊂ R
N , we introduce the Sobolev

spaces
W1,p

r (Ω) := {
φ ∈ Lr (Ω) : ∇φ ∈ L p(Ω;RN )

}
,
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and

Ẅ1,p
r (Ω) :=

{

φ ∈ W1,p
r (Ω) :

∫

Ω

|φ|r−1 φ dx = 0

}

.

In the particular case r = p, we will omit to indicate it and simply write W1,p(Ω)

and Ẅ1,p(Ω).
The aimof this note is to prove some functional inequalities for the space Ẅ1,p

r (Ω),
by means of Optimal Transport techniques. The use of Optimal Transport to prove
functional and geometric inequalities is nowadays classical. We are not concerned
here with geometric inequalities, thus we only refer to Sects. 2.5.3 and 7.4.2 of
[22] for a brief discussion on the subject (in particular on the isoperimetric and the
Brunn-Minkowski inequalities). As for functional inequalities obtained via Optimal
Transport techniques, which is the main concern of this paper, after the fundamental
paper [7] the literature on the subject is nowquite rich. In addition to [7],we encourage
the reader to look in details into the papers [3, 6, 13, 14, 18], for example.

It is useful to observe that most of these papers use the geometric properties of the
optimal transport map as a tool to obtain a clever change-of-variable. This is indeed
the case for the transport-based proof of the isoperimetric, Sobolev and Gagliardo-
Nirenberg inequalities. We could say that they are based on the “statical” version of
Optimal Transport problems.

On the contrary, the proof that we propose here is based on the “dynamical”
counterpart of Optimal Transport (the so-called Benamou-Brenier formula, see [5])
and on displacement convexity considerations, see [17]. In this respect, it can bemore
suitably compared to the transport-based proof of the Brunn-Minkowski inequality.

It is also useful to remark that while the above cited papers deal with functional
inequalities which are invariant for the transformation φ �→ |φ|, such as Sobolev and
Gagliardo-Nirenberg ones, this is not the case here. Indeed, if a function φ belongs
to our space Ẅ1,p

r (Ω), then |φ| /∈ Ẅ1,p
r (Ω). Thus, in order to prove our main result

(see Theorem1 below), we can not reduce to the case of positive functions and then
use an optimal transport to transform any positive function φ into an extremal of the
relevant functional inequality, as in [7]. Roughly speaking, what we do is to perform
an optimal transport between the positive and negative parts φ+ and φ− (suitably
renormalized).

Our proof has some points in common with the one presented by Rajala in [21],
which is valid in general metric measure spaces under Ricci curvature conditions.
Indeed, it iswell-known thatRicci curvature conditions are linked to the displacement
convexity of suitable functionals (see for instance the work [12] by Lott and Villani,
to which [21] is inspired). However, even if the result of [21, Theorem 1.1] holds in
a much more general setting, we stress that the tools used in [21] are not the same as
ours. Moreover, the result of [21] only concerns with Poincaré inequalities on balls
in the case q = 1 (with our notation below).
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1.2 Main Result

In order to neatly present themain result, we first need to recall some basic definitions
and notations.

We indicate byP(Ω) the set of all Borel probability measures over Ω . Then for
1 ≤ m < ∞, we define

Pm(Ω) =
{

μ ∈ P(Ω) :
∫

Ω

|x |m dμ < ∞
}

, (1)

i.e. the set of probability measure over Ω with finite moment of order m. For every
μ, ν ∈ Pm(Ω) their m−Wasserstein distance is defined through the optimal trans-
port problem

Wm(μ, ν) =
(

min
γ∈Π(μ,ν)

∫

Ω×Ω

|x − y|m dγ

) 1
m

.

Here Π(μ, ν) ⊂ P(Ω × Ω) is the set of transport plans, i.e. the probability
measures on the product space Ω × Ω such that

γ (A × Ω) = μ(A) γ (Ω × B) = ν(B), for every A, B ⊂ Ω Borel sets.

In what follows, we will note byL N the N -dimensional Lebesgue measure. For
a function f ∈ L1, the writing

μ = f · L N ,

will indicate the Radon measure which is absolutely continuous with respect toL N

and whose Radon-Nikodym derivative is given by f .
In this note we prove the following scaling invariant inequality, which is valid for

general convex sets.

Theorem 1 Let 1 < p < ∞ and 1 < q < p. Let Ω ⊂ R
N be an open convex set.

For every φ ∈ Ẅ1,p
q−1(Ω) such that

∫

Ω

|x | p
p−q |φ|q−1 dx < ∞, (2)

we define the two probability measures ρ0, ρ1 ∈ Pp/(p−q)(Ω)

ρ0 = |φ|q−2 φ+
∫

Ω

|φ|q−2 φ+ dx
· L N and ρ1 = |φ|q−2 φ−

∫

Ω

|φ|q−2 φ− dx
· L N .
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Then there holds

(∫

Ω

|φ|q dx

)p−q+1

≤
(

W p
p−q

(ρ0, ρ1)
)p

2p−1

∫

Ω

|∇φ|p dx

(∫

Ω

|φ|q−1 dx

)p−q

. (3)

The proof of this result is postponed to Sect. 3. We point out that inequality (3)
in turn implies a handful of Poincaré-type inequalities with explicit constants. The
reader is invited to jump directly to Sect. 4 in order to discover them. In particular, as
a corollary we can obtain a lower bound for the first non-trivial Neumann eigenvalue
of the p-Laplacian, see Corollary4. This can be seen as a weak version of the Payne-
Weinberger inequality (see [4, 9, 19]): though the explicit constant we get is not
optimal, we believe the method of proof to be of independent interest.

Remark 1 We point out that the hypothesis φ ∈ Lq(Ω) is not needed in Theorem1.
Rather, inequality (3) permits to show that on a convex set, functions in Ẅ1,p

q−1(Ω)

verifying (2) are automatically in Lq(Ω).

2 Preliminaries

2.1 An Embedding Result

Wewill need some basic inequalities for Sobolev spaces in bounded sets. The proofs
are standard, but we give them for the reader’s convenience. The values of the con-
stants appearing in the inequalities below will have no bearing in what follows.

Lemma 1 Let 1 < p < ∞ and let Ω ⊂ R
N be an open connected and bounded set,

with Lipschitz boundary. Then for every φ ∈ W1,p(Ω) such that the set

Aφ := {x ∈ Ω : |φ(x)| = 0},

has positive measure, we have

∫

Ω

|φ|p dx ≤ C
|Ω|
|Aφ|

∫

Ω

|∇φ|p dx, (4)

for some C = C(N , p,Ω) > 0.

Proof The proof is an adaptation of that of [10, Theorem 3.16]. We first observe that
if we indicate by φΩ the mean of φ over Ω , then

|Aφ| |φΩ |p =
∫

Aφ

|φΩ |p dx =
∫

Aφ

|φ − φΩ |p dx ≤
∫

Ω

|φ − φΩ |p dx .
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By using this information, with elementary manipulations we then get

∫

Ω

|φ|p dx ≤ 2p−1
∫

Ω

|φ − φΩ |p dx + 2p−1 |Ω|
|Aφ|

∫

Ω

|φ − φΩ |p dx .

We can conclude by applying Poincaré inequality for functions with vanishing
mean, see for example [10, Theorem 3.14]. �

The next interpolation inequality for the Sobolev space W1,p
r (Ω) will be useful.

Lemma 2 Let 1 < p < ∞ and 0 < r < p. Let Ω ⊂ R
N be an open connected and

bounded set, with Lipschitz boundary. Then W1,p
r (Ω) ⊂ L p(Ω). More precisely, for

every φ ∈ W1,p
r (Ω) we have

∫

Ω

|φ|p dx ≤ C
∫

Ω

|∇φ|p dx + C

(∫

Ω

|φ|r dx

) p
r

,

for some C = C(N , p,Ω) > 0.

Proof Given φ ∈ W1,p
r (Ω), for every t > 0 and M > 0 we define

φt (x) = (|φ(x)| − t)+ and φt,M(x) = min{φt (x), M}.

The function φt,M belongs to W1,p(Ω), if we set At,M = {x ∈ Ω : φt,M(x) = 0}
then by Chebyshev’s inequality

|Ω \ At,M | := ∣
∣{x ∈ Ω : φt,M(x) 	= 0}∣∣ ≤ 1

tr

∫

Ω

|φ|r dx . (5)

From (4) we get

∫

Ω

|φt,M |p dx ≤ C
|Ω|

|At,M |
∫

Ω

|∇φt,M |p dx,

and observe that from (5)

|Ω|
|At,M | = |Ω|

|Ω| − |Ω \ At,M | ≤ 2, if we choose t =
(

2

|Ω|
)1/r

‖φ‖Lr (Ω).

We thus obtain ∫

Ω

|φt,M |p dx ≤ 2C
∫

Ω

|∇φ|p dx .

It is now possible to take the limit as M goes to∞, thus getting by Fatou’s Lemma

∫

Ω

|φt |p dx ≤ 2C
∫

Ω

|∇φ|p dx .



54 L. Brasco and F. Santambrogio

By recalling the choice of t and observing that |φ| ≤ t + φt , we get the desired
conclusion. �

2.2 Some Tools from Optimal Transport

We recall a couple of standard results in Optimal Transport, that will be needed for
the proof of the main result. For more details, the reader is invited to refer to classical
monographs such as [2] or [23], or to the more recent one [22].

Definition 1 The m-Wasserstein space over Ω is the set Pm(Ω) defined in (1),
equipped with the Wasserstein distance Wm . This metric space will be denoted by
Wm(Ω).

The first important tool we need is a characterization of geodesics in the Wasser-
stein space. This is essentially a refined version of the celebrated Benamou-Brenier
formula, firstly introduced in [5]. The proof can be found in [22, Theorem 5.14 and
Proposition 5.30].

Proposition 1 (Wasserstein geodesics)Let 1 < m < ∞ and let Ω ⊂ R
N be an open

bounded convex set. Let ρ0, ρ1 ∈ Wm(Ω), then there exist an absolutely continuous
curve (μt )t∈[0,1] in the Wasserstein space Wm(Ω) and a vector field vt ∈ Lm(Ω;μt )

such that

• μ0 = ρ0 and μ1 = ρ1;
• the continuity equation

{
∂tμt + div(vt μt ) = 0, in Ω,

〈vt , νΩ〉 = 0, on ∂Ω

holds in distributional sense, i.e. for every φ ∈ C1([0, 1] × Ω) there holds

∫ 1

0

∫

Ω

∂tφ dμt dt +
∫ 1

0

∫

Ω

〈∇φ, vt 〉 dμt dt =
∫

Ω

φ(1, ·) dρ1 −
∫

Ω

φ(0, ·) dρ0;

• we have
(∫ 1

0
‖vt‖m

Lm (Ω;μt )
dt

) 1
m

= Wm(ρ0, ρ1).

The other expedient result from Optimal Transport we need is the following
convexity property of Lq norms. For m = 2, this is a particular instance of a result
by McCann, see [17]. The proof can be found, for example, in [22, Theorem 7.28].

Proposition 2 (Geodesic convexity of Lq norms) Let 1 < m < ∞ and let Ω ⊂ R
N

be an open bounded convex set. Let ρ0 = f0 · L N and ρ1 = f1 · L N be two
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probability measures on Ω , such that f0, f1 ∈ Lq(Ω) for some 1 ≤ q ≤ ∞. If
(μt )t∈[0,1] ⊂ Wm(Ω) is the curve of Proposition1, then we have

μt = ft · L N and ‖ ft‖Lq (Ω) ≤
(
(1 − t) ‖ f0‖q

Lq (Ω)
+ t ‖ f1‖q

Lq (Ω)

) 1
q

, t ∈ [0, 1].

3 Proof of the Main Result

3.1 An Expedient Estimate

We first need the following preliminary result. The idea of the proof is similar to that
of [11, Proposition 2.6] and [15, Lemma 3.5], though the final outcome is different.
We also cite the short unpublished note [20] containing interesting uniform estimates
on these topics.

Lemma 3 Let 1 < q < p < ∞ and let Ω ⊂ R
N be an open and bounded convex

set. For every φ ∈ W1,p(Ω) and every f0, f1 ∈ Lq ′
(Ω) such that

∫

Ω

f0 dx =
∫

Ω

f1 dx = 1, f0, f1 ≥ 0,

we have

∫

Ω

φ ( f1 − f0) dx ≤ W p
p−q

(ρ0, ρ1) ‖∇φ‖L p(Ω)

⎛

⎝
‖ f0‖q ′

Lq′
(Ω)

+ ‖ f1‖q ′

Lq′
(Ω)

2

⎞

⎠

q−1
p

,

(6)
where

ρi = fi · L N , i = 0, 1,

Proof Let us first suppose that φ ∈ C1(Ω). In this case we clearly have C1(Ω) ⊂
W1,p(Ω).

For notational simplicity we set r := p/(p − q). Then, by using Propositions1
and 2 with ρ0 = f0 · L N and ρ1 = f1 · L N and observing that φ does not depend
on t , with the previous notation we can infer

∫

Ω

φ ( f1 − f0) dx =
∫ 1

0

∫

Ω

〈∇φ, vt 〉 ft dx dt

≤
(∫ 1

0

∫

Ω

|∇φ| p
q ft dx dt

) q
p
(∫ 1

0

∫

Ω

|vt |r ft dx dt

) 1
r

≤
(∫ 1

0

∫

Ω

|∇φ|p dx dt

) 1
p
(∫ 1

0
‖ ft‖q ′

Lq′
(Ω)

dt

) q−1
p

Wr (ρ0, ρ1),



56 L. Brasco and F. Santambrogio

Observe that the last term is finite, since ft ∈ Lq ′
(Ω) and its Lq ′

norm is integrable
in time, thanks to Proposition2.

Since φ does not depend on t , from the previous estimate we get in particular

∫

Ω

φ ( f1 − f0) dx ≤ Wr (ρ0, ρ1) ‖∇φ‖L p(Ω)

(∫ 1

0
‖ ft‖q ′

Lq′
(Ω)

dt

) q−1
p

.

We now observe that by Proposition2

∫ 1

0
‖ ft‖q ′

Lq′
(Ω)

dt ≤
∫ 1

0

[
‖ f0‖q ′

Lq′
(Ω)

+ t
(
‖ f1‖q ′

Lq′
(Ω)

− ‖ f0‖q ′

Lq′
(Ω)

)]
dt

=
‖ f0‖q ′

Lq′
(Ω)

+ ‖ f1‖q ′

Lq′
(Ω)

2
.

thus we obtain the desired estimate (6), for φ ∈ C1(Ω).
Finally, we get the general case by using that for a convex set C1(Ω) is dense in

W1,p(Ω), see [16, Theorem 1, Sect. 1.1.6]. �

3.2 Proof of Theorem1

We divide the proof in two steps: we first prove the inequality for bounded convex
sets and then consider the general case. For notational simplicity, we set again r :=
p/(p − q).

Bounded convex sets. Let φ ∈ Ẅ1,p
q−1(Ω) \ {0}, the hypothesis

∫

Ω
|φ|q−2 φ = 0

implies ∫

Ω

|φ|q−1 dx = 2
∫

Ω

|φ|q−2 φ+ dx = 2
∫

Ω

|φ|q−2 φ− dx . (7)

By Lemma2, we have φ ∈ W1,p(Ω) as well, thus we can now apply (6) with the
choices

ρ1 = f1 · L N := |φ|q−2 φ+
∫

Ω
|φ|q−2 φ+ dx

· L N and ρ0 = f0 · L N = |φ|q−2 φ−
∫

Ω
|φ|q−2 φ− dx

· L N .

For the left-hand side of (6), by using (7) we get

∫

Ω

φ ( f1 − f0) dx = 2

∫

Ω

|φ|q dx
∫

Ω

|φ|q−1 dx
.
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For the right-hand side of (6), we observe that again by (7) and using that

|φ|q−2 φ+ = φ
q−1
+ , |φ|q−2 φ− = φ

q−1
− ,

we get

‖ f0‖q ′

Lq′
(Ω)

+ ‖ f1‖q ′

Lq′
(Ω)

=

∫

Ω

(|φ|q−2 φ−
) q

q−1 dx

(∫

Ω

|φ|q−2 φ− dx

) q
q−1

+

∫

Ω

(|φ|q−2 φ+
) q

q−1 dx

(∫

Ω

|φ|q−2 φ+ dx

) q
q−1

= 2
q

q−1

∫

Ω

|φ|q dx

(∫

Ω

|φ|q−1 dx

) q
q−1

.

Then from (6) we finally obtain

∫

Ω

|φ|q dx
∫

Ω

|φ|q−1 dx
≤ Wr (ρ0, ρ1)

2
p−1

p

(∫

Ω

|∇φ|p dx

) 1
p

(∫

Ω

|φ|q dx

) q−1
p

(∫

Ω

|φ|q−1 dx

) q
p

.

After a simplification, this proves the desired inequality (3) when Ω is a bounded
set.

General convex sets. Let us now assume thatΩ is a generic open convex set and φ ∈
Ẅ1,p

q−1(Ω) \ {0}. We can suppose that the origin belongs to Ω , then for k ∈ N \ {0}
we define

Ωk = {x ∈ Ω : |x | < k} and δk =

⎛

⎜
⎜
⎝

∫

Ωk

|φ+|q−1 dx
∫

Ωk

|φ−|q−1 dx

⎞

⎟
⎟
⎠

1/(q−1)

.

Note that, at least for k large, δk is well-defined, since

lim
k→∞

∫

Ωk

|φ−|q−1 dx =
∫

Ω

|φ−|q−1 dx,

and the last quantity is strictly positive, since φ 	≡ 0.
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The function φk = φ+ − δk φ− belongs to Ẅ1,p
q−1(Ωk), by construction. Moreover,

since φ ∈ Ẅ1,p
q−1(Ω), we have

lim
k→∞ δk = 1. (8)

We also set

ρ1,k := |φk |q−2 (φk)+
∫

Ωk

|φk |q−2 (φk)+ dx
· L N = |φ|q−2 φ+

∫

Ωk

|φ|q−2 φ+ dx
· L N

and

ρ0,k := |φk |q−2 (φk)−
∫

Ωk

|φk |q−2 (φk)− dx
· L N = |φ|q−2 φ−

∫

Ωk

|φ|q−2 φ− dx
· L N .

Since Ωk is convex and bounded, from the previous step we obtain

(∫

Ωk

|φk |q dx

)p−q+1

≤
(
Wr (ρ0,k, ρ1,k)

)p

2p−1

∫

Ωk

|∇φk |p dx

(∫

Ωk

|φk |q−1 dx

)p−q

.

(9)
We now observe that

lim
k→∞ Wr (ρ0,k, ρ1,k) = Wr (ρ0, ρ1).

Indeed, it is enough to remark that we have ρi,k → ρi in Wr (Ω) for i = 0, 1.
This follows from the fact that the convergence in Wr is equivalent to the weak
convergence plus the convergence of the moments of order r (see for instance [22,
Theorem 5.11]). Both conditions are easily seen to hold true here.

Moreover, by construction we have

|φk |q−1 · 1Ωk ≤ (max{1, δk})q−1 |φ|q−1 · 1Ω,

and
|∇φk |p · 1Ωk ≤ (max{1, δk})p |∇φ|p · 1Ω.

If we use (8), we can pass to the limit as k goes to∞ in (9), by using theDominated
Convergence Theorem on the right-hand side and Fatou’s Lemma on the left-hand
side. This finally gives (3) for a generic function φ ∈ Ẅ1,p

q−1(Ω).
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4 Some Consequences

In this section, we discuss some functional inequalities which are contained in nuce
in Theorem1.

4.1 General Convex Sets

We start with the following inequality, valid for general convex sets. We observe
again that it is not necessary to assume φ ∈ Lq(Ω).

Corollary 1 Let 1 < p < ∞ and 1 < q < p. Let Ω ⊂ R
N be an open convex set.

For every φ ∈ Ẅ1,p
q−1(Ω) such that

∫

Ω

|x | p
p−q |φ|q−1 dx < ∞,

we have

(∫

Ω

|φ|q dx

)p−q+1

≤ 2

(

inf
x0∈Ω

∫

Ω

|x − x0|
p

p−q |φ|q−1 dx

)p−q ∫

Ω

|∇φ|p dx .

(10)

Proof Let φ be a function as in the statement. We use the notations of Theorem1
and take γopt ∈ Π(ρ0, ρ1) an optimal transport plan for Wr (ρ0, ρ1) (where, as usual,
r = p/(p − q)). By using the triangle inequality and the definition of transport plan,
we get

Wr (ρ0, ρ1) ≤
(∫

Ω×Ω

|x − x0|r dγopt

)1/r

+
(∫

Ω×Ω

|y − x0|r dγopt

)1/r

=
(∫

Ω

|x − x0|r dρ0

)1/r

+
(∫

Ω

|y − x0|r dρ1

)1/r

,

for every x0 ∈ Ω . By using concavity of the map τ �→ τ 1/r , this in turn gives

Wr (ρ0, ρ1) ≤ 2
q
p

(∫

Ω

|x − x0|r (dρ0 + dρ1)

)1/r

= 2

(∫

Ω

|x − x0|r |φ|q−1 dx

)1/r (∫

Ω

|φ|q−1 dx

) q−p
p

,

where we used again (7), by assumption. By using this estimate in (3) and appealing
to the arbitrariness of x0 ∈ Ω , we get the desired result. ��
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4.2 Bounded Convex Sets

In this case, Theorem1 implies some known inequalities, with explicit constants
depending on simple geometric quantities and p only.

Corollary 2 (Nash-type inequality) Let 1 < p < ∞ and 1 < q < p. Let Ω ⊂ R
N

be an open and bounded convex set. Then for every φ ∈ Ẅ1,p
q−1(Ω)

(∫

Ω

|φ|q dx

)p−q+1

≤ diam(Ω)p

2p−1

∫

Ω

|∇φ|p dx

(∫

Ω

|φ|q−1 dx

)p−q

. (11)

Proof In order to prove (11), it is sufficient to observe that for a bounded set we have

Wr (ρ0, ρ1) ≤ diam(Ω).

If we spend this information in (3), we can then conclude. ��
Corollary 3 (Poincaré-Wirtinger inequality) Let 1 < p < ∞ and 1 < q < p. Let
Ω ⊂ R

N be an open and bounded convex set. Then for every φ ∈ W1,p
q−1(Ω), there

holds

min
t∈R

(∫

Ω

|φ − t |q dx

) p
q

≤ diam(Ω)p

2p−1
|Ω| p

q −1
∫

Ω

|∇φ|p dx . (12)

Proof Let φ ∈ W1,p
q−1(Ω), by Lemma2 we know in particular that φ ∈ Lq(Ω). Then

we can define the unique minimizer tq of

t �→
(∫

Ω

|φ − t |q dx

) p
q

.

By minimality, we have

∫

Ω

|φ − tq |q−2 (φ − tq) dx = 0.

Thus the function φ − tq belongs to Ẅ
1,p
q−1(Ω). We just need to observe that since

φ − tq ∈ Lq(Ω), then

(∫

Ω

|φ − tq |q−1 dx

)p−q

≤ |Ω| p−q
q

(∫

Ω

|φ − tq |q dx

) p−q
q (q−1)

.

By using this in (11) for the function φ − tq , we get the conclusion. ��
Remark 2 Observe that the constant in (12) degenerates to 0 as the measure |Ω| gets
smaller and smaller. This behaviour is optimal, as one may easily verify. Indeed, by
taking n ∈ N \ {0} and
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Ωn =
[

−1

2
,
1

2

]

×
[

0,
1

n

]

× · · · ×
[

0,
1

n

]

and φ(x) = x1, (13)

we have

min
t∈R

(∫

Ωn

|φ − t |q dx

) p
q

∫

Ωn

|∇φ|p dx
=

(∫

Ωn

|φ|q dx

) p
q

∫

Ωn

|∇φ|p dx
�
(
1

n

)(N−1) p−q
q

= |Ωn|
p−q

q .

We conclude the paper with an application to spectral problems. Let 1 < p < ∞,
for every Ω ⊂ R

N open and bounded set we introduce its first non-trivial Neumann
eigenvalue of the p-Laplacian, i.e.

μ(Ω; p) := inf
φ∈W1,p(Ω)\{0}

⎧
⎪⎪⎨

⎪⎪⎩

∫

Ω

|∇φ|p dx
∫

Ω

|φ|p dx
:
∫

Ω

|φ|p−2 φ dx = 0

⎫
⎪⎪⎬

⎪⎪⎭

.

The terminology is justified by the fact that for a connected set with Lipschitz
boundary, the constant μ(Ω; p) is attained and coincides with the smallest number
different from 0 such that the Neumann boundary value problem

⎧
⎨

⎩

−div(|∇u|p−2 ∇u) = μ |u|p−2 u, in Ω,
∂u

∂νΩ

= 0, on ∂Ω

admits non-trivial weak solutions. We then have the following result, which corre-
sponds to the limit case q = p of Theorem1.

Corollary 4 (Payne-Weinberger type estimate) Let 1 < p < ∞ and let Ω ⊂ R
N be

an open and bounded convex set. We have the lower bound

(
2

p−1
p

diam(Ω)

)p

≤ μ(Ω; p). (14)

Proof We take φ ∈ W1,p(Ω) \ {0} such that
∫

Ω
|φ|p−2 φ dx = 0. Then we have

min
t∈R

∫

Ω

|φ − t |p dx =
∫

Ω

|φ|p dx . (15)

For 1 < q < p, we take tq ∈ R to be the unique minimizer of

t �→
(∫

Ω

|φ − t |q dx

) p
q

.
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By minimality of tq and Minkowski inequality, we have

tq |Ω| 1
q −

(∫

Ω

|φ|q dx

) 1
q

≤
(∫

Ω

|φ − tq |q dx

) 1
q

≤
(∫

Ω

|φ|q dx

) 1
q

.

This shows that {tq}q<p is bounded, thus if we take the limit as q goes to p, then
tq converges (up to a subsequence) to some t . By passing to the limit in (12) we get

∫

Ω

|φ − t |p dx ≤ diam(Ω)p

2p−1

∫

Ω

|∇φ|p dx .

By keeping into account (15), we get the desired conclusion. ��
Remark 3 As mentioned in the Introduction, the constant appearing in the left-hand
side of (14) is not sharp. Indeed, the sharp lower bound is known to be

(
πp

diam(Ω)

)p

< μ(Ω; p), where πp = 2π
(p − 1)

1
p

p sin

(
π

p

) , (16)

as proved by Payne andWeinberger in [19] for p = 2 (see also [4]). The general case
p 	= 2 has been proved in [8, 9]. We recall that (16) is sharp in the following sense:
for every convex set Ω the inequality in (16) is strict and it becomes asymptotically
an equality along the sequence of sets {Ωn}n∈N in (13).

In the limit case p = 1, a related result can be found in [1].
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Analyticity and Criticality Results
for the Eigenvalues of the Biharmonic
Operator

Davide Buoso

Abstract We consider the eigenvalues of the biharmonic operator subject to several
homogeneous boundary conditions (Dirichlet, Neumann, Navier, Steklov). We show
that simple eigenvalues and elementary symmetric functions of multiple eigenvalues
are real analytic, and provide Hadamard-type formulas for the corresponding shape
derivatives. After recalling the known results in shape optimization, we prove that
balls are always critical domains under volume constraint.

Keywords Biharmonic operator · Boundary value problems · Steklov · Plates ·
Eigenvalues · Perturbations · Hadamard formulas · Isovolumetric perturbations ·
Shape criticality

1 Introduction

In this paper we consider eigenvalue problems for the biharmonic operator sub-
ject to several homogeneous boundary conditions in bounded domains Ω in R

N ,
N ≥ 2. Note that such problems arise in the study of vibrating plates within the so-
called Kirchhoff-Love model (see e.g., [43]). In particular, we consider the following
equation

Δ2u − τΔu = λu, in Ω, (1)

where τ is a non-negative constant related to the lateral tension of the plate. As for
the boundary conditions, we are interested in Dirichlet boundary conditions

u = ∂u

∂ν
= 0 on ∂Ω, (2)
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which are related to clamped plates, Navier boundary conditions

u = (1 − σ)
∂2u

∂ν2
+ σΔu = 0 on ∂Ω, (3)

which are related to hinged plates, and Neumann boundary conditions

(1 − σ)
∂2u

∂ν2
+ σΔu = τ

∂u

∂ν
− ∂Δu

∂ν
− (1 − σ)div∂Ω

(
ν t D2u

)

∂Ω
= 0 on ∂Ω,

(4)
which are related to free plates. Note that σ denotes the Poisson ratio of the mate-
rial, typically 0 ≤ σ ≤ 0.5. We recall that the conditions (4) have been known for
long time only in dimension N = 2 (see e.g., [28, 47]), while the general case first
appeared in [21] (see also [22]).We recall here that, given a vector function f , its tan-
gential component is defined as f∂Ω = f − ( f · ν)ν, and the tangential divergence
operator is div∂Ω f = div f − ∂ f

∂ν
· ν.

We also consider Steklov-type problems for the biharmonic operator. Note that
the first one to appear was the following

⎧
⎨

⎩

Δ2u = 0, in Ω,

u = 0, on ∂Ω,

Δu = λ∂u
∂ν

, on ∂Ω,

(5)

and it was introduced in [32]. Problem (5) has proved itself to be quite strange with
respect to other Laplacian-related eigenvalue problem, at least concerning shape
optimization results. In fact, differently from the classical Steklov problem where
the interesting problem is the maximization of eigenvalues under volume constraint,
here one searches for minimizers and, strikingly, the ball is not the optimal shape for
the first eigenvalue (at least in dimension N = 2), as shown in [33]. Nevertheless,
in [7] the authors can prove that, among all convex domain of fixed measure there
exists a minimizer, but nothing is known about the optimal shape, or if the convexity
assumption can be relaxed. We also refer to [2, 5, 6] for other results on problem (5).

Another Steklov problem for the biharmonic operator which has appeared very
recently in [15] (see also [16]) is the following

⎧
⎨

⎩

Δ2u − τΔu = 0, in Ω,
∂2u
∂ν2 = 0, on ∂Ω,

τ ∂u
∂ν

− ∂Δu
∂ν

− div∂Ω

(
ν t D2u

)

∂Ω
= λu, on ∂Ω.

(6)

In contrast with problem (5), problem (6) presents several spectral features resem-
bling those of the Steklov-Laplacian. As shown in [15], problem (6) can be viewed
as a limiting Neumann problem via mass concentration arguments (cf. [38]), and
moreover, for any fixed τ > 0, the maximizer of the first positive eigenvalue among
all bounded smooth domains is the ball.
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In this paper we are interested in analyticity properties of the eigenvalues of prob-
lems (1)–(6). This type of analysis was first done by Lamberti and Lanza de Cristo-
foris in [35], where they study regularity properties of the elementary symmetric
functions of the eigenvalues of the Laplace operator subject to Dirichlet boundary
conditions. Note that in general, when dealing with eigenvalues splitting from a
multiple eigenvalue, bifurcation phenomena may occur, and the use of symmetric
functions of the eigenvalues permits to bypass such situations. The techniques in
[35] were later used to treat other types of boundary conditions (see [34, 37]) and
even other operators (see [9, 13, 14]). As for the biharmonic operator, this kind of
analysis has been already carried out in several specific cases, see [11, 12, 15, 16].
Our aim here is to treat those cases altogether in order to give a general overview.

After proving that the elementary symmetric functions of the eigenvalues are ana-
lytic upon domain perturbations, we compute their shape differential. Following the
lines of [36], by means of the Lagrange Multiplier Theorem, we can show that the
ball is a critical domain under volume constraint for any of the elementary symmetric
functions of the eigenvalues of problems (1)–(6). We observe that, regarding prob-
lem (5), such a result was already obtained in [7] but only for the first eigenvalue.
We remark that the question of criticality of domains is strictly related with shape
optimization problems, where the minimizing (resp. maximizing) domain has to be
found in a class of fixed volume ones. This type of problems for the eigenvalues
of the biharmonic operator have been solved only in very specific cases, the opti-
mal domain for the first eigenvalue being the ball (see [3, 15, 21, 22, 39]). As we
have said above, for problem (5) the ball has been proved not to be the minimizer,
nevertheless it still is a critical domain (cf. Theorem6).

The paper is organized as follows. Section2 is devoted to some preliminaries.
In Sect. 3 we examine the problem of shape differentiability of the eigenvalues. We
consider problem (10) in φ(Ω) and pull it back to Ω , where φ belongs to a suitable
class of diffeomorphisms. We also derive Hadamard-type formulas for the elemen-
tary symmetric functions of the eigenvalues. In Sect. 4 we consider the problem of
finding critical points for such functions under volume constraint. We provide a
characterization for the critical domains, and show that, for all the problems con-
sidered, balls are critical domains for all the elementary symmetric functions of the
eigenvalues. Finally, in Sect. 5 we prove some technical results.

2 Preliminaries

Let N ∈ N, N ≥ 2, and let Ω be a bounded open set in RN of class C1. By H k(Ω),
k ∈ N, we denote the Sobolev space of functions in L2(Ω) with derivatives up to
order k in L2(Ω), and by H k

0 (Ω) we denote the closure in H k(Ω) of the space of
C∞-functions with compact support in Ω .
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Let also τ ≥ 0, − 1
N−1 < σ < 1. We consider the following bilinear form on

H 2(Ω)

P = (1 − σ)M + σB + τ L , (7)

where

M[u][v] =
∫

Ω

D2u : D2vdx, B[u][v] =
∫

Ω

ΔuΔvdx,

and

L[u][v] =
∫

Ω

∇u · ∇vdx,

for any u, v ∈ H 2(Ω), where we denote by D2u : D2v the Frobenius product D2u :
D2v = ∑N

i, j=1
∂2u

∂xi ∂x j

∂2v
∂xi ∂x j

. We also consider the following bilinear forms on H 2(Ω)

J1[u][v] =
∫

Ω

uvdx, J2[u][v] =
∫

∂Ω

∂u

∂ν

∂v

∂ν
dσ, J3[u][v] =

∫

∂Ω

uvdσ,

for any u, v ∈ H 2(Ω), where we denote by ν the unit outer normal vector to ∂Ω ,
and by dσ the area element.

Using this notation, problems (1)–(4) can be stated in the following weak form

P[u][v] = λJ1[u][v], ∀v ∈ V (Ω),

where V (Ω) is either H 2
0 (Ω) (for the Dirichlet problem), or H 2(Ω) ∩ H 1

0 (Ω) (for
the Navier problem), or H 2(Ω) (for the Neumann problem). Here and in the sequel
the bilinear forms defined on V (Ω)will be understood also as linear operators acting
from V (Ω) to its dual.

As for Steklov-type problems, we shall consider their generalizations according
to the definition of P . In particular, regarding problem (5), we consider the following
generalization ⎧

⎨

⎩

Δ2u − τΔu = 0, in Ω,

u = 0, on ∂Ω,

(1 − σ) ∂2u
∂ν2 + σΔu = λ∂u

∂ν
, on ∂Ω,

(8)

whose weak formulation is

P[u][v] = λJ2[u][v], ∀v ∈ H 2(Ω) ∩ H 1
0 (Ω).

We also consider the following generalization of problem (6)

⎧
⎨

⎩

Δ2u − τΔu = 0, in Ω,

(1 − σ) ∂2u
∂ν2 + σΔu = 0, on ∂Ω,

τ ∂u
∂ν

− ∂Δu
∂ν

− (1 − σ)div∂Ω

(
ν t D2u

)

∂Ω
= λu, on ∂Ω,

(9)
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whose weak formulation is

P[u][v] = λJ3[u][v], ∀v ∈ H 2(Ω).

Using a unified notation, we can therefore write all the problems we are consid-
ering as

P[u][v] = λJi [u][v], ∀v ∈ V (Ω), (10)

where:

• for the Dirichlet problem (1), (2) we set i = 1, V (Ω) = H 2
0 (Ω);

• for the Navier problem (1), (3) we set i = 1, V (Ω) = H 2(Ω) ∩ H 1
0 (Ω);

• for the Neumann problem (1), (4) we set i = 1, V (Ω) = H 2(Ω);
• for the Steklov problem (8) we set i = 2, V (Ω) = H 2(Ω) ∩ H 1

0 (Ω);
• for the Steklov problem (9) we set i = 3, V (Ω) = H 2(Ω).

It is clear that both the Neumann problem (1), (4) and the Steklov problem (9)
have non-trivial kernel. In particular, if τ > 0 then both kernels are given by the
constant functions, while if τ = 0 the kernels have dimension N + 1 including also
the coordinate functions x1, . . . , xN (cf. [15, Theorem3.8]). For this reason, we will
restrict our attention to the case τ > 0 and consider instead V (Ω) = H 2(Ω)/R for
problems (1), (4) and (9) (the case τ = 0 being similar).

With this choice of the space V (Ω), it is possible to show that the bilinear form P
defines a scalar product on V (Ω) which is equivalent to the standard one. We shall
therefore consider V (Ω) as endowed with such a scalar product.

It is easily seen that P , considered as an operator acting from V (Ω) to its dual,
is a linear homeomorphism. In particular, we can define

Ti = P (−1) ◦ Ji , (11)

for i = 1, 2, 3. We have the following

Theorem 1 Let − 1
N−1 < σ < 1, τ > 0. Let Ω be a bounded domain in R

N of class
C1. The operator Ti defined in (11) is a non-negative compact selfadjoint operator
on the Hilbert space V (Ω). Its spectrum is discrete and consists of a decreasing
sequence of positive eigenvalues of finite multiplicity converging to zero. Moreover,
the equation Ti u = μu is satisfied for some u ∈ V (Ω), μ > 0 if and only if Eq. (10)
is satisfied with 0 
= λ = μ−1 for any v ∈ V (Ω). In particular, the eigenvalues of
problem (10) can be arranged in a diverging sequence

0 < λ1[Ω] ≤ λ2[Ω] ≤ · · · ≤ λk[Ω] ≤ · · · ,

where all the eigenvalues are repeated according to their multiplicity, and the fol-
lowing variational characterization holds
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λk[Ω] = min
E≤V (Ω)
dim E=k

max
u∈E

Ji [u][u]
=0

P[u][u]
Ji [u][u] .

Proof For the selfadjointness, it suffices to observe that

< Ti [u], v >=< P (−1) ◦ Ji [u], v >= P[P (−1) ◦ Ji [u]][v] = Ji [u][v],

for any u, v ∈ V (Ω). For the compactness, just observe that the operator Ji is com-
pact. The remaining statements are straightforward.

Remark 2 As we have said in Sect. 1, in applications 0 ≤ σ ≤ 0.5. However, there
are examples of materials with high or negative Poisson ratio, namely (N = 2)

−1 < σ < 1.

In general dimension we choose − 1
N−1 < σ < 1. This is due to the fact that, thanks

to the inequality

|D2u|2 ≥ 1

N
(Δu)2 ∀u ∈ H 2(Ω),

then, for σ in that range, the operator P turns out to be coercive. We also remark that,
following the arguments in [15, Sect. 3], the Steklov problem (9) can be seen as a
limiting Neumann problem of the type (1), (4) with a mass distribution concentrating
to the boundary.

We note that problem (5) is obtained for σ = 1, which is out of our range. Under
some additional regularity assumptions, for instanceΩ ∈ C2 (see e.g., [7] for general
conditions), then the operator becomes coercive and all the results here and in the
sequel apply as well. The same remains true also for the Navier problem (1), (3),
which for σ = 1 reads {

Δ2u − τΔu = λu, in Ω,

u = Δu = 0, on ∂Ω,

which has been extensively studied in the case τ = 0 (we refer to [4, 27, 41, 45] and
the references therein).

The situation is instead completely different in the case of Neumann boundary
conditions with σ = 1, namely

{
Δ2u − τΔu = λu, in Ω,

Δu = ∂Δu
∂ν

= 0, on ∂Ω.
(12)

It is easy to see that problem (12) has an infinite dimensional kernel since all har-
monic functions belong to the eigenspace associated with the eigenvalue λ = 0. In
particular, the boundary conditions do not satisfy the complementing conditions, see
[1, 27]. We refer to [42] for considerations on the spectrum of problem (12).
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3 Analyticity of the Eigenvalues and Hadamard Formulas

The study of the dependence of the eigenvalues of elliptic operators on the domain
has nowadays become a classical problem in the field of perturbation theory.
Shape continuity of the eigenvalues has been known for long time [23], and can
also be improved to Hölder or Lipschitz continuity using stability estimates as in
[8, 17–20]. However, while the continuity holds for all the eigenvalues, only the
simple ones enjoy an analytic dependence (see e.g., [30]). On the other hand, when
the eigenvalue is multiple, bifurcation phenomena occur, so that, if the perturbation
is parametrized by one real variable, then the eigenvalues are described by suitable
analytic branches (cf. [44, Theorem1]). Unfortunately, if the family of perturba-
tions is not parametrized by one real variable, one cannot expect the eigenvalues to
split into analytic branches anymore. In this case, the use of elementary symmetric
functions of the eigenvalues (see [35, 37]) has the advantage of bypassing splitting
phenomena, in fact such functions turn out to be analytic.

To this end, we shall consider problem (10) in a family of open sets parametrized
by suitable diffeomorphisms φ defined on a bounded open set Ω in RN of class C1.
Namely, we set

AΩ =
{

φ ∈ C2(Ω ;RN ) : inf
x1,x2∈Ω

x1 
=x2

|φ(x1) − φ(x2)|
|x1 − x2| > 0

}

,

where C2(Ω ;RN ) denotes the space of all functions from Ω to R
N of class C2.

Note that if φ ∈ AΩ then φ is injective, Lipschitz continuous and infΩ |det∇φ| > 0.
Moreover, φ(Ω) is a bounded open set of class C1 and the inverse map φ(−1) belongs
to Aφ(Ω). Thus it is natural to consider problem (10) on φ(Ω) and study the depen-
dence of λk[φ(Ω)] on φ ∈ AΩ . To do so, we endow the space C2(Ω ;RN ) with its
usual norm. Note that AΩ is an open set in C2(Ω ;RN ), see [35, Lemma3.11].
Thus, it makes sense to study differentiability and analyticity properties of the
maps φ �→ λk[φ(Ω)] defined for φ ∈ AΩ . For simplicity, we write λk[φ] instead of
λk[φ(Ω)]. We fix a finite set of indexes F ⊂ N and we consider those maps φ ∈ AΩ

for which the eigenvalues with indexes in F do not coincide with eigenvalues with
indexes not in F ; namely we set

AF,Ω = {φ ∈ AΩ : λk[φ] 
= λl[φ], ∀ k ∈ F, l ∈ N\F} .

It is also convenient to consider thosemapsφ ∈ AF,Ω such that all the eigenvalues
with index in F coincide and set

ΘF,Ω = {
φ ∈ AF,Ω : λk1[φ] = λk2 [φ], ∀ k1, k2 ∈ F

}
.
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For φ ∈ AF,Ω , the elementary symmetric functions of the eigenvalues with index
in F are defined by

ΛF,s[φ] =
∑

k1,...,ks∈F
k1<···<ks

λk1[φ] · · ·λks [φ], s = 1, . . . , |F |.

We have the following

Theorem 3 Let Ω be a bounded open set inRN of class C1, τ > 0, − 1
N−1 < σ < 1,

and F be a finite set in N. The set AF,Ω is open in AΩ , and the real-valued maps
ΛF,s are real-analytic on AF,Ω , for all s = 1, . . . , |F |. Moreover, if φ̃ ∈ ΘF,Ω is
such that the eigenvalues λk[φ̃] assume the common value λF [φ̃] for all k ∈ F, and
φ̃(Ω) is of class C4 then the Fréchet differential of the map ΛF,s at the point φ̃ is
delivered by the formula

d|φ=φ̃(ΛF,s)[ψ] = λs
F [φ̃]

(|F | − 1

s − 1

) |F |∑

l=1

∫

∂φ̃(Ω)

G(vl)(ψ ◦ φ̃(−1)) · νdσ, (13)

for all ψ ∈ C2(Ω;RN ), where {vl}l∈F is an orthonormal basis in V (φ̃(Ω)) of the
eigenspace associated with λF [φ̃] (the orthonormality being taken with respect to
(7)), and:

• G(v) = −
(

∂2v
∂ν2

)2
for the Dirichlet problem;

• G(v) = (1 − σ)|D2v|2 + σ(Δv)2 + τ |∇v|2 − λF [φ̃(Ω)]v2 for the Neumann
problem;

• G(v) = 2 ∂v
∂ν

(
∂Δv
∂ν

+ (1 − σ)div∂φ̃(Ω)(ν · D2v)∂φ̃(Ω)

)
+ (1 − σ)|D2v|2 +

σ(Δv)2 + τ
(

∂v
∂ν

)2
for the Navier problem;

• G(v) = 2 ∂v
∂ν

(
∂Δv
∂ν

+ (1 − σ)div∂φ̃(Ω)(ν · D2v)∂φ̃(Ω)

)
+ (1 − σ)|D2v|2 +

σ(Δv)2 + τ
(

∂v
∂ν

)2 − λF [φ̃(Ω)]K (
∂v
∂ν

)2 − λF [φ̃(Ω)] ∂
∂ν

(
∂v
∂ν

)2
for the Steklov prob-

lem (8);
• G(v) = (1 − σ)|D2v|2 + σ(Δv)2 + τ |∇v|2 − λF [φ̃(Ω)]K v2 − λF [φ̃(Ω)] ∂(v)2

∂ν
for the Steklov problem (9),

where by K we denote the mean curvature of ∂φ̃(Ω).

Proof For the proof of the first part of the theorem we refer to [11, Theorem3.1]
(see also [35]). Concerning formula (13), we start by recalling that, for φ ∈ AΩ , we
have that the pull-back of the operator M is defined by

M[u][v] =
∫

Ω

D2(u ◦ φ−1) : D2(v ◦ φ−1)| det Dφ|dx,
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for any u, v ∈ V (Ω), and similarly also for B, L , P, Ji and Ti . We have

d|φ=φ̃ΛF,s[ψ] = −λs+1
F [φ̃]

(|F | − 1

s − 1

) ∑

l∈F

Pφ̃

[
d|φ=φ̃Ti,φ[ψ][ul]

][
ul

]

for all ψ ∈ C2(Ω̄ ;RN ) (cf. [35, proof of Theorem3.38]), where ul = vl ◦ φ̃ for all
l ∈ F . Note also that by standard regularity theory (see e.g., [27, Theorem2.20])
vl ∈ H 4(φ̃(Ω)) for all l ∈ F .

By standard calculus we have

Pφ̃

[
d|φ=φ̃Ti,φ[ψ][ul]

][
ul

]
= d|φ=φ̃ Ji,φ[ψ][ul][ul] − λ−1

F [φ̃]d|φ=φ̃ Pφ[ψ][ul][ul].

Applying Lemmas7 and 8, we obtain formula (13).

We note that formula (13) for the Dirichlet problem was already obtained in [40]
using different techniques, but only for simple eigenvalues.We also remark that some
of the specific cases of formula (13) were already obtained in [11, 12, 14–16]. In
particular, in [12] it was derived a different formula for the Navier problem, which
was later shown to be equivalent to the one proposed here (see [8, 14]).

4 Shape Optimization and Isovolumetric Perturbations

Important shape optimization problems for the eigenvalues of elliptic operators were
already addressed in [43], where the author claims that among all bounded domains
inR2 of given area, the ball minimizes the first eigenvalue of the Dirichlet Laplacian
and Bilaplacian, namely

λ1(Ω) ≥ λ1(Ω
∗), (14)

where Ω∗ is a ball with |Ω| = |Ω∗|. He does not provide any proof of inequality
(14), claiming it trivial for physical evidence. The actual proof of inequality (14), in
the case of the Dirichlet Laplacian, is due to Faber [26] and Krahn [31], and was then
followed by similar inequalities for the eigenvalues of the Laplace operator subject
to other boundary conditions. We refer to [29] for an extensive discussion on the
topic.

On the other hand, in the case of the biharmonic operator inequality (14) is instead
still an open problem and is known as the Rayleigh conjecture. It has been proved
only in low dimension, namely N = 2, 3, by Nadirashvili [39] and Ashbaugh and
Benguria [3] improving an argument due to Talenti [46]. Unfortunately, such an
argument does not seem to work in higher dimension. Regarding other boundary
conditions, similar inequalities have been derived for the Neumann problem (1), (4)
and for the Steklov problem (6), also in quantitative form (see [10, 15, 16, 21, 22]),
showing that in such cases the ball is actually the maximizer. The Steklov problem
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(5) is instead the only one in which the ball has been shown not to be the optimizer
for the first eigenvalue (cf. [33]).

Here we consider the following shape optimization problems for the symmetric
functions of the eigenvalues

min
V [φ]=const

ΛF,s[φ] or max
V [φ]=const

ΛF,s[φ], (15)

where V is the real valued function defined on AΩ which takes φ ∈ AΩ to V [φ] =
|φ(Ω)|. Note that if φ̃ ∈ AΩ is a minimizer or maximizer in (15) then φ̃ is a critical
domain transformation for the map φ �→ ΛF,s[φ] subject to volume constraint, i.e.,

Ker d|φ=φ̃V ⊂ Ker d|φ=φ̃ΛF,s .

The following theorem provides a characterization of all critical domain transfor-
mations φ (see also [11–13, 15, 36]).

Theorem 4 Let Ω be a bounded open set in R
N of class C1, and F be a finite subset

of N. Assume that φ̃ ∈ ΘF,Ω is such that φ̃(Ω) is of class C4 and that the eigenvalues
λ j [φ̃] have the common value λF [φ̃] for all j ∈ F. Let {vl}l∈F be an orthornormal
basis in V (φ̃(Ω)) of the eigenspace corresponding to λF [φ̃] (the orthonormality
being taken with respect to (7)). Then φ̃ is a critical domain transformation for any
of the functions ΛF,s , s = 1, . . . , |F |, with volume constraint if and only if there
exists c ∈ R such that

|F |∑

l=1

G(vl) = c, on ∂φ̃(Ω). (16)

Proof The proof is a straightforward application of Lagrange Multipliers Theorem
combined with formula (13).

As we have said, balls play a relevant role in the shape optimization of the eigen-
values of the Laplace and biharmonic operators. Hence we need to analyze in more
details the behavior of the eigenfunctions on balls. We have the following result (cf.
[15, Lemma4.22]).

Theorem 5 Let B be a ball in R
N centered at zero, and let λ be an eigenvalue of

problem (10) in B. Let F be the subset of N of all j such that the j th eigenvalue of
problem (10) in B coincides with λ. Let v1, . . . , v|F | be an orthonormal basis of the
eigenspace associated with the eigenvalue λ, where the orthonormality is taken with
respect to the scalar product in V (B). Then

|F |∑

j=1

v2j ,
|F |∑

j=1

|∇v j |2,
|F |∑

j=1

|Δv j |2,
|F |∑

j=1

|D2v j |2

are radial functions.
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Proof First of all, note that by standard regularity theory (see e.g., [1, 27]), the
functions v j ∈ C∞(B) for all j ∈ F .

Let ON (R) denote the group of orthogonal linear transformations in R
N . Since

the operators P and Ji , i = 1, 2, 3 are invariant under rotations, then vk ◦ R,
where R ∈ ON (R), is still an eigenfunction with eigenvalue λ; moreover, {v j ◦ R :
j = 1, . . . , |F |} is another orthonormal basis for the eigenspace associate with
λ. Since both {v j : j = 1, . . . , |F |} and {v j ◦ R : j = 1, . . . , |F |} are orthonormal
bases, then there exists A[R] ∈ ON (R) with matrix (Ai j [R])i, j=1,...,|F | such that

v j =
|F |∑

l=1

A jl[R]vl ◦ R. (17)

This implies that
|F |∑

j=1

v2j =
|F |∑

j=1

(v j ◦ R)2,

from which we get that
∑|F |

j=1 v2j is radial. Moreover, using standard calculus and
(17), we get

|F |∑

j=1

|∇v j |2 =
|F |∑

j,l1,l2=1

A jl1 [R]A jl2 [R] (∇vl1 ◦ R
) · (∇vl2 ◦ R

) =
|F |∑

l=1

|∇vl ◦ R|2.

Similarly,
|F |∑

j=1

|Δv j |2 =
|F |∑

j=1

|Δv j ◦ R|2.

On the other hand,

D2v j · D2v j =
|F |∑

l1,l2=1

A jl1 [R]A jl2 [R]Rt · (D2vl1 ◦ R) · R · Rt · (D2vl2 ◦ R) · R

=
|F |∑

l1,l2=1

A jl1 [R]A jl2 [R]Rt · (D2vl1 ◦ R) · (D2vl2 ◦ R) · R,

therefore

|D2v j |2 = tr(D2v j · D2v j ) =
|F |∑

l1,l2=1

A jl1 [R]A jl2 [R](D2vl1 ◦ R) : (D2vl2 ◦ R),
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from which we get
|F |∑

j=1

|D2v j |2 =
|F |∑

j=1

|D2v j ◦ R|2.

For rotation invariant operators such as the Laplace or the biharmonic operator, it
is easy to show that any eigenfunction associated with a simple eigenvalue is radial.
Theorem5 tells us that, when dealing with a multiple eigenvalue, we cannot consider
the eigenfunctions alone, but we have to consider the whole eigenspace. In particular,
this is very useful when coupled with condition (16).

Theorem 6 Let Ω be a domain in R
N of class C1. Let φ̃ ∈ AΩ be such that φ̃(Ω) is

a ball. Let λ̃ be an eigenvalue of problem (10) in φ̃(Ω), and let F be the set of j ∈ N

such that λ j [φ̃] = λ̃. Then φ̃ is a critical point for ΛF,s under volume constraint, for
all s = 1, . . . , |F |.
Proof Thanks to Theorem5, it remains to prove that, for problems (1), (3) and (8),
the function

|F |∑

j=1

∂v j

∂ν

(
∂Δv j

∂ν
+ (1 − σ)div∂φ̃(Ω)(ν · D2v j )∂φ̃(Ω)

)

is a radial function. In particular, here V (φ̃(Ω)) = H 2(φ̃(Ω)) ∩ H 1
0 (φ̃(Ω)), hence

∂

∂ν
∇v j = ∇ ∂v j

∂ν
,

from which we get

div∂φ̃(Ω)(ν · D2v j )∂φ̃(Ω) = Δ∂φ̃(Ω)

(
∂v j

∂ν

)

on ∂φ̃(Ω). Therefore

|F |∑

j=1

∂v j

∂ν
div∂φ̃(Ω)(ν · D2v j )∂φ̃(Ω) =

|F |∑

j=1

∂v j

∂ν
Δ∂φ̃(Ω)

(
∂v j

∂ν

)

= 1

2
Δ∂φ̃(Ω)

⎛

⎝
|F |∑

j=1

(
∂v j

∂ν

)2
⎞

⎠ −
|F |∑

j=1

∣
∣
∣
∣∇∂φ̃(Ω)

∂v j

∂ν

∣
∣
∣
∣

2

,

where the two summands on the right-hand side can be shown to be constant on
∂φ̃(Ω) following the lines of the proof of Theorem5.
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On the other hand,

|F |∑

j=1

∇v j · ∇Δv j = 1

8
Δ2

⎛

⎝
|F |∑

j=1

v2j

⎞

⎠ − λ

4

|F |∑

j=1

v2j − 1

4

|F |∑

j=1

(Δv j )
2 − 1

2

|F |∑

j=1

|D2v j |2,

from which we deduce that
∑|F |

j=1
∂v j

∂ν

∂Δv j

∂ν
is constant on ∂φ̃(Ω).

In general, balls are expected to be the extremizer of problems of the type (15) only
when the first eigenvalue is involved (see e.g., [29]), and even in this case problem
(5) shows up as a counterexample. Nevertheless, thanks to Theorem6, we know that
balls still are critical domains for all the eigenvalues. It also would be interesting
to characterize the family of open sets φ̃(Ω) such that condition (16) is satisfied.
The only result in this direction is due to Dalmasso [24], who proved that the ball is
the only domain satisfying condition (16) for the first eigenvalue of the biharmonic
operator subject to Dirichlet boundary conditions under the additional hypotesis that
the first eigenfunction does not change sign.

5 Some Technical Lemmas

In this section we prove two lemmas that has been used in the proof of Theorem3.

Lemma 7 Let Ω be a bounded domain in R
N of class C1, and let φ̃ ∈ AΩ be

such that φ̃(Ω) is of class C2. Let u1, u2 ∈ H 2(Ω) be such that v1 = u1 ◦ φ̃−1,
v2 = u2 ◦ φ̃−1 ∈ H 4(φ̃(Ω)). Then

d|φ=φ̃Mφ[ψ][u1][u2] =
∫

∂φ̃(Ω)

(D2v1 : D2v2)ζ · νdσ

+
∫

∂φ̃(Ω)

(
div∂φ̃(Ω)(ν · D2v1)∂φ̃(Ω)∇v2 + div∂φ̃(Ω)(ν · D2v2)∂φ̃(Ω)∇v1

)
· ζdσ

+
∫

∂φ̃(Ω)

(
∂Δv1
∂ν

∇v2 + ∂Δv2
∂ν

∇v1

)

· ζdσ −
∫

φ̃(Ω)

(
Δ2v1∇v2 + Δ2v2∇v1

) · ζdσ

−
∫

∂φ̃(Ω)

(
∂2v1
∂ν2

∇v2 + ∂2v2
∂ν2

∇v1

)

· ∂ζ

∂ν
dσ

−
∫

∂φ̃(Ω)

(
∂2v1
∂ν2

∂

∂ν
∇v2 + ∂2v2

∂ν2

∂

∂ν
∇v1

)

· ζdσ, (18)
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d|φ=φ̃ Bφ[ψ][u1][u2] =
∫

∂φ̃(Ω)

Δv1Δv2ζ · νdσ

+
∫

∂φ̃(Ω)

(
∂Δv1
∂ν

∇v2 + ∂Δv2
∂ν

∇v1

)

· ζdσ −
∫

φ̃(Ω)

(
Δ2v1∇v2 + Δ2v2∇v1

) · ζdσ

−
∫

∂φ̃(Ω)

(Δv1∇v2 + Δv2∇v1) · ∂ζ

∂ν
dσ

−
∫

∂φ̃(Ω)

(

Δv1
∂

∂ν
∇v2 + Δv2

∂

∂ν
∇v1

)

· ζdσ, (19)

and

d|φ=φ̃Lφ[ψ][u1][u2] = −
∫

∂φ̃(Ω)

∇v1 · ∇v2ζ · νdσ

+
∫

∂φ̃(Ω)

(
∂v1
∂ν

∇v2 + ∂v2
∂ν

∇v1

)

· ζdσ −
∫

φ̃(Ω)

(Δv1∇v2 + Δv2∇v1) · ζdσ, (20)

for all ψ ∈ C2(Ω;RN ), where ζ = ψ ◦ φ̃−1.

Proof First of all, we observe that the proof of (18) and of (20) can be done following
that of [15, Lemma4.4] (we also refer to [8, Lemmas2.4 and 2.6]). As for (19), we
have (see also [8, Lemma2.5])

d|φ=φ̃ Bφ[ψ][u1][u2]
=

∫

Ω

(d|φ=φ̃Δ(u1 ◦ φ−1) ◦ φ)[ψ](Δ(u2 ◦ φ̃−1) ◦ φ̃)| det Dφ̃|dx

+
∫

Ω

(Δ(u1 ◦ φ̃−1) ◦ φ̃)(d|φ=φ̃Δ(u2 ◦ φ−1) ◦ φ)[ψ]| det Dφ̃|dx

+
∫

Ω

(Δ(u1 ◦ φ̃−1) ◦ φ̃)(Δ(u2 ◦ φ̃−1) ◦ φ̃)d|φ=φ̃| det Dφ|[ψ]dx,

(21)

and we note that, by the equality

[(
d|φ=φ̃ (det∇φ) [ψ]

)
◦ φ̃(−1)

]
det∇φ̃(−1) = div

(
ψ ◦ φ̃(−1)

)
, (22)

the last summand in (21) equals

∫

φ̃(Ω)

Δv1Δv2divζdy.
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We have

∫

φ̃(Ω)

∂2v1
∂yr∂ys

∂ζr

∂ys
Δv2dy =

∫

∂φ̃(Ω)

∂v1
∂ys

∂ζr

∂ys
νrΔv2dσ

−
∫

φ̃(Ω)

∂v1
∂ys

∂divζ

∂ys
Δv2dy −

∫

φ̃(Ω)

∂v1
∂ys

∂ζr

∂ys

∂Δv2
∂yr

dy

=
∫

∂φ̃(Ω)

∂v1
∂ys

∂ζr

∂ys
νrΔv2dσ −

∫

φ̃(Ω)

∂v1
∂ys

∂ζr

∂ys

∂Δv2
∂yr

dy

−
∫

∂φ̃(Ω)

∂v1
∂ν

Δv2divζdσ +
∫

φ̃(Ω)

Δv1Δv2divζdy

+
∫

φ̃(Ω)

∇v1 · ∇Δv2divζdy, (23)

and
∫

φ̃(Ω)

∂v1
∂ys

ΔζsΔv2dy =
∫

∂φ̃(Ω)

∂v1
∂ys

∂ζs

∂ν
Δv2dσ

−
∫

φ̃(Ω)

∂2v1
∂yi∂ys

∂ζs

∂yi
Δv2dy −

∫

φ̃(Ω)

∂v1
∂ys

∂ζs

∂yi

∂Δv2
∂yi

dy

=
∫

∂φ̃(Ω)

∂v1
∂ys

∂ζs

∂ν
Δv2dσ −

∫

φ̃(Ω)

∂v1
∂ys

∂ζs

∂yi

∂Δv2
∂yi

dy

−
∫

∂φ̃(Ω)

∂v1
∂yi

∂ζs

∂yi
νsΔv2dσ +

∫

φ̃(Ω)

∂v1
∂yi

∂divζ

∂yi
Δv2dy

+
∫

φ̃(Ω)

∂v1
∂yi

∂ζs

∂yi

∂Δv2
∂ys

dy =
∫

∂φ̃(Ω)

∂v1
∂ys

∂ζs

∂ν
Δv2dσ

−
∫

φ̃(Ω)

∂v1
∂ys

∂ζs

∂yi

∂Δv2
∂yi

dy −
∫

∂φ̃(Ω)

∂v1
∂yi

∂ζs

∂yi
νsΔv2dσ

+
∫

φ̃(Ω)

∂v1
∂yi

∂ζs

∂yi

∂Δv2
∂ys

dy +
∫

∂φ̃(Ω)

∂v1
∂ν

Δv2divζdσ

−
∫

φ̃(Ω)

Δv1Δv2divζdy −
∫

φ̃(Ω)

∇v1 · ∇Δv2divζdy. (24)
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Combining (21), (23), and (24) we get

d|φ=φ̃ Bφ[ψ][u1][u2] = −
∫

∂φ̃(Ω)

(
∂v1
∂ys

Δv2 + ∂v2
∂ys

Δv1

)
∂ζr

∂ys
νr dσ

+
∫

φ̃(Ω)

(
∂v1
∂ys

∂Δv2
∂yr

+ ∂v2
∂ys

∂Δv1
∂yr

)
∂ζr

∂ys
dy

+
∫

∂φ̃(Ω)

(
∂v1
∂ν

Δv2 + ∂v2
∂ν

Δv1

)

divζdσ

−
∫

φ̃(Ω)

Δv1Δv2divζdy −
∫

φ̃(Ω)

(∇v1 · ∇Δv2 + ∇v2 · ∇Δv1) divζdy

−
∫

∂φ̃(Ω)

(
∂v1
∂ys

Δv2 + ∂v2
∂ys

Δv1

)
∂ζs

∂ν
dσ

+
∫

φ̃(Ω)

(
∂v1
∂ys

∂Δv2
∂yi

+ ∂v2
∂ys

∂Δv1
∂yi

)
∂ζs

∂yi
dy. (25)

The last summand in the right-hand side of (25) equals

∫

∂φ̃(Ω)

(
∂Δv1
∂ν

∇v2 + ∂Δv2
∂ν

∇v1

)

· ζdσ −
∫

φ̃(Ω)

(
Δ2v1∇v2 + Δ2v2∇v1

) · ζdy

−
∫

φ̃(Ω)

(
∂2v1

∂yi∂ys

∂Δv2
∂yi

+ ∂2v2
∂yi∂ys

∂Δv1
∂yi

)

ζsdy

=
∫

∂φ̃(Ω)

(
∂Δv1
∂ν

∇v2 + ∂Δv2
∂ν

∇v1

)

· ζdσ −
∫

φ̃(Ω)

(
Δ2v1∇v2 + Δ2v2∇v1

) · ζdy

−
∫

∂φ̃(Ω)

(∇v1 · ∇Δv2 + ∇v2 · ∇Δv1) ζ · νdσ

+
∫

φ̃(Ω)

(∇v1 · ∇Δv2 + ∇v2 · ∇Δv1) divζdy

+
∫

φ̃(Ω)

(
∂v1
∂yi

∂2Δv2
∂yi∂ys

+ ∂v2
∂yi

∂2Δv1
∂yi∂ys

)

ζsdy,

while the second one equals

∫

∂φ̃(Ω)

(
∂v1
∂ν

∇Δv2 + ∂v2
∂ν

∇Δv1

)

· ζdσ

−
∫

φ̃(Ω)

(
∂v1
∂ys

∂2Δv2
∂yr∂ys

+ ∂v2
∂ys

∂2Δv1
∂yr∂ys

)

ζr dy

−
∫

∂φ̃(Ω)

Δv1Δv2ζ · νdσ +
∫

φ̃(Ω)

Δv1Δv2divζdy.
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Hence we have

d|φ=φ̃ Bφ[ψ][u1][u2] = −
∫

∂φ̃(Ω)

(
∂v1
∂ys

Δv2 + ∂v2
∂ys

Δv1

)
∂ζr

∂ys
νr dσ

+
∫

∂φ̃(Ω)

(
∂v1
∂ν

∇Δv2 + ∂v2
∂ν

∇Δv1

)

· ζdσ

+
∫

∂φ̃(Ω)

(
∂v1
∂ν

Δv2 + ∂v2
∂ν

Δv1

)

divζdσ

−
∫

∂φ̃(Ω)

Δv1Δv2ζ · νdσ −
∫

∂φ̃(Ω)

(
∂v1
∂ys

Δv2 + ∂v2
∂ys

Δv1

)
∂ζs

∂ν
dσ

+
∫

∂φ̃(Ω)

(
∂Δv1
∂ν

∇v2 + ∂Δv2
∂ν

∇v1

)

· ζdσ

−
∫

φ̃(Ω)

(
Δ2v1∇v2 + Δ2v2∇v1

) · ζdy

−
∫

∂φ̃(Ω)

(∇v1 · ∇Δv2 + ∇v2 · ∇Δv1) ζ · νdσ.

(26)

The first summand in (26) equals

−
∫

∂φ̃(Ω)

(
∂v1
∂ν

Δv2 + ∂v2
∂ν

Δv1

)
∂ζr

∂ν
νr dσ

+
∫

∂φ̃(Ω)

(
∇∂φ̃(Ω)v1 · ∇∂φ̃(Ω)Δv2 + ∇∂φ̃(Ω)v2 · ∇∂φ̃(Ω)Δv1

)
ζ · νdσ

+
∫

∂φ̃(Ω)

(
Δv1Δ∂φ̃(Ω)v2 + Δv2Δ∂φ̃(Ω)v1

)
ζ · νdσ

+
∫

∂φ̃(Ω)

(
Δv1∇∂φ̃(Ω)v2 + Δv1∇∂φ̃(Ω)v1

)
· (∇∂φ̃(Ω)νr )ζr dσ,

while the second one equals

∫

∂φ̃(Ω)

(
∂v1
∂ν

∂Δv2
∂ν

+ ∂v2
∂ν

∂Δv1
∂ν

)

ζ · νdσ

+
∫

∂φ̃(Ω)

K

(
∂v1
∂ν

Δv2 + ∂v2
∂ν

Δv1

)

ζ · νdσ

−
∫

∂φ̃(Ω)

(
∂v1
∂ν

Δv2 + ∂v2
∂ν

Δv1

)

div∂φ̃(Ω)ζdσ

−
∫

∂φ̃(Ω)

(

Δv1∇∂φ̃(Ω)

∂v2
∂ν

+ Δv2∇∂φ̃(Ω)

∂v1
∂ν

)

· ζdσ,
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where K denotes the mean curvature of ∂φ̃(Ω). Therefore the first three terms in the
right-hand side of (26) equal

∫

∂φ̃(Ω)

(∇v1 · ∇Δv2 + ∇v2 · ∇Δv1) ζ · νdσ

− 2
∫

∂φ̃(Ω)

Δv1Δv2ζ · νdσ −
∫

∂φ̃(Ω)

(

Δv1
∂2v2
∂ν2

+ Δv2
∂2v1
∂ν2

)

ζ · νdσ

+
∫

∂φ̃(Ω)

(
Δv1∇∂φ̃(Ω)v2 + Δv1∇∂φ̃(Ω)v1

)
· (∇∂φ̃(Ω)νr )ζr dσ

−
∫

∂φ̃(Ω)

(

Δv1∇∂φ̃(Ω)

∂v2
∂ν

+ Δv2∇∂φ̃(Ω)

∂v1
∂ν

)

· ζdσ. (27)

Now note that summing the third and the fifth terms in (27) we get

−
∫

∂φ̃(Ω)

(

Δv1∇ ∂v2
∂ν

+ Δv2∇ ∂v1
∂ν

)

· ζdσ

= −
∫

∂φ̃(Ω)

(

Δv1
∂

∂ν
∇v2 + Δv2

∂

∂ν
∇v1

)

· ζdσ

−
∫

∂φ̃(Ω)

(
Δv1∇∂φ̃(Ω)v2 + Δv2∇∂φ̃(Ω)v1

)
· (∇∂φ̃(Ω)νr )ζr dσ. (28)

Using (26), (27) and (28), we finally get formula (19).

Lemma 8 Let Ω be a bounded domain in R
N of class C1, and let φ̃ ∈ AΩ be

such that φ̃(Ω) is of class C2. Let u1, u2 ∈ H 2(Ω) be such that v1 = u1 ◦ φ̃−1,
v2 = u2 ◦ φ̃−1 ∈ H 4(φ̃(Ω)). Then

d|φ=φ̃ J1,φ[ψ][u1][u2] =
∫

φ̃(Ω)

v1v2divζdy, (29)

d|φ=φ̃ J2,φ[ψ][u1][u2] =
∫

∂φ̃(Ω)

(

K
∂v1
∂ν

∂v2
∂ν

+ ∂

∂ν
(
∂v1
∂ν

∂v2
∂ν

)

)

ζ · νdσ

−
∫

∂φ̃(Ω)

∇(
∂v1
∂ν

∂v2
∂ν

) · μdσ − 2
∫

∂φ̃(Ω)

∇(
∂v1
∂ν

∂v2
∂ν

)
∂ζ

∂ν
· νdσ, (30)

and

d|
φ=φ̃

J3,φ[ψ][u1][u2] =
∫

∂φ̃(Ω)

(

K v1v2 + ∂

∂ν
(v1v2)

)

ζ · νdσ −
∫

∂φ̃(Ω)
∇(v1v2) · μdσ,

(31)

for all ψ ∈ C2(Ω;RN ), where ζ = ψ ◦ φ̃−1 and K is the mean curvature on ∂φ̃(Ω).
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Proof Formula (29) is immediate from (22), while for formula (31) we refer to [34,
Lemma3.3].

Regarding formula (30), we start observing that

J2[u1][u2] =
∫

∂Ω

∇u1 · ∇u2dσ,

since ∇u = ∂u
∂ν

ν for any u ∈ H 2(Ω) ∩ H 1
0 (Ω). Hence

J2,φ[u1][u2] =
∫

∂Ω

(∇u1 · ∇(φ−1)
) · (∇u2 · ∇(φ−1)

) |ν · ∇(φ−1)|| det∇φ|dσ,

from which we get

d|
φ=φ̃

J2,φ[ψ][u1][u2] = −
∫

∂φ̃(Ω)

∂v1
∂yr

(
∂ζr

∂ys
+ ∂ζs

∂yr

)
∂v2
∂ys

dσ +
∫

∂φ̃(Ω)
∇v1 · ∇v2div ζdσ

−
∫

∂φ̃(Ω)
∇v1 · ∇v2

∂ζ

∂ν
· νdσ = −2

∫

∂φ̃(Ω)

∂v1
∂ν

∂v2
∂ν

∂ζ

∂ν
· νdσ +

∫

∂φ̃(Ω)

∂v1
∂ν

∂v2
∂ν

div
∂φ̃(Ω)

ζdσ.

(32)

Using the Tangential Green’s Formula (cf. [25, Sect. 8.5]) we have

∫

∂φ̃(Ω)

∂v1
∂ν

∂v2
∂ν

div∂φ̃(Ω)ζdσ =
∫

∂φ̃(Ω)

K
∂v1
∂ν

∂v2
∂ν

ζ · νdσ

−
∫

∂φ̃(Ω)

∇∂φ̃(Ω)

(
∂v1
∂ν

∂v2
∂ν

)

· ζdσ, (33)

where ∇∂φ̃(Ω) is the tangential gradient. Combining (32) and (33) we obtain (30).
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A Remark on an Overdetermined Problem
in Riemannian Geometry

Giulio Ciraolo and Luigi Vezzoni

Abstract Let (M, g) be a Riemannian manifold with a distinguished point O and
assume that the geodesic distance d from O is an isoparametric function. LetΩ ⊂ M
be a bounded domain, with O ∈ Ω , and consider the problem Δpu = −1 in Ω with
u = 0 on ∂Ω , whereΔp is the p-Laplacian of g.We prove that if the normal derivative
∂νu of u along the boundary of Ω is a function of d satisfying suitable conditions,
then Ω must be a geodesic ball. In particular, our result applies to open balls of
R

n equipped with a rotationally symmetric metric of the form g = dt2 + ρ2(t) gS ,
where gS is the standard metric of the sphere.

Keywords Overdetermined PDE ·Comparison principle ·Riemannian Geometry ·
Rotationally symmetric spaces · Isoparametric functions

1 Introduction

In this note we consider an overdetermined problem in Riemannian Geometry. An
overdetermined problem usually consists in a partial differential equation with “too
many” prescribed boundary conditions. Typically, these kinds of problems are not
well-posed and the existence of a solution imposes strong restrictions on the shape
of the domain where the problem is defined. Consequently, the research in overde-
termined problems usually consists in classifying all the possible domains where the
problem is well-posed. A central result in this context was obtained by Serrin in his
seminal paper [20]. The today known Serrin’s overdetermined problem consists in
the torsion problem
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{
Δu = −1 in Ω,

u = 0 on ∂Ω,
(1)

where Ω is a bounded domain in R
n , together with a constant Neumann condition

at the boundary ∂Ω:
uν = const on ∂Ω. (2)

In [20] Serrin proved that (1) and (2) admits a solution if and only ifΩ is a ball whose
radius, in view of the divergence theorem, is determined by the constant in condition
(2); moreover the solution u is radially symmetric. Other proofs and generalizations
of Serrin’s theorem can be found for instance in [2, 3, 24].

A related problem was considered by Greco in [12], where it is investigated the
following question:

Given a point O ∈ R
n , n ≥ 2, which overdetermined conditions force Ω to be a

ball about O?

The main result in [12], in its simplest form, is the following:

Let Ω be a bounded domain in R
n containing the fixed point O and assume that

there exists a solution u of (1) in Ω satisfying ∂νu = c|x | at every x ∈ ∂Ω for some
constant c. Then Ω is a ball centered at O .

The assumption O ∈ Ω in the statement above cannot be dropped in general, as
pointed out in some examples in [12]. For some related results we refer to [1, 13].

The problem posed by Greco [12] still makes sense in the Riemannian setting,
where Rn is replaced by a smooth n-dimensional manifold M , the Euclidean metric
by a Riemannian metric g on M and Euclidean balls by geodesic balls about a
fixed point O . In the present paper, we generalize some of the results in [12] to the
Riemannian setting by assuming that the distance function from the fixed point O is
isoparametric, i.e. it is of class C2 in M \ {O} and there exists a continuous function
η such that Δd = η(d) in M \ {O} (see [23]). A related result can be found in [6].

We shall use the following notation: Br denotes the geodesic ball of radius r
centered at O; |Br | and |∂ Br | are the volume and the perimeter of Br , respectively,

Φ(r) :=
( |Br |

|∂ Br |
) 1

p−1

, (3)

and Δp is the p-Laplacian operator. Notice that Φ(r) is exactly the value of the
interior normal derivative at the boundary of the solution to the problem

{
Δpv = −1 in Br ,

v = 0 on ∂ Br ,
(4)

which is constant if one assumes that the distance function is isoparametric (see
Lemma 1).
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Our main result is the following.

Theorem 1 Let (M, g) be a Riemannian manifold and assume that the distance
function d from a fixed point O is isoparametric. Let Ω ⊂ M be a bounded domain
with O ∈ Ω and let Φ be given by (3). Assume that there exists a solution u to

⎧
⎪⎨

⎪⎩

Δpu = −1 in Ω,

u = 0 on ∂Ω,

∂νu = f ◦ d on ∂Ω,

(5)

with p > 1, where f satisfies one of the following two conditions:

(i) the function f (t)/Φ(t) is monotone nondecreasing in (0, diamΩ);
(ii) there exists R > 0 such that f (R)/Φ(R) = 1, f (r)/Φ(r) > 1 for r > R, and

f (r)/Φ(r) < 1 for r < R.

Then Ω is a geodesic ball centered at O. Moreover, in case (ii) we have that Ω = BR.

Our proof relies on comparison principles. More specifically, our approach is
based on the comparison of the solution in Ω with the solution in a ball about O .

As far as we know, few overdetermined problems have been studied in a Rie-
mannian setting (see [4, 6–9]), where classical tools for proving symmetry like
the method of moving planes can not be employed (at least in a standard way).
Our approach is close to the one in [6] where, by using comparison principles, the
authors prove that if there exists a lower bounded nonconstant function u which is
p-harmonic (1 < p < n) in a punctured domain and such that u and uν are constant
on ∂Ω , then u is radial and ∂Ω is a geodesic sphere.

2 The Euclidean Case

In this preliminary section we consider the basic case when the Riemannianmanifold
is theEuclidean space, O is the origin ofRn and the p-Laplacian is the usualLaplacian
operator (i.e. p = 2).

Let Ω be a bounded domain in the Euclidean space containing the origin O and
consider the overdetermined problem

⎧
⎪⎨

⎪⎩

Δu = −1 in Ω,

u = 0 on ∂Ω,

∂νu(x) = f (|x |) on ∂Ω,

(6)

where ν denotes the normal inward to ∂Ω and f : (0,+∞) → (0,+∞) is a con-
tinuous function satisfying certain conditions which we specify later. Since both
Dirichlet and Neumann boundary conditions are imposed on ∂Ω , problem (6) is not
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well-posed unless f and Ω satisfy some compatibility conditions. Our goal is to
consider conditions on f which imply that Ω is a ball centered at the origin.

The scheme that we have in mind is the following. Let Br0 be the largest ball
contained in Ω centered at the origin and let Br1 be the smallest ball containing Ω

centered at the origin. If we denote by vr the solution to

{
Δv = −1 in Br ,

v = 0 on ∂ Br ,

then we have that

vr (x) = r2 − |x |2
2n

,

and hence ∂νv
r is constant on ∂ Br and is given by

∂νv
r = |Br |

|∂ Br | = r

n
on ∂ Br .

By comparison principle, we have that vr0 ≤ u in Br0 and vr1 ≥ u in Ω and, by
looking at the normal derivatives at the tangency points between Ω and Br0 and Br1 ,
we readily obtain that

r0
n

≤ f (r0) and f (r1) ≤ r1
n

. (7)

Now, let

F(t) = n f (t)

t
.

We have the following results. The first one is essentially contained in [12].

• Case 1. If F(t) is monotone nondecreasing then Ω is a ball centered at the origin.

Indeed, if F(r0) < F(r1) then (7) immediately implies that r0 = r1 and then Ω is
a ball. If F(r0) = F(r1), from (7) we have that

∂νu(x) = |x |
n

for every x ∈ ∂Ω . Hence, the function w = u − vr0 satisfies

⎧
⎪⎨

⎪⎩

Δw = 0 in Br0 ,

w ≥ 0 in ∂ Br0 ,

∂νw(p) = 0,

where p ∈ ∂Ω is a tangency point between Br0 and Ω . From Hopf’s boundary
point Lemma we obtain that w ≡ 0 in Br0 and hence that Ω is a ball.
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• Case 2. If there exists R such that

F(R) = 1, F(r) > 1 if r > R, F(R) < 1 if r < R, (8)

then Ω is the ball of radius R centered at the origin.

This case is simpler then the previous one. Indeed, from (7)we have that F(r0) ≥ 1
and F(r1) ≤ 1, which imply that r0 ≥ R and r1 ≤ R. Since r0 ≤ r1, we conclude.

3 Riemannian Setting

In this section we study the overdetermined problem (6) in a Riemannian manifold.
Let (M, g) be an dimensional Riemannian manifold with a fixed point O . We

recall that given a C2 map u : M → R its Laplacian is defined by

Δu = div(Du),

where Du is the gradient of u (which in the Riemannian setting is defined as the g-
dual of the differential of u) and div is the divergence. Δu writes in local coordinates
(x1, . . . , xn) as

Δu = 1√|g|∂x j

(
g jk

√|g|∂xk u
)

.

We further recall that the p-Laplacian operator on a Riemannian manifold is defined
by

Δpu = div(|Du|p−2Du), p > 1.

In this context a function u : M → R is called radial if can be written as u = f ◦ d
for some real function f . Radial functions are usually studied in polar coordinates.
Here we recall that if 0 < δ is less than the injectivity radius of M at O , then expO
induces polar coordinates (r, q) ∈ (0, δ) × Sn−1 on Bδ induced by the usual polar
coordinates on the tangent space to M at O . If u = f ◦ d is a radial function, then
its Laplacian in polar coordinates takes the following expression

Δu = ∂2
rr u +

(
n − 1

r
+ ∂r det(d expO)

det(d expO)

)

∂r u

(see e.g. [19]). In particular, if u = d we get

Δd = n − 1

r
+ ∂r det(d expO)

det(d expO)
.
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We say that the distance function from the fixed point O is isoparametric if it is of
class C2 in M \ {O} and there exists a continuous function η such that Δd = η(d)

in M \ {O} (see [23]). We notice that assuming d isoparametric in the geodesic ball
Bδ is equivalent to assume that the quantity

∂r det(d expO)

det(d expO)

defines a function of the distance itself. Moreover, we remark that

lim
d→0

Δd = +∞. (9)

The following lemma gives the explicit behaviour of the solution to (4) in a
geodesic ball. This will be used in the proof of Theorem 1 when we will compare
the solution to (5) to solutions to (4) in suitable geodesic balls.

Lemma 1 Let (M, g) be a Riemannian manifold and assume that the distance d
from a point O ∈ M is isoparametric. Let vr be the solution to

{
Δpv

r = −1 in Br ,

vr = 0 on ∂ Br .
(10)

Then vr is a function which depends only on the distance from the origin and is given
by

vr (x) =
∫ r

|x |
e

1
p−1

∫ r
t η(s)ds

[ |Br |
|∂ Br | −

∫ r

t
e− ∫ r

τ
η(s)dsdτ

] 1
p−1

dt. (11)

In particular, ∂νv
r is constant on ∂ Br and is given by

∂νv
r =

( |Br |
|∂ Br |

) 1
p−1

. (12)

Proof We look for a solution of the form vr (x) = V (d(x)), where V is a decreasing
function. Since d is isoparametric, with Δd = η(d), and the gradient of the distance
function has unit norm in M \ {O}, then we have that V satisfies

|V ′(t)|p−2 [
(p − 1)V ′′(t) + η(t)V ′(t)

] = −1,

and hence
d

dt
|V ′(t)|p−1 + η(t)|V ′(t)|p−1 = 1.
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Therefore

|V ′(t)|p−1 = e
∫ r

t η(s)ds

[

|V ′(r)|p−1 −
∫ r

t
e− ∫ r

τ
η(s)dsdτ

]

.

Since we are looking for a solution in Br which depends only on d, from (10) and
the divergence theorem we have that |V ′(r)|p−1 = |Br |/|∂ Br | and hence

V ′(t) = −e
1

p−1

∫ r
t η(s)ds

[ |Br |
|∂ Br | −

∫ r

t
e− ∫ r

τ
η(s)dsdτ

] 1
p−1

,

and the expression forvr follows. From (9)wehave thatV ′(0) = 0 and thenvr ∈ C1,α

in Br and satisfies (10).

We are ready to prove Theorem 1.

Proof of Theorem 1. We firstly give some remarks on the regularity of the solution.
From elliptic regularity theory we have that u ∈ C1,α(Ω) (see [5, 16, 21]) and u ∈
C2,α in a neighborhood of any point where |∇u| = 0 (see [11]). About the regularity
at the boundary, we notice that we have by assumption that |∇u| = 0 on ∂Ω and
hence |∇u| = 0 in a tubular neighborhood of ∂Ω . From [10, 22] we obtain that ∂Ω

is of class C2 and from [17] we have that u ∈ C1,α(Ω).
Now, we observe that u > 0 in Ω . Indeed, the boundary condition in (5) implies

that u > 0 in a neighborhood of ∂Ω . If u = 0 at some interior point of Ω , then
the strong maximum principle (see [18]) implies that u ≡ 0 in Ω , which gives a
contradiction. Hence, u > 0 in Ω .

We define r0 and r1 as follows

r0 = sup{r > 0 : Br ⊂ Ω} and r1 = inf{r > 0 : Ω ⊂ Br },

and we denote by xi a tangency points between ∂ Bri and ∂Ω , for i = 0, 1.
As in the Euclidean case in Sect. 2, the proof is based on the comparison between

u and the solutions of the p-torsion problem in Br0 and Br1 . Since Br0 ⊆ Ω ⊆ Br1 ,
by the weak comparison principle (see [14, 18]) we have that vr0 ≤ u in Br0 and
u ≤ vr1 in Ω , where vr0 and vr1 are given by (11).

Since xi is a tangency point between ∂ Bri and ∂Ω , the inward normal vectors to
∂ Bri and to ∂Ω at xi agree and d(xi ) = ri for i = 0, 1. Moreover, vri (xi ) = u(xi ) =
0, and by comparison we have that

Φ(r0) = ∂νv
r0(x0) ≤ ∂νu(x0) and ∂νu(x1) ≤ ∂νv

r1(x1) = Φ(r1),

where Φ and ∂νv
r are given by (3) and (12), respectively, and hence

1 ≤ f (r0)

Φ(r0)
and

f (r1)

Φ(r1)
≤ 1. (13)
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If we assume that case (ii) in the assertion of the theorem occurs, then (13) implies
that r1 ≤ R ≤ r0, and hence r0 = r1 = R.

In case (i), we have that (13) implies

f (r)

Φ(r)
= 1 for every r0 ≤ r ≤ r1,

and hence
∂νu(x) = Φ(|x |) for every x ∈ ∂Ω.

In particular, we have that
∂νu(x0) = ∂νv

r0(x0). (14)

Since ∂νu(x0) > 0, there exists ρ > 0 such that |∇u| = 0 in Bρ(x0) ∩ Ω . By choos-
ing ρ < r0 we also have that |∇vr0 | = 0 in W := Bρ(x0) ∩ Br0 . By standard elliptic
regularity theory, we have that u and vr0 are classical solutions of Δpu = −1 in
W and the difference u − vr0 is nonnegative and satisfies a linear uniformly elliptic
equation in W :

{
L(u − vr0) = 0 and u − vr0 ≥ 0 in W,

∂ν(u − vr0)(x0) = 0.

By Hopf’s Lemma (see [15]) we have that u = vr0 in W . In particular, we obtain
that u = 0 in ∂ Bρ(x0) ∩ Br0 , which implies that ∂ Br0 and ∂Ω coincide in a open
neighborhood of x0. In particular, we have proved that the set of tangency points
between ∂Ω and ∂ Br0 is open. Moreover, by construction we have that the set of
tangency points between ∂Ω and ∂ Br0 is given by ∂Ω ∩ ∂ Br0 , which is clearly a
closed set. Hence, we have proved that ∂Ω ∩ ∂ Br0 is both closed and open, and
hence we have that ∂Ω = ∂ Br0 , i.e. Ω is a ball.

4 Examples

Theorem 1 can be applied to open balls inRn equipped with a rotationally symmetric
metric.More precisely, let r̄ ∈ R ∪ ∞ be fixed and consider the open ball Br̄ centered
at the origin O ofRn of radius r̄ equipped with a Riemannian metric g which in polar
coordinates reads as

g = dt2 + ρ2gS,

where ρ : [0, r̄) → R is as smooth function such that

ρ(0) = 0, ρ(t) > 0,
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for every t ∈ [0, r̄) and gS is the standard metric on the unitary (n − 1)-dimensional
sphere Sn−1. In this setting the geodesic distance d of a generic point p ∈ Br̄ from O
is given by the Euclidean norm of p, since t �→ tp is a minimal geodesic connecting
the origin to the point p for t ∈ [0, r̄). Moreover, if u : Br̄ → R is a smooth radial
function, then its Laplacian with respect to g takes the following expression

Δu = ∂2
t t u + (n − 1)

ρ ′

ρ
∂t u,

and consequently

Δd(x) = (n − 1)
ρ ′(d(x))

ρ(d(x))
=: η(d(x)),

which shows that d is isoparametric. Notice that in this setting the statement of
Theorem 1 implies that Ω is an Euclidean ball, since geodesic balls centered at O
are exactly the Euclidean balls.

Rotationally symmetric spaces include space formmodels as particular cases: the
Euclidean space, the Hyperbolic space and the unitary sphere, where the function ρ

takes the following expression:

• ρ(t) = t in the Euclidean case;
• ρ(t) = sinh t in the Hyperbolic case;
• ρ(t) = sin t in the spheric case.

Note that themap vr in Lemma 1 in the Euclidean case takes the following expression

vr (x) =
(

p − 1

p

)
r

p
p−1 − |x | p

p−1

n
1

p−1

.
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A Note on the Scale Invariant Structure
of Critical Hardy Inequalities

Norisuke Ioku and Michinori Ishiwata

Abstract We investigate the scale-invariant structure of the critical Hardy inequality
in a unit ball under the power-type scaling. First we consider the remainder termof the
critical Hardy inequality which is characterized by the ratio with or the distance from
the “virtual minimizer” for the associated variational problem. We also focus on the
scale invariance property of the inequality under power-type scaling and investigate
the iterated scaling structure of remainder terms. Finally, we give a relation between
the usual scaling enjoyed by the classicalHardy inequality and the power-type scaling
via the transformation introduced by Horiuchi and Kumlin. As a by-product, we give
a relationship between the Moser sequences and the Talenti functions.

Keywords Hardy’s inequality · Scale invariance · Remainder term · Talenti
functions · Moser sequences

1 Introduction

Let n ∈ N with n ≥ 2. The following classical Hardy inequality appears in the vast
amount of fields in the mathematical analysis:

(
n − p

p

)p ∫

Rn

|u(x)|p
|x|p dx ≤

∫

Rn

|∇u(x)|pdx, u ∈ W 1,p(Rn), (1)

where 1 ≤ p < n. It is well known that (1) and the Pólya-Szegö principle yield a
continuous embedding W 1,p(Rn) ⊂ Lp∗,p(Rn). Here Lp∗,p(Rn) is the Lorentz space
endowed with the norm
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‖u‖Lp∗,p(Rn) :=
(∫

Rn

(
|x| n

p∗ u�(x)
)p dx

|x|n
) 1

p

=
(∫

Rn

∣
∣u�(x)
∣
∣p

|x|p dx

) 1
p

,

where u� is the Schwarz symmetrization of u and p∗ is the Sobolev exponent defined
by p∗ = np

n−p . Note that the embedding W 1,p(Rn) ⊂ Lp∗,p(Rn) also gives a well-

known Sobolev embedding W 1,p(Rn) ⊂ Lp∗
(Rn) since Lp∗,p(Rn) ⊂ Lp∗,p∗

(Rn) =
Lp∗

(Rn). Furthermore, the embedding W 1,p(Rn) ⊂ Lp∗,p(Rn) is best possible in the
class of rearrangement invariant spaces (see [14], see also [5, Chap. 2]), where a
Banach function spaceX is said to be a rearrangement invariant space if ‖u‖X = ‖v‖X

whenever u� = v�. Typical examples of such spaces are Lebesgue spaces, Lorentz
spaces, and Orlicz spaces.

Another important feature of (1) is the invariance under the standard scaling.
Namely, for every u ∈ W 1,p(Rn), the standard scaling

uλ(x) := λ
n−p

p u(λx), λ > 0 (2)

does not change the both side of the inequality (1) for every λ > 0. Moreover, it is

known that the constant
(

n−p
p

)p
in the left hand side is best possible, namely, there

holds

(
n − p

p

)p

= inf
u∈W 1,p(Rn)\{0}

∫

Rn |∇u(x)|pdx
∫

Rn
|u(x)|p
|x|p dx

, (3)

and no W 1,p(Rn)-function attain the best constant
(

n−p
p

)p
, while a function U(x) =

|x|− n−p
p is a “virtual minimizer” in the sense that though U /∈ W 1,p(Rn), a sequence

(un)with un(x) = (min{U(x), U(1/n)} − U(n)
)
χBn(0)(x), whereχBn(0)(·) is the char-

acteristic function on the ball centered at the origin with radius n, is a minimizing
sequence for the Rayleigh quotient defined by (3).

This absence of extremal functions implies the possibility of the validity of more
sharp inequality, particularly the existence of the other terms in the left hand side
in (1). Indeed, in [10], Cianchi and Ferone give the following type of the Hardy
inequality with a remainder term, namely, for 1 < p < n, there exists a constant
C > 0 satisfying

(
n − p

p

)p ∫

Rn

|u(x)|p
|x|p dx

⎛

⎜
⎜
⎜
⎝
1 + C inf

a∈R

sup
x∈Rn

(u − aU)�(x)

U(x)

‖u‖Lp∗ ,p

⎞

⎟
⎟
⎟
⎠

≤
∫

Rn

|∇u(x)|pdx, u ∈ W 1,p(Rn).

(4)
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For more details on the remainder terms for the classical Hardy inequality, see
e.g. [6, 10, 11, 17, 24] and references therein.

Recall that (1) requires the assumption p < n. The following version of Hardy’s
inequality is known for the case p = n:

(
n − 1

n

)n ∫

B1

|u(x)|n
|x|n
(
log e

|x|
)n dx ≤

∫

B1

|∇u(x)|ndx, u ∈ W 1,n
0 (B1), (5)

where B1 denotes the n-dimensional unit ball centered at the origin. There exists a
large amount of literature on applications, generalizations, and improvements of (5)
(see e.g. [1, 4, 10–16, 22] and references therein). The important feature of (5) is the
monotonicity of the potential function 1

|x|n
(
log e

|x|
)n for 0 < |x| < 1 and (5) is usually

proved by the aid of the symmetrization argument which requires this monotonicity.
The particular interest for (5) comes from the fact that, similarly to (1), (5) also yields
a best-possible embeddings of Sobolev spaces in the framework of rearrangement
invariant spaces. In this respect, (5) has been considered as a natural extension of
(1) to the critical case p = n and is called as a critical Hardy inequality. On the other
hand, it seems that there is no scale-invariant structure for (5) and this is the main
difference between (1) and (5).

For the case p = n, there is another version of the Hardy inequality slightly dif-
ferent from (5). In [20], Leray introduced the following inequality

1

4

∫

B1

|u(x)|2

|x|2
(
log 1

|x|
)2 dx ≤

∫

B1

|∇u(x)|2dx, u ∈ W 1,2
0 (B1),

where B1 denotes the two-dimensional unit ball centered at the origin. By the same
manner as in [20], one can also obtain the following inequality on the n-dimensional
unit ball B1:

(
n − 1

n

)n ∫

B1

|u(x)|n
|x|n
(
log 1

|x|
)n dx ≤

∫

B1

|∇u(x)|ndx, u ∈ W 1,n
0 (B1). (6)

The main difference between (6) and (5) is the monotonicity of the potential
function, that is, the potential function 1

|x|n
(
log 1

|x|
)n in (6) is non-monotone while that

in (5) is monotone as is mentioned before. Moreover, there is a significant difference
between (5) and (6) on the scaling property. Indeed, recently the authors pointed
out in [19] that (6) has a scale invariance property under the following power-type
scaling:

uλ(x) := λ− n−1
n u(|x|λ−1x), λ > 0, (7)
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while (5) is not invariant under (7). The scaling (7) for radial functions is introduced
by Cassani, Ruf and Tarsi in [8] to consider the attainability of the best constant in
the Alvino inequality (see [2])

sup
x∈B1

|u�(x)|
(
log 1

|x|
) 1

n′
≤ π− 1

2 n− 1
n

(
Γ
(
1 + n

2

)) 1
n

(∫

B1

|∇u|ndx

) 1
n

, u ∈ W 1,n
0 (B1), (8)

which is known to be the critical case of Sobolev embeddings since it implies the
optimal embedding of W 1,n

0 (B1) into Orlicz spaces (see [9, Example 1] and [5,
Lemma 2.8]). Indeed, the scaling (7) for radial functions coincides with the scal-
ing in [8]. Moreover, it is proved in [19] that the constant

(
n−1

n

)n
in the left hand side

of (6) is sharp and is never attained in W 1,n
0 (B1). Moreover, it is proved in [19] that

if there is an extremal function Ũ which attain the sharp constant, then

Ũ(x) =
(

log
1

|x|
) n−1

n

(9)

should follow by the simplicity of the first eigenvalue (if exists) and the scale invari-
ance of (6) under the power-type scaling (7). Note that Ũ cannot be a real minimizer
since ‖∇Ũ‖Ln(B1) = ∞ and we will call Ũ a “virtual minimizer”, which plays a role

of a function U(x) = r− N−p
p for the classical Hardy inequality (1).

In this paper, we first consider the existence of the remainder terms for (6) from
the view-point of scale invariant structure under the power-type scaling (7). To this
end, we introduce a generalization of inequality (6) which has a scale invariance
under

uλ(x) := λ
− p−1

p u(|x|λ−1x), λ > 0, (10)

where 1 < p < ∞. Now we define a function space to state a generalization of (6).

Definition 1 Let 1 ≤ p < ∞. We define a weighted Lebesgue norm as

‖u‖Lp(B1,|x|p−n) :=
(∫

B1

|u(x)|p|x|p−ndx

) 1
p

,

and W 1,p
0,0 (B1) denotes the completion of C∞

0 (B1 \ {0}) with respect to the norm
‖∇ · ‖Lp(B1,|x|p−n).

Remark 1 The space W 1,n
0,0 (B1) coincides with the completion of C∞

0 (B1) by

‖∇ · ‖Ln(B1) since C∞
0 (B1) ⊂ W 1,n

0,0 (B1) (see [18, Proposition 2.1]). Particularly,

C∞
0 (B1 \ {0}) is densely contained in W 1,n

0 (B1). See [18] for more details of the
completion of C∞

0 (B1 \ {0}) by weighted Lebesgue norms.

We have the following Hardy type inequality for W 1,p
0,0 (B1) functions:
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Proposition 1 Let n ≥ 2 and 1 < p < ∞. Then there holds

∫

B1

|x|p−n

∣
∣
∣
∣

x

|x| · ∇u(x)

∣
∣
∣
∣

p

dx ≥
(

p − 1

p

)p ∫

B1

|u(x)|p
|x|n
(
log 1

|x|
)p dx, u ∈ W 1,p

0,0 (B1).

(11)

By the same methods as in [19], one can show the following facts: the con-

stant
(

p−1
p

)p
is optimal, there is no extremal function which attains

(
p−1

p

)p
, and

(
log 1

|x|
) p−1

p
is the virtual minimizer associated with (11). The absence of extremals

suggests us the existence of a remainder term. Indeed, our first result involves the
improvement of Proposition 1 with remainder terms characterized by the ratio with
or the distance from the virtual minimizer. Let

ε(u) :=
∫

B1

|x|p−n

∣
∣
∣
∣

x

|x| · ∇u

∣
∣
∣
∣

p

dx −
(

p − 1

p

)p ∫

B1

|u(x)|p
|x|n
(
log 1

|x|
)p dx.

Our first main result reads as follows:

Theorem 1 For n ≥ 2 and 1 < p < ∞, there exists Cp,n > 0 depending only on p
and n which satisfies

ε(u) ≥ Cp,n

∫

B1

|x|p−n

(

log
1

|x|
)p−1

∣
∣
∣
∣
∣
∣
∣
∣

x

|x| · ∇

⎛

⎜
⎜
⎝

u(x)
(
log 1

|x|
) p−1

p

⎞

⎟
⎟
⎠

∣
∣
∣
∣
∣
∣
∣
∣

p

dx, u ∈ W 1,p
0,0 (B1)

(12)
for 2 ≤ p < ∞ and

ε(u)
p
2

(∫

B1

|x|p−n

∣
∣
∣
∣

x

|x| · ∇u(x)

∣
∣
∣
∣

p

dx

) 2−p
2

≥ Cp,n

∫

B1

|x|p−n

(

log
1

|x|
)p−1

∣
∣
∣
∣
∣
∣
∣
∣

x

|x| · ∇

⎛

⎜
⎜
⎝

u(x)
(
log 1

|x|
) p−1

p

⎞

⎟
⎟
⎠

∣
∣
∣
∣
∣
∣
∣
∣

p

dx, u ∈ W 1,p
0,0 (B1)

(13)
for 1 < p < 2.

We also have a remainder term given by a distance from virtual minimizers. Some
studies on this direction can be found in [3] for the Sobolev inequality and in [10]
for Hardy inequalities (1) and (5). Let

d(f , g) := sup
0<r<1

|f (r) − g(r)|
(
log 1

r

) p−1
p

, ũ(r) :=
∫

Sn−1
u(r, θ)dθ.
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Theorem 2 Let n ≥ 2 and 1 < p < ∞. Define p̃ = max{p2, 2p}. Then there exists
Cp,n > 0 such that the inequality

ε(u) ≥ Cp,n

⎛

⎜
⎝

∫

B1

|u(x)|p
|x|n
(
log 1

|x|
)p dx

⎞

⎟
⎠

⎡

⎢
⎢
⎢
⎢
⎣
inf
a>0

d

(

ũ(r), a

(

log
1

r

) p−1
p

)

(∫

B1
|x|p−n
∣
∣
∣ x
|x| · ∇u(x)

∣
∣
∣
p

dx
) 1

p

⎤

⎥
⎥
⎥
⎥
⎦

p̃

holds for every u ∈ W 1,p
0,0 (B1).

Remark that the remainder terms in Theorems 1 and 2 are invariant under the
power-type scaling (7). Moreover, Proposition 1 can be proved from Theorem 1
directly by neglecting the remainder term. The proof of Theorems 1 and 2 will be
given in Sect. 2.

In Sect. 3, we revisit the results in [17, 18] which are concerned with the higher-
order remainder terms with iterated logarithmic potential function. We will clarify
the self-iterated structure of the remainder terms, namely, we show that the invariance
property under the power-type scaling (7) naturally leads a remainder term with k +
1-th iterated logarithmic function from that with k-th iterated logarithmic function.

Finally, we consider the equivalence between the standard scaling (2) and the
power-type scaling (7) under the transformation

B1(0) \ {0} � x �→ y =
(

log
1

|x|
)−p x

|x| ∈ R
n \ {0} (14)

and the associated transformation of functions:

Tp : C∞
0 (Rn \ {0}) → C∞

0 (B1(0) \ {0}) ; Tpu(x) = u

((

log
1

|x|
)−p x

|x|

)

.

These transformations are introduced by Horiuchi and Kumlin in [18, Defini-
tions 3.1 and 3.2].

In Sect. 4, we derive the Alvino inequality

sup
x∈B1

|u�(x)|
(
log 1

|x|
) 1

n′
≤ π− 1

2 n− 1
n

(
Γ
(
1 + n

2

)) 1
n

(∫

B1

|∇u|ndx

) 1
n

, u ∈ W 1,n
0 (B1)

by applying the transformation above to the classical Sobolev inequality and taking
a simple limiting procedure. As a by-product, we reveal a relation between Moser
sequences which are minimizers associated with the Alvino inequality and Talenti
functions which are minimizers associated with the classical Sobolev inequality.
These facts are treated in Sect. 4.
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2 Proofs of Theorem 1 and Theorem 2

In this section, we give the proof of Theorems 1 and 2. Let u ∈ W 1,p
0,0 (B1). It suffices

to prove the theorems for C∞
0 (B1 \ {0}) functions by the standard density argument

associated with the continuous embedding C∞
0 (B1 \ {0}) ⊂ W 1,p

0,0 (B1) from the def-

inition of W 1,p
0,0 (B1). Let us define the partial derivative with respect to radius |x| as

∂ru(x) := x
|x| · ∇u(x) for the sake of simplicity of the notation.

Proof of Theorem 1. First we consider the case 2 ≤ p < ∞. Let u ∈ C∞
0 (B1 \ {0})

and v(x) := u(x)
(
log 1

|x|
) p−1

p
. Clearly there holds v ∈ C∞

0 (B1 \ {0}) and

∂ru(x) = ∂rv(x)

(

log
1

|x|
) p−1

p

+ p − 1

p

v(x)

|x|
(

log
1

|x|
)− 1

p

.

We now apply the following elementary inequality

|a + b|p ≥ |a|p + p|a|p−2ab + cp|b|p, p ≥ 2, a, b ∈ R (15)

(see e.g. Frank-Seiringer [16, p. 3415]). Taking

a = p − 1

p

v(x)

|x|
(

log
1

|x|
)− 1

p

, b = ∂rv(x)

(

log
1

|x|
) p−1

p

, (16)

we have

|x|p−n|∂ru|p ≥
(

p − 1

p

)p |u(x)|p
|x|n
(
log 1

|x|
)p

+
(

p − 1

p

)p−1
∂r(|v|p)
|x|n−1

+ cp|x|p−n

(

log
1

r

)p−1

|∂rv|p.
(17)

Integrating both sides of (17) on B1(0) and applying

∫

B1

∂r(|v|p)
|x|n−1

dx =
∫ 1

0

∫

Sn−1
∂r(|v|p)dωdr = 0, (18)

we obtain the desired estimate.
Next we consider the case 1 < p < 2. In this case, we apply the following inequal-

ity instead of (15):

|a + b|p ≥ |a|p + p|a|p−2ab + C
|b|2

(|a| + |b|)2−p
, 1 < p < 2, a, b ∈ R (19)
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(see e.g. Lindqvist [21, Lemma 4.2]). Applying (19) with a, b as in (16), we have

|x|p−n|∂ru|p ≥
(

p − 1

p

)p |u(x)|p
|x|n
(
log 1

|x|
)p +
(

p − 1

p

)p−1
∂r(|v|p)
|x|n−1

+ C|x|p−n

∣
∣
∣
∣

(
log 1

|x|
) p−1

p
∂rv

∣
∣
∣
∣

2

(

|∂ru| + p−1
p

(
log 1

|x|
)− 1

p |v(x)|
|x|

)2−p .

(20)

Integrating it over B1 and using (18), we obtain

ε(u) ≥ C
∫

B1

|x|p−n

∣
∣
∣
∣

(
log 1

|x|
) p−1

p
∂rv

∣
∣
∣
∣

2

(

|∂ru| + p−1
p

(
log 1

|x|
)− 1

p |v(x)|
|x|

)2−p dx. (21)

Now Hölder’s inequality leads

∫

B1

|x|p−n

(

log
1

|x|
)p−1

|∂rv|pdx

≤

⎛

⎜
⎜
⎜
⎝

∫

B1

|x|p−n

∣
∣
∣
∣

(
log 1

|x|
) p−1

p
∂rv

∣
∣
∣
∣

2

∣
∣
∣
∣|∂ru| + p−1

p

(
log 1

|x|
)− 1

p |v(x)|
|x|

∣
∣
∣
∣

2−p dx

⎞

⎟
⎟
⎟
⎠

p
2

×
(∫

B1

|x|p−n

∣
∣
∣
∣
∣
|∂ru| + p − 1

p

(

log
1

|x|
)− 1

p |v(x)|
|x|

∣
∣
∣
∣
∣

p

dx

) 2−p
2

.

(22)

It follows from ε(u) > 0 by (21) that

∫

B1

|x|p−n

∣
∣
∣
∣
∣
|∂ru| + p − 1

p

(

log
1

|x|
)− 1

p |v(x)|
|x|

∣
∣
∣
∣
∣

p

dx ≤ 2p
∫

B1

|x|p−n|∂ru|pdx. (23)

Applying (21) and (23) to (22), we obtain Theorem 1 for the case 1 < p < 2. �
Proof of Theorem 2. We follow the idea of Cianchi-Ferone [10]. Let u ∈ C∞

0 (B1 \
{0}). For α > 0, we define A := {r ∈ (0, 1) : ∣∣∫

Sn−1 v(r, θ)dθ
∣
∣ > ε(u)α

}
, and

v(x) := u(x)
(
log 1

|x|
) p−1

p

, ṽ(r) :=
∫

Sn−1
v(r, θ)dθ.
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We choose a suitable α > 0 later. First we assume that

‖∂ru‖Lp(B1,|x|p−n) :=
(∫

B1

|x|p−n|∂ru|pdx

) 1
p

= 1. (24)

Under this normalization, the inequalities in Theorem 1 can be summarized as

ε(u)min{1, p
2 } ≥ Cp,n

∫

B1

|x|p−n

(

log
1

|x|
)p−1

|∂rv(x)|p dx, u ∈ C∞
0 (B1 \ {0}), (25)

where 1 < p < ∞ and Cp,n is a positive constant depending only on p and n.
We give an estimate on |ṽ(r) − ε(u)α|. If r /∈ A, clearly we have

|ṽ(r) − ε(u)α| ≤ 2ε(u)α. (26)

Now assume that r ∈ A. Note that ṽ is continuous on (0, 1) andA is open since u ∈
C∞
0 (B1). Particularly, there exist a, b ∈ (0, 1) such that r ∈ (a, b) ⊂ A with ṽ(a) =

ṽ(b) = ε(u)α . Hence by the fundamental theoremof calculus andHölder’s inequality,
we obtain

|ṽ(r) − ε(u)α| ≤
∫ r

a
|ṽ′(s)|ds

≤
(∫ 1

0
|ṽ′(s)|psp−1

(

log
1

s

)p−1
) 1

p
(∫ r

a

1

s
(
log 1

s

)ds

) p−1
p

.

(27)

Minkowski’s inequality yields

∫ 1

0

∣
∣ṽ′(s)
∣
∣p sp−1

(

log
1

s

)p−1

ds ≤
∫

B1

|x|p−n

(

log
1

|x|
)p−1

|∂rv|pdx. (28)

Combining (28) and (25) with (27), we have

|ṽ(r) − ε(u)α| ≤ Cε(u)
min
{

1
p , 12

}
(∫ r

a

|ṽ(s)|p
ε(u)αp

1

s
(
log 1

s

)ds

) p−1
p

≤ Cε(u)
min
{

1
p , 12

}
−α(p−1)

,

(29)

where in the first line we have used the relation
|ṽ(s)|p
ε(u)αp

≥ 1 which comes from the

fact (a, r) ⊂ A and in the last inequality we have used (24) together with the fact
ε(u) ≥ 0 by Theorem 1. Therefore, if we choose

α = min

{
1

p
,
1

2

}

− α(p − 1), namely, α = min

{
1

p2
,
1

2p

}

,
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then there exists a positive constant C such that

C |ṽ(r) − ε(u)α| ≤ ε(u)α, r ∈ (0, 1),

which implies

C sup
r∈(0,1)

∣
∣
∣
∣
∣
∣

ũ(r) − ε(u)
min
{

1
p2

, 1
2p

}
(
log 1

r

) p−1
p

(
log 1

r

) p−1
p

∣
∣
∣
∣
∣
∣

max{p2,2p}
≤ ε(u).

This proves Theorem 2 under the normalization ‖∂ru‖Lp(B1,|x|p−n) = 1. Finally we
remove this restriction. The inequality above with u replaced by u

‖∂r u‖Lp(B1 ,|x|p−n)
gives

C sup
r∈(0,1)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

ũ(r)
‖∂r u‖Lp(B1 ,|x|p−n)

− ε(u)
min

{
1

p2
, 1
2p

}

‖∂r u‖
1
p
Lp(B1 ,|x|p−n)

(
log 1

r

) p−1
p

(
log 1

r

) p−1
p

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

max{p2,2p}

≤ ε(u)

‖∂ru‖p
Lp(B1,|x|p−n)

,

whence follows the desired estimate. �

3 On the Higher Order Remainder Terms of the Critical
Hardy Inequality via the Scale Invariant Structure

In this section, we discuss the existence of higher order remainder terms for the
critical Hardy inequality from the view-point of the invariance under the power-
type scaling (2). For simplicity we consider the problem in a two-dimensional unit

ball B1 = B1(0) ⊂ R
2. It is easy to see that

∫

B1

∣
∣
∣ x
|x| · ∇u

∣
∣
∣
2

dx is invariant under the

power-type scaling (7) with n = 2, namely,

uλ(x) = λ− 1
2 v(|x|λ−1x), λ > 0, u ∈ W 1,2

0 (B1). (30)

First we see that the potential function V (x) = 1

|x|2
(
log 1

|x|
)2 is naturally arises from

the invariance of the associated functional under the power-type scaling (30).

Proposition 2 Let V : B1 → R be a locally integrable function on B1 with V �≡ 0.
Assume that V satisfies

∫

B1

V (x)|u(x)|2dx =
∫

B1

V (x)|uλ(x)|2dx, λ > 0, u ∈ W 1,2
0 (B1). (31)
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Then there holds

V (x) = θ

(
x

|x|
)

1

|x|2
(
log 1

|x|
)2 , x ∈ B1 \ {0}

for some function θ defined on S
1.

Proof of Proposition 2. Let B1 be the two dimensional unit ball centered at the
origin. Since C∞

0 (B1 \ {0}) is dense in W 1,2
0 (B1) (see Remark 1), it suffices to prove

the proposition for C∞
0 (B1 \ {0}) functions. Let u ∈ C∞

0 (B1 \ {0}) and λ > 0. By the
assumption (31), there holds

∫

B1

V (x)|u(x)|2dx =
∫

B1

V (x)|uλ(x)|2dx.

The change of variable from x to y = |x|λ−1x yields

∫

B1

V (x)|u(x)|2dx =
∫

B1

V (|y|1/λ−1y)λ−2|u(y)|2|y|−2+2/λdy. (32)

Since (32) holds for every u ∈ C∞
0 (B1 \ {0}), we obtain by du Bois-Reymond’s

lemma that

V (a) = |a| 2
λ
−2V (|a| 1

λ
−1a)λ−2, λ > 0, a ∈ B1 \ {0}. (33)

Fix x ∈ B1 \ {0} and choose a = x
2|x| , λ = log 1

|a|/ log
1
|x| , so that |a| 1

λ
−1a = x.

Then (33) yields

|x|2
(

log
1

|x|
)2

V
(
x
) = |a|2

(

log
1

|a|
)2

V (a) = 1

4
(log 2)2 V

(
x

2|x|
)

.

Remark that the function in the right hand side only depends on x
|x| ∈ S

1. Taking

θ

(
x

|x|
)

= 1

4
(log 2)2 V

(
x

2|x|
)

,

we obtain the conclusion. �
In [13], Detalla, Horiuchi and Ando showed the existence of the remainder terms

with iterated logarithmic functions. To state their result, we introduce notation. For
k ∈ N, we define a iterated exponential function by e0 := 1, ek+1 := eek and the
iterated logarithmic function logk by

log0(r) := r for r > 0, logk+1(r) := log(logk r) for r > ek−1.
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Proposition 3 ([13]) For any k ∈ N, there holds

∫

B1

|∇u(x)|2dx ≥ 1

4

k∑

j=1

∫

B1

|u(x)|2

|x|2
j∏

i=1

(

logi
ek

|x|
)2

dx, u ∈ W 1,2
0 (B1).

They also proved that the constant 1
4 in the right hand side is best possible for

every k ∈ N. It should be noted that, for every j ∈ N, the potential function

x �→ |x|−2
j∏

i=1

(

logi
ek

|x|
)−2

is monotone decreasing. Indeed, the proof in [13] relies on the rearrangement method
which requires this monotonicity of the potential function essentially. Our next result
involves the existence of the higher order expansion of a remainder term for a critical
Hardy inequality with a non-monotone potential function. Our argument relies on
the iterated structure of remainder terms from the view-point of the scale invariance
of the problem under power-type scaling (30).

Theorem 3 For k ∈ N, there holds

∫

B1

∣
∣
∣
∣

x

|x| · ∇u(x)

∣
∣
∣
∣

2

dx ≥ 1

4

k∑

j=1

∫

B1

|u(x)|2

|x|2
j∏

i=1

(

logi
1

|x|
)2

dx, u ∈ W 1,2
0 (B1/ek−1).

By using a change of variable x �→ x
ek−1

, one can also obtain the following corol-
lary:

Corollary 1 For k ∈ N, there holds

∫

B1

∣
∣
∣
∣

x

|x| · ∇u(x)

∣
∣
∣
∣

2

dx ≥ 1

4

k∑

j=1

∫

B1

|u(x)|2

|x|2
j∏

i=1

(

logi
ek−1

|x|
)2

dx, u ∈ W 1,2
0 (B1).

Note that Proposition 3 follows from Corollary 1 since ek−1 < ek . Moreover, the
potential function in Corollary 1 is non-monotone while that in Proposition 3 is a
monotone.

For the proof of Theorem 3, we need two lemmas. Let

w(x) :=
(

log
1

|x|
) 1

2

(34)
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be a virtual minimizer associated with the critical Hardy inequality in B1 ⊂ R
2 (see

(9)). One can check easily that w has a self similarity under the scaling (30), i.e., we
have

w(x) = λ− 1
2 w(|x|λ−1x), λ > 0, x ∈ B1 \ {0}.

The first lemma shows that one can obtain a remainder term in terms of a self-
similar function w:

Lemma 1 There holds

∫

B1

∣
∣
∣
∣

x

|x| · ∇u

∣
∣
∣
∣

2

dx − 1

4

∫

B1

|u(x)|2

|x|2
(
log 1

|x|
)2 dx =

∫

B1

(

log
1

|x|
) ∣
∣
∣
∣

x

|x| · ∇
(

u(x)

w(x)

)∣
∣
∣
∣

2

dx

for u ∈ W 1,2
0 (B1).

The similar relation is obtained in [12], but we prove it for reader’s convenience.

Proof of Lemma 1. By the standard density argument, it suffices to prove the lemma
for functions in C∞

0 (B1 \ {0}) (see Remark 1). Let u ∈ C∞
0 (B1 \ {0}) and define

v(x) := u(x)
w(x) for x ∈ B1.We note v ∈ C∞

0 (B1 \ {0}) since u ∈ C∞
0 (B1 \ {0}). By Leib-

nitz’s rule, we have

∣
∣
∣
∣

x

|x| · ∇u(x)

∣
∣
∣
∣

2

=
∣
∣
∣
∣

x

|x| · ∇v(x)

∣
∣
∣
∣

2 (

log
1

|x|
)

− 1

|x|v(x)

(
x

|x| · ∇v(x)

)

+ 1

4

1

|x|2
(
log 1

|x|
)2 |u(x)|2.

(35)

It is easy to see that

∫

B1

1

|x|v(x)

(
x

|x| · ∇v(x)

)

dx =
∫ 2π

0

∫ 1

0

∂

∂r
(v(r, θ))2drdθ = 0

since v ∈ C∞
0 (B1 \ {0}). Thus by integrating (35) over B1, we obtain

∫

B1

∣
∣
∣
∣

x

|x| · ∇u(x)

∣
∣
∣
∣

2

dx − 1

4

∫

B1

|u(x)|2

|x|2
(
log 1

|x|
)2 dx =

∫

B1

log
1

|x|
∣
∣
∣
∣

x

|x| · ∇v(x)

∣
∣
∣
∣

2

dx.

This completes the proof. �
To state the next lemma,we need the following transformation fromC∞

0 (Rn \ {0})
to C∞

0 (B1(0) \ {0}) introduced by Horiuchi and Kumlin [18, Definition 3.1 and 3.2]:

Tp : C∞
0 (Rn \ {0}) → C∞

0 (B1(0) \ {0}) ; Tpu(x) = u

((

log
1

|x|
)−p x

|x|

)

. (36)
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They introduced this transformation in connection with the analysis of the attain-
ability of best constants of critical Caffarelli-Kohn-Nirenberg inequalities. The fol-
lowing lemma will give the iterated structure of the higher order remainder terms for
the critical Hardy inequality:

Lemma 2 Let k ∈ N and 0 < R ≤ 1/ek−1. Then there holds

∫

BR

⎛

⎝
k∏

j=1

logj
1

|x|

⎞

⎠

∣
∣
∣
∣

x

|x| · ∇v(x)

∣
∣
∣
∣

2
dx =
∫

B(
log 1

R

)−1

⎛

⎝
k−1∏

j=1

logj
1

|x|

⎞

⎠

∣
∣
∣
∣

x

|x| · ∇T−1
1 (v)(x)

∣
∣
∣
∣

2
dx

for v ∈ W 1,2
0 (BR), where T−1

1 is the inverse transformation of T1 in (36) given by

T−1
1 v(x) := v

(

exp

(

− 1

|x|
)

x

|x|
)

, x ∈ B
(log 1

R )
−1 .

Proof of Lemma 2. Let k ∈ N, 0 < R ≤ 1/ek−1, and v ∈ C∞
0 (BR \ {0}). Remark

that T−1
1 (v) ∈ C∞

0 (B
(log 1

R )
−1 \ {0}). Let y =

(
log 1

|x|
)−1

x
|x| for x ∈ BR \ {0}. Then

the definition of T−1
1 gives

x

|x| · ∇v(x) = y

|y| ·
(

∂(y1, · · · , yn)

∂(x1, · · · , xn)

)

∇(T−1
1 v)(y)

= e
1
|y| |y|2 y

|y| · ∇(T−1
1 v)(y),

which together with

logj
1

|x| = logj−1
1

|y| , j ∈ {1, · · · , k}, det

(
∂(y1, · · · , yn)

∂(x1, · · · , xn)

)

= 1

|y|3 e− 2
|y|

yields

∫

BR

⎛

⎝
k∏

j=1

logj
1

|x|

⎞

⎠

∣
∣
∣
∣

x

|x| · ∇v(x)

∣
∣
∣
∣

2

dx

=
∫

B
(log 1

R )
−1

1

|y|

⎛

⎝
k−1∏

j=1

logj
1

|y|

⎞

⎠

∣
∣
∣
∣

y

|y| · ∇T−1
1 v(y)

∣
∣
∣
∣

2

|y|4e
2
|y|

1

|y|3 e− 2
|y| dy

=
∫

B
(log 1

R )
−1

⎛

⎝
k−1∏

j=1

logj
1

|y|

⎞

⎠

∣
∣
∣
∣

y

|y| · ∇T−1
1 (v)(y)

∣
∣
∣
∣

2

dy.

This proves the conclusion for C∞
0 (BR \ {0})-functions. By the standard density

argument (see Remark 1), we obtain the conclusion. �
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Proof of Theorem 3. Let k ∈ N. We will prove

∫

B1

∣
∣
∣
∣

x

|x| · ∇u(x)

∣
∣
∣
∣

2

dx = 1

4

k∑

j=1

∫

B1

|u(x)|2

|x|2∏j
i=1

(
logi

1
|x|
)2 dx

+
∫

B1

⎛

⎝
k∏

j=1

logj
1

|x|

⎞

⎠

∣
∣
∣
∣
∣
∣
∣

x

|x| · ∇
⎛

⎜
⎝

u(x)
∏k

j=1

(
logj

1
|x|
) 1

2

⎞

⎟
⎠

∣
∣
∣
∣
∣
∣
∣

2

dx

(37)

for u ∈ C∞
0 (B1/ek−1 \ {0}). Clearly the conclusion follows from the above equality

by neglecting the last term in (37) together with the standard density argument. A
similar equation to (37) can be found in [12], however our derivation of the equation
is different and preserves the scale invariant structure. We now prove (37) by the
induction argument. Lemma 1 shows us that (37) holds for k = 1. Assume that (37)
holds for k ∈ N. Let u ∈ C∞

0 (B1/ek \ {0}) and define v = u(x)
∏k

j=1

(
logj

1
|x|
) 1

2
for the sake of

simplicity of the notation. Then, applyingLemma2withR = 1/ek ≤ 1/ek−1 k-times,
we have

∫

B1

⎛

⎝
k∏

j=1

logj
1

|x|

⎞

⎠

∣
∣
∣
∣

x

|x| · ∇v

∣
∣
∣
∣

2

dx =
∫

B1

∣
∣
∣
∣

y

|y| · ∇ ((T−1
1 )(k)v

)
∣
∣
∣
∣

2

dy,

where (T−1
1 )(k) is the k-times composition of T−1

1 . Noting the fact (T−1
1 )(k)v ∈

C∞
0 (B1 \ {0}) which follows from u ∈ C∞

0 (B1/ek \ {0}), we obtain from Lemma 1
for (T−1

1 )(k)v that

∫

B1

∣
∣
∣
∣

y

|y| · ∇(T−1
1 )(k)v(y)

∣
∣
∣
∣

2

dy − 1

4

∫

B1

∣
∣(T−1

1 )(k)v(y)
∣
∣2

|y|2
(
log 1

|y|
)2 dy

=
∫

B1

log
1

|y|

∣
∣
∣
∣
∣
∣
∣

y

|y| · ∇
⎛

⎜
⎝

(T−1
1 )(k)v(y)
(
log 1

|y|
) 1

2

⎞

⎟
⎠

∣
∣
∣
∣
∣
∣
∣

2

dy.

Now we remark

y

|y| · ∇(T−1
1 )(k)v(y) = |x|

⎛

⎝
k∏

j=1

logj
1

|x|

⎞

⎠ logk
1

|x|
x

|x| · ∇v(x),

det

(
∂y

∂x

)

= 1

|x|2
k∏

j=1

logj
1

|x|
(

logk
1

|x|
)2

.
(38)
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Indeed, let φ ∈ C1(R) be a injective function and put y = φ(|x|) x
|x| for x ∈ R

n.
Then, for 1 ≤ i, j ≤ n, we see

∂yi

∂xj
= φ(|x|)

|x|
(

δij +
( |x|

φ(|x|)φ
′(|x|) − 1

)
xixj

|x|2
)

,

det

(
∂y

∂x

)

=
(

φ(|x|)
|x|
)n−1

φ′(|x|).
(39)

Let v ∈ C1(Rn) and define ṽ(y) := v(x). Then we have

x

|x| · ∇v(x) = φ(|x|)
|x|

⎛

⎝
n∑

i=1

n∑

j=1

δij
yi

|y|∂j ṽ +
( |x|

φ(|x|)φ
′(|x|) − 1

)
y2i yj∂j ṽ

|y|3

⎞

⎠

= φ′(|x|) y

|y| · ∇ ṽ(y).

(40)

By taking φ(|x|) =
(
logk

1
|x|
)−1

in (39) and (40), we have (38). The relation (38)

yields

∫

B1

log
1

|y|

∣
∣
∣
∣
∣
∣
∣

y

|y| · ∇
⎛

⎜
⎝

(T−1
1 )(k)v(y)
(
log 1

|y|
) 1

2

⎞

⎟
⎠

∣
∣
∣
∣
∣
∣
∣

2

dy

=
∫

B1

k+1∏

j=1

logj
1

|x|

∣
∣
∣
∣
∣
∣
∣

x

|x| · ∇
⎛

⎜
⎝

u(x)
(∏k+1

j=1 logj
1
|x|
) 1

2

⎞

⎟
⎠

∣
∣
∣
∣
∣
∣
∣

2

dx

(41)

and

1

4

∫

B1

∣
∣(T−1

1 )(k)v(y)
∣
∣2

|y|2
(
log 1

|y|
)2 dy = 1

4

∫

B1

(

logk
1

|x|
)2 |v(x)|2
(
logk+1

1
|x|
)2 det

(
∂y

∂x

)

dx

= 1

4

∫

B1

|u(x)|2

|x|2
k+1∏

j=1

(

logj
1

|x|
)2

dx.
(42)

Combining (38), (41), and (42), we obtain the relation (37) with k + 1 ∈ N for
u ∈ C∞

0 (B1/ek \ {0}). This completes the proof of Theorem 3. �

Remark 2 A similar expansion as in Proposition 2 for higher dimensions n ≥ 3 is
also known (see [17]). However, to the best of our knowledge, the sharp constant
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with iterated logarithmic functions seems to be unknown for n ≥ 3. The methods in
the proof of Theorem 3 also works for higher dimensions, but it seems that the sharp
constant for iterated logarithmic functions does not follow from such arguments.

4 The Relation Between the Sobolev Inequality
and the Alvino Inequality via the Transformation
of Horiuchi-Kumlin

As is mentioned in Sect. 1, the classical Hardy inequality (1) enjoys the invariance
under the standard scaling (2). It is also well known that the Sobolev inequality

(∫

Rn

|v(x)|q∗
dx

) 1
q∗

≤ Cq

(∫

Rn

|∇v(x)|q dx

) 1
q

, v ∈ W 1,q(Rn), (43)

where

1 ≤ q < n, Cq = π− 1
2 n− 1

q

(
q − 1

n − q

)1− 1
q

⎛

⎝
Γ
(
1 + n

2

)
Γ (n)

Γ
(

n
q

)
Γ
(
1 + n − n

q

)

⎞

⎠

1
n

,

has the same invariance under the standard scaling (2). We recall that the inequal-
ity above yields the optimal embedding of W 1,q(Rn) into the Orlicz space (see [9,
Example 1]), the constant Cq is sharp and is characterized by the Talenti functions
(see [26]) with parameters a, b > 0:

vq,a,b(x) =
(

a + (b|x|) q
q−1

)1− n
q

(44)

since vq,a,b can be approximated by functions in C∞
0 (Rn \ {0}) in the ‖∇ · ‖Lq norm

although it does not belong to W 1,q(Rn). We also recall another type of the critical
inequality introduced by Alvino in [2]:

sup
x∈B1

|u�(x)|
(
log 1

|x|
) 1

n′
≤ π− 1

2 n− 1
n

(
Γ
(
1 + n

2

)) 1
n

(∫

B1

|∇u|ndx

) 1
n

, u ∈ W 1,n
0 (B1),

(45)

where again the constant in the right hand side is optimal. It is considered as an
another version of the critical Sobolev inequality since (45) also yields the optimal
embedding of W 1,n

0 (B1) in the framework of Orlicz spaces (see [9, Example 1] and
[5, Lemma 2.8]) which is similar to the classical case 1 ≤ q < n. In [8], Cassani, Ruf
and Tarsi proved that the optimal constant in (45) is attained by the modified Moser
sequence (mb) with a parameter b > 0 given by
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mb(x) =

⎧
⎪⎨

⎪⎩

ω
− 1

n
n−1b

1
n −1, |x| ≤ e− 1

b ,

ω
− 1

n
n−1b

1
n log

1

|x| , e− 1
b < |x| ≤ 1,

(46)

whereωn−1 is the surfacemeasure of the unit sphere. The sequence (mb) is essentially
introduced by Moser [23] (see also [7, 8, 25]) to find the optimal exponent for the
Trudinger-Moser inequality. It is worth mentioning that the similarity between the
Sobolev inequality and the classical Hardy inequality concerning the scale invariance
is also observed in the critical case p = n. Indeed, both of the critical Hardy inequality
(6) and the Alvino inequality (45) have the same invariance under the power-type
scaling (7). In this section, we show that the transformation Tp of Horiuchi-Kumlin
defined by (36) gives a direct relation between the standard scaling (2) and the power-
type scaling (7) and, as a by product, we will give in Sect. 4.2 the Alvino inequality
from the Sobolev inequality. Somewhat surprisingly, these arguments also yields a
Moser sequence from the Talenti functions.

4.1 The Horiuchi-Kumlin Transformation Revisited

Horiuchi-Kumlin showed in [18] that the critical Hardy inequality can be reduced to
the classical Hardy inequality by using (36). Indeed, by combining Lemmas 3.2 and
3.3 in [18], for n ∈ N with n ≥ 2, 1 < q < ∞, and s > −n + q, one can obtain that
the following inequalities (I) and (II) are equivalent via the transformation (36) with
p = q−1

s+n−q and its inverse transformation:

(I)

(
s + n − q

q

)q ∫

Rn
|y|s−q|u(y)|qdy ≤

∫

Rn
|y|s
∣
∣
∣
∣

y

|y| · ∇u

∣
∣
∣
∣

q

dy, u ∈ C∞
0 (Rn \ {0}),

(II)

(
q − 1

q

)q ∫

B1

|v(x)|q
|x|n
(
log 1

|x|
)q dx ≤

∫

B1

|x|q−n
∣
∣
∣
∣

x

|x| · ∇v

∣
∣
∣
∣

q

dx, v ∈ C∞
0 (B1 \ {0}).

(47)

It is easy to see that the inequality (I) in (47) with s = 0 is a classical Hardy
inequality and (II) in (47) follows from (I) by the transformation (36) with p = q−1

n−q .
In addition, taking the limit q → n in the inequality (II) in (47), we have the critical
Hardy inequality

(
n − 1

n

)n ∫

B1

|v(x)|n
|x|n
(
log 1

|x|
)n dx ≤

∫

B1

∣
∣
∣
∣

x

|x| · ∇v

∣
∣
∣
∣

n

dx, v ∈ C∞
0 (B1 \ {0}).

In this subsection, we revisit the transformation (36) in connection with the scale
invariance of the classical Hardy inequality inRn and the critical Hardy inequality in
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B1. We first show that the scale invariance of the classical Hardy inequality induces
the invariance of the critical Hardy inequality under the power-type scaling by the
transformation (36):

Proposition 4 The inequality (I) in (47) is invariant under the standard scaling

Dλ(u)(x) := u(λx), u : Rn → R, λ > 0

and the inequality (II) in (47) is invariant under the power-type scaling

Sλv(x) := v(|x|λ−1x), v : B1(0) → R, λ > 0.

Moreover, there exists a following relation between Dλ and Sλ:

Tp (Dλ−p u) (x) = Sλ(Tpu)(x), u : Rn → R, λ > 0, 0 < p < ∞.

Proof of Proposition 4. The first and the second assertion can be obtained by direct
calculations. Indeed, by (39), the Jacobian matrix of a change of a variable x �→ y =
(
log 1

|x|
)−p

x
|x| is given by

(
∂(x1, · · · , xn)

∂(y1, · · · , yn)

)

= e−n|y|− 1
p

|y|n
(

δij +
(
1

p
|y|− 1

p − 1

)
yiyj

|y|2
)

1≤i,j≤n

= |x|
(

log
1

|x|
)p (

δij +
(
1

p
log

1

|x| − 1

)
xixj

|x|2
)

1≤i,j≤n

,

(48)

where δij is the Kronecker delta. Therefore, it holds that

det

(
∂(y1, · · · , yn)

∂(x1, · · · , xn)

)

= p

(

log
1

|x|
)−pn−1 1

|x|n . (49)

These relations imply the first and the second assertions.
Also we have

Tp(Dλ−p u)(x) = u

(

λ−p

(

log
1

|x|
)−p x

|x|

)

= (Tpu)(|x|λ−1x),

which implies the last assertion. �



116 N. Ioku and M. Ishiwata

4.2 On the Talenti Functions and the Moser Sequences

In this subsection, we consider what kind of information can be obtained from the
argument in Sect. 4.1 if we replace the classical Hardy inequality by the Sobolev
inequality. First we introduce an inequality defined in B1 which is equivalent to the
Sobolev inequality in Rn via the Horiuchi-Kumlin transformation (36).

Theorem 4 Let 1 < q < n and 1
q∗ = 1

q − 1
n . Then the following inequalities are

equivalent:

(I)

⎛

⎜
⎝

∫

B1

|u(x)|q∗

|x|n
(
log 1

|x|
)pn+1 dx

⎞

⎟
⎠

1
q∗

≤ Cqp
1
n

(∫

B1

|x|q−n
(

log
1

|x|
)pq−pn−1

∣
∣
∣
∣
∣
|∇u|2 − |∂ru|2 +

(
1

p
log

1

|x|
)2

|∂ru|2
∣
∣
∣
∣
∣

q
2

dx

) 1
q
,

u ∈ C∞
0 (B1 \ {0}),

(II)

(∫

Rn

|v(y)|q∗
dy

) 1
q∗

≤ Cq

(∫

Rn

|∇v|q dy

) 1
q

, v ∈ C∞
0 (Rn \ {0}),

where Cq is the Sobolev best constant given by

Cq = π− 1
2 n− 1

q

(
q − 1

n − q

)1− 1
q

⎛

⎝
Γ
(
1 + n

2

)
Γ (n)

Γ
(

n
q

)
Γ
(
1 + n − n

q

)

⎞

⎠

1
n

.

Proof of Theorem 4. First we derive (I) by assuming (II). Let p > 0, u ∈ C∞
0 (B1 \

{0}) and v(y) := T−1
p u(y) for y ∈ R

n \ {0}. Then v satisfies (II) since v ∈ C∞
0 (Rn \

{0}). By (48) and (49), it holds that

(∫

Rn

|v(y)|q∗
dy

) 1
q∗

= p
1

q∗

⎛

⎜
⎝

∫

B1

|u(x)|q∗

|x|n
(
log 1

|x|
)pn+1 dx

⎞

⎟
⎠

1
q∗

and

(∫

Rn
|∇v|q dy

) 1
q

=
(∫

B1

p1|x|q−n
(

log
1

|x|
)pq−pn−1

∣
∣
∣
∣
∣

(

δij +
(
1

p
log

1

|x| − 1

)
xixj

|x|2
)

1≤i,j≤n
∇u

∣
∣
∣
∣
∣

q

dx

) 1
q

.
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Direct calculations show

∣
∣
∣
∣
∣

(

δij +
(
1

p
log

1

|x| − 1

)
xixj

|x|2
)

1≤i,j≤n
∇u(x)

∣
∣
∣
∣
∣

2

= |∇u(x)|2 +
(

1

p2

(

log
1

|x|
)2

− 1

)

|∂ru(x)|2

for all x ∈ B1, and we obtain the inequality (I). One can prove (II) from (I) by the
same argument with the transformation Tp. �

Remark 3 The inequalities in Theorem 4 also have the same scale invariant structure
as in Proposition 4.

By using the inequality (I) in Theorem 4, one can derive Alvino’s inequality

sup
x∈B1

|u�(x)|
(
log 1

|x|
) 1

n′
≤ π− 1

2 n− 1
n

(
Γ
(
1 + n

2

)) 1
n

(∫

B1

|∇u|ndx

) 1
n

, u ∈ W 1,n
0 (B1) (50)

from Sobolev’s inequality (II) in Theorem 4.
Let us prove this assertion. We first assume that u is a radially symmetric function

belonging to C∞
0 (B1 \ {0}). Note that |∇u(x)| = |∂ru(x)| for all x ∈ B1 when u is

radially symmetric. Theorem 4 with p = q−1
n−q leads

⎛

⎜
⎜
⎝

∫

B1

|u(x)|q∗

|x|n
(
log 1

|x|
) q∗

n′
dx

⎞

⎟
⎟
⎠

1
q∗

≤ π− 1
2 n− 1

q

(
n − q

q − 1

) n−q
nq

⎛

⎝
Γ
(
1 + n

2

)
Γ (n)

Γ
(

n
q

)
Γ
(
1 + n − n

q

)

⎞

⎠

1
n (∫

B1

|x|q−n |∇u|q dx

) 1
q

by virtue of the Sobolev inequality

(∫

Rn

|v(y)|q∗
dy

) 1
q∗

≤ Cq

(∫

Rn

|∇v|q dy

) 1
q

.

It remains to prove

lim
q↑n

⎛

⎜
⎜
⎝

∫

B1

|u(x)|q∗

|x|n
(
log 1

|x|
) q∗

n′
dx

⎞

⎟
⎟
⎠

1
q∗

= sup
x∈B1

|u(x)|
(
log 1

|x|
) 1

n

, u ∈ C∞
0 (B1 \ {0}). (51)
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Take ε > 0 and consider

Aε :=

⎧
⎪⎨

⎪⎩
x ∈ B1

∣
∣
∣
∣
∣
∣
∣

|u(x)|
(
log 1

|x|
) 1

n′
> sup

x∈B1

|u(x)|
(
log 1

|x|
) 1

n′
− ε

⎫
⎪⎬

⎪⎭
.

The fact u ∈ C∞
0 (B1 \ {0}) implies that Aε has positive measure and Bδ(0) ∩ Aε =

φ holds for some δ > 0. Therefore we have the positivity and the finiteness of
∫

Aε

dx
|x|n ,

thus

⎛

⎜
⎜
⎝

∫

B1

|u(x)|q∗

|x|n
(
log 1

|x|
) q∗

n′
dx

⎞

⎟
⎟
⎠

1/q∗

>

(∫

Aε

dx

|x|n
)1/q∗
⎛

⎜
⎝sup

x∈B1

|u(x)|
(
log 1

|x|
) 1

n′
− ε

⎞

⎟
⎠ (52)

follows. Hence it holds that

lim inf
q↑n

⎛

⎜
⎜
⎝

∫

B1

|u(x)|q∗

|x|n
(
log 1

|x|
) q∗

n′
dx

⎞

⎟
⎟
⎠

1/q∗

≥ sup
x∈B1

|u(x)|
(
log 1

|x|
) 1

n′
− ε, ε > 0. (53)

On the other hand, since Bδ(0) ∩ supp u = φ for sufficiently small δ > 0, 1
|x|n is

integrable in supp u. Hence we have

⎛

⎜
⎜
⎝

∫

B1

|u(x)|q∗

|x|n
(
log 1

|x|
) q∗

n′
dx

⎞

⎟
⎟
⎠

1/q∗

≤
(∫

supp u

dx

|x|n
)1/q∗
⎛

⎜
⎝sup

x∈B1

|u(x)|
(
log 1

|x|
) 1

n′

⎞

⎟
⎠ ,

which yields

lim sup
q↑n

⎛

⎜
⎜
⎝

∫

B1

|u(x)|q∗

|x|n
(
log 1

|x|
) q∗

n′
dx

⎞

⎟
⎟
⎠

1/q∗

≤
⎛

⎜
⎝sup

x∈B1

|u(x)|
(
log 1

|x|
) 1

n′

⎞

⎟
⎠ .

This together with (53) yields (51), hence

sup
x∈B1

|u(x)|
(
log 1

|x|
) 1

n′
≤ π− 1

2 n− 1
n

(
Γ
(
1 + n

2

)) 1
n

(∫

B1

|∇u|ndx

) 1
n

(54)
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holds for a radially symmetric function u in C∞
0 (B1 \ {0}). We now assume u ∈

W 1,n
0 (B1). Since u� is radially symmetric function belonging to W 1,n

0 (B1), one can
construct radially symmetric functions {un} ⊂ C∞

0 (B1 \ {0}) satisfying un → u� in
W 1,n(B1) by following the proof of the density of C∞

0 (B1 \ {0}) in W 1,n
0 (B1) (see

Sect. 8.1 in [18]). Therefore, applying (54) to un and taking n → ∞ together with
the Pólya-Szegö principle, we obtain the Alvino inequality (50).

Remark 4 The argument above implies that the best constant in the inequality (I)
in Theorem 4 is characterized by the function which is a composition of the Talenti
function and the transformation T q

n−q
:

uq,a,b(x) =
(

a +
(

b log
1

|x|
)− q

n−q

)1− n
q

= b log 1
|x|

(

a
(

b log 1
|x|
) q

n−q + 1

)1− n
q
, a, b > 0

(55)

since the sharp constant of the inequality (II) in Theorem 4 is characterized by the
Talenti functions

vq,a,b(y) =
(

a + (b|y|) q
q−1

)1− n
q
, a, b > 0.

Recall that theTalenti function does not belong toC∞
0 (Rn \ {0})but canbe approx-

imated by functions inC∞
0 (Rn \ {0}) in the ‖∇ · ‖Lq norm.Now taking the limit q ↑ n

in (55) by noting

lim
q↑n

(

a

(

b log
1

|x|
) q

n−q

+ 1

) n−q
q

=

⎧
⎪⎨

⎪⎩

b log
1

|x| , |x| < e− 1
b ,

1, |x| ≥ e− 1
b ,

we obtain

ub(x) := lim
q↑n

uq,a,b(x) =

⎧
⎪⎨

⎪⎩

1, |x| < e− 1
b ,

b log
1

|x| , e− 1
b ≤ |x| ≤ 1.

(56)

Finally, normalizing (56) by ‖∇ub‖Ln , we obtain the modified Moser sequence
(mb) with a parameter b > 0 defined in (46). From this view-point, the modified
Moser sequence arises naturally from the Talenti functions via the Horiuchi-Kumlin
transformation (36) and the limit procedure q ↑ n which preserves the scale invariant
structure in the sense of Proposition 4.
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Stability Analysis of Delaunay Surfaces
as Steady States for the Surface Diffusion
Equation

Yoshihito Kohsaka

Abstract The stability of steady states for the surface diffusion equation will be
studied. In the axisymmetric setting, steady states are the Delaunay surfaces, which
are the axisymmetric constant mean curvature surfaces. We consider a linearized
stability of these surfaces and derive criteria of the stability by investigating the sign
of eigenvalues corresponding to the linearized problem.

Keywords Surface diffusion equation · Delaunay surfaces · Stability

1 Introduction

Let Γt ⊂ R
3 be a moving surface with respect to time t governed by the geometric

evolution law
V = −ΔΓt H on Γt , (1)

where V is the normal velocity of Γt , H is the mean curvature of Γt , and ΔΓt is the
Laplace-Beltrami operator on Γt . In our sign convention, the mean curvature H for
spheres with outer unit normal is negative. Equation (1) is called surface diffusion
equation. The surface diffusion equation (1) was first derived by Mullins [12] to
model the motion of interfaces in the case that the motion of interfaces is governed
purely by mass diffusion within the interfaces. (For simplicity, we choose 1 as the
diffusion constant.) Also, Cahn and Taylor [14] showed that (1) is the H−1-gradient
flow of the area functional of Γt , so that this geometric evolution equation has a
variational structure that the area of the surface decreases whereas the volume of the
region enclosed by the surface is preserved.
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Π+
Π−

Γt

θ− θ+

Π− Π+

Γt

Fig. 1 Setting of (2)

In this paper, we consider the following problem. For φ± : R+ → R, set

Π± = {(φ±(|η|),η)T | η ∈ R
2},

Ω = {(x,η)T | φ−(|η|) ≤ x ≤ φ+(|η|), η ∈ R
2}.

Note that ∂Ω = Π− or Π+. Let us assume that Γt ⊂ Ω and the motion of Γt is
governed by ⎧

⎪⎪⎨

⎪⎪⎩

V = −ΔΓt H on Γt ,

(NΓt , NΠ±)R3 = cos θ± on Γt ∩ Π±,

(∇Γt H, ν±)R3 = 0 on Γt ∩ Π±,

Γt |t=0 = Γ0.

(2)

Here, NΓt and NΠ± are the outer unit normals toΓt andΠ± (= ∂Ω), respectively, and
ν± are the outer unit co-normals to ∂Γt on Γt ∩ Π±. The problem (2) are obtained
as the H−1-gradient flow of the capillary energy

Area [Γt ] + μ+Area [Σt,+] + μ−Area [Σt,−],

whereΣt,± are the part ofΠ± with the boundary ∂Σt,± = Γt ∩ Π±. Note that contact
angles θ± are given by cos θ± = μ± (Fig. 1).

Let Γ∗ be the steady states for (2) and H∗ be the mean curvature of Γ∗. Then H∗
satisfies {

ΔΓ∗ H∗ = 0 on Γ∗,
(∇Γ∗ H∗, ν±)R3 = 0 on Γ∗ ∩ Π±.

This implies
‖∇Γ∗ H∗‖2L2(Γ∗) = 0,

so that we see that the steady states of (2) are the constant mean curvature surfaces
(CMC surfaces). In this paper, we consider the axisymmetric CMC surfaces, which
are called Delaunay surfaces, as the steady states Γ∗, and analyze the eigenvaule
problem corresponding to the linearized problem for (2) under axisymmetric per-
turbations in order to derive the criteria for the stability of Γ∗ in an axisymmetric
direction.
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Let us introduce the results on the stability of Delaunay surfaces as the variational
problem for the capillary energy. In the case that Π± are the parallel planes and
θ± = π/2, Athanassenas [1] andVogel [15] proved that cylinders are stable if d ≤ rπ
and unstable if d > rπ, where d and r are the length and the radius of a cylinder,
respectively. Moreover, they showed that unduloids are unstable. Vogel [16] also
studied the case of general contact angles. In the case that Π± are spheres, Vogel
[17] analyzed the stability for convex unduloids and nodoids by using amethodwhich
allows to consider asymmetric perturbations. In [18, 19], Vogel also showed some
partial results for this case. Recently, Fel and Rubinstein [8, 13] derived the precise
criteria of the stability by means of analysis based on the Weierstrass representation
of the 2nd variation for the capillary energy under axisymmetric perturbations. In [8]
they studied the stability for catenoids and cylinders in the case that Π± are spheres,
paraboloids, catenoids, ellipsoids, and thatΠ± are sphere and plane, and in [13] they
analyzed the stability for unduloids and nodoids in the case that Π± are spheres. Our
results give criteria for the stability of Delaunay surfaces by a different approach
from that of Fel and Rubinstein, and generalizes their results in the point that Π± are
more general surfaces.

We also introduce the results on dynamics of moving surfaces governed by (1).
Bernoff, Bertozzi, andWitelski [4] studied the stability of the axisymmetric equilibria
for (1). For cylinders and spheres, they got the spectrum of the linearized operator
in a periodic setting and analyzed the stability of them. Moreover, with the help
of numerical computation, they showed that unduloids form an unstable branch of
solutions that bifurcates subcritically from the cylinder and reconnects to the sphere in
a singular limit involving a change of topology. LeCrone and Simonett [11] proved
the well-posedness for the axisymmetric surface diffusion equation with periodic
boundary conditions and that the family of cylinders with the radius bigger than a
critical radius are asymptotically, exponentially stable under a large class of nonlinear
perturbations whichmaintain the same axis of symmetry. In addition, they rigorously
showed the existence of branches of bifurcating equilibria which intersect the family
of cylinders at critical radii. We also refer Athanassenas [2] and Athanassenas and
Kandanaarachchi [3]. Under an axisymmetric setting, they studied the convergence
to a CMC surface (in [3], to a hemisphere or a sphere) of evolving hypersurfaces
governed by volume-preserving mean curvature flow which has the same variational
structure as (1).

2 Delaunay Surfaces and the Linearized Problem

Let Γ∗ be a axisymmetric steady state of (2) and set

Γ∗ = {(x∗(s), y∗(s) cos ζ, y∗(s) sin ζ)T | s ∈ [0, d], ζ ∈ [0, 2π]},

where s is the arc-length parameter of a generating curve (x∗(s), y∗(s))T . We refer
to the following theorem on the representation of Delaunay surfaces.
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Theorem 2.1 ([10]) Let H∗ be a constant satisfying H∗ 
= 0 (assuming H∗ < 0).
Then a generating curve (x∗(s), y∗(s)) of an axisymmetric surface with a constant
mean curvature H∗ is represented by

x∗(s) =
∫ s

0

1 − B sin(2H∗(σ − τ ))
√
1 + B2 − 2B sin(2H∗(σ − τ ))

dσ,

y∗(s) = − 1

2H∗

√
1 + B2 − 2B sin(2H∗(s − τ )),

where B ≥ 0 is a constant.

Theorem2.1 implies cylinders (B = 0), unduloids (0 < B < 1), spheres (B = 1),
and nodoids (B > 1). In this paper, we only consider cylinders (see Fig. 2) and un-
duloids (see Fig. 3).

For the steady states Γ∗ = {(x∗(s), y∗(s) cos ζ, y∗(s) sin ζ)T | 0 ≤ s ≤ d,

ζ ∈ [0, 2π]}, which are cylinders or unduloids, set

Φ∗(s, ζ) = (x∗(s), y∗(s) cos ζ, y∗(s) sin ζ)T .

Recall Ω = {(x,η)T | φ−(|η|) ≤ x ≤ φ+(|η|), η ∈ R
2} and define

γ(s, ρ) = γ−(ρ) + s

d
{γ+(ρ) − γ−(ρ)},

Fig. 2 (Left) cylinder (H∗ 
= 0, B = 0), (Right) a generating curve of a cylinder

Fig. 3 (Left) unduloid (H∗ 
= 0, 0 < B < 1), (Right) a generating curve of a unduloid
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where

γ−(ρ) = min{s | Φ∗(s, ζ) + ρN∗(s, ζ) ∈ Ω},
γ+(ρ) = max{s | Φ∗(s, ζ) + ρN∗(s, ζ) ∈ Ω}.

Note thatγ−(0) = 0,γ+(0) = d,γ(s, 0) = s,γ(0, ρ) = γ−(ρ), andγ(d, ρ) = γ+(ρ).
In addition, set

Ψ (s, ζ, ρ) = Φ∗(γ(s, ρ), ζ) + ρN∗(γ(s, ξ), ζ)

and define for v : [0, d] × [0, T ] → [−ε, ε], (s, t) �→ v(s, t)

Φ(s, ζ, t) = Ψ (s, ζ, v(s, t)).

Then we give an axisymmetric perturbation Γt from Γ∗ by

Γt = {Φ(s, ζ, t) | s ∈ [0, d], ζ ∈ [0, 2π], t ∈ [0, T ]}.

This implies the nonlinear problem

⎧
⎨

⎩

V (vt , v, ∂sv) = −Δ(v, ∂sv)H(v, ∂sv, ∂2
s v) for (s, t) ∈ [0, d] × [0, T ],

(N (v, ∂sv), NΠ±(v))R3 = cos θ± at s = 0, d, t ∈ [0, T ],
(∇Γt H(v, ∂sv, ∂2

s v), ν±(v, ∂sv))R3 = 0 at s = 0, d, t ∈ [0, T ],
(3)

where NΠ± are given by

NΠ± = ∓ (−1, φ̇±(|η|)ξ)T

√

1 + (φ̇±(|η|))2
(ξ = η

|η| ∈ S1).

Linearizing (3), we obtain

⎧
⎪⎨

⎪⎩

vt = −1

2
ΔΓ∗ L[v],

∂sv ± (κΠ± csc θ± − κΓ∗ cot θ±)v = 0,
∂s L[v] = 0,

(4)

where L[v] = ΔΓ∗v + |A∗|2v with

ΔΓ∗ = 1

y∗

{

∂s(y∗∂s) + 1

y∗
∂2

ζ

}

, |A∗|2 = (−x ′′
∗ y′

∗ + x ′
∗y′′

∗ )2 +
(

x ′∗
y∗

)2
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and

κΠ± = ± φ̈±(y∗)
{1 + (φ̇±(y∗))2}3/2

, κΓ∗ = −x ′′
∗ y′

∗ + x ′
∗y′′

∗ .

Taking account of the fact that v is independent of ζ, we have

ΔΓ∗v = 1

y∗
{∂s(y∗∂sv)} .

Remark 2.1 In this paper, we consider only axisymmetric perturbations. According
to Vogel [15, Lemma 2.1], the Schwarz symmetrization works in the setting that Π±
are parallel planes, so that it is proved that the capillary energy for axisymmetric
perturbations is smaller than that for asymmetric perturbations. Thus, in such case, it
is seems that our analysis is enough to discuss the stability. But, in the case that Π±
are not parallel planes, the Schwarz symmetrization does not work well. At present,
we are not sure whether an analysis under axisymmetric perturbations is enough
to study the stability. This means that there is a possibility that steady states are
unstable in an asymmetric direction even if they are (linearly) stable in axisymmetric
directions.

3 Gradient Flow Structure for the Linearized Problem

Let consider the gradient flow structure for the linearized problem (4). Set

E =
{
v ∈ H 1(Γ∗)

∣
∣
∣

∫ d

0
v y∗ ds = 0

}
,

X = {
v ∈ (H 1(Γ∗))∗

∣
∣ 〈v, 1〉 = 0〉},

where (H 1(Γ∗))∗ is the duality space of H 1(Γ∗) and 〈·, ·〉 is the duality pairing
(H 1(Γ∗))∗ and H 1(Γ∗).

Definition 3.1 Let ζ ∈ X . Then we say that uζ ∈ E is a weak solution of

{−ΔΓ∗uζ = ζ for σ ∈ (0, d),

∂suζ = 0 at σ = 0, d
(5)

if and only if uζ satisfies

∫ d

0
∂suζ∂sφ y∗ds = 〈ζ,φ〉 (φ ∈ E). (6)
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Definition 3.2 Let ζ ∈ X . Then we say that v ∈ H 3(Γ∗) with

∫ d

0
v y∗ds = 0

is a weak solution of
⎧
⎨

⎩

−ΔΓ∗ L[v] = ζ,

∂sv ± (κΠ± csc θ± − κΓ∗ cot θ±)v = 0,
∂s L[v] = 0

(7)

if and only if v satisfies

∫ d

0
∂s L[v] ∂sφ y∗ds = 〈ζ,φ〉 (φ ∈ E) (8)

and the boundary conditions

∂sv ± (κΠ± csc θ± − κΓ∗ cot θ±)v = 0 at s = 0, d. (9)

Now, we define the symmetric bilinear form

I [v1, v2] =
∫ d

0

{
∂sv1∂sv2 − |A∗|2v1v2

}
y∗ ds

+ y∗(κΠ+ csc θ+ − κΓ∗ cot θ+)v1v2
∣
∣
s=d

+ y∗(κΠ− csc θ− − κΓ∗ cot θ−)v1v2
∣
∣
s=0.

and the H−1-inner product

(v1, v2)−1 =
∫ d

0
∂suv1∂suv2 y∗ds,

where uvi is a weak solution of (5) for vi ∈ X . Thenwe obtain the following theorem.

Theorem 3.1 Let ζ ∈ X and v ∈ E . Then the following (i) and (ii) are equivalent.

(i) v ∈ H 3(Γ∗) and v is a weak solution of (7);
(ii) v satisfies

− I [v,φ] = (ζ,φ)−1 (φ ∈ E). (10)

Applying a similar argument to that of [6, 9], we can prove this theorem. Thus we
omit the proof.
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4 Eigenvalue Problem

Let us consider the eigenvalue problem for (4).

⎧
⎨

⎩

−ΔΓ∗ L[w] = λw for s ∈ (0, d),

∂sw ± (κΠ± csc θ± − κΓ∗ cot θ±)w = 0 at s = 0, d,

∂s L[w] = 0 at s = 0, d.

(11)

Set

D(A) =
{
w ∈ H 3(Γ∗)

∣
∣
∣ w satisfies (9) and

∫ d

0
w y∗ ds = 0

}

and define the linear operator A : D(A) → X by

〈Aw,φ〉 =
∫ d

0
∂s L[w] ∂sφ y∗ds (w ∈ D(A), φ ∈ E).

Then, by the definition of A and Theorem3.1, we obtain

(Aw,φ)−1 = −I [w,φ] (φ ∈ E).

This easily implies that A is symmetric with respect to the inner product (·, ·)−1.
Then we have the following theorem.

Theorem 4.1 A is self-adjoint with respect to ( · , · )−1.

Applying a similar argument to that of [6, 9], we can prove this theorem. Thus we
omit the proof.

Lemma 4.1 Let {λn}n∈N be the eigenvalues of A with λ1 ≥ λ2 ≥ λ3 ≥ · · · . Then
the following properties hold.

(i) For n ∈ N, n ≥ 2,

λ1 = − inf
w∈E\{0}

I [w,w]
(w,w)−1

, λn = − sup
W∈Σn−1

inf
w∈W⊥\{0}

I [w,w]
(w,w)−1

.

Here, Σn is the class of subspaces of E with dimension n and W⊥ is the orthog-
onal subspace of W with respect to H−1-inner product.

(ii) The eigenvalues of A depend continuously on κΠ± csc θ±, κΓρ∗ cot θ±, and d,
and are monotone decreasing with respect to κΠ± csc θ±.

Applying a similar argument to [5, Chap.VI] and using Theorem3.1, we can prove
this lemma. Thus we omit the proof.
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5 Stability Analysis

We say that the steady states Γ∗ is linearly stable if and only if all of eigenvalues of
A are negative, that is, the maximal eigenvalue λ1 is negative. In order to analyze the
stability of Γ∗, we first introduce a weighted Wirtinger inequality shown by Farroni,
Giova, and Ricciardi [7] (We introduce only the case of p = 2 in [7].)

Lemma 5.1 ([7]) Let N ≥ 1 and T > 0 and let ρ : [0, T ] → R be a measurable
function such that 1 ≤ ρ(t) ≤ L. Then the inequality

∫ T

0
|u(t)|2ρ(t) dt ≤ Cb

∫ T

0
|u′(t)|2ρ(t) dt (12)

holds for u ∈ H 1
0 (0, T ;RN ), where

Cb =
(

T

4 arctan L−1/2

)2

.

Remark 5.1 Set

α∗ := min
s∈[0,d] y∗(s) (> 0), β∗ := max

s∈[0,d] y∗(s),

C∗,d :=
(

d

4 arctan
√

α∗/β∗

)2

. (13)

In the case of cylinders, y∗ is represented by

y∗(s) = − 1

2H∗
(H∗ < 0),

so that we see α∗ = β∗ = −1/ (2H∗). This gives

C∗,d =
(

d

π

)2

.

In the case of unduloids, y∗ is represented by

y∗(s) = − 1

2H∗

√
1 + B2 − 2B sin(2H∗(s − τ )) (H∗ < 0, 0 < B < 1),

so that we have α∗ ≥ −(1 − B)/ (2H∗), β∗ ≤ −(1 + B)/ (2H∗). This implies
α∗/β∗ ≥ (1 − B)/(1 + B). Thus we obtain

C∗,d ≤
(

d

4 arctan
√

(1 − B)/(1 + B)

)2

.
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Set
M := max

s∈[0,d] |A∗|, Λ± := κΠ± csc θ± − κΓ∗ cot θ±.

Lemma 5.2 Assume that Md <
π

√
C∗,π + ε

for ε > 0, where C∗,π is given by (13)

with d = π. Then there exists an m > 0 such that

I [w,w] > 0 (w ∈ E \ {0})

provided that Λ−,Λ+ > m.

Proof By the definition of I , we have

I [w,w] =
∫ d

0

{|∂sw|2 − |A∗|2w2
}

y∗ ds + y∗Λ+w2
∣
∣
s=d + y∗Λ−w2

∣
∣
s=0

≥
∫ d

0
|∂sw|2 y∗ds − M2

∫ d

0
w2 y∗ ds + y∗Λ+w2

∣
∣
s=d

+ y∗Λ−w2
∣
∣
s=0.

Set

IM [w,w] :=
∫ d

0
|∂sw|2 y∗ds − M2

∫ d

0
w2 y∗ ds + y∗Λ+w2

∣
∣
s=d + y∗Λ−w2

∣
∣
s=0.

Then we should prove that there exists an m > 0 such that IM [w,w] > 0 (w ∈ E \
{0}) provided that Λ−,Λ+ > m. Applying the change of variable

w̃(σ) = w
(d

π
σ
)
, ỹ∗(σ) = 1

α∗
y∗

(d

π
σ
)

and taking account of Md <
π

√
C∗,π + ε

, we obtain

IM [w,w]

= πα∗
d

{∫ π

0
|∂σw̃|2 ỹ∗dσ −

(
Md

π

)2 ∫ π

0
w̃2 ỹ∗dσ + d

π

(
ỹ∗Λ+w̃2∣∣

σ=π + ỹ∗Λ−w̃2∣∣
σ=0

)
}

≥ πα∗
d

{∫ π

0
|∂σw̃|2 ỹ∗dσ − 1

C∗,π + ε

∫ π

0
w̃2 ỹ∗dσ + d

π

(
ỹ∗Λ+w̃2∣∣

σ=π + ỹ∗Λ−w̃2∣∣
σ=0

)
}

.

Setting

Ẽ =
{
w̃ ∈ H 1(0,π)

∣
∣
∣

∫ π

0
w̃ ỹ∗ dσ = 0

}
,

we should prove that for w̃ ∈ Ẽ \ {0} there exists an m > 0 such that

‖∂σw̃‖2L2(0,π;ỹ∗) − 1

C∗,π + ε
‖w̃‖2L2(0,π;ỹ∗) + m̃

(
ỹ∗w̃2

∣
∣
σ=π

+ ỹ∗w̃2
∣
∣
σ=0

)
> 0.
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Let us apply a contradiction argument. Suppose that there are no m > 0 such that the
above inequality is fulfilled. This gives that for any n ∈ N there exists w̃n ∈ Ẽ \ {0}
such that

‖∂σw̃n‖2L2(0,π;ỹ∗) − 1

C∗,π + ε
‖w̃n‖2L2(0,π;ỹ∗) + n

(
ỹ∗w̃2

n

∣
∣
σ=π

+ ỹ∗w̃2
n

∣
∣
σ=0

) ≤ 0.

Without loss of generality, we can take ‖w̃n‖L2(0,π;ỹ∗) = 1. Then we have

‖∂σw̃n‖2L2 ≤ 1

C∗,π + ε
.

Thus there exists a subsequence {w̃nk } ⊂ {w̃n} such that

∂σw̃nk → ∂σw̃ weakly in L2(0,π; ỹ∗),

w̃nk → w̃ strongly in L2(0,π; ỹ∗),
w̃nk → w̃ strongly in C([0,π]).

By the lower semicontinuity of the L2-norm under the weak convergence, we
are led to

‖∂σw̃‖2L2(0,π;ỹ∗) ≤ 1

C∗,π + ε
= 1

C∗,π + ε
‖w̃‖2L2(0,π;ỹ∗) . (14)

On the other hand, we see

ỹ∗w̃2
n

∣
∣
σ=π

+ ỹ∗w̃2
n

∣
∣
σ=0 ≤ 1

n (C∗,π + ε)
.

Since ỹ∗ > 0, this implies
w̃2

∣
∣
σ=π

= w̃2
∣
∣
σ=0 = 0 .

Applying Lemma5.1 with N = 1, T = π, and a weight ỹ∗, we have

‖w̃‖2L2(0,π;ỹ∗) ≤ C∗,π‖∂σw̃‖2L2(0,π;ỹ∗).

This contradicts (14). Consequently, we obtain the desired result. �

Set
K± := κΠ± csc θ±.

It follows from Lemma5.2 that there exists m > 0 such that the maximal eigenvalue
λ1 is non-positive provided that K−, K+ > m. That is, all of eigenvalues are non-
positive in such case. The eigenvalues depend continuously on the parameters. Thus
we investigate the condition that the zero is an eigenvalue for the eigenvalue problem
(11). To do it, we should solve
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ΔΓ∗ L[w] = 0, (15)

∂sw ± (K± − κΓ∗ cot θ±)w = 0, (16)

∂s L[w] = 0. (17)

By (15) and (17), we have
‖∂s L[w]‖2L2(Γ∗) = 0.

This implies
L[w] = constant.

Thus we can get the fundamental solutions of the boundary value problem (15) and
(17) if we solve

L[w] = 0, L[w] = β ( 
= 0). (18)

Let w1, w2 be solutions of L[v] = 0 and let w3 be a solution of L[v] = β. Then a
solution of the boundary value problem (15) and (17) is represented by

w(s) = c1w1(s) + c2w2(s) + c3w3(s).

Deriving the condition that this w is a non-trivial solution under (16) and

∫ d

0
v y∗ds = 0,

it is the condition that the zero is an eigenvalue for the eigenvalue problem (11). That
is, the zero is an eigenvalue if and only if the parameters satisfy

∣
∣
∣
∣
∣
∣
∣
∣

w′
1(0) − Λ−w1(0) w′

2(0) − Λ−w2(0) w′
3(0) − Λ−w3(0)

w′
1(d) + Λ+w1(d) w′

2(d) + Λ+w2(d) w′
3(d) + Λ+w3(d)

∫ d

0
w1 y∗ds

∫ d

0
w2 y∗ds

∫ d

0
w3 y∗ds

∣
∣
∣
∣
∣
∣
∣
∣

= 0, (19)

where Λ± := K± − κΓ∗ cot θ±. Then, setting

w(s) = (w1(s), w2(s), w3(s))
T , I(d) =

(∫ d

0
w1 y∗ds,

∫ d

0
w2 y∗ds,

∫ d

0
w3 y∗ds

)T
,

(19) is equivalent to

− (w(0) × w(d), I(d))R3Λ−Λ+ − (w(0) × w′(d), I(d))R3Λ−
+ (w′(0) × w(d), I(d))R3Λ+ + (w′(0) × w′(d), I(d))R3 = 0.
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Moreover, we rewrite it as

AwK−K+ + Bw
− K− + Bw

+ K+ + Cw = 0, (20)

where

Aw = −(w(0) × w(d), I(d))R3 ,

Bw
− = −(w(0) × w′(d), I(d))R3 + (w(0) × w(d), I(d))R3κ∗(d) cot θ+,

Bw
+ = (w′(0) × w(d), I(d))R3 + (w(0) × w(d), I(d))R3κ∗(0) cot θ−,

Cw = (w′(0) × w′(d), I(d))R3 − (w(0) × w(d), I(d))R3κ∗(d)κ∗(0) cot θ+ cot θ−.

Then we have the following three representations of (20).
Case I: Aw 
= 0 and Bw− Bw+ − AwCw 
= 0.

(20) ⇔ K+ = − Bw−
Aw

+
Bw− Bw+ − AwCw

(Aw)2

K− −
(

− Bw+
Aw

) .

Case II: Aw 
= 0 and Bw− Bw+ − AwCw = 0.

(20) ⇔
{

K− −
(

− Bw+
Aw

)} {

K+ −
(

− Bw−
Aw

)}

= 0.

Case III: Aw = 0.

(20) ⇔ Bw
− K− + Bw

+ K+ + Cw = 0.

If we can prove that −Bw+/Aw and −Bw−/Aw are monotone increasing in d, then we
expect two type of figures for (20) in (K−, d, K+)-coordinate space. If Case I and
Case III arise, (20) is represented as the figure of a type of (a) (see Fig. 4). On the
other hand, if all of cases arise, (20) is represented as the figure of a type of (b) (see
Fig. 5). In the following subsections, we check the above for the case that Γ∗ are
cylinders and unduloids.

5.1 Cylinders

In the case that Γ∗ = {(x∗(s), y∗(s) cos ζ, y∗(s) sin ζ)T | s ∈ [0, d], ζ ∈ [0, 2π]} is a
cylinder with a constant mean curvature H∗ (< 0), we remember
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Fig. 4 a Case I + Case III
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Fig. 5 b Case I + Case II +
Case III
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x∗(s) = s, y∗(s) = − 1

2H∗
(=: r > 0).

In this case, L[w] is given by

L[w] = ∂2
s w + 1

r2
w
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and the boundary condition (16) is given by

∂sw ± K±w = 0 at s = 0, d. (21)

L[w] = 0 and L[w] = 1/r2 (we choose 1/r2 as β in (18)) are linear second order
ordinary differential equations with constant coefficients. Solving them, we obtain

w1(s) = cos
( s

r

)
, w2(s) = sin

( s

r

)
, w3(s) = 1. (22)

Then we are led to the following lemma.

Lemma 5.3 Zero is an eigenvalue of the eigenvalue problem (11) if and only if
parameters satisfy

Ac(r, d)K+K− + Bc(r, d)(K+ + K−) + Cc(r, d) = 0, (23)

where

Ac(r, d) = 2 − 2 cos

(
d

r

)

− d

r
sin

(
d

r

)

,

Bc(r, d) = 1

r

{

sin

(
d

r

)

− d

r
cos

(
d

r

)}

,

Cc(r, d) = d

r3
sin

(
d

r

)

.

Moreover, the multiplicity of the zero eigenvalue is one.

Proof Substituting (22) for (20) and calculating it, we get (23). In addition, by the
help with Maple 17, we can obtain that the rank of the 3 × 3-matrix in (19) is two if
the parameters satisfy (23). This leads us to the fact that the multiplicity of the zero
eigenvalue is one. �

Let us investigate d satisfying Ac(r, d) = 0 for each r > 0. Differentiating
Ac(r, d) with respect to d, we obtain

∂d Ac(r, d) = 1

r

{

sin

(
d

r

)

− d

r
cos

(
d

r

)}

= 1

r

{

tan

(
d

r

)

− d

r

}

cos

(
d

r

)

(
if d 
=

(
mπ + π

2

)
r, m ∈ N ∪ {0}

)
.

Thus we see that d ∈ (
mπr,

(
mπ + π/2

)
r
)
(m ∈ N) satisfying tan(d/r) = d/r im-

plies ∂d Ac(r, d) = 0. Let qm ∈ (
mπr,

(
mπ + π/2

)
r
)
(m ∈ N) be the values of d

fulfilling the above. Then it follows that

∂d Ac(r, d)

{
< 0 (d ∈ (q2
−1, q2
)),

> 0 (d ∈ (q2
, q2
+1))
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for 
 ∈ N. Moreover, we have

Ac(r, (2
 − 1)πr) = 4 > 0, Ac(r, 2
πr) = 0 (
 ∈ N),

so that, taking account of (2
 − 1)πr < q2
−1 < 2
πr < q2
, we are led to

Ac(r, q2
−1) > 0, Ac(r, q2
) < 0 (
 ∈ N).

Hence, for each r > 0, there exist pm (= pm(r)) ∈ (qm, qm+1) (m ∈ N) such that
Ac(r, pm) = 0. In particular, we get p2
−1 = 2
πr (
 ∈ N). In addition, we obtain
for d 
= pm

{Bc(r, d)}2 − Ac(r, d)Cc(r, d) = 1

r2

{
d

r
− sin

(
d

r

)}2

> 0 (d > 0).

Consequently, we see that, for the case that Γ∗ are cylinders, only Case I and Case
III arise in the representations of (23). Also we can observe for d 
= pm

∂

∂d

(

− Bc(r, d)

Ac(r, d)

)

= 1

c2{Ac(r, d)}2
{

d

c
− sin

(
d

c

)}2

> 0 (d > 0),

so that−Bc(r, d)/Ac(r, d) is monotone increasing in d for each r > 0. Thus we have
the figure of the type (a) in (K−, d, K+)-coordinate space (see Fig. 4). Then we are
led to the following theorem.

Theorem 5.1 Set Ac(r, d) such that Ac(r, d) > 0 for d ∈ (0, p1). If r, d, K−, K+
satisfy

Ac(r, d)K−K+ + Bc(r, d)(K− + K+) + Cc(r, d) > 0 and d < p1 = 2πr,

then there exists a pair of (K−, K+) such that cylinders are linearly stable for an ax-
isymmetric perturbation. Moreover, if d ≥ 2πr , then there are no pairs of (K−, K+)

such that cylinders are stable.

Proof By Lemma5.2, we obtain that there exist m > 0 such that λ1 ≤ 0 provided
that K−, K+ > m. On the other hand, By Lemma5.3, zero is eigenvalue if and
only if c, d, K−, K+ satisfy (23). Thus it follows from the continuity with re-
spect to r, d, K−, K+ and the monotonicity with respect to K−, K+ that λ1 < 0
if r, d, K−, K+ fulfill

Ac(r, d)K−K+ + Bc(r, d)(K− + K+) + Cc(r, d) > 0 and d < p1 = 2πr.

That is, cylinders are linearly stable. On the other hand, if d ≥ 2πr , at least λ1 > 0,
so that any pairs of (K−, K+) does not imply that cylinders are stable. �
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Fig. 6 (Left) d = π/2, r = 1, (Middle) d = π, r = 1 (Right) d = 3π/2, r = 1

Let us compare the above results with those of Athanassenas [1] and Vogel [15].
In [1, 15], they obtain, for the case that Π± are parallel planes and θ± = π/2, that
cylinders are stable if 0 < d/r < π and cylinders are unstable if d/r > π. In our
results, the case thatΠ± are parallel planes andθ± = π/2 corresponds to (K−, K+) =
(0, 0). Checking (K−, K+) = (0, 0) by Fig. 6, we see that our results are consistent
with the result of [1, 15].

5.2 Unduloids

In the case that Γ∗ = {(x∗(s), y∗(s) cos ζ, y∗(s) sin ζ)T | s ∈ [0, d], ζ ∈ [0, 2π]} is a
unduloid with a constant mean curvature H∗ (< 0), we remember

x∗(s) =
∫ s

0

1 − B sin(2H∗(s − τ ))
√
1 + B2 − 2B sin(2H∗(s − τ ))

dσ,

y∗(s) = − 1

2H∗

√
1 + B2 − 2B sin(2H∗(s − τ )),

where B ∈ (0, 1). In this case, L[w] and (16) are given by

L[w] = ∂2
s w + |A∗|2w,

∂sw ± (K± + κΓ∗)w = 0 at s = 0, d, (24)

where

|A∗|2 = 4H 2∗ {B2(B − sin(2H∗(s − τ ))2 + (1 − B sin(2H∗(s − τ ))2}
(1 + B2 − 2B sin(2H∗(s − τ )))2

,

κ∗ = 2B H∗(B − sin(2H∗(s − τ ))

1 + B2 − 2B sin(2H∗(s − τ ))
.
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L[w] = 0 and L[w] = 1 (we choose 1 as β in (18)) are linear second order ordinary
differential equation with variable coefficients. Solving them, we obtain

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

w1(s) = cos(2H∗(s − τ ))
√
1 + B2 − 2B sin(2H∗(s − τ ))

,

w2(s) = sin(2H∗(s − τ )) + 2H∗
{
1 + B2

2
I1(s; B) − 1

2
I2(s; B)

}

,

w3(s) = 1

4H 2∗
+ B

2H∗
I1(s; B) w1(s),

(25)

where

I1(s; B) =
∫ s

0

1
√
1 + B2 − 2B sin(2H∗(σ − τ ))

dσ,

I2(s; B) =
∫ s

0

√
1 + B2 − 2B sin(2H∗(σ − τ )) dσ.

Here, set
Ĥ∗ = −H∗ (> 0), α = Ĥ∗τ + π

4

and assume α ∈ [−π/4,π/2). For −π/2 + mπ < Ĥ∗s − α < −π/2 + (m + 1)π
(m ∈ N ∪ {0}), I1(s; B) and I2(s; B) are given by

I1(s; B) = 1

Ĥ∗(1 + B)

{
2mK (k) + (−1)m F(sin(Ĥ∗s − α); k) − F(sin(−α); k)

}
,

I2(s; B) = 1 + B

Ĥ∗

{
2m E(k) + (−1)m E(sin(Ĥ∗s − α); k) − E(sin(−α); k)

}
,

where k = 2
√

B/(1 + B), K (k) and E(k) are 1st and 2nd complete elliptic integral,
F(s; k) and E(s; k) are 1st snd 2nd incomplete elliptic integral. Then we obtain the
following lemma.

Lemma 5.4 Zero is an eigenvalue of the eigenvalue problem (11) if and only if
parameters satisfy

Au(H∗, B, d, τ )K−K+ + Bu
−(H∗, B, d, τ , θ+)K− + Bu

+(H∗, B, d, τ , θ−)K+
+ Cu(H∗, B, d, τ , θ+, θ−) = 0. (26)

Proof Substituting (25) for (20) and calculating it, we get (26). �

The precise forms of Au, Bu−, Bu+, and Cu are obtained by Maple 17. The represen-
tation of Bu± and Cu is very complicated, so that we show only the form of Au :
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Au(H∗, B, d, τ )

= 1

8H3∗ P Q

{
H2∗ (1 − B2)2 I 21 cos(2H∗τ ) cos(2H∗(d − τ ))

+ 3H2∗ I 22 cos(2H∗τ ) cos(2H∗(d − τ )) − 4H2∗ (1 + B2)I1 I2 cos(2H∗τ ) cos(2H∗(d − τ ))

+ 2H∗(1 + B2)I1
(
P sin(2H∗τ ) cos(2H∗(τ )) + Q cos(2H∗τ ) sin(2H∗(d − τ ))

)

+ 4H∗B I1
(
P cos(2H∗(d − τ )) − Q cos(2H∗τ )

)

− 4H∗ I2
(
P sin(2H∗τ ) cos(2H∗(d − τ )) + Q cos(2H∗τ ) sin(2H∗(d − τ ))

)

+ 2P Q
(
1 + sin(2Hτ ) sin(2H∗(d − τ ))

) − (P2 + Q2) cos(2H∗τ ) cos(2H∗(d − τ ))
}
,

where

P =
√
1 + B2 + 2B sin(2H∗τ ), Q =

√
1 + B2 − 2B sin(2H∗(d − τ )).

Then, by the help with Maple 17, we derive for Au(H∗, B, d, τ ) 
= 0

Bu
−(H∗, B, d, τ , θ+)Bu

+(H∗, B, d, τ , θ−) − Au(H∗, B, d, τ )Cu(H∗, B, d, τ , θ+, θ−)

= 1

16H 4∗ P Q

[
H∗

{
(1 + B2)(1 + sin(2H∗τ ) sin(2H∗(d − τ ))) − (P2 + Q2)

}
I1

+ H∗
(
3 − sin(2H∗(d − τ )) sin(2H∗τ )

)
I2

− P cos(2H∗τ ) sin(2H∗(d − τ )) − Q sin(2H∗τ ) cos(2H∗(d − τ ))
]2 ≥ 0.

Let us consider the stability of unduloids under the following setting:

H∗ = −1, B = 0.6, θ± = π

2
.

Moreover, we divide into the following two cases:

Case (U-1):τ = π

4
(see Fig. 7), Case (U-2):τ = −π

4
(see Fig. 8)

• Case (U-1)
First, let us derive d > 0 satisfying Au

(−1, B, d,π/4
) = 0 for each B ∈ (0, 1).

Since d = π/2 + mπ (m ∈ N ∪ {0}) does not satisfy Au
(−1, B, d,π/4

) = 0, we
assume d 
= π/2 + mπ. Then it follows

Fig. 7 Case
(U-1) : generating curve
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Fig. 8 Case
(U-2) : generating curve

Au
(
−1, B, d,

π

4

)

= − sin(d) cos(d)

2Q π
4
(d; B)

{
(1 − B)2 I1, π

4
(d; B) − 2I2, π

4
(d; B) + Q π

4
(d; B) tan(d)

}
,

where Q π
4
(d; B) = √

1 + B2 − 2B cos(2d) and

I1, π
4
(d; B) =

∫ d

0

1
√
1 + B2 − 2B cos(2σ)

dσ,

I2, π
4
(d; B) =

∫ d

0

√
1 + B2 − 2B cos(2σ) dσ.

We easily obtain that d = mπ (m ∈ N) satisfy Au
(−1, B, d,π/4

) = 0 for B ∈
(0, 1). In addition, setting

f π
4
(d; B) = (1 − B)2 I1, π

4
(d; B) − 2I2, π

4
(d; B) + Q π

4
(d; B) tan(d)

and differentiating f π
4
with respect to d for d ∈ (mπ, (m + 1)π) and d 
= mπ +

π/2 (m ∈ N ∪ {0}), we have

∂d f π
4
(d; B) =

{
(1 − B)2 + 4B sin2(d)

}
tan2(d)

√
(1 + B)2 − 4B cos2(d)

> 0.

Thus f π
4
(d; B) is strictly monotone increasing in d for d ∈ (mπ, (m + 1)π) and

d 
= mπ + π/2 (m ∈ N ∪ {0}). Also we obtain for 
 ∈ N ∪ {0}

f π
4
(
π; B) = 2
(1 + B)

{
(1 − k2)K (k) − 2E(k)

}
,

where k = 2
√

B/(1 + B), which gives 1 − k2 = (1 − B)2/(1 + B)2. Taking ac-
count of k ∈ (0, 1), we see

(1 − k2)K (k) − 2E(k) < −π

2
< 0.

This implies for B ∈ (0, 1)

f π
4
(
π; B) < 0 (
 = m, m + 1, m ∈ N).
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Since we have

lim
d→mπ+ π

2 −0
f π
4
(d; B) = ∞, lim

d→mπ+ π
2 +0

f π
4
(d; B) = −∞,

there exists a unique dm(B) ∈ (
mπ, mπ + π/2

)
(m ∈ N) such that f π

4
(dm(B); B) =

0 for each B ∈ (0, 1). Thus it follows that Au
(−1, B, d,π/4

) = 0 at d = mπ and
d = dm(B) for each B ∈ (0, 1).

Second, we analyze Bu− Bu+ − AuCu . In the case (U-1), we see

Bu
− Bu

+ − AuCu

= (const.)

Q π
4

· {
(1 − B)2(1 + cos(2d))I1, π

4
− (3 + cos(2d))I2, π

4
+ Q π

4
sin(2d)

}2
.

Let us investigate whether there exist d such that Bu− Bu+ − AuCu = 0 for each B ∈
(0, 1). Set

g π
4
(d; B) = (1 − B)2(1 + cos(2d))I1, π

4
− (3 + cos(2d))I2, π

4
+ Q π

4
sin(2d).

Differentiating g with respect to d, we have

∂d g π
4
(d; B) = − 2{(1 − B)2 I1, π

4
− I2, π

4
} sin(2d) − 2Q π

4
(1 − cos(2d)).

We easily obtain that d = mπ (m ∈ N) implies ∂d g π
4
(d; B) = 0 for B ∈ (0, 1). Set

ϕπ
4
(d; B) = (1 − B)2 I1, π

4
− I2, π

4
+ Q π

4

1 − cos(2d)

sin(2d)

for d ∈ (mπ, (m + 1)π) and d 
= mπ + π/2 (m ∈ N ∪ {0}). Differentiatingϕπ
4
with

respect to d, we get

∂d ϕπ
4
(d; B) = 2Q π

4

1 − cos(2d)

sin2(2d)
> 0.

Thus ϕπ
4
(d; B) is strictly monotone increasing in d for d ∈ (mπ, (m + 1)π) and

d 
= mπ + π/2 (m ∈ N ∪ {0}). Since we have

ϕπ
4
(
π; B) = 2
(1 + B)

{
(1 − k2)K (k) − E(k)

}
< 0,

lim
d→mπ+ π

2 −0
ϕπ

4
(d; B) = ∞, lim

d→mπ+ π
2 +0

ϕπ
4
(d; B) = −∞,
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Fig. 9 (Left) K− = − Bu+
Au

, (Right) K+ = − Bu−
Au

there exists a unique d̂m(B) ∈ (
mπ, mπ + π

2

)
(m ∈ N) such that ϕπ

4
(d̂m(B)) = 0.

Hence we get

∂d g π
4
(d; B)

{
> 0 (d ∈ (mπ, d̂m(B))),

< 0 (d ∈ (d̂m(B), (m + 1)π)).

for B ∈ (0, 1), so that g π
4
is the local maximum at d = d̂m(B). Since we obtain

g π
4
(d; B) < g π

4
(0; B) = 0 for d ∈ (0,π] and g π

4
(d; B) ≤ g π

4
(d̂m(B); B) =

−2I2, π
4
(d̂m(B); B) < 0 ford ∈ [mπ, (m + 1)π], there are nod > 0 such that Bu− Bu+ −

AuCu = 0.
Consequently, in the case of (U-1), only Case I and Case III arise in the rep-

resentations of (26). Also, by the help with Maple 17, we can draw the graph of
K− = −Bu+/A and K+ = −Bu−/A for B = 0.6 (see Fig. 9). By these figures, we
expect that −Bu+/Au and −Bu−/Au are monotone increasing in d. (Unfortunately, at
present, this property can not be proved analytically because of the complexity of
−Bu+/Au and −Bu−/Au .) Thus we have the figure of the type (a) in (K−, d, K+)-
coordinate space (see Fig. 4). In the case (U-1), we are led to the following theorem.

Theorem 5.2 In the case (U-1), set Au(d) such that Au(d) > 0 for d ∈ (0,π). If
d, K−, K+ satisfy

Au(d)K−K+ + Bu
−(d)K− + Bu

+(d)K+ + Cu(d) > 0 and d < π,

then there exists a pair of (K−, K+) such that unduloids are linearly stable for an
axisymmetric perturbation. Moreover, if d ≥ π, then there are no pairs of (K−, K+)

such that unduloids are stable.
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Fig. 10 Equation (26) in the

case of (U-1) with d = π

2

Let us compare with the results of [1, 15]. According to [1, 15], in the case
that Π± are parallel planes and θ± = π/2, unduloids are unstable. In the case of
(U-1), the situation that Π± are parallel planes and θ± = π/2 is included in the
case of d = mπ/2 (m ∈ N). The fact that Π± are parallel planes corresponds to
(K−, K+) = (0, 0). It follows from Theorem5.2 that there are no pairs of (K−, K+)

such that unduloids are stable provided that d ≥ π. Thus it is sufficient to check only
the case of d = π/2. In the case of d = π/2, we obtain the hyperbola in Fig. 10.
According to Fig. 10, (K−, K+) = (0, 0) is included in the region of parameters that
unduloids are unstable. That is, our results are consistent with the results of [1, 15].

• Case (U-2)
First, let us derive d > 0 satisfying Au

(−1, B, d,−π/4
) = 0 for each B ∈ (0, 1).

Since d = π/2 + mπ (m ∈ N ∪ {0}) does not satisfy Au
(−1, B, d,−π/4

) = 0, we
assume d 
= π/2 + mπ. Then it follows

Au
(
−1, B, d,−π

4

)

= − sin(d) cos(d)

2Q− π
4
(d; B)

{
(1 + B)2 I1,− π

4
(d; B) − 2I2,− π

4
(d; B) + Q− π

4
(d; B) tan(d)

}
,
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where Q− π
4
(d; B) = √

1 + B2 + 2B cos(2d) and

I1,− π
4
(d; B) =

∫ d

0

1
√
1 + B2 + 2B cos(2σ)

dσ,

I2,− π
4
(d; B) =

∫ d

0

√
1 + B2 + 2B cos(2σ) dσ.

We easily obtain that d = mπ (m ∈ N) implies Au
(−1, B, d,−π/4

) = 0 for B ∈
(0, 1). Set

f− π
4
(d; B) = (1 + B)2 I1,− π

4
(d; B) − 2I2,− π

4
(d; B) + Q− π

4
(d; B) tan(d).

Differentiating f− π
4
with respect to d for d ∈ (mπ, (m + 1)π) and d 
= mπ +

π/2 (m ∈ N ∪ {0}), we have

∂d f− π
4
(d; B) =

{
(1 − B)2 + 4B cos2(d)

}
tan2(d)

√
(1 − B)2 + 4B cos2(d)

> 0.

Thus f− π
4
(d; B) is strictly monotone increasing in d for d ∈ (mπ, (m + 1)π) and

d 
= mπ + π/2 (m ∈ N ∪ {0}). Also we obtain for 
 ∈ N ∪ {0}

f− π
4
(
π; B) = 2m(1 + B)

{
K (k) − 2E(k)

}
,

where k = 2
√

B/(1 + B). Then we see that there exists kc ∈ (0, 1) such that

K (k) − 2E(k)

⎧
⎨

⎩

< 0 (k ∈ (0, kc)),

= 0 (k = kc),

> 0 (k ∈ (kc, 1)).

According to Maple 17, kc ≈ 0.9089. Hence there exists Bc ∈ (0, 1) such that

f− π
4
(
π; B)

⎧
⎨

⎩

< 0 (B ∈ (0, Bc)),

= 0 (B = Bc),

> 0 (B ∈ (Bc, 1)).

According to Maple 17, Bc ≈ 0.4114. Also we have for each B ∈ (0, 1)

lim
d→mπ+ π

2 −0
f− π

4
(d; B) = ∞, lim

d→mπ+ π
2 +0

f− π
4
(d; B) = −∞,

so that, if B ∈ (0, Bc), there exists a unique dm(B) ∈ (
mπ, mπ + π/2

)
(m ∈ N) such

that f− π
4
(dm(B); B) = 0, and if B ∈ (Bc, 1), there exists a unique d̃m(B) ∈ (

mπ +
π/2, (m + 1)π

)
(m ∈ N ∪ {0}) such that f− π

4
(d̃m(B); B) = 0. Thus it follows that
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Au
(−1, B, d,−π/4

) = 0 at d = mπ, dm(B) for each B ∈ (0, Bc) and at d = mπ,

d̃m(B) for each B ∈ (Bc, 1).
Second, we analyze Bu− Bu+ − AuCu . In the case (U-2), we see

Bu−Bu+ − AuCu

= (const.)

Q− π
4

· {
(1 + B)2(1 + cos(2d))I1,− π

4
− (3 + cos(2d))I2,− π

4
+ Q− π

4
sin(2d)

}2
.

Let us investigate whether there exists d such that Bu− Bu+ − AuCu = 0 for each
B ∈ (0, 1). Set

g− π
4
(d; B) = (1 + B)2(1 + cos(2d))I1,− π

4
− (3 + cos(2d))I2,− π

4
+ Q− π

4
sin(2d).

Differentiating g with respect to d, we have

∂d g− π
4
(d; B) = − 2{(1 + B)2 I1,− π

4
− I2,− π

4
} sin(2d) − 2Q− π

4
(1 − cos(2d)).

We easily obtain that d = mπ (m ∈ N) implies ∂d g− π
4
(d; B) = 0 for B ∈ (0, 1). Set

ϕ− π
4
(d; B) = (1 + B)2 I1,− π

4
− I2,− π

4
+ Q− π

4

1 − cos(2d)

sin(2d)

for d ∈ (mπ, (m + 1)π) and d 
= mπ + π/2 (m ∈ N ∪ {0}). Differentiating ϕ− π
4

with respect to d, we get

∂d ϕ− π
4
(d; B) = 2Q− π

4

1 − cos(2d)

sin2(2d)
> 0.

Thus ϕ− π
4
(d; B) is strictly monotone increasing in d for d ∈ (mπ, (m + 1)π) and

d 
= mπ + π/2 (m ∈ N ∪ {0}). Since we have

ϕ− π
4
(
π; B) = 2
(1 + B)

{
K (k) − E(k)

}
> 0,

lim
d→mπ+ π

2 −0
ϕ− π

4
(d; B) = ∞, lim

d→mπ+ π
2 +0

ϕ− π
4
(d; B) = −∞,

there exists a unique d̂m(B) ∈ (
mπ + π/2, (m + 1)π

)
(m ∈ N ∪ {0}) such that

ϕ− π
4
(d̂m(B)) = 0. Thus it follows that

∂d g− π
4
(d; B)

{
< 0 (d ∈ (mπ, d̂m(B))),

> 0 (d ∈ (d̂m(B), (m + 1)π))

for B ∈ (0, 1), so that g− π
4
is the local minimum at d = d̂m(B) and is the local

maximum at d = mπ. Since
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g− π
4
(
π; B) = 4
(1 + B){K (k) − 2E(k)}

⎧
⎨

⎩

< 0 (B ∈ (0, Bc)),

= 0 (B = Bc),

> 0 (B ∈ (Bc, 1)),

g− π
4

(

π + π

2
; B

)
= −4
(1 + B)E(k) < 0,

g− π
4
(d̂m(B); B) = −2I2,− π

4
(d̂m(B); B) < 0,

there exist d such that Bu− Bu+ − AuCu = 0 for B ∈ [Bc, 1). Taking account of 0.6 ∈
(Bc, 1), we see that form ∈ N there exist pm ∈ (d̂m−1(B), mπ) and qm ∈ (

mπ, mπ +
π/2

)
such that Bu− Bu+ − AuCu = 0.

Consequently, in the case of (U-2), all of cases (that is, Case I, Case II, Case III)
arise in the representations of (26). Also, by the help with Maple 17, we can draw
the graph of K− = −Bu+/A and K+ = −Bu−/Au for B = 0.6 (see Fig. 11). By these
figures, we expect that −Bu+/Au and −Bu−/Au are monotone increasing in d. Thus
we have the figure of the type (b) in (K−, d, K+)-coordinate space (see Fig. 5). In
the case (U-2), we are led to the following theorem.

Theorem 5.3 In the case (U-2), set Au(d) such that Au(d) > 0 for d ∈ (0, d̂0). If
d, K−, K+ satisfy

Au(d)K−K+ + Bu
−(d)K− + Bu

+(d)K+ + Cu(d) > 0 and d < d̂0,

then there exists a pair of (K−, K+) such that unduloids are linearly stable for an
axisymmetric perturbation. Moreover, if d ≥ d̂0, then there are no pairs of (K−, K+)

such that unduloids are stable.

Fig. 11 (Left) K− = − Bu+
Au

, (Right) K+ = − Bu−
Au
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Fig. 12 Equation (26) in the

case of (U-2) with d = π

2

Let us comparewith the results of [1, 15]. In the case of (U-2), the situation thatΠ±
are parallel planes and θ± = π/2 is also included in the case of d = mπ/2 (m ∈ N),
and the fact thatΠ± are parallel planes corresponds to (K−, K+) = (0, 0). It follows
from Theorem5.3 that there are no pairs of (K−, K+) such that unduloids are stable
provided that d ≥ d̂0 with d̂0 ∈ (

π/2,π
)
. Thus it is sufficient to check only the case

of d = π/2. In the case of d = π/2, we obtain the hyperbola in Fig. 12. According
to Fig. 12, (K−, K+) = (0, 0) is included in the region of parameters that unduloids
are unstable. That is, our results are consistent with the results of [1, 15].

Remark 5.2 In [8, 13] Fel andRubinstein obtained that precise criteria of the stability
of Delaunay surfaces in the case that Π± are not parallel planes. It seems that their
results have the intersection with our results, but at present it has not been checked.
It will be mentioned in the coming paper.
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Littlewood’s Fourth Principle

Rolando Magnanini and Giorgio Poggesi

Abstract In real analysis, Littlewood’s three principles are known as heuristics
that help teach the essentials of measure theory and reveal the analogies between
the concepts of topological space and continuous function on one side and those
of measurable space and measurable function on the other one. They are based on
important and rigorous statements, such as Lusin’s and Egoroff-Severini’s theorems,
and have ingenious and elegant proofs. We shall comment on those theorems and
showhow their proofs can possibly bemade simpler by introducing a fourth principle.
These alternative proofs make even more manifest those analogies and show that
Egoroff-Severini’s theorem can be considered as the natural generalization of the
classical Dini’s monotone convergence theorem.

Keywords Measurable finctions · Egorov’s theorem · Lusin’s theorem

1 Introduction

John Edenson Littlewood (9 June 1885–6 September 1977) was a British mathemati-
cian. In 1944, he wrote an influential textbook, Lectures on the Theory of Functions
([5]), in which he proposed three principles as guides for working in real analysis;
these are heuristics to help teach the essentials of measure theory, as Littlewood
himself wrote in [5]:

The extent of knowledge [of real analysis] required is nothing like so great as is sometimes
supposed. There are three principles, roughly expressible in the following terms: every
(measurable) set is nearly a finite sum of intervals; every function (of class Lλ) is nearly
continuous; every convergent sequence is nearly uniformly convergent. Most of the results
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of the present section are fairly intuitive applications of these ideas, and the student armed
with them should be equal to most occasions when real variable theory is called for. If one
of the principles would be the obvious means to settle a problem if it were “quite” true, it
is natural to ask if the “nearly” is near enough, and for a problem that is actually soluble it
generally is.

To benefit our further discussion, we shall express Littlewood’s principles and
their rigorous statements in forms that are slightly different from those originally
stated.

The first principle descends directly from the very definition of Lebesgue mea-
surability of a set.

First Principle Every measurable set is nearly closed.

The second principle relates the measurability of a function to the more familiar
property of continuity.

Second Principle Every measurable function is nearly continuous.

The third principle connects the pointwise convergence of a sequence of functions
to the standard concept of uniform convergence.

Third Principle Every sequence of measurable functions that converges pointwise
almost everywhere is nearly uniformly convergent.

These principles are based on important theorems that give a rigorous meaning to
the term “nearly”. We shall recall these in the next section along with their ingenious
proofs that give a taste of the standard arguments used in real analysis.

InSect. 3,wewill discuss a fourth principle that associates the concept of finiteness
of a function to that of its boundedness.

Fourth Principle Every measurable function that is finite almost everywhere is
nearly bounded.

In the mathematical literature (see [1, 2, 5, 7, 9, 10, 12]), the proof of the second
principle is based on the third; it can be easily seen that the fourth principle can be
derived from the second.

However, we shall see that the fourth principle can also be proved independently;
this fact makes possible a proof of the second principle without appealing for the
third, that itself can be derived from the second, by a totally new proof based on
Dini’s monotone convergence theorem.

As in [5], to make our discussion as simple as possible, we shall consider the
Lebesgue measure m for the real line R.
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2 The Three Principles

We recall the definitions of inner and outer measure of a set E ⊆ R: they are

mi (E) = sup{|K | : K is compact and K ⊆ E},
me(E) = inf{|A| : A is open and A ⊇ E},

where the number |K | is the infimumof the total lengths of all the finite unions of open
intervals that contain K ; accordingly, |A| is the supremumof the total lengths of all the
finite unions of closed intervals contained in A. It always holds thatmi (E) ≤ me(E).
The set E is (Lebesgue) measurable if and only if mi (E) = me(E); when this is the
case, the measure of E is m(E) = mi (E) = me(E); thus m(E) ∈ [0,∞] and it can
be proved that m is a measure on the σ-algebra of Lebesgue measurable subsets ofR.

By the properties of the supremum, it is easily seen that, for any pair of subsets
E and F of R, me(E ∪ F) ≤ me(E) + me(F) and me(E) ≤ me(F) if E ⊆ F .

The first principle is a condition for the measurability of subsets of R.

Theorem 1 (First Principle) Let E ⊂ R be a set of finite outer measure.
Then, E is measurable if and only if for every ε > 0 there exist two sets K and

F, with K closed (compact), K ∪ F = E and me(F) < ε.

This is what is meant by nearly closed.

Proof If E is measurable, for any ε > 0 we can find a compact set K ⊆ E and an
open set A ⊇ E such that

m(K ) > m(E) − ε/2 and m(A) < m(E) + ε/2.

The set A \ K is open and contains E \ K . Thus, by setting F = E \ K , we have
E = K ∪ F and

me(F) ≤ m(A) − m(K ) < ε.

Viceversa, for every ε > 0 we have:

me(E) = me(K ∪ F) ≤ me(K ) + me(F) < m(K ) + ε ≤ mi (E) + ε.

Since ε is arbitrary, then me(E) ≤ mi (E). �

The second and third principles concern measurable functions from (measurable)
subsets of R to the extended real line R = R ∪ {+∞} ∪ {−∞}, that is functions are
allowed to have values +∞ and −∞.

Let f : E → R be a function defined on a measurable subset E ofR. We say that
f is measurable if the level sets defined by

L( f, t) = {x ∈ E : f (x) > t}
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are measurable subsets of E for every t ∈ R. It is easy to verify that if we replace
L( f, t) by L∗( f, t) = {x ∈ E : f (x) ≥ t} we have an equivalent definition.

Since the countable union and intersection of measurable sets are measurable,
it is not hard to show that the pointwise infimum and supremum of a sequence of
measurable functions fn : E → R are measurable functions as well as the function
defined for any x ∈ E by

lim sup
n→∞

fn(x) = inf
k≥1

sup
n≥k

fn(x).

Since the countable union of sets of measure zero has measure zero and the
difference between E and any set of measure zero is measurable, the same definitions
and conclusions hold even if the functions f and fn are defined almost everywhere
(denoted for short by a.e.), that is if the subsets of E inwhich they are not defined have
measure zero. In the same spirit, we say that a function or a sequence of functions
satisfies a given property a.e. in E , if that property holds with the exception of a
subset of measure zero.

As already mentioned, the third principle is needed to prove the second and is
known as Egoroff’s theorem or Egoroff-Severini’s theorem.1

Theorem 2 (Third Principle; Egoroff-Severini) Let E ⊂ R be a measurable set
with finite measure and let f : E → R be measurable and finite a.e. in E.

The sequence of measurable functions fn : E → R converges a.e. to f in E for
n → ∞ if and only if, for every ε > 0, there exists a closed set K ⊆ E such that
m(E \ K ) < ε and fn converges uniformly to f on K .

This is what we mean by nearly uniformly convergent.

Proof If fn → f a.e. in E as n → ∞, the subset of E in which fn → f pointwise
has the same measure as E ; hence, without loss of generality, we can assume that
fn(x) converges to f (x) for every x ∈ E .
Consider the functions defined by

gn(x) = sup
k≥n

| fk(x) − f (x)|, x ∈ E (1)

and the sets

En,m =
{

x ∈ E : gn(x) <
1

m

}

for n,m ∈ N. (2)

1Dmitri Egoroff, a Russian physicist and geometer and Carlo Severini, an Italian mathematician,
published independent proofs of this theorem in 1910 and 1911 (see [3, 11]); Severini’s assumptions
are more restrictive. Severini’s result is not very well-known, since it is hidden in a paper on
orthogonal polynomials, published in Italian.
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Observe that, if x ∈ E , then gn(x) → 0 as n → ∞ and hence for any m ∈ N

E =
∞⋃

n=1

En,m .

As En,m is increasing with n, the monotone convergence theorem implies that
m(En,m) converges to m(E) for n → ∞ and for any m ∈ N. Thus, for every ε > 0
and m ∈ N, there exists an index ν = ν(ε,m) such that m(E \ Eν,m) < ε/2m+1.

The measure of the set F =
∞⋃

m=1
(E \ Eν,m) is arbitrary small, in fact

m(F) ≤
∞∑

m=1

m(E \ Eν,m) < ε/2.

Also, since E \ F ismeasurable, by Theorem 1 there exists a compact set K ⊆ E \ F
such that m(E \ F) − m(K ) < ε/2, and hence

m(E \ K ) = m(E \ F) + m(F) − m(K ) < ε.

Since K ⊆ E \ F =
∞⋂

m=1
Eν(ε,m),m we have that

| fn(x) − f (x)| < 1

m
for any x ∈ K and n ≥ ν(ε,m),

by the definitions of Eν,m and gn; this means that fn converges uniformly to f on K
as n → ∞.

Viceversa, if for every ε > 0 there is a closed set K ⊆ E with m(E \ K ) < ε and
fn → f uniformly on K , then by choosing ε = 1/m we can say that there is a closed
set Km ⊆ E such that fn → f uniformly on Km and m(E \ Km) < 1/m.

Therefore, fn(x) → f (x) for any x in the set F =
∞⋃

m=1
Km and

m(E \ F) = m
( ∞⋂

m=1

(E \ Km)
)

≤ m(E \ Km) <
1

m
for any m ∈ N,

which implies that m(E \ F) = 0. Thus, fn → f a.e. in E as n → ∞. �

The second principle corresponds to Lusin’s theorem (see [6]),2 that we state here
in a form similar to Theorems 1 and 2.

2N.N. Lusin or Luzin was a student of Egoroff. For biographical notes on Egoroff and Lusin see
[4].
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Theorem 3 (Second Principle; Lusin) Let E ⊂ R be a measurable set with finite
measure and let f : E → R be finite a.e. in E.

Then, f is measurable in E if and only if, for every ε > 0, there exists a closed
set K ⊆ E such that m(E \ K ) < ε and the restriction of f to K is continuous.

This is what we mean by nearly continuous.

The proof of Lusin’s theorem is done by approximation by simple functions. A
simple function is a measurable function that has a finite number of real values. If
c1, . . . , cn are the distinct values of a simple function s, then s can be conveniently
represented as

s =
n∑

j=1

c jXE j ,

whereXE j is the characteristic function of the set E j = {
x ∈ E : s(x) = c j

}
. Notice

that the E j ’s form a covering of E of pairwise disjoint measurable sets.
Simple functions play a crucial role in real analysis; this is mainly due to the

following result of which we shall omit the proof.

Theorem 4 (Approximation by Simple Functions, [9, 10]) Let E ⊆ R be a mea-
surable set and let f : E → [0,+∞] be a measurable function.

Then, there exists an increasing sequence of non-negative simple functions sn that
converges pointwise to f in E for n → ∞.

Moreover, if f is bounded, then sn converges to f uniformly in E.

We can now give the proof of Lusin’s theorem.

Proof Any measurable function f can be decomposed as f = f + − f −, where
f + = max( f, 0) and f − = max(− f, 0) are measurable and non-negative functions.
Thus, we can always suppose that f is non-negative and hence, by Theorem 4, it can
be approximated pointwise by a sequence of simple functions.

We first prove that a simple function s is nearly continuous. Since the sets E j

defining s are measurable, if we fix ε > 0 we can find closed subsets K j of E j such
that m(E j \ K j ) < ε/n for j = 1, . . . , n. The union K of the sets K j is also a closed
set and, since the E j ’s cover E , we have that m(E \ K ) < ε. Since the closed sets
K j are pairwise disjoint (as the E j ’s are pairwise disjoint) and s is constant on K j

for all j = 1, . . . , n, we conclude that s is continuous in K .
Now, if f is measurable and non-negative, let sn be a sequence of simple functions

that converges pointwise to f and fix an ε > 0.
As the sn’s are nearly continuous, for any natural number n, there exists a closed

set Kn ⊆ E such that m(E \ Kn) < ε/2n+1 and sn is continuous in Kn . By Theorem
2, there exists a closed set K0 ⊆ E such that m(E \ K0) < ε/2 and sn converges
uniformly to f in K0 as n → ∞. Thus, in the set

K =
∞⋂

n=0

Kn
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the functions sn are all continuous and converge uniformly to f . Therefore f is
continuous in K and

m(E \ K ) = m
( ∞⋃

n=0

(E \ Kn)
)

≤
∞∑

n=0

m(E \ Kn) < ε.

Viceversa, if f is nearly continuous, fix an ε > 0 and let K be a closed subset of
E such that m(E \ K ) < ε and f is continuous in K . For any t ∈ R, we have:

L∗( f, t) = {x ∈ K : f (x) ≥ t} ∪ {x ∈ E \ K : f (x) ≥ t} .

The former set in this decomposition is closed, as the restriction of f to K is contin-
uous, while the latter is clearly a subset of E \ K and hence its outer measure must
be less than ε. By Theorem 1, L∗( f, t) is measurable (for any t ∈ R), which means
that f is measurable. �

3 The Fourth Principle

We shall now present alternative proofs of Theorems 2 and 3. They are based on a
fourth principle, that corresponds to the following theorem.

Theorem 5 (Fourth Principle) Let E ⊂ R be a measurable set with finite measure
and let f : E → R be a measurable function.

Then, f is finite a.e. in E if and only if, for every ε > 0, there exists a closed set
K ⊆ E such that m(E \ K ) < ε and f is bounded on K .

This is what we mean by nearly bounded.

Proof If f is finite a.e., we have that

m({x ∈ E : | f (x)| = ∞}) = 0.

As f is measurable, | f | is also measurable and so are the sets

L(| f |, n) = {x ∈ E : | f (x)| > n} , n ∈ N.

Observe that the sequence of sets L(| f |, n) is decreasing and

∞⋂

n=1

L(| f |, n) = {x ∈ E : | f (x)| = ∞} .
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As m(L(| f |, 1)) ≤ m(E) < ∞, we can apply the (downward) monotone conver-
gence theorem and infer that

lim
n→∞ m(L(| f |, n)) = m({x ∈ E : | f (x)| = ∞}) = 0.

Thus, if we fix ε > 0, there is an nε ∈ N such that m(L(| f |, nε)) <
ε
2 . Also,

we can find a closed subset K of the measurable set E \ L(| f |, nε) such that
m(E \ L(| f |, nε)) − m(K ) < ε

2 . Finally, since K ⊆ E \ L(| f |, nε), | f | is obviously
bounded by nε on K and

m(E \ K ) = m(E \ L(| f |, nε)) + m(L(| f |, nε) \ K ) < ε.

Viceversa, if f is nearly bounded, then for any n ∈ N there exists a closed set
Kn ⊆ E such that m(E \ Kn) < 1/n and f is bounded (and hence finite) in Kn .
Thus, {x ∈ E : | f (x)| = ∞} ⊆ E \ Kn for any n ∈ N, and hence

m({x ∈ E : | f (x)| = ∞}) ≤ lim
n→∞ m(E \ Kn) = 0,

that is f is finite a.e. �

Remark 6 Notice that this theorem can also be derived from Theorem 3. In fact,
without loss of generality, the closed set K provided by Theorem 3 can be taken to
be compact and hence, f is surely bounded on K , being continuous on a compact
set.

More importantly for our aims, Theorem 5 enables us to prove Theorem 3 without
using Theorem 2.

Alternative proof of Theorem 3 The proof runs similarly to that presented in Sect. 2.
If f is measurable, without loss of generality, we can assume that f is non-negative
and hence f can be approximated pointwise by a sequence of simple functions sn ,
which we know are nearly continuous. Thus, for any ε > 0, we can still construct
the sequence of closed subsets Kn of E such that m(E \ Kn) < ε/2n+1 and sn is
continuous in Kn .

Now, as f is finite a.e., Theorem 5 implies that it is nearly bounded, that is we
can find a closed subset K0 of E in which f is bounded and m(E \ K0) < ε/2. We
apply the second part of the Theorem 4 and infer that sn converges uniformly to f in
K0. As seen before, we conclude that f is continuous in the intersection K of all the
Kn’s, because in K it is the uniform limit of the sequence of continuous functions
sn . As before m(E \ K ) < ε.

The reverse implication remains unchanged. �
In order to give our alternative proof of Theorem 2, we need to recall a classical

result for sequences of continuous functions.
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Theorem 7 (Dini) Let K be a compact subset of R and let be given a sequence of
continuous functions fn : K → R that converges pointwise and monotonically in K
to a function f : K → R.

If f is also continuous, then fn converges uniformly to f .

Proof We shall prove the theorem when fn is monotonically increasing.
For each n ∈ N, set hn = f − fn; as n → ∞ the continuous functions hn decrease

pointwise to 0 on K .
Fix ε > 0. The sets An = {x ∈ K : hn(x) < ε} are relatively open in K , since

the hn’s are continuous; also, An ⊆ An+1 for every n ∈ N, since the hn’s decrease;
finally, the An’s cover K , since the hn converge pointwise to 0.

By compactness, K is then covered by a finite numberm of the An’s, whichmeans
that Am = K for some m ∈ N. This implies that | f (x) − fn(x)| < ε for all n ≥ m
and x ∈ K , as desired. �

Remark 8 The conclusion of Theorem 7 still holds true if we assume that the se-
quence of fn’s is increasing (respectively decreasing) and f and all the fn’s are lower
(respectively upper) semicontinuous. (We say that f is lower semicontinuous if the
level sets L+( f, t) are open for every t ∈ R; f is upper semicontinuous if − f is
lower semicontinuous.)

Now, Theorem 2 can be proved by appealing to Theorems 3 and 7.

Alternative proof of Theorem 2 As in the classical proof of this theorem, we can
always assume that fn(x) → f (x) for every x ∈ E .

Consider the functions and sets defined in (1) and (2), respectively. We shall first
show that there exists an ν ∈ N such that gn is nearly bounded for every n ≥ ν. In
fact, as already observed, since gn → 0 pointwise in E as n → ∞, we have that

E =
∞⋃

n=1

En,1,

and the En,1’s increase with n. Hence, if we fix ε > 0, there is a ν ∈ N such that
m(E \ Eν) < ε/2. Since Eν is measurable, by Theorem 1we can find a closed subset
K of Eν such that m(Eν \ K ) < ε/2.

Therefore, m(E \ K ) < ε and for every n ≥ ν

0 ≤ gn(x) ≤ gν(x) < 1, for any x ∈ K .

Now, being gn nearly bounded in E for every n ≥ ν, the alternative proof of
Theorem 3 implies that gn is nearly continuous in E , that is for every n ≥ ν there
exists a closed subset Kn of E such that m(E \ Kn) < ε/2n−ν+1 and gn is continuous
on Kn . The set

K =
∞⋂

n=ν

Kn
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is closed, m(E \ K ) < ε and on K the functions gn are continuous for any n ≥ ν
and monotonically decrease to 0 as n → ∞.

By Theorem 7, the gn’s converge to 0 uniformly on K . This means that the fn’s
converge to f uniformly on K as n → ∞.

The reverse implication remains unchanged. �

Remark 9 Egoroff’s theorem can be considered, in a sense, as the natural substitute
of Dini’s theorem, in case the monotonicity assumption is removed. In fact, notice
that the sequence of the gn’s defined in (1) is decreasing; however, the gn’s are in
general no longer upper semicontinuous (they are only lower semicontinuous) and
Dini’s theorem (even in the form described in Remark 8) cannot be applied. In spite
of that, the gn’s remain measurable if the fn’s are so.

Of course, all the proofs presented in Sects. 2 and 3 still work if we replace the
real line R by an Euclidean space of any dimension.

Theorems2, 3 and5 can alsobe extended togeneralmeasure spaces not necessarily
endowed with a topology: the intersted reader can refer to [1, 8, 9, 12].
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The Phragmèn-Lindelöf Theorem
for a Fully Nonlinear Elliptic Problem
with a Dynamical Boundary Condition

Kazuhiro Ishige and Kazushige Nakagawa

Abstract The Phragmén-Lindelöf theorem is established for viscosity solutions of
fully nonlinear second order elliptic equations in a half space ofRn with a dynamical
boundary condition.

Keywords Phragmén-Lindelöf theorem · Nonllinear elliptic equations · Viscosity
solutions

1 Introduction

The maximum principle is one of the most important properties of the solutions of
the elliptic boundary value problems in bounded domains, whereas it does not nec-
essarily hold in unbounded domains. The Phragmén-Lindelöf theorem ensures that
the maximum principle holds for the elliptic boundary value problems in unbounded
domains under the restriction of the growth rate of the solutions at the space infinity
and it has been studied in many papers. For example, the following holds:

• Let u ∈ C2(Rn+) ∩ C(Rn+) satisfy

−Δu ≤ 0 in Rn
+, u ≤ 0 on ∂Rn

+,

where n ≥ 2 and R
n+ := {(x ′, xn) : x ′ ∈ R

n−1, xn > 0}. Then u ≤ 0 in R
n+

provided that
lim sup
R→∞

R−1 sup
|x |=R

u(x) ≤ 0.
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This was proved by Gilbarg [17] in n = 2 and by Hopf [19] in n ≥ 3. The
Phragmén-Lindelöf theorem for more general second-order uniformly elliptic oper-
ator Lu = −ai j Di j u has been studied by Oddson [30] in n = 2 and by Miller [29]
in n ≥ 3. For further details on the Phragmén-Lindelöf theorem, we refer to [7, 21,
24, 27, 31, 32].

In this paper we consider a fully nonlinear elliptic equation with a dynamical
boundary condition

F(x, t, Du, D2u) = 0 in Rn
+ × (0, T ], ∂t u + ∂νu = 0 on ∂Rn

+ × (0, T ],
(1)

and establish a Phragmén-Lindelöf theorem for viscosity solutions of (1) under
suitable structure conditions of F . Here ∂ν := −∂/∂xn , D := (∂/∂x1, . . . , ∂/∂xn),
D2 := (∂2/∂xi∂x j )i, j=1,...,n and 0 < T < ∞,

The boundary condition from (1) describes thermal contact with a perfect con-
ductor or diffusion of solute from a well-stirred fluid or vapour (see e.g., [8]). For
a list of other mathematical models where dynamical boundary conditions occur,
we refer to [3]. The elliptic problems with the dynamical boundary conditions have
been studied in many paper, e.g., [1–3, 5, 9–16, 18, 20, 22, 23, 25, 26, 28, 32–34]
and references therein. Among others, in [14], the authors considered the following
nonlinear elliptic problem with the dynamical boundary condition

⎧
⎨

⎩

−Δu = f (u), x ∈ R
n+, t > 0,

∂t u + ∂νu = 0, x ∈ ∂Rn+, t > 0,
u(x, 0) = ϕ(x ′), x = (x ′, 0) ∈ ∂Rn+,

(2)

where ϕ is a nonnegative measurable function in Rn−1 and f ∈ C(R). In particular,
they proved the following theorem:

Theorem 1 Assume that f is a nondecreasing continuous function in R such that
f (0) ≥ 0. Let ϕ be a nonnegative measurable function in R

n−1. Then the following
statements are equivalent:

(a) Problem (2) has a local-in-time nonnegative solution;
(b) Problem (2) has a global-in-time nonnegative solution;
(c) Problem

−Δv = f (v) in R
n
+, v = ϕ on ∂Rn

+, (3)

has a nonnegative solution.

Furthermore, if u = u(x, t) and v = v(x) are minimal nonnegative solutions of (2)
and (3), respectively, then

u(x ′, xn, t) = v(x ′, xn + t)

for almost all x ′ ∈ R
n−1 and all xn ≥ 0 and t > 0.
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The following Phragmén-Lindelöf theorem was a crucial ingredient of the proof
of Theorem 1. See [14, Theorem 3.1].

Theorem 2 Let T > 0 and let u = u(x, t) satisfy

u(·, t) ∈ C2(Rn+) ∩ C1(Rn+) for any t ∈ (0, T ],
u ∈ C(Rn+ × (0, T ]), ∂t u ∈ C(∂Rn+ × (0, T ]),

and
−Δu ≤ 0 in R

n
+ × (0, T ], ∂t u + ∂νu ≤ 0 on R

n
+ × (0, T ], (4)

where n ≥ 2. Assume that

lim sup
t→+0

sup
|x ′|≤R

u(x ′, 0, t) ≤ 0 for any R > 0, (5)

lim inf
R→∞ sup

|x |=R, t∈(0,T ]
u(x, t)

1 + xn
≤ 0. (6)

Then u ≤ 0 in Rn+ × (0, T ].
The purposes of this paper are to generalize Theorem 2 to more general elliptic

equations in unbounded domains and to establish Phragmén-Lindelöf theorems for
viscosity solutions of fully nonlinear elliptic equations with the dynamical boundary
condition. In particular, for problem (4), we obtain the following two theorems by
our main results (see Theorems 5 and 7).

Theorem 3 Let T > 0 and n ≥ 2. Let u = u(x, t) ∈ C(Rn+ × (0, T ]) be a viscosity
solution of (4) satisfying (5) and (6). Then u ≤ 0 in Rn+ × (0, T ].
Theorem 4 Let T > 0 and n ≥ 2. Let u = u(x, t) ∈ C(Rn+ × (0, T ]) be a viscosity
solution of (4) such that

L := sup
(x,t)∈∂Rn+×(0,T ]

u(x, t) < ∞ and lim
t→+0

sup
x∈∂Rn+

u(x, t) ≤ 0.

Then there exists a constant α > 0 such that, if

lim sup
x∈Rn+, |x |→∞

u(x, t)

(1 + |x |)α = 0 and lim sup
x ′∈Rn−1,|x ′ |→∞

u(x ′, 0, t) < L

for t ∈ (0, T ], then u ≤ 0 in Rn+ × (0, T ].
Theorem 4 actually weakens the assumption in Theorem 2 on the growth rate of

the solution u = u(x ′, xn, t) of (4) as |x ′| → ∞.
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The rest of this paper is organized as follows. In Sect. 2 we introduce the definition
of viscosity solutions of (1) and recall some preliminary lemmas on fully nonlinear
elliptic equations. In Sect. 3 we prove the Phragmén-Lindelöf theorem for a viscos-
ity solution of problem (1) under assumptions (5) and (6). In Sect. 4 we present a
Aleksandrov-Bakelman-Pucci type estimates on viscosity subsolutions of fully non-
linear PDEs with dynamical boundary condition under a different growth condition.
Furthermore, we show another Phragmén-Lindelöf theorem for problem (1).

2 Preliminaries

In this section we introduce some notation and define viscosity solutions of (1). Fur-
thermore, we recall some preliminary lemmas on fully nonlinear elliptic equations.

Let Ω be an unbounded domain in R
n and 0 < T < ∞. Set

ΩT := Ω × (0, T ], ΩT := Ω × (0, T ], ∂ΩT := ∂Ω × (0, T ].

Let BR(x) := {y ∈ R
n : |y − x | < R} for x ∈ R

n and R > 0. We denote by S
n

the set of real symmetric matrices of order n. For any 0 < λ ≤ Λ, we define the
Pucci operators P±

λ,Λ by

P−
λ,Λ(M) := min{−trace(AM) : λI ≤ A ≤ ΛI for A ∈ S

n},
P+

λ,Λ(M) = −P−
λ,Λ(−M),

for M ∈ S
n , where I is the identity matrix in Rn . In particular,

P±
1,1(M) = −trace (M), M ∈ S

n,

which corresponds to the Laplace operator −Δ.
Let F = F(z, p, M) be a continuous function in ΩT × R

n × S
n and assume the

following:

(F1) F is degenerate elliptic, that is

F(z, p, M) ≤ F(z, p, N )

for all z = (x, t) ∈ ΩT , p ∈ R
n and M , N ∈ S

n with M ≥ N ;
(F2) There exist positive constants λ and Λ with λ ≤ Λ such that

P−
λ,Λ(M) − b(x)|p′| ≤ F(z, p, M)



The Phragmèn-Lindelöf Theorem for a Fully Nonlinear Elliptic Problem … 163

for all z = (x, t) ∈ ΩT , p = (p′, pn) ∈ R
n andM ∈ S

n . Here b is a continuous
function in Ω such that

b(x) ≤ b0/(1 + |x |2)1/2 in Ω

for some constant b0 > 0.

We define viscosity subsolutions, viscosity supersolutions and viscosity solutions
of (1).

Definition 1 Let Ω be a domain in Rn and 0 < T < ∞. Let u ∈ C(ΩT ). Then u is
said to be a viscosity subsolution of F(x, t, Du, D2u) = 0 in ΩT if

(i) F(z, Dφ(z), D2φ(z)) ≤ 0 holds for z ∈ ΩT and φ ∈ C2(ΩT ) whenever z is a
local maximum point of u − φ.

Furthermore, u is said to be a viscosity subsolution of (1) if u satisfies (i) and

(ii) min{F(z, Dφ(z), D2φ(z)), φt (z) + ∂νφ(z))} ≤ 0 holds for z ∈ ∂ΩT and φ ∈
C2(ΩT ) whenever z is a local maximum point of u − φ.

On the other hand, u is said to be a viscosity supersolution of F(x, t, Du, D2u)=0
in ΩT if

(iii) F(z, Dφ(z), D2φ(z)) ≥ 0 holds for z ∈ ΩT and φ ∈ C2(ΩT ) whenever z is a
local minimum point of u − φ.

Moreover, u is said to be a viscosity supersolution of (1) if u satisfies (iii) and

(iv) min{F(z, Dφ(z), D2φ(z)), φt (z) + ∂νφ(z))} ≥ 0 holds for z ∈ ∂ΩT and φ ∈
C2(ΩT ) whenever z is a local minimum point of u − φ.

In addition, u is said to be a viscosity solution of (1) if it is both a viscosity subsolution
and a viscosity supersolution of (1).

We often say that u is a viscosity solution of

F(x, t, Du, D2u) ≤ 0 in ΩT , ∂t u + ∂νu ≤ 0 on ∂ΩT

if it is a viscosity subsolution of (1).
We recall two lemmas on viscosity solutions for fully nonlinear elliptic problems.

Lemma 1 follows from the same argument as in the proof of [7, Lemma 1].

Lemma 1 Let 0 < T < ∞ and F = F(z, p, M) be a continuous function in ΩT ×
R

n × S
n and assume (F1) and (F2). Let w be a viscosity solution of

F(x, t, Dw, D2w) ≤ f (x) in ΩT ,

where f ∈ C(Ω). If ξ ∈ C2(Ω) is such that

ξ(x) > 0,
|Dξ |

ξ
(x) ≤ k1(x),

|D2ξ |
ξ

(x) ≤ k2(x) in Ω
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for some continuous positive functions k1 and k2, then u := w/ξ is a viscosity solution
of

P−
λ,Λ(D2u) − γ1(x)|Du| − γ2(x)u

+ ≤ f (x)

ξ(x)
in ΩT ,

where u+ := max{u, 0}, γ1(x) = h1k1(x) + b(x) and γ2(x) = h2k2(x) + k1(x)b(x)
with positive constants h1 and h2.

The second lemma is concerned with the Aleksandrov-Bakelman-Pucci maxi-
mum principle for elliptic equations in unbounded domain and it follows from [24,
Theorem 3.6] with

R0 = 1, η = 1, σ = τ = 1

2
, Ry = |y|.

See also [7].

Lemma 2 Let w ∈ C(Ω) be a viscosity subsolution bounded from above of

P−
λ,Λ(D2u) − b(x)|Du| ≤ f (x) in Ω

with f ∈ C(Ω) ∩ Ln+(Ω), satisfying

sup
y∈Ω,|y|>1

|y|‖ f ‖Ln(Ay∩Ω) < ∞.

Then there exists positive constant C = C(n, λ,Λ) and ε = ε(n) such that

sup
Ω

w ≤ sup
∂Ω

w+(x) + C sup
y∈Ω,|y|>1

|y|‖ f ‖Ln(Ay∩ Ω) + C sup
y∈Ω,|y|≤1

‖ f ‖Ln(By∩ Ω).

Here Ay = B2|y|(0) \ Bε|y|(0) and By = B2|y|(0) for y ∈ Ω .

3 Phragmén-Lindelöf Theorem I

We focus on the case Ω = R
n+ and prove a Phragmén-Lindelöf theorem for fully

nonlinear elliptic boundary value problem (1). In this section we prove the following
theorem, which is one of the main results of this paper and which is a generalization
of Theorem 2 to viscosity solutions of (1).

Theorem 5 Let T > 0 and F = F(z, p, M) be a continuous function in R
n+ ×

(0, T ] × R
n × S

n and assume (F1) and (F2). Let u = u(x, t) ∈ C(Rn+ × (0, T ]) be
a viscosity subsolution of (1) satisfying (5) and (6). Then u ≤ 0 in Rn+ × (0, T ].
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Proof Letw(x, t) := e−t u(x, t)/(1 + xn) for (x, t) ∈ R
n+ × (0, T ]. Thenw satisfies

P−(D2w) − 2Λ

1 + xn
|Dw| − b(x)|D′w| ≤ 0 in R

n
+ × (0, T ],

∂tw + ∂νw ≤ 0 on ∂Rn
+ × (0, T ],

in the sense of viscosity solutions.
Let ε > 0. By (6) we can find {Rk}∞k=1 such that

lim
k→∞ Rk = ∞ and lim

k→∞ sup
|x |=Rk ,t∈(0,T ]

w ≤ ε.

Suppose that
Lk := sup

x∈Rn+∩B(0,Rk ),t∈(0,T ]
w > ε

for some k, and then we will get a contradiction. Then it follows from the maximum
principle that

Lk = sup
[∂Rn+∩B(0,Rk )]×(0,T ]

w > ε.

Furthermore, by (5) we can find (x∗, t∗) ∈ [∂Rn+ ∩ B(0, Rk)] × (0, T ] such that

w(x∗, t∗) = Lk > 0.

On the other hand, by the Hopf lemma (c.f. [4]), we have

lim sup
h→0

w(x∗ − hν, t∗) − w(x∗, t∗)
h

= −2A < 0 for some A > 0,

which implies that
w(x∗ − hν, t∗) < Lk − Ah

for small h > 0.
Let φ be a test function such that

φ(x, t) = γ |x ′ − x ′
∗|2 − Ax2n − σ xn + |t − t∗|2

where γ = A/2Λ(n − 1) and σ = A/4Λ. Then we see that (x∗, t∗) ∈ ∂Rn+ × (0, T ]
be a local maximum point of u − φ. Therefore we obtain

P−
λ,Λ(D2φ(x∗, t∗)) − 2Λ

1 + (x∗,n)
|Dφ(x∗, t∗)| − b(x∗)|D′φ(x∗, t∗)| = A − A

2
> 0,

∂tφ(x∗, t∗) + ∂νφ(x∗, t∗) = 0 + A

4
> 0.
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This contradicts the definition of viscosity solutions at the boundary, which means
that Lk ≤ ε for any k > 0. Since ε is arbitrary and limk→∞ Rk = ∞, we see that
u ≤ 0 in Rn+ × (0, T ]. Thus Theorem 5 follows. ��
Proof of Theorem 3. Theorem 3 follows from Theorem 7 in the case

F(z, p, M) = −traceM

for z ∈ R
n+ × (0, T ], p ∈ R

n and M ∈ S
n . ��

4 Phragmén-Lindelöf Theorem II

In this section we establish another Phragmén-Lindelöf theorem for problem (1). It
stands on a different growth assumption.

We first prove the following theorem on the boundedness of viscosity solutions
of (1).

Theorem 6 Let T > 0. Let F = F(z, p, M) be a continuous function in R
n+ ×

(0, T ] × R
n × S

n and assume (F1) and (F2). Let u = u(x, t) ∈ C(Rn+ × (0, T ]) be
a viscosity subsolution of (1) such that

L := sup
∂Rn+×(0,T ]

u(x, t) < +∞.

Then there exists a positive constant α such that, if

lim sup
x∈Rn+, |x |→∞

u(x, t)

(1 + |x |)α = 0 for t ∈ (0, T ],

then u ≤ L in Rn+ × (0, T ].
Proof Let t > 0. By Definition 1 and (F2), we see that the function ũ(x, t) :=
u(x, t) − L is a viscosity subsolution of

P−
λ,Λ(D2ũ) − b(x)|D′ũ| = 0 in Rn

+ × (0, T ], ∂t ũ + ∂ν ũ = 0 on ∂Rn
+ × (0, T ].

Let α be a positive constant to be chosen later and set

ξ(x) = (1 + |x |2) α
2 .

The function v = ũ/ξ is bounded from above and obviously

sup
x∈∂Rn+×(0,T ]

v ≤ 0. (7)
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By Lemma 1 we obtain

0 ≥ 1

ξ(x)

(
P−(D2ũ) − b(x)|D′ũ| ) ≥ P−(D2v) − γ1(x)|Dv| − αγ2(x)v

+

in R
n
+ × (0, T ],

0 ≥ 1

ξ(x)

(
∂t ũ − ∂xn ũ

) = ∂t v + ∂νv on ∂Rn
+ × (0, T ],

in the sense of viscosity solutions, where

γ1(x) = c0 + b0
2(1 + |x |2)1/2 and γ2(x) = c1 + b0

1 + |x |2

for some positive constants c0 and c1. Applying Lemma 2 with f + = αγ2v
+, we can

find positive constants C = C(n, λ,Λ) and ε = ε(n) such that

sup
x∈Rn+

v(x, t) ≤ sup
x∈∂Rn+

v(x, t)+ + C sup
y∈Rn+,|y|>1

|y|‖αγ2v
+‖Ln(Ay∩R

n+)

+ C sup
y∈Rn+,|y|≤1

‖αγ2v
+‖Ln(By∩R

n+) (8)

for all t ∈ (0, T ], where Ay = B2|y|(0) \ Bε|y|(0) and By = B2|y|(0) for y ∈ R
n+.

Furthermore, there exist positive constants k1, k2 and k3, depending only on n, such
that

|y|‖αγ2v
+(t)‖Ln(Ay∩Rn+) ≤ α|y| sup

R
n+
v+(t)‖γ2‖Ln(Ay)

≤ k1α|y| sup
R

n+
v+(t)

(∫ |y|

ε|y|
rn−1

(1 + r2)n
dr

)1/n

≤ k2α sup
R

n+
v+(t) for |y| > 1,

‖αγ2v
+‖Ln(By∩Rn+) ≤ α sup

R
n+
v+(t)‖γ2‖Ln(By)

≤ α sup
R

n+
v+(t)

(∫ |y|

0

rn−1

(1 + r2)n
dr

)1/n

≤ k3α sup
R

n+
v+(t) for |y| ≤ 1.

These together with (8) imply that

sup
R

n+×(0,T ]
v ≤ sup

∂Rn+×(0,T ]
v+ + αK sup

R
n+×(0,T ]

v+. (9)
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for some positive constant K depending only on λ, Λ and n. By (7) and (9) we take
a sufficiently small α > 0 such that αK < 1 and we obtain

sup
R

n+×(0,T ]
v(x, t) ≤ 0.

This means that
sup

R
n+×(0,T ]

u(x, t) ≤ L ,

and the proof is complete. ��
Now we are ready to state and prove the following Phragmén-Lindelöf theorem

for problem (1).

Theorem 7 Let T > 0. Let F = F(z, p, M) be a continuous function in R
n+ ×

(0, T ] × R
n × S

n and assume (F1) and (F2). Let u = u(x, t) ∈ C(Rn+ × (0, T ]) be
a viscosity subsolution of (1) such that such that

L := sup
(x,t)∈∂Rn+×(0,T ]

u(x, t) < ∞ and lim
t→+0

sup
x∈∂Rn+

u(x, t) ≤ 0. (10)

Then there exists a constant α > 0 such that, if

lim sup
x∈Rn+, |x |→∞

u(x, t)

(1 + |x |)α = 0 and lim sup
x ′∈Rn−1,|x ′ |→∞

u(x ′, 0, t) < L (11)

for t ∈ (0, T ], then u ≤ 0 in Rn+ × (0, T ].
Proof It follows from (11) that

lim sup
x∈Rn+, |x |→∞

u(x, t)

(1 + |x |)α = 0 for t ∈ (0, T ]. (12)

Then, by (10) we apply Theorem 6 to obtain

u ≤ L in R
n+ × (0, T ].

So it suffices to consider the case L > 0. Then it follows from (10) that

L = sup
∂Rn+×(0,T ]

u(x, t) = sup
R

n+×(0,T ]
u > 0. (13)

Let w(x, t) := e−t u(x, t)/(1 + xn) for (x, t) ∈ R
n+ × (0, T ]. By (10) and (11) we

see that

w(x, t) < L in R
n
+ × (0, T ] and lim sup

t→+0
sup

x∈∂Rn+
w(x, t) ≤ 0. (14)
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Furthermore, w satisfies

P−(D2w) − 2Λ

1 + xn
|Dw| − b(x)|D′w| ≤ 0 in ΩT , ∂tw + ∂νw ≤ 0 on ∂ΩT .

in the sense of viscosity solutions.
Since it follows from (11) that

lim sup
|x ′|→∞

u(x ′, 0, t) = 0,

by (11), (13) and (14), we can find (x∗, t∗) ∈ ∂Rn+ × (0, T ] such that w(x∗, t∗) = L .
Then it follows from the Hopf lemma that

lim sup
h→0

w(x∗ − νh, t∗) − w(x∗, t∗)
h

= −2A < 0

for some constant A > 0. This implies that

w(x∗ − νh, t∗) < L − Ah

for sufficiently small h > 0.
Let φ be a test function as in Theorem 5 such that

φ(x, t) = γ |x ′ − x ′
∗|2 − Ax2n − σ xn + |t − t∗|2,

where γ = A/2Λ(n − 1) and σ = A/4Λ. Then we easily see that (x∗, t∗) ∈ ∂Rn+ ×
(0, T ] be a local maximum point of u − φ. Therefore we obtain

P−
λ,Λ(D2φ(x∗, t∗)) − 2Λ

1 + (x∗,n)
|Dφ(x∗, t∗)| − b(x∗)|D′φ(x∗, t∗)| = A − A

2
> 0,

∂tφ(x∗, t∗) + ∂νφ(x∗, t∗) = 0 + A

4
> 0.

This contradicts the definition of viscosity solutions at the boundary. Therefore
we see that L ≤ 0 and Theorem 7 follows from (12). ��

Similarly to Sect. 3, Theorem 4 follows from Theorem 3.
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Entire Solutions to Generalized Parabolic
k-Hessian Equations

Saori Nakamori and Kazuhiro Takimoto

Abstract In this paper, we deal with entire solutions to the generalized parabolic
k-Hessian equation of the form ut = μ(Fk(D2u)1/k) in R

n × (−∞, 0]. We prove
that for 1 ≤ k ≤ n, any strictly convex-monotone solution u = u(x, t) ∈ C4,2(Rn ×
(−∞, 0]) to ut = μ(Fk(D2u)1/k) in R

n × (−∞, 0] must be a linear function of t
plus a quadratic polynomial of x , under some assumptions on μ : (0,∞) → R and
some growth conditions on u.

Keywords Entire solution · Fully nonlinear equation · Generalized parabolic k-
Hessian equation · Pogorelov type lemma

1 Introduction

This paper is a sequel to [18].
The characterization of entire solutions toPDEshas been extensively studied in the

literature. For example, the following is known as Liouville’s theorem for harmonic
functions; If u ∈ C2(Rn) is a harmonic function in R

n (i.e., a solution to Laplace
equation Δu = 0 in R

n) which is bounded in R
n , then u is a constant function. Using

this theorem, one can see that any convex solution to Poisson equation Δu = 1 in
R

n must be a quadratic polynomial.
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For the minimal surface equation in R2, Bernstein [2] proved the following theo-
rem about a hundred years ago; If f = f (x, y) ∈ C2(R2) is a solution to the minimal
surface equation

(1 + fy)
2 fxx − 2 fx fy fxy + (1 + f 2x ) fyy = 0 in R

2,

then f is an affine function of x and y.
Here we list some results concerning this type of theorems for fully nonlinear

equations. First, for Monge-Ampère equation, the following theorem is known. We
denote by D2u = (Di j u) 1≤i≤n

1≤ j≤n
the Hessian matrix of u, where Di j u = ∂2u/∂xi∂x j .

Theorem 1.1 Let u ∈ C4(Rn) be a convex solution to

det D2u = 1 in R
n. (1)

Then u is a quadratic polynomial.

This theorem was proved by Jörgens [15] for n = 2, by Calabi [6] for n ≤ 5, and
by Pogorelov [20] for arbitrary n ≥ 2 (see also [7] for a simpler proof). We note
that Bernstein’s theorem for the minimal surface equation stated above can also be
proved via Theorem 1.1 for n = 2.

Moreover, Caffarelli [3] proved that Theorem1.1 holds also for viscosity solutions
(see also [4]). Jian andWang [14] obtained Bernstein type result for a certainMonge-
Ampère equation in the half space Rn+.

We note that the convexity assumption in Theorem 1.1 is quite natural, since
Monge-Ampère operator det D2u is degenerate elliptic for convex functions so that
we usually seek solutions in the class of convex functions when we deal withMonge-
Ampère equation.

Later, Bao et al. [1] extended this result to the so-called k-Hessian equation of
the form

Fk(D2u) = 1 in Rn, (2)

for 1 ≤ k ≤ n. Here Fk(D2u) is defined by

Fk(D2u) = Sk(λ1, . . . , λn), (3)

where, for aC2 function u, λ1, . . . , λn denote the eigenvalues of D2u, and Sk denotes
the k-th elementary symmetric function, that is

Sk(λ1, . . . , λn) =
∑

λi1 · · · λik ,

where the sum is taken over all increasing k-tuples, 1 ≤ i1 < · · · < ik ≤ n.
Laplace operator Δu and Monge-Ampère operator det D2u correspond respec-

tively to the special cases k = 1 and k = n in (3). Thus one can say that the class of
k-Hessian equations includes important PDEs which arise in physics and geometry.
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Here we remark that (3) is a linear operator for k = 1 while it is a fully nonlinear
operator for k ≥ 2. It is much harder to study the intermediate case 2 ≤ k ≤ n − 1.
Though, there are a number of papers concerning the analysis of k-Hessian equation,
such as the solvability of the Dirichlet problem. See, for example, [5, 9, 12, 21–26].

We state Bernstein type theorem for k-Hessian equation of the form (2), which
was proved by Bao et al. [1].

Theorem 1.2 Let 1 ≤ k ≤ n and u ∈ C4(Rn) be a strictly convex solution to (2).
Suppose that there exist constants A, B > 0 such that for all x ∈ R

n,

u(x) ≥ A|x |2 − B. (4)

Then u is a quadratic polynomial.

In this theorem, for the case k = n which corresponds to Monge-Ampère equa-
tion (1), the assumption (4) can be removed, due to Theorem 1.1. Furthermore, as
mentioned before, one can remove the assumption (4) for the case k = 1 which cor-
responds to Poisson equation Δu = 1. Bernstein type theorems were also obtained
for other elliptic fully nonlinear equations, such as (n, k)-Hessian quotient equation
[1] and the special Lagrangian equation [30].

Next, Gutiérrez and Huang [11] extended Theorem 1.1 to the parabolic analogue
of Monge-Ampère equation

− ut det D2u = 1 in Rn × (−∞, 0]. (5)

Here D2u means the matrix of second partial derivatives with respect to the space
variables x = (x1, . . . , xn). This type of equation was firstly proposed by Krylov
[16].

The function u = u(x, t) : Rn × (−∞, 0] → R is said to be convex-monotone
if it is convex in x and non-increasing in t . Gutiérrez and Huang [11] proved the
following Bernstein type theorem for (5).

Theorem 1.3 Let u ∈ C4,2(Rn × (−∞, 0]) be a convex-monotone solution to (5).
Suppose that there exist constants m1 ≥ m2 > 0 such that for all (x, t) ∈ R

n ×
(−∞, 0],

−m1 ≤ ut (x, t) ≤ −m2.

Then u has the form u(x, t) = −mt + p(x) where m > 0 is a constant and p is a
quadratic polynomial.

We note that Xiong and Bao [29] have obtained Bernstein type theorems for more
general parabolic Monge-Ampère equations, such as ut = (det D2u)1/n and ut =
log det D2u. As far aswe know, Bernstein type theorems for parabolic fully nonlinear
equations were known only for the parabolic Monge-Ampère type equations.
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Recently, in the paper [18] we dealt with the parabolic analogue of k-Hessian
equation of the following form

− ut Fk(D2u) = 1 in Rn × (−∞, 0], (6)

for 1 ≤ k ≤ n, and obtained Bernstein type theorem for (6). Here Fk(D2u) is the
k-Hessian operator defined in (3). For the special case k = n, (6) reduces to (5) which
is the parabolic Monge-Ampère equation.

However, there are different parabolic analogues of k-Hessian equation which
have been studied in the literature.

Ivochkina and Ladyzhenskaya [13] have studied the solvability of the first initial
boundary value problem for

−ut + Fk(D2u)
1
k = ψ.

Wang [28] considered a following version of parabolic equation,

−ut + log Fk(D2u) = ψ.

For the case k = n, this equation reduces to

−ut + log det D2u = ψ,

which was studied by G. Wang and W. Wang [27]. Moreover,

Sk(−ut , λ1, . . . , λn) = ψ,

where λ1, . . . , λn are the eigenvalues of D2u, i.e., −ut Fk−1(D2u) + Fk(D2u) = ψ ,
was considered in [17].

We would like to get Bernstein type theorems for as many PDEs as possible, but
it seems hard to deal with PDEs above one by one to obtain Bernstein type theorems.
The aim of this paper is to obtain Bernstein type theorems for more general parabolic
k-Hessian equations (see (7) in Sect. 2), which includes the particular parabolic k-
Hessian equation (6) studied in our previous work [18].

This paper is constructed as follows. In Sect. 2, we state our main result and give
some examples of PDEs for which one can get Bernstein type theorem. In Sect. 3, we
prove Pogorelov type lemma, which is crucial in our argument. Section4 is devoted
to the proof of the main result.
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2 Main Theorem

In this paper, we shall consider parabolic k-Hessian equation of the form

ut = μ
(

Fk(D2u)
1
k

)
in Rn × (−∞, 0], (7)

where μ : (0,∞) → R is a function. We state our main result, which is a Bernstein
type theorem for (7). Here, the function u = u(x, t) : Rn × (−∞, 0] → R is said to
be strictly convex-monotone if u is strictly convex in x and decreasing in t .

Theorem 2.1 Let μ ∈ C2(0,∞), 1 ≤ k ≤ n and u ∈ C4,2(Rn × (−∞, 0]) be a
strictly convex-monotone solution to (7). We suppose that μ and u satisfy the follow-
ing conditions.

(A) For all s ∈ (0,∞), μ′(s) > 0 and μ′′(s) ≤ 0.
(B) There exist constants m1 ≥ m2 > 0 such that

lim
s→+0

μ(s) < −m1 ≤ −m2 < lim
s→∞ μ(s) (8)

and that for all (x, t) ∈ R
n × (−∞, 0],

− m1 ≤ ut (x, t) ≤ −m2. (9)

(C) There exist constants A, B > 0 such that for all x ∈ R
n, u(x, 0) ≥ A|x |2 − B.

Then, u has the form u(x, t) = −mt + p(x) where m > 0 is a constant and p is
a quadratic polynomial.

Remark 2.1 Wedenote bySn×n andSn×n
+ , the set of all symmetric n × n matrices and

that of all non-negative definite symmetric n × n matrices, respectively. Set F̃(M) =
μ(Fk(M)1/k) for M = (mi j ) 1≤i≤n

1≤ j≤n
∈ S

n×n . Then the condition (A) guarantees that F̃

is concave in S
n×n
+ . Indeed, if we define f (M) = Fk(M)1/k , then easy calculation

shows that
F̃i j,rs = μ′′ fi j frs + μ′ fi j,rs,

where we write fi j = ∂ f/∂mi j and fi j,rs = ∂2 f/∂mi j∂mrs , which yields that for all
ξ = (ξi j ) 1≤i≤n

1≤ j≤n
∈ R

n×n ,

F̃i j,rsξi jξrs = μ′′( fi jξi j )
2 + μ′ fi j,rsξi jξrs ≤ 0,

due to the concavity of f in Sn×n
+ (see [5]). Also, (A) implies that F̃ is non-decreasing

in S
n×n
+ , which means that for M, N ∈ S

n×n
+ with M ≤ N it holds that F̃(M) ≤

F̃(N ).
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Example 2.1 (1) If we set μ(s) = −s−k , then the Eq. (7) reduces to (6), and we can
see that Bernstein type theorem for (6) holds, which was obtained previously by
the authors [18].

(2) If we set μ(s) = −1/s, then we can obtain Bernstein type theorem for

−ut Fk(D2u)
1
k = 1 in Rn × (−∞, 0].

(3) If we set μ(s) = k log s, then we can obtain Bernstein type theorem for the
following equation

ut = log Fk(D2u) in Rn × (−∞, 0].

It should be noted that in this case the condition (B) can be replaced by the
boundedness of ut inRn × (−∞, 0]. Therefore, u needs not to be decreasing in t ,
while u must be strictly convex in x . Indeed, considering v(x, t) = u(x, t) − ct
for sufficiently large c > 0 and setting μ(s) = k log s − c, we get the desired
result.

(4) For the following version of parabolic k-Hessian equation

ut = Fk(D2u)
1
k in Rn × (−∞, 0], (10)

we can also obtain Bernstein type theorem by using Theorem 2.1. We remark
that for k = 1, (10) reduces to the heat equation ut = Δu which is well-known.
Here we state Bernstein type theorem for (10).

Corollary 2.2 Let 1 ≤ k ≤ n and u ∈ C4,2(Rn × (−∞, 0]) be a solution to (10)
which is strictly convex in x. We assume (C) in Theorem 2.1 and the condition given
below are satisfied.

(D) There exist constants c1 ≥ c2 > 0 such that for all (x, t) ∈ R
n × (−∞, 0], c1 ≤

ut (x, t) ≤ c2.

Then, u has the form u(x, t) = Ct + p(x) where C > 0 is a constant and p is a
quadratic polynomial.

Proof We set v(x, t) = u(x, t) − (c2 + 1)t . Then it follows from (C) and (D) that
v ∈ C4,2(Rn × (−∞, 0]) is a strictly convex-monotone solution to

vt = Fk(D2v)
1
k − (c2 + 1) in Rn × (−∞, 0],

and satisfies −(c2 − c1 + 1) ≤ vt ≤ −1 in Rn × (−∞, 0] and v(x, 0) ≥ A|x |2 − B
for all x ∈ R

n . Applying Theorem 2.1 for μ(s) = s − (c2 + 1), we are done. �

Remark 2.2 It is known that the k-Hessian operator Fk is degenerate elliptic for k-
convex functions (see [5] for the proof). The class of k-convex functions is strictly
wider than that of convex functions for 1 ≤ k < n. Hence, when we study k-Hessian
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equation, it is natural to seek solutions in the class of k-convex functions, rather
than in the class of convex functions. But we do not know whether Theorems 1.2
and 2.1 remain true if one replaces strict convexity by strict k-convexity for the case
1 ≤ k < n.

3 Pogorelov Type Lemma

We introduce some notation. First, for D ⊂ R
n × (−∞, 0] and t ≤ 0, D(t) is

defined by
D(t) = {x ∈ R

n | (x, t) ∈ D}.

Let D ⊂ R
n × (−∞, 0] be a bounded set and t0 = inf{t ≤ 0 | D(t) 	= ∅}. The par-

abolic boundary ∂p D of D is defined by

∂p D =
(

D(t0) × {t0}
)

∪
⋃

t≤0

(∂ D(t) × {t}) ,

where we denote by D(t0) and ∂ D(t), the closure of D(t0) and the boundary of
D(t) inRn respectively. We say that a domain D ⊂ R

n × (−∞, 0] is a bowl-shaped
domain if D(t) is convex for each t ∈ (−∞, 0] and D(t1) ⊂ D(t2) for t1 ≤ t2 ≤ 0.

Next, for λ = (λ1, . . . , λn) and 1 ≤ m ≤ n, we define

Sm;i1i2...i j (λ) =
{

Sm (̂λ) if ir 	= is for any 1 ≤ r < s ≤ j,

0 otherwise,

where λ̂ = (̂λ1, . . . , λ̂n) is defined by

λ̂i =
{
0 if i = ir for some 1 ≤ r ≤ j,

λi otherwise.

We note that
∂

∂λi
Sm(λ) = Sm−1;i (λ)

for i = 1, . . . , n.
In this section, we shall prove Pogolerov type lemma for parabolic k-Hessian

equation. This is an analogue of the result of Pogorelov [19], who derived interior
C2-estimates of a solution from its C1-estimates for Monge-Ampère equation.

Lemma 3.1 Let μ ∈ C2(0,∞) which satisfies (A) in Theorem 2.1, 1 ≤ k ≤ n, D
be a bounded bowl-shaped domain in R

n × (−∞, 0] and u ∈ C4,2(D) be a strictly
convex-monotone solution to ut = μ(Fk(D2u)1/k) in D with u = 0 on ∂p D. We
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suppose that there exist constants m1 ≥ m2 > 0 such that (8)holds and that u satisfies
(9) for all (x, t) ∈ D. Then there exists a constant C = C(n, k, m1, m2, μ, ‖u‖C1(D))

such that
sup

(x,t)∈D
|u(x, t)|4|D2u(x, t)| ≤ C. (11)

Proof The idea of the proof is adapted from that of [8] (see also [18]). From now
on, we denote Di u by ui , Di j u by ui j , Di ut by uit , and so on.

The function u satisfies

− ut + μ( f (D2u)) = 0 in D, (12)

where f (M) = Fk(M)1/k . Differentiating (12) with respect to xγ (γ = 1, . . . , n)

yields that

−uγ t + μ′( f (D2u)) fi j ui jγ = 0 in D. (13)

Differentiating (13) with respect to xγ , we obtain that

−uγ γ t + μ′′( f (D2u))( fi j ui jγ )2 + μ′( f (D2u)) fi j ui jγ γ

+ μ′( f (D2u)) fi j,rsui jγ ursγ = 0 in D. (14)

As we have done in our previous paper [18], we consider the auxiliary function

Ψ (x, t; ξ) = (−u(x, t))4ϕ

( |Du(x, t)|2
2

)

Dξξ u(x, t), (x, t) ∈ D, |ξ | = 1,

where ϕ(s) = (1 − s/M)−1/8 and M = 2 sup(x,t)∈D |Du(x, t)|2. We note that u ≤ 0
in D. Then one can take a point (x0, t0) ∈ D \ ∂p D and a unit vector ξ0 ∈ R

n which
satisfy

Ψ (x0, t0; ξ0) = max{Ψ (x, t; ξ) | (x, t) ∈ D, |ξ | = 1}.

Rotating the coordinates appropriately,wemay take ξ0 = e1 and D2u(x0, t0) is diago-
nal with u11(x0, t0) ≥ u22(x0, t0) ≥ · · · ≥ unn(x0, t0) > 0. Then Ψ = Ψ (x, t; e1) =
(−u(x, t))4ϕ(|Du(x, t)|2/2)u11(x, t) attains its maximum at (x0, t0). It is enough to
consider the case λ1 = u11(x0, t0) ≥ 1.

Since Ψ attains its maximum at (x0, t0), direct calculation gives

(logΨ )i = 4ui

u
+ ϕi

ϕ
+ u11i

u11
= 0, (15)

(logΨ )i i = 4

(
uii

u
− u2

i

u2

)

+ ϕi i

ϕ
− ϕ2

i

ϕ2
+ u11i i

u11
− u2

11i

u2
11

≤ 0, (16)

(logΨ )t = 4ut

u
+ ϕt

ϕ
+ u11t

u11
≥ 0, (17)
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ϕi = ϕ′
( |Du|2

2

)

ui uii , (18)

ϕi i = ϕ′′
( |Du|2

2

)

u2
i u2

i i + ϕ′
( |Du|2

2

)
⎛

⎝u2
i i +

n∑

j=1

u j uii j

⎞

⎠ , (19)

ϕt = ϕ′
( |Du|2

2

) n∑

j=1

u j u jt (20)

at (x0, t0), for i = 1, . . . , n.
Here we claim that the following inequality holds:

fi j,rs(D2u)ui jγ ursγ ≤ −1

k

n∑

i, j=1

Sk(λ)
1
k −1Sk−2;i j (λ)u2

i jγ (21)

at (x0, t0), where λ = (λ1, . . . , λn) = (u11(x0, t0), . . . , unn(x0, t0)).
Indeed, since D2u(x0, t0) is diagonal, we have

fi j (D2u) =
⎧
⎨

⎩

1

k
Sk(λ)

1
k −1Sk−1;i (λ) if i = j,

0 otherwise,
(22)

fi j,rs(D2u) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

1

k
Sk(λ)

1
k −1Sk−2;ir (λ)

+ 1

k

(
1

k
− 1

)

Sk(λ)
1
k −2Sk−1;i (λ)Sk−1;r (λ) if i = j, r = s,

−1

k
Sk(λ)

1
k −1Sk−2;i j (λ) if i = s 	= r = j,

0 otherwise
(23)

at (x0, t0) (see [8, Sect. 4]). Combining (23) and Sk−2;i i (λ) = 0 for i = 1, . . . , n
yields that

fi j,rs(D2u)ui jγ ursγ

=
n∑

i, j=1

[
1

k
Sk(λ)

1
k −1Sk−2;i j (λ) + 1

k

(
1

k
− 1

)

Sk(λ)
1
k −2Sk−1;i (λ)Sk−1; j (λ)

]

uiiγ u j jγ

−
n∑

i, j=1

1

k
Sk(λ)

1
k −1Sk−2;i j (λ)u2

i jγ

=
n∑

i, j=1

∂2

∂λi∂λ j
Sk(λ)

1
k uiiγ u j jγ − 1

k

n∑

i, j=1

Sk(λ)
1
k −1Sk−2;i j (λ)u2

i jγ
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≤ −1

k

n∑

i, j=1

Sk(λ)
1
k −1Sk−2;i j (λ)u2

i jγ .

In the last inequality, we use the concavity of Sk(·)1/k in {(λ1, . . . , λn) ∈ R
n | λ1 >

0, . . . , λn > 0}. Hence (21) holds.
Letting γ = 1 in (14) and using (21) and (A), we obtain that at (x0, t0)

−u11t + μ′ fii u11i i ≥ 1

k
μ′

n∑

i, j=1

Sk(λ)
1
k −1Sk−2;i j (λ)u2

1i j . (24)

Let L be the linearized operator of (12) at (x0, t0):

L = −Dt + μ′( f (D2u(x0, t0))) fi j (D2u(x0, t0))Di j .

By (16), (17) and (A), we obtain that

L(logΨ ) = −
(
4ut

u
+ ϕt

ϕ
+ u11t

u11

)

+ μ′ fii

(

4

(
uii

u
− u2

i

u2

)

+ ϕi i

ϕ
− ϕ2

i

ϕ2
+ u11i i

u11
− u2

11i

u2
11

)

≤ 0 (25)

at (x0, t0). By using (13), (19), (20) and (24), it holds from (25) that

−4ut

u
+ 1

k
μ′

n∑

i, j=1

Sk(λ)
1
k −1Sk−2;i j (λ)

u2
1i j

u11

+ μ′ fii

(

4

(
uii

u
− u2

i

u2

)

+ ϕ′′

ϕ
u2

i u2
i i + ϕ′

ϕ
u2

i i − ϕ′2

ϕ2
u2

i u2
i i − u2

11i

u2
11

)

≤ 0

(26)

at (x0, t0).
Now we split into two cases.

(i) ukk ≥ K u11, where K > 0 is a small constant to be determined later.
By (15) and (18), we have

u2
11i

u2
11

=
(
4ui

u
+ ϕi

ϕ

)2

≤ 2

(
16u2

i

u2
+ ϕ′2u2

i u2
i i

ϕ2

)

(27)
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at (x0, t0). We note that the second term of the left hand side of (26) is non-negative,
due to (A) and λ1 ≥ λ2 ≥ · · · ≥ λn > 0. By this fact and (27), we obtain that

−4ut

u
+ μ′ fii

(

4

(
uii

u
− 9u2

i

u2

)

+
(

ϕ′′

ϕ
− 3ϕ′2

ϕ2

)

u2
i u2

i i + ϕ′

ϕ
u2

i i

)

≤ 0 (28)

at (x0, t0). Since
n∑

i=1

fii u
2
i i > fkku2

kk ≥ θ1

n∑

i=1

fii u
2
11

holds for some constant θ1 > 0 (cf. [8]), ϕ′′/ϕ − 3ϕ′2/ϕ2 ≥ 0 and ϕ′/ϕ ≥ c1 for
some positive constant c1, we get by (28) that at (x0, t0)

−4ut

u
+ c1θ1μ

′
n∑

i=1

fii u
2
11 + 4μ′ f (D2u)

u
− C

u2
μ′

n∑

i=1

fii ≤ 0.

Here we used the equality
∑n

i=1 fii (D2u)uii = f (D2u) at (x0, t0) which is implied
by the 1-homogeneity of f . Since m1 and m2 satisfy (8), it follows from (A) that the
inverse image μ−1([−m1,−m2]) is a closed interval, that is,

μ−1([−m1,−m2]) = [r1, r2] for some positive constants r1 and r2. (29)

Therefore, it holds that

f (D2u) = μ−1(ut ) ∈ [r1, r2] in D (30)

since u satisfies (9) in D, which implies thatμ′( f (D2u)) ∈ [μ′(r2), μ′(r1)] (we note
that μ′ is non-increasing due to (A)). Therefore we obtain that at (x0, t0)

4(m1 + r2μ′(r1))
u

+ c1θ1μ
′(r2)

n∑

i=1

fii u
2
11 − C

u2
μ′(r1)

n∑

i=1

fii ≤ 0. (31)

It holds that at (x0, t0)

n∑

i=1

fii (D2u) =
n∑

i=1

1

k
Fk(D2u)

1
k −1 ∂ Fk

∂mii
(D2u)

= 1

k

(
μ−1(ut )

)1−k
n∑

i=1

Sk−1;i (λ) ≤ Cuk−1
11 , (32)
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and that

n∑

i=1

fii (D2u) ≥ fnn(D2u)

= 1

k
Fk(D2u)

1
k −1 ∂ Fk

∂mnn
(D2u)

≥ 1

k

(
μ−1(ut )

)1−k
θ2u11 · · · uk−1,k−1 ≥ c2uk−1

11 , (33)

for some constants θ2, c2 > 0, since uii ≥ K u11 for i = 1, . . . , k − 1 by the hypoth-
esis. By (31)–(33), we have

θuk+1
11 + C

u
− C

u2
uk−1
11 ≤ 0 (34)

at (x0, t0), for some constant θ > 0. Multiplying (−u)8ϕ2u−(k−1)
11 /θ by (34), we see

that

(−u)8ϕ2u2
11 ≤ C

(−u)7ϕ2

uk−1
11

+ C(−u)6ϕ2 ≤ C(−u)7ϕ2 + C(−u)6ϕ2,

from which follows that Ψ 2 ≤ C(n, k, m1, m2, μ, ‖u‖C1(D)) at (x0, t0).
(ii) ukk ≤ K u11, that is, u j j ≤ K u11 for j = k, k + 1, . . . , n.

By (15),

u111

u11
= −

(
ϕ1

ϕ
+ 4u1

u

)

,
ui

u
= −1

4

(
ϕi

ϕ
+ u11i

u11

)

, i = 2, . . . , n (35)

at (x0, t0). Combining (26) and (35) yields that

0 ≥ μ′ f11

(

4

(
u11

u
− u2

1

u2

)

+ ϕ′′

ϕ
u2
1u2

11 + ϕ′

ϕ
u2
11 − ϕ′2

ϕ2 u2
1u2

11 −
(

ϕ1

ϕ
+ 4u1

u

)2
)

+ μ′
n∑

i=2

fii

(
4uii

u
− 1

4

(
ϕi

ϕ
+ u11i

u11

)2

+ ϕ′′

ϕ
u2

i u2
i i + ϕ′

ϕ
u2

i i − ϕ′2

ϕ2 u2
i u2

i i − u2
11i

u2
11

)

+ 1

k
μ′

n∑

i, j=1

Sk(λ)
1
k −1Sk−2;i j (λ)

u2
1i j

u11
− 4ut

u
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≥ μ′
[

n∑

i=1

fii

(
4uii

u
+
(

ϕ′′

ϕ
− 3ϕ′2

ϕ2

)

u2
i u2

i i + ϕ′

ϕ
u2

i i

)

− 36 f11
u2
1

u2

]

+ μ′
⎡

⎣−3

2

n∑

i=2

fii
u2
11i

u2
11

+ 1

k

n∑

i, j=1

Sk(λ)
1
k −1Sk−2;i j (λ)

u2
1i j

u11

⎤

⎦ − 4ut

u

=: μ′ I1 + μ′ I2 − 4ut

u
(36)

at (x0, t0). I1 can be estimated from below as

I1 ≥ 4μ−1(ut )

u
+ θ1 f11u2

11 − C

u2
f11 ≥ 1

2
θ1 f11u2

11 + 4μ−1(ut )

u
, (37)

provided u(x0, t0)2u11(x0, t0)2 ≥ 2C/θ1. If u(x0, t0)2u11(x0, t0)2 < 2C/θ1, then (11)
is obvious.Hencewemayassumeu(x0, t0)2u11(x0, t0)2 ≥ 2C/θ1 hereafter.As in [18,
(3.23)], I2 can be also estimated from below as

I2 ≥ −3

2
· 1

k
Sk(λ)

1
k −1

n∑

i=2

Sk−1;i (λ)
u2
11i

u2
11

+ 2 · 1
k

Sk(λ)
1
k −1

n∑

i=2

Sk−2;1i (λ)
u2
11i

u11

= 2

k
Sk(λ)

1
k −1

(
n∑

i=2

(

Sk−2;1i (λ) − 3

4

Sk−1;i (λ)

λ1

)
u2
11i

λ1

)

≥ 0 (38)

by using (22) and λ1Sk−2;1i (λ) ≥ 3Sk−1;i (λ)/4, provided K > 0 is sufficiently small
(see [8, Lemma 3.1]). Therefore, (30), (36)–(38) and (A) yield that

f11u2
11 ≤ 2

θ1

(
4ut

uμ′( f (D2u))
− 4μ−1(ut )

u

)

≤ −C

u
(39)

at (x0, t0). On the other hand, by the fact λ1Sk−1;1(λ) ≥ θ3Sk(λ) for some constant
θ3 > 0 (see [8, Lemma 3.1]), we see that

f11u2
11 = 1

k
Sk(λ)

1
k −1Sk−1;1(λ)λ2

1 ≥ θ3

k
Sk(λ)

1
k λ1 = θ3

k
μ−1(ut )u11 (40)

at (x0, t0). Combining (39) and (40), we have

u11 ≤ −C

u
(41)

at (x0, t0). Multiplying (−u)4ϕ by (41), we get

(−u)4ϕu11 ≤ C(−u)3ϕ,

from which follows that Ψ ≤ C(n, k, m1, m2, μ, ‖u‖C1(D)) at (x0, t0).
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Therefore, (−u)4|D2u| can be estimated from above by some constant C , so that
(11) holds. �

4 Proof of Theorem 2.1

The strategy of the proof of Theorem 2.1 is similar to that of [18, Theorem 2.1], but
we shall explain it here for the sake of completeness.

Before giving a proof of Theorem 2.1, we introduce some notation. For a sub-
set D ⊂ R

n × (−∞, 0], a function v : D → R and a constant α ∈ (0, 1), α-Hölder
seminorm of v over D is denoted by

[v]α,D = sup
(x,t),(y,s)∈D,
(x,t)	=(y,s)

|v(x, t) − v(y, s)|
(|x − y|2 + |t − s|) α

2
.

We begin the proof of Theorem 2.1. Let u ∈ C4,2(Rn × (−∞, 0]) be a strictly
convex-monotone solution to (6), which satisfies the growth conditions (B) and (C).
We may assume without loss of generality that u(0, 0) = 0, Du(0, 0) = 0, by con-
sidering u(x, t) − u(0, 0) − Du(0, 0) · x instead of u(x, t). Then it can be seen by
(C) that there exists another constant Ã > 0 such that u(x, 0) ≥ Ã|x |2 for all x ∈ R

n .
Let R > 0 be fixed. We define v(x, t)(= vR(x, t)) = u(Rx, R2t)/R2. Then v sat-

isfies vt (x, t) = ut (Rx, R2t) and vi j (x, t) = ui j (Rx, R2t), so that v ∈ C4,2(Rn ×
(−∞, 0]) is also a strictly convex-monotone classical solution to

vt = μ
(

Fk(D2v)
1
k

)
in Rn × (−∞, 0]. (42)

Moreover, v satisfies the following.

(B)’ −m1 ≤ vt (x, t) ≤ −m2 for all (x, t) ∈ R
n × (−∞, 0].

(C)’ v(x, 0) ≥ Ã|x |2 for all x ∈ R
n .

First, we shall obtain the local gradient estimate of the solution v. For q > 0, we
set

Ωq = {(x, t) ∈ R
n × (−∞, 0] | v(x, t) < Ãq}.

It follows from (B)’, (C)’ and the strict convex-monotonicity of v thatΩq is a bounded
bowl-shaped domain and that

Ωq(t) ⊂ Ωq(0) ⊂ B(0,
√

q). (43)

We prove the following estimate for |Dv|.
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Lemma 4.1 Let v and Ωq be defined as above. Then there exists a constant C > 0,
independent of q and R, such that for all (x, t) ∈ Ωq ,

|Dv(x, t)| ≤ C
√

q. (44)

Proof We note that v(x, t) is strictly convex in x .
By applyingAleksandrov’smaximumprinciple (cf. [10]) to v(·, t) − Ãq inΩq(t),

we see that

|v(x0, t) − Ãq|n ≤ C
(
diamΩq(t)

)n−1
dist(x0, ∂Ωq(t))|Dv(Ωq(t))| (45)

for any point (x0, t) ∈ Ωq . Using (29), (42), (43), (45), (B)’ and (Fk(M)/
(n

k

)
)1/k ≥

Fn(M)1/n = (det M)1/n for all M ∈ S
n×n
+ due to Newton-Maclaurin’s inequality, we

obtain that

|v(x0, t) − Ãq|n ≤ C(2
√

q)n−1 dist(x0, ∂Ωq(t))
∫

Ωq (t)
det D2v(x, t) dx

≤ Cq
n−1
2 dist(x0, ∂Ωq(t))

∫

Ωq (t)
Fk(D2v(x, t))

n
k dx

= Cq
n−1
2 dist(x0, ∂Ωq(t))

∫

Ωq (t)
μ−1(vt (x, t))n dx

≤ Cq
n−1
2 dist(x0, ∂Ωq(t)) · rn

2 |B(0,
√

q)|
= Cqn− 1

2 dist(x0, ∂Ωq(t)),

which implies that

|v(x0, t) − Ãq| ≤ Cq1− 1
2n dist(x0, ∂Ωq(t))

1
n .

Therefore, for all x0 ∈ Ωq/2(t),

Ãq − 1

2
Ãq ≤ Ãq − v(x0, t) ≤ Cq1− 1

2n dist(x0, ∂Ωq(t))
1
n .

Hence,
dist(Ω q

2
(t), ∂Ωq(t)) ≥ C

√
q.

From this inequality and the convexity of v with respect to x , it follows that for
(x, t) ∈ Ωq/2,

|Dv(x, t)| ≤ Ãq − Ã q
2

dist(Ω q
2
(t), ∂Ωq(t))

≤
Ãq
2

C
√

q
= C

√
q.

Replacing q by 2q, we obtain the desired estimate (44). �
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Especially, it holds that the estimate |Dv(x, t)| ≤ C for all (x, t) ∈ Ω1, in which
C is independent of R. By applying Lemma 3.1 to the function v(x, t) − Ã in Ω1,
we see that

sup
(x,t)∈Ω1

(
Ã − v(x, t)

)4 |D2v(x, t)| ≤ C.

This implies that for (x, t) ∈ Ω1/2,

|D2v(x, t)| ≤ C
(

Ã − v(x, t)
)4 ≤ C

(
Ã − Ã

2

)4 = C, (46)

so that we have the local estimate of |D2v|.
The next lemma can be proved by the same argument in [18, Lemma 4.3].

Lemma 4.2 There exists a constant C > 0, independent of R, such that

dist(Ω 1
8
, ∂pΩ 1

2
) ≥ C.

The next task is to obtain local Hölder estimates of D2v and vt . We use the
following Evans-Krylov type theorem (see [11]).

Theorem 4.3 Let D and D′ be bounded bowl-shaped domains which satisfy D′ ⊂ D
and dist(D′, ∂p D) > 0, and u be a C4,2(D) solution to the equation

G(ut , D2u) = 0

in D, where G = G(q, M) is defined for all (q, M) ∈ R × S
n×n with G(·, M) ∈

C1(R) for each M ∈ S
n×n, and G ∈ C2(R × X) for some X ⊂ S

n×n which is a
neighborhood of D2u(D). Suppose that the following hold.

(i) G is uniformly parabolic, i.e., there exist positive constants λ and Λ such that

−Λ ≤ Gq(q, M) ≤ −λ, (47)

λ‖N − M‖ ≤ G(q, N ) − G(q, M) ≤ Λ‖N − M‖, (48)

for all q ∈ R and M, N ∈ S
n×n with M ≤ N.

(ii) G is concave in M.

If ‖u‖C2,1(D) ≤ K , then there exist positive constants C depending on λ, Λ, n, K ,
D, D′ and G(0, 0), and α ∈ (0, 1) depending on λ, Λ and n such that

‖u‖C2+α,1+ α
2 (D′) ≤ C.
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We set G(q, M) = −q + μ( f (M)) for (q, M) ∈ [−m1,−m2] × X , where

X = {M = (mi j ) ∈ S
n×n
+ | r1 ≤ f (M) ≤ r2, |mi j | ≤ C for i, j = 1, . . . , n},

in which C is a constant appeared in (46).
It is trivial that (47) holds for 0 < λ ≤ 1 ≤ Λ.We can also see that (48) inTheorem

4.3 holds in [−m1,−m2] × X for some constants λ,Λ > 0, due to [5]. Finally, as
we have mentioned in Remark 2.1, (ii) in Theorem 4.3 holds.

One can extend G in R × S
n×n so that G satisfies (i) and (ii) in Theorem 4.3,

possibly for different positive constants λ and Λ. Then it holds that v is a solution to
G(vt , D2v) = 0 in Ω1/2. Using Lemma 4.2 and Theorem 4.3, we obtain that there
exists α ∈ (0, 1) such that

‖v‖C2+α,1+ α
2 (Ω 1

8
)
≤ C.

Therefore it follows that [Di j v]α,Ω1/8 ≤ C for i, j = 1, . . . , n and [vt ]α,Ω1/8 ≤ C . We
note that the constant C does not depend on R.

By substituting v(x, t) = u(Rx, R2t)/R2, we have

[Di j u]
α,
{

u(x,t)< Ã
8 R2

} ≤ C R−α,

and
[ut ]α,

{
u(x,t)< Ã

8 R2
} ≤ C R−α

for any R > 0. This implies that [Di j u]α,Ω = 0, and [ut ]α,Ω = 0 for any bounded
subset Ω of Rn × (−∞, 0]. Hence Di j u and ut are constants in R

n × (−∞, 0], so
that we obtain that u has the form u(x, t) = −mt + p(x) where m > 0 is a constant
and p is a quadratic polynomial.
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Dynamical Aspects of a Hybrid System
Describing Intermittent Androgen
Suppression Therapy of Prostate Cancer

Kurumi Hiruko and Shinya Okabe

Abstract We consider a mathematical model describing Intermittent Androgen
Suppression therapy (IAS therapy) of prostate cancer. The system has a hybrid struc-
ture, i.e., the system consists of two different systems by the medium of an unknown
binary function denoting the treatment state. In this paper, we shall prove that the
hybrid system has a unique solution with the property that the binary function keeps
on changing its value. In the clinical point of view, the result asserts that one can plan
the IAS therapy for each prostate cancer patient, provided that the tumor satisfies a
certain condition.

Keywords Parabolic comparison principle · Indirectly controlled parameter

1 Introduction

Prostate cancer is one of the diseases ofmale. By the fact that prostate cells proliferate
by amale hormone so-called androgen, it is expected that prostate tumors are sensitive
to androgen suppression. Huggins and Hodges [10] demonstrated the validity of the
androgen deprivation. Since then, the hormonal therapy has been a major therapy
of prostate cancer. The therapy aims to induce apoptosis of prostate cancer cells
under the androgen suppressed condition. For instance, the androgen suppressed
condition can be kept by medicating a patient continuously [22], and the therapy is
called Continuous Androgen Suppression therapy (CAS therapy). However, during
several years of the CAS therapy, the relapse of prostate tumor often occurs. More
precisely, the relapse means that the prostate tumor mutates to androgen independent
tumor. Then the CAS therapy is not effective in treating the tumor [5]. The fact was
also verified mathematically by [13, 14]. It is known that there exist Androgen-
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Dependent cells (AD cells) and Androgen-Independent cells (AI cells) in prostate
tumors. AI cells are considered as one of the causes of the relapse. For, AD cells can
not proliferate under the androgen suppressed condition, whereas AI cells are not
sensitive to androgen suppression and can still proliferate under the androgen poor
condition [2, 18]. Thus the relapse of prostate tumors is caused by progression to
androgen independent cancer due to emergence of AI cells.

In order to prevent or delay the relapse of prostate tumors, Intermittent Androgen
Suppression therapy (IAS therapy) was proposed and has been studied clinically
by many researchers (e.g., see [1, 3, 19], and the references therein). In contrast to
the CAS therapy, the IAS therapy does not aim to exterminate prostate cancer. We
mention the typical feature of the clinical phenomenon. Since prostate cancer cells
produce large amount of Prostate-Specific Antigen, the PSA is regarded as a good
biomarker of prostate cancer [21], and the plan of IAS therapy is based on the level:

(F) In the IAS therapy, the medication is stopped when the serum PSA level falls
enough, and resumed when the serum PSA level rises enough.

Indeed, if one can optimally plan the IAS therapy, then the size of tumor remains in
an appropriate range by way of on and off of the medication. In order to comprehend
qualitative property of prostate tumors under the IAS therapy, several mathematical
models were proposed and have been studied in the mathematical literature, for
instance, ODE models ([9, 11, 12, 20], and references therein) and PDE models [8,
15, 23–25]. Due to (F), an unknown binary function, denoting the treatment state,
appears in the models. The discontinuity of the binary function is the difficulty in
mathematical analysis on the models. To the best of our knowledge, there is no result
dealing with switching phenomena of the binary function in the PDE models.

The purpose of this paper is to prove the existence of a solution with the switching
property for the PDE model introduced by Tao et al. [23]:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

da

dt
(t) = −γ (a(t) − a∗) − γ a∗S(t) in R+,

∂t u(ρ, t) − L (v, R)u(ρ, t) = Fu(u(ρ, t), w(ρ, t), a(t)) in I∞,

∂t w(ρ, t) − L (v, R)w(ρ, t) = Fw(u(ρ, t), w(ρ, t), a(t)) in I∞,

v(ρ, t) = 1

ρ2

∫ ρ

0
Fv(u(r, t), w(r, t), a(t))r2 dr in I∞,

d R

dt
(t) = v(1, t)R(t) in R+,

S(t) =
{
0 → 1 when R(t) = r1 and R′(t) > 0,

1 → 0 when R(t) = r0 and R′(t) < 0,
in R+,

∂ρu(ρ, t)|ρ∈{0,1} = ∂ρw(ρ, t)|ρ∈{0,1} = 0, v(0, t) = 0, in R+,

(a, u, w, R, S)|t=0 = (a0, u0(ρ), w0(ρ), R0, S0) in I,

(IAS)
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where I = ( 0, 1 ), R+ = {t ∈ R | t > 0}, I∞ = I × R+, and

L (v, R)ϕ = D

R(t)2
1

ρ2
∂ρ[ρ2∂ρϕ] + ρv(1, t)∂ρϕ − 1

ρ2
∂ρ[ρ2v(ρ, t)ϕ], (1)

Fu = f1(a)u − c1uw, Fw = f2(a)w − c2uw, Fv = Fu + Fw. (2)

The unknownsa,u,w, v, R, and S denote respectively the androgen concentration, the
volume fraction of AD cells, the volume fraction of AI cells, the advection velocity
of the cancer cells, the radius of the tumor, and the treatment state. Here S = 0 and
S = 1 correspond to the medication state and the non-medication state, respectively.
The authors of [23] assumed that the prostate tumor is radially symmetric and densely
packed by AD andAI cells. Moreover they regarded the tumor as a three dimensional
sphere. Thus the unknowns u, w, and v are radially symmetric functions defined on
the unit ball B1 = {x ∈ R

3 | |x | < 1}, i.e., ρ = |x |. The unknown S(t) is governed
by R(t), for they formulated the serumPSA level as the radius of the tumor. Although
the condition on S in (IAS) is a concise form, the precise form is expressed as follows:
S(t) ∈ {0, 1} and

S(t)=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

{0, 1} \ lim
τ↑t

S(τ ) if

⎧
⎨

⎩

lim
τ↑t

R′(τ )>0, lim
τ↑t

R(τ )=r1, and lim
τ↑t

S(τ )=0,

lim
τ↑t

R′(τ )<0, lim
τ↑t

R(τ )=r0, and lim
τ↑t

S(τ )=1,

lim
τ↑t

S(τ ) otherwise.

The parameters a∗, γ , c1, c2, r0, and r1 denote the normal androgen concentration, the
reaction velocity, the effective competition coefficient fromAD to AI cells, and from
AI to AD cells, the lower and upper thresholds, respectively. The given functions
f1 : [ 0, a∗ ] → R and f2 : [ 0, a∗ ] → R describe the net growth rate of AD and AI
cells, respectively. Although the typical form of fi were given by [23], we deal with
general fi satisfying several conditions, which are stated later.

In [23], it was shown that, for each initial data u0 ∈ W 2
p(I ), there exists a short

time solution u ∈ W 2,1
p (I × ( 0, T )) of (IAS). However, the result is not sufficient

to construct a “switching solution”. For, if (u, w, v, R, a, S) is a switching solution
of (IAS), then (IAS) must be solvable at least locally in time for each “initial data”
(u, w, R, a, S)|{t=t j }, where t j is a switching time. Nevertheless, the result in [23]
does not ensure the solvability.

The existence of switching solutions of (IAS) is a mathematically outstanding
question. We are interested in the following mathematical problem:

Problem 1.1 Does there exist a switching solution of (IAS) with appropriate thresh-
olds 0 < r0 < r1 < ∞? Moreover, what is the dynamical aspect of the solution?

We consider the initial data (u0, w0, R0, a0, S0) satisfying the following:

{
u0, w0 ∈ C2+α(B1), ∂ρu0(ρ)|ρ∈{0,1} =∂ρw0(ρ)|ρ∈{0,1} =0,

u0 ≥ 0, w0 ≥ 0, u0 + w0 ≡ 1, R0 > 0, 0 < a0 < a∗, S0 ∈ {0, 1}, (3)
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where α ∈ ( 0, 1 ). Let f1 and f2 satisfy

{
f1(a∗) > 0, f1(0) < 0, f1 ∈ C1([ 0, a∗ ]), f ′

1 > 0 in [ 0, a∗ ],
f2(0) > 0, f2 ∈ C1([ 0, a∗ ]), f ′

2 ≤ 0 in [ 0, a∗ ]. (A0)

We note that (A0) is a natural assumption in the clinical point of view, and typical f1
and f2, which were given in [23], also satisfy (A0). In order to comprehend the role
of fi and ci , we classify asymptotic behavior of non-switching solutions of (IAS) in
terms of fi and ci under (A0) (see Theorems3.2–3.5). Following the results obtained
by Theorems3.2–3.5, we impose (A0) and the following assumptions on fi and ci :

f1(a∗) − f2(a∗) − c1 > 0; (A1)

f1(0) − f2(0) + c2 > 0. (A2)

From now on, let QT := B1 × ( 0, T ). We denote by C2κ+α,κ+β(QT ) the Hölder
space on QT , where κ ∈ N ∪ {0}, 0 < α < 1, and 0 < β < 1 (for the precise defin-
ition, see [16]).

Then we give an affirmative answer to Problem1.1:

Theorem 1.1 Let fi and ci satisfy (A0)–(A2). Let (u0, w0, R0, a0, S0) satisfy (3),
u0 > 0 in B1, and S0 = 0. Then, there exists a pair (r0, r1) with 0 < r0 < r1 < ∞
such that the system (IAS) has a unique solution (u, w, v, R, a, S) in the class

u, w ∈ C2+α,1+α/2(Q∞), v ∈ C1+α,α/2([ 0, 1 ) × R+) ∩ C1([ 0, 1 ) × R+),

R ∈ C1(R+), a ∈ C0,1(R+).

Moreover, the following hold :
(i) There exists a strictly monotone increasing divergent sequence {t j }∞j=0 with

t0 = 0 such that a ∈ C1(( t j , t j+1 )) and

S(t) =
{
0 in [ t2 j , t2 j+1 ),

1 in [ t2 j+1, t2 j+2 ),
for any j ∈ N ∪ {0};

(ii) There exist positive constants C1 < C2 such that

C1 ≤ R(t) ≤ C2 for any t ≥ 0.

We mention the mathematical contributions of Theorem1.1 and a feature of the
system (IAS). The system is composed of two different systems (S0) and (S1) by the
medium of the binary function S(t), where (S0) and (S1) respectively denote (IAS)
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with S(t) ≡ 0 and S(t) ≡ 1. Generally the systemwith such structure is called hybrid
system. Regarding (S0), the assumption (A1) implies that R(t) diverges to infinity
as t → ∞ (see Theorem3.4). On the other hand, regarding (S1), we can show that
the assumption (A2) implies the following: (i) R(t) diverges to infinity as t → ∞
if u0 is sufficiently small (Theorem3.2); (ii) R(t) converges to 0 as t → ∞ if u0 is
sufficiently close to 1 (Theorem3.3). It is natural to ask whether a solution R(t) of
(IAS) is bounded or not. One of the contributions of the present paper is to show
how to determine thresholds 0 < r0 < r1 < ∞ such that (IAS) with the thresholds
has a bounded solution with infinite opportunities of switching. Furthermore, due to
the discontinuity of S(t), it is expected that the switching solution is not so smooth.
However, Theorem1.1 indicates that the switching solution gains its regularity with
the aid of the “indirectly controlled parameter” a(t). The other contribution of this
paper is to mathematically clarify the immanent structure of the hybrid system (IAS).

We mention the clinical contribution of Theorem1.1. Although one can expect
that the system (IAS) gives us how to optimally plan the IAS therapy for each prostate
cancer patient, it is not trivial matter. To do so, first we have to prove the existence
of admissible thresholds for each patient. Moreover, if the admissible threshold is
not unique, then we investigate the optimality of the admissible thresholds. Here, we
say that the thresholds is admissible for a prostate cancer patient, if for the initial
data (IAS) with the thresholds has a switching solution. Although [23] indicated
that the problem, even the existence, is difficult to analyze mathematically, they
numerically showed that (i) the IAS therapy fails for unsuitable thresholds, more
precisely, the radius of tumor diverges to infinity after several times of switching
opportunities, and while, (ii) the IAS therapy succeeds for suitable thresholds, i.e.,
the radius of tumor remains in a bounded range by way of infinitely many times
of switching opportunities. One of the clinical contribution of Theorem1.1 is to
prove the existence of admissible thresholds for each patients, provided that (A0)–
(A2) are fulfilled. Moreover, Theorem1.1 also implies that the IAS therapy has an
advantage over the CAS therapy for some patients. Indeed, Theorem3.2 gives an
instance showing a failure of the CAS therapy, whereas Theorem1.1 asserts that the
patient can be treated successfully by the IAS therapy. The fact is an example that
switching strategy under the IAS therapy is able to be a successful strategy. On the
other hand, the pair of admissible thresholds given by Theorem1.1 is not uniquely
determined. Thus, in order to optimally plan the IAS therapy, we have to investigate
its optimality. However the optimality of the admissible thresholds is an outstanding
problem.

The paper is organized as follows: In Sect. 2, we give a modified system of (IAS)
and reduce the system to a simple hybrid system.Making use of the modified system,
we prove the short time existence of the solution to (IAS). In Sect. 3, we show the
existence of the non-switching solution of (IAS) for any finite time. Moreover, we
classify the asymptotic behaviors of the non-switching solutions in terms of fi and ci .
In Sect. 4, we prove Theorem1.1, i.e., we show the existence of a switching solution
of (IAS) and give its property.
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2 Short Time Existence

The main purpose of this section is to show the short time existence of the solution of
(IAS). As [23] mentioned, it is difficult to prove that (IAS) has a short time solution
in the Hölder space (see Remark 4.1 in [23]). The difficulty rises from the singularity
of v/ρ at ρ = 0. Indeed, the singularity prevents us from applying the Schauder
estimate. To overcome the difficulty, first we consider a modified hybrid system.
More precisely, we replace the “boundary condition”

v(0, t) = 0 in R+ (4)

by

v(ρ, t)

ρ

∣
∣
∣
ρ=0

= 1

3
Fv(u(0, t), w(0, t), a(t)) in R+.

Then the modified hybrid system is expressed as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

da

dt
(t) = −γ (a(t) − a∗) − γ a∗S(t) in R+,

∂t u(ρ, t) − L (v, R)u(ρ, t) = Fu(u(ρ, t), w(ρ, t), a(t)) in I∞,

∂t w(ρ, t) − L (v, R)w(ρ, t) = Fw(u(ρ, t), w(ρ, t), a(t)) in I∞,

v(ρ, t) = 1

ρ2

∫ ρ

0
Fv(u(r, t), w(r, t), a(t))r2 dr in I∞,

d R

dt
(t) = v(1, t)R(t) in R+,

S(t) =
{
0 → 1 when R(t) = r1 and R′(t) > 0,

1 → 0 when R(t) = r0 and R′(t) < 0,
in R+,

∂ρu(ρ, t)|ρ∈{0,1} = ∂ρw(ρ, t)|ρ∈{0,1} = 0 in R+,

v(ρ, t)

ρ

∣
∣
∣
ρ=0

= 1

3
Fv(u(0, t), w(0, t), a(t)) in R+,

(a, u, w, R, S)|t=0 = (a0, u0(ρ), w0(ρ), R0, S0) in I.

(mIAS)

To begin with, we show that u + w is invariant under (mIAS).

Lemma 2.1 Let (u0, w0, R0, a0, S0) be an initial data satisfying (3). Assume that
(u, w, v, R, a, S) is a solution of (mIAS)with u, w ∈ C2+α,1+α/2(QT ) and S(t) ≡ S0
in [ 0, T ). Then u + w ≡ 1 in B1 × [ 0, T ).

Proof Setting V := u + w, we reduce (mIAS) to the following system:
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

da

dt
(t) = −γ (a(t) − a∗) − γ a∗S0 in R+,

∂t V (ρ, t) − L (v, R)V (ρ, t) = 1

ρ2
∂ρ[ρ2v(ρ, t)] in I∞,

v(ρ, t) = 1

ρ2

∫ ρ

0
Fv(u(r, t), w(r, t), a(t))r2 dr in I∞,

d R

dt
(t) = v(1, t)R(t) in R+,

∂ρV (ρ, t)|ρ∈{0,1}= 0,
v(ρ, t)

ρ

∣
∣
∣
ρ=0

= 1

3
Fv(u(0, t),w(0, t),a(t)), in R+,

V (ρ, 0) = 1, a(0) = a0, R(0) = R0, in I.

(5)

In the derivation of the second equation in (5), we used the fact Fu + Fw = Fv and
the equation on v. We shall prove that V ≡ 1 in B1 × [ 0, T ). The second equation
in (5) is written as

∂t V = D

R(t)2
Δx V − x

ρ
· ∇x {v(V − 1)} + v(1, t)x · ∇x V − 2

ρ
v(V − 1) (6)

in terms of the three-dimensional Cartesian coordinates, where ρ = |x |. In what
follows, we use ∇ and Δ instead of ∇x and Δx , respectively, if there is no fear of
confusion. First, we observe from (6) that

d

dt
‖V − 1‖2L2(B1)

= − 2D

R(t)2
‖∇(V − 1)‖2L2(B1)

− 2
∫

B1

(V − 1)
x

ρ
· ∇{v(V − 1)} dx

+ 2
∫

B1

(V −1)v(1, t)x · ∇V dx − 2
∫

B1

v

ρ
(V − 1)2 dx =: J1 + J2 + J3 + J4.

We start with an estimate of J1. Since it follows from the third and fourth equations
in (5) that

R(t) = R0 exp
[ ∫ t

0
v(1, s)ds

]
≤ R0eκT ,

we have

J1 ≤ − 2D

R2
0e2κT

‖∇(V − 1)‖2L2(B1)
,

where κ is a positive constant given by

3κ := ‖ f1(a)u + f2(a)w − (c1 + c2)uw‖L∞(QT ).

We turn to J2. By the relation
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∂ρv = −2
v

ρ
+ f1(a(t))u + f2(a(t))w − (c1 + c2)uw,

the integral J2 is reduced to

J2 = 4
∫

B1

v

ρ
|V − 1|2 dx − 2

∫

B1

(V − 1)
v

ρ
x · ∇V dx

− 2
∫

B1

{ f1(a(t))u + f2(a(t))w − (c1 + c2)uw}|V − 1|2 dx .

Observing that

∣
∣
∣

v(ρ, t)

ρ

∣
∣
∣≤ 1

ρ3

∫ ρ

0
| f1(a(t))u + f2(a(t))w − (c1 + c2)uw|r2 dr ≤ κ,

and using Hölder’s inequality and Young’s inequality, we find

|J2| ≤ ε‖∇(V − 1)‖2L2(B1)
+ C(ε)‖V − 1‖2L2(B1)

.

Regarding J3 and J4, the same argument as in the estimate of J2 asserts that

|J3| ≤ ε‖∇(V − 1)‖2L2(B1)
+ C(ε)‖V − 1‖2L2(B1)

, |J4| ≤ 2κ‖V − 1‖2L2(B1)
.

Thus, letting ε > 0 small enough, we obtain

d

dt
‖V − 1‖2L2(B1)

≤ C‖V − 1‖2L2(B1)
. (7)

Since V (·, 0) = 1, applying Gronwall’s inequality to (7), we obtain the conclusion.
��

Here we reduce the system (mIAS) to the following hybrid system:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

da

dt
(t) = −γ (a(t) − a∗) − γ a∗S(t) in R+,

∂t u(ρ, t) − L ′(v, R)u(ρ, t) = P(u(ρ, t), a(t)) in I∞,

v(ρ, t) = 1

ρ2

∫ ρ

0
F(u(r, t), a(t))r2 dr in I∞,

d R

dt
(t) = v(1, t)R(t) in R+,

S(t) =
{
0 → 1 when R(t) = r1 and R′(t) > 0,

1 → 0 when R(t) = r0 and R′(t) < 0,
in R+,

∂ρu(ρ, t)
∣
∣
ρ∈{0,1} = 0,

v(ρ, t)

ρ

∣
∣
∣
ρ=0

= 1

3
F(u(0, t), a(t)), in R+,

a(0) = a0, u(ρ, 0) = u0(ρ), R(0) = R0, S(0) = S0, in I,

(P)
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where

L ′(v, R)ϕ = D

R(t)2
1

ρ2
∂ρ[ρ2∂ρϕ] − [v(ρ, t) − ρv(1, t)] ∂ρϕ, (8)

P(u, a) = { f1(a) − f2(a) − c1 + (c1 + c2)u} u(1 − u),

F(u, a) = f1(a)u + { f2(a) − (c1 + c2)u} (1 − u).

The reduction is justified as follows:

Lemma 2.2 The system (mIAS) is equivalent to (P).

Proof If (u, w, v, R, a, S) satisfies (mIAS), then Lemma2.1 implies that u + w ≡ 1.
Using w = 1 − u, we can reduce (mIAS) to (P). On the other hand, if (u, v, R, a, S)

satisfies (P), then, setting w := 1 − u, we obtain (mIAS) from (P). ��
In order to prove the short time existence of a solution to (mIAS), we first consider

the following system, which is formally derived from (P) provided S(t) ≡ S0.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

da

dt
(t) = −γ (a(t) − a∗) − γ a∗S0 in R+,

∂t u(ρ, t) − L ′(v, R)u(ρ, t) = P(u(ρ, t), a(t)) in I∞,

v(ρ, t) = 1

ρ2

∫ ρ

0
F(u(r, t), a(t))r2 dr in I∞,

d R

dt
(t) = v(1, t)R(t) in R+,

∂ρu(ρ, t)
∣
∣
ρ∈{0,1} = 0,

v(ρ, t)

ρ

∣
∣
∣
ρ=0

= 1

3
F(u(0, t), a(t)), in R+,

a(0) = a0, u(ρ, 0) = u0(ρ), R(0) = R0, in I.

(PS0)

Lemma 2.3 Let (u0, R0, a0, S0) satisfy (3). Then there exists T > 0 such that the
system (PS0) has a unique solution (u, v, R, a) in the class

C2+α,1+ α
2(QT )×(C1+α, α

2([ 0, 1 )×( 0, T ))∩C1([ 0, 1 )×( 0, T )))×(C1(( 0, T )))2.

Proof We shall prove Lemma2.3 by the contractionmapping principle. Let us define
a metric space (X M , ‖ · ‖X ) as follows:

X M = {u ∈ Cα, α
2 (QT ) | u(x, t) = u(|x |, t), u|t=0 = u0, ‖u‖X ≤ M},

where ‖u‖X = ‖u‖Cα,α/2(QT ). We will take the constants T > 0 and M > 0 appropri-
ately, later.

Step 1: We shall construct a mapping Ψ : X M → X M . Let u ∈ X M . For u(ρ, t), let
us define (v(ρ, t), R(t)) as the solution of the following system:
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

v(ρ, t) = 1

ρ2

∫ ρ

0
F(u(r, t), a(t))r2 dr in I × [ 0, T ),

d R

dt
(t) = v(1, t)R(t) in ( 0, T ),

v(ρ, t)

ρ

∣
∣
∣
ρ=0

= 1

3
F(u(0, t), a(t)) in [ 0, T ),

R(0) = R0.

(9)

For (v, R) defined by (9), let ũ(x, t) = ũ(|x |, t) = ũ(ρ, t) denote the solution of

⎧
⎪⎨

⎪⎩

∂t ũ(ρ, t) − L ′(v, R)ũ(ρ, t) = P(u(ρ, t), a(t)) in I × ( 0, T ),

∂ρ ũ(0, t) = ∂ρ ũ(1, t) = 0 in ( 0, T ),

ũ(ρ, 0) = u0(ρ) in I.

(10)

Ifwe consider the problemas an initial-boundary value problem for a onedimensional
parabolic equation, the parabolic equation has a singularity at ρ = 0. In order to
eliminate the singularity, we rewrite the problem in terms of the three dimensional
Cartesian coordinate as follows:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂t ũ(|x |, t)+
[ v(|x |, t)

|x | − v(1, t)
]

x · ∇ũ(|x |, t)

= D

R(t)2
Δũ(|x |, t) + P(u(|x |, t), a(t)) in QT ,

∂ρ ũ(0, t) = ∂ρ ũ(1, t) = 0 in ( 0, T ),

ũ(|x |, 0) = u0(|x |) in B1.

(11)

We prove that ũ ∈ X M by applying the Schauder estimate to (11). Since u ∈ X M ,
it is clear that F(u, a) ∈ Cα,α/2(QT ), P(u, a) ∈ Cα,α/2(QT ), and

v(1, t) =
∫ 1

0
F(u(r, t), a(t))r2 dr ∈ C

α
2 (( 0, T )). (12)

Moreover, since R(t) > 0 in [ 0, T ), the fact (12) implies 1/R(t)2 ∈ Cα/2

(( 0, T )). In the following, we will show

V (ρ, t) := v(ρ, t)

ρ
∈ Cα, α

2 (QT ). (13)

(i) Let us fix ρ ∈ ( 0, 1 ) arbitrarily. Since now V satisfies, for any 0 < t < s < T ,

V (ρ, s) − V (ρ, t) = 1

ρ3

∫ ρ

0
{F(u(r, s), a(s)) − F(u(r, t), a(t))}r2 dr, (14)

we estimate the integrand. It follows from u ∈ X M that
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|F(u(r, s), a(s)) − F(u(r, t), a(t))| (15)

≤ C(M)

{

|u(r, s) − u(r, t)| +
2∑

i=1

| fi (a(s)) − fi (a(t))|
}

≤ C(M)

{

M |s − t | α
2 +

2∑

i=1

| fi (a(s)) − fi (a(t))|
}

.

Furthermore, the mean value theorem implies

| fi (a(s)) − fi (a(t))| ≤ C |s − t | for i = 1, 2,

where C = C( fi , a∗, γ ). Combining the estimate with (15), we find

|F(u(r, s), a(s)) − F(u(r, t), a(t))| ≤ C(M)|s − t | α
2 .

Consequently, we deduce from (14) that

|V (ρ, s) − V (ρ, t)| ≤ C(M)|s − t | α
2 .

(ii) Let ρ = 0. Then by the same argument as in (i), we see that

|V (0, s) − V (0, t)| = 1

3
|F(u(0, s), a(s)) − F(u(0, t), a(t))| ≤ C(M)|s − t | α

2

for any 0 < t < s < T .
(iii) Fix 0 < t < T arbitrarily. Then, for any 0 < ρ < σ < 1, it holds that

V (σ, t) − V (ρ, t) = {V (σ, t) − V (0, t)} − {V (ρ, t) − V (0, t)}
= 1

σ 3

∫ σ

ρ

{F(u(r, t), a(t)) − F(u(0, t), a(t))}r2 dr

+
(

1

σ 3
− 1

ρ3

)∫ ρ

0
{F(u(r, t), a(t)) − F(u(0, t), a(t))}r2 dr.

Since u ∈ X M , we observe that

|F(u(ρ, t), a(t)) − F(u(0, t), a(t))| ≤ C(M)|u(ρ, t) − u(0, t)| ≤ C(M)ρα.

Therefore we obtain

|V (σ, t) − V (ρ, t)| ≤ C(M)
1

σ 3

∫ σ

ρ

r2+α dr + C(M)

∣
∣
∣

ρ3 − σ 3

σ 3ρ3

∣
∣
∣

∫ ρ

0
r2+α dr

≤ C(M)

∣
∣
∣

σ 3 − ρ3

σ 3−α

∣
∣
∣≤ C(M)|σ − ρ|α.
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(iv) Let us fix 0 < t < T arbitrarily. The same argument as in (iii) implies that

|V (ρ, t) − V (0, t)| ≤ C(M)
1

ρ3

∫ ρ

0
r2+α dr ≤ C(M)ρα for any ρ ∈ ( 0, 1 ).

From (i)–(iv), we conclude (13). Hence, by virtue of (11) we can apply the Schauder
estimate (Theorem 5.3, [16]) to (10):

‖ũ‖C2+α,1+α/2(QT ) ≤ C
(‖P‖X + ‖u0‖C2+α(B1)

) ≤ C(M) + C‖u0‖C2+α(B1).

On the other hand, it follows from the mean value theorem that

‖ũ − u0‖X ≤ max
{
T, T 1− α

2
} ‖ũ‖C2+α,1+α/2(QT ). (16)

Therefore, for T < 1, we obtain

‖ũ‖X ≤ T 1− α
2 ‖ũ‖C2+α,1+α/2(QT ) + ‖u0‖C2+α(B1)

≤ T 1− α
2 {C(M) + C‖u0‖C2+α(B1)} + ‖u0‖C2+α(B1).

Consequently, for M := 1 + ‖u0‖C2+α(B1), setting T < 1 small enough as

T 1− α
2 {C(M) + C‖u0‖C2+α(B1)} < 1, (17)

we deduce that ũ ∈ X M . We define a mapping Ψ : X M → X M as Ψ (u) = ũ.

Step 2: We show that Ψ is a contraction mapping. Let ui ∈ X M . We denote by
(vi (ρ, t), Ri (t)) the solution of (9) with u = ui , where i = 1, 2. For ũi := Ψ (ui ),
set U := ũ1 − ũ2. By a simple calculation, we see that U satisfies

⎧
⎪⎨

⎪⎩

∂tU (ρ, t) − L ′(v2, R2)U (ρ, t) = G(u1, u2) in I × ( 0, T ),

∂ρU (0, t) = ∂ρU (1, t) = 0 in ( 0, T ),

U (ρ, 0) = 0 in I,

where G(u1, u2) is given by

G(u1, u2) = {L ′(v1, R1) − L ′(v2, R2)}ũ1 + {P(u1) − P(u2)}.

Adopting a similar argument as in Step 1, we find G(u1, u2) ∈ Cα,α/2(QT ) and

‖G(u1, u2)‖X ≤ C(T, u0, R0)‖u1 − u2‖X .

Then the Schauder estimate asserts that

‖U‖C2+α,1+α/2(QT ) ≤ C(T, u0, R0)‖u1 − u2‖X .
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By the fact that U (|x |, 0) = 0 in B1 and a similar argument as in (16), it holds that

‖Ψ (u1) − Ψ (u2)‖X = ‖U‖X ≤ T 1− α
2 ‖U‖C2+α,1+α/2(QT ) ≤ T 1− α

2 C‖u1 − u2‖X ,

whereC = C(T, u0, R0). Thus, lettingT small enough asT 1−α/2C < 1,we conclude
that Ψ is a contraction mapping. Then Banach’s fixed point theorem indicates that
there exists u ∈ X M uniquely such that Ψ (u) = u. By the definition of Ψ , u is a
unique solution of (PS0) on [ 0, T ). Moreover, we infer from the above argument
that u ∈ C2+α,1+α/2(QT ).

Finally we prove that v ∈ C1+α,α/2([ 0, 1 ) × ( 0, T )) ∩ C1([ 0, 1 ) × ( 0, T )). By
a direct calculation, we have v ∈ C([ 0, T ); H 1(I )). Combining the fact with
the Sobolev embedding theorem H 1(I ) ↪→ C0,1/2( Ī ), we obtain v ∈ C([ 0, T );
C0,1/2( Ī )), in particular v ∈ C( Ī × [ 0, T )). Thus it follows from the continuity that

v(0, t) = lim
ρ↓0 v(ρ, t) = 0 for any t ∈ [ 0, T ). (18)

Then, along the same line as in [23], we see that v ∈ C1([ 0, 1 ) × ( 0, T )).Moreover,
applying the same argument as in (13) to

∂ρv(ρ, t) =

⎧
⎪⎨

⎪⎩

− 2

ρ3

∫ ρ

0
F(u(r, t), a(t))r2 dr + F(u(ρ, t), a(t)) if ρ > 0,

1

3
F(u(0, t), a(t)) if ρ = 0,

we find v ∈ C1+α,α/2([ 0, 1 ) × ( 0, T )). This completes the proof. ��

Theorem 2.1 Let (u0, w0, R0, a0, S0) satisfy (3). Then there exists T > 0 such that
the system (IAS) has a unique solution (u, w, v, R, a, S) with S(t) ≡ S0 in [ 0, T )

in the class
{

u, w ∈ C2+α,1+ α
2 (QT ), R, a ∈ C1(( 0, T )),

v ∈ C1+α, α
2 ([ 0, 1 ) × ( 0, T )) ∩ C1([ 0, 1 ) × ( 0, T )).

(19)

Proof Let (u, v, R, a) be the solution of (PS0). According to Lemma2.3, we see that
the solution (u, v, R, a) belongs to the class

C2+α,1+ α
2(QT )×(C1+α, α

2([ 0, 1 )×( 0, T ))∩C1([ 0, 1 )×( 0, T )))×(C1(( 0, T )))2

for some T > 0. To begin with, we prove the existence of a short time solution to (P).
If there exists T1 ∈ ( 0, T ] such that R(t) ≡ R0 in [ 0, T1 ), then (u, v, R, a, S) with
S(t) ≡ S0 is a solution of (P), for the fact that d R/dt = 0 in ( 0, T1 ) implies that
S(t) does not switch in ( 0, T1 ). On the other hand, if there exists no such T1, there
exists T2 ∈ ( 0, T ] such that R(t) /∈ {r0, r1} in ( 0, T2 ), for R(t) is continuous. Then
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it is clear that (u, v, R, a, S)with S(t) ≡ S0 satisfies (P) in ( 0, T2 ). Thus we see that
(u, v, R, a, S) with S(t) ≡ S0 is a solution of (P) in ( 0, T ∗ ) for some T ∗ ∈ ( 0, T ].

We show the uniqueness. Let (u1, v1, R1, a1, S1) �= (u2, v2, R2, a2, S2) be solu-
tions of (P) satisfying (19). Along the same line as above, we see that S1(t) = S2(t) =
S0 in [ 0, T̃ ) for some T̃ ∈ ( 0, T ∗ ]. Then the uniqueness of the solution of (PS0)
leads a contradiction.

Thanks to Lemma2.2, we observe that (mIAS) has a unique solution.Moreover, it
follows from (18) that the solution satisfies (IAS). Finally we show the uniqueness of
solutions of (IAS). Suppose that (ui , wi , vi , Ri , ai , S0) are solutions of (IAS) in the
class (19), where i = 1, 2. Then, by the proof of Lemma2.2, we observe that (IAS)
is reduced to (P) replaced the condition on v/ρ by (4). It is clear that a1(t) = a2(t)
in [ 0, T ). Set U := u1 − u2. Then it follows from Step 2 in the proof of Lemma2.3
that

‖U‖C2+α,1+ α
2 (QT )

≤ C‖U‖Cα, α
2 (QT )

. (20)

Moreover, we find

‖U‖Cα, α
2 (QT )

≤ T 1− α
2 ‖U‖C2+α,1+ α

2 (QT )
≤ CT 1− α

2 ‖U‖Cα, α
2 (QT )

. (21)

Letting T be small enough such that CT 1−α/2 < 1, we observe from (21) that
‖U‖Cα,α/2 = 0. Combining the fact with (20), we obtain the conclusion. ��

In order to prove u, w ∈ [ 0, 1 ] in B1 × [ 0, T ), we apply a parabolic compar-
ison principle to (IAS). Using (u, v, R, a, S), which is the solution of (P) in QT

constructed by Theorem 2.1, we define the operator

Pi : C2,1(B1 × ( 0, T )) ∩ C(B1 × [ 0, T )) → C(B1 × ( 0, T ))

as follows:

P1z := ∂t z −L ′(v, R)z − P(z, a), P2z := ∂t z −L ′(v, R)z + P(1 − z, a).

Regarding the operatorPi , the following parabolic comparison principle holds:

Lemma 2.4 Assume that z, ζ ∈ C2,1(B1 × ( 0, T )) ∩ C(B1 × [ 0, T )) satisfy

⎧
⎪⎨

⎪⎩

Pi z ≥ Piζ in B1 × ( 0, T ),

∂νz ≥ ∂νζ on ∂ B1 × ( 0, T ),

z ≥ ζ in B1 × {t = 0}.

Then z ≥ ζ in B1 × [ 0, T ).

Proof Since the proof of Lemma2.3 implies that the coefficients in the operator
L ′(v, R) are bounded, we can prove Lemma2.4 along the standard argument (e.g.,
see [4, 17]). ��
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By virtue of Lemma2.4, one can verify 0 ≤ u ≤ 1 and 0 ≤ w ≤ 1:

Lemma 2.5 Let (u, w, v, R, a, S) be a solution of (IAS) obtained by Theorem2.1.
Then, 0 ≤ u ≤ 1 and 0 ≤ w ≤ 1 in B1 × [ 0, T ).

We close this section with a property of certain quantities of u and w.

Lemma 2.6 Let us define

⎧
⎪⎪⎨

⎪⎪⎩

U (t) := 4π R3(t)
∫ 1

0
u(ρ, t)ρ2 dρ,

W (t) := 4π R3(t)
∫ 1

0
w(ρ, t)ρ2 dρ,

⎧
⎪⎪⎨

⎪⎪⎩

V1(t) :=
∫ 1

0
u(ρ, t)ρ2 dρ,

V2(t) :=
∫ 1

0
w(ρ, t)ρ2 dρ.

Then U, W , V1, and V2 satisfy

dU

dt
(t) = 4π R3(t)

∫ 1

0
c1u(ρ, t)2ρ2dρ + { f1(a(t)) − c1}U (t), (22)

dW

dt
(t) = 4π R3(t)

∫ 1

0
c2w(ρ, t)2ρ2dρ + { f2(a(t)) − c2}W (t), (23)

dV1

dt
(t)

{
≤ g(a(t))V1(t) + 3{−g(a(t)) + c1 + c2}V1(t)2,

≥ {g(a(t)) − c1}V1(t) − 3{g(a(t)) − c1}V1(t)2,
(24)

dV2

dt
(t)

{
≤ −g(a(t))V2(t) + 3{g(a(t)) + c1 + c2}V2(t)2,

≥ −{g(a(t)) + c2}V2(t) + 3{g(a(t)) + c2}V2(t)2,
(25)

respectively, where g is a function defined by

g(z) := f1(z) − f2(z). (26)

Proof The Eqs. (22) and (23) were obtained by [23]. We shall show (24) and (25).
It follows from Jensen’s inequality and Lemma2.5 that

3V1(t)
2 ≤

∫ 1

0
u(ρ, t)2ρ2 dρ ≤ V1(t), 3V2(t)

2 ≤
∫ 1

0
w(ρ, t)2ρ2 dρ ≤ V2(t). (27)

Combining (27) with the same argument as in [23], we obtain the conclusion. ��
Remark 2.1 The function g denotes the difference of net growth rate of AD cells
and AI cells. We employ the notation frequently in the rest of the paper.
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3 Asymptotic Behavior of Non-switching Solutions

We devote this section to investigating the asymptotic behavior of “non-switching”
solutions of (IAS). To begin with, we shall show the long time existence of the
non-switching solutions of (IAS).

Theorem 3.1 Let (u0, w0, R0, a0, S0) satisfy (3) and S0 = 1. Then the system (IAS)
with r0 = 0 has a unique solution (u, w, v, R, a, S) with S(t) ≡ 1 in [ 0,∞ ) in the
class

{
u, w ∈ C2+α,1+ α

2 (Q∞), R, a ∈ C1(R+),

v ∈ C1+α, α
2 ([ 0, 1 ) × R+)) ∩ C1([ 0, 1 ) × R+).

Proof It follows from Theorem2.1 that (IAS) with r0 = 0 has a unique solution with
S(t) ≡ 1 in QT for some T > 0. Since

R(t) = R0 exp
[ ∫ t

0
v(1, s) ds

]
,

we observe from the continuity of the solution that R(t) is positive, i.e. S(t) ≡ 1,
while the solution exists. Thus, by a standard argument (e.g., see [6]), we prove that
the solution can be extended beyond for any T > 0. Indeed, if there exists T̃ > 0
such that the solution can not be extended beyond T̃ , then the proof of Theorem2.1
implies that

‖u(·, t)‖C2+α(B1) → ∞ as t ↑ T̃ . (28)

On the other hand, since u is a solution of (PS0) on [ 0, T̃ ), it holds that

‖u(·, t)‖C2+α(B1) ≤ ‖u‖C2+α,1+α/2
x,t (QT̃ )

≤ C(C(T̃ ) + ‖u0‖C2+α(B1)). (29)

Since (29) contradicts (28), we obtain the conclusion. ��
Remark 3.1 The system (IAS) with r0 = 0 and S0 = 1 describes a tumor growth
under the CAS therapy.

Corollary 3.1 Let (u0, w0, R0, a0, S0) satisfy (3) and S0 = 0. Then the system (IAS)
with r1 = ∞ has a unique solution (u, w, v, R, a, S) with S(t) ≡ 0 in [ 0,∞ ) in the
class

{
u, w ∈ C2+α,1+ α

2 (Q∞), R, a ∈ C1(R+),

v ∈ C1+α, α
2 ([ 0, 1 ) × R+)) ∩ C1([ 0, 1 ) × R+).

In the following, we classify the asymptotic behavior of non-switching solutions
obtained by Theorem3.1 and Corollary3.1. Recalling Lemma2.2 and Theorem2.1,
we may consider (P) instead of (IAS).
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If u0 is trivial, i.e., u0 ≡ 0 or u0 ≡ 1, then Lemma2.4 asserts that u is also trivial
in QT . Thus it is sufficient to consider the initial data (u0, R0, a0, S0) satisfying

{
u0 ∈ C2+α(B1), ∂ρu0(0) = ∂ρu0(1) = 0, 0 ≤ u0 ≤ 1,

u0(ρ) �≡ 0, u0(ρ) �≡ 1, 0 < a0 < a∗, R0 > 0, S0 ∈ {0, 1}, (IC)

where 0 < α < 1. Regarding fi and ci , we assume (A0) throughout this section.
From now on, for a function h : [ 0, a∗ ] → R, we define ‖h‖∞ by

‖h‖∞ := sup
z∈[ 0,a∗ ]

|h(z)|. (30)

First we consider the asymptotic behavior of solutions to (P) with S ≡ 1.

Theorem 3.2 Let r0 = 0. Let (u0, R0, a0, S0) satisfy (IC) and S0 = 1. Assume that
either of two assumptions holds :

(i) g(0) + c2 < 0;
(ii) g(0) + c2 > 0 and

∫ 1

0
u0(ρ)ρ2 dρ <

1

3

−g(0)

−g(0) + c1 + c2
exp

[
−a0

γ
‖g′‖∞

]
. (31)

Then the solution (u, v, R, a, S) of (P) satisfies R(t) → ∞ as t → ∞.

Proof To begin with, we note that S(t) ≡ 1 under (P) with r0 = 0 and S0 = 1.
We prove the case (i). Since S ≡ 1 yields the monotonicity of a(t), especially that

of fi (a(t)), from the assumptions (A0) and (i), we find s1 > 0 such that

f1(a(t)) < 0, f2(a(t)) > 0, −g(a(t)) − c2 > 0 for any t ≥ s1.

Recalling that u0 �≡ 1 yields V2(t) > 0 for any t ≥ 0 and setting Ṽ2(t) := 1/V2(t),
we observe from (25) that

dṼ2

dt
(t) ≤ {g(a(t)) + c2}Ṽ2(t) − 3{g(a(t)) + c2}. (32)

Applying Gronwall’s inequality to (32), we have

Ṽ2(t) ≤ 3 + (
Ṽ2(0) − 3

)
exp

[ ∫ t

0
{g(a(s)) + c2} ds

]
.

Since

∫ t

0
{g(a(s)) + c2} ds =

∫ s1

0
{g(a(s)) + c2} ds +

∫ t

s1

{g(a(s)) + c2} ds

≤ (g(a0) + c2)s1 − {−g(a(s1)) − c2}(t − s1) → −∞ as t → ∞,
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one can verify that lim supt→∞ Ṽ2(t) ≤ 3. On the other hand, since w ≤ 1 yields
Ṽ2(t) ≥ 3 in [ 0,∞ ), wefind lim inf t→∞ Ṽ2(t) ≥ 3. Thuswe have limt→∞ Ṽ2(t) = 3
and then

‖w(·, t) − 1‖L∞(B1)
→ 0 as t → ∞. (33)

By way of u + w ≡ 1, it follows from (33) that for any ε with

0 < ε <
f2(s1)

−g(0) + c1 + c2
, (34)

there exists T1 > s1 such that

‖u(·, t)‖L∞(B1)
< ε for any t > T1. (35)

In what follows, let t > T1. Since R satisfies

R(t) = R0 exp
[ ∫ T1

0
v(1, s) ds

]
exp

[ ∫ t

T1

v(1, s) ds
]
, (36)

it is sufficient to estimate the integrals in the right-hand side of (36). We observe
from the continuity of v(1, ·) that

∫ T1

0
v(1, s) ds ≥ −CT1

for some C > 0. Moreover, we obtain

∫ t

T1

v(1, s) ds =
∫ t

T1

∫ 1

0
F(u(ρ, s), a(s))ρ2 dρ ds

≥
∫ t

T1

∫ 1

0
[−{−g(a(t)) + c1 + c2}u + f2(a(T1))]ρ2 dρ ds

≥ 1

3
{−(−g(0) + c1 + c2)ε + f2(a(s1))}(t − T1).

Hence, it follows from (34) and (35) that lim inf t→∞ R(t) = ∞.
Next we turn to the case (ii). By the assumption (A0) and the monotonicity of

fi (a(·)), there exists s2 ≥ 0 such that

f2(a(t)) > 0, g(a(t)) < 0, for any t ≥ s2.

Recalling V1(t) > 0 in [ 0,∞ ) and setting Ṽ1(t) := 1/V1(t), we reduce (24) to
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dṼ1

dt
(t) ≥ −g(a(t))Ṽ1 − 3{−g(a(t)) + c1 + c2}.

Since it follows from the same argument as in (i) that

Ṽ1(t) ≥ e− ∫ t
0 g(a(s)) ds

[
3(g(0) − c1 − c2)

∫ t

0
e
∫ s
0 g(a(τ )) dτ ds + Ṽ1(0)

]
, (37)

we estimate the integral in the right-hand side of (37). Noting that a(·) is monotone
decreasing, we use the change of variable a(s) = z, and then

∫ t

0
g(a(s)) ds = − 1

γ

∫ a(t)

a0

g(z)

z
dz = − 1

γ

∫ a(t)

a0

[ g(0)

z
+ g′(z̃)

]
dz (38)

≤ −g(0)

γ
log

a(t)

a0
+ a0

γ
‖g′‖∞,

where z̃ ∈ ( 0, a0 ). Combining (37) with (38), we obtain

Ṽ1(t) ≥
( a(t)

a0

) g(0)
γ

[
3(g(0) − c1 − c2)

∫ ∞

0

( a0

a(s)

) g(0)
γ

ds +Ṽ1(0)e
−a0

γ
‖g′‖∞

]

≥
( a(t)

a0

) g(0)
γ

[ −3(−g(0) + c1 + c2)

−g(0)
+ Ṽ1(0)e

− a0
γ

‖g′‖∞
]

.

Under (A0) and (31), the inequality implies that Ṽ1 → ∞ as t → ∞, i.e., V1(t) → 0
as t → ∞. Thus for any ε with

0 < ε <
f2(a(s2))

−g(0) + c1 + c2
, (39)

there exists T2 ≥ s2 such that

‖u(·, t)‖L∞(B1)
< ε for any t > T2. (40)

By virtue of (39) and (40), we have

∫ t

T2

v(1, s) ds ≥
∫ t

T2

∫ 1

0
{−(−g(0) + c1 + c2)u + f2(a(T2))}ρ2 dρ ds

≥ 1

3
{−(−g(0) + c1 + c2)ε + f2(a(s2))}(t − T2).

Thus we see that lim inf t→∞ R(t) = ∞ along the same line as in (i). ��
Next we give the asymptotic behavior of solutions to (P) with r0 = 0 and S0 = 1.

Theorem 3.3 Let r0 = 0. Let (u0, R0, a0, S0) satisfy (IC) and S0 = 1. Assume that
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g(0) + c2 > 0 (41)

and

min
ρ∈[ 0,1 ] u0(ρ) > 1 − g(0) + c2

g(0) + c1 + 2c2
. (42)

Then the solution (u, v, R, a, S) of (P) satisfies R(t) → 0 as t → ∞.

Proof Recalling that S ≡ 1 under (P) with r0 = 0 and S0 = 1, and using (A0), we
find s3 ≥ 0 such that

f1(a(t)) < 0 for any t ≥ s3. (43)

Let w be the solution of the following initial value problem:

⎧
⎨

⎩

dw

dt
(t) = −{g(a(t)) + c2}w(t) + {g(a(t)) + c1 + 2c2}w(t)2,

w(0) = 1 − min
ρ∈[ 0,1 ] u0(ρ).

Then Lemma2.4 asserts that

0 ≤ w(ρ, t) ≤ w(t) for any (ρ, t) ∈ [ 0, 1 ] × [ 0,∞ ), (44)

i.e., w is a supersolution of w. Since w0 �≡ 0, the relation (44) implies w(t) > 0 for
any t ≥ 0. Setting ω := 1/w, we see that ω is expressed by

ω = e
∫ t
0 {g(a(s))+c2} ds

[
−
∫ t

0
{g(a(s)) + c1 + 2c2}e− ∫ s

0 {g(a(τ ))+c2} dτ ds + 1

w(0)

]
.

Here we have

∫ t

0
{g(a(s)) + c1 + 2c2}e− ∫ s

0 {g(a(τ ))+c2} dτ ds

=
∫ t

0
{g(a(s)) + c2}e− ∫ s

0 {g(a(τ ))+c2} dτ ds + (c1 + c2)
∫ t

0
e− ∫ s

0 {g(a(τ ))+c2} dτ ds

≤ −e− ∫ t
0 {g(a(τ ))+c2} dτ + 1 + (c1 + c2)

∫ t

0
e−{g(0)+c2}s ds

≤ 1 + c1 + c2
g(0) + c2

(
1 − e−{g(0)+c2}t) ≤ g(0) + c1 + 2c2

g(0) + c2
.

Since it follows from (41) that

lim inf
t→∞ exp

[ ∫ t

0
{g(a(s)) + c2} ds

]
≥ lim inf

t→∞ exp [(g(0) + c2)t] = ∞,
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we observe from (42) that limt→∞ ω(t) = ∞, i.e., limt→∞ w(t) = 0, where we used
the positivity of w. With the aid of (44), for any ε with

0 < ε <
− f1(a(s3))

−g(0)
, (45)

there exists T3 > s3 such that

‖w(·, t)‖L∞(B1)
< ε for any t > T3.

Recalling u = 1 − w and using the same argument as in the proof of Theorem 3.2 (i),
we can verify that

R(t) ≤ R0eCT3e
∫ t

T3
v(1,s) ds ≤ R0eCT3 exp

[ ∫ t

T3

{−g(a(s))w + f1(a(s))} ds
]

≤ R0eCT3 exp
[ 1

3
{−g(0)ε + f1(s3)}(t − T3)

]
.

Then (45) yields lim supt→∞ R(t) = 0. ��
We turn to the case of (P) with r1 = ∞ and S0 = 0. We note that (P) with r1 = ∞

and S0 = 0 describes the behavior of prostate tumor under non-medication.

Theorem 3.4 Let r1 = ∞. Let (u0, R0, a0, S0) satisfy (IC) and S0 = 0. We suppose
that one of the following assumptions holds :
(i) f1(a∗) − c1 > 0; (ii) f2(a∗) − c2 > 0; (iii) g(a∗) − c1 > 0;
(iv) −g(a∗) + c1 > 0, f2(a∗) > 0, and

max
ρ∈[ 0,1 ] u0(ρ) <

−g(a∗) + c1
−g(a∗) + 2c1 + c2

; (46)

(v) g(a∗) + c2 > 0 and

min
ρ∈[ 0,1 ] u0(ρ) > 1 − g(a∗) + c2

g(a∗) + c1 + 2c2
exp

[
−a∗

γ
‖g′‖∞

]
.

Then the solution (u, v, R, a, S) of (P) satisfies R(t) → ∞ as t → ∞.

Proof We prove the case (i). Remark that S ≡ 0 yields the monotonicity of a(t),
especially that of fi (a(t)). Under the assumption (i), we find s4 ≥ 0 such that
f1(a(t)) − c1 > 0 for any t ≥ s4. Since it follows from (22) that

dU

dt
≥ { f1(a(t)) − c1}U (t) for any t ≥ 0,
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making use of Gronwall’s inequality and the monotonicity of f1(a(·)), we find

U (t) ≥ U (s4) exp
[ ∫ t

s4

{ f1(a(s)) − c1} ds
]

≥ U (s4) exp [{ f1(a(s4)) − c1}(t − s4)] for any t ≥ s4.

Consequently we see that

lim inf
t→∞

4

3
π R3(t) = lim inf

t→∞ {U (t) + W (t)} ≥ lim inf
t→∞ U (t) = ∞.

Regarding the other cases, we obtain the conclusion along the same line as in the
proof of Theorem3.2. ��

By the same argument as in the proof of Theorem3.3, we obtain the following:

Theorem 3.5 Let r1 = ∞. Let (u0, R0, a0, S0) satisfy (IC) and S0 = 0. Assume that

−g(a∗) + c1 > 0, f2(a∗) < 0, (47)

and (46). Then the solution (u, v, R, a, S) of (P) satisfies R(t) → 0 as t → ∞.

4 Proof of the Main Theorem

The purpose of this section is to prove the existence of a switching solution of (IAS)
and investigate its property under the assumption (A0)–(A2). Here we note that (A1)
and (A2) are written as g(a∗) − c1 > 0 and g(0) + c2 > 0, respectively, where g
was defined by (26). For this purpose, we may deal with (P) instead of (IAS), for
the solution of (P) constructed in Sect. 2 also satisfies (IAS). In the following, we fix
(u0, R0, a0, S0) satisfying (IC), u0 > 0, and S0 = 0, arbitrarily.

To begin with, we shall study the behavior of solutions of (P) with S ≡ 0. More
precisely, for each “initial data” (ũ0, R̃0, ã0), we consider the following system:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d ã

dt
(t) = −γ (ã(t) − a∗) in R+,

∂t ũ(ρ, t) − L ′(ṽ, R̃)ũ(ρ, t) = P(ũ(ρ, t), ã(t)) in I∞,

ṽ(ρ, t) = 1

ρ2

∫ ρ

0
F(ũ(r, t), ã(t))r2 dr in I∞,

d R̃

dt
(t) = ṽ(1, t)R̃(t) in R+,

∂ρ ũ(ρ, t)
∣
∣
ρ∈{0,1} = 0,

ṽ(ρ, t)

ρ

∣
∣
∣
ρ=0

= 1

3
F(ũ(0, t), ã(t)), in R+,

ã(0) = ã0, ũ(ρ, 0) = ũ0(ρ), R̃(0) = R̃0, in I,

(P0)
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where the operatorL ′ was defined by (8). We characterize the time variable in terms
of the solution ã(·) to (P0). Recalling that f1 is monotone, we define a function
τ0 : ( 0, f1(a∗) − f1(ã0) ] → [ 0,∞ ) as

τ0(ε) = ã−1( f −1
1 ( f1(a∗) − ε)), (48)

where ã−1 and f −1
1 denote the inverse functions of ã and f1, respectively. Note that,

since ã(t) ↑ a∗ as t → ∞, ε ↓ 0 is equivalent to τ0(ε) → ∞.
From now on, we will follow the notation ‖ · ‖∞ defined in (30).

Lemma 4.1 Assume that there exist constants A ∈ ( 0, 1 ) and κ ∈ ( 0, a∗ ) such that
(ũ0, R̃0, ã0) satisfies (IC) and the following :

min
ρ∈[ 0,1 ] ũ0(ρ) ≥ A; (49)

ã0 ≤ κ. (50)

Then there exists a strictly monotone increasing continuous function

Γ0(ε; A, κ) : ( 0, f1(a∗) − f1(0) ] → R+

with Γ0(ε; A, κ) ↓ 0 as ε ↓ 0 such that the solution of (P0) satisfies

‖ũ(·, τ0(ε)) − 1‖L∞(B1)
≤ Γ0(ε; A, κ) in ( 0, f1(a∗) − f1(ã0) ].

Proof Let us consider

⎧
⎨

⎩

dw

dt
= −(g(ã(t)) − c1)(1 − w)w,

w(0) = 1 − min
ρ∈[ 0,1 ] ũ0(ρ).

(51)

By way of Lemma2.4, one can easily verify that w is a supersolution of 1 − ũ.
Solving (51) and setting t = τ0(ε), we find

ω(τ0(ε)) = 1 + (ω(0) − 1) exp
[ ∫ τ0(ε)

0
{g(ã(s)) − c1} ds

]
,

where ω = 1/w. From the change of variable ã(s) = z, we have

∫ τ0(ε)

0
{g(ã(s)) − c1}ds = − 1

γ

∫ ã(τ0(ε))

ã0

[ g(z) − g(a∗)
z − a∗

+ g(a∗) − c1
z − a∗

]
dz (52)

≥ − ã(τ0(ε)) − ã0

γ
‖g′‖∞ + g(a∗) − c1

γ
log

a∗ − ã0

a∗ − ã(τ0(ε))

≥ −a∗
γ

‖g′‖∞ + g(a∗) − c1
γ

log
a∗ − ã0

a∗ − ã(τ0(ε))
,



214 K. Hiruko and S. Okabe

where we used (A1) in the last inequality. Therefore, using (49) and (50), we define
the required function Γ0(ε; A, κ) as follows:

w(τ0(ε)) ≤
[
1 + Ae− a∗

γ
‖g′‖∞

( a∗ − κ

a∗ − f −1
1 ( f1(a∗) − ε)

) g(a∗)−c1
γ

]−1=: Γ0(ε; A, κ).

This completes the proof. ��
Lemma 4.2 Under the same assumption as in Lemma4.1, there exists a constant
ε1 ∈ ( 0, f1(a∗) ), independent of (ũ0, R̃0, ã0), such that the solution of (P0) satisfies

d R̃

dt
(τ0(ε)) > 0 for any ε ∈ ( 0, ε1 ].

Proof Since d R̃/dt is written by

d R̃

dt
(t) = R̃(t)ṽ(1, t) = R̃(t)

∫ 1

0
F(ũ(ρ, t), ã(t))ρ2 dρ, (53)

we observe that the sign of d R̃/dt is determined by that of the integral in (53). In
particular, we focus on the sign of F . From ∂2

z F(z, α) = 2(c1 + c2) > 0, we find

F(z, α) > F(1, α) + ∂z F(1, α)(z − 1) (54)

≥ F(1, α) + ∂z F(1, a∗)(z − 1) =: y(z;α) in [ 0, 1 ) × [ 0, a∗ ],

where we used the monotonicity of ∂z F(1, α) = g(α) − c1 − c2 in the second
inequality. Here, noting the positivity of ∂z F(1, a∗), we denote by z0(α) the zero
point of y(z;α) given by

z0(α) = −F(1, α) + ∂z F(1, a∗)
∂z F(1, a∗)

.

Since (48) yields that

F(1, ã(τ0(ε))) = f1(a∗) − ε > 0 for any ε ∈ ( 0, f1(a∗) ), (55)

we see that

z0(ã(τ0(ε))) < 1, y(1, ã(τ0(ε))) > 0, for all ε ∈ ( 0, f1(a∗) ). (56)

Then, for each ε ∈ ( 0, f1(a∗) ), we observe from (56) that y(z, ã(τ0(ε))) ≥ 0 for all
z ∈ [ z0(ã(τ0(ε))), 1 ]. Combining the fact with (54)–(55), we infer that

F(z, ã(τ0(ε))) > 0 for all z ∈ [ z0(ã(τ0(ε))), 1 ], if ε ∈ ( 0, f1(a∗) ). (57)
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In order to complete the proof of Lemma4.2, it is sufficient to prove the claim:
there exists a constant ε1 ∈ ( 0, f1(a∗) ), independent of (ũ0, R̃0, ã0), such that the
solution (ũ, ṽ, R̃, ã) of (P0) satisfies

min
ρ∈[ 0,1 ] ũ(ρ, ã(τ0(ε))) ≥ z0(ã(τ0(ε))) for any ε ∈ ( 0, ε1 ].

Indeed, combining the claim with (57), we clearly obtain the conclusion. We shall
show the claim by way of Lemma4.1. Since z0(ã(τ0( f1(a∗))) = 1 and

z0(ã(τ0(ε))) ↓ z0(a∗) < 1, 1 − Γ0(ε; A, κ) ↑ 1, as ε ↓ 0,

from the monotonicity of z0(ã(τ0(ε))) and 1 − Γ0(ε; A, κ), we find a constant ε̃1 ∈
( 0, f1(a∗) ) uniquely, independent of (ũ0, R̃0, ã0), such that

1 − Γ0(ε; A, κ) ≥ z0(ã(τ0(ε))) for any ε ∈ ( 0, ε̃1 ]. (58)

Recalling (50) implies that f1(κ) ≥ f1(ã0) and setting ε1 := min{ε̃1, f1(a∗) − f1(κ)},
we observe from (58) and Lemma4.1 that

min
ρ∈[ 0,1 ] ũ(ρ, ã(τ0(ε))) ≥ 1 − Γ0(ε; A, κ) ≥ z0(ã(τ0(ε))) for any ε ∈ ( 0, ε1 ].

Then the claim holds true and we have completed the proof. ��
Lemma 4.3 Let (ũ0, R̃0, ã0) = (u0, R0, a0). Then there exist monotone decreasing
functions M− and M+ defined on ( 0, f1(a∗) − f1(0) ] such that the solution of (P0)
satisfies

R0 exp M−(ε) ≤ R̃(τ0(ε)) ≤ R0 exp M+(ε) in ( 0, f1(a∗) − f1(a0) ], (59)

where the second inequality is strict for any ε ∈ ( 0, f1(a∗) − f1(a0)). Moreover,
M− and M+ satisfy the following :

−∞ < M−(ε) ≤ M+(ε) < ∞ in ( 0, f1(a∗) − f1(0) ]; (60)

lim
ε↓0 M−(ε) = ∞. (61)

Proof Since R̃(τ0(ε)) is given by

R̃(τ0(ε)) = R0 exp
[ ∫ τ0(ε)

0
ṽ(1, s) ds

]
in ( 0, f1(a∗) − f1(a0) ], (62)



216 K. Hiruko and S. Okabe

we will estimate the integral in (62). To this aim, setting w̃ = 1 − ũ, we decompose
the integral as follows:

∫ τ0(ε)

0
ṽ(1, s) ds = (c1 + c2)

∫ τ0(ε)

0

∫ 1

0
w̃2ρ2 dρds (63)

−
∫ τ0(ε)

0

∫ 1

0

[
g(ã(s)) + c1 + c2

]
w̃ρ2 dρds + 1

3

∫ τ0(ε)

0
f1(ã(s)) ds =: I1 + I2 + I3.

First we construct M−. Regarding I1, it follows from Jensen’s inequality that

I1 ≥ c1 + c2
3

∫ τ0(ε)

0

(∫ 1

0
w̃ρ2 dρ

)2

ds =: c1 + c2
27

∫ τ0(ε)

0
W (s)2 ds. (64)

Employing a differential inequality in (25), we see that W satisfies

W (s) ≥ 1

1 +
(

1
W (0) − 1

)
exp

[∫ s
0 {g(ã(τ )) + c2} dτ

] . (65)

Furthermore, the same argument as in (52) yields

∫ s

0
{g(ã(τ )) + c2} dτ ≤ g(a∗) + c2

γ
logTa0(ã(s)), (66)

where

Tz1(z2) := a∗ − z1
a∗ − z2

. (67)

Hence, combining (64) with (65)–(66), we have

I1 ≥ c1 + c2
27

∫ τ0(ε)

0

[
1+

[ 1

W (0)
− 1

]
Ta0(ã(s))

g(a∗)+c2
γ

]−2
ds =: I11.

Changing the variable

η = 1 +
(

1

W (0)
− 1

)

Ta0(ã(s))
g(a∗)+c2

γ

and setting

η0 := 1

W (0)
, ηε := 1 +

(
1

W (0)
− 1

)

Ta0(ã(τ0(ε)))
g(a∗)+c2

γ ,
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we can define M−
1 : ( 0, f1(a∗) − f1(a0) ] → R as follows:

I11 = C1

∫ ηε

η0

dη

(η − 1)η2
≥ C1

[

log
η0(ηε − 1)

ηε(η0 − 1)
− 1

η0

]

= − C1

[
log

[
U0 + (1 − U0)Ta0(ã(τ0(ε)))

− g(a∗)+c2
γ

]
+ 1 − U0

]

≥ − C1

[
log

[
1 + (1 − U0)Tκ0(ã(τ0(ε)))

− g(a∗)+c2
γ

]
+ 1 − U0

]
=: M−

1 (ε),

where C1 = (c1 + c2)/(27(g(a∗) + c2)), and

U (s) := 3
∫ 1

0
ũ(ρ, s) ρ2 dρ, U0 := U (0), κ0 := max{a0, f −1

1 (0)}. (68)

Regarding I2, it follows from w̃ = 1 − ũ that

I2 ≥ −g(a∗) + c1 + c2
3

∫ τ0(ε)

0
{1 − U (s)} ds.

Using (24) and the same calculation as in (66), we have

U (s) ≥
[
1 + (U −1

0 − 1)Ta0(ã(s))−
g(a∗)−c1

γ

]−1
.

Then, by the same argument as in the derivation of M−
1 , we obtain

I2 ≥ −g(a∗) + c1 + c2
3

∫ τ0(ε)

0

(
U −1

0 − 1
)
Ta0(ã(s))−

g(a∗)−c1
γ

1 + (U −1
0 − 1)Ta0(ã(s))−

g(a∗)−c1
γ

ds

= 1

3

g(a∗) + c1 + c2
g(a∗) − c1

log
[
U0 + (1 − U0)Ta0(ã(τ0(ε)))

− g(a∗)−c1
γ

]

≥ 1

3

g(a∗) + c1 + c2
g(a∗) − c1

logU0 =: M−
2 (ε).

It follows from the same argument as in (52) that

I3 = f1(a∗)
3γ

logTa0(ã(τ0(ε))) − 1

3γ

∫ ã(τ0(ε))

a0

f ′(z̃) dz (69)

≥ f1(a∗)
3γ

logTκ0(ã(τ0(ε))) − a∗
3γ

‖ f ′
1‖∞ =: M−

3 (ε),

where z̃ ∈ (a0, a∗). Setting M−(ε) = ∑3
i=1 M−

i (ε) and recalling (48), we see that
M− is well-defined on ( 0, f1(a∗) − f1(a0) ].
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We shall derive M+. Since w̃ = 1 − ũ ≤ 1, the same argument as in M−
2 yields

I1 ≤ (c1 + c2)
∫ τ0(ε)

0

∫ 1

0
w̃ρ2 dρds = c1 + c2

3

∫ τ0(ε)

0
{1 − U (s)} ds

≤ −1

3

c1 + c2
g(a∗) − c1

log
[
U0 + (1 − U0)Ta0(ã(τ0(ε)))

− g(a∗)−c1
γ

]

≤ −1

3

c1 + c2
g(a∗) − c1

logU0 =: M+
1 (ε).

Regarding I2, we have

I2 ≤ −g(0) + c1 + c2
3

∫ τ0(ε)

0
W (s) ds ≤ 0 =: M+

2 (ε).

Eliminating the negative term from the first line in (69), we find

I3 ≤ f1(a∗)
3γ

logTa0(ã(τ0(ε))) ≤ f1(a∗)
3γ

logT0(ã(τ0(ε))) =: M+
3 (ε),

where the first inequality is followed from the monotonicity of f1, and it is strict
for any ε ∈ ( 0, f1(a∗) − f1(a0)). Setting M+(ε) := ∑3

i=1 M+
i (ε), we observe that

M+(ε) is well-defined on ( 0, f1(a∗) − f1(a0) ].
From the definition of M− and M+, we see that (59) and (61) hold true.Moreover,

thanks to ã(τ0(ε)) = f −1
1 ( f1(a∗) − ε), we infer that M− and M+ can be extended

on ( 0, f1(a∗) − f1(0) ] and (60) holds. This completes the proof. ��
Lemma 4.4 Let M± : ( 0, f1(a∗) − f1(0) ] → R be the functions constructed by
Lemma 4.3. Let (ũ0, R̃0, ã0) satisfy

∫ 1

0
ũ0(ρ)ρ2 dρ ≥

∫ 1

0
u0(ρ)ρ2 dρ, (70)

ã0 ≤ κ0, (71)

and (IC), where κ0 is defined by (68). Then the solution of (P0) satisfies

R̃0 exp M−(ε) ≤ R̃(τ0(ε)) ≤ R̃0 exp M+(ε) in ( 0, f1(a∗) − f1(ã0) ], (72)

where the second inequality is strict for any ε ∈ ( 0, f1(a∗) − f1(ã0) ).

Proof In the same manner as in the proof of Lemma4.3, we see that (59) replaced
(M−, M+, a0) by (M̃−, M̃+, ã0) holds true, where M̃− and M̃+ are respectively
determined by M− and M+, replaced (u0, a0) by (ũ0, ã0). Since (70) and (71) imply
that
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Ũ0 := 3
∫ 1

0
ũ0(ρ)ρ2 dρ ≥ 3

∫ 1

0
u0(ρ)ρ2 dρ = U0

and

Tκ0(α) ≤ Tã0(α) ≤ T0(α) for any α ∈ [ 0, a∗ ],

we find

M̃+(ε) ≤ M+(ε), M̃−(ε) ≥ M−(ε), in ( 0, f1(a∗) − f1(0) ].

Thus we obtain (72). ��
In order to investigate the behavior of solutions of (P) with S ≡ 1, for each “initial

data” (ũ0, R̃0, ã0), we consider the following system:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d ã

dt
(t) = −γ ã(t) in R+,

∂t ũ(ρ, t) − L ′(ṽ, R̃)ũ(ρ, t) = P(ũ(ρ, t), ã(t)) in I∞,

ṽ(ρ, t) = 1

ρ2

∫ ρ

0
F(ũ(r, t), ã(t))r2 dr in I∞,

d R̃

dt
(t) = ṽ(1, t)R̃(t) in R+,

∂ρ ũ(ρ, t)
∣
∣
ρ∈{0,1} = 0,

ṽ(ρ, t)

ρ

∣
∣
∣
ρ=0

= 1

3
F(ũ(0, t), ã(t)), in R+,

ã(0) = ã0, ũ(ρ, 0) = ũ0(ρ), R̃(0) = R̃0, in I.

(P1)

We characterize the time variable in terms of the solution ã(·) to (P1). Following the
same manner as in (48) and recalling the monotonicity of f1, we define a function
τ1 : ( 0, f1(ã0) − f1(0) ] → [ 0,∞ ) as

τ1(δ) = ã−1( f −1
1 ( f1(0) + δ)). (73)

Since ã(t) ↓ 0 as t → ∞, δ ↓ 0 is equivalent to τ1(δ) → ∞.

Lemma 4.5 Let (ũ0, R̃0, ã0) satisfy (IC) and

min
ρ∈[ 0,1 ] ũ0(ρ) > 1 − g(0) + c2

g(0) + c1 + 2c2
=: 1 − Cg. (74)

Then the solution (ũ, ṽ, R̃, ã) of (P1) satisfies

min
ρ∈[ 0,1 ] ũ(ρ, τ1(δ)) ≥ min

ρ∈[ 0,1 ] ũ0(ρ) in ( 0, f1(ã0) − f1(0) ].
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Proof Recalling that (A2) and (74) respectively correspond to (41) and (42), we can
construct the supersolution w of w̃ = 1 − ũ along the same argument as in the proof
of Theorem3.3. Using the change of variable ã(t) = z, we have

w(τ1(δ)) ≤
[

1

Cg
+

[ 1

w(0)
− 1

Cg

][ ã0

f −1
1 ( f1(0) + δ)

] g(0)+c2
γ

]−1

=: Γ1(δ)

for any δ ∈ ( 0, f1(ã0) − f1(0) ]. Thenu := 1 − Γ1 is a subsolutionof ũ. In particular,
the monotonicity of Γ1(·) gives us the conclusion. ��

Next we construct an analogue of Lemma4.2 for (P1). To this aim, we note that

F(z, α) = (c1 + c2)
(
z − K ∗(α)

)2 − (c1 + c2)K ∗(α) + f2(α),

where

K ∗(α) := −g(α) + c1 + c2
2(c1 + c2)

. (75)

Lemma 4.6 Let (ũ0, R̃0, ã0) satisfy (IC), (74), and the following :

min
ρ∈[0,1] ũ0(ρ) ≥ K ∗(0); (76)

ã0 > f −1
1 (0). (77)

Then the solution (ũ, ṽ, R̃, ã) of (P1) satisfies

d R̃

dt
(τ1(δ)) < 0 for any δ ∈ ( 0,− f1(0) ).

Proof In order to verify the sign of d R̃/dt , we use a similar way in Lemma4.2, i.e.,
focus on the sign of F(ũ, ã). First we note that (77) is equivalent to f1(ã0) > 0.
Recalling the relation ( 0,− f1(0) ) ⊂ ( 0, f1(ã0) − f1(0) ], we find

F(1, ã(τ1(δ))) = f1(ã(τ1(δ))) = f1(0) + δ < 0 in ( 0,− f1(0) ). (78)

Since (A2) implies K ∗(0) < 1, the monotonicity of K ∗(·) and (78) asserts that

F(z, α) < 0 for any z ∈ [ K ∗(0), 1 ] × ( 0,− f1(0) ). (79)

By virtue of (74), we can apply Lemma4.5 to the solution ũ and then (76) implies
that
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min
ρ∈[ 0,1 ] ũ(ρ, τ1(δ)) ≥ min

ρ∈[ 0,1 ] ũ0(ρ) ≥ K ∗(0) for any δ ∈ ( 0, f1(ã0) − f1(0) ].
(80)

Therefore we have completed the proof. ��
Lemma 4.7 Let (ũ0, R̃0, ã0) satisfy

min
ρ∈[0,1] ũ0(ρ) ≥ 1 − 1

2
Cg, (81)

ã0 ≥ f −1
1 (0), (82)

and (IC). Then there exist monotone increasing functions L− and L+ defined on the
interval ( 0, f1(a∗) − f1(0) ], independent of (ũ0, R̃0, ã0), such that the solution of
(P1) satisfies

R̃0 exp L−(δ) ≤ R̃(τ1(δ)) ≤ R̃0 exp L+(δ) in ( 0, f1(ã0) − f1(0) ], (83)

in particular, the first inequality in (83) is strict in ( 0, f1(ã0) − f1(0) ). Moreover,
L− and L+ satisfy the following :

−∞ < L−(δ) ≤ L+(δ) < ∞ in ( 0, f1(a∗) − f1(0) ]; (84)

lim
δ↓0 L+(δ) = −∞. (85)

Proof Along the same line as in the proof of Lemma4.3, we will estimate the fol-
lowing:

I1 + I2 + I3 := (c1 + c2)
∫ τ1(δ)

0

∫ 1

0
w̃2ρ2 dρ

−
∫ τ1(δ)

0

∫ 1

0
(g(ã(s)) + c1 + c2)w̃ρ2 dρds + 1

3

∫ τ1(δ)

0
f1(ã(s)) ds,

where w̃ = 1 − ũ. First, since I1 ≥ 0, we set L−
1 (δ) ≡ 0. Using the supersolution w

of w̃ constructed in the proof of Theorem3.3 and its estimate, we observe from (81)
that

I2 ≥ −g(a∗) + c1 + c2
3

∫ τ1(δ)

0
w(s) ds (86)

≥ −g(a∗) + c1 + c2
3

Cg

∫ τ1(δ)

0
exp

[

−
∫ s

0
{g(ã(τ ′)) + c2} dτ ′

]

ds.

Since the change of variable ã(τ ′) = s ′ yields
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−
∫ s

0
{g(ã(τ ′)) + c2} dτ ′ ≤ g(0) + c2

γ
log

ã(s)

ã0
,

the inequality (86) is reduced to

I2 ≥ −g(a∗) + c1 + c2
3

Cg

∫ τ1(δ)

0

( ã(s)

ã0

) g(0)+c2
γ

ds

≥ −Cg

3

g(a∗) + c1 + c2
g(0) + c2

{

1−
( ã(τ1(δ))

a∗

) g(0)+c2
γ

}

=: L−
2 (δ).

Moreover, we find

I3 = − f1(0)

3γ
log

ã(τ1(δ))

ã0
+ 1

3γ

∫ ã0

ã(τ1(δ))

f ′
1(z̃) dz (87)

≥ − f1(0)

3γ
log

ã(τ1(δ))

a∗
=: L−

3 (δ),

where z̃ ∈ (0, ã0). The last inequality is followed from the monotonicity of f1, and it
is strict for any δ ∈ ( 0, f1(ã0) − f1(0) ). Setting L−(δ) := ∑3

i=1 L−
i (δ) and recalling

(73), we observe that L− is well-defined on ( 0, f1(ã0) − f1(0) ].
Next, we derive L+. By a similar argument as in the derivation of L−

2 , we obtain

I1 ≤ c1 + c2
3

∫ τ1(δ)

0
w(s)2 ds ≤ c1 + c2

3
C2

g

∫ τ1(δ)

0

( ã(s)

ã0

)2 g(0)+c2
γ

ds

≤ Cg

6

c1 + c2
g(0) + c1 + 2c2

=: L+
1 (δ).

Since I2 ≤ 0, we set L+
2 (δ) ≡ 0. From the first equality in (87), we have

I3 ≤ − f1(0)

3γ
log

ã(τ1(δ))

f −1
1 (0)

+ a∗
3γ

‖ f ′
1‖∞ =: L+

3 (δ).

Setting L+(δ) := ∑3
i=1 L+

i (δ), we see that L+ is well-defined on ( 0, f1(ã0) −
f1(0) ].
From the definitions of L− and L+, it is clear that (83), (84), and (85) hold true.

We have completed the proof. ��
We are in the position to prove Theorem1.1.

Proof of Theorem1.1. To begin with, we prove the existence of switching solution
of (IAS). The key of the proof is how to determine the appropriate thresholds r0
and r1. We divide the proof of the existence into 4 steps. Finally we shall prove a
boundedness of the switching solution and its regularity.

Step 1: Fix r0 ∈ ( 0,∞ ) arbitrarily. Let r1 satisfy
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r1 ≥ r0 exp
[−L−(− f1(0))

]
, (88)

where remark that L−(− f1(0)) < 0. We claim the following: if (ũ0, R̃0, ã0) satisfies

min
ρ∈[ 0,1 ] ũ0(ρ) ≥ ω := max{K ∗(0), 1 − 1

2
Cg}, R̃0 = r1, ã0 > f −1

1 (0), (89)

and (IC), then there exists β1 ∈ ( 0,− f1(0) ) such that the solution of (P1) satisfies

R̃(τ1(β1)) = r0,
d R̃

dt
(τ1(β1)) < 0. (90)

Let δ0 := f1(ã0) − f1(0), i.e., ã(τ1(δ0)) = ã0. Remark that the third inequality
in (89) yields δ0 > − f1(0). Since (89) allows us to apply Lemma4.7, there exists
β ′
1 ∈ (0, δ0 ) such that

R̃(τ1(β
′
1)) = r0 and R̃(τ1(δ)) > r0 for any δ ∈ ( β ′

1, δ0 ].

Moreover, we infer from (89) that Lemma4.6 implies that

d R̃

dt
(τ1(δ)) < 0 for any δ ∈ ( 0,− f1(0) ).

Therefore it is sufficient to prove that β ′
1 < − f1(0). Then β ′

1 is nothing but the
required constant β1. Combining the relation (83) with (88), we have

r0 = R̃(τ1(β
′
1)) > r1 exp L−(β ′

1) ≥ r0 exp
[
L−(β ′

1) − L−(− f1(0))
]
.

Then the monotonicity of L− yields β ′
1 < − f1(0).

Step 2: We shall show that, there exists ε∗
1 ∈ ( 0, f1(a∗) − f1(0) ) such that for any

r0 ∈ ( 0,∞ ) and r1 ≥ r0 exp[M+(ε∗
1)], the following holds: if (ũ0, R̃0, ã0) satisfies

min
ρ∈[ 0,1 ] ũ0(ρ) ≥ U0 = 3

∫ 1

0
u0(ρ)ρ2 dρ, R̃0 = r0, ã0 < f −1

1 (0), (91)

and (IC), then there exists β2 ∈ ( 0, ε∗
1 ) such that the solution of (P0) satisfies

R̃(τ0(β2)) = r1,
d R̃

dt
(τ0(β2)) > 0. (92)

Let ε0 := f1(a∗) − f1(ã0), i.e., ã(τ0(ε0)) = ã0. Remark that ε0 > f1(a∗) by the
third inequality in (91). By Lemma4.4, there exists a constant β ′

2 ∈ ( 0, ε0 ) such that

R̃(τ0(β
′
2)) = r1 and R̃(τ0(ε)) < r1 for any ε ∈ ( β ′

2, ε0 ]. (93)
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We define ε∗
1 as ε1 in Lemma4.2 with A = U0 and κ = f −1

1 (0), i.e.,

1 − Γ0(ε
∗
1;U0, f −1

1 (0)) = z0( f −1
1 ( f1(a∗) − ε∗

1)). (94)

Then Lemma4.2 asserts that ε∗
1 ∈ ( 0, f1(a∗) ) and

d R̃

dt
(τ0(ε)) > 0 for any ε ∈ ( 0, ε∗

1 ].

Thus it is sufficient to prove that β ′
2 ∈ ( 0, ε∗

1 ). Then β ′
2 is nothing but the required

constant β2. Letting r1 satisfy

r0 exp M+(ε∗
1) ≤ r1, (95)

we show that β ′
2 ∈ ( 0, ε∗

1 ). Indeed, since the relation (72) in Lemma4.4 holds true,
we observe from (95) that

r0 exp M+(ε∗
1) ≤ r1 = R̃(τ0(β

′
2)) < r0 exp M+(β ′

2).

Then the monotonicity of M+ clearly yields ε∗
1 > β ′

2.

Step 3: We shall prove that, there exists ε∗
0 ∈ ( 0, f1(a∗) − f1(0) ) such that for

any r0 ∈ ( 0,∞ ) and r1 ≥ R0 exp M+(ε∗
0), the following holds: if (ũ0, R̃0, ã0) =

(u0, R0, a0), then there exists β0 ∈ ( 0, ε∗
0 ) such that the solution of (P0) satisfies the

following:

R̃(τ0(β0)) = r1,
d R̃

dt
(τ0(β0)) > 0; (96)

min
ρ∈[ 0,1 ] ũ(ρ, τ0(β0)) ≥ max{ω,U0}, ã(τ0(β0)) > f −1

1 (0). (97)

Setting ε̃1 as ε1 in Lemma4.2 with A = minρ∈[ 0,1 ] u0(ρ) and κ = a0, we have

d R̃

dt
(τ0(ε)) > 0 for any ε ∈ ( 0, ε̃1 ] with ε̃1 ∈ ( 0, f1(a∗) ).

By way of the function Γ ∗
0 defined by

Γ ∗
0 (ε) := Γ0(ε;min{ min

ρ∈[ 0,1 ] u0(ρ), ω},max{a0, f −1
1 (0)}),

we define ε̃2 as follows:

1 − Γ ∗
0 (ε̃2) = max{ω,U0, 1 − Γ ∗

0 ( f1(a∗) − f1(0))}. (98)
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From now on, we set ε∗
0 := min{ε̃1, ε̃2} and let r1 satisfy r1 ≥ R0 exp M+(ε∗

0). Let
ε′
0 := f1(a∗) − f1(a0), i.e., ã(τ0(ε

′
0)) = a0. With the aid of Lemma4.3, we find a

constant β ′
0 ∈ ( 0, ε′

0 ) such that (93) holds for β ′
2 = β ′

0. Noting that the latter relation
in (97) is equivalent toβ ′

0 < f1(a∗) and recalling ε∗
0 ≤ ε̃1 < f1(a∗), we haveβ ′

0 < ε∗
0 .

The same argument as in Step 2 implies that

R0 exp M+(ε∗
0) ≤ r1 = R̃(τ0(β

′
0)) < R0 exp M+(β ′

0),

where the last inequality is followed from Lemma4.3. Then the monotonicity of M+
gives us the required relation. Finally we prove the former relation in (97). Thanks
to the monotonicity of Γ0, we observe from Lemma4.1 that, for any ε ∈ [ β ′

0, ε̃2 ],

min
ρ∈[ 0,1 ] ũ(ρ, τ0(ε)) ≥ 1 − Γ0(ε; min

ρ∈[ 0,1 ] u0(ρ), a0) ≥ 1 − Γ ∗
0 (ε) ≥ max{ω,U0}.

Therefore β ′
0 is nothing but the required constant β0.

Step 4: We shall prove that, for a suitable pair of theresholds (r0, r1), the system (P)
has a unique solution with the property (i) in Theorem1.1. Fix r0 ∈ ( 0,∞ ) and let
r1 satisfy

r1 ≥ max
{

R0 exp M+(ε∗
0), r0 exp M+(ε∗

1), r0 exp
[−L−(− f1(0))

]}
. (99)

We note that (99) yieldsmax{r0, R0} < r1, for M+ is positive in ( 0, f1(a∗) − f1(0) ].
With the aid of Step 3, there exist β0 ∈ ( 0, ε∗

0 ) and a unique solution (ũ, ṽ, R̃, ã)

of (P0) with (ũ0, R̃0, ã0) = (u0, R0, a0) such that (96) and (97) hold. Since β0 is
uniquely determined, setting (u, v, R, a) = (ũ, ṽ, R̃, ã) in Ī × [ 0, t1 ], we observe
from (96) and the proof of Theorem3.1 that (u, v, R, a, S) is a unique solution of
(P) in Ī × [ 0, τ0(β0) ) such that S(t) = 0 in [ 0, t1 ) and S(t) switches from 0 to 1 at
t1, where t1 := τ0(β0).

Since (96)–(97) asserts that (89) holds for (ũ0, R̃0, ã0) = (u, R, a)|t=t1 , it follows
from Step 1 that there exist β1 ∈ ( 0,− f1(0) ) and a unique solution (ũ1, ṽ1, R̃1, ã1)

of (P1), with (ũ0, R̃0, ã0) = (u, R, a)|t=t1 , satisfying (90). Since β1 is uniquely deter-
mined, setting (u, v, R, a) = (ũ1, ṽ1, R̃1, ã1) in Ī × [ t1, t2 ] and S(t) = 1 in [ t1, t2 ),
we deduce from (90) and the proof of Theorem3.1 that (u, v, R, a, S) is a unique
solution of (P) in Ī × [ 0, t2 ) satisfying the following: S(t) = 1 in [ t1, t2 ); S(t)
switches from 1 to 0 at t2, where t2 is the time determined by τ1(β1).

Here we claim that (91) holds for (ũ0, R̃0, ã0) = (u, R, a)|t=t2 . Since (96)–(97)
implies that minρ∈[ 0,1 ] u(ρ, t1) ≥ max{ω,U0}, we infer from Lemma4.5 that

min
ρ∈[ 0,1 ] u(ρ, t2) ≥ max{ω,U0}.

Thus the claim holds true. Then it follows fromStep 2 that there exist β2 ∈ ( 0, ε∗
1 )

and a unique solution (ũ2, ṽ2, R̃2, ã2) of (P0), with (ũ0, R̃0, ã0) = (u, R, a)|t=t2 , sat-
isfying (92). Thanks to the uniqueness of β2, setting
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(u, v, R, a) = (ũ2, ṽ2, R̃2, ã2) in Ī × [ t2, t3 ],

where t3 is the time determined by τ0(β2), we deduce from the same argument as
above that (u, v, R, a, S) is a unique solution of (P) in Ī × [ 0, t3 ) satisfying the
following: S(t) = 1 in [ t2, t3 ); S(t) switches from 0 to 1 at t3.

In order to apply Step 1 again, we verify that u(·, t3) satisfies the first property in
(89). Combining Lemma4.4 with (99), we see that

R0 exp M+(ε∗
0) ≤ r1 = R̃2(τ0(β2)) < r0 exp M+(β2) ≤ R0 exp M+(β2), (100)

and then the monotonicity of M+ yields ε∗
0 > β2. Recalling the monotonicity of Γ0

and using Lemma4.1, we have for any ε ∈ [ β2, ε
∗
0 ]

min
ρ∈[ 0,1 ] u(ρ, τ0(ε)) ≥ 1 − Γ0(ε;max{ω,U0}, f −1

1 (0))

≥ 1 − Γ ∗
0 (ε) ≥ 1 − Γ ∗

0 (ε∗
0) ≥ max{ω,U0}.

Thus Step 1 is applicable again. Therefore we can construct inductively a solution
of (P) with the property (i) in Theorem1.1.

Step 5: We prove the property (ii) in Theorem1.1. Using the sequence {t j }∞j=0

obtained by Step 4, we inductively define sequences {ε2 j
0 }∞j=0, {δ2 j+1

0 }∞j=0, and
{β j }∞j=0. Let ε

0
0 := f1(a∗) − f1(a0), i.e., τ0(ε00) = t0 = 0. Set

β0 := f1(a∗) − f1(a(t1)). (101)

By the definition of τ0, the relation (101) is equivalent to a(τ0(β0)) = a(t1). We set

δ10 := f1(a∗) − f1(0) − β0.

The definitions of τ0 and τ1 yield a(τ1(δ
1
0)) = a(τ0(β0)). Since a(·) is monotone in

[ 0, t1 ], it holds that τ0(β0) = t1 = τ1(δ
1
0). Next we set

β1 := f1(a(t2)) − f1(0); (102)

ε20 := f1(a∗) − f1(0) − β1. (103)

Then, from (102) and (103), we find a(τ1(β1)) = a(t2) and a(τ0(ε
2
0)) = a(τ1(β1)).

The monotonicity of a(·) in [ t1, t2 ] gives us the relation τ1(β1) = τ0(ε
2
0). Along the

same manner as above, we define inductively ε
2 j
0 , δ

2 j+1
0 , and β j for each j ≥ 2 as

follows:

β j :=
{

f1(a∗) − f1(a(t j+1)) if j is even,

f1(a(t j+1)) − f1(0) if j is odd,

δ
2 j−1
0 := f1(a∗) − f1(0) − β2 j−2, ε

2 j
0 := f1(a∗) − f1(0) − β2 j−1.
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We note that the monotonicity of a(·) in [ t j , t j+1 ] implies τ0(β2 j ) = τ1(δ
2 j+1
0 ) and

τ1(β2 j+1) = τ0(ε
2 j+2
0 ) for each j ∈ N ∪ {0}. Then, it follows from the definitions of

the sequences that, for any j ∈ N ∪ {0},

R(τ0(β2 j )) = r1, R(τ0(ε)) < r1 and S(τ0(ε)) ≡ 0, on ( β2 j , ε
2 j
0 ]; (104)

R(τ1(β2 j+1)) = r0, R(τ1(δ)) > r0 and S(τ1(δ)) ≡ 1, on ( β2 j+1, δ
2 j+1
0 ].

(105)

We give the lower and upper bounds of R when S ≡ 0, i.e., for the case of (104).
We note that, for the case of j = 0, it clearly follows from Lemma4.3 that

R0 exp M−( f1(a∗) − f1(a0)) ≤ R(τ0(ε)) < r1 on ( β0, ε
0
0 ], (106)

where the first inequality was obtained by the monotonicity of M−. For any j ∈ N,
we observe from Lemma4.3 that

r0 exp M−(ε
2 j
0 ) ≤ r0 exp M−(ε) ≤ R(τ0(ε)) < r1 on ( β2 j , ε

2 j
0 ]. (107)

Here, by (105) and Lemma4.7, we find log (r0/r1) ≤ L+(β2 j−1). Since L+(δ) is
monotone and diverges to −∞ as δ ↓ 0, there exists δ̂ ∈ ( 0, β2 j−1 ], independent
of j , such that L+(δ̂) = log(r0/r1). Thus, setting ε̂ := f1(a∗) − f1(0) − δ̂, we obtain

f1(a∗) − ε̂ = f1(0) + δ̂ ≤ f1(0) + β2 j−1 = f1(a∗) − ε
2 j
0 , i.e., ε̂ ≥ ε

2 j
0 . (108)

Since j ∈ N is arbitral, we observe from (107) and (108) that

r0 exp M−(ε̂) ≤ R(τ0(ε)) < r1 on ( β2 j , ε
2 j
0 ] for any j ∈ N. (109)

In particular, we see that

r0 = R(τ0(ε
2 j
0 )) ≥ r0 exp M−(ε

2 j
0 ) ≥ r0 exp M−(ε̂). (110)

Next, we derive the lower and upper bounds of R when S ≡ 1, i.e., for the case
of (105). For any j ∈ N ∪ {0}, we observe from (105) and Lemma4.7 that

r0 < R(τ1(δ)) ≤ r1 exp L+(δ) ≤ r1 exp L+(δ
2 j+1
0 ) on ( β2 j+1, δ

2 j+1
0 ], (111)

where the last inequality was followed from the monotonicity of L+. Here, it fol-
lows from (104) and Lemma4.3 that M−(β2 j ) ≤ log(r1/min{R0, r0}). Since M−(ε)

is monotone and diverges to ∞ as ε ↓ 0, there exists ε̄ ∈ ( 0, β2 j ], independent
of j , such that M−(ε̄) = log(r1/min{R0, r0}). Setting δ̄ := f1(a∗) − f1(0) − ε̄, we
deduce from a similar argument as in (108) that the relation δ̄ ≥ δ

2 j+1
0 holds. Com-

bining the fact with (111), we have
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r0 < R(τ1(δ)) ≤ r1 exp L+(δ̄) on ( β2 j+1, δ
2 j+1
0 ] for any j ∈ N ∪ {0}. (112)

In particular, we see that

r1 = R(τ1(δ
2 j+1
0 )) ≤ r1 exp L+(δ

2 j+1
0 ) ≤ r1 exp L+(δ̄). (113)

Consequently, by virtue of (106), (109)–(110), and (112)–(113), we conclude that
the property (ii) in Theorem1.1 holds for

C1 = min{R0 exp M−( f1(a∗) − f1(a0)), r0 exp M−(ε̂)}, C2 = r1 exp L+(δ̄).

Step 6: Finally we prove the regularity of the switching solution constructed by the
above arguments. The equation of a implies

∣
∣
∣

da

dt
(t)

∣
∣
∣= |γ (a∗ − a(t)) − γ a∗S(t)| ≤ 2γ a∗ in [ 0,∞ ) \ {t j }∞j=0.

Fix j ∈ N arbitrarily. Then, for any t and s with t j−1 ≤ t < t j < s < t j+1, we have

|a(t) − a(s)| ≤ |a(t) − a(t j )| + |a(t j ) − a(s)| (114)

=
∣
∣
∣

da

dt
(τ1)

∣
∣
∣ |t − t j |+

∣
∣
∣

da

dt
(τ2)

∣
∣
∣ |t j − s| ≤ 4γ a∗|t − s|,

where τ1 ∈ ( t, t j ) and τ2 ∈ ( t j , s ). Since j is arbitrary, we see that a ∈ C0,1(R+).
We consider the following initial boundary problem:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂t ũ(ρ, t) − L ′(ṽ, R̃)ũ = P(ũ(ρ, t), a(t)) in I∞,

ṽ(ρ, t) = 1

ρ2

∫ ρ

0
F(ũ(r, t), a(t))r2 dr in I∞,

d R̃

dt
(t) = ṽ(1, t)R̃(t) in R+,

∂ρ ũ(0, t) = ∂ρ ũ(1, t) = 0,
ṽ

ρ

∣
∣
∣
ρ=0

= 1

3
F(ũ(0, t), a(t)) in R+,

ũ(ρ, 0) = u0(ρ), R̃(0) = R0, in I.

(P)

Since a ∈ C0,1(R+), the proofs of Lemma2.3 and Theorem3.1 indicate that (P)
has a unique solution (ũ, ṽ, R̃) in the class

C2+α,1+ α
2 (Q∞) × (C1+α, α

2 ([ 0, 1 ) × R+) ∩ C1([ 0, 1 ) × R+)) × C1(R+).

Recalling that (u, v, R), which is obtained by Step 4, also satisfies (P), we observe
from the uniqueness that (ũ, ṽ, R̃) = (u, v, R) in Q∞. We obtain the conclusion. �
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Symmetry Problems on Stationary
Isothermic Surfaces in Euclidean Spaces

Shigeru Sakaguchi

Abstract Let S be a smooth hypersurface properly embedded in R
N with N ≥ 3

and consider its tubular neighborhoodN . We show that, if a heat flow overN with
appropriate initial and boundary conditions has S as a stationary isothermic surface,
then S must have some sort of symmetry.

Keywords Heat equation · Cauchy problem · Initial-boundary value problem ·
Tubular neighborhood · Stationary isothermic surface · Symmetry

1 Introduction

The stationary isothermic surfaces of solutions of the heat equation have been much
studied, and it has been shown that the existence of a stationary isothermic surface
forces the problems to have some sort of symmetry (see [5, 6, 8, 9, 11–13, 15]). A
balance law for stationary zeros of temperature introduced by [7] plays a key role in
the proofs. To be more precise, the balance law gives us that for any pair of points x
and y in the stationary isothermic surface the heat contents of two balls centered at
x and y respectively with an equal radius are equal for every time. The above papers
always deal with the cases where each ball touches the boundary only at one point
eventually. Then by studying the initial behavior of the heat content of each ball the
authors extract some information of the principal curvatures of the boundary at the
touching point.

We emphasize that in the present paper we deal with the cases where each ball
touches the boundary exactly at two points. Another new point is to give simply a
C2 hypersurface properly embedded inRN as a candidate for a stationary isothermic
surface from the beginning.
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Let us establish our setting.Let�be aC2 domain inRN with N ≥ 3,whosebound-
ary ∂� is connected and not necessarily bounded. Namely, ∂� is a C2 hypersurface
properly embedded in RN . Assume that there exists a number R > 0 satisfying:

(A-1) : The principal curvatures κ1(x), . . . , κN−1(x) of ∂� at x ∈ ∂� with respect
to the outward normal direction to ∂� satisfy

max
1≤ j≤N−1

|κ j (x)| <
1

R
for every x ∈ ∂�.

(A-2) : The tubular neighborhood NR of ∂� given by

NR = {x ∈ R
N : dist(x, ∂�) < R},

is a C2 domain in R
N and its boundary ∂NR consists of two connected

components �+, �− each of which is diffeomorphic to ∂�.

Let us introduce two C2 domains �+,�− in R
N with ∂�+ = �+, ∂�− = �−,

respectively, such that the three domains �+,�−,NR are disjoint, �− ⊂ �, and
�+ ∪ �− ∪ NR = R

N . Denote by X�+ ,X�− the characteristic functions of the
sets �+,�−, respectively. Consider the following initial-boundary value problem
for the heat equation:

ut = �u in NR × (0,+∞), (1)

u = 1 on ∂NR × (0,+∞), (2)

u = 0 onNR × {0}, (3)

and the Cauchy problem for the heat equation:

ut = �u in R
N × (0,+∞) and u = X�+ + X�− on R

N × {0}. (4)

We have the following theorem.

Theorem 1 Let N = 3 and let u be the unique bounded solution of either problem
(1)–(3) or problem (4). Assume that there exists a function a(t) satisfying

u(x, t) = a(t) for every (x, t) ∈ ∂� × (0,+∞). (5)

Then, ∂� must be either a plane or a sphere, provided at least one of the following
conditions is satisfied:

(a) ∂� has an umbilical point p ∈ ∂�, that is, κ1(p) = κ2(p).
(b) There exists a sequence of points {p j } ⊂ ∂� with lim

j→∞ κ1(p j ) =
lim
j→∞ κ2(p j ) ∈ R.
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When ∂� is bounded, the Hopf-Poincaré theorem [4, Theorem II, p. 113] says
that the sum of the indices of all the isolated umbilical points equals the Euler number
χ(∂�)(= 2 − 2 × genus) of ∂� and hence if the genus of ∂� does not equal 1 then
∂� must have at least one umbilical point. Therefore we have the following direct
corollary.

Corollary 1 Let N = 3 and let u be the unique bounded solution of either problem
(1)–(3) or problem (4). Assume that (5) holds for some function a(t). Then, if ∂� is
bounded and the genus of ∂� does not equal 1, ∂� must be a sphere.

We next consider the following initial-boundary value problem for the heat equa-
tion:

ut = �u in NR × (0,+∞), (6)

u = 1 on �+ × (0,+∞), (7)

u = −1 on �− × (0,+∞), (8)

u = 0 onNR × {0}, (9)

and the Cauchy problem for the heat equation:

ut = �u in R
N × (0,+∞) and u = X�+ − X�− on RN × {0}. (10)

Then we have

Theorem 2 Let N ≥ 3 and let u be the unique bounded solution of either problem
(6)–(9) or problem (10). Assume that (5) holds for some function a(t). Then:

(a) If ∂� is bounded, ∂� must be a sphere.
(b) If N = 3 and ∂� is an entire graph over R2, ∂� must be a plane.

By using the asymptotic formula of the heat content
∫

BR(x)
u(z, t) dz of an open

ball BR(x) with radius R > 0 centered at x ∈ ∂� as t → +0 introduced in [10]
together with the balance law given in [7], we prove Theorems 1 and 2. Moreover
Aleksandrov’s sphere theorem andBernstein’s theorem for theminimal surface equa-
tion are needed to prove Theorem 2. In Sects. 2 and 3, we prove Theorems 1 and 2,
respectively. The final Sect. 4 gives several remarks and problems.

2 Proof of Theorem 1

The proofs of Theorems 1 and 2 have common ingredients. Therefore we begin with
general dimensions N for later use, although Theorem 1 assumes that N = 3.

Let u be the unique bounded solution of either problem (1)–(3) or problem (4).
Denote by u± = u±(x, t) the unique bounded solutions of the initial-boundary value
problems for the heat equation:



234 S. Sakaguchi

ut = �u in
(
R

N \ �±
) × (0,+∞), (11)

u = 1 on �± × (0,+∞), (12)

u = 0 on
(
R

N \ �±
) × {0}, (13)

respectively, or of the Cauchy problems for the heat equation:

ut = �u in R
N × (0,+∞) and u = X�± on R

N × {0}, (14)

respectively. Notice that u = u+ + u− when u is the solution of problem (4). Then,
by a result of Varadhan [16] (see also [13, Theorem A, p. 2024]), we see that

− 4t log
(
u±(x, t)

) → dist(x, �±)2 as t → +0 (15)

uniformly on every compact sets in RN \ �±.
By the assumptions (A-1) and (A-2), every point x ∈ ∂� determines two points

x+ ∈ �+ and x− ∈ �− satisfying

∂ BR(x) ∩ �+ = {x+} and ∂ BR(x) ∩ �− = {x−},

respectively. Moreover, by letting κ±
1 (x±), . . . , κ±

N−1(x±) denote the principal cur-
vatures of �± at x± with respect to the inward normal direction to ∂NR , respectively,
we observe that

1 − Rκ+
j (x+) = 1

1 − Rκ j (x)
> 0 and 1 − Rκ−

j (x−) = 1

1 + Rκ j (x)
> 0 (16)

for every x ∈ ∂� and every j = 1, . . . , N − 1.
On the other hand, it follows from the balance law (see [7, Theorem 4, p. 704] or

[8, Theorem 2.1, pp. 934–935]) that (5) gives

∫

BR(x)

u(z, t) dz =
∫

BR(y)

u(z, t) dz for t > 0 (17)

for every x, y ∈ ∂�. Moreover, by virtue of (16), an asymptotic formula given by
[10] (see also [13, Theorem B, pp. 2024–2025]) yields that

lim
t→+0

t− N+1
4

∫

BR(x)

u±(z, t) dz = c(N )

⎧
⎨

⎩

N−1∏

j=1

[
1

R
− κ±

j (x±)

]
⎫
⎬

⎭

− 1
2

, (18)

respectively. Here, c(N ) is a positive constant depending only on N and of course
c(N ) depends on the problems (11)–(13) or (14). Then we have
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Lemma 1 Let u be the unique bounded solution of either problem (1)–(3) or problem
(4). Assume that (5) holds for some function a(t). Then there exists a constant c > 0
satisfying

⎧
⎨

⎩

N−1∏

j=1

(1 − Rκ j (x))

⎫
⎬

⎭

1
2

+
⎧
⎨

⎩

N−1∏

j=1

(1 + Rκ j (x))

⎫
⎬

⎭

1
2

= c for every x ∈ ∂�, (19)

where κ1(x), . . . , κN−1(x) denote the principal curvatures of ∂� given in (A-1).

Proof Let u be the unique bounded solution of problem (4). Then we have that
u = u+ + u−. Hence, combining (17) with (18) yields that there exists a constant
c > 0 satisfying

⎧
⎨

⎩

N−1∏

j=1

(
1 − Rκ+

j (x+)
)
⎫
⎬

⎭

− 1
2

+
⎧
⎨

⎩

N−1∏

j=1

(
1 − Rκ−

j (x−)
)
⎫
⎬

⎭

− 1
2

= c (20)

for every x ∈ ∂�. Therefore (16) gives the conclusion.
Let u be the solution of problem (1)–(3). It follows from the comparison principle

that
max{u+, u−} ≤ u ≤ u+ + u− inNR × (0,∞).

Therefore, in view of (15) and (18), we notice that for every x ∈ ∂�

c(N )

⎧
⎨

⎩

N−1∏

j=1

[
1

R
− κ+

j (x+)

]
⎫
⎬

⎭

− 1
2

+ c(N )

⎧
⎨

⎩

N−1∏

j=1

[
1

R
− κ−

j (x−)

]
⎫
⎬

⎭

− 1
2

= lim
t→+0

t− N+1
4

∫

BR(x)

u+(z, t) dz + lim
t→+0

t− N+1
4

∫

BR(x)

u−(z, t) dz

= lim
t→+0

t− N+1
4

∫

BR(x)\�
u+(z, t) dz + lim

t→+0
t− N+1

4

∫

BR(x)∩�

u−(z, t) dz

= lim
t→+0

t− N+1
4

∫

BR(x)\�
u(z, t) dz + lim

t→+0
t− N+1

4

∫

BR(x)∩�

u(z, t) dz

= lim
t→+0

t− N+1
4

∫

BR(x)

u(z, t) dz.

Hence, with the aid of (17), we obtain (20) which yields the conclusion
by (16). �
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Proof of Theorem 1: Set N = 3 in (19). With the aid of the arithmetic-geometric
mean inequality, we obtain from (19) that

c = √
(1 − Rκ1)(1 − Rκ2) + √

(1 + Rκ1)(1 + Rκ2)

≤ 2 − R(κ1 + κ2)

2
+ 2 + R(κ1 + κ2)

2
= 2

where κ j = κ j (x) with j = 1, 2. By the assumption, ∂� has an umbilical point
p ∈ ∂�, that is, κ1(p) = κ2(p), or there exists a sequence of points {p j } ⊂ ∂� with
lim
j→∞ κ1(p j ) = lim

j→∞ κ2(p j ) ∈ R. Then we conclude that c = 2 and the equality holds

in the above inequality. Hence κ1 = κ2 on ∂�, that is, ∂� is called totally umbilical.
Thus from classical results in differential geometry ∂� must be either a plane or a
sphere(see [4, Remark, p. 124] or [14, Theorem 3.30, p. 84] for instance). �

3 Proof of Theorem 2

Let us use the auxiliary functions u± = u±(x, t) given in Sect. 2. We begin with the
following lemma:

Lemma 2 Let u be the unique bounded solution of either problem (6)–(9) or problem
(10). Assume that (5) holds for some function a(t). Then there exists a constant c
satisfying

⎧
⎨

⎩

N−1∏

j=1

(1 − Rκ j (x))

⎫
⎬

⎭

1
2

−
⎧
⎨

⎩

N−1∏

j=1

(1 + Rκ j (x))

⎫
⎬

⎭

1
2

= c for every x ∈ ∂�, (21)

where κ1(x), . . . , κN−1(x) denote the principal curvatures of ∂� given in (A-1).

Proof Let u be the solution of problem (10). Thenwe have that u = u+ − u−. There-
fore the conclusion follows from the same argument as in the proof of Lemma 1.

Let u be the solution of problem (6)–(9). It follows from the comparison principle
that

max{−u−, u+ − 2u−} ≤ u ≤ min{u+, 2u+ − u−} inNR × (0,∞).

With the aid of these inequalities, in view of (15) and (18), by carrying out
calculations similar to those in the proof of Lemma 1 for every x ∈ ∂�, we can
reach the conclusion. �
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Proof of Theorem 2: Set

−�(κ1, . . . , κN−1) = the left-hand side of (21).

Then we have that ∂�
∂κ j

> 0 for j = 1, . . . , N − 1. Therefore, by introducing local
coordinates, the condition �(κ1, . . . , κN−1) = constant on the surface ∂� can be
converted into a second order partial differential equation which is of elliptic type.
Hence, if ∂� is bounded, then ∂�must be a sphere by Aleksandrov’s sphere theorem
[1]. Thus proposition (a) is proved.

Let us proceed to proposition (b). Set N = 3 in (21). Then

√
(1 − Rκ1)(1 − Rκ2) − √

(1 + Rκ1)(1 + Rκ2) = c, (22)

where κ j = κ j (x) with j = 1, 2, and hence

− 4RH = c
(√

(1 − Rκ1)(1 − Rκ2) + √
(1 + Rκ1)(1 + Rκ2)

)
, (23)

where H = 1
2 (κ1 + κ2) is the mean curvature of ∂�. We distinguish three cases:

(i) c = 0, (ii) c > 0, (iii) c < 0.

In case (i), by (23) we have H = 0 on ∂� and hence ∂� is the minimal entire graph
of a function over R2. Therefore, by Bernstein’s theorem for the minimal surface
equation, ∂� must be a plane. This gives the conclusion desired. (See [2, 3] for
Bernstein’s theorem.) In case (ii), by (23) we have H < 0 on ∂�. Suppose that there
exists a sequence of points {pn} with lim

n→∞ H(pn) = 0. Since Rκ1(pn), Rκ2(pn) ∈
[−1, 1], by the Bolzano-Weierstrass theorem, by taking a subsequence if necessary,
wemay assume that {Rκ1(pn)}, {Rκ2(pn)} converge to numbers α,−α, respectively,
for someα ∈ [−1, 1].Henceby (22)weget c = 0which is a contradiction.Therefore,
there exists a number δ > 0 such that

H ≤ −δ on ∂�,

which contradicts the fact that ∂� is an entire graph overR2 with the aid of the diver-
gence theorem as in the proof of [9, Theorem 3.3, pp. 2732–2733]. The remaining
case (iii) can be dealt with in a similar manner. Thus proposition (b) is proved. �

Remark 1 In Sect. 2wedid not use the same argument as in Sect. 3, for by introducing
local coordinates, the condition (19) on the surface ∂� can not be converted into a
second order partial differential equation which is of elliptic type.
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4 Concluding Remarks and Problems

In this final section, we mention several remarks and problems.
Concerning Theorem 1, spherical cylinders satisfy the assumption (5). Therefore,

as in [5], a theorem including a spherical cylinder as a conclusion is expected. Corol-
lary 1 excludes closed surfaces with genus 1, but this might be technical. Concerning
Theorem 2, right helicoids satisfy the assumption (5). Therefore, a theorem including
a right helicoid as a conclusion is expected.

Let us set N = 3 both in (19) and in (21) and assume that ∂� is a minimal surface
properly embedded in R3. Then (19) yields that the Gauss curvature is constant and
hence ∂� must be a plane. On the other hand, (21) holds true for every minimal
surface by setting c = 0.

Concerning technical points in the theory of partial differential equations, (19) is
not of elliptic type but (21) is of elliptic type, as is mentioned in Sect. 3. Therefore,
for (21) in general dimensions, Liouville-type theorems characterizing hyperplanes
are expected as in [11, 15].
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Improved Rellich Type Inequalities in RN

Megumi Sano and Futoshi Takahashi

Abstract We consider the second or higher-order Rellich inequalities on the whole
spaceRN . In spite of the lack of the Poincaré inequality on the whole space, we show
that the higher-order Rellich inequalities with optimal constants can be improved,
by adding explicit remainder terms to the inequalities.

Keywords Rellich inequality · Hardy inequality · Remainder terms

1 Introduction

Let N ≥ 2, 1 ≤ p < N , and let Ω be a bounded domain in R
N with 0 ∈ Ω , or

Ω = R
N . The classical Hardy inequality

∫

Ω

|∇u|pdx ≥
(

N − p

p

)p ∫

Ω

|u|p

|x |p
dx (1)

holds for all u ∈ W 1,p
0 (Ω), or u ∈ D1,p(RN ) when Ω = R

N . Here W 1,p
0 (Ω) (resp.

D1,p(RN )) is the completion of C∞
0 (Ω) (resp. C∞

0 (RN )) with respect to the norm
‖∇ · ‖L p(Ω) (resp. ‖∇ · ‖L p(RN )). It is known that for 1 < p < N , the best constant
(

N−p
p )p is never attained in W 1,p

0 (Ω), or in D1,p(RN ). Therefore, one can expect
the existence of remainder terms on the right-hand side of the inequality (1). Indeed,
there are many papers that deal with remainder terms for (1) when Ω is a smooth
bounded domain (see [1–6], to name a few). For example, Brezis and Vázquez [2]
show that the inequality
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∫

Ω

|∇u|2dx ≥
(

N − 2

2

)2 ∫

Ω

|u|2
|x |2 dx + z20

(
ωN

|Ω|
) 2

N
∫

Ω

|u|2dx (2)

holds true for all u ∈ W 1,2
0 (Ω) where z0 = 2.4048 · · · is the first zero of the Bessel

function of the first kind.
On the other hand, when Ω = R

N , the remainder term in (2) becomes trivial and
does not provide better inequality than the classical one. More generally, Ghoussoub
andMoradifam [7] show that there is no strictly positive V ∈ C1((0,+∞)) such that
the inequality

∫

RN

|∇u|2dx ≥
(

N − 2

2

)2 ∫

RN

|u|2
|x |2 dx +

∫

RN

V (|x |)|u|2dx

holds for all u ∈ W 1,2(RN ). One of the reasons of it is the lack of the Poincaré
inequality: ‖∇u‖L2(Ω) ≥ C‖u‖L2(Ω) when Ω = R

N . Although there is a result of
refining the Hardy type inequality on the whole space (see Maz’ya’s book [8], pp.
139, Corollary 3.), we cannot expect the same type of remainder terms as in (2) on
the whole space.

In spite of this fact, the authors of the present paper recently showed the following
result [9] : Let 2 ≤ p < N and q > 2. Set α = α(p, q, N ) = N

2 (q − 2) − pq
2 + 2.

Then there exists D = D(p, q, N ) > 0 such that the inequality

∫

RN

|∇u|pdx ≥
(

N − p

p

)p ∫

RN

|u|p

|x |p
dx + D

(∫

RN |u#| pq
2 |x |αdx

∫

RN |u#|p|x |2−p
dx

) 2
q−2

(3)

holds for all u ∈ W 1,p(RN ), u �≡ 0. Here u# denotes the Schwartz symmetrization
of a function u on R

N :

u#(x) = u#(|x |) = inf

{

λ > 0

∣
∣
∣
∣

∣
∣{x ∈ R

N | |u(x)| > λ}∣∣ ≤ |B|x |(0)|
}

,

where |A| denotes the measure of a set A ⊂ R
N (see e.g., [10]). Note that the integral∫

RN |u#|p|x |2−pdx is finite for any u ∈ W 1,p(RN ).
In this paper, we focus on the higher-order case. A higher-order generalization of

(1) was first proved by Rellich [11]: it holds

∫

Ω

|Δu|2dx ≥
(

N (N − 4)

4

)2 ∫

Ω

|u|2
|x |4 dx
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for allu ∈ W 2,2
0 (Ω),whereΩ is a domain inRN , N ≥ 5.Moregenerally, let k, m ∈ N

and k < kp < N . Define

|u|p
k,p =

{∫

Ω
|Δmu|p dx if k = 2m,

∫

Ω
|∇(Δmu)|p dx if k = 2m + 1, and

Ck,p =
{

p−2m ∏m
j=1 (N − 2 j p) {N (p − 1) + 2( j − 1)p} if k = 2m,

(N − p)p−2(m+1) ∏m
j=1 (N − (2 j + 1)p) {N (p − 1) + (2 j − 1)p} if k = 2m + 1.

We put |u|0,p = ‖u‖L p(RN ) and C0,p = 1, C1,p = N−p
p for the convenience of

description. Then the inequality

|u|p
k,p ≥ C p

k,p

∫

Ω

|u|p

|x |kp
dx (4)

holds for all u ∈ W k,p
0 (Ω). It is also known that C p

k,p is optimal (see [12, 13], or

Proposition 1 in Appendix) and never attained in W k,p
0 (Ω). Furthermore, Gazzola-

Grunau-Mitidieri [5] prove the following inequality on a smooth bounded domain:
there exist positive constants A, B > 0 such that the inequality

|u|22,2 ≥ C2
2,2

∫

Ω

|u|2
|x |4 dx + A

∫

Ω

|u|2
|x |2 dx + B

∫

Ω

|u|2dx

holds for all u ∈ W 2,2
0 (Ω), where N ≥ 5. In addition to this, there are many papers

that deal with various types of Rellich inequalities with remainder terms on bounded
domains (see [14–24] etc.).

A main aim of this paper is to obtain remainder terms for the inequality (4) when
Ω = R

N . Note that the inequalities (1) and (4) have the scale invariance under the
scaling

uλ(x) = λ
− N−kp

p u
( x

λ

)
(5)

for λ > 0 when Ω = R
N . Therefore the possible remainder term to (4) should be

invariant under the scaling (5) when Ω = R
N . In the following, ωN will denote the

area of the unit sphere in RN , ‖ · ‖r = ‖ · ‖Lr (RN ) andDk,p(RN ) is the completion of
C∞
0 (RN ) with respect to the norm | · |k,p.
Our main results are as follows:

Theorem 1 (Radial case) Let k ≥ 2 be an integer, k < kp < N and q > 2. Set αk =
N
2 (q − 2) − kpq

2 + 2. Then there exists a constant C > 0 such that the inequality
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|u|p
k,p ≥ C p

k,p

∫

RN

|u|p

|x |kp
dx + C

( ∫

RN |u| pq
2 |x |αk dx

∫

RN |u|p|x |2−kp dx

) 2
q−2

(6)

holds for all radial function u ∈ Dk,p(RN ) ∩ L p(RN ), u �= 0.

In the non-radial case, we obtain only partial results for k = 2, 3.

Theorem 2 (Non-radial case) For k = 2 or k = 3, let k < kp < N and q > 2. Set
αk = N

2 (q − 2) − kpq
2 + 2 and r = N p

N+2p (i.e. 1
p = 1

r − 2
N ). Then there exists a con-

stant C > 0 such that the inequality

|u|p
k,p ≥ C p

k,p

∫

RN

|u|p

|x |2p
dx + C

⎛

⎝

∫

RN |u#| pq
2 |x |αk dx

|u|
kp−2

k
k,p ‖Δu‖ 2

k
r

⎞

⎠

2
q−2

(7)

holds for all u ∈ Dk,p(RN ) ∩ D2,p(RN ) ∩ D2,r (RN ), u �= 0.

Remark 1 The remainder term of the inequalities (6) and (7) are scale invariant

under the scaling (5) on R
N : uλ(x) = λ

− N−kp
p u(y), y = x

λ
, x ∈ R

N . Indeed, it holds
|uλ|k,p = |u|k.p and for a, b ∈ R,

∫

RN

|uλ(x)|a|x |bdx = λ
−

(
N−kp

p

)
a+b+N

∫

RN

|u(y)|a|y|bdy. (8)

Thus by taking a = pq
2 and b = αk , or a = p and b = 2 − kp in (8), we have

∫

RN

|uλ(x)| pq
2 |x |αk dx = λ2

∫

RN

|u(y)| pq
2 |y|αk dy,

∫

RN

|uλ(x)|p|x |2−kpdx = λ2
∫

RN

|u(y)|p|y|2−kpdy.

Therefore the remainder term in the inequality (6) has the scale invariance.
Furthermore from Proposition 2 in Appendix, we obtain

∫

RN

|(uλ)
#| pq

2 |x |αk dx =
∫

RN

|(u#)λ| pq
2 |x |αk dx = λ2

∫

RN

|u#| pq
2 |x |αk dx,

‖Δuλ‖
2
k

Lr (RN )
= λ2‖Δu‖ 2

k

Lr (RN )
.

Thus the remainder term in the inequality (7) also has the scale invariance.

Remark 2 If αk ≤ 0 in Theorem 2, then u# in the RHS of (7) can be replaced by u
thanks to the Hardy-Littlewood inequality:

∫

RN g#h# ≥ ∫

RN gh (see e.g., [10]), and
the fact (|x |αk )# = |x |αk .
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2 Proofs of Main Results

In this section, we prove Theorems 1 and 2. The next simple lemma is used in the
proof.

Lemma 1 Let p ≥ 1 and a, b ∈ R. Then it holds

|a − b|p − |a|p ≥ −p|a|p−2ab.

Proof First, we assume a ≥ 0. We use the mean value theorem for the function
f (t) = (a − t)p, which is defined for t ≤ a. When b ≤ a, we have

f (b) − f (0) = (a − b)p − a p = pcp−1(−b) ≥ −pa p−1b,

where c ∈ R satisfies 0 ≤ a − b ≤ c ≤ a if b ≥ 0, or 0 ≤ a ≤ c ≤ a − b if b ≤ 0.
When b ≥ a, then 2a − b ≤ a and we have

f (2a − b) − f (0) = (b − a)p − a p = pcp−1(b − 2a) ≥ −pa p−1b,

where c ∈ R satisfies 0 ≤ a ≤ c ≤ b − a if b − 2a ≥ 0, or 0 ≤ b − a ≤ c ≤ a if
b − 2a ≤ 0. This implies the result when a ≥ 0.

The case a ≤ 0 follows by considering a = −ã, ã ≥ 0 and b = −b̃, b̃ ∈ R. �

Proof of Theorem 1
We show the inequality (6) for all radial function u ∈ Dk,p(RN ) ∩ L p(RN ). By

density argument, we may assume u ∈ C∞
0 (RN ) without loss of generality.

First, note that the inequality

|u|p
k,p = |Δu|p

k−2,p ≥ C p
k−2,p

∫

RN

|Δu|p

|x |(k−2)p
dx (9)

holds from Rellich’s inequality (4). Actually when k = 2, this is the equality. Thus,
in order to prove Theorem, it is enough to show the RHS of (9) is bounded from
below by the RHS of (6).

Since u is radial, u can be written as u(x) = ũ(|x |)where ũ ∈ C∞
0 ([0,+∞)). We

define the new function v as follows:

ṽ(r) = r
N−kp

p ũ(r), r ∈ [0,∞), and v(y) = ṽ(|y|), y ∈ R
2. (10)

Note that ṽ(0) = 0 and also ṽ(+∞) = 0 since the support of u is compact. We
claim that if u ∈ Dk,p(RN ) ∩ L p(RN ), then v ∈ L p(R2). Indeed, we have



246 M. Sano and F. Takahashi

∫

R2
|v(y)|pdy = ω2

∫ ∞

0
|ṽ(r)|prdr

= ω2

∫ ∞

0
|ũ(r)|pr N−kp+1 dr = ω2

ωN

∫

RN

|u|p

|x |kp−2
dx

≤ ω2

ωN

(∫

RN

|u|p

|x |kp
dx

) kp−2
kp

(∫

RN

|u|p dx

) 2
kp

≤ ω2

ωN
C

2−kp
k

k,p |u|
kp−2

k
k,p

(∫

RN

|u|p dx

) 2
kp

< ∞, (11)

here we have used Hölder’s inequality, Rellich’s inequality (4), and the assumption
u ∈ Dk,p(RN ) ∩ L p(RN ). Therefore we have checked v ∈ L p(R2).

For k ≥ 2, k ∈ N and k < kp < N , put

θk = θ(k, N , p) = 2k + N (p − 2)

p
, and

Δθk f = f
′′
(r) + θk − 1

r
f

′
(r)

for a smooth function f = f (r). Define

Ak,p = (N − kp)[(k − 2)p + (p − 1)N ]
p2

.

Then we see Ck−2,p Ak,p = Ck,p and a direct calculation shows that

−Δũ = rk−2− N
p
(

Ak,pṽ(r) − r2Δθk ṽ(r)
)
.

Define

J =
∫

RN

|Δu|p

|x |(k−2)p
dx − Ap

k,p

∫

RN

|u|p

|x |kp
dx . (12)

Now applying Lemma 1 with the choice

a = Ak,pṽ(r) and b = r2Δθk ṽ(r),

and using the fact
∫ ∞
0 |ṽ|p−2ṽṽ′dr = 0 since ṽ(0) = ṽ(+∞) = 0, we have

J = ωN

∫ ∞

0
|−Δũ(r)|p r N−1−(k−2)p dr − Ap

k,pωN

∫ ∞

0
|ũ(r)|pr N−kp−1 dr

= ωN

∫ ∞

0

(∣
∣Ak,pṽ(r) − r2Δθk ṽ(r)

∣
∣p − |Ak,pṽ(r)|p

)
r−1 dr

≥ −pωN Ap−1
k,p

∫ ∞

0
|ṽ|p−2ṽΔθk ṽ r dr
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= −pωN Ap−1
k,p

∫ ∞

0
|ṽ|p−2ṽ

(

ṽ′′ + θk − 1

r
ṽ′

)

r dr

= −pωN Ap−1
k,p

∫ ∞

0
|ṽ|p−2ṽṽ′′r dr.

Moreover by integration by parts, we observe that

−
∫ ∞

0
|ṽ|p−2ṽṽ′′r dr = (p − 1)

∫ ∞

0
|ṽ|p−2(ṽ′)2r dr +

∫ ∞

0
|ṽ|p−2ṽṽ′ dr

= 4(p − 1)

p2

∫ ∞

0
|(|ṽ| p−2

2 ṽ)′|2r dr

= 4(p − 1)

p2ω2

∫

R2
|∇(|v| p−2

2 v)|2 dy.

Combining these, we have

J ≥ 4(p − 1)ωN

pω2
Ap−1

k,p

∫

R2
|∇(|v| p−2

2 v)|2 dy. (13)

Now, we apply the Gagliardo-Nirenberg inequality to |v| p−2
2 v ∈ L2(R2): for q >

2, there exists a constant C(q) > 0 such that it holds

‖|v| p
2 ‖Lq (R2) ≤ C(q) ‖|v| p

2 ‖
2
q

L2(R2)
‖∇(|v| p−2

2 v)‖
q−2

q

L2(R2)
. (14)

Combining (13) and (14), we obtain

J ≥ 4(p − 1)ωN Ap−1
k,p

pω2
C(q)

− 2q
q−2

(∫

R2 |v(y)| pq
2 dy

∫

R2 |v(y)|pdy

) 2
q−2

= 4(p − 1)ωN Ap−1
k,p

pω2
C(q)

− 2q
q−2

( ∫

RN |u| pq
2 |x |αk dx

∫

RN |u|p|x |2−kpdx

) 2
q−2

. (15)

Consequently, from (9), (12), (15) and Ck−2,p Ak,p = Ck,p, we obtain

|u|p
k,p ≥ C p

k−2,p

∫

RN

|Δu|p

|x |(k−2)p
dx

= C p
k−2,p

(

Ap
k,p

∫

RN

|u|p

|x |kp
dx + J

)

≥ C p
k,p

∫

RN

|u|p

|x |kp
dx + C

( ∫

RN |u| pq
2 |x |αk dx

∫

RN |u|p|x |2−kp dx

) 2
q−2
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where C = 4(p−1)ωN

pω2
Ck−2,pC p−1

k,p C(q)
− 2q

q−2 . This proves Theorem 1. �

Proof of Theorem 2
First, we treat the case k = 2. We show the inequality

∫

RN

|Δu|p dx ≥ C p
2,p

∫

RN

|u|p

|x |2p
dx + C

(∫

RN |u#| pq
2 |x |α2 dx

‖Δu‖p−1
p ‖Δu‖r

) 2
q−2

(16)

for allu ∈D2,p(RN ) ∩ D2,r (RN ). Set f = − Δu ∈ L p(RN ) andw(x)= 1
(N−2)ωN

∫

RN

f #(y)

|x−y|N−2 dy. Sincew(Ox) = w(x) for any O ∈ O(N ), the group of orthogonal matri-

ces in R
N , we see w is a radial function. Also since f # ∈ L p(RN ), the Calderon-

Zygmund inequality (see [25] Theorem 9.9.) implies thatw ∈ D2,p(RN ) and satisfies
−Δw = f # a.e. in RN . Therefore we have

‖Δw‖p = ‖Δu‖p. (17)

By Talenti’s comparison principle [26], we know w ≥ u# ≥ 0. Hence we have

∫

RN

|w|β |x |γ dx ≥
∫

RN

|u#|β |x |γ dx if β ≥ 0, (18)

≥
∫

RN

|u|β |x |γ dx if β ≥ 0 and γ ≤ 0.

where the second inequality comes from the Hardy-Littlewood inequality. Further-
more there exists a constant H > 0 such that the inequality

‖w‖p ≤ H‖ f #‖r = H‖(−Δu)#‖r = H‖(−Δu)‖r (19)

holds from the Hardy-Littlewood-Sobolev inequality, where 1
p = 1

r − 2
N . From (17),

Theorem 1, (18) and (19), we obtain

|u|p
2,p = |w|p

2,p

≥ C p
2,p

∫

RN

|w|p

|x |2p
dx + C

( ∫

RN |w| pq
2 |x |α2 dx

∫

RN |w|p|x |2−2p dx

) 2
q−2

≥ C p
2,p

∫

RN

|u|p

|x |2p
dx + C

( ∫

RN |u#| pq
2 |x |α2 dx

C1−p
2,p ‖Δw‖p−1

p ‖w‖p

) 2
q−2

≥ C p
2,p

∫

RN

|u|p

|x |2p
dx + C

(∫

RN |u#| pq
2 |x |α2 dx

‖Δu‖p−1
p ‖Δu‖r

) 2
q−2

,

which concludes (16).
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Next, we treat the case k = 3. As before, set f = −Δu ∈ L p(RN ) ∩ D1,p(RN )

and w(x) = 1
(N−2)ωN

∫

RN
f #(y)

|x−y|N−2 dy. Again we obtain w ∈ D2,p(RN ), w radial, w ≥
u# > 0 and −Δw = f # a.e. in R

N . By Pólya-Szegö inequality (see e.g., [10]), we
have

|u|p
3,p =

∫

RN

|∇Δu|pdx =
∫

RN

|∇ f |pdx ≥
∫

RN

|∇ f #|pdx = |w|p
3,p.

In the same way as k = 2 case, we use Theorem 1. Then we obtain

|u|p
3,p ≥ |w|p

3,p

≥ C p
3,p

∫

RN

|w|p

|x |3p
dx + C

( ∫

RN |w| pq
2 |x |α3 dx

∫

RN |w|p|x |2−3p dx

) 2
q−2

≥ C p
3,p

∫

RN

|u|p

|x |3p
dx + C

⎛

⎝

∫

RN |u#| pq
2 |x |α3 dx

C
2−3p
3

3,p |w|
3p−2
3

3,p ‖w‖ 2
3
p

⎞

⎠

2
q−2

≥ C p
3,p

∫

RN

|u|p

|x |3p
dx + C

⎛

⎝

∫

RN |u#| pq
2 |x |α3 dx

|u|
3p−2
3

3,p ‖Δu‖ 2
3
r

⎞

⎠

2
q−2

,

which concludes (7). �

Remark 3 Up to now, we do not obtain the result for k ≥ 4 in Theorem 2. For
example, put f = −Δu ∈ D2,p(RN ) for u ∈ D4,p(RN ). Since we do not know the
validity of the inequality

∫

RN

|Δ f |p dx ≥
∫

RN

|Δ f #|p dx,

the argument of the proof of Theorem 2 does not work for k = 4 case. Instead, if
we define f = (−Δ)2u ∈ L p(RN ) and w(x) = CN

∫

RN
f #(y)

|x−y|N−4 dy, then we obtain

(−Δ)2w = f # in R
N and |u|p

4,p = |w|p
4,p. However in this case, we do not know

whether the comparison u# ≤ w hold or not, which invalidates the proof of
Theorem 2.

3 Another Improved Rellich Inequality

In this section, we prove another improved Rellich inequality on the whole space.
In Theorem 1, we have used the Gagliardo-Nirenberg inequality as a substitute for
the Poincaré inequality, which is usually used to improve the Rellich inequality on
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bounded domains. In the next theorem, we will employ the logarithmic Sobolev
inequality on the whole space.

Theorem 3 Let k ≥ 2 be a integer and k ≤ kp < N. Then the inequality

|u|p
k,p − C p

k,p

∫

RN

|u|p

|x |kp
dx

≥ B E(u) exp

(

1 + E(u)−1
∫

RN

|u|p

|x |kp−2
log

(
ωN |x |N−kp|u|p

ω2E(u)

)

dx

)

(20)

holds for all radial function u ∈ W k,p(RN ), where B = 4π(p−1)
p C p

k−2,p Ap−1
k,p and

E(u) = ∫

RN |u|p|x |2−kpdx.

Proof of Theorem 3 We proceed as in the proof of Theorem 1. From the proof of
Theorem 1, we observe that

|u|p
k,p − C p

k,p

∫

RN

|Δu|p

|x |kp
dx ≥ B(k, p, N )

∫

R2

∣
∣
∣∇|v| p−2

2 v
∣
∣
∣
2

dy, (21)

where B(k, p, N ) = 4(p−1)ωN

pω2
Ck−2,pC p−1

k,p . Differently from the proof of Theorem
1, here, instead of the Gagliardo-Nirenberg inequality, we apply the logarithmic
Sobolev inequality (see [27]) on R2:

∫

R2
f 2(y) log f 2(y) dy ≤ log

(
1

πe

∫

R2
|∇ f (y)|2 dy

)

(22)

for the function f = ‖v‖− p
2

L p(R2)
|v| p−2

2 v, ‖ f ‖L2(R2) = 1, where v is defined in (10). By
(21) and (22), we obtain

|u|p
k,p − C p

k,p

∫

RN

|u|p

|x |kp
dx ≥ B(k, p, N )

∫

R2
|∇(|v| p−2

2 v)|2 dy

≥ π B(k, p, N )‖v‖p
L p(R2)

exp

⎛

⎝1 +
∫

R2

|v(y)|p

‖v‖p
L p(R2)

log

⎛

⎝
|v(y)|p

‖v‖p
L p(R2)

⎞

⎠ dy

⎞

⎠

= π B(k, p, N )
ω2

ωN
E(u) exp

(

1 + ωN

E(u)

∫ ∞
0

r N−kp |u(r)|p log

(
ωN r N−kp |u(r)|p

ω2E(u)

)

r dr

)

= B E(u) exp

(

1 + E(u)−1
∫

RN

|u|p

|x |kp−2
log

(
ωN |x |N−kp |u|p

ω2E(u)

)

dx

)

where E(u) = ∫

RN |u|p|x |2−kpdx = ωN
ω2

‖v‖p
L p(R2)

. Hence the inequality (20)
holds. �

Remark 4 The inequality (20) has an invariance under the scaling

uλ(x)= λ
− N−kp

p u(y) where y = x
λ
, (λ > 0, x ∈ R

N ). Indeed, we have E(uλ) =
λ2E(u) and
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E(uλ) exp

(

1 + E(uλ)−1
∫

RN

|uλ(x)|p

|x |kp−2
log

(
ωN |x |N−kp|uλ(x)|p

ω2E(uλ)

)

dx

)

= λ2E(u) exp

(

1 + E(u)−1
∫

RN

|u(y)|p

|y|kp−2

(

log λ−2 + log

(
ωN |y|N−kp|u(y)|p

ω2E(u)

))

dy

)

= E(u) exp

(

1 + E(u)−1
∫

RN

|u(y)|p

|y|kp−2
log

(
ωN |y|N−kp|u(y)|p

ω2E(u)

)

dy

)

,

so the inequality (20) also enjoys a scale invariance.
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Appendix

Davies-Hinz [12] showed that the constant C p
k,p in the inequality (4) is optimal when

Ω = R
N . In this Appendix, we will show the fact when Ω is a general bounded

domain.

Proposition 1 Let k ∈ N, k < kp < N and let Ω be a bounded domain with 0 ∈ Ω

in R
N . Then the constant C p

k,p in the inequality (4) is optimal. That is

inf
0 �=u∈W k,p

0 (Ω)

|u|p
k,p

∫

Ω

|u(x)|p

|x |kp dx
= C p

k,p.

Proof of Proposition 1
By the scaling (5) and zero extension, we may assume B1(0) ⊂⊂ Ω without loss

of generality. First, we show the optimality of C p
k,p in the even case k = 2m, m ∈ N.

For 0 < ε  1, we define the function uε ∈ W 2m,p
0 (Ω) as follows:

uε(x) =

⎧
⎪⎨

⎪⎩

ε
− N−2mp

p log 1
ε
, if 0 ≤ |x | ≤ ε

|x |− N−2mp
p log 1

|x | , if ε ≤ |x | ≤ 1,

0, if x ∈ Ω \ B1(0).

Let α = N−2mp
p . By using the formula

Δr−α = α(α − N + 2)r−α−2,

Δ

(

r−α log
1

r

)

= α(α − N + 2)r−α−2 log
1

r
+ (2α − N + 2)r−α−2,
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we compute that

Δmuε =

⎧
⎪⎨

⎪⎩

0, if 0 ≤ |x | ≤ ε,

Am |x |−(α+2m) log 1
|x | + Bm |x |−(α+2m), if ε ≤ |x | ≤ 1,

0, if x ∈ Ω \ B1(0),

where Am(α) and Bm(α) are determined by the iterative formula:

A1(α) = α(α − N + 2),

A j+1(α) = (α + 2 j) (α + 2( j + 1) − N ) A j , j = 1, 2, . . . ,

B1(α) = 2α − N + 2,

B j+1(α) = (α + 2 j) (α + 2( j + 1) − N ) B j + 2α + 2(2 j + 1) − N j = 1, 2, . . . .

Thus we have

Am = Am(α) =
m−1∏

j=0

(α + 2 j)(α + 2( j + 1) − N ), |Am(α)| = C2m,p.

We compute

∫

Ω

|Δmuε(x)|p dx = ωN

∫ 1

ε

∣
∣
∣
∣Am log

1

r
+ Bm

∣
∣
∣
∣

p

r−(α+2m)p+N−1dr

= ωN

(
1

Am

)∫ Bm+Am log 1
ε

Bm

|t |p dt

= ωN

(
1

Am(p + 1)

) (∣
∣
∣
∣Bm + Am log

1

ε

∣
∣
∣
∣

p

(Bm + Am log
1

ε
) − |Bm |p Bm

)

. (23)

On the other hand, we have

∫

Ω

|uε(x)|p

|x |2mp
dx

= ωN ε−αp

(

log
1

ε

)p ∫ ε

0
r N−2mp−1 dr + ωN

∫ 1

ε

r−1

(

log
1

r

)p

dr

= ωN
εN−2mp

N − 2mp

(

log
1

ε

)p

+ ωN

∫ log 1
ε

0
t p dt

= ωN
εN−2mp

N − 2mp

(

log
1

ε

)p

+ ωN
1

p + 1

(

log
1

ε

)p+1

. (24)
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By (23), (24) and the fact |Am | = C2m,p, we obtain

∫

B1(0)
|Δmuε(x)|p dx

∫

B1(0)
|uε(x)|p

|x |2mp dx
→ |Am(α)|p = C p

2m,p as ε → 0,

which implies the optimality of C p
2m,p.

Next, in the odd case k = 2m + 1, m ∈ N, we consider the function uε ∈
W 2m+1,p

0 (B1(0)) as follows:

uε(x) =

⎧
⎪⎨

⎪⎩

ε
− N−(2m+1)p

p log 1
ε
, if 0 ≤ |x | ≤ ε,

|x |− N−(2m+1)p
p log 1

|x | , if ε ≤ |x | ≤ 1,

0, if x ∈ Ω \ B1(0).

Let β = N−(2m+1)p
p . Note that

∇(Δmuε) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0, if 0 ≤ |x | ≤ ε,

|x |−(β+2m+2)x
{
−Am(β)(β + 2m) log 1

|x | − (Am(β) + (β + 2m)Bm(β))
}

,

if ε ≤ |x | ≤ 1,

0, if x ∈ Ω \ B1(0).

If we make a calculation similar to the even case, we obtain

∫

Ω
|∇(Δmuε)(x)|p dx
∫

Ω

|uε(x)|p

|x |(2m+1)p dx
→ |Am(β)|p(β + 2m)p as ε → 0,

which implies the optimality ofC p
2m+1,p byβ + 2m = N−p

p andC p
2m+1,p = |Am(β)|p

(β + 2m)p. �

Proposition 2 Put r = |x |, x ∈ R
N and let

u#(r) = inf{τ > 0 | μu(τ ) ≤ |Br (0)|}

be the symmetric decreasing rearrangement of a function u, where μu is a dis-
tribution function of u: μu(τ ) = ∣

∣{x ∈ R
N | |u(x)| > τ }∣∣, τ ≥ 0. Define uλ(x) =

λ
− N−kp

p u
(

x
λ

)
for λ > 0. Then the equality

(uλ)
#(r) = (u#)λ(r) (25)

holds for any r, λ > 0.



254 M. Sano and F. Takahashi

Proof of Proposition 2 The distribution function of uλ can be written as

μuλ
(τ ) = ∣

∣{x ∈ R
N | |uλ(x)| > τ }∣∣

=
∣
∣
∣
∣{x ∈ R

N

∣
∣
∣
∣ λ

− N−kp
p

∣
∣
∣u

( x

λ

)∣
∣
∣ > τ }

∣
∣
∣
∣

= |{λy ∈ R
N | |u(y)| > λ

N−kp
p τ }|

= λN |{y ∈ R
N | |u(y)| > λ

N−kp
p τ }|

= λN μu(λ
N−kp

p τ). (26)

Hence by the definition of (uλ)
# and (26), we obtain

(uλ)
#(r) = inf{τ > 0 | μuλ

(τ ) ≤ |Br |}
= inf{τ > 0 | λN μu(λ

N−kp
p τ) ≤ |Br |}

= inf{λ− N−kp
p τ̃ > 0 | μu(τ̃ ) ≤ λ−N |Br |}

= λ
− N−kp

p inf{τ̃ > 0 | μu(τ̃ ) ≤ |B r
λ
|}

= λ
− N−kp

p u#
( r

λ

)
= (u#)λ(r).

The proof of Proposition 2 is now complete. �
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Solvability of a Semilinear Parabolic
Equation with Measures as Initial Data

Jin Takahashi

Abstract We study a sharp condition for the solvability of the Cauchy problem
ut − Δu = up, u(·, 0) = μ, where N ≥ 1, p ≥ (N + 2)/N andμ is a Radon measure
on RN . Our results show that the problem does not admit any local nonnegative
solutions for some μ satisfying μ({y ∈ RN ; |x − y| < ρ}) ≤ CρN−2/(p−1)(log(e +
1/ρ))−1/(p−1) (x ∈ RN , ρ > 0) with a constant C > 0. On the other hand, the
problem admits a local solution ifμ({y ∈ RN ; |x − y| < ρ}) ≤ CρN−2/(p−1)(log(e +
1/ρ))−1/(p−1)−ε (x ∈ RN , ρ > 0) with a constant ε ∈ (0, 1/(p − 1)).

Keywords Solvability · Semilinear parabolic equations · Radon measures

2010 MSC: 35K58 · 35K15 · 35A01

1 Introduction

This paper concerns the Cauchy problem

{
ut − Δu = up in RN × (0, T),

u(·, 0) = μ in RN ,
(1)

where N ≥ 1, T > 0, p > 1 and μ is a nonnegative Radon measure on RN . We say
that u is a solution of (1) if u is a nonnegative function satisfying the equation in the
classical sense and u(·, t) → μ as t ↓ 0 weakly as measures on each fixed open ball.
In this paper, we study a sharp condition on μ for the solvability of (1) under the
condition that

p ≥ pF := (N + 2)/N .
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A necessary and sufficient condition on μ for the existence of solutions of (1)
was indirectly characterized by Baras and Pierre [4, THÉORÈME 3.2]. They also
gave an explicit necessary condition for existence in [4, PROPOSITION 3.2] (see
also Andreucci and DiBenedetto [3, Part I, Proposition 4.3, Remark 4.9]). More
precisely, they proved that if u ≥ 0 satisfies ut − Δu = up inRN × (0, T), then there
exists a unique Radon measure μ on RN such that u(·, t) → μ as t ↓ 0 weakly as
measures on each fixed open ball. Furthermore, μ must satisfy

sup
x∈RN

μ(B1(x)) < +∞ if p < pF, (2)

and for any compact subset K of RN there exists a constant C > 0 such that

μ(Bρ(x)) ≤
{

C(log(1/ρ))−
N
2 if p = pF,

Cρ
N− 2

p−1 if p > pF,
(3)

for any x ∈ K and ρ > 0 small. Here Bρ(x) is the N-dimensional open ball of radius
ρ > 0 centered at x ∈ RN . We remark that (2) is also a sufficient condition for the
existence of local solutions of (1) (see [4, COROLLAIRE 3.4.i]). For p > pF , by the
result of Robinson and Sierżęga [17, Theorem 3], we can check that the problem (1)
admits a solution for the initial data μ1(A) := ∫A |f1(x)|dx if |f1(x)| ≤ c|x|−2/(p−1)

with c > 0 small (see Proposition 2 in the last part of Sect. 3 for more details).
Therefore it is expected that (3) is also a sufficient condition.

In this paper, by taking an approach similar to that of Kan and the author [11], we
first show that (3) is not a sufficient condition. Indeed, Theorem 1 below says that
the problem (1) does not admit any local solutions for some initial data μ2 satisfying

μ2(Bρ(x)) ≤ Cρ
N− 2

p−1 (log(e + 1/ρ))
− 1

p−1 if p ≥ pF (4)

for any x ∈ RN and ρ > 0 with a constant C > 0.
We next consider sufficient conditions on μ for the existence of solutions of (1).

The case where μ is an Lq function was first investigated by Weissler [20, 21]. For
subsequent developments, see [5, 7, 8, 14, 17], [16, Sect. 15] and the references
therein. In the case where the initial data is a Radon measure, sufficient conditions
have been studied by many papers, see for instance [1–4, 12, 13, 15, 19]. Among
others, in Niwa [15, Subsect. 1.5, Theorem] (see also Andreucci [2, Theorem 1.1,
Remark 1.2]), it was shown that (1) admits a local solution if there exist constants
C > 0 and ε > 0 such that

μ(Bρ(x)) ≤ Cρ
N− 2

p−1+ε if p ≥ pF

for any x ∈ RN and ρ > 0 small. Our second result improves this condition. Roughly
speaking, Theorem 2 below says that the above condition can be replaced by
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μ(Bρ(x)) ≤ Cρ
N− 2

p−1 (log(e + 1/ρ))
− 1

p−1−ε if p ≥ pF .

Before stating main results precisely, we introduce a Morrey-type space. Let
p ≥ pF and let φ be a positive function defined on (0,∞). Set

X = Xp
φ(RN ) := {μ;μ is a Radon measure on RN satisfying ‖μ‖X < +∞} ,

‖μ‖X = ‖μ‖Xp
φ(RN ) := sup

x∈RN

sup
ρ>0

(
φ(ρ)−1ρ

−(N− 2
p−1 )

μ(Bρ(x))
)

.

For nonexistence, we impose the following conditions on φ:

∫ 1

0

φ(η)p−1

η
dη = +∞, (5)

there exists α ∈ (0,
2

p − 1
) such that ρ−αφ(ρ) is nonincreasing, (6)

there exists β ∈ (0, N − 2

p − 1
) such that ρβφ(ρ) is nondecreasing, (7)

φ(ρ) is nondecreasing and lim
ρ↓0 φ(ρ) = 0. (8)

Theorem 1 Let p ≥ pF and let φ be a positive and continuous function defined on
(0,∞) satisfying (5) and (6). Suppose that φ satisfies (7) if p > pF or φ satisfies (8)
if p = pF. Then there exists μ ∈ X such that for all T > 0 the problem (1) does not
admit any solutions.

Wenote that, for every constant c1 > 0, the positive function φ1(ρ) := c1(log(e +
1/ρ))−1/(p−1) is defined on (0,∞) and satisfies (5), (6) and (8). If p > pF , (7) is also
satisfied. Hence the conditions stated in Theorem 1 hold for the choice of φ in (4).

For existence, we introduce the following conditions:

∫ 1

0

φ(η)p−1

η
dη < +∞, (9)

or the stronger condition
∫ ∞

0

φ(η)p−1

η
dη < +∞. (10)

Theorem 2 Let φ be a positive function defined on (0,∞).

(i) Let p ≥ pF. Suppose that (6) and (9) hold. Then for any μ ∈ X with μ 	= 0,
there exists a constant T0 = T0(N, p, φ, ‖μ‖X) > 0 such that the problem (1)
for T = T0 admits a positive solution.

(ii) Let p > pF. Suppose that (6) and (10) hold. Then there exists a constant c0 =
c0(N, p, φ) > 0 such that for any μ ∈ X with μ 	= 0 and ‖μ‖X < c0, the problem
(1) for T = +∞ admits a positive solution u satisfying
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‖u(·, t)‖L∞(RN ) ≤ C‖μ‖Xφ(t
1
2 )t−

1
p−1 for all t > 0

with a constant C = C(N, p, α) > 0.

We remark that, for every ε ∈ (0, 1/(p − 1)) and positive constants c2 and c3,
the functions φ2(ρ) := c2(log(e + 1/ρ))−1/(p−1)−ε and φ3(ρ) := c3 min{(log(e +
1/ρ))−1/(p−1)−ε, (log(e + ρ))−1/(p−1)−ε} satisfy the conditions stated in Theorem 2
(i) and (ii), respectively. We also remark that the equation in (1) with T = +∞ has
no positive solution for p ≤ pF (see for example [16, Theorem 18.1]).

This paper is organized as follows. In Sect. 2, Theorem 1 is proved. The proof
is based on showing the unboundedness of some fractional maximal operator by
utilizing a fractal-type set. In Sect. 3, we show Theorem 2 by the construction of a
monotone iteration scheme.

2 Nonexistence of Solutions

In this section, we use the following notation. Let Qρ(x) be the N-dimensional open
cube of side 2ρ (not “ρ”) centered at x ∈ RN . We write Qρ = Qρ/2(ρ/2, . . . , ρ/2),
that is,Qρ = (0, ρ) × · · · × (0, ρ). Let p ≥ pF and let φ be a positive and continuous
function defined on (0,∞). Define

Y := {f ; f is a Lebesgue measurable function on RN with ‖f ‖Y < +∞} ,

‖f ‖Y := sup
x∈RN

sup
ρ>0

(

φ(ρ)−1ρ
−(N− 2

p−1 )

∫

Qρ (x)
|f (y)|dy

)

.

We always regard a function f ∈ Y as a Radon measure on RN defined by μf (A) :=∫

A |f (x)|dx. We remark that Y ⊂ X, since ‖μf ‖X ≤ ‖f ‖Y for f ∈ Y . For a Radon
measure ν, we define

Uν(x, t) :=
∫

RN

G(x − y, t)dν(y), (11)

where G(x, t) := (4π t)−N/2e−|x|2/(4t).
We assume that (6) and (7) hold for p > pF and that (6) and (8) hold for p = pF .

Theorem 1 will be proved once we prove the next proposition.

Proposition 1 If (5) holds, then there exists a nonnegative function g∗ ∈ Y such that
g∗ = 0 a.e. in RN \ Q1 and ‖Ug∗‖Lp(Q√

T ×(0,T)) = +∞ for any T ∈ (0, 1), where Ug∗
is defined by (11) with dν(y) = g∗(y)dy.

Before proving the proposition, we show Theorem 1 by modifying the argument
of Brezis and Cazenave [5, Proof of Theorem 11].
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Proof (Proof of Theorem 1) Let us consider the solvability of the problem (1) under
the condition that μ = g∗, where g∗ ∈ Y is given by Proposition 1. Contrary to the
conclusion, suppose that there exists T0 > 0 such that the problem (1) for T = T0

admits a solution u. Without loss of generality, we may assume that T0 < 1.
Let ε ∈ (0, T0/2) and let ψ ∈ C∞

0 (RN ) satisfy 0 ≤ ψ ≤ 1, ψ = 1 in Q1 and ψ =
0 in RN \ Q2(0). Integration by parts shows that

‖u‖p
Lp(Q1×(ε,T0/2))

≤
∫ T0/2

ε

∫

RN

upψdxdt

=
∫

RN

(u(x, T0/2) − u(x, ε))ψ(x)dx −
∫ T0/2

ε

∫

RN

uΔψdxdt

≤
∫

RN

u(x, T0/2)ψ(x)dx +
∫ T0/2

ε

∫

RN

u|Δψ |dxdt.

Since |Δψ | ∈ C0(RN ) and u(·, t) → g∗ as t ↓ 0 weakly as measures on each
fixed open ball, we have u|Δψ | ∈ L1(RN × (0, T0/2)). Thus letting ε → 0 yields
‖u‖Lp(Q1×(0,T0/2)) < +∞.

On the other hand, for x ∈ RN and s, t > 0 with t + s < T0/2, the maximum
principle for classical solutions shows that

u(x, t + s) ≥
∫

RN

G(x − y, t)u(y, s)dy ≥
∫

RN

ψ(y)G(x − y, t)u(y, s)dy.

Since ψ(·)G(x − ·, t) ∈ C0(RN ) and g∗ = 0 a.e. in RN \ Q1, letting s ↓ 0 gives

u(x, t) ≥
∫

RN

ψ(y)G(x − y, t)g∗(y)dy = Ug∗(x, t)

for (x, t) ∈ RN × (0, T0/2). By the relation T0/2 < 1 and Proposition 1, we obtain

+∞ > ‖u‖Lp(Q1×(0,T0/2)) ≥ ‖Ug∗‖Lp(Q√
T0/2×(0,T0/2)) = +∞,

a contradiction. �
In the rest of this section, we prove Proposition 1 bymeans of several lemmas. The

proof is based on showing the unboundedness of some fractional maximal operator
by using

fn(x) :=∏N
i=1 χIn(xi), x = (x1, . . . , xN ) ∈ RN ,

where {In}∞n=0 is a sequence of sets defined later. We remark that ∩∞
n=0In becomes a

fractal-type set and that fractal sets are utilized for showing the optimality of max-
imal operators, see for instance Carro, Pérez, Soria and Soria [6, Theorem 2.1] and
Sawano, Sugano and Tanaka [18, Proposition 4.1]. Recently, Kan and the author [11,
Sect. 4] modified their method and proved the nonexistence of solutions with a time-
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dependent singularity by using χEn(t), t ∈ R, where {En}∞n=0 is a suitable sequence
of sets. The following is a multidimensional generalization of the argument of [11].

To define {In}∞n=0, we construct a sequence {Rn}∞n=0 as follows. Let θ ∈ (0, 1/2N ].
We consider the equation

F(R) := RN− 2
p−1 φ(R) − φ(1/2)θ = 0.

The assumptions (7) and (8) imply that

lim
R↓0 F(R) = 0 − φ(1/2)θ < 0,

F(1/2) = {(1/2)N− 2
p−1 − θ

}
φ(1/2) > 0.

We deduce from the continuity of F that there exists a positive solution of F(R) = 0
and that the smallest positive solution, denoted by R(θ), can be determined for each
θ ∈ (0, 1/2N ]. Set R0 := 1 and Rn := R(1/2Nn) for n ≥ 1. One can observe that
1/2 > R1 > R2 > · · · > Rn → 0 as n → ∞ and

2NnR
N− 2

p−1
n φ(Rn) = φ(1/2) for n ≥ 1. (12)

By the following lemma, we see that Rn+1 < Rn/2 for all n ≥ 0.

Lemma 1 Let rn := Rn/Rn−1 for n ≥ 1. Then there exist constants r and r with
0 < r < r < 1/2 such that r ≤ rn ≤ r for p > pF and 0 < rn ≤ r for p = pF.

Proof Let n ≥ 1. By (12) and the monotonicity conditions (6) and (7), we have

2NnR
N− 2

p−1
n φ(Rn) = 2N(n−1)R

N− 2
p−1

n−1 φ(Rn−1)
⎧
⎨

⎩

≤ 2N(n−1)R
N− 2

p−1+α

n−1 R−α
n φ(Rn) for p ≥ pF,

≥ 2N(n−1)R
N− 2

p−1−β

n−1 Rβ
n φ(Rn) for p > pF .

Simple calculations show that

0 < (1/2)N/(N− 2
p−1−β) ≤ rn ≤ (1/2)N/(N− 2

p−1+α)
< 1/2 for p > pF,

0 < rn ≤ (1/2)N/(N− 2
p−1+α)

< 1/2 for p ≥ pF,

which proves the lemma. �
Define {In}∞n=0 by In =⋃2n

l=1(an,l, bn,l), where each of the elements of {an,l} and
{bn,l} is inductively determined in the following way:

a0,1 := 0, b0,1 := 1,

an+1,2l−1 = an,l, bn+1,2l−1 = an,l + Rn+1,

an+1,2l = bn,l − Rn+1, bn+1,2l = bn,l.
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From definition and Lemma 1, it follows that

0 = an,1 < bn,1 < an,2 < bn,2 < · · · < an,2n < bn,2n = 1,

bn,l − an,l = Rn and In ⊃ In+1 ⊃ In+2 ⊃ · · · .
Set γ := 2/(Np). For f ∈ Y , we define a fractional maximal function Mf by

Mf (x) := sup
P=(ρ1,...,ρN )∈Q1

(

|P|−N(1−γ )

∫

DP(x)
|f (y)|dy

)

, (13)

DP(x) := (x1 + (1 − 2r)ρ1, x1 + ρ1) × · · · × (xN + (1 − 2r)ρN , xN + ρN ). (14)

We will show the unboundedness of a fractional maximal operator M : f �−→ Mf

in the sense that ‖Mfn‖Lp(Q1)/‖fn‖Y → +∞ as n → ∞, where fn(x) =∏N
i=1 χIn(xi).

Before starting estimation, we note that the monotonicity conditions (6)–(8) imply
that

η
− 2

p−1 φ(η) is decreasing (15)

and
η

N− 2
p−1 φ(η) is nondecreasing. (16)

Lemma 2 ‖fn‖Y ≤ C(2nRn)
N , where C > 0 is a constant independent of n.

Proof From (15) and the definition of Qρ(x), we see that

‖fn‖Y ≤ 2
2

p−1 sup
x∈RN

sup
ρ>0

(

φ(2ρ)−1ρ
−(N− 2

p−1 )
∫

Qρ(x)
fn(y)dy

)

≤ 2
2

p−1

N∏

i=1

sup
xi∈R

sup
ρi>0

(

φ(2ρi)
− 1

N ρ
− 1

N (N− 2
p−1 )

i

∫ xi+ρi

xi−ρi

χIn (η)dη

)

.

Taking ai = xi − ρi and bi = xi + ρi, we have

‖fn‖Y ≤ 2
2

p−1

N∏

i=1

sup
ai<bi

(

φ(bi − ai)
− 1

N {(bi − ai)/2}− 1
N (N− 2

p−1 )

∫ bi

ai

χIn(η)dη

)

= 2N

{

sup
a<b

(

φ(b − a)−
1
N (b − a)

− 1
N (N− 2

p−1 )

∫ b

a
χIn(η)dη

)}N

=: 2N

(

sup
a<b

An(a, b)

)N

.

We put Ãn = supa<b An(a, b).
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Let us examine the function An(a, b). We observe the following 4 cases: (i) a ∈ In

and b ∈ In, (ii) a /∈ In and b ∈ In, (iii) a ∈ In and b /∈ In, (iv) a /∈ In and b /∈ In. Then
by (15) and (16), we see that An(a, b) is decreasing in a ∈ In, increasing in a /∈ In,
increasing in b ∈ In and decreasing in b /∈ In. This observation shows that

Ãn ≤ max
1≤l1≤l2≤2n

(

φ(bn,l2 − an,l1)
− 1

N (bn,l2 − an,l1)
− 1

N (N− 2
p−1 )

∫ bn,l2

an,l1

χIn(η)dη

)

= Rn max
1≤l1≤l2≤2n

(

(l2 − l1 + 1)
{
(bn,l2 − an,l1)

N− 2
p−1 φ(bn,l2 − an,l1)

}− 1
N

)

.

Let 1 ≤ l1 ≤ l2 ≤ 2n. Then 2m ≤ l2 − l1 + 1 ≤ 2m+1 − 1 for some 0 ≤ m ≤ n.
We observe that bn,l2 ≥ bn,l1+2m−1 and that

bn,l1 − an,l1 = Rn, bn,l1+21−1 − an,l1 ≥ Rn−1 − 2Rn,

bn,l1+22−1 − an,l1 ≥ Rn−2 − 2Rn−1, . . . , bn,l1+2m−1 − an,l1 ≥ Rn−m − 2Rn−m+1.

By Lemma 1, we have

bn,l2 − an,l1 ≥ Rn−m − 2Rn−m+1 = Rn−m(1 − 2rn−m+1) ≥ Rn−m(1 − 2r).

Hence (16) yields

Ãn ≤ Rn max
0≤m≤n

(

2m+1
[
{Rn−m(1 − 2r)}N− 2

p−1 φ(Rn−m(1 − 2r))
]− 1

N

)

.

By (15), we have

[
{Rn−m(1 − 2r)}− 2

p−1 φ(Rn−m(1 − 2r))
]− 1

N ≤
(

R
− 2

p−1
n−m φ(Rn−m)

)− 1
N

.

This together with (12) gives

Ãn ≤ 2Rn(1 − 2r)−1 max
0≤m≤n

(

2m

(

R
N− 2

p−1
n−m φ(Rn−m)

)− 1
N

)

= 2Rn(1 − 2r)−1 max
0≤m≤n

(
2m
{
2−N(n−m)φ(1/2)

}− 1
N

)

= 2(1 − 2r)−1φ(1/2)−
1
N (2nRn),

and the lemma follows. �



Solvability of a Semilinear Parabolic Equation with Measures as Initial Data 265

Lemma 3 If p > pF, then there exists a constant C > 0 independent of n such that

‖Mfn‖p
Lp(Q1)

≥ 1

C
(2nRn)

Np
n−1∑

j=0

φ(Rj)
p−1.

Proof Let n ≥ 1. For 0 ≤ j ≤ n − 1, 1 ≤ i ≤ N and 1 ≤ li ≤ 2j, taking into account
that bj,li − aj,li = Rj > Rj+1 + Rj+1/(2r) by Lemma 1, we define

Jj,li := (aj,li + Rj+1, bj,li − Rj+1/(2r)), Jj,l1,...,lN := Jj,l1 × · · · × Jj,lN .

We see that (
⋃

1≤l1,...,lN ≤2j Jj,l1,...,lN ) ∩ (
⋃

1≤l′1,...,l′N ≤2j′ Jj′,l′1,...,l′N ) = ∅ for j 	= j′ and
⋃n−1

j=0

⋃
1≤l1,...,lN ≤2j Jj,l1,...,lN ⊂ Q1.

Let x ∈ Jj,l1,...,lN . Then Rj+1/(2r) ≤ bj,li − xi ≤ Rj − Rj+1 < 1/2. Substituting
P = (ρ1, . . . , ρN ) = (bj,l1 − x1, . . . , bj,lN − xN ) into (14) gives

DP(x) = (bj,l1 − 2r(bj,l1 − x1), bj,l1) × · · · × (bj,lN − 2r(bj,lN − xN ), bj,lN )

⊃ (bj,l1 − Rj+1, bj,l1) × · · · × (bj,lN − Rj+1, bj,lN ).

Hence by (13), we obtain

Mfn(x) ≥
{

N∑

i=1

(bj,li − xi)
2

}− N
2 (1−γ ) N∏

i=1

∫ bj,li

bj,li −Rj+1

χIn(η)dη.

By counting intervals in In, we see that
∫ bj,li

bj,li −Rj+1
χIn(η)dη = 2n−j−1Rn. Thus,

Mfn(x) ≥ (2n−j−1Rn)
N

{
N∑

i=1

(bj,li − xi)
2

}− N
2 (1−γ )

for x ∈ Jj,l1,...,lN , so that

‖Mfn‖p
Lp(Q1)

≥
n−1∑

j=0

⎛

⎜
⎝

∑

1≤l1,··· ,lN ≤2j

∫

Jj,l1,...,lN

Mfn (y)pdy

⎞

⎟
⎠

≥
n−1∑

j=0

(2n−j−1Rn)Np
∑

1≤l1,··· ,lN ≤2j

∫

Jj,l1,...,lN

⎧
⎨

⎩

N∑

i=1

(bj,li − yi)
2

⎫
⎬

⎭

− Np
2 (1−γ )

dy.

The change of variables ỹi = bj,li − yi and ỹ := (ỹ1, . . . , ỹN ) gives

‖Mfn‖p
Lp(Q1)

≥ 1

2Np
(2nRn)

Np
n−1∑

j=0

2−Nj(p−1)
∫

Dj

|ỹ|−Np(1−γ )dỹ
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for p > pF , where Dj := (Rj+1/(2r), Rj − Rj+1) × · · · × (Rj+1/(2r), Rj − Rj+1).
Note that even if p = pF the above inequalities hold, and so

‖Mfn‖p
Lp(Q1)

≥ 1

C
(2nRn)

Np
n−1∑

j=0

2−Nj(p−1)
∫

Dj

|ỹ|−N dỹ. (17)

We continue to examine the case p > pF . Since Rj+1 = Rjrj+1, we have

∫

Dj

|ỹ|−Np(1−γ )dỹ ≥ {N(Rj − Rj+1)
2
}− Np

2 (1−γ ) {
Rj − Rj+1 − Rj+1/(2r)

}N

≥ N− Np
2 (1−γ )

{
1 − rj+1 − rj+1/(2r)

}N
RN−Np(1−γ )

j .

From Lemma 1 and the relation N − Np(1 − γ ) = −(p − 1){N − 2/(p − 1)}, it fol-
lows that

‖Mfn‖p
Lp(Q1)

≥ (1/2 − r)N

2NpNNp(1−γ )/2
(2nRn)

Np
n−1∑

j=0

(

2NjR
N− 2

p−1

j

)−(p−1)

.

Then (12) shows the lemma. �
To estimate the norm of Mfn for the case p = pF , we need the following lemma.

Lemma 4 Let b > a > 0. Then for any ε ∈ (0, (b/a) − 1), there exists a constant
C > 0 depending only on N and ε such that

∫ b

a
· · ·
∫ b

a
|y|−N dy1 · · · dyN ≥ 1

C
(log b − log a − log(1 + ε)).

Proof Since the case N = 1 is easy, we only consider the case N ≥ 2. We prove this
lemma by geometric observation. Define points Pa

1, . . . Pa
N , Pb

1, . . . Pb
N in RN by

Pa
1 := ((1 + ε)a, a, . . . , a), Pa

2 := (a, (1 + ε)a, a, . . . , a),

. . . , Pa
N := (a, a, . . . , a, (1 + ε)a),

Pb
1 :=

(

b,
b

1 + ε
,

b

1 + ε
, . . . ,

b

1 + ε

)

, Pb
2 :=

(
b

1 + ε
, b,

b

1 + ε
, . . . ,

b

1 + ε

)

,

. . . , Pb
N :=

(
b

1 + ε
, . . . ,

b

1 + ε
, b

)

.

Note that, for each i, the three points Pa
i , Pb

i and 0 lie on the same line.
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Let Aa ⊂ RN be the regular (N − 1)-simplex with vertices Pa
1, …, Pa

N and let Ba
in

be the (N − 1)-dimensional ball inscribed in Aa with radius ra
in and centered at Pa

in.
Let Ka ⊂ RN be the cone of vertex 0 ∈ RN and base Ba

in. The height of Ka is |Pa
in|.

Let ra
s denote the slant height of Ka. In the same manner, we define Ab, Bb

in, rb
in, Pb

in,
Kb and rb

s as associated with Pb
1, …, Pb

N . Note that

ra
in = ε√

(N − 1)N
a, Pa

in =
(

N + ε

N
a, . . . ,

N + ε

N
a

)

,

(ra
s )

2 = (ra
in)

2 + |Pa
in|2 =

{
ε2

(N − 1)N
+ (N + ε)2

N

}

a2 >
(√

Na
)2

and that

rb
in = ε

(1 + ε)
√

(N − 1)N
b, Pb

in =
(

N + ε

(1 + ε)N
b, . . . ,

N + ε

(1 + ε)N
b

)

,

(rb
s )

2 = (rb
in)

2 + |Pb
in|2 =

{
ε2

(N − 1)N
+ (N + ε)2

N

}
1

(1 + ε)2
b2 <

(√
Nb
)2

.

Since ε < (b/a) − 1, we have |Pb
in|2 − |Pa

in|2 > 0. Then we see that Kb \ Ka ⊂
[a, b]N .

Define C̃ := |Pa
in|/ra

s . Simple calculations show that

( |Pa
in|

ra
s

)2

=
( |Pb

in|
rb

s

)2

= (N + ε)2

ε2(N − 1)−1 + (N + ε)2
,

so that 0 < C̃ < 1 and C̃ depends only on N and ε. Let Sa be the spherical cap of
Bra

s
(0) associated with the cone Ka, that is, Sa ⊂ Bra

s
(0) is a spherical cap of height

ra
s − |Pa

in| and radius ra
s . Let Sb be the spherical cap of Brb

s
(0) determined by the same

way. Then Sb \ Sa ⊂ [a, b]N and the area of Sa, denoted by Sa
area, can be written as

Sa
area = 1

2
NωN (ra

s )
N−1

∫ 1−C̃2

0 η
N−1
2 −1(1 − η)

1
2 −1dη

∫ 1
0 η

N−1
2 −1(1 − η)

1
2 −1dη

,

where ωN is the volume of the unit ball in RN . Hence we can estimate that

∫ b

a
· · ·
∫ b

a
|y|−N dy1 · · · dyN ≥ Sa

area

NωN (ra
s )

N−1

∫

B
rb
s
(0)\Bra

s
(0)

|y|−N dy

= 1

C
(log b − log a − log(1 + ε))

for some constant C > 0 depending only on N and ε. Thus the lemma follows. �
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Lemma 4 yields the following estimate.

Lemma 5 If p = pF, then there exists a constant C > 0 independent of n such that

‖Mfn‖p
Lp(Q1)

≥ (2nRn)
Np

⎧
⎨

⎩

1

C

n−1∑

j=0

(

φ(Rj)
p−1 log

Rj

Rj+1

)

− C

⎫
⎬

⎭
.

Proof Let us examine the integral in the right-hand side of (17). Since

Rj − Rj+1

Rj+1/(2r)
= 1 − rj+1

rj+1/(2r)
≥ 2(1 − r) > 1,

we can apply Lemma 4 with a = Rj+1/(2r), b = Rj − Rj+1 and ε = 2(1 − r) − 1.
Therefore we can estimate that

∫

Dj

|ỹ|−N dỹ ≥ 1

C

{
log(Rj − Rj+1) − log(Rj+1/(2r)) − log(2(1 − r))

}

= 1

C

{

log
Rj

Rj+1
− log

(
Rj

Rj+1
× Rj+1

2r
× 2(1 − r)

Rj(1 − rj+1)

)}

≥ 1

C

(

log
Rj

Rj+1
− log

1

r

)

.

Hence by (17) and (12), we obtain

‖Mfn‖p
Lp(Q1)

≥ (2nRn)
Np

⎧
⎨

⎩

1

C

n−1∑

j=0

2−Nj(p−1) log
Rj

Rj+1
− C

∞∑

j=0

2−Nj(p−1)

⎫
⎬

⎭

≥ (2nRn)
Np

⎧
⎨

⎩

1

C

n−1∑

j=0

(
φ(1/2)

φ(Rj)

)−(p−1)

log
Rj

Rj+1
− C

⎫
⎬

⎭
,

which proves the lemma. �
Lemmas 1–3 and 5 show the unboundedness of M : f �−→ Mf .

Lemma 6 If (5) holds, then ‖Mfn‖Lp(Q1)/‖fn‖Y → +∞ as n → ∞.

Proof First, we consider the case p > pF . By Lemmas 2 and 3, we have

‖Mfn‖p
Lp(Q1)

‖fn‖p
Y

≥ 1

C

n−1∑

j=1

φ(Rj)
p−1 = 1

C

n−1∑

j=1

φ(Rj)
p−1

R2
j

(Rj−1 − Rj) × R2
j

Rj−1 − Rj
.
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Since η−2φ(η)p−1 is decreasing, Lemma 1 and (5) give

‖Mfn‖p
Lp(Q1)

‖fn‖p
Y

≥ 1

C

n−1∑

j=1

∫ Rj−1

Rj

φ(η)p−1

η2
dη × R2

j

Rj−1 − Rj

≥ 1

C

n−1∑

j=1

∫ Rj−1

Rj

φ(η)p−1

η
dη × R2

j

Rj−1(Rj−1 − Rj)

≥ r2

C

∫ 1

Rn−1

φ(η)p−1

η
dη → +∞ as n → ∞.

We next examine the case p = pF . Lemmas 2 and 5 yield

‖Mfn‖p
Lp(Q1)

‖fn‖p
Y

≥ 1

C

n−1∑

j=0

φ(Rj)
p−1 log

Rj

Rj+1
− C = 1

C

n−1∑

j=0

∫ Rj

Rj+1

φ(Rj)
p−1

η
dη − C.

By (16) and (5), we obtain

‖Mfn‖p
Lp(Q1)

‖fn‖p
Y

≥ 1

C

n−1∑

j=0

∫ Rj

Rj+1

φ(η)p−1

η
dη − C

= 1

C

∫ 1

Rn

φ(η)p−1

η
dη − C → +∞ as n → ∞.

Thus the lemma follows. �
By using Lemma 6 and the closed graph theorem, we prove the following lemma.

We remark that the idea of using the theorem is due to Brezis and Cazenave [5, Proof
of Theorem 11].

Lemma 7 Let T > 0. If (5) holds, then there exists a nonnegative function gT ∈ Y
with gT = 0 a.e. in RN \ Q√

T such that ‖UgT ‖Lp(Q√
T ×(0,T)) = +∞, where UgT is

defined by (11) with dν(y) = gT (y)dy.

Proof First, we show the lemma for the case T = 1. Define

Ỹ := {g ∈ Y; g = 0 a.e. in RN \ Q1}.

We recall I0 = (0, 1). To derive a contradiction, suppose that Ug ∈ Lp(Q1 × I0) for
any nonnegative function g ∈ Ỹ . Then Ug ∈ Lp(Q1 × I0) for any g ∈ Ỹ , so that a
linear operator L : Ỹ � g �→ Ug ∈ Lp(Q1 × I0) is well defined.

Wewill prove that L is closed. Let {gn}∞n=1 ⊂ Ỹ . Suppose that there exist functions
g∞ ∈ Ỹ and g̃∞ ∈ Lp(Q1 × I0) such that gn → g∞ in Y and Lgn → g̃∞ in Lp(Q1 ×
I0). By the definition of Ug, we have
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∫

I0

∫

Q1

|Lgn(x, t) − Lg∞(x, t)|dxdt ≤
∫

I0

∫

RN

∫

RN
G(x − y, t)|gn(y) − g∞(y)|dydxdt.

The Fubini theorem and the definition of Ỹ show that

‖Lgn − Lg∞‖L1(Q1×I0) ≤
∫

Q1/2((1/2,...,1/2))
|gn(y) − g∞(y)|dy

≤ φ(1/2)(1/2)N− 2
p−1 ‖gn − g∞‖Y → 0 as n → ∞,

and so Lgn → Lg∞ in L1(Q1 × I0). Since Lgn → g̃∞ in L1(Q1 × I0), we see that
Lg∞ = g̃∞ and L is closed. Hence the closed graph theorem shows that L is bounded.

Let g ∈ Ỹ be a nonnegative function and let P = (ρ1, . . . , ρN ) ∈ Q1. For any
x ∈ Q1 and t ∈ (|P|2/(2N), |P|2/N) ⊂ I0, simple calculations show that

Lg(x, t) ≥ (4π t)−
N
2

∫

DP(x)
e− (y1−x1)2

4t · · · e− (yN −xN )2

4t g(y)dy

≥ (4π/N)−
N
2 e−ρ2

1/(2|P|2/N) · · · e−ρ2
N /(2|P|2/N)|P|−N

∫

DP(x)
g(y)dy

≥ (4π/N)−
N
2 e− N

2 · · · e− N
2 |P|−N

∫

DP(x)
g(y)dy,

where DP(x) is defined by (14), so that

‖Lg(x, ·)‖Lp(I0) ≥ ‖Lg(x, ·)‖Lp((|P|2/(2N),|P|2/N))

≥ 1

C
|P|−N(1− 2

Np )

∫

DP(x)
g(y)dy.

By (13), we have ‖Lg(x, ·)‖Lp(I0) ≥ (1/C)Mg(x) for any x ∈ Q1. Hence by the bound-
edness of L, we obtain

‖Mg‖Lp(Q1) ≤ C‖Lg‖Lp(Q1×I0) ≤ C‖g‖Y .

This contradicts Lemma 6, and the lemma is proved for T = 1.
We next examine the case where T > 0 is chosen arbitrarily. Let g1 ∈ Ỹ be a non-

negative function such that ‖Ug1‖Lp(Q1×I0) = +∞, and define gT (x) := g1(x/
√

T).
Then gT ∈ Y and gT = 0 a.e. in RN \ Q√

T . Moreover, by the change of variables
x̃ = T−1/2x, ỹ = T−1/2y and t̃ = T−1t, we can calculate that ‖UgT ‖Lp(Q√

T ×(0,T)) =
T (N/2+1)/p‖Ug1‖Lp(Q1×I0) = +∞. Thus the proof is complete. �

We are now in a position to prove Proposition 1.

Proof (Proof of Proposition 1) Let {qj}∞j=1 be the set of all rational numbers in (0, 1).
Lemma 7 guarantees that, for each j, there exists a nonnegative function gj ∈ Y such
that gj = 0 a.e. in RN \ Q√

qj and ‖Ugj ‖Lp(Q√
qj

×(0,qj)) = +∞. Define a function on
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RN independent of j by

g∗(x) :=
∞∑

j=1

2−j gj(x)

‖gj‖Y
.

We see that g∗ = 0 a.e. inRN \ Q1 and that g∗ ∈ Y , since ‖g∗‖Y ≤ 1. Let T ∈ (0, 1).
Then by choosing j0 such that Q√qj0

× (0, qj0) ⊂ Q√
T × (0, T), we have

‖Ug∗‖Lp(Q√
T ×(0,T)) ≥ 2−j0‖gj0‖−1

Y ‖Ugj0
‖Lp(Q√

qj0
×(0,qj0 )) = +∞.

Hence g∗ has the desired properties. �
As proved before, Theorem 1 follows from Proposition 1. Hence the proof of

Theorem 1 is complete.

3 Existence of Solutions

Let p ≥ pF and let μ ∈ X = Xp
φ(RN ) with a positive function φ on (0,∞) satisfying

(6). To obtain solutions of (1), by the variation of constants formula, we consider the
following integral equation

u = Φ[u], Φ[u] := Uμ + S[u], (18)

where Uμ is defined by (11) with ν = μ and S[u] is defined by

S[u](x, t) :=
∫ t

0

∫

RN

G(x − y, t − s)u(y, s)pdyds.

We will prove Theorem 2 by solving (18).
Let us first observe the properties of Uμ. By Giga and Miyakawa [9, Proposition

3.2.iii],Uμ(·, t) → μ as t ↓ 0weakly asmeasures on each fixed open ball.Moreover,
the Fubini theorem and integration by parts show that (Uμ)t − ΔUμ = 0 in RN ×
(0,∞) in the sense of distribution. Hence by the standard regularity theory, Uμ is
smooth on RN × (0,∞). If we suppose in addition that μ 	= 0, then μ(Bρ0(x0)) > 0
for some x0 ∈ RN and ρ0 > 0. Hence Uμ is positive if μ 	= 0.

We next give the pointwise estimate of Uμ.

Lemma 8 There exists a constant C = C(N, p, α) > 0 such that

‖Uμ(·, t)‖L∞(RN ) ≤ C‖μ‖Xφ(t
1
2 )t−

1
p−1 for all t > 0.

Proof Since G(x, t) ≤ C′|x|−N and G(x, t) ≤ C′t−N/2 for some constant C′ =
C′(N) > 0, the change of variables ρ = (C′/λ)1/N gives
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Uμ(x, t) =
∫ ∞

0
μ({y ∈ RN ; G(x − y, t) > λ})dλ

≤
∫ C′t−N/2

0
μ({y ∈ RN ; C′|x − y|−N > λ})dλ

= C′N
∫ ∞

t1/2
ρ−N−1μ(Bρ(x))dρ.

By the assumptions μ ∈ X and (6), we obtain

Uμ(x, t) ≤ C‖μ‖X

∫ ∞

t1/2
ρ

−1− 2
p−1 φ(ρ)dρ

= C‖μ‖X

∫ ∞

t1/2
ρ

−1−( 2
p−1−α)

ρ−αφ(ρ)dρ

≤ C‖μ‖Xt−
α
2 φ(t

1
2 )

∫ ∞

t1/2
ρ

−1−( 2
p−1−α)dρ

= C‖μ‖Xφ(t
1
2 )t−

1
p−1 ,

which shows the Lemma. �
We next give the pointwise estimate of S[Uμ].

Lemma 9 There exists a constant C = C(N, p, α) > 0 such that

S[Uμ](x, t) ≤ C‖μ‖p−1
X K(t)Uμ(x, t) for all (x, t) ∈ RN × (0,∞),

where K(t) := ∫
√

t
0 η−1φ(η)p−1dη.

Proof One can check that

G(x − y, t − s)G(y − z, s) = G(x − z, t)G (ξ, τ ) ,

ξ = ξ(x, y, z, s, t) := y − s

t
x − t − s

t
z, τ = τ(s, t) := s(t − s)

t
.

By the Fubini theorem, this relation and Lemma 8, we have

S[Uμ](x, t) =
∫

RN

(∫ t

0

∫

RN
G(x − y, t − s)G(y − z, s)Uμ(y, s)p−1dyds

)

dμ(z)

=
∫

RN
G(x − z, t)

(∫ t

0

∫

RN
G(ξ, τ )Uμ(y, s)p−1dyds

)

dμ(z)

≤ C‖μ‖p−1
X

∫

RN
G(x − z, t)

(∫ t

0

∫

RN
G(ξ, τ )

φ(s1/2)p−1

s
dyds

)

dμ(z).
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From the relation
∫

RN G(ξ, τ )dy = 1 and the change of variables η = s1/2, we obtain

S[Uμ](x, t) ≤ C‖μ‖p−1
X K(t)

∫

RN

G(x − z, t)dμ(z) = C‖μ‖p−1
X K(t)Uμ(x, t).

Thus the Lemma follows. �
We are now in a position to prove the existence of solutions.

Proof (Proof of Theorem 2) Lemma 9 gives

Φ[2Uμ] = Uμ + 2pS[Uμ] ≤
(
1 + C‖μ‖p−1

X K(t)
)

Uμ in RN × (0,∞). (19)

First, we prove the assertion (i). Since (9) yields limt↓0 K(t) = 0, there exists a
positive constant T0 = T0(N, p, φ, ‖μ‖X) such thatΦ[2Uμ] ≤ 2Uμ inRN × (0, T0).
Setting un := Φn[2Uμ] for n = 1, 2, . . ., we have

2Uμ(x, t) ≥ u1(x, t) ≥ u2(x, t) ≥ · · · ≥ 0 for (x, t) ∈ RN × (0, T0).

This guarantees that the nonnegative function u∞(x, t) := limn→∞ un(x, t) is well
defined. The monotonicity of {un}∞n=1 gives limn→∞ Φ[un](x, t) = Φ[u∞](x, t).
Hence u∞ satisfies (18) in RN × (0, T0). From the assumption μ 	= 0 and (18),
we deduce that Uμ is positive and u∞ is also positive. Since u∞ ≤ 2Uμ and Uμ is
locally bounded in RN × (0,∞), the function u∞ satisfies the equation in (1) in the
classical sense.

On the other hand, Lemma 9 yields S[u∞] ≤ 2pS[Uμ] ≤ CK(t)Uμ. This together
with the fact limt↓0 K(t) = 0 proves S[u∞](·, t) → 0 as t ↓ 0 weakly as measures
on each fixed open ball. By (18), the function u∞ satisfies the initial condition in (1).
Thus u∞ is a positive solution of the problem (1) for T = T0.

Next, we show the assertion (ii). From (10) and (19), it follows that Φ[2Uμ] ≤
2Uμ in RN × (0,∞) if ‖μ‖X > 0 is small enough. Then, similarly to the proof of
(i), the problem (1) for T = +∞ admits a positive solution u satisfying u ≤ 2Uμ in
RN × (0,∞). Hence by Lemma 8, the decay estimate is also proved, and the proof
is complete. �

We note that the above argument concerning global existence cannot be applied
to the case p = pF , since (10) gives XpF

φ = {0}. Indeed, suppose that φ satisfies (10)

and there exists μ ∈ XpF
φ with μ 	= 0. Then φ(ρ) ≥ ‖μ‖−1

X μ(Bρ(x)) for all x ∈ RN

and ρ > 0, so that
∫∞
0 η−1φ(η)p−1dη ≥ ‖μ‖−(p−1)

X μ(B1(x0))p−1
∫∞
1 η−1dη = +∞

for some x0 ∈ RN , which contradicts (10).
Finally, we see that the problem (1) for the initial data μ1(A) = ∫A |f1(x)|dx and

T = +∞ admits a solution if p > pF and f1 ∈ L1
loc(R

N ) satisfies the condition

|f1(x)| ≤ c|x|− 2
p−1 a.e. x ∈ RN (20)
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with a small constant c > 0. For p > pF , this condition is one of a critical case of (3).
Furthermore, since | · |−2/(p−1) /∈ LN(p−1)/2

loc (RN ), the condition (20) is also critical in
the sense of Weissler [21, Theorem 1]. We remark that the following proposition is a
consequence of Robinson and Sierżęga [17, Theorem 3] and that our proof below is
due to the argument of theirs and Ishige, Kawakami and Sierżęga [10, Lemma 2.4].
We repeat it for the convenience of the reader.

Proposition 2 Let p > pF and f1 ∈ L1
loc(R

N ). Then there exists a constant c0 =
c0(N, p) > 0 such that if f1 	= 0 and f1 satisfies (20) with c = c0, the problem (1)
for μ = μ1 and T = +∞ admits a positive solution u, where μ1 is defined by
μ1(A) := ∫A |f1(x)|dx for a Borel set A in RN . Moreover, the solution u satisfies

‖u(·, t)‖L∞(RN ) ≤ Ct−
1

p−1 for all t > 0

with a constant C = C(N, p) > 0.

Proof Let 1 < σ < min{N(p − 1)/2, p} and let f1 ∈ L1
loc(R

N ) satisfy (20), where
c > 0 is a constant yet to be determined. Taking into account that |f1|σ ∈ L1

loc(R
N ),

we define μσ
1 (A) := ∫A |f1(x)|σ dx. Then by the Hölder inequality, we have

Uμ1(x, t) ≤
(∫

RN

G(x − y, t)|f1(y)|σ dy

) 1
σ
(∫

RN

G(x − y, t)dy

)1− 1
σ

= Uμσ
1
(x, t)

1
σ

(21)

for (x, t) ∈ RN × (0,∞). By (20) and the same calculation as in the proof of
Lemma 8, there exists a positive constant C depending on N and p such that

Uμσ
1
(x, t) ≤ Ccσ t−

σ
p−1 for all (x, t) ∈ RN × (0,∞). (22)

We will solve (18) with μ = μ1. By (21), we have Φ[2U1/σ
μσ
1

] ≤ U1/σ
μσ
1

+ 2p

S[U1/σ
μσ
1

]. From (22) and the relation p/σ − 1 > 0, it follows that

S[U1/σ
μσ
1

](x, t) =
∫ t

0

∫

RN

G(x − y, t − s)Uμσ
1
(y, s)

p
σ
−1Uμσ

1
(y, s)dyds

≤ Ccp−σ

∫ t

0
s− p−σ

p−1

(∫

RN

G(x − y, t − s)Uμσ
1
(y, s)dy

)

ds.

Since
∫

RN G(x − y, t − s)Uμσ
1
(y, s)dy = Uμσ

1
(x, t), we have

S[U1/σ
μσ
1

](x, t) ≤ Ccp−σ t
σ−1
p−1 Uμσ

1
(x, t). (23)
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This together with (22) shows that

S[U1/σ
μσ
1

](x, t) ≤ Ccp−σ t
σ−1
p−1 Uμσ

1
(x, t)

σ−1
σ Uμσ

1
(x, t)

1
σ ≤ Ccp−1Uμσ

1
(x, t)

1
σ .

From the above calculations,we see thatΦ[2U1/σ
μσ
1

] ≤ (1 + Ccp−1)U1/σ
μσ
1
. Fix c > 0

such that Ccp−1 < 1. Then Φ[2U1/σ
μσ
1

] ≤ 2U1/σ
μσ
1

in RN × (0,∞). Similarly to the
proof of Theorem 2, if f1 	= 0, there exists a positive function u satisfying (18) and
u ≤ 2U1/σ

μσ
1

in RN × (0,∞). We deduce from (22) that u satisfies the desired decay
estimate and the equation in (1) in the classical sense.

We check that u satisfies the initial condition of the problem (1). By (23), we
have S[u] ≤ CS[U1/σ

μσ
1

] ≤ Ct(σ−1)/(p−1)Uμσ
1
. Since Uμσ

1
(·, t) → |f1|σ as t ↓ 0 weakly

as measures on each fixed open ball, S[u](·, t) → 0 in the same sense as t ↓ 0. From
the integral equation (18), it follows that u satisfies the initial condition in (1) and that
u is a positive solution of the problem (1) for T = +∞. Thus the proof is complete.

�
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Singular Solutions of the Scalar Field
Equation with a Critical Exponent

Jann-Long Chern and Eiji Yanagida

Abstract We consider radially symmetric singular solutions of the scalar field equa-
tion with the Sobolev critical exponent. It is shown that there exists a unique special
singular solution, and other infinitely many singular solutions are oscillatory around
the special singular solution.

Keywords Scalar field equation · Singular solution · Critical exponent

1 Introduction and Main Results

In this paper we consider the elliptic equation

Δu − u + u p = 0 in Rn (1)

with n > 2 and p > 1. This equation is called the scalar field equation, and has
been studied extensively in the past few decades. Our aim is to study the existence
and structure of radially symmetric singular solutions u = u(r), r = |x | > 0, of (1),
where u(r) satisfies

urr (r) + n − 1

r
ur (r) − u(r) + u(r)p = 0, r > 0, (2)

and u(r) → ∞ as r → 0.
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It is well known [1–8] that the structure of solutions of (2) changes drastically
when the parameter p crosses the Sobolev critical exponent

pS := n + 2

n − 2
.

In the subcritical case 1 < p < pS , the existence of a positive ground state solution,
which is regular at zero and u(r) → 0 as r → ∞, was proved byBerestycki-Lions [9]
and the uniqueness was proved by Kwong [5]. Johnson-Pan-Yi [4] proved in the
subcritical case that there are infinitely many positive singular solutions that satisfy
u(r) → 0 as r → ∞, and are infinitely many singular solutions that vanish at some
r ∈ (0,∞). For p ≥ pS , the nonexistence of regular and singular positive ground
state solutions follows from a result of Ni-Serrin [6]. Recently, for p > pS , Chern-
Chen-Chen-Tang [2] proved that (2) possesses at most one positive singular solution
u(r) which oscillates around 1 as r → ∞. Furthermore, in [2], if n > 10 and

p > p∗ := (n − 2)2 − 4n + 8
√

n − 1

(n − 2)(n − 10)
(> pS),

the unique singular solution can be obtained as the limit of a sequence of regular
solutions of (2). They also clarified the entire structure of radial solutions of various
types according to their behavior at the origin and infinity.

When p = pS , for singular solutions of (1) that are not necessarily radially sym-
metric, it was shown in [10–12] that any singular solution of (1) is asymptotically
symmetric around the singular point. Moreover, near the singular point, the solution
resembles an entire singular solution w of

Δw + wpS = 0 in Rn \ {0},

which is explicitly expressed as

w = L|x |− n−2
2 , L :=

(n − 2

2

) n−2
2

.

Singular solutions are also important from the viewpoint of the theory of nonlinear
parabolic equations. Indeed, singular steady states of superlinear parabolic equations
have been studied in various contexts (see, e.g., [13–15] and the references cited
therein), and dynamic properties of singular steady states are closely related to the
structure of singular solutions for associated elliptic equations.

In this paper, we study the existence and structure of singular solutions of (2) in
the critical case p = pS . The following theorem is our main result.
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Theorem 1 Assume n > 2 and p = pS. Then the following properties hold for (2):

(a) There exists a unique singular solution u = u∗(r) such that

lim
r→0

r (n−2)/2u∗(r) = L . (3)

(b) There exist infinitely many singular solutions such that

0 < lim inf
r→0

r (n−2)/2u(r) < L < lim sup
r→0

r (n−2)/2u(r) < M, (4)

where

M :=
{n(n − 2)

4

} n−2
4

.

This theorem implies that if n > 2 the special singular solution u∗(r) and other
singular solution intersect infinitely many times as r → 0. In fact, we shall show that
if u is a singular solution satisfying (4), then

w(s) := r (n−2)/2u(r), r = e−s, (5)

approaches a periodic function as s → ∞ that oscillates around the constant L .
Here we should note that the existence of radial singular solutions of (2) with

p = pS can be shown by using the method of Han-Li-Teixeira [16]. In their studies
on singularities for aYamabe-type problem, they obtained a general asymptotic result
(see Theorem 3 of [16]) for certain ODEs, by which we can show the existence of
infinitely many singular solutions of (2). See also [17–19] for related results for
analogous equations. In this paper, we adopt a different approach from these papers
to derive more precise properties of singular solutions such as the uniqueness of the
special singular solution and the oscillatory behavior of other singular solutions.

In order to investigate the structure of the set of singular solutions of (1), we
consider the initial value problem (2) with

u(c) = α, ur (c) = β, (6)

where c ∈ (0,∞) is arbitrarily fixed and α > 0, β ∈ R are given initial data. We
denote by u(r;α, β) the unique solution of (2) with (6).

The next theorem shows that the set of singular solutions of (2) satisfying (4) is
open, and the unique solution satisfying (3) is surrounded by solutions satisfying (4).

Theorem 2 Let n > 2 and p = pS. Assume that u(r;α0, β0) is a singular solution of
(2) with (6) satisfying (3) or (4). Then there exists δ > 0 such that for any (α, β) with
0 < |α − α0| + |β − β0| < δ, u(r;α, β) is a singular solution of (2) satisfying (4).

This paper is organized as follows. In Sect. 2, we study the existence of infinitely
many singular solutions that are oscillatory around a special singular solutions as r
decreases. In Sect. 3, we show the existence and uniqueness of the special singular
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solution. Section4 is devoted to a proof of Theorem 2. In the following sections we
always assume n > 2 and p = pS .

2 Existence of Singular Solutions

By the transformation (5), we can rewrite (2) as

wss + f (w) = e−2sw, s ∈ R. (7)

where

f (w) := − (n − 2)2

4
w + wpS .

By taking a limit as s → ∞, the equation formally reduces to a limiting equation

Wss + f (W ) = 0, s ∈ R. (8)

Since L satisfies f (L) = 0, W ≡ L is a constant solution of (8).
Let us define an energy functional

E[w] := 1

2
w2

s + F(w),

where

F(w) :=
∫ w

0
f (t)dt = − (n − 2)2

8
w2 + 1

pS + 1
wpS+1.

We note that F satisfies

F(w)

⎧
⎪⎪⎨

⎪⎪⎩

= 0 if w = 0,
< 0 if 0 < w < M,

= 0 if w = M,

> 0 if w > M,

and takes a minimum value at w = L . By (7), we have an identity

d

ds
E[w] ≡ e−2swws . (9)

On the other hand, by (8), we have

d

ds
E[W ] ≡ 0,
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so that E[W ] is constant.Moreover, it is easily shown by the phase plane analysis that
the solution W (s) > 0 of (8) satisfies W (s) ≡ L if E[W ] = F(L), and is periodic
in s and satisfies 0 < W (s) < M if F(L) < E[W ] < 0.

Let s0 > 0 be sufficiently large andfixed, and denote byw = w(s;α, β) the unique
solution of (7) subject to the initial condition

w(s0) = α > 0, ws(s0) = β ∈ R. (10)

We classify positive solutions of (7) with (10) as follows:

Type C: w(s) = 0 at some s ∈ (s0,∞).
Type R: w(s) > 0 for s > s0 and w(s) → 0 as s → ∞.
Type L: w(s) > 0 for s > s0, and w(s) → L as s → ∞.
Type O: w(s) > 0 for s > s0 and E[w] → E∞ as s → ∞ for some constant E∞ ∈

(F(L), 0).

It is easy to see that if w is of Type C, then the corresponding solution u(r) =
r−(n−2)/2w(− log r) of (2) vanishes at some r ∈ (0, e−s0). If w is of Type R, then
there exists a constant α > 0 such that

w(s) = α exp(−n − 2

2
s) + h.o.t. as s → ∞,

which implies that u(r) → α as r → 0. If w is of Type L, then u∗(r) = r−(n−2)/2

w(− log r) is a singular solution of (2) satisfying (3). If w is of Type O, then w
approaches a periodic solution of (8) as s → ∞ that oscillates around L , which
implies that u(r) is a singular solution of (2) satisfying (4).

Theorem 1 (b) is a direct consequence of the following lemma.

Lemma 1 Fix α ∈ (0, L). If s0 > 0 is sufficiently large, then w(s;α, 0) is of Type O.

Proof For large s0 > 0, w(s;α, 0) is uniformly approximated on any bounded inter-
val of s by the solution W (s) of (8) with W (s0) = α and Ws(s0) = 0. Since W (s) is
periodic in s, there exist s1 and s2 (s0 < s1 < s2 < ∞) such that

ws(s) > 0 for s ∈ (s0, s1),
ws(s) < 0 for s ∈ (s1, s2),
ws(s1) = ws(s2) = 0.

Then by the identity (9), we have E[w(s0)] < E[w(s1)] and E[w(s1)] > E[w(s2)].
Moreover, since w is almost symmetric with respect to s = s1 by the even symmetry
of W with respect to its critical point, it follows from the non-increase of e−2s that

E[w(s1)] − E[w(s0)] =
∫ s1

s0

e−2sw(s)ws(s)ds

> −
∫ s2

s1

e−2sw(s)ws(s)ds

= E[w(s1)] − E[w(s2)].
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Hence we obtain E[w(s0)] < E[w(s2)]. Thus if s0 > 0 is sufficiently large, we have

F(L) < E[w(s0)] < E[w(s2)] < E[w(s1)] < 0.

Repeating this argument, we can show that there is a sequence {sk} such that

ws(s) > 0 for s ∈ (s2k, s2k+1),

ws(s) < 0 for s ∈ (s2k+1, s2k+2),

ws(s2k ) = ws(s2k+1) = 0,

and
F(L) < E[w(s0)] < E[w(s2)] < · · · < E[w(s3)] < E[w(s1)] < 0.

Since E[w(sk+1)] − E[w(sk)] → 0 as k → ∞, we have E[w(sk)] = F(w(sk)) →
E∞ as k → ∞ for some constant E∞ ∈ (F(L), 0). This shows that w(s;α, 0) is of
Type O. �

3 Existence and Uniqueness of a Special Singular Solution

The following lemma shows the existence of a special singular solution of (2) satis-
fying (3).

Lemma 2 Let n > 2. For any γ ∈ (− n
2 + 3,− n

2 + 5), there exists a solution of (2)
such that

u(r) = Lr− n
2 +1 + L1r

− n
2 +3 + O(rγ ) as r → 0, (11)

where L1 := L/(4n + 8).

Proof of Lemma 2. In the following we let p = pS . We write a solution of (2) as

u(r) = Lr− n
2 +1 + L1r

− n
2 +3 + rγ y(r), (12)

Note that ϕ(r) := Lr− n
2 +1 and ψ(r) := L1r− n

2 +3 satisfy

⎧
⎪⎨

⎪⎩

ϕrr + n − 1

r
ϕr + ϕ p = 0,

ψrr + n − 1

r
ψr + pL p−1

r2
ψ = ϕ,

r > 0.

respectively. Then from (2), we have the equation for y

yrr + A

r
yr + B

r2
y + g(r, y) = 0, r > 0, (13)
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where
A := n − 1 + 2γ > n − 1 + 2

(
− n

2
+ 3

)
= 5,

B := pL p−1 + γ (γ + n − 2) = n2

4
− 1 + γ (γ + n − 2) > 0

(14)

by assumptions on γ and n, and

g(r, y) := L pr− n
2 −1−γ

{(
1 + L1

L
r2 + 1

L
r

n
2 −1+γ y

)p − 1 − pL1

L r2 − p
L r

n
2 −1+γ y

}

−L1r− n
2 +3−γ − y.

We note that if y is bounded, then

g(r, y) = O(r− n
2 +3−γ ) as r → 0. (15)

First we consider the Euler equation

Yρρ + A

ρ
Yρ + B

ρ2
Y = 0, ρ > 0. (16)

We define the energy
J [Y ] := BY 2 + ρ2Y 2

ρ ,

which satisfies
d

dρ
J [Y (ρ)] = 2BY Yρ + 2ρY 2

ρ + 2ρ2YρYρρ

= 2ρY 2
ρ + 2ρ2Yρ

(
Yρρ + B

ρ2
Y

)

= −2(A − 1)ρY 2
ρ

≤ 0

by (14). Here, the last equality holds if and only if Yρ = 0. This implies that J [Y (ρ)]
is strictly decreasing in ρ > 0 if Y is a non-trivial solution. Let Y (ρ;α, β) be the
solution of (16) with

Y (1) = α, Yρ(1) = β.

Since J [Y (ρ;α, β)] is strictly decreasing in ρ > 0, there exists δ > 0 such that if
Bα2 + β2 ≤ 1, then

{
BY (ρ;α, β)2 + ρ2Yρ(ρ;α, β)2 < 1 for ρ ∈ (1, 2),
BY (2;α, β)2 + 4Yρ(2;α, β)2 < 1 − δ.

(17)

Next, for d > 0 fixed, let y(r;α, β) be the solution of (13) with

y(d) = α, yr (d) = d−1β.



284 J.-L. Chern and E. Yanagida

We set ρ := d−1r and ỹ(ρ;α, β) := y(dρ;α, β). Then by (13), we have

ỹρρ + A

ρ
ỹρ + B

ρ2
ỹ + d2g(dρ, ỹ) = 0, ρ > 0,

and
ỹ(1) = α, ỹρ(1) = β.

Here, by (15),
d2g(dρ; ỹ) = O(d− n

2 +5−γ ) → 0 as d → 0

uniformly in (ρ, ỹ) ∈ [1, 2] × [−2, 2]. Hence by continuity, we obtain

(ỹ(ρ;α, β), ỹρ(ρ;α, β)) → (Y (ρ;α, β), Yρ(ρ;α, β)) as d → 0 (18)

uniformly in ρ ∈ [1, 2]. Therefore, by (17), there exists d0 > 0 such that if 0 < d <

d0 and Bα2 + d2β2 ≤ 1, then

By(r;α, β)2 + r2yr (r;α, β)2 < 2 for r ∈ [d, 2d],
By(2d;α, β)2 + (2d)2yr (2d;α, β)) < 1.

Now we take a positive decreasing sequence {dk} given by

dk := 2−kd0, k = 1, 2, . . . ,

and set r = dkρ. We also define

Dk := {(α, β) ∈ R2 : Bα2 + d2
k β2 ≤ 1}, k = 0, 1, 2, . . . .

Let yk(r;α, β) be the solution of (13) subject to the initial condition

y(dk) = α, yr (dk) = d−1
k β,

and Tk be a mapping from R2 to R2 defined by

Tk[α, β] := (yk(dk−1;α, β), 2(yk)r (dk−1;α, β)).

Then by (17) and (18), we have Tk[Dk] ⊂ Dk−1 for all k = 1, 2, . . .. Moreover, if
we define a sequence of sets {D0

k } in R2 by

D0
k := T1 ◦ T2 ◦ · · · ◦ Tk[Dk], k = 1, 2, . . . ,

then we have
D0 ⊃ D0

1 ⊃ · · · ⊃ D0
k−1 ⊃ D0

k ⊃ · · · .
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Since D0
k , k = 1, 2, . . ., are nonempty and compact, there exists an element such that

(α∗, β∗) ∈
∞⋂

k=1

D0
k ⊂ D0.

Then from the above construction, it follows that the solution y(r;α∗, β∗) of (13) is
bounded for r ∈ (0, d0). This completes the proof. �

Next, we show the uniqueness of the special singular solution.

Lemma 3 The singular solution of (2) satisfying (3) is unique.

Proof We shall derive a contradiction by assuming that (2) possesses two distinct
solutions satisfying (3).

Let u∗(r) be the singular solution obtained by Lemma 2, and u(r) be another
singular solution satisfying (3). By (2), z(r) := u(r)/u∗(r) satisfies

zrr (r) +
(n − 1

r
+ 2u∗

r

u∗
)

zr (r) + (
u p−1 − (u∗)p−1

)
z(r) = 0, (19)

where p = pS . Then z̃ := z − 1 satisfies

z̃rr (r) +
(n − 1

r
+ 2u∗

r

u∗
)

z̃r (r) +
(
u p−1 − (u∗)p−1

)
u

u − u∗ z̃(r) = 0.

Transforming this equation by

Z(s) = z̃(r), r = e−s,

we obtain
Zss(s) + P(r)Zs(s) + Q(r)Z(s) = 0, (20)

where

P(r) = −n + 2 − 2ru∗
r

u∗

and

Q(r) = r2
(
u p−1 − (u∗)p−1

)
u

u − u∗ .

Here we easily have

lim
r→0

r (n−2)/2+1u∗
r (r) = −

(n − 2

2

)
lim
r→0

r (n−2)/2u∗(r) =
(n − 2

2

) n
2
,

so that
lim
r→0

P(r) = 0, lim
r→0

Q(r) = n − 2 > 0.
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This implies that the solution Z ≡ 0 of (20) is oscillatory for large s. Hence there
exists a sequence {s j } such that Z(s j ) = 0, Zs(s j ) > 0, and s j+1 − s j → 2π/

√
n − 2

as j → ∞. Moreover,

Z(s)/C j → sin(ω(s − s j )), Zs(s)/C j → ω cos(ω(s − s j )) (21)

as j → ∞ uniformly in s ∈ (s j , s j+1), where

C j = Zs(s j )/ω > 0, ω = √
n − 2.

Now we define an energy function J for (20) by

J (s) := 1

2
Zs(s)

2 + n − 2

2
Z(s)2.

Then by (20) we have

d

ds
J (s) = Zs(s)Zss(s) + (n − 2)Z(s)Zs(s)

= −Zs(s)
{

P(r)Zs(s) + Q(r)Z(s)
} + (n − 2)Z(s)Zs(s)

= −P(r)Zs(s)2 + {n − 2 − Q(r)}Z(s)Zs(s).

Integrating this on (s j , s j+1), we obtain

J (s j+1) − J (s j ) = −
∫ s j+1

s j

P(r(s))Zs(s)
2ds +

∫ s j+1

s j

{n − 2 − Q(r)}Z(s)Zs(s)ds.

Here, by Lemma 2, we easily obtain

ru∗
r (r) + n − 2

2
u∗(r) =

(
− n

2
+ 3 + n−2

2

)
L1r− n

2 +3 + o(r− n
2 +3)

= 2L1r− n
2 +3 + o(r− n

2 +3) as r → 0.

This implies P(r) < 0 for small r > 0 so that the first term in the right-hand side is
positive. On the other hand, since

n − 2 − Q(r) = 4(n − 2)

n + 2
e−2s + o(e−2s) as s → ∞,

we obtain

1

C2
j

∫ s j+1

s j

{n − 2 − Q(r)}Z(s)Zs(s)ds

→ 4(n − 2)ω

n + 2

∫ s j +2π

s j

e−2s sin(ω(s − s j )) cos(ω(s − s j ))ds > 0 as s → ∞.
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Thus it is shown that J (s j+1) > J (s j ) for large j . This shows that C j does not
converge to 0 as j → ∞, but then (21) contradicts the fact that

Z(s) = z̃(r) = z(r) − 1 = u(r) − u∗(r)

u∗(r)
→ 0 as r = e−s → 0.

This proves the uniqueness. �

Thus the proof of Theorem 1 (a) is completed.

4 Structure of the Set of Singular Solutions

Finally, we consider the structure of solutions of (7) with (10). The following lemma
shows that the set of solutions of Type O is open, and the solution of Type L is
isolated and surrounded by solutions of Type O.

Lemma 4 Assume that w(s;α0, β0) is of Type O or Type L. Then there exists δ > 0
such that w(s;α, β) is of Type O for any (α, β) with 0 < |α − α0| + |β − β0| < δ.

Proof First assume that w(s;α0, β0) is of Type O. By continuity with respect to
initial data, if (α, β) is sufficiently close to (α0, β0), then we can take a sufficiently
large s1 > 0 such that ws(s1;α, β) = 0 and w(s1;α, β) ∈ (0, L). Then by the same
argument as in the proof of Lemma 1, it is shown that the solution is of Type O.

Next, assume that w(s;α0, β0) is of Type L. Again by continuity with respect
to initial data, for any ε > 0, we can take a sufficiently large s1 > 0 such that
ws(s1;α, β) = 0 and w(s1;α, β) ∈ (L − ε, L + ε). Since the solution of Type L is
unique, w(s;α, β) is not of Type L. This implies that w(s;α, β) is of Type O. �

Theorem 2 is an immediate consequence of this lemma.
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