
Swarat Chaudhuri
Azadeh Farzan (Eds.)

 123

LN
CS

 9
77

9

28th International Conference, CAV 2016
Toronto, ON, Canada, July 17–23, 2016
Proceedings, Part I

Computer Aided
Verification

Lecture Notes in Computer Science 9779

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Swarat Chaudhuri • Azadeh Farzan (Eds.)

Computer Aided
Verification
28th International Conference, CAV 2016
Toronto, ON, Canada, July 17–23, 2016
Proceedings, Part I

123

Editors
Swarat Chaudhuri
Rice University
Houston, TX
USA

Azadeh Farzan
University of Toronto
Toronto, ON
Canada

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-41527-7 ISBN 978-3-319-41528-4 (eBook)
DOI 10.1007/978-3-319-41528-4

Library of Congress Control Number: 2015943799

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer International Publishing Switzerland 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG Switzerland

Preface

It is our pleasure to welcome you to the proceedings of CAV 2016, the 28th Inter-
national Conference on Computer-Aided Verification, held in Toronto, Ontario, during
July 17–23, 2016.

The CAV conference series is dedicated to the advancement of the theory and
practice of computer-aided formal analysis of hardware and software systems. The
conference covers the spectrum from theoretical results to concrete applications, with
an emphasis on practical verification tools and the algorithms and techniques that are
needed for their implementation. CAV considers it vital to continue spurring advances
in hardware and software verification while expanding to new domains such as bio-
logical systems and computer security.

The CAV 2016 program included four invited keynote talks, four invited tutorials, 58
technical papers (consisting of 46 regular papers and 12 tool papers) accepted out of 195
submissions, and briefings from the SYNTCOMP and SYGUS synthesis competitions.
The conference was accompanied by six co-located events: VSTTE (Verified Software:
Theories, Tools, and Experiments), NSV (Numerical Software Verification), SYNT
(Synthesis), EC2 (Exploiting Concurrency Efficiently and Correctly), HCCV (High-
Consequence Control Verification), and VMW (Verification Mentoring Workshop).

Our invited keynote speakers were Gilles Barthe (IMDEA Software Institute),
Gerwin Klein (NICTA and University of New South Wales), and Moshe Vardi (Rice
University). Parosh Aziz Abdulla (Uppsala University), Vitaly Chipounov (EPFL),
Paulo Tabuada (UCLA), and Martin Vechev (ETH Zurich) gave invited tutorials.

We introduced three significant changes to CAV’s review process this year. First,
CAV 2016 employed a lightweight double-blind reviewing process. This meant that
committee members did not have access to the names and affiliations of the authors as
they reviewed a paper, and were able to produce an unbiased initial reivew. However,
author names were revealed late in the online discussion process to permit calibration
against the authors’ prior work. Second, we introduced an External Review Committee,
consisting of reviewers committed to producing four to five reviews, and also increased
the size of the main Program Committee. These changes significantly reduced the
number of papers that a committee had to review. Third, CAV 2016 had a two-phase
evaluation process. Each paper received three reviews by the end of the first phase;
considering the reviews and accounting for feedback from the reviewers, we solicited
up to two additional reviews for papers for which consensus did not exist or further
expertise was considered necessary.

Many people worked hard to make CAV 2016 a success. We thank the authors and
the invited speakers for providing the excellent technical material, the Program
Committee and the External Review Committee for their thorough reviews and the time
spent on evaluating all the submissions and discussing them during the online dis-
cussion period, and the Steering Committee for their guidance.

We thank Pavol Černý, Sponsorship Chair, for helping to bring much-needed
financial support to the conference; Zachary Kincaid, Workshop Chair, and all the
organizers of the co-located events for bringing their events to the CAV week; Roopsha
Samanta, Publicity Chair, for diligently publicizing the event; and Aws Albarghouthi,
Artifact Evaluation Chair, and the Artifact Evaluation Committee for their work on
evaluating the artifacts submitted. We gratefully acknowledge NSF for providing
financial support for student participants. We sincerely thank the sponsors of CAV
2016 for their generous contributions.

We also thank the University of Toronto and Rice University for their support.
Finally, we hope you find the proceedings of CAV 2016 intellectually stimulating and
practically valuable.

July 2016 Swarat Chaudhuri
Azadeh Farzan

VI Preface

Organization

Program Committee

Rajeev Alur University of Pennsylvania, USA
Christel Baier Technische Universität Dresden, Germany
Clark Barrett New York University, USA
Roderick Bloem Graz University of Technology, Austria
Pavol Cerny University of Colorado, Boulder, USA
Adam Chlipala MIT, USA
Swarat Chaudhuri Rice University, Houston, USA
Alessandro Cimatti Fondazione Bruno Kessler, Italy
Loris D’Antoni University of Wisconsin, Madison, USA
Constantin Enea University of Paris Diderot (Paris 7), France
Javier Esparza Technische Universität München, Germany
Kousha Etessami University of Edinburgh, UK
Azadeh Farzan University of Toronto, Toronto, Canada
Susanne Graf VERIMAG, France
Orna Grumberg Technion, Israel
Franjo Ivancic Google, USA
Somesh Jha University of Wisconsin, Madison, USA
Ranjit Jhala University of California, San Diego, USA
Joost-Pieter Katoen RWTH Aachen University, Germany
Zachary Kincaid University of Toronto, Canada
Laura Kovacs Chalmers University of Technology, Sweden
Viktor Kuncak EPFL, Switzerland
Marta Kwiatkowska Oxford University, UK
Shuvendu Lahiri Microsoft Research, Redmond, USA
Akash Lal Microsoft Research, Bangalore, India
Pete Manolios Northeastern University, USA
Kenneth McMillan Microsoft Research, Redmond, USA
David Monniaux VERIMAG, France
Kedar Namjoshi Bell Labs, Alcatel-Lucent, USA
David Parker University of Birmingham, UK
Corina Pasareanu Carnegie Mellon Silicon Valley; NASA Ames, USA
Ruzica Piskac Yale University, USA
Andreas Podelski University of Freiburg, Germany
Shaz Qadeer Microsoft Research, Redmond, USA
Andrey Rybalchenko Microsoft Research, Cambridge, UK
Mooly Sagiv Tel Aviv University, Israel
Sriram Sankaranarayanan University of Colorado, Boulder, USA

Sanjit Seshia University of California, Berkeley, USA
Natasha Sharygina University of Lugano, Switzerland
Sharon Shoham Academic College of Tel Aviv-Yaffo, Israel
Fabio Somenzi University of Colorado, Boulder, USA
Serdar Tasiran Koç University, Turkey
Mahesh Viswanathan University of Illinois, Urbana-Champaign, USA
Bow-Yaw Wang Academia Sinica, Taiwan
Thomas Wies New York University, USA
Lenore Zuck University of Illinois, Chicago, USA

External Review Committee

Aws Albarghouthi University of Wisconsin, Madison, USA
Jade Alglave Microsoft Research Cambridge; University College

London, UK
Sagar Chaki Software Engineering Institute, Carnegie Mellon

University, USA
Hana Chockler King’s College London, UK
Byron Cook University College London; Amazon, UK
Deepak D’Souza Indian Institute of Science, India
Thao Dang CNRS, France
Cezara Dragoi Inria, France
Pierre Ganty IMDEA, Spain
Ganesh Gopalakrishnan University of Utah, USA
Arie Gurfinkel Software Engineering Institute, Carnegie Mellon

University, USA
Jan Hoffmann Carnegie Mellon University, USA
William Hung Synopsys, USA
Joxan Jaffer National University of Singapore
Naoki Kobayashi University of Tokyo, Japan
Igor Konnov Vienna University of Technology, Austria
Hillel Kugler Bar-Ilan University, Israel
Rupak Majumdar Max Planck Institute for Software Systems, Germany
Sayan Mitra University of Illinois at Urbana Champaign, USA
Peter Mueller ETH Zurich, Switzerland
Tim Nelson Brown University, USA
Jan Otop University of Wroclaw, Poland
Gennaro Parlato University of Southampton, UK
Madhusudan Parthasarathy University of Illinois at Urbana Champaign, USA
Doron Peled Bar Ilan University, Israel
Pavithra Prabhakar Kansas State University, USA
Arjun Radhakrishna University of Pennsylvania, USA
Zvonimir Rakamaric University of Utah, USA
Nishant Sinha IBM Research, Bangalore, India
Ana Sokolova University of Salzburg, Austria
Armando Solar-Lezama MIT, USA

VIII Organization

Viktor Vafeiadis Max Planck Institute for Software Systems, Germany
Martin Vechev ETH Zurich, Switzerland
Willem Visser Stellenbosch University, South Africa
Tomas Vojnar Brno University of Technology, Czech Republic
Thomas Wahl Northeastern University, USA
Eran Yahav Technion, Israel
Karen Yorav IBM Haifa Research Lab, Israel
Florian Zuleger Vienna University of Technology, Austria

Additional Reviewers

Houssam Abbas University of Pennsylvania, USA
Stavros Aronis Uppsala University, Sweden
Amir Ben-Amram The Academic College of Tel Aviv-Yaffo, Israel
Dirk Beyer University of Passau, Germany
Armin Biere Johannes Kepler University, Austria
David Binkley Loyola University, USA
James Brotherston University College London, UK
Domenico Cantone University of Catania, Italy
Ernie Cohen Amazon, USA
Sylvain Conchon LRI, Univesité Paris-Sud 11, France
Chris Hawblitzel Microsoft Research, Redmond, USA
Jean-François Raskin Université Libre de Bruxelles, Belgium
Antoine Miné UPMC University, France
Anders Møller Aarhus University, Denmark
Andrew Reynolds University of Iowa, USA
Ulrich Schmid Vienna University of Technology, Austria
Margus Veanes Microsoft Research, Redmond, USA

Organization IX

Contents – Part I

Probabilistic Systems

Termination Analysis of Probabilistic Programs Through
Positivstellensatz’s. 3

Krishnendu Chatterjee, Hongfei Fu, and Amir Kafshdar Goharshady

Markov Chains and Unambiguous Büchi Automata 23
Christel Baier, Stefan Kiefer, Joachim Klein, Sascha Klüppelholz,
David Müller, and James Worrell

Synthesizing Probabilistic Invariants via Doob’s Decomposition 43
Gilles Barthe, Thomas Espitau, Luis María Ferrer Fioriti,
and Justin Hsu

PSI: Exact Symbolic Inference for Probabilistic Programs 62
Timon Gehr, Sasa Misailovic, and Martin Vechev

PSCV: A Runtime Verification Tool for Probabilistic SystemC Models 84
Van Chan Ngo, Axel Legay, and Vania Joloboff

Synthesis I

Structural Synthesis for GXW Specifications . 95
Chih-Hong Cheng, Yassine Hamza, and Harald Ruess

Bounded Cycle Synthesis . 118
Bernd Finkbeiner and Felix Klein

Fast, Flexible, and Minimal CTL Synthesis via SMT. 136
Tobias Klenze, Sam Bayless, and Alan J. Hu

Synthesis of Self-Stabilising and Byzantine-Resilient Distributed Systems . . . 157
Roderick Bloem, Nicolas Braud-Santoni, and Swen Jacobs

Constraint Solving I

A Decision Procedure for Sets, Binary Relations and Partial Functions 179
Maximiliano Cristiá and Gianfranco Rossi

Precise and Complete Propagation Based Local Search for Satisfiability
Modulo Theories. 199

Aina Niemetz, Mathias Preiner, and Armin Biere

http://dx.doi.org/10.1007/978-3-319-41528-4_1
http://dx.doi.org/10.1007/978-3-319-41528-4_1
http://dx.doi.org/10.1007/978-3-319-41528-4_2
http://dx.doi.org/10.1007/978-3-319-41528-4_3
http://dx.doi.org/10.1007/978-3-319-41528-4_4
http://dx.doi.org/10.1007/978-3-319-41528-4_5
http://dx.doi.org/10.1007/978-3-319-41528-4_6
http://dx.doi.org/10.1007/978-3-319-41528-4_7
http://dx.doi.org/10.1007/978-3-319-41528-4_8
http://dx.doi.org/10.1007/978-3-319-41528-4_9
http://dx.doi.org/10.1007/978-3-319-41528-4_10
http://dx.doi.org/10.1007/978-3-319-41528-4_11
http://dx.doi.org/10.1007/978-3-319-41528-4_11

Progressive Reasoning over Recursively-Defined Strings 218
Minh-Thai Trinh, Duc-Hiep Chu, and Joxan Jaffar

String Analysis via Automata Manipulation with Logic Circuit
Representation . 241

Hung-En Wang, Tzung-Lin Tsai, Chun-Han Lin, Fang Yu,
and Jie-Hong R. Jiang

RAHFT: A Tool for Verifying Horn Clauses Using Abstract Interpretation
and Finite Tree Automata. 261

Bishoksan Kafle, John P. Gallagher, and José F. Morales

Model Checking I

Infinite-State Liveness-to-Safety via Implicit Abstraction
and Well-Founded Relations. 271

Jakub Daniel, Alessandro Cimatti, Alberto Griggio, Stefano Tonetta,
and Sergio Mover

Proving Parameterized Systems Safe by Generalizing Clausal Proofs of
Small Instances . 292

Michael Dooley and Fabio Somenzi

Learning-Based Assume-Guarantee Regression Verification 310
Fei He, Shu Mao, and Bow-Yaw Wang

Automated Circular Assume-Guarantee Reasoning with N-way
Decomposition and Alphabet Refinement . 329

Karam Abd Elkader, Orna Grumberg, Corina S. Păsăreanu,
and Sharon Shoham

JayHorn: A Framework for Verifying Java programs 352
Temesghen Kahsai, Philipp Rümmer, Huascar Sanchez,
and Martin Schäf

Program Analysis

Trigger Selection Strategies to Stabilize Program Verifiers 361
K.R.M. Leino and Clément Pit-Claudel

Satisfiability Modulo Heap-Based Programs . 382
Quang Loc Le, Jun Sun, and Wei-Ngan Chin

Automatic Verification of Iterated Separating Conjunctions Using
Symbolic Execution. 405

Peter Müller, Malte Schwerhoff, and Alexander J. Summers

XII Contents – Part I

http://dx.doi.org/10.1007/978-3-319-41528-4_12
http://dx.doi.org/10.1007/978-3-319-41528-4_13
http://dx.doi.org/10.1007/978-3-319-41528-4_13
http://dx.doi.org/10.1007/978-3-319-41528-4_14
http://dx.doi.org/10.1007/978-3-319-41528-4_14
http://dx.doi.org/10.1007/978-3-319-41528-4_15
http://dx.doi.org/10.1007/978-3-319-41528-4_15
http://dx.doi.org/10.1007/978-3-319-41528-4_16
http://dx.doi.org/10.1007/978-3-319-41528-4_16
http://dx.doi.org/10.1007/978-3-319-41528-4_17
http://dx.doi.org/10.1007/978-3-319-41528-4_18
http://dx.doi.org/10.1007/978-3-319-41528-4_18
http://dx.doi.org/10.1007/978-3-319-41528-4_19
http://dx.doi.org/10.1007/978-3-319-41528-4_20
http://dx.doi.org/10.1007/978-3-319-41528-4_21
http://dx.doi.org/10.1007/978-3-319-41528-4_22
http://dx.doi.org/10.1007/978-3-319-41528-4_22

From Shape Analysis to Termination Analysis in Linear Time 426
Roman Manevich, Boris Dogadov, and Noam Rinetzky

RV-Match: Practical Semantics-Based Program Analysis 447
Dwight Guth, Chris Hathhorn, Manasvi Saxena, and Grigore Roşu

Timed and Hybrid Systems

Under-Approximating Backward Reachable Sets by Polytopes 457
Bai Xue, Zhikun She, and Arvind Easwaran

Parsimonious, Simulation Based Verification of Linear Systems 477
Parasara Sridhar Duggirala and Mahesh Viswanathan

Counterexample Guided Abstraction Refinement for Stability Analysis 495
Pavithra Prabhakar and Miriam García Soto

Symbolic Optimal Reachability in Weighted Timed Automata 513
Patricia Bouyer, Maximilien Colange, and Nicolas Markey

Automatic Reachability Analysis for Nonlinear Hybrid Models with C2E2. . . 531
Chuchu Fan, Bolun Qi, Sayan Mitra, Mahesh Viswanathan,
and Parasara Sridhar Duggirala

Author Index . 539

Contents – Part I XIII

http://dx.doi.org/10.1007/978-3-319-41528-4_23
http://dx.doi.org/10.1007/978-3-319-41528-4_24
http://dx.doi.org/10.1007/978-3-319-41528-4_25
http://dx.doi.org/10.1007/978-3-319-41528-4_26
http://dx.doi.org/10.1007/978-3-319-41528-4_27
http://dx.doi.org/10.1007/978-3-319-41528-4_28
http://dx.doi.org/10.1007/978-3-319-41528-4_29

Contents – Part II

Verification in Practice

Model Checking at Scale: Automated Air Traffic Control Design
Space Exploration . 3

Marco Gario, Alessandro Cimatti, Cristian Mattarei, Stefano Tonetta,
and Kristin Yvonne Rozier

Investigating Safety of a Radiotherapy Machine Using System Models with
Pluggable Checkers . 23

Stuart Pernsteiner, Calvin Loncaric, Emina Torlak, Zachary Tatlock,
Xi Wang, Michael D. Ernst, and Jonathan Jacky

End-to-End Verification of ARM® Processors with ISA-Formal 42
Alastair Reid, Rick Chen, Anastasios Deligiannis, David Gilday,
David Hoyes, Will Keen, Ashan Pathirane, Owen Shepherd,
Peter Vrabel, and Ali Zaidi

A Practical Verification Framework for Preemptive OS Kernels 59
Fengwei Xu, Ming Fu, Xinyu Feng, Xiaoran Zhang, Hui Zhang,
and Zhaohui Li

Probabilistic Automated Language Learning for Configuration Files 80
Mark Santolucito, Ennan Zhai, and Ruzica Piskac

Concurrency

The Commutativity Problem of the MapReduce Framework:
A Transducer-Based Approach . 91

Yu-Fang Chen, Lei Song, and Zhilin Wu

Liveness of Randomised Parameterised Systems under Arbitrary Schedulers . . . 112
Anthony W. Lin and Philipp Rümmer

Stateless Model Checking for POWER . 134
Parosh Aziz Abdulla, Mohamed Faouzi Atig, Bengt Jonsson,
and Carl Leonardsson

Hitting Families of Schedules for Asynchronous Programs 157
Dmitry Chistikov, Rupak Majumdar, and Filip Niksic

ParCoSS: Efficient Parallelized Compiled Symbolic Simulation 177
Vladimir Herdt, Hoang M. Le, Daniel Große, and Rolf Drechsler

http://dx.doi.org/10.1007/978-3-319-41540-6_1
http://dx.doi.org/10.1007/978-3-319-41540-6_1
http://dx.doi.org/10.1007/978-3-319-41540-6_2
http://dx.doi.org/10.1007/978-3-319-41540-6_2
http://dx.doi.org/10.1007/978-3-319-41540-6_3
http://dx.doi.org/10.1007/978-3-319-41540-6_3
http://dx.doi.org/10.1007/978-3-319-41540-6_4
http://dx.doi.org/10.1007/978-3-319-41540-6_5
http://dx.doi.org/10.1007/978-3-319-41540-6_6
http://dx.doi.org/10.1007/978-3-319-41540-6_6
http://dx.doi.org/10.1007/978-3-319-41540-6_7
http://dx.doi.org/10.1007/978-3-319-41540-6_8
http://dx.doi.org/10.1007/978-3-319-41540-6_9
http://dx.doi.org/10.1007/978-3-319-41540-6_10

Constraint Solving II

XSat: A Fast Floating-Point Satisfiability Solver . 187
Zhoulai Fu and Zhendong Su

Effectively Propositional Interpolants . 210
Samuel Drews and Aws Albarghouthi

Array Folds Logic. 230
Przemysław Daca, Thomas A. Henzinger, and Andrey Kupriyanov

Automata and Games

Compositional Synthesis of Reactive Controllers for Multi-agent Systems . . . 251
Rajeev Alur, Salar Moarref, and Ufuk Topcu

Solving Parity Games via Priority Promotion . 270
Massimo Benerecetti, Daniele Dell’Erba, and Fabio Mogavero

A Simple Algorithm for Solving Qualitative Probabilistic Parity Games 291
Ernst Moritz Hahn, Sven Schewe, Andrea Turrini, and Lijun Zhang

Limit-Deterministic Büchi Automata for Linear Temporal Logic 312
Salomon Sickert, Javier Esparza, Stefan Jaax, and Jan Křetínský

Slugs: Extensible GR(1) Synthesis . 333
Rüdiger Ehlers and Vasumathi Raman

Synthesis II

Synthesis of Fault-Attack Countermeasures for Cryptographic Circuits. 343
Hassan Eldib, Meng Wu, and Chao Wang

A SAT-Based Counterexample Guided Method for Unbounded Synthesis . . . 364
Alexander Legg, Nina Narodytska, and Leonid Ryzhyk

QLOSE: Program Repair with Quantitative Objectives 383
Loris D’Antoni, Roopsha Samanta, and Rishabh Singh

BDD-Based Boolean Functional Synthesis . 402
Dror Fried, Lucas M. Tabajara, and Moshe Y. Vardi

SOUFFLÉ: On Synthesis of Program Analyzers . 422
Herbert Jordan, Bernhard Scholz, and Pavle Subotić

XVI Contents – Part II

http://dx.doi.org/10.1007/978-3-319-41540-6_11
http://dx.doi.org/10.1007/978-3-319-41540-6_12
http://dx.doi.org/10.1007/978-3-319-41540-6_13
http://dx.doi.org/10.1007/978-3-319-41540-6_14
http://dx.doi.org/10.1007/978-3-319-41540-6_15
http://dx.doi.org/10.1007/978-3-319-41540-6_16
http://dx.doi.org/10.1007/978-3-319-41540-6_17
http://dx.doi.org/10.1007/978-3-319-41540-6_18
http://dx.doi.org/10.1007/978-3-319-41540-6_19
http://dx.doi.org/10.1007/978-3-319-41540-6_20
http://dx.doi.org/10.1007/978-3-319-41540-6_21
http://dx.doi.org/10.1007/978-3-319-41540-6_22
http://dx.doi.org/10.1007/978-3-319-41540-6_23

Model Checking II

Property Directed Equivalence via Abstract Simulation 433
Grigory Fedyukovich, Arie Gurfinkel, and Natasha Sharygina

Combining Model Learning and Model Checking to Analyze
TCP Implementations . 454

Paul Fiterău-Broştean, Ramon Janssen, and Frits Vaandrager

BFS-Based Model Checking of Linear-Time Properties
with an Application on GPUs . 472

Anton Wijs

BigraphER: Rewriting and Analysis Engine for Bigraphs 494
Michele Sevegnani and Muffy Calder

Verification-Aided Debugging: An Interactive Web-Service
for Exploring Error Witnesses. 502

Dirk Beyer and Matthias Dangl

The KIND 2 Model Checker . 510
Adrien Champion, Alain Mebsout, Christoph Sticksel, and Cesare Tinelli

Author Index . 519

Contents – Part II XVII

http://dx.doi.org/10.1007/978-3-319-41540-6_24
http://dx.doi.org/10.1007/978-3-319-41540-6_25
http://dx.doi.org/10.1007/978-3-319-41540-6_25
http://dx.doi.org/10.1007/978-3-319-41540-6_26
http://dx.doi.org/10.1007/978-3-319-41540-6_26
http://dx.doi.org/10.1007/978-3-319-41540-6_27
http://dx.doi.org/10.1007/978-3-319-41540-6_28
http://dx.doi.org/10.1007/978-3-319-41540-6_28
http://dx.doi.org/10.1007/978-3-319-41540-6_29

Probabilistic Systems

Termination Analysis of Probabilistic Programs
Through Positivstellensatz’s

Krishnendu Chatterjee1(B), Hongfei Fu1,2, and Amir Kafshdar Goharshady1

1 IST Austria, Vienna, Austria
{krishnendu.Chatterjee,hongfei.fu,goharshady}@ist.ac.at

2 State Key Laboratory of Computer Science, Institute of Software,
Chinese Academy of Sciences, Beijing, People’s Republic of China

Abstract. We consider nondeterministic probabilistic programs with
the most basic liveness property of termination. We present efficient
methods for termination analysis of nondeterministic probabilistic pro-
grams with polynomial guards and assignments. Our approach is through
synthesis of polynomial ranking supermartingales, that on one hand sig-
nificantly generalizes linear ranking supermartingales and on the other
hand is a counterpart of polynomial ranking-functions for proving termi-
nation of nonprobabilistic programs. The approach synthesizes polyno-
mial ranking-supermartingales through Positivstellensatz’s, yielding an
efficient method which is not only sound, but also semi-complete over
a large subclass of programs. We show experimental results to demon-
strate that our approach can handle several classical programs with com-
plex polynomial guards and assignments, and can synthesize efficient
quadratic ranking-supermartingales when a linear one does not exist even
for simple affine programs.

1 Introduction

Probabilistic Programs. Classic imperative programs extended with random-value
generators give rise to probabilistic programs. Probabilistic programs provide
the appropriate framework to model applications ranging from randomized algo-
rithms [17,38], to stochastic network protocols [5,34], to robot planning [30,33],
etc. Nondeterminism plays a crucial role in modeling, such as, to model behaviors
over which there is no control, or for abstraction. Thus nondeterministic proba-
bilistic programs are crucial in a huge range of problems, and hence their formal
analysis has been studied across disciplines, such as probability theory and sta-
tistics [18,28,32,39,42], formal methods [5,34], artificial intelligence [30,31], and
programming languages [10,19,21,43].

Basic Termination Questions. Besides safety properties, the most basic property
for analysis of programs is the liveness property. The most basic and widely used
notion of liveness for programs is termination. In absence of probability (i.e., for

A full version is available in [11].

c© Springer International Publishing Switzerland 2016
S. Chaudhuri and A. Farzan (Eds.): CAV 2016, Part I, LNCS 9779, pp. 3–22, 2016.
DOI: 10.1007/978-3-319-41528-4 1

4 K. Chatterjee et al.

nonprobabilistic programs), the synthesis of ranking functions and proof of ter-
mination are equivalent [22], and numerous approaches exist for synthesis of
ranking functions for nonprobabilistic programs [8,13,40,48]. The most basic
extension of the termination question for probabilistic programs is the almost-
sure termination question which asks whether a program terminates with proba-
bility 1. Another fundamental question is about finite termination (aka positive
almost-sure termination [7,21]) which asks whether the expected termination
time is finite. The next interesting question is the concentration bound compu-
tation problem that asks to compute a bound M such that the probability that
the termination time is below M is concentrated, or in other words, the proba-
bility that the termination time exceeds the bound M decreases exponentially.

Previous Results. We discuss the relevant previous results for termination analy-
sis of probabilistic programs.

– Probabilistic Programs. First, quantitative invariants was introduced to estab-
lish termination of discrete probabilistic programs with demonic nondetermin-
ism [35,36], This was extended in [10] to ranking supermartingales resulting
in a sound (but not complete) approach to prove almost-sure termination of
probabilistic programs without nondeterminism but with integer- and real-
valued random variables from distributions like uniform, Gaussian, and Poison,
etc. For probabilistic programs with countable state-space and without non-
determinism, the Lyapunov ranking functions provide a sound and complete
method for proving finite termination [7,23].Another soundmethod is to explore
bounded-termination with exponential decrease of probabilities [37] through
abstract interpretation [15]. For probabilistic programs with nondeterminism,
a sound and complete characterization for finite termination through ranking-
supermartingale is obtained in [21]. Ranking supermartingales thus provide a
very powerful approach for termination analysis of probabilistic programs.

– Ranking Functions/Supermartingales Synthesis. Synthesis of linear ranking-
functions/ranking-supermartingales has been studied extensively in [10,12,13,
40]. In context of probabilistic programs, the algorithmic study of synthesis of
linear ranking supermartingales for probabilistic programs (cf. [10]) and prob-
abilistic programs with nondeterminism (cf. our previous result [12]) has been
studied. The major technique adopted in these results is Farkas’ Lemma [20]
which serves as a complete reasoning method for linear inequalities. Beyond
linear ranking functions, polynomial ranking functions have also been consid-
ered. Heuristic synthesis method of polynomial ranking-functions is studied
in [4,9]: Babic et al. [4] checked termination of deterministic polynomial pro-
grams by detecting divergence on program variables and Bradley et al. [9]
extended to nondeterministic programs through an analysis on finite differ-
ences over transitions. More general methods for deterministic polynomial
programs are given by [14,47] where Cousot [14] uses Lagrangian Relaxation,
and Shen et al. [47] use Putinar’s Positivstellensatz [41]. Complete meth-
ods of synthesizing polynomial ranking-functions for nondeterministic pro-
grams are studied by Yang et al. [50], where a complete method through root

Termination Analysis of Probabilistic Programs Through Positivstellensatz’s 5

classification/real root isolation of semi-algbebraic systems and quantifier
elimination is proposed.

To summarize, while many different approaches has been studied, the algorithmic
study of synthesis of ranking supermartingales for probabilistic programs has
only been limited to linear ranking supermartingales (cf. [10,12]). Hence there
is no algorithmic approach to handle nonlinear ranking supermartingales even
for probabilistic programs without nondeterminism.
Our Contributions. Our contributions are as follows:

1. Polynomial Ranking Supermartingales. First, we extend the notion of linear
ranking supermartingales (LRSM) to polynomial ranking supermartingales
(pRSM). We show (by a straightforward extension of LRSM) that pRSM
implies both almost-sure as well as finite termination.

2. Positivstellensatz’s. Second, we conduct a detailed investigation on the appli-
cation of Positivstellensatz’s (German for “positive-locus-theorem” which is
related to polynomials over semialgebraic sets) (cf. Sect. 5.1) to synthesis
of pRSMs over nondeterministic probabilistic programs. To the best of our
knowledge, this is the first result which demonstrates the synthesis of a poly-
nomial subclass of ranking supermartingales through Positivstellensatz’s.

3. New Approach for Non-probabilistic Programs. Our results also extend exist-
ing results for nonprobabilistic programs. We present the first result that
uses Schmüdgen’s Positivstellensatz [45] and Handelman’s Theorem [25] to
synthesize polynomial ranking-functions for nonprobabilistic programs.

4. Efficient Approach. The previous complete method [50] suffers from high com-
putational complexity due to the use of quantifier elimination. In contrast,
our approach (sound but not complete) is efficient since the synthesis can be
accomplished through linear or semi-definite programming, which can mostly
be solved in polynomial time in the problem size [24]. In particular, our app-
roach does not require quantifier elimination, and works for nondeterministic
probabilistic programs.

5. Experimental Results. We demonstrate the effectiveness of our approach on
several classical examples. We show that on classical examples, such as Gam-
bler’s Ruin, and Random Walk, our approach can synthesize a pRSM effi-
ciently. For these examples, LRSMs do not exist, and many of them cannot
be analysed efficiently by previous approaches.

In summary, while Farkas’ Lemma and Motzkin’s Transposition Theorem are stan-
dard techniques to linear ranking functions or linear ranking supermartingales,
they are not sufficient for synthesizing polynomial ranking-supermartingales. To
address this problem, we study the use of Positivstellensatz’s for the first time
to synthesize polynomial ranking-supermartingales for probabilistic programs, for
some of them even the first time for nonprobabilistic programs, and show that how
they can be used for efficient termination analysis over programs. Due to space
restrictions, some technical details are available only in the full version [11].

6 K. Chatterjee et al.

2 Probabilistic Programs

2.1 Basic Notations and Concepts

For a set A, we denote by |A| the cardinality of A. We denote by N, N0, Z,
and R the sets of all positive integers, non-negative integers, integers, and real
numbers, respectively. We use boldface notation for vectors, e.g. x , y , etc., and
we denote an i-th component of a vector x by x [i].

Polynomial Predicates. Let X be a finite set of variables endowed with a fixed
linear order under which we have X = {x1, . . . , x|X|}. We denote the set of real-
coefficient polynomials by R

[
x1, . . . , x|X|

]
or R[X]. A polynomial constraint over

X is a logical formula of the form g1��g2, where g1, g2 are polynomials over X and
��∈ {<,≤, >,≥}. A propositional polynomial predicate over X is a propositional
formula whose all atomic propositional literals are either true, false or polynomial
constraints over X. The validity of the satisfaction assertion x |= φ between a
vector x ∈ R

|X| (interpreted in the way that the value for xj (1 ≤ j ≤ |X|) is
x [j]) and a propositional polynomial predicate φ is defined in the standard way
w.r.t polynomial evaluation and normal semantics for logical connectives. The
satisfaction set of a propositional polynomial predicate φ is defined as �φ� :=
{x ∈ R

|X| | x |= φ}. For more on polynomials (e.g., polynomial evaluation and
arithmetic over polynomials), we refer to the textbook [29, Chapter 3].

Probability Space. A probability space is a triple (Ω,F , P), where Ω is a non-
empty set (so-called sample space), F is a σ-algebra over Ω (i.e., a collection
of subsets of Ω that contains the empty set ∅ and is closed under comple-
mentation and countable union), and P is a probability measure on F , i.e., a
function P : F → [0, 1] such that (i) P(Ω) = 1 and (ii) for all set-sequences
A1, A2, · · · ∈ F that are pairwise-disjoint (i.e., Ai ∩ Aj = ∅ whenever i �= j) it
holds that

∑∞
i=1 P(Ai) = P (

⋃∞
i=1 Ai).

Random Variables and Filtrations. A random variable X in a probability space
(Ω,F , P) is an F-measurable function X : Ω → R ∪ {−∞,+∞}, i.e., a function
satisfying the condition that for all d ∈ R∪{+∞,−∞}, the set {ω ∈ Ω | X(ω) ≤
d} belongs to F . The expected value of a random variable X, denote by E(X), is
defined as the Lebesgue integral of X with respect to P, i.e., E(X) :=

∫
X dP ;

the precise definition of Lebesgue integral is somewhat technical and is omitted
here (cf. [6, Chapter 5] for a formal definition). A filtration of a probability
space (Ω,F , P) is an infinite sequence {Fn}n∈N0 of σ-algebras over Ω such that
Fn ⊆ Fn+1 ⊆ F for all n ∈ N0.

2.2 Probabilistic Programs

The Syntax. The class of probabilistic programs we consider encompasses
basic programming mechanisms such as assignment statement (indicated by
‘:=’), while-loop, if-branch, basic probabilistic mechanisms such as probabilis-
tic branch (indicated by ‘prob’) and random sampling, and demonic nondeter-
minism indicated by ‘�’. Variables (or identifiers) of a probabilistic program

Termination Analysis of Probabilistic Programs Through Positivstellensatz’s 7

are of real type, i.e., values of the variables are real numbers; moreover, vari-
ables are classified into program and sampling variables, where program variables
receive their values through assignment statements and sampling variables do
through random samplings. We consider that each sampling variable r is bounded,
i.e., associated with a one-dimensional cumulative distribution function Υr and
a non-empty bounded interval suppr such that any random variable z which
respects Υr satisfies that z lies in the bounded interval with probability 1. Due
to space restriction, details (e.g., grammar) are relegated to the full version [11].
An example probabilistic program is illustrated in Example 1.

Example 1. Consider the running example depicted in Fig. 1, where r is a sam-
pling variable with the two-point distribution {1 �→ 0.5,−1 �→ 0.5} where the
probability to take values 1 and −1 are both 0.5. The probabilistic program
models a scenario of Gambler’s Ruin where the gambler has initial money x and
repeats gambling until he wins more than 10 or loses all his money. The result of
a gamble is nondeterministic: either win 1 with probability 0.5 (nondeterministic
branch); or lose with probability 0.51 (the probabilistic branch). The numbers
1–7 on the left are the program counters for the program, where 1 is the initial
program counter and 7 the terminal program counter.

Fig. 1. Running example: Gambler Ruin Fig. 2. The CFG of the running example

The Semantics. We use control flow graphs to capture the semantics of prob-
abilistic programs, which we define below.

Definition 1 (Control Flow Graph). A control flow graph (CFG) is a tuple
G = (L,⊥, (X,R), �→) with the following components:

– L is a finite set of labels partitioned into four pairwise-disjoint subsets Ld,
Lp,Lc and La of demonic, probabilistic, conditional-branching (branching for
short) and assignment labels, resp.; and ⊥ is a special label not in L called the
terminal label;

8 K. Chatterjee et al.

– X and R are disjoint finite sets of real-valued program and sampling variables
respectively;

– �→ is a transition relation in which every member (called transition) is a
tuple of the form (�, α, �′) for which � (resp. �′) is the source label (resp.
target label) in L and α is either a real number in (0, 1) if � ∈ Lp, or �
if � ∈ Ld, or a propositional polynomial predicate if � ∈ Lc, or an update
function f : R

|X| × R
|R| → R

|X| if � ∈ La.

W.l.o.g, we assume that L ⊆ N0. Intuitively, labels in Ld correspond to demonic
statements indicated by ‘�’; labels in Lp correspond to probabilistic-branching
statements indicated by ‘prob’; labels in Lc correspond to conditional-branching
statements indicated by some propositional polynomial predicate; labels in La

correspond to assignments indicated by ‘:=’; and the terminal label ⊥ denotes
the termination of a program. The transition relation �→ specifies the transitions
between labels together with the additional information specific to different types
of labels. The update functions are interpreted as follows: we first fix two linear
orders on X and R so that X = {x1, . . . , x|X|} and R = {r1, . . . , r|R|}, inter-
preting each vector x ∈ R

|X| (resp. r ∈ R
|R|) as a valuation of program (resp.

sampling) variables in the sense that the value of xj (resp. rj) is x [j] (resp. r [j]);
then each update function f is interpreted as a function which transforms a val-
uation x ∈ R

|X| before the execution of an assignment statement into f(x , r)
after the execution of the assignment statement, where r is the valuation on R
obtained from a sampling before the execution of the assignment statement.

It is intuitively clear that any probabilistic program can be naturally trans-
formed into a CFG. Informally, each label represents a program location in an
execution of a probabilistic program for which the statement of the program
location is the next to be executed (see Fig. 2).

In the rest of the section, we fix a probabilistic program P with the set X =
{x1, . . . , x|X|} of program variables and the set R = {r1, . . . , r|R|} of sampling
variables, and let G = (L,⊥, (X,R), �→) be its associated CFG. We also fix �0
and resp. x 0 to be the label corresponding to the first statement to be executed
in P and resp. the initial valuation of program variables.

The Semantics. A configuration (for P) is a tuple (�,x) where � ∈ L ∪ {⊥}
and x ∈ R

|X|. A finite path (of P) is a finite sequence of configurations
(�0,x 0), · · · , (�k,xk) such that for all 0 ≤ i < k, either (i) �i+1 = �i = ⊥
and x i = x i+1 (i.e., the program terminates); or (ii) there exist (�i, α, �i+1) ∈�→
and r ∈ {r ′ | ∀r ∈ R. r ′(r) ∈ suppr} such that one of the following condi-
tions hold: (a) �i ∈ Lp ∪ Ld and x i = x i+1 (probabilistic or demonic transi-
tions), (b) �i ∈ Lc, x i = x i+1 and x i |= α (conditional-branch transitions),
(c) �i ∈ La and x i+1 = α(x i, r) (assignment transitions). A run (of P) is an
infinite sequence of configurations whose all finite prefixes are finite paths over
P . A configuration (�,x) is reachable from the initial configuration (�0,x 0) if
there exists a finite path (�0,x 0), · · · , (�k,xk) such that (�,x) = (�k,xk).

The probabilistic feature of P can be captured by constructing a suitable
probability measure over the set of all its runs. However, before this can be
done, nondeterminism in P needs to be resolved by some scheduler.

Termination Analysis of Probabilistic Programs Through Positivstellensatz’s 9

Definition 2 (Scheduler). A scheduler (for P) is a function which assigns to
every finite path (�0,x0), . . . , (�k,xk) with �k ∈ Ld a transition in �→ with source
label �k.

The behaviour of P under a scheduler σ is standard: at each step, P first
samples a real number for each sampling variable and then evolves to the next
step according to its CFG or the scheduler choice. In this way, the scheduler
and random choices/samplings produce a run over P . Moreover, each scheduler
σ induces a unique probability measure P

σ over the runs of P . In the sequel, we
will use E

σ(·) to denote the expected values of random variables under P
σ.

Random Variables and Filtrations over Runs. We define the following (vectors
of) random variables on the set of runs of P : {θP

n }n∈N0 , {xP
n }n∈N0 and {rP

n }n∈N0 :
each θP

n is the random variable representing the (integer-valued) label at the n-
th step; each xP

n is the vector of random variables such that each xP
n [i] is the

random variable representing the value of the program variable xi at the n-th
step; and each rP

n [i] is the random variable representing the sampled value of the
sampling variable ri at the n-th step. The filtration {HP

n }n∈N0 is defined such
that each σ-algebra HP

n is the smallest σ-algebra that makes all random variables
in {θP

k }0≤k≤n and {xP
k }0≤k≤n measurable. We will omit the superscript P in all

the notations above if it is clear from the context.

Remark 1. Under the condition that each sampling variable is bounded, using
an inductive argument it follows that each xn is a vector of bounded random
variables. Thus E

σ(|xn[i]|) exists for each random variable xn[i].

Below we define the notion of polynomial invariants which logically captures
all reachable configurations. A polynomial invariant may be obtained through
abstract interpretation [15].

Definition 3 (Polynomial Invariant). A polynomial invariant (for P) is a
function I assigning a propositional polynomial predicate over X to every label
in G such that for all configurations (�,x) reachable from (�0,x0) in G, it holds
that x |= I(�).

3 Termination over Probabilistic Programs

In this section, we first define the notions of almost-sure/finite termination and
concentration bounds over probabilistic programs, and then describe the com-
putational problems studied in this paper. Below we fix a probabilistic program
P with its associated CFG G = (L,⊥, (X,R), �→) and an initial configuration
(�0,x 0) for P .

Definition 4 (Termination [7,12,21]). A run ω = {(�n,xn)}n∈N0 over P is
terminating if �n = ⊥ for some n ∈ N0. The termination time of P is a random
variable TP such that for each run ω = {(�n,xn)}n∈N0 , TP (ω) is the least number
n such that �n = ⊥ if such n exists, and ∞ otherwise. The program P is said
to be almost-sure terminating (resp. finitely terminating) if P

σ(TP < ∞) = 1
(resp. E

σ(TP) < ∞) for all schedulers σ (for P).

10 K. Chatterjee et al.

Note that E
σ(TP) < ∞ implies that P

σ(TP < ∞) = 1, but the converse does not
necessarily hold (see [10, Example 5] for an example). To measure the expected
values of the termination time under all (demonic) schedulers, we further define
the quantity ET(P) := supσ E

σ(TP).

Definition 5 (Concentration on Termination Time [12,37]). A concentra-
tion bound for P is a non-negative integer M such that there exist real constants
c1 ≥ 0 and c2 > 0, and for all N ≥ M we have P(TP > N) ≤ c1 · e−c2·N .

Informally, a concentration bound characterizes exponential decrease of prob-
ability values of non-termination beyond the bound. On one hand, it can be
used to give an upper bound on probability of non-termination beyond a large
step; and on the other hand, it leads to an algorithm that approximates ET(P)
(cf. [12, Theorem 5]).

In this paper, we consider the algorithmic analysis of the following problems:

– Input: a probabilistic program P , a polynomial invariant I for P and an
initial configuration (�0,x 0) for P ;

– Output (Almost-Sure/Finite Termination): “yes” if the algorithm finds
that P is almost-sure/finite terminating and “fail” otherwise;

– Output (Concentration on Termination): a concentration bound if the
algorithm finds one and “fail” otherwise.

4 Polynomial Ranking-Supermartingale

In this section, we develop the notion of polynomial ranking-supermartingale
which is an extension of linear ranking-supermartingale [10,12]. We fix a prob-
abilistic program P , a polynomial invariant I for P and an initial configuration
(�0,x 0) for P . Let G = (L,⊥, (X,R), �→) be the associated CFG of P , with
X = {x1, . . . , x|X|} and R = {r1, . . . , r|R|}. We first present the general notion
of ranking supermartingale, and then define polynomial ranking supermartingale.

Definition 6 (Ranking Supermartingale [12,21]). A discrete-time stochas-
tic process {Xn}n∈N0 w.r.t a filtration {Fn}n∈N0 is a ranking supermartin-
gale (RSM) if there exist K < 0 and ε > 0 such that for all n ∈ N0,
we have E(|Xn|) < ∞ and it holds almost surely (with probability 1) that
Xn ≥ K and E(Xn+1 | Fn) ≤ Xn − ε · 1Xn≥0 , where E(Xn+1 | Fn) is the
conditional expectation of Xn+1 given Fn (cf. [49, Chapter 9]).

Informally, a polynomial ranking-supermartingale over P is a polynomial instan-
tiation of an RSM through certain function η : (L ∪ {⊥}) × R

|X| → R which
satisfies that each η(�, ·) (for all � ∈ L∪{⊥}) is essentially a polynomial function
over X. Given such a function η, the intuition is to have conditions that make
the stochastic process Xn = η(θn,xn) an RSM. To ensure this, we consider
the conditional expectation E

σ (Xn+1 | Hn); this is captured by an extension of
pre-expectation [10,12] from the linear to the polynomial case. Below we define
L⊥ := L ∪ {⊥}. For a function g : R

|X| × R
|R| → R, we let ER(g, ·) : R

|X| → R

Termination Analysis of Probabilistic Programs Through Positivstellensatz’s 11

be the function such that each ER(g,x) is the expected value E(g(x , r̂)), where
r̂ is any vector of independent random variables such that each r̂ [i] is a random
variable that respects the cumulative distribution function Υri

.

Definition 7 (Pre-Expectation). Let η : L⊥ × R
|X| → R be a function such

that each η(�, ·) (for all � ∈ L⊥) is a polynomial function over X. The function
preη : L⊥ × R

|X| → R is defined by:

– preη(�,x) :=
∑

(�,z,�′)∈	→ z · η (�′,x) if � ∈ Lp (probabilistic transitions);
– preη(�,x) := max(�,�,�′)∈	→ η(�′,x) if � ∈ Ld (nondeterministic transitions);
– preη(�,x) := η(�′,x) if � ∈ Lc and (�, φ, �′) is the only transition in �→ such

that x |= φ (conditional transitions);
– preη(�,x) := ER (g,x) if � ∈ La, where g is the function such that g(x, r) =

η (�′, f(x, r)) and (�, f, �′) is the only transition in �→ (assignment transitions);
and

– preη(�,x) := η(�,x) if � = ⊥ (terminal location).

The following lemma establishes the relationship between pre-expectation and
conditional expectation.

Lemma 1. Let η : L⊥ × R
|X| → R be a function such that each η(�, ·) (for

all � ∈ L⊥) is a polynomial function over X, and σ be any scheduler. Let the
stochastic process {Xn}n∈N0 be defined by: Xn := η(θn,xn). Then for all n ∈ N0,
we have E

σ(Xn+1 | Hn) ≤ preη(θn,xn).

Example 2. Consider the running example in Example 1 with CFG in Fig. 2. Let
η be the function specified in the second and fifth column of Table 1, where
g(x) := (x − 1)(10 − x). Then preη is given in the third and sixth column of
Table 1. Note that the case for i = 2 is obtained from preη(2, x) = max{g(x) +
9.6, g(x) + 9.6}, and the case for i = 3 is from preη(3, x) = ER(h, x), where h is
the function h(y, r) = g(y) − (2y − 11)r − r2 + 10.

We now define the notion of polynomial ranking-supermartingale. The intu-
ition is that we encode the RSM-difference condition as a logical formula, treat
zero as the threshold between terminal and non-terminal labels, and use the
invariant I to over-approximate the set of reachable configurations at each label.
Below for each � ∈ Lc, we define PP(�) to be the propositional polynomial pred-
icate

∨
(�,φ,�′)∈	→,�′ �=⊥ φ; and for � ∈ L\Lc, we let PP(�) := true.

Table 1. η and preη for Example 1 and Fig. 2

i η(i, x) preη(i, x) i η(i, x) preη(i, x)

1 g(x) + 10 11≤x≤10 · (g(x) + 9.8)
+ 1x<1∨x>10 · (−0.2)

5 g(x) + 2x − 1.8 g(x) + 2x − 2

2 g(x) + 9.8 g(x) + 9.6 6 g(x) − 2x + 20.2 g(x) − 2x + 20

3 g(x) + 9.6 g(x) + 9 7 −0.2 −0.2

4 g(x) + 9.6 g(x) + 0.04x + 8.98

12 K. Chatterjee et al.

Definition 8 (Polynomial Ranking-Supermartingale). A d-degree poly-
onomial ranking-supermartingale map (in short, d-pRSM) w.r.t (P, I) is a func-
tion η : L⊥ × R

|X| → R satisfying that there exist ε > 0 and K ≤ −ε such that
for all � ∈ L⊥ and all x ∈ R

|X|, the conditions (C1-C4) hold:

– C1: the function η(�, ·) : R
|X| → R is a polynomial over X of order at most d;

– C2: if � �= ⊥ and x |= I(�), then η(�,x) ≥ 0;
– C3: if � = ⊥, then η(�,x) = K;
– C4: if � �= ⊥ and x |= I(�) ∧ PP(�), then preη(�,x) ≤ η(�,x) − ε.

Note that C2 and C3 together separate non-termination and termination by the
threshold 0, and C4 is the RSM difference condition which is intuitively related
to the ε difference in the RSM definition (cf. Definition 6). By generalizing our
previous proofs in [12] (from LRSM to pRSM), we establish the soundness of
pRSMs w.r.t both almost-sure and finite termination.

Theorem 1. If there exists a d-pRSM η w.r.t (P, I) with constants ε,K (cf.
Definition 8), then P is a.s. terminating and ET(P) ≤ UB(P) := η(�0,x0)−K

ε .

Example 3. Consider the running example (cf. Example 1) and the function η
given in Example 2. Assuming that the initial valuation satisfies 1 ≤ x ∧ x ≤ 10,
we assign the trivial invariant I such that I(1) = 0 ≤ x ∧ x ≤ 11, I(j) = 1 ≤
x∧x ≤ 10 for 2 ≤ j ≤ 6 and I(7) = x < 1∨x > 10. It is straightforward to verify
that η is a 2-pRSM with ε = 0.2 and K = −0.2 (cf. Definition 8 for ε,K). Hence
by Theorem 1, the program in Example 1 terminates almost-surely under any
scheduler and its expected termination time is at most 5 ·(x0−1) ·(10−x0)+51,
given the initial value x0.

Remark 2. The running example (cf. Example 1) does not admit a linear (i.e.
1-) pRSM since ER(r) = 0 at label 3. This indicates that linear pRSMs may not
exist even over simple affine programs like Example 1. Thus, this motivates the
study of pRSMs even for simple affine programs.

Remark 3. The non-strict inequality symbol ‘≥’ in C2 can be replaced by its
strict counterpart ‘>’ since η + c (c > 0) remains to be a pRSM if η is a pRSM
and K (in C3) is sufficiently small. (By definition, preη+c = preη + c.) Moreover,
the non-strict inequality symbol ‘≤’ in C4 can be replaced by ‘<’ since a pRSM
η and a constant K (for C3) can be scaled by a constant factor (e.g. 1.1) so that
strict inequalities are ensured. Moreover, one can also assume that K = −1 and
ε = 1 in Definition 8. This is because one can first scale a pRSM with constants
ε,K by a positive scalar to ensure that ε = 1, and then safely set K = −1 due
to C2.

Theorem 1 answers the questions of almost-sure and finite termination in a uni-
fied fashion. Generalizing our approach in [12], we show that by restricting a
pRSM to have bounded difference, we also obtain concentration results.

Definition 9 (Difference-Bounded pRSM). A d-pRSM η is difference-
bounded w.r.t a non-empty interval [a, b] ⊆ R if the following conditions hold:

Termination Analysis of Probabilistic Programs Through Positivstellensatz’s 13

– for all � ∈ Ld ∪ Lp and (�, α, �′) ∈�→, and for all x ∈ �I(�)�, it holds that
a ≤ η(�′,x) − η(�,x) ≤ b;

– for all � ∈ Lc and (�, φ, �′) ∈�→, and for all x ∈ �I(�) ∧ φ�, it holds that
a ≤ η(�′,x) − η(�,x) ≤ b;

– for all � ∈ La and (�, f, �′) ∈�→, for all x ∈ �I(�)� and for all r ∈ {r′ | ∀r ∈
R. r′[r] ∈ Suppr}, it holds that a ≤ η(�′, f(x, r)) − η(�,x) ≤ b.

Note that if a d-pRSM η with constants ε,K (cf. Definition 8) is difference-
bounded w.r.t [a, b], then from definition a ≤ −ε; one can further assume that
−ε ≤ b since otherwise one can reset ε := −b. By definition, the stochastic
process Xn := η(θn,xn) defined through a difference-bounded pRSM w.r.t [a, b]
satisfies that a ≤ Xn+1 − Xn ≤ b; then using Hoeffding’s Inequality [12,26], we
establish a concentration bound.

Theorem 2. Let η be a difference-bounded d-pRSM w.r.t [a, b] with constants
ε and K. For all n ∈ N, if ε(n − 1) > η(�0,x0), then P(TP > n) ≤
e

− 2(ε(n−1)−η(�0,x0))2

(n−1)(b−a)2 .

From Theorem 2, a difference-bounded d-pRSM η implies a concentration bound
η(�0,x0)

ε + 2.

Example 4. Consider again our running example in Example 1 with invariant
given in Example 3. Let η be the function illustrated in Table 1. One can verify
that the interval [−10.2, 8.6] satisfies the conditions specified in Definition 9 for
η, as the following hold:

– for all x ∈ [1, 10], η(2, x) − η(1, x) = −0.2;
– for all x ∈ [0, 1) ∪ (10, 11], −10.2 ≤ η(7, x) − η(1, x) ≤ −0.2;
– for all x ∈ [1, 10] and i ∈ {3, 4}, η(i, x) − η(2, x) = −0.2;
– for all x ∈ [1, 10] and i ∈ {5, 6}, −9.4 ≤ η(i, x) − η(4, x) ≤ 8.6;
– for all x ∈ [1, 10], η(1, x − 1) − η(5, x) = −0.2;
– for all x ∈ [1, 10], η(1, x + 1) − η(6, x) = −0.2;
– for all x ∈ [1, 10] and r ∈ {−1, 1}, −9.6 ≤ η(1, x + r) − η(3, x) ≤ 8.4 .

Then by Theorem 2, assuming that the program have initial value x0 = 5,

one can deduce that P (TP > 50000) ≤ e− 2·(0.2·49999−30)2

49999·18.82 ≈ 1.3016 · 10−5 .

We end this section with a result stating that whether a (difference-bounded)
d-pRSM exists can be decided (using quantifier elimination).

Theorem 3. For any fixed natural number d ∈ N, the problem whether a
(difference-bounded) d-pRSM w.r.t an input pair (P, I) exists is decidable.

5 The Synthesis Algorithm

In this section, we present an efficient algorithmic approach for solving almost-
sure/finite termination and concentration questions through synthesis of pRSMs.
Instead of computationally-expensive quantifier elimination (cf. Theorem3) we
use Positivstellensatz, which is sound but not complete. Note that by Theorem 1,
the existence of a pRSM implies both almost-sure and finite termination of a
probabilistic program.

14 K. Chatterjee et al.

The General Framework. To synthesize a pRSM, the algorithm first sets up a
polynomial template with unknown coefficients. Next, the algorithm finds values
for the unknown coefficients, ε,K (cf. Definition 8) and [a, b] (cf. Definition 9) so
that C2-C4 in Definition 8 and concentration conditions in Definition 9 are sat-
isfied. Note that from Definition 7, each preη(�, ·) is a (piecewise) polynomial
over X whose coefficients are linear combinations of unknown coefficients from
the polynomial template. Instead of using quantifier elimination (cf. e.g. [50] or
Theorem 3), we use Positivstellensatz’s [44]. We observe that each universally-
quantified formula described in C2, C4 and Definition 9 can be decomposed
(through disjunctive normal form of propositional polynomial predicate or trans-
formation of max in Definition 7 into two conjunctive clauses) into a conjunction
of formulae of the following pattern (†)

∀x ∈ R
|X|. [(g1(x) ≥ 0 ∧ · · · ∧ gm(x) ≥ 0) → g(x) > 0] (†)

where each gi is a polynomial with constant coefficients and g is one with
unknown coefficients from the polynomial template. In the pattern, we over-
approximate any possible ‘gj(x) > 0’ by ‘gj(x) ≥ 0’. By Remark 3, the difference
between ‘g(x) > 0’ and ‘g(x) ≥ 0’ does not matter.

Example 5. Consider again the program in Example 1 with its CFG. Consider
the invariant specified in Example 3. The instances of the pattern for termination
of this program are listed as follows, where each instance is represented by a pair
(Γ, g) where Γ and g corresponds to {g1, . . . , gm} and resp. g described in (†).
– (C4, label 1) ({x − 1, 10 − x, x, 11 − x}, η(1, x) − η(2, x) − ε);
– (C4, label 2) ({x−1, 10−x}, η(2, x)−η(3, x)−ε) and ({x−1, 10−x}, η(2, x)−

η(4, x) − ε);
– (C4, label 3) ({x − 1, 10 − x}, η(3, x) − ER((y, r) �→ η(1, y + r), x) − ε);
– (C4, label 4) ({x − 1, 10 − x}, η(4, x) − 0.51η(5, x) − 0.49η(6, x) − ε);
– (C4, label 5) ({x − 1, 10 − x}, η(5, x) − η(1, x − 1) − ε);
– (C4, label 6) ({x − 1, 10 − x}, η(6, x) − η(1, x + 1) − ε);
– (C2) ({x, 11 − x}, η(1, x)) and ({x − 1, 10 − x}, η(j, x)) for 2 ≤ j ≤ 6.

In the next part, we show that such pattern can be solved by Positivstellensatz’s.

5.1 Positivstellensatz’s

We fix a linearly-ordered finite set X of variables and a finite set Γ =
{g1, . . . , gm} ⊆ R[X] of polynomials. Let �Γ � be the set of all vectors x ∈ R

|X|

satisfying the propositional polynomial predicate
∧m

i=1 gi ≥ 0. We first define
pre-orderings and sums of squares as follows.

Definition 10 (Sums of Squares). Define Θ to be the set of sums-of-squares,
i.e.,

Θ :=

{
k∑

i=1

h2
i | k ∈ N and h1, . . . , hk ∈ R[X]

}

.

Termination Analysis of Probabilistic Programs Through Positivstellensatz’s 15

Definition 11 (Preordering). The preordering generated by Γ is defined by:

PO(Γ) :=

⎧
⎨

⎩

∑

w∈{0,1}m

hw ·
m∏

i=1

gwi
i | ∀w. hw ∈ Θ

⎫
⎬

⎭
.

Remark 4. It is well-known that a real-coefficient polynomial g of degree 2d is a
sum of squares iff there exists a k-dimensional positive semi-definite real square
matrix Q such that g = yTQy , where k is the number of monomials of degree no
greater than d and y is the column vector of all such monomials (cf. [27, Corollary
7.2.9]). This implies that the problem whether a given polynomial (with real
coefficients) is a sum of squares can be solved by semi-definite programming [24].

Now we present the first Positivstellensatz, called Schmüdgen’s Positivstellen-
satz.

Theorem 4 (Schmüdgen’s Positivstellensatz [45]). Let g ∈ R[X]. If the
set �Γ � is compact and g(x) > 0 for all x ∈ �Γ �, then g ∈ PO(Γ).

From Schmüdgen’s Positivstellensatz, any polynomial g which is positive on
�Γ � can be represented by

(‡) : g =
∑

w∈{0,1}m

hw · gw ,

where gw :=
∏m

i=1 gwi
i and hw ∈ Θ for each w ∈ {0, 1}m. To apply Schmüdgen’s

Positivstellensatz, the degrees of those hw’s are restricted to be no greater than
a fixed natural number. Then from Remark 4 and by equating the coefficients
of the same monomials between the two polynomials, Eq. (‡) results in a system
of linear equalities that involves coefficients of g and variables (grouped as 2m

square matrices) under semi-definite constraints.

Example 6. Consider that X = {x} and Γ = {1−x, 1+x}. Choose the maximal
degree for sums of squares to be 2. Then from Remark 4, the form of Eq. (‡) can
be written as:

g =
4∑

i=1

[
(
1 x

) ·
(

ai,1,1 ai,1,2

ai,2,1 ai,2,2

)
·
(

1
x

)]
· ui

where u1 = 1, u2 = 1 − x, u3 = 1 + x, u4 = 1 − x2 and each matrix (ai,j,k)2×2

(1 ≤ i ≤ 4) is a matrix of variables subject to be positive semi-definite.

Theorem 4 can be further refined by a weaker version of Putinar’s Positivstel-
lensatz.

Theorem 5 (Putinar’s Positivstellensatz [41]). Let g ∈ R[X]. If (i) there
exists some gi ∈ Γ such that the set {x ∈ R

|X| | gi(x) ≥ 0} is compact and (ii)
g(x) > 0 for all x ∈ �Γ �, then

(§) g = h0 +
m∑

i=1

hi · gi

for some sums of squares h0, . . . , hm ∈ Θ.

16 K. Chatterjee et al.

Similar to Eqs. (‡) and (§) results in a system of linear equalities that involves
variables for synthesis of a pRSM and matrices of variables under semi-definite
constraints, provided that an upper bound on the degrees of sums of squares is
enforced.

Example 7. Consider that X = {x} and Γ = {1 − x2, 0.5 − x}. Choose the
maximal degree for sums of squares to be 2. Then the form of Eq. (§) can be
written as:

g =
3∑

i=1

[
(
1 x

) ·
(

ai,1,1 ai,1,2

ai,2,1 ai,2,2

)
·
(

1
x

)]
· ui

where u1 = 1, u2 = 1 − x2, u3 = 0.5 − x and each matrix (ai,j,k)2×2 (1 ≤ i ≤ 3)
is a matrix of variables subject to be positive semi-definite.

In the following, we introduce a Positivstellensatz entitled Handelman’s The-
orem when Γ consists of only linear (degree one) polynomials. For Handelman’s
Theorem, we assume that Γ consists of only linear (degree 1) polynomials and
�Γ � is non-empty. (Note that whether a system of linear inequalities has a solu-
tion is decidable in PTIME [46].)

Definition 12 (Monoid). The monoid of Γ is defined by:

Monoid(Γ) :=

{
k∏

i=1

hi | k ∈ N0 and h1, . . . , hk ∈ Γ

}

.

Theorem 6 (Handelman’s Theorem [25]). Let g ∈ R[X] be a polynomial
such that g(x) > 0 for all x ∈ �Γ �. If �Γ � is compact, then

(#) g =
d∑

i=1

ai · ui

for some d ∈ N, real numbers a1, . . . , ad ≥ 0 and u1, . . . , ud ∈ Monoid(Γ).

To apply Handelman’s theorem, we consider a natural number which serves
as a bound on the number of multiplicands allowed to form an element in
Monoid(Γ); then Eq. (#) results in a system of linear equalities involving
a1, . . . , ad. Unlike previous Positivstellensatz’s, the form of Handelman’s the-
orem allows us to construct a system of linear equalities free from semi-definite
constraints.

Example 8. Consider that X = {x} and Γ = {1 − x, 1 + x}. Fix the maximal
number of multiplicands in an element of Monoid(Γ) to be 2. Then the form of
Eq. (#) can be rewritten as g =

∑6
i=1 ai ·ui where u1 = 1, u2 = 1−x, u3 = 1+x,

u4 = 1 − x2, u5 = 1 − 2x + x2, u6 = 1 + 2x + x2 and each ai (1 ≤ i ≤ 6) is
subject to be a non-negative real number.

Termination Analysis of Probabilistic Programs Through Positivstellensatz’s 17

5.2 The Algorithm for pRSM Synthesis

Based on the Positivstellensatz’s introduced in the previous part, we present our
algorithm for synthesis of pRSMs. Below, we fix an input probabilistic program
P , an input polynomial invariant I and an input initial configuration (�0,x 0) for
P . Let G = (L,⊥, (X,R), �→) be the associated CFG of P .

Description of the Algorithm PRSMSynth. We present a succinct description
of the key ideas. The description of the key steps of the algorithm is as follows.

1. Template η for a pRSM. The algorithm fixes a natural number d as the
maximal degree for a pRSM, constructs Md as the set of all monomials over
X of degree no greater than d, and set up a template d-pRSM η such that
each η(�, ·) is the polynomial

∑
h∈Md

ah,� · h where each ah,� is a (distinct)
scalar variable (cf. C1).

2. Bound for Sums of Squares and Monoid Multiplicands. The algorithm fixes a
natural number k as the maximal degree for a sum of squares (cf. Schmüdgen’s
and Putinar’s Positivstellensatz) or as the maximal number of multiplicands
in a monoid element (cf. Handelman’s Theorem).

3. RSM-Difference and Terminating-Negativity. From Remark 3, the algorithm
fixes ε to be 1 (cf. condition C3) and K to be −1 (cf. condition C4).

4. Computation of pre-expectation preη. With ε,K fixed to be resp. 1,−1 in the
previous step, the algorithm computes preη by Definition 7, whose all involved
coefficients are linear combinations from ah,�’s.

5. Pattern Extraction. The algorithm extracts instances conforming to pat-
tern (†) from C2, C4 and formulae presented in Definition 9, and trans-
lates them into systems of linear equalities over variables among ah,�’s, ε,
K, and extra matrices of variables assumed to be positive semi-definite (cf.
Schmüdgen’s and Putinar’s Positivstellensatz) or scalar variables assumed to
be non-negative (cf. Handelman’s Theorem) through Eqs. (‡), (§) and (#).

6. Solution via Semidefinite or Linear Programming. The algorithm calls semi-
definite programming (for Schmüdgen’s and Putinar’s Positivstellensatz) or
linear programming (for Handelman’s Theorem) in order to check the feasi-
bility or to optimize UB(P) (cf. Theorem 1 for upper bound of ET(P)) over all
variables among ah,�’s and extra matrix/scalar variables from Eqs. (‡), (§) and
(#). Note that the feasibility implies the existence of a (difference-bounded)
d-pRSM; the existence of a d-pRSM in turn implies finite termination, and
the existence of a difference-bounded d-pRSM in turn implies a concentration
bound through Theorem2.

The soundness of our algorithm is as follows.

Theorem 7 (Soundness). Any function η synthesized through the algorithm
PRSMSynth is a valid pRSM.

Remark 5 (Efficiency). It is well-known that for semi-definite programs with
a positive real number R to bound the Frobenius norm of any feasible solu-
tion, an approximate solution upto precision ε can be computed in polynomial

18 K. Chatterjee et al.

time in the size of the semi-definite program (with rational numbers encoded
in binary), log R and log ε−1 [24]. Thus, our sound approach presents an effi-
cient method for analysis of many probabilistic programs. Moreover, when each
propositional polynomial predicate in the probabilistic program involves only lin-
ear polynomials, then the sound form of Handelman’s theorem can be applied,
resulting in feasibility checking of systems of linear inequalities rather than semi-
definite constraints. By polynomial-time algorithms for solving systems of linear
inequalities [46], our approach is polynomial time (and thus efficient) over such
programs.

Remark 6 (Semi-Completeness). Consider probabilistic programs of the follow-
ing form: while φ do if � then P1 else P2 od, where P1, P2 are single assign-
ments, �φ� is compact, and invariants which assign to each label a propositional
polynomial predicate is in DNF form that involves no strict inequality (i.e. no
‘<’ or ‘>’). Upon such inputs, our approach is semi-complete in the sense that
by raising the upper bounds for the degree of a sum of squares and the number of
multiplicands in a monoid element, the algorithm PRSMSynth will eventually
find a pRSM if it exists. This is because Theorems 4 to 6 are “semi-complete”
when �Γ � is compact, as the terminal label can be separately handled by PP(·) so
that only compact Γ ’s for Positivstellensatz’s may be formed, and the difference
between strict and non-strict inequalities does not matter (cf. Remark 3).

6 Experimental Results

In this section, we present experimental results for our algorithm through the
semi-definite programming tool SOSTOOLS [3] (that uses SeDuMi [1]) and the
linear programming tool CPLEX [2]. Due to space constraints, the detailed
description of the input probabilistic programs are in [11].

Experimental Setup. We consider six classical examples of probabilistic programs
that exhibit distinct types non-linear behaviours.Our examples are, namely,Logis-
ticMap adopted in [14]whichwaspreviouslyhandledbyLagrangian relaxation and
semi-definite programming whereas our approach uses linear programming, Decay
that models a sequence of points converging stochastically to the origin, Random
Walk that models a random walk within a bounded region defined through non-
linear curves, Gambler’s Ruin which is our running example (Example 1), Gam-
bler’s Ruin Variant which is a variant of Example 1, and Nested Loop which is a
nested loop with stochastic increments. Except for Gambler’s Ruin Variant and
Nested Loop, our approach is semi-complete for all other examples (cf. Remark 6).
In all the examples the invariants are straightforward and was manually integrated
with the input. Since SOSTOOLS only produces numerical results, we modify
“η(�,x) ≥ 0” in C2 to “η(�,x) ≥ 1” for Putinar’s or Schmüdgen’s Positivstellen-
satz and check whether the maximal numerical error of all equalities added to SOS-
TOOLS is sufficiently small over a bounded region. In our examples, the bounded
region is {(x, y) | x2 +y2 ≤ 2} and the maximal numerical error should not exceed
1. Note that 1 is also our fixed ε in C4, and by Remark 3, the modification on C2 is

Termination Analysis of Probabilistic Programs Through Positivstellensatz’s 19

not restrictive. Instead, one may also pursue Sylvester’s Criterion (cf. [27, Theorem
7.2.5]) to check membership of sums of squares through checking whether a square
matrix is positive semi-definite or not.

Experimental Results. In Table 2, we present the experimental results, where
‘Method’ means that whether we use either Handelman’s Theorem, Putinar’s
Positivstellensatz or Schmüdgen’s Positivstellensatz to synthesize pRSMs, ‘SOS-
TOOLS/CPLEX’ means the running time for CPLEX/SOSTOOLS in seconds,
’error’ is the maximal numerical error of equality constraints added into SOS-
TOOLS (when instantiated with the solutions), and η(�0, ·) is the polynomial
for the initial label in the synthesized pRSM. The synthesized pRSMs (in the
last column) refer to the variables of the program. All numbers except errors
are rounded to 10−4. For all the examples, our translation to the optimization
problems are linear. We report the running times of the optimization tools and
synthesized pRSMs. The experimental results were obtained on Intel Core i7-
2600 machine with 3.4 GHz and 16 GB RAM.

Table 2. Experimental results

Example Method SOSTOOLS error η(�0, ·)
Decay Putinar 0.1248s ≤ 10−9 5282.3435x2 + 5282.3435y2 + 1

Random Walk Schmüdgen 0.7176s ≤ 10−7 −300x2 − 300y2 + 601

Example Method CPLEX - η(�0, ·)
Gambler’s Ruin Handelman ≤ 10−2s - 33x − 3x2

Gambler’s Ruin V Handelman ≤ 10−2s - −21 + 100x − 70y − 100x2 + 100xy

Logistic Map Handelman ≤ 10−2s - 1000500.7496x

Nested Loop Handelman ≤ 2 · 10−2s - 48 + 160n + (m − x)(800n + 240)

For all the examples we consider except Logistic Map, their almost-sure
termination cannot be answered by previous approaches. For the Logistic-
Map example, our reduction is to linear programming whereas existing
approaches [14,47] reduce to semidefinite programming.

7 Conclusion and Future Work

In this paper, we extended linear ranking supermartingale (LRSM) for prob-
abilistic programs proposed in [10,12] to polynomial ranking supermartingales
(pRSM) for nondeterministic probabilistic programs. We developed the notion
of (difference bounded) pRSM and proved that it is sound for almost-sure
and finite termination, as well as for concentration bound (Theorems 1 and 2).
Then we developed an efficient (sound but not complete) algorithm for synthe-
sizing pRSMs through Positivstellensatz’s (cf. Sect. 5.1), proved its soundness
(Theorem 7) and argued its semi-completeness (Remark 6) over an important
class of programs. Finally, our experiments demonstrate the effectiveness of our

20 K. Chatterjee et al.

synthesis approach over various classical probabilistic programs, where LRSMs
do not exist (cf. Example 1 and Remark 2). Directions of future work are to
explore (a) more elegant methods for numerical problems related to semi-definite
programming, and (b) other forms of RSMs for more general class of probabilistic
programs.

Acknowledgements. We thank anonymous referees for valuable comments. We also
thank Hui Kong for his help on SOSTOOLS. The research was partly supported by
Austrian Science Fund (FWF) NFN Grant No. S11407-N23 (RiSE/SHiNE), ERC Start
grant (279307: Graph Games), ERC Advanced Grant (267989: QUAREM), and Natural
Science Foundation of China (NSFC) under Grant No. 61532019.

References

1. SeDuMi 1.3 (2008). http://sedumi.ie.lehigh.edu/
2. IBM ILOG CPLEX Optimizer Interactive Optimizer Community Edi-

tion 12.6.3.0 (2010). http://www-01.ibm.com/software/integration/optimization/
cplex-optimizer/

3. SOSTOOLS v3.00 (2013). http://www.cds.caltech.edu/sostools/
4. Babic, D., Cook, B., Hu, A.J., Rakamaric, Z.: Proving termination of nonlinear

command sequences. Form. Asp. Comput. 25(3), 389–403 (2013)
5. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press, Cambridge

(2008)
6. Billingsley, P.: Probability and Measure, 3rd edn. Wiley, New York (1995)
7. Bournez, O., Garnier, F.: Proving positive almost-sure termination. In: Giesl, J.

(ed.) RTA 2005. LNCS, vol. 3467, pp. 323–337. Springer, Heidelberg (2005)
8. Bradley, A.R., Manna, Z., Sipma, H.B.: Linear ranking with reachability. In: Etes-

sami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 491–504. Springer,
Heidelberg (2005)

9. Bradley, A.R., Manna, Z., Sipma, H.B.: Termination of polynomial programs. In:
Cousot [16], pp. 113–129

10. Chakarov, A., Sankaranarayanan, S.: Probabilistic program analysis with Martin-
gales. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 511–526.
Springer, Heidelberg (2013)

11. Chatterjee, K., Fu, H., Goharshady, A.K.: Termination analysis of probabilistic
programs through positivstellensatz’s (2016). arXiv CoRR: http://arxiv.org/abs/
1604.07169

12. Chatterjee, K., Fu, H., Novotný, P., Hasheminezhad, R.: Algorithmic analysis of
qualitative and quantitative termination problems for affine probabilistic programs.
In: POPL, pp. 327–342. ACM (2016)

13. Colón, M.A., Sipma, H.B.: Synthesis of linear ranking functions. In: Margaria,
T., Yi, W. (eds.) TACAS 2001. LNCS, vol. 2031, pp. 67–81. Springer, Heidelberg
(2001)

14. Cousot, P.: Proving program invariance and termination by parametric abstraction,
Lagrangian relaxation and semidefinite programming. In: Cousot [16], pp. 1–24

15. Cousot, P., Cousot, R.: Abstract interpretation: a unified Lattice model for static
analysis of programs by construction or approximation of fixpoints. In: POPL, pp.
238–252. ACM (1977)

http://sedumi.ie.lehigh.edu/
http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/
http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/
http://www.cds.caltech.edu/sostools/
http://arxiv.org/abs/1604.07169
http://arxiv.org/abs/1604.07169

Termination Analysis of Probabilistic Programs Through Positivstellensatz’s 21

16. Cousot, R. (ed.): VMCAI 2005. LNCS, vol. 3385. Springer, Heidelberg (2005)
17. Dubhashi, D., Panconesi, A.: Concentration of Measure for the Analysis of Ran-

domized Algorithms, 1st edn. Cambridge University Press, New York (2009)
18. Durrett, R.: Probability: Theory and Examples, 2nd edn. Duxbury Press, Belmont

(1996)
19. Esparza, J., Gaiser, A., Kiefer, S.: Proving termination of probabilistic programs

using patterns. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol.
7358, pp. 123–138. Springer, Heidelberg (2012)

20. Farkas, J.: A fourier-féle mechanikai elv alkalmazásai (Hungarian). Mathematikaiés
Természettudományi Értesitö 12, 457–472 (1894)

21. Fioriti, L.M.F., Hermanns, H.: Probabilistic termination: soundness, completeness,
and compositionality. In: POPL, pp. 489–501. ACM (2015)

22. Floyd, R.W.: Assigning meanings to programs. Math. Asp. Comput. Sci. 19, 19–33
(1967)

23. Foster, F.G.: On the stochastic matrices associated with certain queuing processes.
Ann. Math. Stat. 24(3), 355–360 (1953)

24. Grötschel, M., Lovasz, L., Schrijver, A.: Geometric Algorithms and Combinatorial
Optimization. Springer, Heidelberg (1993)

25. Handelman, D.: Representing polynomials by positive linear functions on compact
convex polyhedra. Pacific J. Math. 132, 35–62 (1988)

26. Hoeffding, W.: Probability inequalities for sums of bounded random variables. J.
Am. Stat. Assoc. 58(301), 13–30 (1963)

27. Horn, R.A., Johnson, C.R.: Matrix Analysis, 2nd edn. Cambridge University Press,
Cambridge (2013)

28. Howard, H.: Dynamic Programming and Markov Processes. MIT Press, Cambridge
(1960)

29. Hungerford, T.W.: Algebra. Springer, Heidelberg (1974)
30. Kaelbling, L.P., Littman, M.L., Cassandra, A.R.: Planning and acting in partially

observable stochastic domains. Artif. intell. 101(1), 99–134 (1998)
31. Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: a survey. J.

Artif. Intell. Res. 4, 237–285 (1996)
32. Kemeny, J., Snell, J., Knapp, A.: Denumerable Markov Chains. D. Van Nostrand

Company, Princeton (1966)
33. Kress-Gazit, H., Fainekos, G.E., Pappas, G.J.: Temporal-logic-based reactive mis-

sion and motion planning. IEEE Trans. Robot. 25(6), 1370–1381 (2009)
34. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic

real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol.
6806, pp. 585–591. Springer, Heidelberg (2011)

35. McIver, A.K., Morgan, C.: Developing and reasoning about probabilistic programs
in pGCL. In: Cavalcanti, A., Sampaio, A., Woodcock, J. (eds.) PSSE 2004. LNCS,
vol. 3167, pp. 123–155. Springer, Heidelberg (2006)

36. McIver, A., Morgan, C.: Abstraction, Refinement and Proof for Probabilistic Sys-
tems. Monographs in Computer Science. Springer, New York (2005)

37. Monniaux, D.: An abstract analysis of the probabilistic termination of programs.
In: Cousot, P. (ed.) SAS 2001. LNCS, vol. 2126, pp. 111–126. Springer, Heidelberg
(2001)

38. Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press,
New York (1995)

39. Paz, A.: Introduction to Probabilistic Automata. Computer Science and Applied
Mathematics. Academic Press, New York (1971)

22 K. Chatterjee et al.

40. Podelski, A., Rybalchenko, A.: A complete method for the synthesis of linear rank-
ing functions. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp.
239–251. Springer, Heidelberg (2004)

41. Putinar, M.: Positive polynomials on compact semi-algebraic sets. Indiana Univ.
Math. J. 42, 969–984 (1993)

42. Rabin, M.: Probabilistic automata. Inf. Control 6, 230–245 (1963)
43. Sankaranarayanan, S., Chakarov, A., Gulwani, S.: Static analysis for probabilistic

programs: inferring whole program properties from finitely many paths. In: PLDI,
pp. 447–458 (2013)

44. Scheiderer, C.: Positivity and sums of squares: a guide to recent results. In: Putinar,
M., Sullivant, S. (eds.) Emerging Applications of Algebraic Geometry. IMAVMA,
vol. 149, pp. 271–324. Springer, New York (1996)

45. Schmüdgen, K.: The K-moment problem for compact semi-algebraic sets. Math.
Ann. 289, 203–206 (1991)

46. Schrijver, A.: Theory of Linear and Integer Programming. Wiley-Interscience Series
in Discrete Mathematics and Optimization. Wiley, New York (1999)

47. Shen, L., Wu, M., Yang, Z., Zeng, Z.: Generating exact nonlinear ranking functions
by symbolic-numeric hybrid method. J. Syst. Sci. Comput. 26(2), 291–301 (2013)

48. Sohn, K., Gelder, A.V.: Termination detection in logic programs using argument
sizes. In: PODS, pp. 216–226. ACM Press (1991)

49. Williams, D.: Probability with Martingales. Cambridge University Press, Cam-
bridge (1991)

50. Yang, L., Zhou, C., Zhan, N., Xia, B.: Recent advances in program verification
through computer algebra. Front. Comput. Sci. China 4(1), 1–16 (2010)

Markov Chains and Unambiguous
Büchi Automata

Christel Baier1, Stefan Kiefer2, Joachim Klein1, Sascha Klüppelholz1,
David Müller1(B), and James Worrell2

1 Technische Universität Dresden,
Dresden, Germany

david.mueller2@tu-dresden.de
2 University of Oxford, Oxford, United Kingdom

Abstract. Unambiguous automata, i.e., nondeterministic automata
with the restriction of having at most one accepting run over a word,
have the potential to be used instead of deterministic automata in set-
tings where nondeterministic automata can not be applied in general. In
this paper, we provide a polynomially time-bounded algorithm for prob-
abilistic model checking of discrete-time Markov chains against unam-
biguous Büchi automata specifications and report on our implementation
and experiments.

1 Introduction

Unambiguity is a widely studied generalization of determinism with many impor-
tant applications in automata-theoretic approaches, see e.g. [12,13]. A nonde-
termistic automaton is said to be unambiguous if each word has at most one
accepting run. In this paper we consider unambiguous Büchi automata (UBA)
over infinite words. Not only are UBA as expressive as the full class of non-
deterministic Büchi automata (NBA) [2], they can also be exponentially more
succinct than deterministic automata. For example, the language “eventually b
occurs and a appears k steps before the first b” over the alphabet {a, b, c} is
recognizable by a UBA with k+1 states (see the UBA on the left of Fig. 1),
while a deterministic automaton requires at least 2k states, regardless of the
acceptance condition, as it needs to store the positions of the a’s among the
last k input symbols. Languages of this type arise in a number of contexts, e.g.,
absence of unsolicited response in a communication protocol – if a message is
received, then it has been sent in the recent past.

C. Baier, J. Klein, S. Klüppelholz and D. Müller—The authors are supported by
the DFG through the Collaborative Research Center SFB 912 – HAEC, the Excel-
lence Initiative by the German Federal and State Governments (cluster of excellence
cfAED and Institutional Strategy), and the Research Training Groups QuantLA
(GRK 1763) and RoSI (GRK 1907).
S. Kiefer is supported by a University Research Fellowship of the Royal Society. J.
Worrell is supported by EPSRC grant EP/M012298/1.

c© Springer International Publishing Switzerland 2016
S. Chaudhuri and A. Farzan (Eds.): CAV 2016, Part I, LNCS 9779, pp. 23–42, 2016.
DOI: 10.1007/978-3-319-41528-4 2

24 C. Baier et al.

a,c

a a,c a,c b

a,b,c

q0 qa q1 qk−2 qk−1

k−1 steps

. . . qF qa

a

b
qba b

Fig. 1. Two UBA (where final states are depicted as boxes)

Furthermore, the NBA for linear temporal logic (LTL) formulas obtained
by applying the classical closure algorithm of [39,40] are unambiguous.
The generated automata moreover enjoy the separation property: the languages
of the states are pairwise disjoint. Thus, while the generation of deterministic
ω-automata from LTL formulas involves a double exponential blow-up in the
worst case, the translation of LTL formulas into separated UBA incurs only a
single exponential blow-up. This fact has been observed by several authors, see
e.g. [16,34], and recently adapted for LTL with step parameters [11,41].

These nice properties make UBA a potentially attractive alternative to deter-
ministic ω-automata in those applications for which general nondeterministic
automata are not suitable. However reasoning about UBA is surprisingly dif-
ficult. While many decision problems for unambiguous finite automata (UFA)
are known to be solvable in polynomial time [37], the complexity of several fun-
damental problems for unambiguous automata over infinite words is unknown.
This, for instance, applies to the universality problem, which is known to be
in P for deterministic Büchi automata (DBA) and PSPACE-complete for NBA.
However, the complexity of the universality problem for UBA is a long-standing
open problem. Polynomial-time solutions are only known for separated UBA and
other subclasses of UBA [9,26].

In the context of probabilistic model checking, UFA provide an elegant app-
roach to compute the probability for a regular safety or co-safety property in finite-
state Markov chains [7]. The use of separated UBA for a single exponential-time
algorithm that computes the probability for an LTL formula in a Markov chain
has been presented in [16]. However, separation is a rather strong condition and
non-separated UBA (and even DBA) can be exponentially more succinct than
separated UBA, see [9]. This motivates the design of algorithms that operate with
general UBA rather than the subclass of separated UBA. Algorithms for the gener-
ation of (possibly non-separated) UBA from LTL formulas that are more compact
than the separated UBA generated by the classical closure-algorithm have been
realized in the tool Tulip [32,33] and the automata library SPOT [17].

The main theoretical contribution of this paper is a polynomial-time algo-
rithm to compute the probability measure PrM(Lω(U)) of the set of infinite
paths generated by a finite-state Markov chain M that satisfy an ω-regular
property given by a (not necessarily separated) UBA U . The existence of such
an algorithm has previously been claimed in [6,7,33] (see also [32]). However
these previous works share a common fundamental error. Specifically they rely
on the claim that if PrM(Lω(U)) > 0 then there exists a state s of the Markov
chain M and a state q of the automaton U such that q accepts almost all

Markov Chains and Unambiguous Büchi Automata 25

trajectories emanating from s (see [7, Lemma 7.1], [6, Theorem 2]1, and
[33, Sect. 3.3.1]). While this claim is true in case U is deterministic [14], it need
not hold when U is merely unambiguous. Indeed, as we explain in Remark 3,
a counterexample is obtained by taking U to be the automaton on the right
in Fig. 1 and M the Markov chain that generates the uniform distribution on
{a, b}ω. The long version of this paper [4] gives a more detailed analysis of the
issue, describing precisely the nature of the errors in the proofs of [6,7,33]. To
the best of our knowledge these errors are not easily fixable, and the present
paper takes a substantially different approach.

Our algorithm involves a two-phase method that first analyzes the strongly
connected components (SCCs) of a graph obtained from the product of M and
U , and then computes the value PrM(Lω(U)) using linear equation systems. The
main challenge is the treatment of the individual SCCs. For a given SCC we have
an equation system comprising a single variable and equation for each vertex (s, q),
with s a state of M and q a state of U . We use results in the spectral theory of
non-negative matrices to argue that this equation system has a non-zero solution
just in case the SCC makes a non-zero contribution to PrM(Lω(U)). In order to
compute the exact value of PrM(Lω(U)) the key idea is to introduce an additional
normalization equation. To obtain the latter we identify a pair (s,R), where s is
a state of the Markov chain M and R a set of states of automaton U such that
almost all paths starting in s have an accepting run in U when the states in R are
declared to be initial. The crux of establishing a polynomial bound on the running
time of our algorithm is to find such a pair (s,R) efficiently (in particular, without
determinizing U) by exploiting structural properties of unambiguous automata.

As a consequence of our main result, we obtain that the almost universality
problem for UBA, which can be seen as probabilistic variant of the universality
problem for UBA and which asks whether a given UBA accepts almost all infinite
words, is solvable in polynomial time.

The second contribution of the paper is an implementation of the new
algorithm as an extension of the model checker PRISM, using the automata
library SPOT [17] for the generation of UBA from LTL formulas and the COLT
library [25] for various linear algebra algorithms. We evaluate our approach using
the bounded retransmission protocol case study from the PRISM benchmark
suite [31] as well as specific aspects of our algorithm using particularly “chal-
lenging” UBA.

Outline. Section 2 summarizes our notations for Büchi automata and Markov
chains. The theoretical contribution will be presented in Sect. 3. Section 4 reports
on the implementation and experimental results. Section 5 contains concluding
remarks. The full version of this paper [4] contains an appendix with the coun-
terexamples for the previous approaches, proofs and further details on the imple-
mentation and results of experimental studies. Further information is available
on the website [1] as well.

1 As the flaw is in the handling of the infinite behavior, the claim and proof of Lemma 1
in [6], dealing with unambiguous automata over finite words, remain unaffected.

26 C. Baier et al.

2 Preliminaries

We suppose the reader to be familiar with the basic notions of ω-automata and
Markov chains, see e.g. [22,29]. In what follows, we provide a brief summary
of our notations for languages and the uniform probability measure on infinite
words, Büchi automata as well as Markov chains.

Prefixes, Cylinder Sets and Uniform Probability Measure for Infinite Words.
Throughout the document, we suppose Σ is a finite alphabet with two or more
elements. If w = a1 a2 a3 . . . ∈ Σω is an infinite word then Pref (w) denotes
the set of finite prefixes of w, i.e., Pref (w) consists of the empty word and all
finite words a1 a2 . . . an where n � 1. Given a finite word x = a1 a2 . . . an ∈
Σ∗, the cylinder set of x, denoted Cyl(x), is the set of infinite words w ∈ Σω

such that x ∈ Pref (w). The set Σω of infinite words over Σ is supposed to be
equipped with the σ-algebra generated by the cylinder sets of the finite words
and the probability measure given by Pr

(
Cyl(a1 a2 . . . an)

)
= 1/|Σ|n where

a1, . . . , an ∈ Σ. Note that all ω-regular languages over Σ are measurable. We
often make use of the following lemma (see [4] for its proof):

Lemma 1. If L ⊆ Σω is ω-regular and Pr(L) > 0 then there exists x ∈ Σ∗ such
that Pr

{
w ∈ Σω : xw ∈ L

}
= 1.

Büchi Automata. A nondeterministic Büchi automaton is a tuple A =
(Q,Σ, δ,Q0, F) where Q is a finite set of states, Q0 ⊆ Q is a set of initial states,
Σ denotes the alphabet, δ : Q × Σ → 2Q denotes the transition function, and F
is a set of accepting states. We extend the transition function δ : 2Q ×Σ → 2Q in
the standard way for subsets of Q and finite words over Σ. Given states q, p ∈ Q
and a finite word x = a1 a2 . . . an ∈ Σ∗ then a run for x from q to p is a sequence
q0 q1 . . . qn ∈ Q+ with q0 = q, qn = p and qi+1 ∈ δ(qi, ai+1) for 0 � i < n.
A run in A for an infinite word w = a1 a2 a3 . . . ∈ Σω is an infinite sequence
ρ = q0 q1 . . . ∈ Qω such that qi+1 ∈ δ(qi, ai+1) for all i ∈ N and q0 ∈ Q0. Run
ρ is called accepting, if qi ∈ F for infinitely many i ∈ N. The language Lω(A)
of accepted words consists of all infinite words w ∈ Σω that have at least one
accepting run. If R ⊆ Q then A[R] denotes the automaton A with R as set of
initial states. For q ∈ Q, A[q] = A[{q}]. If A is understood from the context,
then we write Lω(R) rather than Lω(A[R]) and Lω(q) rather than Lω(A[q]).
A is called deterministic if Q0 is a singleton and |δ(q, a)| � 1 for all states q and
symbols a ∈ Σ and unambiguous if each word w ∈ Σω has at most one accept-
ing run in A. Clearly, each deterministic automaton is unambiguous. We use the
shortform notations NBA, DBA and UBA for nondeterministic, deterministic
and unambiguous Büchi automata, respectively.

Markov Chains. In this paper we only consider finite-state discrete-time Markov
chains. Formally, a Markov chain is a triple M = (S, P, ι) where S is a finite set
of states, P : S × S → [0, 1] is the transition probability function satisfying∑

s′∈S P (s, s′) = 1 for all states s ∈ S and ι an initial distribution on S. We
write PrM to denote the standard probability measure on the infinite paths of M.

Markov Chains and Unambiguous Büchi Automata 27

For s ∈ S, the notation PrM
s will be used for PrMs where Ms = (S, P,Dirac[s])

and Dirac[s] : S → [0, 1] denotes the Dirac distribution that assigns probability 1
to state s and 0 to all other states. If L ⊆ Sω is measurable then PrM(L) is a short-
form notation for the probability for M to generate an infinite path π with π ∈ L.

Occasionally, we also consider Markov chains with transition labels in some
alphabet Σ. These are defined as triples M = (S, P, ι) where S and ι are as above
and the transition probability function is of the type P : S ×Σ ×S → [0, 1] such
that

∑
(a,s′)∈Σ×S P (s, a, s′) = 1 for all states s ∈ S. If L ⊆ Σω is measurable

then PrM(L) denotes the probability measure of the set of infinite paths π where
the projection to the transition labels constitutes a word in L. Furthermore,
if M[Σ] = (S, P, ι) is a transition-labeled Markov chain where S = {s} is a
singleton and P (s, a, s) = 1/|Σ| for all symbols a ∈ Σ, then PrM[Σ](L) = Pr(L)
for all measurable languages L.

3 Analysis of Markov Chains Against UBA-specifications

The task of the probabilistic model-checking problem for a given Markov chain M
and NBA A is to compute PrM(Lω(A)) where M is either a plain Markov chain
and the alphabet of A is the state space of M or the transitions of M are labeled
by symbols of the alphabet of A. The positive model-checking problem for M
and A asks whether PrM(Lω(A)) > 0. Likewise, the almost-sure model-checking
problem for M and A denotes the task to check whether PrM(Lω(A)) = 1.
While the positive and the almost-sure probabilistic model-checking problems for
Markov chains and NBA are both known to be PSPACE-complete [14,38], the
analysis of Markov chains against UBA-specification can be carried out efficiently
as stated in the following theorem:

Theorem 2. Given a Markov chain M and a UBA U , the value PrM(Lω(U))
is computable in time polynomial in the sizes of M and U .

Remark 3. The statement of Theorem 2 has already been presented in [5] (see
also [6,33]). However, the presented algorithm to compute PrM(Lω(U)) is flawed.
This approach, rephrased for the special case where the task is to compute
Pr(Lω(U)) for a given positive UBA U (which means a UBA where Pr(Lω(U)) >
0) relies on the mistaken belief that there is at least one state q in U such that
Pr(Lω(U [q])) = 1. However, such states need not exist. To illustrate this, we
consider the UBA U with two states qa and qb and δ(qa, a) = δ(qb, b) = {qa, qb}
and δ(qa, b) = δ(qb, a) = ∅. (See the UBA on the right of Fig. 1.) Both states
are initial and final. Clearly, Lω(U [qa]) = aΣω and Lω(U [qb]) = bΣω. Thus, U is
universal and Pr(Lω(U)) = 1, while Pr(Lω(U [qa])) = Pr(Lω(U [qb])) = 1

2 .

Outline of Section 3. The remainder of Sect. 3 is devoted to the proof of
Theorem 2. We first assume that the Markov chain M generates all words accord-
ing to a uniform distribution and explain how to compute the value Pr(Lω(U))
for a given UBA U in polynomial time. For this, we first address the case of
strongly connected UBA (Sect. 3.1) and then lift the result to the general case

28 C. Baier et al.

(Sect. 3.2). The central idea of the algorithm relies on the observation that each
positive, strongly connected UBA has “recurrent sets” of states, called cuts. We
exploit structural properties of unambiguous automata for the efficient construc-
tion of a cut and show how to compute the values Pr(Lω(U [q])) for the states of
U by a linear equation system with one equation per state and one equation for
the generated cut. Furthermore, positivity of a UBA U (i.e., Pr(Lω(U)) > 0) is
shown to be equivalent to the existence of a positive solution of the system of
linear equations for the states. Finally, we explain how to adapt these techniques
to general Markov chains (Sect. 3.3).

3.1 Strongly Connected UBA

Westartwith some general observations about strongly connectedBüchi automata
under the probabilistic semantics. For this, we suppose A = (Q,Σ, δ,Q0, F) is a
strongly connected NBA where Q0 and F are nonempty. Clearly, Lω(q) �= ∅ for all
states q and

Pr(Lω(A)) > 0 iff Pr(Lω(q)) > 0 for some state q

iff Pr(Lω(q)) > 0 for all states q

Moreover, almost all words w ∈ Σω \ Lω(A) have a finite prefix x with
δ(Q0, x) = ∅ (for the proof see [4]):

Lemma 4 (Measure of strongly connected NBA). For each strongly con-
nected NBA A with at least one final state, we have:

Pr(Lω(A)) = 1 − Pr
{

w ∈ Σω : w has a finite prefix x with δ(Q0, x) = ∅
}

In particular, A is almost universal if and only if δ(Q0, x) �= ∅ for all finite words
x ∈ Σ∗. This observation will be crucial at several places in the soundness proof
of our algorithm for UBA, but can also be used to establish PSPACE-hardness of
the positivity (probabilistic nonemptiness) and almost universality problem for
strongly connected NBA, see [4]. For computing Pr(Lω(U)) given a UBA U , it
suffices to compute the values Pr(Lω(q)) for the (initial) states of U as we have

Pr(Lω(U)) =
∑

q∈Q0

Pr(Lω(q))

Furthermore, in each strongly connected UBA, the accepting runs of almost all
words w ∈ Lω(U) visit each state of U infinitely often (see [4]).

Deciding Positivity for Strongly Connected UBA. The following lemma
provides a criterion to check positivity of a strongly connected UBA in polyno-
mial time using standard linear algebra techniques.

Markov Chains and Unambiguous Büchi Automata 29

Lemma 5. Let U be a strongly connected UBA with at least one initial and one
final state, and

(∗) ζq =
1

|Σ| ·
∑

a∈Σ

∑

p∈δ(q,a)

ζp for all q ∈ Q

Then, the following statements are equivalent:

(1) Pr(Lω(U)) > 0,
(2) the linear equation system (*) has a strictly positive solution, i.e., a solution

(ζ∗
q)q∈Q with ζ∗

q > 0 for all q ∈ Q,
(3) the linear equation system (*) has a non-zero solution.

Given the strongly connected UBA U with at least one final state, we define a
matrix M ∈ [0, 1]Q×Q by Mp,q = 1

|Σ| |{a ∈ Σ : q ∈ δ(p, a)}| for all p, q ∈ Q. Since
U is strongly connected, M is irreducible. Write ρ(M) for the spectral radius
of M . We will use the following Lemma in the proof of Lemma 5.

Lemma 6. We have ρ(M) ≤ 1. Moreover ρ(M) = 1 if and only if Pr(Lω(U)) >
0.

Proof. For p, q ∈ Q and n ∈ N, let Ep,n,q ⊆ Σω denote the event of all words
w = a1a2 . . . such that q ∈ δ(p, a1a2 . . . an). Its probability under the uniform
distribution on Σω is an entry in the n-th power of M :

Pr(Ep,n,q) = (Mn)p,q (1)

In particular, Mn
p,q ≤ 1 for all n. From the boundedness of Mn it follows (e.g.,

by [24, Corollary 8.1.33]) that ρ(M) ≤ 1. The same result implies that

ρ(M) = 1 ⇐⇒ lim sup
n→∞

(Mn)p,q > 0 for all p, q ∈ Q

⇐⇒ lim sup
n→∞

(Mn)p,q > 0 for some p, q ∈ Q
(2)

For the rest of the proof, fix some state p ∈ Q. By the observations from
the beginning of Sect. 3.1 it suffices to show that Pr(Lω(p)) > 0 if and only if
ρ(M) = 1. To this end, consider the event Ep,n :=

⋃
q∈Q Ep,n,q. Notice that

(Ep,n)n∈N forms a decreasing family of sets. We have:

Pr(Lω(p)) = lim
n→∞ Pr(Ep,n) by Lemma 4

= lim
n→∞ Pr

⎛

⎝
⋃

q∈Q

Ep,n,q

⎞

⎠ definition ofEp,n

(3)

Assuming that ρ(M) = 1, we show that Pr(Lω(p)) > 0. Let q ∈ Q. We have:

Pr(Lω(p)) ≥ lim sup
n→∞

Pr(Ep,n,q) by (3)

= lim sup
n→∞

(Mn)p,q by (1)

> 0 by (2)

30 C. Baier et al.

Conversely, assuming that ρ(M) < 1, we show that Pr(Lω(p)) = 0.

Pr(Lω(p)) = lim
n→∞ Pr

⎛

⎝
⋃

q∈Q

Ep,n,q

⎞

⎠ by (3)

≤ lim sup
n→∞

∑

q∈Q

Pr(Ep,n,q) union bound

= lim sup
n→∞

∑

q∈Q

(Mn)p,q by (1)

= 0 by (2)

This concludes the proof. ��
Proof (of Lemma 5). “(1) =⇒ (2)”: Suppose Pr(Lω(U)) > 0. Define the vector
(ζ∗

q)q∈Q with ζ∗
q = Pr(Lω(q)). It holds that

Lω(q) =
⋃

a∈Σ

⋃

p∈δ(q,a)

{aw : w ∈ Lω(p)}

Since U is unambiguous, the sets {aw : w ∈ Lω(p)} are pairwise disjoint. So, the
vector (ζ∗

q)q∈Q is a solution to the equation system.
As Pr(Lω(U)) > 0 and U is strongly connected, the observation at the begin-

ning of Sect. 3.1 yields that Pr(Lω(q)) > 0 for all states q. Thus, the vector
(ζ∗

q)q∈Q is strictly positive.
“(2) =⇒ (3)” holds trivially.
“(3) =⇒ (1)”: Suppose ζ∗ is a non-zero solution of the linear equation system.

Then, Mζ∗ = ζ∗. Thus, 1 is an eigenvalue of M . This yields ρ(M) � 1. But then
ρ(M) = 1 and Pr(Lω(U)) > 0 by Lemma 6. ��

Computing Pure Cuts for Positive, Strongly Connected UBA. The
key observation to compute the values Pr(Lω(q)) for the states q of a positive,
strongly connected UBA U is the existence of so-called cuts. These are sets C
of states with pairwise disjoint languages such that almost all words have an
accepting run starting in some state q ∈ C. More precisely:

Definition 7 ((Pure) cut). Let U be a UBA and C ⊆ Q. C is called a cut for
U if Lω(q)∩Lω(p) = ∅ for all p, q ∈ C with p �= q and U [C] is almost universal.
A cut is called pure if it has the form δ(q, z) for some state q and some finite
word z ∈ Σ∗.

Obviously, U is almost universal iff Q0 is a cut. If q ∈ Q and Kq denotes the
set of finite words z ∈ Σ∗ such that δ(q, z) is a cut then Pr(Lω(q)) equals the
probability measure of the language Lq consisting of all infinite words w ∈ Σω

that have a prefix in Kq, see [4].

Markov Chains and Unambiguous Büchi Automata 31

Lemma 8 (Characterization of pure cuts). Let U be a strongly connected
UBA. For all q ∈ Q and z ∈ Σ∗ we have: δ(q, z) is a cut iff δ(q, zy) �= ∅ for
each word y ∈ Σ∗. Furthermore, if U is positive then for each cut C:

C is pure, i.e., C = δ(q, z) for some state-word pair (q, z) ∈ Q × Σ∗

iff for each state q ∈ Q there is some word z ∈ Σ∗ with C = δ(q, z)

iff for each cut C ′ there is some word y ∈ Σ∗ with C = δ(C ′, y)

The proof of Lemma 8 is provided in [4]. By Lemmas 1 and 8 we get:

Corollary 9. If U is a strongly connected UBA then Pr(Lω(U)) > 0 iff U has
a pure cut.

For the rest of Sect. 3.1, we suppose that U is positive and strongly connected.
The second part of Lemma 8 yields that the pure cuts constitute a bottom
strongly connected component of the automaton obtained from U using the
standard powerset construction. The goal is now to design an efficient (polyno-
mially time-bounded) algorithm for the generation of a pure cut. For this, we
observe that if q, p ∈ Q, q �= p, then {q, p} ⊆ C for some pure cut C iff there
exists a word y such that {q, p} ⊆ δ(q, y), see [4].

Definition 10 (Extension). A word y ∈ Σ∗ is an extension for a state-word
pair (q, z) ∈ Q × Σ∗ iff there exists a state p ∈ Q such that q �= p, δ(p, z) �= ∅

and {q, p} ⊆ δ(q, y).

It is easy to see that if y is an extension of (q, z), then δ(q, yz) is a proper
superset of δ(q, z) (see [4]). Furthermore, for all state-word pairs (q, z) ∈ Q × Σ∗

(see [4]):

δ(q, z) is a cut iff there is no extension for (q, z)

These observations lead to the following algorithm for the construction of a pure
cut. We pick an arbitrary state q in the UBA and start with the empty word
z0 = ε. The algorithm iteratively seeks for an extension for the state-word pair
(q, zi). If an extension yi for (q, zi) has been found then we switch to the word
zi+1 = yizi. If no extension exists then (q, zi) is a pure cut. In this way, the
algorithm generates an increasing sequence of subsets of Q,

δ(q, z0) � δ(q, z1) � δ(q, z2) � . . . � δ(q, zk),

which terminates after at most |Q| steps and yields a pure cut δ(q, zk).
It remains to explain an efficient realization of the search for an extension of

the state-word pairs (q, zi). The idea is to store the sets Qi[p] = δ(p, zi) for all
states p. The sets Qi[p] can be computed iteratively by:

Q0[p] = {p} and Qi+1[p] =
⋃

r∈δ(p,yi)

Qi[r]

To check whether (q, zi) has an extension we apply standard techniques for the
intersection problem for the languages Hq,q = {y ∈ Σ∗ : q ∈ δ(q, y)} and

32 C. Baier et al.

Hq,Fi
= {y ∈ Σ∗ : δ(q, y) ∩ Fi �= ∅} where Fi = {p ∈ Q \ {q} : Qi[p] �= ∅}.

Then, for each word y ∈ Σ∗ we have: y ∈ Hq,q ∩ Hq,Fi
if and only if y is an

extension of (q, zi). The languages Hq,q and Hq,Fi
are recognized by the NFA

Uq,q = (Q,Σ, δ, q, q) and Uq,Fi
= (Q,Σ, δ, q, Fi). Thus, to check the existence

of an extension and to compute an extension y (if existent) where the word y
has length at most |Q|2, we may run an emptiness check for the product-NFA
U [q, q] ⊗ U [q, Fi]. We conclude:

Corollary 11. Given a positive, strongly connected UBA U , a pure cut can be
computed in time polynomial in the size of U .

Computing the Measure of Positive, Strongly Connected UBA. We
suppose that U = (Q,Σ, δ,Q0, F) is a positive, strongly connected UBA and
C is a cut. (C might be a pure cut that has been computed by the techniques
explained above. However, in Theorem 12 C can be any cut.) Consider the linear
equation system of Lemma 5 with variables ζq for all states q ∈ Q and add the
constraint that the variables ζq for q ∈ C sum up to 1.

Theorem 12. Let U be a positive, strongly connected UBA and C a cut. Then,
the probability vector (Pr(Lω(q)))q∈Q is the unique solution of the following
linear equation system:

(1) ζq =
1

|Σ| ·
∑

a∈Σ

∑

p∈δ(q,a)

ζp for all states q ∈ Q

(2)
∑

q∈C

ζq = 1

Proof. Let n = |Q|. Define a matrix M ∈ [0, 1]Q×Q by Mq,p = |{a ∈ Σ :
p ∈ δ(q, a)}|/|Σ| for all q, p ∈ Q. Then, the n equations (1) can be written as
ζ = Mζ, where ζ = (ζq)q∈Q is a vector of n variables. It is easy to see that
the values ζ∗

q = Pr(Lω(q)) for q ∈ Q satisfy the equations (1). That is, defining
ζ∗ = (ζ∗

q)q∈Q we have ζ∗ = Mζ∗. By the definition of a cut, those values also
satisfy Eq. (2).

It remains to show uniqueness. We employ Perron-Frobenius theory as fol-
lows. Since ζ∗ = Mζ∗, the vector ζ∗ is an eigenvector of M with eigenvalue 1.
Since ζ∗ is strictly positive (i.e., positive in all components), it follows from
[8, Corollary 2.1.12] that ρ = 1 for the spectral radius ρ of M . Since U is
strongly connected, matrix M is irreducible. By [8, Theorem 2.1.4 (b)] the spec-
tral radius ρ = 1 is a simple eigenvalue of M , i.e., all solutions of ζ = Mζ are
scalar multiples of ζ∗. Among those multiples, only ζ∗ satisfies Eq. (2). Unique-
ness follows. �

Together with the criterion of Lemma 5 to check whether a given strongly
connected UBA is positive, we obtain a polynomially time-bounded computation
scheme for the values Pr(Lω(q)) for the states q of a given strongly connected
UBA. The next section shows how to lift these results for arbitrary UBA.

Markov Chains and Unambiguous Büchi Automata 33

3.2 Computing the Measure of Arbitrary UBA

In what follows, let U = (Q,Σ, δ,Q0, F) be a (possibly not strongly connected)
UBA. We assume that all states are reachable from Q0 and that F is reachable
from all states. Thus, Lω(q) �= ∅ for all states q.

Let C be a strongly connected component (SCC) of U . C is called non-trivial
if C viewed as a direct graph contains at least one edge, i.e., if C is cyclic. C is
called bottom if δ(q, a) ⊆ C for all q ∈ C and all a ∈ Σ. We define QBSCC to be
the set of all states q ∈ Q that belong to some bottom SCC (BSCC) of U . If C
is a non-trivial SCC of U and p ∈ C then the sub-NBA

U∣
∣
C,p

= (C, Σ, δ|C , {p}, C ∩ F)

of U with state space C, initial state p and the transition function δ|C given
by δ|C(q, a) = δ(q, a) ∩ C is strongly connected and unambiguous. Let Lp be
the accepted language, i.e., Lp = Lω(U∣

∣
C,p

). The values Pr(Lp), p ∈ C, can
be computed using the techniques for strongly connected UBA presented in
Sect. 3.1. A non-trivial SCC C is said to be positive if Pr(Lp) > 0 for all/some
state(s) p in C.

We perform the following preprocessing. As before, for any p ∈ Q we write
Lω(p) for Lω(U [p]), and call p zero if Pr(Lω(p)) = 0. First we remove all states
that are not reachable from any initial state. Then we run standard graph algo-
rithms to compute the directed acyclic graph (DAG) of SCCs of U . By processing
the DAG bottom-up we can remove all zero states by running the following loop:
If all BSCCs are marked (initially, all SCCs are unmarked) then exit the loop;
otherwise pick an unmarked BSCC C.

– If C is trivial or does not contain any final state then we remove it: more
precisely, we remove it from the DAG of SCCs, and we modify U by deleting
all transitions p

a−→ q where q ∈ C.
– Otherwise, C is a non-trivial BSCC with at least one final state. We check

whether C is positive by applying the techniques of Sect. 3.1. If it is positive,
we mark it; otherwise we remove it as described above.

Note that this loop does not change Pr(Lω(p)) for any state p.
Let QBSCC denote the set of states in U that belong to some BSCC. The

values Pr(Lω(p)) for the states p ∈ QBSCC can be computed using the tech-
niques of Sect. 3.1. The remaining task is to compute the values Pr(Lω(q)) for
the states q ∈ Q \QBSCC . For q ∈ Q \QBSCC , let βq = 0 if δ(q, a)∩QBSCC = ∅

for all a ∈ Σ. Otherwise:

βq =
1

|Σ| ·
∑

a∈Σ

∑

p∈δ(q,a)∩QBSCC

Pr(Lω(p))

In [4] we show:

34 C. Baier et al.

Theorem 13. If all BSCCs of U are non-trivial and positive, then the linear
equation system

ζq =
1

|Σ| ·
∑

a∈Σ

∑

r ∈ δ(q, a)
r /∈ QBSCC

ζr + βq forq ∈ Q \ QBSCC

has a unique solution, namely ζ∗
q = Pr(Lω(q)).

This yields that the value Pr(Lω(U)) for given UBA U is computable in polyno-
mial time.

Remark 14. For the special case where δ(q, a) = {q} for all q ∈ F and a ∈ Σ,
the language of U is a co-safety property and Pr(Lω(q)) = 1 if q ∈ F = QBSCC ,
when we assume that all BSCCs are non-trivial and positive. In this case, the
linear equation system in Theorem 13 coincides with the linear equation system
presented in [7] for computing the probability measure of the language of U
viewed as an UFA.

Remark 15. As a consequence of our results, the positivity problem (“does
Pr(Lω(U)) > 0 hold?”) and the almost universality problem (“does Pr(Lω(U)) =
1 hold?”) for UBA are solvable in polynomial time. This should be contrasted
with the standard (non-probabilistic) semantics of UBA and the corresponding
results for NBA. The non-emptiness problem for UBA is in P (this already holds
for NBA), while the complexity-theoretic status of the universality problem for
UBA is a long-standing open problem. For standard NBA, it is well known that
the non-emptiness problem is in P and the universality problem is PSPACE-
complete. However, the picture changes when switching to NBA with the proba-
bilistic semantics as both the positivity problem and the almost universality prob-
lem for NBA are PSPACE-complete, even for strongly connected NBA (see [4]).

3.3 Probabilistic Model Checking of Markov Chains Against UBA

To complete the proof of Theorem 2, we show how the results of the previous
section can be adapted to compute the value PrM(Lω(U)) for a Markov chain
M = (S, P, ι) and a UBA U = (Q,Σ, δ,Q0, F) with alphabet Σ = S.2 The
necessary adaptions to the proofs are detailed in [4].

If A is an NBA over the alphabet S and s ∈ S, then PrM
s (A) denotes the

probability PrM
s (Π) with Π being the set of infinite paths π = s0s1 . . . ∈ Sω

2 In practice, e.g., when the UBA is obtained from an LTL formula, the alphabet of
the UBA is often defined as Σ = 2AP over a set of atomic propositions AP and
the Markov chain is equipped with a labeling function from states to the atomic
propositions that hold in each state. Clearly, unambiguity w.r.t. the alphabet 2AP

implies unambiguity w.r.t. the alphabet S when switching from the original transi-
tion function δ : Q × 2AP → 2Q to the transition function δS : Q × S → 2Q given by
δS(q, s) = δ(q, L(s)), where L : S → 2AP denotes the labeling function of M.

Markov Chains and Unambiguous Büchi Automata 35

starting with s0 = s and such that s1s2 . . . ∈ Lω(A). Our algorithm relies on the
observation that

PrM(Lω(U)) =
∑

s∈S

ι(s) · PrM
s (U [δ(Q0, s)])

As the languages of the UBA U [q] for q ∈ δ(Q0, s) are pairwise distinct (by the
unambiguity of U), we have PrM

s (U [δ(Q0, s)]) =
∑

q∈δ(Q0,s) PrM
s (U [q]).

Thus, the task is to compute the values PrM
s (U [q]) for s ∈ S and q ∈ Q. As a

first step, we build a UBA P = M⊗U that arises from the synchronous product
of the UBA U with the underlying graph of the Markov chain M. Formally,
P = (S × Q,Σ,Δ,Q′

0, S × F) where Q′
0 consists of all pairs 〈s, q〉 ∈ S × Q

where ι(s) > 0 and q ∈ δ(Q0, s). Let s, t ∈ S and q ∈ Q. If P (s, t) = 0 then
Δ(〈s, q〉, t) = ∅, while for P (s, t) > 0, the set Δ(〈s, q〉, t) consists of all pairs
〈t, p〉 where p ∈ δ(q, s). We are only concerned with the reachable fragment of
the product.

Given that M viewed as an automaton over the alphabet S behaves deter-
ministically and we started with an unambiguous automaton U , the product P
is unambiguous as well. Let P[s, q] denote the UBA resulting from P by declar-
ing 〈s, q〉 to be initial. It is easy to see that PrM

s (P[s, q]) = PrM
s (U [q]) for

all states 〈s, q〉 of P, as the product construction only removes transitions in U
that can not occur in the Markov chain. Our goal is thus to compute the values
PrM

s (P[s, q]). For this, we remove all states 〈s, q〉 from P that can not reach a
state in S ×F . Then, we determine the non-trivial SCCs of P and, for each such
SCC C, we analyze the sub-UBA P∣

∣
C obtained by restricting to the states in C.

An SCC C of P is called positive if PrM
s (P∣

∣
C [s, q]) > 0 for all/any 〈s, q〉 ∈ C. As

in Sect. 3.2, we treat the SCCs in a bottom-up manner, starting with the BSCCs
and removing them if they are non-positive. Clearly, if a BSCC C of P does not
contain a final state or is trivial, then C is not positive. Analogously to Lemma 5,
a non-trivial BSCC C in P containing at least one final state is positive if and
only if the linear equation system

(∗) ζs,q =
∑

t∈Post(s)

∑

p∈δC(q,t)

P (s, t) · ζt,p for all 〈s, q〉 ∈ C

has a strictly positive solution if and only if (∗) has a non-zero solution. Here,
Post(s) = {t ∈ S : P (s, t) > 0} denotes the set of successors of state s in M and
δC(q, t) = {p ∈ δ(q, t) : 〈t, p〉 ∈ C}.

We now explain how to adapt the cut-based approach of Sect. 3.1 for com-
puting the probabilities in a positive BSCC C of P. For 〈s, q〉 ∈ C and t ∈ S,
let ΔC(〈s, q〉, t) = Δ(〈s, q〉, t) ∩ C. A pure cut in C denotes a set C ⊆ C such
that PrM

s (P[C]) = 1 and C = ΔC(〈s, q〉, z) for some 〈s, q〉 ∈ C and some finite
word z ∈ S∗ such that s z is a cycle in M. (In particular, the last symbol of
z is s, and therefore C ⊆ {〈s, p〉 ∈ C : p ∈ Q}.) To compute a pure cut in
C, we pick an arbitrary state 〈s, q〉 in C and successively generate path frag-
ments z0, z1, . . . , zk ∈ S∗ in M by adding prefixes. More precisely, z0 = ε

36 C. Baier et al.

and zi+1 has the form yzi for some y ∈ S+ such that (1) s y is a cycle in
M and (2) there exists a state p ∈ Q \ {q} in U with ΔC(〈s, p〉, zi) �= ∅

and {〈s, q〉, 〈s, p〉} ⊆ ΔC(〈s, q〉, y). Each such word y is called an extension
of (〈s, q〉, zi), and ΔC(〈s, q〉, zi+1) = ΔC(〈s, q〉, yzi) is a proper superset of
ΔC(〈s, q〉, zi). The set C = ΔC(〈s, q〉, z) is a pure cut if and only if (〈s, q〉, zi) has
no extension. The search for an extension can be realized efficiently using a tech-
nique similar to the one presented in Sect. 3.1. Thus, after at most min{|C|, |Q|}
iterations, we obtain a pure cut C.

Having computed a pure cut C of C, the values PrM
s (P[s, q]) for 〈s, q〉 ∈ C are

then computable as the unique solution of the linear equation system consisting
of equations (*) and the additional equation

∑
〈s,q〉∈C ζs,q = 1.

In this way we adapt Theorem 12 to obtain the values PrM
s (P[s, q]) for the

states 〈s, q〉 belonging to some positive BSCC of P. It remains to explain how
to adapt the equation system of Theorem 13. Let QBSCC be the set of BSCC
states of P and Q? be the states of P not contained in QBSCC . For 〈s, q〉 ∈ Q?,
let βs,q = 0 if Δ(〈s, q〉, t) ∩ QBSCC = ∅ for all t ∈ S. Otherwise:

βs,q =
∑

t∈Post(s)

∑

p ∈ δ(q, t) s.t.
〈t, p〉 ∈ QBSCC

P (s, t) · PrM
t (P[t, p])

Then, the vector (PrM
s (P[s, q]))〈s,q〉∈Q? is the unique solution of the linear equa-

tion system

ζs,q =
∑

t∈Post(s)

∑

p ∈ δ(q, t) s.t.
〈t, p〉 /∈ QBSCC

P (s, t) · ζt,p + βs,q for〈s, q〉 ∈ Q?

This completes the proof of Theorem 2.

4 Implementation and Experiments

We have implemented a probabilistic model checking procedure for Markov
chains and UBA specifications using the algorithm detailed in Sect. 3 as an exten-
sion to the probabilistic model checker PRISM [30,35].3 Our implementation is
based on the explicit engine of PRISM, where the Markov chain is represented
explicitly. An implementation for the symbolic, MTBDD-based engines of PRISM
is planned as future work.

Our implementation supports UBA-based model checking for handling the
LTL fragment of PRISM’s PCTL∗-like specification language as well as direct
verification against a path specification given by a UBA provided in the HOA
format [3]. For LTL formulas, we rely on external LTL-to-UBA translators.
For the purpose of the benchmarks we employ the ltl2tgba tool from SPOT [18]
to generate UBA for a given LTL formula.
3 More details are available at [1]. All experiments were carried out on a computer with

two Intel E5-2680 8-core CPUs at 2.70 GHz with 384GB of RAM running Linux.

Markov Chains and Unambiguous Büchi Automata 37

For the linear algebra parts of the algorithms, we rely on the COLT library [25].
We considered two different variants for the SCC computations as detailed in
[4]. The first variant relies on COLT to perform a QR decomposition of the matrix
for the SCC to compute the rank, which allows for deciding the positivity of the
SCC. The second approach relies on a variant of the power iteration method for
iteratively computing an eigenvector. This method has the benefit that, in addi-
tion to deciding the positivity, the computed eigenvector can be directly used to
compute the values for a positive SCC, once a cut has been found. (As the proof
of Theorem 12 shows: Pr(Lω(q)) = ζ∗

q /
∑

p∈C ζ∗
p if ζ∗ is an eigenvector of the

matrix M for eigenvalue 1.) We have evaluated the performance and scalability of
the cut generation algorithm together with both approaches for treating SCCs
with selected automata specifications that are challenging for our UBA-based
model checking approach, see [4]. As the power iteration method performed bet-
ter, our benchmark results presented in this section use this method for the SCC
handling.

We report here on benchmarks using the bounded retransmission protocol
(BRP) case study of the PRISM benchmark suite [31]. The model from the bench-
mark suite covers a single message transmission, retrying for a bounded number
of times in case of an error. We have slightly modified the model to allow the
transmission of an infinite number of messages by restarting the protocol once
a message has been successfully delivered or the bound for retransmissions has
been reached. We consider the LTL property

ϕk = (¬sender ok) U (
(retransmit ∧ (¬sender ok U=k sender ok)

)
,

ensuring that k steps before an acknowledgment the message was retransmit-
ted. To remove the effect of selecting specific tools for the LTL to automa-
ton translation (ltl2tgba for UBA, the Java-based PRISM reimplementation of
ltl2dstar [28] to obtain a deterministic Rabin automaton (DRA) for the stan-
dard PRISM approach), we also consider direct model checking against automata
specifications. As the language of ϕk is equivalent to the UBA depicted in
Fig. 1 (on the left) when a = retransmit ∧ ¬sender ok, b = sender ok and
c = ¬retransmit∧¬send ok, we use this automaton and the minimal DBA for
the language (this case is denoted by A). We additionally consider the UBA and
DBA obtained by replacing the self-loop in the last state with a switch back to
the initial state (denoted by B), i.e., roughly applying the ω-operator to A.

Table 1 shows results for selected k (with a timeout 30 min), demonstrating
that for this case study and properties our UBA-based implementation is gener-
ally competitive with the standard approach of PRISM relying on deterministic
automata. For ϕ and A, our implementation detects that the UBA has a special
shape where all final states have a true-self loop, which allows for skipping the
SCC handling. Without this optimization, tCut and tPos are in the sub-second
range for ϕ and A for all considered k. At a certain point, the implementation of
the standard approach in PRISM becomes unsuccessful, either due to timeouts in

38 C. Baier et al.

Table 1. Statistics for DBA/DRA- and UBA-based model checking of the BRP case
study (parameters N = 16, MAX = 128), a DTMC with 29358 states, depicting the
number of states for the automata and the product and the time for model checking
(tMC). For ϕ, tMC includes the translation to the automaton, for B the time for checking
positivity (tPos) and cut generation (tCut) are included in tMC. The mark − stands for
“not available” or timeout (30min).

PRISM standard PRISM UBA

DRA Product tMC UBA Product tMC tPos tCut

k = 4, ϕ 118 62, 162 0.8 s 6 34, 118 0.6 s

A 33 61, 025 0.8 s 6 34, 118 0.5 s

B 33 75, 026 0.7 s 6 68, 474 1.9 s 1.1 s < 0.1 s

k = 6, ϕ 4, 596 72, 313 3.2 s 8 36, 164 0.9 s

A 129 62, 428 1.1 s 8 36, 164 0.9 s

B 129 97, 754 1.1 s 8 99, 460 3.1 s 1.5s < 0.1 s

k = 8, ϕ 297, 204 − − 10 38, 207 0.8 s

A 513 64, 715 1.1 s 10 38, 207 0.7 s

B 513 134, 943 1.3 s 10 136, 427 4.5 s 2.5 s < 0.1s

k = 14, ϕ − − − 16 44, 340 12.8 s 0.0 s 0.0 s

A 32, 769 83, 845 5.3 s 16 44, 340 1.0 s

B 32, 769 444, 653 6.0 s 16 246, 346 10.2 s 6.5 s < 0.1 s

k = 16, ϕ − − − 18 46, 390 115.0 s

A 131, 073 − − 18 46, 390 1.0 s

B 131, 073 − − 18 282, 699 12.3 s 8.6 s < 0.1 s

k = 48, A − − − 50 79, 206 1.8 s

B − − − 50 843, 414 88.4 s 71.1 s < 0.1 s

the DRA construction (ϕ: k ≥ 10) or PRISM size limitations in the deterministic
product construction (ϕ: k ≥ 8, A/B: k ≥ 16). For k ≥ 18, ltl2tgba was unable
to construct the UBA for ϕ within the given time limit, for k = 16, 114.4 s
of the 115.0 s were spent on constructing the UBA. As can be seen, using the
UBA approach we were able to successfully scale the parameter k beyond 48
when dealing directly with the automata-based specifications (A/B) and within
reasonable time required for model checking.

5 Conclusion

The main contribution of the paper is a polynomial-time algorithm for the quanti-
tative analysis of Markov chains against UBA-specifications, and an implementa-
tion thereof. This yields a single exponential-time algorithm for the probabilistic
model-checking problem for Markov chains and LTL formulas, and thus an alterna-
tive to thedouble exponential-time classical approachwithdeterministic automata

Markov Chains and Unambiguous Büchi Automata 39

that has been implemented in PRISM and other tools.Other single exponential algo-
rithms for Markov chains and LTL are known, such as the automata-less method
of [14] and the approaches with weak alternating automata [10] or separated UBA
[16]. To the best of our knowledge, no implementations of these algorithms are
available.4

The efficiency of the proposed UBA-based analysis of Markov chains against
LTL-specifications crucially depends on sophisticated techniques for the genera-
tion of UBA from LTL formulas. Compared to the numerous approaches for the
generation of compact nondeterministic or deterministic automata, research on
for efficient LTL-to-UBA translators is rare. The tool Tulip [33] uses a variant
of the LTL-to-NBA algorithm by Gerth et al. [21] for the direct construction
of UBA from LTL formulas, while SPOT’s LTL-to-UBA generator relies on an
adaption of the Couvreur approach [15]. A comparison of NBA versus UBA sizes
for LTL benchmark formulas from [19,20,36] (see [4]) using SPOT suggests that
requiring unambiguity does not necessarily lead to a major increase in NBA size.
An alternative to the direct translation of LTL formulas into UBA are standard
LTL-to-NBA translators combined with disambiguation approaches for NBA
(e.g. of [27]). However, we are not aware of tool support for these techniques.

Besides the design of efficient LTL-to-UBA translators that exploit the addi-
tional flexibility of unambiguous automata compared to deterministic ones, our
future work will include a symbolic implementation of our algorithm and more
experiments to evaluate the UBA-based approach against the classical approach
with deterministic automata (e.g. realized in PRISM [30,35] and IscasMC [23] and
using state-of-the-art generators for deterministic automata such as Rabinizer)
or other single exponential-time algorithms [10,14,16], addressing the complex
interplay between automata sizes, automata generation time, size of the (reach-
able fragment of the) product and the cost of the analysis algorithms that all
influence the overall model checking time.

Acknowledgments. The authors would like to thank Théodore Lopez for his com-
ments on a draft of this paper.

References

1. Website with additional material for this paper. http://wwwtcs.inf.tu-dresden.de/
ALGI/PUB/CAV16/

2. Arnold, A.: Deterministic and non ambiguous rational omega-languages. In:
Nivat, M., Perrin, D. (eds.) Automata on Infinite Words, Ecole de Printemps
d’Informatique Théorique, Le Mont Dore. LNCS, vol. 192, pp. 18–27. Springer,
Heidelberg (1985)

4 The paper [16] reports on experiments with a prototype implementation, but this
implementation seems not to be available anymore. As briefly explained in [4], our
algorithm can be seen as a generalization of the approach of [16] with separated UBA.
The tool Tulip [33] also has an engine for analysis of Markov chains against UBA-
specifications, but it relies on the flawed algorithm of [7].

http://wwwtcs.inf.tu-dresden.de/ALGI/PUB/CAV16/
http://wwwtcs.inf.tu-dresden.de/ALGI/PUB/CAV16/

40 C. Baier et al.

3. Babiak, T., Blahoudek, F., Duret-Lutz, A., Klein, J., Křet́ınský, J., Müller, D.,
Parker, D., Strejček, J.: The Hanoi omega-automata format. In: Kroening, D.,
Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 479–486. Springer,
Heidelberg (2015)

4. Baier, C., Kiefer, S., Klein, J., Klüppelholz, S., Müller, D., Worrell, J.: Markov
chains and unambiguous Büchi automata (extended version) (2016). http://arxiv.
org/abs/1605.00950

5. Benedikt, M., Lenhardt, R., Worrell, J.: LTL model checking of interval Markov
chains. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013 (ETAPS 2013). LNCS,
vol. 7795, pp. 32–46. Springer, Heidelberg (2013)

6. Benedikt, M., Lenhardt, R., Worrell, J.: Model checking Markov chains against
unambiguous Büchi automata (2014). arXiv:1405.4560

7. Benedikt, M., Lenhardt, R., Worrell, J.: Two variable vs. linear temporal logic in
model checking and games. Log. Methods Comput. Sci. 9(2), 1–37 (2013)

8. Berman, A., Plemmons, R.J.: Nonnegative Matrices in the Mathematical Sciences.
Academic Press, Cambridge (1979)

9. Bousquet, N., Löding, C.: Equivalence and inclusion problem for strongly unam-
biguous Büchi automata. In: Dediu, A.-H., Fernau, H., Mart́ın-Vide, C. (eds.)
LATA 2010. LNCS, vol. 6031, pp. 118–129. Springer, Heidelberg (2010)

10. Bustan, D., Rubin, S., Vardi, M.Y.: Verifying ω-regular properties of Markov
Chains. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 189–201.
Springer, Heidelberg (2004)

11. Chakraborty, S., Katoen, J.-P.: Parametric LTL on Markov chains. In: Diaz, J.,
Lanese, I., Sangiorgi, D. (eds.) TCS 2014. LNCS, vol. 8705, pp. 207–221. Springer,
Heidelberg (2014)

12. Colcombet, T.: Forms of determinism for automata (invited talk). In: 29th Interna-
tional Symposium on Theoretical Aspects of Computer Science, (STACS), LIPIcs,
vol. 14, pp. 1–23. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2012)

13. Colcombet, T.: Unambiguity in automata theory. In: Shallit, J., Okhotin, A. (eds.)
DCFS 2015. LNCS, vol. 9118, pp. 3–18. Springer, Heidelberg (2015)

14. Courcoubetis, C., Yannakakis, M.: The complexity of probabilistic verification. J.
ACM 42(4), 857–907 (1995)

15. Couvreur, J.-M.: On-the-fly verification of linear temporal logic. In: Wing, J.M.,
Woodcock, J. (eds.) FM 1999. LNCS, vol. 1708, pp. 253–271. Springer, Heidelberg
(1999)

16. Couvreur, J.-M., Saheb, N., Sutre, G.: An optimal automata approach to LTL
model checking of probabilistic systems. In: Vardi, M.Y., Voronkov, A. (eds.) LPAR
2003. LNCS, vol. 2850, pp. 361–375. Springer, Heidelberg (2003)

17. Duret-Lutz, A.: Manipulating LTL formulas using spot 1.0. In: Van Hung, D.,
Ogawa, M. (eds.) ATVA 2013. LNCS, vol. 8172, pp. 442–445. Springer, Heidelberg
(2013)

18. Duret-Lutz, A.: LTL translation improvements in Spot 1.0. Int. J. Crit. Comput.-
Based Syst. 5(1/2), 31–54 (2014)

19. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications for
finite-state verification. In: 21th International Conference on Software Engineering
(ICSE), pp. 411–420. ACM (1999)

20. Etessami, K., Holzmann, G.J.: Optimizing Büchi automata. In: Palamidessi, C.
(ed.) CONCUR 2000. LNCS, vol. 1877, pp. 153–168. Springer, Heidelberg (2000)

http://arxiv.org/abs/1605.00950
http://arxiv.org/abs/1605.00950
http://arxiv.org/abs/1405.4560

Markov Chains and Unambiguous Büchi Automata 41

21. Gerth, R., Peled, D., Vardi, M.Y., Wolper, P.: Simple on-the-fly automatic verifica-
tion of linear temporal logic. In: Fifteenth IFIP WG6.1 International Symposium
on Protocol Specification (PSTV), IFIP Conference Proceedings, vol. 38, pp. 3–18.
Chapman & Hall (1995)

22. Grädel, E., Thomas, W., Wilke, T. (eds.): Automata, Logics, Infinite Games: A
Guide to Current Research. LNCS, vol. 2500. Springer, Heidelberg (2002)

23. Hahn, E.M., Li, Y., Schewe, S., Turrini, A., Zhang, L.: iscasMc: a web-based
probabilistic model checker. In: Jones, C., Pihlajasaari, P., Sun, J. (eds.) FM 2014.
LNCS, vol. 8442, pp. 312–317. Springer, Heidelberg (2014)

24. Horn, R.A., Johnson, C.R.: Matrix Analysis, 2nd edn. Cambridge University Press,
Cambridge (2013)

25. Hoschek, W.: The colt distribution: open source libraries for high performance
scientific and technical computing in Java (2004)

26. Isaak, D., Löding, C.: Efficient inclusion testing for simple classes of unambiguous
ω-automata. Inf. Process. Lett. 112(14–15), 578–582 (2012)

27. Kähler, D., Wilke, T.: Complementation, disambiguation, and determinization of
Büchi automata unified. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson,
M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol.
5125, pp. 724–735. Springer, Heidelberg (2008)

28. Klein, J., Baier, C.: Experiments with deterministic ω-automata for formulas of
linear temporal logic. Theoret. Comput. Sci. 363(2), 182–195 (2006)

29. Kulkarni, V.G.: Modeling and Analysis of Stochastic Systems. Chapman & Hall,
London (1995)

30. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol.
6806, pp. 585–591. Springer, Heidelberg (2011)

31. Kwiatkowska, M.Z., Norman, G., Parker, D.: The PRISM benchmark suite. In:
9th International Conference on Quantitative Evaluation of SysTems (QEST), pp.
203–204. IEEE Computer Society (2012)

32. Lenhardt, R.: Tulip: model checking probabilistic systems using expectation max-
imisation algorithm. In: Joshi, K., Siegle, M., Stoelinga, M., D’Argenio, P.R. (eds.)
QEST 2013. LNCS, vol. 8054, pp. 155–159. Springer, Heidelberg (2013)

33. Lenhardt, R.: Two variable and linear temporal logic in model checking and games.
Ph.D. thesis, University of Oxford (2013)

34. Morgenstern, A.: Symbolic controller synthesis for LTL specifications. Ph.D. thesis,
Technische Universität Kaiserslautern (2010)

35. The PRISM model checker. http://www.prismmodelchecker.org/
36. Somenzi, F., Bloem, R.: Efficient Büchi automata from LTL formulae. In: Emer-

son, E.A., Sistla, A.P. (eds.) Computer Aided Verification. LNCS, vol. 1855,
pp. 248–263. Springer, Heidelberg (2000)

37. Stearns, R.E., Hunt, H.B.: On the equivalence and containment problem for unam-
biguous regular expressions, grammars, and automata. SIAM J. Comput. 14(3),
598–611 (1985)

38. Vardi, M.Y.: Automatic verification of probabilistic concurrent finite-state pro-
grams. In: 26th IEEE Symposium on Foundations of Computer Science (FOCS),
pp. 327–338. IEEE Computer Society (1985)

http://www.prismmodelchecker.org/

42 C. Baier et al.

39. Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic program
verification (preliminary report). In: 1st Symposium on Logic in Computer Science
(LICS), pp. 332–344. IEEE Computer Society Press (1986)

40. Wolper, P., Vardi, M.Y., Sistla, P.A.: Reasoning about infinite computation paths
(extended abstract). In: 24th Annual Symposium on Foundations of Computer
Science (FOCS), pp. 185–194. IEEE Computer Society (1983)

41. Zimmermann, M.: Optimal bounds in parametric LTL games. Theoret. Comput.
Sci. 493, 30–45 (2013)

Synthesizing Probabilistic Invariants
via Doob’s Decomposition

Gilles Barthe1(B), Thomas Espitau2, Luis Maŕıa Ferrer Fioriti3,
and Justin Hsu4

1 IMDEA Software Institute, Madrid, Spain
gilles.barthe@imdea.org

2 ENS Cachan, Cachan, France
3 Saarland University, Saarbrücken, Germany

4 University of Pennsylvania, Philadelphia, USA

Abstract. When analyzing probabilistic computations, a powerful app-
roach is to first find a martingale—an expression on the program vari-
ables whose expectation remains invariant—and then apply the optional
stopping theorem in order to infer properties at termination time. One
of the main challenges, then, is to systematically find martingales.

We propose a novel procedure to synthesize martingale expres-
sions from an arbitrary initial expression. Contrary to state-of-the-art
approaches, we do not rely on constraint solving. Instead, we use a sym-
bolic construction based on Doob’s decomposition. This procedure can
produce very complex martingales, expressed in terms of conditional
expectations.

We show how to automatically generate and simplify these martin-
gales, as well as how to apply the optional stopping theorem to infer
properties at termination time. This last step typically involves some
simplification steps, and is usually done manually in current approaches.
We implement our techniques in a prototype tool and demonstrate our
process on several classical examples. Some of them go beyond the capa-
bility of current semi-automatic approaches.

1 Introduction

Probabilistic computations are a key tool in modern computer science. They are
ubiquitous in machine learning, privacy-preserving data mining, cryptography,
and many other fields. They are also a common and flexible tool to model a
broad range of complex real-world systems. Not surprisingly, probabilistic com-
putations have been extensively studied from a formal verification perspective.
However, their verification is particularly challenging.

In order to understand the difficulty, consider the standard way to infer prop-
erties about the final state of a non-probabilistic program using a strong invariant
(an assertion which is preserved throughout program execution) and a proof of
termination. This proof principle is not easily adapted to the probabilistic case.
First, probabilistic programs are interpreted as distribution transformers [25]

c© Springer International Publishing Switzerland 2016
S. Chaudhuri and A. Farzan (Eds.): CAV 2016, Part I, LNCS 9779, pp. 43–61, 2016.
DOI: 10.1007/978-3-319-41528-4 3

44 G. Barthe et al.

rather than state transformers. Accordingly, assertions (including strong invari-
ants) must be interpreted over distributions. Second, the notion of termination
is different for probabilistic programs. We are usually not interested in proving
that all executions are finite, but merely that the probability of termination is
1, a slightly weaker notion. Under this notion, there may be no finite bound on
the number of steps over all possible executions. So, we cannot use induction
to transfer local properties to the end of the program—more complex limiting
arguments are needed.

We can avoid some of these obstacles by looking at the average behavior
of a program. That is, we can analyze numerical expressions (over program
variables) whose average value is preserved. These expressions are known as
martingales, and have several technical advantages. First, martingales are easy
to manipulate symbolically and can be checked locally. Second, the average value
of martingale is preserved at termination, even if the control-flow of the program
is probabilistic. This fact follows from the optional stopping theorem (OST), a
powerful result in martingale theory.

While martingales are quite useful, they can be quite non-obvious. Accord-
ingly, recent investigation has turned to automatically synthesizing martingales.
State-of-the-art frameworks are based on constraint solving, and require the user
to provide either a template expression [6,22] or a limit on the search space [7,10].
The main advantage of such approaches is that they are generally complete—
they find all possible martingales in the search space. However, they have their
drawbacks: a slightly wrong template can produce no invariant at all, and a lot
of search space may be needed to arrive at the martingale.

We propose a framework that complements current approaches—we rely on
purely symbolic methods instead of solving constraints or searching. We require
the user to provide a “seed” expression, from which we always generate a martin-
gale. Our approach uses Doob’s decomposition theorem, which gives a symbolic
method to construct a martingale from any sequence of random values. Once we
have the martingale, we can apply optional stopping to reason about the mar-
tingale at loop termination. While the martingale and final fact may be quite
complex, we can use non-probabilistic invariants and symbolic manipulations to
automatically simplify them.

We demonstrate our techniques in a prototype implementation, implement-
ing Doob’s decomposition and the Optional Stopping Theorem. Although these
proof principles have been long known to probability theory, we are the first
to incorporate them into an automated program analysis. Given basic invari-
ants and hints, our prototype generates martingales and facts for a selection of
examples.

2 Mathematical Preliminaries

We briefly introduce some definitions from probability theory required for our
technical development. We lack the space to discuss the definitions in-depth, but

Synthesizing Probabilistic Invariants via Doob’s Decomposition 45

we will explain informally what the various concepts mean in our setting. Inter-
ested readers can find a more detailed presentation in any standard probability
theory textbook (e.g., Williams [33]).

First, we will need some basic concepts from probability theory.

Definition 1. Let Ω be the set of outcomes.

– A sigma algebra is a set F of subsets of Ω, closed under complements and
countable unions, and countable intersections.

– A probability measure is a countably additive mapping P : F → [0, 1] such
that P(Ω) = 1.

– A probability space is a triple (Ω,F ,P).

Next, we can formally define stochastic processes. These constructions are
technical but completely standard.

Definition 2. Let (Ω,F ,P) be a probability space.

– A (real) random variable is a function X : Ω → R. X is F-measurable if
X−1((a, b]) ∈ F for every a, b ∈ R.

– A filtration is a sequence {Fi}i∈N of sigma algebras such that Fi ⊆ F and
Fi−1 ⊆ Fi for every i > 0. When there is a fixed filtration on F , we will often
abuse notation and write F for the filtration.

– A stochastic process adapted to filtration F is a sequence of random variables
{Xi}i∈N such that each Xi is Fi-measurable.

Intuitively, we can think of Ω as a set where each element represents a possible
outcome of the samples. In our setting, grouping samples according to the loop
iteration gives a natural choice for the filtration: we can take Fi to be the set of
events that are defined by samples in iteration i or before. A stochastic process
X is adapted to this filtration if Xi is defined in terms of samples from iteration
i or before. Sampled variables at step i are independent of previous steps, so
they are not Fi−1-measurable.

Expectation. To define martingales, we need to introduce expected values and
conditional expectations. The expected value of a random variable is defined as

E[X] �
∫

Ω

X · dP

where
∫

is the Lebesgue integral [33]. We say that a random variable is integrable
if E[|X|] is finite. Given a integrable random variable X and a sigma algebra G,
a conditional expectation of X with respect to G is a random variable Y such
that Y is G-measurable, and E[X · 1{A}] = E[Y · 1{A}] for all events A ∈ G.
(Recall that the indicator function 1{A} of an event A maps ω ∈ A to 1, and all
other elements to 0.) Since one can show that this Y is essentially unique, we
denote it by E[X | G].

46 G. Barthe et al.

Moments. Our method relies on computing higher-order moments. Suppose X
is a random variable with distribution d. If X takes numeric values, the kth
moment of d is defined as

G(d)k � E[Xk]

for k ∈ N. If X ranges over tuples, the correlations of d are defined as

G(d, {a, b})p,q � E[πa(X)p · πb(X)q],

for p, q ∈ N, and similarly for products of three or more projections. Here, the
projection πi(X) for X a tuple-valued random variable is the marginal distrib-
ution of the ith coordinate of the tuple.

Martingales. A martingale is a stochastic process with a special property: the
average value of the current step is equal to the value of the previous step.

Definition 3. Let {Xi} be a stochastic process adapted to filtration {Fi}. We
say that X is a martingale with respect to F if it satisfies the property

E[Xi | Fi−1] = Xi−1.

For a simple example, consider a symmetric random walk on the integers.
Let X ∈ Z denote the current position of the walk. At each step, we flip a fair
coin: if heads, we increase the position by 1, otherwise we decrease the position
by 1. The sequence of positions X0,X1, . . . forms a martingale since the average
position at time i is simply the position at time i − 1:

E[Xi | Fi−1] = Xi−1.

Doob’s Decomposition. One important result in martingale theory is Doob’s
decomposition. Informally, it establishes that any integrable random process
can be written uniquely as a sum of a martingale and a predictable process. For
our purposes, it gives a constructive and purely symbolic method to extract a
martingale from any arbitrary random process.

Theorem 1 (Doob’s Decomposition). Let X = {Xi}i∈N be a stochastic
process adapted to filtration {Fi}i∈N where each Xi has finite expected value.
Then, the following process is a martingale:

Mi =

{
X0 : i = 0
X0 +

∑i
j=1 Xj − E[Xj | Fj−1] : i > 0

If X is already a martingale, then M = X.

We will think of the stochastic process X as a seed process which gener-
ates the martingale. While the definition of the martingale involves conditional
expectations, we will soon see how to automatically simplify these expectations.

Synthesizing Probabilistic Invariants via Doob’s Decomposition 47

Optional Stopping Theorem. For any martingale M , it is not hard to show that
the expected value of M remains invariant at each time step. That is, for any
fixed value n ∈ N, we have

E[Mn] = E[M0].

The optional stopping theorem extends this equality to situations where n itself
may be random, possibly even a function of the martingale.

Definition 4. Let (Ω,F ,P) be a probability space with filtration {Fi}i∈N. A
random variable τ : Ω → N is a stopping time if the subset {w ∈ Ω | τ(w) ≤ i}
is a member of Fi for each i ∈ N.

Returning to our random walk example, the first time that the position is
farther than 100 from the origin is a stopping time since this time depends
only on past samples. In contrast, the last time that a position is farther than
100 from the origin is not a stopping time, since this time depends on future
samples. More generally, the iteration count when we exit a probabilistic loop is
a stopping time since termination is a function of past samples only.

If we have a stopping time and a few mild conditions, we can apply the
optional stopping theorem.1

Theorem 2 (Optional Stopping) Let τ be a stopping time, and let M be a
martingale. If the expected value of τ is finite, and if |Mi − Mi−1| ≤ C for all
i > 0 and some constant C, then

E[Mτ] = E[M0].

To see this theorem in action, consider the random walk martingale S and
take the stopping time τ to be the first time that |S| ≥ 100. It is possible to show
that τ has finite expected value, and clearly |Si − Si−1| ≤ 1. So, the optional
stopping theorem gives

E[Sτ] = E[S0] = 0.

Since we know that the position is ±100 at time τ , this immediately shows that
the probability of hitting +100 is equal to the probability of hitting −100. This
intuitive fact can be awkward to prove using standard probabilistic invariants,
but falls out directly from a martingale analysis.

3 Overview of Method

Now that we have seen the key technical ingredients of our approach, let us see
how to combine these tools into an automated program analysis. We will take
an imperative program specifying a stochastic process and a seed expression,

1 A basic version of the optional stopping theorem will suffice for our purposes, but
there are alternative versions that don’t require finite expected stopping time and
bounded increments.

48 G. Barthe et al.

and we will automatically synthesize a martingale and an assertion that holds at
termination. We proceed in three stages: extracting a polynomial representing
the stochastic process in the program, applying Doob’s decomposition to the
polynomial representation, and applying optional stopping. We perform symbolic
manipulations to simplify the martingale and final fact.

Programs. We consider programs of the form:2

I;while e do (S;B)

where I and B are sequences of deterministic assignments (of the form X ← E),
and S is a sequence of probabilistic samplings (of the form S $← DE).

Note that we separate sample variables s ∈ S, which are the target of random
samplings, from process variables x ∈ X , which are the target of deterministic
assignments. This distinction will be important for our simplifications: we know
the moments and correlations of sample variables, while we have less information
for process variables. We require that programs assign to sample variables before
assigning to process variables in each loop iteration; this restriction is essentially
without loss of generality.

We take DE to be a set of standard distributions over the integers or over
finite tuples of integers, to model joint distributions. For instance, we often
consider the distribution Bern(1/2, {−1, 1}) ∈ DE that returns −1 and +1 with
equal probability. We assume that all distributions in DE have bounded support;
all moments and correlations of the primitive distributions are finite. We will also
assume that distributions do not depend on the program state.

The set E of expressions is mostly standard, with a few notational conve-
niences for defining stochastic processes:

E ::= X | S | X [−n] process/sample/history variables
| Z constants
| πa(E) projections
| E + E | E · E arithmetic
| E < E | E ∧ E | ¬E guards

History variables X [−n] are indexed by a positive integer n and are used
inside loops. The variable x[−n] refers to the value of x assigned n iterations
before the current iteration. If the loop has run for fewer than n iterations, x[−n]
is specified by the initialization step of our programs:

I � x1[−n1] ← e1; · · · ;xk[−nk] ← ek.

2 We focus on programs for which our method achieves full automation. For instance,
we exclude conditional statements because it is difficult to fully automate the result-
ing simplifications. We note however that there are standard transformations for
eliminating conditionals; one such transformation is if-conversion, a well-known com-
piler optimization [1].

Synthesizing Probabilistic Invariants via Doob’s Decomposition 49

Extracting the Polynomial. For programs in our fragment, each variable assigned
in the loop determines a stochastic process: x is the most recent value, x[−1] is
the previous value, etc. In the first stage of our analysis, we extract polynomial
representations of each stochastic process from the input program.

We focus on the variables that are mutated in B—each of these variables
determines a stochastic process. To keep the notation light, we will explain our
process for first-order stochastic processes: we only use history variables x[−1]
from the past iteration. We will also suppose that there is just one process
variable and one sample variable, and only samples from the current iteration
are used.

Since our expression language only has addition and multiplication as opera-
tors, we can represent the program variable x as a polynomial of other program
variables:

x = Px(x[−1], s) (1)

Next, we pass to a symbolic representation in terms of (mathematical) ran-
dom variables. To variable x, we associate the random variable {Xi}i∈N modeling
the corresponding stochastic process, and likewise for the sample variable s. By
convention, i = 0 corresponds to the initialization step, and i > 0 corresponds
to the stochastic process during the loop. In other words,

x[0] ← 0;while e do s $← d;x ← x[−1] + s

desugars to

x[0] ← 0; i ← 0;while e do i ← i + 1; s $← d;x[i] ← x[i − 1] + s

in a language with arrays instead of history variables. Then, the program variable
x[i] corresponds to the random variable Xi.

Then, Eq. (1) and the initial conditions specified by the command I give an
inductive definition for the stochastic process:

Xi = Px(Xi−1, Si). (2)

Applying Doob’s Decomposition. The second stage of our analysis performs
Doob’s decomposition on the symbolic representation of the process. We know
that the seed expression e must be a polynomial, so we can form the associated
stochastic process {Ei}i∈N by replacing program variables by their associated
random variable:

Ei = Pe(Xi, Si). (3)

(Recall that the initial conditions X0 and S0, which define E0, are specified by
the initialization portion I of the program.)

Then, Doob’s decomposition produces the martingale:

Mi =

{
E0 : i = 0
E0 +

∑i
j=1 Ej − E[Ej | Fj−1] : i > 0.

50 G. Barthe et al.

E[c · f + c′ · g | −] �→ c · E[f | −] + c′ · E[g | −]

E[Xi−n · f | Fi−1] �→ Xi−n · E[f | Fi−1] n > 0

E[Si · S′
i | Fi−1] �→ E[Si | Fi−1] · E[S′

i | Fi−1] S �= S′

E[Sk
i | Fi−1] �→ G(d)k S ∼ d

E[πa(Si)
p · πb(Si)

q | Fi−1] �→ G(da,b)p,q S ∼ d

Fig. 1. Selection of simplification rules

To simplify the conditional expectation, we unfold Ej via Eq. (3) and unroll the
processes Xi by one step with Eq. (2).

Now, we apply our simplification rules; we present a selection in Fig. 1. The
rules are divided into three groups (from top): linearity of expectation, condi-
tional independence, and distribution information. The first two groups reflect
basic facts about expectations and conditional expectations. The last group
encodes the moments and correlations of the primitive distributions. We can
pre-compute these quantities for each primitive distribution d and store the
results in a table.

By the form of Eq. (3), the simplification removes all expectations and we
can give an explicit definition for the martingale:

Mi =

{
E0 : i = 0
Qe(Xi−1, . . . , X0, Si, . . . , S1) : i > 0,

(4)

where Qe is a polynomial.

Applying Optional Stopping. With the martingale in hand, the last stage of our
analysis applies the optional stopping theorem. To meet the technical conditions
of the theorem, we need two properties of the loop:

– The expected number of iterations must be finite.
– The martingale must have bounded increments.

These side conditions are non-probabilistic assertions that can already be han-
dled using existing techniques. For instance, the first condition follows from the
existence of a bounded variant [19]: an integer expression v such that

– 0 ≤ v < K;
– v = 0 implies the guard is false; and
– the probability that v decreases is strictly bigger than ε

throughout the loop, for ε and K positive constants. However in general, finding
a bounded variant may be difficult; proving finite expected stopping time is an
open area of research which we do not address here.

Synthesizing Probabilistic Invariants via Doob’s Decomposition 51

The second condition is also easy to check. For one possible approach, one
can replace stochastic sampling by non-deterministic choice over the support of
the distribution, and verify that the seed expression e is bounded using standard
techniques [13,14,28]. This suffices to show that the martingale Mi has bounded
increments. To see why, suppose that the seed expression is always bounded by
a constant C. By Doob’s decomposition, we have

|Mi − Mi−1| =

∣
∣
∣
∣
∣
∣

⎛

⎝
i∑

j=1

Ej − E[Ej | Fj−1]

⎞

⎠ −
⎛

⎝
i−1∑

j=1

Ej − E[Ej | Fj−1]

⎞

⎠

∣
∣
∣
∣
∣
∣

= |Ei − E[Ei | Fj−1]| ≤ 2C,

so the martingale has bounded increments.
Thus, we can apply the optional stopping theorem to Eq. (4) to conclude:

E0 = E[M0] = E[Mτ] = E[Qe(Xτ−1, . . . , X0, Sτ , . . . , S1)]

Unlike the simplification step after applying Doob’s decomposition, we may not
be able to eliminate all expected values. For instance, there may be expected
values of X at times before τ . However, if we have additional invariants about
the loop, we can often simplify the fact with basic symbolic transformations.

Inputs

Extract
Poly.

Doob
Decomp.

Simplify

Final
Simplify

OST

Verify
Hints

Fact

Fig. 2. Tool pipeline

Implementation. We have implemented our process in a Python prototype using
the sympy library for handling polynomial and summation manipulations [20].
Figure 2 shows the entire pipeline. There are three parts of the input: the program
describing a stochastic process, the seed expression, and hint facts. The output
is a probabilistic formula that holds at termination.

The most challenging part of our analysis is the last stage: applying OST.
First, we need to meet the side conditions of the optional stopping theorem: finite
expected iteration count and bounded increments. Our prototype does not verify
these side conditions automatically since available termination tools are either
not fully automatic [17] or can only synthesize linear ranking supermartingales
[6,9] that are insufficient for the majority of our case studies3. Furthermore, the
3 Although most of the ranking supermatingales needed in our case studies are non-

linear, the bounded variants are always linear.

52 G. Barthe et al.

final fact typically cannot be simplified without some basic information about
the program state at loop termination. We include this information as hints.
Hints are first-order formulae over the program variables and the loop counter
(represented by the special variable t), and are used as auxiliary facts during the
final simplification step. Hints can be verified using standard program verification
tools since they are non-probabilistic. In our examples, we manually translate
the hints and the program into the input language of EasyCrypt [4], and perform
the verifications there. Automating the translation poses no technical difficulty
and is left for future work.

We note that the performance of the tool is perfectly reasonable for the
examples considered in the next section. For instance, it handles the “ABRA-
CADABRA” example in less than 2 s on a modern laptop.

4 Examples

Now, we demonstrate our approach on several classic examples of stochastic
processes. In each case, we describe the code, the seed expression, and any hints
needed for our tool to automatically derive the final simplified fact.

Geometric Distribution. As a first application, we consider a program that gen-
erates a draw from the geometric distribution by running a sequence of coin
flips.

x [0] ← 0 ;
while (z �= 0) do

z $← Bern (p , {1 , 0}) ;
x ← x [−1] + z ;

end

Here, Bern(p, {1, 0}) is the distribution that returns 1 with probability p > 0,
and 0 otherwise. The program simply keeps drawing until we sample 0, storing
the number of times we sample 1 in x.

We wish to apply our technique to the seed expression x. First, we can extract
the polynomial equation:

Xi = Xi−1 + Zi.

Applying Doob’s decomposition, our tool constructs and reduces the martingale:

Mi =

{
X0 : i = 0
Xi − p · i : i > 0.

To apply optional stopping, we first need to check that the stopping time τ
is integrable. This follows by taking z as a bounded variant—it remains in {0, 1}
and decreases with probability p > 0. Also, the martingale Mi has bounded
increments: |Mi −Mi−1| should be bounded by a constant. But this is clear since
we can use a loop invariant to show that |Xi − Xi−1| ≤ 1, and the increment is

|Mi − Mi−1| = |Xi − Xi−1 − p| ≤ |Xi − Xi−1| + p ≤ 1 + p.

Synthesizing Probabilistic Invariants via Doob’s Decomposition 53

So, optional stopping shows that

0 = E[Xτ − p · τ].

With the hint x = t − 1—which holds at termination—our tool replaces Xτ by
τ − 1 and automatically derives the expected running time:

0 = E[τ − 1 − p · τ]
E[τ] = 1/(1 − p).

Gambler’s Ruin. Our second example is the classic Gambler’s ruin process. The
program models a game where a player starts with a > 0 dollars and keeps
tossing a fair coin. The player wins one dollar for each head and loses one dollar
for each tail. The game ends either when the player runs out of money, or reaches
his target of b > a dollars. We can encode this process as follows:

x [0] ← a ;
while (0 < x < b) do

z $← Bern (1/2 , {−1, 1}) ;
x ← x + z ;

end

We will synthesize two different martingales from this program, which will
yield complementary information once we apply optional stopping. For our first
martingale, we use x as the seed expression. Our tool synthesizes the martingale

Mi =

{
X0 : i = 0
Xi : i > 0.

So in fact, x is already a martingale.
To apply optional stopping, we first note that x is a bounded variant: it

remains in (0, b) and decreases with probability 1/2 at each iteration. Since the
seed expression x is bounded, the martingale Mi has bounded increments. Thus,
optional stopping yields

a = E[X0] = E[Xτ].

If we give the hint
(x = 0) ∨ (x = b) (5)

at termination, our prototype automatically derives

a = E[Xτ · 1{Xτ=0∨Xτ=b}]
= E[Xτ · 1{Xτ=0}] + E[Xτ · 1{Xτ=b}]
= 0 · Pr[Xτ = 0] + b · Pr[Xτ = b] = b · Pr[Xτ = b],

so the probability of exiting at b is exactly a/b.
Now, let us take a look at a different martingale generated by the seed expres-

sion x2. Our prototype synthesizes the following martingale:

M ′
i =

{
X2

0 : i = 0
X2

i − i : i > 0

54 G. Barthe et al.

Again, we can apply optional stopping: x is a bounded variant, and the seed
expression x2 remains bounded in (0, b2). So, we get

a2 = E[M0] = E[X2
τ − τ].

By using the same hint Eq. (5), our prototype automatically derives

a2 = E[X2
τ · 1{Xτ=0∨Xτ=b}] − E[τ]

= E[X2
τ · 1{Xτ=0}] + E[X2

τ · 1{Xτ=b}] − E[τ]

= 0 · Pr[Xτ = 0] + b2 · Pr[Xτ = b] − E[τ] = b2 · Pr[Xτ = b] − E[τ].

Since we already know that Pr[Xτ = b] = a/b from the first martingale {Mi}i∈N,
this implies that the expected running time of the Gambler’s ruin process is

E[τ] = a(b − a).

Gambler’s Ruin with Momentum. Our techniques extend naturally to stochastic
processes that depend on variables beyond the previous iteration. To demon-
strate, we’ll consider a variant of Gambler’s ruin process with momentum:
besides just the coin flip, the gambler will also gain profit equal to the dif-
ference between the previous two dollar amounts. Concretely, we consider the
following process:

x [0] ← a ;
x [1] ← a ;
while (0 < x < b) do

z $← Bern (p , {−1, 1}) ;
x ← x [−1] + (x [−1] − x [−2]) + z ;

end

Note that we must now provide the initial conditions for two steps, since the
process is second-order recurrent. Given seed expression x, our tool synthesizes
the following martingale:

Mi =

{
X0 : i = 0
X0 + Xi − Xi−1 : i > 0

Identical to the Gambler’s ruin process, we can verify the side conditions and
apply optional stopping, yielding

a = E[M0] = E[Mτ] = E[X0 + Xτ − Xτ−1].

Unfolding X0 = a and simplifying, our tool derives the fact

E[Xτ] = E[Xτ−1].

We are not aware of existing techniques that can prove this kind of fact—
reasoning about the expected value of a variable in the iteration just prior to
termination.

Synthesizing Probabilistic Invariants via Doob’s Decomposition 55

Abracadabra. Our final example is a classic application of martingale reasoning.
In this process, a monkey randomly selects a character at each time step, stop-
ping when he has typed a special string, say “ABRACADABRA”. We model
this process as follows:

match0 [0] ← 1 ;
match1 [0] ← 0 ;
. . .
match11 [0] ← 0 ;
while (match11 == 0) do

s $← UnifMatches ;
match11 ← match10 [−1] ∗ π11 (s) ;
match10 ← match9 [−1] ∗ π10 (s) ;
. . .
match1 ← match0 [−1] ∗ π1 (s) ;

end

Here, UnifMatches is a distribution over tuples that represents a uniform c draw
from the letters, where the kth entry is 1 if the c matches the kth word and 0
if not. The variables matchi record whether the i most recent letters match the
first i letters of target word; match0 is always 1, since we always match 0 letters.

Now, we will apply Doob’s decomposition. Letting L be the number of pos-
sible letters and taking the seed expression

e � 1 + L · match1 + · · · + L11 · match11,
our tool synthesizes the following martingale:

Mi =

⎧
⎨

⎩

1 + L · X
(1)
i + · · · + L11 · X

(11)
i : i = 0

∑i
j=1

(
L · X

(1)
j + · · · + L11 · X

(11)
j − L0 · X

(0)
j−1 + · · · + L10 · X

(10)
j−1

)
: i > 0,

where X(j) is the stochastic process corresponding to matchj . The dependence on
L is from the expectations of projections of UnifMatches, which are each 1/L—the
probability of a uniformly random letter matching any fixed letter.

To apply the optional stopping theorem, note that the seed expression e is
bounded in (0, L12), and 1 + L + · · · + L11 − e serves as a bounded variant: take
the highest index j such that matchj = 1, and there is probability 1/L that we
increase the match to get matchj+1 = 1, decreasing the variant. So, we have

1 = E[M0] =
τ∑

j=1

E[L · X(1)
j + · · · + L11 · X(11)

j] −E[L0 · X(0)
j−1 + · · · + L10 · X(10)

j−1].

Our tool simplifies and uses the hints X
(11)
j = 0 and X

(0)
j = 1 for j < τ to derive

1 = L0 · E[X(0)
τ] + · · · + L11 · E[X(11)

τ] − E[τ].

56 G. Barthe et al.

For the target string “ABRACADABRA”, we use hints

(match11 = 1) =⇒ (match4 = 1)
(match11 = 1) =⇒ (match1 = 1)
(match11 = 1) =⇒ (match0 = 1)
(match11 = 1) =⇒ (matchj = 0). (for j �= 0, 1, 4, 11)

For example, if match11 is set then the full string is matching “ABRA-
CADABRA”, so the most recently seen four characters are “ABRA”. This
matches the first four letters of “ABRACADABRA”, so match4 is also set. The
hint can be proved from a standard loop invariant.

Our tool derives the expected running time:

E[τ] = L1 + L4 + L11.

Benchmarks. To give an idea of the efficiency of our tool, we present some
benchmarks for our examples in Table 1. We measured timing on a recent laptop
with a 2.4 GHz Intel Core processor with 8 GB of RAM. We did not optimize
for the performance; we expect that the running time could be greatly improved
with some tuning.

The example miniabra is a smaller version of the ABRACADABRA exam-
ple, where the alphabet is just {0, 1}, and we stop when we sample the sequence
111; fullabra is the full ABRACADABRA example.

While there is a growing body of work related to martingale techniques
for program analysis (see the following section), it is not obvious how to com-
pare benchmarks. Existing work focuses on searching for martingale expressions
within some search space; this is a rather different challenge than synthesizing
a single martingale from a programmer-provided seed expression. In particular,
if the seed expression happens to already be a martingale by some lucky guess,
our tool will simply return the seed expression after checking that it is indeed a
martingale.

Table 1. Preliminary benchmarks.

Example Running time (s)

geom 0.14

gamble 0.11

gamble2 0.17

miniabra 0.87

fullabra 3.58

Synthesizing Probabilistic Invariants via Doob’s Decomposition 57

5 Related Work

Martingales. Martingale theory is a central tool in fields like statistics, applied
mathematics, control theory, andfinance.Whenanalyzing randomized algorithms,
martingales can show tight bounds on tail events [30]. In the verification commu-
nity, martingales are used as invariant arguments, and as variants arguments to
prove almost sure termination [5,6,9,18]. Recently, martingale approaches were
extended to prove more complex properties. Chakarov, Voronin, and Sankara-
narayanan [8] propose proof rules for proving persistence and recurrence proper-
ties. Dimitrova, Ferrer Fioriti, Hermanns, and Majumdar [16] develop a deductive
proof system for PCTL∗, with proof rules based on martingales and supermartin-
gales.

Probabilistic Hoare Logic. McIver and Morgan [27] propose a Hoare-like logic
that is quite similar to our approach of using martingales and OST. Their app-
roach is based on weakest pre-expectations, which are an extension of Dijkstra’s
weakest preconditions [15] based on “backward” conditional expectations. Their
probabilistic invariants are similar to submartingales, as the expected value of
the invariant at the beginning of the execution lower bounds the expected value
of the invariant at termination. Their proof rule also requires an additional con-
straint to ensure soundness, but it requires a limiting argument that is more
difficult to automate compared to our bounded increment condition. We could
relax our condition using a weaker version of OST that generalizes their con-
dition [33]. Another substantial difference with our approach is that their logic
supports non-deterministic choices—ours does not. It is not obvious how we can
extend our synthesis approach to the non-probabilistic case as we heavily rely
on the concept of filtration, not applicable in the presence of non-determinism.

Probabilistic Model Checking. In the last twenty years, model checking technol-
ogy for probabilistic models have made impressive strides [11,23,26] (Baier and
Katoen [3] provide overview). The main advantage of model checking is that it
requires nothing from the user; our technique requires a seed expression. How-
ever, model checking techniques suffer from the state explosion problem—the
time and memory consumption of the model checking algorithm depends on the
number of reachable states of the program. Our approach can be used to ver-
ify infinite and parametric programs without any performance penalty, as we
work purely symbolically. For example, a probabilistic model checker can find
the expected running time of the gambler’s ruin process for concrete values of
a and b but they cannot deduce the solution for the general case, unlike our
technique.

Invariant Synthesis. There are several approaches for synthesizing probabilistic
invariants. Katoen et al. [22] propose the first complete method for the synthe-
sis of McIver and Morgan’s probabilistic linear invariants. It is an extension of
the constraint solving approach by Colón, Sankaranarayanan, and Sipma [12]

58 G. Barthe et al.

for the synthesis of (non-probabilistic) linear invariants. Chakarov and Sankara-
narayanan [6] later extended this work to martingales and ranking supermartin-
gales. Chakarov and Sankaranarayanan [7] propose a new notion of probabilistic
invariants that generalizes the notion of supermatingales. They give a synthesis
approach based on abstract interpretation, but it is not clear how their tech-
niques can prove properties at termination time. Chen et al. [10] propose a syn-
thesis tool for verifying Hoare triples in the McIver and Morgan logic, using a
combination of Lagrange’s interpolation, sampling, and counterexample guided
search. One of the novelties is that they can synthesize non-linear invariants. The
main disadvantages is that one must manually check the soundness condition,
and one must provide a pre-expectation. For instance, we can apply the method
of Chen et al. [10] to the gambler’s ruin process only if we already know that the
expected running time is a(b − a). In contrast, we can deduce E[τ] = a(b − a)
knowing only that E[τ] is finite.

Expected Running Time. As the termination time of a probabilistic program is
a random quantity, it is natural to measure its performance using the average
running time. Rough bounds can be obtained from martingale-based termination
proofs [18]. Recently, Chatterjee et al. [9] showed that arbitrary approximations
can be obtained from such proofs when the program is linear. They use Azuma’s
inequality to obtain a tail distribution of the running time, and later they model
check a finite unrolling of the loop. Monniaux [29] propose a similar approach
that uses abstract interpretation to obtain the tail distribution of the running
time. Kaminski, Katoen, Matheja, and Olmedo [21] extend Nielson’s proof sys-
tem [31] to bound the expected running time of probabilistic programs.

Recurrence Analysis. Our synthesis approach is similar to the use of recurrences
relations for the synthesis of non-probabilistic invariants [2,24,32]. The main
idea is to find syntactic or semantic recurrences relations, and later simplify them
using known closed forms to obtain loop invariants. In essence, we apply algebraic
identities to simplify the complex martingales from Doob’s decomposition. The
difference is that our simplifications are more complex as we cannot always obtain
a closed form but a simpler summation. However, we obtain the same closed form
when we apply Doob’s decomposition to inductive variables. Another difference
is that we rely on the syntactic criteria to identify which values are predictable
and which values are random.

6 Conclusion

We proposed a novel method for automatically synthesizing martingales expres-
sions for stochastic processes. The basic idea is to transform any initial expres-
sion supplied by the user into a martingale using Doob’s decomposition theo-
rem. Our method complements the state-of-the-art synthesis approaches based
on constraint solving. On one hand, we always output a martingale expression,
we are able to synthesize non-inductive martingales, and since we do not rely

Synthesizing Probabilistic Invariants via Doob’s Decomposition 59

on quantifier elimination, we can synthesize polynomial expression of very high
degree. On the other hand, we do not provide any completeness result, and the
shape of martingale is difficult to predict.

We considered several classical case studies from the literature, combining
our synthesis method with the optional stopping theorem and non-probabilistic
invariants to infer properties at termination time in a fully automatic fashion.

Future work includes extending our approach to programs with arrays and
improving the tool with automated procedures for checking side-conditions. It
would also be interesting to consider richer programs, say distributions with
parameters that depend on program state. Another possible direction would be
improving the simplification procedures; possibly, the tool could produce simpler
facts. Experimenting with more advanced computer-algebra systems and design-
ing simplification heuristics specialized to handling the conditional expectations
synthesized by Doob’s decomposition are both promising future directions. It
would also be interesting to integrate our method as a special tool in systems
for interactive reasoning about probabilistic computations.

Acknowledgments. We thank the anonymous reviewers for their helpful comments.
This work was partially supported by NSF grants TWC-1513694 and CNS-1065060,
and by a grant from the Simons Foundation (#360368 to Justin Hsu).

References

1. Allen, J.R., Kennedy, K., Porterfield, C., Warren, J.: Conversion of control depen-
dence to data dependence. In: ACM Symposium on Principles of Programming
Languages (POPL), Austin, Texas, pp. 177–189. ACM, New York (1983). ISBN
0-89791-090-7

2. Ammarguellat, Z., Harrison III, W.L.: Automatic recognition of induction variables
and recurrence relations by abstract interpretation. In: ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI), White Plains, New
York, pp. 283–295 (1990)

3. Baier, C., Katoen, J.: Principles of Model Checking. MIT Press, Cambridge (2008).
ISBN 978-0-262-02649-9

4. Barthe, G., Grégoire, B., Heraud, S., Béguelin, S.Z.: Computer-aided security
proofs for the working cryptographer. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS,
vol. 6841, pp. 71–90. Springer, Heidelberg (2011)

5. Bournez, O., Garnier, F.: Proving positive almost-sure termination. In: Giesl, J.
(ed.) RTA 2005. LNCS, vol. 3467, pp. 323–337. Springer, Heidelberg (2005)

6. Chakarov, A., Sankaranarayanan, S.: Probabilistic program analysis with martin-
gales. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 511–526.
Springer, Heidelberg (2013)

7. Chakarov, A., Sankaranarayanan, S.: Expectation invariants for probabilistic pro-
gram loops as fixed points. In: Müller-Olm, M., Seidl, H. (eds.) Static Analysis.
LNCS, vol. 8723, pp. 85–100. Springer, Heidelberg (2014)

8. Chakarov, A., Voronin, Y.-L., Sankaranarayanan, S.: Deductive proofs of almost
sure persistence and recurrence properties. In: Chechik, M., Raskin, J.-F. (eds.)
TACAS 2016. LNCS, vol. 9636, pp. 260–279. Springer, Heidelberg (2016). doi:10.
1007/978-3-662-49674-9 15

http://dx.doi.org/10.1007/978-3-662-49674-9_15
http://dx.doi.org/10.1007/978-3-662-49674-9_15

60 G. Barthe et al.

9. Chatterjee, K., Fu, H., Novotný, P., Hasheminezhad, R.: Algorithmic analysis
of qualitative and quantitative termination problems for affine probabilistic pro-
grams. In: ACM SIGPLAN–SIGACT Symposium on Principles of Programming
Languages (POPL), St. Petersburg, Florida, pp. 327–342 (2016)

10. Chen, Y.-F., Hong, C.-D., Wang, B.-Y., Zhang, L.: Counterexample-guided poly-
nomial loop invariant generation by lagrange interpolation. In: Kroening, D.,
Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 658–674. Springer, Heidel-
berg (2015)

11. Ciesinski, F., Baier, C.: LiQuor: a tool for qualitative and quantitative linear time
analysis of reactive systems. In: Third International Conference on the Quantitative
Evaluation of Systems (QEST), Riverside, California, pp. 131–132 (2006)

12. Colón, M.A., Sankaranarayanan, S., Sipma, H.B.: Linear invariant generation using
non-linear constraint solving. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003.
LNCS, vol. 2725, pp. 420–432. Springer, Heidelberg (2003)

13. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among vari-
ables of a program. In: ACM Symposium on Principles of Programming Languages
(POPL), Tucson, Arizona, pp. 84–96 (1978)

14. de Moura, L., Bjørner, N.S.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

15. Dijkstra, E.W.: Guarded commands, nondeterminacy and formal derivation of pro-
grams. Commun. ACM 18(8), 453–457 (1975)

16. Dimitrova, R., Ferrer Fioriti, L.M., Hermanns, H., Majumdar, R.: Probabilis-
tic CTL∗: the deductive way. In: Chechik, M., Raskin, J.-F. (eds.) TACAS
2016. LNCS, vol. 9636, pp. 280–296. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-49674-9 16

17. Esparza, J., Gaiser, A., Kiefer, S.: Proving termination of probabilistic programs
using patterns. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol.
7358, pp. 123–138. Springer, Heidelberg (2012)

18. Ferrer Fioriti, L.M., Hermanns, H.: Probabilistic termination: soundness, complete-
ness, and compositionality. In: ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (POPL), Mumbai, India, pp. 489–501 (2015)

19. Hart, S., Sharir, M., Pnueli, A.: Termination of probabilistic concurrent program.
ACM Trans. Program. Lang. Syst. 5(3), 356–380 (1983)

20. Joyner, D., Čert́ık, O., Meurer, A., Granger, B.E.: Open source computer algebra
systems: SymPy. ACM Commun. Comput. Algebra 45(3–4), 225–234 (2012)

21. Kaminski, B.L., Katoen, J.-P., Matheja, C., Olmedo, F.: Weakest precondition
reasoning for expected run–times of probabilistic programs. In: Thiemann, P. (ed.)
ESOP 2016. LNCS, vol. 9632, pp. 364–389. Springer, Heidelberg (2016). doi:10.
1007/978-3-662-49498-1 15

22. Katoen, J.-P., McIver, A.K., Meinicke, L.A., Morgan, C.C.: Linear-invariant gener-
ation for probabilistic programs: automated support for proof-based methods. In:
Cousot, R., Martel, M. (eds.) SAS 2010. LNCS, vol. 6337, pp. 390–406. Springer,
Heidelberg (2010)

23. Katoen, J., Zapreev, I.S., Hahn, E.M., Hermanns, H., Jansen, D.N.: The ins and
outs of the probabilistic model checker MRMC. Perform. Eval. 68(2), 90–104
(2011)

24. Kovács, L.: Reasoning algebraically about P-solvable loops. In: Ramakrishnan,
C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 249–264. Springer,
Heidelberg (2008)

http://dx.doi.org/10.1007/978-3-662-49674-9_16
http://dx.doi.org/10.1007/978-3-662-49674-9_16
http://dx.doi.org/10.1007/978-3-662-49498-1_15
http://dx.doi.org/10.1007/978-3-662-49498-1_15

Synthesizing Probabilistic Invariants via Doob’s Decomposition 61

25. Kozen, D.: Semantics of probabilistic programs. J. Comput. Syst. Sci. 22(3), 328–
350 (1981)

26. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol.
6806, pp. 585–591. Springer, Heidelberg (2011)

27. McIver, A., Morgan, C.: Abstraction, Refinement and Proof for Probabilistic Sys-
tems. Monographs in Computer Science. Springer, New York (2005)

28. Miné, A.: The octagon abstract domain. High.-Order Symb. Comput. 19(1), 31–
100 (2006)

29. Monniaux, D.: An abstract analysis of the probabilistic termination of programs.
In: Cousot, P. (ed.) SAS 2001. LNCS, vol. 2126, pp. 111–126. Springer, Heidelberg
(2001)

30. Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press,
Cambridge (1995). ISBN 0-521-47465-5

31. Nielson, H.R.: A hoare-like proof system for analysing the computation time of
programs. Sci. Comput. Program. 9(2), 107–136 (1987)

32. Rodŕıguez-Carbonell, E., Kapur, D.: Generating all polynomial invariants in simple
loops. J. Symb. Comput. 42(4), 443–476 (2007)

33. Williams, D.: Probability with Martingales. Cambridge University Press,
Cambridge (1991)

PSI: Exact Symbolic Inference
for Probabilistic Programs

Timon Gehr1(B), Sasa Misailovic1,2, and Martin Vechev1

1 ETH Zurich, Zurich, Switzerland
tgehr@student.ethz.ch, {misailo,martin.vechev}@inf.ethz.ch

2 University of Illinois at Urbana-Champaign, Champaign and Urbana, USA

Abstract. Probabilistic inference is a key mechanism for reasoning
about probabilistic programs. Since exact inference is theoretically
expensive, most probabilistic inference systems today have adopted
approximate inference techniques, which trade precision for better per-
formance (but often without guarantees). As a result, while desirable for
its ultimate precision, the practical effectiveness of exact inference for
probabilistic programs is mostly unknown.

This paper presents PSI (http://www.psisolver.org), a novel symbolic
analysis system for exact inference in probabilistic programs with both
continuous and discrete random variables. PSI computes succinct sym-
bolic representations of the joint posterior distribution represented by a
given probabilistic program. PSI can compute answers to various poste-
rior distribution, expectation and assertion queries using its own back-
end for symbolic reasoning.

Our evaluation shows that PSI is more effective than existing exact
inference approaches: (i) it successfully computed a precise result for
more programs, and (ii) simplified expressions that existing computer
algebra systems (e.g., Mathematica, Maple) fail to andle.

1 Introduction

Many statistical learning applications make decisions under uncertainty. Prob-
abilistic languages provide a natural way to model uncertainty by represent-
ing complex probability distributions as programs [8,12,19–21,25,32,39,46].
Exact probabilistic inference for programs with only discrete random variables
is already a #P-hard computational problem [13]. Programs which have both
discrete and continuous variables reveal additional challenges, such as repre-
senting discrete and continuous components of the joint distribution, computing
integrals, and managing a large number of terms in the joint distribution.

For these reasons, most existing probabilistic languages implement inference
algorithms that calculate numerical approximations. The general approaches
include sampling-based Monte Carlo methods [19–21,32,39,40,46] and projec-
tions to convenient probability distributions, such as variational inference [8,34]
or discretization [12,31]. While these methods scale well, they typically come
with no accuracy guarantees, since providing such guarantees is NP-hard [15].
c© Springer International Publishing Switzerland 2016
S. Chaudhuri and A. Farzan (Eds.): CAV 2016, Part I, LNCS 9779, pp. 62–83, 2016.
DOI: 10.1007/978-3-319-41528-4 4

http://www.psisolver.org

PSI: Exact Symbolic Inference for Probabilistic Programs 63

At the same time, there has been a renewed research interest in symbolic
inference methods due to their promise for computing more precise inference
results. Existing symbolic inference works fall into different categories:

– Approximate symbolic inference: Several analyses of graphical models approx-
imate continuous distribution functions with a mixture of base functions, such
as truncated exponentials or polynomials, which can be integrated more eas-
ily [11,36,43–45]. For instance, SVE [43] approximates distributions as piece-
wise low-rank polynomials.

– Interactive symbolic inference: A user can write down the inference steps
within modern computer algebra systems, such as Mathematica [3] and Maple
[1]. These tools can help the user by automating parts of the integration and/or
simplification of distribution expressions.

– Exact symbolic inference: Bhat et al. [7] presents a type-based analysis trans-
lating programs with mixed discrete/continuous variables into symbolic dis-
tribution expressions, but does not simplify integral terms symbolically and
instead computes them using a numerical integration library. Most recently,
Hakaru [10,38] optimizes probabilistic programs by translating a program into
a distribution expression in a DSL within Maple’s expression language, and
simplifying this expression utilizing Maple’s engine, before running (if neces-
sary) the optimized program within a MCMC simulation.

While these works are promising steps, the practical effectiveness of exact sym-
bolic inference in hybrid probabilistic models (with both discrete and continuous
distributions) remains unknown, dictating the need for further investigation.

This Work. We present the PSI (Probabilistic Symbolic Inference) system, a
comprehensive approach for automating exact probabilistic inference via pro-
gram analysis. PSI’s analysis performs an end-to-end symbolic inference for
probabilistic programs with discrete and/or continuous random variables. PSI
analyzes a probabilistic program using a symbolic domain which captures the
program’s probability distribution in a precise manner. PSI comes with its own
symbolic optimization engine which generates compact expressions that rep-
resent joint probability density functions using various optimizations, includ-
ing algebraic simplification and symbolic integration. The symbolic domain and
optimizations are designed to strike a balance between the expressiveness of the
probability density expressions and the efficiency of automatically computing
integrals and generating compact densities.

Our symbolic analysis (Sect. 3) generalizes existing analyzers for exact infer-
ence on discrete programs (e.g., those that operate at the level of concrete
states [12]). Our optimization engine (Sect. 4) can also automatically simplify
many integrals in density expressions and thus directly improve the performance
of works that generate unoptimized expressions, such as [7], without requiring
the full complexity of a general computer algebra system, as in [10,38]. As a
result, PSI is able to compute precise and compact inference results even when
the existing approaches fail (Sect. 5).

64 T. Gehr et al.

Contributions. Our main contributions are:

– Symbolic inference for programs with continuous/discrete variables: A novel
approach for fully symbolic probabilistic inference. The algorithm represents
the posterior distribution within a symbolic domain.

– Probabilistic inference system: PSI, an implementation of our algorithm
together with optimizations that simplify the symbolic representation of the
posterior distribution. PSI is available at http://www.psisolver.org.

– Evaluation: The paper shows an experimental evaluation of PSI against state-
of-the-art symbolic inference techniques – Hakaru, Maple, Mathematica, and
SVE – on a corpus of 21 benchmarks selected from the literature. PSI pro-
duced correct and compact distribution expressions for more benchmarks than
the alternatives. In addition, we compare PSI to state-of-the-art approximate
inference engines, Infer.NET [34] and R2 [39], and show the benefits of exact
inference.

Based on our results, we believe that PSI is the most effective exact symbolic
inference engine to date and is useful for understanding the potential of exact
symbolic inference for probabilistic programs.

2 Overview

Figure 1 presents the ClickGraph probabilistic program, adapted from a Fun
language program from [34]. It describes an information retrieval model that
calculates the posterior distribution of the similarity of two files, conditioned on
the users’ access patterns to these files.

The program first specifies the prior distribution on the document similarity
(line 2) and the recorded accesses to A and B for each user (lines 4–5). It then
specifies a trial in which the variable sim is the similarity of the documents
for an issued query (line 7). If the documents are similar, the probabilities of
accessing them (p1 and p2) are the same, otherwise p1 and p2 are independent
(lines 9–14). Finally, the variables clickA and clickB represent outcomes of the
users accessing the documents (lines 16–17), and each trial produces a specific
observation using the observe statements (lines 18–19). The return statement
specifies that PSI should compute the posterior distribution of simAll.

2.1 Analysis

To compute the posterior distribution, PSI analyzes the probabilistic program
via a symbolic domain that captures probability distributions, and applies opti-
mizations to simplify the resulting expression after each analysis step.

Symbolic Analysis: For each statement, the analysis computes a symbolic expres-
sion that captures the program’s probability distribution at that point. The
analysis operates forward, starting form the beginning of the function. As a
pre-processing step, the analysis unrolls all loops and lowers the array elements

http://www.psisolver.org

PSI: Exact Symbolic Inference for Probabilistic Programs 65

into a sequence of scalars or inlined constants. The state of the analysis at each
program point captures (1) the correct execution of the program as a map that
relates live program variables x1, . . . , xn to a symbolic expression e represent-
ing a probability density of the computation at this point in the program, and
(2) erroneous executions (e.g., due to an assertion violation) represented by an
aggregate error probability expression ē.

Fig. 1. ClickGraph Example

The analysis of the first statement (line 2) identifies that the state consists
of the variable simAll, which has the Uniform(0, 1) distribution. In general, for
x := Uniform(a, b), the analysis generates the expression [a ≤ x] · [x ≤ b]/(b − a),
which denotes the density of this distribution. The factors [a ≤ x] and [x ≤ b]
are Iverson brackets, guard functions that equal 1 if their conditions are true, or
equal 0 otherwise. Therefore, this density has a non-zero value only if x ∈ [a, b].
In particular, for simAll, the analysis generates eL.2 = [0 ≤ simAll] · [simAll ≤ 1].

Since the constant arrays are inlined, the analysis next processes the state-
ment on line 7 (in the first loop iteration). The analysis adds the variable sim

to the state, and multiplies the expression eL.2 with the density function for the
distribution Bernoulli(simAll):

eL.7 = [0 ≤ simAll] · [simAll ≤ 1] · (simAll · δ(1 − sim) + (1 − simAll) · δ(sim))
ēL.7 = 0

The expression eL.7 represents a generalized joint probability density over simAll

and sim. To encode discrete distributions like Bernoulli, the analysis uses Dirac
deltas, δ(e), which specify a distribution with point masses at the zeros of e.

66 T. Gehr et al.

Optimizations: After analyzing each statement, the analysis simplifies the gen-
erated distribution expression by applying equivalence-preserving optimizations:

– basic algebraic manipulations (e.g., in the previous expression, an optimization
can distribute multiplication over addition);

– removal of factors with trivial or unsatisfiable guards (e.g., in this example the
analysis checks whether a product [0 ≤ simAll] · [simAll ≤ 1] is always equal
to zero, and since it is not, leaves the expression unchanged);

– symbolic integration of the distribution expressions; for instance, at the end
of the each loop iteration, the analysis expression eL.19 contains several loop-
local variables: sim, p1, p2, clickA, and clickB. The analysis integrates out
these local variables because they will not be referenced by the subsequent
computation. It first removes the discrete variables sim, clickA, and clickB by
exploiting the properties of Dirac deltas. For the continuous variables p1 and
p2, it computes the antiderivative (indefinite integral) using PSI’s integration
engine, finds the integration bounds, and evaluates the antiderivative on these
bounds. After the analysis of the first loop iteration, this optimization reduces
the size of the distribution expression from 22 to 6 summands.

Result of the Analysis: After analyzing the entire program, the analysis produces
the final posterior probability density expression for the variable simAll:

eL.21 = [0 ≤ simAll] · [simAll ≤ 1] · 6(simAll + 3)5

3367

The analysis also computes that the final error probability ēL.21 is 0. This is the
exact posterior distribution for this program. We present this posterior density
function graphically in Fig. 8.

2.2 Applications of PSI

PSI’s source language (with conditional and bounded loop statements) has the
expressive power to represent arbitrary Bayesian networks, which encode many
probabilistic models relevant in practice [22]. PSI’s analysis is analogous to the
variable elimination algorithm for inference in graphical models. We anticipate
that PSI can be successfully deployed in several contexts:

Probabilistic Inference: PSI allows a developer to specify several classes of
queries. For joint posterior distribution, a user may return multiple variables in
the return statement. The special operators FromMarginal(e) and Expectation(e)
return the marginal distribution and the expectation of an expression e, respec-
tively. A developer can also specify assertions using the assert(e) statement.

Testing and Debugging: The exact inference results produced by PSI can be used
as reference versions for debugging and testing approximate inference engines.
It can also be used to test existing computer algebra systems – using PSI, we
found errors in Maple’s simplifier (see Sect. 5).

PSI: Exact Symbolic Inference for Probabilistic Programs 67

Sampling from Optimized Probabilistic Programs: Optimized distribution expres-
sions generated by PSI’s symbolic optimizer can be used, in principle, for com-
puting proposal distributions in MCMC simulations, as done by [7,38].

Uncertainty Propagation Analysis: PSI’s analysis can serve as a basis for static
analyses that propagate uncertainty through computations and determine error
bars for the result. This provides a powerful alternative to existing analyses that
are primarily sampling-based [9,41], with at most limited support for simplifying
algebraic identities that involve random variables [41].

n ∈ Z

r ∈ R

x ∈ Var

a ∈ ArrVar

bop ∈ {+, −, ∗, /, }̂ lop ∈ {&&, | |} cop ∈ {==, �=, <, >, ≤, ≥}
Dist ∈ {Bernoulli, ,. . . } SOp ∈ {Expectation, FromMarginal, SampleFrom}
p ∈ Prog → Func+

f ∈ Func → def Id(V ar∗) {Stmt; return Var∗}
se ∈ Expr → n | r | x | a[Expr] | Expr bop Expr | Expr cop Expr | Expr lop Expr |

Dist(Expr+) | SOp(Expr) | f(Expr∗)

s ∈ Stmt → x := Expr | a := array(Expr) | x = Expr | a[Expr] = Expr |
observe Expr | assert Expr | skip | Stmt; Stmt |
if Expr {Stmt} else {Stmt} | for x in [Expr..Expr) {Stmt}

Gauss

Fig. 2. PSI’s source language syntax

3 Symbolic Inference

In this section we describe our core analysis: the procedure analyzes each state-
ment in the program and produces a corresponding expression in our symbolic
domain which captures probability distributions.

3.1 Source Language

Figure 2 presents the syntax of PSI’s source language. This is a simple impera-
tive language that operates on real-valued scalar and array data. The language
defines probabilistic assignments, which can assign a random value drawn from a
distribution Dist, and observe statements, which allow constraining the values
of probabilistic expressions. The language also supports the standard sequence,
conditional statement, and bounded loop statement.

3.2 Symbolic Domain for Probability Distributions

Figure 3 presents the syntax of our symbolic domain. The domain can succinctly
describe joint probability distributions with discrete and continuous components:

68 T. Gehr et al.

e ∈ E ::= x | n | r | log(e) | ϕ(e1, . . . , en) | − e | e1 + . . . + en | e1 · . . . · en | ee21 |
δ(e) | [e1 = e2] | [e1 ≤ e2] | [e1 �= e2] | [e1 < e2] |

Fig. 3. Symbolic domain for probability distributions

– Basic terms include variables, numerical constants (such as e and π), loga-
rithms and uninterpreted functions. These terms can form sums, products, or
exponents. Division is handled using the rewrite a/b → a · b−1.

– Dirac deltas represent distributions that have weight in low-dimensional sets
(such as single points). In our analysis, they encode variable definitions and
assignments, and linear combinations of Dirac deltas specify discrete distrib-
utions.

– Iverson brackets represent functions that are 1 if the condition within the
brackets is satisfied and 0 otherwise. In our analysis, they encode comparison
operators and certain primitive probability distributions (e.g., Uniform).

– Integrals and infinite sums are used during the analysis to represent marginal-
ization of variables and UniformInt distributions respectively.

– Gaussian antiderivative – (d/dx)−1[e−x2
](e) – used to denote the function

e∫

−∞
dx e−x2

, which cannot be decomposed into simpler elementary functions.

We use the notation e�x1, . . . , xn� to denote that a symbolic distribution
expression e may contain free variables x1, . . . , xn that are bound by an outer
operator (such as a sum or integral).

Our design of the symbolic domain aims to strike a balance between expres-
siveness – the kinds of distributions it can represent – and efficiency – the ability
of the analysis to automatically integrate functions and find simple equivalent
expressions. In particular, our symbolic domain enables us to define most discrete
and continuous distributions from the exponential family and other well-known
primitive distributions, such as Student-t and Laplace (see the Appendix A).

Primitive Distributions: For each primitive distribution Dist, we define two map-
pings, PDFDist, and ConditionsDist to respectively specify the probability density
function, and valid parameter and input ranges. For instance, the Bernoulli dis-
tribution with a parameter ep has PDFBern(x, ep) = ep · δ(1−x) + (1− ep) · δ(x)
and ConditionsBern = [0 ≤ ep] · [ep ≤ 1]. We present the encodings of several
other primitive distributions in the Appendix A. Additionally, PSI allows the
developer to specify an arbitrary density function of the resulting distribution
using the SampleFrom (sym expr,...) primitive, which takes as inputs a dis-
tribution expression and a set of its parameters.

Program State: A symbolic program state σ denotes a probability distribution
over the program variables with an additional error state:

PSI: Exact Symbolic Inference for Probabilistic Programs 69

σ ∈ Σ ::=λM. case M of (x1, . . . , xn) ⇒ e1�x1, . . . , xn�, ⊥ ⇒ e2 (1)

In a regular execution, the state is represented with the variables x1, . . . , xn

and the posterior distribution expression e1. We represent the error state as a
symbol ⊥ and the expression for the probability of error e2. Conceptually, the
map σ associates a probability density with each concrete program state M ,
which is either a tuple of values of program variables or the error state.

3.3 Analysis of Expressions

Figure 4 presents the analysis of expressions. The function Ae converts each
expression of the source language to a transformer t ∈ Σ → Σ × E on the sym-
bolic representation. The transformer returns both a new state (σ ∈ Σ) and a
result of expression evaluation (e ∈ E), thus capturing side effects (e.g., sam-
pling values from probability distributions or exhibiting errors such as division
by zero).

Operations: The first five rules transform source language variables to distrib-
ution expression variables (including operators via the helper function Symboli-
cOp). The rules are standard, with Boolean constants true and false encoded as
numbers 1 and 0, respectively. The rules compose the side effects of the operands.
The division rule additionally uses the Assert helper function to add the guard
[e2 �= 0] to the distribution expression and aggregate the probability of e2 = 0
to the overall error probability.

Distribution Sampling: The expression Dist(se1, . . . , sen) accepts distribution
parameters se1, . . . , sen, which can be arbitrary expressions. For a primitive dis-
tribution Dist, the analysis obtains expressions from the mappings PDFDist and
ConditionsDist (Sect. 3.2).

The rule first analyzes all of the distribution’s parameters (which can repre-
sent random quantities). To iterate over the parameters, the rule uses the helper
function A∗

e, defined inductively as:

A∗
e([]) := λσ . (σ, [])

A∗
e(se : t) := λσ . let (σ1, e) = Ae(se)(σ) and (σ2, t

′) = A∗
e(t)(σ1) in (σ2, e : t′).

To ensure that distribution parameters have the correct values, the rule invokes
a helper function Assert, which adds guards from the ConditionsDist. Finally, the
rule declares a fresh temporary variable τ (specified by a predicate FreshVar),
which is then distributed according to the density function PDFDist, using the
helper function Distribute. In the definitions of Assert and Distribute, we spec-
ified the states in their expanded forms (Eq. 1).

70 T. Gehr et al.

Fig. 4. Symbolic snalysis of expressions

Marginalization: Marginalization aggregates the probability by summing up over
the variables in an expression (e.g., local variables at the end of scope or variables
in an error expression). To marginalize all variables, we define the function

MarginalizeAll(e�x1, . . . , xn�) :=
∫

R

dx1 · · ·
∫

R

dxne�x1, . . . , xn�.

The function KeepOnly performs selective marginalization. It takes as input
the variables x′

1 . . . , x′
m to keep and the input state σ, and marginalizes out the

remaining variables in σ’s distribution expressions:

KeepOnly(x′
1, ..., x

′
m)(λM. caseM of (x1, ..., xn) ⇒ e1�x1, ..., xn�,⊥ ⇒ e2) =

let {x′′
1 , ..., x′′

l } = {x1, ..., xn} \ {x′
1, ..., x

′
m}

inλM. caseM of (x′
1, ..., x

′
m) ⇒

∫

R

dx′′
1 · · ·

∫

R

dx′′
l e1�x1, ..., xn�,⊥ ⇒ e2

3.4 Analysis of Statements

Figure 5 presents the definition of function As: it analyzes each statement and
produces a transformer of states: Σ → Σ. The initial analysis state σ0 is defined

PSI: Exact Symbolic Inference for Probabilistic Programs 71

As : Stmt → (Σ → Σ)

As(skip) := λσ.σ

As(x := se) := λσ. let (σ′, e) = Ae(se)(σ) in Distribute(x, δ(x − e))(σ′)

As(x = se) := As(x := se τ/x) ◦ Rename(x, τ), with FreshVar(τ)

As(s1; s2) := As(s2) ◦ As(s1)

As(assert(se)) := λσ. let (σ′, e) = Ae(se)(σ) in Assert([e �= 0])(σ′)

As(observe(se)) := λσ. let (σ′, e) = Ae(se)(σ) in Observe([e �= 0])(σ′)

As(if se {s1} else {s2}) := λσ. let (σ0, e) = Ae(se)(σ)

and σ1 = (As(s1) ◦ Observe([e �= 0]))(σ0)

and σ2 = (As(s2) ◦ Observe([e = 0]))(σ0)

in Join(σ, σ1, σ2)

As(return (x1, . . . , xn)) := KeepOnly(x1, . . . , xn)

Fig. 5. Symbolic analysis of statements

as follows: σ0 = (λM. caseM of �x ⇒ ϕ(�x),⊥ ⇒ 0). Here, the function F under
analysis has parameters �x = (x1, ...xn) where ϕ is an uninterpreted function
representing the joint probability density of �x. If F has no parameters, we replace
ϕ() with 1.

Definitions: The statement x := se declares a new variable x and distributes it
as a point mass centered at e (the symbolic expression corresponding to se), i.e.
the analysis binds x by multiplying the joint probability density by δ(x − e).

Assignments: Analysis of assignments to existing variables (x = se) consistently
renames these variable and introduces a new variable with the previous name.
The substitution se�τ/x� renames x to τ in the source expression se, since the
variable being assigned may itself occur in se. The function Rename(x, τ) alpha-
renames all occurrences of the variable x to τ in an existing state (σ) to avoid
capture (Fig. 6). It is necessary to rename x in se separately, because se is a source
program expression, while Rename renames variables in the analysis state.

Observations: Observations are handled by a call to the helper function Observe
(Fig. 6), which conditions the probability distribution on the given expression
being true. We do not renormalize the distribution after an observation, but
only once, before reporting the final result (Sect. 3.5). Therefore, observations
do not immediately change the error part of the distribution.

Conditionals: The analysis of conditionals first analyzes the condition, and then
creates two copies of the resulting state σ0. In one of the copies, the condition is
then observed to be true, and in the other copy, the condition is observed to be
false. Analysis of the ‘then’ and ‘else’ statements s1 and s2 in the corresponding
states yields σ1 and σ2. Finally, σ1 and σ2 are joined together by marginalizing

72 T. Gehr et al.

Fig. 6. Analysis of statements - helper functions

all locally scoped variables, including temporaries created during the analysis
of the condition, and then adding the distribution and the error terms (Join;
Fig. 6). We subtract the error probability in the original state to avoid counting
it twice.

3.5 Final Result and Renormalization

We obtain the final result by applying the state transformer obtained from analy-
sis of the function body to the initial state and renormalizing it. We define the
renormalization function as:

Renormalize(λM. caseM of (x1, . . . , xn) ⇒ e1�x1, . . . , xn�,⊥ ⇒ e2) :=
let eZ = MarginalizeAll(e1) + e2

inλM. caseM of (x1, . . . , xn) ⇒ [eZ �= 0] · e1�x1, . . . , xn� · e−1
Z ,

⊥ ⇒ [eZ �= 0] · e2 · e−1
Z + [eZ = 0]

The function obtains a normalization expression eZ , such that the renormalized
distribution expression of the resulting state integrates to 1. This way, PSI
computes a normalized joint probability distribution for the function results that
depends symbolically on the initial joint distribution of the function’s arguments.

3.6 Discussion

Loop Analysis: PSI analyzes loops like for i in [0..N){...} (as mentioned in
Sect. 2.1) by unrolling the loop body a constant N number of times. This app-
roach also extends to loops where the number of iterations N is a random pro-
gram variable. If N can be bounded from above by a constant Nmax, a developer
can encode the loop as

assert(N <= Nmax);

for i in [0.. Nmax) {

if(i < N) { /* loop body */ }

}

PSI: Exact Symbolic Inference for Probabilistic Programs 73

To handle for-loops with unbounded random variables and general while-loops,
a developer can select Nmax such that the probability of error (i.e., probability
that the loop runs for more than Nmax iterations) is small enough. We anticipate
that this approach can be readily automated. Related techniques such as [18,42]
employ similar approximation techniques.

Function Call Analysis: PSI can analyze multiple functions, generating for each
function f(x1, ..., xn) the density expression of its m outputs, parameterized by
the unknown distribution of the function’s n inputs. The distribution of the
function inputs is represented by an uninterpreted function ϕ(x1, ..., xn) which
appears as a subterm in the output density expression.

The rule for the analysis of function calls (see Appendix B) first creates tem-
porary variables a1, . . . , an for each argument of f , and variables r1, . . . , rm

for each result returned by f . The variables a1, . . . , an are then initialized by
the actual parameters e1, . . . , en by multiplying the density of the caller by∏

i δ(ai − ei). The result variables in f ’s density expression are renamed to
match r1, . . . , rn, and the uninterpreted function ϕ within f ’s density expression
is replaced with the new density of the caller (avoiding variable capture).

Formal Argument: A standard approach to prove that the translation from the
source language to the target domain (in our case, the symbolic domain) is cor-
rect is to show that the transformation preserves semantics, as in [17]. This
requires a specification of semantics for both the source language and the sym-
bolic domain language. Below, we outline how one might approach such a formal
proof using denotational semantics that map programs and distribution expres-
sions to measure transformers.

Denotational semantics for the source language is easy to define by extend-
ing [30], but defining the measure semantics for distribution expressions is more
challenging. Defining measure semantics for most expression terms in the sym-
bolic domain is simple (e.g., the measure corresponding to a sum of terms is
the sum of the measures of the terms). However, the semantics of expressions
containing Dirac deltas is less immediate, since there is no general pointwise
product when Dirac delta factors have overlapping sets of free variables.

To assign semantics to a product expression with Dirac delta factors, we
therefore (purely formally) integrate the expression against the indicator func-
tion of the measured set and simplify it using Dirac delta identities until no Dirac
deltas are left. The resulting term can then be easily interpreted as a measure. A
formal proof will also need to show that this is a well-formed definition, i.e., that
all ways of eliminating Dirac deltas lead to the same measure. Once the seman-
tics for distribution expressions has been defined, the correctness proof proceeds
as a straightforward induction over the source language production rules. We
consider a complete formalized proof to be an interesting future work item.

74 T. Gehr et al.

4 Symbolic Optimizations

After each step of the analysis from Sect. 3, PSI’s symbolic engine simplifies
the joint posterior distribution expressions. The algorithm of this optimization
engine is a fixed point computation, which applies various symbolic transforma-
tions. We selected these transformations by their ability to optimize expressions
that typically arise when analyzing probabilistic programs and that have demon-
strated their efficiency for practical programs (as we discuss in Sect. 5). We next
describe three main groups of the transformations.

4.1 Algebraic Optimizations

These optimizations implement basic algebraic identities. Some examples include
removing zero-valued terms in addition expressions, removing one-valued terms
in multiplication expressions, distributing exponents over products, or condens-
ing equivalent summands and factors.

4.2 Guard Simplifications

For each term in an expression with multiple Iverson brackets and/or Dirac
deltas, these optimizations analyze the constraints in the bracket factors and
delta factors using sound but incomplete heuristics. PSI can then (1) remove
the whole term if the constraints are inconsistent and therefore the term is always
zero, (2) remove a factor if it is always satisfied, e.g., if both sides of an inequality
are constants, or (3) remove a bracket factor if it is implied by other factors.

Guard Linearization: Guard linearization analyzes complex Iverson brackets and
Dirac deltas with the goal to rewrite expressions in such a way that all included
constraints (expressions in Iverson brackets and Dirac deltas) depend on a speci-
fied variable x in a linear way. It handles constraints that are easily recognizable
as compositions of quadratic polynomials, multiplications with only one factor
depending on x and integer and fractional powers (including in particular mul-
tiplicative inverses).

One aspect that requires special care is that the integral of a Dirac delta
along x depends on the partial derivative of its argument in the direction of
x. For example, we have δ(2x) = 1

2δ(x), and in general we have δ(f(x)) =
∑

i
δ(x−xi)
|f ′(xi)| for f(xi) = 0, whenever f ′(xi) �= 0. We ensure the last constraint by

performing a case split on f ′(x) = 0, and substituting the solutions for x into
the delta expression in the “equals” case. For example, δ(y − x2) is linearized to

[−y ≤ 0] · ([x = 0] · δ(y) + [x �= 0] · 1
2
√

y
(δ(x − √

y) + δ(x +
√

y))).

We present the details of the guard linearization algorithm in the Appendix C.

PSI: Exact Symbolic Inference for Probabilistic Programs 75

4.3 Symbolic Integration

These optimizations replace the integration terms with equivalent terms that do
not contain integration symbols. If the integrated term is a sum, the symbolic
engine integrates each summand separately and pulls all successfully integrated
summands out of the integral. If the integrated term is a product, the symbolic
engine pulls out all factors that do not contain the integration variable before
performing the integration.

Integration of Terms with Deltas: The integration engine first attempts to elim-
inate the integration variable with a factor that is a Dirac delta, by applying
the rule f(e) =

∫
R

dxf(x) · δ(x − e). The engine can often transform deltas that
depend on the integration variable x in more complicated ways into equivalent
expressions only containing x-dependent deltas of the above form, using guard
linearization. This transformation is applied when evaluating the integral.

Integration of Continuous Terms: The symbolic engine integrates continuous
terms (without Dirac deltas) in several steps. First, it multiplies out all terms
that contain the integration variable and groups together all Iverson bracket
terms in a single term. Second, it computes the lower and upper bounds of inte-
gration by analyzing the Iverson bracket term. If necessary, it first rewrites the
term into an equivalent term within which all Iverson brackets specify the con-
straints on the integration variable in a direct fashion, using guard linearization.
This is necessary as in general, a single condition inside a bracket might not be
equivalent to a single lower or upper bound for the integration variable. The inte-
gration bounds are then computed as the minimum of all upper bounds and the
maximum of all lower bounds, where minimum and maximum are again encoded
using Iverson brackets. Third, the symbolic engine applies a number of standard
rules for obtaining antiderivatives, including integration of power terms, natural
logaritms and exponential functions, and integration by parts. We present the
details of PSI’s integration rules in the Appendix C.

5 Evaluation

This section presents an experimental evaluation of PSI and its effectiveness
compared to the state-of-the-art symbolic and approximate inference techniques.

Implementation: We implemented PSI using the D programming language. PSI
can produce resulting query expressions in several formats including Matlab,
Maple, and Mathematica. Our system and additional documentation, including
the Appendix, is available at: http://www.psisolver.org.

Benchmarks: We selected two sets of benchmarks distributed with existing infer-
ence engines. Specifically, we used examples from R2 [39] and Fun programs from
Infer.NET 2.5 [34]. We describe these benchmarks in the Appendix D. We use
the data sets and queries provided with the original computations. Out of 21

http://www.psisolver.org

76 T. Gehr et al.

benchmarks, 10 have bounded loops. The loop sizes are usually equal to the
sizes of the data sets (up to 784 data points in DigitRecognition). Since several
benchmarks have data sets that are too large for any of the symbolic tools to
successfully analyze, we report the results with truncated data sets.

Table 1. Comparison of Exact and Interactive Symbolic Inference Approaches.

Benchmark Type Dataset PSI Mathem. Maple Hakaru

BurglarAlarm D – � � � �
ClinicalTrial1 DC 100/1000 � – – ××
CoinBias DC 5/5 � t/o t/o �n

DigitRecognition D 784/784 � – – ×
Grass D – � � ×× �
HIV C0 10/369 ��n – – –

LinearRegression1 C0 100/1000 ��∫ – – –

NoisyOr D – � � � �
SurveyUnbias DC 5/5 �n t/o × �n

TrueSkill C 3/3 ��∫ t/o t/o ��n

TwoCoins D – � � � –

AddFun/max C – � � × �
AddFun/sum C – � � � ��n

BayesPointMachine C 6/6 �n t/o t/o ��n

ClickGraph DC 5/5 � t/o t/o �n

ClinicalTrial2 DC 5/5 � t/o t/o �n

Coins D – � � ×× �
Evidence/model1 D – � � ×× �
Evidence/model2 D – � � ×× �
LearningGaussian C0 100/100 ��n – – –

MurderMystery D – � � � �
Legend: Type: Discrete (D), Continuous (C), Zero-probability

observations (0).
Dataset: Full (a/a), no input (–), or the first a out of b inputs
(a/b).
Tools: Fully simplified (�) Partially simplified (��),
Not simplified (�), Not normalized (�n, ��n), Remaining
Integrals (��∫), Incorrect (××), Crash (×), Timeout (t/o).

5.1 Comparison with Exact Symbolic Inference Engines

Experimental Setup: For comparison with Mathematica 2015 and Maple 2015,
we instruct PSI to skip symbolic integration and automatically generate dis-
tribution expressions in the formats of the two tools. We run Mathematica’s

PSI: Exact Symbolic Inference for Probabilistic Programs 77

Simplify() and Maple’s simplify() commands. For Hakaru [10,38] (commit
e61cc72009b5cae1dee33bee26daa53c0599f0bc), we implemented the benchmarks
as Hakaru terms in Maple, using the API exposed by the NewSLO.mpl simpli-
fier (as recommended by the Hakaru developers). For each benchmark, we set a
timeout of 10 minutes and manually compared the results of the tools.

Results: Table 1 presents the results of symbolic inference. For each benchmark,
we present the types of variables it has and whether it has zero-probability
observations. We also report the size of the data set provided by the benchmark
(if applicable) and the size of the subset we used. For each tool we report the
observed inference result. We mark a result as fully simplified (�) if it does
not have any integrals remaining and has a small number of remaining terms.
We mark results that have some integral terms remaining (��∫), and partially
simplified results (��). We mark a result as not normalized (�n, ��n) if a tool
does not fully simplify the normalization constant. We marked specifically if
execution of a tool experienced a crash (×) a timeout (t/o) or a tool produced
an incorrect result (××). For five benchmarks, the automatic conversion of PSI’s
expressions could not produce Mathematica and Maple expressions, because of
the complexity of the benchmarks. We marked those entries as ‘–’. Hakaru’s
simplifier does not handle zero-probability observations and expectation queries,
and therefore we have not encoded these benchmarks (also marked as ‘–’).

PSI: PSI was able to fully symbolically evaluate many of the benchmark pro-
grams and generate compact symbolic distributions. Running PSI took less
than a second for most benchmarks. The most time consuming benchmark was
DigitRecognition, which PSI analyzed in 37 s. For two benchmarks, PSI was
not able to remove all integral terms, although it simplified and removed many
intermediate integrals.

Mathematica and Maple: For several benchmarks, both Mathematica and Maple
did not produce a result before the timeout, or returned a non-simplified expres-
sion as the result. This indicates that the distribution expressions of these bench-
marks are too complex, causing general computer algebra systems to navigate a
huge search space. However, we note that these results are obtained for a mech-
anized translation of programs with the specific encoding we described in this
paper. It is possible that a human-driven interactive inference with an alternative
encoding may result in more simplified distribution expressions.

Maple crashed for addFun/max and addFun/sum. We identified that the crashes
were caused by an infinite recursion and subsequent stack overflow during simpli-
fication. Four benchmarks – Coins, Evidence/model1, Evidence/model2, and Grass

produce results that are different from those produced by the other tools. For
instance, Maple simplifies the density function of Coins to 0 (which is incor-
rect). We attribute this incorrectness to the way Maple integrates Dirac deltas
and how it defines Heaviside functions (by default, they are undefined at input
0, but a user can provide a different setting [2]). In our evaluation, none of the
alternative settings could yield the correct results. We reported these bugs to the

78 T. Gehr et al.

Fig. 7. Tracking.query2:
PSI (solid; exact) and SVE
(dashed).

Fig. 8. ClickGraph: PSI
(solid; exact) and
Infer.NET (dashed).

Fig. 9. AddFun/max: PSI
(solid; exact) and
Infer.NET (dashed).

Maple developers. These examples indicate that users should be cautious when
using general computer algebra systems to analyze probabilistic programs.

Hakaru: For the ClinicalTrial1 benchmark, Hakaru produced a result differing
from PSI’s. To get a reference result, we ran R2’s simulation to compute an
approximate result and found that this result is substantially closer to PSI’s.
For the DigitRecognition benchmark, Hakaru overflowed Maple’s stack limit.
Hakaru does not simplify the AddFun/max benchmark, but unlike Maple (which
it uses), it does not crash.

Performance: Summed over all examples where Hakaru produced correct but
possibly unsimplified results except BayesPointMachine, PSI and Hakaru ran for
about the same time (8.7 s and 8.8 s, respectively). BayesPointMachine is an out-
lier, for which Hakaru requires 41.9 s, while PSI finds a solution in 1.24 s. Math-
ematica and Maple are 10–300 times slower than PSI. We present the detailed
time measurements for each benchmark in the Appendix E.

5.2 Comparison with Approximate Symbolic Inference Engine

Experimental Setup: We compared PSI with SVE [43] by running posterior
distribution queries on the models from the SVE distribution (from the com-
mit f4cea111f7d489933b36a43c753710bd14ef9f7f). We included models tracking

(with 7 provided posterior distribution queries) and radar (with 5 posterior dis-
tribution queries). We excluded the competition model because SVE crashes on
it. We did not evaluate SVE on R2 and Infer.NET benchmarks as SVE does not
encode some distributions (e.g., Beta or Gamma) and lacks support for Dirac
deltas, significantly limiting its ability to represent assignment statements.

Results: PSI fully optimized the posterior distributions for all seven queries of
the tracking model. PSI fully optimized one query from the radar benchmark
and experienced timeout for the remaining queries. Figure 7 presents the poste-
rior density functions (PDFs) for one of the tracking queries. SVE’s polynomial
approximation yields a less precise shape of the distribution compared to PSI.

PSI: Exact Symbolic Inference for Probabilistic Programs 79

5.3 Comparison with Approximate Numeric Inference Engines

Experimental Setup: We also compared the precision and performance of
PSI’s exact inference with the approximate inference engines Infer.NET [34]
and R2 [39] for a subset of their benchmarks. Specifically, we compared
PSI to Infer.NET on ClickGraph, ClinicalTrial, AddFun/max, AddFun/sum, and
MurderMystery and compared PSI to R2 on BurglarAlarm, CoinBias, Grass,
NoisyOR, and TwoCoins. We executed both approximate engines with their default
parameters.

Results: Infer.NET produces less precise approximate distributions for
ClickGraph and AddFun/max (Figs. 8 and 9), Infer.NET’s approximate inference is
imprecise in representing the tails of the distributions, although the means of the
two distributions are similar (e.g., differing by 0.7% for both benchmarks). PSI
and Infer.NET produced identical distributions for the remaining benchmarks.
Because of its efficient variational inference algorithms, Infer.NET computed
results 5–200 times faster than PSI. The precision loss of R2 on Burglar alarm
is 20% (R2’s output burglary probability is 0.0036 compared to the exact prob-
ability 0.00299). For the other benchmarks, the difference between the results of
PSI and R2 is less than 3%. The run times of PSI and R2 were similar, e.g.,
PSI was two times faster on TwoCoins, and R2 was two times faster on NoisyOR.
We present details of the comparison in the Appendix F.

The examples in Figs. 7, 8, and 9 illustrate that the choice of inference method
depends on the context in which the inference results are used. While inferences
about expectations in machine learning applications may often tolerate impreci-
sion in return for faster or more scalable computation, many uses of probabilistic
inference in domains such as security, privacy, and reliability engineering need to
reason about a richer set of queries, while requiring correct and precise inference.
We believe that the PSI system presented in this paper is particularly suited
for such settings and is an important step forward in making automated exact
inference feasible.

6 Related Work

This section discusses related work in symbolic inference and probabilistic pro-
gram analysis.

6.1 Symbolic Inference

Graphical Models: Early research in the machine learning community focused
on symbolic inference in Bayesian networks with discrete distributions [44] and
combinations of discrete and linearly-dependent Gaussian distributions [11]. For
more complex hybrid models, researchers proposed projecting distributions to
mixtures of base functions, which can be easily integrated, such as truncated
exponentials [36] and piecewise polynomials [43,45]. In contrast to these approx-
imate approaches, PSI’s algorithm performs exact symbolic integration.

80 T. Gehr et al.

Probabilistic Programs: Claret et al. [12] present a data flow analysis for symbol-
ically computing exact posterior distributions for programs with discrete vari-
ables. This analysis operates on the program’s concrete state, while efficiently
storing the states using ADD diagrams.

Bhat et al. [6] present a type system for programs with continuous proba-
bility distributions. This approach is extended in [7] to programs with discrete
and continuous variables (but only discrete observations). Like PSI, the density
compiler from [7] computes posterior distribution expressions, but instead of
symbolically simplifying and removing integrals, it generates a C program that
performs numerical integration (which may, in general, be expensive to run).

The Hakaru probabilistic language [10,38] runs inference tasks by combining
symbolic and sampling-based methods. To optimize MCMC sampling for prob-
abilistic programs, Hakaru’s symbolic optimizer (1) translates the programs to
probability density expressions in Maple’s language, (2) calls an extended ver-
sion of Maple’s simplifier, (3) uses these results to generate an optimized Hakaru
program, and, if necessary, (4) calls a MCMC sampler with the optimized pro-
gram. While Maple’s expression language is more expressive than PSI’s, it also
creates a more complex search space for expression optimizations. PSI further
reduces the search space by optimizing expressions after each analysis step, while
in Hakaru’s workflow, the distribution expression is optimized only after trans-
lating the whole program.

6.2 Probabilistic Program Analysis

Verification: Researchers presented various static analyses that verify proba-
bilistic properties of programs, including safety, liveness, and/or expectation
queries. These verification techniques have been based on abstract interpreta-
tion [14,16,33,35], axiomatic reasoning [5,29,37], model checking [26], and sym-
bolic execution [18,42]. Many of the existing approaches compute exact prob-
abilities of failure only for discrete distributions or make approximations when
analyzing computations with both discrete and continuous distributions.

Researchers have also formalized fragments of probability theory inside
general-purpose theorem provers, including reasoning about discrete [4,28] and
continuous distributions [17,24]. The focus of these works is on human-guided
interactive verification of (possibly recursive) programs. In contrast, PSI per-
forms fully automated inference of hybrid discrete and continuous distributions
for programs with bounded loops.

Transformation: R2 [39] transforms probabilistic programs by moving observe
statements next to the sampling statement of the corresponding variable to
improve performance of MCMC samplers. Gretz et al. [23] generalize this trans-
formation to move observations arbitrarily through a program. Probabilistic pro-
gram slicing [27] removes statements that are not necessary for computing a
user-provided query. These transformations simplify program structure, while
preserving semantics. In comparison, PSI directly transforms and simplifies the
probability distribution that underlies a probabilistic program.

PSI: Exact Symbolic Inference for Probabilistic Programs 81

7 Conclusion

We presented PSI, an approach for end-to-end exact symbolic analysis of prob-
abilistic programs with discrete and continuous variables. PSI’s symbolic nature
provides the necessary flexibility to answer various queries for non-trivial proba-
bilistic programs. More precise and reliable probabilistic inference has the poten-
tial to improve the quality of the results in various application domains and help
developers when testing and debugging their probabilistic models and inference
algorithms. With its rich symbolic domain and optimization engine, we believe
that PSI is a useful tool for studying the design of precise and scalable proba-
bilistic inference based on symbolic reasoning.

References

1. Maple (2015). www.maplesoft.com/products/maple/
2. Maple Heaviside Function (2015). http://www.maplesoft.com/support/help/

Maple/view.aspx?path=Heaviside
3. Mathematica (2015). https://www.wolfram.com/mathematica/
4. Audebaud, P., Paulin-Mohring, C.: Proofs of randomized algorithms in Coq. Sci.

Comput. Program. 74(8), 568–589 (2009)
5. Barthe, G., Köpf, B., Olmedo, F., Zanella Béguelin, S.: Probabilistic relational

reasoning for differential privacy. In: ACM POPL (2012)
6. Bhat, S., Agarwal, A., Vuduc, R., Gray, A.: A type theory for probability density

functions. In: ACM POPL (2012)
7. Bhat, S., Borgström, J., Gordon, A.D., Russo, C.: Deriving probability density

functions from probabilistic functional programs. In: Piterman, N., Smolka, S.A.
(eds.) TACAS 2013 (ETAPS 2013). LNCS, vol. 7795, pp. 508–522. Springer, Hei-
delberg (2013)

8. Borgström, J., Gordon, A.D., Greenberg, M., Margetson, J., Van Gael, J.: Measure
transformer semantics for bayesian machine learning. In: Barthe, G. (ed.) ESOP
2011. LNCS, vol. 6602, pp. 77–96. Springer, Heidelberg (2011)

9. Bornholt, J., Mytkowicz, T., McKinley, K.S.: Uncertain<T>: a first-order type for
uncertain data. In: ASPLOS (2014)

10. Carette, J., Shan, C.-C.: Simplifying probabilistic programs using computer alge-
bra. In: Gavanelli, M., et al. (eds.) PADL 2016. LNCS, vol. 9585, pp. 135–152.
Springer, Heidelberg (2016). doi:10.1007/978-3-319-28228-2 9

11. Chang, K.C., Fung, R.: Symbolic probabilistic inference with both discrete and
continuous variables. IEEE Trans. Syst. Man Cybern. 25(6), 910–916 (1995)

12. Claret, G., Rajamani, S.K., Nori, A.V., Gordon, A.D., Borgström, J.: Bayesian
inference using data flow analysis. In: ESEC/FSE (2013)

13. Cooper, G.F.: The computational complexity of probabilistic inference using
Bayesian belief networks. Artif. Intell. 42(2), 393–405 (1990)

14. Cousot, P., Monerau, M.: Probabilistic abstract interpretation. In: Seidl, H. (ed.)
Programming Languages and Systems. LNCS, vol. 7211, pp. 169–193. Springer,
Heidelberg (2012)

15. Dagum, P., Luby, M.: Approximating probabilistic inference in Bayesian belief
networks is NP-hard. Artif. Intell. 60(1), 141–153 (1993)

www.maplesoft.com/products/maple/
http://www.maplesoft.com/support/help/Maple/view.aspx?path=Heaviside
http://www.maplesoft.com/support/help/Maple/view.aspx?path=Heaviside
https://www.wolfram.com/mathematica/
http://dx.doi.org/10.1007/978-3-319-28228-2_9

82 T. Gehr et al.

16. Di Pierro, A., Wiklicky, H.: Probabilistic abstract interpretation and statistical
testing (extended abstract). In: Hermanns, H., Segala, R. (eds.) PROBMIV 2002,
PAPM-PROBMIV 2002 and PAPM 2002. LNCS, vol. 2399, p. 211. Springer, Hei-
delberg (2002)

17. Eberl, M., Hölzl, J., Nipkow, T.: A verified compiler for probability density func-
tions. In: Vitek, J. (ed.) ESOP 2015. LNCS, vol. 9032, pp. 80–104. Springer, Hei-
delberg (2015)

18. Filieri, A., Păsăreanu, C.S., Visser, W.: Reliability analysis in symbolic pathfinder.
In: ICSE (2013)

19. Gelman, A., Lee, D., Guo, J.: Stan a probabilistic programming language for
Bayesian inference and optimization. J. Educ. Behav. Stat. 40, 530–543 (2015)

20. Gilks, W.R., Thomas, A., Spiegelhalter, D.J.: A language and program for complex
Bayesian modelling. Statistician 43, 169–177 (1994)

21. Goodman, N., Mansinghka, V., Roy, D., Bonawitz, K., Tenenbaum, J.: Church: a
language for generative models. In: UAI (2008)

22. Gordon, A.D., Henzinger, T.A., Nori, A.V., Rajamani, S.K.: Probabilistic pro-
gramming. In: Proceedings of Future of Software Engineering (2014)

23. Gretz, F., Jansen, N., Kaminski, B.L., Katoen, J.P., McIver, A., Olmedo, F.: Con-
ditioning in probabilistic programming. arXiv preprint (2015). arXiv:1504.00198

24. Hasan, O.: Formalized Probability Theory and Applications Using Theorem Prov-
ing. IGI Global, Hershey (2015)

25. Hershey, S., Bernstein, J., Bradley, B., Schweitzer, A., Stein, N., Weber, T., Vigoda,
B.: Accelerating inference: towards a full language, compiler and hardware stack.
arXiv preprint (2012). arXiv:1212.2991

26. Hinton, A., Kwiatkowska, M., Norman, G., Parker, D.: PRISM: a tool for automatic
verification of probabilistic systems. In: Hermanns, H., Palsberg, J. (eds.) TACAS
2006. LNCS, vol. 3920, pp. 441–444. Springer, Heidelberg (2006)

27. Hur, C.K., Nori, A.V., Rajamani, S.K., Samuel, S.: Slicing probabilistic programs.
In: ACM PLDI (2014)

28. Hurd, J.: Formal verification of probabilistic algorithms. Ph.D. thesis, University
of Cambridge (2001)

29. Katoen, J.-P., McIver, A.K., Meinicke, L.A., Morgan, C.C.: Linear-invariant gen-
eration for probabilistic programs. In: Cousot, R., Martel, M. (eds.) SAS 2010.
LNCS, vol. 6337, pp. 390–406. Springer, Heidelberg (2010)

30. Kozen, D.: Semantics of probabilistic programs. J. Comput. Syst. Sci. 22(3), 328–
350 (1981)

31. Kozlov, A.V., Koller, D.: Nonuniform dynamic discretization in hybrid networks.
In: UAI (1997)

32. Mansinghka, V., Selsam, D., Perov, Y.: Venture: a higher-order probabilis-
tic programming platform with programmable inference. arXiv preprint (2014).
arXiv:1404.0099

33. Mardziel, P., Magill, S., Hicks, M., Srivatsa, M.: Dynamic enforcement of
knowledge-based security policies using probabilistic abstract interpretation. J.
Comput. Secur. 21(4), 463–532 (2013)

34. Minka, T., Winn, J., Guiver, J., Webster, S., Zaykov, Y., Yangel, B., Spengler, A.,
Bronskill, J.: Infer.NET 2.5 (2013). http://research.microsoft.com/infernet

35. Monniaux, D.: Abstract interpretation of probabilistic semantics. In: SAS (2000)
36. Moral, S., Rumı́, R., Salmerón, A.: Mixtures of truncated exponentials in hybrid

Bayesian networks. In: Benferhat, S., Besnard, P. (eds.) ECSQARU 2001. LNCS
(LNAI), vol. 2143, pp. 156–167. Springer, Heidelberg (2001)

http://arxiv.org/abs/1504.00198
http://arxiv.org/abs/1212.2991
http://arxiv.org/abs/1404.0099
http://research.microsoft.com/infernet

PSI: Exact Symbolic Inference for Probabilistic Programs 83

37. Morgan, C., McIver, A., Seidel, K.: Probabilistic predicate transformers. ACM
Trans. Program. Lang. Syst. (TOPLAS) 18(3), 325–353 (1996)

38. Narayanan, P., Carette, J., Romano, W., Shan, C.C., Zinkov, R.: Probabilis-
tic inference by program transformation in Hakaru (system description), http://
homes.soic.indiana.edu/ccshan/rational/system.pdf

39. Nori, A.V., Hur, C.K., Rajamani, S.K., Samuel, S.: R2: an efficient MCMC sampler
for probabilistic programs. In: AAAI (2014)

40. Pfeffer, A.: IBAL: a probabilistic rational programming language. In: Proceedings
of 17th International Joint Conference on Artificial Intelligence, vol. 1, pp. 733–740.
Morgan Kaufmann Publishers Inc. (2001)

41. Sampson, A., Panchekha, P., Mytkowicz, T., McKinley, K.S., Grossman, D., Ceze,
L.: Expressing and verifying probabilistic assertions. In: ACM PLDI (2014)

42. Sankaranarayanan, S., Chakarov, A., Gulwani, S.: Static analysis for probabilistic
programs: inferring whole program properties from finitely many paths. In: ACM
PLDI (2013)

43. Sanner, S., Abbasnejad, E.: Symbolic variable elimination for discrete and contin-
uous graphical models. In: AAAI (2012)

44. Shachter, R.D., D’Ambrosio, B., Del Favero, B.: Symbolic probabilistic inference
in belief networks. In: AAAI (1990)

45. Shenoy, P.P., West, J.C.: Inference in hybrid Bayesian networks using mixtures of
polynomials. Int. J. Approx. Reason. 52(5), 641–657 (2011)

46. Wood, F., van de Meent, J.W., Mansinghka, V.: A new approach to probabilistic
programming inference. In: AISTATS (2014)

http://homes.soic.indiana.edu/ccshan/rational/system.pdf
http://homes.soic.indiana.edu/ccshan/rational/system.pdf

PSCV: A Runtime Verification Tool
for Probabilistic SystemC Models

Van Chan Ngo1(B), Axel Legay2, and Vania Joloboff2

1 Carnegie Mellon University, Pittsburgh, PA 15213, USA
channgo@cmu.edu

2 Inria Rennes - Bretagne Atlantique, 35042 Rennes, France

Abstract. This paper describes PSCV, a runtime verification tool for
a class of SystemC models which have inherent probabilistic charac-
teristics. The properties of interest are expressed using bounded lin-
ear temporal logic. The various features of the tool including automatic
monitor generation for producing execution traces of the model-under-
verification, mechanism for automatically instrumenting the model, and
the interaction with statistical model checker are presented.

1 Introduction

SystemC1, a C++ library [6], has been become increasingly prominent in model-
ing hardware and embedded systems at the level of transactions. Models can be
used to simulate the system behavior with a single-core reference event-driven
simulation kernel [2]. A SystemC model is a complex and multi-threaded pro-
gram where scheduling is cooperative and thread execution is mutually exlusive.
In many cases, models include probabilistic characteristics, i.e., random data,
reliability of the system’s components. Hence, it is crucial to evaluate quan-
titative and qualitative analyses of system property probabilities. Many algo-
rithms [4,7,10] with the corresponding mature tools based on model checking
techniques, i.e., Probabilistic Model Checking (PMC), are created, in which they
compute probability by a numerical approach. However, they are infeasible for
large real-life systems due to state space explosion and cannot work directly with
SystemC source code.

In this paper we present PSCV a new tool for checking properties expressed in
Bounded Linear Temporal Logic (BLTL) [14] of probabilistic SystemC models. It
uses Statistical Model Checking (SMC) [7–9,14,16–18] techniques, a simulation-
based approach. Simulation-based approaches use a finite set of system execu-
tions to produce an approximation of the value to be evaluated. Since these
techniques do not construct all reachable states of the model-under-verification
(MUV), execution time and memory space required are far less than numerical
approaches.

The tool supports a rich set of properties, a wide range of abstractions from
statement level to system level, and a more fine-grained model of time than
1

IEEE Standard 1666-2005.

c© Springer International Publishing Switzerland 2016
S. Chaudhuri and A. Farzan (Eds.): CAV 2016, Part I, LNCS 9779, pp. 84–91, 2016.
DOI: 10.1007/978-3-319-41528-4 5

PSCV: A Runtime Verification Tool for Probabilistic SystemC Models 85

a coarse-grained cycle-based simulation provided by the current SystemC ker-
nel [2]. Given a property, a user-defined absolute error and confidence, the tool
implements the statistical estimation and hypothesis testing techniques [8,16]
for computing probability that the property is satisfied by the model or assert-
ing that this probability is at least equal to a threshold. The theoretical and
algorithmic foundations of the tool are based on Ngo et al.’s work [12].

2 Verification Flow

The verification flow using PSCV consists of three steps, as shown in Fig. 1,
in which the Monitor and Advice Generator (MAG), AspectC++, the modified
SystemC kernel, and SystemC plugin are components of PSCV. In the first step,
users write a configuration file containing a set of typed variables called observed
variables, a Boolean expression called temporal resolution, and all properties to
be verified. MAG translates the configuration file into a C++ monitor and a
set of aspect-advices. In the second step, the set of aspect-advices is used as an
input of AspectC++ to automatically instrument the MUV for exposing the user
model states and syntax. The instrumented model and the generated monitor
are compiled and linked together with the modified SystemC kernel to produce
an executable model.

Fig. 1. The verification flow

Finally, the SystemC plugin independently simulates the executable model
in order to make the monitor produce execution traces with inputs provided by
the user. The inputs can be generated using any standard stimuli-generation
technique. These traces are finite in length since the BLTL semantics [14] is
defined with respect to finite execution traces. The number of simulations is
determined by the statistic algorithm used by the plugin. Given these execution
traces and the user-defined absolute error and confidence, the SystemC plugin
employs SMC to produce an estimation of the probability that the property is
satisfied or an assertion that this probability is at least equal to a threshold.

3 Expressing Properties

The tool accepts input properties of the forms Pr(ϕ), Pr≥θ(ϕ), and X≤T(rv),
where ϕ is a BLTL formula. The first is used to compute the probability that

86 V.C. Ngo et al.

ϕ satisfied by the model. The second asserts that this probability is at least
equal to the threshold θ. The last returns the mean value of random variable
rv. The set of atomic propositions in the logic describes SystemC code features
and the simulation semantics. It is a set of Boolean expressions defined over
a set of typed variables called observed variables with the standard operators
(+,−, ∗, /,>,≥, <,≤, !=,=). The semantics of the temporal operators in BLTL
formulas interpreted over states is defined by a temporal resolution that defines
at which time points the states are sampled in order to make the transition
from one state to another state. A temporal resolution is a logical disjunction
over a set of Boolean observed variables, in which the tool should sample a new
state whenever the temporal resolution is evaluated to true. For example, assume
that we want the satisfaction of the underlying formula ϕ to be checked either
at the end of every delta-cycle or every time immediately after the event e is
notified. Hence, the temporal resolution is defined by the following disjunction
(MON DELTA CYCLE END | e.notified), where MON DELTA CYCLE END
and e.notified are Boolean observed variables that have the value true when-
ever the kernel phase is at the end of delta-cycle and e is notified, respectively.
The observed variables used to describe SystemC code features, the simulation
semantics, and temporal resolution are summarized below; see [12,13] for the
full syntax and semantics.

Attribute. Users can define an observed variable whose value and type are equal
to the value and type of a module’s attribute in the user code. Attributes can be
public, protected, or private. For example, a.t a t defines a variable named a t
whose value and type are equal to the value and type of the private attribute t
of the module instance a.

Function. Let f be a C++ function with k arguments in the user code. Users
can refer to locations in the source code that contain the function call, imme-
diately after the function call, immediately before the first executable state-
ment, and immediately after the last executable statement in f by using the
Boolean observed variables f():call, f():return, f():entry, and f():exit, respec-
tively. Moreover, users define an observed variable f():i, i = 0, · · · , k, whose
value and type are equal to the value and type of the return object (with i = 0)
or ith argument of function f before executing the first statement in the func-
tion body. For example, if the function int div(int x, int y) is defined in the user
code, then the formula G≤T(div():entry → div():2 != 0) asserts that the divisor
is nonzero whenever the div function starts execution.

Simulation phase. There are 18 predefined Boolean observed variables which
refer to the 18 kernel states [13]. These variables are usually used to define a
temporal resolution. For example, the formula G≤T(p = 0) which is accompanied
by the temporal resolution (MON DELTA CYCLE END) requires the value of
variable p to be zero at the end of every delta-cycle.

Event. For each SystemC event e, PSCV provides a Boolean observed variable
e.notified that is true only when the simulation kernel actually notifies e. For

PSCV: A Runtime Verification Tool for Probabilistic SystemC Models 87

example, the formula G≤T(e.notified → (a = 0)) says that whenever the event e
is notified, a equals to 0.

4 Architecture

PSCV, available as an open-source software [13], implements SMC for probabilis-
tic SystemC models. The main components are depicted in Fig. 2. It consists of
off-the-self, modified and original components: (1) an off-the-self component,
AspectC++ [5], a C++ aspect compiler for instrumenting the MUV, (2) a modi-
fied component, a patched SystemC-2.3.0 kernel for facilitating the communica-
tion between the kernel and the monitor and implementing a random scheduler,
and (3) two original components are MAG, a C++ tool for automatically gen-
erating monitor and aspect-advices for instrumentation, and SystemC plugin, a
plugin of the statistical model checker Plasma Lab [3].

4.1 Execution Trace Extraction

In PSCV, based on the techniques in [15], the set of observed variables and
temporal resolution are converted into a C++ monitor class and a set of aspect-
advices. MAG generates three files: aspect definitions.ah, monitor.h, and moni-
tor.cc, in which they contain a set of AspectC++ aspect definitions, one monitor
class, and a class called local observer that is responsible for invoking the call-
back functions, which invoke the sampling function at the right time point during
the MUV simulation.

Fig. 2. The architecture of PSCV

The monitor has a step function, sampling function, that waits for a request
from the SystemC plugin. If the request is stopping the current simulation, it
then terminates the MUV execution. If the plugin requests a new state, then the
current values of all observed variables and the simulation time are sent. The
step function is called at every time point defined by temporal resolution. These
time points can be kernel phases, event notifications, or locations in the MUV
code control flow. In such cases, the patched kernel needs to communicate with
the local observer, i.e., when a delta-cycle ends, via a class called mon observer

88 V.C. Ngo et al.

to invoke the step function of the monitor. In case of locations in the MUV code,
the advice code generated by MAG will call the callback function to invoke the
step function.

The aspect is an extension of the class concept of C++, to collect advice code
implementing a common crosscutting concern in a modular way. For example,
to access all attributes of a module called A and the location that occurs imme-
diately before the first executable statement of the function foo in A (defined in
the configuration file as % A::foo():entry), MAG generates the following aspect
definition.

aspect Automatic {
pointcut reveal() = "A"; // Pointcut for accessing private data of A
advice reveal() : slice class {

friend class monitor_A; // Generated monitor is friend class of A
};
advice execution("% A::foo()"): before() { // Instrumentation code

mon_observer* observer = local_observer :: getInstance ();
monitor_A* mon = (monitor_A *) observer ->get_monitor_by_index (0);
mon ->callback_userloc_loc1(); // Invoke callback function

}
};

4.2 Statistical Model Checker

The statistical model checker is implemented as a plugin of Plasma Lab. It
establishes a communication, in which the generated monitor transmits execu-
tion traces of the MUV. In the current version, the communication is done via
the standard input and output. When a new state is requested, the monitor
reports the current state containing current observed variable values and the
simulation time to the plugin. The length of traces depends on the satisfaction
of the formula, which is finite due to the bounded temporal operators. Similarly,
the required number of traces depends on the statistic algorithms in use.

4.3 Random Scheduler

Verification does not only depend on the probabilistic characteristics of the
MUV, but it also can be significantly affected by the scheduling policy. Con-
sider a simple module A that consists of two thread processes as shown in the
following listing, where x is initialized to be 1.

void A::t1() { void A::t2() { SC_CTOR(A) {
if (x <= 0) if (x > 0) SC_THREAD(t1);

x := x + 1; x := x - 1; SC_THREAD(t2);
} } }

Assume that we want to compute the probability that x is always equal to 1.
Obviously, x depends on the execution order of two threads, i.e., the value is
1 if t2 is executed before the execution of t1 and 0 if the order is t1 then t2.
The current scheduling policy is deterministic as it always picks the process that
is first added into the queue, the implementation uses a queue to store a set of
runnable processes. Hence, only one execution order, t1 then t2, is verified instead

PSCV: A Runtime Verification Tool for Probabilistic SystemC Models 89

of two possible orders. As a result, the probability to be verified is 0, however, it
should be 0.5. Therefore, it is more interesting if a verification is performed on all
possible execution orders than a fixed one. In many cases, there is no decision or
an a-priori knowledge of the scheduling to be implemented. Moreover, verification
of a specification should be independent of the scheduling policy to be finally
implemented.

To perform our verification on possible execution orders of the MUV, we
implemented a random scheduler. The source of the process scheduler is the
evaluation phase, in which one of the runnable processes is executed. Given a
set of N runnable processes in the queue at the evaluation phase, the scheduler
randomly chooses one of these processes to execute. The random algorithm is
implemented by generating a random integer number uniformly over a range
[0, N − 1]. For more simulation efficiency and implementation simplicity, we
employ the rand() function and % operator in C/C++.

5 Experimental Results

We report the experimental results for several examples including a running
example, a case study of dependability analysis of a large control system (i.e.,
the number of states is 2155), and random scheduler examples. We used the
2-sided Chernoff bound with the absolute error ε = 0.02 and the confidence
α = 0.98. The experiments were run on machine with Intel Core i7 2.67 GHz
processor and 4GB RAM under the Linux OS. The analysis of the control sys-
tem takes almost 2 h, in which 90 liveness properties were verified. The full
experiments can be found at the website [13]. For example, the first property
we checked is the probability that the message latency from the producer to the
consumer within T1 time units over a period of T time of operation using the
formula ϕ = G≤T((c read = ′&′) → F≤T1(c read = ′@′)), where c read, &,
and @ are the current received character, special starting and ending delimiters,
respectively. The second property we tried to determine which kind of compo-
nent is more likely to cause the failure of the control system. It is expressed in
BLTL as ¬shutdown U≤T failurei, where shutdown =

∨4
i=1 failurei. The results

are plotted in Figs. 3 and 4.

Fig. 3. Message latency (Color figure
online)

Fig. 4. Each component fails first
(Color figure online)

90 V.C. Ngo et al.

For the random scheduler, it seems that the implementation with the pseudo
random number generator (PRNG), by using the rand() function and % opera-
tor is not efficient. We are planning to investigate the Mersenne Twister gener-
ator [11] that is by far the most widely used general-purpose PRNG in order to
deal with this issue.

6 Conclusion

We present PSCV an SMC-based verification tool for checking properties
expressed in BLTL of probabilistic SystemC models. The tool supports a rich
set of properties, a wide range of abstractions from statement level to system
level, and a more fine-grained model of time. In the feature we plan to make the
verification process more automated by eliminating the user interaction with
AspectC++ and embedding the checker inside the tool such as [1].

References

1. Abarbanel, Y., Beer, I., Glushovsky, L., Keidar, S., Wolfsthal, Y.: Focs: automatic
generation of simulation checkers from formal specifications. In: Emerson, E.A.,
Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 538–542. Springer, Heidelberg
(2000)

2. Accellera. http://www.accellera.org/downloads/standards/systemc
3. Boyer, B., Corre, K., Legay, A., Sedwards, S.: PLASMA-lab: a flexible, distrib-

utable statistical model checking library. In: Joshi, K., Siegle, M., Stoelinga,
M., D’Argenio, P.R. (eds.) QEST 2013. LNCS, vol. 8054, pp. 160–164. Springer,
Heidelberg (2013)

4. Ciesinski, F., Größer, M.: On probabilistic computation tree logic. In: Baier, C.,
Haverkort, B.R., Hermanns, H., Katoen, J.-P., Siegle, M. (eds.) Validation of Sto-
chastic Systems. LNCS, vol. 2925, pp. 147–188. Springer, Heidelberg (2004)

5. Gal, A., Schroder-Preikschat, W., Spinczyk, O.: AspectC++: language proposal
and prototype implementation. In: OOPSLA (2001)

6. Grotker, T., Liao, S., Martin, G., Swan, S.: System Design with SystemC. Kluwer
Academic Publishers, Berlin (2002)

7. Hermanns, H., Wachter, B., Zhang, L.: Probabilistic CEGAR. In: Gupta, A.,
Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 162–175. Springer, Heidelberg
(2008)

8. Hoeffding, W.: Probability inequalities for sums of bounded random variables. J.
Am. Stat. Assoc. 58, 13–30 (1963)

9. Katoen, J., Hahn, E., Hermanns, H., Jansen, D., Zapreev, I.: The Ins and Outs of
the probabilistic model checker MRMC. In: QEST (2009)

10. Kwiatkowska, M., Norman, G., Parker, D.: Controller dependability analysis by
probabilistic model checking. Control Eng. Pract. 15, 1427–1434 (2007)

11. Matsumoto, M., Nishimura, T.: Mersenne twister: a 623-dimensionally equidis-
tributed uniform pseudo-random number generator. ACM Trans. Model. Comput.
Simul. 8, 3–30 (1998)

12. Ngo, V.C., Legay, A., Quilbeuf, J.: Statistical model checking for SystemC models.
In: HASE (2016)

http://www.accellera.org/downloads/standards/systemc

PSCV: A Runtime Verification Tool for Probabilistic SystemC Models 91

13. PSCV (2016). https://project.inria.fr/pscv/
14. Sen, K., Viswanathan, M., Agha, G.: On statistical model checking of stochastic

systems. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576,
pp. 266–280. Springer, Heidelberg (2005)

15. Tabakov, D., Vardi, M.: Monitoring temporal SystemC properties. In: Formal
Methods and Models for Codesign (2010)

16. Younes, H.: Verification and planning for stochastic processes with asynchronous
events. Ph.D. thesis, Carnegie Mellon (2005)

17. Younes, H., Kwiatkowska, M., Norman, G., Parker, D.: Numerical vs. statistical
probabilistic model checking. Int. J. Softw. Tools Technol. Transfer 8, 216–228
(2006)

18. Zuliani, P., Platzer, A., Clarke, E.M.: Bayesian statistical model checking with
application to Simulink/Stateflow verification. Formal Methods Syst. Des. 43,
338–367 (2013)

https://project.inria.fr/pscv/

Synthesis I

Structural Synthesis for GXW Specifications

Chih-Hong Cheng(B), Yassine Hamza, and Harald Ruess

fortiss - An-Institut Technische Universität München,
Guerickestr. 25, 80805 Munich, Germany

{cheng,ruess}@fortiss.org,
yassine.hamza@in.tum.de

Abstract. We define the GXW fragment of linear temporal logic
(LTL) as the basis for synthesizing embedded control software for safety-
critical applications. Since GXW includes the use of a weak-until oper-
ator we are able to specify a number of diverse programmable logic
control (PLC) problems, which we have compiled from industrial train-
ing sets. For GXW controller specifications, we develop a novel approach
for synthesizing a set of synchronously communicating actor-based con-
trollers. This synthesis algorithm proceeds by means of recursing over
the structure of GXW specifications, and generates a set of dedicated
and synchronously communicating sub-controllers according to the for-
mula structure. In a subsequent step, 2QBF constraint solving identifies
and tries to resolve potential conflicts between individual GXW specifica-
tions. This structural approach to GXW synthesis supports traceability
between requirements and the generated control code as mandated by
certification regimes for safety-critical software. Our experimental results
suggest that GXW synthesis scales well to industrial-sized control syn-
thesis problems with 20 input and output ports and beyond.

1 Introduction

Embedded control software in the manufacturing and processing industries is
usually developed using specialized programming languages such as ladder dia-
grams or other IEC 61131-3 defined languages. Programming in these rather
low-level languages is not only error-prone but also time- and resource-intensive.
Therefore we are addressing the problem of correct-by-construction and auto-
mated generation of embedded control software from high-level requirements,
which are expressed in a suitable fragment of linear temporal logic.

Moreover, an explicit correspondence between the high-level requirements
and the generated control code is essential, since embedded control software
is usually an integral part of safety-critical systems such as supervisory con-
trol and data acquisition (SCADA) systems for controlling critical machinery or
infrastructure. In particular current industrial standards for safety-related devel-
opment such as IEC 61508, DO 178C for avionics, and ISO 26262 for automotive
applications mandate traceability between the control code and it requirements.
Controllers generated by state-of-the-art LTL synthesis algorithms and tools such
as generalized reactivity(1) (GR(1)) [15,25] or bounded LTL synthesis [8,11,28],
c© Springer International Publishing Switzerland 2016
S. Chaudhuri and A. Farzan (Eds.): CAV 2016, Part I, LNCS 9779, pp. 95–117, 2016.
DOI: 10.1007/978-3-319-41528-4 6

96 C.-H. Cheng et al.

however, usually do not explicitly support such traceability requirements. For
example, the GR(1) synthesis tool Anzu generates circuit descriptions in Verilog
from BDDs [15].

We are therefore proposing a novel approach for synthesizing structured con-
trol software. In essence, the control code is generated by means of structural
recursion on the given LTL formulas. Therefore, the structure of the control
code corresponds closely to the syntactic structure of the given requirements,
and there is a direct correspondence between controller components and sub-
formulas of the specification.

In a first step towards this goal, we identify a fragment of LTL for specify-
ing the input-output behavior of typical embedded control components. Besides
the specification of input assumptions, invariance conditions on outputs, and
transition-like reactions of the form G(input → Xioutput), this fragment also
contains specifications of reactions of the form G(input → Xi(outputW release)),
where input is an LTL formula whose validity is determined by the next i input
valuations. The latter reaction formula states that if there is a temporal input
event satisfying the constraint input, then the output constraint should hold on
output events until there is a release event (or output always holds). The opera-
tor G is the universal path quantifier, Xi abbreviates i consecutive next-steps,
W denotes the weak until temporal operator, the constraint output contains no
temporal operator, and the subformula release may contain certain numbers of
consecutive next-steps but no other temporal operators. The resulting fragment
of LTL is called GXW. So far we have successfully modelled more than 70 different
embedded control scenarios in GXW. The main source for this set of benchmark-
ing problems are publicly available collections of industrial training materials for
PLCs (including CODESYS 3.0 and AC500) [2,16,24]. The proposed GXW frag-
ment of LTL is also similar to established requirements templates for specifying
embedded control software in the aerospace domain, such as EARS [23].

Previous work on LTL synthesis (e.g., [5,7,8,10,11,14,15,25,28,31]) usually
generates gate-level descriptions for the synthesized control strategies. In con-
trast, we generate controller in an actor language with high-level behavioral
constructs and synchronous dataflow communication between connected actors.
This choice of generating structured controllers is motivated by current practice
of programming controllers using, say, Matlab Simulink [4], continuous function
charts (IEC 61131-3), and Ptolemy II [12], which also supports synchronous
dataflow (SDF) models [19]. Notice that the usual notions of LTL synthesis also
apply to synthesis for SDF , since the composition of actors in SDF may also be
viewed as Mealy machines with synchronous cycles [30].

Synthesis of structured controllers from GXW specifications proceeds in two
subsequent phases. In the first phase, the procedure recurses on the structure of
the given GXW formulas for generating dedicated actors for monitoring inputs
events, for generating corresponding control events, and for wiring these actors
according to the structure of the given GXW formulas. In the second phase,
appropriate values for unknown parameters are synthesized in order to realize
the conjunction of all given GXW specifications. Here we use satisfiability check-
ing for quantified Boolean formula (2QBF) for examining if there exists such

Structural Synthesis for GXW Specifications 97

conflicts between multiple GXW specifications. More precisely, existential vari-
ables of generated 2QBF problems capture the remaining design freedom when
an output variable is not constrained by any trigger of low-level events. We
demonstrate that controller synthesis for the GXW fragment is in PSPACE as
compared to the 2EXPTIME -completeness result of full-fledged LTL [27]. Under
some further reasonable syntactic restrictions on the GXW fragment we show
that synthesis is in coNP .

An implementation of our GXW structural synthesis algorithm and applica-
tion to our benchmark studies demonstrates a substantial speed-up compared
to existing LTL synthesis tools. Moreover, the structure of the generated control
code in SDF follows the structure of the given GXW specifications, and is more
compact and, arguably, also more readable and understandable than commonly
used gate-level representations for synthesized control strategies.

The paper is structured as follows. We introduce in Sect. 2 some basic nota-
tion for LTL synthesis, a definition of the GXW fragment of LTL and SDF actor
systems together with the problem of actor-based LTL synthesis under GXW frag-
ment. Section 3 illustrates GXW and actor-based control for such specifications
by means of an example. Section 4 includes the main technical contributions and
describes algorithmic workflow for generating structured controllers from GXW,
together with soundness and complexity results for GXW synthesis. A summary
of our experimental results is provided in Sect. 5, and a comparison of GXW

synthesis with closely related work on LTL synthesis is included in Sect. 6. The
paper closes with concluding remarks in Sect. 7. Due to space limits, some details
are moved to an extended report [1].

2 Problem Formulation

We present basic concepts and notations of LTL synthesis, and we define the
GXW fragment of LTL together with the problem of synthesizing actor-based
synchronous dataflow controllers for GXW.

2.1 LTL Synthesis

Given two disjoint sets of Boolean variables Vin and Vout, the linear temporal logic
(LTL) formulae over 2Vin∪Vout is the smallest set such that (1) v ∈ 2Vin∪Vout is an
LTL formula, (2) if φ1, φ2 are LTL-formulae, then so are ¬φ1, ¬φ2, φ1∨φ2, φ1∧φ2,
φ1 → φ2, and (3) if φ1, φ2 are LTL-formulae, then so are Gφ1, Xφ1, φ1Uφ2. Given
an ω-word σ, define σ(i) to be the i-th element in σ, and define σi to be the suffix
ω-word of σ obtained by truncating σ(0) . . . σ(i − 1). The satisfaction relation
σ � φ between an ω-word σ and an LTL formula φ is defined in the usual way.
The weak until operator, denoted W, is similar to the until operator but the
stop condition is not required to occur; therefore φ1Wφ2 is simply defined as
(φ1Uφ2) ∨ Gφ1. Also, we use the abbreviation Xiφ to abbreviate i consecutive
X operators before φ.

98 C.-H. Cheng et al.

Table 1. Patterns defined in GXW
specifications

ID Meaning Pattern

P1 Initial-until �out Wφi
in

P2 Trigger-until G(φi
in →

Xi(�out W (ϕj
in∨

ρ0out)))

P3 If-then G(φi
in → Xi�out)

P4 Iff G(φi
in ↔ Xi�out)

P5 Invariance G(φ0
out)

P6 Assumption G(φ0
in)

Table 2. Specification patterns
and corresponding skeleton speci-
fication.

Pattern ID High-level control specification

P1 outputW input
P2 G(input → (outputW release))
P3 G(input → output)

A deterministic Mealy machine is a finite automaton C = (Q, q0,2Vin ,
2Vout , δ), where Q is set of (Boolean) state variables (thus 2Q is the set of
states), q0 ∈ 2Q is the initial state, 2Vin and 2Vout are sets of all input and
output assignments defined by two disjoint sets of variables Vin and Vout.
δ = 2Q × 2Vin → 2Vout × 2Q is the transition function that takes (1) a state
q ∈ 2Q and (2) input assignment vin ∈ 2Vin , and returns (1) an output assign-
ment vout ∈ 2Vout and (2) the successor state q′ ∈ 2Q. Let δout and δs be
the projection of δ which considers only output assignments and only successor
states. Given a sequence a0 . . . ak where ∀i = 0 . . . k, ai ∈ 2Vin , let δk

s (q0, a0 . . . ak)
abbreviate the output state derived by executing a0 . . . ak as an input sequence
on the Mealy machine.

Given a set of input and output Boolean variables Vin and Vout, together
with an LTL formula φ on Vin and Vout the LTL synthesis problem asks the
existence of a controller as a deterministic Mealy machine Cφ such that, for every
input sequence a = a0a1 . . ., where ai ∈ 2Vin : (1) given the prefix a0 produce
b0 = δout(q0, a0), (2) given the prefix a0a1 produce b1 = δout(δs(q0, a0), a1), (3)
given the prefix a0 . . . akak+1, produce bk+1 = δout(δk

s (q0, a0 . . . ak), ak+1), and
(4) the produced output sequence b = b0b1 . . . ensures that the word σ = σ1σ2 . . .,
where σi = aibi ∈ 2Vin∪Vout , σ � φ.

2.2 GXW Synthesis

We formally define the GXW fragment of LTL . Let φi, ϕi, ψi be LTL formulae over
input variables Vin and output variables Vout, where all formulas are (without
loss of generality) assumed to be in disjunctive normal form (DNF), and each
literal is of form Xj v or ¬Xj v with 0 ≤ j ≤ i and v ∈ Vin∪Vout. Clauses in DNF
are also called clause formulae. Moreover, a formula φi

in is restricted to contain
only input variables in Vin, and similarly, φi

out contains only output variables in
Vout. Finally, �out denotes either vout or ¬vout, where vout is an output variable.

For given input variables Vin and output variables Vout, a GXW formula is an
LTL formula of one of the forms (P1)–(P6) as specified in Table 1. For example,

Structural Synthesis for GXW Specifications 99

GXW formulas of the form (P2) stop locking �out as soon as (ϕj
in ∨ ρ0

out) holds.
GXW specifications are of the form

� →
∧

m=1...k

ηm , (1)

where � matches the GXW pattern (P6), and ηm matches one of the patterns (P1)
through (P5) in Table 1. Furthermore, the notation “.” is used for projecting sub-
formulas from ηm, when it satisfies a given type. For example, assuming that
sub-specification ηm is of pattern P3, i.e., it matches G(φi

in → Xi�out), ηm.�out

specifies the matching subformula for �out. Notice also that GXW specifications,
despite including the W operator, have the finite model property, since the small-
est number of unrolling steps for disproving the existence of an implementation
is linear with respect to the structure of the given formula (cmp. Sect. 4.4).

Instead of directly synthesizing a Mealy machine as in standard LTL synthe-
sis, we are considering here the generation of actor-based controllers using the
computational model of synchronous dataflow (SDF) without feedback loops. An
actor-based controller is a tuple S = (Vin,Vout, Act, τ), where Vin and Vout are
disjoint sets of external input and output ports. Each port is a variable which
may be assigned a Boolean value or undefined if no such value is available at
the port. In addition, actors A ∈ Act may be associated with internal input
ports Uin and output ports Uout (all named apart), which are also three-valued.
The projection A.u denotes the port u of A. An actor A ∈ Act defines Mealy
machine C whose input and output assignments are based on 2Uin and 2Uout ,
i.e., the output update function of C sets each output port to true or false , when
each input port has value in {true, false}. Lastly, A(i) denotes a copy of A which
is indexed by i.

Let Act.Uin and Act.Uout be the set of all internal input and output ports
for Act. The wiring τ ⊆ (Vin ∪ Act.Uout) × (Vout ∪ Act.Uin) connects one
(external, internal) input port to one or more (external, internal) output ports.
For convenience, denote the wiring from port out of A1 to port in of A2 as
(A1.out ��� A2.in). All ports are supposed to be connected, and every internal
input port and every external output port is only connected to one wire (thus a
port does not receive data from two different sources). Also, we do not consider
actor systems with feedback loops here (therefore no cycles such as the one in
Fig. 1(c)), since systems without feedback loops can be statically scheduled [18].

Evaluation cycles are triggered externally under the semantics of synchronous
dataflow. In each such cycle, the data received at the external input ports is
processed and corresponding values are transferred to external output ports.
Notice also that the composition of actors under SDF acts cycle-wise as a Mealy
machine [30]. We illustrate the operational semantics of actor-based systems
under SDF by means of the example in Fig. 1(a), with input ports in1, in2,
output port out, and actors f1, f2, f3, f4 (see also Fig. 1(b))1. Now, assume that

1 The formal operational semantics, as it is standardized notation from SDF , is rele-
gated to [1].

100 C.-H. Cheng et al.

(a)

in1

in2

out

f1

f3
f2

f4

in1

in2

out
f1

f5

f2

f4

(c)

i

i

o

o

o

o

i1

i1

i2

i2
f1

(b)

¬v v
o := ¬i

o := i

i o

f2

oi1

i2
∧

f4

o
i1

i2
∨

f3

oi ¬

o := ¬i

Fig. 1. An actor system allowing func-
tional composition and corresponding
actors f1 (a)(b), feedback loops such
as (c) are not considered here.

in0

in1 in2
(opening limit switch)

in2

out0 out1

(closing limit switch)
(opening limit switch)

(open the door) (close the door)

(infrared sensor)

Fig. 2. Control of automatic door
switch.

in the first cycle, the input ports in1 and in2 receive the value (false, true) and
in the second cycle the value (false, true). The false value in in1 is copied to f1.i.
As f1 is initially at state where v = false, it creates the output value true (places
it to f1.o) and changes its internal state to v = true. The value true from f1.o
is then transferred to f4.i1 and f2.i1. However, at this stage one cannot evaluate
f2 or f4, as the i2 port is not yet filled with a value. f3 receives the value from
in2 and produces f3.o to false. Continuing this process, at the end of first cycle
out is set to true, while in the second cycle, out is set to false.

As we do not consider feedback loops between actors in Act, from input read
to output write, one can, using the enumeration method as exemplified above,
create a static linear list Ξ of size |Act| + |τ |, where each element ξind ∈ Ξ is
either in Act or in τ , for specifying the linear order (from the partial order) how
data is transferred between wires and actors. Such a total order Ξ is also called
an evaluation ordering of the actor system S.

One may wrap any Mealy machine C as an actor A(C) by simply creating
corresponding ports in A(C) and by setting the underlying Mealy machine of
A(C) to C. Therefore, actor-based controllers may be synthesized for a given LTL

specification φ by first synthesizing a Mealy machine C realizing φ, followed by
the wrapping C as A(C), creating external I/O ports, and connecting external
I/O ports with A(C).

Given a GXW specification φ over the input variables Vin and output variables
Vout, the problem of GXW synthesis is to generate an actor-based SDF controller
S realizing φ. As one can always synthesize a Mealy machine followed by wrap-
ping it to an actor-based controller, GXW synthesis has the same complexity for
Mealy machine and for actor-based controllers.

Structural Synthesis for GXW Specifications 101

3 Example

We exemplify the use of GXW specifications and actor-based synthesis for these
kinds of specification by means of an automatic sliding door2, which is visualized
in Fig. 2. Inputs and outputs are as follows: in0 is true when someone enters the
sensing field; in1 denotes a closing limit switch - it is true when two doors touch
each other; in2 denotes an opening limit switch - it is true when the door reaches
the end; out0 denotes the opening motor - when it is set to true the motor
rotates clockwise, thereby triggering the door opening action; and out1 denotes
closing motor - when it is set to true the motor rotates counter-clockwise, thereby
triggering the door closing action. Finally, the triggering of a timer t0 is modeled
by means a (controllable) output variable t0start and the expiration of a timer is
modeled using an (uncontrollable) input variable t0expire.

Before stating the formal GXW specification for the example we introduce
some mnemonics.

– entering1 := ¬in0 ∧ X in0
– expired1 := ¬t0expire ∧ (Xt0expire)

– lim reached1 := ¬in2 ∧ Xin2
– closing stopped := in1 ∨ in0 ∨

out0
The superscripts denote the maximum number of consecutive next-steps.

Now the automatic sliding door controller is formalized in GXW as follows.

S1: G(entering1 → X(out0W in2))
S2: G(expired1 → X(out1W closing stopped))
S3: ¬out0W entering1

S4: G(in2 → ¬out0)

S5: G(lim reached1 ↔ X(t0start))
S6: G(in0 → ¬out1)
S7: G(¬(out0 ∧ out1))

In particular, formula (S1) expresses the requirement that the opening of the
door should continue (out0 = true) until the limit is reached (in2), and formulas
(S3) and (S7) specify the expected initial behavior of the automatic sliding door.
The GXW specifications for the sliding door example are classified as follows:
formulas (S1), (S2) are of type (P2), (S3) is of type (P1), (S4), (S6) is of type
(P3), (S5) is of type (P4), and (S7) of type (P5) according to Table 1.

Figure 3 visualizes an actor-based automatic sliding door controller which
realizes the GXW specification (S1)-(S7). It is constructed from a small number
of building blocks, which are also described in Fig. 3. Monitor actors, for example,
are used for monitoring when the entering, expired, and lim reached constraints
are fulfilled, the OR actor is introduced because of the closing stopped release
condition in specification (S1), and the two copies of the trigger-until actors are
introduced because of the (P2) shape of the specifications (S1) and (S2). The
input and output ports of the trigger-until actor are in accordance with the
namings for (P2) in Table 2. Resolution actors are used for resolving potential
conflicts between individual GXW formulas in a specification. These actors are
parameterized with respect to a Boolean A, which is the output of the resolution
actor in case all inputs of this actor may be in {true, false} (this set is denoted by
the shorthand “–” in Fig. 3). The presented algorithm sets up a 2QBF problem for

2 The automatic door example is adapted from http://plc-scada-dcs.blogspot.com/
2014/08/basic-plc-ladder-programming-training 20.html.

http://plc-scada-dcs.blogspot.com/2014/08/basic-plc-ladder-programming-training_20.html
http://plc-scada-dcs.blogspot.com/2014/08/basic-plc-ladder-programming-training_20.html

102 C.-H. Cheng et al.

in0

in1

in2

t0expire

out0

out1

t0start

State variable: boolean lock := false;

if(lock & !release) {output := true}
else if(release) {output := –, lock := false}
else if(input & !release) {output := true; lock := true}
else {output := –}

TrUB /* Trigger-Until Block */input

release output

¬in2 ∧ X(in2)

if(input) {output := true}
else {output := – }

IfTB /* If-then block */input
output

¬t0expire ∧ X(t0expire)

OR

InUB /* Init-Until Block */
State variable boolean finish:= false;

if(finish) {output:= –}
else if(input){output := -, finish:= true}
else {output := true}

input output

InUB(3)

(a)

(b)

Resout0

/* !input & !release & !lock */

input

if (input = –) {output := – }
if (input = true) {output := false}
if (input = false) {output:=true}

Res

inputk

outputinput1

input2. . .

if (
∧

i
inputi = –) {output := A}

if (∃i : inputi = false) {output := false}
if (∃i : inputi = true) {output := true}

The resolution is based on the assumption

that it is impossible to have two inputs

where one is true and the other is false.

Resout1

(with parameter A)

(output false for 1st cycle)

A := false

A := false

TrUB(1)

TrUB(2)

¬

¬

IfTB(4) ¬ Rest0start

A := false

Transition function

Transition function

Transition function (high-level language)

¬in0 ∧ X(in0)
(output false for 1st cycle)

IfTB(6) ¬

!lock lock

{!release}

{release}
output := –

{input & !release} output := true

{!input ∨ release }

¬

!finish

{!input } output := true

Transition function(high-level language)

finish
{input }
output := –

output := –

output

Monitoring ¬in ∧ X(in), 1st output to be false
input

outputState variable: mem := u

/* domain {u, true, false}; to be re-encoded to 2 bool */

m=u

m=true

m=false

Transition function (high-level language)

/* Generated by Algorithm 1 in linear time */

{!input } output := false

{input } output := false

{input } output := true

{!input } output := false

{input } output := false

{!input }
output := false

output := –

(output “–” for 1st cycle)

(2)

(3)(1)

(2)

(6)Monitor

Monitor

Monitor

output := true

Fig. 3. Actor-based controller realizing automatic sliding door.

synthesizing possible values for these parameters. Because of the constraint (S7)
on possible outputs out0 and out1, the parameter A for the resolution actor for
output out0, for example, needs to be set to A:=false . Figure 3 also includes the
operational behavior of selected actors in terms of high-level transitions and/or
Mealy machines. The internal state and behavior for monitor actors, however, is
synthesized, in linear time, from a given GXW constraint on inputs (see Sect. 4).

Finally, the structural correspondence of the actor-based controller in Fig. 3
with the given GXW specification of the sliding door example is being made
explicit by superscripting actors with index (i) whenever the actor has been
introduced due to the i-th specification.

Structural Synthesis for GXW Specifications 103

4 Structural Synthesis

We now describe the algorithmic details for generating structured controllers
from the GXW specifications of the form � → ∧

m=1...k ηm. The automated sliding
door is used as running example for illustrating the result of each step.

First, our algorithm prepares I/O ports, iterates through every formula ηm

for creating high-level controllers (Step 1) based on the appropriate GXW pat-
tern. For specifications of types P1 to P3, Table 2 lists the corresponding LTL
specification (as high-level control objective), where input and release are input
Boolean variables, output is an output Boolean variable.

Then, for each GXW formula, the algorithm constructs actors and wirings for
monitoring low-level events by mimicking the DNF formula structure (Steps 2
and 3). On the structural level of clause formulas in DNF, the algorithm con-
structs corresponding controllers in linear time (Algorithm1). Finally, the algo-
rithm applies 2QBF satisfiability checking (and synthesis of parameters for res-
olution actors) for guaranteeing nonexistence of potential conflicts between dif-
ferent formulas in the GXW specifications (Step 4).

4.1 High-Level Control Specifications and Resolution Actors

The initial structural recursion over GXW formulas is described in Step 1.

Step 1.1 - Controller for high-level control objectives. Line 1 associates the three
high-level controller actors InUB, TrUB, IfTB with their corresponding pat-
tern identifier. Implementations for the actors InUB, TrUB, IfTB are listed in
Fig. 3(b). For example, the actor IfTB is used for realizing G(input → output) in
Table 2. When input equals false, the output produced by this actor equals “–”.
This symbol is used as syntactic sugar for the set {true, false}. Therefore the
output is unconstrained, that is, it is feasible for output to be either true or
false. The value “–” is transferred in the dataflow, thereby allowing the delay of
decisions when considering multiple specifications influencing the same output
variable.

Step 1.2 - External I/O ports. Line 2 and 3 are producing external input and
output port for each input variable vin ∈ Vin and output variable vout ∈ Vout.

Step 1.3 - High-level control controller instantiation. Lines 4 and 5 iterate
through each specification ηm to find the corresponding pattern (using Detect-
Pattern). Based on the corresponding type, line 6 creates a high-level controller
by copying the content stored in the map. If there exists a specification which
does not match one of the patterns, immediately reject (line 7). Notice that pat-
tern P4 is handled separately in Step 3. For the door example, the controller in
Fig. 3(a) contains the two copies TrUB(1) and TrUB(2) of the trigger-until actor
TrUB; the subscripts of these copies are tracing the indices of the originating
formulas (S1) and (S2).

104 C.-H. Cheng et al.

Step 1. Initiate external I/O ports, high-level controller and resolution
controllers
Input : LTL specification φ = � → ∧m=1...k ηm, input and output variables

Vin, Vout

Output: Actor-based (partial) ctrl implementation S = (Vin, Vout, Act, τ),
mapout

1 let mappattern := {P1 �→ InUB, P2 �→ TrUB, P3 �→ IfTB}
2 Vin := { vin | vin ∈ Vin}
3 Vout := { vout | vout ∈ Vout}
4 foreach ηm, m = 1 . . . k do
5 if (p := DetectPattern(ηm)) ∈ {P1, P2, P3} then

6 Create actor A(m) from A := mappattern.get(p), and add to S;

7 else if (p := DetectPattern(ηm)) 	∈ {P4, P5, P6} then return error ;

8 let mapout := NewEmptyMap();
9 foreach vout ∈ Vout do mapout.put(vout, NewEmptyList()); ;

10 foreach ηm, m = 1 . . . k do
11 mapout.get(vout).add(m), where vout is the output variable used in τm.�out;
12 foreach vout ∈ Vout do Add actor Resvout :=

CreateResActor(mapout.get(vout).size()) to Act ;
13 foreach ηm, m = 1 . . . k do
14 let vout be the variable used in τm.�out, ind := mapout.get(vout).indexOf(m);
15 if ¬vout equals τm.�out then // negation is used in literal

16 Create a negation actor ¬ (m)
and add it to Act;

17 τ := τ ∪ {(A(m).output ��� ¬ (m)
.input), (¬ (m)

.output ���
Resvout .inputind)};

18 else τ := τ ∪ {(A(m).output ��� Resvout .inputind)} ;

19 foreach vout ∈ Vout do τ := τ ∪ {(Resvout .output ��� vout)} ;

Step 1.4 - Resolution Actors. This step is to consider all sub-specifications that
influence the same output variable vout. Line 9 to 11 adds, for each specification
ηm using vout, its index m maintained by mapout.get(vout). E.g., for the door
example, specifications S1, S3 and S4 all output out0. Therefore after executing
line 10 and 11, we have mapout.get(out0)={1, 3, 4}, meaning that for variable
out0, the value is influenced by S1, S3 and S4.

For each output variable vout, line 12 creates one Resolution Actor Resvout

which contains one parameter equaling the number of specifications using vout

in �out. Here we make it a simple memoryless controller as shown in Fig. 3(b)
- Resvout

outputs true when one of its inputs is true, outputs false when one
of its inputs is false, and outputs A (which is currently an unknown value to
be synthesized later) when all inputs are “–”. The number of input pins is
decided by calling the map. E.g., for Resout0 in Fig. 3(a), three inputs are
needed because mapout.get(out0).size()=3. The output of the high-level controller
A(m) is connected to the input of Resvout

. When negation is needed due to the
negation symbol in �out (line 15), one introduces a negation actor ¬ which

Structural Synthesis for GXW Specifications 105

Step 2. Synthesize monitoring controllers (for pattern P1, P2, P3)
Input : φ = � → ∧m=1...k ηm, Vin, Vout, S = (Vin, Vout, Act, τ) from Step 1.
Output: (partial) controller S = (Vin, Vout, Act, τ) by adding more elements

1 foreach ηm, m = 1 . . . k do
2 p := DetectPattern(ηm);
3 if p ∈ {P1, P2, P3} then // Work on subformula ‘‘input ’’ of ηm,

defined by φi
in

4 Add an OR-gate actor ORφi
in

with size(ηm.φi
in) inputs to Act;

5 foreach clause formula χi
in from DNF of ηm.φi

in do

6 Add A(C) to Act, where C := Syn(G(χi
in ↔ Xiout) ∧∧i−1

z=0 X
z¬out,

In(χi
in), {out });

7 foreach vin ∈ In(χi
in) do τ := τ ∪ {(vin ��� A(C).vin)} ;

8 τ := τ ∪ {(A(C).out ��� ORφi
in

.inIndex(χi
in,φi

in)
)};

9 τ := τ ∪ {(ORφi
in

.out ��� A(m).input)};

10 if p ∈ {P2} then // Work on subformula ‘‘release ’’ of ηm, defined

by ϕj
in ∨ ρ0

out

11 Add an OR-gate actor OR
ϕ
j
in∨ρ0

out
with size(ηm.(ϕj

in ∨ ρ0
out)) inputs to

Act;

12 foreach clause formula χh
in from DNF ηm.ϕj

in do

13 Add A(C) to Act, where C := Syn(G(χh
in ↔ Xhout) ∧∧h−1

z=0 Xz¬out,
In(χh

in), {out });

14 foreach vin ∈ In(χi
in) do τ := τ ∪ {(vin ��� A(C).vin)} ;

15 if h = 0 then Add (A(C).out ��� OR
ϕ
j
in∨ρ0

out
.inIndex(χz

in,ϕ
j
in∨ρ0

out)
)

to τ ;
16 else
17 Add A(CΘh) to Act, where CΘh := CreateThetaCtrl(h);
18 τ := τ ∪ {(ORφi

in
.out ��� A(CΘh).set), (A(C).out ���

A(CΘh).in), (A(CΘh).out ��� OR
ϕ
j
in∨ρ0

out
.inIndex(χz

in,ϕ
j
in∨ρ0

out)
)};

19 foreach clause formula χ0
out from DNF of ηm.ρ0

out do
20 Add an AND-gate actor ANDηm.χ0

out
with size(χ0

out) inputs to Act;

21 foreach literal ωout of χ0
out do

22 let vout be the variable used in ωout;
23 if ωout equals ¬vout then // negation is used in literal

24 Create ¬
Resvout

and add to Act, if not exists;

25 Add (Resvout .output ��� ¬
Resvout

.input) to τ , if not exists;

26 Add (¬
Resvout

.output ��� ANDχ0
out

.inIndex(ωout,χ0
out)

) to τ ;

27 else τ := τ ∪ {Resvout .output ��� ANDχ0
out

.inIndex(ωout,χ0
out)

} ;

28 τ := τ ∪ {ANDχ0
out

.out ��� OR
ϕ
j
in∨ρ0

out
.inIndex(χ0

out,ϕ
j
in∨ρ0

out)
}

29 τ := τ ∪ {OR
φ
j
in∨ρ0

out
.out ��� A(m).release};

106 C.-H. Cheng et al.

negates A(m).output when A(m).input is true or false (line 16, 17). To ensure
that connections are wired appropriately, mapout is used such that the number
“ind” records the precise input port of the Resout (line 14). Consider again the
door example. Due to the maintained list {1, 3, 4}, TrUB(1).output is connected
to Resvout

.input1, i.e., the first input pin of Resvout
. Also, as ¬out0 is used in

S3 and S4, the wiring from InUB(3) and IfTB(4) to Resout0 in Fig. 3(a) has a
negation actor in between.

Lastly, line 19 connects the output port of a resolution actor to the corre-
sponding external output port. If Resvout

receives simultaneously true and false

from two of its input ports, then Resvout
.output needs to be simultaneously true

and false. These kinds of situations are causing unrealizability of GXW specifica-
tion, and Step 4 is used for detecting these kinds of inconsistencies.

4.2 Monitors and Phase Adjustment Actors

The second step of the algorithm synthesizes controllers for monitoring the
appearance of an event matching the subformula, and connects these controllers
to previously created actors for realizing high-level control objectives. For a
formula φ in DNF form, let size(φ) return the number of clauses in φ. For
clause formula χi

in in φ, let In(χi
in) return the set of all input variables and

α = Index(χi
in, φi

in) specify that χi
in is the α-th clause in φi

in.
Step 2.1 - Realizing “input” part for pattern P1, P2, P3. In Step 2, from line 3
to 9, the algorithm synthesizes controller realizing the portion input listed in
Table 2, or equivalently, the φi

in part listed in Table 1. Line 4 first creates an
OR gate, as the formula is represented in DNF. Then synthesize a controller
for monitoring each clause formula (line 5, 6) using function Syn, with input
variables defined in In(χi

in) and a newly introduced output variable {out}3. The
first attempt is to synthesize G(χi

in ↔ Xiout). By doing so, the value of χi
in is

reflected in out. However, as the output of the synthesized controller is connected
to the input of an OR-gate (line 8) and subsequently, passed through the port
“input” of the high-level controller (line 9), one needs to also ensure that from
time 0 to i − 1, out remains false, such that the high-level controller Am for
specification ηm will not be “unintentionally” triggered and subsequently restrict
the output. To this end, the specification to be synthesized is G(χi

in ↔ Xiout)∧∧
z=0...i−1 X

z¬out, being stated in line 6.
For above mentioned property that needs to be synthesized in line 6, one does

not need to use full LTL synthesis algorithms. Instead, we present a simpler algo-
rithm (Algorithm 1) which creates a controller in time linear to the number of
variables times the maximum number of X operators in the formula. Here again
for simplicity, each state variable is three-valued (true, false, u); in implementa-
tion every 3-valued state variable is translated into 2 Boolean variables. In the
3 For pattern type P2 or P3, one needs to have each clause formula of φi

in be of form
χi

in, i.e., the highest number of consecutive X should equal i. The purpose is to align
χi

in with the preceding Xi in G(φi
in → Xi(�out W (ϕj

in∨ρ0
out))) or G(φi

in → Xi�out).
If a clause formula in DNF contains no literal starting with Xi, one can always pad
a conjunction Xi true to the clause formula. The padding is not needed for P1.

Structural Synthesis for GXW Specifications 107

Algorithm 1. Realizing Syn without full LTL synthesis
Input : LTL specification G(χi

in ↔ Xiout) ∧∧i−1
z=0 X

z¬out), input variables
In(χi

in), output variables {out }
Output: Mealy machine C = (Q, q0,2

Vin ,2Vout , Δ) for realizing the
specification

1 Vout := {out}, Vin := In(χi
in);

2 foreach Variable vin ∈ In(χi
in) do // Create all state variables in the

Mealy machine

3 for j = 1 . . . i do Q := Q ∪ {vin[j]}, where vin[j] is three-valued (true , false
, u) ;

4 q0 :=
∧

vin∈In(χi
in),j∈{1,...i} vin[j] := u /* Initial state */;

5 let Cd := true /* Cd for output condition */;

6 foreach literal Xkvin in χi
in do

7 if k = i then Cd := Cd∧ (vin = true) else Cd := Cd∧ (vin[i− k] = true) ;

8 foreach literal Xk¬vin in χi
in do

9 if k = i then Cd := Cd ∧ (vin = false) else Cd :=
Cd ∧ (vin[i − k] = false) ;

10 δout := (out := Cd) /* Output assignment should follow the value of Cd */;
11 δs := (

∧
vin∈In(χi

in),j=1...i−1
vin[j + 1] := vin[j]) ∧ (

∧
vin∈In(χi

in)
vin[1] := vin);

algorithm, state variable vin[i] is used to store the i-step history of for vin, and
vin[i] = u means that the history is not yet recorded. Therefore, for the initial
state, all variables are set to u (line 4). The update of state variable vin[i + 1]
is based on the current state of vin[i], but for state variable vin[1], it is updated
based on current input vin (line 11). With state variable recording previously
seen values, monitoring the event is possible, where the value of out is based on
the condition stated from line 6 to 10.

Consider a controller realizing χi
in := ¬in1 ∧ Xin1 ∧ Xin2 ∧ XX¬in2, being

executed under a run prefix (false, false)(true, true)(true, false). As shown in
Fig. 4, the update of state variables is demonstrated by a left shift. The first and
the second output are false. After receiving the third input, the controller is able
to detect a rising edge of in1 (via in1[2]=false and in1[1]=true) is immediately
followed by a falling edge of in2 (via in2[1]=true and in2 =false).
Step 2.2 - Realizing “release” part for pattern P2. Back to Step 2, the algorithm
from line 10 to 29 synthesizes a controller realizing the portion release listed in
Table 2, or equivalently, the ϕj

in ∨ρ0
out part listed in Table 1. The DNF structure

is represented as an OR-actor (line 11), taking input from ϕj
in (line 12–18) and

ρ0
out (line 19–28).

For ρ0
out (line 19–28), first create an AND-gate for each clause in DNF. When-

ever output variable vout is used, the wiring is established by a connection to
the output port of Resvout

(line 27). Negation in the literal is done by adding
a wire to connect Resvout

to a dedicated negation actor ¬
Resvout

to negate
the output (line 23 to 26). Consider, for example, specification S2 of the auto-
matic door running example, where the “release” part (in1 ∨ in0 ∨ out0) is a

108 C.-H. Cheng et al.

disjunction of literals using output variable out0. As a consequence, one creates
an AND-gate (line 20) which takes one input Resout0.output (line 27), and con-
nects this AND-gate to the OR-gate (line 28). Figure 3(a) displays an optimized
version of this construction, since the single-input AND-gate may be removed
and Resout0.output is directly wired with the OR-gate.

For ϕj
in (line 12 to 23), similar to Step 2.1, one needs to synthesize a controller

which tracks the appearance of χh
in (line 13). However, the start of tracking is

triggered by φi
in (the input subformula). That is, whenever φi

in is true, start
monitoring if ϕj

in has appeared true. This is problematic when χh
in contains

X operators (i.e., h > 0). To realize this mechanism, at line 17, the function
CreateThetaCtrl additionally initiates a controller which guarantees the following:
Whenever input variable set turns true, the following h values of output variable
out are set to false. After that, the value of output variable out is the same as the
input variable in. This property can be formulated as Θh (to trigger consecutive
h false value over out after seeing set = true) listed in Eq. 2, with implementation
shown in Fig. 6. By observing the Mealy machine and the high-level transition
function, one infers that the time for constructing such a controller in symbolic
form is again linear in h.

Θh := (¬outW set) ∧ G(set → (
h−1∧

z=0

¬Xzout ∧ Xh((in ↔ out)W set))) (2)

The overall construction in Step 2 is illustrated using the example in Fig. 5, which
realizes the formula

G((¬in1 ∧ Xin1) → X(out1 W(¬in2 ∧ Xin2))) (3)

with Vin = {in1, in2} and Vout = {out1}. This specification requires to set output
out1 to true when a rising edge of in1 appears, and after that, out1 should
remain true until detecting a raising edge of in2. Using the algorithm listed in
Step 2, line 6 synthesizes the monitor for the input part (i.e., detecting rising
edge of in1), line 13 synthesizes the monitor for the release part (i.e., detecting
rising edge of in2), line 14 creates the wiring from input port to the monitor. As
h = 1 (line 16), line 17 creates A(CΘ1), and line 18 establishes the wiring to and
from A(CΘ1).

The reader may notice that it is incorrect to simply connect the monitor
controller for ¬in2 ∧ Xin2 directly to TrUB.release, as, when both ¬in1 ∧ Xin1

and ¬in2 ∧ Xin2 are true at the same time, TrUB.output is unconstrained. On
the contrary, in Fig. 5, when ¬in1∧Xin1 is true and the value is passed through
TrUB.input, A(CΘ1) enforces to invalidate the incoming value of TrUB.release
for 1 cycle by setting it to false.

Step 3 - Realizing “input” for pattern P4. For pattern P4, in contrast to pattern
P1, P2, and P3, the synthesized monitoring element is directly connected to a
Resolution Actor (see Fig. 3(a) for example). To maintain maximum freedom
over output variable, one synthesizes the event monitor from the specification
allowing the first consecutive i output to be “–”. The monitor construction is
analogous to Algorithm 1 and we refer readers to [1] for details.

Structural Synthesis for GXW Specifications 109

in1[1]in1[2]

in2[1]in2[2]
u

State variable Input

in1

in2

false

false

out := false

in1[1]in1[2]

in2[1]in2[2]
u

u

State variable Input

in1

in2

true

true

out := false

false

false

in1[1]in1[2]

in2[1]in2[2]

State variable Input

in1

in2

true

false

out := true

true

true

false

false

u

uu

Fig. 4. Executing monitor with χi
in := ¬in1 ∧

Xin1 ∧ Xin2 ∧ XX¬in2, by taking first three
inputs (false, false)(true, true)(true, false).

TrUBin2

out1
A(CΘ1)set

in
out

release

OR

OR input
Resout1

in1

Fig. 5. Correct controller construction for spec-
ification satisfying pattern P2.

State variables:

if(!1stSet & !set) {out := false;

CΘh
/* Phase Adjustment Block */set

in
out

Transition function /* high-level language*/

int c := 0 /* finite domain [0 . . . h − 1] */

boolean 1stSet := false;

} else if(set) {
} else {

}
if(counter > 0) {out := false; c:= c- 1; }
else {out := in }

out := false; 1stSet := true; c := h-1;

¬1stSet
{!set} out := false

c = 0

c = h-1
1stSet

c = h-2
1stSet

c = 0
1stSet

c = 1
1stSet

. . .

{!set} out := in

{!set}!out {!set}!out
{set}
!out

{set}!out
{set}!out {set}!out

Fig. 6. Implementing Θh (state
variables not mentioned in update
remain the same value).

Optimizations. Runtimes for Steps 2 and 3 may be optimized by using simple
pattern matching and hashing of previously synthesized controllers. We are list-
ing three different opportunities for optimized generation of monitors. First, the
controller in Fig. 3(a) for monitoring ¬in0 ∧ X in0 is connected to two high-level
controllers. The second case can be observed in Fig. 5, where by rewriting in1

and in2 to in, the controller being synthesized is actually the same. Therefore,
one can also record the pattern for individual monitor and perform synthesis
once per pattern. A third opportunity for optimization occurs when Algorithm1
takes i = 0 (i.e., no X operator is used). In this case there is no need to create
a controller at all and one may proceed by directly building a combinatorial
circuit, similar to the constructions of line 19 to 28 in Step 2. For example, for
specification S2 of the automatic door, the release part is in1 ∨ in0 ∨ out0; since
no X operator occurs, a combinatorial circuit is created by wiring directly in1

and in0 to the OR-gate.

4.3 Parameter Synthesis for 2QBF Without Unroll

Previous steps construct actors as building blocks and wires the actors according
to the structure of the given GXW specification from type P1 to P4. The resulting
(partial) controller, however, does not yet realize this specification as it may still
contain unknowns in the resolution actors. Further checks are necessary, and a
controller is rejected if one of the following conditions holds.

(Condition 1) The wiring forms a directed loop in the constructed actor-based
controller.

110 C.-H. Cheng et al.

(Condition 2) It is possible for a resolution actor Resvout
to receive true and

false simultaneously.
(Condition 3) Outputs violate invariance conditions of pattern P5.

Condition 1 is checked by means of a simple graph analysis: (1) let all ports
be nodes and wirings be edges; (2) for each actor, create directed edges from
each of its input ports to each of its output ports; (3) check if there exists a
strongly connected component in the resulting graph using, for example, Tarjan’s
algorithm [29].

Conditions 2 and 3 are checked by means of creating corresponding 2QBF

satisfiability problems. Recall that each resolution actor Resvout
is parameter-

ized with respect to the output A when all incoming inputs for Resvout
are “–”.

The corresponding parameter assignment problem is encoded as a 2QBF4 for-
mula, where existential variables are the parameters to be synthesized, universal
variables are input variables, and the quantifier-free body is a logical implication
specifying that the encoding of the system guarantees condition 2 and 3.

Step 4 shows a simplified algorithm for generating 2QBF constraints which
does not perform unrolling. Stated in line 15, the quantifier free formula is of
form Υa → Υg, where Υa are input assumptions and system dynamics, and Υg

are properties to be guaranteed. First, unknown parameters are added to the
set of existential variables V∃ (line 2). All other variables are universal variables.
Then based on the evaluation ordering of S, perform one of the following tasks:

• When an element ξ in the execution ordering Ξ is a wire (line 5), we add
source and dest as universal variables (as V∀ is a set, repeated variables will
be neglected), and establish the logical constraint (source ↔ dest) (lines 6
to 8).

• When an element ξ in the execution ordering Ξ is an actor, we use function
EncodeTransition to encode the transition (pre-post) relation as constraints
(line 11), and add all state variables (for pre and post) in the actor (recall our
definition of Mealy machine is based on state variables) to V∀ using function
GetStateVariable (line 10).

Υa is initially set to � (line 1) to reflect the allowed input patterns regulated by
the specification (specification type P6). Line 12 creates the constraint stating
that no two inputs of a resolution actor should create contradicting conditions.
As the number of input ports for any resolution actor is finite, the existential
quantifier is only an abbreviation which is actually rewritten to a quantifier-free
formula describing relations between input ports of a resolution actor.

The encoding presented in Step 4 does not involve unroll (it encodes the tran-
sition relation, but not the initial condition). Therefore, by setting all variables to
be universally quantified, one approximates the behavior of the system dynamics
without considering the relation between two successor states. Therefore, using

4 Quantified Boolean Formula with one top-level quantifier alternation.

Structural Synthesis for GXW Specifications 111

Step 4. Parameter synthesis by generating 2QBF constraints
Input : LTL specification φ = � → ∧m=1...k ηm, input variables Vin, output

variables Vout, partial implementation S = (Vin, Vout, Act, τ) with
unknown parameters

Output: Controller implementation S or “unknown”
1 let Υa := �, Υg := true, V∃, V∀ := NewEmptySet();
2 foreach vout ∈ Vout do V∃ := V∃ ∪ {Resvout .A} ;
3 let Ξ be the evaluation ordering of S ;
4 foreach ξ ∈ Ξ do
5 if ξ ∈ τ then // ξ is a wire; encode using biimplication

6 Let ξ be (source ��� dest);
7 V∀.add(source), V∀.add(dest);
8 Υa := Υa ∧ (source ↔ dest);

9 else // ξ is an actor; encode transition

10 V∀.add(GetStateVariable(ξ));
11 Υa := Υa ∧ (EncodeTransition(ξ)) /* ξ ∈ Act */ ;

12 for vout ∈ Vout do
Υg := Υg ∧ (∃i, j : (Resvout .inputi = true) ∧ (Resvout .inputj = false)) ;

13 foreach ηm, m = 1 . . . k do
14 if DetectPattern(ηm) ∈ {P5} then Υg := Υg ∧ ηm ;
15 if Solve2QBF(V∃, V∀, Υa → Υg).isSatisable then
16 return S by replacing each Resout.A by the value of witness in 2QBF;
17 else return unknown ;

Step 4 only guarantees soundness: If the formula is satisfiable, then the specifi-
cation is realizable (line 15, 16). Otherwise, unknown is returned (line 17).5

As each individual specification of one of the types {P1, P2, P3, P4} is
trivially realizable, the reason for rejecting a specification is (1) simultaneous true
and false demanded by different sub-specifications, (2) violation of properties
over output variables (type P5), and (3) feedback loop within S. Therefore,
as Steps 1-4 guarantees non-existence of above three situations, the presented
method is sound.

Theorem 1. (Soundness) Let φ be a GXW specification, and S be an actor-
based controller as generated by Steps 1-4 from φ; then S realizes φ.

5 Even without unroll, one can infer relations over universal variables via statically
analyzing the specification. As an example, consider two sub-specifications S1 :
G(in1 → (outW in2)) and S2 : G(in2 → (¬outW in1)). One can infer that it is
impossible for TrUB(1) and TrUB(2) to be simultaneously have state variable lock =
true, as both starts with lock = false, and if S1 first enters lock (lock = true) due to
in1, the S2 cannot enter, as release part of S2 is also in1. Similar argument follows
vice versa.

112 C.-H. Cheng et al.

in1

in2

out1

out2

TrUB

TrUB

Resout1

Resout2

Fig. 7. Incompleteness example.

The GXW synthesis algorithm as described
above, however is incomplete, as controllers
with feedback loops are rejected; that is, when-
ever output variables listed in the release part
of P2 necessitate simultaneous reasoning over
two or more output variables. Figure 7 display
a controller (with feedback loop) for realizing
the specification G(in1 → (out1Wout2)) ∧ G(in2 → (out2Wout1)). However,
our workflow rejects such a controller even though the given specification is
realizable. With further structural restriction over GXW (which guarantees no
feedback loop in during construction) and by using unrolling of the generated
actor-based controllers, the workflow as presented here can be made to be com-
plete, as demonstrated in Sect. 4.4.

4.4 General Properties for GXW Synthesis

in1

in2

out1

out2

IfTB

TrUB

Resout1

Resout2

in3 out3Resout3

∨

¬

Fig. 8. Control implementation.

Since unrealizability of a GXW specification
is due to the conditions (1) simultaneous
true and false demanded by different sub-
specifications, and (2) violation of proper-
ties over output variables (type P5)6, one can
build a counter-strategy7 by first building a
tree that provides input assignments to lead
all runs to undesired states violating (1) or
(2), then all leafs of the tree violating (1) or
(2) are connected to a self-looped final state, in order to accept ω-words. As
the input part listed in Table 2 does not involve any output variable, a counter-
strategy, if exists, can lead to violation of (1) or (2) within Ω cycles, where Ω
is a number sufficient to let each input part of the sub-specification be true in a
run.

Lemma 1. For GXW specification � → ∧
m=1...k ηm, if (a) ρ0

out is false for all
ηm of type P2 and (b) no specification of type P5 exists, then if the specification
is not realizable, then there exists a counter-strategy which leads to violation
of (1) or (2) in Ω steps, where Ω is bounded by the sum of (i) the number of
specifications k, and (ii) the sum of all i value defined within each φi

in of ηm.

When ρ0
out is false for all ηm of type P2, our presented construction guaran-

tees no feedback loop. As no specification of type P5 exists, the selection of

6 Rejecting feedback loops on the controller structure is only a restriction of our pre-
sented method and is not the reason for unrealizability; similar to Fig. 7, feedback
loop can possibly be resolved by merging all actors involving feedback to a single
actor.

7 A counter-strategy in LTL synthesis a state machine where the environment can
enforce to violate the given property, regardless of all possible moves by the
controller [27].

Structural Synthesis for GXW Specifications 113

A never influences whether the specification is realizable. Therefore, quantifier
alternation is removed. To this end, checking unrealizability is equivalent to non-
deterministically guessing Ω input assignments and subsequently, checking if a
violation of (1) or (2) appears by executing S. This brings the co-NP result
stated in Lemma 2. This also means that under the restriction from Lemma 1,
a slight modification of Step 4 to perform unrolling the computation Ω-times
makes our synthesis algorithm complete.

Lemma 2. Deciding whether a given GXW specification, which also obeys the
additional restrictions as stated in Lemma 1, is realizable or not is in co-NP.

For the general case, the bound in Lemma 1 remains valid (as input part is not
decided by the output variable). Complexity result is achieved by, without using
our construction, directly using finite memory to store and examine all possible
control strategies in Ω steps.

Lemma 3. For GXW specification � → ∧
m=1...k ηm, if the specification is not

realizable, then there exists a counter-strategy which leads to violation of (1) or
(2) in Ω steps, where Ω is bounded by condition similar to Lemma 1.

Lemma 4. Deciding whether a given GXW specification is realizable or not is
in PSPACE.

The above mentioned bounds are only conditions to detect realizability of a
GXW specification, while our presented workflow in Sect. 4 targets generating
structured implementations. Still, by unrolling the computation Ω-times, one
can detect if a controller, following our regulated structure, exists.

4.5 Extensions

One can extend the presented workflow to allow richer specification than previ-
ously presented GXW fragment. Here we outline how these extensions are real-
ized by considering the following sample specification: G(in1 → out1) ∧G((in2∨
out1) → ((out2 ∧ ¬out3)W in3)). The SDF controller implementation is shown
in Fig. 8. First, conjunctions in �out can be handled by considering each output
variable separately. E.g., for �out ≡ out2∧ ¬out3, in Fig. 8 both are connected to
the same TrUB. Second, the use of output variables in “input” part for pattern
P1, P2, P3 is also supported, provided that in effect a combinatorial circuit is
created (i.e., output variables should always proceed with Xi), and the generated
system does not create a feedback loop. E.g., for the antecedent (in2 ∨ out1), it
is created by wiring the Resout1.out to an OR-gate.

5 Experimental Evaluation

We implemented a tool for GXW synthesis in Java, which invokes DepQBF [21]
(Version 5.0) for QBF solving. Table 3 includes experimental results for a repre-
sentative subset of our PLC benchmark examples. Execution times is recorded

114 C.-H. Cheng et al.

using Ubuntu VM (Virtual Box with 3 GB RAM) running on an Intel i7-3520M
2.9 GHz CPU and 8 GB RAM). Most control problems are solved in less than
a second8. GXW synthesis always generated a controller without feedback loops
for all examples.

Table 3 lists a comparison of execution times of GXW synthesis and the
bounded LTL synthesis tool Acacia+ [8] (latest version 2.3). We used the option
--player 1 of Acacia+ for forcing the environment to take a first move, but
we did not do manual annotation in order to support compositional synthesis in
Acacia+, as it is not needed by our tool. For many of the simpler case studies,
the reported runtimes of Acacia+ are similar to GXW synthesis. However, GXW
seems to scale much better to more complex case studies with a larger num-
ber of input and output variables such as examples 5, 9, 11, 12, 13, 15, 16, 17,
18, 19 in Table 3. The representation of the generated controller in terms of a
system of interacting actors in GXW synthesis, however, allows the engineer to
trace each sub-specification with corresponding partial implementation. In fact
the structure of the controllers generated by GXW is usually similar to reference
implementations by the case study providers. In contrast, a controller expressed
in terms of single Mealy machine is rather difficult to grasp and to maintain for
problems such as example 18 with 13 input and 13 output variables.

6 Related Work

Here we compare GXW synthesis with related GR(1) synthesis (e.g., [5,15,25,31])
and bounded LTL synthesis (e.g., [8,11,28]) techniques.

Synthesis for the GR(1) fragment of LTL is in time polynomial to the number
of nodes of a generated game, which is PSPACE when considering exponential
blow-up caused by input and output variables. GXW is also in PSPACE, where
GXW allows W and GR(1) allows F. Even though it has been demonstrated that
the expressiveness of GR(1) is enough to cover many practical examples, the
use of an until logical operator, which is not included in GR(1), proved to be
essential for encoding a majority of our PLC case studies. Also, implementations
of GR(1) synthesis such as Anzu [15] do not generate structured controllers.
Since GR(1) synthesis, however, includes a round-robin arbiter for circulating
among sub-specifications, the systematic structuring of controllers underlying
GXW synthesis may be applicable for synthesizing structured GR(1) controllers.

Bounded synthesis supports full LTL and is based on a translation of the LTL
synthesis problem to safety games. By doing so, one solves the safety game and
finds smaller controllers (as demonstrated in synthesis competitions via tools
like Simple BDD solver [13], AbsSynthe [9], Demiurge [17]). The result of solv-
ing safety games in bounded LTL synthesis usually is a monolithic Mealy (or
Moore) machine, whereas our GXW synthesis method of creating SDF actors may
be understood as a way of avoiding the expensive construction of the product
of machines. Instead, we are generating controllers by means of wiring smaller

8 Approximately 0.25 seconds is used for initializing JVM in every run.

Structural Synthesis for GXW Specifications 115

sub-controllers for specific monitoring and event triggering tasks. The struc-
ture of the resulting controllers seem to be very close to what is happening in
practice, as a number of our industrial benchmark examples are shipped with
reference implementation which are usually structured in a similar way. The size
of the representations of generated controllers is particularly important when
considering resource-bounded embedded computing devices such as a PLCs. LTL
component synthesis, however, has the same worst-case complexity as full LTL

synthesis [22].

Table 3. Experimental Result

ID Description Source I/O vars GXW time (s) Acacia+ time (s)

1 Automatic door Ex15 [2] (4,3) 0.389 0.180

2 Simple conveyor belt Ex7.1.19 [24] (3,3) 0.556 0.637

3 Hydraulic ramp Ex7.1.3 [24] (5,2) 0.642 0.451

4 Waste water treatment V1 Ex7.1.8 [24] (6,3) 0.471 0.323

5 Waste water treatment V2 Ex7.1.9 [24] (8,9) 0.516 5.621

6 Container fusing Ex10 [2] (7,6) 0.444 0.425

7 Elevator control mixing plant Ex7.1.4 [24] (10,5) 0.484 2.902

8 Lifting platform Ex21 [16] (6,3) 0.350 0.645

9 Control of reversal Ex36 [16] (7,7) 0.395 2.901

10 Gear wheel Ex19 [16] (4,6) 0.447 0.302

11 Two directional conveyor (simplified) Ex7.1.31.1 [24] (9,5) 0.789 6.552

12 Garage door control Ex7.1.25 [24] (13,5) 0.574 7.002

13 Contrast agent injection Ex7.1.18 [24] (6,8) 0.458 3.209

14 Identification Ex39 [16] (5,5) 0.430 0.392

15 Monitoring chain elevator Ex7.1.15 [24] (10,9) 0.429 9.647

16 Two directional conveyor Ex7.1.31.1 [24] (12,5) 0.890 51.553

17 Control of single torque drive

(simplified)

Ex7.1.26 [24] (12,8) 0.538 38.010

18 Gravel transportation via 3

conveyors (simplified)

Ex7.1.31.4 [24] (13,13) 1.227 > 600 (t.o.)

19 Control of two torque drives

(simplified)

Ex7.1.26 [24] (22,16) 0.790 > 600 (t.o.)

7 Conclusion

We have identified a useful subclass GXW of LTL for specifying a large class
of embedded control problems, and we developed a novel synthesis algorithm
(in PSPACE) for automatically generating structured controllers in a high-level
programming language with synchronous dataflow without cycles. Our experi-
mental results suggest that GXW synthesis scales well to industrial-sized control
problems with around 20 input and output ports and beyond.

In this way, GXW synthesis can readily be integrated with industrial design
frameworks such as CODESYS [3], Matlab Simulink, and Ptolemy II, and the
generated SDF controllers (without cycles) can be statically scheduled and imple-
mented on single and multiple processors [18]. It would also be interesting to use

116 C.-H. Cheng et al.

our synthesis algorithms to automatically generate control code from established
requirement frameworks for embedded control software such as EARS [23]. More-
over, our presented method supports traceability between specifications and the
generated controller code as required by safety-critical applications. Traceability
is also the basis for an incremental development methodology.

One of the main impediments of using synthesis in engineering practice, how-
ever, is the lack of useful and automated feedback in case of unrealizable speci-
fications [6,10,20] or realizable specifications with unintended realizations. The
use of a stylized specification languages such as GXW seems to be a good starting
point for supporting design engineers in identifying and analyzing unrealizable
specifications, since there are only a relatively small number of potential sources
of unrealizability in GXW specifications. Finally, hierarchical SDF may also be
useful for modular synthesis [30].

Acknowledgement. We thank Lacramioara Aştefănoaei for her fruitful feedback dur-
ing the development of the paper, and CAV reviewers for their constructive comments.
This work is supported by the H2020 project openMOS, GA no. 680735.

References

1. Full version available at http://arxiv.org/abs/1605.01153
2. Online training material for PLC programming. http://plc-scada-dcs.blogspot.

com/
3. CODESYS - industrial IEC 61131–3 programming framework. http://www.

codesys.com/
4. Matlab Simulink. http://www.mathworks.com/products/simulink/
5. Bloem, R., Cimatti, A., Greimel, K., Hofferek, G., Könighofer, R., Roveri, M.,

Schuppan, V., Seeber, R.: RATSY – a new requirements analysis tool with syn-
thesis. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174,
pp. 425–429. Springer, Heidelberg (2010)

6. Bloem, R., Ehlers, R., Jacobs, S., Knighofer, R.: How to handle assumptions in
synthesis. In: SYNT, pp. 34–50 (2014). EPTCS 157

7. Bloem, R., Könighofer, B., Könighofer, R., Wang, C.: Shield synthesis: runtime
enforcement for reactive systems. In: Baier, C., Tinelli, C. (eds.) TACAS 2015.
LNCS, vol. 9035, pp. 533–548. Springer, Heidelberg (2015)

8. Bohy, A., Bruyère, V., Filiot, E., Jin, N., Raskin, J.-F.: Acacia+, a tool for LTL
synthesis. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358,
pp. 652–657. Springer, Heidelberg (2012)

9. Brenguier, R., Prez, G.A., Raskin, J.-F., Sankur, O.: AbsSynthe: abstract synthesis
from succinct safety specifications. In: SYNT, pp. 100–116 (2014). EPTCS 157

10. Cheng, C.-H., Huang, C.-H., Ruess, H., Stattelmann, S.: G4LTL − ST: automatic
generation of PLC programs. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS,
vol. 8559, pp. 541–549. Springer, Heidelberg (2014)

11. Ehlers, R.: Unbeast: symbolic bounded synthesis. In: Abdulla, P.A., Leino, K.R.M.
(eds.) TACAS 2011. LNCS, vol. 6605, pp. 272–275. Springer, Heidelberg (2011)

12. Eker, J., Janneck, J., Lee, E.A., Liu, J., Liu, X., Ludvig, J., Sachs, S., Xiong, Y.:
Taming heterogeneity - the Ptolemy approach. Proc. IEEE 91(1), 127–144 (2003)

http://arxiv.org/abs/1605.01153
http://plc-scada-dcs.blogspot.com/
http://plc-scada-dcs.blogspot.com/
http://www.codesys.com/
http://www.codesys.com/
http://www.mathworks.com/products/simulink/

Structural Synthesis for GXW Specifications 117

13. Jacobs, S., Bloem, R., Brenguier, R., Ehlers, R., Hell, T., Knighofer, R. Prez, G.A.,
Raskin, J.-F., Ryzhyk, L., Sankur, O., Seidl, M., Tentrup, L., Walker, A.: The first
reactive synthesis competition. In: SYNTCOMP 2014 (2014). http://arxiv.org/
abs/1506.08726

14. Jobstmann, B., Bloem, R.: Optimizations for LTL synthesis. In: FMCAD,
pp. 117–124. IEEE (2006)

15. Jobstmann, B., Galler, S., Weiglhofer, M., Bloem, R.: Anzu: a tool for prop-
erty synthesis. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590,
pp. 258–262. Springer, Heidelberg (2007)

16. Kaftan, J.: Praktische Beispiele mit AC500 von ABB: 45 Aufgaben und Lsungen
mit CoDeSys (2014). http://pwww.kaftan-media.com/. ISBN 978-3-943211-05-4

17. Knighofer, R., Seidl, M.: Demiurge 1.2: A SAT-Based Synthesis Tool. Tool descrip-
tion for the SyntComp 2015 competition. http://www.iaik.tugraz.at/content/
research/opensource/demiurge/

18. Lee, E.A., Messerschmitt, D.G.: Static scheduling of synchronous data flow pro-
grams for digital signal processing. IEEE Trans. Comput. 36(1), 24–35 (1987)

19. Lee, E.A., Messerschmitt, D.G.: Synchronous data flow. Proc. IEEE 75(9),
1235–1245 (1987)

20. Li, W.-C.: Specification mining: new formalisms, algorithms and applications.
Ph.D. thesis. UC Berkeley (2015)

21. Lonsing, F., Biere, A.: DepQBF: a dependency-aware QBF solver. J. Satisfiability
Boolean Model. Comput. 7, 71–76 (2010)

22. Lustig, Y., Vardi, M.Y.: Synthesis from component libraries. STTT 15(5–6),
603–618 (2013)

23. Mavin, A., Wilkinson, P., Harwood, A., Novak, M.: Easy Approach to Require-
ments Syntax (EARS). In: RE, pp. 317–322. IEEE (2009)

24. Petry, J.: IEC 61131–3 mit CoDeSys V3: Ein Praxisbuch fuer SPS-Programmierer.
Eigenverlag 3S-Smart Software Solutions. ISBN 978-3-000465-08-6 (2011)

25. Piterman, N., Pnueli, A., Sa’ar, Y.: Synthesis of reactive(1) designs. In: Emerson,
E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp. 364–380. Springer,
Heidelberg (2006)

26. Pnueli, A.: The temporal logic of programs. In: FOCS, pp. 46–57. IEEE (1977)
27. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: POPL,

pp. 179–190. IEEE (1989)
28. Schewe, S., Finkbeiner, B.: Bounded synthesis. In: Namjoshi, K.S., Yoneda, T.,

Higashino, T., Okamura, Y. (eds.) ATVA 2007. LNCS, vol. 4762, pp. 474–488.
Springer, Heidelberg (2007)

29. Tarjan, R.E.: Depth-first search and linear graph algorithms. SIAM J. Comput.
1(2), 146–160 (1972)

30. Tripakis, S., Bui, D., Geilen, M., Rodiers, B., Lee, E.A.: Compositional-
ity in synchronous data flow: modular code generation from hierarchical
SDF graphs. ACM Trans. Embed. Comput. Syst. 12(3), 83:1–83:26 (2013).
http://doi.acm.org/10.1145/2442116.2442133, articleno 83, ISSN = 1539-9087

31. Wong, K.-W., Ehlers, R., Kress-Gazit, H.: Correct high-level robot behavior
in environments with unexpected events. In: Robotics: Science and Systems X
(RSS X) (2014)

http://arxiv.org/abs/1506.08726
http://arxiv.org/abs/1506.08726
http://pwww.kaftan-media.com/
http://www.iaik.tugraz.at/content/research/opensource/demiurge/
http://www.iaik.tugraz.at/content/research/opensource/demiurge/
http://doi.acm.org/10.1145/2442116.2442133

Bounded Cycle Synthesis

Bernd Finkbeiner and Felix Klein(B)

Reactive Systems Group, Saarland University, Saarbrücken, Germany
{finkbeiner,fklein}@cs.uni-saarland.de

Abstract. We introduce a new approach for the synthesis of Mealy
machines from specifications in linear-time temporal logic (LTL), where
the number of cycles in the state graph of the implementation is limited
by a given bound. Bounding the number of cycles leads to implementa-
tions that are structurally simpler and easier to understand. We solve
the synthesis problem via an extension of SAT-based bounded synthe-
sis, where we additionally construct a witness structure that limits the
number of cycles. We also establish a triple-exponential upper and lower
bound for the potential blow-up between the length of the LTL formula
and the number of cycles in the state graph.

1 Introduction

There has been a lot of recent progress in the automatic synthesis of reactive
systems from specifications in temporal logic [4,6,7,9,12]. From a theoretical
point of view, the appeal of synthesis is obvious: the synthesized implementation
is guaranteed to satisfy the specification. No separate verification is needed.

From a practical point of view, the value proposition is not so clear. Instead
of writing programs, the user of a synthesis procedure now writes specifications.
But many people find it much easier to understand the precise meaning of a
program than to understand the precise meaning of a temporal formula. Is it
really justified to place higher trust into a program that was synthesized auto-
matically, albeit from a possibly ill-understood specification, than in a manually
written, but well-understood program? A straightforward solution would be for
the programmer to inspect the synthesized program and confirm that the imple-
mentation is indeed as intended. However, current synthesis tools fail miserably
at producing readable code.

Most research on the synthesis problem has focused on the problem of find-
ing some implementation, not necessarily a high-quality implementation. Since
specification languages like LTL restrict the behavior of a system, but not its
structure, it is no surprise that the synthesized implementations are often much
larger and much more complex than a manual implementation. There has been
some progress on improving other quality measures, such as the runtime per-
formance [4], but very little has been done to optimize the structural quality of

Partially supported by the DFG project “AVACS” (SFB/TR 14). The second author
was supported by an IMPRS-CS PhD Scholarship.

c© Springer International Publishing Switzerland 2016
S. Chaudhuri and A. Farzan (Eds.): CAV 2016, Part I, LNCS 9779, pp. 118–135, 2016.
DOI: 10.1007/978-3-319-41528-4 7

Bounded Cycle Synthesis 119

Fig. 1. Three implementations of the TBURST4 component of the AMBA bus con-
troller. Standard synthesis with Acacia+ produces the state graph on the left with 14
states and 61 cycles. Bounded synthesis produces the graph in the middle with 7 states
and 19 cycles. The graph on the right, produced by our tool, has 7 states and 7 cycles,
which is the minimum.

the synthesized implementations (cf. [14]). Can we develop synthesis algorithms
that produce implementations that are small, structurally simple, and therefore
easy to understand?
A first step into this direction is Bounded Synthesis [9]. Here, we bound the
number of states of the implementation and can therefore, by incrementally
increasing the bound, ensure that the synthesized solution has minimal size.

In this paper, we go one step further by synthesizing implementations where,
additionally, the number of (simple) cycles in the state graph is limited by a given
bound. Reducing the number of cycles makes an implementation much easier to
understand. Compare the three implementations of the TBURST4 component
of the AMBA bus controller shown in Fig. 1: standard synthesis with Acacia+
produces the state graph on the left with 14 states and 61 cycles. Bounded
Synthesis produces the middle one with 7 states and 19 cycles. The graph on the
right, produced by our tool, has 7 states and 7 cycles, which is the minimum.

An interesting aspect of the number of cycles as a parameter of the imple-
mentations is that the number of cycles that is potentially needed to satisfy an
LTL specification explodes in the size of the specification: we show that there is
a triple exponential lower and upper bound on the number of cycles that can be
enforced by an LTL specification. The impact of the size of the specification on
the number of cycles is thus even more dramatic than on the number of states,
where the blow-up is double exponential.

Our synthesis algorithm is inspired by Tiernan’s cycle counting algorithm
from 1970 [17]. Tiernan’s algorithm is based on exhaustive search. From some
arbitrary vertex v, the graph is unfolded into a tree such that no vertices repeat
on any branch. The number of vertices in the tree that are connected to v then
corresponds to the number of cycles through v in the graph. Subsequently, v is
removed from the graph, and the algorithm continues with one of the remain-
ing vertices until the graph becomes empty. We integrate Tiernan’s algorithm
into the Bounded Synthesis approach. Bounded Synthesis uses a SAT-solver to

120 B. Finkbeiner and F. Klein

Fig. 2. Witness for an example state graph with three cycles. The state graph is shown
on the left. The first graph on the right proves that vertex 1 is on two cycles (via vertex
2 and vertices 2 and 3). The second graph proves that vertex 2 is on a further cycle not,
containing vertex 1, namely via vertex 3. There are no further cycles through vertex 3.

simultaneously construct an implementation and a witness for the correctness of
the implementation [9]. For the standard synthesis from an LTL specification ϕ,
the witness is a finite graph which describes an accepting run of the universal
tree automaton corresponding to ϕ. To extend the idea to Bounded Cycle Syn-
thesis, we define a second witness that proves the number of cycles, as computed
by Tiernan’s algorithm, to be equal to or less than the given bound. An example
state graph with three cycles is shown on the left in Fig. 2. The witness consists
of the three graphs shown on the right in Fig. 2. The first graph proves that
vertex 1 is on two cycles (via vertex 2 and vertices 2 and 3). The second graph
proves that vertex 2 is on a further cycle, not containing vertex 1, namely via
vertex 3. There are no further cycles through vertex 3.

Our experiments show that Bounded Cycle Synthesis is comparable in per-
formance to standard Bounded Synthesis. The specifications that can be handled
by Bounded Cycle Synthesis are smaller than what can be handled by tools like
Acacia+, but the quality of the synthesized implementations is much better.
Bounded Cycle Synthesis could be used in a development process where the
programmer decomposes the system into modules that are small enough so that
the implementation can still be inspected comfortably by the programmer (and
synthesized reasonably fast by using the Bounded Cycle Synthesis approach).
Instead of manually writing the code for such a module, the programmer has
the option of writing a specification, which is then automatically replaced by the
best possible implementation.

2 Preliminaries

The non-negative integers are denoted by N. An alphabet Σ is a non-empty finite
set. Σω denotes the set of infinite words over Σ. If α ∈ Σω, then αn accesses the
n-th letter of α, starting at α0. For the rest of the paper we assume Σ = 2I∪O

to be partitioned into sets of input signals I and output signals O.
A Mealy machine M is a tuple (I,O, T, tI , δ, λ) over input signals I and

output signals O, where T is a finite set of states, tI ∈ T is the initial state,
δ : T × 2I → T is the transition function, and λ : T × 2I → 2O is the output
function. Thereby, the output only depends on the current state and the last
input letter. The size of M, denoted by |M|, is defined as |T |. A path p of a Mealy

Bounded Cycle Synthesis 121

machine M is an infinite sequence p = (t0, σ0)(t1, σ1)(t2, σ2) . . . ∈ (T ×Σ)ω such
that t0 = tI , δ(tn, I ∩ σn) = tn+1 and λ(tn, I ∩ σn) = O ∩ σn for all n ∈ N.
We use π1(p) = σ0σ1σ2 . . . ∈ Σω, to denote the projection of p to its second
component. P(M) denotes the set of all paths of a Mealy machine M.

Specifications are given in Linear-time Temporal Logic (LTL). The atomic
propositions of the logic consist of the signals I ∪ O, resulting in the alphabet
Σ = 2I∪O. The syntax of an LTL specification ϕ is defined as follows:

ϕ := true | a ∈ I ∪ O | ¬ϕ | ϕ ∨ ϕ | © ϕ | ϕU ϕ
The size of a specification ϕ is denoted by |ϕ| and is defined to be the number of
sub-formulas of ϕ. The semantics of LTL are defined over infinite words α ∈ Σω.
We define the satisfaction of a word α at a position n ∈ N and a specification ϕ,
denoted by α, n � ϕ, for the different choices of ϕ, respectively, as follows:

– α, n � true
– α, n � a iff a ∈ αi

– α, n � ¬ϕ iff α, n �� ϕ
– α, n � ϕ1 ∨ ϕ2 iff α, n � ϕ1 or α, i � ϕ2

– α, n � ©ϕ iff α, n + 1 � ϕ
– α, n � ϕ1 U ϕ2 iff ∃m ≥ n. α,m � ϕ2 and ∀n ≤ i < m. α, i � ϕ1.

An infinite word α satisfies ϕ, denoted by α � ϕ, iff α, 0 � ϕ. The language L(ϕ)
is the set of all words that satisfy ϕ, i.e., L(ϕ) = {α ∈ Σω | α � ϕ}. Beside the
standard operators, we have the standard derivatives of the boolean operators,
as well as ϕ ≡ true U ϕ and �ϕ ≡ ¬¬ϕ. A Mealy machine M is an
implementation of ϕ iff π1(P(M)) ⊆ L(ϕ).

Let G = (V,E) be a directed graph. A (simple) cycle c of G is a tuple (C, η),
consisting of a non-empty set C ⊆ V and a bijection η : C �→ C such that

– ∀v ∈ C. (v, η(v)) ∈ E and
– ∀v ∈ C. n ∈ N. ηn(v) = v ⇔ n mod |C| = 0,

where ηn denotes n times the application of η. In other words, a cycle of G is a
path through G that starts and ends at the same vertex and visits every vertex
of V at most once. We say that a cycle c = (C, η) has length n iff |C| = n.

We extend the notion of a cycle of a graph G to Mealy machines M =
(I,O, T, tI , δ, λ), such that c is a cycle of M iff c is a cycle of the graph (T,E)
for E = {(t, t′) | ∃ν ∈ 2I . δ(t, ν) = t}. Thus, we ignore the input labels of the
edges of M. The set of all cycles of a Mealy machine M is denoted by C(M).

A universal co-Büchi automaton A is a tuple (Σ,Q, qI ,Δ,R), where Σ is the
alphabet, Q is a finite set of states, q0 ∈ Q is the initial state, Δ ⊆ Q × Σ × Q
is the transition relation and R ⊆ Q is the set of rejecting states. A run r =
(q0, σ0)(q1, σ1)(q2, σ2) . . . ∈ (Q × Σ)ω of A is an infinite sequence such that
q0 = qI and (qn, σn, qn+1) ∈ Δ for all n ∈ N. A run r is accepting if it has a suffix
qnqn+1qn+2 . . . ∈ (Q \R)ω for some n ∈ N. An infinite word α ∈ Σω is accepted
by A if all corresponding runs, i.e., all runs r = (q0, σ0)(q1, σ1)(q2, σ2) . . . with
α = σ0σ1σ2 . . ., are accepting. The language L(A) of A is the set of all α ∈ Σω,
accepted by A.

122 B. Finkbeiner and F. Klein

The run graph G of a universal co-Büchi automaton A = (2I∪O, Q, qI ,Δ,R)
and a Mealy machine M = (I,O, T, tI , δ, λ) is a directed graph G = (T ×Q,E),
with E = {((t, q), (t′, q′)) | ∃σ. δ(t, I∩σ) = t′, λ(t, I∩σ) = O ∩ σ, (q, σ, q′) ∈ Δ}.
A vertex (t, q) of G is rejecting iff q ∈ R. A run graph is accepting iff there is no
cycle of G, which contains a rejecting vertex. If the run graph is accepting, we
say, M is accepted by A.

3 Bounds on the Number of Cycles

Our goal is to synthesize systems that have a simple structure. System qual-
ity most certainly has other dimensions as well, but structural simplicity is a
property of interest for most applications.

The purpose of this section is to give theoretical arguments why the number
of cycles is a good measure: we show that the number of cycles may explode
even in cases where the number of states is small, and even if the specification
enforces a large implementation, there may be a further explosion in the number
of cycles. This indicates that bounding the number of cycles is important, if
one wishes to have a structurally simple implementation. On the other hand, we
observe that bounding the number of states alone is not sufficient in order to
obtain a simple structure.

Similar observations apply to modern programming languages, which tend
to be much better readable than transition systems, because their control con-
structs enforce a simple cycle structure. Standard synthesis techniques construct
transition systems, not programs, and therefore loose this advantage. With our
approach, we get closer to the control structure of a program, without being
restricted to a specific programming language.

3.1 Upper Bounds

First, we show that the number of cycles of a Mealy machine M, implementing
an LTL specification ϕ, is bounded triply exponential in the size of ϕ. To this
end, we first bound the number of cycles of an arbitrary graph G with bounded
outdegree.

On graphs with arbitrary outdegree, the maximal number of cycles is given
by a fully connected graph, where each cycle describes a permutation of states,
and vice versa. Hence, using standard math we obtain an upper bound of 2n log n

cycles for a graph with n states. However, our proof uses a more involved argu-
ment to improve the bound even further down to 2n log(m+1) for graphs with
bounded outdegree m. Such an improvement is desirable, as for LTL the state
graph explodes in the number of states, while the outdegree is constant in the
number of input and output signals.

Lemma 1. Let G = (V,E) be a directed graph with |V | = n and with maximal
outdegree m. Then G has at most 2n log(m+1) cycles.

Proof. We show the result by induction over n. The base case is trivial, so let
n > 1 and let v ∈ V be some arbitrary vertex of G. By induction hypothesis,

Bounded Cycle Synthesis 123

the subgraph G′, obtained from G by removing v, has at most 2(n−1) log(m+1)

cycles. Each of these cycles is also a cycle in G, thus it remains to consider
the cycles of G containing v. In each of these remaining cycles, v has one of
m possible successors in G′ and from each such successor v′ we have again
2(n−1) log(m+1) possible cycles in G′ returning to v′. Hence, if we redirect these
cycles to v instead of v′, i.e., we insert v before v′ in the cycle, then we cover
all possible cycles of G containing v1. All together, we obtain an upper bound
of 2(n−1) log(m+1) + m · 2(n−1) log(m+1) = 2n log(m+1) cycles in G. ��
We obtain an upper bound on the number of cycles of a Mealy machine M.

Lemma 2. Let M be a Mealy machine. Then |C(M)| ∈O(2|M|·|I|).

Proof. The Mealy machine M has an outdegree of 2|I| and, thus, by Lemma 1,
the number of cycles is bounded by 2|M| log(2|I|+1) ∈O(2|M|·|I|). ��
Finally, we are able to derive an upper bound on the implementations realizing
a LTL specification ϕ.

Theorem 1. Let ϕ be a realizable LTL specification. Then there is a Mealy
machine M, realizing ϕ, with at most triply exponential many cycles in |ϕ|.
Proof. From [9,15,16] we obtain a doubly exponential upper bound in |ϕ| on the
size of M. With that, applying Lemma2 yields the desired result. ��

3.2 Lower Bounds

It remains to prove that the bound of Theorem1 is tight. To this end, we show
that for each n ∈ N there is a realizable LTL specification ϕ with |ϕ| ∈ Θ(n),
such that every implementation of ϕ has at least triply exponential many cycles
in n. The presented proof is inspired by [1], where a similar argument is used to
prove a lower bound on the distance of the longest path through a synthesized
implementation M. We start with a gadget, which we use to increase the number
of cycles exponentially in the length of the longest cycle of M.

Lemma 3. Let ϕ be a realizable LTL specification, for which every implemen-
tation M has a cycle of length n. Then there is a realizable specification ψ, such
that every Mealy machine M′ implementing ψ contains at least 2n many cycles.

Proof. Let a and b be a fresh input and output signals, respectively, which do
not appear in ϕ, and let M = (I,O, T, tI , δ, λ) be an arbitrary implementation
of ϕ. We define ψ ::= ϕ ∧�(a ↔ © b) and construct the implementation M′ as

M′ = (I ∪ {a},O ∪ {b}, T × 2{b}, (tI , ∅), δ′, λ′),

where λ′((t, s), ν) = λ(t, I ∩ ν) ∪ s and

δ′((t, s), ν) =

{
(δ(t, I ∩ ν), ∅) if a ∈ ν

(δ(t, I ∩ ν), {b}) if a /∈ ν

1 Note that not every such edge needs to exist for a concrete given graph. However,
in our worst-case analysis, every possible cycle is accounted for.

124 B. Finkbeiner and F. Klein

We obtain that M′ is an implementation of ψ. The implementation remembers
each input a for one time step and then outputs the stored value. Thus, it satisfies
� (a ↔ © b). Furthermore, M′ still satisfies ϕ. Hence, ψ must be realizable, too.

Next, we pick an arbitrary implementation M′′ of ψ, which must exist accord-
ing to our previous observations. Then, after projecting away the fresh signals
a and b from M′′, we obtain again an implementation for ϕ, which contains a
cycle (C, η) of length n, i.e., C = {t1, t2, . . . , tn}. We obtain that M′′ contains
at least the cycles

C = {({(ti, f(ti)) | i ∈ {1, 2, . . . n}}, (t, s) �→ (η(t), f(η(t)))) | f : C → 2{b}},

which concludes the proof, since |C| = 2n. ��

Now, with Lemma 3 at hand, we are ready to show that the aforementioned lower
bounds are tight. The final specification only needs the temporal operators ©,
� and , i.e., the bound already holds for a restricted fragment of LTL.

Theorem 2. For every n > 1, there is a realizable specification ϕn with |ϕn| ∈
Θ(n), for which every implementation Mn has at least triply exponential many
cycles in n.

Proof. According to Lemma 3, it suffices to find a realizable ϕn, such that
ϕn contains at least one cycle of length doubly exponential in n. We choose

ϕn ϕn

ϕn

prem con

::= (
n∧

i=1

(ai → bi) →
n∧

i=1

(ci → di)) ↔ s

with I = Ia ∪ Ib ∪ Ic ∪ Id and O = {s}, where Ix = {x1, x2, . . . , xn}. The
specification describes a monitor, which checks whether the invariant ϕprem

n →ϕcon
n over the input signals I is satisfied or not. Thereby, satisfaction is signaled

by the output s, which needs to be triggered infinitely often, as long as the
invariant stays satisfied.

In the following, we denote a subset x ⊆ Ix by the n-ary vector �x over {0, 1},
where the i-th entry of �x is set to 1 if and only if xi ∈ x.

The specification ϕn is realizable. First, consider that to check the fulfillment
of ϕprem

n (ϕcon
n), an implementation M needs to store the set of all requests �a (�c),

whose 1-positions have not yet been released by a corresponding response �b(�d).
Furthermore, to monitor the complete invariantϕprem

n → ϕcon
n ,M has to guess

at each point in time, whether ϕprem
n will be satisfied in the future (under the cur-

rent request �a), or not. To realize this guess, M needs to store a mapping f , which
maps each open request �a to the corresponding set of requests �c2. This way, M
can look up the set of requests �c, tracked since the last occurrence of �a, whenever �a
gets released by a corresponding vector �b. If this is the case, it continues to moni-
tor the satisfaction of ϕcon

n (if not already satisfied) and finally adjusts the output

2 Our representation is open for many optimizations. However, they will not affect the
overall complexity result. Thus, we ignore them for the sake of readability here.

Bounded Cycle Synthesis 125

signal s, correspondingly. Note that M still has to continuously update and store
the mapping f , since the next satisfaction of ϕprem

n may already start while the
satisfaction of current ϕcon

n is still checked. There are double exponential many
such mappings f , hence, M needs to be at least doubly exponential in n.

It remains to show that every such implementation M contains a cycle of
at least doubly exponential length. By the aforementioned observations, we can
assign each state of M a mapping f , that maps vectors �a to sets of vectors �c.
By interpreting the vectors as numbers, encoded in binary, we obtain that
f : {1, 2, . . . , 2n} �→ 2{1,2,...,2n}. Next, we again map each such mapping f to
a binary sequence bf = b0b1 . . . bm ∈ {0, 1}m with m = 2n. Thereby, a bit bi of
bf is set to 1 if and only if i ∈ f(i). It is easy to observe, that if two binary
sequences are different, then their related states have to be different as well.

To conclude the proof, we show that the environment has a strategy to manip-
ulate the bits of associated sequences bf via the inputs I.

To set bit bi, the environment chooses the requests �a and �c such that they
represent i in binary. The remaining inputs are fixed to �b = �d = �0. Hence, all
other bits are not affected, as possible requests of previous �a and �c remain open.

To reset bit bi, the environment needs multiple steps. First, it picks �a =
�c = �d = �0 and �b = �1. This does not affect any bit of the sequence bf , since
all requests introduced through vectors �c are still open. Next, the environment
executes the aforementioned procedure to set bit bj for every bit currently set to
1, except for the bit bi, it wants to reset. This refreshes the requests introduced
by previous vectors �a for every bit, except for bi. Furthermore, it does not affect
the sequence bf . Finally, the environment picks �a = �b = �c = �0 and picks �d such
that it represents i in binary. This removes i from every entry in f , but only
resets bi, since all other bits are still open due to the previous updates.

With these two operations, the environment can enforce any sequences of
sequences bf , including a binary counter counting up to 22

n

. As different states
are induced by the different sequences, we obtain a cycle of doubly exponential
length in n by resetting the counter at every overflow. ��

3.3 The Trade-Off Between States and Cycles

We conclude this section with some observations regarding tradeoffs between the
problem of synthesizing implementations, which are minimal in the number of
states, versus the problem of synthesizing implementations, which are minimal
in the number of cycles. The main question we answer, is whether we can achieve
both: minimality in the number of states and minimality in the number of cycles.
Unfortunately, this is not possible, as shown by Theorem3.

Theorem 3. For every n > 1, there is a realizable LTL specification ϕn with
|ϕ| ∈ Θ(n), such that

– there is an implementation of ϕ consisting of n states and
– there is an implementation of ϕ containing m cycles,
– but there is no implementation of ϕ with n states and m cycles.

126 B. Finkbeiner and F. Klein

t0 t1

t2

t′2

· · ·

· · ·

tk

t′k

t∗∗/{c}
∅/∅

{a}/∅

∅/∅

{a}/∅

∅/{b}

{a}/{b}

∅/∅

{a}/∅

∅/{b}

{a}/{b}

∗/{b}

∗/∅

∗/{b}

∗/∅

∗/{c}

Fig. 3. The Mealy automata Mn (red/dotted) and M′
n (blue/dashed). Solid edges are

shared between both automata.

Consider the specification

ϕn = (¬b ∧ c) ∧©k+2(¬b ∧ c) ∧
k∧

i=1

©i(¬c ∧©¬c ∧ (a ↔ © b))

over I = {a} and O = {b, c}, where ©i denotes i times the application of ©. The
specification ϕn is realizable with at least n = 2k + 1 states. The corresponding
Mealy machine Mn is depicted in Fig. 3. However, Mn has m = 2k many cycles.
This blowup can be avoided by spending the implementation at least one more
state, which reduces the number of cycles to m = 1. The result M′

n is also
depicted in Fig. 3. ��

Our results show that the number of cycles can explode (even more so than the
number of states), and that sometimes this explosion is unavoidable. However,
the results also show that there are cases, where the cycle count can be improved
by choosing a better structured solution. Hence, it is desirable to have better
control over the number of cycles that appear in an implementation. In the
remainder of the paper, we show how to achieve this control.

4 Bounding the Cycles

In this section, we show how to synthesize an implementation M from a given
LTL specification ϕ, while giving a guarantee on the size and the number of
cycles of M. We first show how to guarantee a bound on the number of states
of M, by reviewing the classical Bounded Synthesis approach. Our encoding
uses Mealy machines as implementations, and Boolean Satisfiability (SAT) as
the underlying constraint system.

We then review the classical algorithm to count the cycles of M and show
how this algorithm gets embedded into a constraint system, such that we obtain
a guarantee on the number of cycles of M.

Bounded Cycle Synthesis 127

4.1 Bounded Synthesis

In the bounded synthesis approach [9], we first translate a given LTL
specification ϕ into an equivalent universal co-Büchi automaton A, such that
L(A) = L(ϕ). Thus, we reduce the problem to finding an implementation M
that is accepted by A, i.e., we look for an implementation M such that the run
graph of M and A contains no cycle with a rejecting vertex. This property is
witnessed by a ranking function, which annotates each vertex of G by a natural
number that bounds the number of possible visits to rejecting states. The anno-
tation itself is bounded by n · k, where n is the size bound on M and k denotes
the number or rejecting states of A.
Fix some set of states T with |T | = n and let A = (2I∪O, Q, qI ,Δ,R). Then, to
guess a solution within SAT, we introduce the following variables:

– trans(t, ν, t′) for all t, t′ ∈ T and ν ∈ 2I , for the transition relation of M.
– label(t, ν, x) for all t ∈ T , ν ∈ 2I and x ∈ O, for the labels of each transition.
– rgstate(t, q) for all t ∈ T and q ∈ Q, to denote the reachable states of the

run graph G of M and A. Only reachable states have to be annotated.
– annotation(t, q, i) for all t ∈ T , q ∈ Q and 0 < i ≤ log(n · k), denoting the

annotation of a state (t, q) of G. Thereby, we use a logarithmic number of bits
to encode the annotated value in binary. We use annotation(t, q) ◦ m for
◦ ∈ {<,≤,=,≥, >}, to denote an appropriate encoding of the relation of the
annotation to some value m or other annotations annotation(t′, q′).

Given a universal co-Büchi automaton A and a bound n on the states of the
resulting implementation, we encode the Bounded Synthesis problem via the
SAT formula FBS(A, n), consisting of the following constraints:

– The target of every transition is unambiguous:
∧

t∈T, ν∈2I
exactlyOne({trans(t, v, t′) | t′ ∈ T})

where exactelyOne : X �→ B(X) returns a SAT query, which ensures that
among all variables of the set X exactly one is true and all others are false.

– The initial state (tI , qI) of the run graph for some arbitrary, but fix, tI ∈ T
is reachable and annotated by one. Furthermore, all annotations are bounded
by n · k:

rgstate(1, 1) ∧ annotation(1, 1) = 1 ∧
∧

t∈T, q∈Q

annotation(t, q) ≤ n · k

– Each annotation of a vertex of the run graph bounds the number of visited
accepting states, not counting the current vertex itself:

∧

t∈T, q∈Q

rgstate(t, q) →
∧

σ∈2Σ

label(t, σ) →
∧

t′∈T

trans(t, I ∩ σ, t′) →

128 B. Finkbeiner and F. Klein

∧

q′∈Δ(q,σ)

rgstate(t′, q′) ∧ annotation(t, q) ≺q annotation(t′, q′)

where ≺q equals < if q ∈ R and equals ≤ otherwise. Furthermore, we use
the function label(t, σ) to fix the labeling of each transition, i.e., label(t, σ) =∧

x∈O∩σ label(t, I ∩ σ, x) ∧
∧

x∈O�σ ¬label(t, I ∩ σ, x).

Theorem 4 (Bounded Synthesis [9]). For each bound n ∈ N and each uni-
versal co-Büchi automaton A, the SAT formula FBS(A, n) is satisfiable if and
only if there is a Mealy machine M with |M| = n, which is accepted by A.

4.2 Counting Cycles

Before we bound the number of cycles of a Mealy machine M, we review
Tiernan’s classical algorithm [17] to count the number of cycles of a directed
graph G. The algorithm not only gives insights into the complexity of the prob-
lem, but also contains many inspirations for our latter approach.

Algorithm 1. Given a directed graph G = (V,E), we count the cycles of G using
the following algorithm:

(1) Initialize the cycle counter c to c := 0 and some set P to P := ∅.
(2) Pick some arbitrary vertex vr of G, set v := vr and P := {vr}.
(3) For all edges (v, v′) ∈ E, with v′ /∈ P \{vr}:

(3a) If v′ = vr, increase c by one.
(3b) Otherwise, add v′ to P and recursively execute (3). Afterwards, reset P

to its value before the recursive call.
(4) Obtain the sub-graph G′, by removing vr from G:

(4a) If G′ is empty, return c.
(4b) Otherwise, continue from (2) with G′.

The algorithm starts by counting all cycles that contain the first picked vertex vr.
This is done by an unfolding of the graph into a tree, rooted in vr, such that
there is no repetition of a vertex on any path from the root to a leaf. The number
of vertices that are connected to the root by an edge of E then represents the
corresponding number of cycles through vr. The remaining cycles of G do not
contain vr and, thus, are cycles of the sub-graph G′ without vr, as well. Hence,
we count the remaining cycles by recursively counting the cycles of G′. The
algorithm terminates as soon as G′ gets empty.

The algorithm is correct [17], but has the drawback, that the unfolded trees,
may become exponential in the size of the graph, even if none of their vertices
is connected to the root, i.e., even if there is no cycle to be counted. For an
example consider the induced graph of M′

n, as depicted in Fig. 3. However, this
drawback can be avoided by first reducing the graph to all its strongly connected
components (SCCs) and then by counting the cycles of each SCC separately
[13,18]. A cycle never leaves an SCC of the graph.

As a result, we obtain an improved algorithm, which is exponential in the
size of G, but linear in the number of cycles m. Furthermore, the time between
two detections of a cycle, during the execution, is bounded linear in the size of
the graph G.

Bounded Cycle Synthesis 129

4.3 Bounded Cycle Synthesis

We combine the insights of the previous sections to obtain a synthesis algorithm,
which not only bounds the number of states of the resulting implementation M
but also bounds the number of cycles of M. We use the unfolded trees from the
previous section as our witnesses.

We call a tree that witnesses m cycles in G, all containing the root r of the
tree, a witness-tree Tr,m of G. Formally, a witness-tree Tr,m of G = (V,E) is
a labeled graph Tr,m = ((W,B ∪ R), τ), consisting of a graph (W,B ∪ R) with
m = |R| and a labeling function τ : W → V , such that:

1. The edges are partitioned into blue edges B and red edges R.
2. All red edges lead back to the root:

R ⊆ W × {r}
3. No blue edges lead back to the root:

B ∩ W × {r} = ∅
4. Each non-root has at least one blue incoming edge:

∀w′ ∈ W \{r}. ∃w ∈ W. (w,w′) ∈ B
5. Each vertex has at most one blue incoming edge:

∀w1, w2, w ∈ W. (w1, w) ∈ B ∧ (w2, w) ∈ B ⇒ w1 = w2

6. The graph is labeled by an unfolding of G:
∀w,w′ ∈ B ∪ R. (τ(w), τ(w′)) ∈ E,

7. The unfolding is complete:
∀w ∈ W. ∀v′ ∈ V. (τ(w), v′) ∈ E ⇒ ∃w′ ∈ W. (w,w′) ∈ B ∪R∧ τ(w′) = v′

8. Let wi, wj ∈ W be two different vertices that appear on a path from the root
to a leaf in the r-rooted tree (W,B)3. Then the labeling of wi and wj differs,
i.e., τ(vi) �= τ(vj).

9. The root of the tree is the same as the corresponding vertex of G, i.e., τ(r) = r.

Lemma 4. Let G = (V,E) be a graph consisting of a single SCC, r ∈ V be
some vertex of G and m be the number of cycles of G containing r. Then there
is a witness-tree Tr,m = ((W,B ∪ R), τ) of G with |W | ≤ m · |V |.

Proof. We construct Tr,m according to the strategy induced by Algorithm 1,
where an edge is colored red if and only if it leads back to the root. The con-
structed tree satisfies all conditions 1–9. By correctness of Algorithm 1, we have
that |R| = m.

Now, for the sake of contradiciton, assume |W | > m · |V |. First we observe,
that the depth of the tree (W,B) must be bounded by |V | to satisfy Condition 8.
Hence, as there are at most m red edges in Tr,m, there must be a vertex w ∈ W
without any outgoing edges. However, since G is a single SCC, this contradicts
the completeness of Tr,m (Condition 7). ��

Lemma 5. Let G = (V,E) be a graph consisting of a single SCC and let Tr,m

be a witness-tree of G. Then there are at most m cycles in G that contain r.
3 Note that the tree property is enforced by Conditions 3–5.

130 B. Finkbeiner and F. Klein

Proof. Let Tr,m = ((W,R ∪ B), τ). Assume for the sake of contradiction that G
has more than m cycles and let c = (C, η) be an arbitrary such cycle. By the
completeness of Tr,m, there is path w0w1 . . . w|C|−1 with w0 = r and τ(wi) =
ηi(r) for all 0 ≤ i < |C|. From wi �= r and Condition 2, it follows (wi−1, wi) ∈ B
for all 0 < i < |C|. Further, η|C|(r) = r and thus (w|C|−1, w0) ∈ R. Hence, by
the tree shape of (W,B), we get |R| > m, yielding the desired contradiction. ��

From Lemmas 4 and 5 we derive that Tr,m is a suitable witness to bound the
number of cycles of an implementation M. Furthermore, from Lemma 4 we also
obtain an upper bound on the size of Tr,m.
We proceed with our final encoding. Therefore, we first construct a simple
directed graph G out of the implementation M. Then, we guess all the sub-
graphs, obtained from G via iteratively removing vertices, and split them into
their corresponding SCCs. Finally, we guess the witness-tree for each such SCC.

To keep the final SAT encoding compact, we even introduce some further
optimizations. First, we do not need to introduce a fresh copy for each SCC, since
the SCC of a vertex is always unique. Thus, it suffices to guess an annotation for
each vertex, being unique for each SCC. Second, we have to guess n trees Ti,ri

,
each one consisting of at most i·n vertices, such that the sum of all i is equal to the
overall number of cycles m. One possible solution would be to overestimate each i
by m. Another possibility would be to guess the exact distribution of the cycles
over the different witness-trees Ti,ri

. However, there is a smarter solution: we
guess all trees together in a single graph bounded by m ·n. Additionally, to avoid
possible interleavings, we add an annotation of each vertex by its corresponding
witness-tree Ti,ri

. Hence, instead of bounding the number of each Ti,ri
separately

by i, we just bound the number of all red edges in the whole forest by m. This
way, we not only reduce the size of the encoding, but also skip the additional
constrains, which would be necessary to sum the different witness-tree bounds i
to m, otherwise.

Let T be some ordered set with |T | = n and S = T × {1, 2, . . . ,m}. We use
T to denote the vertices of G and S to denote the vertices of the forest of Ti,ri

s.
Further, we use M = T × {1} to denote the roots and N = S \M to denote the
non-roots of the corresponding trees. We introduce the following variables:

– edge(t, t′) for all t, t′ ∈ T , denoting the edges of the abstraction of M to G.
– bedge(s, s′) for all s ∈ S and s′ ∈ N , denoting a blue edge.
– redge(s, s′) for all s ∈ S and s′ ∈ M , denoting a red edge.
– wtree(s, i) for all s ∈ S, 0 < i ≤ log n, denoting the witness-tree of each s.

As before, we use wtree(s)◦x to relate values with the underlying encoding.
– visited(s, t) for all s ∈ S and t ∈ T , denoting the set of all vertices t, already

visited at s, since leaving the root of the corresponding witness-tree.
– rbound(c, i) for all 0 < c ≤ m, 0 < i ≤ log(n ·m), denoting an ordered list of

all red edges, bounding the red edges of the forest.
– scc(k, t, i) for all 0 < k ≤ n, t ∈ T, and 0 ≤ i < log n, denoting the SCC of t in

the k-th sub-graph of G. The sub-graphs are obtained by iteratively removing
vertices of T , according to the pre-defined order. This way, each sub-graph
contains exactly all vertices that are larger than the root.

Bounded Cycle Synthesis 131

Note that by the definition of S we introduce m explicit copies for each vertex
of G. This is sufficient, since each cycle contains each vertex at most once. Thus,
the labeling τ of a vertex s can be directly derived from the first component of s.

Given a universal co-Büchi automaton A, a bound n on the states of the
resulting implementation M, and a bound m on the number of cycles of M, we
encode the Bounded Cycle Synthesis problem via the SAT formula FBS(A, n)∧
FCS(A, n,m)∧FSCC(n). The constraints of FCS(A, n,m), bounding the cycles
of the system, are given by Table 1. The constraints of FSCC(n), enforcing that
each vertex is labeled by a unique SCC, can be found in the technical report [8].

Theorem 5. For each pair of bounds n,m ∈ N and each universal co-Büchi
automaton A with |A| = k, the formula F = FBS(A, n)∧FCS(A, n,m)∧FSCC

is satisfiable if and only if there is a Mealy machine M with |M| = n and
|C(M)| = m, accepted by A. Furthermore, F consists of x variables with x ∈
O(n3+ n2(m2+ 2|I|)+n|O|+nk log(nk)) and |F| ∈O(n3+ n2(m2+ k|Σ|)).

5 Experimental Results

We have implemented the Bounded Cycle Synthesis approach in our tool
BoWSer, the Bounded Witness Synthesizer, and compared it against standard
Bounded Synthesis and Acacia+ (v2.3) [6,7]. To ensure a common encoding, we
used BoWSer for both, the Bounded Synthesis and the Bounded Cycle Synthesis
approach. Our tool uses LTL3BA (v1.0.2) [3] to convert specifications to univer-
sal co-Büchi automata. The created SAT queries are solved by MiniSat (v.2.2.0)
[5] and clasp (v.3.1.4) [10], where the result of the faster solver is taken.

The benchmarks are given in TLSF [11] and represent a decomposition of
Arm’s Advanced Microcontroller Bus Architecture (AMBA) [2]. They are created
from the assumptions and guarantees presented in [12], which were split into
modules, connected by new signals. A detailed description of the benchmarks is
given in [11].

All experiments were executed on a Unix machine, operated by a 64-bit kernel
(v4.1.12) running on an Intel Core i7 with 2.8 GHz and 8 GB RAM. Each exper-
iment had a time limit of 1000 s and a memory limit of 8 GB. When counting
cycles of a solution, the limit was set to 10000000 cycles.

The results of the evaluation are shown in Table 2, which displays the sizes
of the intermediate universal co-Büchi tree automata AUCT , the sizes of the syn-
thesized implementations M, the number of cycles of each implementation M,
and the overall synthesis time. Thereby, for each instance, we guessed the mini-
mal number of states for the Bounded Synthesis approach and, additionally, the
minimal number of cycles for the Bounded Cycle Synthesis approach, to obtain
a single satisfiable instance. Further, to verify the result, we also created the
unsatisfiable instance, where the state bound was decreased by one in the case
of Bounded Synthesis and the cycle bound was decreased by one in the case of
Bounded Cycle Synthesis. Note that these two instances already give an almost
complete picture, since for increased and decreased bounds the synthesis times

132 B. Finkbeiner and F. Klein

Table 1. Constraints of the SAT formula FCS(A, n,m).

behave monotonically. Hence, increasing the bound beyond the first realizable
instance increases the synthesis time. Decreasing it below the last unsatisfiable
instance decreases the synthesis time. The results for the TBURST4 component
are additionally depicted in Fig. 1.

On most benchmarks, Acacia+ solves the synthesis problem the fastest, fol-
lowed by Bounded Synthesis and our approach. (On some benchmarks, Bounded

Bounded Cycle Synthesis 133

Table 2. Results of the tools LTL3BA, Aca(cia)+ and BoWSer. The LTL3BA tool was
used to generate the universal co-Büchi tree automata AUCT . The Bo(unded) Sy(nthesis)
and Bo(unded) Cy(cle Synthesis) encodings were generated by BoWSer.

Synthesis outperforms Acacia+.) Comparing the running times of Bounded Syn-
thesis and Bounded Cycle Synthesis, the overhead for bounding the number of
cycles is insignificant on most benchmarks. The two exceptions are ENCODE,
which requires a fully connected implementation, and TBURST4, where the
reduction in the number of cycles is substantial. In terms of states and cycles,
our tool outperforms Bounded Synthesis on half of the benchmarks and it out-
performs Acacia+ on all benchmarks.

The results of Acacia+ show that the number of cycles is indeed an explosive
factor. However, they also show that this explosion can be avoided effectively.

6 Conclusions

We have introduced the Bounded Cycle Synthesis problem, where we limit the
number of cycles in an implementation synthesized from an LTL specification.
Our solution is based on the construction of a witness structure that limits the
number of cycles. The existence of such a witness can be encoded as a SAT
problem. Our experience in applying Bounded Cycle Synthesis to the synthesis
of the AMBA bus arbiter shows that the approach leads to significantly better
implementations. Furthermore, the performance of our prototype implementa-
tion is sufficient to synthesize the components (in a natural decomposition of
the specification) in reasonable time.

134 B. Finkbeiner and F. Klein

Both Bounded Synthesis and Bounded Cycle Synthesis can be seen as the
introduction of structure into the space of implementations. Bounded Synthe-
sis structures the implementations according to the number of states, Bounded
Cycle Synthesis additionally according to the number of cycles. The double expo-
nential blow-up between the size of the specification and the number of states,
and the triple exponential blow-up between the size and the number of cycles
indicate that, while both parameters provide a fine-grained structure, the num-
ber of cycles may even be the superior parameter. Formalizing this intuition and
finding other useful parameters is a challenge for future work.

Our method does not lead to a synthesis algorithm in the classical sense,
where just a specification is given and an implementation or an unsatisfiability
result is returned. In our setting, the bounds are part of the input, and have to be
determined beforehand. In Bounded Synthesis, the bound is usually eliminated
by increasing the bound incrementally. With multiple bounds, the choice which
parameter to increase becomes non-obvious. Finding a good strategy for this
problem is a challenge on its own and beyond the scope of this paper. We leave
it open for future research.

References

1. Alur, R., La Torre, S.: Deterministic generators and games for LTL frag-
ments. ACM Trans. Comput. Log. 5(1), 1–25 (2004). http://doi.acm.org/10.1145/
963927.963928

2. ARM Ltd.: AMBA Specification (rev. 2) (1999). www.arm.com
3. Babiak, T., Křet́ınský, M., Řehák, V., Strejček, J.: LTL to Büchi automata

translation: fast and more deterministic. In: Flanagan, C., König, B. (eds.)
TACAS 2012. LNCS, vol. 7214, pp. 95–109. Springer, Heidelberg (2012).
http://dx.doi.org/10.1007/978-3-642-28756-5 8

4. Bloem, R., Chatterjee, K., Henzinger, T.A., Jobstmann, B.: Better qual-
ity in synthesis through quantitative objectives. In: Bouajjani, A., Maler, O.
(eds.) CAV 2009. LNCS, vol. 5643, pp. 140–156. Springer, Heidelberg (2009).
http://dx.doi.org/10.1007/978-3-642-02658-4 14

5. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004).
http://dx.doi.org/10.1007/978-3-540-24605-3 37

6. Filiot, E., Jin, N., Raskin, J.: Antichains and compositional algorithms for LTL
synthesis. Form. Methods Syst. Des. 39(3), 261–296 (2011). http://dx.doi.org/
10.1007/s10703-011-0115-3

7. Filiot, E., Jin, N., Raskin, J.: Exploiting structure in LTL synthesis. STTT 15(5–
6), 541–561 (2013). http://dx.doi.org/10.1007/s10009-012-0222-5

8. Finkbeiner, B., Klein, F.: Bounded cycle synthesis. CoRR abs/1605.01511 (2016).
http://arxiv.org/abs/1605.01511

9. Finkbeiner, B., Schewe, S.: Bounded synthesis. STTT 15(5–6), 519–539 (2013).
http://dx.doi.org/10.1007/s10009-012-0228-z

10. Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: clasp: a conflict-driven
answer set solver. In: Baral, C., Brewka, G., Schlipf, J. (eds.) LPNMR 2007. LNCS
(LNAI), vol. 4483, pp. 260–265. Springer, Heidelberg (2007). http://dx.doi.org/
10.1007/978-3-540-72200-7 23

http://doi.acm.org/10.1145/963927.963928
http://doi.acm.org/10.1145/963927.963928
www.arm.com
http://dx.doi.org/10.1007/978-3-642-28756-5_8
http://dx.doi.org/10.1007/978-3-642-02658-4_14
http://dx.doi.org/10.1007/978-3-540-24605-3_37
http://dx.doi.org/10.1007/s10703-011-0115-3
http://dx.doi.org/10.1007/s10703-011-0115-3
http://dx.doi.org/10.1007/s10009-012-0222-5
http://arxiv.org/abs/1605.01511
http://dx.doi.org/10.1007/s10009-012-0228-z
http://dx.doi.org/10.1007/978-3-540-72200-7_23
http://dx.doi.org/10.1007/978-3-540-72200-7_23

Bounded Cycle Synthesis 135

11. Jacobs, S., Klein, F.: A high-level LTL synthesis format: TLSF v1.1 (Extended
Version). CoRR abs/1604.02284 (2016). http://arxiv.org/abs/1604.02284

12. Jobstmann, B.: Applications and optimizations for LTL synthesis. Ph.D. thesis,
Graz University of Technology, March 2007

13. Johnson, D.B.: Finding all the elementary circuits of a directed graph. SIAM J.
Comput. 4(1), 77–84 (1975). http://dx.doi.org/10.1137/0204007

14. Kupferman, O.: Recent challenges and ideas in temporal synthesis. In: Bieliková,
M., Friedrich, G., Gottlob, G., Katzenbeisser, S., Turán, G. (eds.) SOFSEM
2012. LNCS, vol. 7147, pp. 88–98. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-27660-6 8

15. Kupferman, O., Vardi, M.Y.: Safraless decision procedures. In: 46th Annual IEEE
Symposium on Foundations of Computer Science (FOCS 2005), 23–25 October
2005, Pittsburgh, PA, USA, Proceedings, pp. 531–542. IEEE Computer Society
(2005). http://dx.doi.org/10.1109/SFCS.2005.66

16. Piterman, N.: From nondeterministic Büchi and Streett automata to deterministic
parity automata. Log. Methods Comput. Sci. 3(3) (2007). http://dx.doi.org/10.
2168/LMCS-3(3:5)2007

17. Tiernan, J.C.: An efficient search algorithm to find the elementary cir-
cuits of a graph. Commun. ACM 13(12), 722–726 (1970). http://doi.acm.org/
10.1145/362814.362819

18. Weinblatt, H.: A new search algorithm for finding the simple cycles of
a finite directed graph. J. ACM 19(1), 43–56 (1972). http://doi.acm.org/
10.1145/321679.321684

http://arxiv.org/abs/1604.02284
http://dx.doi.org/10.1137/0204007
http://dx.doi.org/10.1007/978-3-642-27660-6_8
http://dx.doi.org/10.1007/978-3-642-27660-6_8
http://dx.doi.org/10.1109/SFCS.2005.66
http://dx.doi.org/10.2168/LMCS-3(3:5)2007
http://dx.doi.org/10.2168/LMCS-3(3:5)2007
http://doi.acm.org/10.1145/362814.362819
http://doi.acm.org/10.1145/362814.362819
http://doi.acm.org/10.1145/321679.321684
http://doi.acm.org/10.1145/321679.321684

Fast, Flexible, and Minimal CTL
Synthesis via SMT

Tobias Klenze1,2(B), Sam Bayless1, and Alan J. Hu1

1 University of British Columbia, Vancouver, Canada
{sbayless,ajh}@cs.ubc.ca

2 Technische Universität München, Munich, Germany
tobias.klenze@mytum.de

Abstract. CTL synthesis [8] is a long-standing problem with appli-
cations to synthesising synchronization protocols and concurrent pro-
grams. We show how to formulate CTL model checking in terms of
“monotonic theories”, enabling us to use the SAT Modulo Monotonic
Theories (SMMT) [5] framework to build an efficient SAT-modulo-CTL
solver. This yields a powerful procedure for CTL synthesis, which is
not only faster than previous techniques from the literature, but also
scales to larger and more difficult formulas. Additionally, because it is a
constraint-based approach, it can be easily extended with further con-
straints to guide the synthesis. Moreover, our approach is efficient at
producing minimal Kripke structures on common CTL synthesis bench-
marks.

1 Introduction

Computation Tree Logic (CTL) is widely used in the context of model checking,
where a CTL formula specifying a temporal property, such as safety or live-
ness, is checked for validity in a program or algorithm (represented by a Kripke
structure). Both the branching time logic CTL and its application to model
checking were first proposed by Clarke and Emerson [8]. In that work, they also
introduced a decision procedure for CTL satisfiability, which they applied to
the synthesis of synchronization skeletons, abstractions of concurrent programs
which are notoriously difficult to construct manually. Though CTL model check-
ing has been a phenomenal success, there have been fewer advances in the field
of CTL synthesis, due to its high complexity.

In CTL synthesis, a system is specified by a CTL formula, and the goal is
to find a model of the formula — a Kripke structure in the form of a transition
system in which states are annotated with sets of atomic propositions (so called
state properties). The most common motivation for CTL synthesis remains the
synthesis of synchronization for concurrent programs, such as mutual exclusion
protocols. In this setting, the Kripke structure is interpreted as a global state

Electronic supplementary material The online version of this chapter (doi:10.
1007/978-3-319-41528-4 8) contains supplementary material, which is available to
authorized users.

c© Springer International Publishing Switzerland 2016
S. Chaudhuri and A. Farzan (Eds.): CAV 2016, Part I, LNCS 9779, pp. 136–156, 2016.
DOI: 10.1007/978-3-319-41528-4 8

http://dx.doi.org/10.1007/978-3-319-41528-4_8
http://dx.doi.org/10.1007/978-3-319-41528-4_8

Fast, Flexible, and Minimal CTL Synthesis via SMT 137

machine in which each global state contains every process’s internal local state.
The CTL specification in this setting consists of both structural intra-process
constraints on local structures, and inter-process behavioral constraints on the
global structure (for instance, starvation freedom). If a Kripke structure is found
which satisfies the CTL specification, then one can derive from it the guarded
commands that make up the corresponding synchronization skeleton [4,8].

In this paper, we introduce a novel method for CTL synthesis. We build on
the recent introduction of SAT modulo Monotonic Theories (SMMT) [5], cre-
ating a CTL satisfiability procedure for the case where the number of states in
the Kripke structure is bounded in advance. (Note, however, that the under-
lying CTL model checking theory is for the standard, unbounded semantics of
CTL.) Due to the CTL small model property [12], in principle a bounded CTL-
SAT procedure yields a complete decision procedure for unbounded CTL-SAT,
but in practice, neither bounded approaches, nor classical tableau approaches,
have been scalable enough for completeness to be a practical concern. Rather,
our approach (like similar constraint-solver based techniques for CTL [10,14]
and LTL [15,17]) is appropriate for the case where a formula is expected to
be satisfiable by a Kripke structure with a modest number of states (∼100).
Nevertheless, we will show that our approach solves larger and more complex
satisfiable CTL formulas, including ones with a larger numbers of states, much
faster than existing bounded and unbounded synthesis techniques. This makes
our approach particularly appropriate for CTL synthesis.

In addition to being more efficient than existing techniques, our approach is
also capable of synthesizing minimal models. As we will discuss below, previous
CTL synthesis approaches were either incapable of finding minimal models [3,8],
or could not do so with comparable scalability to our technique [10,14].

The paper is structured as follows: We begin with a review of related work
in Sect. 2. To make this paper self-contained, we go over the theory behind SAT
Modulo Monotonic Theories in Sect. 3 and some challenges in applying it to
CTL. In the same section, we show how to utilize this framework for bounded
CTL synthesis. Section 4 explains the most important implementation details
and optimizations. The experimental results of Sect. 5 demonstrate that our
implementation, based on the open-source SMT solver MonoSAT1 for Boolean
monotonic theories, is able to outperform other approaches in two families of
synthesis benchmarks: one derived from mutual exclusion protocols, and the
other derived from readers-writers protocols.

2 Related Work

The original 1981 Clarke and Emerson paper introducing CTL synthesis [8] pro-
posed a tableau-based synthesis algorithm, and used this algorithm to construct
a 2-process mutex in which each process was guaranteed mutually exclusive
access to the critical section, with starvation freedom.

Subsequently, although there has been steady progress on the general CTL
synthesis problem, the most dramatic gains have been with techniques that
1 http://www.cs.ubc.ca/labs/isd/Projects/monosat/

http://www.cs.ubc.ca/labs/isd/Projects/monosat/

138 T. Klenze et al.

are structurally-constrained, taking a CTL formula along with some additional
‘structural’ information about the desired Kripke structure, not specified in CTL,
which is then leveraged to achieve greater scalability than generic CTL synthe-
sis techniques. For example, in 1998, Attie and Emerson [2,3] introduced a CTL
synthesis technique for the case where the Kripke structure is known to be com-
posed of multiple similar communicating processes. They used this technique to
synthesize a Kripke structure for a specially constructed 2-process version of the
CTL formula (a ‘pair-program’) in such a way that the produced Kripke struc-
ture could be safely generalized into an N-process solution. This allowed them
to produce a synchronization skeleton for a mutex with 1000 or more processes,
far larger than other techniques. However, while this process scales very well,
only certain CTL properties can be guaranteed to be preserved in the resulting
Kripke structure, and in general the Kripke structure produced this way may be
much larger than the minimal solution to the instance. In particular, EX and AX
properties are not preserved in this process [2].

The similar-process synthesis techniques of Attie and Emerson rely on a
generic CTL synthesis method to synthesize these pair-programs. As such,
improvements to the scalability or expressiveness of generic CTL synthesis meth-
ods can be directly applied to improving this pair-program synthesis technique.
Their use of the synthesis method from [8] yields an initially large Kripke struc-
ture that they minimize in an intermediate step. We note that our approach is
particularly suited for synthesizing such pair-programs, not merely for perfor-
mance reasons, but also because it is able to synthesize minimal models directly.

On the topic of finding minimal models, Bustan and Grumberg [7] introduced
a technique for minimizing Kripke structures. However, the minimal models that
our technique produces can in general be smaller than what can be achieved by
starting with a large Kripke structure and subsequently minimizing it. This is
because minimization techniques which are applied on an existing Kripke struc-
ture after its synthesis only yield a structure minimal with respect to equivalent
structures (for some definition of equivalence, e.g., strong or weak bisimulation).
This does not necessarily result in a structure that is the overall minimal model
of the original CTL formula. For this reason, techniques supporting the direct
synthesis of minimal models, such as ours, have an advantage over post-synthesis
minimization techniques.

In 2005, Heymans et al. [14] introduced a novel, constraint-based approach
to the general CTL synthesis problem. They created an extension of answer set
programming (ASP) that they called ‘preferential ASP’ and used it to generate a
2-process mutex with the added property of being ‘maximally parallel’, meaning
that each state has a (locally) maximal number of outgoing transitions (without
violating the CTL specification). They argued that this formalized a property
that was implicit in the heuristics of the original 1981 CTL synthesis algorithm,
and that it could result in Kripke structures that were easier to implement as
efficient concurrent programs. As the formulation in their paper does not require
additional structural constraints (though it can support them), it is a general
CTL synthesis method. Furthermore, being a constraint-based method, one can

Fast, Flexible, and Minimal CTL Synthesis via SMT 139

flexibly add structural or other constraints to guide the synthesis. However, the
scalability of their method was poor.

Subsequently, high performance ASP solvers [13] built on techniques from
Boolean satisfiability solvers were introduced, allowing ASP solvers to solve much
larger and much more difficult ASP formulas. In 2012, De Angelis, Pettorossi,
and Proietti [10] showed that (unextended) ASP solvers could also be used to
perform efficient bounded CTL synthesis, allowing them to use the high perfor-
mance ASP solver Clasp [13]. Similar to [3], they introduced a formulation for
doing CTL synthesis via ASP in the case where the desired Kripke structure is
composed of multiple similar processes. Using this approach, they synthesized
2-process and 3-process mutexes with properties at least as strong as the orig-
inal CTL specification from [3]. The work we introduce in this paper is also
a constraint-solver-based, bounded CTL-synthesis technique. However, we will
show that our approach scales to larger and more complex specifications than
previous work, while simultaneously avoiding the limitations that prevent those
approaches from finding minimal models.

Our approach is based on SAT Modulo Monotonic Theories (SMMT), intro-
duced by Bayless et al. in 2015 [5]. This is a technique for building lazy SMT
solvers [11,18] for a class of theories they defined as Boolean monotonic theories.
The restriction to Boolean monotonic theories appears rather limiting, but in
this paper, we will show how SMMT can be used to build an SMT solver for the
theory of CTL model checking. We will then show that this ‘SAT modulo CTL’
solver can perform efficient and scalable CTL synthesis. We provide experimen-
tal comparisons to state-of-the-art techniques showing that this SMT-approach
can find solutions to larger and more complex CTL formulas than comparable
techniques, and does so without the limitations and extra expert knowledge that
previous approaches require.

3 SAT Modulo Monotonic Theories for CTL

Bayless et al. [5] introduced techniques for building efficient SMT solvers for
Boolean monotonic theories (SMMT), which are defined as follows:

Definition 1 (Boolean Monotonic Theory). A theory T with signature Σ
is Boolean monotonic if and only if:

1. The only sort in Σ is Boolean;
2. all predicates in Σ are monotonic; and
3. all functions in Σ are monotonic.

A predicate P: {0, 1}n �→ {0, 1} is Boolean positive monotonic iff, for all i:
P (. . . , si−1, 0, si+1, . . .) → P (. . . , si−1, 1, si+1, . . .)

A predicate P: {0, 1}n �→ {0, 1} is Boolean negative monotonic iff, for all i:
P (. . . , si−1, 1, si+1, . . .) → P (. . . , si−1, 0, si+1, . . .)

The definition of monotonicity for a function F: {0, 1}n �→ P(S) (for some
set S) is the same as above, but with “⊆” instead of “→”.

140 T. Klenze et al.

Theories operating over only Booleans are atypical in the SMT literature, and
would appear at first glance to be highly restrictive. However, [5] showed that
many common graph properties, such as reachability and maximum flow, can
be expressed as Boolean monotonic theories, and that the resulting SMT solver
(implemented in the lazy SMT solver MonoSAT) performs well in practice.
Subsequently, MonoSAT has been extended to support theories of finite state
machines, bit-vectors, and additional graph properties including acyclicity and
connected component counts.

To see how [5] uses Boolean monotonic theories, consider the theory of graph
reachability as an example. In that theory, a set of Boolean atoms determine
which edges are included (enabled) in a finite graph. Reachability over such a
graph is monotonic with respect to those edge atoms: given a graph in which
node a reaches node b, a must still reach b after adding additional edges to
the graph. One challenge of implementing lazy SMT solvers is that efficient
solvers typically include theory propagation procedures that make deductions
from partial assignments. However, because reachability is Boolean monotonic,
two concrete graphs are sufficient to capture the space of possible graphs under a
partial assignment: Gunder, containing only edges that are enabled by the partial
assignment, and Gover, in which additionally all unassigned edges are enabled.
If a reachability predicate does not hold in Gover, then it can safely be deduced
that it does not hold in any extension of the partial assignment. Similarly, if it
holds in Gunder, then it holds in all extensions of the partial assignment. These
facts are used by MonoSAT to implement efficient theory propagation.

Below, we show that MonoSAT can be extended to support a theory of
CTL model checking, allowing MonoSAT to express predicates of the form
Modelφ,K(T,A), where φ is a CTL formula over atomic propositions P , and K
is a Kripke structure with a fixed set S of states, T is a vector of |S|2 Booleans
controlling which transitions are in K, and A is a vector of |S||P | Booleans con-
trolling which atomic propositions hold in each state. Modelφ,K(T,A) is True
if and only if the Kripke structure K is a model for φ under assignment to these
transition and state property variables.

However, we face an immediate challenge: CTL model checking is neither
monotonic with respect to the set T of transitions in the Kripke structure, nor
with respect to the set A of property assignments in each state. Consider, for
example, a two state Kripke structure with transitions between both states.
φ = (EF a ∧ ¬(AG a)) evaluates to False if atomic proposition a is in neither
state, evaluates to True if a is in one, but not the other state, and evaluates
to False if a is in both states (a similar argument can be made for the non-
monotonicity of Modelφ,K(T,A) with respect to T).

Our solution begins with the observation that each individual CTL
operator, considered on its own in a non-nested formula, is monotonic.
We will use this observation to construct an alternative predicate,
ModelApproxφ,K(T1, A1, T2, A2), over two separate assignments of transitions
and states to K. Unlike Modelφ,K , ModelApproxφ,K is Boolean monotonic, and
we will show that it can be used either to safely over-approximate the semantics

Fast, Flexible, and Minimal CTL Synthesis via SMT 141

of CTL, or to safely under-approximate them. By combining this new monotonic
predicate with additional constraints on its arguments, we will then recover
the semantics required to support our original CTL model checking predicate
Modelφ,K(T,A).

3.1 A Monotonic Approximation of CTL

Below, we restrict our attention to the existentially quantified CTL operators
EX, EG and EU, along with propositional operators (¬,∧,∨), as well as True and
False, which are well known to form an adequate set. Any CTL formula can be
efficiently converted into a logically equivalent existential normal form (ENF) in
terms of these operators, linear in the size of the original formula [16].

First, we show that CTL formulas consisting of a single operator EX p, EG p
or p EU q have each, individually, a Boolean positive monotonic satisfiability
predicate (where p, q are atomic propositions). We let solves,φ(T,A) be the pred-
icate that denotes whether or not the formula φ holds in the initial state s of
the Kripke structure determined by the vector of Booleans T (transitions) and
A (state properties).

Lemma 1. solves,φ(T,A) is positive Boolean monotonic if φ is one of EX p,
EG p, or p EU q.

Proof. Take any T , A that determine a structure K for which the predicate
holds. Let K ′ be a structure determined by some T ′, A′ such that K ′ has the
same states, state properties and transitions as K, except for one transition that
is enabled in K ′ but not in K, or one state property which holds in K ′ but not
in K. Formally, there is exactly one argument in either T ′ or A′ that is 0 in T
(or A respectively) and 1 in T ′ (or A′ respectively). Then either (a) one of the
states satisfies one of the atomic propositions in K ′, but not in K, or (b) there
is a transition in K ′, but not in K.

We assume solves,φ(T,A) holds. Then, there must exist a witnessing infi-
nite sequence starting from s in K. If (b), the exact same sequence must exist
in K ′, since it has a superset of the transitions in K. Thus we can conclude
solves,φ(T ′, A′) holds. If (a), then the sequence will only differ in at most one
state, where p holds instead of ¬p (or q instead of ¬q). We note that for each of
the three CTL operators, this sequence will be a witness for K ′, if the original
sequence was a witness for K. Thus, solves,φ(T ′, A′) holds as well.

It is easy to see that ∧ and ∨ are positive monotonic in the same way, and ¬
is negative monotonic. Excluding negation, then, all the CTL operators needed
to express formulas in ENF have positive Boolean monotonic solve predicates,
while negation alone has a negative Boolean monotonic solve predicate.

Until now, we have considered the model checking algorithm to compute a
predicate that returns True iff the initial state of the Kripke structure satisfies
the formula. This can be extended to a function solve(φ,K) that evaluates the
truth value of φ for each state in the Kripke structure, and returns a bit vector

142 T. Klenze et al.

representing a set of states, that for each state is 1 iff that state satisfies φ. The
monotonicity properties above also hold for solve(φ,K), as every state in the
bitset can be viewed as an initial state for which the operators are monotonic.

We introduce for each CTL operator op an evaluation function solveop(X,K)
that evaluates the operator on a set of states X, instead of a subformula. This
is a standard interpretation of CTL (and how CTL model checking is often
implemented), and we refer to the literature for common ways to compute solveop

for each operator. Our function solve(φ,K) takes the top-most operator op of
φ: if it is an atomic proposition, it returns the set of states in which the atomic
proposition holds, otherwise it solves its argument(s) recursively and then applies
solveop on the returned set of states. One can think of the set X as defining
the states in which a fresh atomic proposition holds, and of solveop(X,K) as
computing the application of op on that atomic proposition.

Algorithm 1. solveApprox(φ, Kover, Kunder)
if φ is an atomic proposition then

return set of states satisfying φ in Kover

else if φ is a unary operator op with argument ψ then
if op is ¬ then // negative monotonic

X := solveApprox(ψ, Kunder, Kover)
return solveop(X, Kunder)

else // op ∈ {EX, EG}
X := solveApprox(ψ, Kover, Kunder)
return solveop(X, Kover)

else // φ is binary op ∈ {EU, ∧, ∨} with arguments ψ1, ψ2

X1 := solveApprox(ψ1, Kover, Kunder)
X2 := solveApprox(ψ2, Kover, Kunder)
return solveop(X1, X2, Kover)

Algorithm 1, solveApprox (φ, Kover, Kunder) takes a CTL formula φ and two
Kripke structures, Kover and Kunder. It returns a bit vector, representing a
set of states.2 We will show in Lemma 2 that for appropriate values of Kover

and Kunder, solveApprox computes a safe over-approximation of solve(φ,K)
for a third Kripke structure, K: solve(φ,K) ⊆ solveApprox (φ, Kover, Kunder).
Further, as Kunder and Kover converge, so do solveApprox (φ, Kover, Kunder)
and solve(φ,K). If Kunder = Kover = K, then solveApprox (φ, Kover, Kunder) =
solve(φ,K). This follows directly from Lemma 2.

In order for the over-approximation property of solveApprox given in the
following lemma to hold, Kover (determined by some T1, A1), Kunder (determined

2 A similar algorithm for evaluating CTL formulas on ‘partial Kripke structures’, in
the context of model checking, can be found in [6].

Fast, Flexible, and Minimal CTL Synthesis via SMT 143

Example: Initially, the SAT solver’s assignment Ainit = ∅ to transitions and
state properties is empty, which determines Kunder and Kover in the following way.

0: {}

1: {} 2: {}

3: {}

(a) Kunder under Ainit

0: {p}

1: {p} 2: {p}

3: {p}

(b) Kover under Ainit

As the SAT solver makes assignments to theory atoms trans(. . .) and sat(. . .)
(positive assignments affect Kunder’s T2, A2, negative Kover’s T1, A1), both struc-
tures converge. Take for instance this partial assignment Aex:

Aex =sat(1, p) ∧ ¬sat(2, p) ∧ trans(0, 1) ∧ trans(1, 3) ∧ trans(3, 0) ∧ trans(2, 2)

∧ ¬trans(0, 0) ∧ ¬trans(0, 2) ∧ ¬trans(0, 3) ∧ ¬trans(1, 0) ∧ ¬trans(1, 1)

∧ ¬trans(2, 0) ∧ ¬trans(2, 1) ∧ ¬trans(2, 3) ∧ ¬trans(3, 1) ∧ ¬trans(3, 3)

The atoms sat(0, p), sat(3, p), trans(1, 2), and trans(3, 2) are unassigned by Aex.
Aex determines Kunder and Kover in the following way:

0: {}

1: {p} 2: {}

3: {}

(c) Kunder under Aex

0: {p}

1: {p} 2: {}

3: {p}

(d) Kover under Aex

solveApprox(φ, Kover, Kunder) returns an over-approximation (resp. under-approx
with Kover and Kunder exchanged) of the set of states in which φ may hold in
extensions of the partial assignment. Assume Kover and Kunder are obtained from
Aex and φ = EX ¬p:

solveApprox(EX ¬p, Kover, Kunder)

= solveEX(solveApprox(¬p, Kover, Kunder), Kover)

= solveEX(solve¬(solveApprox(p, Kunder, Kover), Kunder), Kover)

= solveEX(solve¬({1}, Kunder), Kover)

= solveEX({0, 2, 3}, Kover)

= {1, 2, 3}
The initial state is not in the over-approximation of states, where EX ¬p holds
(0 �∈ solveApprox(EX ¬p, Kover, Kunder)), therefore EX ¬p does not hold in any
Kripke structure obtained from a full extension of the partial assignment Aex.

Fig. 1. Example of a partial assignment Aex determining to Kunder and Kover, and the
evaluation solveApprox of a formula on Kunder and Kover.

144 T. Klenze et al.

by some T2, A2) and K (determined by some T,A) must be Kripke structures
with the same number of states, and Kover must have a superset, and Kunder

a subset, of the transitions and state properties of K: T2 ⊆ T ⊆ T1 and A2 ⊆
A ⊆ A1. To illustrate how this will be used in the context of SMT, Fig. 1 shows
an example of how the SAT solver’s partial assignment determines Kover and
Kunder, and how solveApprox works on these structures.

Lemma 2. solve(φ,K) ⊆ solveApprox(φ, Kover, Kunder) and solve(φ,K) ⊇
solveApprox(φ, Kunder, Kover).

Proof. By induction over φ. If φ is an atomic proposition, then solveApprox
returns the set of states satisfying φ in Kover. solve(φ,K) will return the set of
states satisfying φ in K. The first claim holds, since A ⊆ A1.

If φ = op ψ with op a unary positive monotonic operator, solve(φ,K) is
solveop(X,K) for X = solve(ψ,K) ⊆IH solveApprox (ψ, Kover, Kunder) = X ′.
solveApprox (φ, Kover, Kunder) is solveop(X ′,K). The first claim holds, since
X ⊆ X ′ and solveop is positive monotonic. If op is unary negative monotonic, i.e.
¬, then solve(φ,K) is solveop(X,K) for X = solve(ψ,K) ⊇IH solveApprox (ψ,
Kunder, Kover) = X ′. solveApprox (φ, Kover, Kunder) is solveop(X ′,K). The first
claim holds, since X ⊇ X ′ and solveop is negative monotonic.

The proof obligations for solve(φ,K) ⊇ solveApprox (φ, Kunder, Kover) are
left out here, as well as the proof obligations for positive monotonic binary
operators. The proof for these proceeds similarly to the above cases.

3.2 CTL as a Boolean Monotonic Predicate

solveApprox (φ, Kover, Kunder) computes an over-approximation (resp., with
Kover and Kunder exchanged, an under-approximation) of the set of states in
which a CTL formula φ holds in Kripke structure K, so long as Kover and
Kunder are, as defined above, structures that are over-, and respectively under-
approximating K. We construct a corresponding Boolean monotonic predicate
ModelApproxφ,K(T1, A1, T2, A2) which holds iff the initial state s0 ∈ solveAp-
prox (φ, Kover, Kunder).3 Its monotonicity follows from the following lemma:

Lemma 3. solveApprox(φ, Kover, Kunder) is a function positive monotonic in
Kover and negative monotonic in Kunder.

Proof. By structural induction over φ. If φ is an atomic proposition, then
solveApprox returns the set of states satisfying φ in Kover. If a state or transi-
tion is added to Kover (call the resulting structure Kover

′), then solveApprox (φ,
Kover, Kunder) ⊆ solveApprox (φ, Kover

′, Kunder). If a state or transition is
removed from Kunder (resulting in Kunder

′), then solveApprox (φ, Kover, Kunder)
= solveApprox (φ, Kover, Kunder

′).

3 If T2 �⊆ T1 or A2 �⊆ A1, ModelApprox can be defined to evaluate in any arbitrary
way that maintains monotonicity. As discussed below, we exclude this case in our
implementation, by enforcing T1 = T2 and A1 = A2.

Fast, Flexible, and Minimal CTL Synthesis via SMT 145

Assume φ = op ψ with op a unary positive monotonic operator. Then
solveApprox (φ, Kover, Kunder) is the function composition of positive monotonic
solveop and solveApprox (ψ, Kover, Kunder), which is positive monotonic in Kover

and negative monotonic in Kunder by the induction hypothesis. The composed
function is then also positive monotonic in Kover and negative in Kunder.

Assume on the other hand that op is a unary negative monotonic operator, i.e.
¬. Then solveApprox (φ, Kover, Kunder) is the function composition of solve¬ and
solveApprox (ψ, Kunder, Kover), which is assumed by the induction hypothesis to
be positive monotonic in Kunder, and negative monotonic in Kover. Since solve¬
is negative monotonic in its first argument (and ignores its second argument),
the composed function is positive monotonic in Kover, and negative in Kunder.

The proof obligations for binary operators (all positive monotonic) are left
out here. The proof for these proceeds similarly to the above cases.

Corollary 1. ModelApproxφ,K(T1, A1, T2, A2) is positive monotonic in T1, A1

and negative monotonic in T2, A2.

Proof. By definition, ModelApproxφ,K(T1, A1, T2, A2) holds if, and only if, s0 ∈
solveApprox (φ, Kover, Kunder); therefore the monotonicity of ModelApprox fol-
lows directly from the monotonicity of solveApprox (Lemma 3).

We complete our theory of CTL model checking by forcing T1 = T2 and
A1 = A2. As we proved above, ModelApproxφ,K(T,A, T,A) = Modelφ,K(T,A),
and so in this way we recover the expected definition of CTL model checking
in our theory solver. The equalities T1 = T2 and A1 = A2 could be enforced by
adding a linear number of additional Boolean constraints to the SAT solver; in
our implementation we found it more efficient to enforce this equality internally
in the theory solver.

4 Implementation and Optimizations

Above, we showed how CTL model checking can be posed as a Boolean
monotonic theory. We then built a lazy SMT theory solver, following the theory
propagation techniques for Boolean monotonic theories described in [5]. We have
also implemented some additional optimizations which greatly improve the per-
formance of our CTL theory solver. One basic optimization that we implement
is pure literal filtering (see, e.g., [18]): For the case where Modelφ,K(T,A) is
assigned True (resp. False), we only need to check whether Modelφ,K(T,A) is
falsified (resp., made true) during theory propagation. In all of the instances we
will examine in this paper, Modelφ,K(T,A) is assigned True in the input for-
mula, and so this optimization greatly simplifies theory propagation. We discuss
several further improvements below:

In Sect. 4.1 we outline how our solver performs clause learning. In Sect. 4.2
we describe symmetry breaking constraints, which can greatly reduce the search
space of the solver, and in Sect. 4.3 we show how several common types of CTL
constraints can be cheaply converted into CNF, reducing the size of the for-
mula the theory solver must handle. Finally, in Sect. 4.4, we discuss how in the

146 T. Klenze et al.

common case of a CTL formula describing multiple communicating processes
we can (optionally) add support for additional structural constraints, similarly
to the approach described in [10]. These structural constraints allow our solver
even greater scalability, at the cost of adding more states into the smallest solu-
tion that can be synthesized. Thus, if structural constraints are used, iteratively
decreasing the bound may no longer yield a minimal structure.

4.1 Clause Learning

Supporting efficient clause learning (also called “justification set” or “conflict
set” learning in the SMT literature) is a critically important function of lazy SMT
theory solvers. Theory solvers can always return a naive conflict set consisting
of the entire conflicting (partial) assignment, however, efficient theory solvers
typically implement clause learning procedures which attempt to find smaller,
or sometimes even minimal, conflict sets.

Unlike our theory propagation implementation, which operates on formulas in
existential normal form, to perform clause learning we convert the CTL formula
into negation normal form (NNF), pushing any negation operators down to the
innermost terms of the formula. To obtain an adequate set, the formula may
now also include universally quantified CTL operators and Weak Until. Each of
these operators is handled separately.

Our procedure learn(φ, s) operates recursively on the NNF of the formula
and returns a conflict set of literals, the disjunction of which yields a CNF clause
which is learned by the SAT solver. The same conflict set is populated on every
level of the recursion, i.e. the learned literals have an additive effect on the
conflict clause. For instance, if the formula EX φ is in conflict with the partial
assignment, we first consider the operator EX. Our clause learning strategy for EX
in the state s (in this case, the initial state) is to force the SAT solver to enable
any disabled transitions from s, or to make φ true in any of the successor states.
Literals for the latter are computed recursively via learn(φ, t) for every enabled
transition (s, t). learn(φ, s) is defined as follows (for notation see Fig. 2):

– learn(p, s) (resp. learn(¬p, s)), where p is an atomic proposition. Add the
literal disableAPinState(p, s) (resp. enableAPinState(p, s)) to the conflict set.

– learn(op ψ, s) (resp. learn(ψ1 op ψ2, s)): Add the literals returned by the func-
tions learnop(ψ, s) (resp. learnop(ψ1, ψ2, s)) to the conflict set (see Fig. 2).

4.2 Symmetry Breaking

Due to the way we expose atomic propositions and transitions to the SAT solver
with theory atoms, the SAT solver may end up exploring large numbers of
isomorphic Kripke structures. We address this by enforcing extra symmetry-
breaking constraints which prevent the solver from considering (some) redun-
dant configurations of the Kripke structure. Symmetry reduction is especially
helpful to prove instances UNSAT, which aids the search for suitable bounds.

Fast, Flexible, and Minimal CTL Synthesis via SMT 147

Clause Learning functions learnop

learnEX(φ, s): Let N be the neighbors of s that do not satisfy φ. Let D be the
set of disabled transitions from s. Add enableTransitionSet(D) to the conflict
set, and learn(φ, n) for each n ∈ N .

learnAX(φ, s): Let n be a neighbor of s that does not satisfy φ. Add
disableTransition(s, n) to the conflict set, and learn(φ, n).

learnEF (φ, s) : Let R be all states reachable from s. Let D be the set of
disabled transitions from reachable states R to unreachable states. Add
enableTransitionSet(D) to the conflict set, and add learn(φ, r) for each r ∈ R.

learnAF (φ, s) : Let R be a set of states satisfying ¬φ that form lasso from s. Let
D be the set of transitions in the lasso. Add disableTransitionSet(D) to the
conflict set, and add learn(φ, r) for each r ∈ R.

learnEG(φ, s): Let R be the the states reachable from s via a path on which all
states satisfy φ. Let N be the set of successor states of R which do not satisfy φ.
Let D be the set of disabled transitions leaving R. Add enableTransitionSet(D)
to the conflict set, and add learn(φ, n) for each n ∈ N .

learnAG(φ, s): Find a path of transitions D from s to a state r that doesn’t
satisfy φ. Add disableTransitionSet(D) to the conflict set, and add learn(φ, r).

learn∧(φ, ψ, s): If φ does not hold in the over-approximation (but ψ does), add
learn(φ, s). If ψ does not hold in the over-approximation (but φ does), add
learn(ψ, s). If both do not hold, then construct a temporary conflict set for
each, and add the smaller set to the conflict.

learn∨(φ, ψ, s): Add learn(φ, s) and learn(ψ, s) to the conflict.
learnEW (φ, ψ, s) : Let R be the states satisfying φ and reachable via φ-satisfying

states from s. Let D be the set of disabled transitions from states in R. Let
P be the set of successors of R that are not in R. Add D to the conflict set,
add learn(ψ, r) for each r ∈ R, and add learn((φ ∨ ψ), p) for each p ∈ P .

learnAW (φ, ψ, s) : Find a path starting from s such that all except the last state
satisfy φ, and no state satisfies ψ. Let D be the set of transitions on that
path; add disableTransitionSet(D) to the conflict set. Let R be the set of
states on that path, except for the last state of the path, n. Add learn(φ, n)
and learn(ψ, r) for each r ∈ R to the conflict set.

learnEU (φ, ψ, s) : Same as learnEW , but D is restricted to transitions to states
outside of R.

learnAU (φ, ψ, s) : If there exists a finite path starting from s such that all except
the last states on the path satisfy φ, add learnAW (φ, ψ, s) to the conflict set.
Else, add learnAF (ψ, s) to the conflict set.

Notation: enableAPinState(p, s) returns the literal that assigns property p
to state s. enableTransition(s, t) returns the literal for transition s → t.
enableTransitionSet(D) returns {enableTransition(s,t) | (s, t) ∈ D}. disableAPin-
State,disableTransition,disableTransitionSet return corresponding negated literals.
For existentially quantified CTL operators, transitions of Kover are used, for uni-
versally quantified CTL operators transitions of Kunder. solveApprox(φ, Kover,
Kunder) gives the set of states satisfying a subformula φ.
Notice that some functions (e.g., learnAG) are only correct if every state has an
infinite path (AG EX True), which is why we enforce this property in our solver.

Fig. 2. Clause learning functions returning sets of literals.

148 T. Klenze et al.

Let label(si) be the binary representation of the atomic propositions of state
si, and let out(si) be the set of outgoing edges of state si. Let s0 be the initial
state. The following constraint enforces an order on the allowable assignments
of state properties and transitions in the Kripke structure.

∀i, j :[i < j ∧ i �= 0 ∧ j �= 0] →
[label(si) ≤ label(sj) ∧ (label(si) = label(sj) → |out(si)| ≤ |out(sj)|)]

4.3 Preprocessing

Given a CTL specification φ, we identify certain common sub-expressions which
can be cheaply converted directly into CNF, which is efficiently handled by
the SAT solver at the core of MonoSAT. We do so if φ matches

∧
i φi, as is

commonly the case when multiple properties are part of the specification. If
φi is purely propositional, or of the form AG p with p purely propositional, we
eliminate φi from the formula and convert φi into a logically equivalent CNF
expression over the state property assignment atoms of the theory.4 This requires
a linear number of clauses in the number of states in K. We also convert formulas
of the form AG ψ, with ψ containing only propositional logic and at most a single
Next-operator (EX or AX). Both of these are very common sub-expressions in the
CTL formulas that we have examined.

4.4 Wildcard Encoding for Concurrent Programs

As will be further explained later, the synthesis problem for synchronization
skeletons assumes a given number of processes, which each have a local transition
system. The state transitions in the full Kripke structure then represent the
possible interleavings of executing the local transition system of each process.
This local transition system is normally encoded into the CTL specification.

Both [3,10] explored strategies to take advantage of the case where the local
transition systems of these processes are made explicit. [10] were able to greatly
improve the scalability of their answer-set-programming based CTL synthesis
procedure by deriving additional ‘structural’ constraints for such concurrent
processes. As our approach is also constraint-based, we can (optionally) sup-
port similar structural constraints. In experiments below, we show that even
though our approach already scales better than existing approaches without
these additional structural constraints, we also benefit from such constraints.

Firstly, we can exclude any global states with state properties that are an ille-
gal encoding of multiple processes. If the local state of each process is identified
by a unique atomic proposition, then we can enforce that each global state must
make true exactly one of the atomic propositions for each process. For every
remaining combination of state property assignments, excluding those deter-
mined to be illegal above, we add a single state into the Kripke structure, with a
4 Since AG p only specifies reachable states, the clause is for each state s a disjunction

of p being satisfied in s, or s having no enabled incoming transitions. This changes
the semantics of CTL for unreachable states, but not for reachable states.

Fast, Flexible, and Minimal CTL Synthesis via SMT 149

pre-determined assignment of atomic propositions, such that only the transitions
between these states are free for the SAT solver to assign. This is in contrast to
the normal synthesis method, in which states are completely undetermined (but
typically fewer are required).

Secondly, since we are interested in interleavings of concurrent programs,
on each transition in the global Kripke structure we enforce that only a single
process may change its local state, and it may change its local state only in a
way that is consistent with the its local transition system.

The above two constraints greatly reduce the space of transitions in the global
Kripke structure that are left free for the SAT solver to assign (and completely
eliminate the space of atomic propositions to assign in each state). However
these constraints make our procedure incomplete, since in general more than a
single state with the same atomic propositions (but different behavior) need to
be distinguished. To allow multiple states with equivalent atomic propositions,
we also add a small number of ‘wildcard’ states into the Kripke structure, whose
state properties and transitions (incoming and outgoing) are not set in advance.
In the examples we consider in this paper, we have found that a small number
of such wildcard states (between 3 and 20) are sufficient to allow for a Kripke
structure that satisfies the CTL formula, while still greatly restricting the total
space of Kripke structures that must be explored by the SAT solver.

We disable symmetry breaking when using the wildcard encoding, as the
wildcard encoding is incompatible with the constraint in Sect. 4.2.

5 Experimental Results

There are few CTL synthesis implementations available for comparison. Indeed,
the original CTL synthesis/model-checking paper [8] presents an implementation
of CTL model checking, but the synthesis examples were simulated by hand. The
only publicly available, unbounded CTL synthesis tool we could find is Prezza’s
open-source CTLSAT tool5, which is a modern implementation of the classic
tableau-based CTL synthesis algorithm [8].

We also compare to De Angelis et al.’s encoding of bounded CTL synthesis
into ASP [10]. De Angelis et al. provide encodings6 specific to the n-process
mutual exclusion example, which exploit structural assumptions about the syn-
thesized model (for example, that it is the composition of n identical processes).
We label this encoding “ASP-structural” in the tables below. For ASP-structural,
we have only the instances originally considered in [10].

To handle the general version of CTL synthesis (without added structural
information), we also created ASP encodings using the methods from De Ange-
lis et al.’s paper, but without problem-specific structural assumptions and opti-
mizations. We label those results “ASP-generic”. For both encodings, we use the

5 https://github.com/nicolaprezza/CTLSAT
6 http://www.sci.unich.it/∼deangelis/papers/mutex FI.tar.gz

https://github.com/nicolaprezza/CTLSAT
http://www.sci.unich.it/~{}deangelis/papers/mutex_FI.tar.gz

150 T. Klenze et al.

latest version (4.5.4) of Clingo [13], and for each instance we report the best
performance over the included Clasp configurations.7

We compare these tools to two versions of MonoSAT: MonoSAT-
structural, which uses the wildcard optimization presented in Sect. 4.4, and
MonoSAT-generic, without the wildcard optimization.

With the exception of CTLSAT, the tools we consider are bounded synthesis
tools, which take as input both a CTL formula and a maximum number of states.
For ASP-structural, the state bounds follow [10]. For the remaining tools, we
selected the state bound manually, by repeatedly testing each tool with different
bounds, and reporting for each tool the smallest bound for which it found a
satisfying solution. In cases where a tool could not find any satisfying solution
within our time or memory bounds, we report out-of-time or out-of-memory.

5.1 The Original Clarke-Emerson Mutex

The mutex problem assumes that there are n processes that run concurrently
and on occasion access a single shared resource. Instead of synthesizing entire
programs, the original Clarke-Emerson example [8] considers an abstraction of
the programs called synchronization skeletons. In the instance of a mutex algo-
rithm, it is assumed that each process is in one of three states: non-critical
section (NCS), the try section (TRY) or the critical section (CS). A process
starts in the non-critical section in which it remains until it requests to access
the resource, and changes to the try section. When it finally enters the critical
section it has access to the resource, and eventually loops back to the non-critical
section. The synthesis problem is to find a global Kripke structure for the com-
position of the n processes, such that the specifications are met. Our first set
of benchmarks are based on the Clarke and Emerson specification given in [8],
that includes mutual exclusion and starvation freedom for all processes.

Results. Table 1 presents our results on the mutex formulation from [8]. Both
versions of MonoSAT scale to much larger instances than the other approaches,
finding solutions for 5 and 6 processes, respectively. CTLSAT, implementing
the classical tableau approach, times out on all instances.8 Only the -generic
versions can guarantee minimal solutions, and MonoSAT-generic is able to
prove minimal models for several cases.

As expected, structural constraints greatly improve efficiency for both ASP-
structural and MonoSAT-structural relative to their generic counterparts.

7 These are: “auto”, “crafty”, “frumpy”, “handy”, “jumpy”, “trendy”, and “tweety”.
8 Notably, CTLSAT times-out even when synthesizing the original 2-process mutex

from [8], which Clarke and Emerson originally synthesized by hand. This may be
because in that work, the local transition system was specified implicitly in the
algorithm, instead of in the CTL specification as it is here.

Fast, Flexible, and Minimal CTL Synthesis via SMT 151

Table 1. Results on the original Clarke-Emerson mutual exclusion example. Table
entries are in the format time(states), where states is the number of states in the
synthesized model, and time is the run time in seconds. For ASP-structural, we only
have the manually encoded instances provided by the authors. An asterisk indicates
that the tool was able to prove minimality, by proving the instance is UNSAT at the
next lower bound. TO denotes exceeding the 3 h timeout. MEM denotes exceeding
16GB of RAM. All experiments were run on a 2.67 GHz Intel Xeon x5650 processor.

Approach # of processes

2 3 4 5 6

CTLSAT TO TO TO TO TO

ASP-generic 3.6 (7*) 1263.7 (14) TO MEM MEM

ASP-structural 0.0 (12) 1.2 (36) - - -

MonoSAT-generic 0.0 (7*) 1.4 (13*) 438.6 (23*) 1744.9 (42) TO

MonoSAT-struct 0.2 (7) 0.5 (13) 4.5 (23) 166.7 (41) 1190.5 (75)

5.2 Mutex with Additional Properties

As noted in [14], the original Clarke-Emerson specification permits Kripke
structures that are not maximally parallel, or even practically reasonable. For
instance, our methods synthesize a structure in which one process being in NCS
will block another process in TRY from getting the resource — the only transi-
tion such a global state has is to a state in which both processes are in the TRY
section. In addition to the original formula, we present results for an augmented
version in which we eliminate that solution9 by introducing the “Non-Blocking”
property, which states that a process may always remain in the NCS:

AG (NCSi → EX NCSi) (NB)

In addition, in the original paper there are structural properties implicit in
the given local transition system, preventing jumping from NCS to CS, or from
CS to TRY. We encode these properties into CTL as “No Jump” properties.

AG (NCSi → AX ¬CSi) ∧ AG (CSi → AX ¬TRYi) (NJ)
We also consider two properties from [10]: Bounded Overtaking (BO), which

guarantees that when a process is waiting for the critical section, each other
process can only access the critical section at most once before the first process
enters the critical section, and Maximal Reactivity (MR), which guarantees that
if exactly one process is waiting for the critical section, then that process can
enter the critical section in the next step.
9 While the properties that we introduce in this paper mitigate some of the effects

of underspecification, we have observed that the formulas of many instances in our
benchmarks are not strong enough to guarantee a sensible solution. We are mainly
interested in establishing benchmarks for synthesis performance, which is orthogonal
to the task of finding suitable CTL specifications, which resolve these problems.

152 T. Klenze et al.

Results. We repeat our experimental procedure from Sect. 5.1, except with var-
ious combinations of additional properties. This provides a richer set of bench-
marks, most of which are harder than the original.

Table 2 presents our results. As before, the -structural constraints greatly
improve efficiency, but nevertheless, MonoSAT-generic outperforms ASP-
structural. MonoSAT-generic is able to prove minimality on several bench-
marks, and on one benchmark, MonoSAT-structural scales to 7 processes.

Table 2. Results on the mutual exclusion example with additional properties
(described in Sect. 5.2). As with Table 1, entries are in the format time(states). ORIG
denotes the original mutual exclusion properties from Sect. 5.1. As before, although
problem-specific structural constraints improve efficiency, MonoSAT-generic is com-
parably fast to ASP-structural on small instances, and scales to larger numbers of
processes. MonoSAT-structural performs even better.

Approach # of processes

2 3 4 5 6 7

Property: ORIG ∧ BO

ASP-generic 3.4 (7*) 1442.0 (14) TO/MEM MEM MEM MEM

ASP-structural 0.0 (12) 2.3 (36) - - - -

MonoSAT-gen 0.0 (7*) 11.1 (13*) 438.3 (23*) 1286.6 (42) TO TO

MonoSAT-str 0.1 (7) 0.6 (13) 5.3 (23) 59.5 (41) 375.3 (75) 10739.5 (141)

Property: ORIG ∧ BO ∧ MR

ASP-generic 10.1 (9*) TO MEM MEM MEM MEM

ASP-structural 0.8 (10) 950.9 (27) - - - -

MonoSAT-gen 0.0 (9*) 6.0 (25*) TO TO TO TO

MonoSAT-str 0.1 (10) 8.7 (26) TO TO TO TO

Property: ORIG ∧ NB ∧ NJ

ASP-generic 34.8 (9*) TO MEM MEM MEM MEM

ASP-structural 0.1 (10) 7326.1 (27) - - - -

MonoSAT-gen 0.0 (9*) 1275.7 (22*) TO TO TO TO

MonoSAT-str 0.2 (10) 1.6 (26) 5314.7 (51) TO TO TO

Property: ORIG ∧ NB ∧ NJ ∧ BO

ASP-generic 15.4 (9*) TO MEM MEM MEM MEM

ASP-structural 0.1 (10) TO - - - -

MonoSAT-gen 0.0 (9*) 127.7 (22*) TO TO TO TO

MonoSAT-str 0.1 (10) 1.3 (24) TO TO TO TO

Property: ORIG ∧ NB ∧ NJ ∧ BO ∧ MR

ASP-generic 10.7 (9*) TO MEM MEM MEM MEM

ASP-structural 0.1 (10) 1917.6 (27) - - - -

MonoSAT-gen 0.0 (9*) 4.4 (25*) TO TO TO TO

MonoSAT-str 0.1 (10) 2.7 (26) TO TO TO TO

Fast, Flexible, and Minimal CTL Synthesis via SMT 153

5.3 Readers-Writers

To provide even more benchmarks, we present instances of the related Readers-
Writers problem [9]. Whereas the Mutex problem assumes that all processes
require exclusive access to a resource, the Readers-Writers problem permits some
simultaneous access. Two types of processes are distinguished: writers, which
require exclusive access, and readers, which can share their access with other
readers. This is a typical scenario for concurrent access to shared memory, in
which write permissions and reading permissions are to be distinguished. The
local states of each process are as in the Mutex instances.

We use Attie’s [2] CTL specification. We note however that this specification
allows for models which are not maximally parallel, and in particular disallows
concurrent access by two readers. In addition to this original formula, we also
consider one augmented with the Multiple Readers Eventually Critical (MREC)
property. This ensures that there is a way for all readers, if they are in TRY, to
simultaneously enter the critical section, if no writer requests the resource.

AG (
∧

wi

NCSwi
→ (

∧

ri

TRYri
→ EF

∧

ri

CSri
)) (RW-MREC)

This property turns out not to be strong enough to enforce that concurrent
access for readers must always be possible. We introduce the following property,
which we call Multiple Readers Critical. It states that if a reader is in TRY, and
all other readers are in CS, it is possible to enter the CS in a next state – as
long as all writers are in NCS, since they have priority access over readers.

AG (
∧

wi

NCSwi
→ (TRYri

∧

rj �=ri

CSrj
→ EX

∧

ri

CSri
)) (RW-MRC)

Using this property, we are able to synthesize a structure for two readers and
a single writer, in which both readers can enter the critical section concurrently,
independently of who enters it first, without blocking each other.

Results. We run benchmarks on problem instances of various numbers of read-
ers and writers, and various combinations of the CTL properties. ASP-structural
has identical process constraints, which make it unsuitable to solve an asymmet-
ric problem such as Readers-Writers (we exclude it from these experiments). As
with the Mutex problem, as CTLSAT is unable to solve even the simplest prob-
lem instances, we do not include benchmarks for the more complex instances.

Our experiments on each variation of the Readers-Writer problem are pre-
sented in Table 3. We observe that in general, Readers-Writers instances are
easier to solve than Mutex instances with the same number of processes. At the
same time, the additional properties introduced by us restrict the problem fur-
ther, and make the instances harder to solve than the original Readers-Writers
formulation. Taken together with the results from Tables 1 and 2, this compari-
son further strengthens our argument that MonoSAT-generic scales better than
ASP-generic. The results also confirm that the structural MonoSAT solver mak-
ing use of the wildcard encoding performs much better than MonoSAT-generic.

154 T. Klenze et al.

Table 3. Results on the readers-writers instances. Property (RW) is Attie’s specifica-
tion [2]. Data is presented as in Table 1, in the format time(states).

Approach # of processes (# of readers, # of writers)

2 (1, 1) 3 (2, 1) 4 (2, 2) 5 (3, 2) 6 (3, 3) 7 (4, 3)

Property: RW

CTLSAT TO TO TO TO TO TO

ASP-generic 0.6 (5*) 9.5 (9*) TO MEM MEM MEM

MonoSAT-gen 0.0 (5*) 0.0 (9*) 2.8 (19*) 30.0 (35*) 5312.7 (74) TO

MonoSAT-str 0.1 (5) 0.5 (9) 0.7 (19) 2.9 (35) 98.8 (74) 384.4 (142)

Property: RW ∧ NB ∧ NJ

ASP-generic 6.8 (8*) 2865.5 (16) MEM MEM MEM MEM

MonoSAT-gen 0.0 (8*) 1.4 (16*) 110.4 (27*) 843.8 (46*) TO TO

MonoSAT-str 0.1 (9) 0.2 (16) 3.4 (27) 35.9 (54) TO TO

Property: RW ∧ NB ∧ NJ ∧ RW-MREC

ASP-generic 2.4 (8*) 120.6 (22) MEM MEM MEM MEM

MonoSAT-gen 0.0 (8*) 238.4 (22*) TO TO TO TO

MonoSAT-str 0.1 (9) 0.25 (23) 5.3 (52) 159.1 (127) TO TO

Property: RW ∧ NB ∧ NJ ∧ RW-MRC

ASP-generic 2.4 (8*) TO MEM MEM MEM MEM

MonoSAT-gen 0.0 (8*) 1114.1 (22) 18.1 (27*) 251.6 (46*) TO TO

MonoSAT-str 0.1 (9) 0.2 (23) 2.5 (28) 28.0 (47) TO TO

6 Conclusion and Future Work

We have demonstrated a novel approach to CTL synthesis that greatly outper-
forms existing tools, with the ability to flexibly add additional constraints (e.g.,
about the structure of the desired solution), and without sacrificing general-
ity (by e.g., assuming identical processes). In many cases, we are also able to
compute a provably minimal satisfying Kripke structure.

Our approach is based on formulating CTL model checking in terms of
monotonic theories, enabling use of the SAT Modulo Monotonic Theories
(SMMT) approach to build an efficient, lazy SAT Modulo CTL solver. This
success reinforces the claim that monotonic theories, and more generally the
lazy SMT approach, are a performant and versatile basis for SMT solvers.

There are many directions for future work. Although we have not tested this
yet, MonoSAT has support for optimization constraints, which might allow one
to synthesize maximally parallel solutions, as described in [14]. At the implemen-
tation level, we have many ideas for improving performance and scalability. We
have expended little effort to optimize the CTL model checker at the heart of the
theory solver. With improved performance, more applications may be feasible.
For example, we believe our solver is suitable for the repair problem [1], because

Fast, Flexible, and Minimal CTL Synthesis via SMT 155

we can easily specify constraints of the existing system, repair possibilities, and
the specification of correctness. Another promising approach to scalability is
to leverage techniques like Attie and Emerson’s [3], which rely on synthesiz-
ing small 2-process Kripke structures and generalizing them to vast networks of
similar processes; using our techniques in conjunction with theirs should allow
much more realistic complexity in the pairwise synthesized programs. In a more
theoretical direction, we have implemented preliminary support for fairness con-
straints. If this proves robust and scalable, it may open the door toward synthesis
of more expressive temporal logics.

Acknowledgments. This work was supported in part by a grant from the Natural
Sciences and Engineering Research Council of Canada. We also thank Javier Esparza
for his encouragement and helpful advice.

References

1. Attie, P., Cherri, A., Dak Al Bab, K., Sakr, M., Saklawi, J.: Model and program
repair via SAT solving. In: Formal Methods and Models for Codesign (MEM-
OCODE), pp. 148–157. ACM/IEEE (2015)

2. Attie, P.C.: Synthesis of large concurrent programs via pairwise composition. In:
Baeten, J.C.M., Mauw, S. (eds.) CONCUR 1999. LNCS, vol. 1664, pp. 130–145.
Springer, Heidelberg (1999)

3. Attie, P.C., Emerson, E.A.: Synthesis of concurrent systems with many similar
processes. ACM Trans. Program. Lang. Sys. (TOPLAS) 20(1), 51–115 (1998)

4. Attie, P.C., Emerson, E.A.: Synthesis of concurrent programs for an atomic
read/write model of computation. ACM Trans. Program. Lang. Sys. (TOPLAS)
23(2), 187–242 (2001)

5. Bayless, S., Bayless, N., Hoos, H.H., Hu, A.J.: SAT modulo monotonic theories.
In: Twenty-Ninth AAAI Conference on Artificial Intelligence (2015)

6. Bruns, G., Godefroid, P.: Model checking partial state spaces with 3-valued tem-
poral logics. In: Halbwachs, N., Peled, D.A. (eds.) CAV 1999. LNCS, vol. 1633, pp.
274–287. Springer, Heidelberg (1999)

7. Bustan, D., Grumberg, O.: Simulation-based minimization. ACM Trans. Comput.
Logic 4(2), 181–206 (2003)

8. Clarke, E., Emerson, E.: Design and synthesis of synchronization skeletons using
branching time temporal logic. In: Kozen, D. (ed.) Logics of Programs. LNCS, vol.
131, pp. 52–71. Springer, Heidelberg (1982)

9. Courtois, P.J., Heymans, F., Parnas, D.L.: Concurrent control with readers and
writers. Commun. ACM 14(10), 667–668 (1971)

10. De Angelis, E., Pettorossi, A., Proietti, M.: Synthesizing concurrent programs using
answer set programming. Fundamenta Informaticae 120(3–4), 205–229 (2012)

11. de Moura, L., Bjørner, N.: Satisfiability modulo theories: an appetizer. In: Oliveira,
M.V.M., Woodcock, J. (eds.) SBMF 2009. LNCS, vol. 5902, pp. 23–36. Springer,
Heidelberg (2009)

12. Emerson, E.A., Halpern, J.Y.: Decision procedures and expressiveness in the tem-
poral logic of branching time. In: Symposium on Theory of Computing, STOC
1982, pp. 169–180. ACM (1982)

156 T. Klenze et al.

13. Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: clasp: a conflict-driven
answer set solver. In: Baral, C., Brewka, G., Schlipf, J. (eds.) LPNMR 2007. LNCS
(LNAI), vol. 4483, pp. 260–265. Springer, Heidelberg (2007)

14. Heymans, S., Van Nieuwenborgh, D., Hadavandi, E.: Synthesis from temporal spec-
ifications using preferred answer set programming. In: Coppo, M., Lodi, E., Pinna,
G.M. (eds.) ICTCS 2005. LNCS, vol. 3701, pp. 280–294. Springer, Heidelberg
(2005)

15. Jacobs, S., Bloem, R.: Parameterized synthesis. In: Flanagan, C., König, B. (eds.)
TACAS 2012. LNCS, vol. 7214, pp. 362–376. Springer, Heidelberg (2012)

16. Martin, A.: Adequate sets of temporal connectives in CTL. Electron. Notes Theor.
Comput. Sci. 52(1), 21–31 (2002). EXPRESS 2001, 8th International Workshop
on Expressiveness in Concurrency (Satellite Event of CONCUR 2001)

17. Schewe, S., Finkbeiner, B.: Bounded synthesis. In: Namjoshi, K.S., Yoneda, T.,
Higashino, T., Okamura, Y. (eds.) ATVA 2007. LNCS, vol. 4762, pp. 474–488.
Springer, Heidelberg (2007)

18. Sebastiani, R.: Lazy satisfiability modulo theories. J. Satisfiability Boolean Model.
Comput. (JSAT) 3, 141–224 (2007)

Synthesis of Self-Stabilising
and Byzantine-Resilient Distributed Systems

Roderick Bloem1, Nicolas Braud-Santoni1, and Swen Jacobs2(B)

1 Graz University of Technology, Graz, Austria
{roderick.bloem,nicolas.braud-santoni}@iaik.tugraz.at

2 Saarland University, Saarbrücken, Germany
jacobs@react.uni-saarland.de

Abstract. Fault-tolerant distributed algorithms play an increasingly
important role in many applications, and their correct and efficient imple-
mentation is notoriously difficult. We present an automatic approach
to synthesise provably correct fault-tolerant distributed algorithms from
formal specifications in linear-time temporal logic. The supported system
model covers synchronous reactive systems with finite local state, while
the failure model includes strong self-stabilisation as well as Byzantine
failures. The synthesis approach for a fixed-size network of processes is
complete for realisable specifications, and can optimise the solution for
small implementations and short stabilisation time. To solve the bounded
synthesis problem with Byzantine failures more efficiently, we design an
incremental, CEGIS-like loop. Finally, we define two classes of problems
for which our synthesis algorithm obtains solutions that are not only
correct in fixed-size networks, but in networks of arbitrary size.

1 Introduction

Distributed algorithms are hard to implement. While multi-core processors, com-
municating embedded devices, and distributed web services have become ubiqui-
tous, it is very hard to correctly construct such systems because of the interplay
between separate components and the possibility of uncontrollable faults.

Intent

Specification

Implementation

Verification

Fix
bugs

Fig. 1. Comparison of verification

and synthesis workflows

While verification methods try to prove
correctness of a system that has been
implemented manually, the goal of syn-
thesis methods is the automatic construc-
tion of systems that satisfy a given formal
specification. The difference between these
approaches is shown in Fig. 1, illustrating
how synthesis can relieve the designer from
tedious and error-prone manual implemen-
tation and bug-fixing. Despite these ben-
efits, formal methods that guarantee cor-
rectness a priori, like synthesis, have hardly
found their way into distributed system design. This is in contrast to a posteriori
methods like verification, which are being studied very actively [35,45,46].
c© Springer International Publishing Switzerland 2016
S. Chaudhuri and A. Farzan (Eds.): CAV 2016, Part I, LNCS 9779, pp. 157–176, 2016.
DOI: 10.1007/978-3-319-41528-4 9

158 R. Bloem et al.

One reason for this is that the underlying computational problems in syn-
thesis are even harder than in verification. However, research on synthesis has
picked up again in recent years [1,8,24,36,52], pushed forward by advances in
theorem proving [26,42] and model checking algorithms [10,40] that can be used
as building blocks for efficient synthesis algorithms.

In particular, also the synthesis of concurrent and distributed systems has
received more attention lately. However, research in this area is to a large extent
still restricted to basic theoretical problems [23,24] or to simpler sub-problems,
such as synthesis of synchronisation for existing programs [12,54].

Failure resilience is critical in this setting, for two reasons: firstly, it enables
use in safety-critical applications with weaker assumptions on the environment
and the component itself. Secondly, it is needed to ensure scalability in practice,
since in large networks it is unrealistic to assume that all components work
without failure. In this work, we consider two kinds of failures: transient failures,
as exemplified by self-stabilising systems [16,53], where the whole system can be
transported to an arbitrary state; and permanent failures, as exemplified by
Byzantine failures [38], where some processes can deviate arbitrarily from the
algorithm they should be executing.

Previous approaches for the synthesis of failure-resilient systems are either
restricted in the systems that are considered [14], or in the kinds of failures
that are supported [21].1 For systems that support both self-stabilisation and
Byzantine failures, the only result known to us is a problem-specific and semi-
automatic approach by Dolev et al. [15], explained in the following.

Motivating Example [15]. Consider the problem of automatically constructing
a distributed counter, ranging over m possible values. Processes in the system
are arranged in a fully informed clique with synchronous timing, and should
satisfy the following properties under self-stabilisation and Byzantine failures:

(a) agreement : at every turn, all processes output the same value;
(b) increment : the value is incremented in each step (mod m).

Since increment is an easy-to-implement local property, the main problem is
agreement on the value. Dolev et al. [15] have recently shown a semi-automatic
approach to obtain solutions for this problem. For a fixed number f of Byzantine
nodes, they construct the distributed algorithm in two steps:

1. synthesis for a clique of sufficient size n;
2. extension to arbitrarily many processes.

The first step is based on a problem-specific encoding of the synthesis problem
into a SAT problem. For a fixed number n of processes, the approach finds a
solution – if one exists – by searching for implementations of increasing size
and with increasing stabilisation time. The sufficient size of the clique is n =
3 · f + 1, since this guarantees that (after stabilisation) the Byzantine nodes

1 Related to this are also approaches for the synthesis of robust systems [6], essentially
modelling failures in the environment of a single process.

Synthesis of Self-Stabilising and Byzantine-Resilient Distributed Systems 159

cannot change the majority value [43]. Therefore, processes that are added to a
correct system will be correct if they simply replicate the majority output of the
existing processes.

The results of Dolev et al. [15] are impressive, since their solutions for the
2-counting problem extend to systems of arbitrary size, and have smaller state
space and stabilisation time than any hand-crafted solution before. However,
application of their approach to other problems requires significant effort for the
development of a problem-specific encoding, and for proving its correctness.

In contrast, we introduce a general-purpose method for synthesis of failure-
resilient systems that is fully automatic, can easily be proven correct, and is
applicable to a wide range of problems. In particular, our preliminary imple-
mentation can replicate the results of Dolev et al. [15] and extend them to
n-counting (with n > 2).

Contributions. In this paper, we propose a novel approach for the automatic
synthesis of Byzantine-tolerant self-stabilising systems, in the form of distributed
labelled transition systems. Our synthesis method takes as input a description of
the network of processes and a specification in linear-time temporal logic, as well
as a bound on the number of Byzantine processes in the network. It encodes the
existence of a solution into a problem in satisfiability modulo theories (SMT),
and synthesises correct implementations for all processes, if they exist.

We show that our method is correct and complete, and will terminate if a
bound on the size of process implementations is given.

The first-order problems that result from our encoding critically need quan-
tification over finite, but possibly large, sets. We provide a dedicated approach
to solve those problems incrementally. On a prototype implementation of the
approach, we show that this makes our examples tractable.

Finally, we give new results for extending our synthesis method from networks
of fixed size to families of networks of unbounded size, based on the notion of
cutoffs and the Parameterised Synthesis approach [30]. In particular, we define
colourless specifications (or tasks) for non-terminating systems in cliques and
similar network topologies, as well as a class of local specifications for networks
with a fixed degree. For colourless specifications, we obtain cutoffs that depend
on the number of Byzantine nodes, while for local specifications we obtain cutoffs
that depend on the stabilisation time.

Structure. We introduce our system model and class of specifications in Sect. 2,
and the basic synthesis approach in Sect. 3. We present the incremental approach
for solving our synthesis problem in Sect. 4, the extension to parametric networks
in Sect. 5, and experimental results in Sect. 6.

2 System and Failure Model, Specifications

We consider distributed systems that are defined by a fixed network of finite-state
processes, in a synchronous composition: in every global step of the system, each
process observes the outputs (possibly the complete state) of neighbouring com-
ponents, and makes a transition. Our composition models atomic snapshot, the

160 R. Bloem et al.

classical communication model for self-stabilising systems [13]. Furthermore, syn-
chronous timing (possibly as an abstraction of the system behaviour) is a stan-
dard assumption when reasoning about consensus problems, as these problems
are undecidable in asynchronous networks in the presence of faults [25,39,47].
To support asynchronous systems, one option is to use an abstraction to an
effectively synchronous system, like for example in the model based on “commu-
nication rounds” by Dragoi et al. [18].

In the following, we formalise these notions for the case of fixed-size networks.
We will consider networks of parametric size in Sect. 5.

2.1 System Model

Labelled Transition Systems. For given finite sets Σ of inputs and Υ of
labels – or outputs – a Υ -labelled Σ-transition system (or short: a (Υ,Σ)-LTS)
T is a tuple (T, T0, τ, o) of a set T of states, a set T0 ⊆ T of initial states,
a transition function τ : T × Σ → T and a labelling (or output) function
o : T → Υ . T is called finite if T is finite.

We consider Υ = 2O and Σ = 2I , representing valuations of a set of Boolean
output variables O (controlled by the system) and a set of Boolean input vari-
ables I (not controlled by the system).

Communication Graphs, Symmetry Constraints. A communication graph
C is a tuple (V,X, I,O), where V is a finite set of nodes, X is a set of system
variables, and I : V → P(X), O : V → P(X) assign sets of input and output
variables to the nodes, with O(v) ∩ O(v′) = ∅ for all v �= v′ ∈ V . For a given
v, we call (I(v),O(v)) the interface of v, and (| I(v) | , | O(v) |) the type of the
interface of v. If I(v) ∩ O(v′) �= ∅, i.e., an output of v′ is an input of v, then we
say that v and v′ are neighbours in C. Variables that are not assigned (by O)
as output variables to any of the nodes are global input variables, controlled by
the environment. Denote this set of variables as O(env).

The communication graph may come with a symmetry constraint, given as
a partitioning V1∪̇ . . . ∪̇Vm = V of the set of nodes. We assume that for every
element Vi of the partition, nodes v, v′ ∈ Vi have the same type of interface, and
that interfaces of all nodes have a fixed order that identifies corresponding in- and
outputs of v and v′. The intended semantics is that nodes in the same element of
the partition should have the same implementation modulo this correspondence.

Distributed Systems. An implementation of a node v ∈ V in a communication
graph C is a (2O(v), 2I(v))-LTS. A distributed system is defined by a communi-
cation graph C and a finite family (Lv)v∈V of implementations.

Let C = (V,X, I,O) be a communication graph with V = {v1, . . . , vn}, and
for every vi ∈ V let Li = (Li, L0,i, τi, oi) be an implementation of vi in C. The
composition of (Lv)v∈V in C is the (2X , 2O(env))-LTS G = (G,G0, τ, o) with:

– G = L1 × . . . × Ln,
– G0 = L0,v1 × . . . × L0,vn

,
– o(l1, . . . , ln) = o1(l1) ∪ . . . ∪ on(ln), and

Synthesis of Self-Stabilising and Byzantine-Resilient Distributed Systems 161

– τ((l1, . . . , ln), e) = ((τ1(l1, σ1), . . . , τn(tn, σn)), where σ = o(l1, . . . , ln)∪ e and
σi is the restriction of σ to variables in I(vi).

Note that this is essentially the same formalism as in Finkbeiner and Schewe’s
seminal paper [24], and in the following we re-use part of their work on encoding
the synthesis problem for such systems into SMT.

2.2 Failure Model

We consider two kinds of failures: transient failures that are limited in time, but
may affect the whole system, and permanent failures that are limited in their
locations, i.e., only affect a subset of the processes. We model these failures as
self-stabilisation and Byzantine failures, respectively. The conjunction of both
kinds of failures is called Byzantine tolerant self-stabilisation [17].

Self-Stabilisation. Self-stabilisation is the strongest model for transient fail-
ures, introduced by Dijkstra [13,16,53]; it assumes that the system as a whole
fails – once – and is put in an arbitrary state. When the failure is over, processes
resume their execution from this state. In transition systems, it is thus easily
modelled by making all global states of the system initial.

Since an arbitrary state of the system will in general not satisfy strict safety
requirements, in self-stabilisation one usually requires that a specification will
eventually be satisfied, i.e., after a (either fixed or unknown) stabilisation time.

Byzantine Failures. Byzantine failure is a model of permanent failure where
some processes do not execute the protocol, but are under the control of a
Byzantine adversary. Our assumptions on the adversary are:

– non-adaptiveness: the adversary picks the set of faulty nodes before the algo-
rithm is run;

– full information: the adversary can read the global state of the system;
– computational power : the adversary has unbounded computational power.

In our setting, the non-adaptiveness does not remove any power from the
adversary [11].2 Therefore, it is equivalent to the strong Byzantine adversary,
which subsumes most models of permanent failure. We will consider systems
with a fixed upper bound f on the number of Byzantine failures.

2.3 Formal Specifications

We consider formal specifications in linear-time temporal logic (LTL), where
the atomic propositions are the system variables. A formula that uses only the
input and output variables of a tuple v = (v1, . . . , vk) of nodes will sometimes
be written ϕ(v). We assume that the body of our specification is of the form

∀v ∈ V k : ϕ(v),

for some k ≤ |V |.
2 Essentially, this is because our model is not probabilistic, and because the protocol

must work for any choice of Byzantine nodes and any behaviour they can exhibit,
which includes all possible behaviours of an adaptive adversary.

162 R. Bloem et al.

Example 1. Consider a fully connected network of a set of nodes V . Suppose
every process v ∈ V has a binary output variable cv. In the 2-counting problem
from Sect. 1, every node v has an output cv, and the formal specification ϕ is
the conjunction

∀v ∈ V. G (cv = 0 ↔ X cv = 1)
∧∀v1, v2 ∈ V. G (cv1 = cv2) ,

stating that (for every node) the binary output should be flipped in every step,
and (for all pairs of nodes) the output of two nodes should always be the same.

Fault-Tolerant Specifications. Since we consider systems that exhibit both
self-stabilisation and Byzantine failures, we need to consider a special type of
specifications:

– self-stabilisation implies that specifications ϕ with non-trivial safety require-
ments (like in Example 1) in general cannot be satisfied without explicitly
allowing a stabilisation time. Therefore, we consider specifications ϕ that are
either of the form Fψ (if we allow an unspecified stabilisation time), or of the
form Xt ψ (if we require that the stabilisation time is bounded by t steps).

– Byzantine failures imply that the respective nodes can behave arbitrarily, and
properties of the specification can not be expected to hold for them. Therefore,
we require that for every choice of the Byzantine nodes, the specification holds
only for tuples of correct nodes, i.e., where none of the nodes is Byzantine.
Formally, this means that instead of the original specification ∀ v ∈ V k : ϕ(v)
we consider the specification

∀ b ∈ V f , v ∈ V k :

⎡

⎣

⎛

⎝
∧

1≤i≤k,1≤j≤f

vi �= bj

⎞

⎠ → ϕ(v)

⎤

⎦ . (1)

Example 2. Recall the second part of the 2-counting specification:

∀v1, v2 ∈ V. G (cv1 = cv2) .

For systems with one Byzantine node b in V , this property is modified to:

∀b ∈ V. ∀v1, v2 ∈ V. [(v1 �= b ∧ v2 �= b) → G (cv1 = cv2)] .

3 Bounded Synthesis of Resilient Systems

Synthesising distributed systems is in general undecidable [23,44,48]—with or
without failures—and only becomes decidable by bounding the size of the imple-
mentation. The bounded synthesis problem consists in constructing an imple-
mentation that satisfies a given temporal logic specification and a bound on the
number of states.

Synthesis of Self-Stabilising and Byzantine-Resilient Distributed Systems 163

LTL Communication graph

UCT Uninterpreted LTS

SMT

Size bound

Fig. 2. The bounded synthesis approach

Finkbeiner and Schewe [24] gave an
algorithm for bounded synthesis based
on an encoding into satisfiability mod-
ulo theories (SMT). Inspired by their
encoding, we describe in the following
an algorithm for the bounded synthesis
of distributed systems with Byzantine-
tolerant self-stabilisation. The high-
level structure of the approach is
depicted in Fig. 2.

Input: Specification and Communication Graph. The input to our syn-
thesis problem is a communication graph C = (V,X, I,O), possibly with a
symmetry constraint V1∪̇ . . . ∪̇Vm = V , and a (global) temporal specification ϕ
over atomic propositions in X. In the following, let O =

⋃
v∈V O(v) be the set

of global output variables (controlled by the system), and I = X \ O the set of
global input variables (controlled by the environment) of C.

In the following we encode the existence of local implementations of the nodes
in V such that the composition of these implementations in C satisfies ϕ.

Conversion of the Specification to an Automata. Using the approach of
Kupferman and Vardi [37], the specification ϕ is translated into a universal co-
Büchi tree automaton (UCT) Aϕ = (Q, qo, δ, F), where Q is a finite set of states,
q0 ∈ Q the initial state, δ : Q×2O → P(Q×2I) a transition relation, and F ⊆ Q
a set of rejecting states. A given UCT A accepts an (2O, 2I)-LTS T if no run
in the parallel execution of A and T visits a rejecting state infinitely often. The
UCT Aϕ is constructed such that it accepts an LTS T if and only if T |= ϕ.

As an optimisation, we use a Safra-less conversion to generalised Rabin
automata [50] rather than converting to a co-Büchi automata, as the
automatically-generated Rabin automata are smaller. However, co-Büchi and
Rabin automata are known to be equally expressive.

Uninterpreted LTS Based on Size Bound and Communication Graph.
Let s be a local size bound for implementations of nodes in C. Then, for
each node vi ∈ {v1, . . . , vn} = V , we want to find a (2O(vi), 2I(vi))-LTS
Li = (Li, L0,i, τi, oi), with:

– a set of (local) states Li with |Li | = s;
– a set of initial states L0,i ⊆ Li;
– a transition function τi : Li × 2I(vi) → Li;
– a labelling function o : Li → 2O(vi).

Li can be considered a fixed set of elements, while the transition and labelling
functions are to be synthesised. That is, in our SMT encoding they are considered
as uninterpreted functions. If vi, vj ∈ Vk for some Vk in the symmetry constraint,
then we introduce just one uninterpreted function symbol that is used for both
τi and τj , and similarly for oi and oj . This enforces the constraint that both
nodes will have the same implementation. The choice of L0i is explained below.

164 R. Bloem et al.

Encoding of UCT and LTS into SMT Problem. To encode the syn-
thesis problem, we follow the approach of Finkbeiner and Schewe [24]. Let
G = (G,G0, τ, o) be the composition of the local implementations Li in C. Then,
we define an (uninterpreted) annotation function λ : Q × G → Q ∪ {⊥} that
maps states in the product automaton Aϕ ×G to either ⊥ or a rational number.
To ensure that G is accepted by Aϕ, we introduce constraints on λ such that
λ tracks whether states in the product automaton Aϕ × G are reachable, and
bounds the number of visits to rejecting states in runs of Aϕ × G. In particular,
we require that

∀g0 ∈ G0 :λ(q0, g0) �= ⊥ (2)
∀q, q′ ∈ Q, g ∈ G, σ ∈ Σ :λ(q, g) �= ⊥ ∧ (q′, σ) ∈ δ(q, o(g)) ∧ q′ �∈ F

→ λ(q′, τ(g, σ)) ≥ λ(q, g) (3)
∀q, q′ ∈ Q, g ∈ G, σ ∈ Σ :λ(q, g) �= ⊥ ∧ (q′, σ) ∈ δ(q, o(g)) ∧ q′ ∈ F

→ λ(q′, τ(g, σ)) > λ(q, g) (4)

The conjunction (2) ∧ (3) ∧ (4), in the following denoted as SMTϕ, encodes the
existence of an implementation that satisfies ϕ in a system without failures.

Encoding Self-Stabilisation. We encode self-stabilisation by considering all
states of the system as initial states, i.e., L0i = Lv. Thus, a solution to our
synthesis problem has to ensure that the specification ϕ is satisfied for all runs
that begin in any of the states of the composed system. This corresponds directly
to the definition of self-stabilisation introduced by Dijkstra [13].

Encoding Byzantine Failures. Byzantine nodes can behave arbitrarily, and
the Byzantine adversary has information about the global state of the sys-
tem [38]. Thus, the behaviour of Byzantine failures can be modelled by allowing
them to give arbitrary outputs at any time, essentially re-assigning their outputs
to outputs of the adversarial environment.

To encode this, we modify the constraints above such that Byzantine
processes are observed with arbitrary output. In particular, if node vi is Byzan-
tine, then in (3) and (4) we replace each occurrence of a system variable x ∈ O(vi)
with a fresh variable xb, and add a quantifier ∀xb ∈ B. For a given formula ψ
and x(v) = O(v), this substitution is denoted as ∀xb(v) ∈ B. ψ[x(v) �→ xb(v)].

Example 3. Consider that the first component v1 is Byzantine, let x = O(v1),
g = (l1, . . . , ln) and σ = (σ1, . . . , σn). Then, constraint (3) is modified to:

∀xb ∈ B, q, q′ ∈ Q, g ∈ G, σ ∈ Σ :
λ(q, g) �= ⊥ ∧ (q′, σ[x �→ xb]) ∈ δ(q, o(g)) ∧ q′ �∈ F

→ λ(q′, (τ1(l1, σ1[x �→ xb]), . . . , τn(ln, σn[x �→ xb])) ≥ λ(q, g).

Finally, since the Byzantine adversary can choose a set of at most f Byzantine
nodes, we have to quantify over all possible choices of the adversary. Since the
satisfaction of the specification can depend on the choice of processes, we have
an important change to the encoding: our quantification has to reflect that the

Synthesis of Self-Stabilising and Byzantine-Resilient Distributed Systems 165

correctness argument, and therefore the witness function λ, can depend on this
choice, while the transition and labelling functions τ, o must not depend on this
choice. This results in the following encoding:

∃τ, o. ∀{b1, . . . , bf} ⊆ V. ∃λ.
∀xb(b1, . . . , bf) ∈ B. SMTϕ[x(b1, . . . , bf) �→ xb(b1, . . . , bf)]. (5)

Note that with this encoding, all neighbours of a Byzantine process observe
the same outputs. It is straightforward to have different observed outputs for
different neighbours in our encoding, at the cost of introducing one quantified
variable for the observation of each neighbour.3

Furthermore, note that all quantification is over finite sets, so we can elimi-
nate all quantifiers by Skolemising λ such that it is a function that depends on
the choice of {b1, . . . , bf}, and explicitly instantiating the universal quantifiers.

Correctness. For uninterpreted functions τ, o, λ, satisfiability of our encoding is
equivalent to the existence of an LTS that satisfies the specification ϕ. Moreover,
satisfying valuations of τ and o give us a solution to the synthesis problem, and
the valuation of λ witnesses correctness of that solution.

Theorem 1 (Correctness for fixed bound). The constraint system (5) is
satisfiable if and only if the specification is finite-state realisable in a self-
stabilising system with f Byzantine nodes in the given communication graph.
A satisfying assignment of τ and o represents a solution to the synthesis
problem.

Up to the encoding of failures, our encoding is equivalent to that of Finkbeiner
and Schewe, and correctness follows from Theorem 5 of [24]. Correctness of the
encoding of self-stabilisation is straightforward, and correctness of the encoding
of Byzantine failures follows from our elaborations above.

Increasing the Bound. By iterating bounded synthesis for increasing bounds,
we obtain a semi-decision procedure for the synthesis problem.

Corollary 1 (General correctness and completeness). A semi-procedure
that iterates bounded synthesis of resilient systems for increasing bounds will
eventually find a finite-state implementation of ϕ if it exists.

Practical Applicability. Our encoding includes a large number of quantifiers,
both universal and existential. Since we consider finite domains, they could all be
explicitly instantiated, but experiments show that their full instantiation results
in a combinatorial blowup that quickly makes the SMT formula intractable. For
non-trivial examples, existing SMT solvers (such as Z3 and CVC3) were unable
to solve the resulting problem instances.
3 Also, note that fail-stop failures can be seen as a special case of Byzantine failures,

and can be modelled in a similar way: instead of giving arbitrary outputs, the chosen
nodes at some point move into a special stop state, from which they cannot recover.

166 R. Bloem et al.

Abstracting from the universal quantifiers inside the innermost existential
quantifier (as these are treated rather efficiently by existing methods like incre-
mental instantiation [29,41] or in some cases simply full instantiation) and the
concrete meaning of the function symbols, our synthesis problem is of the form

∃x.∀y.∃z.Q(x, y, z)

where Q(x, y, z) is an SMT formula and x, y, z are from finite domains. In the
following, we introduce a new, incremental algorithm that performs well for
instances of this problem produced by our encoding.

4 Incremental Synthesis Algorithm

In this section, we introduce an algorithm that allows us to solve synthesis prob-
lems more efficiently than a direct application of an SMT solver on the full
encoding of the previous section. To this end, we extend the approach of Counter-
Example-Guided Inductive Synthesis (CEGIS) [52][51, Chapt. 4] to handle finite
model extraction for first-order formulae with two quantifier alternations (∃∀∃).
Like CEGIS, our algorithm is only guaranteed to terminate when the universal
quantification is over a finite domain.

4.1 Previous Work

Solar-Lezama et al. introduced CEGIS [51,52] in the context of template-based
synthesis, but it is a general method for solving first-order problems of the form
∃x.∀y.Q(x, y). It is complete and terminating if y belongs to a finite domain Y .
CEGIS performs model extraction, which is crucial when doing synthesis.

In the following, we will use x, y, z as first-order variables and x̂, ŷ, ẑ as con-
crete values for these variables. CEGIS proceeds by building a database of coun-
terexamples ŷi for any candidate x̂ that it has encountered. In the worst case,
CEGIS performs O (|Y |) SMT queries until it reaches a conclusion; it is especially
efficient if every ŷ eliminates a large portion of the possible values for x.

The CEGIS algorithm is shown in Fig. 3. Formula φ(x) acts as the database
of counterexamples. The algorithm uses two incremental SMT solvers. In Line 3,
it extracts candidates for x that work for all counterexamples in the database.
In Line 5 it uses a new variable yn1 to extract a new counterexample that rejects
at least the last candidate x̂.

4.2 Extension to First-Order Model Extraction

The encoding of our synthesis problem is of the form

∃x.∀y.∃z.Q(x, y, z). (6)

In the specific case of our encoding, described earlier, x was called τ and
ranges over uninterpreted functions over finite domains; y was called B and

Synthesis of Self-Stabilising and Byzantine-Resilient Distributed Systems 167

Data: A first-order formula ∃x. ∀y. Q(x, y)
Result: FALSE or a value x̂ such that ∀y. Q(x̂, y) holds

1 Initialise φ(x) to � and n = 0;
2 while true do
3 if φ(x) is satisfiable then
4 Extract a concrete value x̂ for x from the model;
5 if ¬Q(x̂, yn+1) is satisfiable then
6 Extract a concrete value ŷn+1 for yn+1 from the model;
7 φ := φ ∧ Q(x, ŷn+1);
8 n++;

9 else
10 return x̂;
11 end

12 else
13 return FALSE;
14 end

15 end

Fig. 3. Original CEGIS algorithm, solving ∃x.∀y.Q(x, y)

ranges over tuples of process identifiers from a finite domain and z was called λ
and ranges over the rationals.

While we still keep a set of counterexamples ŷi, candidate generation is now
a little more intricate: we look for one x̂ and a ẑi for every ŷi in the database.

The algorithm is shown in Fig. 4. Here, y1 . . . yn is (still) the database of coun-
terexamples. The candidate extraction is again in Line 3, but is more intricate:
it now extracts a candidate x̂ for x as well as a candidate ẑi for each counterex-
ample ŷi. In Line 5 we then look for a new counterexample ŷn+1 that shows that
the formula is false for x̂ and any of the ẑi.

Note that, again, we can use two incremental SMT solvers. In the outer
satisfiability call (Line 3), we only add conjunctive constraints to φ. In the inner
satisfiability call (Line 5), we add conjunctive constraints to

∧n
i=1 ¬Q(x̂, yn+1, ẑi)

as long as x̂ does not change, and we reset the formula if x̂ does change.4

Correctness Argument. Let us assume the algorithm returns x̂. At the point
where it returns, it has concrete values ẑ1 . . . ẑn such that there is no y that
falsifies Q(x̂, y, ẑi) for all i. This means that for any y, there is a ẑi such that
Q(x̂, y, ẑi) is satisfied: we indeed exhibited a valid model for the formula.

Conversely, let us assume the algorithm returns FALSE: this means that the
formula φ =

∧n
i=1 Q(x, ŷi, zi) is not satisfiable. Assuming our original formula

4 In fact, in our prototype implementation we use a heuristic that avoids throwing
away the formula by re-assigning the value of x̂ in the formula whenever the outer
SMT call returns a new value. Then, we do not throw away the formula at all, but
risk that it grows unnecessarily large. In our experiments, this has shown favourable
effects.

168 R. Bloem et al.

Data: A first-order formula ∃x. ∀y. ∃z. Q(x, y, z)
Result: FALSE or a value x̂ such that ∀y.∃z. Q(x̂, y, z) holds

1 Initialise φ(x, z1, . . . , zn) to � and n = 0;
2 while true do
3 if φ(x, z1, . . . , zn) is satisfiable then
4 Extract concrete values x̂, ẑ1, . . . , ẑn for x, z1, . . . , zn from the model;
5 if

∧n
i=1 ¬Q(x̂, yn+1, ẑi) is satisfiable then

6 Extract a concrete value ŷn+1 for yn+1 from the model;
7 φ := φ ∧ Q(x, ŷn+1, zn+1);
8 n++;

9 else
10 return x̂;
11 end

12 else
13 return FALSE;
14 end

15 end

Fig. 4. Proposed algorithm, solving ∃x. ∀y.∃z.Q(x, y, z)

was satisfiable, and given a model x, z(·) that satisfies it, then x, zi = z(ŷi) would
be a model for φ: hence, our original formula is UNSAT.

Finally, termination of the algorithm follows from the fact that our domains
are finite, which implies that every formula only has finitely many satisfying
assignments, and every call to the inner SMT solver strengthens the formula φ
such that at least one satisfying assignment is removed.

4.3 Related Work

Our work is close to Janota et al. [31] which extends CEGIS to decide QBF
formulas with arbitrary quantifier alternation. Janota et al. propose a recursive
algorithm which uses a number of nested SMT calls linear in the number of
quantifier alternations, whereas we need only two. Moreover, since candidate
values are changed by subsequent SMT calls more often, the algorithm cannot
efficiently use incremental solving.

Another modification of CEGIS that is close to ours is that of Koksal
et al. [34]. At a high level (i.e., the level we chose for our description in this
section), their approach is very similar to ours. The differences between the algo-
rithms are in the encoding of synthesis problems, as well as in the specialised
verification and synthesis algorithms that are part of the description in Koksal
et al. [34]. We chose a higher level of description for the CEGIS algorithm in
order to increase its re-usability in different settings.

Finally, another approach for the synthesis of reactive systems that uses
incremental refinement of candidate models is lazy synthesis [22]. The difference
to our approach is that lazy synthesis is not based on CEGIS and a direct
encoding of correctness into SAT or SMT, but instead uses LTL model checking

Synthesis of Self-Stabilising and Byzantine-Resilient Distributed Systems 169

and an encoding of error traces into SMT to obtain and refine candidate models.
Lazy synthesis does not consider systems with Byzantine failures, but could
probably be extended to our setting by extending the LTL model checking to
all possible choices of Byzantine nodes and all possible actions taken by the
Byzantine adversary. Whether this would be efficient is an open question.

5 Extension to Networks of Unbounded Size

The synthesis method we have introduced thus far is restricted to systems with
a fixed number of components. However, correctness in networks of arbitrary
size is needed for scalability, as it is unfeasible to synthesise a new solution
whenever new processes are introduced into the system. In this section, we show
how to obtain process implementations that are correct in systems of arbitrary
size, based on the idea of Parameterised Synthesis [30]: by combining a general
correctness argument for a specific class of systems and specifications, we can
synthesise systems that will be correct in networks of unbounded size by synthe-
sising a solution that (i) satisfies the specification and (ii) belongs to the class
of systems for which the correctness argument holds.

Parameterised Systems. Let C be the set of all communication graphs. Then
a parameterised communication graph is a function Γ : N → C, where we assume
that every Γ (i) comes with a symmetry constraint that separates the nodes into
a finite number of implementation classes (with identical interface types). A
parameterised communication graph Γ is of order k if, for all n ∈ N, the number
of implementation classes in Γ (n) is less or equal to k. Then, an implementation
of a parameterised communication graph Γ of order k is a set of implementations
{T1, . . . , Tk} for its nodes, one for each implementation class.

Parameterised Specifications. In specifications of parameterised systems, the
atomic propositions are the system variables, indexed by fixed component iden-
tifiers or identifier variables. An identifier variable i can be quantified globally in
the form ∀i.ϕ, or locally in the form ∀i : neighbour(x).ϕ. In every given instance
of the parameterised communication graph, this quantification is simply inter-
preted as a finite conjunction over all possible values for i.

Cutoffs for Parameterised Synthesis. A central notion of parameterised
synthesis is the cutoff : an upper bound c on the number of nodes in a network
that need to be considered, such that components that are correct in the network
of size c are also correct in any network of a bigger size. Formally, c ∈ N is a
cutoff for a set of specifications Φ and a class of systems S if, for every ϕ ∈ Φ
and every (Γ, {T1, . . . , Tk}) ∈ S (where Γ is of order k), it holds that

∀n > c : ({T1, . . . , Tk}, Γ (c) |= ϕ ⇔ {T1, . . . , Tk}, Γ (n) |= ϕ) .

Thus, a cutoff enables parameterised synthesis if and only if we can guarantee
that our solution belongs to the system class S. In principle, this idea can directly
be applied to failure-resilient systems, but existing cutoff results [2,3,7,19,20,27]
usually do not take into account fault-tolerance.

170 R. Bloem et al.

Colourless Specifications. In distributed systems, there is a classical notion
of (weakly) colourless tasks for terminating executions of a system. This includes
many important properties of finite runs, such as consensus and k-set agreement.
We extend this notion to infinite runs.

For a given global state g = (l1, . . . , ln) of a system G, a variant of g is a
state g′ that can be obtained from g by changing the local state li of one process
i to another local state l′i ∈ Li, such that oi(l′i) = oj(lj) for some j �= i, or by a
sequence of such changes.

Then, define a specification ϕ to be colourless if for every execution trace
o(g0)o(g1) . . . o(gn) . . . that satisfies ϕ, and any variant g′

n of gn, the partial trace
o(g0)o(g1) . . . o(gn−1)o(g′

n) can be extended to a trace that satisfies ϕ.
An example of a colourless specification is the m-counting specification from

our motivating example. Note that colourlessness is a semantic property of a
specification, and we do not supply a syntactic fragment of LTL that guarantees
colourlessness.

Cutoffs for Colourless Specifications. We show how to extend an n-process
system G satisfying a colourless specification ϕ into an (n + k)-process system,
satisfying the same specification. We assume that the processes in G are fully
connected (i.e., in a clique) and that state labels are unique, i.e., the output
of a process is sufficient to conclude its current internal state. Based on these
assumptions, we show how to synthesise a system that can be considered a larger
clique, where the additional processes can have a different implementation.

The additional processes will have an implementation L′ that is different from
that of the original processes. L′ reads the current input from the environment
and the outputs of processes in the original clique, uses this information (which
by assumption lets us conclude their current internal state) as well as knowledge
about the original implementation L to anticipate their next transition, and
moves to a state that has the same output as the majority of the next-states in
the clique.

To ensure that this will result in a correct system even under up to f Byzan-
tine nodes, we need to enforce an f-majority property in the original system:
in every round, the output chosen by the largest number of correct nodes is
picked by f more nodes than the second largest one.5 Then, even if the compu-
tation of L′ described above includes Byzantine nodes, its output will be equal to
that of the majority of original implementations L, and therefore the colourless
specification will still be satisfied.

If we are synthesising the original system, the f-majority property can be
directly encoded as an additional cardinality constraint over the outputs. This
constraint preserves satisfiability of the synthesis constraints, even for a given
state space.

To see this, assume that a given original system satisfies a colourless specifi-
cation, but does not have the f-majority property. Then we can transform it into
a system G′ which simulates G. At each step, processes in G′ simulate G for one
5 This is an extension of the argument for proving the exact number of Byzantine

failures that can be survived while solving consensus problems [38].

Synthesis of Self-Stabilising and Byzantine-Resilient Distributed Systems 171

step, and check whether f -majority is achieved. If it is not, then we can (par-
tially) determinise the given system to obtain f-majority : for instance, nodes
can be grouped by output value, and state and output value of some nodes can
be replaced with ones from the largest group. The modified system still produces
valid runs thanks to the specification being colourless.

Theorem 2. If ϕ is a colourless specification, C is a fully informed clique and
(Lv)v∈V a set of implementations such that their composition G in C has the f-
majority property and G |= ϕ, then any extension of G with additional processes
L′ as described above will satisfy ϕ.

Cutoffs for Local Specifications in Regular Networks. We can also obtain
cutoffs for the setting that satisfies the following:

– the networks has a constant-degree – also called regular – where all nodes
have the same interface and implementation,

– local specifications: specifications of the form ∀i. Xt Gφ(i) (where φ(i) is a
Boolean formula over the current state of processes in a maximal distance of
r to a process i),

– a fixed number of Byzantine nodes f in a distance of r around any node, and
– a fixed stabilisation time t.

Theorem 3. Let C be a constant-degree network with a given interface for all
nodes, and such that all nodes have a maximal distance of r + t from a central
node v. If an implementation L satisfies a local specification ϕ(v) in C, then
L satisfies ∀i. ϕ(i) in any C ′ with the same degree, the same interface, and a
radius greater than r + t.

The cutoff follows from the fact that our specifications only require that we
enter the “legitimate states” specified by φ(i) within t steps, and never leave
them afterwards, and within these t steps only information from nodes with this
distance can enter the radius around i that φ(i) talks about. Because of full
symmetry in these systems, it is sufficient to require ϕ(v) instead of ∀i. ϕ(i).

Specifications that can be expressed as purely first-order formulae can be
rewritten as local specifications [9,49]. This suggests that local formulae are
expressive enough to be of interest: for instance, consensus is local despite k-set
agreement being non-local.6

6 Experimental Results

A preliminary implementation was written in OCaml, using Sickert’s formally
proven correct tool [50] to convert LTL specifications to automata, and de Moura
and Bjørner’s Z3 [42] as the backend SMT solver.

6 It is not sufficient to prove that k-set agreement is not expressible in FO. However, k-
set agreement – for any given k ≥ 2 – can easily be proven non-local by contradiction.

172 R. Bloem et al.

Experiments were run on a number of computers equipped with 64GiB of
memory and eight cores clocked at 2.6 GHz. Note that our solver is sequential
and does not take advantage of multicore machines.

We were able to reproduce the results from Dolev et al. [15] regarding syn-
chronous 2-counting with a single Byzantine adversary (f = 1). Each experi-
ment – for a fixed set of parameters – took at most one hour. As in previous
results [15], those solutions can be extended to any system of greater size while
keeping the number f of failures, the stabilisation time t and the local state size
s constants.

Moreover, we were able to synthesise a symmetric solution for 4-counting,
for 4 processes with 5 states each, and stabilisation time 10. This improves on
the solution suggested by Dolev et al. to simply duplicate a 2-counter to obtain
a 4-counter, which would result in an implementation with 6 local states and a
stabilisation time of at least 14 in this case. To our knowledge, this is the first
instance of a solution to n-counting (with n > 2) ever synthesised. This result
shows that our more general approach allows us to obtain even more efficient
implementations than that of Dolev et al., without the need to manually devise
a new encoding and argue about its correctness.

Class processes (n) local states (s) Total states Stabilisation time (t)

symmetric 4 3 12 7
5 3 15 6
6 3 18 3
7 2 21 8
8 2 16 4

general 4 4 16 5
5 3 15 4
6 2 12 6

Fig. 5. Synthesised algorithms for 2-counting with a single Byzantine failure

Attempts to replicate these results using directly a first-order model finder –
such as CVC3 [5] – or existing extensions of CEGIS [31] resulted either in timeout
(no result within 12h) or running out of memory.

Moreover, as mentioned in Sect. 3, we use a translation from LTL to Rabin
automata [50]: we compared that approach to encoding universal co-Büchi
automata obtained with ltl3ba [4] and observed a speedup from 25 % to 50 %
depending on the instance.

7 Conclusion

We have presented a method to automatically synthesise distributed systems
that are self-stabilising and resilient to Byzantine failures. We assume that the

Synthesis of Self-Stabilising and Byzantine-Resilient Distributed Systems 173

systems are specified in LTL. Our results apply to finite network graphs and
extend to parameterised synthesis of processes on a graph of arbitrary size under
reasonable conditions. The approach follows the basic idea of Bounded Synthesis.
It constructs an SMT formula with two quantifier alternations that states that
a fault-tolerant implementation of a given size exists, and it is complete if a
bound on the size of the process implementation is given. We have presented a
CEGIS-style decision procedure to decide such formulas that is far more efficient
than existing approaches for the formulas we have encountered. Finally, we show
that we can efficiently synthesise a small solution for the 2-counter problem.

In this work, we only consider the synthesis of basic building blocks of dis-
tributed systems, modelled as labelled transition systems. To obtain actual
large-scale implementations, many additional layers of complexity need to be
addressed, and in practice there will be a trade-off between formality and
automation on the one hand, and scale or precision of the system model on the
other hand, as for example demonstrated in recent work of Hawbitzel et al. [28].

In the near future, we plan to extend our approach to more general timing
models and to study more general specifications for parameterised synthesis. In
particular, we want to extend our approach to the system model of the PSync
language of Dragoi et al. [18], which enables reasoning about asynchronous sys-
tems by introducing a notion of “communication rounds”, and will make our
approach applicable to a much larger class of problems. Furthermore, we will
look into optimisations of the encoding, as described by Khalimov et al. [32,33]
for parameterised synthesis of systems without fault-tolerance.

Acknowledgements. We thank Igor Konnov, Ulrich Schmid, Josef Widder, and the
late Helmut Veith for interesting discussions on formal methods for distributed systems.
We also thank the anonymous reviewers for their detailed and insightful comments.

This work was supported by the Austrian Science Fund (FWF) through projects
LogiCS (W1255-N23), QUAINT (I774-N23) and RiSE (S11406-N23), and by the
German Research Foundation (DFG) as part of the Transregional Collaborative
Research Center AVACS (SFB/TR 14) and through project ASDPS (JA 2357/2-1).

References

1. Alur, R., Bodik, R., Juniwal, G., Martin, M.M., Raghothaman, M., Seshia, S.,
Singh, R., Solar-Lezama, A., Torlak, E., Udupa, A., et al.: Syntax-guided synthesis.
In: Formal Methods in Computer-Aided Design (FMCAD), 2013, pp. 1–8. IEEE
(2013)

2. Aminof, B., Jacobs, S., Khalimov, A., Rubin, S.: Parameterized model
checking of token-passing systems. In: McMillan, K.L., Rival, X. (eds.)
VMCAI 2014. LNCS, vol. 8318, pp. 262–281. Springer, Heidelberg (2014).
http://doai.io/10.1007/978-3-642-54013-4 15

3. Außerlechner, S., Jacobs, S., Khalimov, A.: Tight cutoffs for guarded protocols
with fairness. In: Jobstmann, B., et al. (eds.) VMCAI 2016. LNCS, vol. 9583, pp.
476–494. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49122-5 23

http://doai.io/10.1007/978-3-642-54013-4_15
http://dx.doi.org/10.1007/978-3-662-49122-5_23

174 R. Bloem et al.

4. Babiak, T., Křet́ınský, M., Řehák, V., Strejček, J.: LTL to Büchi automata
translation: fast and more deterministic. In: Flanagan, C., König, B. (eds.)
TACAS 2012. LNCS, vol. 7214, pp. 95–109. Springer, Heidelberg (2012).
http://doai.io/10.1007/978-3-642-28756-5 8

5. Barrett, C.W., Tinelli, C.: CVC3. In: Damm, W., Hermanns, H. (eds.) CAV 2007.
LNCS, vol. 4590, pp. 298–302. Springer, Heidelberg (2007)

6. Bloem, R., Chatterjee, K., Greimel, K., Henzinger, T., Hofferek, G., Jobstmann,
B., Könighofer, B., Könighofer, R.: Synthesizing robust systems. Acta Informatica
51(3), 193–220 (2014). http://doai.io/10.1007/s00236-013-0191-5

7. Bloem, R., Jacobs, S., Khalimov, A., Konnov, I., Rubin, S., Veith, H., Wid-
der, J.: Decidability of Parameterized Verification. Synthesis Lectures on Dis-
tributed Computing Theory. Morgan & Claypool Publishers, San Rafael (2015).
http://doai.io/10.2200/S00658ED1V01Y201508DCT013

8. Bloem, R., Jobstmann, B., Piterman, N., Pnueli, A., Sa’ar, Y.: Synthe-
sis of reactive(1) designs. J. Comput. Syst. Sci. 78(3), 911–938 (2012).
http://doai.io/10.1016/j.jcss.2011.08.007

9. Bollig, B.: Logic for communicating automata with parameterized topology. In:
CSL-LICS, pp. 18:1–18:10. ACM (2014)

10. Bradley, A.R.: SAT-based model checking without unrolling. In: Jhala, R.,
Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 70–87. Springer, Heidel-
berg (2011). http://doai.io/10.1007/978-3-642-18275-4 7

11. Canetti, R., Damgrd, I., Dziembowski, S., Ishai, Y., Malkin, T.: On adaptive
vs. non-adaptive security of multiparty protocols. In: Pfitzmann, B. (ed.) EURO-
CRYPT 2001. LNCS, vol. 2045, pp. 262–279. Springer, Heidelberg (2001)

12. Černý, P., Henzinger, T.A., Radhakrishna, A., Ryzhyk, L., Tarrach, T.: Efficient
synthesis for concurrency by semantics-preserving transformations. In: Sharygina,
N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 951–967. Springer, Heidelberg
(2013). http://doai.io/10.1007/978-3-642-39799-8 68

13. Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Commun.
ACM 17(11), 643–644 (1974)

14. Dimitrova, R., Finkbeiner, B.: Synthesis of fault-tolerant distributed systems. In:
Liu, Z., Ravn, A.P. (eds.) ATVA 2009. LNCS, vol. 5799, pp. 321–336. Springer,
Heidelberg (2009). http://doai.io/10.1007/978-3-642-04761-9 24

15. Dolev, D., Korhonen, J.H., Lenzen, C., Rybicki, J., Suomela, J.: Syn-
chronous counting and computational algorithm design. In: Higashino, T.,
Katayama, Y., Masuzawa, T., Potop-Butucaru, M., Yamashita, M. (eds.)
SSS 2013. LNCS, vol. 8255, pp. 237–250. Springer, Heidelberg (2013).
http://doai.io/10.1007/978-3-319-03089-0 17

16. Dolev, S.: Self-Stabilization. MIT Press, Cambridge (2000)
17. Dolev, S., Welch, J.L.: Self-stabilizing clock synchronization in the presence of

Byzantine faults. J. ACM (JACM) 51(5), 780–799 (2004)
18. Dragoi, C., Henzinger, T.A., Zufferey, D.: PSync: a partially synchronous language

for fault-tolerant distributed algorithms. In: POPL, pp. 400–415. ACM (2016).
http://doai.io/10.1145/2837614.2837650

19. Emerson, E.A., Namjoshi, K.S.: On reasoning about rings. Int. J. Found. Comput.
Sci. 14(4), 527–550 (2003). http://doai.io/10.1142/S0129054103001881

20. Emerson, E., Kahlon, V.: Reducing model checking of the many to the few. In:
McAllester, D. (ed.) Automated Deduction - CADE-17. LNCS, vol. 1831, pp. 236–
254. Springer, Berlin Heidelberg (2000)

21. Faghih, F., Bonakdarpour, B.: SMT-based synthesis of distributed self-stabilizing
systems. TAAS 10(3), 21 (2015). http://doai.io/10.1145/2767133

http://doai.io/10.1007/978-3-642-28756-5_8
http://doai.io/10.1007/s00236-013-0191-5
http://doai.io/10.2200/S00658ED1V01Y201508DCT013
http://doai.io/10.1016/j.jcss.2011.08.007
http://doai.io/10.1007/978-3-642-18275-4_7
http://doai.io/10.1007/978-3-642-39799-8_68
http://doai.io/10.1007/978-3-642-04761-9_24
http://doai.io/10.1007/978-3-319-03089-0_17
http://doai.io/10.1145/2837614.2837650
http://doai.io/10.1142/S0129054103001881
http://doai.io/10.1145/2767133

Synthesis of Self-Stabilising and Byzantine-Resilient Distributed Systems 175

22. Finkbeiner, B., Jacobs, S.: Lazy synthesis. In: Kuncak, V., Rybalchenko, A. (eds.)
VMCAI 2012. LNCS, vol. 7148, pp. 219–234. Springer, Heidelberg (2012)

23. Finkbeiner, B., Schewe, S.: Uniform distributed synthesis. In: (LICS 2005), pp.
321–330. IEEE Computer Society (2005). http://doai.io/10.1109/LICS.2005.53

24. Finkbeiner, B., Schewe, S.: Bounded synthesis. STTT 15(5–6), 519–539 (2013).
http://doai.io/10.1007/s10009-012-0228-z

25. Fischer, M.J., Lynch, N.A., Paterson, M.: Impossibility of distributed
consensus with one faulty process. J. ACM 32(2), 374–382 (1985).
http://doai.io/10.1145/3149.214121

26. Ganzinger, H., Hagen, G., Nieuwenhuis, R., Oliveras, A., Tinelli, C.:
DPLL(T): fast decision procedures. In: Alur, R., Peled, D.A. (eds.)
CAV 2004. LNCS, vol. 3114, pp. 175–188. Springer, Heidelberg (2004).
http://doai.io/10.1007/978-3-540-27813-9 14

27. German, S.M., Sistla, A.P.: Reasoning about systems with many processes. J. ACM
39(3), 675–735 (1992)

28. Hawblitzel, C., Howell, J., Kapritsos, M., Lorch, J.R., Parno, B., Roberts, M.L.,
Setty, S.T.V., Zill, B.: Ironfleet: proving practical distributed systems correct. In:
SOSP, pp. 1–17. ACM (2015)

29. Jacobs, S.: Incremental instance generation in local reasoning. In: Bouajjani, A.,
Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 368–382. Springer, Heidelberg
(2009)

30. Jacobs, S., Bloem, R.: Parameterized synthesis. Log. Methods Comput. Sci. 10,
1–29 (2014). http://arxiv.org/abs/1401.3588

31. Janota, M., Klieber, W., Marques-Silva, J., Clarke, E.: Solving QBF with coun-
terexample guided refinement. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012.
LNCS, vol. 7317, pp. 114–128. Springer, Heidelberg (2012)

32. Khalimov, A., Jacobs, S., Bloem, R.: PARTY parameterized synthesis of token
rings. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 928–933.
Springer, Heidelberg (2013)

33. Khalimov, A., Jacobs, S., Bloem, R.: Towards efficient parameterized synthesis. In:
Giacobazzi, R., Berdine, J., Mastroeni, I. (eds.) VMCAI 2013. LNCS, vol. 7737,
pp. 108–127. Springer, Heidelberg (2013)

34. Köksal, A.S., Pu, Y., Srivastava, S., Bod́ık, R., Fisher, J., Piterman, N.: Synthesis
of biological models from mutation experiments. In: POPL, pp. 469–482. ACM
(2013)

35. Konnov, I., Veith, H., Widder, J.: SMT and POR beat counter abstraction: para-
meterized model checking of threshold-based distributed algorithms. In: Kroening,
D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 85–102. Springer, Hei-
delberg (2015). http://doai.io/10.1007/978-3-319-21690-4 6

36. Kuncak, V., Mayer, M., Piskac, R., Suter, P.: Functional synthe-
sis for linear arithmetic and sets. STTT 15(5–6), 455–474 (2013).
http://doai.io/10.1007/s10009-011-0217-7

37. Kupferman, O., Vardi, M.Y.: Safraless decision procedures. In: FOCS 2005, pp.
531–542. IEEE Computer Society (2005). http://doai.io/10.1109/SFCS.2005.66

38. Lamport, L., Shostak, R., Pease, M.: The Byzantine generals problem. ACM Trans.
Program. Lang. Syst. 4(3), 382–401 (1982). http://doai.io/10.1145/357172.357176

39. Lamport, L.: Brief announcement: leaderless Byzantine paxos. In: Peleg, D. (ed.)
Distributed Computing. LNCS, vol. 6950, pp. 141–142. Springer, Heidelberg (2011)

40. McMillan, K.L.: Applying SAT methods in unbounded symbolic model checking.
In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 250–264.
Springer, Heidelberg (2002). http://doai.io/10.1007/3-540-45657-0 19

http://doai.io/10.1109/LICS.2005.53
http://doai.io/10.1007/s10009-012-0228-z
http://doai.io/10.1145/3149.214121
http://doai.io/10.1007/978-3-540-27813-9_14
http://arxiv.org/abs/1401.3588
http://doai.io/10.1007/978-3-319-21690-4_6
http://doai.io/10.1007/s10009-011-0217-7
http://doai.io/10.1109/SFCS.2005.66
http://doai.io/10.1145/357172.357176
http://doai.io/10.1007/3-540-45657-0_19

176 R. Bloem et al.

41. de Moura, L., Bjørner, N.S.: Efficient e-matching for SMT solvers. In: Pfenning,
F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 183–198. Springer, Heidelberg
(2007)

42. de Moura, L., Bjørner, N.S.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). http://doai.io/10.1007/978-3-540-78800-3 24

43. Pease, M., Shostak, R., Lamport, L.: Reaching agreement in the presence of faults.
J. ACM 27(2), 228–234 (1980)

44. Pnueli, A., Rosner, R.: Distributed reactive systems are hard to synthesize. In:
2013 IEEE 54th Annual Symposium on Foundations of Computer Science 1990,
vol. 2, pp. 746–757 (1990)

45. Qadir, J., Hasan, O.: Applying formal methods to networking: Theory, techniques
and applications. CoRR abs/1311.4303 (2013). http://arxiv.org/abs/1311.4303

46. Saissi, H., Bokor, P., Muftuoglu, C.A., Suri, N., Serafini, M.: Efficient verification of
distributed protocols using stateful model checking. In: SRDS, pp. 133–142. IEEE
(2013). http://doai.io/10.1109/SRDS.2013.22

47. Saks, M.E., Zaharoglou, F.: Wait-free k-set agreement is impossible: the
topology of public knowledge. SIAM J. Comput. 29(5), 1449–1483 (2000).
http://doai.io/10.1137/S0097539796307698

48. Schewe, S.: Distributed synthesis is simply undecidable. Inf. Process. Lett. 114(4),
203–207 (2014). http://doai.io/10.1016/j.ipl.2013.11.012

49. Schwentick, T., Barthelmann, K.: Local norms forms for first-order logic with appli-
cations to games and automata. In: Meinel, C., Morvan, M. (eds.) STACS 1998.
LNCS, vol. 1373, pp. 444–454. Springer, Heidelberg (1998)

50. Sickert, S.: Converting linear temporal logic to deterministic (generalised) rabin
automata. Archive of Formal Proofs 2015 (2015)

51. Solar Lezama, A.: Program synthesis by sketching. Ph.D. thesis, EECS Depart-
ment, University of California, Berkeley (2008). http://www.eecs.berkeley.edu/
Pubs/TechRpts/2008/EECS-2008-177.html

52. Solar-Lezama, A., Tancau, L., Bod́ık, R., Seshia, S.A., Saraswat, V.A.: Combina-
torial sketching for finite programs. In: ASPLOS 2006, pp. 404–415. ACM (2006).
http://doai.io/10.1145/1168857.1168907

53. Tixeuil, S.: Self-stabilizing algorithms. In: Algorithms and Theory of Computation
Handbook. Applied Algorithms and Data Structures, 2nd edn, pp. 26.1–26.45.
Chapman & Hall/CRC, CRC Press, Taylor & Francis Group (2009)

54. Vechev, M., Yahav, E., Yorsh, G.: Inferring synchronization under lim-
ited observability. In: Kowalewski, S., Philippou, A. (eds.) TACAS
2009. LNCS, vol. 5505, pp. 139–154. Springer, Heidelberg (2009).
http://doai.io/10.1007/978-3-642-00768-2 13

http://doai.io/10.1007/978-3-540-78800-3_24
http://arxiv.org/abs/1311.4303
http://doai.io/10.1109/SRDS.2013.22
http://doai.io/10.1137/S0097539796307698
http://doai.io/10.1016/j.ipl.2013.11.012
http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-177.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-177.html
http://doai.io/10.1145/1168857.1168907
http://doai.io/10.1007/978-3-642-00768-2_13

Constraint Solving I

A Decision Procedure for Sets,
Binary Relations and Partial Functions

Maximiliano Cristiá1,2(B) and Gianfranco Rossi3

1 CIFASIS-UNR, Rosario, Argentina
cristia@cifasis-conicet.gov.ar

2 LSIS-AMU, Marseille, France
3 Università degli Studi di Parma, Parma, Italy

gianfranco.rossi@unipr.it

Abstract. In this paper we present a decision procedure for sets, binary
relations and partial functions. The language accepted by the decision
procedure includes untyped, hereditarily finite sets, where some of their
elements can be variables, and basically all the classic set and relational
operators used in formal languages such as B and Z. Partial functions are
encoded as binary relations which in turn are just sets of ordered pairs.
Sets are first-class entities in the language, thus they are not encoded in
lower level theories. The decision procedure exploits set unification and
set constraint solving as primitive features. The procedure is proved to be
sound, complete and terminating. A Prolog implementation is presented.

1 Introduction

Set theory is a widely accepted formalism for software specification. Used as a
modeling language (e.g. Z and B) it usually includes binary relations and partial
functions seen as sets of ordered pairs1. On the other hand, formal verification
tools, such as SMT solvers and theorem provers, support sets but usually by
encoding them in other theories (e.g. arrays or predicate calculus). These encod-
ings may lose or complicate specific semantic properties of set theory. Therefore,
we think that a decision procedure for set theory (DPST) may complement these
approaches if sets are first-class entities of the language.

The first step in defining a DPST is to precisely define the class of sets to be
dealt with. Formal set theory traditionally focuses on sets as the only entities in
the domain of discourse (pure sets). We extend this view by allowing arbitrary
non-set entities as first-class citizens of the language (hybrid sets). In particular,
our sets will allow ordered pairs as elements to accommodate binary relations.
Furthermore, we restrict our attention to unbounded finite sets. Hence, sets can
contain a finite number of elements, which can be either non-set elements—flat
sets—or other finite sets—nested sets. This class of sets is commonly indicated
as hereditarily finite hybrid sets.
1 From now on, the term ‘set’ will always include binary relations and partial functions

and the term ‘binary relation’ will include partial functions, unless stated differently.

c© Springer International Publishing Switzerland 2016
S. Chaudhuri and A. Farzan (Eds.): CAV 2016, Part I, LNCS 9779, pp. 179–198, 2016.
DOI: 10.1007/978-3-319-41528-4 10

180 M. Cristiá and G. Rossi

Another aspect of the sets to be considered is whether their elements can con-
tain variables or not. For example, if x is a variable then {x} is a set that actually
represents as many different sets as values x can take. The DPST presented here
works with sets whose elements can be either constant terms, variables or com-
pound terms possibly containing variables. Furthermore, a part of any set can
be left underspecified (i.e. this part can contain any number of elements).

The third issue to be considered is the family of operators of the language.
Since we want a DPST for plain sets but also for binary relations and partial
functions, then the supported operators include all the classic set operators (such
as union, intersection, etc.) as well as widely used relational operators (such as
domain, range, relational image, etc.).

Our DPST extends the decision procedure presented in [1]. This procedure is
able to prove satisfiability of (quantifier-free) formulas of a constraint language
over the universe of hereditarily finite sets. Here we consider the extension of
this language, and its relevant decision procedure, to binary relations.

Whilst binary relations can be easily represented in the set constraint lan-
guage of [1] as sets of pairs, there are basic operations on relations that cannot be
expressed directly in this language, such as projection onto the domain/range
of a relation and relational composition. Cristiá et al. [2] showed how these
operations can be implemented as user-defined predicates by exploiting the
full power, e.g. recursive definitions, of the general-purpose logic programming
language where the set constraint language is embedded. When binary rela-
tions are completely specified this approach turns out to be quite satisfactory.
On the other hand, when some elements of a relation or (part of) the rela-
tion itself are left unspecified—i.e., they are represented by variables—then
this approach presents major flaws. For example, if the predicate ran(R,A),
which is intended to hold if A is the range of the binary relation R, is imple-
mented through recursion on its first argument, then solving a goal such as
ran(R, {1}), where R is a variable, will generate infinitely many distinct solu-
tions R = {(x1, 1)}, R = {(x1, 1), (x2, 1)}, . . . , where xi are variables. Given an
unsatisfiable formula, such as ran(R, {1}) ∧ ran(R, {}), then the computation
will loop forever.

Thus, support for binary relations must be added as new primitive features
to the base language and its solver extended accordingly. An extension of the
set constraint language of [1] to support partial functions is described in [3]. The
resulting solver, however, is incomplete: if it returns false the input formula is
surely unsatisfiable, whereas if it returns a formula in an irreducible form then
we cannot conclude that the input formula is surely satisfiable. For example, the
following formula (where dom(R,A) holds if A is the domain of R and A ‖ B
holds if A and B are disjoint sets)2

ran(R, {1}) ∧ ran(S, {1, 2}) ∧ dom(R,A) ∧ dom(S,A) ∧ R ‖ S

is unsatisfiable with respect to the underlying interpretation structure, but the
solver in [3] is not able to prove this fact.
2 In the rest of the paper we will use R,S, T, . . . for relations; f, g, h, . . . for functions;
A,B,C, . . . for sets; t, u, v, w, x, y, z, . . . for any other object.

A Decision Procedure for Sets, Binary Relations and Partial Functions 181

In this paper we show how the proposal in [3] can be extended and sub-
stantively improved in order to: (i) support both binary relations and partial
functions; (ii) provide a complete solver, rather than an incomplete one as in [3].

Dealing with binary relations exhibits some difficulties that are not present
in the case of partial functions. For example, the predicate dom(R, {1}) has just
one solution if R is a partial function—i.e. R = {(1, x)}, x variable—, whilst it
has infinitely many solutions if R is just a binary relation. Similar difficulties
arise for the composition of binary relations. Thus, enlarging our domain of dis-
course from partial functions to general binary relations requires a few non-trivial
extensions. Completeness of the solver in [3] is strongly compromised by the pres-
ence in the final formula of irreducible predicates of the form ran(R, {. . . }) which
make it difficult to check satisfiability of the formula. In this paper we prove that
these predicates are expressible in terms of relational composition, hence they
can be always eliminated. This result, along with the application of a procedure
for removing all inequalities involving set variables borrowed from [1], allows the
solver to generate irreducible formulas whose satisfiability is immediately appar-
ent. The solver for the new language takes the form of a rewrite system acting
on conjunctions of positive and negative primitive predicates. The rewrite rules
reduce the syntactic complexity of these predicates and eliminate inequalities
involving sets, until a fixpoint is reached. The generated formula can be either
false or a disjunction of formulas in a simplified irreducible form, which is proved
to be equisatisfiable with the original formula. The ability to prove that formulas
in this form are surely satisfiable allows us to turn our solver into a DPST.

The proposed DPST is implemented in Prolog, as part of the {log} tool
(pronounced ‘setlog’) [4].

The paper is structured as follows. In Sect. 2, we present the main features
of a set-based language extended to deal with binary relations. The DPST for
this language is described in Sect. 3, by giving the rewrite rules for the solver. In
Sect. 4 we show how our proposal can be further extended to incorporate partial
functions as well. An empirical assessment of the implementation of the DPST,
as part of the {log} tool, is presented in Sect. 5. In Sect. 6 we compare our work
with related proposals. The conclusions of this paper are in Sect. 7.

2 A Set-Based Language with Binary Relations

In this section we describe the syntax and (informal) semantics of our set-based
language, called LBR. For the sake of presentation, we consider first only the case
of binary relations. Then, in Sect. 4, we add support also for partial functions.

Syntax of the language is defined primarily by giving the signature upon
which terms and formulas of the language are built.

Definition 1 (Signature). The signature ΣBR of LBR is a quadruple 〈F ,ΠC ,
ΠU ,V〉 where: F contains the constant {}, the binary function symbol {· | ·} and a
set F ′ of user-defined constant and function symbols, including at least the binary
function symbol (·, ·); ΠC is the set of primitive predicate symbols {=,∈, un, ‖

182 M. Cristiá and G. Rossi

, set} ∪ {dom, ran, comp, rel}; ΠU is the set of user-defined predicate symbols,
where ΠC ∩ ΠU = {}; V is a denumerable set of variables.

The ΣBR-terms are built using symbols in F and V. The (uninterpreted)
symbol (·, ·) is used to construct ordered pairs: (t, u), where t and u are ΣBR-
terms, represents the pair with components t and u. {} and {· | ·} are interpreted
symbols, used to construct sets: {} represents the empty set; {t | A} represents
the set composed of the elements of the set A plus the element t, i.e. {t} ∪ A.
Terms built using {} and {· | ·} are called set terms.

Definition 2 (Set terms). A set term is a ΣBR-term of the form {} or {t | A}
where t is any term built over V ∪ F and A is a variable in V or a set term.

We use the notation {t1, t2, . . . , tn | A} as a shorthand for {t1 | {t2 | · · · {tn |
A} · · · }} and the notation {t1, t2, . . . , tn} as a shorthand for {t1, t2, . . . , tn | {}}.
Observe that one can write terms representing sets which are nested at any
level. Also, observe that the LBR language is in fact parametric with respect
to a constraint domain based on the set of function symbols F ′ and the set of
predicate symbols ΠU ; this should allow us to easily accommodate for sets of
elements of any type, e.g. sets of integers.

Example 1. The following terms are all set terms (assume that 1, 2, 3 ∈ F ′):
{1, 2}, denoting a set composed of two elements, 1 and 2; {x, {{}, {1}}, {1, 2, 3}},
denoting a set containing nested sets; {x, y | A}, where x, y and A are variables,
denoting a partially specified set containing one or two elements, depending on
whether x is equal to y or not, and a, possibly empty, unknown part A.

Binary relations are just sets of ordered pairs. Therefore, LBR does not intro-
duce any special symbol to represent binary relations, since they can be conve-
niently represented as sets.

Definition 3 (Binary relations). Let xi, yi, i = 1, . . . , n, be ΣBR-terms. A set
term R represents a binary relation if R has one of the following forms: {}, or
{(x1, y1), (x2, y2), . . . , (xn, yn)}, or {(x1, y1), (x2, y2), . . . , (xn, yn) | S}, and S is
either a variable or a set term representing a binary relation.

Forcing a set R to represent a binary relation will be obtained at run-time
by including the predicate rel(R).

Definition 4 (BR-constraints). Let t, u be ΣBR-terms, A,B,C be variables
or set terms, R,S, T be variables or set terms representing binary relations. A
BR-constraint is an atomic predicate of one of the following forms: t = u, t ∈
A, un(A,B,C), A ‖ B, set(t), dom(R,A), ran(R,A), comp(R,S, T), rel(A).

When useful, we will refer to a BR-constraint based on a predicate sym-
bol p simply as a p-constraint. The interpretation of symbols in ΣBR is given
according to the interpretation structure ABR = 〈S, (·)S〉, where S is the inter-
pretation domain and (·)S is its associated interpretation function. In particular,

A Decision Procedure for Sets, Binary Relations and Partial Functions 183

the predicate symbols in ΠC are interpreted as in their intuitive meaning. Let
ᾱ denote the interpretation of the symbol α, i.e. (α)S . Then: t̄ =S ū (equality)
iff t̄ is identical to ū in S; t̄ ∈S Ā (membership) iff there exists an element in Ā
identical to t̄ in S; unS(Ā, B̄, C̄) (union) iff C̄ =S Ā ∪ B̄; Ā ‖S B̄ (disjointness)
iff Ā ∩ B̄ =S {}; domS(R̄, Ā) (domain) iff Ā =S dom R̄; ranS(R̄, Ā) (range)
iff Ā =S ran R̄; compS(R̄, S̄, T̄) (relational composition) iff T̄ =S R̄ o

9 S̄ =S

{(x, z) : ∃y((x, y) ∈S R̄ ∧ (y, z) ∈S S̄)}; setS(t̄) iff t̄ is a set; relS(t̄) iff t̄ is a
binary relation (notice that rel implies set).

Equality between sets is regulated by the standard extensionality axiom,
which has been proved in [5] to be equivalent for hereditarily finite sets to the
following equational axioms [1]: (Ab){x | {x | A}} = {x | A}; (C�){x | {y |
A}} = {y | {x | A}}. Axiom (Ab) states that duplicates in a set do not matter
(Absorption property). Axiom (C�) states that the order of elements in a set is
irrelevant (Commutativity on the left). These two properties capture the intuitive
idea that, for instance, the set terms {1, 2}, {2, 1}, and {1, 2, 1} all denote the
same set {1, 2}. Conversely, equality between non-sets is regulated by standard
equality axioms. In particular, equality between ordered pairs (i.e. terms built
using the function symbol (·, ·)) calls into play standard (syntactic) unification.

The admissible formulas that our DPST can deal with are defined as follows.

Definition 5 (LBR-formulas). A LBR-formula is a conjunction of BR-
constraints and negations of the BR-constraints = and ∈ (denoted
= and /∈,
respectively).

Example 2. The following formula is an admissible LBR-formula: 1 ∈ A ∧ 1 /∈
B ∧ un(A,B,C) ∧ C = {x}. Its informal interpretation is: the set C is the union
between sets A and B; A must contain 1 and B must not; and C must be a
singleton set. Note that all variables in a LBR-formula are intended as implicitly
existentially quantified.

A critical issue in the definition of LBR is how “rich” the set of primitive
predicate symbols ΠC must be. Minimizing the number of predicate symbols
in ΠC has the advantage of simplifying the language and possibly its imple-
mentation. On the other hand, there could be other basic set operators that
cannot be expressed as LBR-formulas if ΠC is too small. Dovier et al. [1] proved
that {=,∈, un, ‖, set} is enough to define most other useful set-theoretical pred-
icates, such as ⊆, diff and inters3. Here, we extend this result to binary rela-
tions by showing that the new extended collection of primitive predicates in
ΣBR is enough to define several relational operators widely used in formal nota-
tions such as B [6] and Z [7]. Among others, these notations define: domain
anti-restriction as A −� R = {(x, y) : (x, y) ∈ R ∧ y /∈ A}; relational image as
R[A] = {y : ∃x((x, y) ∈ R ∧ x ∈ A)}; and overriding between R,S ∈ X ↔ Y as
R ⊕ S = (dom S −� R) ∪ S.

3 diff (A,B,C) holds iff C = A \ B; and inters(A,B,C) holds iff C = A ∩ B.

184 M. Cristiá and G. Rossi

Theorem 1. Predicates based on predicate symbols: dres (domain restriction,
�), rres (range restriction, �), dares (domain anti-restriction, −�), rares (range
anti-restriction, −�), rimg (relational image, · [·]) and oplus (overriding, ⊕)
can be replaced by equivalent LBR-formulas involving predicates based on ⊆, ‖
, un, diff , dom, and ran, possibly adding new fresh variables.

Proof (proofs of theorems in [8]). The following equivalences hold:

dres(A,R, S) ⇐⇒ un(S, T,R) ∧ dom(S,B) ∧ B ⊆ A ∧ dom(T,C) ∧ A ‖ C
rres(A,R, S) ⇐⇒ un(S, T,R) ∧ ran(S,B) ∧ B ⊆ A ∧ ran(T,C) ∧ A ‖ C

dares(A,R, S) ⇐⇒ dres(A,R, T) ∧ diff (R, T, S)
rares(B,R, S) ⇐⇒ rres(B,R, T) ∧ diff (R, T, S)
rimg(A,R,B) ⇐⇒ dres(A,R, T) ∧ ran(T,B)
oplus(R,S, T) ⇐⇒ dom(S,A) ∧ dares(A,R,Q) ∧ un(Q,S, T)

Thanks to Theorem 1, the language that our DPST can deal with is much
richer than the language described in Definition 1. In fact, all the relational
predicates mentioned in Theorem 1 can be easily made available by (automat-
ically) replacing them with the corresponding equivalent LBR-formulas, before
calling the solver. On the other hand, the ability to express these predicates as
LBR-formulas allows us to not consider them in the definition of the DPST for
our language and to focus our attention only on the BR-constraints.

Remark 1. Selecting an adequate collection of primitive (as opposed to user-
defined) predicates for dealing with binary relations is a non-trivial original
result of this paper. It is worth noting, however, that the proposed collection is
not the only possible choice. Proving that it is the minimal one, as well as com-
paring our choice with other possible choices, in terms of, e.g., expressive power,
completeness, effectiveness, and efficiency, is out of the scope of the present work.

3 A Decision Procedure for Sets and Binary Relations

A DPST for a subset of the language LBR which includes only primitive predi-
cates based on =,∈, un, ‖, and set is proposed in [1]. In particular, the proposed
procedure exploits set unification [9] to deal with equalities between set terms.

In this section we extend the DPST of [1] to LBR thus supporting binary
relations; in Sect. 4 this language and the DPST are further extended to accom-
modate for partial functions.

3.1 The Solver

The global organization of the solver for LBR, called SATBR, is shown in Algo-
rithm 1. SATBR uses three procedures: sort infer, remove neq and STEP.

sort infer is used to automatically add the BR-constraints based on set and
rel to the input formula C to force variables to be sets or binary relations. The
added constraints for a variable X are deduced from the form of the terms or

A Decision Procedure for Sets, Binary Relations and Partial Functions 185

constraints where X occurs. When X is expected to represent a binary rela-
tion, rel(X) is automatically added. For example, if C contains dom(R,A) then
sort infer(C) will add rel(R) ∧ set(A) to C. The procedure remove neq deals
with the elimination of
=-constraints involving set variables. Its motivation and
definition will be made evident later in this section.

STEP applies specialized rewriting procedures to the current formula C and
returns the modified formula. Each rewriting procedure applies a few non-
deterministic rewrite rules—see next subsection—which reduce the syntactic
complexity of the BR-constraints of one kind. The execution of STEP is iterated
until a fixpoint is reached—i.e., the formula cannot be simplified any further.
Notice that STEP returns false whenever (at least) one of the procedures in it
rewrites C to false. Moreover, STEP(false) returns false.

Algorithm 1. The SATBR solver. C is the input formula.
C ← sort infer(C);
repeat

C′ ← C;
repeat

C′′ ← C;
C ← STEP(C);

until C = C′′;
C ← remove neq(C)

until C = C′;
return C

When no rewrite rule applies to the considered LBR-formula then the corre-
sponding rewriting procedure terminates immediately and the formula remains
unchanged. Since no other rewriting procedure deals with the same kind of BR-
constraints, the irreducible atomic formulas will be returned as part of the answer
computed by SATBR. The following definition precisely characterizes the form
of the formulas returned by SATBR.

Definition 6 (Solved form). Let C be a LBR-formula and let X and Xi be
variables and t a term. A literal c of C is in solved form if it has one of the
following forms:

(i) X = t and neither t nor C \ {c} contain X;
(ii) X
= t and X does not occur neither in t nor as an argument of any

predicate p(· · ·), p ∈ {un, dom, ran, comp}, in C;
(iii) t /∈ X and X does not occur in t;
(iv) un(X1,X2,X3), where X1 and X2 are distinct variables, and for i = 1, 2, 3

there are no inequalities of the form Xi
= t in C;
(v) X1 ‖ X2, where X1 and X2 are distinct variables;
(vi) dom(X1,X2), where X1 and X2 are distinct variables, and there are no

inequalities of the form Xi
= t, i = 1, 2, in C;

186 M. Cristiá and G. Rossi

(vii) ran(X1,X2), where X1 and X2 are distinct variables, and there are no
inequalities of the form Xi
= t, i = 1, 2, in C;

(viii) comp(X1, t,X2) and comp(t,X1,X2), where t is not the empty set, and
there are no inequalities of the form Xi
= t, i = 1, 2, in C;

(ix) set(X), rel(X).

A LBR-formula C is in solved form if it is true or if all its literals are simulta-
neously in solved form.

The solved form literals allow trivial verification of satisfiability.

Theorem 2 (Satisfiability of solved form). Any LBR-formula in solved
form is satisfiable w.r.t. the underlying interpretation structure ABR.

Proof (sketch; proofs of theorems in [8]). Basically, the proof of this theorem uses
the fact that, given a LBR-formula in solved form C, we are able to guarantee
the existence of a successful assignment of values to all variables of C using
pure sets only (in particular, the empty set for all set variables), with the only
exception of the variables x occurring in terms of the form x = t in C.

Notice that the result of Theorem 2 would no longer be true for predicates
based on dom, ran, and comp if we allowed the presence of literals of the form
Xi
= t in C. These literals are eliminated by remove neq, which is explained in
the next subsection.

Given a LBR-formula C,SATBR non-deterministically transforms C to either
false or to a finite collection of LBR-formulas in solved form. According to
Theorem 2 a LBR-formula in solved form is always satisfiable. Moreover, as
we will see in the next subsection, the disjunction of the formulas in solved form
generated by SATBR preserves the set of solutions of the original formula C.
We will come back to these results in the next subsection after having presented
in more detail some of the rewrite rules used by SATBR.

3.2 Rewriting Procedures

In what follows, we present some key rewrite rules of our DPST; the complete
list is in [4]. The rewrite rules are given as P → Φ where P is a BR-constraint
and Φ is a disjunction of BR-constraints; if Φ has more than one disjunct then
the rule is non-deterministic. TBR denotes the set of all ΣBR-terms; and T Set

BR the
subset of set terms. Variable names n and N (possibly with sub and superscripts)
are used to denote fresh variables. A
≡ {} means that term A is not the term
denoting the empty set; ẋ, for any name x, is a shorthand for x ∈ V.

Figure 1 lists the rules for dealing with =-constraints, as presented in [1].
These rules implement a set unification algorithm which embeds the equational
axioms (Ab) and (C�) shown above. In particular, rules (6) and (7) handle equal-
ities between two set terms.

A Decision Procedure for Sets, Binary Relations and Partial Functions 187

If x, y, t, ti, ui : TBR; A,B : T Set
BR ∪ V; n,m ≥ 0, then:

ẋ = ẋ → true (1)

t = ẋ → ẋ = t, if t V∈� (2)

ẋ = {t0, . . . , tn | A} → false, if ẋ ∈ vars(t0, . . . , tn)3()

ẋ ={t0, . . . , tn | ẋ} →
ẋ = {t0, . . . , tn | N}, if ẋ /∈ vars(t0, . . . , tn)

(4)

ẋ = t → substitute t by ẋ in the formula

if rules (3) and (4) do not apply
(5)

{x | A} = {y | B} →
x = y ∧ A = B

∨ x = y ∧ {x | A} = B

∨ x = y ∧ A = {y | B}
∨ A = {y | N} ∧ {x | N} = B, if rule (7) does not apply

(6)

{t0, . . . , tm | ẋ} = {u0, . . . , un | ẋ} →
t0 = uj ∧ {t1, . . . , tm | ẋ} = {u0, . . . , uj−1, uj+1, . . . , un | ẋ}
∨ t0 = uj ∧ {t0, . . . , tm | X} = {u0, . . . , uj−1, uj+1, . . . , un | ẋ}
∨ t0 = uj ∧ {t1, . . . , tm | ẋ} = {u0, . . . , un | ẋ}
∨ ẋ = {t0 | N} ∧ {t1, . . . , tm | N} = {u0, . . . , un | N}

(7)

Fig. 1. Rewrite rules for equality

Figure 2 lists the rules dealing with the elimination of ran-constraints. Rule
(rVR) deals with the case in which the range of R is {x1, . . . , xn | B}, n > 1.
The result of repeatedly applying this rule is that R is rewritten as follows:

(B1 × {x1} ∪ · · · ∪ Bn × {xn}) ∪ Q

where B1, . . . , Bn are new fresh variables, and ranQ = B. Rule (r◦) deals with
the case in which the range is a singleton set and removes the ran-constraint by
replacing it with an equivalent conjunction of comp and
=-constraints.

Figure 3 lists three of the six rules for dom-constraints. As can be seen they
are symmetric to those of ran-constraints, as are also the rules not shown here.
It is worth noting that the last two rules in Figs. 2 and 3 are crucial to prove
satisfiability of the solved form (i.e. Theorem 2).

The rules in Fig. 4 deal with comp-constraints. In these rules, un(A,B,C,D)
is a shorthand for un(A,B,N) ∧ un(N,C,D). Rules (c
 V) and (cVT) are based
on the following equality:

188 M. Cristiá and G. Rossi

If R,A : T Set
BR ∪ V; A }{≡� ; x, y : TBR then:

ran(Ṙ, Ṙ) → Ṙ = {} (r⊥)

ran(R, {}) → R = {} (r{})

ran({}, A) → A = {} (r{}R)

ran({(x, y) | R}, A) → A = {y | N1} ∧ ran(R,N1 () r � V)

ran(Ṙ, {y | B}) → un(N1, N2, Ṙ) ∧ ran(N1, {y}) ∧ ran(N2, A) (rVR)

ran(Ṙ, {y})} → comp(Ṙ, {(y, y)}, Ṙ) ∧ Ṙ �= {} (r◦)

Fig. 2. Rewrite rules for ran-constraints

If R,A,B : T Set
BR ∪ V; B }{≡� ; x, y : TBR then:

dom({(x, y) | R}, A) → A = {x | N1} ∧ dom(R,N1) (d� V)

dom(Ṙ, {x | B}) → un(N1, N2, Ṙ) ∧ dom(N1, {x}) ∧ dom(N2, B) (dVR)

dom(Ṙ, {x})} → comp({(x, x)}, Ṙ, Ṙ) ∧ Ṙ �= {} (d◦)

Fig. 3. Rewrite rules for dom-constraints

(Q ∪ R) o
9 (S ∪ T) = (Q o

9 S) ∪ (Q o
9 T) ∪ (R o

9 S) ∪ (R o
9 T)

Intuitively, this equality states that the composition of two “big” relations can
be computed by computing the union of the composition of “smaller” relations.

Some of the rewrite rules for dom and comp-constraints are the extensions
to binary relations of simpler rules presented in [3] that are correct only for par-
tial functions (see Fig. 8). In particular, BR-constraints of the form dom(R,A),
where R is a variable and A is a not-empty set, dealt with by rule (dVR), can be
easily rewritten to a finite conjunction of equalities when R represents a partial
function. Conversely, this is no longer true if R represents a binary relation. In
fact, if A is for instance the set {1}, R admits an infinite number of distinct
solutions: R = {(1, y1)}, R = {(1, y1), (1, y2)} ∧ y1
= y2, etc.

The remaining primitive constraint of LBR is rel . The rewrite rules for
processing this constraint are listed in Fig. 5. As can be seen, they are straightfor-
ward. Rule (↔
 V) states the obvious fact that the empty set is a binary relation;
whereas rule (↔
 V) recursively checks that each element in R is an ordered pair.

The LBR-formula returned by repeatedly applying the rewrite rules (i.e., the
result of executing the inner loop of Algorithm 1) is not necessarily a formula in

A Decision Procedure for Sets, Binary Relations and Partial Functions 189

If Q,R, S, T : T Set
BR ∪ V; ti, ui, x, z : TBR; h ∗ k > 1 then:

comp({}, S, T) → T = {} (cR{})

comp(R, {}, T) → T = {} (cS{})

comp(R,S, {}) → ran(R,N1), dom(S,N2), N1 ‖ N2 (cT{})

comp(R,S, {(x, z) | Q}) →
R = {(x, n) | N1} ∧ S = {(n, z) | N2}
∧ comp({(x, n)}, N2, N3) ∧ comp(N1, {(n, z)}, N4)

∧ comp(N1, N2, N5) ∧ un(N3, N4, N5, {(x, z) | Q})

(c� V)

comp({(x, u)}, {(t, z)}, Ṫ) →
u = t ∧ Ṫ = {(x, z)} ∨ u �= t ∧ Ṫ = {}

(c11VT)

comp({(x1, t1), . . . (xh, th) | R}, {(u1, z1), . . . (uh, zk) | S}, Ṫ) →
h∧

i=1

k∧

j=1

comp({(xi, ti)}, {(uj , zj)}, Nij)

∧
h∧

i=1

comp({(xi, ti)}, S,NS
i)

∧
k∧

j=1

comp(R, {(uj , zj)}, NR
j)

∧ comp(R,S,NRS)

∧ un(N11, . . . , Nhk, N
S
1 , . . . , N

S
h , N

R
1 , . . . , NR

k , NRS , Ṫ)

(cVT)

Fig. 4. Rewrite rules for comp-constraints

If R : T Set
BR ∪ V; t : TBR then:

rel({}) → true (↔{})

rel({t | R}) → t = (n1, n2) ∧ rel(R () ↔� V)

Fig. 5. Rewrite rules for rel -constraints

190 M. Cristiá and G. Rossi

solved form (see Definition 6). Hence, it is not guaranteed to be satisfiable. For
example, the LBR-formula

un(A,B,C) ∧ A ‖ C ∧ dom(R,A) ∧ R
= {}

cannot be further rewritten by any of the rewrite rules considered above. Nev-
ertheless, it is clearly unsatisfiable (the only solution for un(A,B,C) ∧ A ‖ C is
A = {} ∧ C = {}, whereas A = {} is not a solution for dom(R,A) ∧ R
= {}).

In order to guarantee that SATBR returns either false or LBR-formulas in
solved form, we still need to remove all inequalities of the form X
= t, where
X is a variable, occurring as an argument of BR-constraints based on either
un, dom, ran, or comp. This is performed (see Algorithm 1) by executing the
procedure remove neq, which applies the rewrite rules described by the generic
rule scheme of Fig. 6. Basically, these rules exploit extensionality to state that
nonequal sets can be distinguished by asserting that a fresh element belongs to
one but not to the other.

Let P be p(X1, . . . , Xn), p ∈ {un, dom, ran, comp}, n = 2, 3; let X be Xi, i =
1, 2, 3; let t be a term

P ∧ X �= t → (P ∧ n ∈ X ∧ n /∈ t) ∨ (P ∧ n ∈ t ∧ n /∈ X) (E �=)

Fig. 6. Rule scheme for �=-constraint elimination rules

As an example, the LBR-formula un(A,B,C) ∧ A
= D is rewritten to either
un(A,B,C)∧n ∈ A∧n /∈ D or un(A,B,C)∧n /∈ A∧n ∈ D. Notice that, in the
special case in which t is the empty set, the second disjunct of rule (E
=) is surely
false, and the rule comes down to simply add the BR-constraint n ∈ X (i.e. X =
{n | A}) to C. Thus, for example, given the LBR-formula comp(R, {(y, y)}, R)∧
R
= {}, the application of rule (E
=) replaces R
= {} with R = {t | S} which
will lead to solve the BR-constraint comp({t | S}, {(y, y)}, {t | S}).

Termination of SATBR is stated by the following theorem.

Theorem 3 (Termination). The SATBR procedure can be implemented in
such a way it terminates for every input LBR-formula C.

Termination of SATBR and the finiteness of the number of non-deterministic
choices generated during its computation guarantee the finiteness of the number
of LBR-formulas non-deterministically returned by SATBR. Therefore, SATBR
applied to a LBR-formula C always terminates, returning either false or a (finite)
collection of LBR-formulas in solved form.

The following theorem ensures that the collection of LBR-formulas in solved
form generated by SATBR preserves the set of solutions of the input formula.

A Decision Procedure for Sets, Binary Relations and Partial Functions 191

Theorem 4 (Equisatisfiability). Let C be a LBR-formula and C1, C2, . . . , Cn

be the collection of LBR-formulas in solved form returned by SATBR(C). Then
C1 ∨C2 ∨ · · · ∨Cn is equisatisfiable to C, that is, every possible solution4 of C is
a solution of one of the LBR-formulas returned by SATBR(C) and, vice versa,
every solution of one of these formulas is a solution for C.

Thanks to Theorems 2, 3 and 4 we can conclude that, given a LBR-formula
C,C is satisfiable with respect to the intended interpretation structure if and
only if there is a non-deterministic choice in SATBR(C) that returns a LBR-
formula in solved form—i.e. different from false. Hence, SATBR is a decision
procedure for testing satisfiability of LBR-formulas.

4 A Decision Procedure for Partial Functions

A binary relation is a partial function if and only if no two ordered pairs share
the same first component. Hence, the definition of a set term representing a
binary relation (Definition 3) can be adapted to partial functions as follows:

Definition 7 (Partial functions). Let xi, yi, i = 1, . . . , n, be ΣBR-terms. A
set term f represents a partial function if f has one of the forms: {}, or
{(x1, y1), (x2, y2), . . . , (xn, yn)}, or {(x1, y1), (x2, y2), . . . , (xn, yn) | g}, and g is
either a variable or a set term representing a partial function, and the constraints
xi
= xj , xi
∈ dom g, hold for all i, j = 1, . . . , n, i
= j.

The addition of partial functions is a substantive extension of the language
LBR since distinguishing the relations that are partial functions cannot be
achieved without an additional primitive predicate. Thus we add the symbol
pfun to ΠC , with the obvious meaning: pfun(t) holds iff t is a partial function
(notice that pfun implies rel). Users should add a pfun-constraint for those sets
they want to represent partial functions. The rewrite rules for pfun-constraints
are listed in Fig. 7. As can be seen, rules (→� {}) and (→�
 V) are similar to those
of Fig. 5 for rel -constraints, but (→�
 V) clearly imposes the notion of function.

If f : T Set
BR ∪ V; t : TBR then:

pfun({}) → true (→� {})

pfun({t | f}) → t = (n1, n2) ∧ dom(f,N) ∧ n1 /∈ N ∧ pfun(f) (→� � V)

Fig. 7. Rewrite rules for pfun-constraints

4 More precisely, each solution of C expanded to the variables occurring in Ci but not
in C, so to account for the possible fresh variables introduced into Ci.

192 M. Cristiá and G. Rossi

The new language is called LPF ; the formulas that can be expressed in this
language are the LBR-formulas extended with pfun atoms. Given that partial
functions are binary relations all the set and relational operators can be applied
to them. In turn, function application (apply) and the identity function over a
given set (id) can be replaced as we did in Theorem 1 due to:

Theorem 5. The following equivalences hold:

apply(f, x, y) ⇐⇒ (x, y) ∈ f ∧ pfun(f)
id(A, f) ⇐⇒ dom(f,A) ∧ ran(f,A) ∧ comp(f, f, f) ∧ pfun(f)

At the theoretical level, the same rewrite rules can be applied for relations
and partial functions. From a practical point of view, however, it is convenient
to introduce a few new rewrite rules which are specifically devoted to deal with
partial functions. These rules are automatically applied in place of the corre-
sponding ones for binary relations whenever the solver detects that the terms
involved in the BR-constraint at hand are constrained to be partial functions
through pfun-constrains. The overall organization of the solver, however, remains
unchanged (see Algorithm 1). All the rewrite rules specialized for partial func-
tions can be found in [4]. As an example, rule (8) of Fig. 8 replaces (dVR) and
(d◦) of Fig. 3; and rule (c
 V) replaces rule (9) of Fig. 4. It is evident that using
the specialized rules allows the rewriting process to be sensibly simplified, hence,
in general, to obtain better performance for the solver.

If f, g, h,A : T Set
BR ∪ V;x, z : TBR then:

dom(ḟ , {x | A}) ∧ pfun(ḟ) → ḟ = {(x, n) | N} ∧ dom(N,A) ∧ pfun(ḟ) (8)

comp(f, g, {(x, z) | h}) →
f = {(x, n) | N1} ∧ g = {(n, z) | N2} ∧ comp(N1, g, h)

(9)

Fig. 8. Specialized rewrite rules for dom and comp dealing with partial functions

In contrast to [3], we assume here that the BR-constraints of the form
ran(R, {y | B}) are always eliminated by using rules (rVR) and (r◦), and that
the
=-constraint elimination rules (Fig. 6) are always applied. Thus, the defini-
tion of solved form formula is the same given for binary relations, except for the
addition of the BR-constraint pfun(X),X variable. This is enough to guarantee
that the result of Theorem 2 holds for partial functions as well. Moreover, since
pfun is the only new predicate symbol, the termination of the decision procedure
is not modified. Also the formulation of Theorem 4 remains unchanged. Thus
the SATBR solver can be used as a decision procedure also for LPF -formulas.

A Decision Procedure for Sets, Binary Relations and Partial Functions 193

5 Empirical Assessment

This section presents the results of an empirical evaluation of the SATBR solver.
SATBR is implemented in Prolog as part of {log} version 4.9.1-20. The empirical
evaluation consists in running {log} on more than 2,400 formulas including sets,
partial functions, binary relations and some of their operators. The objectives of
this evaluation are: (a) to asses the efficiency and effectiveness of {log} in solving
set-based formulas; and (b) to compare these results with previous versions of
{log} to determine if the decision of including a decision procedure for binary
relations and partial functions as part of its kernel was indeed good.

Around 2,000 of the LBR-formulas to evaluate {log} have been generated
from 10 different Z specifications, some of which are formalizations of real
requirements and, in general, they cover a wide range of applications—totalizing
around 3,000 lines of Z code. We consider that they are a representative sample.

In relation to item (a) mentioned above, we want to know: (i) how many
satisfiable and unsatisfiable formulas are found by {log} in a reasonable time;
and (ii) how long it takes to process all the formulas.

Experiments were performed on a 4 core Intel CoreTM i5-2410M CPU at
2.30 GHz with 4 Gb of main memory, running Linux Ubuntu 12.04 (Precise Pan-
golin) 32-bit with kernel 3.2.0-95-generic-pae. {log} 4.9.1-20 over SWI-Prolog
7.2.3 for i386 was used during the experiments. A 10 seconds timeout was set
as the maximum time that {log} can spend to give an answer for each goal (i.e.
formula to be proved).

Table 1 displays the results of the experiments. The left-hand side of the
table shows the results of running a previous version of {log} (i.e. 4.8.2-2, which
does not implement a decision procedure for LBR), while the right-hand side
shows the results with the current version. The meaning of the columns is as
follows: Goals, number of goals processed during the experiment; S, number
of goals detected as satisfiable (in less than 10 s); U, number of goals detected
as unsatisfiable (in less than 10 s); A, percentage of goals for which {log} gives
a meaningful answer; T, time spent by {log} during the entire execution (in
seconds).

As can be seen, {log} 4.9.1-20 outperforms 4.8.2-2 in the number of goals for
which {log} gives a meaningful answer (either sat or unsat), although it performs
faster for some experiments and slower for others. However, the total time spent
by the new version in processing all the goals is lower (around 20 %) than the
total time spent by the previous version. Note that 4.9.1-20 hits 100 % of right
answers in all but three sets of goals while 4.8.2 does it only in 5.

As the formulas considered in these experiments seldom use binary relations,
we have also developed a set of 300 formulas specially tailored to evaluate the
rewrite rules for binary relations. In order to perform an evaluation as objec-
tive as possible, we took as base formulas the standard partitions proposed by
the Test Template Framework (TTF) [10] for the relational operators of the Z
notation. The standard partitions of the TTF are used in test case generation
applications to generate test cases to exercise the implementation of the corre-
sponding operators. Due to space limits, we can only show the net results of

194 M. Cristiá and G. Rossi

Table 1. Summary of empirical assessment

Z Specification Goals 4.8.2-2 4.9.1-20

S U A T S U A T

SWPDC 196 99 26 64 % 1,402 99 45 73 % 711

Plavis 232 151 33 79 % 510 156 28 79 % 582

Scheduler 205 38 161 97 % 125 39 165 99 % 108

Security class 36 20 14 94 % 31 20 16 100 % 14

Bank (1) 100 25 75 100 % 28 25 75 100 % 44

Bank (3) 104 52 49 97 % 64 52 52 100 % 46

Lift 17 17 0 100 % 6 17 0 100 % 6

Launcher vehicle 1,206 23 1,183 100 % 370 23 1,183 100 % 558

Symbol table 27 11 16 100 % 9 11 16 100 % 9

Array of sensors 16 8 8 100 % 5 8 8 100 % 5

Totals 2,139 444 1,565 2,552 450 1,588 2,084

Binary relations 300 223 60 94 % 954

these experiments in the last row of Table 1. A comparison with version 4.8.2-2
is not possible as this version does not implement rules for binary relations. As
can be seen, {log} 4.9.1-20 solves 94 % of the goals that fire the rewrite rules
for binary relations. A detailed description of these experiments and the related
results can be downloaded from [4].

The experimental results show that completing the solver for binary relations
and partial functions has been beneficial also from a practical point of view.

6 Discussion and Similar Approaches

The decidability issue for logic languages involving set operators and, possibly,
relational operators, has been addressed both in the so-called Computable Set
Theory (CST) field ([11] is a general survey), and in other more collateral fields
such as Description Logics (see e.g. [12]). Work in CST has identified increasingly
larger classes of computable formulas of suitable sub-theories of Zermelo-Fraenkel
set theory for which satisfiability is decidable. It is of particular relevance to the
DPST presented here, the work by Cantone et al. [13,14], where they demon-
strate that there is a decision procedure for a language similar to LBR. Further
extensions of the classes of computable formulas have been also considered, e.g.
[15,16]. Hence, the decidability result presented in this paper is for the most
part not new, although LBR is not exactly the same language studied by other
authors (e.g. the comp-constraint is not considered by others, at our knowl-
edge). However, all the mentioned related works are mainly concerned with the
decidability result in itself; no, or very little, concern is devoted to computing
solutions and to providing an effective implementation of these results.

A Decision Procedure for Sets, Binary Relations and Partial Functions 195

A number of proposals have been developed in the context of constraint
programming that consider more restricted forms of set constraints but equipped
with more efficient constraint solving techniques, e.g. [17–19]. However, the core
language considered here [1] allows more general forms of sets to be dealt with:
in particular, elements can be of any type, possibly other sets, and possibly
unknown (e.g., {x, {a, 1}}). This has proved crucial to support the extensions
described in this paper, where sets of pairs are naturally used to represent binary
relations and partial functions.

Regarding the more specific problem of dealing with relations or partial func-
tions, only very few works have addressed this problem in the context of con-
straint programming. For instance, the Conjunto language [18] provides relation
variables where the domain and the range are limited to completely specified
finite sets. Map variables where the domain and range of the mapping can be
also finite set variables are introduced in CP(Map) [20]. All these proposals,
however, do not consider the more general case of partially specified relations—
where some elements of the domain or the range can be left unknown—which, on
the contrary, are essential in our proposal. Moreover, the collection of primitive
constraints on relation/map variables they provide is usually quite restricted.

The problem of deciding the satisfiability of formulas involving sets has also
been approached by the formal verification community. Proof assistants [21–23]
normally encode (typed) sets as predicates or as functions from a type onto the
Boolean type. In this way, set operators are expressed in logical terms and thus a
set formula becomes a quantified predicate. Theorem provers also support (total)
functions, usually, as a primitive type [21,22]. In this context, functions are not
expressed in terms of set theory. Theorems provers normally include extensive
theorem libraries that are used by proving strategies.

Besides, SMT solvers provide support for sets by encoding them into other
theories such as arrays or uninterpreted functions. As far as we know there is no
SMT solver providing a decision procedure for sets, binary relations and partial
functions where all of them are first-class entities. Kröning et al. [24] recognized
the need of a solver for finite sets. This solver would be included in SMT solvers
and would provide a SMT-LIB compatible interface. de Moura and Bjørner [25]
show how some set operators can be defined over a very general theory of arrays.
Proof assistants usually interact with SMT solvers. In particular, there are works
showing how set theories supported by proof assistants can be encoded in dif-
ferent automated provers [26,27]. In some of these approaches, set formulas are
flatten to the set membership level [26]. The Alloy analyzer [28] can find solu-
tions to formulas involving binary relations but only if they are bound to finite
domains. In fact, this tool transforms the formula into a SAT problem where all
possible relations are represented. We believe that the approach presented here
would be complementary to these other works since it takes full advantage of
the semantics of sets, as described by a suitable set theory.

196 M. Cristiá and G. Rossi

7 Conclusions

In this paper we have shown how to extend the decision procedure for hered-
itarily finite sets presented in [1] by adding to it binary relations and partial
functions as first-class citizens of the language. Since binary relations and par-
tial functions can be viewed as sets, all facilities for set manipulation offered in
[1] are immediately available to manipulate relations and partial functions as
well. We have added to the language a (limited) number of new primitive con-
straints, specifically devoted to deal with relations and partial functions and we
have provided sound, complete and terminating rewriting procedures for them.
We have also shown that basically all the classic set and relational operators
widely used in formal notations such as B and Z are easily added to the base
language by defining them as admissible formulas of the language itself. The
resulting solver—implemented in Prolog—can be used as an effective decision
procedure for sets, binary relations and partial functions.

Investigating the integration of our decision procedure into mainstream SMT
solvers, such as CVC4, is a main goal of our future research. In this regard, the
fact that LBR is parametric with respect to an arbitrary set of function and
predicate symbols should allow us to easily combine our language with other
existing theories. In particular, following the approach given in [29], we plan
to extend our language and its relevant decision procedure to allow sets to be
combined with integers in the presence of a cardinality operator, as proposed
for instance in [30,31]. Another line of investigation is to extend the DPST as
to allow for the definition of functions as intentional sets.

Acknowledgments. We would like to thank the reviewers, and specially the reviewer
acting as our shepherd, for helping us to improve this paper. The work of M. Cristiá
was partially supported by ANPCyT PICT 2014–2200.

References

1. Dovier, A., Piazza, C., Pontelli, E., Rossi, G.: Sets and constraint logic program-
ming. ACM Trans. Program. Lang. Syst. 22(5), 861–931 (2000)

2. Cristiá, M., Rossi, G., Frydman, C.: {log} as a test case generator for the test
template framework. In: Hierons, R.M., Merayo, M.G., Bravetti, M. (eds.) SEFM
2013. LNCS, vol. 8137, pp. 229–243. Springer, Heidelberg (2013)

3. Cristiá, M., Rossi, G., Frydman, C.S.: Adding partial functions to constraint logic
programming with sets. TPLP 15(4–5), 651–665 (2015)

4. Rossi, G., Cristiá, M.: {log}. http://people.math.unipr.it/gianfranco.rossi/setlog.
Home.html. Accessed 2016

5. Dovier, A., Policriti, A., Rossi, G.: A uniform axiomatic view of lists, multisets, and
sets, and the relevant unification algorithms. Fundam. Inform. 36(2–3), 201–234
(1998)

6. Abrial, J.R.: The B-Book: Assigning Programs to Meanings. Cambridge University
Press, New York (1996)

7. Spivey, J.M.: The Z Notation: A Reference Manual. Prentice Hall International
(UK) Ltd., Hertfordshire (1992)

http://people.math.unipr.it/gianfranco.rossi/setlog.Home.html
http://people.math.unipr.it/gianfranco.rossi/setlog.Home.html

A Decision Procedure for Sets, Binary Relations and Partial Functions 197

8. Cristiá, M., Rossi, G.: Proofs for a decision procedure for binary relations. http://
people.math.unipr.it/gianfranco.rossi/SETLOG/proofs.pdf. Accessed 2016

9. Dovier, A., Pontelli, E., Rossi, G.: Set unification. TPLP 6(6), 645–701 (2006)
10. Stocks, P., Carrington, D.: A framework for specification-based testing. IEEE

Trans. Softw. Eng. 22(11), 777–793 (1996)
11. Cantone, D., Omodeo, E.G., Policriti, A.: Set Theory for Computing - From Deci-

sion Procedures to Declarative Programming with Sets. Monographs in Computer
Science. Springer, New York (2001)

12. Calvanese, D., De Giacomo, G.: Expressive description logics. In: Baader, F.,
Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F. (eds.)
The Description Logic Handbook: Theory, Implementation, and Applications,
pp. 178–218. Cambridge University Press, Cambridge (2003)

13. Cantone, D., Schwartz, J.T.: Decision procedures for elementary sublanguages of
set theory: XI. Multilevel syllogistic extended by some elementary map constructs.
J. Autom. Reason. 7(2), 231–256 (1991)

14. Zarba, C.G., Cantone, D., Schwartz, J.T.: A decision procedure for a sublanguage
of set theory involving monotone, additive, and multiplicative functions, I: the
two-level case. J. Autom. Reason. 33(3–4), 251–269 (2004)

15. Cantone, D., Zarba, C.G., Cannata, R.R.: A tableau-based decision procedure for a
fragment of set theory with iterated membership. J. Autom. Reason. 34(1), 49–72
(2005)

16. Marnette, B., Kuncak, V., Rinard, M.: Polynomial constraints for sets with cardi-
nality bounds. In: Seidl, H. (ed.) FOSSACS 2007. LNCS, vol. 4423, pp. 258–273.
Springer, Heidelberg (2007)

17. Azevedo, F.: Cardinal: a finite sets constraint solver. Constraints 12(1), 93–129
(2007)

18. Gervet, C.: Interval propagation to reason about sets: definition and implementa-
tion of a practical language. Constraints 1(3), 191–244 (1997)

19. Hawkins, P., Lagoon, V., Stuckey, P.J.: Solving set constraint satisfaction problems
using ROBDDs. J. Artif. Intell. Res. (JAIR) 24, 109–156 (2005)

20. Deville, Y., Dooms, G., Zampelli, S., Dupont, P.: CP (graph+map) for approxi-
mate graph matching. In: 1st International Workshop on Constraint Programming
Beyond Finite Integer Domains, pp. 31–47 (2005)

21. Coq Development Team: The Coq Proof Assistant Reference Manual, Version
8.4pl6. LogiCal Project, Palaiseau, France (2014)

22. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL - A Proof Assistant for
Higher-Order Logic. LNCS, vol. 2283. Springer, Heidelberg (2002)

23. Saaltink, M.: The Z/EVES system. In: Till, D., Bowen, J.P., Hinchey, M.G. (eds.)
ZUM 1997. LNCS, vol. 1212, pp. 72–85. Springer, Heidelberg (1997)

24. Kröning, D., Rümmer, P., Weissenbacher, G.: A proposal for a theory of finite
sets, lists, and maps for the SMT-Lib standard. In: Informal Proceedings of the
7th International Workshop on Satisfiability Modulo Theories at CADE 22 (2009)

25. de Moura, L.M., Bjørner, N.: Generalized, efficient array decision procedures. In:
Proceedings of 9th International Conference on Formal Methods in Computer-
Aided Design, FMCAD 2009, Austin, Texas, USA, 15–18 November 2009, pp.
45–52. IEEE (2009)

26. Déharbe, D., Fontaine, P., Guyot, Y., Voisin, L.: Integrating SMT solvers in Rodin.
Sci. Comput. Program. 94, 130–143 (2014)

http://people.math.unipr.it/gianfranco.rossi/SETLOG/proofs.pdf
http://people.math.unipr.it/gianfranco.rossi/SETLOG/proofs.pdf

198 M. Cristiá and G. Rossi

27. Mentré, D., Marché, C., Filliâtre, J.-C., Asuka, M.: Discharging proof obligations
from atelier B using multiple automated provers. In: Derrick, J., Fitzgerald, J.,
Gnesi, S., Khurshid, S., Leuschel, M., Reeves, S., Riccobene, E. (eds.) ABZ 2012.
LNCS, vol. 7316, pp. 238–251. Springer, Heidelberg (2012)

28. Jackson, D.: Software Abstractions: Logic, Language, and Analysis. The MIT
Press, Cambridge (2006)

29. Dal Palú, A., Dovier, A., Pontelli, E., Rossi, G.: Integrating finite domain con-
straints and CLP with sets. In: Proceedings of the 5th ACM SIGPLAN Interna-
tional Conference on Principles and Practice of Declaritive Programming, PPDP
2003, pp. 219–229. ACM, New York (2003)

30. Zarba, C.G.: Combining sets with cardinals. J. Autom. Reason. 34(1), 1–29 (2005)
31. Yessenov, K., Piskac, R., Kuncak, V.: Collections, cardinalities, and relations. In:

Barthe, G., Hermenegildo, M. (eds.) VMCAI 2010. LNCS, vol. 5944, pp. 380–395.
Springer, Heidelberg (2010)

Precise and Complete Propagation Based Local
Search for Satisfiability Modulo Theories

Aina Niemetz(B), Mathias Preiner, and Armin Biere

Johannes Kepler University, Linz, Austria
aina.niemetz@jku.at

Abstract. Satisfiability Modulo Theories (SMT) is essential for many
applications in computer-aided verification. A recent SMT solving app-
roach based on stochastic local search for the theory of quantifier-free
fixed-size bit-vectors proved to be quite effective on hard satisfiable
instances, particularly in the context of symbolic execution. However, it
still relies on brute-force randomization and restarts to achieve complete-
ness. In this paper we simplify, extend, and formalize the propagation-
based variant of this approach. We introduce a notion of essential inputs
to lift the well-known concept of controlling inputs from the bit-level
to the word-level, which allows to prune search. Guided by a formal
completeness proof for our propagation-based variant we obtain a clean,
simple and more precise algorithm, which yields a substantial gain in
performance, as shown in our experimental evaluation.

1 Introduction

In many applications of hardware and software verification, such as (constrained
random) test case generation [1–3] or white box fuzz testing [4], the vast majority
of problems is satisfiable. Hence, for this kind of problems local search procedures
for deciding satisfiability are useful even though they do not allow to determine
unsatisfiability. They were further shown to be orthogonal to other approaches
[5,6] and proved to be particularly beneficial in a portfolio setting [6].

Applications as above require bit-precise reasoning as provided by Satisfi-
ability Modulo Theories (SMT) solvers for the theory of fixed-size bit-vectors.
Current state-of-the-art SMT solvers [7–11] employ the so-called bit-blasting
approach (e.g., [12]), where a given formula is eagerly translated to propositional
logic (SAT) while heavily relying on rewriting techniques [13–21] to simplify the
input during preprocessing.

Since the SAT Challenge 2012 [22], a new generation of (stochastic) local
search (SLS) solvers with very simple architecture [23] achieved remarkable
results not only in the random but also in the combinatorial tracks of recent
SAT competitions [22,24,25]. In an attempt to reproduce these successful appli-
cations of SLS in SAT, in [5], Fröhlich et al. lifted SLS to SMT and proposed a

Supported by Austrian Science Fund (FWF) under NFN Grant S11408-N23 (RiSE).

c© Springer International Publishing Switzerland 2016
S. Chaudhuri and A. Farzan (Eds.): CAV 2016, Part I, LNCS 9779, pp. 199–217, 2016.
DOI: 10.1007/978-3-319-41528-4 11

200 A. Niemetz et al.

procedure to solve bit-vector formulas on the theory level (word-level) without
bit-blasting. In contrast to previous attempts of utilizing SLS techniques in SMT
by integrating a bit-level SLS solver in the SMT solver MathSAT [9], the SLS for
SMT approach in [5] showed promising initial results. However, it does not fully
exploit the word-level structure but rather simulates bit-level local search by
focusing on single bit flips. As a consequence, in [6] we proposed a propagation-
based extension of [5], which introduced an additional strategy to the original
approach to propagate assignments from the outputs to the inputs. This sig-
nificantly improves performance. We further showed that these techniques are
beneficial in a sequential portfolio setting [26] in combination with bit-blasting.

Down propagation of assignments along a single path as in [6] utilizes inverse
value computation. This process, however, can get stuck, in which case [6] falls
back to either brute force randomization or SLS moves to achieve completeness,
as does [5]. Further, inverse value computation as presented in [6] is, as we show
in this paper, too restrictive for some operators. Actually, focusing on inverse
values only is already too restrictive and may inadvertently prune the search.

In this paper, we simplify and extend the approach presented in [6]. Guided
by a formal completeness proof, we present a precise and complete variant of
the procedure proposed in [6]. In contrast to [6], our variant only uses propaga-
tion and neither relies on restarts nor SLS techniques to achieve completeness.
We extend the concept of controlling inputs, used in [6] to determine propaga-
tion paths for bit-level operators, to the word-level by introducing the notion of
essential inputs. This allows to further prune the search. To overcome the prob-
lem of too restrictive inverse value computation, we lift the ATPG [27] concept
of “backtracing”, which goes back to the PODEM algorithm [28], to the word-
level and provide a formalization for both the bit-level and the word-level. Our
experiments show that our techniques yield a substantial gain in performance.

Note that in contrast to backtracing in ATPG, our algorithm works with com-
plete assignments. Existing algorithms for word-level ATPG [29,30] are based
on branch-bound, use neither backtracing nor complete assignments, are further
focused on HW models, and in general lack formal treatment. Other related
work on structural bit-level solving from the AI community, e.g., [31–33], has
not found actual applications yet, as far we know.

r

v1

0 � 1

σ1

r

v2

0 � 1

. . .

σ2

v1 �→x1 v2 �→x2 r

vk

0 � 1

σk

r

1

ω

vk �→xk

Fig. 1. Basic idea of our propagation-based (local search) strategy.

Precise and Complete Propagation Based Local Search for SMT 201

2 Overview

The propagation-based local search strategy presented in this paper follows the
basic idea of the approach presented in [6] as illustrated in Fig. 1. It is applied
to both Boolean formulas (bit-level) and quantifier-free fixed-size bit-vector for-
mulas (word-level) and (in contrast to [6]) neither relies on restarts nor requires
to fall back on SLS moves (as introduced in [5]) in order to achieve completeness
but employs down propagation of assignments only.

Assume that formula φ is a directed acyclic graph (DAG) with root r, and
σ1 is a complete but non-satisfying initial assignment, i.e., σ1(r) = 0. Our goal
is to reach a satisfying assignment ω by changing the value of some primary
inputs such that ω(r) = 1. Therefore, we first force root r to assume its target
value ω(r) = 1 (denoted as 0 � 1 in Fig. 1), and then propagate this informa-
tion along a path towards the primary inputs. This process is also known as
“backtracing” [28]. Recursively propagating the target value ω(r) = 1 from the
root to a primary input (e.g., v1 in Fig. 1) yields a new assignment xi �= σi(vi)
for a primary input vi. We then move from assignment σi to assignment σi+1 by
updating σi on vi to σi+1(vi) = xi without changing the value of other primary
inputs but recomputing consistent values for inner nodes. Figure 2 describes this
strategy more precisely in pseudo code. On the bit-level, as in [6], during path
propagation selection of controlling inputs is prioritized w.r.t. the current assign-
ment σ, a well-known concept from ATPG. On the word-level, in contrast to [6],
we introduce our new notion of essential inputs, which lifts the bit-level con-
cept of controlling inputs to the word-level while trying to maximally reduce
non-deterministic choices without sacrificing completeness.

1 function sat (r, σ) // returns Boolean value B = {0, 1}
2 while σ(r) �= 1 // while not satisfied
3 g = r, t = 1 // initialize path as root path
4 while ¬leaf(g) // while current node is an operator
5 n = child(σ, t, g) // select backtracing node
6 x = value(σ, t, g, n) // select backtracing value
7 g = n, t = x // backtracing step (propagation)
8 if ¬constant(g) // check if leaf is variable v = g
9 σ = update(σ, g, t) // apply move to variable v = g

10 return 1 // return with 1 (true) if satisfied

Fig. 2. The core sat procedure in pseudo-code.

As expected for local search, our propagation strategy is not able to determine
unsatisfiability. When determining satisfiability, however, our strategy is com-
plete in the sense that if there is a solution, then there exists a non-deterministic
choice of moves according to the strategy that leads to a solution.

In the following, we first introduce and formalize our propagation-based app-
roach on the bit-level and prove its completeness. We then lift it to the word-level,
again prove its completeness, and show in our experimental evaluation that our
techniques yield substantial performance improvements.

202 A. Niemetz et al.

3 Bit-Level

In order to simplify the exposition we consider a fixed Boolean formula φ and
restrict the set of Boolean operators to {∧,¬}. We can interpret φ as a single-
rooted And-Inverter-Graph (AIG) [34], where an AIG is a DAG represented
as a 5-tuple (r,N,G, V,E). The set of nodes N = G ∪ V contains the single
root node r ∈ N , and is further partitioned into a set of gates G and a set of
primary inputs (or variables) V . We require that V �= ∅ and assume that the
Boolean constants B = {0, 1}, i.e., true (1) and false (0), do not occur in N .
This assumption is without loss of generality since every occurrence of true and
false as input to a gate g ∈ G can be eliminated through rewriting. The set of
gates G = A∪I consists of a set of and -gates A and a set of inverter -gates I. We
write g = n∧m if g ∈ A, and g = ¬n if g ∈ I, and refer to the children of a node
g ∈ G as its (gate) inputs (e.g., n or m). Let E = EA ∪ EI be the edge relation
between nodes, with EA : A → N2 and EI : I → N describing edges from and -
resp. inverter -gates to its input(s). We write E(g) = (n,m) for g = n ∧ m and
E(g) = n for g = ¬n and further introduce the notation g → n for an edge
between a gate g and one of its inputs n.

We define a complete assignment σ of the given fixed φ as a complete func-
tion σ : N → B, and a partial assignment α of φ as a partial function α : N → B.
We say that a complete assignment σ is consistent on a gate g ∈ I with
g = ¬n iff σ(g) = ¬σ(n), and consistent on a gate g ∈ A with g = n ∧ m iff
σ(g) = σ(n) ∧ σ(m). A complete assignment σ is globally consistent on φ (or
just consistent) iff it is consistent on all gates g ∈ G. An assignment σ is satis-
fying if it is consistent (thus complete) and satisfies the root, i.e., σ(r) = 1. We
use the letter ω to denote a satisfying assignment. A formula φ is satisfiable if it
has a satisfying assignment. Let C be the set of consistent assignments, and let
W with W ⊆ C be the set of satisfying assignments of formula φ.

Given two consistent assignments σ and σ′, we say that σ′ is obtained from
σ by flipping the (assignment of a) variable v ∈ V , written as σ

v−→ σ′, iff
σ(v) = ¬σ′(v) and σ(u) = σ′(u) for all u ∈ V \{v}. We also refer to flipping a
variable as a move. Note that σ′(g) for gates g ∈ G is defined implicitly due to
consistency of σ′ after fixing the values for the primary inputs V .

Given as a set of variables V that can be flipped non-deterministically, let
S : C → P(M) be a (local search) strategy that maps a consistent assignment to
a set of possible moves M = V . The move v ∈ V is valid under strategy S for
a consistent assignment σ ∈ C if v ∈ S(σ). Similarly, a sequence of moves μ =
(v1, . . . , vk) ∈ V ∗ of length k = |μ| with v1, . . . , vk ∈ V is valid under strategy
S iff there exists a sequence of consistent assignments (σ1, . . . , σk+1) ∈ C∗ such
that σi

vi−→ σi+1 and vi ∈ S(σi) for 1 ≤ i ≤ k. In this case σk+1 can be reached
from σ1 under S (with k moves), also written σ1 →∗ σk+1.

Definition 1. If formula φ is satisfiable, then a strategy S is called complete iff
for all consistent assignments σ ∈ C there exists a satisfying assignment ω ∈ W
such that ω can be reached from σ under S, i.e., σ →∗ ω.

Precise and Complete Propagation Based Local Search for SMT 203

Given a satisfiable assignment ω ∈ W and a consistent assignment σ ∈ C,
let Δ(σ, ω) = {v ∈ V | σ(v) �= ω(v)}. Thus |Δ(σ, ω)| is the Hamming Distance
between σ and ω on V . We say that a strategy S is (non-deterministically)
distance reducing, if for all σ ∈ C\W and ω ∈ W there exists a move σ

v−→ σ′

valid under S which reduces the Hamming Distance, i.e., move v is in Δ(σ, ω)
thus |Δ(σ, ω)| − |Δ(σ′, ω)| = 1. Obviously, any distance reducing strategy can
reach a satisfying assignment (though not necessarily ω) within at most |Δ(σ, ω)|
moves. This first observation is the key argument in the completeness proofs for
our propagation based strategies later on (both on the bit-level and word-level).

Proposition 2. A distance reducing strategy is also complete.

The ultimate goal of this paper is to define a strategy that maximally reduces
non-deterministic choices without sacrificing completeness. In the algorithm
shown in Fig. 2, selecting the backtracing node (line 5) and its value (line 6)
constitute the only source of non-determinism. This non-determinism can be
reduced by using the notion of controlling inputs from ATPG [27], which was
already considered in [6], but only for Boolean expressions.

Definition 3 (Controlling Input). Let n ∈ N be an input of a gate g ∈ G,
i.e., g → n, and let σ be a complete assignment consistent on g. We say that
input n is controlling under σ, if for all complete assignments σ′ consistent on
g with σ(n) = σ′(n) we have σ(g) = σ′(g).

In other words, gate input n is controlling, if the assignment of g, i.e., its
output value, remains unchanged as long as the assignment of n does not change.
Given an assignment σ consistent on a gate g ∈ G, we denote a target value t for
g as σ(g) � t. On the bit-level, t is implicitly given through σ as t = ¬σ(g), i.e.,
t can not be reached as long as the controlling inputs of g remain unchanged.
On the word-level, t may be any value t �= σ(g).

Example 4. Figure 3 shows all possible assignments σ consistent on a gate g ∈ G.
At the outputs we denote current assignment σ(g) and target value t as σ(g) � t
with t = ¬σ(g), e.g., 0 � 1. At the inputs we show their assignment under σ.
All controlling inputs are indicated with an underline. Note that for σ(g) = 1,
and -gate g = n ∧ m has no controlling inputs.

¬

0 � 1

1

¬

1 � 0

0

∧

0 � 1

0 1

∧

0 � 1

1 0

∧

0 � 1

0 0

∧

1 � 0

1 1

Fig. 3. An inverter and an and-gate and their controlling (underlined) inputs. Given
output values indicate the transition from current to target value.

204 A. Niemetz et al.

A sequence of nodes π = (n1, . . . , nk) ∈ N+ is a path of length k = |π| iff
ni → ni+1 for 0 < i < k, also written as n1 → . . . → nk. A path π is rooted if
n1 = r, and (fully) expanded if nk ∈ V . We call nk ∈ V the leaf of π in this case.
As a restriction on φ, we require all paths to be acyclic, i.e., for all n ∈ N there
is no path n →+ n, and all nodes n ∈ N to be reachable from the root, i.e., there
exists a path π = (r, . . . , n). Note that as a consequence of representing φ as a
DAG, any path in φ is acyclic. Given a path π = (. . . , g) with g ∈ G and g → n,
we say that π.n = (. . . , g, n) is an extension of path π with node n.

Definition 5 (Path Selection). Let σ ∈ C be a (complete) consistent assign-
ment, and let π = (. . . , g) be a path as above. Then input n can be selected w.r.t.
σ to extend π to π.n if n is controlling or if g has no controlling input.

Path selection based on the notion of controlling inputs as introduced above
exploits observability don’t cares as defined in the context of ATPG [27]. Simi-
larly, we adopt the ATPG idea of backtracing [27,28], as follows.

Definition 6 (Backtracing Step). Let σ ∈ C be a (complete) consistent
assignment. Given a gate g ∈ G with g → n, a backtracing step w.r.t. σ selects
input n of g w.r.t. σ as in Definition 5, and determines a backtracing value x
for n as follows. If g = ¬n, then x = σ(g). Else, if g = n ∧ m, then x = ¬σ(g).

As an important observation it turns out that performing a (bit-level) back-
tracing step always flips the value of the selected input under σ. For a selected
input the backtracing value is therefore always unique. This can be checked easily
by considering all possible scenarios shown in Fig. 3.

Proposition 7. A backtracing step always yields as backtracing value x =
¬σ(n).

Example 8. Consider g = n ∧ m and the assignment σ = {g
→ 0, n
→ 0,m
→ 1}
consistent on g as depicted in Fig. 3. Assume that t = ¬σ(g) = 1 is the target
value of g, i.e., σ(g) � t with 0 � 1. We select n as the single controlling input
of g (underlined), which yields backtracing value x = ¬σ(n) = 1 for n.

A trace τ = (π, α) is a rooted path π = (n1, . . . , nk) labelled with a partial
assignment α, where α is defined exactly on {n1, . . . , nk}. A trace (π, α) is (fully)
expanded, if π is a fully expanded path, i.e., node nk ∈ V is the leaf of π and τ .

Let σ ∈ C\W be a consistent but non-satisfying assignment. Then the notion
of extension is lifted from paths to traces as follows. A trace τ ′ = (π′, α′) extends
τ = (π, α) by a propagation step (or backtracing step) w.r.t. σ, denoted τ → τ ′,
if π′ = π.n is an extension of π = (. . . , g) with g ∈ G, α′(m) = α(m) for all nodes
m in π, and x = α′(n)is the (unique) backtracing value of this backtracing step
on g w.r.t. σ and target value t = ¬σ(g). The root trace ρ = ((r), {r
→ 1}) isa
trace that maps r to its target value ω(r) = 1.A propagation trace τ w.r.t. σ is a
(partial) trace that starts from the root trace ρ and is extended by propagation
steps w.r.t. σ, i.e., ρ →∗ τ . Note that α is redundant on the bit-level, given π and
σ. We use the same notation on the word-level though, where α captures updates
to σ along π, which (in contrast to the bit-level) are not uniquely defined.

Precise and Complete Propagation Based Local Search for SMT 205

Definition 9 (Propagation Strategy). Given a non-satisfying but consistent
assignment σ ∈ C\W, the set of valid moves P(σ) for σ under propagation
strategy P contains exactly the leafs of all expanded propagation traces w.r.t σ.

In the following, we present and prove the main Lemma of this paper, which
then immediately gives completeness of P in Theorem 11. It is further reused for
proving completeness of the extension of P to the word-level in Theorem 26.

Lemma 10 (Propagation Lemma). Given a non-satisfying but consistent
assignment σ ∈ C\W, then for any satisfying assignment ω ∈ W, used as oracle,
there exists an expanded propagation trace τ w.r.t. σ with leaf v ∈ Δ(σ, ω).

Proof. The idea is to inductively extend the root trace ρ to traces τ = (π, α)
through propagation steps, i.e., ρ →∗ τ , which all satisfy the (key) invariant

α(n) = ω(n) �= σ(n) for all nodes n in π. (1)

The root trace ρ = ((r), {r
→ ω(r)}) obviously satisfies this invariant. Now,
let τ = (π, α) be a trace that satisfies the invariant but is not fully expanded,
i.e., π = (r, . . . , g) with g ∈ G and α(g) = ω(g) �= σ(g). Since σ(g) �= ω(g) it
follows that g has at least one input n with σ(n) �= ω(n). If g has no controlling
input, then by Definition 5 it is allowed to select n as an input with σ(n) �= ω(n).
Otherwise, input n is selected as any controlling input. In both cases we select
x = ω(n) �= σ(n) as backtracing value using Proposition 7. Trace τ is now
extended by n with backtracing value x to τ ′, i.e., τ → τ ′, which in turn concludes
the inductive proof of Eq. (1). Any fully expanded propagation trace τ = (π, α)
with leaf v ∈ V , as generated above, also satisfies the invariant in Eq. (1). Thus,
we have α(v) = ω(v) �= σ(v) with v ∈ Δ(σ, ω). ��

In essence, given σ and ω as above, our propagation strategy propagates
target value ω(r) from root r towards the primary inputs, ultimately producing
a fully expanded propagation trace τ . In case of non-deterministic choices for
extending the trace we use ω as an oracle to pick an input n with σ(n) �= ω(n),
which can be selected according to Definition 5. The oracle allows us to ensure
that v ∈ Δ(σ, ω) for leaf v of τ . Thus, using Lemma 10, our propagation strategy
turns out to be distance reducing, and therefore, according to Proposition 2,
complete. This important contribution of this paper serves in the following as a
basis for lifting our approach from the bit-level to the word-level.

Theorem 11. Under the assumptions of the previous Lemma 10 we also get
v ∈ P(σ). Thus P is distance reducing and, as a consequence, complete.

Our notion of completeness follows the traditional notion of non-deterministic
computation of Turing machines. For the purpose of this paper, it is equivalent to
the more established property of probabilistically approximately complete (PAC)
[35], commonly used in the AI community to discuss completeness properties of
local search algorithms. This holds as long as probabilistic choices are treated
as non-deterministic choices, which actually also is the case in [35].

206 A. Niemetz et al.

4 Word-Level

We only consider bit-vector expressions of fixed bit-width w ∈ N, and denote
a bit-vector expression n of width w as n[w]. We will not explicitly state the
bit-width of an expression if the context allows. We refer to the i-th bit of n[w]

as n[i] for 1 ≤ i ≤ w, and further interpret n[1] as the least significant bit (LSB)
and n[w] as the most significant bit (MSB). Similarly, we denote bit ranges over
n from bit index j down to index i as n[j : i]. Note that for the sake of simplicity,
bit indices start from 1 rather than 0. Further, in string representations of bit-
vectors we interpret the bit at the far left index as the MSB.

To simplify the exposition and w.l.o.g. we consider a fixed single-rooted
quantifier-free bit-vector formula φ with Boolean expressions interpreted as bit-
vector expressions of bit-width one. The set of bit-vector operators is restricted to
O = {&,∼,=, <,<<,>>,+, ·,÷,mod, ◦, [:], if-then-else} and interpreted accord-
ing to Table 1. The selection of operators in O is rather arbitrary but provides a
good compromise between effective and efficient word-level rewriting and com-
pact encodings for bit-blasting approaches. It is complete, though, in the sense
that all operators defined in SMT-LIB [36] (in particular signed operators) can
be modeled in a compact way. Note that our methods are not restricted to single-
rootedness or this particular selection of operators, and can easily be lifted to
the full set of operators in SMT-LIB as well as the multi-rooted case.

We interpret formula φ as a single-rooted DAG represented as an 8-tuple
(r,N, κ,O, F, V,B,E). The set of nodes N = O ∪ V ∪ B contains the single root
node r ∈ N of bit-width one, and is further partitioned into a set of operator
nodes O, a set of primary inputs (or bit-vector variables) V , and a set of bit-
vector constants B ⊆ B

∗, which are denoted in either decimal or binary notation
if the context allows. The bit-width of a node is given by κ : N → N, thus κ(r) =
1. Operator nodes are interpreted as bit-vector operators via F : O → O, which
in turn determines their arity and input and output bit-widths as defined in
Table 1. The edge relation between nodes is given as E = E1 ∪ E2 ∪ E3, with
Ei : O → N i describing the set of edges from unary, binary, and ternary operator
nodes to its input(s), respectively. We again use the notation o → n for an edge
between an operator node o and one of its inputs n.

We only consider well-formed formulas, where the bit-widths of all operator
nodes and their inputs conform to the conditions imposed via interpretation
F as defined in Table 1. For instance, we denote a bit-vector addition node o
with inputs n and m as o = n + m, where o ∈ O of arity 2 with F (o) = +, and
therefore κ(o) = κ(n) = κ(m). In the following, if more convenient we will use
the functional notation o = �(n1, . . . , nk) for operator node o ∈ O of arity k
with inputs n1, . . . , nk and F (o) = �, e.g., +(n,m). Note that the semantics of
all operators in O correspond to their SMT-LIB counterparts listed in Table 1,
with three exceptions. Given a logical shift operation n<< m or n>> m, w.l.o.g.
and as implemented in our SMT solver Boolector [7], we restrict bit-width κ(n)
to 2κ(m). Further, as implemented by Boolector and other state-of-the-art SMT
solvers, e.g., Mathsat [9] Yices [10] and Z3 [11], we define an unsigned division by

Precise and Complete Propagation Based Local Search for SMT 207

Table 1. Considered bit-vector operators – bit-widths and indices w, p, q, i, j ∈ N.

Output
bit-width

Arity Input bit-width

Operator SMT-LIB 1st 2nd 3rd

[j : i] extract j − i+ 1 1 w − − extraction (1 ≤ i ≤ j ≤ w)

∼ bvnot w 1 w − − bit-wise negation

& bvand w 2 w w − bit-wise conjunction

= = 1 2 w w − equality

< bvult 1 2 w w − unsigned less than

<< bvshl w 2 w q − logical shift left (w = 2q)

>> bvshr w 2 w q − logical shift right (w = 2q)

+ bvadd w 2 w w − addition

· bvmul w 2 w w − multiplication

÷ bvudiv w 2 w w − unsigned division

mod bvurem w 2 w w − unsigned remainder

◦ concat w 2 p q − concatenation (w = p+ q)

if-then-else ite w 3 1 w w conditional

zero to return the greatest possible value rather than introducing uninterpreted
functions, i.e., x ÷ 0 = ∼ 0. Similarly, xmod 0 = x.

A complete function σ : N → B
∗ with σ(n) ∈ B

κ(n) of a given fixed φ is called
a complete assignment of φ, and a partial function α : N → B

∗ with α(n) ∈ B
κ(n)

a partial assignment. Given an operator node o ∈ O with o = �(n1, . . . , nk) and
� ∈ O, a complete assignment σ is consistent on o if σ(o) = f(σ(n1), . . . , σ(nk)),
where f : Bκ(n1)×· · ·×B

κ(nk) → B
κ(o) is determined by the standard semantics of

bit-vector operator � as defined in SMT-LIB [36] (with the exceptions discussed
above). A complete assignment is (globally) consistent on φ (or just consistent),
iff it is consistent on all bit-vector operator nodes o ∈ O and σ(b) = b for all bit-
vector constants b ∈ B. A satisfying assignment ω is a complete and consistent
assignment that satisfies the root, i.e., ω(r) = 1. In the following, we will again
use the letter C to denote the set of complete and consistent assignments, and the
letter W with W ⊆ C to denote the set of satisfying assignments of formula φ.

Given a bit-vector variable v ∈ V with κ(v) = w, we adopt the notion of
obtaining an assignment σ′ from an assignment σ by assigning a new value x to
v with x ∈ B

w where x �= σ(v), written as σ
v �→x−−−→ σ′, which we refer to as a move.

Thus, the set of word-level moves is defined as M = {(v, x) | v ∈ V, x ∈ B
κ(v)},

and accordingly, a word-level strategy is defined as a function S : C
→ P(M)
mapping a consistent assignment to a set of moves.

Our propagation strategy P is lifted from the bit-level to the word-level
starting with our new notion of essential inputs for word-level operators, which
lifts and extends the corresponding notion of controlling inputs.

Definition 12 (Essential Inputs). Let n ∈ N be an input of a bit-vector
operator node o ∈ O, i.e., o → n, and let σ be a complete assignment consistent

208 A. Niemetz et al.

on o. Further, let t be the target value of o, i.e., σ(o) � t, with t �= σ(o). We
say that n is an essential input under σ w.r.t. target value t, if for all complete
assignments σ′ consistent on o with σ(n) = σ′(n) we have σ′(o) �= t.

In other words, an operator node input n is essential w.r.t. target value t,
if o can not assume t as long as the assignment of n does not change. As an
example, consider the bit-vector operators and their essential inputs under some
consistent assignment σ w.r.t. some target value t as in Fig. 4.

Example 13. Consider the bit-vector operators &, <<, ·, ÷, mod, and ◦ of
bit-width 2 in Fig. 4. For an operator node o, at the outputs we denote
given assignment σ(o) and target value t as σ(o) � t, e.g., 10 � 01. At
the inputs we show their assignment under σ. Essential inputs are indicated
with an underline. Consider, e.g., operator node o := n & m with t = 01 and
σ = {o
→ 10, n
→ 10, m
→ 11 }. Since t & σ(n) �= t, it is not possible to find a
value x for m such that σ(n) & x = t. Hence, input n is essential w.r.t. target
value t. Input m, however, is obviously not essential since t & σ(m) = t.

&

10 � 01

10 11

<<

00 � 10

00 1

·

00 � 10

00 10

÷

01 � 10

01 01

mod

00 � 10

01 01

◦

01 � 11

0 1

Fig. 4. Bit-vector operator nodes and examples for essential (underlined) inputs. Given
output values indicate the transition from current to target value.

Note that AIGs can be represented by bit-vectors of bit-width one, which
can be interpreted as Boolean expressions. In this sense, as in [6], the notion of
controlling inputs can also be applied to word-level Boolean expressions.

Proposition 14. When applied to bit-level or Boolean expressions, the notion
of essential inputs exactly matches the notion of controlling inputs.

Proof. For applying the notion of essential inputs to the bit-level, consider the
operator set {¬,∧} for o ∈ G with o → n. Further, target value t �= σ(o) on the
bit-level implies t = ¬σ(o), which exactly matches the corresponding implicit
definition of the target value of o on the bit-level. Now assume that input n is
essential w.r.t. t. Then, if σ(n) = σ′(n), by Definition 12 we have that σ′(o) �= t,
and therefore σ′(o) = ¬t = σ(o). The other direction works in the same way. ��

The definition of a (rooted and expanded) path as a sequence of nodes
π = (n1, . . . , nk) ∈ N∗ is lifted from the bit-level to the word-level in the natural
way. Corresponding restrictions and implications of Sect. 3 apply. The notions
of path selection and path extension are lifted to the word-level as follows.

Precise and Complete Propagation Based Local Search for SMT 209

Definition 15 (Path Extension). Given a path π = (. . . , o) with o ∈ O and
o → n, we say that π.n = (. . . , o, n) is an extension of path π with node n.

Definition 16 (Path Selection). Given a (complete) consistent assignment
σ ∈ C, a path π = (. . . , o) as in Definition 15 above, and σ(o) � t, i.e., t �= σ(o),
then input n can be selected w.r.t. σ and t to extend π to π.n if n is essential
or if o has no essential input (in both cases essential under σ w.r.t. t).

In contrast to the bit-level, where a backtracing step always flips the assigned
value of a selected input (and the output), on the word-level we also have to
select a backtracing value. We consider three variants of value selection under
the following assumptions. Let t be the target value of an operator node o ∈ O,
and let σ be a complete assignment such that σ(o) �= t. Further, assume that
input n with o → n is selected w.r.t. t and σ as in Definition 16 above.

Definition 17 (Random Value). Any value x with κ(x) = κ(n) is called a
random value for n.

Definition 18 (Consistent Value). A random value x is a consistent value
for n w.r.t. t, if there is a complete assignment σ′ consistent on o with σ′(n) = x
and σ′(o) = t.

In other words, a value is consistent for an input, if it allows to produce the
target value after changing values of other inputs if necessary.

Example 19 (Consistent Value Computation). Consider operator node o := n·m,
and assume that input n is selected w.r.t. t and σ as in Definition 16. Let ctz
be defined as the function counting the number of trailing zeroes of a given
bit-vector, i.e., the number of consecutive 0-bits starting from the LSB, e.g.,
ctz (0101) = 0, ctz (111100) = 2. Then any random value x with ctz(t) ≥ ctz(x)
is a consistent value for n, except that t = 0 if x = 0.

Restricting the notion of consistent values even further, however, may be
beneficial in some cases. Consider the following motivating example from [6].

Example 20 (From [6]). Let φ := 274177[65] · v = 18446744073709551617[65].
Computing x = 18446744073709551617[65] ÷ 274177[65] = 67280421310721[65]
immediately concludes with a satisfying assignment for φ.

The chances to select x = 67280421310721 if consistent values for the multi-
plication operator are chosen as in Example 19 are arbitrarily small. Hence, as
in [6], we use the notion of inverse values which utilize the inverse of a given
operator.

Definition 21 (Inverse Value). A consistent value x is an inverse value for
n w.r.t. t and σ, if there exists a complete assignment σ′ consistent on o with
σ′(n) = x, σ′(o) = t and σ′(m) = σ(m) for all m with o → m and m �= n.

210 A. Niemetz et al.

In other words, we define an inverse value as a consistent value for an input
n such that operator node o assumes target value t without changing the assign-
ment of its other inputs.

Example 22 (Inverse Value Computation). Consider operator node o := n ·m of
bit-width w. Assume that input n is selected w.r.t. t and σ as in Definition 16.
If t = σ(m) = 0, any x is an inverse value. However, this contradicts assumption
σ(o) �= t. If t �= 0 and σ(m) = 0, or if σ(m) �= 0 with ctz (t) < ctz (σ(m)),
there exists no inverse value. Otherwise, ctz (t) ≥ ctz (σ(m)) and σ(m) �= 0.
Let y = m>> ctz (σ(m)), thus y is odd. We compute y−1 as its multiplicative
inverse modulo 2w via the Extended Euclidean algorithm (similar to word-level
rewriting techniques that require solving for a variable, e.g. [14]) and determine
x as (t>> ctz (σ(m))) · y−1 except that all bits in x[w : w − ctz (σ(m)) + 1] are
set arbitrarily, with w = κ(n).

In contrast to [6], we require inverse value computation for all operators
in O to generate all possible inverse values. This holds for the rule for inverse
computation for multiplication discussed in the example above, while it does not
hold for the corresponding rule in [6]. The same applies for operators <<, >>,
÷, and mod.

Definition 23 (Backtracing Step). Let σ ∈ C be a (complete) consistent
assignment. Given an operator node o ∈ O with o → n and a target value
t �= σ(o), then a backtracing step selects input n of o w.r.t. σ as in Definition 16
and selects a backtracing value x for n as a consistent (and optionally inverse)
value w.r.t. σ and t, if such a value exists, and a random value otherwise.

Note that it is not always possible to find an inverse value for n, e.g.,
o := n & m with σ = {o
→ 00, n
→ 00,m
→ 00} and t = 01. Further, even for
operators that allow to always produce inverse values, e.g., operator +, doing so
may lead to inadvertently pruning the search space, see Example 24 below.

Example 24. Given r := p2 = 0[2] with p2 := v + p1 and p1 := v + 2[2] and a
complete consistent assignment σ1 = {v
→ 00, p1
→ 10, p2
→ 10, r
→ 0}, as
shown in Fig. 5. Let t = 1 be the target value of root node r, i.e., we want to find a
value for bit-vector variable v such that p2 = 00. Assume that only inverse values
are selected for + operators during propagation. Propagating along the path
indicated by blue arrows in Fig. 5 the move v
→ 10 = α1(v) is generated, which
yields assignment σ2 = {v
→ 10, p1
→ 00, p2
→ 10, r
→ 0}. Selecting the other
possible propagation path, the same move is produced. Thus, σ2 is independent
of which of the two paths is selected. Since σ2(r) �= t, target value t is again
propagated down, which generates move v
→ 00 = α2(v), again independently
of which path is selected. With this, we move back to the initial assignment σ1.
Consequently, a satisfying assignment, e.g., ω(v) = 01 or ω′(v) = 11, can not
be reached by only selecting inverse values. However, selecting a consistent but
non-inverse value for p1 generates move v
→ 01 = α′

1(v), which yields ω.

Precise and Complete Propagation Based Local Search for SMT 211

=

+ 00

+

v 10

0 � 1

10 � 00

10 � 00

00 � 10

σ1 α1

in
v

in
v

in
v

v �→ 10

v �→ 00

=

+ 00

+

v 10

0 � 1

10 � 00

00 � 10

10 � 00

σ2 α2

in
v

in
v

in
v

=

+ 00

+

v 10

0 � 1

10 � 00

10 � 11

00 � 01

σ1 α′
1

in
v

co
n

in
v

ω
v �→ 01

Fig. 5. Example illustrating the necessity of choosing between random and inverse
values. The output values indicate the (desired) transition from current to target value.
Other values indicate the transition from current value to the value yielded by down
propagating the target output value. Thus a propagation based strategy without further
randomization using only inverse values as in [6] is incomplete. (Color figure online)

As a consequence, when performing a backtracing step we in general select
some consistent non-inverse value, if no inverse value exists, and otherwise non-
deterministically choose between consistent (but not necessarily inverse) and
inverse values. Since all operators in O are surjective (i.e., they can produce any
target value) for our selected semantics (e.g., ∼ 0mod0 = ∼ 0), it is not neces-
sary to select inconsistent random values. For other sets of operators, however,
this might be necessary. For the sake of completeness we therefore included the
selection of random values in the formal definition of backtracing steps.

Note that on the bit-level, the backtracing value for a selected input is
uniquely determined (see Proposition 7). Thus, the issue of value selection is
specific to the word-level. Further, when interpreting AIGs as word-level expres-
sions, the notion of backtracing steps on the bit-level as in Definition 6 exactly
matches the word-level notion as in Definition 23 using Proposition 14.

The word-level propagation strategy P is defined in exactly the same way as
for the bit-level (see Definition 9) except that the word-level notion of backtracing
based on essential inputs and consistent value selection (Definition 23) replaces
bit-level backtracing based on controlling inputs (Definition 6), and the set of
valid moves P(σ) contains not only the leafs of all expanded propagation traces
but also their updated assignments, i.e., (v, α(v)) for a leaf v. Further important
concepts defined on the bit-level in Sect. 3 can be extended naturally to the
word-level. These concepts include (expanded) paths and traces, leafs, and trace
extension. We omit formal definitions accordingly.

212 A. Niemetz et al.

The completeness proof on the word-level is almost identical to the bit-level
proof, except that the bit-level Proposition 7, which is substantial for the bit-
level proof of Lemma 10, requires more attention due to the more sophisticated
selection of backtracing values on the word-level.

Proposition 25. Let σ ∈ C be a (complete) consistent assignment, and let ω
be a satisfying assignment ω ∈ W. Given operator node o ∈ O and target value
t = ω(o) �= σ(o), i.e., σ(o) � t. Then there exists a backtracing step w.r.t. σ and
t, which selects input n with o → n and backtracing value x = ω(n) �= σ(n).

Proof. First, assume o has an essential input w.r.t. σ. Then we select an arbitrary
essential input n of o. Since target value t = ω(o) �= σ(o), we get σ(n) �= ω(n)
by contraposition of Definition 12. Similarly, if o has no essential inputs, then
we select n as an arbitrary input with σ(n) �= ω(n), which has to exist since
ω(o) �= σ(o). In both cases, we can select x = ω(n) �= σ(n) as backtracing value,
which is consistent for o w.r.t. σ and t since ω is consistent. Picking a random
value as backtracing value, which is the last case in Definition 23, can not occur
under the given assumptions since, as already discussed, ω is consistent on o. ��

With Proposition 25, the proof of the key Lemma 10 for completeness on the
bit-level can be lifted to the word-level by replacing each occurrence of gate g
with operator node o and the notion of “controlling” with “essential” input, and
further using Proposition 25 instead of Proposition 7, as discussed above.

Theorem 26. Theorem 11 and Lemma 10 also apply to the word-level setting,
and thus, propagation strategy P is also complete for the word-level.

As a side note, the problem of value selection during word-level backtracing
and subsequent word-level propagation is similar to the problem of making a
theory decision and propagating this decision in MCSat [37,38].

5 Experimental Evaluation

We implemented our approach within our SMT solver Boolector and consider
two configurations Paig and Pw to be evaluated against [6] on the same set of
benchmarks1 (16436 total). Configuration Paig works on AIGs obtained after
bit-blasting by Boolector. Configuration Pw works directly on the bit-vector
formula, with inverse values prioritized over consistent values during backtracing
with a probability of 99 to 1. As base case, we use the best configurations Bb,
Bprop and Bb+Bprop of the version of Boolector used in [6], where Bb is its
bit-blasting engine and Bprop implements the propagation-based approach of
[6]. As in [6], Bb+Bprop serves as a “virtual” sequential portfolio, i.e., Bprop
is run for a certain time limit as a preprocessing step prior to invoking Bb.
The best portfolio setting in [6] used random walks for recovery and is called
Bb+Bprop+frw in [6]. We only compare against this best version, but call it

1 All experimental data of this evaluation can be found at http://fmv.jku.at/cav16.

http://fmv.jku.at/cav16

Precise and Complete Propagation Based Local Search for SMT 213

Bb+Bprop. Corresponding to Bb+Bprop, we introduce a “virtual” sequential
portfolio configuration Bb+Pw, which combines Bb and Pw as above.

The benchmark set of [6] was compiled from all benchmarks with status sat
and unknown in the QF BV category of the SMT-LIB2 benchmark library, where
all benchmarks proved by Bb to be unsatisfiable within a time limit of 1200 s
where excluded. Further excluded where all benchmarks solved by Boolector via
rewriting only as well as all benchmarks from the Sage2 family that were not
SMT-LIB v2 compliant due to the use of non-compliant operators.

Table 2. Numbers in parentheses indicate the number of instances solved by a config-
uration within the given time limit, but not solved by Bb in 1200 s.

Bprop Paig Pw Bb Bb+Bprop Bb+Pw

time limit 10 sec 10 sec 10 sec 1200 sec 1200 sec 1200 sec

solved 7539 (56) 6789 (14) 8012 (67) 14806 14862 14873

total time 90462 99442 86061 2611840 2575700 2562108

time limit 1 sec 1 sec 1 sec 1200 sec 1200 sec 1200 sec

solved 7268 (38) 6016 (2) 7632 (60) 14806 14844 14866

total time 9544 11151 9106 2611840 2534471 2513348

All experiments were performed on a cluster with 30 nodes of 2.83 GHz Intel
Core 2 Quad machines with 8 GB of memory using Ubuntu 14.04.3 LTS. Each
run is limited to use 7 GB of main memory. In terms of run time we consider
CPU time only and apply the same time limits as in [6], i.e., a limit of 1 and 10 s
for the propagation-based approaches and a limit of 1200 s for the bit-blasting
configuration and its combinations. In case of a time out or a memory out, the
time limit is used as run time.

Table 2 summarizes the results, where the numbers given in parentheses indi-
cate the number of uniquely solved instances solved by a configuration within
the given time limit but not solved by Bb within 1200 s.

For propagation-based configurations, the two considered time limits are 1
and 10 s for both scenarios, i.e., within and without a sequential portfolio setting.
With a time limit of 10 s, our word-level configuration Pw outperforms Bprop
by 473 instances. Considering only instances solved within 1 s, Pw solves 364
more instances than Bprop.

Combining Bb with Pw into Bb+Pw with a time limit of 10 s for the
propagation-based configuration Pw improves the overall performance by 67
instances and outperforms Bb+Bprop by 11 instances. Restricting the time
limit for Pw to 1 second, Bb+Pw still improves performance by 60 instances,
with an even larger gap of 22 instances compared to Bb+Bprop.

In contrast to Bprop, Pw utilizes our new word-level notion of essential
inputs for path selection. Restricting Pw to select paths as in [6], i.e., based
2 http://www.smt-lib.org.

http://www.smt-lib.org

214 A. Niemetz et al.

on controlling inputs of bit-level operators only, solves 118 instances less. This
shows that the notion of essential inputs indeed allows to prune the search space.
Restricting Pw to select inverse values only solves 41 instances less. Selecting
consistent values only, on the other hand, performs even worse, with 1456 less
solved instances. Prioritizing inverse values shows the best results.

Configuration Pw does not rely on restarts. Introducing restarts as employed
in [5,6] does not improve performance and even solves 19 instances less. In case
of multi-rooted DAGs, Pw randomly selects a yet unsatisfied root for path prop-
agation, instead of selecting roots based on the heuristics suggested in [5] (and
also employed in [6]). Introducing this heuristic in Pw, substantially decreases
performance with 323 less solved instances. These observations are consistent
with results obtained in SAT competitions by SAT solvers based on the Walk-
SAT [39,40] architecture, such as [23]. In terms of Paig, neither restarts nor
the root selection heuristic mentioned above have an impact on the number of
solved instances or the run time of Paig.

We experimented using different seeds for the random number generator of
Pw, where the number of solved instances with a time limit of 10 (1) seconds
ranged from 8012 (7596) to 8054 (7649). With a time limit of 10 (1) seconds
for Pw the number of solved instances of configuration Bb+Pw ranges from
14869 (14864) to 14874 (14869). Due to space constraints, a statistical analysis
on randomization effects is left to future work.

Overall, our new propagation-based technique Pw significantly outperforms
all other propagation-based configurations. Further, combined with a bit-blasting
engine it considerably improves performance in terms of the number of solved
instances, run time, and particularly w.r.t. instances solved within 1 second that
Bb was not able to solve even within 1200 s. The number of these uniquely
solved instances increased by a factor of 1.6 compared to previous work.

6 Conclusion

We extended and formalized a propagation-based local search procedure for
SMT, instantiated for bit-vector logics. Guided by a completeness proof, we
avoid brute-force randomization as in earlier work. This not only simplifies the
whole approach dramatically, but also improves performance. We further formal-
ized the notion of controlling inputs and backtracing from ATPG and extended
it to the word-level, by introducing the new concept of essential inputs.

Our procedure was evaluated on bit-level as well as word-level problems, but
can be applied to other than bit-vector logics as well, which is probably the most
interesting future work. Extending our techniques by introducing strategies for
conflict detection and resolution during backtracing as well as lemma generation
in order to obtain an algorithm that is able to prove unsatisfiability and not just
satisfiability is another intriguing direction for future work.

Finally we would like to thank Andreas Fröhlich for helpful comments, and
Holger Hoos for fruitful discussions on the relation between non-deterministic
completeness and the notion of probabilistically approximately complete (PAC).

Precise and Complete Propagation Based Local Search for SMT 215

References

1. Tillmann, N., Schulte, W.: Parameterized unit tests. In: Proceedings of
ESEC/SIGSOFT FSE 2005, pp. 253–262. ACM (2005)

2. Yuan, J., Pixley, C., Aziz, A.: Constraint-Based Verification. Springer, Heidelberg
(2006)

3. Naveh, Y., Rimon, M., Jaeger, I., Katz, Y., Vinov, M., Marcus, E., Shurek, G.:
Constraint-based random stimuli generation for hardware verification. AI Mag.
28(3), 13–30 (2007)

4. Godefroid, P., Levin, M.Y., Molnar, D.A.: Automated whitebox fuzz testing. In:
Proceedings of NDSS 2008. The Internet Society (2008)

5. Fröhlich, A., Biere, A., Wintersteiger, C.M., Hamadi, Y.: Stochastic local search
for satisfiability modulo theories. In: Proceedings of AAAI 2015, pp. 1136–1143.
AAAI Press (2015)

6. Niemetz, A., Preiner, M., Biere, A., Fröhlich, A.: Improving local search for bit-
vector logics in SMT with path propagation. In: Proceedings of DIFTS 2015, pp.
1–10 (2015)

7. Niemetz, A., Preiner, M., Biere, A.: Boolector 2.0. JSAT 9, 53–58 (2015)
8. Barrett, C., Conway, C.L., Deters, M., Hadarean, L., Jovanović, D., King, T.,

Reynolds, A., Tinelli, C.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV
2011. LNCS, vol. 6806, pp. 171–177. Springer, Heidelberg (2011)

9. Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: The MathSAT5 SMT
solver. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013 (ETAPS 2013). LNCS,
vol. 7795, pp. 93–107. Springer, Heidelberg (2013)

10. Dutertre, B.: Yices 2.2. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559,
pp. 737–744. Springer, Heidelberg (2014)

11. de Moura, L., Bjørner, N.S.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

12. Kroening, D., Strichman, O.: Decision Procedures - An Algorithmic Point of View.
Texts in Theoretical Computer Science. An EATCS Series. Springer, Heidelberg
(2008)

13. Ganesh, V.: Decision procedures for bit-vectors, arrays and integers. Ph.D. thesis,
Stanford University (2007)

14. Ganesh, V., Dill, D.L.: A decision procedure for bit-vectors and arrays. In: Damm,
W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 519–531. Springer,
Heidelberg (2007)

15. Bruttomesso, R.: RTL verification: from SAT to SMT(BV). Ph.D. thesis,
University of Trento (2008)

16. Brummayer, R.: Efficient SMT solving for bit-vectors and the extensional theory
of arrays. Ph.D. thesis, Johannes Kepler University Linz (2009)

17. Bruttomesso, R., Cimatti, A., Franzén, A., Griggio, A., Hanna, Z., Nadel, A., Palti,
A., Sebastiani, R.: A lazy and layered SMT (BV) solver for hard industrial verifi-
cation problems. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590,
pp. 547–560. Springer, Heidelberg (2007)

18. Franzen, A.: Efficient solving of the satisfiability modulo bit-vectors problem and
some extensions to SMT. Ph.D. thesis, University of Trento (2010)

19. Hansen, T.A.: A constraint solver and its application to machine code test gener-
ation. Ph.D. thesis, University of Melbourne (2012)

216 A. Niemetz et al.

20. Hadarean, L., Bansal, K., Jovanović, D., Barrett, C., Tinelli, C.: A tale of two
solvers: eager and lazy approaches to bit-vectors. In: Biere, A., Bloem, R. (eds.)
CAV 2014. LNCS, vol. 8559, pp. 680–695. Springer, Heidelberg (2014)

21. Bruttomesso, R., Pek, E., Sharygina, N., Tsitovich, A.: The OpenSMT solver. In:
Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 150–153.
Springer, Heidelberg (2010)

22. Balint, A., Belov, A., Järvisalo, M., Sinz, C.: Overview and analysis of the SAT
challenge 2012 solver competition. Artif. Intell. 223(2015), 120–155 (2012)

23. Balint, A., Schöning, U.: Choosing probability distributions for stochastic local
search and the role of make versus break. In: Cimatti, A., Sebastiani, R. (eds.)
SAT 2012. LNCS, vol. 7317, pp. 16–29. Springer, Heidelberg (2012)

24. Balint, A., Belov, A., Heule, M.J.H., Järvisalo, M. (eds.): Proceedings of SAT
Competition 2013. Volume B-2013-1 of Department of Computer Science Series of
Publications B., University of Helsinki (2013)

25. Belov, A., Heule, M.J.H., Järvisalo, M. (eds.): Proceedings of SAT Competition
2014. Volume B-2014-2 of Department of Computer Science Series of Publications
B., University of Helsinki (2014)

26. Xu, L., Hutter, F., Hoos, H.H., Leyton-Brown, K.: Satzilla: portfolio-based algo-
rithm selection for SAT. J. Artif. Intell. Res. (JAIR) 32, 565–606 (2008)

27. Kunz, W., Stoffel, D.: Reasoning in Boolean Networks: Logic Synthesis and Veri-
fication Using Testing Techniques. Kluwer Academic Publishers, Norwell (1997)

28. Goel, P.: An implicit enumeration algorithm to generate tests for combinational
logic circuits. IEEE Trans. Comput. 30(3), 215–222 (1981)

29. Huang, C., Cheng, K.: Assertion checking by combined word-level ATPG and mod-
ular arithmetic constraint-solving techniques. In: Proceedings of DAC 2000, pp.
118–123 (2000)

30. Iyer, M.A.: Race: a word-level atpg-based constraints solver system for smart ran-
dom simulation. In: Proceedings of ITC 2003, pp. 299–308. IEEE Computer Society
(2003)

31. Järvisalo, M., Junttila, T.A., Niemelä, I.: Unrestricted vs restricted cut in a tableau
method for boolean circuits. Ann. Math. Artif. Intell. 44(4), 373–399 (2005)

32. Drechsler, R., Junttila, T.A., Niemelä, I.: Non-clausal SAT and ATPG. In: Hand-
book of Satisfiability, vol. 185. Frontiers in Artificial Intelligence and Applications,
pp. 655–693. IOS Press (2009)

33. Belov, A., Järvisalo, M., Stachniak, Z.: Depth-driven circuit-level stochastic local
search for SAT. In: IJCAI, IJCAI/AAAI, pp. 504–509 (2011)

34. Kuehlmann, A., Paruthi, V., Krohm, F., Ganai, M.K.: Robust boolean reason-
ing for equivalence checking and functional property verification. IEEE Trans.
Comput.-Aided Des. Integr. Circ. Syst. 21(12), 1377–1394 (2002)

35. Hoos, H.H.: On the run-time behaviour of stochastic local search algorithms for
SAT. In: Proceedings of AAAI/IAAI 1999, pp. 661–666. AAAI Press/The MIT
Press (1999)

36. Barrett, C., Fontaine, P., Tinelli, C.: The SMT-LIB Standard: Version 2.5. Techni-
cal report, Department of Computer Science, The University of Iowa (2015). www.
SMT-LIB.org

37. de Moura, L., Jovanović, D.: A model-constructing satisfiability calculus. In:
Giacobazzi, R., Berdine, J., Mastroeni, I. (eds.) VMCAI 2013. LNCS, vol. 7737,
pp. 1–12. Springer, Heidelberg (2013)

www.SMT-LIB.org
www.SMT-LIB.org

Precise and Complete Propagation Based Local Search for SMT 217

38. Jovanović, D., Barrett, C., de Moura, L.: The design and implementation of the
model constructing satisfiability calculus. In: FMCAD, pp. 173–180. IEEE (2013)

39. Selman, B., Kautz, H.A., Cohen, B.: Noise strategies for improving local search.
In: Proceedings of AAAI 1994, pp. 337–343. AAAI Press/The MIT Press (1994)

40. McAllester, D.A., Selman, B., Kautz, H.A.: Evidence for invariants in local search.
In: Proceedings of AAAI/IAAI 1997, pp. 321–326. AAAI Press/The MIT Press
(1997)

Progressive Reasoning
over Recursively-Defined Strings

Minh-Thai Trinh(B), Duc-Hiep Chu, and Joxan Jaffar

National University of Singapore, Singapore, Singapore
{trinhmt,hiepcd,joxan}@comp.nus.edu.sg

Abstract. We consider the problem of reasoning over an expressive
constraint language for unbounded strings. The difficulty comes from
“recursively defined” functions such as replace, making state-of-the-art
algorithms non-terminating. Our first contribution is a progressive search
algorithm to not only mitigate the problem of non-terminating reason-
ing but also guide the search towards a “minimal solution” when the
input formula is in fact satisfiable. We have implemented our method
using the state-of-the-art Z3 framework. Importantly, we have enabled
conflict clause learning for string theory so that our solver can be used
effectively in the setting of program verification. Finally, our experimen-
tal evaluation shows leadership in a large benchmark suite, and a first
deployment for another benchmark suite which requires reasoning about
string formulas of a class that has not been solved before.

Keywords: String solving · Progressive search · Termination · Web
security

1 Introduction

Web applications provide critical services over the Internet and handle sensitive
data. Unfortunately, many of them are vulnerable to attacks by malicious users.
According to the Open Web Application Security Project [16], the most serious
web application vulnerabilities include: (#1) Injection flaws (such as SQL injec-
tion) and (#3) Cross Site Scripting (XSS) flaws. Both vulnerabilities involve
string-manipulating operations and occur due to inadequate sanitisation and
inappropriate use of input strings provided by users. Therefore, reasoning about
strings is necessary to ensure the security of web applications [18,21].

In web applications, recursively defined string functions also play an impor-
tant role. For example, the string function replace which is used frequently in
sanitizers in order to prevent insecure user inputs, can be recursively defined as
follows:

Y=replace(X,r,Z)
def
= (X �∈ /.�r.�/ ∧ Y=X) ∨
(X=X1·X2·X3·X4 ∧ X2·X3 ∈ /r/ ∧ length(X3)=1 ∧
X1·X2 �∈ /.�r.�/ ∧ Y=X1·Z·Y1 ∧ Y1=replace (X4,r,Z))

c© Springer International Publishing Switzerland 2016
S. Chaudhuri and A. Farzan (Eds.): CAV 2016, Part I, LNCS 9779, pp. 218–240, 2016.
DOI: 10.1007/978-3-319-41528-4 12

Progressive Reasoning over Recursively-Defined Strings 219

The first disjunct corresponds to the base case where the input X does not contain
any substring that matches the regular expression r. The resulting string Y will
be the same as X. In the other disjunct, the first substring of X that matches r
is X2·X3. So we replace this substring by Z and then make a recursive call for the
remaining part X4. (The greedy version, using as many characters as possible in
the match against r, can be defined and treated in a similar manner.)

Unfortunately, reasoning about unbounded strings defined recursively is in
general an undecidable problem. As a concrete example, string functions such as
replace that are applied to any number of occurrences of a string (even limited
to single-character strings) would make the satisfiability problem undecidable
[6,7]. We must therefore be content with an incomplete solution.

Even so, we do not yet have an algorithm that is plausibly effective in prac-
tice. To generally handle recursive functions, a state-of-the-art technique [21] is
“unfold-and-consume” which is to incrementally reduce recursive functions via
splitting (and/or unfolding) process, until their subparts are bounded with con-
stant strings/characters to be consumed. This technique has shown very promis-
ing results. However, because the main purpose of [21] is vulnerability detection,
i.e., generating attack inputs for each satisfiable query, and that every query
is invoked with a timeout limit, there was less emphasis on the detection of
unsatisfiable queries. By contrast, in the setting of program verification, or in
using verification technologies to speed up concolic testing [3,12], the problem
of determining unsatisfiability becomes paramount. In short, we can no longer
depend on a timeout, and must seek a terminating algorithm as far as possible.

The main contribution of this paper is an algorithm whose goal is to deter-
mine if a string formula is unsatisfiable, and if not, to be able to generate a
solution for it. The key feature of our algorithm is a pruning method on the
subproblems, in a way that is directed. More specifically, our algorithm aims to
detect non-progressive scenarios (Sect. 4.2) with respect to a criterion of mini-
mizing the “lexicographical length” of the returned solution, if a solution in fact
exists. Informally, in the search process based on reduction rules, we can soundly
prune a subproblem when the answer we seek can be found more efficiently else-
where. If a subproblem is deemed non-progressive, it means if the original input
formula is satisfiable, then another satisfiable solution of shorter “length” will be
found. If, on the other hand, the input formula is unsatisfiable, then any pruning
is obviously sound. A technical challenge we will overcome is that at the point
of pruning, the satisfiability of the input formula is unknown.

An additional important feature of our algorithm is applicable only when
the input formula is unsatisfiable. Here, we want to produce a set of conflict
clauses, a generalization of the input formula, that is now known to be unsat-
isfiable (Sect. 5.2). The benefits of such learning is of course well-known. It is,
for example, at the heart of the attractiveness of SMT solvers. However, the key
technical challenge is, how conflict clause learning can work in tandem with the
pruning of non-progressive formulas, because at the time of pruning, again, the
unsatisfiability of the input formula is unknown.

Finally, we present an experimental evaluation with two case studies. First
is on the well-known Kudzu benchmark [18] where we show that (a) our new

220 M.-T. Trinh et al.

algorithm surpasses four state-of-the-art solvers in its ability to detect unsatis-
fiable formulas or generate a model in satisfiable formulas (and in good running
time), and (b) the number of unsatisfiable cores is very small, thus paving the
way to accelerate the consideration of large collections of formulas. The second
case study considers web applications used in the Jalangi framework [19], and
shows how we can deal with the replace operation in string formulas. No other
system has been demonstrated on this class of problems, and thus the purpose
of our evaluation is simply to show that we are applicable.

2 Motivation

The common reason for non-termination in string solving is non-progression.
For example, after applying some reduction steps, if the reduced problem is
not easier to solve than the original one, then it may lead to non-terminating
computations. To illustrate, let us first look at the JavaScript example in Fig. 1.

Fig. 1. A JavaScript example using replace operation

The program takes as its input a JSON [10] string. Here is an example of a string
input:

[{“content” : “ip=1.1.1.1&dom=nus.edu.sg”},
{“content” : “ip=0.0.0.0&dom=google.com”}]

Specifically, we store the JSON data in an array. Each element of the array is
an object. Inside an object, we declare a property with its name and its value
(i.e., a {name : value} pair). To access the value, we simply refer to the name
of the property we need (e.g., we use a[0].content to access the value of the first
element of the array a). In Fig. 1, the program first decodes the input string by
replacing all occurrences of "ip" with "ip address" and "dom" with "domain".
Then it parses the decoded string into an array arr, and splits the value of the
first element of this array into two parts using “&” delimiter. Finally, it shows
the resulting string s in a web browser by updating the innerHTML attribute of
the info element.

Progressive Reasoning over Recursively-Defined Strings 221

Now, suppose we want to detect XSS vulnerabilities in the program. We then
need to determine the security sink and source of XSS attacks. Here, the security
sink is innerHTML, while the corresponding source is an input JSON string (i.e.
input). Next, against the sink, we define the specification for XSS attacks which
is some (regular) grammar encoding a set of strings that would constitute an
XSS attack. For simplicity, we choose: all the strings that contain "<script".
Lastly, in order to generate a test input that leads to an XSS attack, we will
need to solve the formula:

contains(s,"<script") ∧ tmp=replace(input,"ip","ip address")
∧ res=replace(tmp,"dom","domain") ∧ arr=parse(res) ∧

c=split(arr[0].content,"&") ∧ s=c[0]·""·c[1]
to make it easier for presentation, we simplify the formula into:

res=replace(input,"ip","ip address") ∧
contains(res,"<script")

If we now perform some intuitive steps of “unfolding” the definition of
replace, we will reduce the simplified formula into two disjuncts. Since the
first one is unsatisfiable due to the conflict between res �∈ /.� "ip" .�/ and
contains(res,"<script"), we proceed to find a solution in the second disjunct,
that is

input=X1·"ip"·input1 ∧ X1·"i"�∈ /.� "ip" .�/ ∧
res=X1·"ip address"·res1 ∧

res1=replace(input1,"ip","ip address") ∧
contains(res,"<script")

After applying the unfolding step some n−1 times, we still have to find a solution
in the following formula:

input=X1·"ip"·input1 ∧ X1·"i"�∈ /.� "ip" .�/ ∧
res=X1·"ip address"·res1 ∧ input1=X2·"ip"·input2 ∧

X2·"i"�∈ /.� "ip" .�/ ∧ res1=X2·"ip address"·res2 ∧ ... ∧
resn=replace(inputn,"ip","ip address") ∧

contains(res,"<script")

Obviously, this will lead us to a non-terminating computation.
As a matter of fact, non-termination is common in string solving. In addition

to the case of solving constraints on (JavaScript) recursive string operations (e.g.
replace, split, match), we also have non-termination when handling member-
ship predicates with unbounded Kleene-star regular expressions.

Example 1. Unbounded regular expressions:

X=Y·Z·T ∧ Y ∈ /a�/ ∧ Z ∈ /b�/ ∧ T ∈ /c�/ ∧
length(Y)=length (Z) ∧ length(Z)=length (T) ∧ X=X1·"d"·X2

222 M.-T. Trinh et al.

Since the first 6 constraints state that X can be any string in the context-sensitive
language { an·bn·cn | n≥0 }, automata techniques and the alike which approxi-
mate strings using context free grammars, are not able to handle this example.
Instead, to generally deal with unboundedness of regular expressions which are
constructed by using Kleene-star operators, state-of-the-art techniques [21,23]
represent the membership predicate X∈/a�/ as an equation between string vari-
able X and star(a,N) function which can be defined recursively as below:

X=star(a,N)
def
= (X = "") ∨ (X=a·star(a,M) ∧ N=M+1)

To facilitate the solving process, [21,23] will need to apply the definition of star
functions to incrementally reduce them (according to the unfold-and-consume
technique). However, they cannot handle Example 1 as they will go into an
infinite loop of searching for a solution. We will discuss this example more in
Sect. 4.

Finally, we note that the problem of non-terminating reasoning is not solely
due to the recursive definitions we employ in this paper. For example, the non-
termination problem also happens when we do splitting on unbounded string
variables. Below is a well-known example.

Example 2. Overlapping variables:

X · "a" = "b" · X

The classic work [15] is able to solve the satisfiability problem of word equations
(and not including recursively defined string operations). In this work, the big
advance was to discover a termination criteria within the reasoning steps, and
prominent amongst these was the “splitting” step. For the above example, such
a step would split X in the left hand side to obtain a new formula X·"a"="b"·X
∧ X="b"·Y . This can then be simplified into Y·"a"="b"·Y ∧ X="b"·Y . Notice
that the last formula is, in some sense, equally difficult to solve as the original one.
The huge contribution of [15] was thus to provide a bound for the number of times
such “non-progressive” steps that needs to be made. However, the elaboration
of this bound is extremely complex and is not considered feasible for a direct
implementation.

3 The Core Language

We introduce the core constraint language in Fig. 2. In our implementation, the
string theory solver is a component of Z3 solver [9]. Though Z3 supports more
primitive types, we only mention string type and integer type in Fig. 2.

Variables: We deal with two types of variables: Vstr consists of string variables
(X, Y , Z, T , and possibly with subscripts); and Vint consists of integer variables
(M , N , P , and possibly with subscripts).

Constants: Correspondingly, we have two types of constants: string and integer
constants. Let Cstr be a subset of Σ� for some finite alphabet Σ. Elements of

Progressive Reasoning over Recursively-Defined Strings 223

Fig. 2. The syntax of our core constraint language

Cstr are referred to as string constants or constant strings. They are denoted by
a, b, and possibly with subscripts. Elements of Cint are integers and denoted by
m, n, and possibly with subscripts.

Terms: Terms may be string terms or length terms. A string Tstr term (denoted
D, E, and possibly with subscripts) is either an element of Vstr, an element
of Cstr, or a function on terms. More specifically, we classify those functions
into two groups: recursive and non-recursive functions. An example of recursive
function is replace, while an example of non-recursive function is concat. The
concatenation of string terms is denoted by concat or interchangeably by ·
operator. For simplicity, we do not discuss string operations such as match,
split, exec which return an array of strings. We note, however, these operations
are fully supported in our implementation.

A length term (Tlen) is an element of Vint, an element of Cint, length function
applied to a string term, a constant integer multiple of a length term, or their
sum.

In addition, Tregexpr represents regular expression terms. They are con-
structed from string constants by using operators such as concatenation (·),
union (+), and Kleene star (�). However, regular expression terms are only used
as parameters of functions such as replace and star.

Following [21], we use the star function in order to reduce a membership
predicate involving Kleene star to a word equation. The star function takes two
parameters as its input. The first parameter is a regular expression term while
the second is a non-negative integer variable. For example, X ∈ (r)� is modelled
as X = star(r,N), where N is a fresh variable denoting the number of times
that r is repeated.

Literals: They are either string equations (As) or length constraints (Al).

Formulas: Formulas (denoted F , G, H, I, and possibly with subscripts) are
defined inductively over literals by using operators such as conjunction (∧), and

224 M.-T. Trinh et al.

negation (¬). Note that, each theory solver of Z3 considers only a conjunction
of literals at a time. The disjunction will be handled by the Z3 core. We use
Var(F) to denote the set of all variables of F , including bound variables.

Define L to be the quantifier-free first-order two-sorted language over which
the formulas described above are constructed. This logic can be considered as
equality logic facilitated with recursive and non-recursive functions, along with
length constraints.

As shown in [21], to sufficiently reason about web applications, string solvers
need to support formulas of quantifier-free first-order logic over string equations,
membership predicates, string operations and length constraints. Given a for-
mula of that logic, similarly to other approaches such as [21,23], our top level
algorithm will reduce membership predicates into string equations where Kleene
star operations are represented as recursive star functions. After such reduction,
the new formula can be represented in our core constraint language L in Fig. 2.

4 Algorithm

In Sect. 4.1, we first present the background and limitation of existing meth-
ods. In Sect. 4.2, we then present the foundations of our progressive algorithm,
along with the formal statements about its soundness and semi-completeness.
Implementation details are discussed later in Sect. 5.

4.1 Preliminaries

This paper builds on top of the string solver S3 [21]. Essentially, the S3 solver
is a string theory plug-in built into the Z3 SMT solver [9], whose architecture
is summarised as follows. Z3 core component consists of three modules: the
congruence closure engine, a SAT solver-based DPLL layer, and several built-
in theory solvers such as integer linear arithmetic, bit-vectors. The congruence
closure engine can detect equivalent terms and then classify them into different
equivalence classes which are shared among all theory solvers. Each theory solver
can consult the Z3 core to detect equivalent terms if needed. In particular, the
string theory solver has a bi-directional interaction with a built-in integer theory
solver [21,23].

In the string theory solver, the search for a solution is driven by a set of rules.

Definition 1 (Derivation Rule). Each rule is of the general form

(RULE-NAME)
F

∨m
i=1 Gi

where F , Gi are conjunctions of literals1, F ≡ ∨m
i=1 Gi, and Var(F) ⊆

Var(Gi). 	

1 As per Fig. 2.

Progressive Reasoning over Recursively-Defined Strings 225

An application of this rule transforms a formula at the top, F , into the formula
at the bottom, which comprises a number (m) of reducts Gi.

Definition 2 (Derivation Tree). A derivation tree for a formula F is obtained
by applying a derivation rule R to F . If the rule produces the single reduct false,
then the tree comprises the single node labelled with F . Otherwise, let the reducts
of R be Gi, 1 ≤ i ≤ m. Then the tree comprises a root node labelled with F and
there are m child nodes, labelled with Gi, 1 ≤ i ≤ m. 	

The concepts of descendant and ancestor nodes are defined in the usual way.

A derivation tree rooted at formula F is built using some search strategy. The
search strategy used by Z3 is a form of Depth First Search. This importantly
means that the process can be nonterminating even though there is a finite
path leading to a satisfying assignment to the variables in F . In navigating the
construction of the derivation tree, we backtrack when we encounter a false
formula. If all the leaf nodes of a subtree rooted at F are false , we can decide
that the formula F is unsatisfiable.

On the other hand, when we encounter a formula for which no derivation
rules can be applied, we can in fact terminate and decide that F is satisfiable.
To ensure the soundness of this step, we employ a standard procedure of instan-
tiating steps which enumerates and thus performs a brute-force method. This
method looks for satisfying assignments for all the string variables in the root
nodes of a dependency graph for string variables — a string variable in a root
node does not depend on the values of any string variables. Consequently, when
we terminate and declare satisfiability, it also means that every string variable
has been successfully grounded. This brute-force method is part of Z3-str, S3, Z3-
str2, and is also adopted by this paper. We will henceforth assume this method
tacitly, and not discuss it further.

Note that we control the branching order in navigating the derivation tree
by dictating the order of the rules to be applied, as well as the order in which
the reducts to be considered. In general, this order can affect significantly the
overall performance of the algorithm. However, because of the way our progres-
sive algorithm works, and in particular because of its pruning step (introduced
later), the choice of order becomes much less important. For this reason, when
we present our algorithm in detail below, we shall not impose any order on the
application of derivation rules.

We next discuss the set of rules used by our solver. Then we will illustrate
the application of rules and show an example of the derivation tree later in
Example 3. The set of rules is described in two parts:

• one-reduct rules: in Figs. 3 and 4;
• multi-reduct rules: in Fig. 5.

We first describe the one-reduct rules in Fig. 3. These rules are to propagate
length constraints, so that these constraints can be sent to integer theory solver.
They are triggered by the encounter with a string constant, a string variable, a
concatenation, and a string equation. In the figure, we use Var(F), Constant(F),

226 M.-T. Trinh et al.

Concat(F), and Equality(F) to denote the set of variables, constants, concate-
nations, and equations of F respectively. Note that we need to mark them in
those corresponding sets so that these rules are applied once for each constant,
variable, concatenation, and equation.

Fig. 3. Length constraint propagation rules

We comment here that in a practical implementation, it is useful to have some
more rules, for example, to deal with membership predicates and string opera-
tions. But for a more focused presentation, we shall not discuss them further.

Fig. 4. Simplification rules for string constraints

Next, consider Fig. 4 which shows three basic simplification rules. First, the
(CON) rule is to detect a contradiction in the string theory. Second, the (SUB)
rule is to substitute all variables X in F with C, where C is either grounded or
semi-grounded. A string is grounded if it is a constant string. It is called semi-
grounded if it is either a star function, or a concatenation of which at least a
component is either grounded or semi-grounded. For example, “a” is grounded,
while “a” · Y2 is semi-grounded. Finally, the (SIM) rule is to eliminate matching
constant strings on both sides of an equation. For each formula in the derivation

Progressive Reasoning over Recursively-Defined Strings 227

tree, only one rule is applied at a time. For each application, only one literal is
considered at a time. For example, in (SUB) rule, only X = C is involved. The
choice of which literal to be involved is decided by Z3.

We comment here that in our implementation, we do employ other specialized
rules. For example, because the string theory solver also receives the informa-
tion of length constraints from the integer theory solver, we can craft a more
specialized instance of the (CON) rule of Fig. 4 where a variant side condition is
that the lengths of D and E are different. Further, our implementation accom-
modates string operations such as substring, indexOf , with new simplification
rules. Again, for presentation purposes, we shall not discuss these detailed rules
further.

Finally, we present the remainder of our rules: multi-reduct rules, which we
call splitting rules. Before proceeding, note that in the rules in Figs. 3 and 4, no
disjunction is introduced. The disjunctions are only introduced in the splitting
rules, which we will present in two parts: the unfolding (UNF) rules, and the
variable-splitting (SPL) rules.

Fig. 5. Split rules and unfold rules for star functions

An unfolding rule applies the definition of a recursive function, replacing the
head with the body that typically contains a number of disjuncts (cf. the replace
function presented in Sect. 2). We describe such a rule using an unfolding rule
schema (UNF) for a recursive function E as follows:

(UNF)
F ∧ D1 · D2 = E · D3

∨
(F ∧ D1 · D2 = Ei · D3)

E is defined as
∨

Ei

A variable-splitting rule is used to split a string variable into sub-variables. We
shall describe such a rule using a variable-splitting rule schema (SPL) as follows:

228 M.-T. Trinh et al.

(SPL)
F ∧ D1 · D2 = E1 · E2

(F ∧ D1 = E1 ∧ D2 = E2) ∨ (F ∧ ∃Z : D1 = E1·Z ∧ Z·D2 = E2 ∧ length(Z)>0)

∨ (F ∧ ∃T : E1 = D1·T ∧ D2 = T ·E2 ∧ length(T) > 0)

The specific instances of (SPL) and (UNF) rules used in this paper are listed in
Fig. 5. There are 3 split rules to deal with string equations and 2 unfold rules for
star functions. The notation aj

i denotes the substring of a from bound i to j.
We now discuss the relationship between the splitting rules and the issue of

non-termination. Intuitively, the aim of the splitting rules is to reduce/break the
current formula into “sub-formulas”, where the complexity is reduced. A problem
arises when the rule reduces the current formula into sub-formulas, where the
complexity is actually not reduced. In other words, even though we have reduced
the formula, we are in fact not any closer in finding a satisfying solution nor in
finding a proof for unsatisfiability. This is the main reason for non-termination.

Let us now illustrate, in more detail, the issue of non-termination. We use
Example 3, a simplified version of Example 1. Here, non-termination comes
from dealing with recursive function star which is used to represent Kleene star
regular expressions. We note that both Examples 3 and 1 address the same non-
progression problem in dealing with unbounded strings. Our purpose in choosing
Example 3 to present is for simplicity.

Example 3. Recursive function star:

X = star(“a”, N) ∧ X = Y1 · “b” · Z

Figure 6 summarizes the main steps of solving Example 3. (For simplicity, we
ignore existential variables.) Similarly to solving Example 1, here we also need
to unfold the definition of star(“a”, N) function and normalize the formula to
DNF. An application of the unfold rule (UNF-�1) would result in a disjunction
of two reducts:

X = “” ∧ X = Y1·“b”·Z and
X = “a”·star(“a”,M) ∧ N = M + 1 ∧ X = Y1·“b”·Z

The first reduct leads to a contradiction:

(SUB)
X = “” ∧ X = Y1·“b”·Z

(CON)
X = “” ∧ “” = Y1·“b”·Z

false

This contradiction appears in the tree depicted in Fig. 6, but is hidden in the
part of the tree that was abbreviated away for brevity.

In the second reduct, by substituting X with Y1· “b” ·Z, we introduce a new
constraint Y1·“b”·Z = “a”·star(“a”,M). Now the only way to proceed is to
split Y1 into two parts: “a” and Y2 (for brevity, we omitted the base case where
Y1 = “”). After substituting Y1 with “a”·Y2 and simplifying the formula, we
obtain a new constraint: Y2·“b”·Z = star(“a”,M). If we repeat this process of
unfolding the definition of star function, clearly we will go into an infinite loop.

Progressive Reasoning over Recursively-Defined Strings 229

Fig. 6. Derivation tree for Example 3

4.2 Progressive Search Strategy

As mentioned earlier, the key idea to achieve progression is to prune away a
subtree when we are sure that a shorter solution can be found elsewhere. We
first need to define a measure to decide which solution is shorter. This measure
is parameterized by a sequence of variables. We use σ, τ to denote sequences.

Definition 3 (Lexical Length of a Solution). Given a formula F , let
σ = (x1, x2, . . . , xn) be a sequence of variables constructed from a non-empty
subset of Var(F). For each solution α of F , i.e. α is an assignment [x1 =
a1, x2 = a2, . . . , xn = an, . . .], the lexical length of α is defined as a n-tuple
(length(a1), length(a2), . . . , length(an)). We use Lenσ(α) to denote the lexi-
cal length of α w.r.t. the sequence σ. 	

We now use a lexical order to sort the solution set of a formula F based on
the lexical length of each solution. If F has a solution then its minimum lexical
length w.r.t. a sequence σ, denoted by l(σ, F), is defined as the lexical length of
a minimal solution of F . If F has no solution then its minimum lexical length
is denoted by �. We assume that ∀σ, F : l(σ, F)≤�. We now can compare two
arbitrary formulas based on their minimum lexical length of solutions.

Definition 4 (Total Order for Formulas). Given two formulas F and G
and let σ be a sequence of variables constructed from a non-empty subset of the
common variables of F and G, a total order �σ is defined as follows:

230 M.-T. Trinh et al.

F �σ G
def
= l(σ, F) ≤ l(σ,G) 	

We define equality =σ and strict inequality ≺σ in the obvious way. We now
outline three important properties2 of ≺σ:

• [Prop-1]: If F ≡ (G ∨ H) where Var(F) ⊆ Var(H) and ∃σ : F ≺σ G
then F =σ H

• [Prop-2]: If (G ∨ H) ⇒ F and ∃σ : F =σ G then F =σ (G ∨ H)
• [Prop-3]: If ∃σ : F =σ G and τ is a prefix of σ then F =τ G

Among them, we want to direct the attention towards the third property. It is
used to ensure the soundness of the proposed method later. It states that if two
formulas F and G have the same minimum lexical length of solutions w.r.t. a
sequence σ, then they also have the same minimum lexical length of solutions
w.r.t. a sequence τ , where τ is a prefix of σ.

Input: I : Fml , τ : a sequence on Var(I)

Output: SAT/UNSAT

〈1〉 if solve(I, τ , ∅) return SAT else return UNSAT

function solve(H : Fml, σI: a sequence, γ: a list of pairs of a formula and a sequence)

〈2〉 if (H ≡ false) return false
〈3〉 if (there is no rule to apply) return true
〈4〉 ∨

Gi ← applyRule(H) /* Apply a derivation rule */

〈5〉 Let Υ be the set of all the reducts Gi

〈6〉 foreach reduct G ∈ Υ do /* Choose G by following Z3 heuristics */

〈7〉 if (G contains a recursive term or a non-grounded concatenation)

〈8〉 if (∃(F, σ) ∈ γ s.t. F ≺σ G) return false /* PRUNE !!! */

〈9〉 Let σH be a sequence on Var(H) s.t. σI is a prefix of σH /* CONDITION 1 */

〈10〉 γ ← γ ∪ 〈H, σH〉
〈11〉 endif

〈12〉 if solve(G, σI, γ) return true
〈13〉 if (G contains a recursive term or a non-grounded concatenation)

〈14〉 γ ← γ \ {H, σH}
〈15〉 endfor

〈16〉 return false

end function
Algorithm S3P. Progressive Search

Now we show how to prune a derivation subtree when we are sure that
a solution with shorter lexical length can be found elsewhere. We do this by
augmenting the strategy already described in Sect. 4.1 with a new step which
enables us to prune the proof tree.

Definition 5 (Progressive Pruning). Let there be a derivation tree rooted at
an input formula I, and let τ be a sequence of all the variables of I. Let F be
a formula labelling a node in the tree. A set of prunable subtrees of F is a set
of its descendants Gi such that there exists a sequence σ constructed from all
variables of F satisfying the two conditions:
2 All the proofs are in our technical report [22].

Progressive Reasoning over Recursively-Defined Strings 231

• τ is a prefix of σ and
• F ≺σ G.

We then prune derivation subtrees rooted at formulas Gi. 	

The first condition ensures that a minimal solution of a formula F w.r.t. a
sequence of all variables of F is also a minimal solution of F w.r.t. a sequence
of all variables of the input formula I (according to [Prop-3]). Meanwhile, the
second condition ensures that whenever we prune G, we still preserve a minimal
solution of formula F w.r.t. a sequence of all of the variables of F .

We now present our algorithm as AlgorithmS3P. Line 2 corresponds to the
case when we find a contradiction. In Line 6, we iterate over the set of sub-
formulas; the ordering between them is not important. (In fact, in our imple-
mentation, we simply follow the heuristics of Z3.) Line 8 represents the key
feature of our algorithm; it implements our pruning step (by returning false).
Line 9 prepares for the pruning of a descendant of the current formula H (by
ensuring that the first condition of Definition 5 is met).

Theorem 1 (Soundness). Given an input formula I, if Algorithm S3P

• returns SAT: then I is satisfiable;
• returns UNSAT: then I is unsatisfiable.

	

We now consider the completeness of Algorithm S3P. Before we can formal-

ize this property, we need to discuss the condition check in line 8. This check
determines the lexical order between two formulas, and is by no means a prim-
itive operation. In fact, we do not know if the check is, in general, decidable.
Our completeness result below nevertheless assumes that we have a decision pro-
cedure for this check. Later, in Sect. 5.1, we present an implementation which,
though not a decision procedure, is sound and practical. We follow this up in
Sect. 6 with an experimental evaluation.

Theorem 2 (Semi-completeness). Suppose the given input formula I is sat-
isfiable. Then Algorithm S3P will return SAT, and produce a minimal solution
w.r.t some sequence τ of all the variables of I. 	

5 Implementation

We first show how to implement the pruning step of our search algorithm. Then
we present the conflict clause learning for string theory, especially in the setting
of Z3.

232 M.-T. Trinh et al.

5.1 The Pruning Step

To implement the pruning step of the Algorithm S3P, we have to keep track
of the set γ which contains pairs of the current formula H and some sequence
σH of all of the variables of H. When backtracking, such pair will be removed
from γ correspondingly. Let τ be the sequence of all of the variables of the input
formula I. The sequence σH is constructed by concatenating the sequence τ with
additional variables from Var(H). Specifically, σH = τ � δ where Var(δ) =
Var(H) \ Var(τ). For Example 3, after the first unfolding:

τ is (N,X, Y1, Z) and γ is {(X = star(“a”, N) ∧ X = Y1 · “b” · Z, τ)}.

We now show how to implement the condition check in line 8 of Algo-
rithm S3P. Suppose the current formula is G, if

• we find a pair (F , σ) in γ and a substitution θ such that Gθ ⇒ F , and
• the substitution θ is a progressive substitution (as defined in Definition 6

below) w.r.t a sequence σ.

then the condition check is satisfied. Obviously, θ must not introduce new con-
flicts in Gθ, which prevents Gθ from being false trivially.

Definition 6 (A Progressive Substitution). Let G be a formula, and σ be a
sequence of subset variables of G. A substitution θ is progressive w.r.t a sequence
σ if for every solution α of G, there exists a solution β of Gθ such that Lenσ(β) <
Lenσ(α). 	

For Example 3, in the second unfolding, the current formula is

G ≡ Y2·“b”·Z = star(“a”,M) ∧ Y1 = “a”·Y2 ∧ N = M + 1 ∧ X = Y1·“b”·Z
Obviously, there exists F ≡ X = star(“a”, N)∧X = Y1·“b”·Z and a substitution
θ = [M/N,N/N +1,X/“a”·X,Y1/“a”·Y1, Y2/Y1, Z/Z], such that the implication
check Gθ ⇒ F succeeds. Furthermore, the substitution θ is progressive w.r.t the
sequence τ , that is (N,X, Y1, Z). This is because if length(N) = k in a solution
α (if any) of G, we have length(M) = k − 1. Then, we have length(N) = k − 1
in the corresponding solution α′ of Gθ. Because Lenτ function returns a 4-tuple
whose first element is length(N), θ is progressive. As a result, we can stop the
second unfolding.

Lemma 1. The implementation of the pruning step is sound 	

5.2 Conflict Clause Learning

We present our conflict clause learning technique for string theory, with the focus
on the case when non-progression is detected. Specifically, in the implementation
of the pruning step, suppose there exists (F, σ) in γ and a substitution θ such
that Gθ ⇒ F and θ is progressive w.r.t σ. A corollary of Lemma 1 is that we have
F ≺σ G (see the proof of Lemma 1 in [22]). Now, in addition to returning false

Progressive Reasoning over Recursively-Defined Strings 233

as in line 8 of Algorithm S3P, we also mark Ĝ as a possible conflict clause. We
derive Ĝ from G by removing all equations in solved form which is defined for
both string and integer theories as below. If later we can not find any solution in
solving F , then we can conclude F is unsatisfiable and produce a conflict clause
Ĝ. The soundness of this learning is stated in Lemmas 2 and 3.

Definition 7 (String Solved Form). A string equation is in solved form
if it is in the form of X = f(Y1, . . . , Yn, a1, . . . , am), where X ∈ Vstr,
Y1, . . . , Yn ∈ Vstr, a1, . . . , an ∈ Cstr, X �∈ {Y1, . . . , Yn}, and f is a non-recursive
function. 	

For example, X = concat(Y,Z) is in solved form. X = concat
(Y, concat(Y1, Y2)) can be rewritten into two formulas X = concat(Y,Z) and
Z = concat(Y1, Y2), which are both in solved form. Similarly, we can define a
solved form in integer theory:

Definition 8 (Integer Solved Form). An equation is in solved form if it is in
the form of M = g(N1, .., Nn, p1, . . . , pm), where M∈Vint, V1, .., Vn∈Vint ∪ Vstr,
p1, . . . , pm∈Cint ∪ Cstr, M �∈ {N1, . . . , Nn}, and g is a function. 	

Now, suppose some formula G contains an equation X = f(· · ·) in solved
form, we are able to eliminate variable X by substituting X with f(· · ·) in G. To
obtain Ĝ, we need to remove all equations in solved form from G. The purpose
of deriving Ĝ is to obtain the core reason for pruning G, which helps us to
extract a smaller unsatisfiable core for the input formula. For Example 3, G is
Y2·“b”·Z = star(“a”,M)∧Y1 = “a”·Y2∧N = M +1∧X = Y1·“b”·Z. So we have
3 equations Y1 = “a”·Y2, N = M + 1, and X = Y1·“b”·Z which are in solved
form. Therefore, we mark Ĝ ≡ Y2 · “b” · Z = star(“a”,M) as a possible conflict
clause. Later, when we can decide the unsatisfiability of the input formula, based
on the implication graph, we can trace back to extract an unsat core for the input
formula. Specifically, it is X = star(“a”, N) ∧ X = Y1 · “b” · Z.

Lemma 2. Suppose the pruning condition check is applied for specific formulas
F and G. Then F can be written into the form G ∨ Gr and the following holds:
if Gr is unsatisfiable, F is unsatisfiable. 	

Lemma 3. Ĝ is satisfiable iff G is satisfiable. 	

Now we present the detailed implementation of obtaining Ĝ in Z3, given
that Z3 manages theory terms via its congruence closure engine. First, we give
an overview on how Z3 builds its equivalence classes. Given an equation, its two
sides will be represented as two nodes in an equivalence class. For Example 3,
since G is Y2·“b”·Z = star(“a”,M)∧Y1 = “a”·Y2 ∧N = M +1∧X = Y1·“b”·Z,
we have 4 equivalence classes as follows:

• X, Y1·“b”·Z
• Y2·“b”·Z, star(“a”,M)
• Y1, “a”·Y2

• N , M + 1

234 M.-T. Trinh et al.

Note that given a node e representing a term Q, we are able to access all nodes
representing terms that take term Q as their parameters (e.g., for string term
D and E, we can access the nodes representing length(D), concat(D,E)). We
call the later parent nodes of e.

There are three steps to remove an equation V = f(· · ·) in solved form. First,
we mark the node representing variable V . A node e is marked when:

• it represents a single variable V (V can be either a string variable or an
integer variable),

• the size of its equivalence class is greater than 1,
• its parent nodes are not in the same equivalence class as e, and
• not all of remaining nodes in the equivalence class of e contain recursive

functions.

Second, we substitute the value of all marked nodes in their parent nodes with
the value of another node in the equivalence classes of the marked nodes. Finally,
we need to traverse all unmarked nodes in the equivalence classes to create a
conjunction of all equations. For Example 3, according to above conditions, nodes
representing X, Y1, and N will be marked in their corresponding equivalence
classes. Then, we can traverse all unmarked nodes to obtain the formula Ĝ ≡
Y2·“b”·Z = star(“a”,M).

6 Evaluation

We implemented our algorithm into S3 [21] which itself was built on top of
the Z3 framework [9]. Our solver is called S3P which stands for Progressive
S3. To evaluate our solver, we conduct two case studies which involve practical
benchmark constraints generated from testing JavaScript web applications. All
experiments are run on a 3.2 GHz machine with 8GB memory.

In the first case study, we used a large and popular set of benchmark con-
straints generated using the Kudzu symbolic execution framework [18]. State-
of-the-art string solvers are also evaluated using this benchmark suite, making
it convenient for us to provide detailed comparisons on the applicability and
efficiency of our new solver.

Note that the constraints in Kudzu’s benchmarks have already been pre-
processed and/or over-simplified. In particular, the string lengths have been
bounded and recursive string function such as replace have been transformed
to primitive operators so that the underlying solver of Kudzu [18] can handle.
Because strong support for the replace function is critical for enhancing security
analysis of web applications, we conduct a second case study, of a smaller scale,
but with special focus on the replace function. The main purpose is to show
that S3P is more applicable than existing solvers in such domain applications.

Kudzu Benchmarks: In this case study, we use the set of constraints which
can be downloaded at: http://webblaze.cs.berkeley.edu/2010/kaluza. They were
generated using Kudzu [18], a symbolic execution framework for JavaScript,

http://webblaze.cs.berkeley.edu/2010/kaluza

Progressive Reasoning over Recursively-Defined Strings 235

Table 1. Constraints generated
by Kudzu

Norn CVC4 S3 Z3-str2 S3P

Sat 27068 33227 34961 34931 35270

Unsat 11561 11625 11799 11799 12014

Unk 0 0 0 524 0

Error 6187 0 0 0 0

TO (20s) 2468 2432 524 30 0

Time (s) 178960 50346 16547 6309 6972

Table 2. Usefulness of unsatisfi-
able cores for Kudzu framework

unsat files 12014

S3P Time 1129 s

S3P with unsat core # unsat cores 59

% skipped 99.5

Time 11 s

when testing 18 subject applications consisting of popular AJAX applications.
The generated constraints are of boolean, integer and string types. Integer con-
straints also include ones on length of string variables, while string constraints
include string equations, membership predicates. To compare with other solvers,
we choose to use the SMT-format version of Kaluza benchmark as provided
in [14].

This case study consists of two parts. The first part is to evaluate our non-
progression detection technique. Table 1 shows the result of solving Kudzu con-
straints by S3P, compared with 4 state-of-the-art solvers: Norn (v1.0), CVC4
(v1.4), S3 (v17092015), Z3-str2 (v1.0.0). While Norn is automata-based string
solver, the others, including S3P, are word-based string solvers, in which string
is treated as a basic type.

It can be seen that automata-based solvers such as Norn are not good at
handling constraints generated from concolic testing of web applications. This
is because such constraints are usually of multi-sorted theory, including both
string constraints and integer constraints, such as those coming from the string
lengths.

In fact, for the case of Kudzu constraints, all word-based string solvers domi-
nate Norn. Not counting S3P, Z3-str2 is the solver that produces the best result.
Z3-str2 also terminates on 524 benchmarks where Norn, CVC4 and S3 all time
out. Specifically, Z3-str2 terminates with an Unknown answer if the input formula
contains the so-called “overlapping variables” [23].

Compared with Z3-str2, S3P can in fact decide the satisfiability of these 524
benchmarks. S3P achieves this by employing the proposed technique for non-
progression detection. Specifically,

• if an input formula is unsatisfiable, S3P is able to decide the unsatisfiability
of that formula. For example, it can decide the unsatisfiability of 215 input
formulas in those 524 benchmarks.

• otherwise, being able to effectively prune away non-progressive paths, S3P has
a chance of finding solutions in other search branches. As such, the remaining
of those 524 benchmarks are decided as satisfiable with the correct models.

236 M.-T. Trinh et al.

In fact, for each of the 35270 benchmarks which S3P declares to be satisfiable,
we conjoin the model generated by S3P with the original input formula and pass
it to the other 4 solvers. As a result, all 4 solvers can now decide, with an answer
confirming the satisfiability, even on those benchmarks they could not decide
before. In other words, all models produced by S3P are cross-checked and all the
solvers reach a consensus for every single case.

In the second part of this case study, we focus on benchmarks which are
unsatisfiable, in order to demonstrate our conflict clause learning technique.
More specifically, we will extract the unsatisfiable cores from those input con-
straints, and show the potential usefulness of the cores in a dynamic symbolic
execution (DSE) framework (e.g. Kudzu). To do this, we compare the result of
solving 12014 unsatisfiable formulas in Kudzu benchmarks by two versions of
S3P. The first version (S3P) will solve each formula independently. In contrast,
when deciding a formula as unsatisfiable, the second version will cache its unsat
core. Subsequently, it will attempt to skip a formula if the formula is discharged
by some cached unsat core. The result is summarized in Table 2. There are two
important observations:

• By extracting and caching the unsatisfiable cores of 59 formulas, we can skip
checking the satisfiability of the remaining formulas (99.5 %) (which in fact
represent infeasible paths to the attack against the sink). Overall, we achieve
the speedup of about 102x faster.

• Unsatisfiable cores are also useful for validating/debugging the result. By
inspecting a much smaller number of constraints compared to the original
ones, we are able to validate the final result. For example, we are able to
confirm that all unsatisfiable answers are correct by inspecting them manually.

Jalangi Benchmarks: This second case study is to focus on the replace
string function. As such, we collect constraints generated by testing web appli-
cations using the concolic tester in Jalangi framework [19], and do not make any
preprocessing with those constraints. These applications are annex, tenframe,
calculator, go, and shopping. Note that all of them are not vulnerable to XSS
attacks.

Let us first present the set-up to collect this set of constraint benchmarks.
For each web application, we choose a sink point, that is innerHTML. Then we
symbolically execute paths from a source to the sink. These path constraints will
be combined with attack specifications at the sink. The resulting formulas are
sent to a constraint solver.

Table 3. Constraints generated by Jalangi

benchmarks # constraints # replace operation Time of S3P

48 624 96 143.7 s

Progressive Reasoning over Recursively-Defined Strings 237

Table 3 summarizes the statistics of those formulas, along with the running
time of S3P. In 48 benchmarks, there are 624 constraints and 96 constraints
are involved in replace operation. So the percentage of replace operation is
about 15 %.

More importantly, replace operation appears in all benchmarks. The reason
is that after a source point, a web application usually provides some sanitiz-
ing mechanism, for example, by replacing all “<” with “< ” and “>” with
“> ”. As such, the path constraints usually involve the replace function. For
a concrete example, after symbolically executing the program, a DSE framework
will combine the path constraints with the specifications for attacks, to create
queries for the constraint solver. A specification for innerHTML sink can be all
the strings that contain “ < script”. Then a simplified example of a common
pattern is:

input1 = replace(input, “<”, “< ”)∧ input2 = replace(input1, “>”, “> ”) ∧
output = input2 · “</br>” ∧ contains(output, “<script”)

Given that Z3-str2, CVC4, and Norn cannot deal with replace operation, the
only work which is comparable in term of the expressiveness as our solver, is S3.
However, S3 timeouts for all of those formulas because it goes into infinite loops
(similarly to what we have shown in Sect. 2). In contrast, S3P can decide the
unsatisfiability of all benchmarks. Since S3P is the only solver that is applicable
in those constraints (which are generated from testing web applications), we
believe it will make a remarkable contribution to ensuring the security of web
applications.

7 Related Work

There is a vast literature on the problem of string solving. Practical methods for
solving string equations can loosely be divided into bounded and unbounded
methods. Bounded methods (e.g., HAMPI [13], CFGAnalyzer [4,11]) often
assume fixed length string variables, then treat the problem as a normal con-
straint satisfaction problem (CSP). These methods can be quite efficient in find-
ing satisfying assignments and often can express a wider range of constraints
than the unbounded methods. However, as also identified in [18], there is still a
big gap in order to apply them to constraints arising from the analysis of web
applications.

To reason about feasibility of a symbolic execution path from high-level pro-
grams, of which string constraints are involved, one approach [6,18] is to pro-
ceed by first enumerating concrete length values, before encoding strings into
bit-vectors. In a similar manner, [17] addresses multiple types of constraints for
Java PathFinder. Though this approach can handle many operators, it provides
limited support for replace, requiring the result and arguments to be concrete.
Furthermore, it does not handle regular expressions. In summary, all of them
have similar limitations such as performance [21].

238 M.-T. Trinh et al.

Unbounded methods are often built upon the theory of automata or regu-
lar languages. We will be brief and mention a few notable works. Java String
Analyzer (JSA) [8] applies static analysis to model flow graphs of Java programs
in order to capture dependencies among string variables. A finite automata is
then derived to constrain possible string values. The work [20] used finite state
machines (FSMs) for abstracting strings during symbolic execution of Java pro-
grams. They handle a few core methods in the java.lang.String class, and
some other related classes. They partially integrate a numeric constraint solver.
For instance, string operations which return integers, such as indexOf , trig-
ger case-splits over all possible return values. A recent work [5] provides an
automata-based technique for solving string constraints, and further, a method
for counting the number of solutions to such constraints. A recent string solver
Norn [1,2] is also based on automata techniques.

Using automata and/or regular language representations potentially enables
the reasoning of infinite strings and regular expressions. However, most of exist-
ing approaches have difficulties in handling string operations related to integers
such as length, let alone other high-level operations addressed in this paper.
More importantly, to assist web application analysis, it is necessary to reason
about both string and non-string behavior together. It is not clear how to adapt
such techniques for the purpose, given that they do not provide native support
for constraints of the type integer.

Most of recent work on string solving are based on unbounded methods with
string as a primitive data type. Examples are Z3-str [24], CVC4 [14], S3 [21], Z3-
str2 [23]. However, none of them addresses the non-termination issues in string
solving as in this paper. Though in [23], the authors address non-termination
in splitting overlapping string variables, they currently can not decide the sat-
isfiability of such formulas. In contrast, we generalize common non-termination
issues that appear in solving string constraints generated from reasoning about
web applications. Along with that is a progressive algorithm which we believe
is applicable to not just S3, but also other solvers in this family of word-based
string solvers.

8 Conclusion

This paper presents a progressive algorithm for solving string constraints for
the intended purpose of analyzing practical web applications. Its main feature
is its ability to handle the termination problem when unfolding recursive defin-
itions which define the constraints. This, together with another feature of con-
flict clause learning, were demonstrated to show usefulness in pruning the search
space and new levels of results in Javascript benchmarks arising from web appli-
cations. Finally, because our algorithm deals with recursive definitions in a some-
what general manner, we believe it can be extended to support reasoning about
unbounded data structures, for example heap-allocated data structures.

Progressive Reasoning over Recursively-Defined Strings 239

References

1. Abdulla, P.A., Atig, M.F., Chen, Y.-F., Hoĺık, L., Rezine, A., Rümmer, P.,
Stenman, J.: String constraints for verification. In: Biere, A., Bloem, R. (eds.)
CAV 2014. LNCS, vol. 8559, pp. 150–166. Springer, Heidelberg (2014)

2. Abdulla, P.A., Atig, M.F., Chen, Y.-F., Hoĺık, L., Rezine, A., Rümmer, P.,
Stenman, J.: Norn: an SMT solver for string constraints. In: Kroening, D.,
Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 462–469. Springer, Heidel-
berg (2015)

3. Avgerinos, T., Rebert, A., Cha, S.K., Brumley, D.: Enhancing symbolic execution
with veritesting. In: ICSE, pp. 1083–1094. ACM (2014)

4. Axelsson, R., Heljanko, K., Lange, M.: Analyzing context-free grammars using an
incremental SAT solver. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson,
M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS,
vol. 5126, pp. 410–422. Springer, Heidelberg (2008)

5. Aydin, A., Bang, L., Bultan, T.: Automata-based model counting for string con-
straints. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206,
pp. 255–272. Springer, Heidelberg (2015)

6. Bjørner, N., Tillmann, N., Voronkov, A.: Path feasibility analysis for string-
manipulating programs. In: Kowalewski, S., Philippou, A. (eds.) TACAS 2009.
LNCS, vol. 5505, pp. 307–321. Springer, Heidelberg (2009)

7. Buchi, J.R., Senger, S.: Definability in the existential theory of concatenation and
undecidable extensions of this theory. In: Mathematical Logic Quarterly, pp. 337–
342 (1988)

8. Christensen, A.S., Møller, A., Schwartzbach, M.I.: Precise analysis of string expres-
sions. In: SAS, pp. 1–18 (2003)

9. de Moura, L., Bjørner, N.S.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

10. ECMA-404. Javascript object notation. http://www.json.org/
11. He, J., Flener, P., Pearson, J., Zhang, W.: Solving string constraints: the case for

constraint programming. In: CP, pp. 381–397 (2013)
12. Jaffar, J., Murali, V., Navas, J.A.: Boosting concolic testing via interpolation. In:

FSE, pp. 48–58. ACM (2013)
13. Kiezun, A., Ganesh, V., Guo, P.J., Hooimeijer, P., Ernst, M.D.: Hampi: a solver

for string constraints. In: ISSTA, pp. 105–116. ACM (2009)
14. Liang, T., Reynolds, A., Tinelli, C., Barrett, C., Deters, M.: A DPLL(T) theory

solver for a theory of strings and regular expressions. In: Biere, A., Bloem, R. (eds.)
CAV 2014. LNCS, vol. 8559, pp. 646–662. Springer, Heidelberg (2014)

15. Makanin, G.S.: The problem of solvability of equations in a free semigroup. Math.
USSR-Sbornik 32(2), 129 (1977)

16. OWASP. Top ten project, May 2013. http://www.owasp.org/
17. Redelinghuys, G., Visser, W., Geldenhuys, J.: Symbolic execution of programs with

strings. In: SAICSIT, pp. 139–148. ACM (2012)
18. Saxena, P., Akhawe, D., Hanna, S., Mao, F., McCamant, S., Song, D.: A symbolic

execution framework for javascript. In: SP, pp. 513–528 (2010)
19. Sen, K., Kalasapur, S., Brutch, T., Gibbs, S.: Jalangi: a selective record-replay and

dynamic analysis framework for javascript. In: FSE, pp. 488–498 (2013)
20. Shannon, D., Ghosh, I., Rajan, S., Khurshid, S.: Efficient symbolic execution of

strings for validating web applications. In: DEFECTS, pp. 22–26 (2009)

http://www.json.org/
http://www.owasp.org/

240 M.-T. Trinh et al.

21. Trinh, M.-T., Chu, D.-H., Jaffar, J.: S3: a symbolic string solver for vulnerability
detection in webapplications. In: ACM-CCS, pp. 1232–1243. ACM (2014)

22. Trinh, M.-T., Chu, D.-H., Jaffar, J.: Progressive reasoning over recursively-
defined strings. Technical report (2016). http://www.comp.nus.edu.sg/∼trinhmt/
progressive/

23. Zheng, Y., Ganesh, V., Subramanian, S., Tripp, O., Dolby, J., Zhang, X.: Effective
search-space pruning for solvers of string equations, regular expressions and length
constraints. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206,
pp. 235–254. Springer, Heidelberg (2015)

24. Zheng, Y., Zhang, X., Ganesh, V.: Z3-str: a z3-based string solver for web appli-
cation analysis. In: ESEC/FSE, pp. 114–124 (2013)

http://www.comp.nus.edu.sg/~trinhmt/progressive/
http://www.comp.nus.edu.sg/~trinhmt/progressive/

String Analysis via Automata Manipulation
with Logic Circuit Representation

Hung-En Wang1, Tzung-Lin Tsai1, Chun-Han Lin2, Fang Yu2,
and Jie-Hong R. Jiang1(B)

1 Graduate Institute of Electronics Engineering,
National Taiwan University, Taipei, Taiwan

jhjiang@ntu.edu.tw
2 Department of Management Information Systems,

National Chengchi University, Taipei, Taiwan

Abstract. Many severe security vulnerabilities in web applications
can be attributed to string manipulation mistakes, which can often
be avoided through formal string analysis. String analysis tools are
indispensable and under active development. Prior string analysis
methods are primarily automata-based or satisfiability-based. The two
approaches exhibit distinct strengths and weaknesses. Specifically, exist-
ing automata-based methods have difficulty in generating counterexam-
ples at system inputs to witness vulnerability, whereas satisfiability-based
methods are inadequate to produce filters amenable for firmware or hard-
ware implementation for real-time screening of malicious inputs to a sys-
tem under protection. In this paper, we propose a new string analysis
method based on a scalable logic circuit representation for (nondetermin-
istic) finite automata to support various string and automata manipu-
lation operations. It enables both counterexample generation and filter
synthesis in string constraint solving. By using the new data structure,
automata with large state spaces and/or alphabet sizes can be efficiently
represented. Empirical studies on a large set of open source web appli-
cations and well-known attack patterns demonstrate the unique benefits
of our method compared to prior string analysis tools.

1 Introduction

Analyzing string manipulating code is of great importance because string manip-
ulation is ubiquitous in modern software systems, such as web applications and
database services. String analysis aims to determine the set of assignments to
the string variables in string expressions that may arise from program execution
or other sources. It can be applied, e.g., to identify security vulnerabilities by
checking if a security sensitive function can receive an input string that contains
an exploit [24,29,32], to identify behaviors of JavaScript code that use the eval
function by computing the string values that can reach the eval function [15],
to identify html generation errors by computing the html code generated by web
applications [20], to identify the set of queries that are sent to back-end database

c© Springer International Publishing Switzerland 2016
S. Chaudhuri and A. Farzan (Eds.): CAV 2016, Part I, LNCS 9779, pp. 241–260, 2016.
DOI: 10.1007/978-3-319-41528-4 13

242 H.-E. Wang et al.

by analyzing the code that generates the SQL queries [12], and to patch input
validation and sanitization functions by automatically synthesizing repairs [31].

Prior string analysis methods are mainly automata-based or satisfiability-
based. For automata-based approaches, explicit state-graph represented finite
automata [8,13], MTBDD represented finite automata [2,32], and Boolean alge-
bra represented symbolic finite automata [10,27,28] have been proposed. By
characterizing a set of strings as a language, these methods are not restricted to
particular bounds on string lengths. They can be used to synthesize filters or san-
itizers [31] to screen out malicious string inputs to systems under protection, but
have difficulty in generating counterexamples at system inputs to witness vul-
nerability. For satisfiability-based approaches, bit-vector based bounded checking
[4,18,19,23] and satisfiability modulo theories (SMT) based constraint solving
[1,3,26,34] have been proposed. They may answer a certain set of string queries
with length constraints not doable for automata-based methods. By searching
a solution to a given set of string constraints, they can generate counterexam-
ples to witness vulnerability, but cannot support the synthesis of string filters
amenable for firmware or hardware implementation for real-time screening of
malicious inputs to a system under protection.

In this paper, we intend to support string analysis of acyclic constraints with
both counterexample generation and filter synthesis capabilities. To achieve this
goal, we develop a nondeterministic finite automata (NFA) manipulation engine
with logic circuit representation. In particular, we adopt the and-inverter graph
(AIG) [21], which have been widely adopted in logic synthesis for industrial appli-
cations in electronic design automation (EDA) in recent years, as the underly-
ing data structure. Thereby automata manipulations can be performed implic-
itly using logic circuits while determinization is largely avoided. Our method
is scalable to automata with large alphabet sizes in contrast to BDD-based
automata representation. We further extend our method to represent symbolic
finite automata [10], which may have infinite (or very large) alphabets [25].
Our method enables the generation of counterexamples for backtracking attack
input strings to a vulnerable application and the synthesis of filters amenable for
firmware or hardware implementation to avoid exploits of vulnerabilities in real
time. The proposed method is implemented as a new string analysis tool, named
SLOG. We conduct comprehensive experimental study on over 20000 string con-
straints generated from real web applications to compare state-of-the-art tools,
including JSA [8], Stranger [30], Z3-str2 [34], CVC4 [3], and Norn [1]. Exper-
iments suggest the performance advantage of SLOG in contrast to other string
solvers with counterexample generation capabilities. Moreover, the scalability of
SLOG is shown for automata with large alphabets in contrast to BDD-based
methods of automata representation.

2 Preliminaries

A finite automaton A is a five-tuple (Q,Σ, I, T,O), where Q is a finite state
set, Σ is an alphabet, I ⊆ Q is a set of initial states, T ⊆ Σ × Q × Q is a

String Analysis via Automata Manipulation 243

state transition relation, and O ⊆ Q is a set of accepting states. In the sequel,
we shall instead represent the initial states, transition relation, and accepting
states in terms of characteristic functions I : Q → B, T : Σ × Q × Q → B,
and O : Q → B, respectively. (A characteristic function χ represents a (Boolean
encoded) set S by having χ(e) = 1 (True) if e ∈ S and χ(e) = 0 (False) if
e �∈ S.) A finite automaton can be either a deterministic finite automaton (DFA)
or a nondeterministic finite automaton (NFA) depending on the determinicity
of its state transition. In the sequel, we refer x , s and s ′ to the input, current-
state and next-state variables in the Boolean domain, and relate the valuations
of variables x , denoted [[x]], and the valuations of variables s, denoted [[s]], to
the alphabet Σ and state set Q, respectively. A trace of an automaton is a state-
input alternating sequence q1, σ1, q2, σ2, . . . , q�, which satisfies T (σi, qi, qi+1)
for i = 1, . . . , � − 1.

A (finite) string σ1, . . . , σn, for n ≥ 0 (an empty string, denoted ε, when
n = 0), over alphabet Σ is accepted by an automaton if there exist states
q1, . . . , qn+1 such that I(q1) = 1 (for q1 being an initial state), O(qn+1) = 1 (for
qn+1 being an accepting state), and the sequence q1, σ1, q2, σ2, . . . , qn+1 forms
a trace. The set of strings accepted by an automaton A is called the (regular)
language accepted by A, denoted as L(A).

Because a finite automaton A = (Q,Σ, I, T,O) can be fully described by the
characteristic functions of I, T , and O, with Boolean encoding on Q and Σ the
automaton A can be represented as a logic circuit, denoted C(A), that realizes
these characteristic functions. In the sequel, we shall not distinguish between
characteristic functions I, T,O and their circuit representations. In this work, we
show how various string and automata manipulations can be achieved under the
logic circuit representation of (nondeterministic) finite automata. For practical
implementation, we exploit the and-inverter graph (AIG) [21] as the underlying
data structure for scalable logic circuit representation and manipulation. An AIG
is a directed acyclic graph G(V,E), where each vertex v ∈ V is either a primary
input node without any fanin or a function node representing a two-input and
gate, and each edge (u, v) ∈ E denotes a complemented or uncomplemented
connection from vertex u to v. Due to its simplicity, the AIG has been efficiently
implemented as a Boolean reasoning engine widely used in various logic synthesis
and formal verification tasks in industrial very-large-scale integration (VLSI)
designs.

In the sequel, we assume a finite automaton can be nondeterministic and may
even take ε-transitions. To represent an ε-transition under the circuit represen-
tation, we reserve a symbol “ε” as an addendum to Σ with a special handling.
Given a state transition relation T , we denote its equivalent variant with an
ε self-transition inserted for each state as T ε. That is, T ε(x , s, s ′) represents
T (x , s, s ′) ∨ ((s = s ′) ∧ (x = ε)).

Given a web application and an attack pattern (specified as a regular expres-
sion) we can first extract dependency graphs for security sensitive functions,
called the sinks, from the web application using static program analysis tech-
niques [14,17]. Each extracted dependency graph shows how the input values

244 H.-E. Wang et al.

flow to a sink, including all the string operations performed on the input val-
ues before they reach the sink. A dependency graph is vulnerable if its sink
node accepts an attack string (with respect to a given attack pattern). From
the dependency graph, we can generate string constraint formulas and check
whether the intersection of the sink node’s language and the attack pattern is
empty. If it is empty, then the web application is not vulnerable. Otherwise, a
counterexample witnessing the vulnerability is to be computed.

3 String and Automata Operations

We show that string/language operations, including intersection, union, concate-
nation, deletion, replacement, and emptiness checking, can be achieved under
logic circuit representation. We omit other less used operations, including rever-
sion, prefix, suffix, and substring, due to space limitation.

In the following exposition we assume an automaton A (or Ai) is repre-
sented as a circuit of its characteristic functions T (x , s, s ′), I(s), and O(s) (or
Ti(x , si, s

′
i), Ii(si), and Oi(si) for i = 1, 2, 3). Also we assume without loss of

generality that |s1| = m and |s2| = n for automata A1 and A2, respectively,
with m ≤ n in our following discussion unless otherwise said.

3.1 Intersection

Given two automata A1 and A2, the automaton AInt = Int(A1, A2) that accepts
language L(AInt) = L(A1)∩L(A2) is the product machine with the characteristic
functions TInt, IInt, OInt constructed by first augmenting the transition relations
T1 and T2 to T ε

1 and T ε
2 , respectively, by inserting an ε self-transition for each

state, and second conjuncting the resultant characteristic functions of A1 and
A2. Accordingly, we have

(T1, I1, O1) (T2, I2, O2)
Int

(TInt, IInt, OInt)

with

TInt(x , s, s ′) = T ε
1 (x , s1, s

′
1) ∧ T ε

2 (x , s2, s
′
2),

IInt(s) = I1(s1) ∧ I2(s2),
OInt(s) = O1(s1) ∧ O2(s2),

for s = (s1, s2). The corresponding circuit construction is illustrated in Fig. 1(a).
The constructed circuit is of size O(|C(A1)|+ |C(A2)|) and has (|s1|+ |s2|) state
variables.

String Analysis via Automata Manipulation 245

Fig. 1. Circuit construction of (a) Int, (b) Uni, (c) Cat, (d) Delξ, and (e) IsEmp
operations.

3.2 Union

Given two automata A1 and A2, the automaton AUni = Uni(A1, A2) that accepts
language L(AUni) = L(A1) ∪ L(A2) can be constructed by disjointly unioning
the two with state variables being merged and states being distinguished by an
auxiliary variable α, similar to the multiplexed machine in [16], as follows.

(T1, I1, O1) (T2, I2, O2)
Uni

(TUni, IUni, OUni)

with

TUni(x , s, s ′) = (¬α ∧ ¬α′ ∧ T1(x , 〈s2〉m, 〈s ′
2〉m)) ∨ (α ∧ α′ ∧ T2(x , s2, s

′
2)),

IUni(s) = (¬α ∧ I1(〈s2〉m)) ∨ (α ∧ I2(s2)),
OUni(s) = (¬α ∧ O1(〈s2〉m)) ∨ (α ∧ O2(s2)),

246 H.-E. Wang et al.

where s = (s2, α) and the bracket “〈s2〉m” indicates taking a subset of the
first m variables of s2. Essentially the state variables s of A1 is merged into s2

so that the first m variables of s2 are shared by both A1 and A2. Moreover,
the α bit signifies the states of A1 by α = 0, and signifies the states of A2

by α = 1. That is, a state q ∈ [[s]] belongs to A1 if its variable α valuates
to 0, and to A2 if α valuates to 1. The corresponding circuit construction is
illustrated in Fig. 1(b). The constructed circuit is of size O(|C(A1)| + |C(A2)|)
and has (max{|s1|, |s2|} + 1) state variables.

3.3 Concatenation

Given two automata A1 and A2, the automaton ACat = Cat(A1, A2) that
accepts language L(ACat) = (L(A1).L(A2)), which contains the set of concate-
nated strings σ1.σ2 for σ1 ∈ L(A1) and σ2 ∈ L(A2), can be constructed, in a
way similar to Uni, as follows.

(T1, I1, O1) (T2, I2, O2)
Cat

(TCat, ICat, OCat)

with

TCat(x , s, s ′) = (¬α ∧ ¬α′ ∧ T1(x , 〈s2〉m, 〈s ′
2〉m)) ∨ (α ∧ α′ ∧ T2(x , s2, s

′
2)) ∨

((x = ε) ∧ ¬α ∧ α′ ∧ O1(〈s2〉m) ∧ I2(s ′
2)),

ICat(s) = ¬α ∧ I1(〈s2〉m),
OCat(s) = α ∧ O2(s2),

for s = (s2, α). The corresponding circuit construction is illustrated in Fig. 1(c).
The constructed circuit is of size O(|C(A1)| + |C(A2)|) and has (max{|s1|,
|s2|} + 1) state variables.

3.4 Deletion

Given an automaton A, the automaton ADelξ
= Del(A, ξ) for ξ ∈ Σ that

accepts the strings of σ ∈ L(A) but with each appearance of symbol “ξ” in σ
being removed can be constructed as follows.

(T, I,O)
Delξ

(TDelξ
, IDelξ

, ODelξ
)

with

TDelξ
(x , s, s ′) = (T (x , s, s ′) ∨ ((x = ε) ∧ T (ξ, s, s ′))) ∧ (x �= ξ),
IDelξ

(s) = I(s),
ODelξ

(s) = O(s),

(The deletion operation is a special case of the replacement operation by replac-
ing an alphabet symbol with ε.) The corresponding circuit construction is illus-
trated in Fig. 1(d). The constructed circuit is of size O(|C(A)|) and has |s| state
variables.

String Analysis via Automata Manipulation 247

3.5 Replacement

Given three automata A1, A2, A3, we study how to construct the automata
ARep = Rep(A1, A2, A3) that accepts the language {(σ1.τ 1.σ2.τ 2 . . .) ∈
Σ∗ | (σ1.ρ1.σ2.ρ2 . . .) ∈ L(A1), σi �∈ (Σ∗.L(A2).Σ∗), ρi ∈ L(A2) and τ i ∈
L(A3) for all i}, that is, replacing L(A2) with L(A3) in L(A1). Based upon [32],
we construct the automata ARep as follows.

(T1, I1, O1) (T2, I2, O2) (T3, I3, O3)
Rep

(TRep, IRep, ORep)

First, we build automaton A��
1 , which parenthesizes any substrings of a string

in L(A1) by two fresh new symbols “�” and “�”. It yields from A1 the automa-
ton A��

1 with

T ��
1 = ((α = α′) ∧ (x �= �) ∧ (x �= �) ∧ T1(x , s1, s

′
1)) ∨

((s1 = s ′
1) ∧ ((¬α ∧ α′ ∧ (x = �)) ∨ (α ∧ ¬α′ ∧ (x = �)))),

I��
1 = ¬α ∧ I1(s1),

O��
1 = ¬α ∧ O1(s1).

The above construction makes two copies of the state space distinguished by
variable α. When the input symbol is not equal to � or �, the state transition
is the same as A1. When the input symbol equals � (resp. �), the state in the
α = 0 (resp. α = 1) space transitions to its counterpart in the α = 1 (resp.
α = 0) space.

Second, we build automaton A4, which is the automaton that accepts the
strings {(σ1. � .ρ1. � .σ2. � .ρ2. � . . .) ∈ Σ∗ | σi ∈ Σ∗.L(A2).Σ∗ and ρi ∈
L(A2)}. Let Ah be the automaton that accepts the language Σ∗.L(A2).Σ∗ with
characteristic functions Th(x , sh, s ′

h), Ih(sh), Oh(sh). Notice that constructing
the automaton Ah requires complementing an NFA and is of exponential cost.
Fortunately in most applications the automaton A2 is known a priori and thus
can be precomputed. Given A2 and Ah, assuming without loss of generality
|sh| = n ≥ |s2| = m, automata A4 can be derived as follows.

T4 = (¬β ∧ ¬β′ ∧ (x �= �) ∧ (x �= �) ∧ Th(x , sh, s ′
h)) ∨

(β ∧ β′ ∧ (x �= �) ∧ (x �= �) ∧ T2(x , 〈sh〉m, 〈s ′
h〉m)) ∨

(¬β ∧ β′ ∧ (x = �) ∧ Oh(sh) ∧ I2(〈s ′
h〉m)) ∨

(β ∧ ¬β′ ∧ (x = �) ∧ O2(〈sh〉m) ∧ Ih(s ′
h)),

I4 = ¬β ∧ Ih(sh),
O4 = ¬β ∧ (Oh(sh) ∨ Ih(sh)).

Third, let A5 = Int(A��
1 , A4) with characteristic functions T5(x , s5, s

′
5),

I5(s5), O5(s5), where s5 = (s1, α, s4) with s4 = (sh, β). Hence A5 accepts
the strings in L(A1) with all the substrings in L(A2) being marked. Then, in

248 H.-E. Wang et al.

L(A5) instead of replacing substrings �L(A2)� with strings in L(A3), we replace
� with L(A3), � with ε, and L(A2) with ε. We obtain

TRep(x , s, s ′) = (¬α ∧ ¬α′ ∧ T5(x , s5, s
′
5) ∧ ¬γ ∧ ¬γ′ ∧ I3(s3) ∧ I3(s

′
3)) ∨

(¬α ∧ ¬α′ ∧ (s5 = s ′
5) ∧ (x = ε) ∧ ¬γ ∧ γ′ ∧ I3(s3) ∧ I3(s

′
3)) ∨

(¬α ∧ ¬α′ ∧ (s5 = s ′
5) ∧ γ ∧ γ′ ∧ T3(x , s3, s

′
3)) ∨

(¬α ∧ α′ ∧ T5(�, s5, s
′
5) ∧ (x = ε) ∧ γ ∧ ¬γ′ ∧ I3(s

′
3) ∧ O3(s3)) ∨

(α ∧ α′ ∧ ∃y .[T5(y , s5, s
′
5)] ∧ (x = ε) ∧ ¬γ ∧ ¬γ′ ∧ I3(s3) ∧ I3(s

′
3)) ∨

(α ∧ ¬α′ ∧ T5(�, s5, s
′
5) ∧ (x = ε) ∧ ¬γ ∧ ¬γ′ ∧ I3(s3) ∧ I3(s

′
3)),

IRep(s) = ¬γ ∧ I5(s5) ∧ I3(s3),

ORep(s) = ¬γ ∧ O5(s5) ∧ I3(s3),

for s = (s5, s3, γ).
The constructed circuit is of size O(|C(A1)| + |C(A2)| + |C(Ah)| + |C(A3)|)

and has |x | quantified internal variables.

3.6 Emptiness Checking

One important query, IsEmp(A), about an automaton A is asking whether the
language L(A) is empty. We employ property directed reachability (PDR) [11],
an implementation of the state-of-the-art model checking algorithm IC3 [5] in the
Berkeley ABC system [6], to test whether an accepting state is reachable from
an initial state in A. Note that PDR only accepts a sequential circuit specified in
transition functions, rather than a transition relation, as input; furthermore, it
assumes the given circuit shall have a single initial state. Unfortunately because
our automata are nondeterministic in general, their nondeterministic transitions
can only be specified using transition relations and they may have multiple initial
states.

To overcome the above mismatch between transition relation and transition
function, we devise a mechanism converting (T (x , s, s ′), I(s), O(s)) representa-
tion of NFA A into a form acceptable by PDR as follows. To handle the single
initial state restriction, let Aε be the automaton accepting only the ε string,
which is composed of a single initial accepting state without any transition. We
modify A by Cat(Aε, A) to enforce a single initial state. Moreover, to convert
a transition relation to a set of transition functions, we introduce n new input
variables y for n = |s| and a new state variable z with initial value 1, and
construct a new sequential circuit with

– the output function: OIsEmp = (O(s) ∧ z), and
– the next-state functions: δi = (yi) for state variables si, i = 1, . . . , n, and

δn+1 = (T (x , s,y) ∧ z) for the state variable z.

Fig. 1(e) shows the corresponding circuit construction, where the rectangu-
lar boxes denote state-holding elements. With these conversions, PDR can be
directly applied on the constructed new circuit. The constructed circuit is of size
O(C(A)) and has (|s| + 1) state variables and (|x | + |y |) input variables. The
complexity of checking language emptiness is PSPACE-complete in the circuit
size of the underlying automaton.

String Analysis via Automata Manipulation 249

4 Counterexample Generation

The automata manipulation flow specified in a dependency graph often ends
with an IsEmp query asking whether a vulnerability exists for the application
under verification. If the answer to IsEmp is negative, it is desirable to generate
a counterexample witnessing the vulnerability. Such a counterexample should
be expressed in terms of the inputs to the application. However since the coun-
terexample to the IsEmp query is a trace demonstrating the reachability from
an initial state to an accepting state in the final automaton, it does not directly
correspond to the counterexample at the inputs. By counterexample genera-
tion, we compute counterexample traces at the inputs of a dependency graph
that together induce a specific counterexample trace at the sink node. Prior
automata-based methods cannot easily generate such counterexamples because
the output automaton resulted from an automata operation does not contain
information about its input automata whereas our circuit construction preserves
such information through the introduced auxiliary variables.

Below we show how to backtrack from the negative answer to IsEmp to
extract the input counterexamples. The backtrack process traverses the depen-
dency graph in a reverse topological order and deduces the upstream counterex-
amples according to the corresponding operations in the following. Notice that an
automata circuit iteratively constructed by our method may contain internally
quantified variables. These variables are treated as free variables in PDR com-
putation without explicit quantifier elimination, and their corresponding assign-
ments are determined by PDR and returned along with the trace information.

Intersection. Let (p1, q1), (σ1, ρ1, 1), (p2, q2), (σ2, ρ2, 2), . . . , (p�, q�) be the
counterexample trace of automaton AInt = Int(A1, A2), where pi ∈ [[s1]], qi ∈
[[s2]], σi ∈ Σ, ρi ∈ Σk, i ∈ Σl, for some k, l ≥ 0 and (s1, s2) being the state
variables of AInt as constructed in Sect. 3.1. Let the values ρi ∈ Σk and i ∈ Σl

correspond to the assignments to the internally quantified variables of A1 and
A2, respectively. Then the counterexample traces of A1 and A2 can be extracted
backward by the following rule.

A1: (p1, (σ1, ρ1), . . . , p�) A2: (q1, (σ1, 1), . . . , q�)
IntCex

AInt: ((p1, q1), (σ1, ρ1, 1), . . . , (p�, q�))

Union. Let (q1, c), (σ1, ρ1), (q2, c), (σ2, ρ2), . . . , (q�, c) be the counterexample
trace of automaton AUni = Uni(A1, A2), where qi ∈ [[s2]], c ∈ [[α]], σi ∈ Σ,
and ρi ∈ Σk, for some k ≥ 0 and s2 being the state variables of AUni as con-
structed in Sect. 3.2. Let the values ρi ∈ Σk correspond to the assignments to
the internally quantified variables of A1 or A2. The the counterexample traces
of A1 and A2 can be extracted backward by the following rules.

250 H.-E. Wang et al.

A1: (q1, (σ1, ρ1), . . . , q�) A2: (⊥)
UniCex, c = 0

AUni: ((q1, c), (σ1, ρ1), . . . , (q�, c))

A1: (⊥) A2: (q1, (σ1, ρ1), . . . , q�)
UniCex, c = 1

AUni: ((q1, c), (σ1, ρ1), . . . , (q�, c))

Concatenation. Let (q1, c1), (σ1, ρ1), (q2, c2), (σ2, ρ2), . . . , (q�, c�) be the coun-
terexample trace of automaton ACat = Cat(A1, A2), where qi ∈ [[s2]], ci ∈ [[α]],
σi ∈ Σ, and ρi ∈ Σki , for some ki ≥ 0 and (s2, α) being the state variables
of ACat as constructed in Sect. 3.3. Let the values ρi ∈ Σki correspond to the
assignments to the internally quantified variables of A1 or A2. Then the coun-
terexample traces of A1 and A2 can be extracted backward by the following
rule.

A1: (q1, z1, . . . , qi) A2: (qi+1, zi+1, . . . , qn)
CatCex

ACat: (p1, z1 . . . , pi, zi, pi+1, zi+1, . . . , p�)

where each pj = (qj , 0) for all j ≤ i, pj = (qj , 1) for all j ≥ i+1, and zj = (σj , ρj)
for all j �= i, and zi = (ε, ρi).

Replacement. Let (p1, c1, q1, r1, d1), (σ1, ρ1, 1), . . ., (pn1 , cn1 , qn1 ,
rn1 , dn1), (σn1 , ρn1 , n1), (pn1+1, cn1+1, qn1+1, rn1+1, dn1+1), (σn1+1, ρn1+1,
n1+1), . . ., (pn2 , cn2 , qn2 , rn2 , dn2), (σn2 , ρn2 , n2), (pn2+1, cn2+1, qn2+1,
rn2+1, dn2+1), (σn2+1, ρn2+1, n2+1), . . ., (p�, c�, q�, r�, d�) be the coun-
terexample trace of automaton ARep = Rep(A1, A2, A3), where pi ∈ [[s1]],
ci ∈ [[α]], qi ∈ [[s4]], ri ∈ [[s3]], di ∈ [[γ]], σi, i ∈ Σ, and ρi ∈ Σk,
for some k ≥ 0 and (s1, α, s4, s3, γ) being the state variables of ARep as
constructed in Sect. 3.5. The trace must have the following form: Consider
(pni+1, cni+1, qni+1, rni+1, dni+1), (σni+1, ρni+1, ni+1), . . . , (pni+1 , cni+1 , qni+1 ,
rni+1 , dni+1). (Notice the subtle subscript difference between ni + 1 and ni+1.)
For i = 3m, we have cj = 0, dj = 0 for ni + 1 ≤ j ≤ ni+1, and
σni+1σni+2 . . . σni+1−1 /∈ Σ∗.L(A2).Σ∗. For i = 3m+1, we have cj = 0, dj = 1 for
ni +1 ≤ j ≤ ni+1, and σni+1σni+2 . . . σni+1−1 ∈ L(A3). For i = 3m+2, we have
cj = 1, dj = 0, σj = ε for ni +1 ≤ j ≤ ni+1, and ni+1ni+2 . . . ni+1−1 ∈ L(A2).
Also σni

= ε for all i.
Let the values ρi ∈ Σk and i ∈ Σ correspond to the assignments to the

internally quantified variables of A1 and to the assignments to the internally
quantified variables added in the construction of ARep, respectively. Then the
counterexample trace of A1 can be extracted backward by the following rule.

A1:((ω
†
1)

−, (ω‡
3)

−, (ω†
4)

−, (ω‡
6)

−, . . . , (ω†
�))

RepCex
ARep:(ω1, z1, ω2, z2, ω3, z3, ω4, z4, ω5, z5, ω6, z6, . . . , ω�)

where each ωi denote the trace (pni−1+1, cni−1+1, qni−1+1, rni−1+1, dni−1+1),
(σni−1+1, ρni−1+1, ni−1+1), . . ., (pni

, cni
, qni

, rni
, dni

), each zi denote

String Analysis via Automata Manipulation 251

(ε, ρni
, ni

), each ωi† denote the trace pni−1+1, (σni−1+1, ρni−1+1), pni−1+2,
(σni−1+2, ρni−1+2), . . ., pni

, and each ω‡
i denote the trace pni−1+1, (ni−1+1,

ρni−1+1), pni−1+2, (ni−1+2, ρni−1+2), . . ., pni
. Also, for a trace ω =

p1, σ1, . . . , pi, σi, pi+1, we denote its tail-removed subtrace p1, σ1, . . . , pi, σi as ω−.

5 Filter Generation

In addition to counterexample generation, one may further generate filters (also
called vulnerability signatures in [31]) to block malicious input strings from the
considered web application. By computing filters backward in the dependency
graph, the filters for the input strings to an application can be obtained. The
derived filters in our circuit representations are amenable for further hardware or
firmware implementation to support a high-speed and low-power way of filtering
malicious inputs from a web application. Notice that our circuit representa-
tion characterizes NFA in general, and further determinization may be needed
for firmware or hardware implementation of filters. Although automata deter-
minization can be costly, it is doable. Below we study how filter generation can
be done under the proposed circuit representation.

First of all, the filter for the sink node of the dependency graph is available,
assuming that sensitive strings to the underlying string manipulating program
are known a priori. Moreover, consider an operator Op on a given set of input
automata A1, . . . , Ak yielding A = Op(A1, . . . , Ak). Let B be an automaton with
its language L(B) ⊆ L(A) containing all illegal strings in L(A). We intend to con-
struct the filter automaton Bi for some i = 1, . . . , k of concern such that L(Bi) ⊆
L(Ai) and any σ ∈ L(Ai) satisfies (L(Op(A1, . . . , Ai−1, Aσ, Ai+1, . . . , Ak)) ∩
L(B)) = ∅ if and only if σ /∈ L(Bi), where Aσ denotes the automaton that
accepts exactly the string σ. Note that L(Bi) satisfying the above condition is
a minimal filter provided that the relation among the inputs of an automata
operation is ignored. Since the above condition guarantees that for each string
in Bi, there exists a set of strings in other Aj ’s, j �= i, such that some string in
B is generated after apply Op on this set of strings of Bi and Aj ’s. Under the
ignorance of the relation among the inputs of Op, a string should be kept in the
language of filter automaton Bi as long as it may possibly result in a string in
B through Op. The different Op cases are detailed in the following.

Intersection. Given the filter automaton B for the automaton A =
Int(A1, A2), the filter B can be directly applied as a filter for A1 as well as A2.

Union. Given the filter automaton B for A = Uni(A1, A2), observe that every
string in L(B) is in L(A1) or in L(A2). Hence automata B1 = Int(A1, B) and
B2 = Int(A2, B) form legitimate filters for A1 and A2, respectively.

252 H.-E. Wang et al.

Concatenation. Given the filter automaton B for A = Cat(A1, A2), to gener-
ate the corresponding filters B1 and B2 for A1 and A2, respectively, we first con-
struct B† = Int(A,B). Clearly, L(B†) equals L(B) because L(B) ⊆ L(A). By
the circuit construction of A, the auxiliary state variable α distinguishes between
the substrings from L(A1) and the substrings from L(A2). As this information
may not be seen in B, the purpose of this intersection is to identify the separa-
tion points between the two substring sources. Let B1 be a copy of B† but with
the input symbol on every transition between states of α = 1 being replaced
with ε. Consider a trace (q1, c1), σ1, . . ., (qi, ci), ε, (qi+1, ci+1), ε, . . ., (q�, c�)
accepted by B1, where (qj , cj) ∈ [[s]] for s being the state variables of B1, and
cj ∈ [[α]] with cj = 0 for j ≤ i and cj = 1 for j ≥ i+1. By the construction of B1,
there should be a trace (q1, c1), σ1, . . ., (qi, ci), ε, (qi+1, ci+1), σi+1, . . ., (q�, c�)
accepted by B†. The existence of such a trace ensures σ1σ2 . . . σi−1 ∈ L(A1),
σi+1σi+2 . . . σ�−1 ∈ L(A2), and σ1σ2 . . . σ�−1 ∈ L(B). The above trace accepted
by B† also ensures for each string, σ ∈ L(B1) if and only if there exists another
string ρ in A2 such that σ.ρ ∈ L(B). So B1 forms a legitimate filter for A1.
Similarly, let B2 be a copy of B† but with the input symbol on every transition
between states of α = 0 being replaced with ε. Then B2 forms a legitimate filter
for A2.

Replacement. Given the filter automaton B for A = Rep(A1, A2, A3), to
generate the filter B1 for automaton A1, each string in L(B) has the form
σ1τ 1σ2τ 2 . . . σ�, where σi ∈ Σ∗.L(A2).Σ∗ and τ i ∈ L(A3) for i = 1, . . . , �.
We recognize each τ i and replace it with some string ρi ∈ L(A2). We then
remove from the resultant language those strings not in A1 by intersecting it
with A1. Therefore, B1 can be constructed as follows.

First, similar to the construction of A��
1 in Sect. 3.5, we build automaton B��,

which parenthesizes any substrings of a string in L(A1). Second, similar to the
construction of A4 in Sect. 3.5, we build automaton B4, which accepts the strings
{(σ1. � .τ 1. � .σ2. � .τ 2. � . . .) ∈ Σ∗ | σi ∈ Σ∗.L(A2).Σ∗ and τ i ∈ L(A3)}.
Third, let B5 = Int(B��, B4). Hence L(B5) = {(σ1. � .τ 1. � .σ2. � .τ 2. � . . .) ∈
Σ∗ | (σ1.τ 1.σ2.τ 2 . . .) ∈ L(B) and σi ∈ Σ∗.L(A2).Σ∗ and τ i ∈ L(A3)}. Then,
in L(B5) instead of replacing substrings �L(A3)� with strings in L(A2), we
replace � with L(A2), � with ε, and L(A3) with ε. Let the resultant automaton
be B†

1. Finally, B1 = Int(B†
1, A1) forms a legitimate filter for A1.

The fact that B1 is a legitimate filter for A1 can be shown as follows.
Consider a string σ = σ1.ρ1.σ2.ρ2 . . . /∈ L(B1), where σi /∈ Σ∗.L(A2).Σ∗

and ρi ∈ L(A2). Also consider another string σ1.τ 1.σ2.τ 2 . . . obtained from
replacing each ρi with τ i ∈ L(A3). If σ1.τ 1.σ2.τ 2 . . . ∈ L(B), then we have
σ1. � .τ 1. � .σ2. � .τ 2. � . . . ∈ L(B��). It is easy to see that σ1. � .τ 1. �
.σ2. � .τ 2. � . . . ∈ L(B5). Finally, for each �.τ i.�, replacing � with ρi,
replacing τ i with ε, and replacing � with ε yield σ1.ρ1.σ2.ρ2 . . . ∈ L(B1),
which contradicts to the assumption σ1.ρ1.σ2.ρ2 . . . /∈ L(B1). So we have
L(Rep(Aσ, A2, A3)) ∩ L(B) = ∅ for any string σ /∈ L(B1). Similarly, con-
sider string σ = σ1.ρ1.σ2.ρ2 . . . ∈ L(B1), where σi /∈ Σ∗.L(A2).Σ∗ and

String Analysis via Automata Manipulation 253

ρi ∈ L(A2). Then it is in L(B†
1). By the construction of B†

1, there should be
another string σ1.� .τ 1.� .σ2.� .τ 2.� . . . ∈ L(B5), where τ i ∈ L(A3). We have
σ1. � .τ 1. � .σ2. � .τ 2. � . . . ∈ L(B��), and hence σ1.τ 1.σ2.τ 2 . . . ∈ L(B).
It is easy to see that σ1.τ 1.σ2.τ 2 . . . ∈ L(Rep(Aσ, A2, A3)), which means
L(Rep(Aσ, A2, A3))∩L(B) �= ∅. Consequently B1 characterizes the desired lan-
guage.

6 Extension to Symbolic Finite Automata

Symbolic finite automata (SFA) [26] extend conventional finite automata by
allowing transition conditions to be specified in terms of predicates over a
Boolean algebra with a potentially infinite domain. Formally, an SFA A is a
5-tuple (Q,D, I,Δ,O), where Q is a finite set of states, D is the designated
domain, I ⊆ Q is the set of initial states (here we allow multiple initial states in
contrast to the standard single-initial-state assumption of SFA), Δ : Q×Ψ ×Q is
the move relation for Ψ being the set of all quantifier-free formulas with at most
one free variable, say χ, over a Boolean algebra of domain D, O ⊆ Q is the set of
accepting states. We assume ε transitions are allowed and properly encoded in Δ
in an SFA. Since D may not be bounded, a predicate logic formula over variable
χ cannot be represented with logic circuits. We separate predicates from the
logic circuit representation of SFA by abstracting each formula ψ appearing in
Δ with its designated propositional variable xψ. Let [[ψ]] be extended to denote
the set of solution values of χ satisfying ψ. Then the move relation of an SFA
can be expressed with a transition relation

T (x , s, s ′) =
∨

(p,ψ,q)∈Δ

(xψ ∧ (s = p) ∧ (s ′ = q))

and a predicate relation

P (x , χ) =
∧

(p,ψ,q)∈Δ

(xψ ↔ (χ ∈ [[ψ]])).

Therefore we can represent an SFA A with four characteristic functions I, O, T ,
and P .

With the above construction, our circuit constructions of Sect. 3 naturally
extend to SFA except that the predicate relation has to be additionally handled
as follows. For SFA AInt = Int(A1, A2), the predicate relation

PInt(x , χ) = P1(x 1, χ) ∧ P2(x 2, χ) ∧ (xχ=ε ↔ χ = ε),

for x = (x 1,x 2, xχ=ε).
For SFA AUni = Uni(A1, A2), the predicate relation

PUni(x , χ) = P1(x 1, χ) ∧ P2(x 2, χ),

for x = (x 1,x 2).

254 H.-E. Wang et al.

For SFA ACat = Cat(A1, A2), the predicate relation

PCat(x , χ) = P1(x 1, χ) ∧ P2(x 2, χ) ∧ (xχ=ε ↔ χ = ε),

for x = (x 1,x 2, xχ=ε).
For SFA ARep = Rep(A1, A2, A3), we construct the predicate relation for

ARep as follows. The predicate relation of SFA A��
1 is first obtained from A1 by

P ��
1 (x ��

1 , χ) = P1(x 1) ∧ (xχ=� ↔ (χ = �)) ∧ (xχ=� ↔ (χ = �)) ∧
(xχ�=� ↔ (χ �= �)) ∧ (xχ�=� ↔ (χ �= �)),

for x ��
1 = (x 1, xχ=�, xχ=�, xχ�=�, xχ�=�). Then the predicate relation of A4 is

constructed from those of A2 and Ah by

P4(x 4, χ) = P2(x 2, χ) ∧ Ph(xh, χ) ∧ (xχ=� ↔ χ = �) ∧ (xχ=� ↔ χ = �) ∧
(xχ�=� ↔ χ �= �) ∧ (xχ�=� ↔ χ �= �),

for x 4 = (x 2,xh, xχ=�, xχ=�, xχ�=�, xχ�=�). Then the predicate relation of A5

is obtained by

P5(x 5, χ) = P ��
1 (x ��

1 , χ) ∧ P4(x 4, χ) ∧ (xχ=ε ↔ χ = ε),

for x 5 = (x ��
1 ,x 4, xχ=ε). Finally, the transition and predicate relations of SFA

ARep can be obtained by

TRep(x , s, s′) = (¬α ∧ ¬α′ ∧ T5(x5, s5, s′
5) ∧ ¬γ ∧ ¬γ′ ∧ I3(s3) ∧ I3(s

′
3)) ∨

(¬α ∧ ¬α′ ∧ (s5 = s′
5) ∧ (xχ=ε) ∧ ¬γ ∧ γ′ ∧ I3(s3) ∧ I3(s

′
3)) ∨

(¬α ∧ ¬α′ ∧ (s5 = s′
5) ∧ γ ∧ γ′ ∧ T3(x3, s3, s′

3)) ∨
(¬α ∧ α′ ∧ T5(x5, s5, s′

5)|Δ[χ/�] ∧ γ ∧ ¬γ′ ∧ O3(s3) ∧ I3(s
′
3) ∧ (xχ=ε)) ∨

(α ∧ α′ ∧ T5(y , s5, s′
5) ∧ (xχ=ε) ∧ ¬γ ∧ ¬γ′ ∧ I3(s3) ∧ I3(s

′
3)) ∨

(α ∧ ¬α′ ∧ T5(x5, s5, s′
5)|Δ[χ/�] ∧ ¬γ ∧ ¬γ′ ∧ I3(s3) ∧ I3(s

′
3) ∧ (xχ=ε)),

PRep(x , χ,y , χ†) = P5(x 5, χ) ∧ P3(x 3, χ) ∧ P5(y , χ†),

where x = (x 5,x 3), y is a set of newly introduced propositional variables for
|x |, χ† is a newly introduced variable for χ serving for existential quantifications,
and T |Δ[χ/a] denotes transition relation T is obtained under the modified move
relation Δ in which variable χ is substituted with symbol a. (Here we avoid
existentially quantifying out y and χ† by treating them as free variables.)

For emptiness checking of an SFA, we can treat the SFA as an infinite state
transition system by considering (χ,x , s) as the state variables. Let the transi-
tion relation be the conjunction of T and P , and let I and O be the initial and
accepting state conditions, respectively, of the infinite state transition system.
Then the model checking method [9], effectively PDR modulo theories, can be
applied for reachability analysis.

String Analysis via Automata Manipulation 255

7 Experimental Evaluation

Our tool, named SLOG, was implemented in the C language under the Berkeley
logic synthesis and verification system ABC [6]. The experiments were conducted
on a machine with Intel Xeon(R) 8-core CPU and 16 GB memory under the
Ubuntu 12.04 LCS operating system.

We compared SLOG against other modern constraint solvers: CVC4 [3],
Norn [1], Z3-str2 [34], and string analysis tools: JSA [8] and Stranger [30].
For the experiments, 20386 string analysis instances were generated from real
web applications via Stranger [30]. The web applications includes Moodle,
PHP-Fusion, etc., and these instances are tested for vulnerabilities such as
SQL-injection, cross-site scripting (XSS), etc. Each instance corresponds to an
acyclic dependency graph of a sink node in the program that consists of union,
concatenation, and replacement operations. For each instance, we generated the
string constraint that checks whether the dependency graph is vulnerable with
respect to an attack pattern. String constraints were generated in the SMT-lib
format for CVC4, Norn, and Z3-str2, and in the Java-program format for JSA.

The statistics of the benchmark instances are as follows. There are 85919 con-
catenation operations in total distributed in 18898 instances, 510 string replace-
ment operations in 255 instances, and 25160 union operations in 5109 instances.
All of these 20386 instances have membership checking at the end to determine
whether an attack string can reach the sink node. All the solvers except for
Norn, which does not support the replacement operation, provide full support
on these string operations. Timeout limits 300 and 9000 s were set for small and
large instances, respectively. An instance with fewer (resp. no fewer) than 100
concatenation operations is classified as small (resp. large).

The results of the solvers on the total 20386 instances are shown in Table 1,
where #SAT, #UNS, #TO, #FL, and #Run denote the numbers of solved
SAT, solved UNSAT, timeout, failed (with unexpected termination), and checked
instances, respectively. The total runtimes for SAT and UNSAT instances are
also shown in the table. Solvers SLOG, Stranger, CVC4, JSA and Z3-str2
checked all 20386 instances (runs) with successful rate 100 %, 100 %, 93.12 %,
99.98 %, 77.60 %, respectively; Norn checked 20131 instances with the successful
rate 82.17 % without running the 255 instances with replacement operations.

Table 1. Statistics of solver performance

Solver #SAT (time (s)) #UNS (time (s)) #TO #FL #Run

SLOG 8684 (65915) 11663 (72195) 39 0 20386

Stranger 8723 (10309) 11663 (1069) 0 0 20386

CVC4 7503 (8217) 11480 (1139) 1136 267 20386

JSA 8719 (7141) 11663 (8708) 0 4 20386

Z3-str2 4285 (249437) 11535 (921325) 2728 1838 20386

Norn 6306 (16586) 10236 (17383) 3344 245 20131

256 H.-E. Wang et al.

To evaluate solver performance on instances of different sizes, we classify the
20386 instances into three groups: the replacement-free small ones (with fewer
than 100 concatenations and without replacement operations), the replacement-
free large ones (with no fewer than 100 concatenations and without replace-
ment operations), and the ones with replacement operations. By the classifi-
cation, there are 20091 replacement-free small instances, 40 replacement-free
large instances, and 255 instances with replacement operations. Note that the
replacement-free large instances also have a large number of union operations.

(a) (b) (c)

Fig. 2. Accumulated solving time for (a) replacement-free small instances, (b)
replacement-free large instances, and (c) instances with replacement operations.

For the replacement-free small instances (under a 300-s timeout limit), the
performances of solvers are shown in Fig. 2(a), where the x-axis is indexed by the
number of solved instances, which are sorted by their runtimes in an ascending
order for each solver, and the y-axis is indexed by the accumulated runtime in sec-
onds. As shown in Fig. 2(a), SLOG successfully solves 20054 cases in 137670 sec-
onds (with 37 timeout cases), outperforming Z3-str2 (13943 cases in 1399712 s),
CVC4 (18829 cases in 5555 s) and Norn (16542 cases in 33969 s). In contrast,
Stranger (20091 cases in 10590 s) and JSA (20087 cases in 15336 s) outperform
SLOG on almost all the cases. For the replacement-free large instances (under a
9000-s timeout limit), both Z3-str2 and Norn failed to solve any due to time-
out. As seen from Fig. 2(b), SLOG solved most of the large cases (with an average
of 1750 s per case), while CVC4 solved fewer than half of the instances (19 out
of 40) but took less time on solvable instances. Stranger and JSA outperform
SLOG and other SMT-based solvers, being able to solve all the 40 cases with
less time. For the instances with replacement operations (under a 300-s timeout
limit), all solvers are applicable except for Norn. Figure 2(c) shows that the rel-
ative performances of the solvers are similar to those in the other two instance
groups. The reason that Stranger outperforms SLOG might be explained by

String Analysis via Automata Manipulation 257

the fact that the emptiness checking of a sink automaton in Stranger is of
constant time complexity (due to the canonicity of state-minimized DFA), while
that in SLOG requires reachability analysis. Therefore as long as Stranger
succeeds in building the sink automaton, it is likely to outperform SLOG.

With the auxiliary variables and other information embedded in the circuit
construction, SLOG can generate counterexamples. We applied SLOG to find
witnesses of all 8684 vulnerable instances. It took 524 s in total to generate
counterexamples for all 8684 instances, only a small fraction of the total con-
straint solving time 65915 s. The high efficiency of counterexample generation
in SLOG can be attributed to the fact that the assignments to the internally
quantified variables in our circuit construction are already computed by PDR.
There is no need to re-derive them in generating counterexample traces by the
rules of Sect. 4 (Table 2).

Table 2. SLOG performance on counterexample generation

Group #SAT SolveTime (s) CexGenTime (s)

Small 8426 60664 481

Large 22 4236 18

Replacement 236 1015 25

In summary, SLOG performed the best among the solvers with counterex-
ample generation capability, including CVC4, Z3-str2 and Norn. In fact, a
significant portion of runtime spent by SLOG is on running PDR for language
emptiness checking. Although Stranger and JSA performed better than SLOG
in runtime, both are incapable of finding as a witness the values of input nodes
to a specific attack string in the sink node.

To justify that our circuit-based method can be more scalable than BDD-
based methods for representing automata with large alphabets, consider the
automata over alphabet Σ × Σ with |Σ| = 2n accepting the language (a, a)∗ for
a ∈ Σ. The automata have a linear O(n) AIG representation (4n+1 gates), but
have an exponential O(2n) BDD representation (e.g., 46 BDD nodes for n = 4,
766 nodes for n = 8, and 196606 nodes for n = 16) in MONA [7], which is used
by Stranger. Although a good BDD variable ordering exists to reduce the
BDD growth rate to linear in this example, a good BDD variable ordering can
be hard to find and even may not exist in general. In addition, because SLOG
represents NFA instead of DFA, it may avoid costly subset construction and can
be more compact than (DFA-based) Stranger.

8 Discussions

While SLOG demonstrates its ability on string constraint solving and coun-
terexample generation by taking advantage of circuit-based NFA representation,

258 H.-E. Wang et al.

it should be noted that the compared string analysis tools have varied focuses
and expressiveness of specifying (non)string constraints. CVC4 [3] is a SMT-
based solver that supports many-sorted first-order logic. Norn [1] is another
SMT-based string constraint solver that employs Craig interpolation to handle
word equations over (unbounded length) string variables, constraints of string
length, and regular language membership constraints. Z3-str2 [34] is a string
theory plug-in built upon SMT solver Z3 [22]. These string solvers address string
constraints with lengths and can generate witness for satisfying constraints. In
the experimental evaluation, we did not consider length constraints when gener-
ating dependency graphs. String constraints with lengths are not currently sup-
ported by SLOG. The circuit-based representation could be extended to model
arithmetic automata for automata-based string-length constraint solving [2,33].
JSA is an explicit automata tool for analyzing the flow of strings and string
operations in Java programs. Stranger is an MTBDD-based automata library
for symbolic string analysis, which can be used to solve string constraints and
compute pre- and post-images of string manipulation operations. JSA employes
grammatical string analysis with regular language approximation and incorpo-
rates finite state transducers to support language-based replacement operations,
while Stranger can conduct forward and backward reachability analysis of
string manipulation programs along with DFA constructions for language opera-
tions. In the evaluation, we did not conduct analysis on cyclic dependency graphs
that can be analyzed with JSA and Stranger. Conducting fixpoint computa-
tion on cyclic dependency graphs may require efficient complement operation in
our circuit-based NFA representation that is not currently supported by SLOG.

9 Conclusions

We have presented a circuit-based NFA manipulation package for string analysis.
Compared to BDD-based methods of automata representation, our circuit-based
representation is scalable to automata with large alphabets. Our method avoids
costly determinization whenever possible. It supports both counterexample gen-
eration and filter synthesis. In addition, extension to symbolic finite automata
has been shown. Experiments have shown the unique benefits of our method.
For future work, it would be interesting to explore the usage of SLOG as a string
analysis engine in SMT solvers.

Acknowledgments. This work was supported in part by the Ministry of Science and
Technology of Taiwan under grants MOST 104-2628-E-002-013-MY3, 104-2218-E-001-
002, and 103-2221-E-004-006-MY3.

References

1. Abdulla, P.A., Atig, M.F., Chen, Y.-F., Hoĺık, L., Rezine, A., Rümmer, P.,
Stenman, J.: Norn: an SMT solver for string constraints. In: Kroening, D.,
Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 462–469. Springer,
Heidelberg (2015)

String Analysis via Automata Manipulation 259

2. Aydin, A., Bang, L., Bultan, T.: Automata-based model counting for string con-
straints. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp.
255–272. Springer, Heidelberg (2015)

3. Barrett, C., Conway, C.L., Deters, M., Hadarean, L., Jovanović, D., King, T.,
Reynolds, A., Tinelli, C.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV
2011. LNCS, vol. 6806, pp. 171–177. Springer, Heidelberg (2011)

4. Bjørner, N., Tillmann, N., Voronkov, A.: Path feasibility analysis for string-
manipulating programs. In: Kowalewski, S., Philippou, A. (eds.) TACAS 2009.
LNCS, vol. 5505, pp. 307–321. Springer, Heidelberg (2009)

5. Bradley, A.R.: SAT-based model checking without unrolling. In: Jhala, R.,
Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 70–87. Springer,
Heidelberg (2011)

6. Brayton, R., Mishchenko, A.: ABC: an academic industrial-strength verification
tool. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174,
pp. 24–40. Springer, Heidelberg (2010)

7. BRICS: The MONA project. http://www.brics.dk/mona/
8. Christensen, A.S., Møller, A., Schwartzbach, M.I.: Precise analysis of string expres-

sions. In: Cousot, R. (ed.) SAS 2003. LNCS, vol. 2694, pp. 1–18. Springer,
Heidelberg (2003)

9. Cimatti, A., Griggio, A., Mover, S., Tonetta, S.: IC3 modulo theories via
implicit predicate abstraction. In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014
(ETAPS). LNCS, vol. 8413, pp. 46–61. Springer, Heidelberg (2014)

10. D’Antoni, L., Veanes, M.: Extended symbolic finite automata and transducers.
Formal Meth. Syst. Des. 47(1), 93–119 (2015)

11. Een, N., Mishchenko, A., Brayton, R.: Efficient implementation of property
directed reachability. In: FMCAD, pp. 125–134 (2011)

12. Gould, C., Su, Z., Devanbu, P.: Static checking of dynamically generated queries
in database applications. In: ICSE, pp. 645–654 (2004)

13. Hooimeijer, P., Weimer, W.: StrSolve: solving string constraints lazily. Autom.
Softw. Eng. 19(4), 531–559 (2012)

14. Huang, Y.W., Yu, F., Hang, C., Tsai, C.H., Lee, D.T., Kuo, S.Y.: Securing web
application code by static analysis and runtime protection. In: WWW, pp. 40–52
(2004)

15. Jensen, S.H., Jonsson, P.A., Møller, A.: Remedying the eval that men do. In:
ISSTA, pp. 34–44 (2012)

16. Jiang, J.H.R., Brayton, R.K.: On the verification of sequential equivalence. IEEE
Trans. Comp. Aid. Des. Int. Circ. Syst. 22(6), 686–697 (2003)

17. Jovanovic, N., Krügel, C., Kirda, E.: Pixy: a static analysis tool for detecting web
application vulnerabilities. In: S&P, pp. 258–263 (2006)

18. Kiezun, A., Ganesh, V., Guo, P.J., Hooimeijer, P., Ernst, M.D.: HAMPI: a solver
for string constraints. In: ISSTA, pp. 105–116 (2009)

19. Li, G., Ghosh, I.: PASS: string solving with parameterized array and inter-
val automaton. In: Bertacco, V., Legay, A. (eds.) HVC 2013. LNCS, vol. 8244,
pp. 15–31. Springer, Heidelberg (2013)

20. Minamide, Y.: Static approximation of dynamically generated web pages. In:
WWW, pp. 432–441 (2005)

21. Mishchenko, A., Chatterjee, S., Jiang, J.H.R., Brayton, R.: FRAIGs: a unifying
representation for logic synthesis and verification. In: ERL Technical report, UC
Berkeley (2005)

http://www.brics.dk/mona/

260 H.-E. Wang et al.

22. de Moura, L., Bjørner, N.S.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

23. Saxena, P., Akhawe, D., Hanna, S., Mao, F., McCamant, S., Song, D.: A symbolic
execution framework for javascript. In: S&P, pp. 513–528 (2010)

24. Su, Z., Wassermann, G.: The essence of command injection attacks in web appli-
cations. In: POPL, pp. 372–382 (2006)

25. Veanes, M.: Applications of symbolic finite automata. In: Konstantinidis, S. (ed.)
CIAA 2013. LNCS, vol. 7982, pp. 16–23. Springer, Heidelberg (2013)

26. Veanes, M., de Halleux, P., Tillmann, N.: Rex: symbolic regular expression explorer.
In: ICST, pp. 498–507 (2010)

27. Veanes, M., Hooimeijer, P., Livshits, B., Molnar, D., Bjørner, N.: Symbolic finite
state transducers: algorithms and applications. In: POPL, pp. 137–150 (2012)

28. Veanes, M., Mytkowicz, T., Molnar, D., Livshits, B.: Data-parallel string-
manipulating programs. In: POPL, pp. 139–152 (2015)

29. Wassermann, G., Su, Z.: Sound and precise analysis of web applications for injec-
tion vulnerabilities. In: PLDI, pp. 32–41 (2007)

30. Yu, F., Alkhalaf, M., Bultan, T.: Stranger: an automata-based string analysis
tool for PHP. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015,
pp. 154–157. Springer, Heidelberg (2010)

31. Yu, F., Alkhalaf, M., Bultan, T.: Patching vulnerabilities with sanitization synthe-
sis. In: ICSE, pp. 251–260 (2011)

32. Yu, F., Alkhalaf, M., Bultan, T., Ibarra, O.H.: Automata-based symbolic string
analysis for vulnerability detection. Formal Meth. Syst. Des. 44(1), 44–70 (2014)

33. Yu, F., Bultan, T., Ibarra, O.H.: Symbolic string verification: combining string
analysis and size analysis. In: Kowalewski, S., Philippou, A. (eds.) TACAS 2009.
LNCS, vol. 5505, pp. 322–336. Springer, Heidelberg (2009)

34. Zheng, Y., Ganesh, V., Subramanian, S., Tripp, O., Dolby, J., Zhang, X.: Effective
search-space pruning for solvers of string equations, regular expressions and length
constraints. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206,
pp. 235–254. Springer, Heidelberg (2015)

RAHFT: A Tool for Verifying Horn Clauses
Using Abstract Interpretation and Finite Tree

Automata

Bishoksan Kafle1(B), John P. Gallagher1,2, and José F. Morales2

1 Roskilde University, Roskilde, Denmark
{kafle,jpg}@ruc.dk

2 IMDEA Software Institute, Madrid, Spain
josef.morales@imdea.org

Abstract. We present Rahft (Refinement of Abstraction in Horn
clauses using Finite Tree automata), an abstraction refinement tool for
verifying safety properties of programs expressed as Horn clauses. The
paper describes the architecture, strength and weakness, implementa-
tion and usage aspects of the tool. Rahft loosely combines three pow-
erful techniques for program verification: (i) program specialisation, (ii)
abstract interpretation, and (iii) trace abstraction refinement in a non-
trivial way, with the aim of exploiting their strengths and mitigating their
weaknesses through the complementary techniques. It is interfaced with
an abstract domain, a tool for manipulating finite tree automata and
various solvers for reasoning about constraints. Its modular design and
customizable components allows for experimenting with new verification
techniques and tools developed for Horn clauses.

1 Constrained Horn Clause Verification and Our
Approach

A constrained Horn clause (CHC) is a first order predicate logic formula usually
written in the form p(X) ← φ, p1(X1), . . . , pk(Xk) (k ≥ 0) using Constraint Logic
Programming (CLP) syntax, where φ is a first order logic formula (constraint)
with respect to some background theory, Xi,X are (possibly empty) tuples of dis-
tinct variables, and p1, . . . , pk, p are predicate symbols. There is a distinguished
predicate symbol false which is interpreted as False. Clauses with false head are
called integrity constraints. A set of CHCs is called a (CLP) program.

An interpretation of a set of CHCs P is a set of constrained facts of the form
A ← φ where A is an atom and φ is a formula with respect to some background

B. Kafle—Funded by the EU FP7 project 318337, ENTRA.
J.P. Gallagher—Funded by the EU FP7 project 611004, coordination and support
action ICT-Energy.
J.F. Morales—Work partially funded by Comunidad de Madrid project S2013/ICE-
2731 N-Greens Software, MINECO Projects TIN2012-39391-C04-03 (StrongSoft)
and TIN2015-67522-C3-1-R (TRACES), and EU FP7-ICT-2013.3.4 project 610686
POLCA.

c© Springer International Publishing Switzerland 2016
S. Chaudhuri and A. Farzan (Eds.): CAV 2016, Part I, LNCS 9779, pp. 261–268, 2016.
DOI: 10.1007/978-3-319-41528-4 14

262 B. Kafle et al.

theory. An interpretation that satisfies each clause is called a model (a solution in
some works [6,34]). In Horn clause verification, integrity constraints represent the
safety properties to be verified; other clauses represent the program’s behaviours.
The CHC verification problem is to check whether there exists a model of P .

Several verification tools have been developed for CHCs, including SeaHorn
[24], QARMC [21], VeriMap [16], Convex polyhedral analyser [31], TRACER
[29], ELDARICA [27], and Trace abstraction refinement tool [37]. They exploit
either Formulation I or Formulation II for Horn clause verification.

Formulation I (deductive): P has a model if and only if P �� false (false is
not derivable from P). In CLP terminology, P � A if and only if the query ← A
succeeds in P . In this formulation it is sufficient to show that the query ← false
fails finitely or infinitely. Formulation I forms the basis of the tools described
in [25,37]. As the minimal model of P contains exactly the set of atoms that
succeed [28], we have another formulation of the CHC verification problem [20].

Formulation II (model-based): P has a model if and only if false �∈ M [[P]],
where M [[P]] is the minimal model of P . In Formulation II it is sufficient to find
a model M ′ ⊇ M [[P]], where false �∈ M ′. It forms the basis of tools based on
abstract interpretation, interpolation or predicate abstraction [21,24,31].

The program in Fig. 1(a) is a simple but challenging problem for many veri-
fication tools. l(X, Y) ≡ X ≥ Y ∧ Y ≥ 0 is a model of the program, whose solution
requires the discovery of the invariants X ≥ Y and Y ≥ 0. For example neither
QARMC [21] nor SeaHorn [24] (using only the PDR engine [7]) terminates on
this program. However, SeaHorn (with PDR and the abstract interpreter IKOS
[8]) solves it. Rahft solves it with the pre-processing step alone.

Rahft exploits both of the above formulations using techniques based on
abstract interpretation over the domain of convex polyhedra, trace abstraction-
refinement using finite tree automata (FTAs) and program specialisation using
constraint specialisation [30]. The motivations behind this combination are: (i)
to benefit from a powerful and scalable technique such as abstract interpretation
[13] for verifying properties of programs, (ii) to refine abstract interpretation
through automata theoretic operations which offers the advantages of simplicity
and generality [31] and (iii) to construct highly parametric and configurable
verification tools through program transformation [16].

2 RAHFT Architecture and Interface

Figure 1(b) gives an overview of Rahft. It compiles to a standalone command
line utility that accepts a set of CHCs as input. It consists of two modules
namely, Abstraction (green box) and Refinement (red box). Rahft takes a file
containing a set of CHCs P as input and returns safe or unsafe respectively if
P has or does not have a model.

2.1 Abstraction

The Abstraction module takes a set of CHCs P as input and returns safe, unsafe
or a trace representing the abstract derivation of false together with the set of all

Rahft: A Tool for Verifying Horn Clauses Using Abstract 263

Fig. 1. (a) Example program; (b) the architecture of Rahft. (Color figure online)

derivations (traces) (both represented as FTAs) used while applying abstraction
interpretation to P . It consists of the following components:

Pre-processor (PP): Pre-processing is a model-preserving source-to-source
program transformation of Horn clauses. In principle, any such transformation
can be used as a pre-processor, but we use constraint specialisation [30]. The spe-
cialisation consists of strengthening the constraints in the clauses using abstract
interpretation [13] and query-answer transformation [3,17] of the original pro-
gram. The specialisation is independent of the abstract domain and the back-
ground theory underlying the clauses and does not unfold the clauses at all. This
has been proven to be an effective transformation [30] for verifying Horn clauses
[15] and as a pre-processor to other Horn clause verification tools such as [21].

Abstract Interpreter (AI): The AI implements a fixed point algorithm over
the domain of convex polyhedra [12] based on abstract interpretation [13]. It
constructs an over-approximation M of the minimal model of a program P ,
where M contains at most one constrained fact p(X) ← φ for each predicate p.
The constraint φ is a conjunction of linear inequalities, representing a convex
polyhedron. The set of traces used during abstract interpretation of P can be
captured by an FTA, say AP , using M as shown in [32]. An FTA is a mathe-
matical model capable of capturing tree structured computations (Horn clauses
derivations) (see [31] for the correspondence between a program and an FTA).

The approximation M and the pre-processed clauses can be used by other
Horn clause tools, for example [21]. These tools can strengthen M (which may
contain some useful invariants) incrementally to construct a model of P rather
than starting from a coarse abstraction (p(X) ← true for each predicate p of P).

Verifier: The verifier receives M and AP and checks the safety of the clauses
based on some simple condition. The clauses are safe if there is no constrained
fact for false in M (M is called safe inductive invariant or a model of P) or
there are no error traces rooted at false. Otherwise we do not know whether the
clauses are unsafe or whether the approximation was too imprecise. In this case,
the verifier picks a trace, say t ∈ AP , representing the abstract derivation of
false (if any) from the set of traces. If t is feasible (while simulating in P), then
P is unsafe and t is a counterexample, otherwise we refine P .

264 B. Kafle et al.

2.2 Refinement

The Refinement module takes as input a program P and two FTAs (i) recog-
nising the set of all possible traces of P ; and (ii) recognising a set of infeasible
traces. A difference automaton is computed from these automata which recog-
nises all traces except the infeasible ones. A refined program is obtained as
output using the difference automaton and P . Rather than eliminating a single
infeasible trace in each refinement iteration, we generalise it using an interpolant
automaton [25,32,37] thereby eliminating a possibly infinite number of infeasible
traces. The refinement offers the advantages of simplicity and generality which
is independent of the abstract domain and background theory underlying the
clauses. The Refinement module consists of following components:

Finite tree automata manipulator (FTAM): FTAM takes as input two FTAs
and outputs their difference automaton. The FTA difference construction needs
determinisation; we built upon an optimised determinisation algorithm by Gal-
lagher, Ajspur and Kafle [19] which scales well in practice, generating transitions
of the determinised automaton in a very compact form called product form.

Clause generator (CG): Given a set of clauses P , and an automaton recog-
nising an over-approximation of all feasible traces of P , CG produces a set of
clauses which is equisatisfiable to P . For this purpose, we exploit a correspon-
dence between the traces using the clauses and the language of FTAs to generate
a new set of clauses.

The refinement offers two advantages: (i) the refinement is manifested in the
clauses generated – we do not need to keep track of the previous refinements;
and (ii) the original predicates get split in refined clauses which help improve
the precision of analysis [20].

2.3 Implementation

Rahft is implemented in Ciao [26] and is available from https://github.com/
bishoksan/RAHFT. It consists of a collection of reusable Prolog modules which
rely on state-of-the-art specialised external libraries written in C and C++ for
handling constraints. We use the Yices SMT solver [18] and the Parma Polyhedra
Library [2] for handling the constraints and the FTA library [19] for manipulat-
ing FTAs. The construction of an interpolant tree automaton uses an algorithm
presented in [36] for computing an interpolant of two formulas. The code con-
sists of over 7,000 lines of Ciao Prolog code split over 42 modules, interfaced
to the above-mentioned external libraries. The implementation of iterative fix-
point algorithms is inspired by the approach to the abstract interpretation of
logic programs described by Codish and Søndergaard [10]. Data structures for
manipulating Horn clauses are based on terms and the internal Prolog data-
base, reusing the optimizations of the underlying machine (e.g., clause indexing)
rather than reimplementing them in our tool. The glue code that ties together
the general purpose Prolog engine and the specialised solvers written in C and
C++ is generated via the Ciao foreign interface [26].

https://github.com/bishoksan/RAHFT
https://github.com/bishoksan/RAHFT

Rahft: A Tool for Verifying Horn Clauses Using Abstract 265

2.4 Strength and Weakness

Rahft is a verification tool for safety properties of programs expressed as Horn
clauses; it can be used as a back end solver by different front end tools outputting
in CLP form. It handles clauses whose underlying theory is linear arithmetic;
other theories are not supported currently. It accepts input in CLP form.

Since different components of Rahft are loosely coupled, the tool can be
reconfigured (with a very little effort) to produce verification tools solely based
on (i) program transformation as in iterated specialisation approach [15] by iter-
ating the pre-processing component, (ii) abstract interpretation, only with the
AI component, (iii) trace abstraction refinement [25,37] by iterating the FTAM
component, and (iv) a sensible combination thereof – all followed by a lightweight
verifier which checks the safety of the clauses based on some condition. Since
our tool uses both state abstraction and trace abstraction, it allows application
of a wide range of tools and techniques.

We have evaluated Rahft on software verification benchmarks from a variety
of sources [4,5,22,23,27,29] and the results show that it compares favourably (in
time and the number of instances solved) with the other state-of-the-art Horn
clause verification tools (see [30–32] for the details).

Convex polyhedra is an expensive abstract domain and is a potential bottle-
neck for verification of large code bases. Instead, we can use cheaper domains
supported by the Parma Polyhedra Library such as octagons or intervals at the
cost of precision. Rahft is also limited by the hard-coded limits of the libraries
and the Prolog implementation used (e.g. arity limit of the predicates), which
may be too restrictive for some verification problems and we intend to improve
this by some suitable data representation. We are aware of some examples from
SV-COMP if not many which cross this limit.

We can leverage state-of-the-art interpolating SMT solvers [9,33] for the tree
interpolant generation which can be used for constructing an interpolant tree
automaton; our current implementation does not scale well. Furthermore we
aim to handle more advanced data structures such as arrays, maps and sets,
requiring more expressive theories than linear arithmetic. One way to achieve
this is by composing abstract domains as described in [11,14]; we are also aware
of the support for the reduced product of domains in the PPL library.

Rahft is able to generate a model (a counterexample) if it proves the safety
(unsafety) a program. We need bookkeeping to generate these witnesses with
respect to the original program; and sometimes it becomes rather challenging
because of the use of external libraries, tools or the transformations applied.

3 Future Work

Future work will involve making Rahft a more flexible tool so that the user
can configure other parameters such as abstract domains and pre-processors. We
are also planning for a detailed performance measurement of the tool to detect
bottlenecks; and work on language-based optimisations to minimize them. Gen-
eration of a model or a counterexample with respect to the original program,

266 B. Kafle et al.

handling clauses with richer background theories (arrays, uninterpreted func-
tions) is on our to-do list. In addition, we are extending Rahft to consider Horn
clauses in SMT-LIB format [1], though several Horn clause verification tools use
standard CLP notation [16,21,31].

References

1. SMT-LIB format. http://smtlib.cs.uiowa.edu. Accessed 5 May 2016
2. Bagnara, R., Hill, P.M., Zaffanella, E.: The Parma Polyhedra Library: toward a

complete set of numerical abstractions for the analysis and verification of hardware
and software systems. SCP 72(1–2), 3–21 (2008)

3. Bancilhon, F., Maier, D., Sagiv, Y., Ullman, J.: Magic sets and other strange ways
to implement logic programs. In: Proceedings of the 5th ACM SIGMOD-SIGACT
Symposium on Principles of Database Systems (1986)

4. Beyer, D.: Second competition on software verification - (summary of SV-COMP
2013). In: Piterman and Smolka [35], pp. 594–609

5. Beyer, D.: Software verification and verifiable witnesses. In: Baier, C., Tinelli, C.
(eds.) TACAS 2015. LNCS, vol. 9035, pp. 401–416. Springer, Heidelberg (2015)

6. Bjørner, N., McMillan, K., Rybalchenko, A.: On solving universally quantified Horn
clauses. In: Logozzo, F., Fähndrich, M. (eds.) Static Analysis. LNCS, vol. 7935,
pp. 105–125. Springer, Heidelberg (2013)

7. Bradley, A.R., Manna, Z.: Property-directed incremental invariant generation. For-
mal Asp. Comput. 20(4–5), 379–405 (2008)

8. Brat, G., Navas, J.A., Shi, N., Venet, A.: IKOS: a framework for static analysis
based on abstract interpretation. In: Giannakopoulou, D., Salaün, G. (eds.) SEFM
2014. LNCS, vol. 8702, pp. 271–277. Springer, Heidelberg (2014)

9. Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: The MathSAT5 SMT
solver. In: Piterman and Smolka [35], pp. 93–107

10. Codish, M., Søndergaard, H.: Meta-circular abstract interpretation in prolog. In:
Mogensen, T.Æ., Schmidt, D.A., Sudborough, I.H. (eds.) The Essence of Compu-
tation. LNCS, vol. 2566, pp. 109–134. Springer, Heidelberg (2002)

11. Cortesi, A., Costantini, G., Ferrara, P.: A survey on product operators in abstract
interpretation. In: Banerjee, A., Danvy, O., Doh, K., Hatcliff, J. (eds.) Semantics,
Abstract Interpretation, and Reasoning About Programs. EPTCS, vol. 129, pp.
325–336 (2013)

12. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables
of a program. In: Proceedings of the 5th Annual ACM Symposium on Principles
of Programming Languages, pp. 84–96 (1978)

13. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Graham,
R.M., Harrison, M.A., Sethi, R. (eds.) POPL, pp. 238–252. ACM (1977)

14. Cousot, P., Cousot, R., Mauborgne, L.: The reduced product of abstract domains
and the combination of decision procedures. In: Hofmann, M. (ed.) FOSSACS 2011.
LNCS, vol. 6604, pp. 456–472. Springer, Heidelberg (2011)

15. De Angelis, E., Fioravanti, F., Pettorossi, A., Proietti, M.: Program verification
via iterated specialization. SCP 95, 149–175 (2014)

16. De Angelis, E., Fioravanti, F., Pettorossi, A., Proietti, M.: VeriMAP: a tool for
verifying programs through transformations. In: Ábrahám, E., Havelund, K. (eds.)
TACAS 2014 (ETAPS). LNCS, vol. 8413, pp. 568–574. Springer, Heidelberg (2014)

http://smtlib.cs.uiowa.edu

Rahft: A Tool for Verifying Horn Clauses Using Abstract 267

17. Debray, S., Ramakrishnan, R.: Abstract interpretation of logic programs using
magic transformations. J. Logic Program. 18, 149–176 (1994)

18. Dutertre, B.: Yices 2.2. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559,
pp. 737–744. Springer, Heidelberg (2014)

19. Gallagher, J.P., Ajspur, M., Kafle, B.: An optimised algorithm for determinisation
and completion of finite tree automata. CoRR, abs/1511.03595 (2015)

20. Gallagher, J.P., Kafle, B.: Analysis and transformation tools for constrained Horn
clause verification. TPLP 14(4–5 (additional materials in online edition)), 90–101
(2014)

21. Grebenshchikov, S., Lopes, N.P., Popeea, C., Rybalchenko, A.: Synthesizing soft-
ware verifiers from proof rules. In: Vitek, J., Lin, H., Tip, F. (eds.) PLDI, pp.
405–416. ACM (2012)

22. Gulavani, B.S., Chakraborty, S., Nori, A.V., Rajamani, S.K.: Automatically refin-
ing abstract interpretations. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008.
LNCS, vol. 4963, pp. 443–458. Springer, Heidelberg (2008)

23. Gupta, A., Rybalchenko, A.: InvGen: an efficient invariant generator. In: Bouajjani,
A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 634–640. Springer, Heidelberg
(2009)

24. Gurfinkel, A., Kahsai, T., Komuravelli, A., Navas, J.A.: The SeaHorn verification
framework. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206,
pp. 343–361. Springer, Heidelberg (2015)

25. Heizmann, M., Hoenicke, J., Podelski, A.: Refinement of trace abstraction. In: Pals-
berg, J., Su, Z. (eds.) SAS 2009. LNCS, vol. 5673, pp. 69–85. Springer, Heidelberg
(2009)

26. Hermenegildo, M.V., Bueno, F., Carro, M., López-Garćıa, P., Mera, E., Morales,
J.F., Puebla, G.: An overview of Ciao and its design philosophy. TPLP 12(1–2),
219–252 (2012)

27. Hojjat, H., Konečný, F., Garnier, F., Iosif, R., Kuncak, V., Rümmer, P.: A verifi-
cation toolkit for numerical transition systems - tool paper. In: Giannakopoulou,
D., Méry, D. (eds.) FM 2012. LNCS, vol. 7436, pp. 247–251. Springer, Heidelberg
(2012)

28. Jaffar, J., Maher, M.: Constraint logic programming: a survey. J. Logic Program.
1920, 503–581 (1994)

29. Jaffar, J., Murali, V., Navas, J.A., Santosa, A.E.: TRACER: a symbolic execution
tool for verification. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol.
7358, pp. 758–766. Springer, Heidelberg (2012)

30. Kafle, B., Gallagher, J.P.: Constraint specialisation in Horn clause verification. In:
Asai, K., Sagonas, K. (eds.) Proceedings Workshop on PEPM, PEPM, Mumbai,
India, 15–17 January 2015, pp. 85–90. ACM (2015)

31. Kafle, B., Gallagher, J.P.: Horn clause verification with convex polyhedral abstrac-
tion and tree automata-based refinement. Comput. Lang. Syst. Struct. (2015,
In press). http://www.sciencedirect.com/science/article/pii/S1477842415000822,
doi:10.1016/j.cl.2015.11.001

32. Kafle, B., Gallagher, J.P.: Interpolant tree automata and their application in Horn
clause verification. CoRR, abs/1601.06521 (2016)

33. McMillan, K.L.: Interpolants from Z3 proofs. In: Bjesse, P., Slobodová, A. (eds.)
FMCAD 2011, Austin, TX, USA, 30 October–02 November 2011, pp. 19–27.
FMCAD Inc. (2011)

34. McMillan, K.L., Rybalchenko, A.: Solving constrained Horn clauses using interpo-
lation. Technical report, Microsoft Research (2013)

http://www.sciencedirect.com/science/article/pii/S1477842415000822
http://dx.doi.org/10.1016/j.cl.2015.11.001

268 B. Kafle et al.

35. Piterman, N., Smolka, S.A. (eds.): TACAS 2013 (ETAPS 2013). LNCS, vol. 7795.
Springer, Heidelberg (2013)

36. Rybalchenko, A., Sofronie-Stokkermans, V.: Constraint solving for interpolation.
J. Symb. Comput. 45(11), 1212–1233 (2010)

37. Wang, W., Jiao, L.: Trace abstraction refinement for solving Horn clauses. Techni-
cal report ISCAS-SKLCS-15-19, SCAS-SKLCS, December 2015. http://lcs.ios.ac.
cn/wangwf/TechReportISCAS-SKLCS-15-19.pdf

http://lcs.ios.ac.cn/wangwf/TechReportISCAS-SKLCS-15-19.pdf
http://lcs.ios.ac.cn/wangwf/TechReportISCAS-SKLCS-15-19.pdf

Model Checking I

Infinite-State Liveness-to-Safety via Implicit
Abstraction and Well-Founded Relations

Jakub Daniel1,2(B), Alessandro Cimatti1, Alberto Griggio1,
Stefano Tonetta1, and Sergio Mover3

1 Fondazione Bruno Kessler, Trento, Italy
{cimatti,griggio,tonettas}@fbk.eu

2 Charles University in Prague, Faculty of Mathematics and Physics,
Department of Distributed and Dependable Systems, Prague, Czech Republic

daniel@d3s.mff.cuni.cz
3 University of Colorado Boulder, Boulder, USA

sergio.mover@colorado.edu

Abstract. We present a fully-symbolic LTL model checking approach
for infinite-state transition systems. We extend liveness-to-safety, a pro-
minent approach in the finite-state case, by means of implicit abstraction,
to effectively prove the absence of abstract fair loops without explic-
itly constructing the abstract state space. We increase the effectiveness
of the approach by integrating termination techniques based on well-
founded relations derived from ranking functions. The idea is to prove
that any existing abstract fair loop is covered by a given set of well-
founded relations. Within this framework, k-liveness is integrated as a
generic ranking function. The algorithm iterates by attempting to remove
spurious abstract fair loops: either it finds new predicates, to avoid spu-
rious abstract prefixes, or it introduces new well-founded relations, based
on the analysis of the abstract lasso. The implementation fully leverages
the efficiency and incrementality of the underlying safety checker IC3ia.
The proposed approach outperforms other temporal checkers on a wide
class of benchmarks.

1 Introduction

Model checking of liveness properties is a fundamental verification problem. In
finite-state model checking, the most prominent approaches are liveness-to-safety
(L2S) [6] and k-liveness [18], that reduce the problem to one or more safety
checks. Their success is motivated by the possibility to leverage the progress
of SAT-based invariant checking techniques, such as interpolation-based model
checking [34] and IC3 [10].

The verification of liveness properties for infinite-state systems has been pri-
marily tackled in the setting of analysis of imperative program [21,23,24,30,39,40],
or other specific classes [2,8,15,25,32]. However, in many practical cases the model

J. Daniel—Partially supported by the Grant Agency of the Czech Republic project
14-11384S.

c© Springer International Publishing Switzerland 2016
S. Chaudhuri and A. Farzan (Eds.): CAV 2016, Part I, LNCS 9779, pp. 271–291, 2016.
DOI: 10.1007/978-3-319-41528-4 15

272 J. Daniel et al.

is described as a symbolic transition system (e.g. [12,35]), or it is compiled into a
symbolic transition system from a higher level language (e.g. networks of timed
and hybrid automata [16,43], architecture description language [4,7,9]).

In this paper we present a new approach for LTL model checking of infinite-
state transition systems, which we call L2Sia-wfr. The approach relies on two
ingredients. First, we extend liveness-to-safety by means of implicit abstrac-
tion [44]. Implicit abstraction is a form of predicate abstraction that does not
require the explicit construction of the abstract transition system, and is able
to deal with a large number of predicates. In this setting, implicit abstraction
is key to checking the existence of abstract fair loops efficiently, given a set of
predicates. Second, we integrate termination techniques based on well-founded
relations [23]. Specifically, the technique tries to prove that any existing abstract
fair loop is covered by a given set of well-founded relations. At the top level, the
algorithm iterates trying to remove spurious abstract fair loops while maintain-
ing a set of predicates and a set of well-founded relations. New predicates are
added if they expose the spuriousness of the abstract path at hand by show-
ing that its abstract prefixes can not be concretized. The set of well-founded
relations is extended as a result of the analysis of the abstract lasso, guided
by the construction of a ranking function. Within this framework, we also inte-
grate k-liveness, that infers the validity of the property by proving that no path
can fulfill the fairness condition more than a given number of times. As such,
k-liveness is seen as a generic well-founded relation.

We implemented L2Sia-wfr on top of IC3ia, a model checking engine for
safety properties that extends IC3 to the infinite-state case with the use of
implicit abstraction at its core [14]. We exploit the fact that the L2Sia-wfr algo-
rithm is highly incremental with respect to the refinement iterations to tighten
the integration with IC3ia.

We carried out an experimental evaluation using liveness property bench-
marks for transition systems and for imperative programs. To compare various
temporal checkers, we translate transition systems to programs, and programs to
transition systems. The results highlight a positive interaction between implicit
abstraction and well-founded relations. Overall, L2Sia-wfr outperforms the
competitor temporal checkers, not only on the benchmarks for transition sys-
tems, but also on the ones for imperative programs.

The paper is structured as follows. In Sect. 2 we discuss the related work.
In Sect. 3 we present some background. In Sect. 4 we discuss the L2Sia-wfr
approach, and in Sect. 5 we discuss the experimental results. In Sect. 6 we draw
some conclusions, and outline directions for future work.

2 Related Work

The most prominent approaches to symbolic LTL model checking are based
on SAT techniques and typically lift naturally to the infinite-state case using
SMT solvers. k-liveness [18] remains a sound technique in the infinite-state case,
although not complete since even if there is no fair path, the fairness can be

Infinite-State Liveness-to-Safety via Implicit Abstraction 273

visited an unbounded number of times. In this paper, we embed k-liveness as a
special case of well-founded relation based on counting the occurrences of fairness
along a path.

Liveness-to-safety was extended to infinite-state systems in [42] for a number
of classes of infinite-state systems, namely, (ω-)regular model checking, push-
down systems, and timed automata. However, the approach is in general not
sound for infinite-state transition systems, where a liveness property can be
violated even if there is no lasso-shaped counterexample. In fact, in this paper,
we are applying liveness-to-safety on the abstract state space, which is finite.

Predicate abstraction [28] is a general technique for model checking infinite-
state systems. Once the abstract transition relation is computed, any algorithm
for finite-state systems can be applied. However, on one side, the computation
of the abstract state space typically blows up with few dozens of predicates,
and on the other side, a finite number of predicates is not sufficient to prove
the property (for example, when there are loops with counters that are not
initialized). In this paper, we consider implicit abstraction to tackle the first
problem and well-founded relations for the second.

The counterexample-based refinement we propose is very similar to the one
presented in [3]: in both approaches, if an abstract counterexample contains a
spurious prefix, new predicates are added to the abstraction, while new ranking
functions are discovered in case the lasso is spurious. Our approach is completely
different regarding the method used to prove the property: in [3] a ranking
abstraction is used to add a monitor of a ranking function and a strong fairness
on its decreasing/increasing and then conventional (i.e. “explicit”) predicate
abstraction is used to prove the modified liveness property; our approach is
instead based on reachability analysis and a novel combination of liveness-to-
safety, implicit abstraction, and well-founded relations, all tightly integrated
within an efficient IC3-based algorithm.

Our algorithm presents some similarities also with the work of [24], where
the abstraction is based on the control-flow graph and is refined by removing
paths obtained from spurious counterexamples by generalizing infeasible prefixes
or termination arguments on loops. Both techniques start from the observation
that it is typically easier to refute spurious counterexamples that are due to an
infeasible (and bounded) execution prefix than to syntesize a termination argu-
ment showing the infeasibility of an infinite path. However, the two approaches
differ in the way this observation is turned into an actual procedure. In particu-
lar, the approach of [24] is specialised for imperative programs with an explicit
control-flow graph, and is based on the construction and manipulation of Büchi
automata. Our approach, instead, works on fully-symbolic transition systems,
and is based on implicit predicate abstraction.

Another kind of abstraction, targeting liveness properties, is transition pred-
icate abstraction [40]. It extends the classical predicate abstraction by annotat-
ing abstract states with abstract transitions. It builds on transition invariants
[39] to reduce liveness to fair termination. The technique proves that abstract
transitions are well-founded to determine termination. To prove the liveness

274 J. Daniel et al.

property, the technique determines whether all fair states are terminating. Our
approach differs because it uses predicate abstraction (and well-known refine-
ment techniques) and symbolic liveness model checking techniques such as
liveness-to-safety and k-liveness.

Other techniques such as [11,23,39] focus on the specific problem of termina-
tion, which is reduced to a binary reachability using disjunctively well-founded
invariants. They have also been extended to address temporal properties as in
[21,22].

There are several other approaches to the verification of special classes of
infinite-state systems such as (ω-)regular model checking [8], push-down sys-
tems [25], timed and hybrid automata [15]. The current paper focuses on the
verification of generic symbolic transition systems. Specialization of the pro-
posed methods for the above classes is left to future work.

3 Background

Transition Systems. Our setting is standard first order logic. We use the
standard notions of theory, satisfiability, validity, logical consequence. We denote
formulas with φ, ϕ, ψ, I, T , variables with x, y, and sets of variables with X,
Y , X, X̂. A literal is an atomic formula or its negation. Given a formula ϕ
and the set of its atoms A, an implicant is a conjunction of literals over A
that implies ϕ. In this paper, we shall deal with linear arithmetic formulas,
that is, Boolean combinations of propositional variables and linear inequalities.
A transition system S is a tuple 〈X, I, T 〉 where X is a set of (state) variables,
I(X) is a formula representing the initial states, and T (X,X ′) is a formula
representing the transitions. Given a formula φ over variables X, we denote with
φ′ [φ〈n〉, respectively] the formula obtained by replacing each x ∈ X with x′ [x
with n primes] in φ. A state of S is an assignment to the variables X. A [finite]
path of S is an infinite sequence s0, s1, . . . [resp., finite sequence s0, s1, . . . , sk]
of states such that s0 |= I and, for all i ≥ 0 [resp., 0 ≤ i < k], si, s

′
i+1 |= T .

Given two transitions systems S1 = 〈X1, I1, T1〉 and S2 = 〈X2, I2, T2〉, we denote
with S1 × S2 the synchronous product 〈X1 ∪ X2, I1 ∧ I2, T1 ∧ T2〉. A predicate
is a formula over state variables. Given a set P of predicates and a path π

def=
s0, s1, . . . of a transition system, we call the abstraction of π wrt. P , denoted[
π̂
]
P

, the sequence of sets of states
[
ŝ0

]
P

,
[
ŝ1

]
P

, . . . obtained by evaluating the
predicates in P in the states of π. Given a predicate φ, the invariant model
checking problem, denoted with S |=inv φ, is the problem to check if, for all
finite paths s0, s1, . . . , sk of S, for all i, 0 ≤ i ≤ k, si |= φ.

Linear-Time Temporal Logic Verification Using Symbolic Automata-
Based Techniques. We use the standard notions of Linear-time Temporal
Logic (LTL) formulas and their semantics wrt. infinite paths of a symbolic
transition system, as can be found e.g. in [37]. We denote temporal opera-
tors in boldface (e.g. F for Finally, G for Globally, X for neXt, U for Until).

Infinite-State Liveness-to-Safety via Implicit Abstraction 275

Given a transition system S
def= 〈X, I, T 〉 and an LTL formula φ over X, we focus

on the model checking problem of finding if, for all infinite paths π of S, φ is
true in π. We denote this with S |= φ. The automata-based approach [45] to
LTL model checking consists of building a transition system S¬φ with a fairness
condition f¬φ, such that S |= φ iff S × S¬φ |= FG¬f¬φ. Showing that S 	|= φ
amounts to find a counterexample in the form of a fair path, i.e., a path that
visits the f¬φ infinitely many times. In finite-state systems, if φ does not hold,
there is always a counterexample in lasso-shaped form, i.e., formed by a prefix
(or stem) and a loop. In the following, without loss of generality, we assume
that the automata-based transformation has been applied to the LTL model
checking problem, and consider a problem in the form S |= FG¬f¬φ, where φ
is a formula whose atoms are either propositional variables or linear arithmetic
(in)equalities. When clear from the context, we also drop the subscript ·¬φ, and
simply use FG¬f .

Liveness to Safety (L2S). The liveness to safety reduction (L2S) [6] is a
technique for reducing an LTL model checking problem on a finite-state transi-
tion system to an invariant model checking problem. The idea is to encode as
an invariant property the absence of a lasso-shaped path violating the property
FG¬f . This is achieved by transforming the original transition system S to the
transition system SL2S, introducing a set X of variables containing a copy x
for each state variable x of the original system, plus additional variables seen,
triggered and loop. Let S

def= 〈X, I, T 〉. L2S transforms the transition system in
SL2S

def= 〈X ∪ XL2S, IL2S, TL2S〉 so that S |= FG¬f if and only if SL2S |= ¬badL2S,
where:

XL2S
def= {seen, triggered, loop} ∪ X

IL2S
def= I ∧ ¬seen ∧ ¬triggered ∧ ¬loop

TL2S
def= T ∧ [∧

X x ↔ x′] ∧ [
seen′ ↔ (seen ∨ ∧

X(x ↔ x))
]

∧[
triggered′ ↔ (triggered ∨ (f ∧ seen′))

]

∧[
loop′ ↔ (triggered′ ∧ ∧

X(x′ ↔ x′))
]

badL2S
def= loop

The variables X are used to non-deterministically guess a state of the system
from which a reachable fair loop starts. The additional variables are used to
remember that the guessed state was seen once and that the signal f was true
at least once afterwards.

Termination via Disjunctive Well-Founded Transition Invariants. If S
is a transition system with reachable states R and transition relation T , a rela-
tion ρ over the states of S is said to be a transition invariant if it contains the
transitive closure of T restricted to the states in R (i.e. T+ ∩ (R × R) ⊆ ρ) [39].
A binary relation ρ ⊆ Q × Q is well-founded if every non-empty subset U ⊆ Q

276 J. Daniel et al.

has a minimal element wrt. ρ, i.e. there is m ∈ U such that no u ∈ U satisfies
ρ(u,m). A relation is said to be disjunctively well-founded if it is a finite union
of well-founded relations. Termination of a program can be reduced to finding
a (disjunctively) well-founded transition invariant for it. The technique of [23]
reduces the problem of finding a disjunctively well-founded transition invariant
to the verification of invariant properties. It works on imperative programs with
an explicit representation of the control-flow graph (although in principle it can
be applied also in a fully-symbolic setting). A given set of well-founded relations
W is conjectured to be a transition invariant for the program. This condition
is encoded as an invariant property, and checked with an off-the-shelf invariant-
checking engine. In case of failure, the encoding is refined in a counterexample-
guided manner by adding new well-founded relations to W , obtained by synthe-
sizing ranking functions for potentially non-terminating lasso-shaped paths in
the control-flow graph.

IC3 with Implicit Abstraction. IC3 [10] is a SAT-based algorithm for the
verification of invariant properties of transition systems. It incrementally builds
an inductive invariant for the property by discovering relatively-inductive for-
mulas obtained by generalization while disproving candidate counterexamples.
A a novel approach to lift IC3 to the SMT case has been recently presented
in [14]. The technique is able to deal with infinite-state systems by means of a
tight integration with predicate abstraction [28]. The approach leverages Implicit
Abstraction [44] to express abstract transitions without computing explicitly the
abstract system, and is fully incremental with respect to the addition of new
predicates. The main idea of IC3 with Implicit Abstraction (IC3ia) is that of
replacing the relative induction check of IC3, which is the central operation
of the algorithm, with an abstract version, defined using implicit abstraction.
Given a transition system S = 〈X, I, T 〉, a formula ϕ(X) representing a set of
states, and an overapproximation F (X) of states of S reachable in up to k steps,
a relative induction query determines whether ϕ is inductive relative to F , by
checking if the formula ϕ(X)∧F (X)∧T (X,X ′)∧¬ϕ(X ′) is unsatisfiable. Given
a set of state predicates P = {pi(X)}i, and assuming that both F and ϕ are
Boolean combinations of predicates from P , the corresponding abstract query is
the check for unsatisfiability of the following SMT formula:

ϕ(X)∧F (X)∧T (Y, Y ′)∧∧
pi∈P [(pi(X) ↔ pi(Y))∧ (pi(X ′) ↔ pi(Y ′))]∧¬ϕ(X ′)

where Y, Y ′ are sets of fresh variables. Using the above, IC3 can be generalized
from SAT to SMT with very little effort, at the cost of introducing spurious error
paths. When this happens, the abstraction can be refined in a counterexample-
guided manner, using standard techniques for extracting new predicates (e.g.
interpolation). The loop continues until either a real counterexample is found
(and so the property does not hold), no more counterexamples are found (and
so the abstraction is precise enough to conclude that the property holds), or
resources (e.g. time or memory) are exhausted. We refer the reader to [14] for
more details about IC3ia.

Infinite-State Liveness-to-Safety via Implicit Abstraction 277

4 Liveness-to-Safety for Infinite-State Systems

Top-Level Algorithm. We reduce the problem of checking an LTL property
FG¬f on a transition system S to a sequence of invariant checking problems
S0 |=inv φ0, S1 |=inv φ1, For each j, Sj and φj are the result of an encod-
ing operation dependent on given sets of state predicates P and well-founded
relations W : Sj , φj := encode(S, f, P,W). encode ensures that if Sj |=inv φj ,
then S |= FG¬f , in which case the iteration terminates. If Sj 	|=inv φj , we
analyze a (finite) counterexample trace π in Sj to determine whether it corre-
sponds to an (infinite) counterexample for FG¬f in S. If so, then we conclude
that the property doesn’t hold. Otherwise, if we can conclude that π doesn’t
correspond to any real counterexample in S, we try to extract new predicates P ′

and/or well-founded relations W ′ to produce a refined encoding: Sj+1, φj+1 :=
encode(S, f, P ∪ P ′,W ∪ W ′), where P ′,W ′ := refine(Sj , π, P,W). If we
can neither confirm nor refute the existence of real counterexamples, we abort
the execution, returning “unknown”. We might also diverge and/or exhaust
resources in various intermediate steps (e.g. in checking Sj |= φj or during
refinement). In the following, we describe in detail our encoding and refinement
procedures. We begin in Sect. 4.1 with a simplified version that only uses pred-
icates from P , i.e. W = ∅. We then describe how to extend the encoding to
exploit also well-founded relations in Sect. 4.2.

4.1 Liveness-to-Safety with Implicit Abstraction

Our first contribution is an extension of the L2S reduction described above
to the infinite-state case. We first note that the original L2S transformation
is not sound for infinite-state systems. This is because L2S produces a transi-
tion system that reaches the error condition if and only if there exists a lasso-
shaped path. While for finite-state systems it is enough to consider lasso-shaped
counterexamples, this is not true in the infinite-state case. Consider the tran-
sition system S = 〈{x}, x = 0, x′ = x + 1〉, with x integer, and the property
φ

def= FG(x < 5). Clearly, φ does not hold in S. Suppose to apply the L2S trans-
formation to S as described in the previous Section, obtaining the transition
system SL2S. Since in S there are no lasso-shaped paths, in SL2S there are no
paths such that the value of x (the copy of the variable x introduced in SL2S) is
equal to x. Thus, SL2S is safe even if S 	|= φ.

We overcome this problem by incorporating implicit abstraction in the L2S
encoding. Intuitively, the idea is to search for a sufficiently precise predicate
abstraction of the original system, if there is one, that does not admit a path
visiting the fairness condition an infinite number of times. This exploits the
fact that predicate abstraction preserves the validity of universal properties [19]
(therefore, if a property FG¬f holds in the abstract system, then it holds also
in the concrete one).

In fact, we do not need to compute the full predicate abstraction of the
system S. Instead, we characterize abstract paths directly in the property, by
reducing the LTL model checking problem on FG¬f to proving the absence

278 J. Daniel et al.

of paths with an abstract fair loop. Given a set of predicates P = {pi(X)}i,
the encoding consists of storing only the truth assignments to the predicates
non-deterministically, and detecting a loop if the system visits again the same
abstract state, with the fairness signal f satisfied at least once in the loop.
More specifically, from a system S = 〈X, I, T 〉, a property FG¬f , and a set
of predicates P , our abstract L2S transformation (αL2S) produces a system
SαL2S = 〈X ∪ XαL2S, IαL2S, TαL2S〉 and an invariant property ¬badαL2S as fol-
lows:

XαL2S
def= {seen, triggered, loop} ∪ {cpi

| pi ∈ P}
IαL2S

def= I ∧ ¬seen ∧ ¬triggered ∧ ¬loop

TαL2S
def= T ∧ [∧

pi∈P cpi
↔ c′

pi

] ∧ [
seen′ ↔ (seen ∨ ∧

pi∈P (pi ↔ cpi
))

]

∧[
triggered′ ↔ (triggered ∨ (f ∧ seen′))

]

∧[
loop′ ↔ (triggered′ ∧ ∧

pi∈P (p′
i ↔ c′

pi
))

]

badαL2S
def= loop

where XαL2S is a set of fresh Boolean variables.

Theorem 1 (αL2S soundness). Let S = 〈X, I, T 〉 be a transition system, P
a set of predicates over X, and ψ an LTL property FG¬f . Let the system SαL2S

and invariant property ¬badαL2S be the results of applying αL2S to S and ψ.
Then SαL2S |=inv ¬badαL2S only if S |= ψ.

Proof. First, we observe that all initial states I are represented in IαL2S, and
that if we take any state s of S and any successor s′ of s under T then there
exist corresponding states sαL2S and s′

αL2S related by TαL2S. This can be seen
by noticing that the extra constraints added to T to obtain TαL2S do not restrict
the values of the original variables of the system. Therefore, we can lift the cor-
respondence relation to paths, and conclude that every path π of S corresponds
to at least one path of SαL2S.

Suppose now by contradiction that SαL2S |=inv ¬badαL2S, but S 	|= FG¬f .
Then, there exists an infinite path π

def= s0, s1, . . . of S in which f holds infinitely-
often. Let π̂

def= ŝ0, ŝ1, . . . be a path in SαL2S corresponding to π, and let
[
π̂
]
P

def=[
ŝ0

]
P

,
[
ŝ1

]
P

, . . . be its abstraction wrt. P . Since P is finite, so is the number
of different states in

[
π̂
]
P

. Let i be a position in
[
π̂
]
P

such that all different
abstract states occur at least once in

[
ŝ0

]
P

, . . . ,
[
ŝi

]
P

. Let j > i be a position
in π such that sj |= f . Since π is infinite and f holds infinitely-often, j must
exist. Then,

[
ŝj

]
P

must be equal to one of the states in
[
ŝ0

]
P

, . . . ,
[
ŝi

]
P

, and
therefore ŝ0, . . . , ŝj is a counterexample for ¬badαL2S in SαL2S, which contradicts
our initial assumption. ��

Counterexamples and Refinement. If ¬badαL2S holds in SαL2S, then S |=
FG¬f . The converse, however, is not true. A counterexample path leading to
badαL2S in SαL2S might correspond to a real counterexample in S, but it might

Infinite-State Liveness-to-Safety via Implicit Abstraction 279

also be due to an insufficient precision of the abstraction induced by the pred-
icates P . We deal with this case using the following counterexample-guided
refinement step. A violation of the property badαL2S in SαL2S implies that the
counterexample path forms a lasso in the abstract state space induced by the
predicates P . We first search for a concrete lasso witnessing a real violation of
the LTL property, using standard bounded model checking. If this fails, we try
to prove that the abstract lasso is infeasible. We check an increasing number of
finite unrollings of the lasso, and, upon infeasibility, we extract new predicates
from sequence interpolants, similarly to popular refinement strategies used for
invariant properties (e.g. [31]). More specifically, let π

def= s0, . . . , sl, . . . , sl+k be
a finite path in SαL2S such that sl+k |= badαL2S, sl−1 |= ¬seen and sl |= seen.
Let

[
π̂
]
P

be the abstraction of π wrt. P . We search for the smallest integer i ≥ 0
such that the formula

I ∧ [ŝ0
]
P

∧ T
︸ ︷︷ ︸

φ0

∧ . . . ∧ [ŝl−1

]〈l−1〉
P

∧ T 〈l−1〉
︸ ︷︷ ︸

φl−1

∧∧i
j=0

[[
ŝl

]〈l+j·k〉
P

∧ T 〈l+1+j·k〉
︸ ︷︷ ︸

φl+1+j·k

∧ . . .

. . . ∧ [ŝl+k−1

]〈l+k−1+j·k〉
P

∧ T 〈l+k−1+j·k〉
︸ ︷︷ ︸

φl+k−1+j·k

]
∧ [ŝl+k

]〈l+k+i·k〉
P︸ ︷︷ ︸
φn

(1)

is unsatisfiable. If i exists, we then use an interpolating SMT solver to produce
a sequence interpolant ι1, . . . , ιn−1 for φ0, . . . , φn, and extract the set P ι of all
the atomic predicates in ι1, . . . , ιn−1, to be added to the set of predicates used
at the next iteration.

4.2 Extending Liveness-to-Safety with Well-Founded Relations

The abstract L2S transformation described above is inherently limited in the
kind of properties it can prove. This is not only due to the potential diver-
gence of the refinement loop, which is a possibility shared by all approaches
based on predicate abstraction applied to undecidable problems, but also to
the fact that a single refinement operation may not terminate. If the abstract
counterexample that is being simulated can be concretized only with paths that
are not in a lasso-shaped form, then (1) will always be satisfiable. However,
refinement might not terminate even if the abstract path cannot be concretized.
This happens in all cases in which there is no feasible concrete path that exe-
cutes the abstract loop an infinite number of times, but all finite unrollings
of the loop are instead concretizable. As an example, consider the system
S

def= 〈{x1, x2}, (x1 = 0) ∧ (x2 ≥ 0), (x′
2 = x2) ∧ (x′

1 = x1 + 1)〉 with x1, x2 inte-
gers, the property ψ

def= FG(x1 > x2), and the predicates P
def= {(x1 ≤ x2), (0 ≤

x2), (x1 = 0)}. The property holds, but αL2S will not be able to prove it.
In fact, αL2S admits an abstract path with a self loop on the abstract state
〈(x1 ≤ x2), (0 ≤ x2),¬(x1 = 0)〉. In this case, the unrolling of the abstract loop

280 J. Daniel et al.

will not terminate: any finite path of S in which the abstract loop is unrolled i
times is feasible, e.g. by starting from the initial state 〈x1 = 0, x2 = i + 1〉.

We address the problem of abstract counterexamples whose finite prefixes
are all feasible by extending our encoding to incorporate well-founded relations.
The intuitive idea is to prove that such abstract counterexamples are spurious
and to block them by finding suitable termination arguments in the form of
(disjunctively) well-founded transition invariants. The extended αL2S reduction
with well-founded relations, denoted with αL2S↓, takes as input a transition
system S

def= 〈X, I, T 〉, an LTL property FG¬f , a set P of state predicates, and
a set W of well-founded binary relations. The encoding extends αL2S producing
a transition system SαL2S↓

def= 〈XαL2S↓ , IαL2S↓ , TαL2S↓〉 and an invariant property
¬badαL2S↓ defined as:

XαL2S↓
def= X ∪ XαL2S ∪ {x0, x | x ∈ X} ∪ {r, s, w}

IαL2S↓
def= IαL2S ∧ ∧

x∈X(x0 = x) ∧ r ∧ ¬s ∧ w

TαL2S↓
def= TαL2S ∧ ∧

x∈X(x′
0 = x0) ∧ [

w′ ↔ (w ∧ (f → r))
] ∧ Tmem ∧ Tcheck

Tmem
def=

[
(s ↔ s′) ∧ ∧

x∈X(x′ = x)
]

∨[
(seen ∧ ¬s ∧ s′ ∧ f) ∧ ∧

x∈X(x′ = x)
]

Tcheck
def= r′ ↔ [

r ∧ (
(s′ ∧ f ′) → ∨

W ′)]

badαL2S↓
def= (loop ∧ ¬w)

where r, s, and w are additional auxiliary Boolean variables, and for every vari-
able x ∈ X, two fresh variables x0 and x are introduced, representing the initial
value of x and a stored value of x at some previous occurrence of f respectively.

Intuitively, we weaken the invariant ¬badαL2S of Sect. 4.1 by allowing abstract
loops with the fairness f to occur as long as w holds. The variable w initially
holds and can change its phase at most once, when the current valuation of X
and the stored valuation of X do not satisfy any of the relations in W . In the
subformula Tcheck, the variable r captures the truth value of this test and the
variable s ensures the test is carried out only when the valuation of X captures
some previous valuation of X stored non-deterministically by the subformula
Tmem.

Theorem 2 (Soundness). Assuming a fixed finite collection W of well-
founded relations, if SαL2S↓ |=inv ¬badαL2S↓ then S |= FG¬f .

In order to prove the Theorem, we need the following lemma.

Lemma 1. For any infinite suffix π+ of a path π satisfying GFf and any finite
set W of well-founded relations there is a pair of states π+1 and π+2 satisfying
f such that (π+1, π+2) is not in any relation in W .

Proof. Let πf denote the transitive closure of π+ restricted to states where f
holds, i.e. an infinite graph over nodes corresponding to those states of π+ that
satisfy f and edges connecting nodes πf i and πf j when the latter is reachable
from the former. Because all the states lie on a single straight path, the graph

Infinite-State Liveness-to-Safety via Implicit Abstraction 281

is complete. And suppose all edges (πf i, πf j) are covered by W . By Ramsey’s
theorem [41] there exists a complete infinite subgraph πWk

of πf whose edges are
all covered by Wk ∈ W for some k. The subgraph πWk

forms an infinite chain
in the set of states in the ordering imposed by the path π+. This is in conflict
with the fact that all the relations in W are well-founded and thus do not admit
infinite chains. ��

We can now prove Theorem 2.

Proof (Theorem 2). First, with an argument analogous to that used for proving
Theorem 1, we can conclude that every path π of S corresponds to at least one
path of SαL2S↓ .

Let us assume (by contradiction) SαL2S↓ is safe and S 	|= FG¬f , then there
exists a path π

def= s0, s1, . . . of S where f appears infinitely often (the witness
to violation of the property FG¬f). Let π̂

def= ŝ0, ŝ1, . . . be a path in SαL2S↓
corresponding to π and let

[
π̂
]
P

be its abstraction wrt. P . Let
[
ŝk

]
P

be the
first step where all the distinct abstract states occurring on

[
π̂
]
P

were visited at
least once. By Lemma 1 there are si2 and si3 such that k < i2 < i3 and (si2 , si3)
are not in any relation in W . But

[
ŝi3

]
P

must be equal to some state
[
ŝi1

]
P

for
i1 ≤ k. Thanks to Tmem, X stores the valuation of X at ŝi2 and preserves it for
the rest of the path. There exists a valuation of the variables {cpi

| pi ∈ P} and
an induced partitioning 〈ŝ0, . . . , ŝi1 , . . . , ŝi2 , . . . , ŝi3 , . . .〉 of path π̂ such that the
predicates pi ∈ P assume the values of the corresponding cpi

at ŝi1 and ŝi3 , and
f ∈ ŝi1 , ŝi2 , ŝi3 , and (si2 , si3) is not in any relation in W . The variables seen,
triggered, and s become satisfied after ŝi1 and the literals loop, ¬w, and ¬r
become satisfied at ŝi3 . Therefore, there exists some positive integer n such that

IαL2S↓ ∧ TαL2S↓ ∧ . . . ∧ T
〈n−1〉
αL2S↓ ∧ bad

〈n〉
αL2S↓

is satisfiable and thus π̂ violates the invariant property ¬badαL2S↓ in finite num-
ber of steps, which contradicts our initial assumptions. We conclude that if
SαL2S↓ satisfies the invariant property ¬badαL2S↓ then S |= FG¬f . ��

Counterexamples and Refinement. In order to refine the extended encod-
ing in case of spurious counterexamples, we modify the procedure described
in Sect. 4.1 as follows. We first check if the set of predicates P can be
refined by blocking a finite unrolling of the abstract loop (or if a real
lasso-shaped counterexample can be found). We set an upper bound on
the maximum number of unrollings of the abstract loop. If this bound is
reached, we try to prove that no infinite unrolling of the loop exists by
finding a suitable termination argument based on ranking functions. A vio-
lation of ¬badαL2S↓ implies that the abstract counterexample path

[
π̂
]
P

def=[
ŝ0

]
P

, . . . ,
[
ŝl

]
P

, . . . ,
[
ŝj

]
P

, . . . ,
[
ŝk

]
P

, . . . ,
[
ŝl+n

]
P

forms a lasso in the space of
the predicates P , with stem

[
π̂stem

]
P

def=
[
ŝ0

]
P

, . . . ,
[
ŝl−1

]
P

and loop
[
π̂loop

]
P

def=[
ŝl

]
P

, . . . ,
[
ŝl+n

]
P

. Within the loop there are two distinct steps
[
ŝj

]
P

and
[
ŝk

]
P

282 J. Daniel et al.

that both satisfy f but (
[
ŝj

]
P

,
[
ŝk

]
P

) is not in any relation in W . Let ϕstem and
ϕloop be defined as:

ϕstem
def=

∧l−1
i=0(

[
ŝi

]〈i〉
P

∧ T 〈i〉) ∧ [
ŝl

]l

P
ϕloop

def=
∧l+n

i=l+1(T
〈i−1〉 ∧ [

ŝi

]〈i〉
P

)

where T is the transition relation of the original system S. If T doesn’t contain
disjunctions, then several off-the-shelf techniques for ranking function synthesis
(e.g. [30,38]) can be used for constructing a termination argument for the simple
lasso represented by ϕstem ∧ ϕloop. However, in general T does contain disjunc-
tions. In this case, we can enumerate the simple lassos symbolically represented
by ϕstem ∧ϕloop (i.e. lassos without disjunctions), and attempt to build a termi-
nation argument for each of them. We do this using the algorithm presented in
[36], a technique for enumerating an overapproximation of the prime implicants
of a formula by exploiting SMT solving under assumptions. Each implicant of
ϕstem ∧ ϕloop corresponds to a simple lasso, for which we try to build a ter-
mination argument with the technique of [30]. In case of success, we use the
ranking function r(X) and its lower bound b produced by [30] to generate a
well-founded relation. If this relation was not in the set W already, we add it to
W , add its atomic predicates to P , stop the enumeration of simple lassos, and
refine the encoding, proceeding to checking the new invariant property on the
refined system.1 Otherwise, we continue with the enumeration, until we either
eventually find some new information that allows us to refine our encoding, or
we fail to build a termination argument for all the simple lassos represented by
the abstract counterexample. In the latter case, the algorithm is aborted, and
“unknown” is returned.

k-Liveness as a Well-Founded Relation. Generally, infinite-state systems
admit counterexamples that are not lasso-shaped. But we analyze infeasibility
of a strict subset of all possible infinite unrollings of the abstract lasso. Con-
sequently, the refinement may fail to produce new abstraction predicates or
well-founded relations as well as fail to find a concrete counterexample. How-
ever, we may use k-liveness to recover from such situations in hope to make
further progress. By extending the transition system with an auxiliary inte-
ger variable k representing a counter of occurrences of f , and the necessary
updates of k, the refinement may always discover a new well-founded relation
ρ(X,X) def= k < k ≤ n where k ∈ X is introduced by the reduction αL2S↓ and n
is an arbitrary positive integer. We usually let n be the number of occurrences
of f in the current counterexample. By adding these free relations we allow the
procedure to progress by blocking all short spurious counterexamples as w holds
for the first n steps of the re-encoded system. Notice that this is sound.

1 An alternative heuristic could be to not stop the enumeration, and instead generate
well-founded relations covering all simple lassos represented by the abstract coun-
terexample. We use a conservative/lazy heuristic, that tries to avoid the potentially-
expensive exhaustive enumeration of implicants as much as possible.

Infinite-State Liveness-to-Safety via Implicit Abstraction 283

4.3 Implementation Within IC3IA

In principle, the technique described in the previous Sections can be implemented
on top of any off-the-shelf invariant verification algorithm. In practice, however,
we exploit the features of the IC3ia algorithm of [14] to obtain an efficient
implementation, in which our liveness-to-safety encoding is tightly integrated in
the incremental IC3-based invariant checking procedure and its interpolation-
based abstraction refinement.

First, we observe that the interpolation-based refinement of the αL2S encod-
ing (see Sect. 4.1) is very similar to the refinement procedure already imple-
mented in IC3ia, making it possible to reuse most of the code. More impor-
tantly, our technique can be integrated in IC3ia in a highly incremental manner.
In particular, there is no need of restarting from scratch the IC3 search at every
refinement iteration; rather, all the relatively-inductive formulas discovered by
IC3ia in the process of constructing an inductive invariant can be retained across
refinements. This is possible because: (a) our encoding only monotonically adds
constraints to the original transition system, and (b) the new safety property
obtained after the i + 1-th refinement step is weaker than the previous ones; in
particular, if IC3 has concluded that no state can violate the property corre-
sponding to the i-th refinement in k steps or less, then this is true also for the
i + 1-th property. Therefore, all the invariants on which IC3 relies for its cor-
rectness are preserved by our refinement procedure, thus allowing it to continue
the search without resetting its internal state.

5 Experimental Evaluation

We have implemented L2Sia-wfr as an extension of the IC3ia algorithm
described in [14]. The MathSAT SMT solver [17] is used for solving SMT
queries, computing interpolants, and synthesizing ranking functions (using the
technique of [30]). The LTL extension to IC3ia consists of about 1500 lines of
C++ code. In the evaluation, in addition to L2Sia-wfr, we consider L2Sia,
i.e. the variant where well-founded relations are disabled. The source code of the
implementation is available at https://es-static.fbk.eu/people/griggio/ic3ia/.

Tools Used. We compare our implementation with the following state-of-the-
art tools for temporal property verification of infinite-state systems:

HSF [29], a solver for Horn-like clauses that also supports proving well-founded-
ness of a given relation, using transition invariants. In order to check an LTL
property ϕ, we apply the technique described in [39]: we encode the input tran-
sition system and a (symbolic representation of a) Büchi automaton for ¬ϕ as
Horn-like clauses, and ask HSF to find a (disjunctively) well-founded transition
invariant showing that the accepting states of the automaton cannot be visited
infinitely often. We use the ltl2ba tool of [26] to generate the Büchi automaton.

T2-CTL* [21], an extension to the T2 termination prover for imperative pro-
grams supporting CTL* temporal properties. LTL properties can be verified by

https://es-static.fbk.eu/people/griggio/ic3ia/

284 J. Daniel et al.

50

100

150

200

250

300

350

400

0.1 1 10 100 1000 10000

N
u
m

b
er

o
f
so

lv
ed

in
st

a
n
ce

s

Total time

L2Sia-wfr
HSF
T2-CTL*
Ultimate-LTL
L2Sia

Cumulative
Tool # Solved Safe Unsafe ΔL2Sia-wfr Gained Lost time (sec)

L2Sia-wfr 374 341 33 – – – 29438

L2Sia 344 320 24 -30 1 31 22144
Ultimate-LTL 56 56 0 -318 0 318 2113
HSF 21 21 0 -353 0 353 8116
T2-CTL* 0 0 0 -374 0 374 0

Fig. 1. Experimental results on symbolic transition systems

simply checking the equivalent CTL* specification.2 T2-CTL* works by recur-
sively computing preconditions of subformulas of the input property (starting
from the leaves), and checking whether the precondition of the topmost formula
is satisfied by the initial states of the program. Path subformulas are approxi-
mated in ACTL, the program is partially determinized using prophecy variables
to reduce the imprecision of the approximation. Formula preconditions are then
computed via CTL model checking. We remark that T2-CTL* is more general
than L2Sia-wfr, being able to handle arbitrary CTL* properties. This fact
should be considered when interpreting the experimental results presented.

Ultimate-LTL [24], a tool for the verification of LTL properties of sequential
C programs. Ultimate-LTL works by enumerating the fair paths of the input
program (i.e. paths visiting the accepting condition of a Büchi automaton for ¬ϕ
infinitely often) and trying to prove each of them unfeasible (either by refuting
a finite prefix of the path, or by finding a suitable termination argument for
it). If a fair path is determined to be feasible, the property is shown not to
hold. Otherwise, if the fair path is successfully refuted, it is generalized and then
subtracted from the input program: if the result is empty, then the property is
shown to hold. Otherwise, an unknown result is reported.

2 T2 supports also verification of CTL properties under fairness constraints [20], which
could in principle be used for verifying LTL properties. Here we use the CTL* mode
as suggested by the tool authors.

Infinite-State Liveness-to-Safety via Implicit Abstraction 285

10

20

30

40

50

60

70

80

0.1 1 10 100 1000

N
u
m

b
er

o
f
so

lv
ed

in
st

a
n
ce

s

Total time

L2Sia-wfr
HSF
T2-CTL*
Ultimate-LTL
L2Sia

Cumulative
Tool # Solved Safe Unsafe ΔL2Sia-wfr Gained Lost time (sec)

L2Sia-wfr 76 54 22 – – – 618

Ultimate-LTL 61 44 17 -15 2 17 1512
L2Sia 41 26 15 -35 0 35 104
T2-CTL* 36 36 0 -40 2 42 663
HSF 24 24 0 -52 0 52 951

Fig. 2. Experimental results on imperative programs.

Benchmark Sets. Our benchmark set consists of 835 LTL verification prob-
lems, grouped in three different subsets:

Symbolic Transition Systems. The first set consists of a collection of symbolic
transition systems: BIP models from [7], and systems derived from standard
examples in the real-time domain (e.g. [1,5,27]) in which the variables have been
converted to integers, in order to be able to use all the tools mentioned above.

ok := f a l s e
∀xi∈X xi := nondet ()
ok := t rue
i f ¬I(X)

ok := f a l s e
wh i l e ok

ok := f a l s e
∀xi∈X oldxi := xi
∀xi∈X xi := nondet ()
ok := t rue
i f ¬T (oldX,X)

ok := f a l s e

The LTL properties have been manually gen-
erated, in order to capture standard liveness
requirements on the considered domains. The
set consists of 556 instances, 66 of which are
unsafe. For tools working with imperative pro-
grams (T2-CTL*, Ultimate-LTL), we encode
a system S = 〈X, I, T 〉 as shown in the box on
the right, where nondet is a function that returns
a non-deterministic value. We then translate an
LTL property FG¬f into FG(ok → ¬f).3

Imperative-style Programs. This set consists of 86 imperative-style programs
collected from three different sources:

3 The encoding shown is a slightly simplified one. In practice, we have experimented
with several variations, and picked for each tool the encoding giving the best results.

286 J. Daniel et al.

20

40

60

80

100

120

140

160

180

200

0.1 1 10 100 1000

N
u
m

b
er

o
f
so

lv
ed

in
st

a
n
ce

s

Total time

L2Sia-wfr
HSF
T2-CTL*
Ultimate-LTL
L2Sia
T2-termination

Cumulative
Tool # Solved Safe Unsafe ΔL2Sia-wfr Gained Lost time (sec)

L2Sia-wfr 152 82 70 – – – 956

Ultimate-LTL 146 85 61 -6 15 21 3311
T2-CTL* 80 80 0 -72 6 78 638
L2Sia 74 18 56 -78 1 79 57
HSF 52 52 0 -100 1 101 442

T2-termination 191 89 102 +39 40 1 235

Fig. 3. Experimental results on T2 termination benchmarks.

(i) 17 simple hand-crafted imperative programs with LTL properties that
were specifically written to make approaches based on αL2S fail. The instances
are all safe.

(ii) the 41 C programs belonging to the “coolant” and “decision-predicates”
groups of benchmark instances used in [24]. The programs have been translated
to transition systems using the C front-end of the Kratos [13] software model
checker.4

(iii) the 28 instances of the “cav13-ctl-examples” in the source distribution
of T2, in which the LTL properties have been obtained by simply removing the
path quantifiers from the corresponding CTL properties in the original files.

T2 Termination Benchmarks. The last set we considered consists of the 193
instances of the “testsuite” group in the source distribution of T2. These are termi-
nation problems that have been encoded into LTL by checking that a distinguished
“sink” location is eventually reached. For this group of benchmarks, in addition to
the tools described above, we compare also with the specialised procedure for ter-
mination checking in T2 [11] (called T2-termination in the following).

Results. We ran our experimental evaluation on a cluster of machines with
2.67 GHz Xeon X5650 CPUs and 96 GB of RAM, running Scientific Linux 6.7.
We used a timeout of 1200 s and a memory limit of 6 GB.

4 The benchmark set from [24] contains also a third group of instances (“rers2012”),
which could however not be handled by the C front-end of Kratos.

Infinite-State Liveness-to-Safety via Implicit Abstraction 287

0

100

200

300

400

500

600

0.1 1 10 100 1000 10000

N
u
m

b
er

o
f
so

lv
ed

in
st

a
n
ce

s

Total time

L2Sia-wfr
HSF
T2-CTL*
Ultimate-LTL
L2Sia

Cumulative
Tool # Solved Safe Unsafe ΔL2Sia-wfr Gained Lost time (sec)

L2Sia-wfr 602 477 125 – – – 31012

L2Sia 459 364 95 -143 2 145 22304
Ultimate-LTL 263 185 78 -339 17 356 6936
T2-CTL* 116 116 0 -486 8 494 1300
HSF 97 97 0 -505 1 506 9509

Fig. 4. Experimental results on all benchmarks.

As a preliminary remark, we analyze the number of predicates used. For
the verification of the benchmarks, L2Sia-wfr discovered up to 85 predicates
for the αL2S↓ encoding and up to 278 predicates for checking the sequence of
invariant properties with IC3ia, with an average of 20 predicates for αL2S↓ and
45 predicates for IC3ia (with median values of 14 and 34 respectively). These
numbers do not include Boolean state variables in the system, that are always
tracked precisely. We conclude that Implicit Abstraction is a key enabler for
the proposed approach: an eager computation of the abstract transition system,
based for example on AllSMT [33], is typically unable to deal with such high
numbers of predicates.

The results of the evaluation are summarized in Figs. 1, 2, 3 and 4. The plots
show, for each tool, the number of solved instances (y-axis) in the given total
execution time (x-axis), not including timeouts/unknowns. More information is
provided in the tables under the plots, where for each tool we show the number of
solved instances (distinguishing also between safe and unsafe ones), the difference
in number of solved instances wrt. L2Sia-wfr, the number of instances gained
(i.e. solved by the given tool but not by L2Sia-wfr) and lost, and the total
execution time taken on solved instances. From the results, we can make the
following observations:

(i) L2Sia-wfr significantly outperforms all the other tools on symbolic tran-
sition systems (Fig. 1). Most of the instances are solved without the need of any
ranking function, relying exclusively on abstract L2S. However, as can be seen
from the comparison with L2Sia, the integration of ranking functions gives a

288 J. Daniel et al.

non-negligible benefit, allowing to solve 31 instances that were out of reach
before, and only losing one. It is also interesting to observe that this is bene-
ficial not only for proving properties, but also for finding counterexamples. We
attribute the performance of L2Sia-wfr to its tight integration with the engine
based on IC3 with Implicit Abstraction [14], that can handle very efficiently the
symbolic encodings of these benchmarks. In contrast, and as expected, tools that
are optimized to exploit control-flow graphs of programs (T2-CTL*, Ultimate-
LTL) perform very poorly when such information is not available.

(ii) Interestingly, as shown in Fig. 2 L2Sia-wfr is the best performing tool
also on the benchmarks of the imperative programs group, for which a control-
flow graph is available. The gap with the other tools in this case is much smaller,
and there are a number of instances which L2Sia-wfr cannot solve but some of
the other tools can. However, L2Sia-wfr is still the most effective tool overall,
both for safe and for unsafe instances.5 For this set of benchmarks, the integra-
tion of ranking functions is crucial for performance.

(iii) The results on termination benchmarks (Fig. 3) show that there is still
a significant gap between tools supporting arbitrary LTL properties and spe-
cialised procedures for termination such as T2-termination, for which almost
all these instances are very easy. Also in this case, however, L2Sia-wfr is very
competitive with other tools of similar expressiveness (HSF and Ultimate-
LTL).

(iv) Overall (Fig. 4), L2Sia-wfr performs very well across all the categories
of benchmarks we have considered, comparing very favorably with the state of
the art. We think that this demonstrates the generality and potential of our
approach.

6 Conclusions

In this paper we presented a novel algorithm, called L2Sia-wfr, to check liveness
properties on infinite state transition systems. The algorithm combines liveness-
to-safety with implicit abstraction and well-founded relations. The implemen-
tation demonstrates substantial advantages in performance over other temporal
checkers for infinite-state systems.

In the future, we will explore techniques for non-termination to find coun-
terexamples that are not lasso-shaped, thus extending the effectiveness of the
algorithm in the case of property violation. Furthermore, we will investigate
domain-specific techniques for the analysis of real-time/hybrid systems, such as
the integration with k-zeno [15], and the extension of the class of well-founded
relations over the reals. Finally, we will evaluate the application of L2Sia-wfr
to temporal satisfiability of first-order temporal logic.

5 To the best of our understanding, HSF can only prove that an LTL property holds,
but it is not able to find counterexamples. In principle, T2-CTL* instead should
also be able to find counterexamples; however, even after asking its authors, we
haven’t been able to find a reliable way to distinguish an “unsafe” answer from an
“unknown” one.

Infinite-State Liveness-to-Safety via Implicit Abstraction 289

References

1. Alur, R., Dang, T., Ivancic, F.: Counterexample-guided predicate abstraction of
hybrid systems. Theor. Comput. Sci. 354(2), 250–271 (2006)

2. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2),
183–235 (1994)

3. Balaban, I., Pnueli, A., Zuck, L.D.: Ranking abstraction as companion to predicate
abstraction. In: Wang, F. (ed.) FORTE 2005. LNCS, vol. 3731, pp. 1–12. Springer,
Heidelberg (2005)

4. Basu, A., Bozga, M., Sifakis, J.: Modeling heterogeneous real-time components in
BIP. In: SEFM, pp. 3–12. IEEE Computer Society (2006)

5. Bengtsson, J., Larsen, K.G., Larsson, F., Pettersson, P., Yi, W.: Uppaal - a
tool suite for automatic verification of real-time systems. In: Hybrid Systems,
pp. 232–243 (1995)

6. Biere, A., Artho, C., Schuppan, V.: Liveness checking as safety checking. Electr.
Notes Theor. Comput. Sci. 66(2), 160–177 (2002)

7. Bliudze, S., Cimatti, A., Jaber, M., Mover, S., Roveri, M., Saab, W., Wang, Q.:
Formal verification of infinite-state BIP models. In: Finkbeiner, B., et al. (eds.)
ATVA 2015. LNCS, vol. 9364, pp. 326–343. Springer, Heidelberg (2015). doi:10.
1007/978-3-319-24953-7 25

8. Bouajjani, A., Legay, A., Wolper, P.: Handling liveness properties in (ω-)regular
model checking. Electr. Notes Theor. Comput. Sci. 138(3), 101–115 (2005)

9. Bozzano, M., Cimatti, A., Lisagor, O., Mattarei, C., Mover, S., Roveri, M., Tonetta,
S.: Safety assessment of AltaRica models via symbolic model checking. Sci. Com-
put. Program. 98, 464–483 (2015)

10. Bradley, A.R.: SAT-based model checking without unrolling. In: Jhala, R.,
Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 70–87. Springer,
Heidelberg (2011)

11. Brockschmidt, M., Cook, B., Fuhs, C.: Better termination proving through cooper-
ation. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 413–429.
Springer, Heidelberg (2013)

12. Cavada, R., Cimatti, A., Dorigatti, M., Griggio, A., Mariotti, A., Micheli, A.,
Mover, S., Roveri, M., Tonetta, S.: The nuXmv symbolic model checker. In:
Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 334–342. Springer,
Heidelberg (2014)

13. Cimatti, A., Griggio, A., Micheli, A., Narasamdya, I., Roveri, M.: Kratos – a
software model checker for systemC. In: Gopalakrishnan, G., Qadeer, S. (eds.)
CAV 2011. LNCS, vol. 6806, pp. 310–316. Springer, Heidelberg (2011)

14. Cimatti, A., Griggio, A., Mover, S., Tonetta, S.: IC3 modulo theories via
implicit predicate abstraction. In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014
(ETAPS). LNCS, vol. 8413, pp. 46–61. Springer, Heidelberg (2014)

15. Cimatti, A., Griggio, A., Mover, S., Tonetta, S.: Verifying LTL properties of hybrid
systems with K-Liveness. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS,
vol. 8559, pp. 424–440. Springer, Heidelberg (2014)

16. Cimatti, A., Griggio, A., Mover, S., Tonetta, S.: HyComp: an SMT-based model
checker for hybrid systems. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS,
vol. 9035, pp. 52–67. Springer, Heidelberg (2015)

17. Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: The mathSAT5 SMT
solver. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013 (ETAPS 2013). LNCS,
vol. 7795, pp. 93–107. Springer, Heidelberg (2013)

http://dx.doi.org/10.1007/978-3-319-24953-7_25
http://dx.doi.org/10.1007/978-3-319-24953-7_25

290 J. Daniel et al.

18. Claessen, K., Sörensson, N.: A liveness checking algorithm that counts. In:
FMCAD, pp. 52–59. IEEE (2012)

19. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement for symbolic model checking. J. ACM 50(5), 752–794 (2003)

20. Cook, B., Khlaaf, H., Piterman, N.: Fairness for infinite-state systems. In: Baier, C.,
Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 384–398. Springer, Heidelberg
(2015)

21. Cook, B., Khlaaf, H., Piterman, N.: On automation of CTL* verification for
infinite-state systems. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS,
vol. 9206, pp. 13–29. Springer, Heidelberg (2015)

22. Cook, B., Koskinen, E., Vardi, M.: Temporal property verification as a program
analysis task. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol.
6806, pp. 333–348. Springer, Heidelberg (2011)

23. Cook, B., Podelski, A., Rybalchenko, A.: Termination proofs for systems code. In:
PLDI, pp. 415–426 (2006)

24. Dietsch, D., Heizmann, M., Langenfeld, V., Podelski, A.: Fairness modulo theory:
a new approach to LTL software model checking. In: Kroening, D., Păsăreanu, C.S.
(eds.) CAV 2015. LNCS, vol. 9206, pp. 49–66. Springer, Heidelberg (2015)

25. Esparza, J., Hansel, D., Rossmanith, P., Schwoon, S.: Efficient algorithms for
model checking pushdown systems. In: Emerson, E.A., Sistla, A.P. (eds.) CAV
2000. LNCS, vol. 1855, pp. 232–247. Springer, Heidelberg (2000)

26. Gastin, P., Oddoux, D.: Fast LTL to Büchi automata translation. In: Berry, G.,
Comon, H., Finkel, A. (eds.) Computer Aided Verification. LNCS, vol. 2102,
pp. 53–65. Springer, Heidelberg (2001)

27. Ghilardi, S., Ranise, S.: MCMT: a model checker modulo theories. In: Giesl, J.,
Hähnle, R. (eds.) IJCAR 2010. LNCS, vol. 6173, pp. 22–29. Springer, Heidelberg
(2010)

28. Graf, S., Säıdi, H.: Construction of abstract state graphs with PVS. In: Grumberg,
O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 72–83. Springer, Heidelberg (1997)

29. Grebenshchikov, S., Lopes, N.P., Popeea, C., Rybalchenko, A.: Synthesizing soft-
ware verifiers from proof rules. In: PLDI, pp. 405–416. ACM (2012)

30. Heizmann, M., Hoenicke, J., Leike, J., Podelski, A.: Linear ranking for linear lasso
programs. In: Van Hung, D., Ogawa, M. (eds.) ATVA 2013. LNCS, vol. 8172,
pp. 365–380. Springer, Heidelberg (2013)

31. Henzinger, T., Jhala, R., Majumdar, R., McMillan, K.: Abstractions from proofs.
In: POPL, pp. 232–244 (2004)

32. Henzinger, T., Kopke, P., Puri, A., Varaiya, P.: What’s decidable about hybrid
automata? In: STOC, pp. 373–382 (1995)

33. Lahiri, S.K., Nieuwenhuis, R., Oliveras, A.: SMT techniques for fast predi-
cate abstraction. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144,
pp. 424–437. Springer, Heidelberg (2006)

34. McMillan, K.L.: Interpolation and SAT-based model checking. In: Hunt Jr., W.A.,
Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 1–13. Springer, Heidelberg
(2003)

35. de Moura, L., Owre, S., Rueß, H., Rushby, J., Shankar, N., Sorea, M., Tiwari, A.:
SAL 2. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 496–500.
Springer, Heidelberg (2004)

36. Niemetz, A., Preiner, M., Biere, A.: Turbo-charging lemmas on demand with don’t
care reasoning. In: FMCAD, pp. 179–186. IEEE (2014)

37. Pnueli, A.: The temporal logic of programs. In: FOCS, pp. 46–57 (1977)

Infinite-State Liveness-to-Safety via Implicit Abstraction 291

38. Podelski, A., Rybalchenko, A.: A complete method for the synthesis of linear
ranking functions. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937,
pp. 239–251. Springer, Heidelberg (2004)

39. Podelski, A., Rybalchenko, A.: Transition invariants. In: LICS, pp. 32–41. IEEE
Computer Society (2004)

40. Podelski, A., Rybalchenko, A.: Transition predicate abstraction and fair termina-
tion. ACM Trans. Program. Lang. Syst. 29(3) (2007)

41. Ramsey, F.P.: On a problem in formal logic. Proc. Lond. Math. Soc. 3(30), 264–286
(1930)

42. Schuppan, V., Biere, A.: Liveness checking as safety checking for infinite state
spaces. Electron. Notes Theor. Comput. Sci. 149(1), 79–96 (2006)

43. Tiwari, A.: HybridSAL relational abstracter. In: Madhusudan, P., Seshia, S.A.
(eds.) CAV 2012. LNCS, vol. 7358, pp. 725–731. Springer, Heidelberg (2012)

44. Tonetta, S.: Abstract model checking without computing the abstraction. In:
Cavalcanti, A., Dams, D.R. (eds.) FM 2009. LNCS, vol. 5850, pp. 89–105. Springer,
Heidelberg (2009)

45. Vardi, M.: An Automata-theoretic approach to linear temporal logic. In: Banff
Higher Order Workshop, pp. 238–266 (1995)

Proving Parameterized Systems Safe by
Generalizing Clausal Proofs of Small Instances

Michael Dooley and Fabio Somenzi(B)

Department of Electrical, Computer and Energy Engineering,
University of Colorado Boulder,

Boulder, CO 80309, USA
{michael.dooley,fabio}@colorado.edu

Abstract. We describe an approach to proving safety properties of
parameterized reactive systems. Clausal inductive proofs for small
instances are generalized to quantified formulae, which are then checked
against the whole family of systems. Clausal proofs are generated at the
bit-level by the IC3 algorithm. The clauses are partitioned into blocks,
each of which is represented by a quantified implication formula, whose
antecedent is a conjunction of modular linear arithmetic constraints.

Each quantified formula approximates the set of clauses it represents;
good approximations are computed through a process of proof satura-
tion, and through the computation of convex hulls. Candidate proofs
are conjunctions of quantified lemmas. For systems with a small-model
bound, the proof can often be shown valid for all values of the parame-
ter. When the candidate proof cannot be shown valid, it can still be used
to bootstrap finite proofs to permit verification at larger values of the
parameter.

While the method is incomplete, it produces non-trivial invariants for
a suite of benchmarks including hardware circuits and protocols.

1 Introduction

Parameterized families of systems are often encountered among hardware and
software designs. Design libraries often contain arbiters, queues, interfaces, which
can be instantiated in different sizes. Verification of such components benefits
from the ability to produce a proof valid for all their instances. Moreover, tech-
niques that can prove properties for the entire family of systems can often save
time even when compared to verifying just one instance, if it is sufficiently large.
However, the undecidability of the problem in its general form [2] and even in
rather restricted classes of systems [11,21] means that incomplete methods are
often applied to the discovery of parameterized proofs.

We present one such incomplete method called forhull-N, which learns
a parameterized proof by generalizing inductive invariants for instances of the
system. The inspiration for this approach comes from the ability of IC3 [8] to
often produce inductive invariants in clausal form with a high degree of reg-
ularity. From these clausal proofs, our generalization procedure often extracts
parameterized proofs that are even more regular and simple.
c© Springer International Publishing Switzerland 2016
S. Chaudhuri and A. Farzan (Eds.): CAV 2016, Part I, LNCS 9779, pp. 292–309, 2016.
DOI: 10.1007/978-3-319-41528-4 16

Parameterized System Proofs from Small Instances 293

The rest of this paper is organized as follows. In Sect. 2 we give an overview of
the proposed technique, while Sect. 3 reviews related work. Section 4 is devoted
to a description of the algorithm. We describe experimental results in Sect. 5,
and conclude in Sect. 6.

2 Overview

We present a technique for the verification of invariants on parameterized sys-
tems, in which instance proofs are generated for potentially small values of the
parameter; from these we attempt to construct and verify a parameterized proof.

Instance proofs are comprised of instance lemmas; for us these proofs are
conjunctions of clauses produced by bit-level model checking.1 We partition the
set of instance proofs into classes of clauses, based on which literals appear,
in what number, and in what polarity. For each class a universally quantified
lemma is constructed, and their conjunction composes a candidate universally
quantified proof. In many cases we can guarantee that this candidate proof holds
for all values of the parameter. For systems that enjoy a small-model property,
a candidate proof may be verified by showing it holds up to a prescribed value
of the parameter [20]. In other cases, it may be possible to use an SMT solver
to close the proof. Even in cases where the candidate proof cannot be verified, it
may still be used to bootstrap the verification process for large parameter values.

For each class of instance clauses we construct a candidate universally quan-
tified lemma with the form:

∀N, i . constraint(N, i) → template(i). (1)

A template is a clause in FOL, from which instance lemmas are obtained by
substitution of the index variables i . The simplest form of lemma is a clause
whose literals are Boolean variables and Boolean array references. For example:

Instance Lemma: a ∨ b2 ∨ c3

Template: a ∨ bi ∨ cj i, j ∈ i . (2)

Figure. 1 shows the steps by which the parameterized lemma ∀ N, i.(0 ≤ i <
N) → (bi → (a = i)) may be recovered from instance clauses.

Since we infer from bit-level instance proofs, the main requirement for the sys-
tems handled by forhull-N is that their instances be finite-state. Our method
seeks to find a proof composed of parameterized lemmas, and can only succeed
if one exists. We make the further assumption that if parameterized lemmas
exist, they will be witnessed in the instance proofs. While the existence of a
parameterized proof often belies symmetry of the system, no explicit symme-
try information or preliminary analysis is needed. The instance lemmas in Fig. 1
have been reconstructed from the instance clauses above them and the knowledge
that a, for N = 4, is a three-bit integer variable.
1 As mentioned in the Introduction, we mostly use IC3, which in our experience pro-

duces invariants better suited to our purpose than BDD-based reachability analysis.

294 M. Dooley and F. Somenzi

Instance clauses (N = 4): {¬b0 ∨ ¬a0, ¬b0 ∨ ¬a1, ¬b0 ∨ ¬a2,

¬b2 ∨ ¬a0, ¬b2 ∨ a1, ¬b2 ∨ ¬a2}
Instance lemmas: b0 → (a = 0), b2 → (a = 2)

Template: bi → (a = j)

Index tuples: (0, 0, 4), (2, 2, 4)

Saturated index tuples: (0, 0, 4), (1, 1, 4), (2, 2, 4), (3, 3, 4)

Candidate lemma: ∀ N, i, j .(0 ≤ i < N ∧ i = j) → (bi → (a = j))

Fig. 1. Deriving a quantified integer lemma

In general not all index assignments for a template correspond to valid
instance lemmas. We therefore restrict the index values by a constraint as in
(1). The constraint is a Boolean formula over predicates in modular linear arith-
metic. It is inferred by associating to each instance lemma a tuple of integer
values and treating each tuple as a point in a multi-dimensional space. The
desired constraint is a combination of hulls of convex sets of such point. In this
way we transform a logic problem into one of computational geometry.

The success of generalization depends on including as many valid instance
lemmas as possible. Therefore we try to saturate the set of points by testing
whether nearby points correspond to invariants. For example, to produce the
candidate lemma in Fig. 1 the index tuples (1, 1, 4) and (3, 3, 4) must first be
found through saturation.

Once a candidate proof is constructed, we attempt to verify whether it holds
for all values of the parameter. When the small-model property of [20] applies,
this can be done by showing that the candidate proof holds up to the computed
bound. In these cases invisible invariants and related techniques could also be
used. We will demonstrate that our technique is in general more expressive.

When a small-model bound is not available or is impractical, it may be pos-
sible to use an SMT solver to check that the parameterized proof is an inductive
invariant. However, the quantifier instantiation heuristics used by SMT solvers
often fail [13]. In these cases, breaking up the proof into simpler obligations may
allow the solver to succeed. It is also possible to provide quantifier instantiations
manually. In some cases, this may produce proof obligations that are entirely
propositional.

All else failing, the candidate proof can be used to generate finite strengthen-
ings for arbitrary values of the parameter. In cases where the candidate proof is
correct, these instantiated proofs are immediately inductive. Even if the instan-
tiated strengthening is not inductive, assuming it during verification may be
cheaper than verifying the invariant from scratch. In Sect. 5 we show a case
where verification can continue to much higher values of the parameter using
the candidate proof than without it.

Parameterized System Proofs from Small Instances 295

3 Related Work

The general problem of parameterized verification is known to be undecidable [2].
There are therefore two approaches: devising techniques for decidable fragments
of the domain, such as the restricted topologies [1,11,14], and incomplete meth-
ods, of which our technique is one. Early approaches were not fully automated,
and required induction over the parameterized structure [7,17,22].

In the technique presented in [9], parameterized lemmas are approximations
of backward-reachable states obtained by iterated symbolic pre-image compu-
tation. Small instances are used to establish forward reachability information,
so as to refine their parameterized invariants. In contrast, we extract lemmas
directly from instance proofs that are arbitrary inductive invariants.

Pnueli, Zuck and others pioneered the use of small-model theorems for para-
meterized systems in their work on invisible invariants [3,20]. Symmetry is
assumed in order to construct a candidate parameterized invariant from a pro-
jection of the reachable states. Properties are proven for Bounded Data Systems
for which the small-model theorem applies. The approach was extended to sup-
port distributed topologies in [5]. Auxiliary assertions were generalized to include
Boolean combinations of ∀-assertions in [4].

If the property or its strengthening relies on arithmetic or modular reasoning
the small-model theorem does not apply. In [12] the authors defined the so-
called modest model theorem, which applies to a larger class of systems than the
theorem in [20], but unfortunately often produces impractically large bounds.

Whereas techniques derived from invisible invariants produce strengthenings
by assuming symmetry, our technique derives lemmas which are constrained by
index relations which are custom-learned from instance proofs. The advantage of
the invisible invariant approach is that obtaining a strengthening by existentially
projecting a BDD for the reachable states is often very fast, especially when a
split invariant may be computed [19].

There is significant overlap between our work and that related to the gen-
eration of universally quantified invariants. The work in [6] produces invariants
in the form of universally quantified Horn clauses. An SMT solver is used with
heuristic instantiation, but unlike our own work it requires the program to be
decorated with symbolic invariants. Similarly, [18] requires the determination of
a set of useful predicates.

The language used in [15], unlike ours, permits statements about reachability.
Candidate proofs are also checked using SMT directly, and so do not share our
requirement for finite instantiability. However, a significantly different general-
ization technique is used, whose effectiveness will have to be established through
experimentation.

4 Description of Algorithm

We are concerned with families of systems indexed by a parameter N that takes
positive integer values. A system is a pair (I, T), where I(x,N) is a predicate

296 M. Dooley and F. Somenzi

describing the initial states and T (x, x′, N) is the transition relation. The x
variables encode the current state, while the x′ variables encode the next state.
We assume that for each value of N , (I, T) is a finite state model.

We want to prove that M = (I, T) satisfies the parameterized safety property
P for all N ≥ 1, where P (x,N) describes a parameterized set of “good” states.
Our approach is outlined in Algorithm1. It proceeds by invoking IC3 on finite
model instances for selected values of the parameter. If an instance proof is
obtained, it is used to improve the quantified lemmas composing a candidate
proof. If the candidate proof is found to hold for all N ≥ 1, the process terminates
successfully (at Line 26).

Algorithm 1. Model check parameterized safety property
1: function forhull-N (M , P)
2: // Takes parameterized model M and parameterized safety property P .
3: // Attempt to produce quantified proof from proofs for small values of N .
4: // Returns True if P is proven an invariant of M (∀N ≥ 1).
5: n = 1
6: Store = {
7: // Knowledge store for prover data.
8: t2instances : templates × P(instances) = {},
9: t2lemma : templates × lemmas = {},

10: }
11: while True do
12: S =

∧
Store.t2lemma[t] for t ∈ activeTemplates(Store)

13: result, proof, cex = IC3(instantiate(M , S ∧ P , n))
14: if result == sat then
15: R = responsibleTemplate(Store, P, cex)
16: if R == P then
17: return False
18: else
19: Store.t2lemma = Store.t2lemma \ {R}
20: continue
21: converged = len(proof) == 0
22: if converged then
23: S =

∧
Store.t2lemma[t] for t ∈ activeTemplates(Store)

24: result = testQuantifiedProof(M , S ∧ P , n)
25: if result == success then
26: return True
27: else
28: updateStore(Store, proof, n)

29: n = chooseNextN(result, Store, n, converged)

As the algorithm progresses it accumulates knowledge in the data structure
Store, which contains two maps from templates to related data. For each tem-
plate, t2instances associates a set of index tuples from all values of N already
examined, describing lemma instances known to be invariants. For templates that

Parameterized System Proofs from Small Instances 297

Algorithm 2. Modify and generalize data in Store
1: function updateStore(Store, proof, n)
2: // Modify store to integrate information in instance proof.
3: // Relies on templatized proof (templates × P).
4: // Lemmas are generalized for templates with added instance tuples.
5: tproof = TemplatizeProof(proof, n)
6: for t ∈ tproof do
7: instances = tproof[t]
8: if t 	∈ Store.t2instances then
9: Store.t2instances[t] = {}

10: Store.t2instances[t] = Store.t2instances[t]
⋃

instances
11: result, lemma = GeneralizeLemma(t, Store.t2instances[t])
12: if result == success then
13: Store.t2lemma[t] = lemma
14: else
15: Store.t2lemma = Store.t2lemma \ {t}

generalize, t2lemma associates a quantified formula. The function activeTem-
plates returns the set of templates in the domain of t2lemma. The generalized
strengthening S on Line 12 is the conjunction of the formulae in the co-domain of
t2lemma. To weaken the strengthening, an element from the domain of t2lemma
is removed on Line 19. Initially the relations in Store are empty.

The function instantiate takes two quantified formulae, which describe a
parameterized model and a safety property, and an integer value n. It returns
the finite model produced when instantiating the input formulae with N = n.

Each model instance is checked by IC3, producing either a proof or a coun-
terexample. If the strengthened property S ∧ P passes, IC3 produces a proof,
which is then used by updateStore to modify and generalize the information
in Store. The function of updateStore is detailed in Algorithm 2. If the proof
is empty, it means that the instantiation of P ∧ S is an inductive formula, and
we say that the generalized proof has converged.

If the proof at N = n has converged, testQuantifiedProof checks
whether it can be verified. If it succeeds, the generalized proof is a valid induc-
tive strengthening for all positive values of the parameter. Therefore P is an
invariant, and forhull-N returns True.

If the generalized proof has not converged, or the attempt to verify it fails,
the next parameter value is determined by chooseNextN. If the generalized
proof has converged, all instance proofs at the same value n will be empty, so
the value must change to make progress. Otherwise it may be wise to retry at
the same value some number of times, or until converged. The set of instance
tuples in t2instances grows monotonically, and as a rule, additional lemma
instances improve the chance that generalization succeeds. The intuition behind
this criterion is to learn as much as possible on smaller models before continuing,
while allowing progress to be made if a proof for a higher value of N would be
helpful or necessary.

298 M. Dooley and F. Somenzi

If instead, on Line 13, IC3 returns sat, either P fails for a given N or S is
too strong. Based on the result of responsibleTemplate, forhull-N either
returns failure or weakens S by removing the identified template. The function
responsibleTemplate is described in Algorithm 3 in Sect. 4.3.

4.1 Example: Busy Ring Arbiter

As a running example we introduce the Busy Ring arbiter, a distributed speed-
independent circuit with a parameterized number of agents [16]. Each agent is
composed of a client and an arbiter cell as shown in Fig. 2.

C
celli

locali

clienti

reqi acki

tokeni tokeni+1

token0 tokenN

Fig. 2. Busy Ring arbiter

reqi

acki

reqi+1

acki+1

Fig. 3. Busy Ring: four-phase RTZ sig-
naling

0 1 2 3 4

0 0 0 0 0
1 0 0 0 0
1 1 0 0 0
1 1 1 0 0
1 1 1 1 0
1 1 1 1 1
0 1 1 1 1
0 0 1 1 1
0 0 0 1 1
0 0 0 0 1

Fig. 4. Busy Ring: N=4 reachable
states for token

The arbiter cell consists of a mutex circuit and a C-element. The client is
abstracted by an inverter with bounded, non-deterministic delay. Cell and client

Parameterized System Proofs from Small Instances 299

communicate by four-phase return-to-zero (RTZ) signaling. (See Fig. 3.) Since a
client lowers the request line after leaving the critical section, mutual exclusion
is expressed by:

∀N, i, j .(0 ≤ i < j < N) → ¬(reqi ∧ acki ∧ reqj ∧ ackj). (3)

Algorithm 1 produces a parameterized inductive strengthening of this property
comprised of the following lemmas:

∀N, i .(0 ≤ i < N) → (¬locali ∨ ¬tokeni+1) (4)
∀N, i .(0 ≤ i < N) → (¬acki ∨ locali ∨ ¬reqi) (5)
∀N, i .(0 ≤ i < N) → (acki ∨ ¬locali ∨ reqi) (6)
∀N, i, j, k .(0 ≤ i < j < k < N) → (tokeni ∨ ¬tokenj ∨ tokenk) (7)
∀N, i, j, k .(0 ≤ i < j < k < N) → (¬tokeni ∨ tokenj ∨ ¬tokenk) (8)
∀N, i .(0 < i < N) → (¬acki ∨ ¬reqi ∨ tokeni) (9)

Lemmas (4)–(6) describe the behavior of an agent in isolation. Lemmas (7) and
(8) characterize the token. Each row of Fig. 4 shows one of its possible values for
N = 4. Lemma (9) states a condition on the critical section.

4.2 Templatization

The first step that updateStore takes in constructing a parameterized lemma
is to partition the latest instance proof into classes keyed on templates. Tem-
plates are FOL formulae, as seen in the consequent of (1), and are produced from
instance lemmas by replacing concrete index values with variables to be quan-
tified. In the simplest case, as in (2), the instance clause contains only Boolean
and Boolean-array variables, and so the template has the form of a propositional
clause as well. Prior to variable substitution the instance lemma must be put
in a canonical form, since the relations in Store are keyed on them. For clausal
lemmas we order the set of literals lexicographically by variable name and then
by index. The ordering by index is important for lemmas that contain repeated
literals: lemmas such as (7) and (8) only emerge when the indices are ordered.
For clauses that contain FOL predicates, additional consideration must be taken
when deciding how to regularize templates as in the case of Fig. 1.

As an example the lemma given by (4) can be expressed as:

∀N, i, j .(0 ≤ i < N ∧ j = i + 1) → (¬locali ∨ ¬tokenj). (10)

This lemma characterizes the mutex circuit. IC3 finds all instances of this lemma,
which for N=3 are:

{¬local0 ∨ ¬token1, ¬local1 ∨ ¬token2, ¬local2 ∨ ¬token3}.
Each instance can be produced by the template ¬locali ∨¬tokenj , and so they
all belong to the same class. The index values form a set of instance tuples, which
are stored in Store.t2instances by updateStore so that:

{(0, 1, 3), (1, 2, 3), (2, 3, 3)} ⊆ Store.t2instances[(¬locali ∨ ¬tokenj)].

300 M. Dooley and F. Somenzi

The last entry of each tuple is the value of the parameter at which the instance
was found. The other entries are the index values for that instance.

4.3 Proof Generalization

The association of instance lemmas to index tuples described in Sect. 4.2 allows
updateStore to treat lemma instances as points in a multidimensional space.
Proof generalization infers a pattern in these points, and it is responsible for
producing the antecedent in (1). The generalization process takes place within
the call to GeneralizeLemma on Line 11 of Algorithm 2.

0 1 2 3 4 5 1
2

3
4

5
6

3

4

5

6

¬local0 ∨ ¬token1

¬local5 ∨ ¬token6

i
j

N

Fig. 5. Busy Ring mutex polytope

Figure 5 plots the index tuples corresponding to the lemma instances of the
template ¬locali∨¬tokenj from instance proofs for N ∈{3, 4, 5, 6}. The shaded
polytope is the convex hull of these instance points, described by a set of linear
inequalities, like the following:

{i ≥ 0, i = j − 1, i < N, N ≥ 3, N ≤ 6}.

In this polytope all lattice points correspond to invariants of model instances.
If there are sufficiently many instance points at the highest parameter value,

then there is guaranteed to be a facet that restricts N to have a constant upper
bound. If such a facet exists, generalization is done by simply removing the cor-
responding inequalities. If no such facet exists then generalization fails, and the
template is skipped. After generalization the constraint describes an unbounded
polytope, in this case:

constraint = (0 ≤ i < N) ∧ (j = i + 1) ∧ (3 ≤ N) .

Since the coefficients in the linear constraints describing the convex hulls are
rational, arbitrary precision arithmetic is used to avoid rounding errors.

Parameterized System Proofs from Small Instances 301

Instance Saturation. In most cases the instance proofs do not contain all
instances of a template. Part of the reason is that the IC3 proofs are made
irredundant by dropping clauses and literals, in order to reduce the number of
templates represented in each instance proof. The flip side of this reduction is
that oftentimes not all instances of a template are included because they are
not necessary. The problem is that the resulting subset of a template’s instances
often produce polytopes that do not generalize. Take for example the instances
of Lemma (7) plotted in Fig. 6. The polytope in Fig. 6(a) is obtained from only
those instance lemmas found directly by IC3. The irregularity of the polytope
makes it difficult to generalize. In contrast, in Fig. 6(b) many points have been
added which correspond to additional invariant instances of the same template.

0
1

2
3 1

2

3

4

2

3

4

5

i

j

k

(a) Found by IC3

0
1

2
3 1

2

3

4

2

3

4

5

i

j

k

(b) After saturation

Fig. 6. Instance points for Busy Ring Lemma (7) 2 ≤ N ≤ 5

In these plots the parameterized dimension N is omitted, therefore the plots
are 3-dimensional projections onto the axes i, j, and k. The instances for 2 ≤
N ≤ 5 are plotted simultaneously. Each group of points, denoted by different
coloring, represents lemma instances that were first found at a particular value
of the parameter. At N = 5 all points represent instance lemmas. Likewise at
N = 4 all points except those where k = 5 describe instance lemmas.

Saturation starts with the polytope in Fig. 6(a). At this point IC3 has iden-
tified some lemma instances, and we can begin to guess at what is missing.
One heuristic is to proceed with a neighbor-based exploration, starting with the
points already known to be invariants. Neighbors are those points in which the
coordinate value of each dimension differs by at most 1; specifically, these are
the lattice points whose distance has a max norm equal to 1. The distance is
computed modulo the length of each dimension, so as to discover parameterized
lemmas that require modular arithmetic.

To check whether an instance is an invariant, we model check

instantiate(M, instance ∧ S ∧ P, n),

302 M. Dooley and F. Somenzi

where n is the last index of the point. If IC3 returns a counterexample the
neighbor point is remembered as a non-invariant point. If the instance is proved
an invariant, the point is added to the set of instance points and its neighbors
are in turn visited. If the invariance proof is non-empty, we additionally extract
any instances belonging to existing templates. This harvesting is not essential,
but is intended to accelerate saturation.

After saturation a new convex hull is constructed. Through repeated satisfi-
ability queries any unvisited lattice points in the polytope are tested for invari-
ance. At the end of this procedure the status of all lattice points in the hull
is known. If there are no known non-invariants inside the hull, generalization
successfully proceeds with the saturated polytope.

For most models, saturation is very important to producing lemmas that gen-
eralize. In some cases this can expand constraints for which a small-model bound
does not apply to one where it does. For example, saturation may strengthen a
lemma by changing the neighbor-based constraints (0 ≤ i < N −1)∧ (j = i+1),
to the constraints (0 ≤ i < j < N). The latter does not make use of addition;
hence it can appear in the inductive assertion to be checked by the small model
theorem of [3].

Polytope Boolean Combination. If, however, the final saturated convex hull
contains instance points corresponding to non-invariants, we attempt to carve
out the “bad” points by intersecting with additional, potentially unbounded, con-
vex hulls. This procedure may fail when attempting to carve too few instance
points to compute a convex hull. If it fails we attempt to generalize with a
disjunction of polytopes. Instance points are heuristically grouped by the order-
ing of their indices, e.g., for two dimensions, points are classified according to
whether i < j or j ≤ i, and each group is generalized separately. This allows
certain non-convex properties to be found, such as mutual exclusion between
neighbors around a ring:

(∀N, i .(1 ≤ i < N) → (¬tokeni ∨ ¬tokeni−1)) ∧
(∀N, i .(i = N − 1) → (¬token0 ∨ ¬tokeni)).

While permitting Boolean combinations of polytopes substantially increases
the generality of forhull-N, the proofs we currently find do not require these
combinations.

Dimensionality Reduction. Saturation can be an expensive procedure. If the
points from the instance proofs satisfy simple relations, we want to use those
relations to guide saturation. This guidance improves speed, as the instances
that are avoided are unlikely to be necessary for the proof.

Take as an example the Busy Ring mutex lemma expressed in (10). Instance
points for 3 ≤ N ≤ 6 are plotted in Fig. 5. The constraint in (10) contains the
simple linear relation j = i + 1, which is satisfied by all known instance points.
If this relationship can be inferred before saturation, many unnecessary instance
lemmas need not be checked for invariance.

Parameterized System Proofs from Small Instances 303

The procedure takes as input a matrix, where each row is a point. In a first
pass we examine single columns and pairs of columns to identify easy relation-
ships (e.g., i = 3, i < j, or i = j +2). In a second pass we analyze the null space
of the point matrix, augmented with a constant column, to find remaining affine
relations of the form v =

∑
t wt · vt + c, such as i = j + 2 · k + 1.

In the case that the relation is functional the dimensionality can be reduced,
which has the benefit of avoiding degeneracy in the convex hull computation.
However, care must be taken when including lemmas with functional constraints,
since the inclusion of linear arithmetic may preclude the application of a small-
model bound.

Proof Refinement. A candidate generalized proof may produce an instantia-
tion that leads to IC3 finding a counterexample trace. This can never happen at
the same value of the parameter at which the candidate proof was derived, but
may at a different value. If this happens the candidate proof may be too strong,
and so we first try to refine it through weakening until all counterexamples have
been removed.

One possibility is that we learned a mistaken lemma. For example, in
the classic dining philosophers it is possible to learn the incorrect lemma
∀i, j,N .(0 ≤ i < j < N) → (¬eatingi ∨ ¬eatingj) for N ≤ 3 when only
∀i,N .(0 ≤ i < N) → (¬eatingi ∨ ¬eatingi+1) holds in general.

Algorithm 3. Identify reason for proof failure
1: function responsibleTemplate(Store, P , cex)
2: // Candidate proof failed because it is too strong.
3: // Identifies template responsible for counterexample trace.
4: s = cex[-1] // last state
5: for t in Store.t2instances do
6: tinsts = Store.t2instances[t]
7: if s 	|= ∧ substitute(t, i , inst) for inst ∈ tinsts then
8: return t
9: // If no template identified, counterexample due to P .

10: assert s 	|= instantiate(P)
11: return P

If a counterexample is found, responsibleTemplate determines how it
may be removed, as described in Algorithm 3. Let s be the last state of the
counterexample trace. We try to identify a template which has some instance
not modeled by s. Template instances are obtained by the function substitute,
which replaces the variables to be quantified in a template with the values from
an index tuple. If a template is identified it is returned, to be removed from
Store.t2lemma, thereby eliminating one impediment to inductiveness. Note that
the removed template still remains in Store.t2instances; so if new instances
are discovered a lemma for the template may be reintroduced.

304 M. Dooley and F. Somenzi

If no such template is found, it must be that a real counterexample to
the property has been discovered, and the program terminates on Algorithm1,
Line 17. After dropping a template the generalized proof is retried at the same
value of N , effectively preventing progress until all counterexamples are dealt
with. Note that it may be that s violates more than one template, but removing
one at a time is sufficient to guarantee that each counterexample is removed,
and that the refinement process terminates.

4.4 Testing Candidate Proofs

Once a generalized proof has converged, it is a candidate for being a valid proof
∀N ≥ 1. One way to prove validity of the candidate proof relies on the small-
model theorem of [3,20]. If the theorem applies with bound N0, and we prove
validity for instances 1 ≤ N ≤ N0, the candidate proof is valid for all N .

However, the small-model theorem of [3,20] does not support strengthenings
that include addition. In these cases the more general modest-model theorem
[12] may apply, which unfortunately usually predicts bounds much higher than
is practical.

Another possibility for closing the proof is to use an SMT solver to discharge
the obligations of the inductive proof. The consecution query is:

∀N .P ∧ S ∧ T → (P ′ ∧ S′) (11)

SMT solver heuristic instantiation of quantifiers is sufficient in some cases for
closing the proof. To further aid the solver, (11) is decomposed so that instead
of providing the P ′ ∧ S′ in the consequent, each parameterized lemma is proven
separately.

Even when the candidate proof cannot be shown to be valid, it may still be
useful in bootstrapping the proof of large instances, as seen in Fig. 7 of Sect. 5.

4.5 Discussion

A converged proof is guaranteed to be an inductive invariant for all values of N
that forhull-N has considered up to that point. However, it does not need to
be either stronger or weaker than the instance proofs from which it was derived.
On the one hand, each parameterized lemma in the proof, when instantiated for
a given value of N , produces all template instances in the instance proof. On the
other hand, templates that are not sufficiently represented in the instance proofs,
or that produced counterexamples, do not contribute to the parameterized proof.
This ability of forhull-N to both strengthen and weaken instance proofs allows
it to produce simple invariants that have a good chance to generalize.

The generalization procedure as described can only learn lemmas that depend
on a fixed number of literals and whose constraints are Boolean combinations
of integer linear constraints. While lemmas that do not fit those restrictions are
occasionally encountered, the approach we have described strikes a reasonable
balance between simplicity and power.

Parameterized System Proofs from Small Instances 305

When no small-model theorem applies, or the small-model bound is large,
forhull-N may use the Z3 SMT solver [10] to verify candidate proofs. While we
have observed simple models in which this leads to success at very small values
of N , it is often the case that the SMT solver is unable to instantiate quantifiers
to close the proof [13].

5 Experimental Results

Our method is implemented by a prototype model checker, written mostly in
Python. Parameterized models are described in an intermediate language embed-
ded in Python, and can be compiled either into finite AIGER models, or quanti-
fied SMT descriptions. Finite proofs are carried out by the IC3 implementation
in the model checker IImc, which returns irredundant proofs on demand. SMT
obligations are discharged by Z3 [10] using the Z3Py interface. Convex hulls
are computed using the Qhull package, included in Octave, using the Python
interface Oct2Py.

Results were obtained for a suite of benchmarks, and are reported in Table 1.
Experiments were conducted on identical machines with quad-core 2.80 GHz
Intel CPUs and 9 GB of memory.

Each model was verified for one or more safety properties, whose number is
listed in column p#. For each property three trials were done. The data reported
are the average over all properties and trials. For models with multiple verified
properties, a hyphenated range of values across all properties is supplied.

Benchmark models are divided into two categories. The first group of models
represents hardware circuits and includes examples of synchronous and asyn-
chronous arbiters. The second group is a collection of different protocols.

The column lemmas reports the number of parameterized lemmas included in
the final candidate proof. Next, convergeN reports the smallest parameter value
at which the candidate proof holds that is greater than the parameter values
instantiated to derive it. The value in validN gives the parameter value at which
the candidate proof was proven to hold for all N. The column boundN reports the
computed small-model bound given the model, property, and candidate proof at
the end of the run.

Some models require specific validation or generalization heuristics to pro-
duce the reported results as noted at the foot of the table. These are: (1) proof
validation by an SMT solver (as opposed to a small-model bound), (2) lemmas
involving modular reasoning, and (3) lemmas encoding integer facts.

An asterisk in any cell denotes that no such value was available; for instance, if
a small-model property does not apply an asterisk appears in column boundN. In
the cases where convergeN has a value, but validN has an asterisk, the converged
candidate proof could not be verified. When convergeN has an asterisk as well, it
means that the process did not converge on a candidate proof, up to the bound
explored. If convergeN has an asterisk, but validN does not, it indicates that
the property was immediately inductive and no strengthening was necessary.

306 M. Dooley and F. Somenzi

Table 1. Benchmark results

model p# lemmas convergeN validN boundN runtime iimctime checktime

tokens1 1 1 5 5 * 8.2 0.1 0.1

databus 1 12 3 3 1 13.2 0.6 0.6

databus init 1 20 3 3 1 19.6 1.9 0.7

mcmillan arb1 1 1 5 5 * 10.5 0.1 0.7

sync ring2 9 0–28 4–8 *–* *–* 17.5–147.9 0.2–84.3 1.3–4.6

busy ring 1 6 4 4 3 12.0 0.8 0.6

dme2 3 0–70 7–* *–* *–* 50.9–787.4 0.7–640.0 3.6–9.4

german 5 17–30 3–3 3–3 3–3 24.0–32.1 1.9–5.8 2.0–2.3

szymanski 1 9 5 5 5 29.3 2.9 2.1

semaphore3 1 2 4 4 4 9.0 0.2 0.3

semaphore2 2 3–4 5–5 5–5 5–5 11.3–11.4 1.0–1.0 0.7–0.8

wheel3 1 2 5 5 4 11.4 0.7 0.5

central book 3 0–0 3–3 3–3 2–3 7.0–7.2 0.0–0.0 0.3–0.3

philosophers 2 0–0 2–2 2–2 1–2 6.8–6.8 0.0–0.0 0.1–0.1

eisenberg 1 4 4 4 4 13.9 0.3 1.7

burns 1 2 4 4 4 10.0 0.2 0.6

dijkstra me 1 2 4 5 5 12.3 0.3 1.0

Heuristics: 1SMT validation. 2 Modular reasoning. 3 Integer reasoning.

Additionally three times are provided: runtime reflecting the total time until
validation, or giving up, iimctime providing the elapsed time spent proving finite
models, and checktime the time spent verifying the proof (doing final instantia-
tion/finite model check).

It is interesting that the table contains only averaged values, yet also contains
integer values for all the columns but the times. This is a consequence of the
apparent stability of the proof process. When verifying a particular property
and model across multiple trials, only the time metrics vary slightly; the number
of lemmas and N values are identical across the trials. While randomness in
proving finite instances can lead to variation in the candidate proofs, this result
highlights the success of regularizing the proof.

When a small-model bound is not available we try to close the proof using
the SMT solver Z3 [10]. In Table 1, the safety properties for model philosophers
are inductive invariants and therefore are easily proved for many values of N .
However, using Z3 we were able to prove the properties for all N in negligible
time using the proof derived at N = 4.

Table 1 shows that forhull-N is able to prove most benchmarks safe for
all parameter values. The exceptions are the properties of sync ring and dme.
The models tokens and mcmillan arb are synchronous circuits for which a small-
model bound does not apply, but their proofs were validated using Z3.

Note that for sync ring and dme Table 1 provides a value for convergeN
but none for boundN. In these cases the small-model property does not apply
due to the candidate proof including modular reasoning. Applying the modest

Parameterized System Proofs from Small Instances 307

model theorem results in a bound that is prohibitively large. Therefore, even if a
generalized proof is obtained, we are currently unable to verify it. However, the
candidate proof may still be useful in verifying finite models for larger values of
the parameter.

0 10 20 30 40 50 60
0

5000

10000

15000

20000

N completed

C
um

ul
at

iv
e

T
im

e
(s

)
DME Elapsed Solving Time

IIMC

prover

Fig. 7. Verifying instances of dme with increasing N , cumulative elapsed time.

Figure 7 shows the cumulative elapsed time spent verifying mutual exclusion
on finite instances of dme of increasing size. The solid blue curve shows the time
spent solving each model using IImc, the largest reported size is N = 16. The
dashed red curve shows the result of applying our method, which bootstraps
each IImc query with the corresponding instantiation of the candidate proof.
For DME property 0, at N = 6 the candidate proof converges. Subsequently,
for all N shown, the property conjoined with the strengthening is immediately
inductive. Also note that for low values of N our method takes more time than
model checking directly, due to the initial cost of constructing the generalized
proof.

6 Conclusions and Future Work

We have presented forhull-N, a procedure for parameterized verification.
While applicable to a large class of systems, forhull-N currently works best
when a small-model bound is available to verify the parameterized proof on a
small finite instance. To extend the reach of forhull-N, work is underway on
exploiting the structure of the parameterized model to derive hints for quantifier
instantiation in the SMT solver. While “closing the proof” is obviously desirable,

308 M. Dooley and F. Somenzi

we have shown that parameterized proofs may also be used to bootstrap proofs
of large instances of the system. The bootstrapping is particularly effective when
a parameterized proof has converged, because then it is likely to be an inductive
invariant. More general lemma structures (e.g., clauses whose number of literals
depends on the parameter) and improved handling of lemmas involving integer-
valued variables will let forhull-N find converged proofs for a larger set of
systems.

Acknowledgments. The authors thank Aaron Bradley, who suggested the extraction
of templates from IC3 proofs and discussed parameterized verification with them. This
research was supported in part by the Semiconductor Research Corporation under
contract GRC 2220 and by NSF grant 1549478.

References

1. Abdulla, P.A., Haziza, F., Hoĺık, L.: All for the price of few. In: Giacobazzi, R.,
Berdine, J., Mastroeni, I. (eds.) VMCAI 2013. LNCS, vol. 7737, pp. 476–495.
Springer, Heidelberg (2013)

2. Apt, K., Kozen, D.: Limits for automatic verification of finite-state concurrent
systems. Inf. Process. Lett. 22(6), 307–309 (1986)

3. Arons, T., Pnueli, A., Ruah, S., Xu, J., Zuck, L.D.: Parameterized verification with
automatically computed inductive assertions. In: Berry, G., Comon, H., Finkel, A.
(eds.) CAV 2001. LNCS, vol. 2102, pp. 221–234. Springer, Heidelberg (2001)

4. Balaban, I., Fang, Y., Pnueli, A., Zuck, L.D.: IIV: an invisible invariant verifier.
In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 408–412.
Springer, Heidelberg (2005)

5. Balaban, I., Pnueli, A., Zuck, L.D.: Invisible safety of distributed protocols. In:
Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol.
4052, pp. 528–539. Springer, Heidelberg (2006)

6. Bjørner, N., McMillan, K., Rybalchenko, A.: On solving universally quantified horn
clauses. In: Logozzo, F., Fähndrich, M. (eds.) Static Analysis. LNCS, vol. 7935,
pp. 105–125. Springer, Heidelberg (2013)

7. Bouajjani, A., Jonsson, B., Nilsson, M., Touili, T.: Regular model checking. In:
Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 403–418.
Springer, Heidelberg (2000)

8. Bradley, A.R.: SAT-based model checking without unrolling. In: Jhala, R.,
Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 70–87. Springer,
Heidelberg (2011)

9. Conchon, S., Goel, A., Krstic, S., Mebsout, A., Zäıdi, F.: Invariants for finite
instances and beyond. In: Formal Methods in Computer-Aided Design, Portland,
OR, pp. 61–68, October 2013

10. de Moura, L., Bjørner, N.S.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

11. Emerson, E.A., Namjoshi, K.: Reasoning about rings. In: Principles of Program-
ming Languages, San Francisco, California, pp. 85–94 (1995)

12. Fang, Y., Piterman, N., Pnueli, A., Zuck, L.D.: Liveness with incomprehensible
ranking. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp.
482–496. Springer, Heidelberg (2004)

Parameterized System Proofs from Small Instances 309

13. Ge, Y., de Moura, L.: Complete instantiation for quantified formulas in satisfi-
abiliby modulo theories. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS,
vol. 5643, pp. 306–320. Springer, Heidelberg (2009)

14. Kaiser, A., Kroening, D., Wahl, T.: Dynamic cutoff detection in parameterized
concurrent programs. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS,
vol. 6174, pp. 645–659. Springer, Heidelberg (2010)

15. Karbyshev, A., Bjørner, N., Itzhaky, S., Rinetzky, N., Shoham, S.: Property-
directed inference of universal invariants or proving their absence. In: Kroen-
ing, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 583–602. Springer,
Heidelberg (2015)

16. Kinniment, D.: Synchronization and Arbitration in Digital Systems. Wiley,
Hoboken (2007)

17. Kurshan, R.P., McMillan, K.L.: A structural induction theorem for processes. In:
Proceedings of the Eighth Annual ACM Symposium on Principles of Distributed
Computing, Edmonton, Alberta, Canada, pp. 239–247, August 1989

18. Lahiri, S.K., Bryant, R.E.: Indexed predicate discovery for unbounded system ver-
ification. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 135–147.
Springer, Heidelberg (2004)

19. Namjoshi, K.S.: Symmetry and completeness in the analysis of parameterized sys-
tems. In: Cook, B., Podelski, A. (eds.) VMCAI 2007. LNCS, vol. 4349, pp. 299–313.
Springer, Heidelberg (2007)

20. Pnueli, A., Ruah, S., Zuck, L.D.: Automatic deductive verification with invisi-
ble invariants. In: Margaria, T., Yi, W. (eds.) TACAS 2001. LNCS, vol. 2031,
pp. 82–97. Springer, Heidelberg (2001)

21. Suzuki, I.: Proving properties of a ring of finite-state machines. Inf. Process. Lett.
28(4), 213–214 (1988)

22. Wolper, P., Lovinfosse, V.: Verifying properties of large sets of processes with
network invariants. In: Sifakis, J. (ed.) Automatic Verification Methods for Finite
State Systems. LNCS, vol. 407, pp. 68–80. Springer, Heidelberg (1990)

Learning-Based Assume-Guarantee Regression
Verification

Fei He1,2,3(B), Shu Mao1,2,3, and Bow-Yaw Wang4

1 Tsinghua National Laboratory for Information Science and Technology
(TNList), Beijing, China
hefei@tsinghua.edu.cn

2 School of Software, Tsinghua University, Beijing, China
3 Key Laboratory for Information System Security, Ministry of Education,

Beijing, China
4 Academia Sinica, Taipei, Taiwan

Abstract. Due to enormous resource consumption, model checking each
revision of evolving systems repeatedly is impractical. To reduce cost in
checking every revision, contextual assumptions are reused from assume-
guarantee reasoning. However, contextual assumptions are not always
reusable. We propose a fine-grained learning technique to maximize
the reuse of contextual assumptions. Based on fine-grained learning, we
develop a regressional assume-guarantee verification approach for evolv-
ing systems. We have implemented a prototype of our approach and con-
ducted extensive experiments (with 1018 verification tasks). The results
suggest promising outlooks for our incremental technique.

1 Introduction

Software systems evolve throughout their life cycles. In order to add new features,
many revisions are released over time. Since errors may be introduced with new
releases, each revision needs to be formally verified. Formal verification however
is still very time-consuming. Verifying every revision of an evolving system is
impractical. A more effective technique to ensure correctness of evolving software
systems is desired.

Model checking is a formal verification technique [4,17]. In model checking,
lots of internal information is computed during a verification run. Note that two
consecutive revisions share many behaviors. When a revision is verified, internal
information from model checking may still be useful to verifying the next revi-
sion. Regression verification expands this idea by reusing internal information to
speed up the verification of later revisions [3,6,7,10,22,27–29]. Various internal
information has been proposed for reuse, including state space graphs [22,29],
constraint solving results [28], function summaries [3,25], and abstract preci-
sions [6].

This work was supported in part by the Chinese National 973 Plan (2010CB328003)
and the NSF of China (61272001, 91218302).

c© Springer International Publishing Switzerland 2016
S. Chaudhuri and A. Farzan (Eds.): CAV 2016, Part I, LNCS 9779, pp. 310–328, 2016.
DOI: 10.1007/978-3-319-41528-4 17

Learning-Based Assume-Guarantee Regression Verification 311

Assume-guarantee reasoning [18] is a compositional technique to improve
the scalability of model checking. In the compositional technique, contextual
assumptions decompose verification tasks by summarizing component behaviors.
Depending on compositional proof rules, contextual assumptions are required to
fulfill different criteria for sound verification. Although they used to be con-
structed manually, contextual assumptions can be generated automatically by
machine learning algorithms [13,14,18,21].

Like internal information from model checking, contextual assumptions for
the current revision may be reused for the next revision as well. Since contextual
assumptions contains the most important information for verifying the current
revision, they may immediately conclude the verification of the next revision.
Contextual assumptions may be more suitable for regression verification. Com-
pared to internal information from model checking, contextual assumptions are
external information. They can be stored and reused without modifying model
checking algorithms. In [26], contextual assumptions are exploited in regression
verification. When the component summarized by contextual assumptions is not
changed, the contextual assumptions are reused and modified to verify revised
composed systems. If a system evolves into a new version, components may all
be revised. Contextual assumptions thus can not be reused in regression verifi-
cation. This can be a severe limitation.

Recall that system models are often represented by logic formulas in symbolic
verification algorithms. A component may be represented by several logic formu-
las. Moreover, such logic formulas are further decomposed into more subformulas
to attain the best performance. When a system with few components is updated,
it is unlikely that all subformulas are revised. The chance of information reuse
can be greatly improved if systems are decomposed into finer constituents. In our
fine-grained learning framework, an instance of the learning algorithm [8,19,23]
is deployed for each logic subformulas. When all instances infer their conjec-
tures, a contextual assumption can be built from these conjectures and sent for
assume-guarantee reasoning. We call this the fine-grained learning-based verifi-
cation.

Using our fine-grained technique, we improve regression verification by
incremental assume-guarantee reasoning. The word incremental means the
previously-computed results are reused in later verification runs. Given a new
revision of the system model represented as a number of logical formulas. We
compare the previous revision and the new revision for each subformula. If they
remain the same, the inferred conjecture in the previous verification for this
subformula can be safely reused. Otherwise the conjecture is re-constructed.
Since two revisions have similar behaviors, many of their subformulas remain
unchanged. Previously inferred conjectures is likely to be reused.

We have implemented a prototype on top of NuSMV. We performed exten-
sive experiments (with 1018 verification tasks) to evaluate the efficiency of our
technique. Experimental results are very promising. If properties are satisfied
before and after revisions, our new technique is about four times faster than
conventional assume-guarantee reasoning. A similar speedup is also observed for

312 F. He et al.

unsatisfied properties before and after revisions. If properties are satisfied before
but unsatisfied after revisions, incremental assume-guarantee reasoning also out-
performs but less significantly. Overall, we report more than three times speedup
on more than a thousand verification tasks.

The remainder of this paper is organized as follows. Section 2 introduces
necessary background. Section 3 explains our motivation. Fine-grained learn-
ing is discussed in Sect. 4. Our regression verification framework is presented in
Sect. 5. Experimental results are reported in Sect. 6. Related work are discussed
in Sect. 7. Finally Sect. 8 concludes this paper.

2 Background

Let B be the Boolean domain and X a finite set of Boolean variables. A valuation
s : X → B of X is a mapping from X to B. A predicate φ(X) over X maps a
valuation of X to B. We may write φ if its variables are clear from the context.

Definition 1. A transition system M = (X,Λ, Γ) consists of a finite set of
variables X, an initial condition Λ over X, and a transition relation Γ which is
a predicate over X and X ′ = {x′ : x ∈ X}.
Definition 2. Let Mi = 〈Xi, Λi, Γi〉 be transition systems for i = 0, 1 (Xi’s
are not necessarily disjoint), the composition M0‖M1 = 〈X,Λ, Γ 〉 is a transition
system where X = X0 ∪ X1, Λ(X) = Λ0(X0) ∧ Λ1(X1), and Γ (X) = Γ0(X0) ∧
Γ1(X1).

Let M = (X,Λ, Γ) be a transition system. A state s of M is a valuation
over X. A trace σ of M is a sequence of states s0, s1, · · · , sn, such that s0 is an
initial state, and there is a transition from si to si+1 for i = 0, . . . , n − 1. For
any predicate φ, a sequence σ of states s0, s1, . . . , sn satisfies φ (written σ |= φ)
if si |= φ for i = 0, . . . , n. We say M satisfies φ (written M |= φ) if σ |= φ for
all traces of M . Given a transition system M and a predicate φ, the invariant
checking problem is to decide whether M satisfies φ.

2.1 Learning-Based Assume-Guarantee Verification

Assume-guarantee reasoning aims to mitigate the state explosion problem by
divide-and-conquer strategy. It uses assumptions to summarize components.
Since details of components can be ignored in assumptions, the compositional
technique can be more effective than monolithic verification.

Definition 3. Let Mi = 〈X,Λi, Γi〉 be transition systems for i = 0, 1, M1 sim-
ulates M0 (written M0 	 M1) if Λ0 ⇒ Λ1 and Γ0 ⇒ Γ1.

Note that the above simulation relation is defined over first-order represen-
tation of models. Informally, M0 	 M1 if M1 simulates all behaviors of M0.

Learning-Based Assume-Guarantee Regression Verification 313

Theorem 1 [14]. Let Mi = 〈Xi, Λi, Γi〉 be transition systems for i = 0, 1,
X = X0 ∪ X1, and φ(X) a predicate, the following assume-guarantee reasoning
rule is sound and invertible:

M0 	 A A‖M1 |= φ

M0‖M1 |= φ
(1)

A rule is sound if its conclusion holds when its premises are fulfilled. A rule is
invertible if its premises can be fulfilled when its conclusion holds. In the proof
rule (1), the transition system A is called a contextual assumption (for short,
assumption) of M0. A contextual assumption is valid if it either satisfies both
premises of above rule, or is able to reveal a counterexample to M0‖M1 |= φ.

Active learning algorithms have been deployed to automatically learn the
assumptions for compositional verification [1,13,14,18,20,21]. Let U be an
unknown predicate. A learning algorithm infers a Boolean formula character-
izing U by making queries. It assumes a teacher who knows the target predicate
U and answers the following two types of queries:

– On a membership query MQ(s) with a valuation s, the teacher answers YES
if U(s) holds, and NO otherwise.

– On a equivalence query EQ(H) with a hypothesis Boolean formula H, the
teacher answers YES if H is semantically equal to U . Otherwise, she returns
a valuation t on which H and U evaluate to different Boolean values as a
counterexample.

Figure 1 shows the learning-based verification framework [13,14,21]. In the
framework, a mechanical teacher is designed to answer queries from the learner.
For simplicity of illustration, the mechanical teacher in the figure is divided into
two parts, each answering one type of queries. Let M0 = 〈X0, Λ0, Γ0〉 be a tran-
sition system. The mechanical teacher knows Λ0 and Γ0, and guides Learner
to infer an assumption A = 〈X0, ΛA, ΓA〉 fulfilling the premises of the proof
rule (1). Two learning algorithms are instantiated: one for the initial condi-
tion ΛA, the other for the transition relation ΓA. For instance, consider the
learning algorithm for ΓA. For a membership query MQΓ (s, t) from LearnerΓ ,
the mechanical teacher checks if 〈s, t〉 satisfies Γ0. If so, the mechanical teacher
answers YES . Otherwise, she answers NO . Conceptually, the mechanical teacher
uses Γ0 as the target predicate. In the worst case, the mechanical teacher infers
Γ0 as ΓA.

Yes, No

Yes, No

Yes, CE

Yes, CE

Teacher Teacher Learners

Fig. 1. The learning-based verification framework

314 F. He et al.

The equivalence queries of the two learning algorithms need be synchronized.
Let ΛA and ΓA be the current purported representations of ΛA and ΓA, respec-
tively, the mechanical teacher first constructs A = 〈X0, ΛA, ΓA〉, then it checks
if the purported conjecture of A satisfies both premises of the assume-guarantee
reasoning rule. If it does, the verification terminates and returns “safe”. Other-
wise, the premises checker returns a counterexample. The teacher then proceeds
to check whether this counterexample is real or not. If it is a real counterex-
ample, the verification algorithm terminates and reports “unsafe”. Otherwise,
the teacher returns this counterexample to Learner . Learner will use this coun-
terexample to refine its purported formulas. This process repeats until a valid
assumption is inferred.

2.2 Regression Verification

Computer systems evolve during their life time. Since the current version of a
system has different behaviors from its previous versions, properties must be
re-verified against the current version. In regression verification, we consider the
invariant checking problem on two versions of a system. We would like to exploit
any information from the previous verification in the current verification.

Definition 4. Let M = (X,Λ, Γ) and M ′ = (X,Λ′, Γ ′) be transition systems
and φ(X) a specification. The regression verification problem is to check whether
M ′ |= φ after the verification of M |= φ.

Note that Definition 4 does not assume whether the previous version M
satisfies the property φ or not. We would like to re-use any information from the
previous verification regardless of whether M |= φ holds or not.

3 Motivation

Let M0 and M1 be two components of a system, and A∗ a valid contextual
assumption. To perform regression verification on updated components M ′

0 and
M ′

1, a natural idea is to reuse the contextual assumption A∗. However, it is shown
in [26] that A∗ as a whole can only be reused if M ′

0 = M0 and M ′
1 simulates M1.

This can be a severe limitation.

3.1 An Example

Consider an email system composed of two clients ci (i = 0, 1). The client ci is
shown in Fig. 2(a). Each ci is associated with a data variable msgi, whose value
being true indicates that ci is sending a message. When ci sends a message,
c1−i will be informed and vice versa. The client ci has four states: the idle state
(“idle”), the receiving state (“recv”), the outgoing state (“otgo”), and the
sent state (“sent”). Initially, ci is at the idle state. If a message arrives (that
is, msg1−i = true), ci transits to the receiving state recv. Otherwise, it non-
deterministically transits to the outgoing state otgo and sets msgi to true, or

Learning-Based Assume-Guarantee Regression Verification 315

Fig. 2. The email client

remains at the idle state idle. After the message is sent, the client transits to
its sent state. Denote Mci the model of ci.

The requirement φes is that all sent emails are well received. Formally, φes :=
(state0 = sent) ↔ (state1 = recv). Apparently, φes is not satisfied by the
model. Assume that both clients transit from their idle states to their otgo
states simultaneously, representing both are going to send a message. The only
next state for both of them is the sent state, which means that both clients
have sent their messages, but none of them was well received.

The original model needs be revised to satisfy the requirement. Let c′
i(i =

0, 1) be the updated client, shown in Fig. 2(b). In the new model, sending out a
message is granted for a client if another client does not require sending at the
same time. If both clients simultaneously want to send their messages, a new
variable, called “turn”, is introduced to assign priority to one of them.

Let us consider the regression verification of Mc′
0
‖Mc′

1
. Apparently, Mc′

0
�=

Mc0 and Mc′
1

�= Mc1 . According to [26], the contextual assumptions inferred in
the verification of Mc0‖Mc1 cannot be reused in the verification of Mc′

0
‖Mc′

1
.

However, if we take a look at the symbolic representations of these two revisions
of the system, many commonalities can be identified.

316 F. He et al.

Denote Mci = 〈Xci , Λci , Γci〉 for i = 0, 1, where Xci is a set including a state
variable statei ∈ {idle, recv, otgo, sent} and a data variable msgi. The model
Mci can be specified in a way that specifies for each variable x its initial values
init(x) and its next-state values next(x). (for example, in NuSMV language [16]):

init(statei) := idle, init(msgi) := false,

next(statei) :=
case

(statei = idle) ∧ msg1−i : recv;
(statei = idle) ∧ ¬msg1−i : {idle, otgo};
(statei = otgo) : sent;
(statei = recv) : idle;
(statei = sent) : idle;

esac

next(msgi) :=
case

(statei = idle) ∧ (next(statei) = otgo) : true;
(statei = otgo) ∧ (next(statei) = sent) : false;
true : msgi;

esac

The “case . . . esac” expression in above formulas returns the first expression on
the right hand side of “:”, such that the corresponding condition on the left hand
side evaluates to true [16]. For short, we write λx for the logic formula x = init(x)
and γx for the formula x′ = tran(x). Then Λci and Γci can be represented as:

Λci = λstatei
∧ λmsgi

, Γci = γstatei
∧ γmsgi

.

The formulas init(statei), init(msgi) and next(msgi) in the new model are
identical to those in the old model. The only difference lies in the formula
next(statei), which in the new model is:

next(statei) :=
case

(statei = idle) ∧ msg1−i : recv;
(statei = idle) ∧ ¬msg1−i : {idle, otgo};
(statei = otgo) ∧ msg1−i ∧ ¬turn : recv;
(statei = otgo) ∧ (¬msg1−i ∨ turn) : sent;
(statei = recv) ∧ msgi : otgo;
(statei = recv) ∧ ¬msgi : idle;
(statei = sent) : idle;

esac

Learning-Based Assume-Guarantee Regression Verification 317

3.2 Our Solutions

To take full advantage of commonalities between revisions, we propose to learn
the contextual assumptions in a fine-grained fashion. Recall that Mci in the email
system is represented using four predicate formulas, i.e., λstatei

, γstatei
, λmsgi

and
γmsgi

. Instead of inferring the contextual assumption as a whole model [26], we
suggest to learn it as these four formulas. Note that the former three formulas are
identical in the updated model, the inferred conjectures for these three formulas
can be safely reused. In this way, the chance of assumption reuse is improved.

We intend to learn the contextual assumptions also in a symbolic fash-
ion. In [26], the contextual assumptions are represented as deterministic finite
automata (DFA’s). However, the DFA is not a compact representation of a
model. A Boolean formula representable by a BDD having n nodes may need mn
nodes even in its most compact DFA representation [23], where m is the number
of variables in the formula. Learning models via their DFA representations is
thus not an efficient approach. We utilize the learning technique in [21] to learn
the BDD representation of contextual assumptions. The benefits are multiple
folds. Firstly, the symbolic representation of a model is more compact. Record-
ing and reusing the contextual assumption in its symbolic representation is thus
more memory-efficient. Secondly, symbolic assumptions can be better adapted
to the symbolic model checking. Finally, with the symbolic representations, the
equivalence checking of models can be performed in a much more efficient way.

4 Fine-Grained Learning Technique

In this section, we propose a fine-grained learning technique for assume-
guarantee verification. Let MU = 〈X,Λ, Γ 〉 be the unknown target model. Its
initial condition Λ and transition relation Γ can oftentimes be represented as a
set of logical formulas. Instead of inferring MU as a DFA, or as two big logical
formulas (i.e. Λ and Γ), we propose to infer it as a set of small logical formulas.
Fine-grained learning technique will give us more chances to reuse the inferred
results.

Without loss of generality, we assume Λ and Γ are decomposed into n pred-
icate formulas: ϕ1, ϕ2, · · · , ϕn. Define templates to be constructed inductively
by logical operators and subscripted square parentheses ([•]k). Let ζΛ and ζΓ

be two templates. With ζΛ and ζΓ , we can construct a contextual assumption
from the purported formulas. For example, consider the templates ζΛ[•]1[•]2 =
[•]1 ∧ [•]2 and ζΓ [•]1[•]2 = [•]1 ∧ [•]2 in the email system. Suppose λstate0 ,
λmsg0 , γstate0

and γmsg0
are the current purported formulas. The initial condi-

tion and transition relation of the contextual assumption can be constructed as
ζΛ[λstate0]1[λmsg0]2 = λstate0 ∧λmsg0 , and ζΓ [γstate0

]1[γmsg0
]2 = γstate0

∧γmsg0
,

respectively.
The fine-grained learning model is shown in Fig. 3. For each subformula

ϕi (1 ≤ i ≤ n), one instance of the learning algorithm is deployed. All
learners make membership and equivalence queries to a mechanical teacher.
Similar to the learning-based framework in Sect. 2.1, equivalence queries need be

318 F. He et al.

Fig. 3. The fine-grained learning framework

synchronized. When all learners get a conjecture, the mechanical teacher con-
structs a contextual assumption (using ζΛ and ζΓ). If the constructed assumption
fulfills both premises of the assume-guarantee reasoning rule (1), the verification
is finished. Otherwise, the mechanical teacher helps the learners refine their con-
jectures by providing counterexamples.

Note that our fine-grained technique is not limited to the NuSMV language,
and the target model is not necessary to be decomposed by variables (as in the
email system example). To see an example, consider the ELTS (extended labelled
transition systems with variables) model that is usually specified by transitions.
Let k be the number of transitions in an ELTS model. Encoding each transition
as a logical formula, the transition relation of the ELTS model is the disjunction
of all transition formulas, and the template ζΓ = [•]1 ∨ [•]2∨· · ·∨ [•]k. Generally,
we follow the syntactic structure to decompose the symbolic representation of
the target model.

5 Assume-Guarantee Regression Verification

In this section, we discuss the data structures of contextual assumptions, propose
our regression verification framework, and finally prove the correctness of our
technique.

5.1 Data Structures of Contextual Assumptions

Our framework employs Nakamura’s algorithm [23] to infer the BDD represen-
tation of contextual assumptions. Nakamura’s algorithm is an instance of the
active learning algorithm. Its basic procedure follows that discussed in Sect. 2.1.
When we say assumption reusing, we actually mean reusing the data structure
of the learning algorithm. We thus discuss in the following the data structures
used in Nakamura’s algorithm.

Learning-Based Assume-Guarantee Regression Verification 319

Let D be the target (reduced and ordered) BDD with m variables. A BDD
is a directed acyclic graph with one root node and two sink nodes. Each sink
node is labeled with 0 or 1, and each non-sink node is labeled with a variable.
A BDD can be regarded as a DFA. For any node of D, an access string u is a
string that leads the BDD from its initial node to that node. Each node of D can
be represented by its access string. In the following, we abuse the notation of u
(and v) to represent both a node and its access string. For any two distinct nodes
u and v, a distinguishing string w is a string such that uw reaches the terminal
1 and vw reach the terminal 0, or vice versa. Denote nodes(D) the set of strings
a1a2 · · · ak such that k = m or the assignment of x1 ← a1, x2 ← a2, · · · , xk ← ak

leads to a node labeled xk+1 in D. Let v be a string of length m, denote D(v)
the sink label that v reaches in D.

Two data structures are maintained in the BDD learning algorithm: a BDD
with access strings (for short, BDDAS) S, and a set T = {T1, T2, · · · , Tm} of
classification trees. A BDDAS is different from an ordinary BDD mainly in the
following points: it may have a dummy root node; each of its nodes has an access
string; each of its edges is labeled with a binary string. Denote nodesS

i (S) the
set of access strings possessed by the non-dummy nodes in S whose length is i.
Let nodesS(S) =

⋃m
i=0 nodes

S
i (S). Let v be a string of length m, denote S(v)

the sink label that v reaches in S.
A classification tree Ti (1 ≤ i ≤ m) decides which node in S a given string of

length i will reach. It is composed of internal nodes and leaf nodes. Each internal
node is labeled with a distinguishing string of length m − i, and each leaf node
is labeled with either a special symbol μ, or an access string of length i that is
possessed by a node of S. Any string α of length i is classified by Ti into one
of its leaf nodes. Denote Ti(α) the leaf label into which α is classified. A string
classified into a leaf node labeled with μ means that this string cannot reach any
node in the corresponding OBDDAS.

A BDD can be obtained from a BDDAS. The obtained BDD is sent to the
teacher for equivalence checking. If it passes the equivalence checking, we are
done. Otherwise, a string is returned by the teacher as a counterexample. With
this counterexample, the learner updates its BDDAS and classification trees.
During the updating, the teacher’s answers to membership queries are stored
in classification trees. After updating, the cardinality of S (i.e. the number of
nodes in S) increases by one. The target BDD is restored when the cardinality
of S equals the number of nodes in the target BDD [23].

5.2 Regression Verification Framework

Our assume-guarantee regression verification algorithm is depicted in
Algorithm 1. Before the new round of verification starts, an initialization step
is performed, which attempts to reuse the contextual assumption inferred in the
previous round of verification.

Let M0 and M1 be two components of a system. Recall that M0 is the learning
target. Assume M0 is represented as n logical formulas: ϕ1, ϕ2, · · · , ϕn. Let ϕ′

i

(1 ≤ i ≤ n) be the updated form of ϕi in M ′
0. In the regression verification,

320 F. He et al.

the algorithm checks for each i (1 ≤ i ≤ n) if ϕ′
i is equivalent to ϕi. If it is,

the data structures (the BDDAS and classification trees) of the previous learner
Learnerϕi

is restored and used to initialize Learnerϕ′
i
. Otherwise, Learnerϕ′

i

starts with empty data structures.

1 for 1 ≤ i ≤ m do
2 if ϕ′

i ≡ ϕi then
3 Learnerϕ′

i
← Learnerϕi

4 else
5 Initialize Learnerϕ′

i
with empty data structures

6 end

7 end
8 Use the technique in Sect. 4 to verify M ′

0‖M ′
1 |= φ ;

Algorithm 1. IncrementalAG(M ′
0 ,M ′

1 , φ)

5.3 Correctness

We prove the correctness of our assume-guarantee regression verification frame-
work in this subsection.

Let α1, α2 be two binary strings, we use |α1| to denote the length of α1,
pre(α1, i) the prefix string of α1 with length i, and α1 · α2 the concatenation of
α1 and α2.

Definition 5. A BDDAS S and a set T = {T1, · · · , Tm} of classification trees
are said valid for the target BDD D, if the following conditions are satisfied [23]:

1. nodesS(S) ⊆ nodes(D);
2. ∀v ∈ nodesS

m(S), S(v) = D(v);
3. ∀v1, v2 ∈ nodesS(S), if v1 and v2 lead to the same node in D, there must be

v1 = v2;
4. ∀v ∈ nodesS(S), T|v|(v) = v;
5. for any binary string α of length i(1 ≤ i ≤ m), α �∈ nodes(D) ⇒ Ti(α) = μ;
6. for any edge in S that is from u to v and labeled with l,

– T|v|(u · l) = v, and
– |u| < ∀j < |v|, Tj(u · pre(l, j − |u|)) = μ.

Lemma 1 [23]. The Nakamura’s learning algorithm terminates with a correct
result starting from any BDDAS S and classification trees Ti for i = 1, · · · ,m
that are valid for the target BDD D.

Theorem 2. Given two BDD’s D1 and D2, if D1 ≡ D2, the BDDAS S and
classification trees Ti for i = 1, · · · ,m generated by the learner of D1 are valid
for D2.

Learning-Based Assume-Guarantee Regression Verification 321

Recall that in our verification framwork, only results of equivalent formu-
las are reused. Theorem 2 is thus applicable. The correctness of our assume-
guarantee regression verification framework (Algorithm 1) follows from Lemma 1
and Theorem 2.

Theorem 3 (Correctness). The assume-guarantee regression verification
algorithm (Algorithm 1) always terminates with a correct result.

Note that our regression verification framework is not limited to Nakamura’s
algorithm [23]. Conceptually, any active learning algorithm can apply, such as
the L∗ algorithm for regular languages [2]. However, to be better suited for
the fine-grained learning technique, an implicit learning algorithm is preferred.
Alternatively, one can also use the CDNF learning algorithm [8] that infers
Boolean functions.

6 Evaluation

A prototype of our regressional assume-guarantee verification technique was
implemented on top of NuSMV 2.4.3 [16]. We have performed extensive exper-
iments (in total, 1018 verification tasks from 108 revisions of 7 examples) to
evaluate the efficiency of our technique. All experiments were conducted on a
machine with 3.06 GHz CPU and 2G RAM, running the Ubuntu 12.04 operation
system.

A verification task is specified by a base model, an update to the base model,
and a specification. It consists of two rounds of verifications. The contextual
assumption inferred in the first round of verification (on the base model) can be
optionally reused in the second round of verification (on the updated model). We
compare the performance of the second round of verification with and without
assumption reuse. The maximal run time is set to 3 h.

The experiments are performed on seven examples, where Gigamax models
a cache coherence protocol for the Gigamax multiprocess, MSI models a cache
coherence protocol for consistence ensuring between processors and main mem-
ory, Guidance models the Shuttle Digital Autopilot engines out (3E/O) contin-
gency guidance requirements, SyncArb models a synchronous bus arbiter, Philo
models the dining philosophers problem [12], Phone models a simple phone sys-
tem with four terminals [24], and Lift models the lift system in [5]. The former
four examples are obtained from the NuSMV website1, while the latter two are
obtained from literatures. Each example model contains a number of interact-
ing components. Our tool selects one component as M0 and the composition of
others as M1.

We consider different degrees of changing a model: small changes (using muta-
tions) and significant changes (with significant difference in the functionalities).

Two performance metrics are used in our experiments: (a) the run time
(Time) for each verification run; (b) the number of membership queries (|MQ |)
1 http://nusmv.fbk.eu/examples/examples.html.

http://nusmv.fbk.eu/examples/examples.html

322 F. He et al.

and the number of equivalence queries (|EQ |) raised in each verification run.
Recall that answering learners’ queries is the most costly operation in the
learning-based verification framework, these two metrics are related to each
other.

6.1 Results for Small Changes

Model changes are often small. We realized a program to randomly produce
a number of mutations to a model either by introducing new variables or by
changing the initial condition or transition relation of an existing variable.

This experiment was performed on five examples: Gigamax, MSI, Guidance,
SyncArb and Philo. Results are shown in the upper part of Table 1. The columns
|Update|, |Spec.| and |Task| list for each example the numbers of updates, spec-
ifications, and verification tasks, respectively. The following two column show
the performance of the regression verification with and without assumption
reuse respectively. All performance results (including the number of member-
ship queries |MQ |, the number of equivalence queries |EQ |, and the run time)
are given in average values over all tasks per example. The last column compares
these two approaches. More experiment details of the highlighted example Syn-
cArb will be discussed in Sect. 6.3. The experiment analysis is deferred to the
next subsection. We will combine other examples’ results and give a combined
analysis.

6.2 Results for Significant Changes

During the evolution of a system, new features can be added to improve the
original design. This kind of updates involves significant changes to the original
model.

The second experiment was performed on two examples: Phone and Lift.
These two examples were obtained from the software product-line engineering
community [5,24]. For each example, there are a base model and a set of features.
Each feature is considered as a significant change to the base model. Results of
this experiment are shown in the bottom part of Table 1. The last Total row
gives the average of respective values over all examples, including the examples
mentioned in the former experiment and those in this experiment.

From Table 1, we observe an impressive improvement of our incremental app-
roach with assumption reuse. Depending on examples, the average speed up of
assumption reuse is between 1.26 to 3.79. Over all examples (with 1018 verifica-
tion tasks in total), the average speed up is 3.47. We also find that the number of
queries made by the incremental approach is greatly reduced compared to those
without reuse. Over all examples, the average number of membership queries
|MQ | is reduced by a ratio of 2.89, and the average number of equivalence queries
|EQ | is reduced by a ratio of 3.44. Recall that answering learners’ queries is the
most costly operation in the learning-based assume-guarantee verification, these
results conforms to those about run time.

Learning-Based Assume-Guarantee Regression Verification 323

Table 1. Results for all examples: time in seconds

Example |Update| |Spec.| |Task| with Reuse without Reuse without/with

|MQ| |EQ| Time |MQ| |EQ| Time |MQ| |EQ| Time

Gigamax 35 6 210 657 12 58.41 2962 69 221.57 4.51 5.66 3.79

MSI 23 14 322 196 6 2.78 2695 97 5.99 13.74 16.26 2.15

Guidance 19 15 285 188 12 53.99 1197 82 199.15 6.37 6.76 3.69

SyncArb 10 2 19 1151 62 23.49 5336 425 81.22 4.64 6.85 3.46

Philo 7 1 7 4848 207 57.50 5834 245 72.37 1.20 1.18 1.26

Phone 7 17 119 9176 85 25.38 25917 328 51.66 2.82 3.86 2.04

Lift 7 8 56 40855 783 11.32 100455 1864 21.06 2.46 2.38 1.86

Total 1018 3625 63 32.47 10494 218 112.56 2.89 3.44 3.47

There is no significant difference for the performance improvement of our
incremental approach between the examples with small changes and others with
significant changes. This observation supports that our incremental approach is
applicable to both degrees of model changes.

6.3 Results for a Single Example

Detailed results for SyncArb example are shown in Table 2. The Sat. column
shows a pair of Boolean values (“T” for true, “F” for false), representing the
satisfiability of the specification on the base model and the updated model,
respectively. The term “max” in the last column denotes a divided-by-zero value.
The bottom two rows report the sum and the average of the respective values
over all verification tasks.

With assumption reuse, the numbers of membership queries |MQ | and the
number of equivalence queries |EQ | are 0’s in 15 out of 19 tasks. In other words,
the reused assumptions immediately conclude the second round of verification in
these tasks. This observation further witnesses the usability of assumption reuse
to regression verification.

6.4 Impact of the Satisfiability Results to the Performance

Recall that when models change, the previously established (or falsified) speci-
fications may become unsatisfied (or satisfied). We test in this experiment the
impact of the satisifiability results to the efficiency of our incremental approach.

We group verification tasks of each example by their satisfiability results. In
total, there are four types of groups: both true (denoted as (T, T)), true on the
base model and false on the updated model (denoted as (T, F)), false on the
base model and true on the updated model (denoted as (F, T)), and both false
(denoted as (F, F)). Results are shown in Table 3, where |Task| column lists the
number of verification tasks in each group. Empty groups (with |Task| = 0) are
omitted from the table.

We got very interesting findings from these results. The last column of Table 3
shows that the regression verification is most likely to be improved by the
assumption reuse if the specification was previously satisfied. There are two

324 F. He et al.

Table 2. Results for SyncArb: time in seconds

Spec. Update Sat. with Reuse without Reuse without/with

|MQ| |EQ| Time |MQ| |EQ| Time |MQ| |EQ| Time

1 1 (T, F) 17 1 22.10 6561 551 81.24 385.94 551.00 3.68

2 (T, F) 10083 584 85.45 14312 974 167.75 1.42 1.67 1.96

4 (T, T) 0 0 10.80 6525 550 108.21 max max 10.02

5 (T, F) 7152 358 28.86 17017 1030 531.28 2.38 2.88 18.41

6 (T, F) 0 0 184.56 6525 550 243.95 max max 1.32

7 (T, T) 0 0 5.77 6521 550 85.47 max max 14.81

8 (T, T) 0 0 7.79 6525 550 85.84 max max 11.02

9 (T, T) 0 0 8.43 6510 550 91.17 max max 10.82

10 (T, F) 4618 236 64.83 10693 746 114.12 2.32 3.16 1.76

2 1 (F, F) 0 0 2.64 1972 200 3.28 max max 1.24

2 (F, F) 0 0 2.99 1978 200 3.58 max max 1.20

3 (F, F) 0 0 2.47 1964 200 3.07 max max 1.24

4 (F, F) 0 0 2.85 1974 200 3.61 max max 1.27

5 (F, F) 0 0 2.74 1964 200 3.38 max max 1.23

6 (F, F) 0 0 2.71 1974 200 3.41 max max 1.26

7 (F, F) 0 0 2.74 1974 200 3.35 max max 1.22

8 (F, F) 0 0 2.73 1974 200 3.42 max max 1.25

9 (F, F) 0 0 3.05 1980 200 3.62 max max 1.19

10 (F, F) 0 0 2.76 2440 230 3.36 max max 1.21

Sum 21870 1179 446.28 101383 8081 1543.11 4.64 6.85 3.46

Average 1151 62 23.49 5336 425 81.22 4.64 6.85 3.46

(F, T) groups (Gigamax, Phone) and two (F, F) groups (Guidance, Philo) on
which the assumption reuse leads to notably performance degeneration. In con-
trast, the performance of the regression verification is always improved (or nearly
improved) by assumption reuse in all (T, T) and (T, F) groups. We speculate the
reasons as follows. Recall the assume-guarantee reasoning rule (1). If the spec-
ification is satisfied by the system, we need to find a contextual assumption to
prove both premises in the rule. In contrast, if the specification is dissatisfied
by the system, we need only an assumption that reveals a counterexample to
the specification. Finding a counterexample is always much easier than proving
the correctness. From the viewpoint of reuse, the assumption revealing a coun-
terexample is certainly less useful than the one proving the correctness of the
model.

The Total row in Table 3 gives that the average speedup of the incremental
technique over all examples for (T, T), (T, F), (F, T) and (F, F) groups are 4.12,
1.75, 0.59, and 4.29, respectively. It further shows that the incremental technique
tends to gets the best performance when the staisfiability of the specification are
the same on both models. This phenomenon is also reasonable. Given that many
behaviors are shared between these two models, the previously found proof (or
counterexample) is very likely to be a valid proof (or a valid counterexample)
for the updated model.

Learning-Based Assume-Guarantee Regression Verification 325

Table 3. Results grouped by the satisfiability results on the base and the updated
models: time in seconds

Model Sat. |Task| with Reuse without Reuse without/with

|MQ| |EQ| Time |MQ| |EQ| Time |MQ| |EQ| Time

Gigamax (T, T) 139 0 0 37.12 0 0 55.47 - - 1.49

(T, F) 1 474 31 0.06 474 31 0.08 1.00 1.00 1.36

(F, T) 23 447 10 60.41 1702 40 26.61 3.81 4.05 0.44

(F, F) 47 2706 49 121.60 12392 286 812.92 4.58 5.89 6.69

MSI (T, T) 180 77 2 4.88 3648 124 10.14 47.54 56.12 2.08

(T, F) 4 56 5 0.04 216 18 0.07 3.89 4.00 1.51

(F, T) 1 2808 83 4.97 4369 169 15.99 1.56 2.04 3.22

(F, F) 137 338 10 0.09 1502 64 0.64 4.44 6.14 7.41

Guidance (T, T) 211 0 0 27.86 968 66 211.70 max max 7.60

(T, F) 34 1425 93 176.80 2559 172 299.43 1.80 1.86 1.69

(F, F) 40 127 7 87.47 1250 88 47.71 9.85 11.76 0.55

SyncArb (T, T) 4 0 0 8.20 6520 550 92.67 max max 11.31

(T, F) 5 4374 236 77.16 11022 770 227.67 2.52 3.27 2.95

(F, F) 10 0 0 2.77 2019 203 3.41 max max 1.23

Philo (T, T) 1 0 0 152.92 0 0 212.77 - - 1.39

(T, F) 5 6666 282 38.09 6666 282 57.24 1.00 1.00 1.50

(F, F) 1 608 40 59.15 7511 300 7.58 12.35 7.50 0.13

Phone (T, T) 77 11141 96 35.57 30783 367 76.63 2.76 3.82 2.15

(F, T) 4 15747 159 62.96 20361 252 41.11 1.29 1.58 0.65

(F, F) 38 4502 55 0.78 16643 257 2.17 3.70 4.69 2.77

Lift (T, T) 10 497 8 0.37 185932 3229 51.60 374.41 419.35 138.71

(T, F) 2 172319 3195 44.94 175354 3288 44.31 1.02 1.03 0.99

(F, T) 3 444478 8530 152.80 451580 8780 149.01 1.02 1.03 0.98

(F, F) 41 14752 287 2.00 50262 955 3.11 3.41 3.32 1.56

Total (T, T) 623 1407 13 23.83 8213 159 98.24 5.84 12.57 4.12

(T, F) 51 8804 239 130.93 10343 349 229.30 1.17 1.46 1.75

(F, T) 31 45468 856 67.89 47732 918 39.99 1.05 1.07 0.59

(F, F) 314 3042 57 30.03 11335 245 128.84 3.73 4.30 4.29

1018 3621 63 32.44 10484 218 112.45 2.89 3.44 3.47

7 Related Work

The first technique on learning-based assume-guarantee reasoning was proposed
in [18], where the L∗ algorithm [2] was adopted to learn the DFA representation
of contextual assumptions. The L∗-based assume-guarantee reasoning was fur-
ther optimized in different directions by many researchers, including [1,11,15,30].
An implicit learning framework for assume-guarantee reasoning was proposed
in [14], where contextual assumptions are inferred in their symbolic representa-
tions. Both the BDD learning algorithm [23] and CDNF learning algorithm [8]
have been adapted to this framework. Moreover, the techinque in [21] improves
the implicit learning framework by a progressive witness analysis algorithm.
In [20], the learning-based assume-guarantee reasoning was fruther applied to
probabilistic model checking. Our technique contributes in assume-guarantee
reasoning by providing a new fine-grained learning technique.

326 F. He et al.

Regression verification was investigated mainly in two directions, the equiva-
lence analysis, and the reuse of previously computed results. In the latter direc-
tion, a variety of information have been proposed for reuse in regression verifica-
tion. In [22,29], the state-space graphs are recorded for reuse in latter verification
runs. In [28], the intermediate results of a constraint solver are stored and reused.
In [7], the abstraction precision used for performing predicate abstraction on pre-
vious program is reused. Note that the precision reuse technique is orthogonal to
ours. Our technique contributes in this area by integrating regression verification
and automated assume-guarantee reasoning.

The most relevant work to ours are [9,26]. They used the idea of assumption
reuse to solve the dynamic component substitutability problem. Their technique
requires M ′

0 = M0 and M ′
1 simulates M1. This is surely a severe limitation. We

removed this limitation by fine-grained learning technique. With our technique,
the assume-guarantee regression verification is enabled.

8 Conclusions and Future Work

We presented in this paper a learning-based assume-guarantee regression veri-
fication technique. With this technique, contextual assumptions of the previous
round of verification can be efficiently reused in the current verification. Correct-
ness of this techniques is established. Experimental results (with 1018 verification
tasks) show significant improvements of our technique.

Currently, we implemented a prototype of our technique on top of NuSMV.
We are considering to extend this technique to a component-based modeling
language that allows hierarchical components and sophisticated interactions. We
are also planning to integrate our technique with predicate abstraction, and then
apply it to program verification.

References

1. Alur, R., Madhusudan, P., Nam, W.: Symbolic compositional verification by learn-
ing assumptions. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol.
3576, pp. 548–562. Springer, Heidelberg (2005)

2. Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput.
75(2), 87–106 (1987)

3. Backes, J., Person, S., Rungta, N., Tkachuk, O.: Regression verification using
impact summaries. In: Bartocci, E., Ramakrishnan, C.R. (eds.) SPIN 2013. LNCS,
vol. 7976, pp. 99–116. Springer, Heidelberg (2013)

4. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press, Cambridge
(2008)

5. Berry, M.: Proving properties of the lift system. Master’s thesis, School of Com-
puter Science, University of Birmingham, vol. 199, issue 6 (1996)

6. Beyer, D., Löwe, S., Novikov, E., Stahlbauer, A., Wendler, P.: Precision reuse for
efficient regression verification. In: Proceedings of the 2013 9th Joint Meeting on
Foundations of Software Engineering, pp. 389–399. ACM (2013)

Learning-Based Assume-Guarantee Regression Verification 327

7. Beyer, D., Wendler, P.: Reuse of verification results. In: Bartocci, E.,
Ramakrishnan, C.R. (eds.) SPIN 2013. LNCS, vol. 7976, pp. 1–17. Springer,
Heidelberg (2013)

8. Bshouty, N.H.: Exact learning Boolean function via the monotone theory. Inf.
Comput. 123(1), 146–153 (1995)

9. Chaki, S., Clarke, E., Sharygina, N., Sinha, N.: Verification of evolving software
via component substitutability analysis. Formal Methods Syst. Des. 32(3), 235–266
(2008)

10. Chaki, S., Gurfinkel, A., Strichman, O.: Regression verification for multi-threaded
programs. In: Kuncak, V., Rybalchenko, A. (eds.) VMCAI 2012. LNCS, vol. 7148,
pp. 119–135. Springer, Heidelberg (2012)

11. Chaki, S., Strichman, O.: Optimized L* -based assume-guarantee reasoning. In:
Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 276–291.
Springer, Heidelberg (2007)

12. Chaum, D.: The dining cryptographers problem: unconditional sender and recipient
untraceability. J. Cryptol. 1(1), 65–75 (1988)

13. Chen, Y.-F., Clarke, E.M., Farzan, A., He, F., Tsai, M.-H., Tsay, Y.-K., Wang,
B.-Y., Zhu, L.: Comparing learning algorithms in automated assume-guarantee
reasoning. In: Margaria, T., Steffen, B. (eds.) ISoLA 2010, Part I. LNCS, vol.
6415, pp. 643–657. Springer, Heidelberg (2010)

14. Chen, Y.-F., Clarke, E.M., Farzan, A., Tsai, M.-H., Tsay, Y.-K., Wang, B.-Y.:
Automated assume-guarantee reasoning through implicit learning. In: Touili, T.,
Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 511–526. Springer,
Heidelberg (2010)

15. Chen, Y.-F., Farzan, A., Clarke, E.M., Tsay, Y.-K., Wang, B.-Y.: Learning minimal
separating DFA’s for compositional verification. In: Kowalewski, S., Philippou, A.
(eds.) TACAS 2009. LNCS, vol. 5505, pp. 31–45. Springer, Heidelberg (2009)

16. Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M.,
Sebastiani, R., Tacchella, A.: NuSMV 2: an opensource tool for symbolic model
checking. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp.
359–364. Springer, Heidelberg (2002)

17. Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge
(1999)

18. Cobleigh, J.M., Giannakopoulou, D., Păsăreanu, C.S.: Learning assumptions for
compositional verification. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS,
vol. 2619, pp. 331–346. Springer, Heidelberg (2003)

19. Gavaldà, R., Guijarro, D.: Learning ordered binary decision diagrams. In:
Zeugmann, T., Shinohara, T., Jantke, K.P. (eds.) ALT 1995. LNCS, vol. 997, pp.
228–238. Springer, Heidelberg (1995)

20. He, F., Gao, X., Wang, B.Y., Zhang, L.: Leveraging weighted automata in compo-
sitional reasoning about concurrent probabilistic systems. In: Proceedings of the
42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pp. 503–514. ACM (2015)

21. He, F., Wang, B.Y., Yin, L., Zhu, L.: Symbolic assume-guarantee reasoning through
BDD learning. In: ICSE, pp. 1071–1082. ACM (2014)

22. Lauterburg, S., Sobeih, A., Marinov, D., Viswanathan, M.: Incremental state-space
exploration for programs with dynamically allocated data. In: Proceedings of the
30th International Conference on Software Engineering, pp. 291–300. ACM (2008)

23. Nakamura, A.: An efficient query learning algorithm for ordered binary decision
diagrams. Inf. Comput. 201(2), 178–198 (2005)

328 F. He et al.

24. Plath, M., Ryan, M.: Feature integration using a feature construct. Sci. Comput.
Program. 41(1), 53–84 (2001)

25. Sery, O., Fedyukovich, G., Sharygina, N.: Incremental upgrade checking by means
of interpolation-based function summaries. In: Formal Methods in Computer-Aided
Design (FMCAD), pp. 114–121. IEEE (2012)

26. Sharygina, N., Chaki, S., Clarke, E., Sinha, N.: Dynamic component substitutabil-
ity analysis. In: Fitzgerald, J.S., Hayes, I.J., Tarlecki, A. (eds.) FM 2005. LNCS,
vol. 3582, pp. 512–528. Springer, Heidelberg (2005)

27. Strichman, O., Godlin, B.: Regression verification - a practical way to verify
programs. In: Meyer, B., Woodcock, J. (eds.) VSTTE 2005. LNCS, vol. 4171,
pp. 496–501. Springer, Heidelberg (2008)

28. Visser, W., Geldenhuys, J., Dwyer, M.B.: Green: reducing, reusing and recycling
constraints in program analysis. In: Proceedings of the ACM SIGSOFT 20th Inter-
national Symposium on the Foundations of Software Engineering, p. 58. ACM
(2012)

29. Yang, G., Dwyer, M.B., Rothermel, G.: Regression model checking. In: IEEE Inter-
national Conference on Software Maintenance, ICSM 2009, pp. 115–124. IEEE
(2009)

30. Zhu, H., He, F., Hung, W.N., Song, X., Gu, M.: Data mining based decomposition
for assume-guarantee reasoning. In: FMCAD, pp. 116–119. IEEE (2009)

Automated Circular Assume-Guarantee
Reasoning with N-way Decomposition

and Alphabet Refinement

Karam Abd Elkader1(B), Orna Grumberg1,
Corina S. Păsăreanu2, and Sharon Shoham3

1 Technion – Israel Institute of Technology,
Haifa, Israel

skaramt@gmail.com
2 CMU/NASA Ames Research Center,

Mountain View, USA
3 Tel Aviv University, Tel Aviv, Israel

Abstract. In this work we develop an automated circular reasoning
framework that is applicable to systems decomposed into multiple compo-
nents. Our framework uses a family of circular assume-guarantee rules for
which we give conditions for soundness and completeness. The assump-
tions used in the rules are initially approximate and their alphabets are
automatically refined based on the counterexamples obtained from model
checking the rule premises. A key feature of the framework is that the
compositional rules that are used change dynamically with each iteration
of the alphabet refinement, to only use assumptions that are relevant for
the current alphabet, resulting in a smaller number of assumptions and
smaller state spaces to analyze for each premise. Our preliminary eval-
uation of the proposed approach shows promising results compared to
2-way and monolithic verification.

1 Introduction

We present an automated assume-guarantee style compositional approach to
address the state explosion problem in model checking. Model checking [7] is a
well-known technique for automatically checking that software systems satisfy
desired properties. Despite its many successes, the technique suffers from the
state explosion problem, which refers to the worst-case exponential growth of a
program’s state space with the number of variables and concurrent components.
Compositional techniques have shown promise in addressing this problem, by
breaking-up the global verification of a system into the local, more manage-
able, verification of the system’s individual components. The environment for
each component, consisting of the other components, is replaced by a “small”
assumption, making each verification task easier. This is often referred to as
assume-guarantee reasoning [21,24].

Significant progress has been made on automating compositional reasoning
using learning and abstraction-refinement techniques [2–6,8,23]. Most of this

c© Springer International Publishing Switzerland 2016
S. Chaudhuri and A. Farzan (Eds.): CAV 2016, Part I, LNCS 9779, pp. 329–351, 2016.
DOI: 10.1007/978-3-319-41528-4 18

330 K.A. Elkader et al.

work has been done in the context of applying a simple compositional assume-
guarantee rule, where components of a system are checked using assumptions
and properties which are related in an acyclic manner.

Another important category of assume-guarantee rules involves circular
reasoning and uses inductive arguments over time to ensure soundness
[1,15,18,19,21]. Circular rules have often been found to be more effective than non-
circular rules [13,14,18–20,25]. However, their applicability has been hindered by
the manual effort involved in defining assumptions, while automation remained a
challenge due to the more involved inductive reasoning and the mutual dependency
between assumptions.

Recent work [10] proposed an automated compositional technique for cir-
cular reasoning which has shown better scalability results compared with an
established learning-based method which implements acyclic reasoning [8]. This
circular technique is only applicable to a system decomposed into two compo-
nents (or two subsystems), thus limiting its applicability in practice. Further,
the constructed assumptions are defined over the full interface alphabet of the
components, thus causing a blowup in the sizes of the assumptions (and the
verification tasks) that is in many cases unnecessary.

We propose an automated circular assume-guarantee technique for reasoning
about systems decomposed into an arbitrary (but fixed) number of components.
We consider a synchronous composition, where components synchronize on the
common alphabet (shared actions), and interleave on the remaining actions. We
give a generic n-component circular rule which can be instantiated into a number
of circular rules that can be used for verification. The rule checks that a system
composed of M1, M2 .. Mn satisfies safety property P based on assumptions
gi (1 ≤ i ≤ n). The first n premises of the rule have the form Mi |= Gi � gi

and the last premise is Gn |= P (to be formally defined later). The first n
premises verify, for each gi, that it is a correct “guarantee” of Mi, based on a
set Gi of “assumptions” representing the guarantees of other components. The
last premise ensures that P holds under the assumptions.

We further devise an algorithm that automates the process of building the
assumptions gi based on SAT solving. The algorithm works for any rule that
can be derived from the generic rule. The assumption generation algorithm can
be viewed as a two layered counterexample-guided search, where the outer layer
searches for appropriate assumption alphabets, and the inner layer searches for
appropriate assumptions, given a set of alphabets for each of the assumptions.

In the inner layer, the search for assumptions with fixed alphabets is per-
formed similarly to [10]. The algorithm starts with approximate assumptions for
all components, and attempts to apply the rule. When the application fails, i.e.,
at least one of the premises of the rule does not hold, the algorithm uses the
counterexamples obtained from checking the failed premises to accumulate joint
constraints on behaviors (traces) that should or should not be exhibited by the
assumptions. These constraints reflect dependencies between assumptions of dif-
ferent components – which is essential for exploiting the circularity of the rule.
A SAT solver is then used to determine how to update the assumptions while
satisfying all the constraints.

Automated Circular Assume-Guarantee Reasoning 331

The inner search may return a set of minimal assumptions over the given
alphabets that satisfy the rule premises. In this case, we conclude that the prop-
erty holds and the overall algorithm terminates. Alternatively, the inner search
may return a counterexample in the form of a trace of the system over the partial
alphabet that violates the property. Since the alphabet is partial, the counterex-
ample is abstract : it might turn out to be infeasible (spurious) when considering
the full alphabet (which adds synchronization constraints). Feasibility of the
abstract counterexample is checked by the outer layer.

The outer layer employs an iterative refinement over the alphabets of the
assumptions. It starts with only a subset of the interface alphabet of the com-
ponents which is sufficient to guarantee soundness of the proof rule and it adds
actions to it only as needed. Actions to be added are discovered by analysis of
counterexamples obtained from the inner layer. The analysis attempts to extend
the counterexample to a trace over the full system alphabet. If the counterex-
ample is successfully extended (indicating a real error in the system), the overall
algorithm terminates. Otherwise, new actions are added to the alphabet and a
new iteration of the inner search begins. Intuitively these new actions are suf-
ficient for preventing the same counterexample to appear in future iterations.
Finally, either a concrete counterexample is found, or the property is verified via
a successful application of the rule.

A key feature of our approach is the interplay between the two layers of
the search, which manifests itself in two ways. First, the abstraction of the
alphabet gives rise to simplifications of the assume-guarantee rule. We show
that any rule can be simplified based on the inter-dependency induced by the
assumption alphabets. Namely, in each premise Mi |= Gi � gi, assumptions in
Gi that contain no common actions with either gi or with other assumptions in
Gi that share actions with gi can be safely eliminated from Gi, since they do
not affect the outcome of checking the premise. The last premise gets simplified
as well and the resulting rule becomes easier to check than the original rule.
As the alphabets change with each iteration of alphabet refinement, so do the
dependencies between assumptions. This leads to different simplifications of the
assume-guarantee rule in different iterations. Hence, even though the algorithm
searches assumptions for a fixed rule, the rules used by the inner search change
dynamically between different “outer” iterations.

The second interaction point between the two layers is in the constraints
on the assumptions accumulated by the assumption generation algorithm. In
each alphabet refinement step, some of these constraints are refined as well
according to the new alphabet and are re-used by the inner layer. This makes the
search for assumptions incremental, resulting in better running time and faster
convergence.

Our preliminary evaluation shows that circular compositional reasoning with
n-way decomposition, alphabet refinement and dynamic rule simplification can
significantly outperform both 2-way compositional and monolithic verification.

Related Work. While the literature on assume-guarantee reasoning is vast,
for space reason, we only discuss here some closely related work. Previous work
has proposed learning and abstraction-refinement techniques for automating the

332 K.A. Elkader et al.

generation of assumptions [2–6,8,12,23]. This work has been done in the context
of applying simple compositional rules, where there is no circular dependency
between assumptions and no inductive reasoning involved. Our automatic alpha-
bet refinement uses the heuristics from previous work [11] which were developed
for non-circular reasoning. Note however that unlike [11] our approach is incre-
mental, i.e. it re-uses the results across refinement iterations. Further we employ
rule simplification based on the current alphabet which is new. N-way decompo-
sitions were handled in e.g. [23] by a recursive application of a non-circular rule.
Unlike our approach, that work is sensitive to the order in which the components
are analyzed and is not incremental. Our search for minimal assumptions using
SAT with an increasing bound is inspired by [12]. However there, a single (sepa-
rating) assumption is generated while we generate multiple mutually dependent
assumptions.

Circular rules have been studied extensively [1,15,18,19,21], however not for
full automation as we do here. The approach in [10] addresses assumption gen-
eration for 2-way circular reasoning, shown to perform better than non-circular
reasoning. We improve on it by providing N-way compositional reasoning and
incremental alphabet refinement. An interesting result [22] makes the connection
between circular and non-circular rules, using complex (auxiliary) assumptions
that use induction over time. Recent work [16] addresses synthesizing circular
compositional proofs based on logical abduction. A key difference is that they
refer to a decomposition of a sequential program, while we consider concurrent
systems. Similar to [16], the approach in [20] also employs a circular composi-
tional approach and uses different abstractions to discharge proof subgoals.

2 Preliminaries

We use Labeled Transition Systems (LTSs) to model the behavior of commu-
nicating components in a concurrent system. We briefly present here LTSs and
semantics of their operators following the presentation in [10]. Let Act be a set
of actions and let τ �∈ Act denote a special “local” action.

Definition 1. A Labeled Transition System (LTS) M is a quadruple
(Q,A, δ, q0) where Q is a finite set of states, A ⊆ Act denotes the alphabet
of M , δ ⊆ Q × (A ∪ {τ}) × Q is a transition relation, and q0 ∈ Q is the initial
state.

Throughout the paper we use αM to denote the alphabet of an LTS M .

Paths and Traces. A trace σ is a sequence of actions, not including τ . We use
σi to denote the prefix of σ of length i. A path in an LTS M is a sequence p =
q0, a0, q1, a1 · · · , an−1, qn of alternating states and actions of M , such that for
every k ∈ {0, . . . , n−1} we have (qk, ak, qk+1) ∈ δ. The trace of p is the sequence
of actions along p, obtained by removing from a0 · · · an−1 all occurrences of τ .
The set of traces obtained from all the paths in M forms the language of M ,
denoted L(M). Note that L(M) is prefix-closed.

Automated Circular Assume-Guarantee Reasoning 333

An LTS M = (Q,αM, δ, q0) is deterministic (denoted as DLTS) if it contains
no τ transitions and no transitions (q, a, q′), (q, a, q′′) ∈ δ such that q′ �= q′′. Any
LTS can be converted to a deterministic LTS that recognizes the same language.

Projections. For Σ ⊆ Act, projection σ↓Σ is the trace obtained by removing
from σ all actions a �∈ Σ. M↓Σ is defined as the LTS over alphabet Σ obtained
by renaming to τ all the actions that are not in Σ. Note that L(M↓Σ) = {σ↓Σ |
σ ∈ L(M)}.

Parallel Composition. Let M1 = (Q1, αM1, δ1, q01) and M2 =
(Q2, αM2, δ2, q02) be two LTSs. Then M1‖M2 is an LTS M = (Q,αM, δ, q0),
where Q = Q1 × Q2, q0 = (q01 , q02), αM = αM1 ∪ αM2, and δ is defined as
follows where a ∈ αM ∪ {τ}:

– if (q1, a, q′
1) ∈ δ1 for a �∈ αM2, then ((q1, q2), a, (q′

1, q2)) ∈ δ for every q2 ∈ Q2,
– if (q2, a, q′

2) ∈ δ2 for a �∈ αM1, then ((q1, q2), a, (q1, q′
2)) ∈ δ for every q1 ∈ Q1,

– if (q1, a, q′
1) ∈ δ1 and (q2, a, q′

2) ∈ δ2 for a �= τ , then ((q1, q2), a, (q′
1, q

′
2)) ∈ δ.

Lemma 1 [8]. For every t ∈ (αM1 ∪ . . . ∪ αMn)∗, t ∈ L(M1‖ . . . ‖Mn) if and
only if t↓αMi

∈ L(Mi) for every 1 ≤ i ≤ n.

We define the interface alphabet of a component (with respect to the rest of
the system) as follows.

Definition 2 (Interface Alphabet). For 1 ≤ i ≤ n, the interface alphabet of
Mi w.r.t. M1‖M2‖ · · · ‖Mn, denoted αJi, is: αJi = αMi ∩ (⋃{αMj | 1 ≤ j ≤
n, j �= i}).

Intuitively, the interface alphabet of Mi contains all the actions that are
common between Mi and its environment.

Safety Properties. A safety property is specified as an LTS P . An LTS M over
αM ⊇ αP satisfies P , denoted M |= P , if for every σ ∈ L(M), σ↓αP ∈ L(P). A
trace σ ∈ αM∗ is a counterexample for M |= P if σ ∈ L(M) but σ↓αP �∈ L(P).

To check M |= P , the LTS of P is transformed into a deterministic LTS,
which is completed with a special “error state” π by adding transitions from
every state q in the deterministic LTS to π for all the missing outgoing actions
of q; the resulting LTS is called an error LTS, denoted by Perr. Checking M |= P
reduces to checking that π is not reachable in M‖Perr.

Assume-Guarantee Formulas. In the circular assume-guarantee reasoning
paradigm a formula has the form M |= A � P , where M , A and P are LTSs.
Intuitively M stands for a component, A for an assumption about M ’s environ-
ment (i.e. the rest of the components in the system), and P for a property that
is “guaranteed” by the component.

Definition 3. Let M,A and P be LTSs such that αP ⊆ αM . Then M |= A�P
holds if for every k ≥ 1 and for every σ ∈ (αM ∪ αA)∗ of length k such that
σ↓αM ∈ L(M), if σk−1↓αA ∈ L(A) then σ↓αP ∈ L(P).

334 K.A. Elkader et al.

Checking M |= A � P is done by building the LTS M‖A‖Perr and labeling
its states with (parameterized) propositions erra, where a ∈ αP . (sM , sA, sP)
is labeled by erra if sM has an outgoing transition in M labeled by a, but the
corresponding transition (labelled by a) leads to π in Perr. We then check if a
state labeled by erra is reachable or not in M‖A‖Perr [10].

Notations. For LTSs M and P and a finite nonempty set G = {g1, . . . , gk} of
LTSs, we use G |= P as a shorthand for g1‖ · · · ‖gn |= P , and M |= G � P as
a shorthand for M |= g1‖ . . . ‖gk � P . Moreover, if G = ∅, then M |= G � P
denotes M |= P . Given a set S of LTSs, we denote by αS their alphabet union,
i.e. αS =

⋃
M∈S αM .

3 Circular Reasoning with N-way Decomposition

In this section we introduce the family of circular assume-guarantee rules that
form the basis of our technique for proving that a system composed of a finite
number of components M1‖M2 . . . ‖Mn (n is fixed) satisfies a safety property
P . We use a set of n auxiliary properties G = {g1, g2 . . . gn}. Components and
properties are described by Labeled Transition Systems (LTSs) such that αP ⊆
n⋃

i=1

αMi; further, gi is the “guarantee” property for Mi, specified as an LTS over

alphabet αgi ⊆ αMi.
Instead of using a particular assume-guarantee rule, we propose to use a

generic rule that defines multiple assume-guarantee rules, all following the same
general pattern:

(Premise 1) M1 |= G1 � g1
(Premise 2) M2 |= G2 � g2

. . .
(Premise n) Mn |= Gn � gn

(Premise n+1) Gn+1 |= P
M1‖M2‖ · · · ‖Mn |= P

In each premise i, Gi represents the set of left-hand side assumptions to be
used in the premise and is defined such that Gi ⊆ G−{gi} for i < n+1, i.e. the
“guarantees” of the other components are used as “assumptions” when checking
Mi. Furthermore Gn+1 = G, i.e. all the assumptions are used in the last premise.
There are many rules that can be derived from the above pattern. For example,
one rule can be derived by requiring the maximal number of assumptions for each
premise, i.e. each Gi contains all the assumptions except gi (we use this rule in
our experiments). Another rule can be derived by requiring on the contrary a
minimal number of assumptions to be used in each premise. For instance, Gi

may contain only the assumptions that share actions with gi. In fact sets G1, ..
Gn can be chosen arbitrarily (possibly guided by domain knowledge), as long as
each Gi is a subset of G − {gi}.

Automated Circular Assume-Guarantee Reasoning 335

As an example, for n = 2, the instantiation G1 = {g2}, G2 = {g1} and
G3 = {g1, g2} gives rule CIRC-AG from [10].

One can use such rules to check the system in a compositional way: instead
of checking M1‖M2 . . . ‖Mn directly, which may be too expensive, we can check
each premise separately, which is potentially much cheaper. However coming
up manually with assumptions g1, g2, .. gn that are sufficient for proving or
disproving the property, and at the same time are small enough to enable efficient
verification is very difficult. The goal of our work is to derive the assumptions
automatically. Furthermore we aim to simplify the rule to eliminate unnecessary
assumptions and premises, to enable efficient verification.

Soundness and Completeness. We first argue the soundness and complete-
ness of any rule that can be obtained from the general rule. Let CIRC − AGN

denote a rule derived from the general rule, i.e. we fix the assumption sets G1,
G2, . . . , Gn, Gn+1 such that Gi ⊆ G − {gi} for i < n + 1 and Gn+1 = G.

Similarly to the 2-component rule used in [10] we need additional conditions
on the assumption alphabets to ensure soundness and completeness. Soundness
is ensured by requiring αgi ⊇ αMi ∩ αP for every 1 ≤ i ≤ n. Completeness
is ensured by considering assumptions over alphabets that include the interface
alphabets of the components, i.e. we require αgi ⊇ (αMi ∩ αP) ∪ αJi for every
1 ≤ i ≤ n (we say that this is the completeness condition). We use αF (gi) to
denote (αMi ∩ αP) ∪ αJi, i.e. the alphabet sufficient for completeness.

Theorem 1. Rule CIRC-AGN is sound if αgi ⊇ αMi ∩αP for every 1 ≤ i ≤ n.
It is complete if αgi ⊇ (αMi ∩ αP) ∪ αJi for every 1 ≤ i ≤ n.

Intuitively, premises 1, . . . , n prove in a compositional and inductive manner
that every trace in the language of M1‖M2‖ · · · ‖Mn is also included in the
language of g1‖g2‖ · · · ‖gn while the last premise ensures that every trace in the
language of g1‖g2‖ · · · ‖gn is also in the language of P . Completeness stems from
the fact that M1,M2, . . . ,Mn (restricted to appropriate alphabets) can be used
for g1, g2, . . . , gn in a successful application of the rule.

Note that we can remove the completeness condition on the alphabets to
obtain rules that are sound but not necessarily complete. These rules would still
be useful in practice since the alphabet assumptions are smaller, and therefore
the assumptions necessary for the proof may be smaller as well and easier to
check. Furthermore, this would give us more opportunities to simplify the rules
by removing the assumptions that become irrelevant for the proof, due to the
smaller alphabets used. This simplification is described in the next section.

4 Alphabet-Based Simplification

At the heart of our automated approach is a method for simplifying the assume-
guarantee rules as dictated by the assumption alphabets. Specifically, when we
apply our technique, we fix an n-way rule, and an initial alphabet for each
assumption. The alphabets induce a simplification of the rule which makes the

336 K.A. Elkader et al.

Algorithm 1 . Main algorithm for checking M1‖M2‖ . . . ‖Mn |= P using
CIRC-AGN

1: procedure ACR

2: Initialize: A = αP , C = ∅, k = n, IncTr = ∅
3: αgi

�
= A ∩ αMi, ∀1 ≤ i ≤ n // Initially αgi = αP ∩ αMi

4: while (true) do

5: repeat

6: (g1, g2, . . . , gn) =GenAssmp(C, k, A)

7: (C′, Result, IncTr′) =ApplyAG(g1, g2, . . . , gn) using S(CIRC-AGN)

8: C = C ∪ C′, k =
n∑

i=1
|gi|, IncTr = IncTr ∪ IncTr′

9: until (Result �= “continue”)

10: if (Result ==“false”(σ)) then // σ is a cex for M1↓αg1‖ . . . ‖Mn↓αgn |= P

11: (A, C, k, Result) =AlphaRefine(σ, A, IncTr)

12: if (Result == “false”) then return “false” // else continue to next iteration

13: else return “true”

rule easier to check (premises become simpler, and some premises become redun-
dant). When the alphabets are refined, the simplification of the rule changes
accordingly. Hence, essentially, the rule changes dynamically during the compo-
sitional verification.

We describe here this rule simplification. Let CIRC-AGN be an assume-
guarantee rule. Suppose that we fix the alphabets over which the assumptions are
defined, such that the rule is sound. These alphabets induce a natural simplifica-
tion of the rule as follows. We define assumptions of Gi that directly affect gi as
the assumptions that have common actions with Mi. This provides the basis of
an inductive definition, as other assumptions in Gi indirectly affect gi if they have
common actions with an assumption in Gi that (directly or indirectly) affects gi.

The dependency between assumptions can be computed statically, by build-
ing, for each premise i, a graph where vertices are the assumptions in Gi ∪ {gi},
and edges are common actions between them (except that edges of gi represent
common actions with Mi). The assumptions which are not connected to gi can
be safely eliminated from Gi since they cannot influence the outcome of checking
the premise.

We also define the set of assumptions from Gn+1 = {g1, . . . , gn} that affect
P (directly or indirectly) in a similar way. All the assumptions that do not share
actions with P (directly or indirectly) can be eliminated from the last premise.
Furthermore the removed assumptions become redundant and their premises are
removed altogether.

For a premise i, let S(Gi) denote the set of assumptions used in the premise
after simplification. The following lemma states that each simplified premise is
equivalent to the original one.

Lemma 2. Mi |= S(Gi) � gi iff Mi |= Gi � gi for i ≤ n. S(Gn+1) |= P iff
Gn+1 |= P .

It follows that we can use the simplified rule instead of the original rule, to
obtain the same results.

Automated Circular Assume-Guarantee Reasoning 337

Example 1. Consider the (last) premise of a rule that has the form g1||g2||g3 |=
P with αg1 = {a, b}, αg2 = {b}, αg3 = {c} and αP = {a, b}. Since assumption
g3 contains neither actions that participate in the parallel composition with g1
and g2 nor actions that appear in the property, we can safely remove it resulting
in a simplified premise g1||g2 |= P which is cheaper to check and results in faster
convergence of our algorithms, as explained later in the paper.

If, on the other hand, we consider the same rule with increased alphabets
αg1 = {a, b, d} and αg3 = {c, d}, then simplification will leave the last premise
unchanged.

Thus, for a given rule, and by varying the assumption alphabets, we can
obtain a family of sound rules using alphabet-based simplifications. If the alpha-
bets satisfy the completeness condition, the rules are complete as well.

5 Automated Circular Reasoning

In this section we provide an overview of our Automated Circular Reasoning
(ACR) algorithm for the compositional verification of a system composed of
M1, . . . ,Mn with respect to property P , where n is fixed. The pseudocode of the
algorithm appears in Algorithm1. ACR can be used with any rule that can be
derived from the general pattern described in Sect. 3. Let CIRC-AGN be such a
rule. The assumptions to be used in the rule are derived automatically using a
two layered approach which combines iterative assumption generation (the inner
layer) with automatic refinement over the assumption alphabets (the outer layer).
The two layers are closely intertwined.

The algorithm maintains in A the current assumption alphabet, where
αgi = A ∩ αMi, for 1 ≤ i ≤ n. In the following, we use A and αg1, . . . , αgn

interchangeably, as the former determines the latter. In addition, the algorithm
maintains a set of constraints C on the desired assumptions and a bound k,
which is the sum of the number of states in each assumption. The algorithm also
maintains a set IncTr of incremental traces, whose role will become clear in the
sequel.

Initially, we allow for each assumption to have a single state, hence k = n
for n assumptions. The assumption alphabets over which the assumptions are
derived are initialized as follows: A = αP , which means that αgi = αP ∩ αMi

for each 1 ≤ i ≤ n. These are the minimal sets needed to guarantee soundness.
The sets C and IncTr are both initialized to the empty set.

Iterative Assumption Generation. The inner layer of the algorithm builds
assumptions over alphabets αg1, . . . , αgn iteratively (in the “repeat ... until”
loop, lines 5–9) based on the collected constraints C and the bound k (proce-
dure GenAssmp). For the current assumptions g1, . . . , gn, the framework runs
model checking to check the premises of the (simplified) assume-guarantee rule
(see procedure ApplyAG). The result returned by ApplyAG is either “true”,
“continue” or “false” (together with a counterexample σ): “true” indicates that
all the premises of the rule hold, so ACR finishes returning that the property

338 K.A. Elkader et al.

holds (since the rule is sound); “continue” means that the analysis was inconclu-
sive. Hence the inner loop continues its execution, with a new set of constraints
C ′ that is added to C, resulting in a refinement of the assumptions in the next
iteration. The third case (“false”) requires further analysis to determine if the
counterexample obtained for M1↓αg1‖ . . . ‖Mn↓αgn

|= P is real or if the assump-
tion alphabets need to be refined. This is explained in more detail below.

Alphabet Refinement. To reduce the complexity of the verification task, we
use alphabet refinement over the assumption alphabets. This is the role of the
outer layer of our algorithm (in the “while” loop, lines 4–13). Our motivation
is that even though completeness of the rule is only guaranteed for the “full”
assumption alphabets (i.e. αF (gi)), there may be smaller alphabets that are
enough to prove or disprove the property, and at the same time enable more effi-
cient verification. We aim to discover them iteratively starting with the minimal
alphabets that guarantee soundness and only enlarging them as needed.

As long as only subsets of the alphabets are used for the assumptions, coun-
terexamples that are found by the inner loop for M1↓αg1‖ . . . ‖Mn↓αgn

|= P
might not indicate a real error in M1‖ . . . ‖Mn, i.e. the counterexamples may
be “spurious”. Procedure AlphaRefine performs a counterexample analysis to
determine if a counterexample is real or not. In the former case, ACR termi-
nates and reports an error. In the latter case AlphaRefine uses heuristics to
add actions to A (and accordingly to αgi) that are guaranteed to avoid produc-
ing the same counterexample in subsequent iterations. AlphaRefine returns
“continue” with a new alphabet A, and ACR executes a new iteration.

A key novelty of our approach is that the assume-guarantee rules change
dynamically during alphabet refinement. With each update to A, rule CIRC-
AGN is simplified according to the procedure described in Sect. 4 and procedure
ApplyAG applies the simplified rule (denoted S(CIRC-AGN)). As the algorithm
progresses, the assumption alphabets change resulting in new simplifications
applied to the rule.

When alphabet refinement takes place, we need to restart the construction
of assumptions (in the inner loop) with a new set of assumptions that are built
over the new alphabets. We have optimized this step by re-using some of the con-
straints from the previous iteration. The set IncTr keeps track of the traces used
to derive the constraints. The refined constraints are used to initialize the gi’s
in the new iteration. Our incremental approach avoids getting and re-analyzing
traces that were already removed at previous iterations. Thus, it reduces the
number of iterations and improves runtime.

Theorem 2. (Correctness and Termination) The framework implemented by
ACR terminates and returns true if M1‖M2..‖Mn |= P and false otherwise.

Partial correctness holds since ACR returns true if and only if all premises
of CIRC-AGN hold, in which case correctness follows from the soundness of the
rule. Further, if ACR returns false, then this corresponds to σ being a coun-
terexample in M1↓αF (g1)‖..Mn↓αF (gn) (see AlphaRefine) which corresponds
to a real counterexample (Lemma 7).

Automated Circular Assume-Guarantee Reasoning 339

As for termination, ACR executes a new iteration of the inner loop if the
assumptions need to be refined (but the alphabet stays the same). For a given
A, there can only be finitely many iterations before “true” or “false” is obtained
from ApplyAG. This is shown similarly to [10]. A “true” result makes ACR
terminate, while a “false” result might lead to an alphabet refinement step (if
the counterexample does not extend to all actions). The result of refinement is
that more interface actions are added to A, and a new iteration of the outer loop
is executed. In the worst case, all interface actions are added (if no conclusive
reply is obtained before) in which case no more spurious counterexamples can
be obtained and the algorithm is guaranteed to terminate.

6 Iterative Construction of Assumptions over a Given
Alphabet

In this section we describe in detail the inner layer of ACR, which searches for
assumptions over a given alphabet. As we explain next, this can be understood as
a search for assumptions for an abstract system, where the abstraction is defined
by the alphabet.

Recall that A = αg1 ∪ .. ∪ αgn. The assumption alphabets induce a natural
abstraction over the system by projecting each component Mi to the alphabet
αgi, i.e. M1↓αg1‖M2↓αg2‖..Mn↓αgn

. This is an abstraction since Mi↓αgi
= Mi↓A

for every 1 ≤ i ≤ n, and L(M1‖M2‖..Mn)↓A ⊆ L(M1↓A‖M2↓A‖..Mn↓A) [8].
Further, note that since αGi, αgi ⊆ A, premises of the form Mi |= Gi �gi are

equivalent to Mi↓A |= Gi � gi. Intuitively this means that applying CIRC-AGN

with the alphabets restricted to A can be interpreted as a compositional analysis
of the abstracted system M1↓αg1‖M2↓αg2‖..Mn↓αgn

, which may be smaller and
therefore easier to analyze (i.e. may require smaller assumptions to be used in
the rule). Furthermore note that the rule is complete for this abstraction, since
the alphabets of the abstract components Mi↓αgi

are equal to the assumption
alphabets, ensuring that the alphabets satisfy the completeness condition in the
abstraction.

6.1 Assumption Generation in GenAssmp

Given a set of constraints C, a lower bound k on the total number of states
in

∑n
i=1 |gi|, and an alphabet sequence A, GenAssmp computes assumptions

g1, g2, · · · , gn over A that satisfy C. Assumptions are built as deterministic
LTSs. The implementation of GenAssmp is a natural generalization of previous
work [10] where it was used to generate two assumptions. Roughly speaking, for
each value of k starting from the given k, GenAssmp creates a SAT instance
SatEnck(C) that encodes the structure of the desired DLTSs g1, g2, · · · , gn (e.g.,
deterministic and prefix closed) with

∑n
i=1 |gi| ≤ k, as well as the requirement

that they satisfy the constraints in C. GenAssmp then searches for a satisfying
assignment and transforms the satisfying assignment into DLTSs g1, g2, · · · , gn

that satisfy all the constraints in C. The bound k is increased only when
SatEnck(C) is unsatisfiable, hence minimal DLTSs that satisfy C are obtained.

340 K.A. Elkader et al.

The key difference in our encoding compared to [10] is the need to handle dis-
junctive constraints with up to n disjuncts (as opposed to 2 in [10]). While in [10]
each disjunctive constraint with 2 disjuncts is handled with a single “selector”
variable, we use log n selector variables to encode a disjunctive constraint with
n disjuncts.

6.2 ApplyAG Algorithm

Given assumptions g1, g2, . . . , gn, ApplyAG (see Algorithm 2) applies assume-
guarantee reasoning with the current circular rule simplified under the current
alphabets. This is done by model checking all premises of the rule (the order
does not matter).1 If all the premises are satisfied, then, since the rule is sound,
it follows that M1‖M2‖ · · · ‖Mn |= P holds (and the result “true” is returned
to the user). Otherwise, at least one of the premises does not hold and a coun-
terexample trace is found.

ApplyAG performs an analysis of the counterexample trace as described
below. The counterexample analysis is performed with respect to the projections
Mi↓αgi

.
The counterexample analysis may conclude that “M1↓αg1‖ . . . ‖Mn↓αgn

� |=
P”, indicating an error in the abstract system induced by the current alphabet, in
which case “false” is returned. Recall, however, that due to the abstraction this is
not necessarily an error in M1‖ . . . ‖Mn. If the analyzed trace does not correspond
to an error in the abstract system, we conclude that the counterexample is a
result of imprecise assumptions. We then compute a set of new constraints C on
the assumptions in order to avoid getting the same counterexample in subsequent
iterations and return “continue”.

Similar to [10] we use constraints to gather information about traces over the
current alphabet that need or need not be in the languages of the assumptions.
The constraints are of the form: +(σ, i) – meaning that σ should be in L(gi),
−(σ, i) – meaning that σ should not be in L(gi), or boolean combinations of
them, where σ ∈ αgi

∗.
The check for an error in the abstract system or for new constraints is per-

formed by ApplyAG directly (if last premise failed) or by UpdateConstraint
(if other premises failed). Essentially the counterexample indicates an error if it
corresponds to a trace in each Mi↓αgi

and furthermore it violates the prop-
erty. Since all assumptions whose alphabet affects P (directly or indirectly) are
in S(Gn+1), it suffices to check membership in Mi↓αgi

for every gi ∈ S(Gn+1)
when searching for an error. The formal justification is provided by the following
lemma:

Lemma 3. Let S(Gn+1) = {gi1 , . . . , gik
}. Then M1↓αg1‖ · · · ‖Mn↓αgn

|= P if
and only if Mii

↓αgi1
‖ · · · ‖Mik

↓αgik
|= P .

1 The check of the premise i is performed over the full alphabet of Mi in order to main-
tain the set IncTr which enables our incremental approach for alphabet refinement,
as explained in Sect. 7. In addition, it helps in detecting errors.

Automated Circular Assume-Guarantee Reasoning 341

Algorithm 2 . Applying S(CIRC-AGN) with g1, g2, . . . gn, and constraint
updating.
1: procedure ApplyAG(g1, g2, . . . , gn)
2: for i ∈ IA do
3: if Mi � |= S(Gi) � gi then
4: Let σiai be a counterexample for Mi � |= S(Gi) � gi

5: return UpdateConstraints(i, σiai)

6: if S(Gn+1) � |= P then
7: Let σ be a counterexample
8: if (

∧

gi∈S(Gn+1)

(σ↓αgi ∈ L(Mi↓αgi)) then

9: return (∅, “false”, ∅) // “M1↓αg1‖M2↓αg2‖ . . . ‖Mn↓αgn � |= P”
10: else // Remove σ from one of gj ∈ S(Gn+1)
11: C = { ∨

gi∈S(Gn+1)

−(σ↓αgi , i)}
12: return (C, “continue”, ∅)

13: return (∅, “true”, ∅) // “M1‖M2‖ · · · ‖Mn |= P”

For a counterexample obtained for the last premise the checks are done at
line 8 in ApplyAG. If one of these checks fails, a new constraint is added to
make sure that the same trace will not be in g1‖ · · · ‖gn in the next iterations
(see line 11 in ApplyAg). However a similar check in UpdateConstraint is
more involved, and is described in the next subsection.

6.3 Assumption Refinement in UpdateConstraints

UpdateConstraint (Algorithm 3) gets a counterexample σa for one of the
inductive premises i where 1 ≤ i ≤ n and checks whether the trace corresponds to
an error (in the abstract system). If it does, then “false” is returned. Otherwise,
the counterexample analysis continues in order to decide which constraint(s)
need to be added to the set of constraints C in order to refine the assumptions
and avoid getting the same counterexample in subsequent iterations.

Trace Extension. The counterexample of premise i is over the alphabet αMi ∪
αS(Gi). However, in order to determine whether the trace corresponds to an
error and if not to determine which constraints to add, UpdateConstraint
needs to check membership of (projections) of this trace in other components
as well as in P . The first step taken by UpdateConstraints therefore calls
ExtendTrace to extend the counterexample trace to a trace over the alphabet
A such that its projection to αMi ∪ αS(Gi) remains unchanged. The algorithm
works correctly with any such extension, including the one that keeps the trace
unchanged. However, more sophisticated extension schemes can contribute to a
faster convergence of the algorithm.

Specifically, our implementation of ExtendTrace, presented in Algorithm 4,
employs a greedy extension algorithm that considers the LTSs whose alphabet is
(potentially) uncovered in an arbitrary order, and iteratively extends the trace by
simulating it on these LTSs one by one in that order. Whenever the simulation

342 K.A. Elkader et al.

Algorithm 3. Computation of constraints based on a counterexample for Mi |=
S(Gi) � gi. We use σ↓ ∈ L(B) as a shorthand for σ↓αB ∈ L(B).

1: // σa is a counterexample for Mi |= S(Gi) � gi, i.e. σa↓ ∈ L(Mi), σ↓ ∈ L(gj) for every
gj ∈ S(Gi), σa↓ �∈ L(gi).

2: procedure UpdateConstraints(i, σa)

3: σa = ExtendTrace(σa, (αS(Gi) ∪ αMi), {Mj↓αgj | gj �∈ (S(Gi) ∪ {gi})} ∪ {P})
4: if (

∧

gj∈S(Gn+1),j �=i

(σa↓ ∈ L(Mj↓αgj)) and σa↓ �∈ L(P)) then

5: // σa↓ ∈ L(M1↓αg1‖ · · · ‖Mn↓αgn) and σa↓ �∈ L(P)
6: return (∅, “false”,∅) // “M1↓αg1‖M2↓αg2‖ . . . ‖Mn↓αgn � |= P”

7: // Optimized constraints

8: for each G ∈ T (gi) do // G is a closed set
9: if (

∧

gj∈G,j �=i

(σa↓ ∈ L(Mj↓αgj)) then

10: // Add σa to all assumptions in G based on Lemma 4(1).
11: // Adding σa to gi ∈ G prevents getting σa as a cex to premise i in the future.

12: C =
⋃

gj∈G
{+(σa↓αgj , j)}

13: return (C, “continue”,∅)
14: if (

∧

gj∈G,j �=i
(σ↓ ∈ L(Mj↓αgj)) then

15: // Add σ to all assumptions in G based on Lemma 4(1).

16: // Since S(Gi) ⊆ G, we cannot remove σ from S(Gi), hence add σa to gi.

17: C =
⋃

gj∈G
{+(σ↓αgj , j)} ∪ {+(σa↓αgi , i)}

18: return (C, “continue”,∅)
19: if σa↓ �∈ L(P) and σ↓ ∈ L(P) then
20: // Remove σ from S(Gi) or (add σa to gi and remove it from S(Gn+1) \ {gi}).
21: // In the latter case, the removal of σa from S(Gn+1) \ {gi} is due to Lemma 4(2).

22: C = {(∨

gj∈S(Gi)

(−(σ↓αgj , j)))∨

23: (+(σa↓αgi , i) ∧ (
∨

gj∈S(Gn+1)\{gi}
(−(σa↓αgj , j))))}

24: IncTr = {(σa, i, 22)}
25: return (C, “continue”,IncTr)

26: if σa↓ �∈ L(P) and σ↓ �∈ L(P) then
27: // Removal of σ from S(Gn+1) \ (S(Gi) ∪ {gi}) in line 30 is due to Lemma 4(2).

28: // Since LTSs are prefix-closed, the latter implies removal of σa from S(Gn+1)\{gi}.
29: C = {(∨

gj∈S(Gi)

(−(σ↓αgj , j)))∨

30: (+(σa↓αgi , i) ∧ (
∨

gj∈S(Gn+1)\(S(Gi)∪{gi})
(−(σ↓αgj , j))))}

31: IncTr = {(σa, i, 29)}
32: return (C, “continue”,IncTr)

33: // Default constraint

34: C = {(∨

gj∈S(Gi)

(−(σ↓αgj , j)) ∨ +(σa↓αgi , i))}

35: IncTr = {(σa, i, 34)}
36: return (C, “continue”,IncTr)

Automated Circular Assume-Guarantee Reasoning 343

Algorithm 4. Get trace σ over alphabet Σ and extend it to be over the alphabet
of all assumptions
1: procedure ExtendTrace(σ, Σ, N1, N2, · · · Nk)
2: for i = 1, . . . , k do
3: if (L(LTS(σ)‖Ni) �= ∅) then
4: σ = trace in LTS(σ)‖Ni

5: Σ = Σ ∪ αNi

6: return σ over the alphabet Σ ∪⋃n
i=1 αNi

succeeds, the trace and its alphabet are extended accordingly. When it fails, the
trace remains unchanged. Upon termination, the alphabet of the trace is extended
to include the full alphabet, even if the simulation on some of the LTSs failed. The
distinguishing feature of Algorithm4 compared to other extensions (e.g., random
extensions) is the fact that it tries to find an extension of the trace that is in the
language of the LTSs that it gets as input. It therefore increases the chances of
successful checks in UpdateConstraints.

The analysis and computation of constraints are performed on the extended
trace.

Default Constraints. If the (extended) counterexample trace corresponds to
an error in the abstract system (line 4), then UpdateConstraints returns
“false”. Otherwise, it computes a new set of constraints. The added constraints
are a crucial ingredient as they guide the search for assumptions. They should be
strong enough to eliminate the already seen counterexamples and allow progress
and convergence of the algorithm, but should not over-constrain the assumptions,
in order not to exclude viable assumptions.

Recall that the ith inductive premise in the simplified rule is of the form
Mi |= S(Gi) � gi, and a counterexample for it is a trace σa such that
σa↓ ∈ L(Mi), σ↓ ∈ L(gj) for every gj ∈ S(Gi) and σa↓ �∈ L(gi). The
default constraint to eliminate such a counterexample σa is the constraint
+(σa↓αgi

, i) ∨ ∨
j∈S(Gi)

−(σ↓αgj
, j) stating that the counterexample should be

added to gi or its prefix should be removed from S(Gi) (i.e., from at least one
of the assumptions in S(Gi)). Such a constraint is added in line 34. This spe-
cific constraint is also incremental, and the corresponding trace is therefore also
added to IncTr, along with an identifier of the premise by which it was added
and the line number in which the constraint was computed, in order to allow its
re-use after alphabet refinement.

Optimized Constraints. A key aspect in the assumptions refinement is our
ability to add stronger constraints, without over-constraining the assumptions.
This helps the overall algorithm converge faster since a stronger constraint
removes more irrelevant assumptions from the assumption space at once. Fur-
thermore, stronger constraints are easier for GenAssmp to solve, thus the overall
run-time of the algorithm is reduced.

344 K.A. Elkader et al.

We come up with several properties of useful assumptions (i.e., assumptions
that can be successfully used in the rule) which enable the addition of stronger
constraints in several cases. These properties are nontrivial extensions of the
properties observed in [10] for the 2-component case.

For example, from the simplified rule we extract closed sets of assumptions.
A set G of assumptions is closed if gi ∈ G implies that S(Gi) ⊆ G. We show
that:

Lemma 4. Let g1, . . . , gn be LTS assumptions over alphabets αg1, . . . , αgn suc-
cessfully used in CIRC-AGN , and let S(·) denote the simplification of CIRC-
AGN with respect to the alphabets αg1, . . . , αgn. Then

1. if {gi1 , ..gim
} is a closed set, then Mi1‖Mi2‖ · · · ‖Mim

|= gi1‖gi2‖ · · · ‖gim
,

and
2. forall 1 ≤ i ≤ n, if {gi1 , ..gim

} = S(Gn+1) \ {gi}, then Mi‖gi1‖gi2 · · · ‖gim
|=

P .

We carefully select closed sets and scenarios in which it is beneficial to use
observation (1) for generation of constraints. Namely, we consider closed sets
which are the closures of some assumption, defined as follows.

Definition 4 (Closure). The closure of gk, denoted Cl(gk), is the smallest set
of assumptions G such that S(Gk) ⊆ G and for every gj ∈ G it holds that
S(Gj) ⊆ G as well.

The oset Cl(gk) includes all the assumptions in premise k (after simplifica-
tion), and for each of them includes all the assumptions in their premises etc.
Note that Cl(gk) is defined based on the simplified rule, and is a closed set.
For every assumption gi, we define the set of closures that it is part of, denoted
T (gi):

Definition 5. For every 1 ≤ i ≤ n, T (gi) = {Cl(gk) | gi ∈ Cl(gk), 1 ≤ k ≤ n}.
When UpdateConstraints (Algorithm 3) analyzes a counterexample σa

for premise i of (the simplified) CIRC-AGN , it considers all the closures
G = {gi1 , ..gim

} in T (gi) and checks whether σa↓αgj
∈ L(Mj↓αgj

) for every
gj ∈ G. If so, we add a constraint +(σa↓αgj

, j) for every j such that gj ∈ G
(see line 12) in order to ensure that (the projection of) σa is in gi1‖ · · · ‖gim

,
as follows from Lemma 4(1). Since gi ∈ G, the added constraints imply
+(σa↓αgi

, i)∨∨
j∈S(Gi)

−(σ↓αgj
, j), thus they suffice to eliminate the counterex-

ample and avoid the need for a disjunctive constraint.
Similar reasoning is performed in line 17 using σ. However, in this case, the

added constraints +(σ↓αgj
, j) for every j such that gj ∈ G refer to σ and do not

imply +(σa↓αgi
, i) ∨ ∨

j∈S(Gi)
−(σ↓αgj

, j). Still, the fact that gi ∈ G and G is a
closed set, ensures that S(Gi) ⊆ G, and hence

∨
j∈S(Gi)

−(σ↓αgj
, j) cannot hold.

Therefore, the disjunctive constraint is strengthened into +(σa↓αgi
, i), again

avoiding the disjunction (see line 17).

Automated Circular Assume-Guarantee Reasoning 345

Similarly, we use observation (2) to strengthen the +(σa↓αgi
, i) dis-

junct of the default constraint by adding specialized constraints of the form∨
gj∈S(Gn+1)\{gi}(−(σa↓αgj

, j)) in the case where σa↓αP �∈ L(P) (line 22), with
an additional strengthening in line 29 for the case where also σ↓αP �∈ L(P). These
specialized constraints are also incremental, hence the corresponding traces are
added to IncTr.

Progress and Termination of Assumption Refinement. The assumption
refinement continues until the assumptions satisfy all premises of the rule, or an
error is found (in the abstract system). The progress of the assumption refine-
ment is guaranteed by the following lemmas.

Lemma 5. Let σ be a counterexample of premise i of CIRC-AGN and let C be
the updated set of constraints. Then any LTSs g′

1, g
′
2, · · · , g′

n that satisfy the set
of constraints C will no longer exhibit σ as a counterexample for premise i of
CIRC-AGN .

We conclude that any sequence of LTSs g′
1, g

′
2, . . . , g

′
n that satisfies C is dif-

ferent from every previous sequence of LTSs considered by the algorithm.
The following lemma states that the added constraints do not over-constrain

the assumptions. It ensures that the “desired” assumptions that enable to verify
(1) or falsify (2) the property are always within reach.

Lemma 6. Let g1, . . . , gn be LTSs over αg1, . . . , αgn s.t. one of the following
holds:

1. g1, . . . , gn satisfy all premises of CIRC-AGN , or
2. gi = Mi↓αgi

for every 1 ≤ i ≤ n.

Then (g1, . . . , gn) satisfy every set of constraints C produced by ACR.

Due to the above lemmas, along with the completeness of the rule with
respect to the abstraction M1↓αg1‖M2↓αg2‖..Mn↓αgn

, the iterative construction
of the assumptions over A (lines 5–9 of Algorithm 1) is guaranteed to terminate
returning either minimal assumptions over A that satisfy the rule premises or a
counterexample for the abstract system. This is shown similarly to [10].

7 Alphabet Refinement

This section describes the outer layer of ACR, which iteratively searches for
an appropriate alphabet for the assumptions. Each iteration defines a different
alphabet A which restricts the alphabet of the assumptions. Initially A = αP ,
and therefore αgi = αP ∩ αMi. As long as A is a strict subset of αP ∪ ⋃n

i=1 αJi

(which means that αgi is a strict subset of (αMi∩αP)∪αJi), completeness is not
guaranteed with respect to M1‖ · · · ‖Mn. This also means that a counterexam-
ple obtained by the inner layer might be spurious. Hence, when an abstract

346 K.A. Elkader et al.

Algorithm 5 . Alphabet Refinement
1: procedure AlphaRefine(σ, A, IncTr)

2: if (αgi = αF (gi) for every 1 ≤ i ≤ n) then
3: return (-,-,-,“false”)

4: for 1 ≤ i ≤ n do

5: let σi be a trace in L(LTS(σ↓αgi)‖Mi↓αF (gi)
)

6: if (Match(σ1, σ2, · · · , σn)) then

7: return (-,-,-,“false”)

8: // IncAlpha decides which new interface letters to add based on heuristics from 11.
9: A = A ∪ IncAlpha(σ1, σ2, · · · , σn)
10: k = n, C = ∅
11: for each (σ, i, type) ∈ IncTr do // Update constraints based on incremental traces

12: C = C ∪ RC(σ, i, type, A)

13: return (A, C, k,“continue”)

counterexample for M1↓αg1‖ · · · ‖Mn↓αgn
|= P is obtained, AlphaRefine

(Algorithm 5) is called to check if the counterexample can be extended to a
real counterexample. If it can not, AlphaRefine performs automatic alpha-
bet refinement using heuristics similar to previous work [11] developed for non-
circular assume-guarantee reasoning. Note however that a key difference from
previous work is that our alphabet refinement enables dynamic simplification of
the rule used for verification. Furthermore we improve upon [11] by providing a
procedure for re-using the results across refinement iterations.

In essence, a counterexample σ is real if σ↓αF (gi) ∈ L(Mi↓αF (gi)) and
σ↓αP �∈ L(P). This is stated by the following lemma, extending the 2-component
case [10].

Lemma 7. If σ↓αF (gi) ∈ L(Mi↓αF (gi)) (for i = 1..n) and σ↓αP �∈ L(P) then
M1‖M2‖..Mn � |= P . Moreover, σ can be extended into a full counterexample for
M1‖M2‖..Mn |= P .

AlphaRefine first checks if αgi = αF (gi), where αF (gi) is the alphabet
sufficient for completeness. If this is not the case, and also if we do not manage to
extend the counterexample to this alphabet, AlphaRefine chooses heuristically
new interface actions to be added to the alphabet A (and to αgi accordingly).
The heuristic uses backward refinement shown to work well in previous studies.
The counterexample σ is projected on all the components one by one with the
full alphabet of completeness. We then perform a backward analysis for every
two traces: the traces are scanned backward, from the end of each trace to the
beginning looking for the first action where the two traces disagree. The alphabet
A is refined by adding all these actions. The refined alphabet is used in the next
iteration of ACR. Procedure Match simply checks that all counterexamples
agree on common alphabets.

Automated Circular Assume-Guarantee Reasoning 347

Once the alphabet changes, the set of constraints C maintained by the algo-
rithm is no longer suitable and has to be emptied. A novel aspect of our approach
is that we identify certain constraints that can be refined and moved to the new
iteration (as described below).

7.1 Incremental Alphabet Refinement

Recall that constraints are computed based on counterexamples to premises of
the form Mi |= S(Gi) � gi. These are traces over αMi ∪ αS(Gi). While αS(Gi)
changes as the alphabet increases, αMi does not. A naive incremental approach
would therefore keep all these traces, and would regenerate constraints based
on them by the same counterexample analysis, but with the refined alphabet of
the assumptions. However, our goal is to avoid the overhead in analyzing the
counterexamples again.

Ideally, we would like to simply derive the same constraints by projecting
the counterexample traces on the new alphabet without any further checks.
However, this might introduce incorrect constraints that would over-constrain
the assumptions. The reason is that the correctness of an existing constraint relies
on checks such as σa↓αgj

∈ L(Mj↓αgj
) performed with respect to the previous

alphabet. The same checks might return different outcomes when conducted with
the refined alphabet, in which case the correctness of the (refined) constraint is
not guaranteed.

The key challenge to address when trying to re-use constraints is therefore
to make sure that the same checks are valid after alphabet refinement. To that
end, we identify a subset of the constraints for which this is the case. These
are constraints whose correctness relies on checks over σ↓αP , and checks such as
σ↓αgj

�∈ L(Mj↓αgj
), but no checks such as σ↓αgj

∈ L(Mj↓αgj
). The justification

for the re-use of such constraints stems from (i) the fact that αP is always a
subset of A, and hence checks over it remain unchanged, and (ii) the following
lemma:

Lemma 8. If σ↓αgj
�∈ L(Mj↓αgj

) then σ↓αg′
j

�∈ L(Mj↓αg′
j
) for any αg′

j ⊇ αgj.

For example, the constraints created in line 34 in Algorithm3 are incremental.
In order to re-use these constraints, we define an operator, RC (for Refined
Constraints) which receives the full trace over αMi ∪ αS(Gi) and an identifier
of the constraints in the form of a pair of the premise index and the line in the
algorithm in which the constraint was generated, referred to as the type of the
constraint.

The RC operator then re-constructs the corresponding constraints by con-
ducting projections according to the current alphabet, without re-performing
any of the checks. For example, RC(σ, i, 34,A) = {(

∨

gj∈S(Gi)

(−(σ↓αgj
, j)) ∨

+(σa↓αgi
, i))}.

348 K.A. Elkader et al.

Table 1. Results of comparison of 2-way compositional verification with and with-
out alphabet refinement (2W-AR and 2W), n-way compositional verification with and
without alphabet refinement (NW-AR and NW) and monolithic verification (Mon).

Case 2W [T] 2W+AR [T] |g1| |g2| NW [T] NW+AR [T] |gmax| |gmin| Mon [T] |Sys‖Perr|
GasSt 3 26 2.187 3 3 40.053 17.434 3 1 0.01 1280

GasSt 4 48 6.87 3 3 72.135 22.274 3 1 0.008 10466

GasSt 5 309 27 3 3 127.802 21.008 3 1 0.128 80368

ClServ 9 248 25.5 10 2 6.08 3.297 2 2 0.09 14335

ClServ 10 815.6 69 11 2 7 5 2 2 0.026 34303

ClServ 11 – 307.6 12 2 11.883 6.675 2 2 0.063 80895

ClServ 12 – – – – 15.617 8.213 2 2 0.31 188415

MER 6 4 – – – – 132.958 9.422 3 2 33.931 5246875

MER 7 4 – – – – 769.61 23.894 3 2 – –

MER 8 4 – – – – 1611.072 54.568 3 2 – –

MER 4 5 – – – – 43.4 3.6 3 2 0.235 159192

MER 5 5 – – – – 91.5 5.9 3 2 6.5 2057616

MER 6 5 – – – – 200 11 3 2 500 23685696

MER 7 5 – – – – 1470.85 30.38 3 2 – –

MER 8 5 – – – – – 89.278 3 2 – –

Fig. 1. Assumptions generated for: server (left) and a client (right) for client-server
(11 clients) using n-way compositional verification with alphabet refinement

8 Evaluation

We implemented our approach in the LTSA (Labelled Transition System
Analyser) tool [17]. We use MiniSAT [9] for SAT solving. As an optimization we
made ACR return (at each iteration) k counterexamples for the n + 1 premises
where, k is n × ∑n

i=0 |gi|.
We evaluated our approach on the following examples [10,23]: Gas Station

(3 to 5 customers), Client Server (9 to 12 clients), and a NASA rover model:
MER (4 to 8 users competing for 4–5 resources). Experiments were performed on
a MacBook Pro with a 2.3 GHz Intel Core i7 CPU and with 16 GB RAM running
OS X 10.9.4 and a Suns JDK version 7. We compared n-way verification using
ACR with both 2-way ACR and monolithic verification.

Table 1 summarizes our results. We report the run time for: 2W (2-way ACR
without alphabet refinement), 2W+AR (2-way ACR with alphabet refinement),
NW (n-way ACR without alphabet refinement), NW+AR (n-way ACR with
alphabet refinement); |g1| and |g2| are the assumption sizes produced by 2W,
|gmax| and |gmin| are the sizes of the largest and smallest assumptions produced
by NW. For 2W, each system was decomposed into two sub-systems, according

Automated Circular Assume-Guarantee Reasoning 349

to some “best decomposition” obtained before [10,23]. Mon is the run time of
the monolithic classical algorithm and |Sys‖Perr| is the number of states for the
verification task, where Sys is the system M1‖M1..‖Mn. We put a limit of 1800 s
for each experiment; “–” indicates that the time for that case exceeds this limit.

The results show that NW is better than 2W, and generates smaller assump-
tions. For example, Fig. 1 illustrates the small assumptions generated for the
client-server example. Note that computing the “best” 2–way decomposition is
expensive (its cost is not reported here). In contrast NW simply uses the natural
decomposition of the system into its multiple components. Our results also show
that alphabet refinement with rule simplification always improves circular rea-
soning, both in terms of analysis time and assumption sizes. Furthermore Mon
performs better for small systems, but as the systems get larger n-way composi-
tional verification significantly outperforms it. These lead to cases such as MER
where, for large parameter values, Mon runs out of resources while NW+AR
succeeds in under 2 min.

9 Conclusion and Future Work

We presented an automatic technique for the compositional analysis of systems
decomposed into n components. The technique uses iterative assumption gen-
eration with incremental alphabet refinement and dynamic rule simplification.
Preliminary results show its promise in practice. In the future we plan to check
the rule premises in parallel to speed-up our approach. Further we plan to explore
abstraction-refinement and learning as alternatives to our SAT-based assump-
tion discovery.

Acknowledgments. We thank the reviewers for their detailed and helpful comments.
This work was funded in part by the National Science Foundation (NSF Grant No. CSF-
1329278) and the Binational Science Foundation (BSF Grant No. 2012259). Shoham
was supported by the European Research Council under the European Union’s Seventh
Framework Program (FP7/2007–2013)/ERC grant agreement no. [321174-VSSC].

References

1. Alur, R., Henzinger, T.A.: Reactive modules. Formal Methods Syst. Des. 15(1),
7–48 (1999)

2. Alur, R., Madhusudan, P., Nam, W.: Symbolic compositional verification by learn-
ing assumptions. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol.
3576, pp. 548–562. Springer, Heidelberg (2005)

3. Gheorghiu Bobaru, M., Păsăreanu, C.S., Giannakopoulou, D.: Automated assume-
guarantee reasoning by abstraction refinement. In: Gupta, A., Malik, S. (eds.) CAV
2008. LNCS, vol. 5123, pp. 135–148. Springer, Heidelberg (2008)

4. Chaki, S., Clarke, E., Sinha, N., Thati, P.: Automated assume-guarantee reasoning
for simulation conformance. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005.
LNCS, vol. 3576, pp. 534–547. Springer, Heidelberg (2005)

350 K.A. Elkader et al.

5. Chen, Y.-F., Clarke, E.M., Farzan, A., Tsai, M.-H., Tsay, Y.-K., Wang, B.-Y.:
Automated assume-guarantee reasoning through implicit learning. In: Touili, T.,
Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 511–526. Springer,
Heidelberg (2010)

6. Chen, Y.-F., Farzan, A., Clarke, E.M., Tsay, Y.-K., Wang, B.-Y.: Learning minimal
separating DFA’s for compositional verification. In: Kowalewski, S., Philippou, A.
(eds.) TACAS 2009. LNCS, vol. 5505, pp. 31–45. Springer, Heidelberg (2009)

7. Clarke, E., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge
(1999)

8. Cobleigh, J.M., Giannakopoulou, D., Păsăreanu, C.S.: Learning assumptions for
compositional verification. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS,
vol. 2619, pp. 331–346. Springer, Heidelberg (2003)

9. Een, N., Sörensson, N.: The minisat. http://minisat.se
10. Elkader, K.A., Grumberg, O., Păsăreanu, C.S., Shoham, S.: Automated circular

assume-guarantee reasoning. In: Bjørner, N., de Boer, F. (eds.) FM 2015. LNCS,
vol. 9109, pp. 23–39. Springer, Heidelberg (2015)

11. Gheorghiu, M.D., Giannakopoulou, D., Păsăreanu, C.S.: Refining interface alpha-
bets for compositional verification. In: Grumberg, O., Huth, M. (eds.) TACAS
2007. LNCS, vol. 4424, pp. 292–307. Springer, Heidelberg (2007)

12. Gupta, A., McMillan, K.L., Fu, Z.: Automated assumption generation for compo-
sitional verification. Formal Methods Syst. Des. 32(3), 285–301 (2008)

13. Henzinger, T.A., Liu, X., Qadeer, S., Rajamani, S.K.: Formal specification and
verification of a dataflow processor array. In: ICCAD, pp. 494–499 (1999)

14. Henzinger, T.A., Qadeer, S., Rajamani, S.K.: You assume, we guarantee: method-
ology and case studies. In: Hu, A.J., Vardi, M.Y. (eds.) CAV 1998. LNCS, vol.
1427, pp. 440–451. Springer, Heidelberg (1998)

15. Henzinger, T.A., Qadeer, S., Rajamani, S.K., Taşıran, S.: An assume-guarantee
rule for checking simulation. In: Gopalakrishnan, G.C., Windley, P. (eds.) FMCAD
1998. LNCS, vol. 1522, pp. 421–431. Springer, Heidelberg (1998)

16. Li, B., Dillig, I., Dillig, T., McMillan, K., Sagiv, M.: Synthesis of circular composi-
tional program proofs via abduction. In: Piterman, N., Smolka, S.A. (eds.) TACAS
2013. LNCS, vol. 7795, pp. 370–384. Springer, Heidelberg (2013)

17. Magee, J., Kramer, J.: Concurrency: State Models and Java Programs. Wiley,
New York (1999)

18. McMillan, K.L.: Verification of an implementation of Tomasulo’s algorithm by
compositional model checking. In: Hu, A.J., Vardi, M.Y. (eds.) CAV 1998. LNCS,
vol. 1427, pp. 110–121. Springer, Heidelberg (1998)

19. McMillan, K.L.: Circular compositional reasoning about liveness. In: Pierre,
L., Kropf, T. (eds.) CHARME 1999. LNCS, vol. 1703, pp. 342–346. Springer,
Heidelberg (1999)

20. McMillan, K.L.: Verification of infinite state systems by compositional model check-
ing. In: Pierre, L., Kropf, T. (eds.) CHARME 1999. LNCS, vol. 1703, pp. 219–237.
Springer, Heidelberg (1999)

21. Misra, J., Chandy, K.M.: Proofs of networks of processes. IEEE Trans. Softw. Eng.
7(4), 417–426 (1981)

22. Namjoshi, K.S., Trefler, R.J.: On the completeness of compositional reasoning. In:
Allen Emerson, E., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 139–153.
Springer, Heidelberg (2000)

http://minisat.se

Automated Circular Assume-Guarantee Reasoning 351

23. Pasareanu, C.S., Giannakopoulou, D., Bobaru, M.G., Cobleigh, J.M., Barringer,
H.: Learning to divide and conquer: applying the L* algorithm to automate assume-
guarantee reasoning. Formal Methods Syst. Des. 32(3), 175–205 (2008)

24. Pnueli, A.: In transition from global to modular temporal reasoning about pro-
grams. In: Logics and Models of Concurrent Systems. NATO ASI Series (1985)

25. Rushby, J.: Formal verification of mcmillan’s compositional assume-guarantee rule.
CSL Technical report, SRI (2001)

JayHorn: A Framework for Verifying
Java programs

Temesghen Kahsai1, Philipp Rümmer2, Huascar Sanchez3,
and Martin Schäf3(B)

1 Nasa Ames / CMU, Moffett Field, USA
2 Uppsala University, Uppsala, Sweden
3 SRI International, Menlo Park, USA

martin.schaef@sri.com

Abstract. Building a competitive program verifiers is becoming
cheaper. On the front-end side, openly available compiler infrastructure
and optimization frameworks take care of hairy problems such as alias
analysis, and break down the subtleties of modern languages into a hand-
ful of simple instructions that need to be handled. On the back-end side,
theorem provers start providing full-fledged model checking algorithms,
such as PDR, that take care looping control-flow.

In this spirit, we developed JayHorn, a verification framework for Java
with the goal of having as few moving parts as possible. Most steps of the
translation from Java into logic are implemented as bytecode transfor-
mations, with the implication that their soundness can be tested easily.
From the transformed bytecode, we generate a set of constrained Horn
clauses that are verified using state-of-the-art Horn solvers. We report
on our implementation experience and evaluate JayHorn on benchmarks.

1 Introduction

Building a software model checking tool has always been a strenuous endeavor.
Established tools, such as CBMC [11] or Java Pathfinder [9] have amassed count-
less man-hours of engineering and testing. However, over the recent years, this
task has become a lot simpler with the increasing availability of off-the-shelf
front-ends such as LLVM [13], Wala [1], or Soot [20], and verification back-ends
such as Z3 [5], Corral [12], or Eldarica [18].

With the increasing availability of such tools, the task of building a software
model checker becomes just a matter of picking a front-end and a back-end
and writing the glue code to connect them. Recent verification competitions
have shown that this approach is feasible in practice. Tools like SMACK [17] or
SeaHorn [8] which use LLVM as a front-end and off-the-shelf verification back-
ends have been able to outperform established tools in many categories.

Motivated by these developments, we have implemented JayHorn, a software
model checking tool for Java. JayHorn uses the Java optimization framework Soot
as a front-end, generates a set of constrained Horn clauses (CHCs) to encode
the verification condition. The Horn clauses are then sent to a Horn engine. For
the construction of JayHorn we made the following design decisions:
c© Springer International Publishing Switzerland 2016
S. Chaudhuri and A. Farzan (Eds.): CAV 2016, Part I, LNCS 9779, pp. 352–358, 2016.
DOI: 10.1007/978-3-319-41528-4 19

JayHorn: A Framework for Verifying Java Programs 353

1. Perform as much of the translation work as possible in Soot: Translation
of exception handling, de-virtualization, and control-flow simplification are
implemented as bytecode transformation. These steps do not alter a programs
behavior which allows us to use Randoop [16] to test their correctness.

2. Keep the glue code that generates verification conditions small, modular,
and extensible: by performing many steps as bytecode transformation, the
step of generating verification conditions becomes relatively simple and is
implemented in a few hundred lines of Java code. The implementation is
modular and extensible to allow, for example, different encoding of memory
or numeric types.

3. Keep the back-end exchangeable: Horn solvers are constantly improving and
new tools are being released frequently. To ensure that JayHorn builds on
the most efficient back-end, we made it modular and replaceable. Currently,
JayHorn supports Z3 and Eldarica as back-ends but can be easily extended
to support other tools.

Roadmap. In Sect. 2 we discuss the architecture of JayHorn in more detail and
address issues such as soundness and limitations. In Sect. 3 we evaluate JayHorn
on a set of benchmarks. Then we conclude and discuss our next steps.

2 Architecture of JayHorn

In the following, we discuss architecture, soundness, and limitations of JayHorn.
The big picture is outlined in Fig. 1. In it’s default configuration, JayHorn takes
Java bytecode as input and checks if any Java assert can be violated.

JayHorn accepts any input that is accepted by Soot. That is, Java class files,
Jar archives, or Android apk’s. For code that is not annotated with assert

Fig. 1. Architectural overview of JayHorn. The tool takes Java bytecode as input. It
then uses Soot to perform a set of transformations that do not alter the input/output
behavior of the program, followed by an abstraction step to simplify arrays. The trans-
formed bytecode is passed to JayHorn’s glue code that constructs a system of CHCs
which are passed into a Horn engine to check the safety of the input program.

354 T. Kahsai et al.

statements, JayHorn also provides an option to guard possible NullPointer-
Exceptions, ArrayIndexOutOfBoundsExceptions, and ClassCastExceptions
with assertions (note that this affects soundness because developers may catch
these exceptions on purpose even though it is not good practice).

Soot converts the given input into the Jimple intermediate format, which is
a three-address code version of the Java bytecode. The benefit of operating on
Jimple is that we only have to handle 15 different operations instead of over 200
as in the case of raw bytecode.

Program Transformation. We use the Soot infrastructure to apply (and imple-
ment) a set of bytecode transformations to simplify the input program. First,
we eliminate exception handling and make all implicit exceptional control-flow
explicit. To that end, we introduce a global variable (i.e., a public class with one
public static field) to hold the last thrown exception. A thrown exception is then
transformed into an assignment to this variable followed by a return (for primi-
tive types we return a minimal values, for all other types we return null). After
each method call, we first check if this exception variable has been set and, if so,
ignore the return value and move control to the exceptional successor of the call
statement. At the end of each entry point (e.g., main), we check if the exception
variable has been set and throw the exception if necessary. This transformation
does not alter the input/output behavior of the transformed program.

In the next step, we simplify the input program further by replacing switch
statements by if statements and by removing unreachable code. In this step,
we also add a public field dyntype to each class that carries the dynamic type
of an object and set this field every time an object is created with new. For
example, a Jimple statement A a :=new B(); would be followed an assignment
a.dyntype = B.getClass();. Like the previous step, this step does not change
the behavior of the input program.

Then, we de-virtualize the input program. That is, any call to a virtual method
is replaced by a distinction of cases over the dyntype of the base of that call and
calls to the corresponding methods. The de-virtualize can significantly increase
the size of a program but Soot’s built-in alias analysis’ (and de-virtualization) can
be used to reduce the number of cases that need to be distinguished.

Note that, up to this point, JayHorn has significantly simplified the program
by removing exceptional flow, virtual method calls, and some statements that are
syntactic sugar, without altering the behavior of the input program. Hence, we
can test the correctness (or soundness) of these steps by comparing input/out-
put behavior of the original and transformed code. Since this step is crucial for
the soundness of the overall system, we employ Randoop [16] to automate this
test. We also allow the user to generate these tests for a given input program to
increase confidence.

Array Abstraction. On the simplified input program, JayHorn performs one
abstraction step to eliminate arrays. Like the previous steps, this step is imple-
mented as a bytecode transformation in Soot and can easily be replaced or
modified if requirements change. Arrays in Java are objects, however, there are

JayHorn: A Framework for Verifying Java Programs 355

a few subtleties that makes it harder to handle them. For example, access to
the length field of an array is not a regular field access but a special bytecode
instruction. To simplify the generation of CHCs in the next step we transform
arrays into real objects. To that end, we generate a new class for each array
type used in the input program. The class extends Object and has a public field
length and a field elType containing the type of the array elements. For each
element of the array, we generate a private field of appropriate type. For reading
and writing, the array class provides a get and put method with a distinction of
cases over the used index. We can bound the number of fields that are generated
for the array. If the used index exceeds this number, we return a dedicated con-
stant that is later translated into an uninterpreted symbol. This step allows us
to treat arrays like any other object, however, if we bound the number of fields,
it introduces abstraction. Since this step is still a bytecode transformation we
can again use Randoop to check how it affects our precision.

Generating Horn Clauses. The transformed program only contains primitive
types and Objects, and a small set of statements, which simplifies the translation
to CHCs; the entire translation takes less than 600 lines of Java code which keeps
the risk of introducing bugs and thus unsoundess low. Our encoding as CHCs
is inspired by the concept of refinement types [6,21], and uses uninterpreted
predicates to represent:

– for each method m, pre-conditions pre m and post-conditions post m talking
about parameters and result;

– for each control location l, invariants loc l talking about local variables that
are in scope;

– for each class C, instance invariants inv C talking about the dynamic type and
fields of objects.

The translation of programs to clauses then proceeds method by method, map-
ping each instruction to one clause. Accesses to heap and object fields are
replaced by unpack instructions that apply invariants inv C to determine the
possible values of fields, and pack instructions that assert instance invariants
after write accesses. Method calls are mapped to clauses that assert the pre-
condition pre m of the called method, and clauses that exploit the method post-
condition post m to determine possible results and effects of the call.

Soundness and Completeness. JayHorn is implemented in the spirit of soundi-
ness [14]. Our analysis does not have a fully sound handling of the follow-
ing features: JNI, implicit method invocations, integer overflow, reflection API,
invokedynamic, code generation at runtime, dynamic loading, different class
loaders, and key native methods We have determined that the unsoundness in
our handling of these features has no effect the validity of our experimental eval-
uation. To the best of our knowledge, our analysis has a sound handling of all
language features other than those listed above.1

1 Generated using the Soundiness Statement Generator from http://soundiness.org.

http://soundiness.org

356 T. Kahsai et al.

Further, JayHorn over-approximates variables of type double, float, and
long and may over-approximate array usage (as discussed above). Other than
that, completeness mostly depends on the selected back-end.

3 Evaluation

We demonstrate the current capabilities and limitations of JayHorn on a set of
examples. Table 1 show the results of our evaluation. We JayHorn with Eldar-
ica and Z3 as a back-end to three sets of single threaded benchmark problems:
CBMC-java tests, which are simple examples involving a variety of Java con-
structs provided by the authors of CBMC; MinePump, a product line provided
by the authors of CPAChecker, and a Java version of the recursive benchmarks
from SVCOMP 2015. For each benchmark problem we record if a tool produces
the correct answer (✓), the wrong answer (✗), or times out (TO).

Table 1. Evaluation of JayHorn on three sets of benchmarks with Z3 and Eldarica
back-end. For each benchmark problem we record how often JayHorn is able to find the
correct answer (✓), how often it fails to prove a correct program (✗) and how often the
execution times out after 60 s (TO).

Benchmark # Problems JayHorn+ Z3 JayHorn+ Eldarica

✓ ✗ TO ✓ ✗ TO

CBMC-Java tests 44 26 12 6 33 8 3

MinePump 64 36 0 28 39 25 0

SVCOMP Recursive 23 7 2 14 14 2 7

The experiments show that JayHorn is currently able to handle a range of
examples even though some language features are not fully implemented. The
cases where JayHorn fails to produce the expected result (✗) are all cases where an
assertion holds but the tool is not able to show it (i.e., JayHorn is sound on these
benchmarks). The wrong results are caused by our current encoding of integers as
mathematical integers, the abstraction of float and double numbers are arbitrary
values, and the missing implementation of bit operations. The experiments also
show the importance of a modular translation: JayHorn performs significantly
better with Eldarica than Z3 which can largely be attributed to our encoding of
programs in CHC. A different encoding might lead to the opposite result.

We tried to compare JayHorn with Java Pathfinder (JPF) as a baseline but
due to different approaches, no comparison was possible. On the MinePump
benchmarks, JPF is significantly faster than JayHorn. On the other two bench-
marks, however, JPF failed since those initialize variables with random number
and as JPF is an explicit state model checker, it fails to enumerate those states.

JayHorn: A Framework for Verifying Java Programs 357

4 Related Work

Fully automated program analysis is a very active research area with many
high quality tools (e.g., [2,4,8–11,15,17,19]). The work on JayHorn is primarily
inspired by the success of SMACK [17] and SeaHorn [8] in the previous verifica-
tion competitions.

Currently, not many tools of this kind are available for comparison that target
Java. AProVE [7] and Ultimate [10] competed on termination analysis for Java
programs. During the writing of this paper, the authors of Ultimate, CBMC,
and CPAChecker [3] were actively working on tools for Java (and we would like
to thank them for their test cases and examples) but none of them was available
for a direct comparison with JayHorn. We will make JayHorn and our test cases
and benchmarks publicly available to contribute to this development with the
hope of having a verification competition for Java in the near future.

5 Conclusion

We have presented a new software verification framework for Java in the spirit of
SeaHorn and Smack. JayHorn is continuously evolving. It’s current status does
not yet have any of the amenities needed in industrial practice, such as built-in
specification for common libraries. However, it performs well on a set of well
known verification problems and we are eager to compete with other tools. In
the future, we plan to extend JayHorn to also handle termination.

The main contribution of JayHorn is its modular design. The front-end phase
of JayHorn significantly simplifies the input program without changing its behav-
ior which makes it easy to develop new analysis tools on top of this front-end.
Further, JayHorn can connect to different tools that accept Horn clauses as input
which can serve as an interesting benchmark.

Acknowledgement. This work is funded in parts by AFRL contract No. FA8750-15-
C-0010, NSF Award No. 1422705, and the Swedish Research Council.

References

1. T.J. Watson library for analysis (wala). http://wala.sf.net
2. Beyer, D., Henzinger, T.A., Jhala, R., Majumdar, R.: The software model checker

blast: applications to software engineering. Int. J. Softw. Tools Technol. Transf.
9(5), 505–525 (2007)

3. Beyer, D., Keremoglu, M.E.: CPAchecker: a tool for configurable software verifi-
cation. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp.
184–190. Springer, Heidelberg (2011)

4. Cordeiro, L., Fischer, B., Marques-Silva, J.: SMT-based bounded model checking
for embedded Ansi-C software. In: ASE, Washington, DC, USA, pp. 137–148. IEEE
Computer Society (2009)

http://wala.sf.net

358 T. Kahsai et al.

5. de Moura, L., Bjørner, N.S.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

6. Freeman, T., Pfenning, F.: Refinement types for ML. In: Proceedings of the ACM
SIGPLAN 1991 Conference on Programming Language Design and Implementa-
tion, PLDI 1991, New York, NY, USA, pp. 268–277. ACM (1991)

7. Giesl, J., et al.: Proving termination of programs automatically with AProVE. In:
Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014. LNCS, vol. 8562, pp.
184–191. Springer, Heidelberg (2014)

8. Gurfinkel, A., Kahsai, T., Komuravelli, A., Navas, J.A.: The seahorn verification
framework. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206,
pp. 343–361. Springer, Heidelberg (2015)

9. Havelund, K., Pressburger, T.: Model checking Java programs using Java
pathfinder. Int. J. Softw. Tools Technol. Transf. 2(4), 366–381 (2000)

10. Heizmann, M., Dietsch, D., Leike, J., Musa, B., Podelski, A.: Ultimate
Automizer with array interpolation. In: Baier, C., Tinelli, C. (eds.) TACAS 2015.
LNCS, vol. 9035, pp. 454–456. Springer, Berlin (2015)

11. Kroening, D., Tautschnig, M.: CBMC – C bounded model checker. In: Ábrahám,
E., Havelund, K. (eds.) TACAS 2014 (ETAPS). LNCS, vol. 8413, pp. 389–391.
Springer, Heidelberg (2014)

12. Lal, A., Qadeer, S., Lahiri, S.K.: A solver for reachability modulo theories. In:
Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 427–443.
Springer, Heidelberg (2012)

13. Lattner, C., Adve, V.: LLVM: a compilation framework for lifelong program analy-
sis and transformation. In: CGO, Washington, DC, USA, p. 75. IEEE Computer
Society (2004)

14. Livshits, B., Sridharan, M., Smaragdakis, Y., Lhoták, O., Amaral, J.N., Chang,
B.-Y.E., Guyer, S.Z., Khedker, U.P., Møller, A., Vardoulakis, D.: In defense of
soundiness: aamanifesto. Commun. ACM 58(2), 44–46 (2015)

15. Nutz, A., Dietsch, D., Mohamed, M.M., Podelski, A.: ULTIMATE KOJAK with
memory safety checks. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol.
9035, pp. 458–460. Springer, Heidelberg (2015)

16. Pacheco, C., Ernst, M.D.: Randoop: feedback-directed random testing for Java. In:
OOPSLA, New York, NY, USA, pp. 815–816. ACM (2007)

17. Rakamarić, Z., Emmi, M.: SMACK: decoupling source language details from veri-
fier implementations. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559,
pp. 106–113. Springer, Heidelberg (2014)

18. Rümmer, P., Hojjat, H., Kuncak, V.: Disjunctive interpolants for Horn-clause ver-
ification. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp.
347–363. Springer, Heidelberg (2013)

19. Spoto, F.: The nullness analyser of Julia. In: LPAR, pp. 405–424 (2010)
20. Vallée-Rai, R., Hendren, L., Sundaresan, V., Lam, P., Gagnon, E., Co, P.: Soot -

a Java optimization framework. In: CASCON (1999)
21. Vazou, N., Rondon, P.M., Jhala, R.: Abstract refinement types. In: Felleisen, M.,

Gardner, P. (eds.) ESOP 2013. LNCS, vol. 7792, pp. 209–228. Springer, Heidelberg
(2013)

Program Analysis

Trigger Selection Strategies
to Stabilize Program Verifiers

K.R.M. Leino1(B) and Clément Pit-Claudel2

1 Microsoft Research, Redmond, USA
leino@microsoft.com

2 MIT CSAIL, Cambridge, USA
cpitcla@mit.edu

Abstract. SMT-based program verifiers often suffer from the so-called
butterfly effect, in which minor modifications to the program source cause
significant instabilities in verification times, which in turn may lead to
spurious verification failures and a degraded user experience. This paper
identifies matching loops (ill-behaved quantifiers causing an SMT solver
to repeatedly instantiate a small set of quantified formulas) as a signifi-
cant contributor to these instabilities, and describes some techniques to
detect and prevent them. At their core, the contributed techniques move
the trigger selection logic away from the SMT solver and into the high-
level verifier: this move allows authors of verifiers to annotate, rewrite,
and analyze user-written quantifiers to improve the solver’s performance,
using information that is easily available at the source level but would
be hard to extract from the heavily encoded terms that the solver works
with. The paper demonstrates three core techniques (quantifier splitting,
trigger sharing, and matching loop detection) by extending the Dafny
verifier with its own trigger selection routine, and demonstrates signifi-
cant predictability and performance gains on both Dafny’s test suite and
large verification efforts using Dafny.

1 Introduction

Automated program verifiers like Frama-C [18], AutoProof [26], VeriFast [16],
SPARK 2014 [14], and Dafny [19] provide usable environments in which to write
provably correct programs. By employing efficient (semi-)decision procedures
(found in satisfiability-modulo-theories (SMT) solvers [3,4,9,11]) and aggressive
caching [5,21], these verifiers provide users with generally responsive feedback,
and by shielding the user from all direct interaction with the decision procedures,
the program verifiers offer a gentle learning curve. While SMT solvers are often
pretty darn fast, their efficiency ultimately involves various heuristics, which leads
to a problem in SMT-based program verifiers: we call it the butterfly effect.

The butterfly effect describes the phenomenon that a minor modification
in one part of the program source causes changes in the outcome of the ver-
ification in other, unchanged and unrelated parts of the program. When this

* Authors are listed alphabetically.
c© Springer International Publishing Switzerland 2016
S. Chaudhuri and A. Farzan (Eds.): CAV 2016, Part I, LNCS 9779, pp. 361–381, 2016.
DOI: 10.1007/978-3-319-41528-4_20

362 K.R.M. Leino and C. Pit-Claudel

change in outcome causes the verifier to hit a time limit or other resource limit,
previously succeeding verifications turn into spurious verification failures. The
butterfly effect thus leads to verification instability, user frustration, and overall
a degraded user experience.

By profiling the behavior of an SMT solver (Z3 in the context of the Dafny
program verifier), we have found many spurious verification failures to contain
matching loops—ill-behaved quantifiers causing the SMT solver to repeatedly
instantiate a small set of quantified formulas [11]. Such matching loops are bad
news, but with some luck, the heuristic proof search in the SMT solver may hap-
pen to find a proof without falling into the trap of the matching loop. Evidently,
such “luck” occurs often enough that when an unrelated change in the program
source tickles the heuristics differently, latent matching loops are perceived as
verification instability, whereas the real culprit was the presence of the matching
loop in the first place.

In this paper, we contribute strategies for making quantifiers better behaved.
The major part of the novelty of our strategies lies in a willingness to rewrite
user-defined quantifiers. Our technique automatically selects matching triggers,
which give a way to control how the SMT solver processes quantifiers. Because
our technique finds candidate matching triggers before it rewrites quantifiers,
we achieve better trigger selection than if the user had rewritten the quantifiers
manually. Part of our strategies is also to select the triggers at the program-
source level, rather than at the level of formulas in the SMT input. This is a good
idea, because it lets our technique avoid some liberal triggers that consist only
of functions added during the generation of verification conditions. Moreover,
source-level trigger selection gives a clear way to explain to users which triggers
were selected and how matching loops were averted, a simple but important
feature for which we have received praise from users. We have implemented our
strategies in the Dafny program verifier. Our paper also contributes experimental
data that shows that our strategies significantly improve both predictability and
performance of the verifier.

2 Background

In this section, we give the necessary background on how matching triggers are
used by the SMT solver to handle quantifiers and on the architecture of the
program verifier.

2.1 Matching Triggers

We assume the SMT solver deals with quantifiers along the lines proposed by
Nelson [24], which has been implemented, for example, in Simplify [11] and
Z3 [8,9]. The idea can be described as follows.

At any time during its proof search, the state of the SMT solver includes the
set of formulas from which it is attempting to discharge the proof goal. These
formulas are represented by various cooperating decision procedures. The deci-
sion procedure for uninterpreted functions is of special importance, as it not only

Trigger Selection Strategies to Stabilize Program Verifiers 363

keeps tracks of equivalence classes of terms (typically in a data structure called
an E-graph [12,25]), but also serves as a mediator between the theories. When
an existentially quantified formula is equated with true, it is Skolemized and
the resulting formula is equated with true in the E-graph. When a universally
quantified formula is equated with true, the strategy of the SMT solver is to
instantiate the quantifier and equate the resulting formulas with true.

Logically, it is sound to instantiate a universal quantifier with anything at
all. However, arbitrary instantiations are not likely to help the proof search. To
make more informed instantiation decisions, the SMT solver relies on matching
patterns, also known as matching triggers or just triggers. Given some triggers
for a quantifier, the SMT solver looks for terms in the E-graph that match any
of the triggers and then instantiates the quantifier accordingly. The process is a
bit like in term rewriting, except that the new instantiations are added to the
E-graph, rather than somehow replacing the matching terms.

Let us illustrate with an example. A possible trigger for the quantifier

forall x: int · f(x) == 3 * g(x) + 5

is f(x), meaning that the presence of any term f(E) in the E-graph gives rise to
the instantiation x := E (yielding the formula f(E) == 3 * g(E) + 5). From now
on, we will surround the terms of a trigger with curly braces. In this example,
we may choose to understand the trigger as saying “wherever there is an interest
in f, instantiate the quantifier”. Another possible trigger is {g(x)}, which would
have the effect of producing information about g in terms of f. It is possible to
associate both triggers with the quantifier, which says to instantiate the quanti-
fier if either an f term or a g term is found in the E-graph: {f(x)} {g(x)}. Yet
another possibility is to use the trigger {f(x), g(x)}, which says to instantiate
the quantifier only with those terms that appear in the E-graph as arguments
to both f and g.

Here is more subtle example. The quantifier

forall x: int · 0 < x =⇒ f(x) == f(x-1) + f(g(x))

may tempt us to consider any of {f(x)}, {f(x-1)}, or {f(g(x))} as candidate
triggers. However, {f(x)} is problematic. If the E-graph contains a term f(E),
then the instantiation x := E will produce a term f(E-1), which gives rise to
another possible instantiation, x := E-1. This is known as a matching loop [11]
and should be avoided. The fact that the term f(E-1) in the instantiation is
guarded by the antecedent 0 < E does not help, because E may be term whose
distance from 0 cannot be determined from the proof context.

Candidate trigger {f(x-1)} is also problematic, but for another (or rather,
additional) reason: it contains the symbol -, which is interpreted by the decision
procedure for arithmetic. When a symbol is interpreted, one cannot rely on it
appearing in this form in the E-graph. For example, the E-graph may contain
a term f(y+2) but this may still not cause the instantiation x := y+3, because
the term y+3, let alone the equality y+2 == (y+3)-1, may be unknown to the
E-graph.

364 K.R.M. Leino and C. Pit-Claudel

Candidate {f(g(x))} does not suffer from the problems we just described.
It is rather discriminating—it will cause an instantiation x := E only if the E-
graph contains a term that applies f to a term in the equivalence class where
g is applied to E. Of course, depending on the application, this is possibly too
discriminating to give rise to the instantiations that are needed to reach the
proof goal.

Triggers can be specified as part of the SMT-LIB 2 input to the SMT solver.
In effect, this provides a way to program the SMT solver [22]. If the input does
not specify a trigger for a quantifier, the SMT solver attempts to select triggers
from the terms in the quantifier’s body. As we argue in this paper, leaving trigger
selection to the SMT solver can contribute to verification instabilities. Instead,
we show a strategy for selecting triggers at a level closer to the problem domain.
A formal semantics of triggers, as well as ways to define decision procedures
using quantifiers and triggers, has been studied by Dross et al. [13].

2.2 Architecture of the Program Verifier

The verification conditions generated for a Dafny program contain quantifiers
from three major sources. One source is the axiomatization of standard Dafny
operators and types, like the axiomatization of finite sequences. These quantifiers
have hand-written triggers. A second source is the encoding of constructs defined
in the Dafny program, like user-defined recursive functions. The triggers for
these quantifiers come from hand-crafted schemas (see, e.g., [1]). The third form
is user-written quantifiers. Previously, these were translated into SMT input
without any attempts at computing triggers. Consequently, it had been left to
the SMT solver to select triggers. To better understand why this can cause
problems, let us say a few words about the architecture of the verifier and about
what we will call parasitic terms.

The architecture of the Dafny verifier is the standard one of translating the
source language into an intermediate verification language (Dafny uses Boogie
[2,20]) and then generating (using the Boogie tool) verification conditions from
it. Each of these two steps does a translation into more coarse-grained types and
more concrete encodings.

For example, consider the Dafny expression

forall x · 0 ≤ x < a.Length =⇒ a[x] == 31

where a denotes a reference to an integer array. In the translation of this expres-
sion into Boogie, the heap dereference is made explicit and the offset into the
array is computed from the integer x. Here is (a slight simplification of) the
Boogie encoding:

forall x: int · 0 ≤ x ∧ x < _System.array.Length(a) =⇒
Unbox(read($Heap, a, IndexField(x))) == 31

As one can glean from this expression, the logical encoding of Dafny uniformly
stores array elements as being of a type Box, so the read from the heap is followed

Trigger Selection Strategies to Stabilize Program Verifiers 365

by an Unbox operation. Furthermore, when Boogie translates this expression into
SMT input, the formula becomes:

forall x: int · 0 ≤ x ∧ x < _System.array.Length(a) =⇒
U_2_int(Unbox(intType, MapType1Select($Heap, a, IndexField(x)))) == 31

Here, we see yet another translation between types, where most of Boogie’s
types are collected into a type called U and the formula includes a mapping from
U to int [20].

As can be seen in this example, what at the level of Dafny seems like a good
trigger—the term a[x], which would express “whenever there is an interest in
an element of a, instantiate the quantifier”—is not easily identifiable in the SMT
formula. In fact, at the SMT level, the term IndexField(x) may look like a good
trigger, but that is quite a liberal trigger and is likely to lead to far too many
irrelevant instantiations. We call the terms involving these additional functions
parasitic. In other words, parasitic terms are terms introduced by Dafny’s trans-
lation solely for encoding purposes; examples include Box, Unbox, and IndexField.

The Dafny front-end and verifier already infer from the given program various
pieces of information, like omitted types and rank functions for termination.
Dafny IDEs make this information available as hover text. In line with this
tradition of informing users about inferred elements, our attitude is that Dafny
users should not need to write triggers themselves, but may need to understand
triggers in order to diagnose poor verification performance. It would thus be nice
to communicate selected triggers to the user. Unfortunately, triggers selected in
the SMT solver are difficult to obtain, and their inclusion of parasitic terms
would not make sense to the Dafny user. Moreover, in many cases, translating
back from a trigger picked by the SMT solver to a Dafny expression is hard: the
translation from Dafny to the SMT solver’s language is not a bĳection.

These two aspects (avoiding parasitic terms and informing the user about
trigger selections) lead us quite naturally to argue that it makes sense to select
triggers at the source level rather than leaving this task to the SMT solver. From
the use of good triggers, one can hope for better behaved instantiations and
thus more stable verification. Moreover, information from the trigger-selection
process can more easily be explained to the user through hover text. Of course,
selecting triggers at the source level would be easy to accomplish by applying the
SMT solver’s algorithms to the nodes of a different abstract syntax tree (AST).
However, our strategy goes beyond merely selecting triggers at the source level,
as we explain in the next section.

3 Trigger Selection

When tasked with adding triggers to a quantifier, our code proceeds in a series
of small steps. At a high level, it first walks down the AST of the body of the
quantifier, collecting terms that could be part of a trigger. Then, it enumerates
subsets of these terms, thus generating a large collection of trigger candidates
(each candidate trigger is a set of terms). It then rejects candidates that fail

366 K.R.M. Leino and C. Pit-Claudel

to mention all quantified variables, and filters the set of candidates to remove
redundancy and improve the performance of the SMT solver. Finally, it uses
heuristics to select relevant triggers, attempting to predict and prevent matching
loops, and issuing warnings if matching loops seem unavoidable.

Each individual step is detailed below. Though previous literature has not
given them extensive treatment, and in particular not with a focus on efficiency
of implementation, some of these steps have appeared in one form or another in
previous work. Apart from a rigorous description, our contribution lies beyond
these steps: in addition to annotating single quantifiers, we introduce two new
techniques, quantifier splitting and trigger sharing. These techniques are the key
to preserving as much expressiveness as possible despite matching loop suppres-
sion. We describe them in detail at the end of this section.

3.1 Annotating the AST

Our extension first annotates subterms of each quantifier’s body by labeling
some of them as trigger heads, and others as trigger killers. Trigger killers are
terms that are not permitted to appear in triggers: typically, these have forms
that do not reduce to uninterpreted functions, such as arithmetic operations
(a + b) or logical connectives (a =⇒ b). Conversely, Trigger heads are terms
that may appear in triggers, such as applied functions (P(x)), array accesses
(a[x]), member accesses (this.someField), or set membership tests (a in S).
More precisely, trigger heads are nodes of the AST of a quantifier’s body whose
children include at least one of the quantified variables, and do not include trigger
killers. After annotating each subterm, our code collects all trigger heads, and
attaches them to the quantifier.

As an example, in forall x · x in S ⇐⇒ f(x) > f(x+1), our prototype
annotates x in S and f(x) as trigger heads, and x+1 and f(x) > f(x+1) (and
thus all of their ancestors, like f(x+1) and the whole body of the quantifier) as
trigger killers.

This phase takes time linear in the cumulative size of the ASTs all quantifiers
in the source program, which is bounded by the size of the source program itself.

3.2 Generating Candidates

After collecting terms suitable for inclusion in a trigger, our code generates
candidate triggers by enumerating combinations of these suitable terms. Since
the powerset of all collected terms can quickly grow large, this enumeration is
restricted by ensuring that each generated candidate has two properties: ade-
quacy as a trigger (each candidate mentions all variables, as required by the
SMT solver), and parsimony (removing a term from any candidate causes it to
become inadequate). This parsimony property is highly desirable: since it puts
more constraints on quantifier instantiations, any non-parsimonious candidate
matches less often than its parsimonious counterparts.

As an example of the effect of the parsimony requirement, consider a col-
lection of three suitable terms P(x, y), Q(y, z), and R(x, z). From this

Trigger Selection Strategies to Stabilize Program Verifiers 367

collection, our code constructs three candidate triggers: {P(x, y), Q(y, z)},
{P(x, y), R(x, z)}, and {Q(y, z), R(x, z)}. {P(x, y), Q(y, z), R(x, z)}
is eliminated because it is redundant (we call a candidate trigger redundant
when it is strictly more specific than another candidate trigger; this happens
when any match against the more specific trigger induces a match against the
less specific one).

The parsimony requirement is particularly useful when the body
of a quantifier mentions many predicates (in the extreme case of
forall x · P1(x) . . . Pn(x), it allows our code to generate only n candidates,
instead of the naïve 2n), but implementing it efficiently is non-trivial. Indeed, it
is not enough to check as subsets are enumerated that each added term men-
tions a previously unmentioned variable: the addition of a new term can make a
previous term redundant, as for example when adding R(x, y, z) to a candidate
containing P(x) and Q(y). To track parsimony efficiently, our code keeps track of
ownership relations between terms and variables. When recursively construct-
ing subsets of a given set of terms, our code first ensures that the newly added
term does mention a previously unmentioned variable; if so, the term is added,
and it gains ownership of all variables that it mentions. After this operation, if
any term is left without ownership of any variable, the whole subset is marked
as redundant, and that branch of the subset generation recursion is cut. For
performance, as it recursively constructs subsets, our code equips each partially
constructed set of terms with two hashmaps: one hashmap from each term to
the set of variables owned by that term, and the other hashmap from each vari-
able to its (single) owner, if any. By incrementally constructing these hashsets
of variables owned by each term and hashmaps associating each variable to its
owner term, our code can efficiently (in time linear in the number of quanti-
fied variables in the context) determine whether adding a term to a partially
constructed set makes it redundant (with regard to variables mentioned)1.

Continuing on the previous example forall x · x in S ⇐⇒ f(x) > f(x+1),
our code generates only two triggers: {f(x)} and {x in S}. The candidate trigger
{f(x), x in S} is redundant, and thus our code excludes it.

Without the parsimony requirement, this step would have for each quantifier
a worst-case time complexity exponential in the number of previously collected
trigger heads. Thanks to that requirement, however, this step has complexity
k · n · n1 · . . . · nk where k is the number of quantified variables and n =

∑
i ni is

the number of trigger heads in the quantifier’s body (each ni counts how many
of these terms mention the ith quantified variable). This yields an upper bound
of k · nk+1; in practice, this upper bound is seldom reached: each trigger head
often mentions a single quantified variable.

3.3 Picking Triggers and Preventing Matching Loops

In its last phase, our code uses a (necessarily incomplete) heuristic to evalu-
ate whether each candidate trigger may cause a matching loop. Roughly, this
1 Curious readers are directed to the CopyWithAdd method of the SetOfTerms class

implemented in the Triggers/TriggerUtils.cs part of our implementation.

368 K.R.M. Leino and C. Pit-Claudel

heuristic flags a trigger as potentially looping if instantiating the quantifier may
lead to a ground term that again matches the trigger.

In more details, our code proceeds as follows for each candidate:

1. For each term t of the candidate, our code collects all terms of the
quantifier’s body that match the term t. For example, it may pick
f(x+1), f(if a then b else c), and f(0) for the candidate term f(x) (a
match occurs with a term t’ when t’ can be unified with t; that is, when
there exists an instantiation of the variables of t that yields t’).

2. For each matching term, our code decides whether the match should be
deemed a false positive, and if so removes it. False positives are terms that

– are equal to the trigger (a term f(x) does not cause loops if the trigger
is f(x)),

– also appear in the trigger (a term f(g(x)) does not cause loops if the
trigger is {f(y), f(g(x))}, despite being a match for f(y)),

– differ from the trigger only by variables (a term f(y, x) is
not deemed to cause a loop if the trigger is f(x, y); indeed,
forall x,y · f(x, y) == f(y, x) is a quantifier that harmlessly can use
either term as a trigger), or

– differ by terms that do not contain bound variables (a term f(0) does not
cause loops if the trigger is f(x)).

3. If any terms are left that could cause loops, our code marks the trigger as
risky, recording the terms with which it may loop, and excludes it from the
pool of candidate triggers.

With matching loops mostly eliminated, our code then proceeds to pick triggers:
it analyzes the set of generated trigger candidates, ordering them according to a
trigger specificity relation (wherein a trigger is less specific than another one if
every match of the latter is also a match of the former), and excluding all non-
minimal candidates. Indeed, just like non-parsimonious candidates, non-minimal
candidates are redundant.

Note that, crucially, this selection phase happens after the matching loop
suppression phase. As an example of minimality, and of the importance of this
ordering, consider a collection of two terms f(x) and f(f(x)). In this case, our
minimality heuristic would retain only one trigger, {f(x)}. But since its match-
ing loop detection logic preemptively removes {f(x)} from the candidate pool,
{f(f(x))} is selected instead, indeed preventing a matching loop.

This phase has, for each quantifier, a time complexity bounded by k · n2,
where k is the number of candidates, and n the size of the body of the quantifier
(the quadratic factor is obtained by bounding the cost of comparing two terms
for equality by the size of the quantifier’s entire body).

3.4 Splitting Quantifiers and Sharing Triggers

The strategy presented above suffers from one crucial weakness: in practice, users
tend to collect related conditions under a single quantifiers. Thus, expressions

Trigger Selection Strategies to Stabilize Program Verifiers 369

of the form forall x · P(x) ∧ (Q(x) =⇒ P(x+1)) are quite common. The algo-
rithm presented above finds {P(x)} and {Q(x)} as reasonable trigger candidates,
but proceeds to eliminate {P(x)} from the candidates pool, noticing its potential
to loop with {P(x+1)}. Unfortunately, this means that with the naïvely auto-
generated trigger {Q(x)}, this quantifier is not enough to prove a proposition
such as P(0), which should follow trivially.

To offset this over-specificity, our code implements quantifier splitting,
a Dafny-to-Dafny rewriting technique that splits user-written quantifiers
to reduce the chances of large quantifier bodies causing self-loops. For
the example above, it thus produces two quantifiers, not one, and pro-
ceeds to annotate them separately. forall x · P(x) gets a trigger {P(x)}, and
forall x · Q(x) =⇒ P(x+1) gets a trigger {Q(x)}.

Exactly how to perform trigger splitting is an interesting design concern: on
one extreme, one could simply split the body of the quantifier around conjunc-
tions.

On the other extreme, one could rewrite the body into conjunctive normal
form before splitting. The former approach is too weak: it fails to split quanti-
fier bodies in the common case where a collection of properties is predicated by
a common condition, such as forall i · 0 ≤ i < |a| =⇒ (... ∧ ... ∧ ...).
The latter approach correctly handles this pattern, producing three predicated
quantifiers, but can introduce exponential increases in formula size. Our app-
roach is therefore a compromise between these two extremes, where only one
level of normalization is allowed, around =⇒.

This properly handles the example above, without leading to significant
increases in formula size. It is also in line with Dafny’s predicated quantifier
notation: the example above can be written forall i | 0 ≤ i < |a| · ... ∧ ... ∧ ...,
which gets split into three quantifiers of the same shape forall i | 0 ≤ i < |a| ·

Splitting a quantifier before performing matching loop detection, however, is
still not enough to recover its original expressiveness: after splitting the exam-
ple above into forall x · P(x) and forall x · Q(x) =⇒ P(x+1), and assigning
{P(x)} as the trigger for the first split quantifier and {Q(x)} for the second,
adding a term Q(n) to the collection of ground terms of the SMT solver does not
immediately entail learning P(n) (it did for the original quantifier with {Q(x)}
as the trigger). To recover more of the lost expressiveness, our code enriches
the pool of terms to be considered for trigger elaboration at the beginning of
the trigger generation process by sharing candidates between all quantifiers that
derive from the same split quantifier. This strategy, which we call trigger sharing,
yields two triggers for the first split quantifier forall x · P(x), namely {P(x)}
and {Q(x)}. The second quantifier still only gets one trigger, since {P(x)} would
loop with P(x+1). Interestingly, this strategy leads to quantifiers whose triggers
are composed of terms that do not necessarily appear in the quantifier’s body;
an otherwise uncommon, but not undesirable, situation: in a sense, the shared
trigger captures insight gathered from the programmer about weak connections
between relatively independent propositions.

This phase has a time complexity linear in the size of each quantifier.

370 K.R.M. Leino and C. Pit-Claudel

4 Evaluation

Our new trigger selection strategy brings three main benefits:

– Verification is more predictable: adding auto-generated triggers to split
quantifiers significantly reduce verification instabilities. We demonstrate this
effect on Dafny’s test suite by comparing the standard deviations of test
running times across multiple runs with different seeds, with and without
Dafny-generated triggers.

– Verification is faster: Dafny-generated triggers prevent certain matching
loops from occurring, improving verification times. We demonstrate this effect
on a large verification effort from the IronFleet project [15].

– Debugging is easier: Dafny-generated triggers are built from terms found in
the bodies of user-written quantifiers, allowing Dafny to print detailed warn-
ings and error messages. We discuss our experience using these messages as
a debugging aid while adjusting examples that relied on promiscuous trigger
instantiations to verify, and while verifying new programs.

We discuss these three aspects in the following subsections, before presenting
experimental results supporting these conclusions.

4.1 Improved Predictability

Measuring the impact of Dafny-level trigger generation on predictability is par-
ticularly difficult. Indeed, triggers selected at the Dafny level are often much
more specific triggers than those which the SMT solver would have picked from
encoded terms. This is mostly desirable, but it still causes a number of problems:
certain examples for which the SMT solver was lucky and could find a proof of
thanks to absurdly liberal triggers stop working; other examples that (again,
due to luck) had a short proof using promiscuous triggers take much longer to
verify. In most cases, the problems are easily fixable: tightening the proof by
adding a few assertions is often enough to drive the solver down the right proof
path, without using unreasonable triggers. To ensure fairness, our experiments
separate the contribution of these modifications to improvements in verification
performance or stability; yet we still view these added annotations as net gains:
it is preferable to invest slightly more work in ensuring that a verification is
stable than to rely on luck and liberal trigger choices.

Looking more closely at instabilities, we see two ways in which unpredictable
performance manifests itself: one derives from variations in solver behavior due
to choices of random seeds, and the other derives from the specific way in which
the verification problem is stated by the user. Ideally, we wish our verification
tool to be robust to both.

In the first case, we expect a robustly annotated collection of quantifiers to
be agnostic to the random choices that inform the solver’s behavior, and thus
verification times to be mostly independent from the choice of random seed
used by the solver, or from the version of the solver used. We call this static
predictability, or robustness to prover changes.

Trigger Selection Strategies to Stabilize Program Verifiers 371

In the second case, we expect equivalent formulations of verification condi-
tions to lead to roughly similar verification performance, and equal verification
results. In particular, we do not expect users to adjust their writing to minimize
unpredictable verification performance, or to make insignificant source changes
to finding “the” right formulation that causes Dafny to succeed (unfortunately,
the current verification process encourages users to do precisely this: since trig-
gers are hard to debug, it is often simpler to experiment with various formulations
of the problem, until one is found that does not seem to send the prover into a
loop). We call this dynamic predictability, or robustness to source changes.

4.2 Improved Verification Speeds

Beyond the improved predictability, Dafny-generated triggers offer a significant
performance boost in large verification projects. Analysis of traces produced by
the SMT solver shows that in many cases, lax triggers are the cause of numerous
useless instantiations, slowing down the proof search process. By ensuring that
we never pick generic, uninformative triggers, we can perceptibly reduce the
verification times of many complex developments.

4.3 Easier Debugging and Interaction

Beyond performance and predictability, Dafny-generated triggers provide a
meaningful improvement in user experience:

– Triggers are Dafny terms, and can therefore easily be displayed to the user, in
the form of informative tooltips in Dafny IDEs. In contrast, triggers collected
by the SMT solver are parts of Dafny’s and Boogie’s combined encodings,
and thus hardly meaningful to the user.

– Quantifier splitting happens at the Dafny level, and therefore is also amenable
to presentation to the user, in the form of subtle mouseover messages.

– Potential matching loops can be detected early, and reported to the user.
Instead of being an arcane part of SMT performance debugging, triggers
become a discreet part of the usual verification landscape, which the user is
reminded of only when it may start causing issues.

– Common patterns introducing matching loop (such as forall x · a[x] ≤ a[x+1],
or forall x · f(x) = f(f(x))) can be the object of specific advice, beyond the
“potential matching loop” warnings. Our implementation does not offer such
specialized advice, but it would be a reasonable extension of our current efforts.

In practice, we have received very enthusiastic feedback from users of the new
system, and praise for the integrated, single-language experience that triggers at
the Dafny level allow.

372 K.R.M. Leino and C. Pit-Claudel

4.4 Experimental Results

We evaluate the impact of Dafny-generated triggers on Dafny programming
through three experiments:2

– In the first one, we run most of the Dafny test suite (about 350 test files
of varying complexity and running times) with varying random seeds, and
measure per-test completion times and standard deviations across ten runs.
We run the original Dafny code on the original test suite, followed by our
own version of Dafny with and without triggers, on a version of the test
suite updated to verify successfully with Dafny-generated triggers. Running
these three tests allows us to evaluate performance and static predictability
gains derived both from adding triggers to user-written quantifiers, and from
editing the test suite to correct the warnings issued by our trigger-generating
code.

– In the second experiment, we use our implementation to process a large code
base after enabling Dafny-generated triggers, and show significantly improved
verification times.

– In the third, informal experiment, we fully verify a version of the classic
Union-Find algorithm, and discuss how auto-triggers improve the verifica-
tion experience as the code and its proofs are being written. Contrary to
our performance and static predictability tests, this experiment shows the
dynamic predictability benefits of using Dafny-generated triggers throughout
the process of developing and verifying new code.

Performance and Stability Evaluation Across Multiple Runs of the
Test Suite.
Most of Dafny’s test suite (perhaps 70 %) is unaffected by the addition of Dafny-
generated triggers: verification is and remains stable, with newly added triggers
often slightly reducing variance across multiple runs, and performance remaining
mostly unchanged. This is expected (and fortunate!), for two reasons: first, most
of the test suite is made up of small programs, whose complexity is too low to
cause significant verification issues. In that case, more precise triggers can help
direct the search faster, but not by very much. Second, we expect matching loops
to be relatively uncommon (especially given that the more complex examples in
Dafny’s test suite were written by experts). Figure 1 shows a high-level summary
of these results, by comparing the distribution of standard deviations of verifi-
cation times across the entire updated test suite, with and without Dafny-level
triggers. In general, the addition of triggers slightly improves stability, diminish-
ing variance across the entire test suite.

Beyond this general improvement in stability, measuring performance and
instabilities across prover runs for the remaining 30 % of the test suite shows

2 All experiments in this section were run on two cores of an Intel Core i7-4810MQ
CPU (2.80 GHz), on a machine equipped with 32 GB of RAM and running Z3 version
4.4.1.

Trigger Selection Strategies to Stabilize Program Verifiers 373

Fig. 1. Histogram of standard deviations of verification times in seconds across five
runs of Dafny’s entire test suite, with and without Dafny-generated triggers. The right
figure shows that using Dafny-generated triggers yields a marked shift towards lower
deviations (i.e. towards the top of the figure). (Color figure online)

many interesting patterns. Figure 2 shows detailed measurements for a few
such examples. To produce it, we repeatedly ran Dafny in three distinct
configurations:

– With Dafny-generated triggers, on a copy of the test suite modified to work
with these new triggers (these modifications are described at the end of this
section)

– Without Dafny-generated triggers, on the same modified test-suite
– Without Dafny-generated triggers, on the original test suite

In all three cases we ran Dafny 10 times, passing a new random seed to Z3’s
arithmetic, SMT and SAT modules on each run3.

Figure 2 shows the performance and predictability consequences of automat-
ically selecting triggers for a corpus of six example programs taken from Dafny’s
test suite. These programs are a mix of algorithms and submissions to various
verification competitions, with about 100 to 300 lines of Dafny code each.

We conclude this section with a quick review of the changes that adapting the
Dafny test suite to use our trigger generation strategy required. With automati-
cally generated triggers, but no loop detection nor quantifier splitting, about 55
tests (out of 350) initially failed to verify. Adding matching loop detection fixed
about 10. Adding quantifier splitting with trigger sharing fixed 10 more. For the
remaining 35 tests, the causes were distributed as follows:

– About 10 tests were using explicitly recursive constructs, where matching
loops were expected, and needed no changes beyond silencing warnings

– About 10 tests were implicitly relying on excessively liberal triggering to prove
complex correspondences between expressions involving sequences (looking at
a Z3 trace for the offending quantifier would show that Z3 was picking a very
unspecific term to trigger on, and triggering a lot). Adding stricter triggering
annotations caused these sequence equivalences to become unprovable; it was
easy to fix these issues by adding extra annotations.

3 The seeds used were 32901, 52510, 15712, 371, 65410, 21223, 38836, 27584, 7013,
and 11502.

374 K.R.M. Leino and C. Pit-Claudel

0 5 10 15 20 25 30

COST11/Duplicates

VSTTE12/Tree

Heapstate

CalcStatement

TreeBarrier

VSComp10/Queue

Original test suite, no triggers

Adjusted test suite, no triggers

Adjusted test suite, Dafny’s triggers

Fig. 2. Verification times in seconds for six example programs taken from Dafny’s
test suite, running the original Dafny on its test suite, our own version of Dafny with
trigger generation turned off on an updated copy of the test suite, and our own version
of Dafny with trigger generation turned on that same copy of the test suite. Error bars
show the standard deviation of verification times across ten runs with distinct random
seeds. (Color figure online)

– About 5 tests had unnecessary matching loops, which can be fixed by rephras-
ing quantifiers, thus acting upon the warning issued by our implementation.

– The rest had various issues, where specific properties were not being proved
due to stricter triggering. In most cases, adding extra assertions was enough
to lead Z3 to a proof, in a much more principled way that the haphazard
matching that was occurring in the original Dafny.

Performance Results on Large Verification Efforts.
Focusing on verification performance, our second experiment pitted our imple-
mentation against the original Dafny to check the proofs of the implementation
layer of IronFleet’s IronRSL, a Paxos-based replicated-state-machine library. The
focus of our attention was thus a collection of 48 source files totaling 13916 lines
of Dafny source code. Figure 3 compares the running times of each of the 48
files with and without Dafny-generated triggers, sorted by descending relative
improvement. Across the full corpus, our implementation achieves an overall
speedup factor of 1.6, reducing the total running time from 1 hour and 4 min
to 39 min. The average speedup across the test suite is 1.15, and the average
speedup on tests that the change significantly affects (>20 % speedup or slow-
down) is 1.45. These results are even more encouraging that these programs were
written by experienced Dafny hackers.

Experience Report on Verifying a Simple Algorithm with and Without
Dafny-Generated Triggers.
As a final experiment, we informally assessed the dynamic robustness of our new
implementation. We verified a number of small programs using Dafny with auto-

Trigger Selection Strategies to Stabilize Program Verifiers 375

0

50

100

150

200

250

300

IronFleet RSL, no triggers

IronFleet RSL, Dafny’s triggers

Fig. 3. Verification times in seconds for the 48 programs composing the implementation
layer of IronRSL, with trigger generation at the Dafny level turned on and off. The
experiment shows a significant speedup across the entire library, with programs that
suffer from the change being only slowed down by a small proportion. (Color figure
online)

generated triggers, including a Union-Find implementation. As we worked on it,
we did not notice significant differences: everything was running smoothly, and
Dafny was not reporting specific warnings about our quantifiers. Switching to
a different environment, however, revealed how much Dafny-level triggers were
doing for us: at multiple points we tried to verify the program without these
auto-selected triggers; in most cases, verification simply timed out.

In total, it took about 10 h to write 330 lines of verified Dafny code. The
program includes 25 universal quantifiers; checking its proofs takes 18 s with
Dafny-generated triggers, and 31 s without. Most of the performance difference
results from Z3 exploring fruitless paths due to overly permissive triggers.

Figure 4 shows an example of a quantifier annotation, displayed as an in-
editor mouseover tooltip.

Fig. 4. Emacs’ dafny-mode (part of the boogie-friends package) showing a trigger-
related message. Our code has correctly split the quantifier, adding two triggers
({P(x)} and {Q(x)}) to the first half, and a single one ({Q(x)}) to the second half,
thus avoiding a matching loop. This type of information was useful for our Union-Find
experiment.

376 K.R.M. Leino and C. Pit-Claudel

5 Related Work

The idea of using matching triggers to instantiate quantifiers in SMT solvers
stems from Nelson’s PhD thesis [24] and they were first implemented in the SMT
solver Simplify [11]. When a quantifier is not given an explicit trigger, Simplify
attempts to select one. It first looks for single, minimal terms that can be used as
triggers, and selects all of these, except ones that would give rise to a matching
loop for the quantifier according to a simple heuristic. If no such triggers exist,
then Simplify attempts to find a trigger with multiple terms. It only picks one
multiple-term trigger in order to avoid having to consider exponentially many.
In contrast, we may consider polynomially many. This gives us extra flexibility
in trigger choices.

Z3 has a similar trigger-selection mechanism, but due to its more efficient
matching technique [8], it does not make a hard distinction between single-term
triggers and multiple-term triggers. On the downside, Z3 does not check for
matching loops.

SMT solvers CVC4 [3] and Alt-Ergo [4] also support quantifiers and triggers.
We have tried running Dafny with CVC4 version 1.4, which supports SMT-LIBv2
input. Unfortunately, this version of CVC4 fails to verify most of Dafny’s test
suite, except in tiny examples where the verification conditions do not involve
any significant quantifiers. Some preliminary experiments with the upcoming
version 1.5 show promise of being a viable alternative to Z3 for Dafny.

The program verifier VCC [7] also computes its own triggers for user-written
quantifiers, rather than leaving this to the SMT solver. The selection criteria is
aware of the VCC style of specifications and gives priority to certain terms, for
example those that mention the special “ownership” field \owns or user-defined
functions. The quantifiers are not rewritten for the purpose of finding better
triggers, but some form of loop prevention is used.

There have been other attempts to rewrite verification conditions in order to
make them perform better with SMT solvers. Böhme and Moskal measured the
performance impact of different heap encodings [6]. In the context of Viper [23],
Uri Juhasz has implemented Boogie-to-Boogie transformations that summarize
in join nodes information common to all branches, which can reduce the need
for case splits in the SMT solver and thus increase performance [17].

6 Future Work

While our work addresses the most prevalent source of verification instability we
have found, there are other sources.

One other source that involves quantifiers involves a quantifier that many
users write: expressing with a quantifier that an array is sorted

forall i · 0 ≤ i < a.Length - 1 =⇒ a[i] ≤ a[i+1]

For this quantifier, our technique reports that it cannot find a valid trig-
ger without introducing a possible matching loop. This provides a noticeable

Trigger Selection Strategies to Stabilize Program Verifiers 377

improvement over Dafny’s previous behavior of silently accepting the quantifier,
because it calls to the user’s attention the fact that the quantifier may cause
problems for the verifier. We could, however, go one step further and rewrite the
quantifier:

forall i,j · 0 ≤ i < a.Length - 1 ∧ j == i+1 =⇒ a[i] ≤ a[j]

The trigger {a[i], a[j]} for this quantifier has the nice property that the
instantiations it causes do not introduce any more array-dereference terms. We
would like to introduce automatic rewrites of this form, but have not yet imple-
mented them.4

Such automatic rewrites of problematic quantifiers could be investigated sys-
tematically, and could be distributed as an auto-fix IDE feature: in cases where
obtaining a confirmation from the user before doing a rewrite is desirable, we
would display a tooltip offering the rewrite. Such an investigation would make
for good future work.

Another source of verification instability is the use of non-linear arithmetic.
To keep such issues manageable, the Ironclad Apps project chose to mostly turn
off Z3’s support of non-linear arithmetic and instead rely on manually crafted
lemmas about the needed properties. Providing better automated and stable
support for non-linear arithmetic remains fertile research ground.

Finally, we would like to comment on the fact that we have implemented our
matching-loop detection inside Dafny on a per-quantifier basis. Our infrastruc-
ture has the basic building blocks for doing the matching-loop detection given a
larger collection of quantifiers. Within Dafny, a possible extension of our work
would be to look for possible matching loops within some cluster of declara-
tions, for example among all loop invariants that a user has supplied for a loop;
a significant difficulty would be to deal with the exponential number of combina-
tions that arise from matching sequences involving triggers composed of multiple
terms in multiple quantifiers.

Outside Dafny, matching-loop detection could do well at the Boogie or Z3
level. This would allow non-Dafny tools to benefit from this functionality. One
could also imagine an automatic postmortem analysis of an SMT-solver run
to detect loops that caused bad performance. Trying to prove the absence of
matching loops in a given verification condition would be wonderful. This seems
related to termination issues in rewriting systems (see, e.g., [10]), but we are
unaware of any work that specifically addresses this problem for triggers where
congruence closure is involved.

7 Conclusion

We have presented effective strategies for selecting matching triggers for quanti-
fiers that make the proof search of SMT solvers better behaved, thus improving
4 For this particular property, the quantifier forall i,j · 0 ≤ i < j < a.Length =⇒
a[i] ≤ a[j] is often even better, because it makes it more readily usable without
having to appeal to transitivity of ≤ and induction.

378 K.R.M. Leino and C. Pit-Claudel

the experience of users of automated program verifiers. Our implementation of
these techniques in the Dafny program verifier demonstrates significant improve-
ments in verification stability, verification performance, and proof elaboration
and debugging experiences. We have received extremely positive feedback from
early users of our implementation, on large verification efforts. By rewriting
some quantifiers, our technique is able to select suitable triggers for quantifiers
that otherwise would be ill-behaved or rejected for fear of matching loops. By
applying our technique at the level of source expressions, we avoid triggering on
parasitic terms introduced in the translation to first-order formulas, and obtain
better-behaved triggers that we can directly report to users, thereby giving them
meaningful feedback about the automatic trigger selection process.

We have tightened up a major source of verification instability. While other
sources remain, we argue that our strategies are ready to be used in program
verifiers and look forward to further stability improvements.

Acknowledgments. We are grateful to Chris Hawblitzel and Bryan Parno for pro-
ductive discussions and feedback during the development of the auto-generated triggers
and for help in setting up the IronFleets experiments, to Michał Moskal for his help
in understanding how VCC generates triggers, and to Claire Dross and the anony-
mous reviewers for their comments on drafts of this paper. We also thank Andrew
Reynolds for discussions about quantifiers and Dafny support in CVC4, Jay Lorch for
his help testing the Dafny mode for Emacs, and Daan Leĳen for typesetting assistance
in Madoko. A special thanks goes to Jonathan Protzenko for connecting us authors
and thus kickstarting this collaboration.

A Pseudo-Code for the Main Algorithm

This annex offers high-level pseudo-code for the main algorithm introduced in
this paper; it simplifies the types of many of the relevant functions for clarity,
and glosses over most performance optimizations discussed in the body of the
paper.

def AnnotateAndSplit(quantifier):

AnnotateSubtree(quantifier.body, quantifier.variables)

candidates = TriggerCandidates(quantifier)

for split_q in SplitQuantifier(quantifier):

safe_candidates = RemoveLoops(candidates, split_q)

split_q.triggers = PickTriggers(safe_candidates)

def AnnotateSubtree(node, variables):

for c in node.children:

AnnotateSubtree(c, variables)

if (node.type in KILLER_TYPES or

any(c.annot == TriggerKiller for c in node.children)):

node.annot = TriggerKiller

elif any(node.mentions(v) or any(c.mentions(v) for c in node.children)

Trigger Selection Strategies to Stabilize Program Verifiers 379

for v in variables):

node.annot = TriggerHead

def TriggerCandidates(quantifier):

for subset in Subsets(quantifier.trigger_heads):

Adequacy: All quantified variables are mentionned

if is_adequate(subset, quantifier.variables):

Parsimony: No term can be removed without breaking adequacy

if not is_redundant(subset):

yield TriggerCandidate(subset)

def SplitQuantifier(quantifier):

if quantifier.type == ForallNode:

if quantifier.body.type == AndNode:

for c in quantifier.body.children:

yield ForallNode(c, quantifier.variables)

else: yield quantifier

(... Similar case of existential quantifiers omitted)

def RemoveLoops(candidates, split_quantifier):

for candidate in candidates:

matches = []

for term in candidate.terms:

for desc in split_quantifier.descendants:

if desc.can_unify_with(term, split_quantifier.variables):

if not FalsePositive(desc, term, candidate):

matches.append(desc)

if not any(matches): yield candidate

def FalsePositive(desc, term, candidate):

return (desc == term or desc in candidate.terms or

all(is_var(t) or is_const(t) for t in term.disjoint_union(desc)))

def PickTriggers(candidates):

for candidate in candidates:

if not any(candidate.more_specific_than(other) for other in candidates):

yield candidate

References

1. Amin, N., Leino, K.R.M., Rompf, T.: Computing with an SMT solver. In: Seidl, M.,
Tillmann, N. (eds.) TAP 2014. LNCS, vol. 8570, pp. 20–35. Springer, Heidelberg
(2014)

2. Barnett, M., Chang, B.-Y.E., DeLine, R., Jacobs, B., M. Leino, K.R.: Boogie: a
modular reusable verifier for object-oriented programs. In: de Boer, F.S., Bon-
sangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp.
364–387. Springer, Heidelberg (2006)

380 K.R.M. Leino and C. Pit-Claudel

3. Barrett, C., Conway, C.L., Deters, M., Hadarean, L., Jovanović, D., King, T.,
Reynolds, A., Tinelli, C.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV
2011. LNCS, vol. 6806, pp. 171–177. Springer, Heidelberg (2011)

4. Bobot, F., Conchon, S., Contejean, É., Lescuyer, S.: Implementing polymorphism
in SMT solvers. In: Barrett, C., de Moura, L., (eds.) SMT 2008: 6th International
Workshop on Satisfiability Modulo Theories, pp. 1–5 (2008)

5. Bobot, F., Filliâtre, J.-C., Marché, C., Melquiond, G., Paskevich, A.: Preserving
user proofs across specification changes. In: Cohen, E., Rybalchenko, A. (eds.)
VSTTE 2013. LNCS, vol. 8164, pp. 191–201. Springer, Heidelberg (2014)

6. Böhme, S., Moskal, M.: Heaps and data structures: a challenge for automated
provers. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS,
vol. 6803, pp. 177–191. Springer, Heidelberg (2011)

7. Cohen, E., Dahlweid, M., Hillebrand, M., Leinenbach, D., Moskal, M., Santen, T.,
Schulte, W., Tobies, S.: VCC: a practical system for verifying concurrent C. In:
Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS,
vol. 5674, pp. 23–42. Springer, Heidelberg (2009)

8. de Moura, L., Bjørner, N.S.: Efficient E-Matching for SMT solvers. In: Pfenning,
F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 183–198. Springer, Heidelberg
(2007)

9. de Moura, L., Bjørner, N.S.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

10. Dershowitz, N.: Termination of rewriting. J. Symbolic Comput. 3(1/2), 69–116
(1987)

11. Detlefs, D., Nelson, G., James, B.: Saxe.: simplify: a theorem prover for program
checking. J. ACM 52(3), 365–473 (2005)

12. Downey, P.J., Sethi, R., Tarjan, R.E.: Variations on the common subexpression
problem. J. ACM 27(4), 758–771 (1980)

13. Dross, C., Conchon, S., Kanig, J., Paskevich, A.: Reasoning with triggers. In:
Fontaine, P., Goel, A., (eds.) 10th International Workshop on Satisfiability Modulo
Theories, SMT 2012, vol. 20 of EPiC, pp. 22–31. EasyChair, June–July 2013

14. Dross, C., Efstathopoulos, P., Lesens, D., Mentré, D., Moy, Y.: Rail, space, security:
three case studies for SPARK 2014. In: 7th Europen Congress on Embedded Real
Time Software and Systems (ERTS2 2014) 2014

15. Hawblitzel, C., Howell, J., Kapritsos, M., Lorch, J.R., Parno, B., Roberts, M.L.,
Setty, S., Zill, B.: IronFleet: proving practical distributed systems correct. In: Pro-
ceedings of the ACM Symposium on Operating Systems Principles (SOSP), ACM
October 2015

16. Jacobs, B., Piessens, F.: The VeriFast program verifier. Technical report CW-520,
Department of Computer Science, Katholieke Universiteit Leuven August 2008

17. Juhasz, U.: Boogie-to-Boogie transformations to speed up SMT solving. Personal
communication (2015)

18. Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski, B.: Frama-C:
a software analysis perspective. Form. Aspects Comput. 27(3), 573–609 (2015)

19. Leino, K.R.M.: Dafny: an automatic program verifier for functional correctness. In:
Clarke, E.M., Voronkov, A. (eds.) LPAR-16 2010. LNCS, vol. 6355, pp. 348–370.
Springer, Heidelberg (2010)

20. Leino, K.R.M., Rümmer, P.: A polymorphic intermediate verification language:
design and logical encoding. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010.
LNCS, vol. 6015, pp. 312–327. Springer, Heidelberg (2010)

Trigger Selection Strategies to Stabilize Program Verifiers 381

21. Leino, K.R.M., Wüstholz, V.: Fine-grained caching of verification results. In:
Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 380–397.
Springer, Heidelberg (2015)

22. Moskal, M.: Programming with triggers. In: Dutertre, B., Strichman, O., (eds.)
SMT 2009, 7th International Workshop on Satisfiability Modulo Theories, August
2009

23. Müller, P., Schwerhoff, M., Summers, A.J.: Viper: a verification infrastruc-
ture for permission-based reasoning. In: Jobstmann, B., et al. (eds.) VMCAI
2016. LNCS, vol. 9583, pp. 41–62. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-49122-5_2

24. Charles Gregory Nelson: Techniques for program verification. Technical report
CSL-81-10, Xerox PARC, The author’s PhD thesis June 1981

25. Nelson, G., Oppen, D.C.: Simplification by cooperating decision procedures. ACM
Trans. Program. Lang. Syst. 1(2), 245–257 (1979)

26. Tschannen, J., Furia, C.A., Nordio, M., Polikarpova, N.: AutoProof: auto-active
functional verification of object-oriented programs. In: Baier, C., Tinelli, C. (eds.)
TACAS 2015. LNCS, vol. 9035, pp. 566–580. Springer, Heidelberg (2015)

http://dx.doi.org/10.1007/978-3-662-49122-5_2
http://dx.doi.org/10.1007/978-3-662-49122-5_2

Satisfiability Modulo Heap-Based Programs

Quang Loc Le1(B), Jun Sun1, and Wei-Ngan Chin2

1 Singapore University of Technology and Design,
Singapore, Singapore

lequangloc@gmail.com
2 National University of Singapore,

Singapore, Singapore

Abstract. In this work, we present a semi-decision procedure for a frag-
ment of separation logic with user-defined predicates and Presburger
arithmetic. To check the satisfiability of a formula, our procedure iter-
atively unfolds the formula and examines the derived disjuncts. In each
iteration, it searches for a proof of either satisfiability or unsatisfiability.
Our procedure is further enhanced with automatically inferred invari-
ants as well as detection of cyclic proof. We also identify a syntactically
restricted fragment of the logic for which our procedure is terminating
and thus complete. This decidable fragment is relatively expressive as it
can capture a range of sophisticated data structures with non-trivial pure
properties, such as size, sortedness and near-balanced. We have imple-
mented the proposed solver and a new system for verifying heap-based
programs. We have evaluated our system on benchmark programs from
a software verification competition.

Keywords: Decision procedures · Satisfiability · Separation logic ·
Inductive predicates · Cyclic proofs

1 Introduction

Satisfiability solvers, particularly those based on Satisfiability Modulo Theory
(SMT) technology [3,19], have made tremendous practical advances in the last
decade to the point where they are now widely used in tools for applications as
diverse as bug finding [27], program analyses [4] to automated verification [2].
However, current SMT solvers are based primarily on first-order logic, and do not
yet cater to the needs of resource-oriented logics, such as separation logic [26,40].
Separation logic has recently established a solid reputation for reasoning about
programs that manipulate heap-based data structures. One of its strengths is
the ability to concisely and locally describe program states that hold in separate
regions of heap memory. In particular, a spatial conjunction (i.e., κ1∗κ2) asserts
that a given heap can be decomposed into two disjoint regions and the formulas,
κ1 and κ2, hold respectively and separately in the two memory regions. In this
work, we investigate the problem of verifying heap-manipulating programs in the

c© Springer International Publishing Switzerland 2016
S. Chaudhuri and A. Farzan (Eds.): CAV 2016, Part I, LNCS 9779, pp. 382–404, 2016.
DOI: 10.1007/978-3-319-41528-4 21

Satisfiability Modulo Heap-Based Programs 383

framework of SMT. We reduce this problem to solving verification conditions
representing precise program semantics [9,10,22,44].

Developing an SMT solver supporting separation logic with inductive pred-
icates and Presburger arithmetic is challenging as the satisfiability problem for
this fragment is undecidable [30,31]. We focus on an expressive fragment which
consists of spatial predicates expressing empty heap assertion (emp), points-to
assertion (x�→c(v̄)), and inductive predicate assertions (P(v̄)). Moreover, it may
include pure constraints on data values and capture desired properties of struc-
tural heaps (such as size, height, sortedness and even near-balanced tree prop-
erties). We thus face the challenge of handling recursive predicates with pure
properties, that are inherently infinite. Furthermore, we would like to support
both satisfiability (SAT) and unsatisfiability (UNSAT) checks.

There have been a number of preliminary attempts in this direction. For
instance, early proposals fixed the set of shape predicates that may be used, for
example, to linked lists (in SeLoger [17,23], and SLLB [34]) or trees (GRIT [36]).
There are few approaches supporting user-defined predicates [14,25,39].
Brotherston et al. recently made an important contribution by introducing SLSAT,
a decision procedure for a fragment of separation logic with arbitrary shape-only
inductive predicates [12]. However, SLSAT is limited to the shape domain, whereas
shape predicates extended with pure properties are often required for automated
verification of functional correctness.

In this paper, we start by proposing a new procedure, called S2SAT,
which combines under-approximation and over-approximation for simultane-
ously checking SAT and UNSAT properties for a sound and complete theory aug-
mented with inductive predicates. S2SAT takes a set of user-defined predicates and
a logic formula as inputs. It iteratively constructs an unfolding tree by unfolding
the formula in a breadth-first, flow- and context-sensitive manner until either a
symbolic model, or a proof of unsatisfiability or a fixpoint (e.g., a cyclic proof)
is identified. In each iteration, it searches over the leaves of the tree (the dis-
junction of which is equivalent to the input formula) to check whether there is a
satisfiable leaf (which proves satisfiability) or whether all leaves are unsatisfiable.
In particular, to prove SAT, it considers base disjuncts which are derived from
base-case branches of the predicates. These disjuncts are under-approximations
of the input formula and critical for satisfiability. Disjuncts which have no induc-
tive predicates are precisely decided. To prove UNSAT, S2SAT over-approximates
the leaves prior to prove UNSAT. Our procedure systematically enumerates all
disjuncts derived from a given inductive formula, so it is terminating for SAT.
However, it may not be terminating for UNSAT with those undecidable augmented
logic. To facilitate termination, we propose an approach for fixpoint computation.
This fixpoint computation is useful for domains with finite model semantics i.e.,
collecting semantics for a given formula of such domains is finite. In other words,
the input formula is unsatisfiable when the unfolding goes on forever without
uncovering any models. We have implemented one instantiation of the fixpoint
detection for inductive proving based on cyclic proof [13] s.t. the soundness of
the cyclic proof guarantees the well-foundedness of all reasoning.

384 Q.L. Le et al.

Fig. 1. Motivating example.

To explicitly handle heap-manipulating programs, we propose a separation
logic instantiation of S2SAT, called S2SATSL. Our base theory is a combination of
the aforementioned separation logic predicates except inductive predicates. We
show that our decision procedure for this base theory is sound and complete.
S2SATSL over-approximates formulas with soundly inferred predicate invariants.
In addition, we describe some syntax restrictions such that S2SATSL is always
able to construct a cyclic proof for a restricted formula so that our procedure is
terminating and complete.

To summarize, we make the following technical contributions in this work.

– We introduce cyclic proof into a satisfiability procedure for a base theory
augmented with inductive predicates (refer to Sect. 3).

– We propose a satisfiability procedure for separation logic with user-defined
predicates and Presburger arithmetic (Sect. 4).

– We prove that S2SATSL is: (i) sound for SAT and UNSAT; (ii) and terminating
(i.e., proposing a new decision procedure) for restricted fragments (Sect. 5).

– We present a mechanism to automatically derive sound (over-approximated)
invariants for user-defined predicates (Sect. 6).

– We have implemented the satisfiability solver S2SATSL and the new verifica-
tion system, called S2td. We evaluated S2SATSL and S2td with benchmarks from
recent competitions. The experimental results show that our system is expres-
sive, robust and efficient (Sect. 7).

Proofs of Lemmas and Theorems presented in this paper are available in the
companion technical report [30].

2 Illustrative Example

We illustrate how our approach works with the example shown in Fig. 1.
Our verification system proves that this program is memory safe and func-
tion ERROR() (line 5) is never called. Our system uses symbolic execution in
[6,14] and large-block encoding [8] to provide a semantic encoding of verifi-
cation conditions. For safety, one of the generated verification conditions is:
Δ0 ≡ ll(n,x)00∗test(x,r1)10∧n≥0∧r1=0. If Δ0 is unsatisfiable, function ERROR() is
never called. In Δ0, ll and test are Interprocedural Control Flow Graph (ICFG)

Satisfiability Modulo Heap-Based Programs 385

of the functions ll and test. Our system eludes these ICFGs as inductive pred-
icates. For each predicate, a parameter res is appended at the end to model
the return value of the function; for instance, the variables x (in ll) and r1
(in test) of Δ0 are the actual parameters corresponding to res. Each inductive
predicate instance is also labeled with a subscript for the unfolding number and
a superscript for the sequence number, which are used to control the unfolding
in a breadth-first and flow-sensitive manner.

To discharge Δ0, S2SATSL iteratively derives a series of unfolding trees Ti. An
unfolding tree is a tree such that each node is labeled with an unfolded dis-
junct, corresponding to a path condition in the program. We say that a leaf
of Ti is closed if it is unsatisfiable; otherwise it is open. During each iteration,
S2SATSL either proves SAT by identifying a satisfiable leaf of Ti which contains
no user-defined predicate instances or proves UNSAT by showing that an over-
approximation of all leaves is unsatisfiable. Initially, T0 contains only one node
Δ0. As Δ0 contains inductive predicates, it is not considered for proving SAT.
S2SATSL then over-approximates Δ0 to a first-order logic formula by substitut-
ing each predicate instance with its corresponding sound invariants in order
to prove UNSAT. We assume that ll (resp. test) is annotated with invariant
i≥0 (resp. 0≤res≤1). Hence, the over-approximation of Δ0 is computed as:
π0≡n≥0∧0≤r1≤1∧n≥0∧r1=0. Formula π0 is then passed to an SMT solver,
such as Z3 [19], for unsatisfiable checking. As expected, π0 is not unsatisfiable.

Next, S2SATSL selects an open leaf for unfolding to derive T1. A leaf is selected
in a breadth-first manner; furthermore a predicate instance of the selected leaf
is selected for unfolding if its sequence number is the smallest. With Δ0, the ll

instance is selected. As so, T1 has two open leaves corresponding to two derived
disjuncts:

Δ11≡test(x,r1)10∧n≥0∧r1=0∧n=0∧x=null
Δ12≡x�→node(n,r2)∗ll(n1,r2)01∗test(x,r1)10∧n≥0∧r1=0∧n	=0∧n1=n−1

Since Δ11 and Δ12 include predicate instances, they are not considered for SAT.
To prove UNSAT, S2SATSL computes their over-approximated invariants:

π11≡0≤r1≤1∧n≥0∧r1=0∧n=0∧x=null
π12≡x	=null∧n1≥0∧0≤r1≤1∧n≥0∧r1=0∧n	=0∧n1=n−1

Δ0

Δ11 Δ12

Δ32 Δ33

Fig. 2. Unfolding tree T3.

As neither π11 nor π12 is unsatisfiable,
S2SATSL selects test of Δ11 for unfolding
to construct T2. For efficiency, unfolding is
performed in a context-sensitive manner. A
branch is infeasible (and pruned in advance)
if its invariant is inconsistent with the (over-
approximated) context. For instance, the invari-
ant of the then branch at line 12 of test

is invtesto≡p=null∧res=1. As invtesto (after
proper renaming) is inconsistent with π11, this
branch is infeasible. Similarly, both else branches of test are infeasible. For T3,

386 Q.L. Le et al.

the remaining leaf Δ12 is selected for unfolding. As the test’s unfolding num-
ber is smaller than ll’s, test is selected. After the then branch is identified as
infeasible and pruned, T3 is left with two open leaves as shown in Fig. 2, where
infeasible leaves are dotted-lined. Δ32 and Δ33 are as below.

Δ32≡x�→node(n,r2)∗ll(n1,r2)
0
1∧n≥0∧r1=0∧n �=0∧n1=n−1∧x�=null∧n<0∧r1=0

Δ33≡x�→node(n,r2)∗ll(n1,r2)
0
1∗test(r2,r1)

1
1∧n≥0 ∧ r1=0∧n �=0∧n1=n−1

∧x�=null∧n≥0

As Δ32 and Δ33 include inductive predicate instances, SAT checking is not applica-
ble. For UNSAT checking, S2SATSL proves that Δ32 is unsatisfiable (its unsatisfi-
able cores are underlined as above); and shows that Δ33 can be linked back
to Δ0 (i.e., subsumed by Δ0). The latter is shown based on some weakening
and substitution principles (see Sect. 4.2). In particular: (i) Substituting Δ33

with θ=[n2/n,x1/x,n/n1,x/r2] such that predicate instances in the substituted
formula, i.e., Δ33a , and Δ0 are identical; as such, Δ33a is computed as below.

Δ33a≡x1 �→node(n2,x)∗ll(n,x)01∗test(x,r1)11∧n2≥0∧r1=0∧n2 	=0∧n=n2−1
∧x1 	=null∧n2≥0

(ii) subtracting identical inductive predicates between Δ33a and Δ0; (iii) weak-
ening the remainder of Δ33a (i.e., x1 �→node(n2,x) is eliminated); (iv) check-
ing validity of the implication between pure of the remainder of Δ33a with
the pure part of the remainder of Δ0, i.e., n2≥0∧r1=0∧n2 	=0∧n=n2−1∧
x1 	=null∧n2≥0 =⇒ n≥0∧r1=0. The back-link between Δ33 and Δ0 establishes
a cyclic proof which then proves Δ0 is unsatisfiable.

Algorithm 1. S2SAT Procedure.
input : λind

output: SAT or UNSAT

1 i←0; T0←{λind} ; /* initialize */

2 while true do
3 (is sat,Ti) ← UA test(Ti) ; /* check SAT */

4 if is sat then return SAT ; /* SAT */

5 else
6 Ti←OA test(Ti) ; /* prune UNSAT */

7 Ti←link back(Ti) ; /* detect fixpoint */

8 if is closed(Ti) then return UNSAT; /* UNSAT */

9 else

10 λind
i←choose bfs(Ti) ; /* choose an open leaf */

11 i←i+1 ;

12 Ti←unfold(λind
i);

13 end

14 end

15 end

Satisfiability Modulo Heap-Based Programs 387

3 S2SAT Algorithm

In this section, we present S2SAT, a procedure for checking satisfiability of for-
mula with inductive predicates. We start by defining our target formulas. Let L
be a base theory (logic) with the following properties: (i) L is closed under propo-
sitional combination and supports boolean variables; (ii) there exists a complete
decision procedure for L. Let Lind be the extension of L with inductive predi-
cate instances defined in a system with a set of predicates P={P1, ..., Pk}. Each
predicate may be annotated with a sound invariant. We use λ to denote a for-
mula in L and λind to denote a formula in the extended theory. Semantically,
λind≡ ∨n

i=0 λi, n≥0.
S2SAT is presented in Algorithm 1. S2SAT takes a formula λind as input, sys-

tematically enumerates disjuncts λi and can produce two possible outcomes if it
terminates: SAT with a satisfiable formula λi or UNSAT with a proof. We remark
that non-termination is classified as UNKNOWN.

S2SAT maintains a set of open leaves of the unfolding tree Ti that is derived
from λind. In each iteration, S2SAT selects and unfolds an open leaf so as either to
include more reachable base formulas (with the hope to produce a SAT answer),
or to refine inductive formulas (with the hope to produce an UNSAT answer).
Specially, in each iteration, S2SAT checks whether the formula is SAT at line 3;
whether it is UNSAT at line 6; whether a fixpoint can be established at line 7.
Function UA test searches for a satisfiable base disjunct (i.e., is sat is set to true).
Simultaneously, it marks all unsatisfiable base disjuncts closed. Next, function
OA test uses predicate invariants to over-approximate open leaves of Ti, and
marks those with an unsatisfiable over-approximation closed. After that, function
link back attempts to link remaining open leaves back to interior nodes so as
to form a fixpoint (i.e., a (partial) pre-proof for induction proving). The leaves
which have been linked back are also marked as closed. Whenever all leaves are
closed, S2SAT decides λind as UNSAT (line 8). Otherwise, the choose bfs (line 10)
chooses an open leave in breadth-first manner for unfolding.

Procedure link back takes the unfolding tree Ti as input and checks whether
each open leaf λindbud∈Ti matches with one interior node λindcomp in Ti via
a matching function ffix. ffix is based on weakening and substitution princi-
ples [13]. Intuitively, ffix detects the case of (i) the unfolding goes forever if
we keep unfolding λindbud; and (ii) λindbud has no model when λindcomp has no
model. If ffix(λindbud,Δcomp)=true , Δbud is marked closed.

Our procedure systematically enumerates all disjuncts derived from a given
inductive formula, so it is terminating for SAT. However, it may not be terminat-
ing for UNSAT with those undecidable augmented logic. In the next paragraph,
we discuss the soundness of the algorithm.

Soundness. When S2SAT terminates, there are the following three cases.

– (case A) S2SAT produces SAT with a base satisfiable λind
i;

388 Q.L. Le et al.

– (case B) S2SAT produces UNSAT with a proof that all leaves of Ti are
unsatisfiable;

– (case C) S2SAT produces UNSAT with a fixpoint: a proof that some leaves of Ti

are unsatisfiable and the remaining leaves are linked back.

Under the assumption that L is both sound and complete, case A can be shown to
be sound straightforwardly. Soundness of case B immediately follows the sound-
ness of OA test. In the following, we describe the cyclic proof instantiation of
link back for fixpoint detection and prove the soundness of case C.

We use CYCLIC to denote the cyclic proof for entailment procedure adapted
from [13]. The following definitions are adapted from their analogues of CYCLIC.

Definition 1 (Pre-Proof). A pre-proof derived for a formula λind is a pair
(Ti, L) where Ti is an unfolding tree whose root labelled by λind and L is a back-
link function assigning every open leaf λind

l of Ti to an interior node λind
c =

L(λind
l) such that there exists some substitution θ i.e., λind

c = λind
l[θ]. λind

l is
referred as a bud and λind

c is referred as its companion.

A path in a pre-proof is a sequence of nodes (λind
i)i≥0.

Definition 2 (Trace). Let (λind
i)i≥0 be a path in a pre-proof PP. A trace

following (λind
i)i≥0 is a sequence (αi)i≥0 such that, for all i≥0, αi is a predicate

instance P(t̄) in the formula λind
i, and either:

1. αi+1 is the subformula according to P(t̄) occurrence in λind
i+1, or

2. λind
i[t̄/v̄] where λind

i is branches of inductive predicate P(v̄). i is a progressing
point of the trace.

To ensure that pre-proofs correspond to sound proofs, a global soundness con-
dition must be imposed on such pre-proofs as follows.

Definition 3 (Cyclic Proof). A pre-proof is a cyclic proof if, for every infinite
path (λind

i)i≥0, there is a tail of the path p=(λind
i)i≥n such that there is an

infinitely progressing trace following p.

Theorem 1 (Soundness). If there is a cyclic proof of λind
0, λind

0 is UNSAT.

Proof. We reduce our cyclic proof problem for satisfiability to the cyclic proof
problem for entailment check, i.e., λind

0 � false of CYCLIC. Assume there is
a cyclic proof PP of λind

0. From PP we construct the pre-proof PP� for the
sequent λind

0 � false as follows. For each node (λind
i)i≥0 in PP, we replace the

formula λind
i by the sequent λind

i � false . Since PP is a cyclic proof, it follows
that for every infinite path (λind

i)i≥0, there is a tail of the path, p=(λind
i)i≥n,

such that there is an infinitely progressing trace following p (Definition 3). Since
formulas in [13] are only traced through the LHS of the sequent and not its
RHS, it is implied that for every infinite path (λind

i�false)i≥0, there is a tail
of the path, p=(λind

i � false)i≥n, such that there is an infinitely progressing
trace following p. Thus, PP� is a cyclic proof (Definition 3 of [13]). As such
λind

0 |=false (Theorem 6 of [13]). In other words, λind
0 is UNSAT. �

Satisfiability Modulo Heap-Based Programs 389

To sum up, to implement a sound cyclic proof system besides the match-
ing function, a global soundness condition must be established on pre-proofs to
guarantee well-foundedness of all reasoning.

4 Separation Logic Instantiation of S2SAT

In this section, to explicitly handle heap-manipulating programs, we propose a
separation logic instantiation of S2SAT, called S2SATSL. We start by presenting
SLPA, a fragment of separation logic with inductive predicates and arithmetic.

4.1 A Fragment of Separation Logic

Syntax. The syntax of SLPA formulas is presented in Fig. 3. We use x̄ to denote
a sequence (e.g., v̄ for sequence of variables), and xi to denote the ith element.
Whenever possible, we discard fi of the points-to predicate and use its short
form as x�→c(vi). Note that v1 	=v2 and v 	=null are short forms for ¬(v1=v2) and
¬(v=null), respectively. All free variables are implicitly universally quantified
at the outermost level. To express different scenarios for shape predicates, the
fragment supports disjunction Φ over formulas. Each predicate instance is of
the form P(v̄)ou where o and u are labels used for context- and flow- sensitive
unfolding. In particular, o captures the sequence number and u is the number
of unfolding. For simplicity, we occasionally omit these two numbers if there is
no ambiguity. A formula Δ is a base formula if it does not have any user-defined
predicate instances. Otherwise, Δ is an inductive formula.

User-Defined Predicate. A user-defined predicate P is of the following general
form

pred P(t̄) ≡
n∨

i=1

(∃w̄i· Δi | πb
i) inv: π;

Fig. 3. Syntax.

390 Q.L. Le et al.

where P is predicate name; t̄ is a set of formal parameters; and ∃w̄i · Δi (i ∈ 1...n)
is a branch. Each branch is optionally annotated with a sound invariant πb

i which
is a pure formula that over-approximates the branch. π is an optionally sound
predicate invariant. It must be a superset of all possible models of the predicate P

via a pure constraint on stack. The default invariant of each inductive predicate is
true . For efficiency, we infer more precise invariants automatically (see Sect. 6).
Inductive branches may be recursive. We assume that the recursion is direct,
i.e., a recursive branch of predicate P includes at least one predicate instance P.
In each branch, we require that variables which are not formal parameters must
be existentially quantified i.e., ∀i ∈ 1...n·FV(Δi)=t̄ and w̄i∩t̄=∅ where FV(Δ)
are all free variables in the formula Δ.

In the following, we apply SLPA to model two data structures: sorted lists
(sortll) without an annotated invariant and AVL trees (avl) with annotated-
invariant.

pred sortll(root,n,m) ≡ root�→node(m, null) ∧ n=1

∨ ∃ q,n1,m1·root �→node(m, q) ∗ sortll(q, n1, m1)∧n=n1+1∧m≤m1

struct c2 { c2 left; c2 right; } // data structure declaration
pred avl(root,n,h) ≡ emp ∧ root=null ∧ n=0 ∧ h=0 | root=null ∧ n=0 ∧ h=0

∨ ∃ l, r, n1, n2, h1, h2·root�→c2(l, r) ∗ avl(l, n1, h1) ∗ avl(r, n2, h2)∧
n=n1+n2+1 ∧ h=max(h1,h2)+1 ∧ −1≤h1−h2≤1 | root�=null ∧ n>0 ∧ h>0

inv: n≥0 ∧ h≥0

Semantics. In the following, we discuss the semantics of SLPA. Concrete heap
models assume a fixed finite collection Node, a fixed finite collection Fields, a
disjoint set Loc of locations (heap addresses), a set of non-address values Val ,
such that null ∈ Val and Val ∩ Loc = ∅. Further, we define:

Heaps def= Loc⇀fin(Node → Fields → Val ∪ Loc)
Stacks def= Var → Val ∪ Loc

The semantics is given by a forcing relation: s,h |= Φ that forces the stack s
and heap h to satisfy the constraint Φ where h ∈ Heaps, s ∈ Stacks, and Φ is a
formula.

The semantics is presented in Fig. 4. dom(f) is the domain of function f ;
h1#h2 denotes that heaps h1 and h2 are disjoint, i.e., dom(h1) ∩ dom(h2) = ∅;
and h1·h2 denotes the union of two disjoint heaps. Inductive predicates are inter-
preted using the least model semantics [42]. Semantics of pure formulas depend
on stack valuations; it is straightforward and omitted in Fig. 4, for simplicity.

4.2 Implementation of Separation Logic Instantiation

In the following, we describe how S2SATSL is realized. In particular, we show how
the functions UA test, OA test, unfold, and link back are implemented.

Satisfiability Modulo Heap-Based Programs 391

Fig. 4. Semantics.

Deciding Separation Logic Formula. Given an SLPA formula, the functions
UA test and OA test in S2SATSL work similarly, by reducing the formula to a
first-order formula systematically and deciding the first-order formula. In the
following, we define a function called eXPure, which transforms a separation
logic formula into a first-order formula. eXPure is defined over the symbolic heap
as follows:

eXPure(∃w̄· x1 �→c1(v̄1)∗...∗xn �→cn(v̄n) ∗ P1(t̄1)∗...∗Pm(t̄m) ∧ π) ≡
∃ w̄· ∧{xi 	=null | i∈1...n} ∧ ∧{xi 	=xj | i, j∈1...n and i	=j} ∧∧{inv(P, Pj, t̄j) | j ∈ 1...m} ∧
π

where the reduction at the first line (after ≡) is for points-to predicates, and
the second line is for user-defined predicates. The auxiliary function inv(P, P, v̄)

returns the invariant of the predicate P with a proper renaming.
Next, the auxiliary procedure satp(∃w̄· π) takes a quantified first-order for-

mula as input. It preprocesses the formula and then invokes an SMT solver to
solve it. The preprocessing consists of two steps. First, the existential quantifiers
w̄ are eliminated through a projection Π(π, w̄). Second, remaining existential
quantifiers are skolemized and null is substituted by special number (i.e., zero).
The preprocessed formulas are of the form of linear arithmetic with free function
symbols. These formulas may contain existential (∃) and universal (∀) quantifiers
but no ∃∀ alternation. Hence, they are naively supported by SMT solvers.

Deriving Unfolding Tree. Next, we describe how function unfold works in
S2SATSL. Given a formula, unfold selects one predicate instance for unfolding
as follows.

πc≡eXPure(κ ∗ P(v̄) ∧ π) Γi=unfoldP(P(v̄)ou, πc)
unfold(∃w̄0· κ∗P(v̄)ou∧π) � {∃w̄0· κ∗Δi∧π | Δi∈Γi}

Predicate instances in κ are sorted by a pair of unfolding number and ordering
number where the former has higher priority. The instance P(v̄)ou is selected if u is

392 Q.L. Le et al.

the smallest number of unfoldings and o is the smallest number among instances
which have the same unfolding number u. The procedure unfold outputs a set of
disjuncts which are combined from branches of the predicate P with the remain-
der κ∧π. At the middle, the predicate instance is unfolded by the procedure
unfoldP. This auxiliary procedure unfoldP(P(t̄)ou, πc) unfolds the user-defined
predicate P with actual parameter t̄ under the context πc. It outputs branches
of the predicate P that are not inconsistent with the context. It is formalized as
follows.

πP
c ≡ Π(πc, v̄) (

∨m
i=1(∃w̄i· κi∧πi | πb

i), t̄)=lookup(P, P) w̄′
i=fresh(w̄i)

(v̄′, πeq)=freshEQ(v̄) ρp=[v̄′/t̄] ρ∃
i =[w̄′

i/w̄i] ρi=ρp ◦ ρ∃
i

unfoldP(P(v̄)ou, πc) � {∃w̄′
i· [ρi]κi∧[ρi]πi∧πeq | satp(πP

c ∧[ρi]π
b
i∧πeq) �=unsat, i∈1...m}

In the first line, the procedure looks up the definition of P and refreshes the
existential quantifiers (using the function fresh(...)). In the second line, formal
parameters are substituted by the corresponding actual arguments. Finally, the
substituted definition is combined and pruned as shown in the RHS of �. Func-
tion freshEQ(v̄) above refreshes the sequence of variables v̄ and produces the
equality constraints πeq between the old and new ones, i.e. πeq≡

∧
vi=v′

i. Let
Q(t̄)ol denote a predicate instance of the derived κi, its unfolding number is set
to u+1 if its corresponding branch Δi is recursive. Otherwise, it is u. Its sequence
number is set to ol+o.

The branch invariant is used as a necessary condition to unfold a branch.
The formalism underlying the pruning process is as follows: given a context Δc

with its over-approximation πc and a branch Δi with its over-approximation
πb
i , if πc∧πb

i is unsatisfiable, so is Δc∗Δi. Similar to the specialization calcu-
lus [15], our unfolding mechanism also prunes infeasible disjuncts while unfolding
user-defined predicates. However, the specialization calculus performs exhaustive
pruning with multiple unfolding that may be highly costly and redundant com-
pared with our one-step unfolding.

Detecting Cyclic Proof. In the following, we implement the matching function
fcyclic, an instantiation of ffix, to form a cyclic proof for fixpoint detection. fcyclic
checks whether there exists a well-founded ordering relation R between Δcomp

and Δbud so as to form an infinite path following the path between these two
nodes. If Δbud matches with Δcomp, Δbud is marked as closed. For global infini-
tary soundness, fcyclic only considers those Δbud and Δcomp of the restricted form
as: Δcomp≡Δb1∗P1(t̄1)0m∗...∗Pi(t̄i)im, and Δbud≡Δb2∗P1(t̄′1)0n∗...∗Pk(t̄′k)kn, where
k≥i, n>m, Δb1 and Δb2 are base formulas.

Like [13], fcyclic is implemented using the weakening and substitution prin-
ciple. In particular, it looks for a substitution θ s.t. Δbudθ =⇒ Δcomp.
fcyclic(Δbud,Δcomp) is formalized as the procedure Δbud �lb Δcomp whose rules
are presented in Fig. 5. These rules are applied as follows.

– First, existential variables are refreshed ([EX−L], [EX−R] rules).

Satisfiability Modulo Heap-Based Programs 393

Fig. 5. Rules for back-link.

– Second, inductive variables in Δbud are substituted ([SUBST] rule). This sub-
stitution is based on well-ordering relations R. Let P(t)km be a predicate
instance in Δcomp and its corresponding subformula in Δbud be R(s,t), then
s, t are inductive variables. Two examples of well-founded relations R are
structural induction for pointer types where R(s,t) iff s is a subterm of t and
natural number induction on integers where R(s,t) iff 0<s<t.

– Third, heaps are exhaustively matched ([PRED−MATCH] and [PTO−MATCH]
rules) and weakened ([PRED−WEAKEN] and [PTO−WEAKEN] rules). Sound-
ness of these rules directly follows from the frame rule [26,40].

– Last, back-link is decided via the implication between pure formulas ([PURE]
rule).

5 Soundness and Termination of S2SATSL

In the following, we establish the correctness of S2SATSL.

5.1 Soundness

We show that (i) S2SATSL is sound and complete for base formulas; and (ii) the
functions UA test, OA test and link back in S2SATSL are sound. These two tasks
rely on soundness and completeness of the function eXPure over base formulas,
soundness of eXPure over inductive formulas, and soundness of the function
fcyclic.

Lemma 1 (Equiv-Satisfiable Reduction). Let Δ≡∃w̄·x1 �→c1(v̄1)∗...
∗xn �→cn(v̄n)∧α∧φ be a base formula. Δ is satisfiable iff eXPure(Δ) is
satisfiable.

394 Q.L. Le et al.

The proof is based on structural induction on Δ.

Lemma 2 (Over-Approximated Reduction). Given a formula Δ such that
the invariants of user-defined predicates appearing in Δ are sound, then

∀s, h · s, h|=Δ =⇒ s|=eXPure(Δ)

In the following lemma, we consider the case Γ={} at line 8 of Algorithm 1.

Lemma 3. Given a formula Δ0 and the matching function fcyclic as presented
in the previous section, Δ0 is UNSAT if Γ={} (line 8).

To prove this Lemma, in [30] we show that there is a “trace manifold” which
implies the global infinitary soundness (see [11], ch. 7) when a bud is linked back.

Theorem 2 (Soundness). Given a formula Δ and a set of user-defined pred-
icates P,

– Δ is satisfiable if S2SATSL returns SAT.
– if S2SATSL terminates and returns UNSAT, Δ is unsatisfiable.

While the soundness of SAT queries follows Lemma 1, the soundness of UNSAT

queries follows Lemmas 2 and 3. As satisfiability for SLPA is undecidable [30,
31], there is no guarantee that S2SATSL terminates on all inputs. In the next
subsection, we show that S2SATSL terminates for satisfiable formulas in SLPA and
with certain restrictions on the fragment, S2SATSL always terminates.

5.2 Termination

Termination for SAT. In this paragraph, we show that S2SATSL always terminates
when it decides a satisfiable formula. Given a satisfiable formula

Δ≡∃w̄· x1 �→c1(v̄1)∗...∗xn �→cn(v̄n) ∗P0(t̄0)00∗...∗Pn(t̄n)n0 ∧ π

There exists a satisfiable base formula Δk such as:

Δk≡x1 �→c1(v̄1)∗...∗xn �→cn(v̄n) ∗ ΔP0
k0

∗...∗ΔPn
kn

∧ π

where ΔP
k (k≥0) denotes a base formula derived by unfolding the predicate P k

times and then substituting all predicate instances P by P’s base branch. Let km
be the maximal number among k0,..,kn. The breadth-first unfolding manner in
the algorithm S2SAT ensures that S2SATSL identifies Δk before it encounters the
following leaf:

y1 �→c1(t̄1)∗...∗yi �→ci(t̄i) ∗ P0(t̄0)km+1∗...∗Pj(t̄j)km+1 ∧ π

We remark that the soundness of cyclic proof ensures that our link back function
only considers infinitely many unfolding traces. Thus, it never links finite many
unfolding traces, i.e., traces connecting the root to satisfiable base leaves, like Δk.

Satisfiability Modulo Heap-Based Programs 395

Decidable Fragment. In the following, we describe universal SLPAind, a fragment
of SLPA, for which we prove that S2SATSL always terminates. Compared to SLPA,
universal SLPAind restricts the set of inductive predicates P as well as the inputs
of S2SATSL.

Definition 4 (SLPAind). An inductive predicate pred P(t̄)≡Φ is well-founded
SLPAind if it has one induction case with N occurrences of P, and it has the
shape as follows.

Φ ≡ Φ0 ∨ ∃w̄·x1 �→c1(v̄1)∗...∗xn �→cn(v̄n)∗P(w̄1)∗...∗P(w̄N)∧π

where Φ0 is disjunction of base formulas and the two following restrictions.

1. ∀n∈1...N w̄n⊆w̄∪{null} and w̄n do not appear in the equalities of π,
2. if ti is a numerical parameter and there exists a well-ordering relation R

such that R(s,ti,w1i ,..,wmi
) (1≤m≤N) is a subformula of π, the following

conditions hold.
– ti is constrained separately (i.e., there does not exist j 	=i and a

subformula φ of π such that {ti, tj}⊆FV (φ) or {ti, wnj
}⊆FV (φ) or

{wmi
, wnj

}⊆FV (φ) ∀m,n∈1...N , and
– ∀n∈1...N , π =⇒ ti>wni

or π =⇒ ti<wni
.

– if ti∈FV (Φ0) then Φ0 =⇒ ti=k, for some integer k
ti is denoted as inductive parameters.

Restriction 1 guarantees that fcyclic can soundly weaken the heap by discarding
irrelevant points-to predicates and N−1 occurrences of P (when N≥2) while it
links back. Restriction 2 implies that ti>wi≥k1 or ti<wi≤k2 for some integer
k1, k2. This ensures that leaf nodes of unfolding trees of an unsatisfiable input
must be UNSAT or linked back.

The above SLPAind fragment is expressive enough to describe a range of data
structures, e.g. sorted lists sortll, lists/trees with size properties, or even AVL
trees avl.

Definition 5 (Universal SLPAind). Given a separation logic formula

Δ0≡x1 �→c1(v̄1)∗...∗xn �→cn(v̄n)∗P1(t̄1)∗...∗Pn(t̄n)∧φ0

Δ0 is universal SLPAind if all predicates P1,..,Pn are well-founded SLPAind, and
if all x̄ of free, arithmetical, inductive variables, with x̄⊆(t̄1∪...∪t̄n), φ0 is a
conjunction of φ0,i where φ0,i is either of the following form: (i) true ; or (ii)
xi≥k1 for some integer k1; or (iii) xi≤k2 for some integer k2.

Theorem 3 (Termination). S2SATSL terminates for universal SLPAind
formulas.

396 Q.L. Le et al.

6 Sound Invariant Inference

In order to perform fully automatic verification without user-provided invari-
ants, S2SATSL supports automatic invariant inference. In this section, we describe
invariant inference from user-defined predicates and predicate branches. While
the former is used for over-approximation, the latter is used for context-sensitive
predicate unfolding. To infer invariants for a set of user-defined predicates, we
first build a dependency graph among the predicates. After that, we process
each group of mutual dependent predicates following a bottom-up manner. For
simplicity, we present the inference for one directly recursive predicate. The
inference for a group of mutual inductive predicates is similar.

Inferring Predicate Invariant. Our invariant inference is based on the principle
of second-order abduction [28,45]. Given the predicate P defined by m branches
as P(t̄) ≡ ∨m

i=1 Δi, we assume a sound invariant of P as an unknown (second-
order) variable I(t̄). After that we prove the lemma P(v̄)�I(v̄) via induction;
and simultaneously generate a set of pure relational assumptions using second-
order abduction. The steps to prove the above lemma and generate a set of m
relational assumptions over I are as follows.

1. Unfold LHS of the lemma to generate a set of m subgoals i.e. Δi[v̄/t̄]�I(v̄)
where i ∈ 1...m. The original lemma is taken as the induction hypothesis.

2. For each subgoal i, over-approximate its LHS to a pure formula πi and form
an assumption relation πi =⇒ I(v̄). There are two cases to compute πi.

– if Δi is a base formula, then πi≡eXPure(Δi).
– if Δi includes k instances P such that Δi≡Δresti∗P(v̄1)∗...∗P(v̄k), then

we compute πi0≡eXPure(Δresti), πij≡I(v̄j), for all j ∈ 1...k, and
πi≡

∧k
j=1 πik .

3. Our system applies a least fixed point analysis to the set of gathered relational
assumptions. We use the analyzer LFP presented in [45] to compute these
invariants.

We illustrate this procedure to infer an invariant for sortll. First, our system
introduces an unknown relation I(root,n,m). Second, it generates the below
relational constraints.

root 	=null∧n=1 =⇒ I(root,n,m)
root 	=null∧I(Q,N1,M1)∧n=N1+1∧m≤M1 =⇒ I(root,n,m)

Finally, it analyzes these two constraints and produces the following result:

I(root,n,m)≡root	=null∧n≥1

Lemma 4 (Sound Invariant Inference). Given a predicate P(t̄) ≡ Φ, and
R be a set of relational assumptions generated by the steps above. If R has a
solution, i.e., I(v̄)≡π, then we have ∀s, h · s, h |= P(v̄), s |=π.

Proof Sketch: Soundness of Lemma 2 implies that for all i ∈ 1...m, πi is
an over-approximated abstraction of Δi. As such, the soundness of this lemma
immediately follows from the soundness of second-order abduction [28,45]. �

Satisfiability Modulo Heap-Based Programs 397

Table 1. Exponential time and space satisfiability checks.

Succ-circuit (1–20) Succ-rec (1–20)

n SLSAT S2SATSL n SLSAT S2SATSL n SLSAT S2SATSL n SLSAT S2SATSL

1 1ms 21ms 11 SO 37.46 s 1 0 ms 25 ms 11 1796.4 s 410.92 s

2 2ms 23ms 12 SO 170.53 s 2 1 ms 30 ms 12 TO TO

3 27ms 30ms 13 SO 988.29 s 3 4 ms 33 ms 13 TO TO

4 867ms 34ms 14 SO TO 4 21 ms 39 ms 14 X TO

5 30 s 0.05 s 15 SO TO 5 134 ms 52 ms 15 X TO

6 30 s 0.09 s 16 SO TO 6 830 ms 76 ms 16 X TO

7 SO 0.20 s 17 SO TO 7 5.0 s 0.21 s 17 X TO

8 SO 0.61 s 18 SO TO 8 29.5 s 0.87 s 18 X TO

9 SO 2.21 s 19 SO TO 9 167.8 s 4.83 s 19 X TO

10 SO 8.49 s 20 SO TO 10 1065 s 45.28 s 20 X TO

Inferring Branch Invariant. Given a predicate P defined by m branches as
P(t̄) ≡ ∨m

i=1(∃w̄i· Δi) inv: π, we compute invariants for each branch of P as
Π(eXPure(Δi), w̄i) ∀ i=1...m. For example, with the invariant inferred for the
predicate sortll as above, our system computes its branch invariants πb

1 for the
base branch and πb

2 for the inductive branch as below.

πb
1 ≡Π(eXPure(root �→node(m, null) ∧ n=1), {})≡ root	=null ∧ n=1

πb
2 ≡Π(eXPure(root �→node(m, q) ∗ sortll(q, n1,m1)∧n=n1+1∧m≤m1),

{q,n1,m1}) ≡ root 	=null ∧ n≥1

Soundness of eXPure implies that the branch invariant over-approximates its
branch.

7 Implementation and Evaluation

We have implemented the proposed solver S2SATSL and a new interprocedural
(top-down) program verification tool, called S2td, which uses S2SATSL. We make
use of Omega Calculator [38] to eliminate existential quantifiers, Z3 [19] as a
back-end SMT solver, and FixCalc [37] to find closure form in inferring invariants
for user-defined predicates.

In the following, we evaluate S2SATSL and S2td’s robustness and efficiency on
a set of benchmarks from the software verification competition SV-COMP [7].
We also present an evaluation of S2SATSL in compositional (modular) program
verification with the HIP/S2 system [14,28] for a range of data structures.

7.1 Robustness and Efficiency

In [12], Brotherston et al. introduced a new and challenging set of satisfia-
bility benchmarks discussed in Proposition 5.13 of [12]. In this Proposition,
Brotherston et al. stated that there exists a family of predicates of size O(n) and

398 Q.L. Le et al.

that SLSAT runs in Ω(2n) time and space regardless of search strategies. Since
SLSAT relies on bottom-up and context-insensitive fixed point computation, it
has to explore all possible models before answering a query. Their approach is
designed for computing invariants of shape predicates rather than satisfiability
checks. In contrast, S2SATSL performs top-down and context-sensitive searches, as
it is dedicated for satisfiability solving. Moreover, it prunes infeasible disjuncts,
significantly reduces the search space, and provides better support for model
discovery.

We conducted an experiment on comparing SLSAT’s and S2SATSL’s perfor-
mance on this set of benchmarks. The results are shown in Table 1. The size n

of succ−circuit∗ (succ−rec∗) benchmarks expresses the breadth (depth, resp.)
of dependency. This set of benchmarks is a part of the User-Defined Predicate
Satisfiability (UDB sat) suite of SL-COMP 2014 [41]. The output is either a
definite answer (sat, unsat) with running time (in milliseconds (ms), or seconds
(s)), or an error. In particular, SO denotes stack overflow; TO denotes timeout
(i.e., tools run longer than 1800 s); and X denotes a fatal error. The experimen-
tal results show that S2SATSL is much more robust and also more efficient than
SLSAT. While S2SATSL successfully solved 24 (out of 40) benchmarks, SLSAT was
capable of handling 17 benchmarks. Furthermore, on 17 benchmarks that SLSAT

discharged successfully, S2SATSL outperforms SLSAT, i.e., about 6.75 (3126 s/462 s)
times faster. As shown in the table, S2SATSL ran with neither stack overflow nor
fatal errors over all these challenging benchmarks.

Table 2. Experimental results on complex data structures.

Data structure (pure props) #Query #UNSAT #SAT Time

Singly llist (size) 666 75 591 1.25

Even llist (size) 139 125 14 2.40

Sorted llist (size, sorted) 217 21 196 0.91

Doubly llist (size) 452 50 402 2.07

Complete tree (size, minheight) 387 33 354 143.98

Heap trees (size, maxelem) 467 67 400 13.87

AVL (height, size, near-balanced) 881 64 817 84.82

BST (height, size, sorted) 341 34 307 2.28

RBT (size, height, color) 1741 217 1524 65.54

rose-tree 55 6 49 0.34

TLL 128 13 115 0.24

Bubble (size, sorted) 300 20 280 1.09

Quick sort (size, sorted) 225 29 196 2.33

Satisfiability Modulo Heap-Based Programs 399

7.2 Modular Verification with S2SATSL

In this subsection, we evaluate S2SATSL in the context of modular program
verification. S2SATSL solver is integrated into the HIP/S2 [14,28,29] system to
prune infeasible program paths in symbolic execution. Furthermore, S2SATSL is
also used by the entailment procedure SLEEK to discharge verification condi-
tions (VC) generated. In particular, when SLEEK deduces a VC to the following
form: Δ � emp∧πr, the error calculus in SLEEK [29] invokes S2SATSL to discharge
the following queries: Δ and Δ∧¬πr for safety and Δ∧πr for must errors. In
experiments, we have extracted those VCs generated while HIP/S2 verified heap-
manipulating programs.

We have evaluated S2SATSL deciding the VCs discussed above. The experi-
mental results are described in Table 2. Each line shows a test on one program.
The first column lists data structures and their pure properties. rose-trees
are trees with nodes that are allowed to have a variable number of children,
stored as doubly-linked lists. TLL is a binary tree whose nodes point to their
parents and all leaf nodes are linked as a singly-linked list. #Query is the num-
ber of satisfiability queries sent to S2SATSL for each data structure. The next
two columns report the outputs from S2SATSL. The last column shows the time
(in seconds) taken by the S2SATSL solver. In this experiment, S2SATSL terminated
on all queries. Furthermore it exactly decided all SAT and UNSAT queries. These
experimental results affirm the correctness of our algorithm S2SATSL. They also
show that S2SATSL is expressive, effective, and can be integrated into program
verification systems for discharging satisfiability problems of separation logic
formulas.

7.3 Recursive Program Verification with S2SATSL

Table 3. Experimental results on recursive
programs.
Tool #s

√
#e

√
#unk #s✗ #e✗ Points Mins

ESBMC [18] 38 40 21 0 3 20 53

UAutomizer [24] 17 23 62 0 0 57 23

SeaHorn [22] 48 45 5 4 0 77 26

CBMC [16] 33 39 29 1 0 89 90

Smack-corral [1] 33 37 28 0 0 103 105

S2td 41 45 16 0 0 127 25

We have evaluated and com-
pared our verification system
S2td with state-of-the-art ver-
ification tools on a set of
SV-COMP benchmarks1. The
results are presented in Table 3.
There are 102 recursive/loop
programs taken from Recursive
and HeapReach sub-categories
in the benchmark; timeout is set to 180 s. In each program, there is at least one
user-supplied assertion to model safety properties. The first column identities the
subset of verification systems which competed in both the above sub-categories.
The next three columns count the instances of correct safe (s

√
), correct error

(e
√

) and unknown (e.g., timeout). The next two columns capture the number of
false positives (s✗) and false negatives (e✗). We rank these tools based on their
points. Following the SV-COMP competition, we gave +2 for one s

√
, +1 for one

1 http://sv-comp.sosy-lab.org/2016/.

http://sv-comp.sosy-lab.org/2016/

400 Q.L. Le et al.

e
√

, 0 for unk, −16 for one s✗, and −32 for one e✗. The last column expresses the
total time in minutes. The results show that the proposed verification approach
is promising; indeed, our system is effective and efficient: it produces the best
correctness with zero false answers within the nearly-shortest time.

8 Related Work

Close to our work is the SeaHorn verification system [22]. While SeaHorn relies
on Z3-PDR to handle inductive predicates on non-heap domains, it is unclear (to
us) how SeaHorn supports induction reasoning for heap-based programs (which
is one contribution of our present work).

Our S2SAT satisfiability procedure is based on unfolding which is similar to the
algorithm in the Leon system [43,44]. Leon, a verifier for functional programs,
adds an unfolding mechanism for inductive predicates into complete theories.
However, Leon only supports classic logic and not structural logic (i.e., separation
logic). Neither does Leon support inductive reasoning. Furthermore, our system
infers sound invariants for inductive predicates to facilitate over-approximation.

Our work is related to work on developing satisfiability solvers in separation
logic. In the following, we summarize the development in this area. Smallfoot
[5] has the first implemented decision procedure for a fragment of separation
logic. This solver was originally customized to work with spatial formulas over
list segments. Based on a fixed equality (disequality) constraint branches of
the list segment, the proposals presented by [17,32] further enhanced decision
procedure for this fragment with equality reasoning. They provided normaliza-
tion rules with a graph technique [17] and a superposition calculus [32] to infer
(dis)equality constraints on pointers and used these constraints to prune infeasi-
ble branches of predicate instances during unfolding. Although these proposals
can decide the formula of that fragment in polynomial time, it is not easy to
extend them to a fragment with general inductive predicates (i.e., the fragment
SLPA). Decision procedures in [33–36] support decidable fragments of separa-
tion logic with inter-reachable data structures using SMT. Our proposal extends
these procedures to those fragments with general inductively-defined predicates.
Indeed, our decidable fragment can include more complex data structures, such
as AVL trees.

S2SATSL is closely related to the satisfiability solvers [12,25] which are capa-
ble of handling separation logic formulas with general user-defined predicates.
Decision procedures [12,25] are able to handle predicates without pure proper-
ties. The former described a decidable fragment of user-defined predicates with
bounded tree width. The problem of deciding separation logic formulas is then
reduced to monadic second-order logic over graphs. The latter, SLSAT, decides
formulas with user-defined predicates via a equi-satisfiable fixed point calcula-
tion. The main disadvantage of SLSAT is that it is currently restricted to the
domain of pointer equality and disequality, so that it cannot be used to support
predicates with pure properties from infinite abstract domains.

Using over-approximation in decision procedures is not new. For example,
D’Silva et al. have recently made use of abstract domains inside satisfiability

Satisfiability Modulo Heap-Based Programs 401

solvers [20,21]. In separation logic, satisfiability procedures in HIP/SLEEK [14]
and Dryad [39] decide formulas via a sound reduction that over-approximates
predicate instances. HIP/SLEEK and Dryad are capable of proving the validity of
a wide range of expressive formulas with arbitrary predicates. However, expres-
sivity comes with cost; as these procedures are incomplete, and they do not
address the satisfiability problem. We believe that S2SAT can be integrated into
these systems to improve upon these two shortcomings.

9 Conclusion and Future Work

We have presented a satisfiability procedure for an expressive fragment of separa-
tion logic. Given a formula, our procedure examines both under-approximation
(so as to prove SAT) and over-approximation (so as to prove UNSAT). Our pro-
cedure was strengthened with invariant generation and cyclic proof detection.
We have also implemented a solver and a new verification system for heap-
manipulating programs. We have evaluated them on a range of competition
problems with either complex heap usage patterns or exponential complexity of
time and space.

For future work, we might investigate S2SAT-based decision procedures for
other complete theories (i.e., Presburger, string, bag/set) augmented with induc-
tive predicates. We would also study a more general decidable fragment of sepa-
ration logic by relaxing the restrictions for termination. Finally, we would like to
improve S2td for array, string and pointer arithmetic reasoning as well as witness
generation for erroneous programs.

Acknowledgements. We wish to thank Christopher M. Poskitt for his helpful com-
ments on the manuscript. Quang Loc and Jun Sun are partially supported by NRF
grant RGNRF1501 and Wei-Ngan by NRF grant NRF2014NCR-NCR001-040.

References

1. Haran, A., Carter, M., Emmi, M., Lal, A., Qadeer, S., Rakamarić, Z.:
SMACK+corral: a modular verifier. In: Baier, C., Tinelli, C. (eds.) TACAS 2015.
LNCS, vol. 9035, pp. 451–454. Springer, Heidelberg (2015)

2. Barnett, M., Chang, B.-Y.E., DeLine, R., Jacobs, B., M. Leino, K.R.: Boo-
gie: a modular reusable verifier for object-oriented programs. In: de Boer, F.S.,
Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111,
pp. 364–387. Springer, Heidelberg (2006)

3. Barrett, C., Conway, C.L., Deters, M., Hadarean, L., Jovanović, D., King, T.,
Reynolds, A., Tinelli, C.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV
2011. LNCS, vol. 6806, pp. 171–177. Springer, Heidelberg (2011)

4. Beckman, N.E., Nori, A.V., Rajamani, S.K., Simmons, R.J.: Proofs from tests. In:
ISSTA, pp. 3–14. ACM, New York (2008)

5. Berdine, J., Calcagno, C., W.O’Hearn, P.: A decidable fragment of separation logic.
In: Lodaya, K., Mahajan, M. (eds.) FSTTCS 2004. LNCS, vol. 3328, pp. 97–109.
Springer, Heidelberg (2004)

402 Q.L. Le et al.

6. Berdine, J., Calcagno, C., O’Hearn, P.W.: Symbolic execution with separation
logic. In: Yi, K. (ed.) APLAS 2005. LNCS, vol. 3780, pp. 52–68. Springer, Heidel-
berg (2005)

7. Beyer, D.: Reliable and reproducible competition results with benchexec and wit-
nesses (report on SV-COMP 2016). In: Chechik, M., Raskin, J.-F. (eds.) TACAS
2016. LNCS, vol. 9636, pp. 887–904. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-49674-9 55

8. Beyer, D., Cimatti, A., Griggio, A., Keremoglu, M.E., Sebastiani, R.: Software
model checking via large-block encoding. In: Proceedings of 9th International Con-
ference on Formal Methods in Computer-Aided Design, FMCAD 2009, pp. 25–32
(2009)

9. Bjørner, N., Gurfinkel, A., McMillan, K., Rybalchenko, A.: Horn clause solvers for
program verification. In: Blass, A., Dershowitz, N., Finkbeiner, B., Schulte, W.,
Beklemishev, L.D., Beklemishev, L.D. (eds.) Gurevich Festschrift II 2015. LNCS,
vol. 9300, pp. 24–51. Springer, Heidelberg (2015). doi:10.1007/978-3-319-23534-9 2

10. Bjørner, N., McMillan, K.L., Rybalchenko, A.: Program verification as satisfiability
modulo theories. In: SMT, pp. 3–11 (2012)

11. Brotherston. J.: Sequent calculus proof systems for inductive definitions. Ph.D.
thesis, University of Edinburgh, November 2006

12. Brotherston, J., Fuhs, C., Pérez, J.A.N., Gorogiannis, N.: A decision procedure for
satisfiability in separation logic with inductive predicates. In: CSL-LICS 2014, pp.
25:1–25:10. ACM, New York (2014)

13. Brotherston, J., Gorogiannis, N., Petersen, R.L.: A generic cyclic theorem prover.
In: Jhala, R., Igarashi, A. (eds.) APLAS 2012. LNCS, vol. 7705, pp. 350–367.
Springer, Heidelberg (2012)

14. Chin, W., David, C., Nguyen, H., Qin, S.: Automated verification of shape, size
and bag properties via user-defined predicates in separation logic. SCP 77(9),
1006–1036 (2012)

15. Chin, W.-N., Gherghina, C., Voicu, R., Le, Q.L., Craciun, F., Qin, S.: A spe-
cialization calculus for pruning disjunctive predicates to support verification. In:
Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 293–309.
Springer, Heidelberg (2011)

16. Clarke, E., Kroning, D., Lerda, F.: A tool for checking ANSI-C programs. In:
Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176.
Springer, Heidelberg (2004)

17. Cook, B., Haase, C., Ouaknine, J., Parkinson, M., Worrell, J.: Tractable reasoning
in a fragment of separation logic. In: Katoen, J.-P., König, B. (eds.) CONCUR
2011. LNCS, vol. 6901, pp. 235–249. Springer, Heidelberg (2011)

18. Cordeiro, L., Fischer, B.: Verifying multi-threaded software using smt-based
context-bounded model checking. In: Proceedings of the 33rd International Con-
ference on Software Engineering, ICSE 2011, pp. 331–340. ACM, New York (2011)

19. de Moura, L., Bjørner, N.S.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

20. D’Silva, V., Haller, L., Kroening, D.: Satisfiability solvers are static analysers. In:
Miné, A., Schmidt, D. (eds.) SAS 2012. LNCS, vol. 7460, pp. 317–333. Springer,
Heidelberg (2012)

21. D’Silva, V., Haller, L., Kroening, D.: Abstract satisfaction. In: Proceedings of the
41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL 2014, pp. 139–150. ACM, New York (2014)

http://dx.doi.org/10.1007/978-3-662-49674-9_55
http://dx.doi.org/10.1007/978-3-662-49674-9_55
http://dx.doi.org/10.1007/978-3-319-23534-9_2

Satisfiability Modulo Heap-Based Programs 403

22. Gurfinkel, A., Kahsai, T., Komuravelli, A., Navas, J.A.: The seahorn verification
framework. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206,
pp. 343–361. Springer, Heidelberg (2015)

23. Haase, C., Ishtiaq, S., Ouaknine, J., Parkinson, M.J.: SeLoger: a tool for graph-
based reasoning in separation logic. In: Sharygina, N., Veith, H. (eds.) CAV 2013.
LNCS, vol. 8044, pp. 790–795. Springer, Heidelberg (2013)

24. Heizmann, M., Hoenicke, J., Podelski, A.: Software model checking for people who
love automata. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp.
36–52. Springer, Heidelberg (2013)

25. Iosif, R., Rogalewicz, A., Simacek, J.: The tree width of separation logic with
recursive definitions. In: Bonacina, M.P. (ed.) CADE 2013. LNCS, vol. 7898, pp.
21–38. Springer, Heidelberg (2013)

26. Ishtiaq, S., O’Hearn, P.: BI as an assertion language for mutable data structures.
In: ACM POPL, pp. 14–26, London, January 2001

27. Jose, M., Majumdar, R.: Cause clue clauses: error localization using maximum
satisfiability. In: PLDI, pp. 437–446. ACM, New York (2011)

28. Le, Q.L., Gherghina, C., Qin, S., Chin, W.-N.: Shape analysis via second-order bi-
abduction. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 52–68.
Springer, Heidelberg (2014)

29. Le, Q.L., Sharma, A., Craciun, F., Chin, W.-N.: Towards complete specifications
with an error calculus. In: Brat, G., Rungta, N., Venet, A. (eds.) NFM 2013. LNCS,
vol. 7871, pp. 291–306. Springer, Heidelberg (2013)

30. Le, Q.L., Sun, J., Chin, W.-N.: Satisfiability modula heap-based programs. Tech-
nical report (2016). http://loc.bitbucket.org/papers/satsl-cav16.pdf

31. Makoto, T., Le, Q.L., Chin, W.-N.: Presburger arithmetic and separation logic
with inductive definitions. Technical report, May 2016

32. Navarro Pérez, J.A., Rybalchenko, A.: Separation logic + superposition calculus =
heap theorem prover. In: Proceedings of the 32nd ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI), pp. 556–566 (2011)

33. Navarro Pérez, J.A., Rybalchenko, A.: Separation logic modulo theories. In: Shan,
C. (ed.) APLAS 2013. LNCS, vol. 8301, pp. 90–106. Springer, Heidelberg (2013)

34. Piskac, R., Wies, T., Zufferey, D.: Automating separation logic using SMT. In:
Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 773–789. Springer,
Heidelberg (2013)

35. Piskac, R., Wies, T., Zufferey, D.: Automating separation logic with trees and data.
In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 711–728. Springer,
Heidelberg (2014)

36. Piskac, R., Wies, T., Zufferey, D., Piskac, R., Wies, T., Zufferey, D.: Automating
separation logic with trees and data. In: Biere, A., Bloem, R. (eds.) CAV 2014.
LNCS, vol. 8559, pp. 711–728. Springer, Heidelberg (2014)

37. Popeea, C., Chin, W.-N.: Inferring disjunctive postconditions. In: Okada, M.,
Satoh, I. (eds.) ASIAN 2006. LNCS, vol. 4435, pp. 331–345. Springer, Heidelberg
(2008)

38. Pugh, W.: The omega test: a fast practical integer programming algorithm for
dependence analysis. Commun. ACM 8, 102–114 (1992)

39. Qiu, X., Garg, P., Ştefănescu, A., Madhusudan, P.: Natural proofs for structure,
data, and separation. In: PLDI, pp. 231–242. ACM, New York (2013)

40. Reynolds, J., Logic, S.: A logic for shared mutable data structures. In: Proceedings
of the 17th Annual IEEE Symposium on Logic in Computer Science, pp. 55–74
(2002)

http://loc.bitbucket.org/papers/satsl-cav16.pdf

404 Q.L. Le et al.

41. Sighireanu, M., Cok, D.R.: Report on SL-COMP 2014. In: JSAT (2016)
42. Sims, É.-J.: Extending separation logic with fixpoints and postponed substitution.

Theor. Comput. Sci. 351(2), 258–275 (2006)
43. Suter, P., Dotta, M., Kuncak, V.: Decision procedures for algebraic data types

with abstractions. In: Proceedings of the 37th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2010, pp. 199–210.
ACM, New York (2010)

44. Suter, P., Köksal, A.S., Kuncak, V.: Satisfiability modulo recursive programs. In:
Yahav, E. (ed.) Static Analysis. LNCS, vol. 6887, pp. 298–315. Springer, Heidelberg
(2011)

45. Trinh, M.-T., Le, Q.L., David, C., Chin, W.-N.: Bi-abduction with pure properties
for specification inference. In: Shan, C. (ed.) APLAS 2013. LNCS, vol. 8301, pp.
107–123. Springer, Heidelberg (2013)

Automatic Verification of Iterated Separating
Conjunctions Using Symbolic Execution

Peter Müller(B), Malte Schwerhoff(B),
and Alexander J. Summers(B)

Department of Computer Science, ETH Zurich,
Zurich, Switzerland

{peter.mueller,malte.schwerhoff,
alexander.summers}@inf.ethz.ch

Abstract. In permission logics such as separation logic, the iterated
separating conjunction is a quantifier denoting access permission to an
unbounded set of heap locations. In contrast to recursive predicates, iter-
ated separating conjunctions do not prescribe a structure on the loca-
tions they range over, and so do not restrict how to traverse and modify
these locations. This flexibility is important for the verification of random-
access data structures such as arrays and data structures that can be tra-
versed in multiple ways such as graphs. Despite its usefulness, no auto-
matic program verifier natively supports iterated separating conjunctions;
they are especially difficult to incorporate into symbolic execution engines,
the prevalent technique for building verifiers for these logics.

In this paper, we present the first symbolic execution technique to
support general iterated separating conjunctions. We propose a novel
representation of symbolic heaps and flexible support for logical speci-
fications that quantify over heap locations. Our technique exhibits pre-
dictable and fast performance despite employing quantifiers at the SMT
level, by carefully controlling quantifier instantiations. It is compatible
with other features of permission logics such as fractional permissions,
recursive predicates, and abstraction functions. Our technique is imple-
mented as an extension of the Viper verification infrastructure.

1 Introduction

Permission logics such as separation logic [18] and implicit dynamic frames [19]
associate an access permission with each memory location in order to reason
about shared mutable state. Dynamic heap data structures require specifica-
tions to denote access permissions to a statically-unknown set of locations. Such
specifications are typically expressed in existing tools using recursive predicates
[15], which work well so long as the traversal of the data structure matches the
definition of the predicate. However, access patterns that do not follow the pred-
icate structure (e.g., traversing a doubly-linked list from the end) or that follow
no specific order (e.g., random access into an array) are difficult to handle in
existing program verifiers, requiring programmers to provide substantial manual
c© Springer International Publishing Switzerland 2016
S. Chaudhuri and A. Farzan (Eds.): CAV 2016, Part I, LNCS 9779, pp. 405–425, 2016.
DOI: 10.1007/978-3-319-41528-4_22

406 P. Müller et al.

proof steps (for instance, as ghost code) to bridge the mismatch between the
program’s access pattern and the imposed predicate structure.

Iterated separating conjunction [18] (hereafter, ISC) is an alternative way to
denote properties of a set of heap locations, which has for instance been used in
by-hand proofs to denote locations of arrays [18], cyclic data structures [3,23],
the objects stored in linked lists [7], and graph algorithms [23]. Unlike recursive
predicates, an ISC does not prescribe any particular traversal order.

Despite its usefulness and inclusion in early presentations of separation logic,
no existing program verifier supports general ISCs directly. Among the tools
based on symbolic execution, Smallfoot [2] does not support ISC; VeriFast [22]
and jStar [7] allow programmers to encode some forms of ISC via abstract predi-
cates that can be manipulated by auxiliary operations and lemmas (in VeriFast)
or tailored rewrite rules (in jStar). For arrays, this encoding is partially sup-
ported by libraries. However, in the general case, programmers need to provide
the extra machinery, which significantly increases the necessary manual effort.

Among the verifiers based on verification condition generation, Chalice [12]
supports only a restricted form of ISC (ranging over all objects stored in a
sequence), and VeriCool uses an encoding that leads to unreliable behaviour of
the SMT solver [21, p. 46]. The GRASShopper tool [16] does not provide built-
in or general support for ISC, but some ingredients of the technique we present
(particularly, the technical usage of inverse functions) have been employed there
to specify particular random access to data structures (e.g., arrays). The Dafny
verifier [10] can be used to write similar set and quantifier-based specifications,
but does not support permission-based reasoning or concurrency.

In this paper, we present the first symbolic execution technique that directly
supports general forms of ISC. Our technique is compatible with other features of
permission logics: it supports fractional permissions [5], such that a heap location
may be ranged over by several ISCs, and allows ISC to occur in predicate bodies
and in preconditions of abstraction functions [8].

This combination of features allows one to specify and verify challenging
examples such as graph-marking algorithms that so far were beyond the scope
of automated verifiers based on permission logics.

Our main technical contributions are: (1) a novel representation of the partial
heaps that are denoted by an ISC, along with algorithms to manipulate this rep-
resentation; (2) a technique to preserve across heap changes (to frame) the values
of expressions that depend on the unbounded set of heap locations denoted by
ISCs; (3) an SMT encoding that carefully controls quantifier instantiations;
(4) an implementation of our approach in the Viper verification infrastruc-
ture [14]. Our implementation and several interesting examples are available
online [1].

Outline. In the next section, we explain the main technical challenges our work
addresses, and illustrate them with a simple motivating example. Our design for
a symbolic heap that can represent permissions described by ISCs is presented
in Sect. 3. We explain the symbolic evaluation of expressions and framing with

Automatic Verification of Iterated Separating Conjunctions 407

respect to this heap representation in Sect. 4. In Sect. 5, we discuss how we control
quantifier instantiations. Section 6 presents an evaluation of our implementation.
We conclude in Sect. 7.

2 Technical Challenges

Permission logics ensure that a heap location is accessed only when the corre-
sponding permission is held. Dedicated assertions denote the permission to a
heap location e.f , written as e.f �→ _ in separation logic and as the accessi-
bility predicate acc(e.f) in implicit dynamic frames; we use the latter in this
paper. These logics include a separating conjunction ∗, expressing that the per-
missions denoted by the two conjuncts must be disjoint. For instance, an asser-
tion acc(x.f) ∗ acc(y.f) implies the disequality x �= y. Many permission logics
allow permissions to be split into fractions, and to re-assemble fractions into a
full permission. In these logics, any non-zero permission allows read access to
a location, whereas write access requires the full permission. When appropriate
permissions are held, assertions may also constrain the value of a heap location
(for instance, x.f > 3); assertions that do not contain accessibility predicates
are called pure. We use the terms pure assertion and expression synonymously.

Verification of many program constructs can be modelled by two basic opera-
tions. Inhaling an assertion A adds the permissions denoted by A to the current
state and assumes the pure assertions in A. Exhaling an assertion A checks that
the current state satisfies the pure assertions in A; it also checks that the state
contains the permissions denoted by A and removes them. As soon as permis-
sion to a heap location is no longer held, information about its value cannot be
retained. Inhale and exhale can be seen as the permission-aware analogues of
assume and assert statements [12]; they are sometimes called produce and con-
sume [20]. Using these operations, a method call (for example) can be encoded
by exhaling the method precondition and then inhaling its postcondition.

Building a verification tool for a permission logic requires effective solutions
to the following technical challenges:

1. How to model the program state, including permissions and values?
2. How to check for a permission in a state?
3. How to add and remove permissions to and from a state?
4. How to evaluate (heap-dependent) expressions in a state?
5. When to preserve (frame) an expression’s value across heap changes?

In the remainder of this section, we summarize how existing verifiers solve
these challenges for logics without ISC and then explain how providing support
for ISC complicates these challenges.

2.1 Smallfoot-Style Symbolic Execution

Smallfoot [2] introduced a symbolic execution technique that has become the
state-of-the-art way of building verifiers for permission logics. It provides simple

408 P. Müller et al.

and efficient solutions to the technical challenges above: (1) A symbolic state
consists of a set of heap chunks, and a set of path conditions. A heap chunk
has the form o.f �→ [v, p], mimicking separation logic’s points-to predicates. It
records a receiver value o, a field name f , a location value v representing the
value stored in location o.f , and a permission amount p. A permission amount
is a value between 0 and 1 (inclusive); intermediate values can be used to sup-
port fractional permissions. Here, o, v, and p are (immutable) symbolic values.
Path conditions are boolean constraints on the symbolic values collected while
verifying a program path such as the branch conditions on that path. Path con-
ditions may constrain heap values and may be quantified. An SMT solver is used
to answer queries about the path conditions, for instance, equality of symbolic
values. (2) Checking for permission to a heap location entails iterating through
the heap chunks and finding those with matching receiver-field pairs. (3) Remov-
ing permissions is modelled by subtracting permissions from the corresponding
chunk(s), and adding a permission is modelled by adding a heap chunk (with
a fresh symbolic location value) that provides the added permission amount.
(4) Evaluating a heap lookup e.f yields the location value of the chunk for e.f
(and is not permitted if no such chunk exists). (5) Framing the value of such
expressions happens implicitly so long as the same heap chunk provides non-zero
permission to the location. When a chunk no longer provides any permission, it
gets removed and its location value becomes inaccessible.

In order to specify unbounded heap structures, the Smallfoot approach has
been extended to handle user-defined recursive predicates. In successor tools
such as VeriFast [22], jStar [7], and Viper [14], heap chunks may also represent
predicate instances. Smallfoot-style symbolic execution has also been extended
to support heap-dependent pure functions in the assertion language [20]. For
example, the operations of a list class may be specified in terms of an itemAt
function. Such functions include a precondition that requires permission to all
locations read by the function body; this information is used to frame function
applications.

These extensions increase the expressiveness of permission logics significantly,
but are not sufficient to simply specify and automatically reason about important
data structures such as arrays and graphs: this requires support for ISCs.

2.2 Iterated Separating Conjunction

Figure 1 illustrates the usage of ISCs: method Replace replaces all occurrences
of integer from by integer to in the segment of array a between left and right.
The recursive calls to smaller array segments are performed concurrently using
parallel composition ‖. The second precondition requires access permissions for
all elements in the array segment, and the first postcondition returns these per-
missions to the caller; both are expressed using ISC. The second postcondition
specifies the functional behaviour of the method using an old-expression to refer
to the prestate of a method; this pure assertion needs heap-dependent expres-
sions under a quantifier.

Automatic Verification of Iterated Separating Conjunctions 409

Fig. 1. A parallel replace operation on array segments. The second precondition and the
first postcondition denote access permissions to the elements of the array. The forall
quantifier in these conditions denotes an ISC: the body of the quantifier includes acces-
sibility predicates (of the form acc(a[i])). The second postcondition uses a regular
(pure) quantifier to specify the functional behaviour of the method. Here, old expres-
sions let the postcondition refer to values in the prestate; the access permissions for
these expressions come from the second precondition.

Verifying the example entails splitting the symbolic state described by the
ISC in the precondition in order to exhale the preconditions of the recursive calls,
and to re-combine the states resulting from inhaling the postconditions of these
calls after the parallel composition, in order to prove the callee’s postcondition.

Providing support for ISCs complicates each of the five technical challenges
discussed above:

1. Heap chunks must be generalised to denote permission to an unbounded num-
ber of locations simultaneously, and encode a symbolic value per location (for
instance, to represent the values of each array location in Fig. 1).

2. Exhaling an ISC requires checking permission for an unbounded number of
heap locations; these could be spread across multiple heap chunks, as in the
case of exhaling the postcondition of Replace.

3. Removing permissions from a generalised chunk may affect only some of the
locations to which it provides permission. For example, when exhaling the
precondition of the first recursive call to Replace, the permissions required
for the second call must be retained in the symbolic state.

4. Evaluating heap-dependent expressions under quantifiers may rely on sym-
bolic values from multiple heap chunks. For example, proving the second
postcondition of Replace requires information from both recursive calls.

5. Framing in existing Smallfoot-style verifiers requires that heap-dependent
expressions depend only on a bounded number of symbolic values (which can
include representations of predicate instances [20]). However, this requirement
is too strong for pure quantifiers over heap locations and for functions whose
preconditions use ISCs to require access to an unbounded set of locations
(see for instance the client in the online version of our running example [1]).

410 P. Müller et al.

Our technique is the first to provide automatic solutions to these challenging
problems. Section 3 tackles the first 3 problems; Sect. 4 tackles the remaining 2.

3 Treatment of Permissions

We consider the following canonical form of source-level assertion for denoting
an ISC: forall x : T :: c(x) ⇒ acc(e(x).f,p(x)), in which c(x) is a boolean
expression, e(x) a reference-typed expression, and p(x) an expression denot-
ing a permission amount. More complex assertions can be desugared into this
canonical form, for instance, iterating over the conjunction of two accessibility
predicates can be encoded by repeating the quantification over each conjunct.
For simplicity, we do not consider nested ISCs, but an extension is possible. Our
canonical form is sufficient to directly model quantifying over all receivers in a
set (useful for graph examples) or over integer indices into an array, as shown in
Fig. 1.

The permission expression p(x) may be a complex expression including con-
ditionals, and need not evaluate to the same value for each instantiation of x.
This enables us to model complex access patterns such as requiring non-zero
permission to every nth slot of an array, which is for instance important for the
verification of GPU programs [4]. ISCs are complemented by unrestricted pure
quantifiers over potentially heap-dependent expressions, which are essential for
specifying functional properties.

In this section, we present the first key ingredient of our symbolic execution
technique: a representation for ISCs as part of the verifier’s symbolic state along
with algorithms to manipulate this representation.

3.1 Symbolic Heap Representation

As explained in Sect. 2.1, Smallfoot-style heap chunks o.f �→ [v, p] consist of a
receiver value o, a field name f , a location value v and a permission amount
p. A naïve generalisation of this representation would be to make o, v, and
p functions of the bound variable of an ISC. However, such a representation
has severe drawbacks. Checking whether a heap chunk provides permission to a
location y.f (challenge 2 above) amounts to the existential query ∃x.o(x) = y;
SMT solvers provide poor support for such existential queries. In the presence
of fractional permissions, determining how much permission such a heap chunk
provides is worse still, requiring to calculate the sum of all p(xi) such that xi

satisfies the existential query.
Our design avoids these difficulties with a simple restriction: we require the

receiver expressions e(x) in an ISC to be injective in x, for all values of x to which
the ISC provides permission. Under this restriction, we can soundly assume
that the mapping between the bound variable x and receiver expression e(x) is
invertible for such values, by some function e−1. We can then represent an ISC
over receivers r = e(x) directly, essentially by replacing x by e−1(r) throughout.

Automatic Verification of Iterated Separating Conjunctions 411

Our resulting design is to use quantified chunks of the form r.f �→ [v(r), p(r)],
in which r (which is implicitly bound in such a chunk) plays the role of a quan-
tified (reference-typed) receiver. Such a quantified chunk represents p(r) per-
mission to all locations r.f ; p(r) may be any expression denoting a permission
amount. The domain of a quantified chunk is the set of field locations r′.f for
which p(r′) > 0. The values of these locations are modelled by the function v,
which we call a value map and explain in Sect. 4. A symbolic heap is a set of quan-
tified chunks; a symbolic state is a symbolic heap plus a set of path conditions,
as usual.

Under our injectivity restriction, we represent a source-level assertion of
the form forall x : T :: c(x) ⇒ acc(e(x).f,p(x)) using a quantified chunk of
the form r.f �→ [v(r), (c(e−1(r)) ? p(e−1(r)) : 0)] for a suitable value map v and
inverse function e−1. Whenever necessary to avoid ambiguity, we use under-
lined expressions to denote the results of symbolically evaluating corresponding
source-level expressions; with the exception of heap-dependent expressions (see
Sect. 4.1), this evaluation is orthogonal to the contributions of this paper.

Our injectivity restriction does not limit the data structures that can be
handled by our technique, provided specifications are expressed appropriately.
The restriction applies to memory locations, not to the values stored in the
locations. Many examples such as ISCs ranging over array indices or elements
of a set naturally satisfy the restriction. Ranges that may contain duplicates (for
instance, the fields of all objects stored in an array) can be encoded by mapping
them to a set (thereby ignoring multiplicities) or by using complex permission
expressions p that reflect multiplicities appropriately.

3.2 Inhaling and Exhaling Permissions

Using the symbolic heap design explained above, we define the operations for
inhaling and exhaling ISCs in Fig. 2. The inhale operation takes a symbolic
heap h0, path conditions π0, and an ISC, and returns an updated heap and
path conditions. Following the encoding described in the previous subsection,
the operation introduces a (fresh) inverse function e−1, which is constrained
as the partial inverse of the (evaluated) receiver expression e(x) by adding the
constraints Inv-1 and Inv-2 to the path conditions. We will discuss controlling
the instantiation of these quantifiers (and others introduced by our technique)
in Sect. 5. The fresh value map v models the (thus far unknown) values of the
heap locations in the domain of the new quantified chunk, which is added to the
symbolic heap h0.

To encode our example (Fig. 1) in a tool without native array support, we
model the array slots as a set of ghost objects, each with a field val (represent-
ing the slot’s value). That is, an array location a[i] is modelled by the location
A(i).val, where A is an injective function mapping indices to these ghost objects.
Full details of the encoding of the running example are given online [1, Example
Parallel Array Replace]. Following Fig. 2, inhaling the second precondition (at
the start of checking the method body) entails introducing an inverse function
a−1 mapping array locations back to corresponding indices, and then adding a

412 P. Müller et al.

Fig. 2. Symbolic execution rules for inhaling and exhaling ISCs. The check instruction
submits a query to the SMT solver. If the proof obligation does not hold, it aborts with
a verification failure. The Eval function evaluates an expression in a symbolic state and
yields updated path conditions and the resulting symbolic expression, see Sect. 4. In
both rules, the constraint c(y) is temporarily added to the path conditions used during
the evaluation of e(y) and p(y); these expressions may be well-formed only under this
additional constraint.

quantified chunk r.val �→ [v(r), (left ≤ a−1(r) < right ? 1 : 0)]. Correspond-
ingly, at the program point after the two recursive calls, the symbolic heap will
contain two quantified chunks: one for each array segment.

Automatic Verification of Iterated Separating Conjunctions 413

The exhale operation is initially similar to inhale, one difference being
that the injectivity of the receiver expression is checked before defining the
inverse function. Removing permissions is more complex than adding permis-
sions because it may involve updates to many existing quantified chunks in the
symbolic state. This operation is delegated to the auxiliary operation remove,
shown in Fig. 3.

The injectivity check performed by exhale guarantees that the introduced
inverse functions exist and satisfy the constraints added to the path conditions,
which is required for soundness. We assume here that each inhale operation
has a corresponding exhale; for instance, inhaling a method precondition at the
beginning of a method body corresponds to exhaling the precondition at the call
site. Therefore, the check performed by exhale also covers the inverse functions
introduced in corresponding inhale operations.

Fig. 3. The remove operation. The argument q maps references to permission amounts.
The operation checks that the symbolic heap contains at least q(r) permission for each
location r.f and removes it.

remove takes as inputs an initial symbolic heap h0 and path conditions π0,
a field name f , and a function q that yields for each reference r the permission
amount for location r.f to be removed. remove fails with a verification error if
the initial heap does not contain the permissions in q, and otherwise returns an
updated symbolic state. This is achieved by iterating over all available chunks
for field f , greedily taking as much of the still-required permissions (qneeded) as
possible from the current chunk (qcurrent). Updating the chunks is expressed via
pointwise-defined functions describing the corresponding permission amounts;

414 P. Müller et al.

they involve permission arithmetic, but no existential quantifiers, and can be
handled efficiently by the underlying SMT solver. After this iteration, remove
checks that all requested permissions have been removed.

In our array example (Fig. 1), we exhale the second precondition before each
recursive call; this requires finding the appropriate permissions from the (single)
quantified chunk in the state at this point, and removing them. Dually, when
exhaling the postcondition at the end of the method body, all permissions from
both of the two quantified chunks yielded by the recursive calls must be removed:
the iteration in the remove algorithm achieves this.

Note that remove’s permission accounting is precise, which is important for
soundness and completeness: it maintains the invariant that (for all r), the differ-
ence between the permissions held in the original state and those requested via
parameter q is equal to the difference between those held in the updated state
and those still needed. If the operation succeeds, we know (from the last check)
that those still needed are exactly 0, from which we conclude that precisely the
correct amounts were subtracted.

3.3 Integrating Predicates with Iterated Separating Conjunctions

Predicates are a standard feature of verification tools for permission logics
(including the Viper infrastructure on which our implementation is built); they
integrate simply with our support for ISCs. Figure 4 shows an example of a
predicate definition, parameterised by a set of nodes, that defines a graph in
terms of ISCs and closure properties over the given set of nodes. Viper requires
explicit ghost operations to exchange a predicate instance P (e) for its body (via
an operation unfold P (e)), and vice versa (via an operation fold P (e)); this is
a standard way to handle possibly-recursive predicates. In terms of the under-
lying verifier, an operation fold P (e) essentially corresponds to exhale Pbody(e)

followed by inhale P (e), and dually for unfold P (e). Since our support for ISCs
is expressed in terms of inhale and exhale rules, it naturally integrates with
Viper’s existing way of handling predicates; our implementation supports predi-
cates with ISCs and pure quantifiers in their bodies, as illustrated by the graph
predicate.

Our implementation does not yet support predicates inside ISCs, but our
presented technique extends straightforwardly to support this. Inhaling an ISC
which ranges over predicate instances yields, just as for accessibility predicates
for fields, a new quantified chunk. An unfold of a predicate belonging to such
a chunk can be handled by exhaling the predicate instance (removing it from
the chunk’s permissions), and then inhaling the predicate’s body. Folding an
instance inhales a quantified predicate chunk that provides permissions to the
single instance. We plan to extend our implementation to also support this fea-
ture combination, which will allow one to denote an unbounded number of pred-
icate instances.

Automatic Verification of Iterated Separating Conjunctions 415

Fig. 4. A predicate defining a graph in terms of ISCs and closure properties over a
given set of nodes (that form the graph).

4 Treatment of Symbolic Values

So far we have addressed the first three technical challenges described in Sect. 2
by presenting a novel heap representation for ISCs together with algorithms that
let the verifier efficiently add, as well as check for and remove permissions. In
this section we present our solution to the remaining two challenges, concerned
with the evaluation and framing of expressions.

4.1 Symbolic Evaluation of Heap-Dependent Expressions

Quantified chunks r.f �→ [v(r), q(r)] represent value information via the value
map v. The existence of such a chunk in a symbolic heap allows the evaluation
of a read of field f for any receiver in the domain of the heap chunk, to an
application of the value map. Intuitively, v represents a partial function from this
domain to values (of the type of the field f). Since SMT solvers typically do not
natively support partial functions, we model value maps as under-specified total
functions from the receiver reference (the field f is fixed) to the type of f . We
apply these functions only to references whose f field location is in the chunk’s
domain. This is why the exhale algorithm (Fig. 2) does not need to explicitly
remove information about the values stored in the locations whose permissions
are removed; the underlying total function still represents appropriate values for
the new (smaller) domain.

Summarising Value Maps. Inhaling permissions adds a fresh heap chunk
with a fresh value map (see Fig. 2). Therefore, a symbolic heap may contain
multiple chunks for the same field, each with its own value map. In the presence
of fractional permissions, the domains of these chunks may overlap such that the
value of one location x.f may be represented by multiple value maps. Similarly,
the value of x.f may be represented by multiple maps when the receiver x is
quantified over and the permissions to different instantiations of the quantifier
are recorded in different chunks. Therefore, all of these value maps need to be
considered when evaluating such a field access.

In order to incorporate information from all relevant chunks, and provide a
simple translation for field-lookups, we summarise the value maps for all chunks
for a field f lazily before we evaluate an expression e.f . This summarisation is
defined by the summarise operation in Fig. 5. For each quantified chunk with the

416 P. Müller et al.

Fig. 5. The summarise operation introduces a fresh value map for field f and constrains
it according to the value maps of all heap chunks for f . It also returns a function
summarising the permissions held for the field f .

appropriate field, it equates a newly-introduced value map with the value map
in the chunk at all locations in the chunk’s domain. Analogously, it builds up a
permission expression summarising the permissions held per receiver, across all
heap chunks for the field f ; we use this permission expression to check whether
a field access is permitted.

Note that the definition of summarise does not depend on path conditions,
only on the symbolic heap; it can be computed without querying the SMT solver.
Our implementation memoizes summarise, avoiding the duplication of the func-
tion declarations and path conditions defining the value and permission maps.

Symbolic Evaluation. Symbolic evaluation of expressions is defined by an
operation eval, which takes a symbolic heap, path conditions, and an expres-
sion, and yields updated path conditions and the symbolic value of the expres-
sion; the cases for field lookup and pure quantifiers are given in Fig. 6 (some
additional cases can be found in Appendix A). Using the summarise operation,
we can simply define the evaluation of a field lookup, as shown first in Fig. 6. To
evaluate such an expression, we check that at least some permission to the field
location is held in the current symbolic heap, and use the value map generated
by summarise to define the value of the field lookup. Via the path conditions
generated by summarise, any properties known about the value maps of any
of the corresponding quantified chunks will also be known about the resulting
symbolic value. In each reachable state, these properties are consistent, which
implies in particular that there exists a value for the field lookup that satisfies
all of them. Viper regularly checks for inconsistent path conditions and prunes
the current program path if it detects an unreachable state.

Evaluating pure quantifiers is handled by replacing the bound variable with
a fresh constant and evaluating the quantifier body. Additional path conditions
generated during this recursive evaluation might mention the fresh constant;
these are universally quantified over when returning the path conditions.

Automatic Verification of Iterated Separating Conjunctions 417

Inhale, Exhale, and Field Writes. Inhaling and exhaling pure boolean
expressions is implemented by first symbolically evaluating the expression and
then either adding the resulting symbolic expression to the path conditions or
checking it, respectively (see Appendix A).

A field write e1.f := e2 is desugared as: exhale acc(e1.f); inhale acc(e1.f);
inhale e1.f == e2. The exhale checks that the heap has the required permission
and removes it; the inhales create a new chunk with the previously-removed per-
mission and constrain the associated value map such that it maps receiver e1 to
the value of e2. For example, the field write a[left] := to in Fig. 1 is executed
in a symbolic heap with a single quantified chunk that provides full permissions
to each array location. After the field write has been executed, the heap contains
two quantified chunks: the initial one, still providing full permissions to each array
location except for a[left] (and with an unchanged value map), and a second one
that provides permissions to a[left] only, with a fresh value map representing the
updated value.

Fig. 6. Symbolic evaluation of field reads and pure quantifiers.

4.2 Framing Heap-Dependent Expressions

Permissions provide a straightforward story for framing the values of heap loca-
tions (and pure quantifiers over these): so long as the symbolic state contains
some permission to a field location, its value will be preserved. However, framing
heap-dependent functions is more complicated [8,20]. The value of a function can
be framed so long as all locations the function depends on remain unchanged.
To express a function’s dependency on the heap, its precondition must require
permission to all locations its implementation may read. For any given func-
tion application, the symbolic values of these locations are called the snapshots
of the function application. Consequently, two function applications yield the
same result if they take the same arguments and have equal snapshots. One can
thus model a heap-dependent function at the SMT level by a function taking
snapshots as additional arguments [20].

ISCs complicate this approach because a function whose precondition con-
tains an ISC may depend on an unbounded set of heap locations. The values

418 P. Müller et al.

of these locations cannot be represented by a fixed number of snapshots. It is
also not possible to represent them as a value map since these are modelled at
the SMT level as total functions, causing two problems. First, requiring equality
of total functions would include locations the heap-dependent function does not
actually depend on; since the values for these locations are under-specified, the
equality check would often fail even when the function value could be soundly
framed. Second, a function cannot be used as a function argument, nor compared
for equality in the first-order logic supported by SMT solvers.

We address the first problem by modelling snapshots as partial functions
called partial value maps, and the second by applying defunctionalisation [17].
That is, we model a partial value map for a field f of type T as a value of
an (uninterpreted) type PVM , together with a function domainf : PVM →
Set [Ref] for the domain of the partial value map, and a function applyf : PVM ×
Ref → T for the result of applying a partial value map to a receiver reference.
We also include an extensionality axiom for partial value maps, allowing us to
prove equality when two partial value maps are equal as partial functions.

Following the prior work, we model a heap-dependent function via a function
at the SMT level, with a partial value map as additional snapshot argument for
each ISC required in the function’s precondition. For each application of such a
function, we check that the current state contains all permissions required by the
function precondition. If this is the case, we process each ISC in the precondition
in turn. For an ISC for a field f , we employ the summarise operation (Fig. 5) to
summarise the value information v for the field f in the current symbolic state,
and introduce a fresh constant pvm of type PVM . We constrain domainf (pvm)
to yield the set of references in the domain of the ISC, and for all receivers r
in this domain, assume applyf (pvm, r) = v(r). pvm is then used as a snapshot
argument to the translated function.

5 Controlling Quantifier Instantiations

When generating quantifiers for an SMT solver, it is important to carefully
control their instantiation [8,11,13] by providing syntactic triggers. A quantifier
∀x · P (x) may be decorated with a trigger {f(x)}, which instructs the solver
to instantiate x with a term e only if f(e) is a term encountered by the solver
during the current proof effort. Triggers must be chosen carefully: enabling too
few instantiations may cause examples to fail unexpectedly, while too many
may lead to unreliable performance or even non-termination of the solver (see
also Sect. 6).

We carefully select triggers for all quantifiers generated by our technique
(although we have omitted them from the presentation so far). Figure 7 shows
three representative examples. The path condition VmDefEq relates the value
map introduced by the summarise operation to the value maps of heap chunks
(Fig. 5). The two triggers express alternatives: they allow instantiating the path
condition if either of the two value maps have been applied to the term instanti-
ating r. This design allows us to derive relationships between two evaluations of

Automatic Verification of Iterated Separating Conjunctions 419

Fig. 7. Example triggers used in our SMT encoding.

an expression, which introduce two summary value maps. Instantiating VmDe-
fEq in both directions allows us to relate these value maps via the value maps
of heap chunks.

The next two examples define the inverse function of a receiver expression
(see Fig. 2). The trigger e−1(r) for Inv-1 is essential for relating occurrences of
the inverse function to the original expression e. The case of Inv-2 is almost sym-
metrical, but with extra technicalities. Since e comes from the source program,
it may not be an expression allowed as a trigger. Trigger terms must typically
include at least one function application (if e(x) were simply x, this could not
be used), and no built-in operators such as addition. In the former case, we use
v(x) as a trigger, where v is the value map of the relevant chunk; the quantifier
will then be instantiated whenever we look up a value from the chunk, which
is when we need the definition of the inverse function. In the latter case, we
resort to allowing the underlying tools select trigger terms, which may lead to
incompleteness. However, we did not observe any such incompletenesses in our
experiments.

Instantiating either of the two axioms Inv-1 and Inv-2 gives rise to poten-
tially new function application terms suitable for triggering the other axiom. For
example, when instantiating Inv-2 due to a term of the shape e(x), we learn the
equality e−1(e(x)) = x in which the function application e−1(e(x)) matches the
trigger for the Inv-1 axiom. Instantiating this axiom, in turn, will provide the
equality e(e−1(e(x))) = e(x). Note however, that this will not cause an indefi-
nite sequence of instantiations of these two axioms (a so-called matching loop):
SMT solvers consider quantifier instantiations modulo known equalities. Thus,
the function application e(e−1(e(x))) does not give rise to a new instantiation of
Inv-2, since the term to be matched against the quantified variable (e−1(e(x)))
is already known to be equal to x, which was used for the prior instantiation.

6 Evaluation

We have implemented our technique as an extension of the Viper verification
infrastructure [14]; the implementation is open source and can be tried online [1].
To evaluate the performance of our technique, we ran experiments with three
kinds of input programs: (1) 9 hand-coded verification problems involving arrays
and graphs, including our running example (see the Viper examples page [1] for
details), (2) 65 examples generated by the VerCors project at the University of
Twente [4], which uses our implementation to encode GPU verification problems,
and (3) 82 additional regression tests.

420 P. Müller et al.

Fig. 8. Performance evaluation of our implementation on verification challenges. Lines
of code (LOC) does not include blank lines and comments. Column “Time (s)” gives
runtimes of the base version of our implementation; columns “w/o memoization” and
“w/o triggers” show the % difference in time relative to the base version.

Figure 8 shows the results for (1), and Fig. 9 those for (2) and (3). We per-
formed our experiments on an Intel Core i7-4770 3.40 GHz with 16 GB RAM
machine running Windows 7 × 64 with an SSD. The reported times are averaged
over 10 runs of each verification (with negligible standard deviations). Timings
do not include JVM start-up: we persist a JVM across test runs using the Nail-
gun tool.

Fig. 9. Performance evaluation of our implementation on two sets of programs: the
“VerCors” set contains (non-trivial) programs generated by the VerCors tool, “Regres-
sions” contains (usually simple) regression tests; column “No. Files” displays the num-
ber of files per program set. All input files are available as part of the Viper test suite.

Our experiments show that our implementation is consistently fast: all exam-
ples verify in a few seconds. Since SMT encodings sometimes exhibit worse per-
formance for failed verification attempts, we also tested 4 variants of each exam-
ple from Fig. 8 in which we seeded errors; in all cases the errors were detected
with lower runtimes (the verifier halts as soon as an error is detected).

To measure the effect of memoizing calls to summarise, we disabled this fea-
ture and measured the difference in runtimes over the same inputs. As shown in
the “w/o memoization” columns, disabling this optimisation typically increases
the runtime, but not enormously; a likely explanation for the relatively small
difference is that summarise performs the iteration over quantified chunks effi-
ciently, without querying the SMT solver. The number of quantified chunks in

Automatic Verification of Iterated Separating Conjunctions 421

a given symbolic state is also typically kept small: the tool performs modular
verification per method/loop body, and we eagerly remove any quantified chunks
that no longer provide permissions (after an exhale).

To evaluate the importance of our use of triggers for controlling quantifier
instantiations (see Sect. 5), we also compare with a variant of our implementation
in which triggers are omitted, leaving this task to the underlying tools (that is,
Viper and Z3 [6]). The relative times are shown in the “w/o triggers” columns.
We observe that this variant typically improves verification time. However, the
triggers chosen automatically by Viper and Z3 are too strict: 7 % of the programs
(11 out of the 156 original programs) fail spuriously in this version. This, as well
as a general reduction in quantifier instantiations, explains the effect on the
runtime: the longest-running example in our base implementation (averaging
11.82 s) takes only 3 s without our triggers, but wrongly fails to verify. The
longest-running example in the variant without triggers takes 8.83 s but also has
a high standard deviation of 4.71 s, suggesting that performance also becomes
unpredictable when triggers are selected automatically. The triggers that we
choose thus avoid spurious errors and provide predictable, fast performance.

7 Conclusions and Future Work

We have presented the first symbolic execution technique that supports ISCs.
This feature provides the possibility of specifying random-access data structures
and provides an alternative mechanism to recursive definitions which is essential
in the common case when a data structure can be traversed in multiple ways. Our
technique generalises Smallfoot-style symbolic execution and is, thus, applica-
ble to other verifiers for permission logics using this common implementation
technique.

Two of the authors participated in the recent VerifyThis verification com-
petition at ETAPS’16 (see http://etaps2016.verifythis.org/) using our imple-
mentation, and won the Distinguished User-assistance Tool Feature for the ISC
support described in this paper: this prize was awarded for a feature that proved
particularly useful during the competition.

As future work, we plan to build on our verification technique in four ways.
First, we plan to extend our technique to support predicates under ISCs, as
discussed in Sect. 3.3. Second, we plan to combine our verification technique with
inference techniques that make use of ISCs, such as the shape analysis developed
by Lee et al. [9]. Third, we plan to support foreach statements that perform an
operation (e.g., unfolding a predicate) on each instance of a quantifier without
requiring a loop (and invariant). Such statements require permissions that can
be expressed using ISCs. Fourth, we plan to integrate support for aggregates
in pure assertions [11], which provide another means for specifying functional
properties over locations described by an ISC.

http://etaps2016.verifythis.org/

422 P. Müller et al.

A Additional Definitions and Symbolic Execution Rules

Partial Value Maps. Figure 10 shows background definitions related to par-
tial value maps (see Sect. 4.2), which are emitted to the SMT solver before the
verification starts. The background definitions include a type PVM and, per
field declaration, a function domainf that denotes the domain of a partial value
map, a function applyf that denotes applying a partial value map to a receiver
to obtain the value of the corresponding field location, and an extensionality
axiom stating that two partial value maps are equal if their domains agree and
if they agree on the values in their domain.

Fig. 10. Background definitions related to partial value maps (see Sect. 4.2). domainf

denotes the domain of a partial value map, applyf its application to a reference.

The trigger of the extensionality axiom {toSnap(pvm1), toSnap(pvm2)}
ensures that the extensionality axiom is instantiated whenever it is necessary
to reason about the equality of partial value maps that are used as snapshots.
Wrapping partial value maps by toSnap is necessary because Viper requires
snapshots to uniformly be of type toSnap; function toSnap embeds values into
the toSnap type (a corresponding inverse function exists as well). This external
requirement (of Viper, not of our technique) turned out to be beneficial for us,
since it allows choosing triggers that are permissive, yet yield good performance.

Inhaling and Exhaling Pure Assertions. Figure 11 shows the symbolic exe-
cution rules for inhaling and exhaling potentially heap-dependent (but pure)
assertions such as pure quantifiers. Both rules use eval to evaluate the asser-
tion; the result is then added to the path conditions or asserted to hold in the
current state, respectively.

Automatic Verification of Iterated Separating Conjunctions 423

Fig. 11. Symbolic execution rules for inhaling and exhaling pure assertions.

Symbolic Evaluation of Expressions. Figure 12 shows selected symbolic
execution rules for evaluating expressions. Evaluating an implication e1 ⇒ e2
starts by evaluating e1, and temporarily assuming e1 while evaluating e2 (see
also the discussion of Fig. 2 in Sect. 3.1). From the path conditions obtained from
evaluating e1 (πδ), all instances of VmDefEq are extracted (πv). The final set
of path conditions, with which the verification proceeds (π3), includes the path
conditions obtained from the evaluation of e1, all instances of VmDefEq that
were obtained from evaluating e2 (this allows memoizing summarise because value
map definitions are always in scope, that is, are not nested under implications),
and — conditionally on e1 — the remaining path conditions from evaluating e2.

Fig. 12. Additional symbolic execution rules for evaluating pure expressions.

Viper’s remaining symbolic execution rules for evaluating expressions did
not need to be changed when we implemented our technique. For illustrative
purposes, we show the rule for evaluating heap-independent functions (including
arithmetic and other operators), and for evaluating short-circuiting conjunction.

424 P. Müller et al.

References

1. Viper Online: Try examples in the browser. http://viper.ethz.ch/examples/
2. Berdine, J., Calcagno, C., O’Hearn, P.W.: Smallfoot: modular automatic asser-

tion checking with separation logic. In: de Boer, F.S., Bonsangue, M.M., Graf,
S., de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp. 115–137. Springer,
Heidelberg (2006)

3. Birkedal, L., Torp-Smith, N., Reynolds, J.C.: Local reasoning about a copying
garbage collector. In: Jones, N.D., Leroy, X. (eds.) POPL, pp. 220–231. ACM
(2004)

4. Blom, S., Huisman, M.: The VerCors tool for verification of concurrent programs.
In: Jones, C., Pihlajasaari, P., Sun, J. (eds.) FM 2014. LNCS, vol. 8442, pp. 127–
131. Springer, Heidelberg (2014)

5. Boyland, J.: Checking interference with fractional permissions. In: Cousot, R. (ed.)
SAS 2003. LNCS, vol. 2694, pp. 55–72. Springer, Heidelberg (2003)

6. de Moura, L., Bjørner, N.S.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

7. Distefano, D., Parkinson, M.J.: jStar: towards practical verification for Java. In:
OOPSLA, pp. 213–226. ACM (2008)

8. Heule, S., Kassios, I.T., Müller, P., Summers, A.J.: Verification condition gen-
eration for permission logics with abstract predicates and abstraction functions.
In: Castagna, G. (ed.) ECOOP 2013. LNCS, vol. 7920, pp. 451–476. Springer,
Heidelberg (2013)

9. Lee, O., Yang, H., Yi, K.: Automatic verification of pointer programs using
grammar-based shape analysis. In: Sagiv, M. (ed.) ESOP 2005. LNCS, vol. 3444,
pp. 124–140. Springer, Heidelberg (2005)

10. Leino, K.R.M.: Dafny: an automatic program verifier for functional correctness. In:
Clarke, E.M., Voronkov, A. (eds.) LPAR-16 2010. LNCS, vol. 6355, pp. 348–370.
Springer, Heidelberg (2010)

11. Leino, K.R.M., Monahan, R.: Reasoning about comprehensions with first-order
SMT solvers. In: Shin, S.Y., Ossowski, S. (eds.) SAC, pp. 615–622. ACM (2009)

12. Leino, K.R.M., Müller, P.: A basis for verifying multi-threaded programs. In:
Castagna, G. (ed.) ESOP 2009. LNCS, vol. 5502, pp. 378–393. Springer, Heidelberg
(2009)

13. Moskal, M.: Programming with triggers. In: SMT. ACM International Conference
Proceeding Series, vol. 375, pp. 20–29. ACM (2009)

14. Müller, P., Schwerhoff, M., Summers, A.J.: Viper: a verification infrastruc-
ture for permission-based reasoning. In: Jobstmann, B., et al. (eds.) VMCAI
2016. LNCS, vol. 9583, pp. 41–62. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-49122-5_2

15. Parkinson, M., Bierman, G.: Separation logic and abstraction. In: Palsberg, J.,
Abadi, M. (eds.) POPL, pp. 247–258. ACM (2005)

16. Piskac, R., Wies, T., Zufferey, D.: GRASShopper—complete heap verification with
mixed specifications. In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014. LNCS,
vol. 8413, pp. 124–139. Springer, Heidelberg (2014)

17. Reynolds, J.C.: Definitional interpreters for higher-order programming languages.
In: ACM Annual Conference, ACM 1972, vol. 2, pp. 717–740. ACM (1972)

18. Reynolds, J.C.: Separation logic: a logic for shared mutable data structures. In:
LICS. IEEE Computer Society Press (2002)

http://viper.ethz.ch/examples/
http://dx.doi.org/10.1007/978-3-662-49122-5_2
http://dx.doi.org/10.1007/978-3-662-49122-5_2

Automatic Verification of Iterated Separating Conjunctions 425

19. Smans, J., Jacobs, B., Piessens, F.: Implicit dynamic frames: combining dynamic
frames and separation logic. In: Drossopoulou, S. (ed.) ECOOP 2009. LNCS, vol.
5653, pp. 148–172. Springer, Heidelberg (2009)

20. Smans, J., Jacobs, B., Piessens, F.: Heap-dependent expressions in separation logic.
In: Hatcliff, J., Zucca, E. (eds.) FMOODS 2010, Part II. LNCS, vol. 6117, pp. 170–
185. Springer, Heidelberg (2010)

21. Smans, J., Jacobs, B., Piessens, F.: Implicit dynamic frames. ACM Trans. Program.
Lang. Syst. 34(1), 2:1–2:58 (2012)

22. Smans, J., Jacobs, B., Piessens, F.: VeriFast for Java: a tutorial. In: Clarke, D.,
Noble, J., Wrigstad, T. (eds.) Aliasing in Object-Oriented Programming. LNCS,
vol. 7850, pp. 407–442. Springer, Heidelberg (2013)

23. Yang, H.: An example of local reasoning in BI pointer logic: the Schorr-Waite graph
marking algorithm. In: Proceedings of the SPACE Workshop (2001)

From Shape Analysis to Termination Analysis
in Linear Time

Roman Manevich1(B), Boris Dogadov2, and Noam Rinetzky2

1 Ben-Gurion University of the Negev, Beer-Sheva, Israel
romanm@cs.bgu.ac.il

2 Tel Aviv University, Tel Aviv, Israel
{borisdog,maon}@post.tau.ac.il

Abstract. We present a novel algorithm to conservatively check
whether a (recursive) heap-manipulating program terminates. Our algo-
rithm can be used as a post-processing phase of any shape analysis sat-
isfying some natural properties. The running time of the post-processing
phase is linear in the size of the output of the chosen shape analysis.

The main idea is to partition the (unbounded but finite) set of allo-
cated objects in every state into a bounded set of regions, and track
the flow of objects between heap regions in every step of the program.
The algorithm proves the existence of the well-founded relation over
states by showing that in every loop iteration at least one object (which
was allocated before entering the loop) moves to a strictly lower-ranked
heap region. The partitioning of objects into regions, the flow of objects
between regions, and the ranks of regions are computed automatically
from the output of the underlying shape analysis. Our algorithm extends
the state of the art in terms of complexity, the class of supported data
structures, and its generality.

We successfully applied a prototype of our analysis to prove ter-
mination of a suite of benchmarks from existing literature, including
(looping, recursive, and concurrent) list manipulating programs, looping
list-sorting programs, and looping programs that manipulate trees and
graphs. The overhead of the termination phase in our experiments is at
most 14% of the overall analysis time.

1 Introduction

Proving termination of heap manipulating programs is both important and chal-
lenging. System codes, whose reliability is crucial for the stack of software built
on top of them, often use low-level manipulation of linked data structures to
gain efficiency. Proving termination requires synthesizing ranking functions that
correlate two different types of unbounded data—data structure invariants and
the number of loop iterations. This in turn requires tracking highly complex
shape-numeric invariants [14,19].

This work was funded by EU FP7 project ADVENT (308830) and by the Broadcom
Foundation and Tel Aviv University Authentication Initiative.

c© Springer International Publishing Switzerland 2016
S. Chaudhuri and A. Farzan (Eds.): CAV 2016, Part I, LNCS 9779, pp. 426–446, 2016.
DOI: 10.1007/978-3-319-41528-4 23

From Shape Analysis to Termination Analysis in Linear Time 427

Almost all existing approaches (with Brotherson et al. [8,9] as a notable
exception) address the undecidable problem of proving termination of heap-
manipulating programs by reducing it to another undecidable problem, e.g.,
proving termination of a numeric program [4,5,19], proving termination of a
term-rewriting system [21], or proving the termination of a constraint-logic pro-
gram [27]. In contrast, we take a direct approach. In the first phase, we apply
any program-wide shape analysis that partitions the heap into finitely many
heap regions and computes the following two relations: (i) an abstract transition
relation, and (ii) an abstract relation that tracks how program statements cause
individual objects to change membership in heap regions. In the second phase,
we conservatively check termination by solving a linear time problem over these
two relations. By decoupling the reasoning used to synthesize heap invariants
from the reasoning used for checking termination, we gain the following notable
advantages:

– We avoid the need to track complex heap measures during the shape analysis.
– Our termination checking phase is agnostic to most details of the program-

ming language. Its only requirement is that the loops form a hierarchical tree
structure.

– Our termination checking phase can be latched on top of any shape analysis,
which satisfies certain natural assumptions. This makes our approach quite
flexible, allowing to adapt the shape analysis to a given class of programs and
data structures1 and to support combined shape domains [28,29].

– Our algorithm handles recursive procedures quite precisely via the call stack-
as-list approach [24,25]. As far as we know, we are the first to automati-
cally prove termination of recursive heap-manipulating procedures with side-
effects.

– We can apply summarization to the result of the shape analysis phase. Then,
we can check the termination of each loop and procedure only with respect
to these summaries in a modular way.

Overview of Our Approach. The termination analysis begins by processing the
abstract transition relation computed by the underlying shape analysis to pro-
duce a bounded graph which conservatively tracks the flow of objects between
heap regions. The nodes of the graph are pairs of abstract states and regions.
The graph contains two kind of edges, pertaining to over- and under- approxi-
mation information: evolution edges and must-evolution edges. The former over-
approximates the object flow information by refining every abstract transition
into a set of evolution edges going from every region in the source abstract state
to every region in the target abstract state which may contain some of its objects,
while the latter under-approximates the flow information by producing a similar
set of evolution edges which records must flow information.

1 For example, by choosing separation logic approaches for programs manipulating
inductive data structures and shape graph approaches for programs manipulating
arbitrary graph data structures.

428 R. Manevich et al.

Using the (may) evolution graph, we compute an acyclic graph, called the
condensation graph, by collapsing strongly-connected components and remov-
ing self-loops. The condensation graph entails a well-founded relation over heap
regions: Every region is given a rank based on its depth in the condensation
graph, and as the latter is acyclic and the number abstract states and regions
is bounded, there is a bounded number of ranks. This well-founded relation can
be point-wise lifted to a well-founded relation over abstract states which maps
every region in every state to its rank. The resulting relation is preserved by
any abstract transition (i.e., the either stays the same of strictly decreases). To
prove that every loop in the program terminates, we find for every cycle in the
abstract transition relation terminates, a cutting set—a set of transitions that
strictly decrease this relation in every iteration through the cycle. Specifically,
our algorithm looks for a cutting set containing only must-evolution edges.

Main Contributions. The main contributions of this paper are summarized
below:

1. Novel Well-founded Relation Over Heaps. We show how to use the
result of a shape analysis to construct a well-founded relation over the tran-
sitions of any heap-manipulating program (Sect. 5). This avoids the need to
synthesize a different well-founded relation for each program. It also allows
us to dynamically find the best set of cut points in the abstract transition
relation, in contrast to existing analyses that choose them a priori.

2. Generic Framework. Our algorithm (Sect. 3) is parameterized by (the
atomic statements of) the programming language (Sect. 2) and a class of
shape analyses satisfying very weak and natural assumptions (Sect. 4). It is
independent of the iteration strategy used by the shape analysis, e.g., whether
it is forward or backward, compositional [10], and whether it uses widening.
This allows us to mix and match existing shape analyses, and take advan-
tage of any advances in this field by simply replacing the underlying shape
analysis. We utilize this flexibility to support recursion (Sect. 6).

3. Featherweight Reasoning. Our termination checking phase analyzes loops
and recursive procedures separately by summarizing their behavior. Its overall
running time is linear time in the size of the program and the output of the
shape analysis. The predictable performance makes it an appealing upgrade
for existing shape analyses.

5. Experimental Evaluation. We have implemented a prototype of our analy-
sis and applied it to a suite of benchmarks (Sect. 7). Our analysis successfully
handles programs operating on inductive data structures as well as a garbage-
collection benchmark operating on arbitrary graphs, programs with recursive
procedures, and intricate examples introduced by previous works. We have
also proved lock-freedom for concurrent programs manipulating linked lists
with a constant number of threads.

From Shape Analysis to Termination Analysis in Linear Time 429

2 Programming Language and Running Example

We formalize our results using a simple imperative programming language for
sequential procedure-less programs, which we later extend to handle (recursive)
procedures and bounded parallelism. We assume that the reader is familiar with
the way programs are represented using control-flow graphs (see, e.g., [1,20]),
and only define the necessary terminology.

Syntax. A program P = (V,E, ventry , vexit , c) is a control-flow graph (CFG):
Nodes v ∈ V correspond to program points and edges e ∈ E indicate possible
transfer of control. Every node v is associated with a primitive command c(v). P
starts its execution at program point ventry and terminates at vexit . We assume
that the program has a reducible CFG, i.e., every loop has a single entry node,
which we refer to as the loop header. For simplicity, we assume that every loop has
a unique entry node which is also its unique exit node, and identify loops by their
headers. We also assume E does not contain self loops, i.e., ∀v ∈ V. (v, v) �∈ E.

We say that L = (V ′, E′, v′
entry , v′

exit , c|V ′) is the sub-CFG of P pertaining
to V ′ if {v′

entry , v′
exit} ⊆ V ′ ⊆ V , E′ = E ∩ V ′ × V ′, v′

entry is the only node in
V ′ into which control can flow in P from program points outside V ′ and v′

exit

is the only node in V ′ from which control can leave V ′. We denote the entry
node and exit nodes of a sub-CFG L by Entry(L) and Exit(L), respectively. We
denote the set of sub-CFGs pertaining to the natural loops2 in the CFG of P by
Loops(P).

Our technique is independent of the choice of primitive commands; we only
require that they can be handled by the underlying shape analysis. Thus, we
leave this set unspecified. In our examples, we use a set of typical commands for
heap-manipulating programs: assignments between variables, dynamic allocation
and deallocation of objects, (possibly destructive) accesses to fields of objects,
and conditionals involving pointer expressions. The meaning of these commands
is standard (see, e.g., [23]).

Operational Semantics. The concrete semantics of a program is defined as a
concrete transition relation T ⊆ Σ × Σ over a set of concrete states σ ∈ Σ.
We assume an unbounded set o ∈ O of object identifiers (objects for short).
We only expect that a concrete state σ = 〈v,A, F, . . .〉 records the value of the
program counter, denoted by v(σ) = v, the finite, but unbounded, set of allocated
objects, denoted by A(σ) = A, and the unbounded set of free (unallocated)
objects, denoted by F (σ) = F . Concrete transitions induce a concrete evolution
relation. That is, a relation that for each (σ, σ′) ∈ T connects the objects in σ
to the corresponding objects in σ′3. We place no other restrictions on the form
of states or on the transition relation.
2 Intuitively, a natural loop is the CFG-analogue of a while loop: It has a single header
(entry) node, and every two natural loops are either nested, disjoint, or share the
header node. See [1].

3 Intuitively, this relation is identity, although in reality a garbage collector can
relocate objects in memory.

430 R. Manevich et al.

if x nil

assume in nil
assume out nil
x := in

return

y := out

if y nil y.d x.d

if y nil then
y.n := new Node(y.n, x.d)

x := x.n

y := y.n

N1

N2 N3

N4

N5

N6

N7

F
i
n
dD
o
u
b
l
e

Fig. 1. CFG for Double (with extended basic blocks). Dashed edges represent false
condition branches.

Running Example. In the rest of the paper, we exemplify our analysis using
a simple program in a Java-like language whose control-flow graph (CFG) is
shown in Fig. 1. The program operates over two disjoint acyclic singly-linked
lists pointed-to by in and out, respectively. List elements are declared as

class Node { Node n; int d; } .

The outer loop scans the in list and uses the inner loop, shown by the sub-CFG
Find, to find an identical element in the out list. If it finds one, it splices a copy
of that element next to it. The sub-CFG of the outer loop is consists of the nodes
in the CFG except N1 and N3, and its header is N2. The sub-CFG of the inner
loop consists of the nodes N5 and N6, and its header is N5.

3 Termination Analysis

This section defines our termination analysis, which is shown as pseudo-code in
Fig. 2.

The analysis is based on the following principles: (i) using a partition-based
shape analysis (Sect. 3.1) to approximate the concrete transition relation and to
approximate the flow of objects between heap regions by a so-called evolution
relation; (ii) using the flow of objects between heap regions to define a well-
founded relation4 over heap regions and then lift it to a well-founded relation
over the abstract heap descriptors (Sect. 3.2); (iii) using the well-founded relation
to discover a loop cut for each loop—a set of transitions that strictly decrease
the well-founded relation and must be taken in each loop iteration (Sect. 3.3);
and (iv) summarizing loops to handle loop nesting (Sect. 3.4).

3.1 Shape Analysis

Our termination analysis is built on top of an underlying shape analysis,
which is first applied to the entire program (ObjectFlowTermCheck line 1).
4 A relation is well-founded if it has no infinite descending chains.

From Shape Analysis to Termination Analysis in Linear Time 431

OBJECTFLOWTERMCHECK(P) {
1 (τ, ev) ←− SHAPEANALYSIS(P)
2 L1, . . . , Ln ←− LOOPS(P)
3 (τ [L1, . . . , Ln], ev [L1, . . . , Ln]) ←− SUMMARIZE(P, τ, ev)
4 foreach i = 1..n do
5 // Compute well-founded relation over regions, for the loop-specific evolution relation.
6 ev≺ ←− EVOLUTIONTOWF(ev [Li])
7 τ ←− τ [Li] // Get loop-specific abstract transition relation.
8 // Remove decreasing abstract transitions.
9 foreach (s, s) ∈ τ do

10 if ∃([(s, ρ)], [(s , ρ)]) ∈ ev≺(s, s) then
11 τ ←− τ \ (s, s) //since s ≺ s
12 NonDecreasingCycles ←− {b ∈ SCC(τ)||b| > 1}
13 if NonDecreasingCycles = ∅ then
14 Print “Loop L may not terminate!”

}

EVOLUTIONTOWF(evL) {
1 {[r1], . . . , [rm]} ←− SCC(MAY(evL))
2 // Merge region ranks possibly containing loop-allocated objects.
3 foreach [ri] ∈ {[r1], . . . , [rm]} do
4 if (ρfree, ri) ∈ ev∗

L then
5 [ρfree] ←− [ρfree] ∪ [ri]
6 // Maintain strictly-decreasing evolution edges.
7 ev≺ ←− evL

8 foreach ((s, ρ), (s , ρ)) ∈ ev≺ do
9 if [(s, ρ)] = [(s , ρ)] ∨ ¬MUST((s, ρ), (s , ρ)) then

10 ev≺ ←− ev≺ \ {((s, ρ), (s , ρ))}
11 return ev≺

}

Fig. 2. Soundly checking termination. May(ev) and Must(ev) return the subset of
evolution may edges and evolution must edges, respectively

x, z ∈ Var Variables
v ∈ V CFG nodes

E ::= x | Expressions
P ::= E = E | ¬P Simple pure formulae
Q ::= | P | Q ∧ Q Pure formulae
A ::= (x
→ E) | (E, E) Atomic spatial formulae
H ::= A | | H ∗ H Spatial formulae

〈v, Q ∧ H〉 Symbolic heaps
(E, F) = E
→ F ∨ ∃z . E
→ z ∗ (z, F)

Fig. 3. Symbolic heaps

432 R. Manevich et al.

The shape analysis must produce two relations—an abstract transition relation
and an (abstract) evolution relation. The abstract transition relation is a finite
graph whose nodes are (abstract) heap descriptors and edges overapproximate
the concrete transition relation between the concrete heaps they represent. A
heap descriptor consists of a finite set of heap regions (or simply regions), which
partition the set of objects in each concrete heap it represents. The evolution
relation is a (finite) graph whose nodes are the regions in the heap descriptors.
The edges (over- and under-) approximate the flow of objects between the regions
of any two heap descriptors related by an abstract transition. To identify a heap
region ρ in a specific heap descriptor s, we write (s, ρ).

To exemplify our analysis, we assume basic familiarity with shape analysis
based on separation logic [3] and use the analysis of singly-linked lists [12]. In this
analysis, the heap descriptors are represented by symbolic heaps and the heap
regions are represented by spatial formulae, both of which are defined in Fig. 3.

Example 1. Figure 4 shows a concrete transition from state σ to state σ′, result-
ing from executing the statement y:=y.n. The objects in each state are parti-
tioned as shown by the spatial formulae annotations. The red edges that connect
corresponding objects comprise the so-called concrete evolution relation. Specif-
ically, notice that the transition moves the object e from the region ls(y, nil) to
the region ls(out, y).

To approximate the concrete transition relation for a given statement, a sep-
aration logic-based analysis applies a sequence of derivation rules. To approxi-
mate the concrete evolution relation, each derivation rule must be augmented
with two types of edges between the regions of the pre and post symbolic heaps.
A may edge means that an object in the source region may exist in the desti-
nation region. A must edge means that at least one object in the source region
must exist in the destination region. To maintain soundness, may edges can be
overapproximated and must edges can be underapproximated.

Figure 5 shows (a simplified subset of) such derivation rules used in analyzing
the Find loop. For the given rules, the set of evolution may edges and the set of
evolution must edges are equal. The double-lined arrows stand for the bijection
between the spatial formulae appearing in the pre formula and the corresponding
spatial formulae appearing in the post formula.

out y

nil

y

nil

x

x

in

in

(out, y) (y,) (x,) (in, x)

(x,) (in, x)(y,)(out, y)

out

Fig. 4. A concrete transition annotated with evolution edges and spatial formulae

From Shape Analysis to Termination Analysis in Linear Time 433

v Q H E, F

v Q H * E F

Unroll1 v Q H E, F

v Q H * E z E, F z

Unroll>1 v Q H * E z z, F

v Q H * E, F

Fold

v Q H * y w y y.n

v’ Q H[y/w, z/y] * z y z

Next v Q H assume E F

v’ Q E F H

assume E F

Fig. 5. Derivation rules augmented with abstract evolution edges. For the statement
rules, we have that (v, v′) ∈ E and c(v) is the statement at hand

(y,) (out, y) (in, x) (x,)

(y,) (out, y) (in, x) (x,)

(v,) (out, y) (in, x) (x,)(y v)

(y,) (out, w) (in, x) (x,)(w y)

assume E F

Unroll>1

Next

y

y

w Fold

(a)
(y,) (out, y) (in, x) (x,)

(y,) (out, y) (in, x) (x,)y

(b)

Fig. 6. (a) Symbolic execution augmented with evolution edges, and (b) the resulting
transition relation and evolution relation

Figure 6(a) shows how the symbolic heap s2 is derived from s1 and how s1
is derived from s2 via the intermediate symbolic heaps s3 and s4 (redundant
variables are removed after each rule application). By composing the relations
(using natural join) across the intermediate states of the symbolic execution, we
obtain the abstract transitions edges (s1, s2), (s2, s1) and the evolution relation
shown in Fig. 6(b).

The edges (s1, s2), (s2, s1) form a cycle in the abstract transition relation.
How do we show that every execution represented by this cycle terminates?

3.2 From Shape Analysis to a Well-Founded Relation

Consider a concrete execution whose states are represented by s1 and s2. Every
concrete transition represented by the abstract transition (s2, s1) shrinks the
region ls(y, nil) of s2 by moving an object (e in our example) to the region
ls(out, y) of s1 (i.e., from the suffix of the list to its prefix, relative to y). Further-
more, this transition appears infinitely often in every infinite path that contains
this cycle. Since no objects flow into this region other than from itself, after

434 R. Manevich et al.

taking this transition a number of times that is bounded by the number of cells
in the out list, this region becomes empty and the execution must exit the cycle.

In EvolutionToWF, line 1, the procedure accepts the evolution relation
induced by the transitions between CFG nodes of a loop and uses the may edges
to compute its strongly-connected components in linear time [11]. It then pro-
duces a so-called condensation graph by collapsing the set of regions in each
component to a single node and removing self-loops. This results in a finite and
acyclic graph, which is therefore a well-founded relation. The region rank, or
simply rank, of a region (s, ρ), denoted [(s, ρ)], is the component in the conden-
sation to which it belongs. We write [(s, ρ)] 	 [(s′, ρ′)] if [(s′, ρ′)] is reachable
from [(s, ρ)] in the condensation graph. Figure 7 shows the condensation graph
induced by s1 and s2.

The well-founded relation · 	 · induces a well-founded relation over the
concrete states represented by the abstract transition relation. Intuitively, we
map each object o in a concrete state to the rank of the region representing o,
denoted by rank(o). We then lift this relation to pairs of concrete states related
by the execution of a statement by comparing the objects in the post-state to
the objects in the pre-state.

(y,), s1)
(y,), s2)

(in, x), s1)
(in, x), s2)

(x,), s1)
(x,), s2)

(out,), s1)
(out,), s2)

Fig. 7. The condensation graph induced by the evolution edges between s1 and s2

Our reasoning depends on depleting regions. To account for this, care must be
taken when objects are allocated inside a loop. To account for this, we introduce a
special free region (not explicitly represented by the symbolic heaps) to represent
the (infinite) region of unallocated objects. We merge its region rank with any
region rank that may contain loop-allocated objects (lines 2–5). This way, loop-
allocated objects never decrease the relation.

By definition (Sect. 5), all concrete transitions preserve the resulting well-
founded relation. To show termination, however, we need to show that this
relation strictly decreases infinitely often for each cycle. For this purpose, we
maintain only evolution must edges that decrease the well-founded relation (lines
6–10).

3.3 Computing Loop Cuts

Let L be a loop and τ(L) ⊆ S × S be the abstract transition relation computed
by the shape analysis for that loop. To show that L terminates, we follow this
recipe: (i) find a well-founded relation s 	 s′ over the heap descriptors, which

From Shape Analysis to Termination Analysis in Linear Time 435

is preserved by each transition (that is, either the relation stays the same or
it strictly decreases); (ii) find a set Cut(L) ⊆ τ(L) (as large as possible) such
that each transition in Cut(L) strictly decreases 	; and (iii) test whether Cut(L)
forms a cut. That is whether τ(L)\Cut(L) does not contain any cycles, in which
case all executions represented by τ(L) must terminate.

The benefit of this approach is that each abstract transition can be tested
independently. In our case, we only need to check (lines 8–14) whether the tran-
sition includes an edge returned by EVOLUTIONTOWF.

Contrast this with approaches [5] that synthesize loop-specific rank functions.
Those usually choose a priori a set of CFG nodes as loop cutpoints (usually the
loop header) and try to establish that transitions leaving these cutpoints decrease
the rank. If that fails, e.g., due to the level of abstraction at those points, an
alternative set must be searched for. Our approach finds the set of cutpoints
at the fine granularity of abstract transitions. Since this set is maximal, all
alternative choices have been explored in one shot. This is possible only because
we have constructed a well-founded relation that is guaranteed to be preserved
by all (concrete and abstract) transitions.

In our example, the evolution edge ((ls(y, nil), s2), (ls(out, y), s1)) decreases
the rank of every concrete state represented by s2 and therefore the abstract
transition (s2, s1) forms a loop cut.

3.4 Employing Modular Reasoning

To show that a program terminates, we can first infer a sound specification for
each loop, e.g., as a Hoare triple, by a program-wide analysis. We can then reason
about the termination of each loop separately by: (i) using specifications for its
internal loops, and (ii) assuming internal loops terminate. If all loops have been
proven to terminate this way, the entire program terminates.

ObjectFlowTermCheck obtains the set of sub-CFGs corresponding to pro-
gram loops (line 2). Those can be found by linear time loop-reconstruction algo-
rithms based on the dominance. The algorithm then proceeds to produce a loop-
specific version of the abstract transition relation and the evolution relation for
each loop L. This is achieved by the recursive procedure Summarize (line 3),
which works as follows. It computes for each heap descriptor at the loop entry the
heap descriptors it reaches at the loop exit. This can be done in linear time by a
breadth-first search by following the abstract transition relation. Similarly, the
reachability relation can be computed in linear time for the evolution relation.
When a heap descriptor stored at the entry of an inner loop L′ is encountered,
Summarize executes for L′ and caches its result—a pair of relations between the
entry of L′ and its exit. It uses the cached relation of L′ to compute the result
for L. Finally, Summarize returns for each loop L the pair of relations where
inner loops are treated as atomic steps by using their entry-to-exit summarized
relations. Finally (lines 12–14), if a loop cannot be determined to terminate, we
emit a warning.

Conceptually, the well-founded relations of nested loops yield a lexicographic
order. However, summarization lets us avoid reasoning about this lexicographic

436 R. Manevich et al.

order explicitly. Instead, it is constructed incrementally in reverse order to the
nesting level of the loops. The resulting verification is loop-modular: The outer
loop is verified to terminate under the (proven) assumption that the inner loop
terminates. However, loop-modularity comes with a price: When verifying the
termination of the outer loop we cannot use must-flow edges of the inner loop,
and vice versa.

Using the summary for Find, we apply our algorithm to the outer loop of
Fig. 1 and establish that it terminates.

The overall running time of our algorithm is linear in the size of the program
CFG P , the size of the abstract transition relation τ , and the size of the evolution
relation ev.

We note that our reasoning can only be applied to loops whose number of
iterations is linearly bounded by the number of objects that exist upon entry (this
is because the rank of an object can decrease at most by a number of times equal
to the height of the condensation graph, which is a static constant). In practice,
this does not seem to be a limitation as the overwhelming majority of programs
we have looked at have linear loops and the small number of super-linear loops
(such a fixed-point loops) do not seem to be amenable to automation.

4 Partition-Based Shape Analysis

Our algorithm for proving termination is parametric in the underlying shape
analysis, which is expected to satisfy three natural properties:

1. The analysis should represent (possibly unbounded) sets of states by finite
sets of abstract states, and provide an over-approximation of the program’s
transition relation by means of a finite abstract transition relation between
abstract states.

2. Every abstract state should induce a partitioning of (the unbounded set of)
the allocated objects in every state it represents into a finite set of regions.
Furthermore, the analysis should allow to deduce an evolution relation [30]
which tracks the flow of objects between regions in every transition.

Abstract Semantic Domains
s ∈ S Abstract states
S ∈ S ⊆ 2S Abstract domain
ρ ∈ R Region identifiers
τ ⊆ S × S Abstract transition relation

, ê ⊆ (S, R) × (S, R) Evolution relation

Concretization Functions
γ : S → 2Σ Concretization function
γR : (S × Σ) ⇀ (R → 2O) Region concretization function

Fig. 8. Summary of the abstract semantic domains and expected operations

From Shape Analysis to Termination Analysis in Linear Time 437

3. Given an abstract transition pertaining to a command that allocates memory,
the analysis should be able to determine which regions in the post-state may
contain newly allocated objects. Similarly, for a command that deallocates
memory, it should be able to determine which regions in the pre-state may
contain objects deallocated by the command.

In the rest of the section, we formalize the expected properties of the under-
lying shape analysis and describe the construction of the evolution relation.
Figure 8 summarizes the semantic domains and the operations assumed on them.

4.1 Shape Analysis

We assume that the underlying shape analysis uses an abstract domain S, ranged
over by S, whose elements are finite sets of abstract states. We denote the (arbi-
trary but finite) set of all possible abstract states by S, and range over it by
s. We are not concerned by the way the analysis works, only that it provides
a concretization function γ which determines which (concrete) states every set
S ∈ S ⊆ 2S of abstract states represents. We expect that the latter work in a
pointwise manner, i.e., γ(S) =

⋃
s∈S γ({s}). That is, the set of states represented

by S is the union of the states represented by its members. In addition, we expect
abstract states to record the value of the program counter, i.e., all the (concrete)
states represented by an abstract state s have the same value for the program
counter, and all the abstract states in a set S ∈ S record the same value of the
program counter.

Definition 1 (Shape Domain). A shape domain (S, γ) is comprised of a set
of sets of abstract states S ⊆ 2S and a concretization function γ : S → 2Σ

mapping sets of abstract states to sets of (concrete) states, such that for any
S ∈ S the following holds:

γ(S) =
⋃

s∈S

γ({s}) , and

∀s1, s2, σ1, σ2. ({s1, s2} ⊆ S ∧ σ1 ∈ γ({s1}) ∧ σ2 ∈ γ({s2})) =⇒ v(σ1) = v(σ2) .

Recall that the semantics of the program is described using a transition
relation between states. We expect that the underlying shape analysis computes
an over-approximation of this relation as a relation between abstract states.

Definition 2 (Abstract Transition Relation). Let (S, γ) be a shape
domain. An abstract transition relation τ ⊆ S × S is a binary relation over
abstract states. T conservatively represents a concrete transition relation T if

T ⊆ {(σ1, σ2) | (s1, s2) ∈ τ, σ1 ∈ γ({s1}), σ2 ∈ γ({s2})} .

438 R. Manevich et al.

4.2 Partition-Based Shape Analysis

Partition-based shape analyses utilize abstract states which induce a finite par-
titioning of the (the unbounded set of) allocated objects in every state they
represent into a finite set of regions. The regions induced by an abstract state
often have a semantic meaning, e.g., different regions may correspond to different
data structures. However, for our purpose, such a meaning is of no importance.
We only care that for a given program, the number of regions induced by any
abstract state is finite. We abstract away from the particular details of this
kind of partition-based abstractions using the notion of a region concretization
function γR. Formally, we assume to be given a finite set of regions identi-
fiers R, ranged over by the metavariable ρ, and use them to identify subsets
of the dynamically allocated objects in a state. γR maps an abstract state s
and a concrete state σ represented by it to a function from region identifiers
to (the possibly empty) the set of objects they represent. For technical reasons,
we assume that R includes a specially designated region identifier ρfree , which
represents the free (unallocated) memory locations.

Definition 3 (Partition-Based Shape Domains). A partition-based shape
domain A = (S, γ, γR) is comprised of a shape domain (S, γ) and a region
concretization function γR : (S× Σ) → (R → 2O) , such that for every abstract
state s ∈ S and any concrete state σ ∈ γ(s), the following holds:

1. The free region represents the unallocated objects: γR(s, σ, ρfree) = F (σ), and
2. Every object is represented by exactly one region:

∀o ∈ O.∃!ρ ∈ R. o ∈ γR(s, σ, ρ).

The definition formalizes our intention that an abstract state s induces a
partitioning of the objects of every concrete state σ it represents. For example,
if a heap containing a single linked list, then all the objects comprising the list
may be in one region or in two regions, separating, e.g., the head of the list
from its tail. However, it is not possible for an object to appear in two different
regions. The partitioning of allocated objects is parametric in the chosen shape
domain. By introducing the free region, we ensure that all the objects, and not
only the allocated ones, are associated with a region. In our experiments, a region
is comprised of a connected set of objects. However, for our purposes, a region
may contain an arbitrary set of objects.

The success of a shape analysis algorithm to prove interesting properties often
depends on its ability to record properties which are common to all the objects
that reside in the same region. For example, in TVLA [26], it is often crucially
important to track the reachability relation between heap allocated object, e.g.,
that all the elements in the list pointed-to by a variable out can be reached
from it by following a finite number of n-pointer fields. To be able to record such
information, the partitioning induced by abstract states is dynamic—changes to
the state might lead objects to flow from one region to another.

From Shape Analysis to Termination Analysis in Linear Time 439

Perhaps the most important property that we require from the underlying
shape analysis is that it should be possible to deduce an evolution relation [30],
which tracks the flow of objects between the regions of abstract states related
by an abstract transition. We have shown an example of how to compute this
relation for separation logic. TVLA uses a similar approach.

Definition 4 (May Evolve Relation). Let (S, γ, γR) be a partition-shape
domain. A may evolution relation ev ⊆ (S,R)× (S,R) is a binary relation over
pairs of abstract states and region identifiers. We denote the abstract transition
relation underlying ev by

τ(ev) def= {(s1, s2) | ((s1, ρ1), (s2, ρ2)) ∈ ev} .

The evolution relation ev conservatively represents a concrete transition
relation T if

1. T is conservatively represented by τ(ev).
2. There is a transition from (s1, ρ1) to (s2, ρ2) if an object in a state represented

by s1 in region ρ1 flows to region ρ2 in a state represented by s2:

∀σ1, σ2, s1, s2, ρ1, ρ2.
(
(σ1, σ2) ∈ T ∧ σ1 ∈ γ({s1}) ∧ σ2 ∈ γ({s2}) ∧

γR(s1, σ1)(ρ1) ∩ γR(s2, σ2)(ρ2) �= ∅)
)

=⇒ ((s1, ρ1), (s2, ρ2)) ∈ ev.

The evolution relation records the way objects may flow between regions.
The last requirement we place is the ability to (conservatively) determine that
some of the evolution transitions correspond to must flow information, i.e., that
an object actually moves from one region to another.

Definition 5 (Must Evolve Relation). Let (S, γ, γR) be a partition-based
shape domain, ê an evolution relation, and T be a concrete transition relation.
ê conservatively under-approximates the flow of objects in T if

∀σ1, σ2, s1, s2, ρ1, ρ2.
(
((s1, ρ1), (s2, ρ2)) ∈ ê ∧ (σ1, σ2) ∈ T ∧

σ1 ∈ γ({s1}) ∧ σ2 ∈ γ({s2})
)

=⇒ γR(s1, σ1)(ρ1) ∩ γR(s2, σ2)(ρ2) �= ∅) .

5 Establishing Well-Founded Relations

Our termination algorithm ensures that a program P terminates by: (i) estab-
lishing a well-founded relation over the pre- and post- states of every transition
in P ’s concrete transition relations T , and (ii) attempting to prove the existence
of a cutting set of transitions that strictly decrease the relation.

We now describe how to construct this well-founded relation from the
abstract transition relation τ and the evolution relation ev, and how to detect
decreasing transitions via the must-evolve relation ê, computed using a partition-
based shape domain A = (S, γ, γR).

440 R. Manevich et al.

Establishing a Well-Founded Relation Over Regions. Given the (finite) evolution
relation ev, we construct the graph induced by its strongly connected compo-
nents. Formally, every node in this graph corresponds to an equivalence class
of pairs r = (s, ρ) of abstract states and region identifiers. We refer to such a
pair as an abstract region (region for short). Recall that our algorithm verifies
the termination of every loop in the program separately. It does so by tracking
the flow of objects which were allocated at the entry to the loop. To prevent
us from considering objects which are allocated inside the loop in our termi-
nation argument, we collapse together all the nodes that contain a (s, ρ) pair
which is reachable in the evolution relation from the free region of some input
abstract state into a single ρfree region. We refer to the resulting graph as the
condensation graph and to its nodes as region ranks, and denote the region rank
corresponding to a region r by [r]. We say that a region r is less than or equal
to a region r′, denoted r 	 r′, if [r′] is reachable from [r].

Lemma 1. The relation r 	 r′ is well-founded.

Establishing a Well-Founded Relation Across Loop Iterations. We define a rela-
tion 	 between states that occur in T by lifting the relation between region rank
to objects in a pointwise manner. Note that we do not care about relating states
that do not occur in T and recall that a state encodes the value of the program
location. Thus, it is sufficient to only define a relation between pairs of states
(σ1, σ2) ∈ T that appear as transitions in T and then take its transitive closure.

Let s be an abstract state and σ ∈ γ({s}) a state represented by s. We define
the rank map of σ according to s, denoted by ranks,σ to be a mapping from
objects to region ranks according to the partitioning induced by s:

ranks,σ(o) = (s, ρ), where o ∈ γR(s, σ, ρ) .

Let (σ1, σ2) ∈ T be a concrete transition of P . We say that an abstract
transition (s1, s2) represents (σ1, σ2) if σ1 ∈ γ(σ1) and σ1 ∈ γ(σ1). We say
that σ1 is less than or equal to state σ2, denoted by σ1 	1 σ2, if there exists
an abstract transition (s1, s2) ∈ τ such that for every o ∈ O, it holds that
ranks1,σ1(o) ≤ ranks2,σ2(o). We write σ1 ≺1 σ2 if σ1 	1 σ2 and σ2 �	 σ1. We
define the binary relation · 	 · as the reflexive transitive closure of the smaller
or equal relation · 	1 · induced by T .

Lemma 2. The relation σ1 	 σ2 is well-founded, and if (σ1, σ2) ∈ T then
σ1 	 σ2.

Theorem 1. Let T+ denote the (irreflexive) transitive closure of T . If the loop
contains a cutting set of transitions, then the relation defined as

σ1 � σ2
def= {σ1 	 σ2 | (σ1, σ2) ∈ T+ ∧ v(σ1) = v(σ2)}

(that is, σ2 is the result of executing at least one loop iteration and reaching the
same program location) is well-founded.

From Shape Analysis to Termination Analysis in Linear Time 441

6 Interprocedural Analysis

We now briefly discuss the extension of our approach to verify termination of
recursive heap-manipulating programs. We forbid mutual-recursion and assume
procedures have local variables, but no input parameters nor return values5.
Syntactically, every procedure call is represented by a call node and a return node
in the program’s CFG. Every call node of p has a control-flow edge associated
with a call command connecting it to the entry node of p’s sub-CFG, and the
exit node of the latter is connected to each of p’s return nodes via a control-flow
edge associated with a return command. The operational semantics is extended
to handle procedures via reduction: we treat the call stack as a heap-allocated
list. This allows treating recursive procedures as loop commands that explicitly
manipulate the call stack. This kind of reduction has been employed successfully
in previous shape analysis algorithms to verify safety properties [24,25]. As far
as we are aware, we are the first to employ it to verify termination.

A disadvantage of this approach is that it does not allow us to take advantage
of the modular structure of the program— the underlying shape analysis becomes
a whole program analysis and has to cope with an additional heap-allocated data
structure. Our approach for verifying termination is, however, loop-modular, and
thus can still treat procedures in a modular way.

7 Implementation and Experimental Evaluation

We implemented our algorithm on top of the existing shape analysis of TVLA,
a parametric framework for shape analysis based on 3-Valued-Logic [17,26], and
used it to verify termination for the suite of benchmarks listed in Table 1. The
experiments were performed on a machine with a 2.5 GHz i7 Intel processor
and 16 GB memory. The Time column measures the overall time of the shape
analysis and the termination analysis combined. The overhead column lists the
fraction of the time of the analysis spent to prove termination. As expected, the
termination analysis is rather efficient.

We extended our programming language to handle bounded parallelism by
allowing the program’s CFG to have multiple pairs of entry and exit nodes.
Every pair corresponds to a thread: The entry node corresponds to the program
location of the thread when the program starts. The program terminates when
every thread reaches its exit nodes. We assume that the sub-CFG pertaining to
different threads are not connected. We record in every state the program loca-
tion of every thread, and define the operational semantics to be the interleaving
of primitive commands executed by different threads.

The suite of benchmarks consists of a variety of programs, concurrent and
single-threaded, both recursive and iterative, flat and deeply nested loops. We
handle several classic sorting algorithms, trees and graphs algorithms. We imple-
mented and verified 16 out of the 21 benchmarks used to evaluate Mutant [5],
5 Mutually recursive procedures can be handled by merging them into a single recur-
sive procedure, and parameter transfer by using specially-designated global variables.

442 R. Manevich et al.

which we had access to. One of the 16 benchmarks has a termination bug in which
a lasso is created in a linked list, preventing traversing loop from ever reaching
back to the head, and thus making it iterate forever. Our analysis correctly
warned against non-termination. Some other interesting examples which were
successfully verified for termination include Deutsch-Schorr-Waite tree-traversal
algorithm [18] which involves double-reversal of links, the phases of a Mark-and-
sweep garbage collection algorithm, the Even-Odd-marking [16] program which
marks the elements of a singly-linked list as odd or even regarding their distance
from the end of the list. We successfully prove termination of some concurrent
programs including Treiber stack and CAS-based queue. A faulty implementa-
tion of the Treiber stack was correctly warned for non-termination.

Table 1. Benchmarks, analysis times, relative overhead over the original shape analysis
times, and loop-nesting depth

Benchmark Time (sec.) Overhead ND

a. Shallow programs manipulating acyclic lists

Search, Insert, Reverse, Delete-all, Merge-sorted ≤0.7 ≤0.1% 1

b. Deeply nested programs manipulating acyclic lists

Bubble-sort 5.1 14% 2

Insertion-sort 0.9 1% 2

Insertion-sort with malloc 1.1 2.7% 2

Odd-even-marking 0.2 5.1% 2

Nested-loop-depth-4 4.4 4.5% 4

c. Shallow programs manipulating cyclic lists

Mutant 1–16 0.113 0.1% 1

Search, Insert ≤0.1 ≤0.1% 1

d. Recursive programs manipulating acyclic lists

Search, Insert, Append, Reverse, Delete ≤0.3 ≤0.3% 1

Merge 38.9 0.5% 1

e. Programs manipulating binary trees

Insert-to-sorted-tree 0.9 1% 1

Delete-from-sorted-tree 42.1 6% 1

Deutsch-Schorr-Waite 14.5 4.8% 1

f. Programs manipulating graphs

Mark-and-sweep 0.8 1.25% 1

g. Concurrent programs (lock-freedom)

CAS Merge two lists (2 threads) 9.21 4% 1

Treiber stack (2 threads) 1.4 2.5% 1

Treiber stack (3 threads) 21.2 13% 1

Faulty Treiber stack (2 threads) 1.6 1.25% 1

From Shape Analysis to Termination Analysis in Linear Time 443

8 Related Work

In this section, we discuss and compare our work with other approaches for
verifying termination of heap-manipulating programs. This body of work can
broadly be classified according to the following dimensions: (i) lattice of heap
invariants and supported data structures, and (ii) type of “heap measures” used
for reasoning about termination.

In terms of supported program features, we are the only ones to support side-
effecting recursive procedures. However, we completely abstract away integers.
Approaches Based on Inductive Heap Invariants. Approaches based on
separation logic [4,5,8,9,19] and tree automata [16] are restricted to programs
operating on inductively-defined data structures, preventing them from handling
programs operating on graphs of unbounded treewidth such as arbitrary graphs.
Our algorithm is parametric in the underlying shape analysis and can therefore
be used both with separation logic and 3-valued shape analysis. Our implementa-
tion uses 3-valued shape analysis as the underlying domain to prove termination
of programs manipulating both inductively-defined data structures as well as
arbitrary graphs.

Both Berdine et al. [4,5] and Brotherson et al. [8,9] use the number of unfold-
ings of inductively-defined definitions as a basis for their reasoning. Berdine
et al. [4,5] modify a separation logic-based analysis to track changes in the num-
ber of unfoldings of inductive predicates and produce a numeric program whose
termination implies the termination of the original program. The termination of
the numeric program can be checked by termination proving tools for numeric
programs. Brotherson et al. [8] develop a proof framework for cyclic proofs where
termination is done by directly relating (cyclic) inference trees with inductive
predicates. Brotherson and Gorogiannis [9] introduce a method for synthesizing
inductive predicates, allowing them to automatically adapt to the data struc-
tures appearing in a program.

Magill et al. [19] develop a flexible analysis that simultaneously tracks both
shape invariants and related numeric measures such as the sizes of lists and trees.
They generate a numeric program whose termination proof implies termination
of the original program. Proving termination of the numeric program is done by
using tools dedicated for that purpose (Armc-Live).

Tracking numeric properties is both expensive and requires making mod-
ifications to the shape analysis. Proving termination of numeric programs is
undecidable in general and expensive in practice. Our algorithm avoids these
problems by directly processing the result of the shape analysis in linear time.
We note that computing the evolution relation is relatively simple and efficient.

Haberhmehl et al. [16] use shape analysis based on tree automata to
generate a counter automaton that simulates the original program. They
use counterexample-guided abstraction refinement to obtain a high degree of
automation (and to prove relative completeness for a subclass of programs).
They track measures suitable for termination of tree manipulation such as tree
size, height, and distance of pointers from the root. However, they only handle
tree rotations and do not handle dynamic allocation.

444 R. Manevich et al.

Approaches Based on FOTC Shape Invariants. A family of analyses approx-
imate the shape of the heap via predicates expressible in first-order logic with
transitive closure (FOTC). These enable to indirectly capture some recursive data
structures as well as reason about arbitrary data structures in a sound manner.

Podelski et al. [22] present an analysis for inferring necessary preconditions
for termination of list-manipulating programs. Their analysis starts with a coarse
heap abstraction and proves termination by translation to numeric programs. If
an abstract counterexample is found, the heap abstraction is refined. The heap
abstraction is converted to a numeric program which tracks the lengths of heap
paths between two pointer variables.

Gulwani et al. [14] develop an abstract interpretation framework for tracking
numerical relations betweens the sizes of heap regions, and use it to manually
obtain ranking functions for bubble-sort and the mark and sweep garbage col-
lector benchmark. One disadvantage of combining shape and size information
(other than the expensive cost incurred by tracking numeric properties and per-
forming partial reduction between the shape domain and numeric domain) is the
unpredictability brought by widening operations that are usually necessary for
the numeric sub-domain. Additionally, the termination of some programs, e.g.,
Odd-even-marking [16], does not depend on the sizes of heap regions.

Albert et al. [2] and Fausto et al. [27] develop heap abstractions based on
sharing, cyclicity, and aliasing and use access path lengths to prove termination.
Technically, they translate Java byte code to constraint logic programs (CLP)
where the actual termination reasoning is done. Giesl et al. [21] define a shape
analysis based on sharing, aliasing, and reachability patterns. This allows them
to analyze programs manipulating integers and tree-shaped data structures and
prove their termination by reduction to term rewriting systems (TRS). The
termination measures available by TRS go beyond region sizes (e.g., flattening a
tree). They later extend their technique to handle certain cyclic data structure
patterns [6] and recursive procedures without side-effects [7]. Their analysis has
been implemented in the AProVE tool [13], which analyzes both Java and C
programs.

The main limitation of the last three approaches is the rigidity of the heap
abstraction—adapting the abstraction to precisely handle new data structures
and new data structure manipulation patterns requires reworking the analysis.
In particular, proving termination for programs manipulating arbitrary graphs
seems to be out of reach. In contrast, our algorithm is not tied down to any
specific shape analysis technique, allowing us to take advantage of advances
in the field of shape analysis, e.g., compositional analysis [10], and automatic
synthesis of inductive predicates [9,15]. Our implementation on top of TVLA
allows us to quickly adapt to new data structures by refining the abstraction with
new predicates (soundness is automatically guaranteed). Finally, our treatment
of recursion allows us to quite precisely track intricate properties between the
heap and the call stack.

From Shape Analysis to Termination Analysis in Linear Time 445

Efficiency. As far as we know, our algorithm is the only one that operates in
linear time with respect to an underlying shape analysis. This is due to two
factors—the properties of the well-founded relation our analysis constructs and
our modular treatment of loops and recursive procedures.

Acknowledgments. We thank the anonymous reviewers for their detailed comments.
We thank Josh Berdine and Amir Ben-Amram for useful discussions.

References

1. Aho, A.V., Sethi, R., Ullman, J.D.: Compilers: Principles,Techniques and Tools.
Addison-Wesley, Reading (1988)

2. Albert, E., Arenas, P., Codish, M., Genaim, S., Puebla, G., Zanardini, D.: Termi-
nation analysis of Java bytecode. In: Barthe, G., de Boer, F.S. (eds.) FMOODS
2008. LNCS, vol. 5051, pp. 2–18. Springer, Heidelberg (2008)

3. Berdine, J., Calcagno, C., O’Hearn, P.W.: Symbolic execution with separation
logic. In: Yi, K. (ed.) APLAS 2005. LNCS, vol. 3780, pp. 52–68. Springer,
Heidelberg (2005)

4. Berdine, J., Chawdhary, A., Cook, B., Distefano, D., O’Hearn, P.W.: Variance
analyses from invariance analyses. In: ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pp. 211–224 (2007)

5. Berdine, J., Cook, B., Distefano, D., O’Hearn, P.W.: Automatic termination proofs
for programs with shape-shifting heaps. In: Ball, T., Jones, R.B. (eds.) CAV 2006.
LNCS, vol. 4144, pp. 386–400. Springer, Heidelberg (2006)

6. Brockschmidt, M., Musiol, R., Otto, C., Giesl, J.: Automated termination proofs
for Java programs with cyclic data. In: International Conference on Computer
Aided Verification, pp. 105–122 (2012)

7. Brockschmidt, M., Otto, C., Giesl, J.: Modular termination proofs of recursive Java
bytecode programs by term rewriting. In: International Conference on Rewriting
Techniques and Applications, pp. 155–170 (2011)

8. Brotherston, J., Bornat, R., Calcagno, C.: Cyclic proofs of program termination in
separation logic. In: ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, pp. 101–112 (2008)

9. Brotherston, J., Gorogiannis, N.: Cyclic abduction of inductively defined safety
and termination preconditions. In: Müller-Olm, M., Seidl, H. (eds.) Static Analysis.
LNCS, vol. 8723, pp. 68–84. Springer, Heidelberg (2014)

10. Calcagno, C., Distefano, D., O’Hearn, P.W., Yang, H.: Compositional shape analy-
sis by means of bi-abduction. J. ACM 58(6), 26 (2011)

11. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
3rd edn. MIT Press, Cambridge (2009)

12. Distefano, D., O’Hearn, P.W., Yang, H.: A local shape analysis based on separation
logic. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920, pp.
287–302. Springer, Heidelberg (2006)

13. Gies, J., et al.: Proving termination of programs automatically with AProVE. In:
Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014. LNCS, vol. 8562, pp.
184–191. Springer, Heidelberg (2014)

14. Gulwani, S., Lev-Ami, T., Sagiv, M.: A combination framework for tracking parti-
tion sizes. In: ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pp. 239–251 (2009)

446 R. Manevich et al.

15. Guo, B., Vachharajani, N., August, D.I.: Shape analysis with inductive recursion
synthesis. In: ACM SIGPLAN conference on Programming Language Design and
Implementation, pp. 256–265 (2007)

16. Habermehl, P., Iosif, R., Rogalewicz, A., Vojnar, T.: Proving termination of tree
manipulating programs. In: Namjoshi, K.S., Yoneda, T., Higashino, T., Okamura,
Y. (eds.) ATVA 2007. LNCS, vol. 4762, pp. 145–161. Springer, Heidelberg (2007)

17. Lev-Ami, T., Sagiv, M.: TVLA: a framework for implementing static analyses. In:
Palsberg, J. (ed.) SAS 2000. LNCS, vol. 1824, pp. 280–301. Springer, Berlin (2000)

18. Loginov, A., Reps, T., Sagiv, M.: Automated verification of the Deutsch-Schorr-
Waite tree-traversal algorithm. In: Yi, K. (ed.) SAS 2006. LNCS, vol. 4134, pp.
261–279. Springer, Heidelberg (2006)

19. Magill, S., Tsai, M., Lee, P., Tsay, Y.: Automatic numeric abstractions for heap-
manipulating programs. In: ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, pp. 211–222 (2010)

20. Muchnick, S.S.: Advanced Compiler Design and Implementation. Morgan
Kaufmann Publishers Inc., San Francisco (1997)

21. Otto, C., Brockschmidt, M., von Essen, C., Giesl, J.: Automated termination analy-
sis of Java bytecode by term rewriting. In: International Conference on Rewriting
Techniques and Applications, pp. 259–276 (2010)

22. Podelski, A., Rybalchenko, A., Wies, T.: Heap assumptions on demand. In: Gupta,
A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 314–327. Springer, Heidelberg
(2008)

23. Rinetzky, N., Ramalingam, G., Sagiv, M., Yahav, E.: On the complexity of
partially-flow-sensitive alias analysis. ACM Trans. Program. Lang. Syst. 30(3),
13:1–13:28 (2008)

24. Rinetzky, N., Sagiv, M.: Interprocedural shape analysis for recursive programs. In:
Wilhelm, R. (ed.) CC 2001. LNCS, vol. 2027, pp. 133–149. Springer, Heidelberg
(2001)

25. Rival, X., Chang, B.-Y.E.: Calling context abstraction with shapes. In: ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pp.
173–186 (2011)

26. Sagiv, M., Reps, T., Wilhelm, R.: Parametric shape analysis via 3-valued logic.
ACM Trans. Program. Lang. Syst. 24(3), 217–298 (2002)

27. Spoto, F., Mesnard, F., Payet, E.: A termination analyzer for Java bytecode based
on path-length. ACM Trans. Program. Lang. Syst. 32(3), 8:1–8:70 (2010)

28. Toubhans, A., Chang, B.-Y.E., Rival, X.: Reduced product combination of abstract
domains for shapes. In: Giacobazzi, R., Berdine, J., Mastroeni, I. (eds.) VMCAI
2013. LNCS, vol. 7737, pp. 375–395. Springer, Heidelberg (2013)

29. Toubhans, A., Chang, B.-Y.E., Rival, X.: An abstract domain combinator for sep-
arately conjoining memory abstractions. In: Müller-Olm, M., Seidl, H. (eds.) Static
Analysis. LNCS, vol. 8723, pp. 285–301. Springer, Heidelberg (2014)

30. Yahav, E., Reps, T.W., Sagiv, S., Wilhelm, R.: Verifying temporal heap prop-
erties specified via evolution logic. In: European Symposium on Programming,
pp. 204–222 (2003)

RV-Match: Practical Semantics-Based Program
Analysis

Dwight Guth1(B), Chris Hathhorn1,3(B), Manasvi Saxena1,2(B),
and Grigore Roşu1,2(B)

1 Runtime Verification Inc., Urbana, USA
{dwight.guth,chris.hathhorn,manasvi.saxena,

grigore.rosu}@runtimeverification.com
2 University of Illinois at Urbana-Champaign,

Urbana, USA
3 University of Missouri, Columbia, USA

Abstract. We present RV-Match, a tool for checking C programs for
undefined behavior and other common programmer mistakes. Our tool is
extracted from the most complete formal semantics of the C11 language.
Previous versions of this tool were used primarily for testing the cor-
rectness of the semantics, but we have improved it into a tool for doing
practical analysis of real C programs. It beats many similar tools in its
ability to catch a broad range of undesirable behaviors. We demonstrate
this with comparisons based on a third-party benchmark.

Keywords: C11 · Programming language semantics · Undefined behav-
ior · Static analysis · Abstract interpretation

1 Introduction

The K semantic framework1 is a program analysis environment based on term
rewriting [1]. Users define the formal semantics of a target programming lan-
guage and the K framework provides a series of formal analysis tools specialized
for that language, such as a symbolic execution engine, a semantic debugger,
a systematic checker for undesired behaviors (model checker), and even a fully
fledged deductive program verifier. Our tool, RV-Match, is based on the K frame-
work instantiated with the publicly-available C11 semantics2 [6,7], a rigorous
formalization of the current ISO C11 standard [10]. We have specially optimized
RV-Match for the execution and detection of errors in C programs.

Unlike modern optimizing compilers, which have a goal to produce
binaries that are as small and as fast as possible at the expense of compiling
programs that may be semantically incorrect, RV-Match instead aims at math-
ematically rigorous dynamic checking of programs for strict conformance with

1
http://kframework.org.

2
https://github.com/kframework/c-semantics.

c© Springer International Publishing Switzerland 2016
S. Chaudhuri and A. Farzan (Eds.): CAV 2016, Part I, LNCS 9779, pp. 447–453, 2016.
DOI: 10.1007/978-3-319-41528-4 24

http://kframework.org
https://github.com/kframework/c-semantics

448 D. Guth et al.

the ISO C11 standard. A strictly-conforming program is one that does not rely
on implementation-specific behaviors and is free of the most notorious feature
of the C language, undefined behavior. Undefined behaviors are semantic holes
left by the standard for implementations to fill in. They are the source of many
subtle bugs and security issues [9].

Running RV-Match. Users interface with RV-Match through the kcc executable,
which behaves as a drop-in replacement for compilers like gcc and clang. Con-
sider a file undef.c with contents:

�

�

�

�

int main(void) {
int a;

&a+2; }

We compile the program with kcc just as we would with gcc or clang. This
produces an executable named a.out by default, which should behave just as
an executable produced by another compiler—for strictly-conforming, valid pro-
grams. For undefined or invalid programs, however, kcc reports errors and exits
if it cannot recover:

�

�

�

	

$ kcc undef.c

$./a.out

Error: UB-CEA1

Description: A pointer (or array subscript) outside the

bounds of an object.

Type: Undefined behavior.

See also: C11 sec. 6.5.6:8, J.2:1 item 46

at main(undef.c:2)

In addition to location information and a stack trace, kcc also cites relevant
sections of the standard [10].

2 Practical Semantics-Based Program Analysis

Unlike similar tools, we do not instrument an executable produced by a separate
compiler. Instead, RV-Match directly interprets programs according to a formal
operational semantics. The semantics gives a separate treatment to the three
main phases of a C implementation: compilation, linking, and execution. The
first two phases together form the “translation” semantics, which we extract
into an OCaml program to be executed by the kcc tool. The kcc tool, then,
translates C programs according to the semantics, producing an abstract syntax
tree as the result of the compilation and linking phases. This AST then becomes
the input to another OCaml program extracted from the execution semantics.

The tool on which we have based our work was originally born as a method
for testing the correctness of the operational semantics from which it was
extracted [7], but the performance and scalability limitations of this original
version did not make it a practical option for analysis of real programs. To this
end, we have improved the tool on several fronts:

RV-Match: Practical Semantics-Based Program Analysis 449

– OCaml-based execution engine. We implemented a new execution engine that
interprets programs according to a language semantics 3 orders of magnitude
faster than our previous Java-based version. For this improvement in perfor-
mance, we take advantage of the optimized pattern-matching implemented by
the OCaml compiler, a natural fit for K Framework semantics. In the course
of this work, we uncovered and fixed a few limitations of the OCaml compiler
itself in dealing with very large pattern match expressions.3

– Native libraries. Previous versions of our tool required all libraries to be
given semantics (or their C source code) before they could be interpreted.
We now support linking against and calling native libraries, automatically
marshalling data to and from the representation used in the semantics.

– Expanded translation phase. In our C semantics, we now calculate the type
of all terms, the values of initializers, and generally do more evaluation of
programs during the translation phase. Previously, much of this work was
duplicated during execution.

– Error recovery and implementation-defined behavior. We have implemented
error recovery and expanded support for implementation-defined behavior.
Programs generated by older versions of kcc would halt when encountering
undefined or implementation-defined behavior. Our new version of kcc gives
semantics for many common undefined behaviors so the interpreter can con-
tinue with what was likely the expected behavior after reporting the error.
Similarly, we have added support for implementation profiles, giving users
an easy way to parameterize the semantics over the behaviors of common C
implementations.

– Scope of errors. We have also expanded the breadth of the errors reported by
kcc to include bad practices and errors involving standard library functions.4

These improvements have allowed kcc to build and analyze programs in
excess of 300k lines of code, including the BIND DNS server.

Performance evaluation. For an idea of the extent of the performance enhance-
ments over previous versions of our tool, consider this simple program that cal-
culates the sum of integers between 0 and 10000:

�

�

#include <stdio.h>

int main(void) {
int i, sum = 0;

for (i = 0; i < 10000; ++i) sum += i;

printf("Sum: %d\n", sum); }

3 See http://caml.inria.fr/mantis/view.php?id=6883 and http://caml.inria.fr/
mantis/view.php?id=6913.

4 For a summary of the kinds of errors kcc will report, see https://github.com/
kframework/c-semantics/blob/master/examples/error-codes/Error Codes.csv.

http://caml.inria.fr/mantis/view.php?id=6883
http://caml.inria.fr/mantis/view.php?id=6913
http://caml.inria.fr/mantis/view.php?id=6913
https://github.com/kframework/c-semantics/blob/master/examples/error-codes/Error_Codes.csv
https://github.com/kframework/c-semantics/blob/master/examples/error-codes/Error_Codes.csv

450 D. Guth et al.

In the table below, we compare the time in seconds to compile and run this
program five times with an old version of our tool5 [9] to our new version using
our OCaml execution engine. The first and second rows report the average time
for five compilations and runs,6 respectively, and the third reports the sum of all
runs plus the average compilation time to simulate the case of a compiled test
being run on different input.

3 Evaluation

Of course, many other tools exist for analyzing C programs. In this section,
we compare RV-Match with some popular C analyzers on a benchmark from
Toyota ITC. We also briefly mention our experience with running our tool on
the SV-COMP benchmark. The other tools we consider:

– GrammaTech CodeSonar is a static analysis tool for identifying “bugs that
can result in system crashes, unexpected behavior, and security breaches” [8].

– MathWorks Polyspace Bug Finder is a static analyzer for identifying “run-
time errors, concurrency issues, security vulnerabilities, and other defects in
C and C++ embedded software” [11].

– MathWorks Polyspace Code Prover is a tool based on abstract interpreta-
tion that “proves the absence of overflow, divide-by-zero, out-of-bounds array
access, and certain other run-time errors in C and C++ source code” [12].

– Clang UBSan, TSan, MSan, and ASan (version 3.7.1) are all clang mod-
ules for instrumenting compiled binaries with various mechanisms for detect-
ing undefined behavior, data races, uninitialized reads, and various memory
issues, respectively [5].

– Valgrind Memcheck and Helgrind (version 3.10.1, GCC version 4.8.4) are
tools for instrumenting binaries for the detection of several memory and
thread-related issues (illegal reads/writes, use of uninitialized or unaddress-
able values, deadlocks, data races, etc.) [13].

– The CompCert C interpreter (version 2.6) uses an approach similar to our
own. It executes programs according to the semantics used by the CompCert
compiler [3] and reports undefined behavior.

5 Version 3.4.0, with K Framework version 3.4.
6 These tests were run on a dual CPU 2.4GHz Intel Xeon with 8GB of memory. On
more memory-intensive programs, we see an additional order of magnitude or more
improvement in performance.

RV-Match: Practical Semantics-Based Program Analysis 451

– Frama-C Value Analysis (version sodium-20150201), like Code Prover, is a
tool based on static analysis and abstract interpretation for catching several
forms of undefinedness [4].

Fig. 1. Comparison of tools on the 1,276 tests of the ITC benchmark. The numbers
for the GrammaTech and MathWorks tools come from [14]. (Color figure online)

– Highlighting indicates the best score in a category for a particular metric.

– DR, FPR, and PM are, respectively, the detection rate, 100−FPR (the complement
of the false positive rate), and the productivity metric.

– The final average is weighted by the number of tests in each category.
– Italics and a dash indicate categories for which a tool has no support.

452 D. Guth et al.

The Toyota ITC benchmark [14]. This publicly-available7 benchmark consists of
1,276 tests, half with planted defects meant to evaluate the defect rate capability
of analysis tools and the other half without defects meant to evaluate the false
positive rate. The tests are grouped in nine categories: static memory, dynamic
memory, stack-related, numerical, resource management, pointer-related, con-
currency, inappropriate code, and miscellaneous.

We evaluated RV-Match along with the tools mentioned above on this bench-
mark. Our results appear in Fig. 1 and the tools we used for our evaluation are
available online.8 Following the method of [14], we report the value of three met-
rics: DR is the detection rate, the percentage of tests containing errors where the
error was detected; FPR = 100 − FPR, where FPR is the false positive rate; and
PM is a productivity metric, where PM =

√
DR × FPR, the geometric mean of

DR and FPR.
Interestingly, and similar to our experience with the SV-COMP benchmark

mentioned below, the use of RV-Match on the Toyota ITC benchmark detected a
number of flaws in the benchmark itself, both in the form of undefined behavior
that was not intended, and in the form of tests that were intended to contain
a defect but were actually correct. Our fixes for these issues were accepted by
the Toyota ITC authors and we used the fixed version of the benchmark in
our experiments. Unfortunately, we do not have access to the MathWorks and
GrammaTech static analysis tools, so in Fig. 1 we have reproduced the results
reported in [14]. Thus, it is possible that the metrics scored for the other tools
may be off by some amount.

The SV-COMP benchmark suite. This consist of a large number of C programs
used as verification tasks during the International Competition on Software Ver-
ification (SV-COMP) [2]. We analyzed 1346 programs classified as correct with
RV-Match and observed that 188 (14 %) of the programs exhibited undefined
behavior. Issues ranged from using uninitialized values in expressions, poten-
tially invalid conversions, incompatible declarations, to more subtle strict alias-
ing violations. Our detailed results are available online.9

4 Conclusion

We have presented RV-Match, a semantics-based ISO C11 compliance checker.
It does better than the other tools we considered in terms of its detection rate,
and note that it reports no false positives. Also, we think our experience with
finding undefined behavior even in the presumed-correct programs of the above
benchmarks demonstrates our tool’s usefulness.

We do not claim, however, that our approach is simply better than the
approaches represented by the other tools. We see our technology as a comple-
ment to other approaches. Static analysis tools, for example, are more forgiving
7

https://github.com/Toyota-ITC-SSD/Software-Analysis-Benchmark.
8

https://github.com/runtimeverification/evaluation/tree/master/toyota-itc-benchmark.
9

https://github.com/runtimeverification/evaluation/tree/master/svcomp-benchmark.

https://github.com/Toyota-ITC-SSD/Software-Analysis-Benchmark
https://github.com/runtimeverification/evaluation/tree/master/toyota-itc-benchmark
https://github.com/runtimeverification/evaluation/tree/master/svcomp-benchmark

RV-Match: Practical Semantics-Based Program Analysis 453

in terms of analyzing code that does not even compile, so they can help find
errors earlier. They also typically analyze all code in one run of the tool. On
the other hand, our tool, like all tools performing dynamic analysis, generally
requires the program to actually execute in order to detect most errors. Our tool
also limits itself to the code that is actually executed, so it is best combined with
existing testing infrastructure (e.g., by running unit tests with kcc).

References

1. Roşu, G., Şerbănuţă, T.F.: An overview of the K semantic framework. J. Log.
Algebr. Program. 79(6), 397–434 (2010). doi:10.1016/j.jlap.2010.03.012

2. Beyer, D.: Reliableand reproducible competition results with BenchExec and wit-
nesses. In: Chechik, M., Raskin, J.-F. (eds.) Tools and Algorithms for the Con-
struction and Analysis of Systems: 22nd International Conference (TACAS 2016),
(Report on SV-COMP 2016), pp. 887–904 (2016). ISBN: 978-3-662-49674-9, doi:10.
1007/978-3-662-49674-9 55

3. Campbell, B.: An executable semantics for CompCert C. In: Hawblitzel, C., Miller,
D. (eds.) CPP 2012. LNCS, vol. 7679, pp. 60–75. Springer, Heidelberg (2012)

4. Canet, G., Cuoq, P., Monate, B.: A value analysis for C programs. In: Conference
Source Code Analysis and Manipulation (SCAM 2009), pp. 123–124. IEEE (2009).
doi:10.1109/SCAM.2009.22

5. Clang: Clang 3.9 documentation. http://clang.llvm.org/docs/index.html
6. Ellison, C.: A formal semantics of C with applications. Ph.D. thesis, University of

Illinois, July 2012. http://hdl.handle.net/2142/34297
7. Ellison, C., Roşu, G.: An executable formal semantics of C with applications. In:

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL 2012), pp. 533–544 (2012). doi:10.1145/2103656.2103719

8. GrammaTech: CodeSonar. http://grammatech.com/products/codesonar
9. Hathhorn, C., Ellison, C., Roşu, G.: Defining the undefinedness of C. In: 36th

Conference on Programming Language Design and Implementation (PLDI 2015)
(2015)

10. ISO/IEC JTC 1, SC 22, WG 14. ISO/IEC 9899:2011: Programming Language C
Technical report International Organisation for Standardization (2012)

11. MathWorks: Polyspace Bug Finder. http://www.mathworks.com/products/
polyspace-bug-finder

12. MathWorks: Polyspace Code Prover. http://www.mathworks.com/products/
polyspace-code-prover

13. Nethercote, N., Seward, J.: Valgrind: a framework for heavy-weight dynamic
binary instrumentation. In: ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation (PLDI 2007), pp. 89–100. ACM (2007). doi:10.
1145/1250734.1250746

14. Shiraishi, S., Mohan, V., Marimuthu, H.: Test suites for benchmarks of static
analysis tools. In: The 26th IEEE International Symposium on Software Reliability
Engineering (ISSRE 2015), Industrial Track (2015)

http://dx.doi.org/10.1016/j.jlap.2010.03.012
http://dx.doi.org/10.1007/978-3-662-49674-9_55
http://dx.doi.org/10.1007/978-3-662-49674-9_55
http://dx.doi.org/10.1109/SCAM.2009.22
http://clang.llvm.org/docs/index.html
http://hdl.handle.net/2142/34297
http://dx.doi.org/10.1145/2103656.2103719
http://grammatech.com/products/codesonar
http://www.mathworks.com/products/polyspace-bug-finder
http://www.mathworks.com/products/polyspace-bug-finder
http://www.mathworks.com/products/polyspace-code-prover
http://www.mathworks.com/products/polyspace-code-prover
http://dx.doi.org/10.1145/1250734.1250746
http://dx.doi.org/10.1145/1250734.1250746

Timed and Hybrid Systems

Under-Approximating Backward Reachable Sets
by Polytopes

Bai Xue1,2(B), Zhikun She1, and Arvind Easwaran2

1 School of Mathematics and Systems Science, Beihang University, Beijing, China
zhikun.she@buaa.edu.cn

2 Nanyang Technological University, Singapore, Singapore
{xuebai,arvinde}@ntu.edu.sg

Abstract. Under-approximations are useful for falsification of safety
properties for nonlinear (hybrid) systems by finding counter-examples.
Polytopic under-approximations enable analysis of these properties using
reasoning in the theory of linear arithmetic. Given a nonlinear system,
a target region of the simply connected compact type and a time dura-
tion, we in this paper propose a method using boundary analysis to
compute an under-approximation of the backward reachable set. The
under-approximation is represented as a polytope. The polytope can be
computed by solving linear program problems. We test our method on
several examples and compare them with existing methods. The results
show that our method is highly promising in under-approximating reach-
able sets. Furthermore, we explore some directions to improve the scal-
ability of our method.

Keywords: Polytopic under-approximations · Backward reachable
sets · Nonlinear systems

1 Introduction

Reachability analysis, which involves constructing reachable sets, is a central
component of model checking. It plays an important role in automatic verifica-
tion and falsification of safety properties for continuous nonlinear and hybrid
systems [2,3]. It has been utilized in diverse applications such as artificial pan-
creas [4,5] and robotic systems [6]. Over the past few years, a lot of attention
has been given to construct over-approximations of reachable sets of nonlin-
ear systems, i.e., abstraction methods [7,8], simulation based methods [9] and
Taylor series expansions [10,11]. Nevertheless, much less attention has been given
to the problem of finding under-approximations. Actually, under-approximations
of reachable sets are also important to compute because of a variety of appli-
cations in engineering domains. For example, they can be used for designing

B. Xue—This work is based on Bai Xue’s Ph.D. thesis from Beihang University [1].
Z. She— The work of Zhikun She was partly supported by NSFC-11422111 and
NSFC-11371047.

c© Springer International Publishing Switzerland 2016
S. Chaudhuri and A. Farzan (Eds.): CAV 2016, Part I, LNCS 9779, pp. 457–476, 2016.
DOI: 10.1007/978-3-319-41528-4 25

458 B. Xue et al.

robust artificial pancreas [5,12]. Computing under-approximations of backward
reachable sets can help find a set of feasible states such that every trajectory
originating from it will definitely enter a specified region (e.g., normal blood
glucose ranges) at a specified time instant. They can be used to prove attrac-
tive properties by checking if all the trajectories originating from them will stay
in them forever and eventually enter some specified desired sets [13]. They can
also be used for falsification by checking if the under-approximation intersects
the unsafe sets1 [3]. Also, under- and over-approximations of reachable sets can
provide an indication of the precision of an estimate of the exact reachability
region [4]. In contrast to over-approximation problems, methods for computing
under-approximations are far from being developed. One of main reasons may
lie in the fact that the problem is more difficult than the one of computing
over-approximations [14].

We in this paper propose a linear programming based approach combining
validated numerical methods for ordinary differential equations for finding poly-
topic under-approximations of backward reachable sets, under the assumption
that the target region is a simply connected compact set. The basic procedure
for computing the under-approximation mainly consists of three steps. The first
step is to compute an enclosure of the boundary of the backward reachable set
based on validated numerical techniques for ordinary differential equations. The
second step is to obtain a polytope, which contains the enclosure obtained in
the first step, and the last step is to shrink this polytope based on linear pro-
gramming to yield an under-approximation of the backward reachable set. The
contributions of this paper are summarized as follows:

1. We show how a polytopic under-approximation of the backward reachable set
can be obtained by solving linear programming problems. We first construct
a polytopic over-approximation of the reachable set based on the reachable
set’s boundary and validated numerical techniques for ordinary differential
equations, then contract this over-approximation to obtain a polytopic under-
approximation by solving linear programs.

2. We implement our approach based on linear programming solver GLPK2 and
the validated ordinary differential equation solver VNODE-LP [24], test and
compare it with the method of Korda et al. [22] based on several examples.
The experiment results show that our approach is highly promising in under-
approximating reachable sets for some cases. Furthermore, we explore some
directions toward making our method scale well based on an example involv-
ing a seven-dimensional biological system.

Related Work

Several techniques have been proposed for computing under-approximations of
reachable sets for linear systems, e.g., [14–16]. However, they cannot be easily
extended to handle non-linear systems. Under-approximations of reachable sets
1 If the under-approximation intersects the unsafe sets, then the system is definitely

unsafe.
2 http://www.gnu.org/software/glpk/.

http://www.gnu.org/software/glpk/

Under-Approximating Backward Reachable Sets by Polytopes 459

for nonlinear systems have been discussed elsewhere (e.g., [17] and [21]), but a
feasible solution is not given. Recently, some methods have been proposed to
compute under-approximations of reachable sets for nonlinear systems.

Sum-of-squares programming based methods are proposed to compute inner
approximations of reachable sets for polynomial dynamical systems in [22,37].
Unfortunately, the present status of semi-definite programming solvers is not
so advanced. The numerical problems produced by these solvers often lead to
unreliable results for some cases. On the contrary, our method relies on linear
programming and validated numerical methods for ordinary differential equa-
tions, thus making our method more reliable. A Taylor model backward flow-
pipe method is presented to compute under-approximations in [23]. However,
the algorithm in [23], in which an interval constraint propagation technique is
employed to verify the connectedness of an already obtained basic semi-algebraic
set, for finding implicit Taylor models such that the semi-algebraic set formed
by them is simply-connected3 is not complete generally4. In our method, the
procedure employing interval constraint propagation techniques to enclose the
boundary of the reachable set is complete.

As mentioned previously, polytopic under-approximations permits the analy-
sis of some specified properties such as the falsification of safety properties
using reasoning in the theory of linear arithmetic. Interval under-approximations
received increasing attention recently [18,19]. A method based on modal intervals
with affine forms is proposed to under-approximate reachable sets using inter-
vals for continuous nonlinear systems modelled by ordinary differential equations
[20]. However, our method provides a way to characterize under-approximations
of reachable sets using general polytopes, reducing the conservativeness induced
by interval representations in the construction of reachable sets.

The structure of this paper is as follows. Some basic definitions related to
backward reachable sets as well as an introduction to convex polytopes is intro-
duced in Sect. 2. Our approach of computing under-approximations, together
with its computational complexity, is presented in Sect. 3. Several numerical
examples with a detailed discussion of our approach and comparison with the
method in [22] are provided in Sect. 4. Finally, we conclude our paper in Sect. 5.

2 Preliminary

In this paper, the following notations are used. Vectors are denoted by boldface
letters (e.g., x). For a set Δ, its complement, interior, closure and boundary are
denoted by Δc, Δ◦, Δ and ∂Δ respectively. Further, U(x; ε) = {y : ‖y − x‖ <
ε, ε > 0} represents an ε−neighbourhood of the vector x.

3 A set is simply connected if there are no holes in it to prevent the continuous shrink-
ing of each closed arc to a point.

4 An algorithm is complete, implying that it guarantees to find a solution if there
is one.

460 B. Xue et al.

2.1 Backward Reachable Sets

Consider a nonlinear system of the form

ẋ = f(x), (1)

where x = (x1, · · · , xn)′ ∈ R
n, and f(x): Rn → R

n is (p − 1)-time continuously
differentiable and p ≥ 1. We also assume f is locally Lipschitz continuous. Thus
for a given set X that is a simply connected compact set, the existence and
uniqueness of the trajectory with x(0) = x0 and x0 ∈ X will be assured over
some time interval [−σX , σX] with σX > 0. Further, the trajectory of System
(1) is defined to be φ(t;x0) = x(t), where x(t) is the solution of System (1) sat-
isfying the initial condition x(0) = x0. Furthermore, the backward and forward
reachable sets of a simply connected compact set TR for the time duration T are
defined as follows.

Definition 1. Given System (1), a set TR that is a simply connected compact
set and a finite time duration T ≤ σTR, the backward reachable set of TR for
the time duration T is defined to be Ωb(T ; TR,f) = {x0|φ(T ;x0) ∈ TR} and the
forward reachable set of TR for the time duration T is defined to be Ωf (T ; TR,f) =
{x|x = φ(T ;x0) and x0 ∈ TR}.
Remark 1. According to Definition 1, the map φ(t; ·) : TR ⊆ R

n → Ωf (t; TR,f)
(or, Ωb(t; TR,f) → TR) is bijective and continuous for t ∈ [0, T] under the
Lipschitz condition of f .

It is intractable to obtain these reachable sets for nonlinear systems since they
generally do not have a closed-form solution. However, as mentioned previously,
it is sufficient to consider an under-approximation of the backward reachable set,
denoted as UAB, for certain applications such as artificial pancreas [12].

Definition 2. Given System (1), a set TR that is a simply connected compact
set and a finite time duration T , an UAB of TR for the time duration T is a
nonempty subset of Ωb(T ; TR,f).

Obviously, all trajectories originating from UAB will definitely enter TR after
a time duration T , although there may be trajectories not in UAB that also enter
TR after the time duration T . The under-approximation is equivalent to a region
attracting to a target region, but a variant of the classical region of attraction
containing an equilibrium.

2.2 Convex Polytopes

Convex polyhedra over reals (rationals) are a natural representation of sets of
states for the verification of hybrid systems [25–27]. A convex polytope is a set
in R

l that can be regarded as the set of solutions to the system of linear inequal-
ities Aw + C ≤ B,5 where A = (aij)m×l is a m × l matrix, w = (w1, . . . , wl)′ is
a l × 1 vector, C = (c1, . . . , cm)′ and B = (b, . . . , b)′ are both m × 1 vectors.
5 A convex polytope is formulated in this form for the convenience of the presentation

of our approach in Sect. 3.

Under-Approximating Backward Reachable Sets by Polytopes 461

A convex polytope P = {w : Aw+C ≤ B} has the following property, where
the matrix A is full row rank.

Property 1. Let P be compact and its interior P ◦ be not empty, then P and
P ◦ are both simply connected sets with the same boundary ∂P = {w ∈ P :
∨m

i=1[
∑l

j=1 aijwj + ci = b]}.

Based on Property 1, the following two lemmas can be obtained, which are
further illustrated in Fig. 1.

Lemma 1. Assume P = {w : Aw + C ≤ B} is a compact convex polytope.
If U is a compact set such that its boundary is a subset of the compact convex
polytope P , then P is an over-approximation of the set U .

Proof. Since U is a compact set, there exists yi = (yi1, . . . , yil)′ ∈ U such that∑l
j=1 aijwj + ci reaches its maximum value MAXi in U at this point, where i =

1, . . . ,m. Obviously, U ⊆ P is equivalent to MAXi ≤ b for i = 1, . . . , m. Thus it is
enough to prove that MAXi ≤ b for i = 1, . . . , m.

Assuming that there exists an index i ∈ {1, . . . , m} such that MAXi > b,
we derive a contradiction as follows. Since ∂U ⊆ P and Aw + C ≤ B for
∀w ∈ P , then yi ∈ U◦. If U◦ = ∅, a contradiction is obtained; Otherwise, let
Ω = {w : Aw + C ≤ MAX}, where MAX = (MAXi, . . . , MAXi)′. By Property 1, we
obtain that yi ∈ ∂Ω. Thus for an arbitrary but fixed positive number ε, there
exists z = (z1, . . . , zl)′ ∈ U(yi; ε) such that

∑l
j=1 aijzj + ci > MAXi. Also, since

yi ∈ U◦, there exist ε1 > 0 and w0 = (w01, . . . , w0l)′ ∈ U(yi; ε1) ⊆ U such that∑l
j=1 aijw0j + ci > MAXi, contradicting the fact that

∑l
j=1 aijwj + ci reaches its

maximum MAXi in U at the point yi. Thus, MAXi ≤ b for i = 1, . . . ,m. That is, P
is an over-approximation of the set U .

Lemma 2. Assume O is a simply connected compact set and P = {w : Aw +
C ≤ B} is a compact convex polytope. If the boundary of the set O is a subset
of the enclosure of the complement of the polytope P , and the intersection of the
interior of the set O and the interior of the set P is not empty, then the set P
is an under-approximation of the set O.

Proof. Since P = {w : Aw+C ≤ B} is compact, P ◦ and P are simply connected
sets with the same boundary ∂P = {w ∈ P : ∨m

i=1

∑l
j=1 aijwj + ci = b}.

Assuming that y ∈ P is a point such that y /∈ O, we derive a contradiction
as follows.

Case 1: y ∈ P ◦. Since O◦ ∩ P ◦ �= ∅, there exists y0 ∈ O◦ ∩ P ◦. Thus there
exists a path q in P ◦, connecting y and y0. Due to the assumption that
y /∈ O, there exists y1 ∈ q such that y1 ∈ ∂O and y1 ∈ P ◦, contradicting
the assumption that ∂O ⊆ P c.

462 B. Xue et al.

Case 2: y ∈ ∂P . Since y /∈ O and O is compact, there exists a δ > 0 such
that P ◦ ∩ U(y; δ) �= ∅ and U(y; δ) ∩ O = ∅. Thus there exists z1 such that
z1 ∈ P ◦∩U(y; δ) and z1 /∈ O. Then, similar to the above case, a contradiction
is derived.

Thus, we conclude that the set P is an under-approximation of the set O.

Fig. 1. An illustration for Lemmas 1 and 2. (blue curve – the boundary of the set O
in Lemma 1; red curve – the boundary of the convex polytope P ; black curve – the
boundary of the set U in Lemma 2.) (Color figure online)

Based on the above two lemmas, an approach to compute a polytopic UAB is
proposed in the section that follows.

3 Under-Approximating Backward Reachable Sets

In this section an approach is proposed to compute an UAB of a compact simply
connected target region TR after the time duration T . The UAB is represented by
a polytope.

3.1 Computing Under-Approximations

In this subsection an approach for computing an UAB of TR for the time duration
T is detailed. The framework to compute an UAB of a simply connected compact
set TR for the time duration T in our method involves the following steps,

1. a time grid 0 = t0 < t1 < . . . < tN = T is adopted with a step size h;
2. starting with U0 = TR, we compute a compact polytope U1, which is an UAB

of TR for the time duration h;
3. starting from the kth UAB, we advance our approximation to a compact poly-

topic UAB Uk+1;
4. UN is what we want to obtain.

Under-Approximating Backward Reachable Sets by Polytopes 463

Assume that we have already obtained a compact polytope Uk, where Uk is
an UAB of TR for the time duration tk. A compact polytopic UAB for the time
duration k + 1 is constructed through the following steps:

(a) compute a set Ωk+1, which is an union of a collection of intervals, such that
∂Ωb(h;Uk,f) ⊆ Ωk+1, as discussed below;

(b) compute a compact polytope Ok+1 = {x : Ax + C ≤ B} such that Ωk+1 ⊆
Ok+1;

(c) contract Ok+1 to obtain Uk+1 = {x : Ax+C ≤ Bu} such that Ωk+1 ⊆ U c
k+1

and U◦
k+1 ∩ (Ωb(h;Uk,f))◦ �= ∅.

In order to prove that Uk+1 obtained by the steps (a) ∼ (c) is also a sim-
ply connected compact set and is a subset of Ωb(h;Uk,f), we first introduce
a fundamental theorem behind our method based on the fact that φ(t; ·) :
Ωb(t;Δ,f) �→ Δ is a homeomorphism between two topological spaces (Δ, TΔ)
and (Ωb(t;Δ,f), TΩb(t;Δ,f)).

Theorem 1. [28,29] If Δ ⊆ R
n is a simply connected compact set, then

Ωb(t;Δ,f) is also a simply connected compact set and ∂Ωb(t;Δ,f)=
Ωb(t; ∂Δ,f).

Based on Theorem 1, we have the following lemma stating that Uk+1 is a
simply connected compact UAB of Uk for the time duration h.

Lemma 3. If Uk is a simply connected compact set, then Uk+1 obtained by our
framework is also a simply connected compact set satisfying Uk+1 ⊆ Ωb(h;Uk,f).

Proof. Since Uk is a simply connected compact set, Ωb(h;Uk,f) is also a sim-
ply connected compact set according to Theorem 1. Also, since Ok+1 in our
framework is a simply connected compact set, we obtain that Uk+1 is a simply
connected compact set.

Regarding ∂Ωb(h;Uk,f) ⊆ Ωk+1 ⊆ U c
k+1 and U◦

k+1 ∩ (Ωb(h;Uk,f))◦ �= ∅, we
conclude that Uk+1 ⊆ Ωb(h;Uk,f) according to Lemma 2.

From Lemma 3, we can deduce that UN is an UAB of TR for the time duration
T , as stated in Theorem 2.

Theorem 2. Given a nonlinear system of the form (1), if U0 = TR is a simply
connected compact set, UN obtained by our computational framework is an UAB
of TR for the time duration t = T .

In the sections that follow, we detail how to compute Ωk+1, Ok+1 and Uk+1

in the steps (a) ∼ (c).

3.1.1 Computing Ωk+1 and Ok+1

In this subsection, we describe how to compute Ωk+1 and Ok+1 in the steps (a)
and (b) respectively in our computational framework.

Firstly, we introduce a proposition stating that the backward reachable set of
System (1) can be obtained by computing the corresponding forward reachable
set of its reverse system, as described in the following.

464 B. Xue et al.

Proposition 1. [21] Ωf (h;X ,−f)=Ωb(h;X ,f), where X ⊆ R
n.

From Proposition 1, we observe that Ωf (h;Uk,−f) instead of Ωb(h;Uk,f)
can be used for performing computations in our computational framework, where
k = 0, . . . , N − 1. Thus, we can equivalently compute a set Ωk+1 such that
∂Ωf (h;Uk,−f) ⊆ Ωk+1. Also, the fact that the boundary of Ωf (h;Uk,−f) cor-
responds to the boundary of Uk under the map φ(h; ·) according to Theorem 1 is
observed. Thus Ωk+1 is obtained based on ∂Uk. According to these observations,
an approach to computing Ωk+1 is presented, as described in the following.

1. For a given εM , we use the interval Branch and Bound methods (e.g., [30]) to
obtain a set of compact intervals {sj , j = 1, . . . ,Mk} such that ∂Uk ⊆ ∪Mk

j=1sj ,
where Mk is the number of intervals and each interval sj is of the form
[x1, x1] × . . . × [xn, xn] satisfying |xl − xl| ≤ εM .

2. For j = 1, . . . ,Mk, we use interval reachability analysis based methods (e.g.,
[24]) to obtain a compact interval Ij such that Ωf (h; sj ,−f) ⊆ Ij . Thus,
Ωk+1 = ∪Mk

j=1Ij is what we want.

The above procedure for computing Ωk+1 is denoted by Boundary(h,Uk, εM).

Remark 2. In the procedure Boundary(h,Uk, εM), εM is used to restrict the size
of boxes enclosing ∂Uk. As εM becomes smaller, the volume of the obtained
boxes becomes smaller and the resulting Ωk+1 becomes less conservative, but
the computational burden increases.

The procedure Boundary(h,Uk, εM) for computing Ωk+1 is illustrated
through the following example.

Example 1. Consider a model of an electromechnical oscillation of s synchronous
machine [31], {

ẋ1 = x2

ẋ2 = 0.2 − 0.7sinx1 − 0.05x2

,

where TR = [−0.1, 0.1] × [2.9, 3.1] and T = 0.5.
Computing Ω1 when h = 0.5 and εM = 0.05 is illustrated in Fig. 2.

Next, we compute a convex hull Ok+1 such that Ok+1 ⊇ Ωk+1, where Ωk+1 =
∪Mk

j=1Ij . Let vj be the set of vertices of the interval Ij and v = ∪Mk
j=1vj . We get a

polytope Ok+1 = {x : Ax+C ≤ B} of v using convex hull algorithm (e.g., [33]),
where A = (aij)m×n and B = (b, . . . , b)′. This procedure for computing Ok+1 is
denoted by Polytope(Ωk+1).

Since Ij is compact for j = 1, . . . ,Mk, v is a bounded set, and as a conse-
quence Ok+1 is bounded and thus compact. Also, since every box Ij is also a
convex hull of vj , every x ∈ Ij can be formulated as

∑2n

l=1 λlvj,l, where vj,l ∈ vj ,
λl ≥ 0 for l = 1, . . . , 2n and

∑2n

l=1 λl = 1. Thus x ∈ Ok+1 holds, implying that
∪Mk

j=1Ij ⊆ Ok+1. Now we conclude that Ok+1 in the step (b) is computed.

Remark 3. According to Lemma 1 in Subsect. 2.2, the convex hull Ok+1 is an
over-approximation of the backward reachable set of Uk for the time duration h.

Under-Approximating Backward Reachable Sets by Polytopes 465

−1.8 −1.6 −1.4 −1.2 −1 −0.8 −0.6 −0.4 −0.2 0 0.2
2.6

2.65

2.7

2.75

2.8

2.85

2.9

2.95

3

3.05

3.1

δ

ω

Fig. 2. An illustration for computing Ω1. (red boxes – Ω1 including ∂Ωb(T ; TR, f); green
points – ∂Ωb(T ; TR, f) obtained by simulation methods; black points – some simulation
trajectories originating from Ωb(T ; TR, f) over the time interval [0, 0.5]; purple curve –
∂TR; blue boxes – ∪jsj including ∂TR.) (Color figure online)

3.1.2 Computing an Under-Approximation Uk+1

This section focuses on computing a polytopic under-approximation Uk+1 (step
(c) in our computational framework) by solving linear programming problems.

After obtaining Ωk+1 = ∪Mk
j=1Ij and Ok+1 = {x : Ax + C ≤ B} in steps (a)

and (b) based on the method in Subsect. 3.1, we shrink Ok+1 to yield Uk+1 by
solving linear programming problems. The computations consist of two steps, as
described below.

1. For j = 1, . . . , Mk, we solve the following linear optimization problem:

minimize bj

s. t. Ax + C ≤ Bj ,
bj ≤ b,
x ∈ Ij ,

(2)

where Bj = (bj , . . . , bj)′. Since bj ≤ b, we can obtain that {x : Ax + C ≤
Bj} ⊆ {x : Ax + C ≤ B}.

2. We denote min{bj , j = 1, . . . , Mk} by bu and (bu, . . . , bu)′ by Bu respectively.
If {x : Ax + C ≤ Bu} �= ∅, it is denoted by Uk+1. The case that Uk+1 is
empty is discussed in Sect. 4. Note that Uk+1 is just a candidate of what we
want.

The above procedure for Uk+1 is denoted by Contraction(Ωk+1, Ok+1),
which is illustrated in the following example.

Example 2. For Example 1, computing U1 when εM = 0.05 and h = 0.5 is
illustrated in Fig. 3, where T = 0.5.

Since Uk+1 ⊆ Ok+1, Uk+1 is compact. However, we cannot conclude that
Uk+1 is an UAB of Uk for the time duration h. In order to further ensure that
Uk+1 is an under-approximation of Ωb(h;Uk,f), we need to verify whether Uk+1

466 B. Xue et al.

Fig. 3. An illustration for computing Ω1. (red boxes – Ω1 including ∂Ωb(T ; TR, f);
green curve – ∂O1; black curve – ∂U1.) (Color figure online)

satisfies the condition as described in the step (c) in our computational frame-
work, i.e., verify whether Ωk+1 ⊆ U c

k+1 and U◦
k+1 ∩ (Ωb(h;Uk,f))◦ �= ∅ holds.

For the constraint Ωk+1 ⊆ U c
k+1, we can ensure it by the following lemma.

Lemma 4. Ωk+1 ⊆ U c
k+1, where Ωk+1 and Uk+1 are respectively obtained based

on the procedures Boundary(h,Uk, εM) and Contraction(Ωk+1, Ok+1).

Proof. Since Uk+1 = {x : Ax + C ≤ Bu}, where A =
(
aij

)
m×n

, C =
(c1, . . . , cm)′, Bu = (bu, . . . , bu)′, bu = min{bj , j = 1, . . . ,Mk} and bj is
obtained by solving the optimization problem (2), we can obtain that for
every x = (x1, . . . , xn)′ ∈ ∪Mk

j=1Ij , there exists an index i ∈ {1, . . . , m} such
that

∑n
j=1 aijxj + ci ≥ bu, implying that x /∈ {x : Ax + C < Bu}. Thus,

Ωk+1 = ∪Mk
j=1Ij ⊆ U c

k+1.

In order to check whether U◦
k+1 ∩ (Ωb(h;Uk,f))◦ �= ∅ holds, we first take

a point x ∈ U◦
k+1 = {x : Ax + C < Bu}, then apply interval methods (e.g.,

[24]) to get an interval enclosure sx of φ(h;x), and check whether sx ⊆ Uk

holds. If the answer is positive, U◦
k+1 ∩ (Ωb(h;Uk,f))◦ �= ∅ holds, as stated in

Lemma 5. The procedure for checking U◦
k+1 ∩ (Ωb(h;Uk,f))◦ �= ∅ is denoted by

Verification(U◦
k+1 ∩ (Ωb(h;Uk,f))◦).

Lemma 5. If sx ⊆ Uk, then x6∈ U◦
k+1 ∩ (Ωb(h;Uk,f))◦ holds, where sx and

Uk+1 are respectively computed based on the procedures Verification(U◦
k+1 ∩

(Ωb(h;Uk,f))◦) and Contraction(Ωk+1, Ok+1).

6 Although x can be an arbitrary point belonging to U◦
k+1, x has to be a point being

away from ∂Uk+1 due to the fact that sx is an interval box rather a point and
sx ⊆ Uk. This can be done by taking x being in {x : Ax + C ≤ Bu − δ}, where
δ > 0.

Under-Approximating Backward Reachable Sets by Polytopes 467

Proof. Since sx ⊆ Uk, x ∈ Ωf (h;Uk,−f) and thus x ∈ Ωb(h;Uk,f) holds.
Also, according to the fact that ∂Ωb(h;Uk,f) ⊆ Ωk+1 and Ωk+1 ⊆ U c

k+1, we
obtain that U◦

k+1 ∩ ∂Ωb(h;Uk,f) = ∅, implying that x /∈ ∂Ωb(h;Uk,f). Thus,
x ∈ U◦

k+1 ∩ (Ωb(h;Uk,f))◦.

Thus, if the boolean value returned by Verification(U◦
k+1∩(Ωb(h;Uk,f))◦)

is true, i.e., U◦
k+1 ∩ (Ωb(h;Uk,f))◦ �= ∅, then Uk+1 obtained by the procedure

Contraction(Ωk+1, Ok+1) is an UAB of Ωb(h;Uk,f).

Remark 4. In the procedure Contraction(Ωk+1, Ok+1), | b−bu

b−d | can be used to
evaluate the obtained UAB Uk, where d is the supremum such that {x : Ax+C <
D} = ∅ and D = (d, . . . , d)′7. As it approaches one, the under-approximation
becomes increasingly conservative.

Thus our approach for computing a compact polytopic UAB is elucidated.
We formally formulate our approach for computing an UAB of TR for the time
duration T as Algorithm 1.

Algorithm 1. Computing an Under-Approximation
Input: Given system (1), a target region: TR, a time duration: T , a time step h such

that T−0
h

≥ 1 is an integer, εM : the size of intervals enclosing the boundaries, and
ε: local error bounds.

Output: an UAB of TR for the time duration T .
1: U0 := TR;
2: for i = 0 : 1 : N − 1 do
3: Ωi+1 := Boundary(h, Ui, εM);
4: Oi+1 := Polytope(Ωi+1);
5: Ui+1 := Contraction(Ωi+1, Oi+1);
6: if Verification(U◦

i+1 ∩ (Ωb(h; Ui, f))◦) is false or | b−bu

b−d
| > ε then

7: return ”failed to obtain an UAB” and terminate;
8: end if
9: end for

10: return an UAB UN .

Remark 5. Our method, as formalised in Algorithm 1, can be applied to under-
approximate forward reachable sets by performing forward computations on ini-
tial sets.

In order to enhance the understanding of our approach, an example is
employed to illustrate Algorithm 1 as follows.

Example 3. Consider a model of an electromechanical oscillation of s synchro-
nous machine, {

ẋ1 = x2

ẋ2 = 0.2 − 0.7sinx1 − 0.05x2

,

where TR = [−0.1, 0.1] × [2.9, 3.1] and T = 3.
7 d can be obtained by solving the linear program: min d, s.t., Ax + C ≤ D.

468 B. Xue et al.

Let h = 3, εM = 0.0001 and ε = 0.5. Firstly, we compute Ω1 = ∪jIj such that
∂Ωb(T ; TR,f) ⊆ Ω1 based on the procedure Boundary(h, TR, εM) in Subsect. 3.1,
where Ij is of the interval form. Secondly, we compute O1 based on the procedure
Polytope(Ω1) in Subsect. 3.1 such that Ω1 ⊆ O1. Thirdly, we contract O1 to
obtain U1 based on the procedure Contraction(Ω1, O1) in Subsect. 3.1. Finally,
we find a point x = (−8.08, 2.52) ∈ U◦

1 and obtain sx = [0.0082, 0.0083] ×
[3.0181, 3.0182] based on the procedure Verification(U◦

1 ∩ (Ωb(h; TR,f))◦) in
Subsect. 3.1. Since sx ⊆ TR and | b−bu

b−d | ≈ 0.246621 ≤ ε, where b = 0, bu =
−0.008260 and d = −0.0334927, U1 is an UAB of TR for the time duration T = 3.
The boundary of U1 is depicted in Fig. 4.

Fig. 4. An UAB for Example 3. (left: red boxes – Ω1 including ∂Ωb(3; TR, f); green curve
– ∂O1; black curve – ∂U1; right: a zoomed-in portion of the left figure.) (Color figure
online)

3.2 Computational Complexity

In this subsection, the computational complexity of Algorithm 1 is discussed
briefly. In the kth step, the branch-and-bound method for the problem of yielding
some interval subdivisions to enclose ∂Uk is of exponential complexity O(ξn),
where ξ = O(1

εM
). The underlying interval Taylor series method is of polynomial

complexity: the work is O(p2) to compute the Taylor coefficients, where p is the
order of the used Taylor expansion, and O(n3) for performing linear algebra
[32]. The complexity of applying simplex algorithms to solve the linear program
(2) is O(nmk) generally, where mk is the number of linear constraints. The
computational complexity of the convex hull algorithm (e.g., [33]) is Conk =
O(2nMk logr) for n ≤ 3 and O(2nMkfr/r + fr) when n > 3, where r ≤ 2nMk

is the number of vertices of Ok+1, fr = O(r�n
2 �/�n

2 �!) and �n
2 � is the floor

function of n
2 . Therefore, the total computational complexity of our method is

∑N−1
k=0

(O(ξn
k) + Mk(O(p2) + O(n3)) + MkO(nmk) + Conk

)
.

Under-Approximating Backward Reachable Sets by Polytopes 469

4 Examples, Discussions and Comparisons

Our approach is implemented based on the floating point linear programming
solver GLPK running the Simplex algorithm and the validated ordinary differ-
ential equation solver VNODE-LP [24]. We evaluate it using five examples and
compare it with the method of Korda et al. [22]. The results for Examples 4–7
can be found in Figs. 5, 6, 7 and 8 respectively. Table 1 presents details on para-
meters that control our approach. All these computations are performed on an
i5-3337U 1.8 GHz CPU with 4 GB RAM running Ubuntu Linux 13.04.

4.1 Examples and Discussions

In this subsection our approach is evaluated using Examples 4–8, and parameters
that control our approach are discussed using the first four examples. The results
are illustrated in Figs. 4, 5, 6 and 7. Regarding the computational complexity
analysis in Subsect. 3.2, our approach suffers from dimensional curse. In order to
overcome this problem, we explore some future directions to make our approach
more practical through Example 8.

Table 1. Performance of Algorithm 1 on Examples. Each benchmark is indexed by its
example number. TR: target region, εM : bound for the size of intervals in the procedure
Boundary(h, Uk, εM); ε: bound for | b−bu

b−d
| in the procedure Contraction(Ωk+1, Ok+1);

h: step size; T :a specified time duration for UAB; Time: CPU time cost (seconds).

Ex TR εM ε h T Time

4 [−0.1, 0.1] × [−0.1, 0.1] 0.001 0.5 0.5 10 34.29

4 [−0.1, 0.1] × [−0.1, 0.1] 0.0002 0.5 0.5 10 266.58

5 [0.3, 0.4] × [0.5, 0.7] 0.001 0.5 0.05 1.1 55.23

5 [0.3, 0.4] × [0.5, 0.7] 0.0002 0.5 0.05 1.1 410.13

6 [1.2, 1.5] × [0.8, 1.1] 0.001 0.5 0.5 10 23.04

6 [1.2, 1.5] × [0.8, 1.1] 0.0001 0.5 0.5 10 911.40

7 xi ∈ [−0.1, 0.1], i = 1, . . . , 3 0.003 0.5 0.5 2.5 450.32

7 xi ∈ [−0.1, 0.1], i = 1, . . . , 3 0.003 0.5 2.5 2.5 66.56

8 xi ∈ [−0.015, 0.001], i = 1, . . . , 7 0.016 0.5 0.01 0.2 0.67

Example 4. Consider the system in Example 1 again
{

ẋ1 = x2

ẋ2 = 0.2 − 0.7sinx1 − 0.05x2

.

Example 5. Consider the Brusselator model [10],
{

ẋ1 = 1 + x2
1x2 − 1.5x1 − x1

ẋ2 = 1.5x1 − x2
1x2

,

470 B. Xue et al.

Example 6. Consider the Van-der-Pol system,
{

ẋ1 = x2

ẋ2 = −0.2(x2
1 − 1)x2 − x1

.

Example 7. Consider the 3D-Lotka-Volterra System,
⎧
⎪⎨

⎪⎩

ẋ1 = x1x2 − x1x3

ẋ2 = x2x3 − x2x1

ẋ3 = x3x1 − x3x2

.

Note that Ωb(2.5; TR,f) ⊆ O1 in Fig. 8 according to Remark 3.

Fig. 5. ∂UAB for Example 4.(blue
points – ∂Ωb(10; TR, f) obtained by
Runge-Kutta methods; red curve –
∂U20 when εM = 0.0002; green curve –
∂U20 when εM = 0.001.) (Color figure
online)

Fig. 6. ∂UAB for Example 5. (blue
points – ∂Ωb(1.1; TR, f) obtained by
Runge-Kutta methods; red curve –
∂U22 when εM = 0.0002; green curve –
∂U22 when εM = 0.001.) (Color figure
online)

From the above four examples, we first observe that polytopes can represent
reachable sets well for some nonlinear systems, e.g., Examples 4–7. Also, we
observe that (1) when h is fixed, the resulting UAB becomes less conservative
as εM becomes smaller (Examples 4–6); (2) when εM is fixed, a smaller h may
lead to large errors. The underlying reason is that the under-approximation
error in every iterative step will propagate through the computations (Example
7), similar to the well known wrapping effect in over-approximating reachable
sets. The errors in the construction of under-approximations of reachable sets
using our method result from three parts in every iteration. The first one is the
computation of interval boxes enclosing the boundary of the target region. The
second one is the computation of interval boxes enclosing the boundary of the

Under-Approximating Backward Reachable Sets by Polytopes 471

Fig. 7. ∂UAB for Example 6. (blue
points – ∂Ωb(10; TR, f) obtained by
Runge-Kutta methods; red curve –
∂U20 when εM = 0.0001; green curve -
∂U20 when εM = 0.001.) (Color figure
online)

Fig. 8. ∂UAB for Example 7. (black
curve – ∂O1 when h = 2.5; red curve
– ∂U1 when h = 2.5; green curve – ∂U5

when h = 0.5.) (Color figure online)

backward reachable set based on the interval Taylor-series method and the last
one is the computation of an polytopic under-approximation. It is well known
that reachable sets of nonlinear systems are in general far from being convex,
the last one contributes to the total error mainly. Especially, for the case that
the returned under-approximation is empty in some iterative step, we could try
a smaller εM and/or a different time step h. A smaller εM , which mitigates the
error from the first source, will help to obtain a tighter Ωk+1, eventually leading
to a less conservative UAB. However, the computational cost increases. Therefore,
in order to obtain a tighter Ωk+1, reachability analysis methods which better
control the wrapping effect should be considered (e.g., [10,27]). This corresponds
to the reduction of the error from the second source. As to the last error source
resulting from polytopic approximations, an under-approximation of the semi-
algebraic form instead of the polytopic form will be contemplated in our future
study.

Example 8. Consider a seven-domensional biological system8,
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1 = −0.4x1 + 5x3x4

ẋ2 = 0.4x1 − x2

ẋ3 = x2 − 5x3x4

ẋ4 = 5x5x6 − 5x3x4

ẋ5 = −5x5x6 + 5x3x4

ẋ6 = 0.5x7 − 5x5x6

ẋ7 = −0.5x7 + 5x5x6

.

8 The model is from http://ths.rwth-aachen.de/research/hypro/biological-model-i/.

http://ths.rwth-aachen.de/research/hypro/biological-model-i/

472 B. Xue et al.

Using an interval hull rather than a convex hull in every iterative step
of Algorithm 1, we obtain that an UAB for the time duration t = 0.2 is
[−0.0152, 0.000] × [−0.0169, 0.0011] × [−0.0140, 0.0030] × [−0.0141, 0.0001] ×
[−0.0141, 0.0001] × [−0.0138, 0.0014] × [−0.0155, 0.000].

From Example 8, we observe that our approach scales well to systems with
a large number of variables by using an interval hull instead of a convex hull
in every iteration. However, this results in more conservative results, compared
to that based on polytopic representations. In order to reduce the conserva-
tiveness brought by interval representations, while making our approach scale
well, we will explore using oriented rectangular hulls [25], zonotopes [15] or sym-
bolic orthogonal projections [34] to construct under-approximations in our future
work. Furthermore, regarding that the boundary of a polytope is piecewise of
the zonotope form, therefore the exact boundary of the polytope rather than
interval subdivisions enveloping it obtained by Branch and Bound methods in
every iteration can be used for computations directly using methods in [11,27],
thereby reducing the computational cost and further improving the scalability
of our method.

4.2 Comparisons

In this section we will compare our method with the method of Korda et al.
[22]. Due to a lot of input parameters such as sum-of-squares multipliers being
coordinated in the method of Korda et al. [22], it is not trivial to find an optimal
combination, thereby making fair comparisons difficult. Therefore, we try to
explore some potential benefits of our method by comparing with this method.

Firstly, the method of Korda et al. [22] aims to compute inner approximations
of the region of attraction for polynomial dynamical systems by solving sum-of-
squares programming problems. The region of attraction is the set of all states
that end in the target set at a given time without leaving a constraint set. In
contrast, our method is not restricted to polynomial dynamical systems. That is,
our method can deal with more general nonlinear systems such as Example 4 in
Subsect. 4.1. Secondly, we compare the performances of the two methods based
on Examples 5–8. Assume that the specified constraint sets for the four examples
are {x : 1.252 − (x1 + 0.75)2 − (x2 − 0.65)2 ≥ 0}, {x : 4 − x2

1 − x2
2 ≥ 0}, {x :

0.04−x2
1−x2

2−x2
3 ≥ 0} and {x : 0.01252−∑7

i=1(xi +0.0075)2 ≥ 0} respectively.
Actually, they are respectively the over-approximations of backward reachable
sets of the target regions for these four examples. Using the method of Korda
et al. [22], we can not obtain feasible solutions to any of the above examples
based on the sum-of-squares programming solver YALMIP [35] with Sedumi
[36]. Since there are a lot of sum-of-squares multipliers that are coordinated
in advance, their degrees should be determined in advance for computations,
improper mixing will result in unreliable results. The main underlying reason is
that the present status of semi-definite programming solvers is not so advanced,
as pointed out in [37]. The numerical problems produced by these solvers often
result in unreliable results for some cases. We use Example 5 to illustrate this.

Under-Approximating Backward Reachable Sets by Polytopes 473

Although the solver YALMIP returns a “feasible” solution as shown in Fig. 9 for
some mixing of sum-of-squares multipliers, the result is incorrect actually. On
the contrary, our method relies on Interval methods to locate the boundary of the
backward reachable set and linear programs to obtain an under-approximation
in every iterative step, making our method more reliable.

x
1

x 2

−2.5 −2 −1.5 −1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

1.5

2

Fig. 9. An incorrect UAB for Example 5 obtained by the method of Korda et al. [22]
due to numerical problems. (black curve – {x : 1.252 − (x1 +0.75)2 − (x2 −0.65)2 ≥ 0};
red curve – the boundary of an incorrect under-approximation of Ωb(1.1, TR, f); green
curve - ∂TR; blue points – ∂Ωb(1.1, TR, f) obtained by Runge Kutta methods.) (Color
figure online)

5 Conclusion

Given a nonlinear system and a target region of the simply connected compact
type, we in this paper proposed a method by performing boundary analysis
to obtain an UAB of the target region for a specified time duration. The UAB
is represented as a polytope. The polytope can be obtained by combining vali-
dated numerical methods for ordinary differential equations and linear programs.
Numerical results and comparisons with the method of Korda et al. [22] based
on five examples were given to illustrate the benefits of our approach. The results
show that our method has some significant benefits in under-approximating
reachable sets for some cases. Furthermore, we explore some directions toward
improving the scalability of our method.

Extending our method to compute under-approximations of reachable sets
for nonlinear systems with time delay (e.g., [38]) is considered in our future
work. Moreover, computing a bounded error approximation of the solution over
a bounded time is another interesting investigation towards addressing under-
approximation problems [39].

474 B. Xue et al.

Acknowledgements. The authors are grateful to Prof. Martin Fränzle from Carl von
Ossietzky Universität Oldenburg, Mr. Milan Korda from École Polytechnique Fédérale
de Lausanne, Dr. Xin Chen from University of Colorado at Boulder for helpful discus-
sions. Also, the authors are especially grateful to the anonymous reviewers for their
valuable comments.

References

1. Xue, B.: Computing rigor quadratic lyapunov functions and underapproximate
reachable sets for ordinary differential equations. Doctoral dissertation, Beihang
University (2013)

2. Ratschan, S., She, Z.: Safety verification of hybrid systems by constraint
propagation-based abstraction refinement. ACM Trans. Embed. Comput. Syst. 6,
1–23 (2007)

3. Plaku, E., Kavraki, L.E., Vardi, M.Y.: Hybrid systems: from verification to fal-
sification. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp.
463–476. Springer, Heidelberg (2007)

4. Herrero, P., Calm, R., Veh́ı, J., Armengol, J., Georgiou, P., Oliver, N., Tomazou, C.:
Robust fault detection system for insulin pump therapy using continuous glucose
monitoring. J. Diabetes Sci. Technol. 6, 1131–1141 (2012)

5. Xue, B., Easwaran, A., Cho, N.: Towards robust artificial pancreas based on reacha-
bility analysis techniques. In: Workshop on Medical Cyber-Physical Systems (2015)

6. Althoff, M., Dolan, J.M.: Online verification of automated road vehicles using
reachability analysis. IEEE Trans. Robot. 30, 1–16 (2014)

7. Alur, R., Dang, T., Ivančić, F.: Progress on reachability analysis of hybrid systems
using predicate abstraction. In: Maler, O., Pnueli, A. (eds.) HSCC 2003. LNCS,
vol. 2623, pp. 4–19. Springer, Heidelberg (2003)

8. Asarin, E., Dang, T., Girard, A.: Hybridization methods for the analysis of non-
linear systems. Acta Inf. 43(7), 451–476 (2007)

9. Huang, Z., Mitra, S.: Proofs from simulations and modular annotations. In: Pro-
ceedings of the 17th International Conference on Hybrid Systems: Computation
and Control (HSCC 2014), pp. 183–192. ACM, New York (2014)

10. Chen, X., Ábrahám, E., Sankaranarayanan, S.: Taylor model flowpipe construc-
tion for non-linear hybrid systems. In: Proceedings of the 2012 IEEE 33rd Real-
Time Systems Symposium (RTSS 2012), pp. 183–192. IEEE Computer Society,
Washington (2012)

11. Althoff, M.: Reachability analysis of nonlinear systems using conservative polyno-
mialization and non-convex sets. In: Proceedings of the 16th International Con-
ference on Hybrid Systems: Computation and Control (HSCC 2013), pp. 173–182.
ACM, New York (2013)

12. Revert, A., Calm, R., Vehi, J., Bondia, J.: Calculation of the best basal-bolus
combination for postprandial glucose control in insulin pump therapy. IEEE Trans
Biomed. Eng. 58, 274–281 (2011)

13. Ratschan, S., She, Z.: Providing a basin of attraction to a target region of polyno-
mial systems by computation of lyapunov-like functions. SIAM J. Control Optim.
48(7), 4377–4394 (2010)

14. Kurzhanski, A.B., Varaiya, P.: Ellipsoidal techniques for reachability analysis:
internal approximation. Syst. Control Lett. 41, 201–211 (2000)

Under-Approximating Backward Reachable Sets by Polytopes 475

15. Girard, A., Le Guernic, C., Maler, O.: Efficient computation of reachable sets of
linear time-invariant systems with inputs. In: Hespanha, J.P., Tiwari, A. (eds.)
HSCC 2006. LNCS, vol. 3927, pp. 257–271. Springer, Heidelberg (2006)

16. Maidensa, J.N., Kaynamaa, S., Mitchell, I.M., Oishic, M.K., Dumonta, G.A.:
Lagrangian methods for approximating the viability kernel in high-dimensional
systems. Automatica 49, 2017–2029 (2013)

17. Benvenuti, L., Bresolin, D., Casagrande, A., Collins, P., Ferrari, A., Mazzi, E.,
Sangiovanni-Vincentelli, A., Villa, T.: Reachability computation for hybrid systems
with Ariadne. In: Proceedings of the 17th IFAC World Congress, vol. 41, pp. 8960–
8965. IFAC Papers-OnLine (2008)

18. Goldsztejn, A., Jaulin, L.: Inner approximation of the range of vector-valued func-
tions. Reliable Comput. 14, 1–23 (2010)

19. Mullier, O., Goubault, E., Kieffer, M., Putot, S.: General inner approximation of
vector-valued functions. Reliable Comput. 18, 117–143 (2013)

20. Goubault, E., Mullier, O., Putot, S., Kieffer, M.: Inner approximated reachability
analysis. In: Proceedings of the 16th International Conference on Hybrid Systems:
Computation and Control (HSCC 2014), pp. 163–172. ACM, New York (2014)

21. Mitchell, I.M.: Comparing forward and backward reachability as tools for safety
analysis. In: Bemporad, A., Bicchi, A., Buttazzo, G. (eds.) HSCC 2007. LNCS, vol.
4416, pp. 428–443. Springer, Heidelberg (2007)

22. Korda, M., Henrion, D., Jones, N.C.: Inner approximations of the region of attrac-
tion for polynomial dynamical systems. In: Proceedings of 9th IFAC Symposium
on Nonlinear Control Systems, pp. 534–539 (2013)

23. Chen, X., Sankaranarayanan, S., Ábrahám, E.: Under-approximate flowpipes
fornon-linear continuous systems. In: Proceedings of the 14th Conference on For-
mal Methods in Computer-Aided Design (FMCAD 2014), pp. 59–66. IEEE (2014)

24. Nedialkov, N.S.: VNODE-LP - a validated solver for initial value problems in ordi-
nary differential equations. Technical report CAS-06-06-NN, Department of Com-
puting and Software, McMaster University, Hamilton, Canada, L8S4K1 (2006).
VNODE-LP is available at www.cas.mcmaster.ca/nedialk/vnodelp/

25. Stursberg, O., Krogh, B.H.: Efficient representation and computation of reachable
sets for hybrid systems. In: Maler, O., Pnueli, A. (eds.) HSCC 2003. LNCS, vol.
2623, pp. 482–497. Springer, Heidelberg (2003)

26. Testylier, R., Dang, T.: NLTOOLBOX: a library for reachability computation of
nonlinear dynamical systems. In: Van Hung, D., Ogawa, M. (eds.) ATVA 2013.
LNCS, vol. 8172, pp. 469–473. Springer, Heidelberg (2013)

27. Eggers, A., Ramdani, N., Nedialkov, N.S., Fränzle, M.: Improving the SAT mod-
ulo ODE approach to hybrid systems analysis by combining different enclosure
methods. Softw. Syst. Model. 14, 121–148 (2015)

28. Massey, W.S.: A Basic Course in Algebraic Topology. Springer, New York (1991).
Corollary 6.7

29. Khalil, H.K.: Nonlinear Systems, 3rd edn, p. 188. Prentice Hall, Upper Saddle
River (2002)

30. Granvilliers, L., Benhamou, F.: Realpaver: an interval solver using constraint sat-
isfaction techniques. ACM TOMS 32(1), 138–156 (2006)

31. Susuki, Y., Koo, T.J., Ebina, H., Yamazaki, T., Ochi, T., Uemura, T., Hikihara,
T.: A hybrid system approach to the analysis and design of power grid dynamic
performance. Proc. IEEE 100, 225–239 (2012)

32. Ramdani, N., Nedialkov, N.S.: Computing reachable sets for uncertain nonlinear
hybrid systems using interval constraint-propagation techniques. Nonlinear Anal.
Hybrid Syst. 5, 149–162 (2011)

www.cas.mcmaster.ca/nedialk/vnodelp/

476 B. Xue et al.

33. Barber, C.B., Dobkin, D.P., Huhdanpaa, H.: The quickhull algorithm for convex
hulls. ACM Trans. Math. Softw. 22, 469–483 (1996)

34. Hagemann, W.: Reachability analysis of hybrid systems using symbolic orthogonal
projections. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 407–
423. Springer, Heidelberg (2014)

35. Löfberg, J.: YALMIP: a toolbox for modeling and optimization in MATLAB. In:
Proceedings of the CACSD Conference, Taipei, Taiwan, pp. 284–289 (2004)

36. Sturm, J.F.: Using SeDuMi 1.02, a MATLAB toolbox for optimization over sym-
metric cones. Optim. Methods Softw. 11, 625–653 (1999)

37. Wang, T., Lall, S., West, M.: Polynomial level-set method for polynomial system
reachable set estimation. IEEE Trans. Autom. Control 58(10), 2508–2521 (2013)

38. Zou, L., Fränzle, M., Zhan, N., Mosaad, P.N.: Automatic verification of stability
and safety for delay differential equations. In: Kroening, D., Păsăreanu, C.S. (eds.)
CAV 2015. LNCS, vol. 9207, pp. 338–355. Springer, Heidelberg (2015)

39. Majumdar, R., Prabhu, V.S.: Computing distances between reach flowpipes. In:
Proceedings of the 19th International Conference on Hybrid Systems: Computation
and Control (HSCC 2016), pp. 267–276. ACM, New York (2016)

Parsimonious, Simulation Based Verification
of Linear Systems

Parasara Sridhar Duggirala1(B) and Mahesh Viswanathan2

1 University of Connecticut, Mansfield, USA
psd@uconn.edu

2 University of Illinois, Urbana-Champaign, Champaign, USA
vmahesh@illinois.edu

Abstract. We present a technique to verify safety properties of linear
systems (possibly time varying) using very few simulations. For a linear
system of dimension n, our technique needs n + 1 simulation runs. This
is in contrast to current simulation based approaches, where the number
of simulations either depends upon the number of vertices in the convex
polyhedral initial set, or on the proximity of the unsafe set to the set
of reachable states. At its core, our algorithm exploits the superposition
principle of linear systems. Our algorithm computes both an over and
an under approximation of the set of reachable states.

1 Introduction

Cyberphysical systems, that involve the close interaction of a computing device
with a physical process, are most faithfully modeled as a hybrid system that
exhibits both discrete and continuous changes to system state. The mathematical
model of a hybrid system consists of a finite collection of control modes where
the system state evolves continuously with time. Transitions between control
modes are governed by constraints on the system state.

A commonly occurring special class of hybrid systems is one where the con-
tinuous dynamics in each control mode is mathematically described using a
time-varying linear differential equation of the form

ẋ = A(t)x + B(t), (1)

where A(t) and B(t) are matrices which may themselves be changing with time.
While verifying invariant properties for such systems is known to be undecidable
in general, the set of states reachable within bounded time (and bounded number
of discrete steps) can be approximated with arbitrary precision. One of the core
challenges in computing such bounded-time reachable sets is to compute the set
of all states reachable within a time bound for a single control mode with no
mode switches (often referred as continuous post).

There are two main approaches to computing the continuous post for a mode
within time bound T . The first approach [7,12,18] exploits the linearity of the
system dynamics. For continuous dynamics given by Eq. (1), let us denote by
c© Springer International Publishing Switzerland 2016
S. Chaudhuri and A. Farzan (Eds.): CAV 2016, Part I, LNCS 9779, pp. 477–494, 2016.
DOI: 10.1007/978-3-319-41528-4 26

478 P.S. Duggirala and M. Viswanathan

ξ(x, t) the state at time t starting from x. It is well known that the state reached
at time t when starting from αx1 +(1−α)x2 (0 ≤ α ≤ 1), a convex combination
of states x1 and x2, is given by αξ(x1, t) + (1 − α)ξ(x2, t). Hence, if the initial
set of states is a convex, bounded polytope, then the set of states reached at
time t is the convex hull of the states reached from each vertex of the initial
polytope. Further, the set of states reached within time t is over-approximated
by bloating the convex hull of the vertices of the initial polytope and the vertices
of the polytope of states reached at time t. The bloating factor, determined by
a careful error analysis, depends on the length of time t. Thus to get a good
approximation of the reach set within a time bound T , the interval [0, T] is
broken up into small steps adaptively [13,22]. The cost of computing the reach
set in this approach, therefore, depends on two things (1) the number of vertices
in the initial polytope (which is exponential in the dimension of the system),
and (2) the number of smaller intervals the time interval [0, T] is divided into.
The efficiency of this approach also depends on the data structure used to store
the set of reachable states. Ellipsoids [17], convex polyhedra [12], zonotopes [14],
support functions [18], polynomial zonotopes [2], and Taylor models [5], are
some of the popular data structures used. Each of these data structures requires
developing new algorithms for computing the reachable set for a given class of
systems.

The second approach is a simulation-based approach [9,10,15]. Here, the
initial set is partitioned into smaller neighborhoods, and the system is simulated
from the center of each neighborhood. Based on the norms of matrices A and B,
one can compute an envelope around each simulation trace that guarantees the
containment of the trajectory starting from any point in a given initial partition.
The reachable set is therefore over-approximated by a collection of simulation
tubes. The quality of this set can be improved by computing a finer partitioning
of the initial set. Thus, for a safe system, the number of simulations needed,
depends on how far the unsafe set is from the reachable set; if it is far, a coarse
initial partition suffices, and if it is close then we need a fine initial partition,
which means many simulations. Though this approach may require significantly
more simulations, it enjoys a couple of advantages over the previous approach.
First, since this approach does not rely on convexity properties of linear systems,
it can be used to analyze non-convex initial sets and time varying linear systems
(where A(t) and B(t) change with time). Second, not only can it be used to
prove safety, but also to find counterexamples.

Apart from these two approaches, a few theorem proving approaches have also
been proposed [16,20,21,23,24,26]. In these approaches one does not compute
the set of reachable states, but rather prove that a certain safety property is
satisfied. Therefore, this technique can be used for proving safety of non-convex
and unbounded initial sets, but also requires additional manual effort.

Inspired by the simulation-based approach, we present a new approach for
computing the reachable set for linear systems. Our approach combines the
advantages of each of the above approaches. First, like the simulation-based
approach, it can be used to analyze non-convex initial states, time-varying

Parsimonious, Simulation Based Verification of Linear Systems 479

linear systems, and it can prove unsafety of systems in addition to safety. Sec-
ond, and more importantly, it uses significantly fewer simulations — to compute
the reachable set of an n-dimensional system, we need to simulate the system
from only n+1 initial states. This is in contrast to the potentially exponentially
many vertices to be propagated in the non-simulation approach, and potentially
much larger than exponentially-many simulations in the simulation-based app-
roach. Third, our approach does not require any additional computation if the
initial set changes, as long as the “center” of the set remains the same; what this
means precisely will be become clearer later in this introduction as we describe
our approach. Fourth, the previous two approaches only work for bounded initial
sets. Our new approach, on the other hand, can handle unbounded initial sets.
Finally, since our method only relies on simulations, it does not require a formal
model, and can be used to analyze black-box systems.

The main idea behind our approach is to exploit what is sometimes called the
superposition principle. Let us consider an n-dimensional system (i.e., continuous
state is in R

n) described by Eq. (1). For vectors v1, v2, . . . vn, initial “center” x0,
and constants α1, α2, . . . αn, the superposition principle says that

ξ(x0 +
n∑

i=1

αivi, t) = ξ(x0, t) +
n∑

i=1

αi(ξ(x0 + vi, t) − ξ(x0, t)) (2)

Thus, if the initial set is of the form x0 +
∑n

i=1 αivi where the coefficients ᾱ
belong to some set Δ, then the set of states reached at time t is given by ξ(x0, t)+∑n

i=1 αiv
′
i with ᾱ ∈ Δ, where v′

i = ξ(x0 + vi, t) − ξ(x0, t).
Notice, that this representation of the states at time t, only requires us to

find ξ(x0, t), ξ(x0 + v1, t), . . . ξ(x0 + vn, t), which can be obtained by only n + 1
simulations. We call this representation of sets of states as the linear span of a
center x0 and basis vectors {vi}n

i=1 with coefficients ᾱ ∈ Δ generalized star sets.
Such generalized star sets naturally generalize standard shapes like polytopes,
ellipsoids, and non-convex sets. Using generalized star sets makes reachable set
computation simple. Moreover, if the initial set changes because of a change in
Δ, the superposition principle tells us that we don’t need to do any additional
simulations in order to represent the reachable set at time t. We show how this
basic idea can be adapted to account for simulation errors, to construct both
under and over approximations of the reachable set of states, efficiently.

Our experimental results substantiate our belief that this new approach can
serve as the founding principle that underlies the next advance in the scalable
analysis of time varying linear systems. Our method scales to high dimensional
systems and beats all current verification technologies by at least an order of
magnitude. This is not surprising given the obvious theoretical advantages it
enjoys over past methods due to the reduced number of simulations it needs.

2 Preliminaries

We refer to states and vectors as elements in R
n. We denote the �∞ norm of the

vectors and states by || · ||. To avoid confusion we denote states by xi and vectors

480 P.S. Duggirala and M. Viswanathan

by vi. Given two states x1 and x2, the difference vector is defined as v = x2−x1.
Given a set S ⊆ R

n, diameter(S) Δ= sup{||x − y|| | x, y ∈ S}. For a set S ⊆ R
n, a

point x ∈ S is said to be a center if ∀y ∈ S. ||x − y|| ≤ diameter(S)/2. A set S
may or may not have a center; convex sets do have a center. When a set S has
a center there maybe many; we will abuse notation and use center(S) to denote
one picked by the axiom of choice. A predicate P : Rn → {�,⊥} denotes a set of
vectors denoted by [[P]] = {v |P (v) = �}. We abuse notation and denote both the
predicate P and the set [[P]] as P . The ball of radius δ around a state x is defined
as Bδ(x) = {y | ||x − y|| ≤ δ}; similarly, for a set S ⊆ R

n, Bδ(S) = ∪x∈SBδ(x).
Given two vectors p, q ∈ R

k where p = [p1, p2, . . . , pk]T and q = [q1, q2, . . . , qk]T ,
we say that p ≤ q if and only if ∀i. pi ≤ qi. Given x ∈ R

n and S ⊆ R
n, the set of

difference vectors from x to S, is defined as diff(S, x) Δ= { v | ∃x′ ∈ S, v = x′ −x}.
We will find it convenient to represent subsets of states using a representation

that we call generalized star sets, which we define next.

Definition 1. A generalized star set is a tuple Θ = 〈x0, V, P 〉 where x0 ∈ R
n

is called the center, V = {v1, v2, . . . vm} is a set of m (≤ n) vectors in R
n called

the basis, and P : Rn → {�,⊥} is a predicate.
A generalized star set Θ defines a subset of Rn as follows.

[[Θ]] = {x |∃ᾱ = [α1, . . . , αm]T such that x = x0 + Σn
i=1αiviand P (ᾱ) = �}

Sometimes we will refer to both Θ and [[Θ]] as Θ.

In the above definition of generalized star sets, the size of the vector set V
will often be determined by the dimension of the set [[Θ]] being defined, and the
vectors will be linearly independent. However, we do not require this. Generalized
star sets are a generalization of many natural sets of states. Depending on the
predicate P , generalized star representation can define a variety of sets including
non-convex sets and convex sets like polyhedra and ellipsoids. We provide some
examples of such sets.

Example 1. Consider the 2-dimensional plane R
2. Take V = {[1, 0]T , [0, 1]T } the

set of unit vectors along the two axes, and x0 = (3, 3).

Consider g = [1, 1, 1, 1]T , and P (ᾱ) = Cᾱ ≤ g where C =

⎡

⎣1 −1 0 0

0 0 1 −1

⎤

⎦

T

The generalized star set Θ = 〈x0, V, P 〉 defines the rectangular set

[[Θ]] = B1(3, 3) = {(x, y) | 2 ≤ x ≤ 4 ∧ 2 ≤ y ≤ 4}

On the other hand, defining P (ᾱ) = (α1 − 3)2 + (α2 − 3)2 ≤ 1 defines the
disc of radius 1 with center (3, 3).

Consider a system described by the linear ODE

ẋ = A(t)x + B(t). (3)

Parsimonious, Simulation Based Verification of Linear Systems 481

The solution of the above ODE with initial state x0 is denoted as ξ(x0, t). For
this solution d

dt (ξ(x0, t)) = A(t)ξ(x0, t)+B(t) and ξ(x0, 0) = x0. For well defined
linear time varying systems, the state at time t is given using the state trans-
formation matrix Φ : R≥0 × R≥0 → R

n×n such that the trajectory at time t is
given as

ξ(x0, t) = Φ(t, 0)x0 +
∫ t

0

Φ(t, s)B(s)ds. (4)

Notice that for linear time invariant systems, the expression for Φ(t2, t1) =
eA(t2−t1).

For performing simulation based verification, instead of using a numerical
simulation which returns a sequence of states, we use validated simulations which
returns a sequence of sets of states with the following guarantees.

Definition 2. For a system described by Eq. (3), with closed form ξ(x0, t) given
by Eq. (4), an (x0, T, ε, h)-validated simulation of ξ(x0, t) is ψ = (R1, [t0, t1]),
(R2, [t1, t2]), . . . , (Rk, [tm−1, tm]) where Ri ⊆ R

n such that

1. ∀1 ≤ i ≤ m, ti − ti−1 ≤ h, t0 = 0, tm = T .
2. ∀1 ≤ i ≤ m,∀t ∈ [ti−1, ti], ξ(x0, t) ∈ Ri.
3. ∀1 ≤ i ≤ m, diameter(Ri) ≤ ε.

The first condition enforces that the time step for each of these regions is bounded
by h. The second condition enforces that for each interval [ti−1, ti] the trajectory
is contained within the region Ri. The third condition enforces that the diameter
of each region is bounded by ε. Existing numerical solvers such as CAPD, and
VNODE-LP can compute validated simulations which contain the trajectory.
For these tools, the sets Ri are convex, polyhedral sets. Therefore, we assume
that the subroutine valSim(x0, T, h) returns 〈ψ, ε〉 such that ψ is an (x0, T, ε, h)-
validated simulation (with Ri being convex). In addition, as h → 0, ε → 0.

Definition 3. For a system in Eq. (3), and initial set Θ, the set of states reach-
able within time bound T is ReachSet〈A,B〉(Θ, T) = {ξ(x0, t)|x0 ∈ Θ, 0 ≤ t ≤ T}.
We drop A and B from the ReachSet when it is clear from the context.

A set RO is said to be an over-approximation of the reachable states within
time T if ReachSet(Θ, T) ⊆ RO. Analogously, RU is said to be an under-
approximation of the set of reachable states within time bound T , if RU ⊆
ReachSet(Θ, T).

Definition 4. The system given in Eq. (3) is said to be safe for bounded time
T from the initial state Θ and unsafe set U if ReachSet(Θ, T) ∩ U = ∅.

3 Computing Reachable Sets from Simulations

In this section we outline how to compute reachable sets of n-dimensional linear
systems, using at most n + 1 simulations. We begin (Sect. 3.1) by making an
observation that is often called the superposition principle. This principle enables

482 P.S. Duggirala and M. Viswanathan

us to express the set of states reached at time t as a generalized star set, if
the initial states is given as a generalized star set. In Sect. 3.2, we show how
the superposition principle can be used to compute the set of reachable states,
under the assumption that the exact trajectory from each initial state can be
computed. Finally, in Sect. 3.3, we show how all of these ideas can used when we
only have access to validated simulation engines.

3.1 Superposition Principle for Linear Systems

In order to explain the superposition principle, let us fix a system described by
Eq. (3). Recall from Eq. (4), the solution is for the system is given as

ξ(x0, t) = Φ(t, 0)x0 +
∫ t

0

Φ(t, s)B(s)ds.

x0

x0 + u1

x0 + u2

x0 + u1 + u2

ξ(x0, t)

ξ(x0 + u1, t)

ξ(x0 + u2, t)

(ξ(x0 + u1) − ξ(x0))

+(ξ(x0 + u2) − ξ(x0))

Fig. 1. Observe that the state reached at time t from x0 + u1 + u2 is identical to
ξ(x0, t) + (ξ(x0 + u1, t) − ξ(x0, t)) + (ξ(x0 + u2, t) − ξ(x0, t)).

Consider two initial states x0 and x0 + u1, for some vector u1. From the
solution given in Eq. (4), we have

ξ(x0 + u1, t) − ξ(x0, t) = Φ(t, 0)u1 (5)

For two vectors u1 and u2, and state x0, from Eq. (4), we have

ξ(x0 + α1u1 + α2u2)

= Φ(t, 0)(x0 + α1u1 + α2u2) +
∫ t

0

Φ(t, s)B(s)ds

= [Φ(t, 0)x0 +
∫ t

0

Φ(t, s)B(s)ds] + α1Φ(t, 0)u1 + α2Φ(t, 0)u2

= ξ(x0, t) + α1Φ(t, 0)u1 + α2Φ(t, 0)u2

= ξ(x0, t) + α1[ξ(x0 + u1, t) − ξ(x0, t)] + α2[ξ(x0 + u2, t) − ξ(x0, t)]

Parsimonious, Simulation Based Verification of Linear Systems 483

The above equation suggests that linear combinations of ξ(x0 + u1, t) − ξ(x0, t)
and ξ(x0 + u2, t) − ξ(x0, t) gives us the difference between trajectories starting
from initial state x0 and x0+α1u1+α2u2. This is illustrated in Fig. 1. Extending
this observation to n vectors we have

ξ(x0 + Σn
i=1αiui, t) = ξ(x0, t) + Σn

i=1αi(ξ(x0 + ui, t) − ξ(x0, t)). (6)

3.2 Reach Sets from Exact Trajectories

In this section, we will outline how the superposition principle can be used
construct the reachable states at a given time t. Let us fix an initial set given
as a generalized star set Θ = 〈x0, V, P 〉, where V = {v1, v2, . . . vm}. We begin
by showing how to compute Reacht(Θ), the set of states reached at time t;
Reacht(Θ) is defined precisely as follows.

Reacht(Θ) = {ξ(x, t) | x ∈ [[Θ]]}.

The reachable states at time t is computed by Algorithm 1 as a generalized star
set.

input : Initial Set: Θ = 〈x0, V, P 〉, Time instance: t
output: Reacht(Θ)

1 x′
0 ← ξ(x0, t);

2 for each vi ∈ V do
3 x′

i ← ξ(x0 + vi, t);
4 v′

i ← x′
i − x′

0;

5 end
6 V ′ ← {v′

1, . . . , v
′
m};

7 Reacht(Θ) ← 〈x′
0, V

′, P 〉;
8 return Reacht(Θ);
Algorithm 1. Algorithm that computes the reachable set at time t from n+1
simulations.

The algorithm in line 1 computes the state of trajectory starting from the
initial state x0 at time t as x′

0. The loop in lines 2 to 4 computes x′
i, the state of

the trajectory starting from x0+vi at time t. The reachable set at time t is given
as as generalized star set 〈x′

0, V
′, P 〉, where V ′ = {v′

1, . . . , v
′
n} with v′

i = x′
i − x′

0.
Theorem 1 proves that the set returned is indeed the reachable set.

Theorem 1. The set Reacht(Θ) is the reachable set for Θ at time t.

Proof. Let us consider the set of vectors V ′ = {v′
1, . . . , v

′
m}. Observe from Eq. (5)

that v′
i = Φ(t, 0)vi.

A state y is reachable at time t, if y is the state reached at time t when
starting from some initial state x′ ∈ [[Θ]]. More formally, a state y ∈ Reacht(Θ)

484 P.S. Duggirala and M. Viswanathan

if and only if ∃ᾱ = [α1, . . . , αm]T such that P (ᾱ) = � and y = ξ(x′, t) where
x′ = x0 + Σn

i=1αivi. From lines 1, 3, and 4, we have that

y = ξ(x0, t) + Σn
i=1αi(ξ(x0 + vi, t) − ξ(x0, t)).

Thus, y ∈ 〈x′
0, V

′, P 〉 establishing the correctness of the algorithm.
We conclude this proof by observing that since Φ(t, 0) is an invertible matrix,

V ′ is linearly independent set of vectors, if V is linearly independent.

p

v

v1

v2

p

v

v1

v2

Fig. 2. Reachable set of car moving in 1-dimension with constant acceleration. In both
graphs, car velocity v is plotted on the x-axis and position p is on the y-axis. The set of
initial states and the set of reachable states at time 2 are shown in yellow. The vectors
defining the sets is shown in red at time 0, 1, and 2. On the left, the initial set is the
ball of radius 1 with center (3, 3) with respect to �∞-norm. On the right the initial set
is the same except that the ball is defined with respect to the �2-norm. Notice that the
evolution of the vectors that define the generalized star set is the same in both the left
and the right. (Color figure online)

Example 2. Consider the simple example of a car moving in 1-dimension with
constant acceleration of 2 units. Taking the state of the system to be the car
position (p) and velocity (v), the dynamics can be described as

ṗ = v v̇ = 2

Parsimonious, Simulation Based Verification of Linear Systems 485

Consider the polyhedral initial set given as a generalized star set. In other
words, Θ = 〈x0, V, P 〉, where x0 = (3, 3), V = {[1, 0]T , [0, 1]T }, g = [1, 1, 1, 1]T

and P (ᾱ) = Cᾱ ≤ g where C =

⎡

⎣1 −1 0 0

0 0 1 −1

⎤

⎦

T

The evolution of the reachable set

is shown in the left graph in Fig. 2. The reachable set at time 2 is given by the gen-
eralized star set Δ = 〈x′

0, V
′, P 〉, where x0 = (7, 13), and V ′ = {[0, 1]T , [1, 2]T }.

The only part that changes in the generalized star representation of the reachable
set at time 2 is the center and the set of vectors.

Suppose we consider the initial set to be the disc of radius 1 with center (3, 3)
as in Example 1. That is the initial set if given as 〈(3, 3), {[1, 0]T , [0, 1]T }, P 〉
where P (ᾱ) = (α1 − 3)2 + (α2 − 3)2 ≤ 1. The evolution of the reachable set
over time is shown on the right graph in Fig. 2. The reachable set at time 2 is
described as 〈(7, 13), {[0, 1]T , [1, 2]T }, P 〉. Thus the way the center and the set
of vectors change is the same for both the box and the disc initial sets. The
evolution of the center and vectors is independent of the “shape” of the initial
set. The difference in the reachable sets only arises because of the difference in
the predicate used to describe the initial sets.

3.3 Computing Reachable Set from Validated Simulations

Algorithm 1 computes the reachable set at time t when the exact state of the n+1
trajectories starting from x0, x0 + v1, . . . , x0 + vn at time t is known. However,
computing the exact state requires computing the closed form expression for Φ.
This expression Φ in the simplest case where A(t) and B(t) are time invariant
matrices requires computing matrix exponentials and so the exact expression can
only be computed for very special matrices. We now present a new technique
in Algorithm 2 (based on Algorithm 1) for computing a formula with existential
quantifiers that represents the overapproximation and the underapproximation
of the reachable set of states.

Informally, instead of computing the exact trajectories starting from x0,
x0 + v1, . . . , x0 + vn, we compute their validated simulations. We assume
that all these validated simulations are synchronized, i.e., the number of
intervals in all the validated simulations are the same. Although according
to Definition 2, each of these validated simulations can have different time
intervals and regions, we can split the required intervals further and gen-
erate new validated simulations such that all the n + 1 validated simula-
tions have the same number of regions. We assume that there are m such
regions in each validated simulation, i.e., the simulation from x0, denoted as
〈ψ0, ε〉 ← valSim(x0, h, T) is such that ψ0 = (R0

1, [t0, t1]), (R0
2, [t1, t2]), . . . ,

(R0
m, [tm−1, tm]). The validated simulation 〈ψi, ε〉 ← valSim(x0 +vi, h, T) is such

that ψi = (Ri
1, [t0, t1]), . . . , (R

i
m, [tm−1, tm]).

486 P.S. Duggirala and M. Viswanathan

input : Initial Set: Θ = 〈x0, V, P 〉, Time bound: T
output: Overapproximation and underapproximation of the reachable set of

states.
1 〈ψ0, ε0〉 ← valSim(x0, h, T);
2 for each vi ∈ V do
3 〈ψi, εi〉 ← valSim(x0 + vi, h, T);

4 end
5 for j = 1 . . . m do
6 OverReach[j] ← OA(R0

j , R
1
j , . . . , R

n
j , P);

7 UnderReach[j] ← UA(R0
j , R

1
j , . . . , R

n
j , P);

8 end
9 return (OverReach, UnderReach);
Algorithm 2. Algorithm that computes the overapproximation and underap-
proximation of reachable set for each time interval.

Given R0, R1, . . . , Rn ⊆ R
n, OA(R0, R1, . . . , Rn, P) is a formula with quan-

tifiers that represents an overapproximation of the reachable set is defined as:

OA
Δ= { x | ∃x0 ∈ R0,∃vi ∈ diff(Ri, x0),∃ᾱ,

x = x0 + Σn
i=1αivi ∧ P (ᾱ) = � } (7)

Similarly UA(R0, R1, . . . , Rn, P) is a formula with quantifiers that represents
an underapproximation of the reachable set is defined as:

UA
Δ= { x | ∀x0 ∈ R0,∀vi ∈ diff(Ri, x0),∃ᾱ,

x = x0 + Σn
i=1αivi, P (ᾱ) = � } (8)

Theorem 2. OverReach[j] and UnderReach[j] computed in line 6 and 7 give
an overapproximation and underapproximation of the reachable set of states for
the time interval [tj−1, tj] respectively.

Proof. The proof follows from the proof of Theorem1.
Overapproximation: Consider the Reacht(Θ) for some t ∈ [tj−1, tj]. A state

x ∈ Reacht(Θ) if and only if ∃ᾱ such that x = x′
0 + Σn

i=1αiv
′
i, P (ᾱ) = �.

From Definition 2, it follows that x′
0 ∈ R0

j and v′
i ∈ diff(Ri

j , x
′
0). As the for-

mula is existentially quantified, if follows that x ∈ OverReach[j]. Therefore,
∪t∈[tj−1,tj]Reacht(Θ) ⊆ OverReach[j].

Underapproximation: Consider a state x ∈ UnderReach[j]. Therefore, ∀x′
0 ∈

R0
j ,∀v′

i ∈ diff(Ri
j , x

′
0),∃ᾱ, such that x = x′

0 + Σn
i=1αiv

′
i, P (ᾱ) = �. Now con-

sider Reacht(Θ) for some time instance t ∈ [tj−1, tj]. As x′
0 and v′

i is univer-
sally quantified, it follows that x ∈ Reacht(Θ). Therefore UnderReach[j] ⊆
∩t∈[tj−1,tj]Reacht(Θ).

Remark 1. Algorithm 2 can be used for safety verification. Given an unsafe set
of states U , one can check whether the overapproximation (OverReach[i]) and
underapproximation (UnderReach[i]) computed in lines 6 and 7 has any state in

Parsimonious, Simulation Based Verification of Linear Systems 487

unsafe set using SMT solvers like Z3. Moreover, this technique can prove that the
system is unsafe and provide counterexamples from the model for SMT formula
if satisfied.

Algorithm 2 has several advantages compared to the existing techniques for
reachable set computation. First, the algorithm uses only m + 1 numerical sim-
ulations, where m is the number of vectors in the set V . Second, it can compute
reachable set not just for convex sets, but also for non-convex sets. Third, the
initial set can be unbounded. Finally, the algorithm can compute underapproxi-
mation of the reachable set as well. Typical reachable set computation techniques
require that the initial set is bounded and convex and specified in a special form
like convex polyhedra, zonotopes, or ellipsoids. Moreover, techniques for comput-
ing underapproximation require special computation techniques and bounding
the error for underapproximation is a challenging problem.

Notice that the formulas for computing overapproximation OA in line 6 and
underapproximation UA in line 7 contain product terms of αi and vi. Hence, even
for special initial sets like convex polyhedra, checking system safety using OA or
UA involves reasoning about bilinear constraints, which is NP-hard. Moreover,
our representation of UA has alternating quantifiers which adds to the challenges.
To overcome these issues, we present a new overapproximation of the reachable
set with a quantifiable bounded error, for initial sets that have special geometric
properties like bounded convex polyhedra or ellipsoids. While we will not present
a new underapproximation that avoids quantifier alternation, we will present a
technique that can efficiently detect unsafety.

4 Faster Reachable Set Computation for Special Initial
Sets

In this section, we present an algorithm for computing the reachable set when
the initial set is given as a bounded convex polyhedron or an ellipsoid. For
the presentation used in this paper, the set considered will be a polyhedra if the
predicate P is given by linear inequalities Cx ≤ d. Consider a bounded polyhedral
initial set represented as Θ

Δ= 〈x0, V, C, d〉 where C ∈ R
k×n is a k × n matrix,

d ∈ R
k. Recall that the set it represents is [[Θ]] = {x|x = x0+Σn

i=1αivi, Cᾱ ≤ d}.
For a bounded polyhedral set [[Θ]], one can pick a state x0 in the set Θ and
an orthonormal basis V such that max{||αi||} ≤ 1

n . We assume that such a
representation of the initial set Θ is provided. We now present a technique to
compute a polyhedral representation of the overapproximation of the reachable
set represented by the formula OA with quantifiers.

For a given time interval, assume that R0, R1, . . . , Rn are the regions returned
by the n + 1 validated simulations (dia(Ri) ≤ ε) and OA(R0, R1, . . . , Rn, C, d)
gives the overapproximation predicate, defined in Eq. (7). For polyhedral initial
set, the only nonlinear term in Eq. (7) for OA is the product term αivi. To
eliminate this product term, we pick a fixed vi (defined below), estimate the
error in the resulting set given this fixed basis, and bloat the polyhedron based
on this error analysis.

488 P.S. Duggirala and M. Viswanathan

Theorem 3. Given regions R0, R1, . . . , Rn, and the set OA(R0, R1, . . . , Rn, C, d)
defined according to Eq. (7), we have OA ⊆ Bδ(R) where R

Δ= 〈x0, V, C, d〉 where
x0 = center(R0), V = {v1, . . . , vn} where vi = center(Ri) − center(R0) and
δ = 3ε and ε = maxn

i=0{dia(Ri)}.
Proof. Consider a state x′ ∈ OA(R0, R1, . . . , Rn, C, d), then there exists x′

0 ∈ R0,
x1 ∈ R1, . . . , xn ∈ Rn where v′

i = x′
i − x′

0 such that x′ ∈ R′ Δ= 〈x′
0,U2, C, d〉,

U2 = {v′
1, . . . , v

′
n}.

Since x′ ∈ R′, ∃α1, . . . , αn such that x′ = x′
0 + α1v

′
1 + . . . + αnv′

n. Consider
the corresponding state x ∈ R such that x = x0+α1v1+. . .+αnvn. The distance
between x and x′ is given as:

||x − x′|| = ||x0 + α1v1 + . . . + αnvn − (x′
0 + α1v

′
1 + . . . + αnv′

n)||
= ||(x0 − x′

0) + α1(v1 − v′
1) + . . . + αn(vn − v′

n)||
≤ ||x0 − x′

0|| + Σn
i=1||αi|| · ||vi − v′

i||
≤ dia(R0) + Σn

i=1||αi|| · ||xi − x′
i + (x′

0 − x0)||
≤ dia(R0) + Σn

i=1||αi|| · (dia(Ri) + dia(R0))
≤ dia(R0) + Σn

i=1||αi|| · 2ε

≤ dia(R0) + Σn
i=1max{ ||αi|| } · 2ε

≤ ε + n · 1
n

· 2ε

≤ 3ε

Hence, the maximum distance between any two states x and x′ is bounded
by δ where δ = 3ε and x ∈ R. Therefore x′ ∈ Bδ(R).

Therefore for checking safety, instead of performing quantifier elimination,
one can perform the following computations: (1) Compute the polyhedron R
with center(R0) as the center, center(Ri) − center(R0) as the basis vectors,
and predicate given as linear inequalities Cᾱ ≤ d. Bloat the polyhedron R by
the amount δ. Check for common states between unsafe region U and Bδ(R).
Theorem 3 proves that if Bδ(R) ∩ U = ∅ then the reachable set does not have
any unsafe state and hence the result is guaranteed to be sound.

Notice that the proof also gives a technique for checking when the system
is unsafe. If ∃x ∈ R such that Bδ(x) ⊆ U , then it follows that for any choice
of x′

0 and the basis vectors U2, the corresponding state x′ is in the unsafe set.
Therefore, the system is unsafe.

The proof for Theorem3 can be extended to any general bounded sets and not
necessarily for polyhedra. However, checking the safety with respect to general
sets is computationally harder than checking for polyhedra. We consider one
special case where the initial set is an ellipsoid. An ellipsoid can be defined as
E

Δ= 〈x0, V, C, 1〉 where [[E]] = {x|x = x0 + α1v1 + . . . + αnvn, ᾱT Cᾱ ≤ 1}.

Corollary 1. For initial set defined as Θ = 〈x0, V, C, 1〉 and given regions
R0, R1, . . . , Rn for computing OA(R0, R1, . . . , Rn, C, 1) in Eq. (7), OA ⊆ Bδ(R)

Parsimonious, Simulation Based Verification of Linear Systems 489

where R
Δ= 〈x′

0, V
′, C, 1〉 where x′

0 = center(R0), V ′ = {v′
1, . . . , v′

n} where
v′

i = center(Ri) − center(R0) and δ = 3ε and ε = maxn
i=0{dia(Ri)}.

5 Extension to Hybrid Systems

In this section, we outline the extension of the algorithm to hybrid systems. In
principle, the Algorithm2 computes the set of reachable states for a given con-
tinuous linear system for a given time interval. Therefore, one can essentially
apply the algorithm used in tools like Phaver and SpaceEx for computing the
reachable set of states for a hybrid system. For simplicity, we assume that all the
invariants for the modes and guards for discrete transitions to be convex poly-
hedra and all the reset mappings to be linear functions. Under this assumptions,
we present the algorithm for reachable set computation for hybrid system.

The algorithm performs the following three steps iteratively until the time
horizon for verification. First, for the given mode and a given initial set, the
algorithm computes the reachable set for that mode from that initial set for the
bounded time specified using Algorithm2. Second, the reachable set is pruned by
removing all the states that violate the invariant. Third and lastly, the reachable
set is checked to satisfy any guards for discrete transitions, and if so, the initial
states for the next mode are computed by applying the reset map of the states
that satisfy the guard predicate. As the reachable set of states for a hybrid
system at a given time might belong to two different modes, we track the discrete
transitions using a queue of set and location pairs.

input : Hybrid System: A, Initial Set: Θ, Initial mode: m0, Time bound: T
output: Bounded time reachable set: ReachSetA(Θ, T)

1 regionQueue ← 〈Θ, m0〉;
2 for each 〈Θ, m〉 in regionQueue do
3 reachMode ← Alg2(Θ, m);
4 reachMode ← reachMode ∩ Invariantm;
5 nextRegions ← discreteTransitions(reachMode);
6 ReachSetA(Θ, T) ← reachMode ∪ ReachSetA(Θ, T);
7 regionQueue.append(nextRegions);

8 end
9 return ReachSetA(Θ, T);
Algorithm 3. Algorithm that computes the reachable set for hybrid systems.

Algorithm 3 computes the reachable set for a hybrid system. As the problem
in general is undecidable, the loop need not terminate. The main loop that
performs the three key steps iteratively happens from line 2 to line 8. Line 3
computes the reachable set of states from Θ for the corresponding mode using
Algorithm 2. Line 4 checks the invariant for the reachable set and line 5 computes
the states reached after discrete transitions. Although we present the algorithm
here, in this paper, we perform experiments on purely continuous system to
demonstrate the efficiency of Algorithm 2.

490 P.S. Duggirala and M. Viswanathan

6 Experiments

To demonstrate the applicability of the proposed approach, we have implemented
this algorithm as an extension of the tool C2E2 [11]. C2E2 is a dynamic analy-
sis tool that implements a simulation based verification algorithm for nonlinear
hybrid systems where the model is annotated with discrepancy functions. Unlike
C2E2, this approach would not require the linear systems model to be provided
with a discrepancy function. For generating the validated simulations, C2E2 uses
a validated numerical integration engine called CAPD [1]. As the systems con-
sidered in this paper are restricted to linear systems, instead of using CAPD,
we use the numerical integration engine ODEINT1, which is a part of BOOST
libraries. Unlike CAPD, ODEINT does not provide validated simulations, there-
fore, for computing rigorous bounds on the numerical simulation, we use error
analysis provided in [4] for the 4th order Runge-Kutta method that is used in
our experiments.

The experimental section is divided into 3 parts. First, we verify the safety
property of several high dimensional linear time invariant systems with polyhe-
dral initial sets and polyhedral unsafe sets. For checking the intersection of the
reachable set computed with the unsafe states, we use GLPK library2. Second,
we consider several linear time varying systems. Finally, we verify safety prop-
erty of linear time invariant systems with non-convex initial and unsafe sets and
also for unbounded initial and unsafe sets. All experiments were performed on a
system with i7 Quad-core processor with 8GB memory running Ubuntu 11.10.

6.1 High Dimensional Linear Time Invariant Systems

We compare the performance of our approach with the state-of-the-art tool for
linear systems verification SpaceEx on several high dimensional linear systems.
Though the reachability computation can be extended to hybrid systems (Sect. 5
in Appendix), our experiments here are restricted to continuous systems; we
believe our main contribution is the algorithm for reachability for continuous
systems with the extension to hybrid systems being standard. The experimental
results are provided in Table 1. The tank system considered in Table 1 is one of
the examples provided with SpaceEx. In this example, the water level in tank i is
model as a continuous variable xi. The tank i leaks into tank i+1 and the rate of
leakage is proportional to the water level in tank i, making the system a linear
system. The 28 dimensional helicopter system and the 9 dimensional insulin
system are also part of the examples provided by SpaceEx. The platoon system
is a controller for stabilizing a platoon of vehicles and is obtained from [19].

The experiments show that our approach outperforms SpaceEx by at least
an order of magnitude. This is mainly because as the number of dimensions
increases, the complexity of representing the reachable set of states as a sup-
port function increases exponentially. Whereas in our approach, the number of

1 http://headmyshoulder.github.io/odeint-v2/.
2 https://www.gnu.org/software/glpk/.

http://headmyshoulder.github.io/odeint-v2/
https://www.gnu.org/software/glpk/

Parsimonious, Simulation Based Verification of Linear Systems 491

simulations performed only increases linearly with the number of dimensions
and the representation of the reachable set is just a basis transformation of the
representation of the initial set of states considered. Also, notice that the time
taken for computing the validated simulations using the approach in [4] takes the
majority of the verification time as opposed to checking the safety of reachable
set. An advantage our approach enjoys over SpaceEx is that we can compute
underapproximations and hence conclude that the system is unsafe and pro-
vide counterexamples. We however note that for the experiments in Table 1, the
results reported by SpaceEx were indeed consistent with the results reported by
our approach.

Table 1. Experimental results for verification of high dimensional linear time invari-
ant systems. Vars: number of variables, TH: time horizon for verification, Sims: total
number of simulations, Simu. time: time taken for simulations, Verif. result: result of
verification. TO: time out for 5 min.

Benchmark Vars. TH Sims. Simu. time. Verif. time C2E2 SpaceEx Verif. result

Insulin 8 10 9 0.157 s 0.049 s 0.206 s 8.07 s Safe

Insulin 8 10 9 0.166 s 0.034 s 0.2 s 7.89 s Unsafe

Platoon 10 25 11 0.337 s 0.019 s 0.356 s TO Safe

Platoon 10 25 11 0.323 s 0.019 s 0.342 s TO Unsafe

Tank-10 10 20 11 0.745 s 0.206 s 0.951 s 4.886 s Safe

Tank-10 10 20 11 0.721 s 0.19 s 0.911 s 4.992 s Unsafe

Tank-15 15 20 16 1.325 s 0.363 s 1.688 s 8.176 s Safe

Tank-18 18 20 19 1.705 s 0.569 s 2.274 s 10.466 s Safe

Helicopter 28 20 29 3.192 s 1.634 s 4.826 s 2m1.66s Safe

6.2 Verifying Linear Time Varying Systems

Typical approaches for computing reachable set for linear time varying systems
differ considerably from that of linear time invariant systems. Therefore, there is
a lack of tools that are geared towards verifying linear time varying systems. For
the experimental evaluation, we model the linear time varying system as a non-
linear system with time as a variable t and compare the results of our approach
with the tool Flow* [6] that can verify nonlinear systems. The experimental
results are provided in Fig. 3(a). The tank system in Fig. 3(a) is similar to the
linear time invariant system, except that water is being pumped into Tank 1 at
a rate that decreasing with time. Therefore, the differential equation governing
the dynamics contains t−1 term which makes it non polynomial. The second
example is a modified version of the uncertain linear system from [3].

The experiments show that our approach outperforms Flow* by at least an
order of magnitude. Also, similar to SpaceEx, the time taken by Flow* increases
exponentially as the number of dimensions in the system increases, whereas in

492 P.S. Duggirala and M. Viswanathan

Benchmark. Vars. Flow*. C2E2

Tank 2 1.56 s 0.132 s

Tank 4 4.28 s 0.198 s

Tank 6 9.41 s 0.287 s

Tank 8 18.73 s 0.356 s

Tank 10 33.67 s 0.484 s

LTV [3] 5 7.51 s 0.24 s

LTV 7 12.09 s 0.31 s

LTV 9 18.18 s 0.4 s

(a) Verifying linear time varying
systems

Benchmark. Dim. TH. Init. Set. Res. Time

ACC [25] 3 2 NC Safe 2.185

ACC 3 2 UB Safe 1.774

ACC 3 2 NC Unsafe 1.11

ACC 3 2 UB Unsafe 1.01

Tank 5 1 NC Safe 2.717

Tank 5 1 UB Safe 2.145

Tank 5 1 NC Unsafe 1.722

Tank 5 1 UB Unsafe 1.519

(b) Verifying nonconvex and unbounded initial
sets.

Fig. 3. Verification of linear time varying systems and non-convex and unbounded ini-
tial sets. Res.: verification result. NC: nonconvex initial set, UB: unbounded initial set

our approach, the number of simulations required increases only linearly with
the number of dimensions.

6.3 Non-convex and Unbounded Initial Sets

An advantage of our approach is that we can compute the reachable set when
the initial set of states is non-convex and also when the initial set is unbounded.
To demonstrate this, we compute reachable set of states for several benchmark
examples given in Fig. 3(b). In these experiments, we consider non-convex and
unbounded initial sets symbolically represented as conjunctions of polynomial
inequalities. We use Z3 [8] SMT solver for performing quantifier elimination and
inferring whether the system is safe or unsafe. As the complexity of quantifier
elimination over reals is exponentially more than linear real arithmetic, the time
taken for verification is more than for polyhedral initial sets even for low dimen-
sional systems. Unlike the existing theorem proving based approaches which can
verify non-convex or unbounded initial set that requires some manual effort, our
approach is completely automatic.

6.4 Discussion

It is evident from Table 1 and Fig. 3(a), (b) that our approach outperforms the
existing approaches. Furthermore, our technique works for computing both over-
approximation and underapproximation for linear time invariant and linear time
varying systems. In case of polyhedral initial and unsafe sets, notice from Table 1
that the time taken for verification is only a fraction of the time taken from
simulations. Given two bounded polyhedral initial sets Θ1

Δ= 〈x0, V, C1, d1〉 and
Θ2

Δ= 〈x0, V, C2, d2〉, with the same center x0 and the same set of basis vectors V ,

Parsimonious, Simulation Based Verification of Linear Systems 493

the reachable set computation technique need not generate n+1 simulations Θ1

and n + 1 simulations for Θ2. Instead, it can reuse the same set of simula-
tions runs used for Θ1 and compute the reachable set for Θ2 thus reducing the
number of simulations per verification. This would also bring down the total
time for verification as computing simulations is computationally more expen-
sive than verifying safety. Furthermore, given k bounded polyhedral initial sets,
Θ1, . . . , Θk, by performing k coordinate transformations one can represent these
sets with a common center and basis vectors and the amortized number of sim-
ulations for verification would be n+1

k where n is the number of dimensions of
the system. This is a significant advantage of our approach as opposed to the
reachable set computation performed by SpaceEx, where, a change in the initial
set would require discarding the reachable set computed and recomputing the
new reachable set from scratch.

References

1. Computer assisted proofs in dynamic groups (capd). http://capd.ii.uj.edu.pl/
index.php

2. Althoff, M.: Reachability analysis of nonlinear systems using conservative polyno-
mialization and non-convex sets. In: Proceedings of the 16th International Confer-
ence on Hybrid Systems: Computation and Control, pp. 173–182. ACM (2013)

3. Althoff, M., Le Guernic, C., Krogh, B.H.: Reachable set computation for uncertain
time-varying linear systems. In: Proceedings of the 14th International Conference
on Hybrid Systems: Computation and Control, pp. 93–102. ACM (2011)

4. Bouissou, O., Martel, M.: Grklib: a guaranteed runge kutta library. In: 12th
GAMM-IMACS International Symposium on Scientific Computing, Computer
Arithmetic and Validated Numerics, SCAN 2006, p. 8. IEEE (2006)

5. Chen, X., Abraham, E., Sankaranarayanan, S.: Taylor model flowpipe construction
for non-linear hybrid systems. In: RTSS (2012)

6. Chen, X., Ábrahám, E., Sankaranarayanan, S.: Flow*: an analyzer for non-linear
hybrid systems. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044,
pp. 258–263. Springer, Heidelberg (2013)

7. Chutinan, A., Krogh, B.H.: Computational techniques for hybrid system verifica-
tion. IEEE Trans. Autom. Control 48, 64–75 (2003)

8. de Moura, L., Bjørner, N.S.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

9. Donzé, A., Maler, O.: Systematic simulation using sensitivity analysis. In:
Bemporad, A., Bicchi, A., Buttazzo, G. (eds.) HSCC 2007. LNCS, vol. 4416, pp.
174–189. Springer, Heidelberg (2007)

10. Duggirala, P.S., Mitra, S., Viswanathan, M.: Verification of annotated models from
executions. In: Proceedings of the 13th International Conference on Embedded
Software (EMSOFT 2013), Montreal, Canada (2013)

11. Duggirala, P.S., Mitra, S., Viswanathan, M., Potok, M.: C2E2: a verification tool
for stateflow models. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035,
pp. 68–82. Springer, Heidelberg (2015)

12. Frehse, G.: PHAVer: algorithmic verification of hybrid systems past HyTech. In:
Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 258–273. Springer,
Heidelberg (2005)

http://capd.ii.uj.edu.pl/index.php
http://capd.ii.uj.edu.pl/index.php

494 P.S. Duggirala and M. Viswanathan

13. Frehse, G., Le Guernic, C., Donzé, A., Cotton, S., Ray, R., Lebeltel, O., Ripado, R.,
Girard, A., Dang, T., Maler, O.: SpaceEx: scalable verification of hybrid systems.
In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 379–395.
Springer, Heidelberg (2011)

14. Girard, A.: Reachability of uncertain linear systems using zonotopes. In: Morari,
M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 291–305. Springer,
Heidelberg (2005)

15. Julius, A.A., Fainekos, G.E., Anand, M., Lee, I., Pappas, G.J.: Robust test gener-
ation and coverage for hybrid systems. In: Bemporad, A., Bicchi, A., Buttazzo, G.
(eds.) HSCC 2007. LNCS, vol. 4416, pp. 329–342. Springer, Heidelberg (2007)

16. Kong, S., Gao, S., Chen, W., Clarke, E.: dReach: δ-reachability analysis for hybrid
systems. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 200–
205. Springer, Heidelberg (2015)

17. Kurzhanski, A.B., Varaiya, P.: Ellipsoidal techniques for reachability analysis:
internal approximation. Syst. Control Lett. 41(3), 201–211 (2000)

18. Le Guernic, C., Girard, A.: Reachability analysis of hybrid systems using support
functions. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp.
540–554. Springer, Heidelberg (2009)

19. Makhlouf, I.B., Kowalewski, S.: Networked cooperative platoon of vehicles for test-
ing methods and verification tools. In: Applied Verification for Continuous and
Hybrid Systems. CPS-VO (2014)

20. Mitra, S., Archer, M.: PVS strategies for proving abstraction properties of
automata. Electron. Notes Theor. Comput. Sci. 125(2), 45–65 (2005)

21. Platzer, A., Quesel, J.-D.: KeYmaera: a hybrid theorem prover for hybrid systems
(system description). In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR
2008. LNCS (LNAI), vol. 5195, pp. 171–178. Springer, Heidelberg (2008)

22. Prabhakar, P., Viswanathan, M.: A dynamic algorithm for approximate flow com-
putations. In: Proceedings of the 14th International Conference on Hybrid Systems:
Computation and Control, pp. 133–142. ACM (2011)

23. Prajna, S., Jadbabaie, A.: Safety verification of hybrid systems using barrier certifi-
cates. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 477–492.
Springer, Heidelberg (2004)

24. Taly, A., Tiwari, A.: Deductive verification of continuous dynamical systems. In:
IARCS Annual Conference on Foundations of Software Technology and Theoretical
Computer Science, FSTTCS 2009, 15–17 December 2009, pp. 383–394. IIT Kanpur,
India (2009)

25. Tiwari, A.: Approximate reachability for linear systems. In: Maler, O., Pnueli, A.
(eds.) HSCC 2003. LNCS, vol. 2623, pp. 514–525. Springer, Heidelberg (2003)

26. Tiwari, A.: HybridSAL relational abstracter. In: Madhusudan, P., Seshia, S.A.
(eds.) CAV 2012. LNCS, vol. 7358, pp. 725–731. Springer, Heidelberg (2012)

Counterexample Guided Abstraction
Refinement for Stability Analysis

Pavithra Prabhakar1(B) and Miriam Garćıa Soto2

1 Kansas State University, Manhattan, KS, USA
pprabhakar@ksu.edu

2 IMDEA Software Institute and Universidad Politécnica de Madrid, Madrid, Spain
miriam.garcia@imdea.org

Abstract. In this paper, we present a counterexample guided abstrac-
tion refinement (Cegar) algorithm for stability analysis of polyhedral
hybrid systems. Our results build upon a quantitative predicate abstrac-
tion and model-checking algorithm for stability analysis, which returns
a counterexample indicating a potential reason for instability. The main
contributions of this paper include the validation of the counterexample
and refinement of the abstraction based on the analysis of the coun-
terexample. The counterexample returned by the quantitative predicate
abstraction analysis is a cycle such that the product of the weights on
its edges is greater than 1. Validation involves checking if there exists
an infinite diverging execution which follows the cycle infinitely many
times. Unlike in the case of Cegar for safety, the validation problem is
not a bounded model-checking problem. Using novel insights, we present
a simple characterization for the existence of an infinite diverging execu-
tion in terms of the satisfaction of a first order logic formula which can
be efficiently solved. Similarly, the refinement is more involved, since,
there is a priori no bound on the number of predecessor computation
steps that need to be performed to invalidate the abstract counterex-
ample. We present strategies for refinement based on the insights from
the validation step. We have implemented the validation and refinement
algorithms and use the stability verification tool Averist in the back
end for performing the abstraction and model-checking. We compare the
Cegar algorithm with Averist and report experimental results demon-
strating the benefits of counterexample guided refinement.

1 Introduction

Hybrid systems refer to systems exhibiting mixed discrete continuous behav-
iors. These manifest naturally in embedded control systems as a result of the
interaction of embedded software, which executes in discrete steps, with physical
systems, which evolve continuously in dense real-time. In particular, we consider
switched hybrid systems [13] in which the continuous state does not change dur-
ing a mode switching. These are apt for modeling supervisory control, wherein
a supervisor continuously senses the state of a plant and takes mode change
decisions based on that.
c© Springer International Publishing Switzerland 2016
S. Chaudhuri and A. Farzan (Eds.): CAV 2016, Part I, LNCS 9779, pp. 495–512, 2016.
DOI: 10.1007/978-3-319-41528-4 27

496 P. Prabhakar and M.G. Soto

In this paper, we focus on automated stability analysis of switched hybrid sys-
tems. Stability is a fundamental property in control system design and captures
robustness of the system with respect to initial states or inputs. We consider a
classical notion of stability, namely, Lyapunov stability with respect to an equi-
librium point — a state of the system which does not change with time evolution.
Intuitively, an equilibrium point is Lyapunov stable if the executions starting in
a small neighborhood of the equilibrium point remain close to it.

The classical methods for stability analysis are based on exhibiting a function
from the state-space to the non-negative reals called a Lyapunov function (see,
for instance, [11]), that ensures that the value of the function decreases along
any execution of the system. Automated methods for stability analysis rely on a
template based search for a Lyapunov function. For instance, a polynomial func-
tion with coefficients as parameters is chosen as a candidate Lyapunov function.
The parameters are computed by solving Linear Matrix Inequalities or Sum-
of-Squares [17] programming which arise while encoding the constraints of the
Lyapunov function.

One of the challenges with Lyapunov based methods is the ingenuity of the
user required in choosing the right templates. An exhaustive search over all
templates (for instance, polynomials of increasing degrees) becomes unmanage-
able for relative small degrees of polynomials. In [20,21], the authors present
an alternate stability analysis method based on abstractions for a subclass of
hybrid systems called polyhedral hybrid systems. Polyhedral hybrid systems are
an interesting class of systems that can be used to abstract linear and non-linear
hybrid systems [3,12]. The authors propose a quantitative predicate abstrac-
tion method that constructs a finite weighted graph, and analyse the latter for
the existence of cycles with product of edge weights ≥1. The absence of such
cycles indicates that the system is Lyapunov stable. It is suggested that better
abstractions can be obtained by choosing a larger set of predicates. However,
no efficient strategies for the selection of the same is discussed. Here we take
the quantitative predicate abstraction based analysis a step further, and discuss
strategies for refinement based on counterexample validation. This is popularly
referred to as Cegar (counterexample guided abstraction refinement [6]).

The main contributions of the paper are the validation and refinement algo-
rithms. Validation consists of checking if an abstract counterexample actually
corresponds to a concrete counterexample. In the context of safety analysis [6], an
abstract counterexample typically consists of a finite sequence of abstract states
or nodes in a finite graph from the initial state to an unsafe state. Validation
consists of checking if there exists a finite execution of the system which follows
the sequence of abstract states. However, the validation problem we encounter is
not a bounded model-checking problem as above. Instead, it consists of checking
if there exists an infinite diverging trajectory that follows the cycle infinitely
many times. This property cannot, as is, be encoded as the satisfiability of a
formula in a finitary logic. We provide a novel characterization of the existence
of an infinite diverging execution in terms of the existence of a finite execution

Counterexample Guided Abstraction Refinement for Stability Analysis 497

that follows the cycle once from a continuous state x to a continuous state y
such that y = αx for some α > 1. This provides an algorithmic procedure to
perform validation, since, the latter can be encoded as the satisfiability problem
of a first order logic formula, and efficiently solved.

Refinement in safety analysis consists of computing, iteratively, subsets of
concrete states corresponding to abstract states that can reach the unsafe states.
If the counterexample is spurious, one of the computed sets is empty, referred
to as the point of refinement, and a refinement occurs by examining some local
abstract states around this point of refinement. Since, the concrete counterexam-
ple required for validation has a finite length m, upper bounded by the abstract
counterexample length, the point of refinement is reached within m steps. In the
case of refinement for stability, we show that though a priori no such bound on
the point of refinement exists, if the counterexample is spurious, it is definitely
reached.

We propose two refinement strategies — one of which is applicable always,
however, does not eliminate a large fraction of counterexamples; the other is
applicable only in certain cases, but eliminates a large fraction of counterexam-
ples. If the validation procedure infers that the counterexample not only does
not have an infinite diverging execution corresponding to it, but also does not
have any infinite executions corresponding to it; then our refinement algorithms
ignores the edge weights and aims to “eliminate” the cycle. Otherwise, it con-
siders the weights and only aims to reduce the weights on the cycle.

We have implemented the Cegar algorithm, which uses Averist in the
backend to perform the abstraction and model-checking steps of the Cegar.
We report experimental comparisons between the Cegar algorithm and the
Averist algorithm. For the latter, we consider refinement based on the naive
strategy of uniformly adding new predicates. Our experimental results demon-
strate the benefits of Cegar both in terms of reduced computation time and
smaller abstractions that result as a result of careful refinement in each itera-
tion. Future work will consist of extending the Cegar framework for stability
analysis to more general classes of hybrid systems, and related notions such as
asymptotic stability.

Related Work. We briefly discuss related work. There is a large body of work
on Lyapunov function based stability analysis for linear and non-linear hybrid
systems, see the surveys [4,14]. There is some work on automated verification of
stability of linear systems by iteratively refining partitions [15,16,24], however, it
is not an abstraction based approach and the refinements are not guided by coun-
terexample analyses. Cegar has been explored for safety verification of hybrid
systems [2,5,18] and region stability analysis [8]. However, unlike Lyapunov and
asymptotic stability, safety and region stability are bisimulation invariant prop-
erties. Recently, there is some work on learning the templates for Lyapunov
functions [10].

498 P. Prabhakar and M.G. Soto

2 Polyhedral Switched System (PSS)

A hybrid automaton [1] is a popular formalism for modeling mixed discrete-
continuous behaviors. It extends the finite state automaton model for discrete
dynamics by annotating the modes with differential equations or inclusions for
modeling the physical systems. In addition, invariants on the modes and guards
on the edges provides constraints that need to be satisfied during evolution and
mode switching, respectively. A polyhedral switched system PSS is a special
kind of hybrid automaton in which each mode is associated with a polyhedral
differential inclusion and the invariants and guards are specified by linear con-
straints.

Definition 1. A n-dimensional polyhedral switched system (PSS) is a tuple
H = (Loc,Edges,X, Flow, Inv,Guard), where:
– Loc is a finite set of locations;
– Edges ⊆ Loc × Loc is a finite set of edges;
– X = R

n is the continuous state-space;
– Flow : Loc → CPolySets(n) is the flow function;
– Inv : Loc → PolySets(n) is the invariant function; and
– Guard : Edges → PolySets(n) is the guard function.

where PolySets(X) denotes the set of all convex polyhedral subsets of X, and
CPolySets(X) denotes the set of compact convex polyhedral sets.

Notation. From now on, we will denote each of the elements in a PSS H, with
H as a subscript, for instance, the invariant function will be referred to as InvH.

Example. Figure 1 shows a 3-dimensional polyhedral switched system along the
x−y plane when the value along the z-axis is taken to be 1. Essentially, the poly-
hedral sets from A to F are pyramids centered at x = 0, y = 0. VA through VF

represent the polyhedra in the polyhedral differential inclusions corresponding
to the regions A to F . We assume that ż = 1 everywhere. A sample execution
of the system is shown using a sequence of directed thin lines.

A switched system starts evolving in a mode q ∈ Loc and a continuous
state x. In this mode q, the continuous state evolves inside Inv(q) such that the
differential of the evolution at any time lies within Flow(q). If (q1, q2) is an edge
of the system and the continuous state satisfies the guard, a switch from q1 to
q2 can occur. The continuous state does not change during the mode switching.
The semantics of a PSS H are given by the set of executions exhibited by the
system.

Definition 2. An execution σ of a PSS of dimension n is a triple (ι, η, γ),
where ι is a sequence of time intervals I0, I1, . . . which refer to the times spent
by the execution in a particular location, η : I(ι) → X, where I(ι) = ∪iι(i),
represents the continuous state at all times, and γ maps i to the location the
execution evolves in during the interval Ii.

An execution σ = (ι, η, γ) of H is said to be complete if I(ι) is [0,∞); otherwise,
it is called finite. The set of all executions of H will be denoted by Exec(H), and
the set of all complete executions by CExec(H).

Counterexample Guided Abstraction Refinement for Stability Analysis 499

Fig. 1. (Left) Polyhedral switched system (Right) Abstract counterexample

2.1 Reachability Relations

We introduce certain predicates related to reachability which we will need in the
sequel. Let us fix an n-dimensional PSS H, two locations q1 and q2 in LocH, and
three polyhedral sets P1, P2 and P over R

n for the rest of the section.

ReachRelH((q1, P1), P, (q2, P2)) = {(x, y) ∈ R
n × R

n | ∃ finite execution σ = (ι, η, γ)

∈ Exec(H), I(ι) = [0, T], x = η(0) ∈ P1, y = η(T) ∈ P2, η(t) ∈ P ∀t ∈ (0, T),

γ(0) = q1 and γ(Last(dom(ι))) = q2}
It captures the set of points (x, y) ∈ P1 ×P2 such that there exists an execution
which starts at (q1, x) and ends at (q2, y) and remains in P at all intermediate
time points. It is shown in [21] that the ReachRelH is computable and can be
represented as a 2n-dimensional polyhedral set. Next, we define the predecessor
and successor operators denoted by preH and postH, and their weighted counter-
parts wpreH and wpostH, respectively.

– preH((q1, P1), P, (q2, P2)) = {x ∈ P1 | ∃y ∈ P2 : (x, y) ∈ ReachRelH((q1, P1),
P, (q2, P2))}

– postH((q1, P1), P, (q2, P2)) = {y ∈ P2 | ∃x ∈ P1 : (x, y) ∈ ReachRelH((q1, P1),
P, (q2, P2))}

– wpreH((q1, P1), P, w, (q2, P2)) =
= {x ∈ P1|∃y ∈ P2, (x, y) ∈ ReachRelH((q1, P1), P, (q2, P2)),

||y||
||x|| = w}

– wpostH((q1, P1), P, w, (q2, P2)) =
= {y ∈ P2|∃x ∈ P1, (x, y) ∈ ReachRelH((q1, P1), P, (q2, P2)),

||y||
||x|| = w}

Here, w is a positive real number and e || · || denotes the infinity norm of an
element in R

n.

3 Stability

In this section, we define a classical notion of stability in control theory, namely,
Lyapunov stability. We consider stability of the system with respect to the ori-
gin 0̄, which we assume is an equilibrium point. Intuitively, Lyapunov stability

500 P. Prabhakar and M.G. Soto

captures the notion that an execution starting close to the equilibrium point
remains close to it. Le Bε(0̄) be an open ball of radius ε around 0̄, which denotes
{x | ||x|| < ε}.

Definition 3. A PSS H is said to be Lyapunov stable, if for every ε > 0,
there exists a δ > 0 such that for every execution σ = (ι, η, γ) ∈ Exec(H) with
η(0) ∈ Bδ(0̄), η(t) ∈ Bε(0̄) for every t ∈ I(ι).

Observe that Lyapunov is a local property whose satisfaction depends on the
behaviors of the system in a small neighborhood around the origin. Hence, the
only polyhedral sets of the PSS which play a role in stability analysis are those
which contain the 0̄. Therefore, we will assume without loss of generality that
the PSS is in a normal form [20,21].

Definition 4. A polyhedral set P is closed under positive scaling if for every
x ∈ P and α > 0, αx ∈ P .

Definition 5. A PSS H is in normal form if for every q ∈ Loc and for every
e ∈ Edges, InvH(q) and GuardH(e) are positive scaling closed.

4 Counterexample Guided Abstraction Refinement

In this section, we present the Cegar framework for stability analysis. The algo-
rithm is summarized in Algorithm 1. First, we briefly review the abstraction and
model-checking algorithms for stability analysis of polyhedral switched systems
from [21]. Then, we present the new validation and refinement algorithms.

4.1 Abstraction

The abstraction procedure is a modification of the standard predicate abstrac-
tion [9] which constructs a finite state system using a finite set of predicates,
which simulates the concrete system. It was shown in [19] that stability is not
preserved by simulation and instead stronger notions which strengthen the sim-
ulation relation with continuity conditions are required. Hence, the abstraction
procedure in [20] constructs a finite weighted graph as illustrated in Fig. 1. More
precisely, the vertices of the graph correspond to pairs of location and facet of
the partition (instead of the regions). An edge exists between two vertices if there
exists an execution from one pair of location and facet to the other by remain-
ing in the common region of the facets. Further, the weights on the edges store
quantitative information, which track by what factor the execution moves closer
to the origin when it reaches the target facet as compared to where it started
on the source facet. Next, we present the formal construction of the abstract
system, for what we introduce some auxiliary definitions.

Definition 6. A polyhedral partition P of X ⊆ R
n is a finite set of closed

convex polyhedral sets, {P1, . . . , Pk}, such that X = ∪k
i=1Pi and interior(Pi) ∩

interior(Pj) = ∅, for 1 � i, j � k.

Counterexample Guided Abstraction Refinement for Stability Analysis 501

Algorithm 1. Cegar for stability analysis
Require: H, P, F
Ensure: Stable/Unstable
1: if Check-explosion(H, P) then
2: return Unstable
3: A = Abs(H, P, F)
4: while true do
5: π := Model-checking(A)
6: if π not counterexample then
7: return Stable
8: ψ := Encode-ψπ(m > 1)
9: if Check-satisfiability(ψ) then

10: return Unstable
11: else
12: ψ := Encode-ψπ(m � 1)
13: if Check-satisfiability(ψ) then
14: A :=Weighted-refinement(A, π)
15: else
16: A :=Refinement(A, π)

The elements of a polyhedral partition are referred to as regions. A polyhedral
partition is said to respect a PSS H if for every P ∈ P, q ∈ LocH and e ∈
EdgesH, either P ⊆ InvH(q) or P ∩ InvH(q) = ∅ and either P ⊆ GuardH(e) or
P ∩ GuardH(e) = ∅.

Definition 7. A facet partition F of a polyhedral partition P is a polyhedral
partition of ∪P∈P∂(P), where ∂(P) is the boundary of P .

Definition 8. Let us fix a concrete PSS H. Let P be a polyhedral partition of
X and F be a facet partition of P. The abstract system is the finite weighted
graph Abs(H,P,F) = (V,E,W) defined as follows.

– V = Loc × F .
– E ⊆ V × P × V is {((q1, f1), P, (q2, f2)) |ReachRel((q1, f1), P, (q2, f2)) �= ∅}.
– W : E → R≥0 ∪ {∞}, such that for e = ((q1, f1), P, (q2, f2)) ∈ E,

W (e) = sup{||y||/||x|| | (x, y) ∈ ReachRel((q1, f1), P, (q2, f2))}

The weight computation on the edges of the abstract graph can be con-
structed by solving an optimization problem on the reachability relation poly-
hedral set [20,21].

4.2 Model-Checking and Counterexample Generation

For every execution of the concrete system, there is a path in the weighted graph
such that the product of the weights of its edges is an upper bound on the scaling
of the execution - the ratio of the distance of its end point from the origin to the

502 P. Prabhakar and M.G. Soto

distance of its starting point from the origin. Therefore, the following theorem
provides sufficient conditions on the finite weighted graph which imply stability
of the concrete system. We say that a region is exploding in H if there exists an
execution which always remains in the region and diverges (goes arbitrarily far
from the origin). Consider a partition P which respects H, then for every region
P ∈ P there exists q ∈ LocH such that P ⊆ InvH(q). The region P is exploding
in H in the case of P ∩ FlowH(q) �= ∅. Given a path π, let W (π) denote the
product of the weights on the edges of π.

Theorem 1 [21]. Let H be a PSS, P be a polyhedral partition respecting H and
F be a facet partition of P. Then, the PSS H is Lyapunov stable if for every
simple cycle π, W (π) ≤ 1 and there is no region in P which explodes in H.

The conditions on the abstract system can be efficiently checked [20,21].
The model-checking procedure will either return that H is stable or in the case
that the abstract system does not satisfy the conditions of Theorem 1 return an
abstract counterexample in the form of a simple cycle with weight >1 or say that
the system has an exploding region. In the first case, we know that the system
is stable, and in the third case, it is unstable. For the second case, the Cegar
algorithm proceeds to the validation phase.

Example. Consider the 3-dimensional PSS shown in Fig. 1 (Left). Now, the pic-
ture on the right shows part of the abstract system. The nodes are superimposed
over the facets they represent and the edges show the existence of an execution
between such facets evolving through the common polyhedral set. For instance,
we observe that there exists an execution from facet f1 to f2 evolving through
the polyhedron C. The cycle shown is an abstract counterexample since the
weight associated with it is greater than 1. Validation will check if there exists
an actual execution along the cycle which can witness instability.

Remark 1. The conditions in Theorem 1 are, in fact, both necessary and suffi-
cient in the case of 2-dimensional PSSs [23], however, it is only sufficient in 3
or more dimensions. There are two reasons for the conservativeness. First, the
edges are not transitively closed, because they are existential with respect to the
executions in the concrete system. More precisely, existence of an execution from
a facet f1 to f2 and an execution from f2 to f3 does not imply that there is a
single execution which goes from f1 to f2 to f3. Secondly, a similar transitivity
may not hold on the weights. Suppose that the weight on the edge from f1 to
f2 is w1 and from f2 to f3 is w2. There exists an execution from some point in
f1 to some point in f2 with scaling w1 and an execution from some point in f2
to a point in f3 with weight w2. However, there may not be a single execution
from f1 to f3 through f2 such that the scaling corresponding to the prefix from
f1 to f2 is w1, while that from f2 to f3 is w2.

4.3 Validation

We present some preliminaries and define the validation problem. Next, the
validation procedure and its theoretical basis are presented.

Counterexample Guided Abstraction Refinement for Stability Analysis 503

Definition 9. A simple cycle π in Abs(H,P,F) is an abstract counterexample
if W (π) > 1.

A. Validation Problem. Validation consists of checking if the abstract coun-
terexample corresponds to a violation of stability in the concrete system. Let us
fix a counterexample π = (q0, f0), P0, (q1, f1), P1, . . . , (qk−1, fk−1), Pk−1, (q0, f0)
of A = Abs(H,P,F). The following definition states a connection between the
abstract counterexample and the executions in the concrete system.

Definition 10. An execution σ = (ι, η, γ) of H is said to follow the abstract
counterexample π of A = Abs(H,P,F), denoted σ � π, if there exists a
non-decreasing sequence of times 0 = t0, t1, t2, . . . such that η(ti) ∈ fi mod k,
η(t) ∈ Pi for t ∈ [t(i−1) mod k, ti mod k] and (η(ti), η(ti+1)) ∈ ReachRel((qi, fi), Pi,
(qi+1,fi+1)). Further, σ is said to follow π respecting the weights, denoted
σ

w� π, if in addition

||η(ti+1)||
||η(ti)|| = W ((qi mod k, fi mod k), Pi mod k, (q(i+1) mod k, f(i+1) mod k)).

The following notion captures the violation of Lyapunov stability along π.
The abstract counterexample π is a witness to the violation of Lyapunov stability
by the concrete system H if there exist executions with arbitrary scaling which
follow the cycle respecting the weights.

(C1)∃ε > 0,∀δ > 0,∃σ ∈ Exec(H) such that

σ
w� π, η(0) ∈ Bδ(0̄),∃t ∈ I(ι), η(t) �∈ Bε(0̄)

The next proposition states that the above condition in fact implies that there
is a complete execution along π.

Proposition 1. Condition (C1) is equivalent to the existence of a complete exe-
cution σ of H such that σ

w� π.

While (C1) can be validated exactly, a refinement corresponding to (C1) tries
to eliminate just the executions which follow the weights on the edges of π
exactly. In order to accelerate the progress in the Cegar iterations, we consider
a stronger validation problem, where we do not require the execution to follow
the weights, but still be diverging.

Definition 11. An abstract counterexample π is said to be spurious if there
does not exist a divergent complete execution σ such that σ � π.

Validation problem: Given an abstract counterexample π, is π spurious?

504 P. Prabhakar and M.G. Soto

B. Validation Procedure. The crux of the validation procedure is to reduce
the problem of checking the existence of infinite executions to that of finite
executions. Hence, for m ∈ R≥0 we define a predicate ψπ(m), which captures
the set of points x0, . . . , xk such that xk can be reached from x0 by following the
cycle once, and xk = mx0.

ψπ(m) := ∃x0, x1, . . . , xk ∈ R
n : xk = mx0,∀0 ≤ i < k,

xi ∈ fi, (xi, xi+1) ∈ ReachRel((qi, fi), Pi, (qi+1,fi+1)).

Next, we state the main theorem for validation.

Theorem 2. The following holds for the abstract counterexample π:

V1 ∃m > 1 : ψπ(m) ⇒ ∃σ ∈ CExec(H) : σ � π ∧ σ diverges.
V2 �m : ψπ(m) ⇒ �σ ∈ CExec(H) : σ � π.
V3 ∃m : ψπ(m) ∧ �m > 1 : ψπ(m) ⇒

∃σ ∈ CExec(H) : σ � π ∧ �σ ∈ CExec(H) : σ
w� π.

Remark 2. Condition V1 implies that when there exists m > 1 such that ψπ(m)
holds, the system is unstable. Condition V2 states that when there exist no
m at all such that ψπ(m) is true, then the counterexample has no complete
executions following it, and hence, is spurious. Condition V3 implies that there
is no complete execution following π which respects the weight, however, there
is some complete execution (diverging or not).

Before proving the result above, we introduce some definitions and a fixpoint
theorem that we will use to establish an intermediate result. Let π = (q0, f0), P0,
(q1, f1), P1, . . . , (qk−1, fk−1), Pk−1, (q0, f0) be an abstract counterexample of A.
Let PreReachi(S0), for some S0 ⊆ f0, denote the set of points from which
there is a sequence of length i following π which starts at S0. Similarly, let
WPreReachi(S0) denote the points from which the executions also respect the
weights. We introduce the formal definitions below. PreReach is defined as fol-
lows:

– PreReach0(S0) = S0.
– For i > 0, PreReachi(S0) = preH((qj , fj), Pj , (qj+1,PreReachi−1(S0))), where

j = k − (i mod k).

In addition to WPreReach we also define WPostReach.

– WPreReach0(S0) = S0.
– WPreReachi(S0) = wpreH((qj , fj), Pj , wj , (qj+1,WPreReachi−1(S0))), where

wj = W ((qj−1, fj−1)(qj , fj)), i > 0 and j = k − (i mod k).
– WPostReach0(S0) = S0.
– WPostReachi(S0) = wpostH((qj , fj), Pj , wj , (qj+1,WPostReachi−1(S0))),

where wj = W ((qj−1, fj−1)(qj , fj)), i > 0 and j = i mod k

Counterexample Guided Abstraction Refinement for Stability Analysis 505

Theorem 3 (Kakutani’s fixed point theorem). Let S ⊆ R
n be a non empty,

compact and convex set. Let H : S → 2S be a set-valued function whose graph
{(s, s′) : s′ ∈ H(s)} is a closed set, and for all s ∈ S, H(s) �= ∅ and convex.
Then H has a fixed point, which means ∃s∗ ∈ S : s∗ ∈ H(s∗).

The existence of such kind of fixed point provides us a strategy for proving
the next result.

Proposition 2. If there exists σ ∈ CExec(H) such that σ
w� π, then there exists

a value m greater than 1 such that ψπ(m) holds.

Proof. Suppose σ ∈ CExec(H) such that σ
w� π. Let us first define a set

of starting points for divergent executions following π respecting the weights.
Kernel(π) = {x ∈ f0 | ∃σ = (ι, η, γ) ∈ CExec(H) : η(0) = x, σ

w� π}.
Kernel(π) is a closed convex set which is positive scaling closed. This follows

from the following facts. Firstly, the facet f0 is closed, convex and positive scal-
ing closed, since it is a facet from a polyhedral partition respecting a PSS H in
normal form. Next, the set Kernel(π) is the intersection of WPreReachi(f0) for
i � 0 which is a multiple of k, the length of the counterexample π. (This depends
on the fact that the set Z =

⋂
i mod k=0 WPreReachi(f0) has the property that

Z ⊆ PreReachk(Z)). Finally, the WPreReach and intersection operations pre-
serve the closedness, the convexity and the positive scaling property.

Consider a set-valued function G from f0 to f0 which maps x0 ∈ f0 to the set
WPostReachk(x0). Define S = {x | ||x|| ≤ 1, x ∈ Kernel(π)}. Since Kernel(π) is
non-empty, convex, closed and closed under positive scaling, we obtain that S is
non-empty, compact and convex. Compactness follows from the assumption that
Kernel(π) is closed and the set ||x|| ≤ 1 is compact, and hence, their intersection
S is compact. The convexity of S follows from the fact that it is the intersection
of the set Kernel(π) and the set ||x|| ≤ 1, both of which are convex.

Define K as an upper bound for the scaling of the executions follow-
ing π for one iteration and respecting the weights, so the ones from f0 to
WPostReachk(f0), being k the length of π. Define the set valued function H
from S to 2S , which maps x ∈ S to the set { y

K | y ∈ G(x)}.
Note that the graph {(x, y) | y ∈ G(x)} is a closed set. Consider a sequence

of points (x0, y0), (xi, yi), . . . which belong to the graph and converge to (x, y).
Then x will be in the domain of the graph because of closedness of f0. And
y ∈ G(x) because of compactness and linearity of every polyhedral set Flow(q)
for q ∈ Loc which represents the dynamics.

Next, we show that H has a fixed point. For this, we apply the Kakutani’s
fixed point theorem. Since H defined above satisfies the hypothesis of Kakutani’s
theorem, there exists s∗ ∈ S such that s∗ ∈ H(s∗). Then, Note that s∗ ∈ G(s∗)

K ,
it is Ks∗ ∈ G(s∗). Then the sequence of points s∗,Ks∗,K2s∗, . . . holds ψπ(K),
and K > 1 because it is an upper bound on the W (π) and π is a counterexample,
and Kj+1s∗ ∈ WPostReachk(Kjs∗) for every j � 0. �

Next, we prove Theorem 2. Suppose π is an abstract counterexample.

506 P. Prabhakar and M.G. Soto

V1 Suppose there exists m > 1 and x0, . . . , xk ∈ R
n such that for all 0 ≤ i < k,

xi ∈ fi and (xi, xi+1) ∈ ReachRel((qi, fi), Pi, (qi+1,fi+1)), and xk = mx0.
Then consider the infinite execution ν = x0, . . . , xk−1,mx0, . . . ,mxk−1,
m2x0, . . . ,m2xk−1, . . . such that (mjxi,m

jxi+1) ∈ ReachRel((qi, fi),
Pi, (qi+1,fi+1)) for every j � 0 because of linearity of the flows. Construct
with such points and π an execution σ such that σ � π. Note that σ diverges,
since m > 1.

V2 It can show by using a similar argument that in the proof of Proposition 2 but
defining Kernel(π) as {x ∈ f0 | ∃σ = (ι, η, γ) ∈ CExec(H) : η(0) = x, σ � π}.

V3 Suppose there exists 0 < m � 1 and x0, . . . , xk ∈ R
n such that for all

0 ≤ i < k, xi ∈ fi and (xi, xi+1) ∈ ReachRel((qi, fi), Pi, (qi+1,fi+1)),
and xk = mx0. Then consider the infinite execution ν =
x0, . . . , xk−1,mx0, . . . ,mxk−1,m

2x0, . . . ,m2xk−1, Construct with such
points and π an execution σ such that σ � π. Note that there does not
exist σ respecting the weights in π because in case of existence we would get
a contradiction due to Proposition 2. �

4.4 Refinement

First, we formalize the refinement problem. Then, we present different strategies
for refinement by considering the reason for the spuriousness of the abstract
counterexample.

A. Refinement Problem. We first introduce the notion of refinement.

Definition 12. Given two abstract systems for H, A = Abs(H,P,F) =
(V,E,W) and A′ = Abs(H,P,F ′) = (V ′, E′,W ′), A′ is said to be a refine-
ment of A, if there exists a mapping α : V ′ → V such that if (v1, P, v2) ∈ E′,
then (α(v1), P, α(v2)) ∈ E, and W ′(v1, P, v2) ≤ W (α(v1), P, α(v2)).

Next we associate a set of triples with an abstract system which captures the
potential executions and scalings along the edges.

Definition 13. Given an abstract system A = (V,E,W) of H, Pot(A) = {((q1,
x), w, (q2, y)) | ∃((q1, f1), P, (q2, f2)) ∈ E, x ∈ f1, y ∈ f2, ||y||/||x|| = w ≤ W ((q1,
f1), P, (q2, f2))}.
Definition 14. An abstract system A′ of H is a strict refinement of an abstract
system A of H, if A′ is a refinement of A and Pot(A′) is a strict subset of Pot(A).

Refinement problem: Given the concrete system H, an abstract system A of H
and a spurious abstract counterexample of A,namely π, find a strict refinement
A′ of A.

Remark 3. Observe that if F ′ is a facet partition which is strictly finer than F ,
then Abs(H,P,F ′) is a refinement of Abs(H,P,F), however, it may not be a
strict refinement of Abs(H,P,F). Hence, it is crucial to exploit the spuriousness
of the abstract counterexample π to construct a finer facet partition F ′ such
that A′ = Abs(H,P,F ′) is a strict refinement of A.

Counterexample Guided Abstraction Refinement for Stability Analysis 507

B. Refinement Procedure. We present two different strategies for refinement
based on the reason for the spuriousness. First, we show that non-existence of a
complete execution along π (respecting the weights) implies that the PreReach
(WPreReach) computation terminates.

Theorem 4. Consider a PSS H, an abstract system A of H and a counterex-
ample π. Then

R1 If �σ ∈ CExec(H) such that σ � π ⇒ PreReachi(f0) = ∅ for some i.
R2 If �σ ∈ CExec(H) such that σ

w� π ⇒ WPreReachi(f0) = ∅ for some i.

From Theorem 2, there are two reasons for spuriousness corresponding to Con-
ditions V2 and V3. Statements R1 and R2 suggest the refinement strategies
corresponding to V2 and V3.

Refinement strategy when the premise of V2 holds. Let ι be the smallest index
such that PreReachι(f0) empty. Note that S1 = PreReachι−1(f0) is not empty.
Let the value k̂ = k−(ι mod k). Also, (k̂+1) mod k is the index of the facet which
contains S1. It also implies that the set S2 = postH((qk̂, fk̂), Pk̂, (q(k̂+1) mod k,

f(k̂+1) mod k)) which is also a subset of f(k̂+1) mod k has an empty intersection
with S1. Refinement corresponds to refining the facet f(k̂+1) mod k into {f1, f2}
such that it separates S1 and S2, that is, S1 ⊆ f1 and S2 ⊆ f2, and S1 ∩ f2 = 0̄
and S2∩f1 = 0̄. Such a splitting is always possible since S1 and S2 are two closed
convex polyhedral sets whose intersection contains only 0̄ and hence, there exists
a hyperplane which separates them.

Fig. 2. Refinement

An illustration of the refinement is
shown in Fig. 2. The system is parti-
tioned by the two polyhedral sets C and
E, in which the flow direction is deter-
mined by the dashed lines, pointing from
facet f1 to facet f2 and from f2 to facet
f3. Observe that after performing prede-
cessor operation on f3 once we reach S2

in f2, and predecessor reach set of S2 in
f1 becomes empty. From f1 the succes-
sor reach set is computed and intersected with f2, obtaining S1. The two sets S1

and S2 are almost disjoint but for 0̄ so they can be separated by a hyperplane.
A choice of a separating hyperplane is 3x + 2z = 0.

Proposition 3. The abstract system Abs(H,P,F ′) is a strict refinement of the
abstract system Abs(H,P,F), where F ′ = (F\{f(k̂+1) mod k}) ∪ {f1, f2}.

Proof. It follows from the fact that there is an edge from (qk̂, fk̂) to (q(k̂+1) mod k,

f2), but no edge from (qk̂, fk̂) to (q(k̂+1) mod k, f1).

508 P. Prabhakar and M.G. Soto

Refinement strategy when the premise of V3 holds. The refinement is similar to
the previous case, except that all the operators are replaced by their weighted
counterparts, that is, PreReach is replaced by WPreReach and post by wpost. The
following proposition implying progress is similar to Proposition 3, however, the
proof relies on the reduction of the weight rather than the removal of an edge.

Proposition 4. The abstract system Abs(H,P,F ′) is a strict refinement of the
abstract system Abs(H,P,F), where F ′ = (F\{f(k̂+1) mod k}) ∪ {f1, f2}.

Proof. Note that the weight of the edge ((qk̂, fk̂), Pk̂, (q(k̂+1) mod k, f1)),
if it exists, is less than the weight wk̂, the weight of the edge
((qk̂, fk̂), Pk̂, (q(k̂+1) mod k, f(k̂+1) mod k)).

Algorithm 1 summarizes the validation and refinement procedures. Line 8
checks if there exists an infinite diverging trajectory by constructing the formula
ψπ(m > 1). If it is satisfiable, then a counterexample is found. If not, a refinement
is required. However, to determine the type of refinement, the satisfiability of the
formula ψπ(m ≤ 1) is checked. If it is not satisfiable, then no infinite execution
corresponding to the abstract counterexample exists, and we proceed with a
non-weighted refinement. However, if ψπ(m ≤ 1) is satisfiable, we know that an
infinite execution exists, but we cannot conclude that it is diverging, hence, we
proceed with a weighted refinement in Line 14.

5 Implementation

The validation procedure and the refinement strategies have been implemented
in Python 2.7.3. We use Z3 SMT solver [7] for the validation, that is, checking
the satisfiability of the formulas in Theorem2; and use Parma Polyhedra Library
(PPL) for performing polyhedral operations such as reachability computations
in the refinement process. We also use Averist [22] for the abstraction and
model-checking algorithms from [20].

We illustrate our Cegar algorithm on a particular class of polyhedral
switched systems. The experiments are inspired by the example described in
Fig. 1. The 3-dimensional experiments consist of the same locations as the one
in the example where the configurations of the flow function Flow are modified.
The 4 and 5-dimensional experiments are obtained by extending every element
of the example to higher dimensions.

Some of our results are summarized in Table 1. Here, Exp refers to the exper-
iment number, Dim to the dimension of the concrete system (number of contin-
uous variables) and Stab states whether the concrete system is Lyapunov stable
(Y) or not (N). Ans is the output of the Cegar algorithm, which can be sta-
ble (S) (when the model-checking succeed), unstable (NS) (when the validation
succeeds) or no answer (NA) (if the system does not terminate in a pre-set
time). Regions is the number of regions in the polyhedral partition. IT refers to
the number of iterations of the Cegar loop before termination, Ref indicates if
weighted refinement strategy has been applied for some iteration, Pre states only

Counterexample Guided Abstraction Refinement for Stability Analysis 509

Table 1. Experimental results for Cegar algorithm

Exp Dim Stab Ans Regions IT Ref Size A time MC time Val time Ref time Time

1 3 Y S 163 3 Pre 75 18.75 0.01 0.03 0.03 20.02

2 3 Y S 287 11 Pre 153 196 0.23 0.84 0.30 204.50

3 3 N NS 135 1 - − 0 0 0 0 0.15

4 3 Y NA 59 11 WPre 123 119.32 0.25 0.94 2.44 130.91

5 3 N NS 9 1 - 16 0.30 ε 0.13 0 0.55

6 3 Y S 151 2 WPre 74 12.55 ε 0.17 0.07 5.72

7 3 Y S 179 4 Pre 87 31.63 0.02 0.03 0.04 33.62

8 3 Y S 291 11 Pre 157 249.40 0.38 0.57 0.39 269.11

9 4 Y S 537 3 Pre 341 312 0.32 0.32 0.10 319.42

10 4 Y S 865 7 Pre 601 1543 2.13 1.18 0.28 1582.33

11 5 Y S 1706 3 Pre 1365 4208 4.32 0.51 0.12 4252

Table 2. Comparison of Averist and Cegar technique

Averist Cegar technique

Exp Dim Stab Answer Regions Runs Time Answer Regions IT Time

2 3 Y NA 85250 6 10658.26 S 287 11 204.50

2 3 Y NA 4034 4 857.23 NA 59 11 130.91

3 3 Y NA 4035 4 181.32 S 151 2 5.72

4 3 Y NA 4035 4 187.24 S 179 4 33.62

5 4 Y NA 27201 3 4728.61 S 537 3 319.42

predecessor reach computation and WPre indicates some weighted predecessor
reach computation has been performed. Size refers to the number of nodes in
the final weighted graph. The time for abstraction, A time, model-checking, MC
time, validation, Val time and refinement, Ref time, are shown along with the
total time Time. All the times are in seconds, and ε indicates a value smaller
than 0.001.

A limit on the number of Cegar iterations has been set to 11, but it can
be set to any arbitrary value. The Cegar procedure terminates on most of the
examples that we are reporting. In the case of experiment 4 we do not obtain
any answer, while in the case of experiments 3 and 5 we obtain instability. In
the experiment 3, we observe instability due to an exploding region, therefore all
the times are zero. In the experiment 5, the refinement is not performed because
the validation algorithm returns the existence of a concrete counterexample. Our
experiments illustrate that the Cegar framework is practically feasible, since
the times added by the validation and refinement procedures can be neglected
if considering the total times.

Next, we compare the Cegar algorithm with Averist. Averist allows spec-
ification of predicates as well as built-in automated methods for generating uni-
form predicates based on an input granularity value. In our comparison, we
run our examples on Averist by iteratively increasing the number of predi-

510 P. Prabhakar and M.G. Soto

cates using this feature. Our Cegar algorithm on the other hand applies the
new refinement strategies based on the returned counterexamples for adding the
predicates. We choose the termination criterion for Cegar to be a bound of
11 on the number of iterations, and for Averist, we stop when the running
time is more than 5 times the total time taken by the Cegar algorithm. We
compared all the examples in Table 1 with Averist, however, we present only
a representative subset of them in Table 2. In Table 2, Exp refers to the exper-
iment number, Dim to the dimension of the concrete system and Stab states
whether the concrete system is Lyapunov stable (Y) or not (N). Answer is the
algorithmic output, which can be stable (S), unstable (NS) or no answer (NA).
Regions is the number of regions in the last polyhedral partition. Runs refers
to the number of times Averist is run with an incremented number of uni-
form predicates, IT refers to the number of iterations of the Cegar loop before
termination and Time is the total time. As we observe from the experiments,
Averist does not terminate on any of the examples within time 5 times that
of the Cegar algorithm. It shows that uniformly partitioning may be slower
since the new predicates added are not necessarily useful towards constructing
the right abstractions that are successful in stability analysis.

6 Conclusions

In this paper, we developed a counterexample guided abstraction refinement
framework for the stability analysis of polyhedral switched systems. This app-
roach explores the search space systematically by using counterexamples. To the
best of our knowledge, this is the first Cegar framework for stability analysis.
Instantiating the Cegar algorithm for stability analysis is non-trivial, since the
notion of a counterexample is more involved, and the refinement is more expen-
sive. Future work will focus on extending the ideas in the paper to more general
classes of switched systems.

Acknowledgements. This work is partially supported by the Marie Curie Career
Integration Grant no. 631622 and the NSF CAREER award no. 1552668 to Pavithra
Prabhakar and by the research grant no. BES-2013-065076 from the Spanish Ministry
of Economy and Competitiveness to Miriam Garćıa Soto.

References

1. Alur, R., Courcoubetis, C., Henzinger, T.A., Ho, P.: Hybrid automata: an algorith-
mic approach to the specification and verification of hybrid systems. In: Grossman,
R.L., Nerode, A., Ravn, A.P., Rischel, H. (eds.) Hybrid Systems. LNCS, vol. 736,
pp. 209–229. Springer, Heidelberg (1992)

2. Alur, R., Dang, T., Ivanvcić, F.: Counter-example guided predicate abstraction of
hybrid systems. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619,
pp. 208–223. Springer, Heidelberg (2003)

Counterexample Guided Abstraction Refinement for Stability Analysis 511

3. Bogomolov, S., Frehse, G., Greitschus, M., Grosu, R., Pasareanu, C., Podelski, A.,
Strump, T.: Assume-guarantee abstraction refinement meets hybrid systems. In:
Yahav, E. (ed.) HVC 2014. LNCS, vol. 8855, pp. 116–131. Springer, Heidelberg
(2014)

4. Branicky, M.S.: Stability of hybrid systems: state of the art. In: Conference on
Decision and Control, pp. 120–125 (1997)

5. Clarke, E.M., Fehnker, A., Han, Z., Krogh, B., Ouaknine, J., Stursberg, O.,
Theobald, M.: Abstraction and counterexample-guided refinement in model check-
ing of hybrid systems. Int. J. Found. Comput. Sci. 14(4), 583–604 (2003)

6. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS,
vol. 1855, pp. 154–169. Springer, Heidelberg (2000)

7. de Moura, L., Bjørner, N.S.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

8. Duggirala, P.S., Mitra, S.: Abstraction refinement for stability. In: International
Conference on Cyber-Physical Systems, pp. 22–31 (2011)

9. Graf, S., Saidi, H.: Construction of abstact state graphs with PVS. In: Grumberg,
O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 72–83. Springer, Heidelberg (1997)

10. Kapinski, J., Deshmukh, J.V., Sankaranarayanan, S., Arechiga, N.: Simulation-
guided lyapunov analysis for hybrid dynamical systems. In: Proceedings of the
International Conference on Hybrid Systems: Computation and Control, pp. 133–
142 (2014)

11. Khalil, H.K.: Nonlinear Systems. Prentice-Hall, Upper Saddle River (1996)
12. Kourjanski, M., Varaiya, P.: Stability of hybrid systems. In: Alur, R., Henzinger,

T.A., Sontag, E.D. (eds.) Hybrid Systems III. LNCS, vol. 1066, pp. 413–423.
Springer, Heidelberg (1995)

13. Liberzon, D.: Switching in Systems and Control. Birkhäuser, Boston (2003)
14. Lin, H., Antsaklis, P.J.: Stability and stabilizability of switched linear systems: a

survey of recent results. IEEE Trans. Autom. Control 54(2), 308–322 (2009)
15. Möhlmann, E., Theel, O.E.: Stabhyli: a tool for automatic stability verification

of non-linear hybrid systems. In: Proceedings of the International Conference on
Hybrid Systems: Computation and Control, pp. 107–112 (2013)

16. Oehlerking, J., Burchardt, H., Theel, O.: Fully automated stability verification for
piecewise affine systems. In: Bemporad, A., Bicchi, A., Buttazzo, G. (eds.) HSCC
2007. LNCS, vol. 4416, pp. 741–745. Springer, Heidelberg (2007)

17. Parrilo, P.A.: Structure semidefinite programs and semialgebraic geometry meth-
ods in robustness and optimization. Ph.D. thesis, California Institute of Technol-
ogy, Pasadena, CA, May 2000

18. Prabhakar, P., Duggirala, P.S., Mitra, S., Viswanathan, M.: Hybrid automata-
based CEGAR for rectangular hybrid systems. In: Giacobazzi, R., Berdine, J.,
Mastroeni, I. (eds.) VMCAI 2013. LNCS, vol. 7737, pp. 48–67. Springer, Heidelberg
(2013)

19. Prabhakar, P., Dullerud, G.E., Viswanathan, M.: Pre-orders for reasoning about
stability. In: Proceedings of the International Conference on Hybrid Systems: Com-
putation and Control, pp. 197–206 (2012)

20. Prabhakar, P., Soto, M.G.: Abstraction based model-checking of stability of hybrid
systems. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 280–
295. Springer, Heidelberg (2013)

21. Prabhakar, P., Soto, M.G.: An algorithmic approach to stability verification of
polyhedral switched system. In: American Control Conference (2014)

512 P. Prabhakar and M.G. Soto

22. Prabhakar, P., Soto, M.G.: AVERIST: an algorithmic verifier for stability. Electron.
Notes Theor. Comput. Sci. 317, 133–139 (2015)

23. Prabhakar, P., Viswanathan, M.: On the decidability of stability of hybrid systems.
In: Proceedings of the International Conference on Hybrid Systems: Computation
and Control (2013)

24. Yfoulis, C.A., Shorten, R.: A numerical technique for stability analysis of linear
switched systems. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993,
pp. 631–645. Springer, Heidelberg (2004)

Symbolic Optimal Reachability in Weighted
Timed Automata

Patricia Bouyer(B), Maximilien Colange,
and Nicolas Markey

LSV – CNRS, ENS Cachan,
Université Paris Saclay, Cachan, France

{bouyer,colange,markey}@lsv.fr

Abstract. Weighted timed automata have been defined in the early
2000 s for modelling resource-consumption or -allocation problems in
real-time systems. Optimal reachability is decidable in weighted timed
automata, and a symbolic forward algorithm has been developed to solve
that problem. This algorithm uses so-called priced zones, an extension of
standard zones with cost functions. In order to ensure termination, the
algorithm requires clocks to be bounded. For unpriced timed automata,
much work has been done to develop sound abstractions adapted to
the forward exploration of timed automata, ensuring termination of the
model-checking algorithm without bounding the clocks. In this paper,
we take advantage of recent developments on abstractions for timed
automata, and propose an algorithm allowing for symbolic analysis of
all weighted timed automata, without requiring bounded clocks.

1 Introduction

Timed automata [AD94] have been introduced in the early 1990s as a power-
ful model to reason about (the correctness of) real-time computerized systems.
Timed automata extend finite-state automata with several clocks, which can
be used to enforce timing constraints between various events in the system.
They provide a convenient formalism and enjoy reasonably-efficient algorithms
(e.g. reachability can be decided using polynomial space), which explains the
enormous interest that they raised in the community of formal verification.

Hybrid automata [ACHH93] can be viewed as an extension of timed
automata, involving hybrid variables: those variables can be used to measure
other quantities than time (e.g. temperature, energy consumption,...). Their
evolution may follow differential equations, depending on the state of the sys-
tem. Those variables unfortunately make the reachability problem undecid-
able [HKPV98], even in the restricted case of stopwatches (i.e., clocks that can
be stopped and restarted).

Weighted (or priced) timed automata [ALP01,BFH+01] have been proposed
in the early 2000s as an intermediary model for modelling resource-consumption

This work was partly supported by ERC project EQualIS (FP7-308087) and FET
project Cassting (FP7-601148).

c© Springer International Publishing Switzerland 2016
S. Chaudhuri and A. Farzan (Eds.): CAV 2016, Part I, LNCS 9779, pp. 513–530, 2016.
DOI: 10.1007/978-3-319-41528-4 28

514 P. Bouyer et al.

land?

c := 0

c delayt Tarr

+ke

t Tarr

+kl

t Tlate

t Tearly

land!

t = Tarr

+Pl

Tarr

land!

Fig. 1. A (simplified) model of the Aircraft Landing System [LBB+01]: aircrafts (left)
have an optimal landing time Tarr within a possible landing interval [Tearly, Tlate]. The
aircraft can speed up (which incurs some extra cost, modelled by ke) to land earlier
than Tarr, or can delay landing (which also entails some penalties, modelled by Pl

and kl). Some delay has to occur between consecutive landings on the same runway,
because of wake turbulence; this is taken into account by the model of the runways
(right).

or -allocation problems in real-time systems (e.g. optimal scheduling [BLR05]).
Figure 1 displays an example of a weighted timed automaton, modelling air-
crafts (left) that have to land on runways (right). In (single-variable) weighted
timed automata, each location carries an integer, which is the rate by which
the hybrid variable (called cost variable hereafter) increases when time elapses
in that location. Edges may also carry a value, indicating how much the cost
increases when crossing this edge. Notice that, as opposed to (linear) hybrid
systems, the constraints on edges (a.k.a. guards) only involve clock variables:
the extra quantitative information measured by the cost is just an observer of
the system, and it does not interfere with the behaviors of the system.

Optimal cost for reaching a target, and associated almost-optimal sched-
ules, can be computed in weighted timed automata [ALP01,BFH+01,BBBR07].
The proofs of these results rely on region-based algorithms (either priced
regions [BFH+01], or corner-point refinements [ALP01,BBBR07]). Similarly to
standard regions for timed automaton [AD94], such refinements of regions are not
adapted to a real implementation. A symbolic approach based on priced zones
has been proposed in [LBB+01], and later improved in [RLS06]. Zones are a stan-
dard symbolic representation for the analysis of timed-automata [BY03,Bou04],
and priced zones extend zones with cost functions recording, for each state of the
zone, the optimal cost to reach that state. A forward computation in a weighted
timed automaton can be performed using priced zones [LBB+01]: it is based on a
single-step Post-operation on priced zones, and on a basic inclusion test between
priced zones (inclusion of zones, and point-to-point comparison of the cost func-
tion on the smallest zone). The algorithmics has been improved in [RLS06],
and termination and correctness of the forward computation is obtained for
weighted timed automata in which all clocks are bounded. Bounding clocks of a
weighted timed automaton can always be achieved (while preserving the cost),
but it may increase the size of the model. We believe that a better solution
is possible: for timed automata and zones, a lot of efforts have been put into
the development of sound abstractions adapted to the forward exploration of
timed automata, ensuring termination of the model-checking algorithms with-
out bounding clocks [BY03,BBFL03,BBLP06,HKSW11,HSW12].

Symbolic Optimal Reachability in Weighted Timed Automata 515

In this paper, we build on [LBB+01,RLS06], and extend the symbolic algo-
rithm to general weighted timed automata, without artificially bounding the
clocks of the model. The keypoint of our algorithm is an inclusion test between
abstractions of priced zones, computable from the (non abstracted) priced zones
themselves. It can be seen as a priced counterpart of a recently-developed inclu-
sion test over standard zones [HSW12]: it compares abstractions of zones with-
out explicitly computing them, which has shown its efficiency for the analysis of
timed automata. We prove that the forward-exploration algorithm using priced
zones with this inclusion test indeed computes the optimal cost, and that it ter-
minates. We also propose an algorithm to effectively decide inclusion of priced
zones. We implemented our algorithm, and we compare it with that of [RLS06].

Related Work. The approach of [LBB+01,RLS06] is the closest related work.
Our algorithm applies to a more general class of systems (unbounded clocks),
and always computes fewer symbolic states on bounded models (see Remark 1);
also, while the inclusion test of [RLS06] reduces to a mincost flow problem,
for which efficient algorithms exist, we had to develop specific algorithms for
checking our new inclusion relation. We develop this comparison with [RLS06]
further in Sect. 6, including experimental results.

Our algorithm can be used in particular to compute best- and worst-
case execution times. Several tools propose WCET analysis based on timed
automata: TIMES [AFM+03] uses binary-search to evaluate WCET, while
Uppaal [GELP10] and METAMOC [DOT+10] rely on the algorithm of [RLS06]
mentioned above; in particular they require bounded clocks to ensure termina-
tion. A tentative workaround to this problem has been proposed in [ARF14], but
we are uncertain about its correctness (as we explain with a counter-example
in [BCM16]).

All proofs are available in the research report [BCM16].

2 Weighted Timed Automata

In this section we define the weighted (or priced) timed automaton model, that
has been proposed in 2001 for representing resource consumption in real-time
systems [ALP01,BFH+01].

We consider as time domain the set R�0 of non-negative reals. We let X be
a finite set of variables, called clocks. A (clock) valuation over X is a mapping
v : X → R�0 that assigns to each clock a time value. The set of all valuations
over X is denoted R

X
�0. Let t ∈ R�0, the valuation v + t is defined by (v +

t)(x) = v(x) + t for every x ∈ X. For Y ⊆ X, we denote by [Y ← 0]v the
valuation assigning 0 (respectively v(x)) to every x ∈ Y (respectively x ∈ X \Y).
We write 0X for the valuation which assigns 0 to every clock x ∈ X.

The set of clock constraints over X, denoted C(X), is defined by the grammar
g : := x ∼ c | g ∧ g, where x ∈ X is a clock, c ∈ N, and ∼ ∈ {<,�,=,�, >}.

Clock constraints are evaluated over clock valuations, and the satisfaction
relation, denoted v |= g, is defined inductively by v |= (x ∼ c) whenever v(x) ∼ c,
and v |= g1 ∧ g2 whenever v |= g1 and v |= g2.

516 P. Bouyer et al.

Definition 1. A weighted timed automaton is a tuple A = (X,L, �0,
Goal, E,weight) where X is a finite set of clocks, L is a finite set of loca-
tions, �0 ∈ L is the initial location, Goal ⊆ L is a set of goal (or final) loca-
tions, E ⊆ L × C(X) × 2X × L is a finite set of edges (or transitions), and
weight : L ∪ E → Z is a weight function which assigns a value to each location
and to each transition.

In the above definition, if we omit the weight function, we obtain the well-known
model of timed automata [AD90,AD94]. The semantics of a weighted timed
automaton is that of the underlying timed automaton, and the weight function
provides quantitative information about the moves and executions of the system.

The semantics of a timed automaton A = (X,L, �0,Goal, E) is given as a
timed transition system TA = (S, s0,→) where S = L × R

X
�0 is the set of con-

figurations (or states) of A, s0 = (�0,0X) is the initial configuration, and →
contains two types of moves:

– delay moves: (�, v) t−→ (�, v + t) if t ∈ R�0;
– discrete moves: (�, v) e−→ (�′, v′) if there exists an edge e = (�, g, Y, �′) in E

such that v |= g, v′ = [Y ← 0]v.

A run � in A is a finite sequence of moves in the transition system TA, with
a strict alternation of delay moves (though possibly 0-delay moves) and discrete
moves. In the following, we may write a run � = s

t1−→ s′
1

e1−→ s1
t2−→ s′

2
e2−→ s2 . . .

more compactly as � = s
t1,e1−−−→ s1

t2,e2−−−→ s2 · · · . If � ends in some s = (�, v)
with � ∈ Goal, we say that � is accepting. For a configuration s ∈ S, we write
Runs(A, s) the set of accepting runs that start in s.

In the following we will assume timed automata are non-blocking, that is,
from every reachable configuration s, there exist some delay t, some edge e and
some configuration s′ such that s

t,e−−→ s′ in A.
We can now give the semantics of a weighted timed automaton A =

(X,L, �0,Goal, E,weight). The value weight(�) given to location � represents a
cost rate, and delaying t time units in a location � will then cost t · weight(�).
The value weight(e) given to edge e represents the cost of taking that edge.
Formally, the cost of the two types of moves is defined as follows:

⎧
⎨

⎩

cost
(
(�, v) t−→ (�, v + t)

)
= t · weight(�)

cost
(
(�, v) e−→ (�′, v′)

)
= weight(e)

A run � of a weighted timed automaton is a run of the underlying timed automa-
ton. The cost of �, denoted cost(�), is the sum of the costs of all the simple moves
along �.

Example 1. We consider the weighted timed automaton A depicted in
Fig. 2 (left). When a weight is non-null, we add a corresponding decoration to
the location or to the transition. A possible run in A is:

� = (�0, 0) 0.1−−→ (�0, 0.1) e1−→ (�1, 0.1) e3−→ (�3, 0.1) 1.9−−→ (�3, 2) e5−→ (�, 2)

Symbolic Optimal Reachability in Weighted Timed Automata 517

5

0

0

1
10

2

1

3
x 2
y:=0

e1

y=0

e2

y=0
e3

x=2

+1
e4

x=2
+7e5

0

0

x=1
x:=0

y≥10∧x=1

+1

Fig. 2. Examples of weighted timed automata

The cost of � is cost(�) = 5 · 0.1 + 1 · 1.9 + 7 = 9.4 (the cost per time unit is 5
in �0, 1 in �3, and the cost of transition e5 is 7).

The Optimal-Reachability Problem
For this model we are interested in the optimal-reachability problem, and in
the synthesis of almost-optimal schedules. Given a weighted timed automaton
A = (X,L, �0,Goal, E,weight), the optimal cost from s = (�, v) is defined as:

OptcostA(s) = inf
�∈Runs(A,s)

cost(�)

If ε > 0, a run � ∈ Runs(A, s) is ε-optimal whenever cost(�) ≤ OptcostA(s) + ε.
We are interested in OptcostA(s0), simply written as OptcostA, when s0 is

the initial configuration of A. It is known that OptcostA can be computed in
polynomial space [ALP01,BFH+01,BBBR07], and that almost-optimal sched-
ules (that is, for every ε > 0, ε-optimal schedules) can also be computed.

The solutions developed in the aforementioned papers are based on refine-
ments of regions, and a symbolic approach has been proposed in [LBB+01,
RLS06], which extends standard zones with cost functions: this algorithm com-
putes the optimal cost in weighted timed automata with nonnegative weights,
assuming the underlying timed automata are bounded, that is, there is a con-
stant M such that no clock can go above M . This is without loss of generality
w.r.t. optimal cost, since any weighted timed automaton can be transformed
into a bounded weighted timed automaton with the same optimal cost; it may
nevertheless increase the size of the model, and more importantly of the state-
space which needs to be explored (it can be exponentially larger). We believe
that a better solution is possible: for timed automata and zones, a lot of efforts
have been put into the development of sound abstractions adapted to the forward
exploration of timed automata, ensuring termination of the model-checking algo-
rithm without bounding clocks [BY03,BBFL03,BBLP06,HKSW11,HSW12].

Building on [LBB+01,RLS06], we extend the symbolic algorithm to general
weighted timed automata, without assuming bounded clocks. The keypoint of
our algorithm is an abstract inclusion test between priced zones. It can be seen
as a priced counterpart of a recently-developed abstract inclusion test over stan-
dard zones [HSW12]; this test compares abstractions of zones without explicitly
computing them, and has shown its efficiency for the analysis of timed automata.
We prove that the symbolic algorithm using priced zones and this inclusion test
indeed computes the optimal cost, and that it terminates.

518 P. Bouyer et al.

3 Symbolic Algorithm

In this section we briefly recall the approach of [LBB+01,RLS06], and explain
how we extend it to the general model, explaining which extra operation is
required. The rest of the paper is devoted to proving correctness, effectiveness
and termination of our algorithm.

3.1 The Symbolic Representation: priced Zones

Let X be a finite set of clocks. A zone is a set of valuations defined by a gen-
eralized constraint over clocks, given by the grammar γ : := x ∼ c | x − y ∼
c | γ ∧ γ, where x, y ∈ X are clocks, c ∈ Z, and ∼ ∈ {<,�,=,�, >}. Zones
and their representation using Difference Bound Matrices (DBMs in short) are
the standard symbolic data structure used in tools implementing timed sys-
tems [BY03,Bou04].

To deal with weighted timed automata, zones have been extended to priced
zones in [LBB+01]. A priced zone is a pair Z = (Z, ζ) where Z is a zone, and
ζ : RX

�0 → R is an affine function. In a symbolic state (�,Z), the cost function ζ is
meant to represent the optimal cost so far (that is, ζ(v) is the optimal cost so far
for reaching configuration (�, v)). In [LBB+01], it is shown how one can simply
represent priced zones, and how these can be used in a forward-exploration
algorithm. The algorithm is shown as Algorithm 1, and we parametrize it by an
inclusion test
 between priced zones.

Let A = (X,L, �0,Goal, E,weight) be a weighted timed automaton. The algo-
rithm makes a forward exploration of A from (�0,Z0) with Z0 = (Z0, ζ0), where
Z0 is the initial zone defined by

∧
x∈X x = 0 and ζ0 is identically 0 everywhere.

Then, symbolic successors are iteratively computed, and when the target loca-
tion is reached, the minimal cost given by the priced zone is computed (for a
priced zone Z = (Z, ζ), we note infCost(Z) = infv∈Z ζ(v)), and compared to the
current optimal value (variable Cost). An inclusion test between priced zones

Algorithm 1. Symbolic algorithm for optimal cost, with inclusion test

1 Cost ← ∞
2 Passed ← ∅
3 Waiting ← {(�0, Z0)}
4 while Waiting �= ∅ do
5 select (�, Z) from Waiting
6 if � ∈ Goal and infCost(Z) < Cost then
7 Cost ← infCost(Z)

8 if for all (�, Z ′) ∈ Passed, Z �� Z ′ then
9 add (�, Z) to Passed

10 add Post(�, Z) to Waiting

11 return Cost

Symbolic Optimal Reachability in Weighted Timed Automata 519

is performed, which allows to stop the exploration from (�,Z) when Z
 Z ′

and (�,Z ′) already appears in the set of symbolic states that have already been
explored. In [RLS06], the algorithm uses the following inclusion test �, which
refines the inclusion test of [LBB+01]: inclusion Z � Z ′ holds whenever Z ⊆ Z ′

and ζ(v) ≥ ζ ′(v′) for every v ∈ Z. As shown in [RLS06], this algorithm computes
the optimal cost in A, provided it terminates, and this always happens when the
weights in A are nonnegative, and when all clocks in A are bounded.

In the present paper, we define a refined inclusion test � between priced
zones, which will enforce termination of Algorithm 1 even when clocks are not
upper-bounded, and, to some extent, when costs are negative.

We now give some definitions which will allow to state the correctness of
the algorithm. Given a timed automaton A, a location � and a priced zone
Z = (Z, ζ), we say that (�,Z) is realized in A whenever for every valuation
v ∈ Z, and for every ε > 0, there exists a run � from the initial state (�0,0X)
to (�, v), such that ζ(v) � cost(�) ≤ ζ(v) + ε. For a location �, a priced zone
Z = (Z, ζ) and a run � starting in a configuration s, we say that � ends in (�,Z)
if � leads from s to a configuration (�, v) with v ∈ Z and cost(�) � ζ(v). The post
operation Post on priced zones used in Algorithm 1 is described in [LBB+01].
Its computation is effective (see [LBB+01]), and is such that (see [RLS06]):

– every (�,Z) ∈ Post∗(�0,Z0) is realized in A, where Post∗ denotes the iteration
of the Post operator;

– for every run � from a configuration s to a configuration s′, and every mixed
move τ from s′, if � ends in (�,Z), then �τ ends in an element of Post(�,Z).

– for every run � from (�0,0X), there exists (�,Z) ∈ Post∗(�0,Z0) such that �
ends in (�,Z) (this is a consequence of the previous property).

The purpose of this work is to propose an inclusion test � such that the
following three properties are satisfied:

1. (Termination) Algorithm 1 with inclusion test � terminates;
2. (Soudness w.r.t. optimal reachability) Algorithm 1 with inclusion test � com-

putes the optimal cost for reaching Goal;
3. (Effectiveness) There is an algorithm deciding � on priced zones.

We now present our inclusion test, and show its soundness for optimal reacha-
bility. We then turn to effectiveness (Sect. 4), and then to termination (Sect. 5).

3.2 The Inclusion Test

Our inclusion test is inspired by the inclusion test on (pure) zones proposed
in [HSW12].1 We start by recalling an equivalence relation on valuations. We
assume a function M : X → N ∪ {−∞} such that M(x) is larger than any
constant against which clock x is compared to in the (weighted) timed automata
1 Contrary to pure reachability, we cannot use the preorder �LU (which distinguishes

between lower-bounded constraints and upper-bounded constraints) [BBLP06], since
it does not preserve optimal cost (not even optimal time).

520 P. Bouyer et al.

under consideration. Let v and v′ be two valuations in R
X
≥0. Then, v ≡M v′ iff

for every clock x ∈ X, either v(x) = v′(x), or v(x) > M(x) and v′(x) > M(x).
We note [v]M the equivalence class of v under ≡M .

Lemma 2. If v ≡M v′, then, for any � ∈ L, OptcostA(�, v) = OptcostA(�, v′).

We now define our inclusion test for two priced zones Z = (Z, ζ) and Z ′ =
(Z ′, ζ ′); it is parameterized by M , which gives upper bounds on clocks:

Z �M Z ′ iff ∀v ∈ Z, ∀ε > 0, ∃v′ ∈ Z ′ s.t. v ≡M v′ and ζ ′(v′) ≤ ζ(v) + ε.

Theorem 3. When using �M , provided Algorithm1 terminates, it is sound
w.r.t. optimal reachability (the returned cost is the optimal one).

Remark 1. Remember that the inclusion test � of [RLS06] requires Z ⊆ Z ′ and,
for every v ∈ Z, ζ(v) ≥ ζ ′(v). It is easily seen that Z � Z ′ implies Z �M Z ′ for
any M ; hence the branches are always stopped earlier in our algorithm (which
uses �M) than in the original algorithm of [RLS06] (which uses �). Moreover,
� does not ensure termination of the forward exploration when clocks are not
bounded: on the automaton of Fig. 2 (right), where the optimal time to reach the
right state is 10, the forward algorithm successively computes zones x ≤ 1∧n ≤
y − x ≤ n + 1, for every integer n. Any two such zones are always incomparable
(for �).

4 Effective Inclusion Check

In this section we show that we can effectively check the inclusion test �M of
priced zones. For the rest of this section, we fix two priced zones Z = (Z, ζ) and
Z ′ = (Z ′, ζ ′), and a function M . To improve readability, we write ≡ and � in
place of ≡M and �M .

4.1 Formulation of the Optimization Problem

We first express the inclusion of the two priced zones as an optimization problem.

Lemma 4. Z � Z ′ ⇐⇒ supv∈Z infv′∈Z′
v′≡v

ζ ′(v′) − ζ(v) � 0.

Note that Z � Z ′ already requires some relation between zones Z and Z ′:
indeed, for the above inclusion to hold, it should be the case that for every v ∈ Z,
there exists some v′ ∈ Z ′ such that v ≡ v′. Interestingly, this corresponds to the
test on (unpriced) zones developed in [HSW12] (with L = U = M); this can
be done efficiently (in time quadratic in the number of clocks) as a preliminary
test [HSW12, Theorem 34].

Symbolic Optimal Reachability in Weighted Timed Automata 521

x

y

M(x)

M(y)

Z

Z′
πY (Z′

Y)

πY (ZY)

Z′
Y

ZY

Fig. 3. Two-dimensional zones Z
and Z′, and sub-zones ZY and Z′

Y for
Y = {x}.

upper facets
of ZY w.r.t. y

upper facet of ZY w.r.t. y

lower facets of ZY and ZY w.r.t. y

Fig. 4. Simple facets of ZY and Z′
Y w.r.t.

clock y.

Remark 2. The constraint v ≡ v′ is not convex, and we have a bi-level opti-
mization problem to solve. Hence common techniques for convex optimization,
such as dualization [BV04], do not directly apply to the above problem. Still, it is
possible to transform it into finitely many so-called generalized semi-infinite opti-
mization problems (GSIPs) [RS01] (using ZY ’s as defined later in this section).
As far as we know, such problems do not have dedicated efficient algorithmic
solutions. We thus propose a more direct solution, that benefits from the specific
structure of our problem (see for instance Sect. 4.3); it provides a feasible way
to solve our optimization problems, hence to decide � on priced zones.

In order to compute the above optima, we transform our problem into a
finite number of optimization problems that are easier to solve. Let Y ⊆ X.
A zone Z is M -bounded on Y if, for every v ∈ Z, {x | v(x) � M(x)} = Y .
We note ZY the restriction of Z to its M -bounded-on-Y component: ZY =
Z ∩ ⋂

x∈Y (x � M(x)) ∩ ⋂
x/∈Y (x > M(x)). Note that ZY may be empty, and

that the family (ZY)Y ⊆X forms a partition of Z. We also define ZY as the priced
zone (ZY , ζ). We define the natural projection πY : RX

≥0 → R
Y
≥0, which associates

with v ∈ R
X
≥0 the valuation v′ ∈ R

Y
≥0 that coincides with v on Y .

Lemma 5. The following two properties are equivalent:

(i) for every v ∈ Z, there is v′ ∈ Z ′ such that v′ ≡ v
(ii) for every Y ⊆ X, πY (ZY) ⊆ πY (Z ′

Y).

This allows to transform the initial optimization problem into finitely many
optimization problems.

Lemma 6.

sup
v∈Z

inf
v′∈Z′
v′≡v

ζ ′(v′) − ζ(v) = max
Y ⊆X

sup
v∈ZY

inf
v′∈Z′

Y

v′≡v

ζ ′(v′) − ζ(v).

522 P. Bouyer et al.

Corollary 7. Z � Z ′ iff for every Y ⊆ X, ZY � Z ′
Y

In the sequel, we write

S(Z,Z ′, Y) = sup
v∈ZY

inf
v′∈Z′

Y

v′≡v

ζ ′(v′) − ζ(v)

Lemma 4 and Corollary 7 suggest an algorithm for deciding whether Z � Z ′:
enumerate the subsets Y of X, and prove that S(Z,Z ′, Y) ≤ 0. We now show
how to solve the latter optimization problem (for a fixed Y), and then show how
we can drive the choice of Y so that not all subsets of X have to be analyzed.

4.2 Computing S(Z,Z ′, Y)

We show the following main result to compute S(Z,Z ′, Y), which produces a
simpler optimization problem, allowing to decide the inclusion of two priced
zones, on parts where cost functions are lower-bounded.

Theorem 8. Let Z = (Z, ζ) and Z ′ = (Z ′, ζ ′) be two non-empty priced zones,
and let Y ⊆ X be such that πY (ZY) ⊆ πY (Z ′

Y) and ζ and ζ ′ are lower-bounded
on ZY and Z ′

Y respectively. Then we can compute finite sets KY and K′
Y of

zones over Y , and affine functions ζF and ζ ′
F ′ for every F ∈ KY and F ′ ∈ K′

Y

s.t.:
S(Z,Z ′, Y) = max

F∈KY

max
F ′∈K′

Y

sup
u∈F∩F ′

ζ ′
F ′(u) − ζF (u). (1)

The idea behind this result is to first rewrite S(Z,Z ′, Y) into:

S(Z,Z ′, Y) = sup
u∈πY (ZY)

[(
inf

v′∈Z′
Y

πY (v′)=u

ζ ′(v′)
)

−
(

inf
v∈ZY

πY (v)=u

ζ(v)
)]

which decouples the dependency of v′ on v. The algorithm then uses the notion
of facets (introduced in [LBB+01]), which corresponds to the boundary of the
zone w.r.t. a clock (if W is the zone, a facet of W w.r.t. x is W ∩ (x = n) or
W ∩(x−y = m) whenever x 	
 n or x−y 	
 m is a constraint defining W). Given
a clock x ∈ X \ Y , we consider the facets of ZY w.r.t. x that minimize, for any
w ∈ πX\{x}(ZY), the function v → ζ(v) when πX\{x}(v) = w. The restriction
of ζ on such a facet is a new affine function, which we can compute. We then
iterate the process for all clocks in X \Y . We do the same for ζ ′. This yields the
result claimed above: sets KY and K′

Y are sets of projections of facets over Y .
Facets are zones, and so are their projections on Y and intersections thereof.

Additionally, all functions ζF and ζ ′
F ′ are affine; hence the supremum in Eq. (1)

is reached at some vertex u0 of zone F ∩ F ′, for some facets F and F ′. By con-
struction of ζF and ζ ′

F ′ , we get

S(Z,Z ′, Y) = inf
v′∈Z′

Y

π(v′)=u0

ζ ′(v′) − inf
v∈ZY

π(v)=u0

ζ(v)

In particular, u0 has integral coordinates. We end up with the following
result, which will be useful for proving the termination of Algorithm 1:

Symbolic Optimal Reachability in Weighted Timed Automata 523

Corollary 9. Let Z = (Z, ζ) and Z ′ = (Z ′, ζ ′) be two non-empty priced zones,
and let Y ⊆ X be such that πY (ZY) ⊆ πY (Z ′

Y) and ζ and ζ ′ are lower-bounded
on ZY and Z ′

Y respectively. Then the following holds:

S(Z,Z ′, Y) = max
u0∈πY (ZY)

u0∈N
Y

[
min

v′∈Z′
Y

v′≡u0

ζ ′(v′) − min
v∈ZY

v≡u0

ζ(v)
]

The requirement for lower-bounded priced zones in Theorem 8 is crucial in
the proof. But the case when this requirement is not met can easily be handled
separately, so that � can always be effectively decided:

Lemma 10. Let Z = (Z, ζ) and Z ′ = (Z ′, ζ ′) be two non-empty priced zones.

– If ζ is not lower-bounded on Z but ζ ′ is lower-bounded on Z ′, then Z �� Z ′.
– Let Y ⊆ X such that πY (ZY) ⊆ πY (Z ′

Y). If ζ ′ is not lower-bounded on Z ′
Y ,

then ZY � Z ′
Y .

Corollary 11. Let Z = (Z, ζ) and Z ′ = (Z ′, ζ ′) be two priced zones. Then we
can effectively decide whether Z � Z ′.

4.3 Finding the Right Y

Applying Lemma 6, the main obstacle to efficiently decide �M is to find the
appropriate ZY in which the sought supremum is reached. Unless good argu-
ments can be found to guide the search towards the best choice for Y , an exhaus-
tive enumeration of all the Y ’s will be required.

Example 2. We consider the zone Z defined by the constraints x � 0, y � 1, x �
y and y � x+2. We fix M(x) = 2 and M(y) = 3. We then consider Z ′ = Z. The
zone Z is equipped with a constant cost function ζ. In Fig. 5(a), Z ′ is attached
ζ ′(x, y) = x + y, and the expression of the function f(v) = infv′∈Z′, v′≡Mv ζ ′(v′)
is given in each ZY , for Y ⊆ X. It is then easy to see that the supremum of f
is reached at the point (2, 3), in the middle of the zone. In Fig. 5(b), we take
ζ ′(x, y) = 2x−y, and the expression of the function f(v) = infv′∈Z′. v′≡Mv ζ ′(v′)
is given in each ZY . The supremum of f is then reached at the point (2, 2), on
the border, but not at a corner of the zone. The latter example also shows that
f is not continuous on the whole zone Z.

Nevertheless, in many cases, we will be able to guide the search of the ZY

where the sought optimal is to be found. The following development focuses on
the zone, not on the cost function. Given a zone Z, we define a preorder
 on
the clocks, such that if ZY �= ∅, then Y is downward-closed for
. In other
words, whenever x
 y, y ∈ Y and ZY �= ∅, then x ∈ Y . The knowledge of

can be a precious help to guide the enumeration of non-empty ZY ’s. Indeed, if
ZY �= ∅, Y is downward-closed for
, and candidates for Y are thus found by
enumerating the antichains of
. In particular, if
 is total, then there are at
most |X| + 1 sets Y such that ZY �= ∅.

524 P. Bouyer et al.

ζ′

M(y) = 3

M(x) = 2

x+y

x+3

y+2

5

5

Y = ∅ Y = {x}

Y = {y} Y = {x, y}

(a) The sought supremum is
reached in the middle of the zone.

ζ′

M(y) = 3

M(x) = 2

2x−y

x−2

4−y

0

2

Y = ∅ Y = {x}

Y = {y} Y = {x, y}

(b) The sought supremum is
reached on the border of the zone.

Fig. 5. The supremum may lie in the middle of zones or facets

To be concrete, let X≤M and X>M be the (disjoint) sets of clocks x such that
Z ⊆ (x ≤ M(x)) and Z ⊆ (x > M(x)), respectively. We define the relation
Z

as the least relation satisfying the following conditions:

– for each x ∈ X≤M , for each y ∈ X, x
Z y;
– for each y ∈ X>M , for each x ∈ X, x
Z y;
– for all x, y ∈ X \ (X≤M ∪X>M), Z ⊆ (x−y ≤ M(x)−M(y)) implies x
Z y.

Note that, since
Z is the least relation satisfying the above conditions, we have
x �
Z y when (a) x ∈ X>M and y ∈ X \ X>M , and when (b) x ∈ X \ X≤M

and y ∈ X≤M . It is then not difficult to show that
Z is a preorder such that:
y ∈ X≤M and x
Z y implies x ∈ X≤M , and x ∈ X>M and x
Z y implies
y ∈ X>M .

Lemma 12. Let Y ⊆ X such that ZY �= ∅. Then Y is downward-closed for
Z .

The preorder
Z can be computed in polynomial time, since it only requires
to check emptiness of zones, which can be done in time polynomial in |X| (cubic
in |X| with DBMs for instance).

We recall that, if Z is a zone generated in a timed automaton where only
resets of clocks to 0 are allowed, for any pair of clocks x, y, it cannot be the case
that Z crosses the diagonal hyperplane of equation x = y.

Proposition 13. If Z is generated by a timed automaton, and all clocks have
the same bound M , then
Z is total.

Proof. Let x and y be two clocks. Since Z is generated by a timed automaton, it is
contained either in the half-space of equation [x � y], or in the one of equation
[x � y]. By definition of
Z , and since M(x) = M(y), the former entails x
Z y,
and the latter y
Z x. Any two clocks are thus always comparable, and
Z is
therefore total. ��

Symbolic Optimal Reachability in Weighted Timed Automata 525

Under the assumptions of Proposition 13, there are polynomially many sub-
sets Y ⊆ X to try. Note that these assumptions are easily realized by taking
M̃ = maxx∈X M(x) as the unique maximal constant for all the clocks. Formally,
�

M̃
is an under-approximation of the exact version of �M . This approximation

does not hinder correctness, and illustrate the trade-off between the complexity
of the inclusion procedure and the number of priced zones that will be explored.

5 Termination of the Computation

In this section we prove termination of our algorithm, by exhibiting an appro-
priate well-quasi-order. We fix a timed automaton A and a maximal-constant
function M (for every clock x ∈ X, the integer M(x) is larger than any constant
with which clock x is compared in A).

Proposition 14. � is a preorder (or quasi-ordering).

We now consider the “converse” preorder �, defined over priced zones by
Z ′ � Z iff Z � Z ′. We show that � is a well quasi-ordering (wqo). Thus the
relation � has no infinite antichain, which entails termination of Algorithm 1.

We now gather the results to exhibit a sufficient condition for � to be a wqo.

Theorem 15. For every μ ∈ Z, � is a well-quasi-order on (non-empty) priced
zones whose cost functions are either not lower-bounded, or lower-bounded by μ.

Corollary 16. Algorithm1 terminates on weighted timed automata, which gen-
erate priced zones with a uniform lower bound on the cost functions,

We can argue that infinite antichains for � generated by a forward explo-
ration of A actually corresponds to infinite paths in A with cost −∞. While this
condition can be decided (using the corner-point abstraction of [BBL08]), we do
not want to check this as a preliminary step, since this is as complex as computing
the optimal cost. Furthermore, symbolically, this would amount to finding a cycle
of symbolic states which is both ω-iterable [JR11,DHS+14] and cost-divergent;
this is a non-trivial problem. We can nevertheless give simple syntactic condi-
tions for the condition to hold: this is the case of weighted timed automata with
non-negative weights (this is the class considered in [LBB+01,RLS06]); let T� be
the minimum (resp. maximum) delay that can be delayed in � if location � has
positive (resp. negative) cost: if along any cycle of the weighted timed automa-
ton, the sum of the discrete weights and of each T�.weight(�) is nonnegative,
then the above condition will be satisfied; this last condition encompasses all
the acyclic weighted timed automata, like all scheduling problems [BLR05].

6 Experimental Results

We have implemented a prototype, TiAMo, to test our new inclusion test. It is
based on the DBM library of Uppaal (in C++),2 which features the inclusion
2 http://people.cs.aau.dk/∼adavid/UDBM/.

http://people.cs.aau.dk/~adavid/UDBM/

526 P. Bouyer et al.

test of [RLS06]. We added our inclusion test (also in C++). This core is then
wrapped in OCaml code, in which the main algorithm is written. The source
code is publicly available online: http://git.lsv.fr/colange/tiamo.

As we have seen, termination in presence of negative costs is not guaranteed.
We thus limited our experiments to models with positive costs only.

TiAMo is able to prune the state space using the best cost so far. Concretely,
it would not explore states whose cost exceeds the current optimal cost. This
can dramatically reduce the state space to explore, but is sound only when all
costs in the model are non-negative. On such models, the user can provide a
hint, a known cost to TiAMo (obtained for example by a reachability analysis,
or by other independent techniques) to be used to prune the model. Moreover,
TiAMo reports, during the computation, the best known cost so far. Such values
are upper bounds on the sought optimum, and may be interesting to get during
long computations.

A direct comparison between TiAMo and Uppaal3 (or Uppaal-CORA4) is dif-
ficult: the source code of Uppaal (and Uppaal-CORA) is not open, and it is often
hard to know what is precisely implemented. For instance, on the unbounded
automaton of Fig. 2, the algorithm described in [LBB+01,RLS06] does not ter-
minate. Depending on the way it is queried (asking for the fastest trace, or with
an inf query), Uppaal terminates or runs forever on this model.

In order to measure the impact of the inclusion test on the algorithm, we
decided to compare the performance of TiAMo running one or the other inclusion
test (� or �). Our primary concern is to compare the number of (symbolic) states
explored, and the number of inclusion tests performed.

We run our experiments with and without pruning activated. Deactivated
pruning allows to measure the impact of the choice of the inclusion test itself.
It is also more representative of the behavior that can be expected on models
with negative costs, for which pruning is not sound.

The models. We briefly describe the models used in our experiments. The first
two are case studies described on the web page of Uppaal-CORA.

The Aircraft Landing System (ALS) problem has been described in Fig. 1:
it consists in scheduling landings of aircrafts arriving to an airport with several
runways, subject to timing constraints. Early and late arrivals induce a cost,
which is to be minimized globally. We use the original version form Uppaal-
CORA, with two runways and 10 aircrafts. The model has 5 clocks (one global
clock, plus two per runway) and 14, 000 discrete states.

In the Energy-optimal Task-graph Scheduling (ETS) problem, several proces-
sors having different speeds and powers are to be used to perform interdependent
tasks. The aim is to optimize energy consumption for performing the given set
of tasks within a certain delay. The model we used for our experiments is the
one described in [BFLM11, Example 3]. It has 2 clocks (one per CPU) and 55
discrete states.

3 http://www.uppaal.org/.
4 http://people.cs.aau.dk/∼adavid/cora/.

http://git.lsv.fr/colange/tiamo
http://www.uppaal.org/
http://people.cs.aau.dk/~adavid/cora/

Symbolic Optimal Reachability in Weighted Timed Automata 527

Table 1. Experimental results

Waiting # Passed # stored # tests # succ. tests time (s.)

A
S
L +

P � 11,820 4,785 9,324 3.7 × 1005 13,676 0.3

� 32,322 13,036 26,555 2.9 × 1006 32,263 0.7

-P
� 1.7 × 1006 1.5 × 1006 6.9 × 1005 8.1 × 1008 1.2 × 1007 312.7

� TO TO TO TO TO TO

E
T
S

+
P � 107 84 83 174 66 0.0

� 664 606 590 17,684 455 0.0

V
R
P
T
W

+
P � 6.0 × 1005 4.8 × 1005 5.6 × 1005 6.2 × 1006 1.7 × 1005 11.3

� 1.5 × 1006 1.3 × 1006 1.4 × 1006 9.1 × 1007 7.0 × 1005 27.5

-P

� 1.3 × 1006 1.3 × 1006 1.3 × 1006 2.5 × 1007 7.0 × 1005 23.9

� 5.8 × 1006 5.8 × 1006 5.4 × 1006 1.1 × 1009 1.9 × 1006 111.2

u
n
b
o
u
n
d
.

+
P � 14 13 14 135 3 0.0

� TO TO TO TO TO TO

-P

� 14 14 14 135 3 0.0

� TO TO TO TO TO TO

In the Vehicle Routing Problem with Time Windows (VRPTW) problem,
a fleet of vehicles with limited capacity is to be scheduled to deliver goods to
customers. Deliveries should respect the customers preferred time windows. We
use the version downloadable from the Uppaal-CORA website, with a few syn-
tactical modifications to account for the limits of the parser of TiAMo. The
cost function used in this example is a combination of the distance travelled by
the vehicles, the time to achieve deliveries, and the demand satisfied on time.
The model considers 3 vehicles and 7 customers, and has 4 clocks (one for each
vehicle and a global clock) and about 150, 000 discrete states.

Finally, we also ran TiAMo on the model Fig. 2, to illustrate that � handles
unbounded models. This model has two clocks and two discrete states.

Exploration Strategies. TiAMo implements several strategies to explore the sym-
bolic state space. We retain here only the one called SBFS, a modification of BFS
based on the observation that, if s subsumes s′, the successors of s′ are subsumed
by successors of s. Successors of s are thus explored first, until all successors of s′

in the Waiting list are subsumed. This is a very naive implementation of a strat-
egy proposed in [HT15]. The strategy has two variants, depending on whether
pruning is activated (+P) or not (−P). For the ETS problem, both yield very
similar results, so we chose to only present +P.

Experimental Results. The results are summed up in Table 1. For each model,
and for different combinations of inclusion test and exploration strategy, we
indicate the number of symbolic states added to the Waiting list, added to the
Passed list, as well as the number of tests (successful or not) that have been
performed. We also indicate the maximal size of the list Passed; although not
detailed in Algorithm1, the tool ensures that Passed remains an antichain. This
minimizes the number of inclusion tests. When a new element is added to the
Passed list, all elements of Passed subsumed by the new one are removed, so
that the size of Passed does not necessarily increase.

528 P. Bouyer et al.

The mention “TO” means that the computation does within the time bound
of 120 min. We observe that � always explores fewer states than �, for any given
exploration strategy. Though this was expected (recall Remark 1), we believe the
reduction is impressive. It is significant even for small models (such as ETS).
The case of ALS with no pruning shows that the higher complexity of � can be
largely compensated by the reduction in the size of the state space to explore.
On the model of Fig. 2, our inclusion � ensures termination, while � does not.

7 Conclusion

In this paper we have built over a symbolic approach to the computation of opti-
mal cost in weighted timed automata [LBB+01,RLS06], by proposing an inclu-
sion test between priced zones. Using that inclusion test, the forward symbolic
exploration terminates and computes the optimal cost for all weighted timed
automata, regardless whether clocks are bounded or not. The idea of this app-
roach is based on recent works on pure timed automata [HSW12], where a clever
inclusion test “replaces” any abstraction computation during the exploration.

We will pursue our work with extensive experimentations using our tool
TiAMo. We will also look for more dedicated methods for specific application
domains, like planning problems.

References

[ACHH93] Alur, R., Courcoubetis, C., Henzinger, T.A., Ho, P.-H.: Hybrid automata:
an algorithmic approach to specification and verification of hybrid systems.
In: Grossman, R.L., Nerode, A., Ravn, A.P., Rischel, H. (eds.) HS 1993.
LNCS, vol. 736, pp. 209–229. Springer, Heidelberg (1993)

[AD90] Alur, R., Dill, D.L.: Automata for modeling real-time systems. In: Paterson,
M.S. (ed.) ICALP 1990. LNCS, vol. 443, pp. 322–335. Springer, Heidelberg
(1990)

[AD94] Alur, R., Dill, D.L.: A theory of timed automata. Theoret. Comput. Sci.
126(2), 183–235 (1994)

[AFM+03] Amnell, T., Fersman, E., Mokrushin, L., Pettersson, P., Yi, W.: TIMES: a
tool for schedulability analysis and code generation of real-time systems.
In: Larsen, Kim Guldstrand, Niebert, Peter (eds.) FORMATS 2003. LNCS,
vol. 2791, pp. 60–72. Springer, Heidelberg (2004)

[ALP01] Alur, R., La Torre, S., Pappas, G.J.: Optimal paths in weighted timed
automata. In: Di Benedetto, M.D., Sangiovanni-Vincentelli, A.L. (eds.)
HSCC 2001. LNCS, vol. 2034, pp. 49–62. Springer, Heidelberg (2001)

[ARF14] Al-Bataineh, O., Reynolds, M., French, T.: Finding best and worst case
execution times of systems using difference-bound matrices. In: Legay, A.,
Bozga, M. (eds.) FORMATS 2014. LNCS, vol. 8711, pp. 38–52. Springer,
Heidelberg (2014)

[BBBR07] Bouyer, P., Brihaye, T., Bruyère, V., Raskin, J.-F.: On the optimal reach-
ability problem. Form. Methods Syst. Des. 31(2), 135–175 (2007)

Symbolic Optimal Reachability in Weighted Timed Automata 529

[BBFL03] Behrmann, G., Bouyer, P., Fleury, E., Larsen, K.G.: Static guard analysis
in timed automata verification. In: Garavel, H., Hatcliff, J. (eds.) TACAS
2003. LNCS, vol. 2619, pp. 254–270. Springer, Heidelberg (2003)

[BBL08] Patricia, B., Brinksma, E., Larsen, K.G.: Optimal infinite scheduling for
multi-priced timed automata. Form. Methods Syst. Des. 32(1), 2–23 (2008)

[BBLP06] Behrmann, G., Bouyer, P., Larsen, K.G., Pelànek, R.: Zone based abstrac-
tions for timed automata exploiting lower and upper bounds. Int. J. Softw.
Tools Technol. Transf. 8(3), 204–215 (2006)

[BCM16] Bouyer, P., Colange, M., Markey, N.: Symbolic optimal reachability in
weighted timed automata. Technical report abs/1602.00481, CoRR (2016).
http://arxiv.org/abs/1602.00481

[BFH+01] Behrmann, G., Fehnker, A., Hune, T., Larsen, K.G., Pettersson, P.,
Romijn, J.M.T., Vaandrager, F.W.: Minimum-cost reachability for priced
timed automata. In: Di Benedetto, M.D., Sangiovanni-Vincentelli, A.L.
(eds.) HSCC 2001. LNCS, vol. 2034, pp. 147–161. Springer, Heidelberg
(2001)

[BFLM11] Bouyer, P., Fahrenberg, U., Larsen, K.G., Markey, N.: Quantitative analy-
sis of real-time systems using priced timed automata. Commun. ACM
54(9), 78–87 (2011)

[BLR05] Behrmann, G., Larsen, K.G., Rasmussen, J.I.: Optimal scheduling using
priced timed automata. ACM Sigmetrics Perform. Eval. Rev. 32(4), 34–40
(2005)

[Bou04] Bouyer, P.: Forward analysis of updatable timed automata. Form. Methods
Syst. Des. 24(3), 281–320 (2004)

[BV04] Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University
Press, Cambridge (2004)

[BY03] Bengtsson, J.E., Yi, W.: On clock difference constraints and termination
in reachability analysis of timed automata. In: Dong, J.S., Woodcock, J.
(eds.) ICFEM 2003. LNCS, vol. 2885, pp. 491–503. Springer, Heidelberg
(2003)

[DHS+14] Deshpande, A., Herbreteau, F., Srivathsan, B., Tran, T.-T., Walukiewicz,
I.: Fast detection of cycles in timed automata. Technical report
abs/1410.4509, CoRR (2014). http://arxiv.org/abs/1410.4509

[DOT+10] Dalsgaard, A.E., Chr, M., Olesen, M.T., Hansen, R.R., Larsen, K.G.:
METAMOC: modular execution time analysis using model checking. In:
Proceedings of 10th International Workshop on Worst-Case Execution
Time Analysis (WCET 2010). OpenAccess Series in Informatics (OASIcs),
vol. 15, pp. 113–123. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik
(2010)

[GELP10] Gustavsson, A., Ermedahl, A., Lisper, B., Pettersson, P.: Towards WCET
analysis of multicore architectures using UPPAAL. In: Proceedings of 10th
International Workshop on Worst-Case Execution Time Analysis (WCET
2010). OpenAccess Series in Informatics (OASIcs), vol. 15, pp. 101–112.
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2010)

[HKPV98] Henzinger, T.A., Kopke, P.W., Puri, A., Varaiya, P.: What’s decidable
about hybrid automata? J. Comput. Syst. Sci. 57(1), 94–124 (1998)

[HKSW11] Herbreteau, F., Kini, D., Srivathsan, B., Walukiewicz, I.: Using non-convex
approximations for efficient analysis of timed automata. In: Proceedings of
30th Conference on Foundations of Software Technology and Theoretical
Computer Science (FSTTCS 2011). LIPIcs, vol. 13, pp. 78–89. Leibniz-
Zentrum für Informatik (2011)

http://arxiv.org/abs/1602.00481
http://arxiv.org/abs/1410.4509

530 P. Bouyer et al.

[HSW12] Frédéric Herbreteau, B., Srivathsan, I.W.: Better abstractions for timed
automata. In: Proceedings of 27th Annual Symposium on Logic in Com-
puter Science (LICS 2012), pp. 375–384. IEEE Computer Society Press
(2012)

[HT15] Herbreteau, F., Tran, T.-T.: Improving search order for reachability testing
in timed automata. In: Sankaranarayanan, S., Vicario, E. (eds.) FORMATS
2015. LNCS, vol. 9268, pp. 124–139. Springer, Heidelberg (2015)

[JR11] Jaubert, R., Reynier, P.-A.: Quantitative robustness analysis of flat timed
automata. In: Hofmann, M. (ed.) FOSSACS 2011. LNCS, vol. 6604, pp.
229–244. Springer, Heidelberg (2011)

[LBB+01] Larsen, K.G., Behrmann, G., Brinksma, E., Fehnker, A., Hune, T., Pet-
tersson, P., Romijn, J.M.T.: As cheap as possible: efficient cost-optimal
reachability for priced timed automata. In: Berry, G., Comon, H., Finkel,
A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 493–505. Springer, Heidelberg
(2001)

[RLS06] Rasmussen, J.I., Larsen, K.G., Subramani, K.: On using priced timed
automata to achieve optimal scheduling. Form. Methods Syst. Des. 29(1),
97–114 (2006)

[RS01] Rückmann, J.-J., Stein, O.: On linear and linearized generalized semi-
infinite optimization problem. Ann. Oper. Res. 101(1–4), 191–208 (2001)

Automatic Reachability Analysis for Nonlinear
Hybrid Models with C2E2

Chuchu Fan1(B), Bolun Qi1, Sayan Mitra1, Mahesh Viswanathan1,
and Parasara Sridhar Duggirala2

1 University of Illinois, Urbana-Champaign, Urbana, USA
{cfan10,bolunqi2,mitras,vmahesh}@illinois.edu

2 University of Connecticut, Mansfield, USA
psd@uconn.edu

Abstract. C2E2 is a bounded reachability analysis tool for nonlinear
dynamical systems and hybrid automaton models. Previously it required
users to annotate each system of differential equations of the hybrid
automaton with discrepancy functions, and since these annotations are
difficult to get for general nonlinear differential equations, the tool had
limited usability. This version of C2E2 is improved in several ways, the
most prominent among which is the elimination of the need for user-
provided discrepancy functions. It automatically computes piece-wise (or
local) discrepancy functions around the reachable parts of the state space
using symbolically computed Jacobian matrix and eigenvalue perturba-
tion bounds. The special cases of linear and constant rate differential
equations are handled with more efficient algorithm. In this paper, we
discuss these and other new features that make the new C2E2 a usable
tool for bounded reachability analysis of hybrid systems.

1 Introduction

C2E2 is a tool for checking bounded time invariant properties of nonlinear hybrid
automaton models through reachability analysis. A hybrid automaton combines
ordinary differential equations (ODE) and with guarded-command program frag-
ments, and is seen as a convenient mathematical formalism for describing a
variety of cyber-physical systems. Since nonlinear differential equations often do
not have analytical solutions, C2E2 implements a simulation-based approach for
over-approximating the reachable states of a system of ODEs. This involves: (a)
generating numerical simulations of the ODE from a finite set of representative
initial states that cover the whole (uncountably many) initial set, say Θ, (b)
bloating each of these simulations by some factor such that the bloated tubes
together over-approximate the reachable states from Θ, and (c) checking if this
computed over-approximation is adequate for proving invariance; otherwise, add
more representative initial states to obtain a more precise over-approximation
and repeat from (a).

This work was in part supported by the grants CCF 1422798 and CNS1054247 from
the National Science Foundation.

c© Springer International Publishing Switzerland 2016
S. Chaudhuri and A. Farzan (Eds.): CAV 2016, Part I, LNCS 9779, pp. 531–538, 2016.
DOI: 10.1007/978-3-319-41528-4 29

532 C. Fan et al.

The previous version of C2E2 [10,11] relied on the user to provide the bloat-
ing factor, formally called a discrepancy function, required in step (b). For linear
ODEs, one could, in principle, find discrepancy functions automatically from the
dynamics of the system, but for general nonlinear systems this is not the case.
The primary improvement we present in this new version of C2E2 [1] relieves
the user from this burden. We have implemented the algorithm presented in [13]
which computes a piece-wise (or local) discrepancy function for the ODE. This
algorithm is on-the-fly or lazy in that it only computes the discrepancy func-
tion around parts of the state-space that are known to be reachable (from step
(a)). For linear models the new implementation automatically computes a global
discrepancy function. Automatic handling of systems with constant dynamics,
and a technique to carry-out coordinate transformation are also implemented
to improve the overall performance of C2E2. The new C2E2 can automatically
verify and find counter-examples in interesting nonlinear and linear hybrid sys-
tems created using StateflowTM: for example, a 5-dimensional highly nonlinear
benchmark model of a powertrain control system [17], an auto-passing control
system with 6 modes, and a 28-dimensional linear model of a helicopter [22].

2 Related Tools

Several automatic verification tools for hybrid models have been developed over
the past two decades and they have been used in verifying numerous systems.
Uppaal [20], HyTech [15] and SpaceEx [14] target timed automata, rectangular
hybrid automata, and linear hybrid automata, respectively. Nonlinear dynamical
and hybrid models are handled by d/dt [4], Flow* [6], dReach [19], CORA [3],
and Ariadne [5]. S-Taliro [21] finds counter-examples in complex and realis-
tic models using Monte-carlo techniques and provides probabilistic guarantees.
STRONG [7] is a MATLAB toolbox for analysis of linear hybrid systems and it
uses a Lyapunov function-based approach.

The simulation-based verification algorithm implemented in C2E2 is closest
in spirit to the Matlab-based Breach tool [8]. Breach uses sensitivity analysis
of the ODEs (related to our notion of discrepancy function) to verify signal
temporal logic (STL) properties. Sensitivity analysis is known to be sound for
linear ODEs and for more complex models Breach uses numerical procedures
for estimating the Jacobian matrix of the system. This enables it to handle
complex models at the expense of rigorous guarantees. The new version of C2E2
computes discrepancy functions from symbolically computed Jacobian matrix
of the ODEs. This gives soundness and relative completeness guarantees, but
restricts its application to ODEs with continuously differentiable right hand
sides.

3 New Features in C2E2

The architecture of C2E2 is shown in Fig. 1. The GUI-based front end parses the
input hybrid model which has to be given either as a Stateflow model (.mdl) or

Automatic Reachability Analysis for Nonlinear Hybrid Models with C2E2 533

as an XML file (.hyxml). The front end produces (i) an executable for producing
validated simulations for each system of ODEs for the hybrid automaton, (ii) a
specification of the candidate invariant properties to be checked, and (iii) a newly
implemented function for symbolically evaluating the Jacobian matrix for each
system of ODEs in the hybrid model. The front end provides a property editor
which checks syntactic correctness of properties as they are typed. After the
back end produces verification results, which includes the reach set and possibly
counter-example, these objects can be plotted using the front end as well (see
Fig. 2).

Fig. 1. Architecture of C2E2: The colored blocks are newly implemented. Improve-
ments in existing blocks are discussed in Sect. 4.2.

The Jacobian function and the simulator are used by the new back end for
computing reachable states using the approach described in Sect. 1. If the system
or a discrete location of the hybrid system is linear (which is automatically
checked by the front end), then the Jacobian matrix is used to compute a global
discrepancy function once and for all. Otherwise, the back end iteratively calls
the simulator as well as the Jacobian function, to over-approximate the reachable
states over small time intervals (more details are given in Sect. 4).

The rest of the functions in the back end work with the computed reach set
to check for the guards of the hybrid automaton. It also checks if the candidate
invariant properties are provably satisfied or violated. Based on these decisions
the main verification loop decides to (a) return results to the front end, or (b)
start over the process by refining the initial set of states, or (c) start simulations
from a new set of initial states in a new mode (that is, with a new system of
ODEs).

534 C. Fan et al.

Fig. 2. Left to right: figures showing a snippet of partial auto-passing control model
in C2E2 front end and StateflowTM, property dialog, plots of reachable set for auto-
passing control model.

4 Automatic Discrepancy Computation

4.1 Overview

The block labeled local discrepancy for nonlinear in Fig. 1 implements the algo-
rithm for computing piece-wise discrepancy function for general nonlinear ODEs
using Jacobian matrix and Lipschitz constant. It takes one simulation trajectory
and initial partition size as input at one time, and produces a sequence of coeffi-
cients. These coefficients define the piece-wise exponential discrepancy function.
The algorithm consists of the following steps:

(a) First, using the Lipschitz constant a coarse over-approximation of the reach-
able set up to a short time horizon Ts is constructed. Let this set be S.

(b) The largest eigenvalue λmax

(
(J(s0) + JT (s0))/2

)
of the symmetric part of

the Jacobian matrix J(s0) at the center s0 of S is computed.
(c) From λmax

(
(J(s0) + JT (s0))/2

)
an upper bound b of the eigenvalue of the

symmetric part of all the Jacobian matrices J(s), s ∈ S is computed. This
uses a theorem from matrix perturbation theory and involves bounding the
terms of the symbolic Jacobian over S.

(d) The upper bound b (possibly negative) defines the discrepancy function
β(t) = β′(t0)eb(t−t0) over the simulation time interval [t0, t0 + Ts], where
β′(·) is the previous piece of the discrepancy function. Using this piece-wise
discrepancy function an over-approximation of the reachable set is computed.

The soundness of the algorithm comes from the fact that the computed bound
b over a certain region S provides an exponential bound on the distance of any
two trajectories in that region.

Automatic Reachability Analysis for Nonlinear Hybrid Models with C2E2 535

4.2 Implementation and Enhancements

We discuss the design decisions made in implementing the above mentioned
functions and how they impact C2E2.

Symbolic Jacobian Computation. From the parse tree generated by the front
end, the state variables and ODEs for each location of the hybrid automaton
are extracted. For an ODE dx

dt = f(x), where f is a vector valued function,
the Jacobian matrix J(x) is the matrix of partial derivatives Jij(x) = ∂fi

∂xj
. We

use the Python Sympy1 library for computing derivatives of f symbolically. This
library handles a general class of functions and as a result our implementation of
symbolic Jacobian computation works for all standard polynomial, trigonomet-
ric, exponential and logarithmic functions. Our approach works for complicated
models like the powertrain benchmark [17,18] which has more than 30 nonlin-
ear terms in f . C2E2 compiles the symbolic Jacobian matrices into a Python
module, which is then used to evaluate their numerical values.

Discrepancy Function Computation. To compute local discrepancy functions on-
the-fly, the upper bound of the eigenvalues of (the symmetric part of) Jacobian
matrices and the upper bound of the matrix perturbations are obtained along
the simulation traces using Python linear algebra library2.

The local discrepancy function module communicates with the reach set func-
tion, takes simulation traces and initial set, and returns a local discrepancy
function designed specially for the given simulation trace. In C2E2, we provide
multiple simulator options: the validated simulator CAPD [2] as well as the
standard ODE solver in the Boost library3.

Global Discrepancy for Linear ODEs. For linear time invariant hybrid models,
the entries in the symbolic Jacobian matrix are constants. Thus, the local dis-
crepancy function will be the same as the global one. C2E2 takes advantage of
this fact and evaluates the Jacobian matrix just once and computes a global
exponential discrepancy function to be used throughout, instead of on-the-fly
local discrepancy. For example, analysis of the 28-dimensional linear model of
the helicopter with this approach completes in seconds.

Automatic Handling of Constant Dynamics. Often hybrid models have timers
and other variables that evolve at a constant rate with time. The ODEs for such
systems have the form: {

dx
dt = f(x)
dy
dt = k

where k is a constant and y changes at that constant rate with time. Although
the simple dynamics of y should make it easier to compute its reach set—at
1 http://www.sympy.org/en/index.html.
2 http://docs.scipy.org/doc/numpy/reference/routines.linalg.html.
3 https://headmyshoulder.github.io/odeint-v2/.

http://www.sympy.org/en/index.html
http://docs.scipy.org/doc/numpy/reference/routines.linalg.html
https://headmyshoulder.github.io/odeint-v2/

536 C. Fan et al.

any time t, y(t) = y(0) + kt—our discrepancy-based algorithm has problems
dealing with such systems. These constant-rate variables introduce all 0 rows
and all 0 columns in the Jacobian matrix. This not only increases the dimension
of the system, but also introduces extra conservatism in the estimation of the
eigenvalues. For example, the Jacobian matrix of such systems has 0 eigenvalue
even when the rest of the system is stable. The new C2E2 mitigates this problem
by automatically decomposing the system by handling the constant-rate part
independently.

For example, the Cardiac cell model in [11] uses a timer d(timer)
dt = 1 to transit

between the location where stimulate is on and the location where it is off. Sys-
tems with such constant dynamics are detected and decomposed automatically.
That is, C2E2 will first compute the reach set of dx

dt = f(x) using our standard
technique, then bloat y(t) by δy for dy

dt = k, where δy is the size of initial set for
variable y.

Coordinate Transformation. Coordinate transformation can help produce less
conservative over-approximations of the reach set. Coordinate transformations
are done automatically in the new C2E2 in the following manner: first, Jacobian
matrix is transformed to the real Jordan form by a similarity transformation, and
then the similarity transformation matrix is used to perform the linear coordinate
transformation. Such transformation decreases the conservatism of exponential
bound (the factor b mentioned in Sect. 4.1), but comes at the price of a constant
multiplicative factor in β(t). C2E2 allows the users to set a parameter in the
GUI that helps explore this trade off.

Other Enhancements. We re-implemented the reach set plotter for C2E2 which
now uses gnuplot and is much faster. It also shows unsafe regions and counter-
example segments. C2E2 now comes with testing scripts and a command line
interface. The tests check the reach sets computed on a new installation against
the corresponding reference versions computed in our lab machine. Examples
inputs and outputs are documented in the website4.

Detailed comparison of the performance of the new C2E2 with other veri-
fication tools will be presented in a future paper and in the tool’s website. In
several examples, it performs favorably in comparison with Flow*[6]. For exam-
ple, it verifies a 10 dimensional nonlinear cardiac cell model from [16] (Fig. 1) in
less than 10 s where Flow* took 500 s. The dynamics is given by, for example,
f1(x1, x2, u1, u2, stim) = −0.9x2

1 − x3
1 − 0.9x1 − x2 + 10(u1 + u2 − 2x1) + stim

and f2(x1, x2) = x1 − 2x2, with Son = 5 and Soff = 20.

5 Discussion of Performance and Conclusions

The new version of C2E2 comes with a growing set of interesting example mod-
els such as a powertrain control system with highly nonlinear dynamics, a 28-
dimensional linear helicopter, a hybrid auto-passing control model with 6 loca-
tions, a cardiac cell model and others. Although some of these (for example, the
4 http://publish.illinois.edu/c2e2-tool/example/.

http://publish.illinois.edu/c2e2-tool/example/

Automatic Reachability Analysis for Nonlinear Hybrid Models with C2E2 537

powertrain control system model [9,12]) had been verified earlier, those analy-
ses involved hand-crafting special functions inside C2E2 for computing Jacobian
matrices, handling constant dynamics, etc. The new C2E2 checks the examples
automatically, without the need for annotations, typically in minutes.

A single reach set computation by bloating a single simulation trace using
discrepancy computation usually takes less than one second for nonlinear systems
with 5–6 dimensions or linear systems, up to a time horizon of 10 s.

The verification time of each example, of course, depends on the complexity
of the system, the distance of the unsafe set from the reachable set, the stability
of the dynamics, and the time horizon.

In summary, this paper presents several new features implemented in C2E2,
the most prominent one being an algorithm for computing discrepancy functions
for linear, nonlinear, and constant ODEs. These features make the new C2E2
a more usable tool for verifying nonlinear hybrid models while preserving the
original soundness and relative completeness guarantees.

References

1. C2E2 Webpage. http://publish.illinois.edu/c2e2-tool/
2. Computer Assisted Proofs in Dynamic Groups (CAPD). http://capd.ii.uj.edu.pl/

index.php
3. Althoff, M.: An introduction to cora 2015. In: ARCH (2015)
4. Asarin, E., Dang, T., Maler, O.: The d/dt tool for verification of hybrid systems.

In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 365–370.
Springer, Heidelberg (2002)

5. Balluchi, A., Casagrande, A., Collins, P., Ferrari, A., Villa, T., Sangiovanni-
Vincentelli, A.L.: Ariadne: a framework for reachability analysis of hybrid
automata. In: MTNS. Citeseer (2006)

6. Chen, X., Ábrahám, E., Sankaranarayanan, S.: Flow*: an analyzer for non-linear
hybrid systems. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044,
pp. 258–263. Springer, Heidelberg (2013)

7. Deng, Y., Rajhans, A., Julius, A.A.: STRONG: a trajectory-based verification
toolbox for hybrid systems. In: Joshi, K., Siegle, M., Stoelinga, M., D’Argenio, P.R.
(eds.) QEST 2013. LNCS, vol. 8054, pp. 165–168. Springer, Heidelberg (2013)

8. Donzé, A.: Breach, a toolbox for verification and parameter synthesis of hybrid
systems. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174,
pp. 167–170. Springer, Heidelberg (2010)

9. Duggirala, P.S., Fan, C., Mitra, S., Viswanathan, M.: Meeting a powertrain verifi-
cation challenge. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol.
9206, pp. 536–543. Springer, Heidelberg (2015)

10. Duggirala, P.S., Mitra, S., Viswanathan, M.: Verification of annotated models from
executions. In: EMSOFT, p. 26. IEEE Press (2013)

11. Duggirala, P.S., Mitra, S., Viswanathan, M., Potok, M.: C2E2: a verification tool
for stateflow models. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035,
pp. 68–82. Springer, Heidelberg (2015)

12. Fan, C., Duggirala, P.S., Mitra, S., Viswanathan, M.: Progress on powertrain ver-
ification challenge with C2E2. In: ARCH (2015)

http://publish.illinois.edu/c2e2-tool/
http://capd.ii.uj.edu.pl/index.php
http://capd.ii.uj.edu.pl/index.php

538 C. Fan et al.

13. Fan, C., Mitra, S.: Bounded verification with on-the-fly discrepancy computation.
In: Finkbeiner, B., et al. (eds.) ATVA 2015. LNCS, vol. 9364, pp. 1–8. Springer,
Heidelberg (2015). doi:10.1007/978-3-319-24953-7 32

14. Frehse, G., Le Guernic, C., Donzé, A., Cotton, S., Ray, R., Lebeltel, O., Ripado, R.,
Girard, A., Dang, T., Maler, O.: SpaceEx: scalable verification of hybrid systems.
In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 379–395.
Springer, Heidelberg (2011)

15. Henzinger, T.A., Ho, P.-H., Wong-Toi, H.: Hytech: a model checker for hybrid
systems. In: Grumberg, O. (ed.) CAV, pp. 460–463. Springer, Heidelberg (1997)

16. Huang, Z., Fan, C., Mereacre, A., Mitra, S., Kwiatkowska, M.: Invariant verification
of nonlinear hybrid automata networks of cardiac cells. In: Biere, A., Bloem, R.
(eds.) CAV 2014. LNCS, vol. 8559, pp. 373–390. Springer, Heidelberg (2014)

17. Jin, X., Deshmukh, J.V., Kapinski, J., Ueda, K., Butts, K.: Benchmarks for model
transformations and conformance checking. In: ARCH (2014)

18. Jin, X., Deshmukh, J.V., Kapinski, J., Ueda, K., Butts, K.: Powertrain control
verification benchmark. In: HSCC, pp. 253–262. ACM (2014)

19. Kong, S., Gao, S., Chen, W., Clarke, E.: dReach: δ-reachability analysis for hybrid
systems. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 200–
205. Springer, Heidelberg (2015)

20. Larsen, K.G., Pettersson, P., Yi, W.: Uppaal in a nutshell. Int. J. Softw. Tools
Technol. Transf. (STTT) 1(1), 134–152 (1997)

21. Nghiem, T., Sankaranarayanan, S., Fainekos, G., Ivancić, F., Gupta, A., Pappas,
G.J.: Monte-carlo techniques for falsification of temporal properties of non-linear
hybrid systems. In: HSCC, pp. 211–220. ACM (2010)

22. Skogestad, S., Postlethwaite, I.: Multivariable Feedback Control-Analysis, Design:
Solution Manual Part i (2005)

http://dx.doi.org/10.1007/978-3-319-24953-7_32

Author Index

Abd Elkader, Karam I-329
Abdulla, Parosh Aziz II-134
Albarghouthi, Aws II-210
Alur, Rajeev II-251
Atig, Mohamed Faouzi II-134

Baier, Christel I-23
Barthe, Gilles I-43
Bayless, Sam I-136
Benerecetti, Massimo II-270
Beyer, Dirk II-502
Biere, Armin I-199
Bloem, Roderick I-157
Bouyer, Patricia I-513
Braud-Santoni, Nicolas I-157

Calder, Muffy II-494
Champion, Adrien II-510
Chatterjee, Krishnendu I-3
Chen, Rick II-42
Chen, Yu-Fang II-91
Cheng, Chih-Hong I-95
Chin, Wei-Ngan I-382
Chistikov, Dmitry II-157
Chu, Duc-Hiep I-218
Cimatti, Alessandro I-271, II-3
Colange, Maximilien I-513
Cristiá, Maximiliano I-179

D’Antoni, Loris II-383
Daca, Przemysław II-230
Dangl, Matthias II-502
Daniel, Jakub I-271
Deligiannis, Anastasios II-42
Dell’Erba, Daniele II-270
Dogadov, Boris I-426
Dooley, Michael I-292
Drechsler, Rolf II-177
Drews, Samuel II-210
Duggirala, Parasara Sridhar I-477, I-531

Easwaran, Arvind I-457
Ehlers, Rüdiger II-333

Eldib, Hassan II-343
Ernst, Michael D. II-23
Esparza, Javier II-312
Espitau, Thomas I-43

Fan, Chuchu I-531
Fedyukovich, Grigory II-433
Feng, Xinyu II-59
Ferrer Fioriti, Luis María I-43
Finkbeiner, Bernd I-118
Fiterău-Broştean, Paul II-454
Fried, Dror II-402
Fu, Hongfei I-3
Fu, Ming II-59
Fu, Zhoulai II-187

Gallagher, John P. I-261
Gario, Marco II-3
Gehr, Timon I-62
Gilday, David II-42
Goharshady, Amir Kafshdar I-3
Griggio, Alberto I-271
Große, Daniel II-177
Grumberg, Orna I-329
Gurfinkel, Arie II-433
Guth, Dwight I-447

Hahn, Ernst Moritz II-291
Hamza, Yassine I-95
Hathhorn, Chris I-447
He, Fei I-310
Henzinger, Thomas A. II-230
Herdt, Vladimir II-177
Hoyes, David II-42
Hsu, Justin I-43
Hu, Alan J. I-136

Jaax, Stefan II-312
Jacky, Jonathan II-23
Jacobs, Swen I-157
Jaffar, Joxan I-218
Janssen, Ramon II-454
Jiang, Jie-Hong R. I-241

Joloboff, Vania I-84
Jonsson, Bengt II-134
Jordan, Herbert II-422

Kafle, Bishoksan I-261
Kahsai, Temesghen I-352
Keen, Will II-42
Kiefer, Stefan I-23
Klein, Felix I-118
Klein, Joachim I-23
Klenze, Tobias I-136
Klüppelholz, Sascha I-23
Křetínský, Jan II-312
Kupriyanov, Andrey II-230

Le, Hoang M. II-177
Le, Quang Loc I-382
Legay, Axel I-84
Legg, Alexander II-364
Leino, K.R.M. I-361
Leonardsson, Carl II-134
Li, Zhaohui II-59
Lin, Anthony W. II-112
Lin, Chun-Han I-241
Loncaric, Calvin II-23

Majumdar, Rupak II-157
Manevich, Roman I-426
Mao, Shu I-310
Markey, Nicolas I-513
Mattarei, Cristian II-3
Mebsout, Alain II-510
Misailovic, Sasa I-62
Mitra, Sayan I-531
Moarref, Salar II-251
Mogavero, Fabio II-270
Morales, José F. I-261
Mover, Sergio I-271
Müller, David I-23
Müller, Peter I-405

Narodytska, Nina II-364
Ngo, Van Chan I-84
Niemetz, Aina I-199
Niksic, Filip II-157

Păsăreanu, Corina S. I-329
Pathirane, Ashan II-42
Pernsteiner, Stuart II-23

Piskac, Ruzica II-80
Pit-Claudel, Clément I-361
Prabhakar, Pavithra I-495
Preiner, Mathias I-199

Qi, Bolun I-531

Raman, Vasumathi II-333
Reid, Alastair II-42
Rinetzky, Noam I-426
Rossi, Gianfranco I-179
Roşu, Grigore I-447
Rozier, Kristin Yvonne II-3
Ruess, Harald I-95
Rümmer, Philipp I-352, II-112
Ryzhyk, Leonid II-364

Samanta, Roopsha II-383
Sanchez, Huascar I-352
Santolucito, Mark II-80
Saxena, Manasvi I-447
Schäf, Martin I-352
Schewe, Sven II-291
Scholz, Bernhard II-422
Schwerhoff, Malte I-405
Sevegnani, Michele II-494
Sharygina, Natasha II-433
She, Zhikun I-457
Shepherd, Owen II-42
Shoham, Sharon I-329
Sickert, Salomon II-312
Singh, Rishabh II-383
Somenzi, Fabio I-292
Song, Lei II-91
Soto, Miriam García I-495
Sticksel, Christoph II-510
Su, Zhendong II-187
Subotić, Pavle II-422
Summers, Alexander J. I-405
Sun, Jun I-382

Tabajara, Lucas M. II-402
Tatlock, Zachary II-23
Tinelli, Cesare II-510
Tonetta, Stefano I-271, II-3
Topcu, Ufuk II-251
Torlak, Emina II-23
Trinh, Minh-Thai I-218

540 Author Index

Tsai, Tzung-Lin I-241
Turrini, Andrea II-291

Vaandrager, Frits II-454
Vardi, Moshe Y. II-402
Vechev, Martin I-62
Viswanathan, Mahesh I-477, I-531
Vrabel, Peter II-42

Wang, Bow-Yaw I-310
Wang, Chao II-343
Wang, Hung-En I-241
Wang, Xi II-23
Wijs, Anton II-472

Worrell, James I-23
Wu, Meng II-343
Wu, Zhilin II-91

Xu, Fengwei II-59
Xue, Bai I-457

Yu, Fang I-241

Zaidi, Ali II-42
Zhai, Ennan II-80
Zhang, Hui II-59
Zhang, Lijun II-291
Zhang, Xiaoran II-59

Author Index 541

	Preface
	Organization
	Contents -- Part I
	Contents -- Part II
	Probabilistic Systems
	Termination Analysis of Probabilistic Programs Through Positivstellensatz's
	1 Introduction
	2 Probabilistic Programs
	2.1 Basic Notations and Concepts
	2.2 Probabilistic Programs

	3 Termination over Probabilistic Programs
	4 Polynomial Ranking-Supermartingale
	5 The Synthesis Algorithm
	5.1 Positivstellensatz's
	5.2 The Algorithm for pRSM Synthesis

	6 Experimental Results
	7 Conclusion and Future Work
	References

	Markov Chains and Unambiguous Büchi Automata
	1 Introduction
	2 Preliminaries
	3 Analysis of Markov Chains Against UBA-specifications
	3.1 Strongly Connected UBA
	3.2 Computing the Measure of Arbitrary UBA
	3.3 Probabilistic Model Checking of Markov Chains Against UBA

	4 Implementation and Experiments
	5 Conclusion
	References

	Synthesizing Probabilistic Invariants via Doob's Decomposition
	1 Introduction
	2 Mathematical Preliminaries
	3 Overview of Method
	4 Examples
	5 Related Work
	6 Conclusion
	References

	PSI: Exact Symbolic Inference for Probabilistic Programs
	1 Introduction
	2 Overview
	2.1 Analysis
	2.2 Applications of PSI

	3 Symbolic Inference
	3.1 Source Language
	3.2 Symbolic Domain for Probability Distributions
	3.3 Analysis of Expressions
	3.4 Analysis of Statements
	3.5 Final Result and Renormalization
	3.6 Discussion

	4 Symbolic Optimizations
	4.1 Algebraic Optimizations
	4.2 Guard Simplifications
	4.3 Symbolic Integration

	5 Evaluation
	5.1 Comparison with Exact Symbolic Inference Engines
	5.2 Comparison with Approximate Symbolic Inference Engine
	5.3 Comparison with Approximate Numeric Inference Engines

	6 Related Work
	6.1 Symbolic Inference
	6.2 Probabilistic Program Analysis

	7 Conclusion
	References

	PSCV: A Runtime Verification Tool for Probabilistic SystemC Models
	1 Introduction
	2 Verification Flow
	3 Expressing Properties
	4 Architecture
	4.1 Execution Trace Extraction
	4.2 Statistical Model Checker
	4.3 Random Scheduler

	5 Experimental Results
	6 Conclusion
	References

	Synthesis I
	Structural Synthesis for GXW Specifications
	1 Introduction
	2 Problem Formulation
	2.1 LTL Synthesis
	2.2 GXW Synthesis

	3 Example
	4 Structural Synthesis
	4.1 High-Level Control Specifications and Resolution Actors
	4.2 Monitors and Phase Adjustment Actors
	4.3 Parameter Synthesis for 2QBF Without Unroll
	4.4 General Properties for GXW Synthesis
	4.5 Extensions

	5 Experimental Evaluation
	6 Related Work
	7 Conclusion
	References

	Bounded Cycle Synthesis
	1 Introduction
	2 Preliminaries
	3 Bounds on the Number of Cycles
	3.1 Upper Bounds
	3.2 Lower Bounds
	3.3 The Trade-Off Between States and Cycles

	4 Bounding the Cycles
	4.1 Bounded Synthesis
	4.2 Counting Cycles
	4.3 Bounded Cycle Synthesis

	5 Experimental Results
	6 Conclusions
	References

	Fast, Flexible, and Minimal CTL Synthesis via SMT
	1 Introduction
	2 Related Work
	3 SAT Modulo Monotonic Theories for CTL
	3.1 A Monotonic Approximation of CTL
	3.2 CTL as a Boolean Monotonic Predicate

	4 Implementation and Optimizations
	4.1 Clause Learning
	4.2 Symmetry Breaking
	4.3 Preprocessing
	4.4 Wildcard Encoding for Concurrent Programs

	5 Experimental Results
	5.1 The Original Clarke-Emerson Mutex
	5.2 Mutex with Additional Properties
	5.3 Readers-Writers

	6 Conclusion and Future Work
	References

	Synthesis of Self-Stabilising and Byzantine-Resilient Distributed Systems
	1 Introduction
	2 System and Failure Model, Specifications
	2.1 System Model
	2.2 Failure Model
	2.3 Formal Specifications

	3 Bounded Synthesis of Resilient Systems
	4 Incremental Synthesis Algorithm
	4.1 Previous Work
	4.2 Extension to First-Order Model Extraction
	4.3 Related Work

	5 Extension to Networks of Unbounded Size
	6 Experimental Results
	7 Conclusion
	References

	Constraint Solving I
	A Decision Procedure for Sets, Binary Relations and Partial Functions
	1 Introduction
	2 A Set-Based Language with Binary Relations
	3 A Decision Procedure for Sets and Binary Relations
	3.1 The Solver
	3.2 Rewriting Procedures

	4 A Decision Procedure for Partial Functions
	5 Empirical Assessment
	6 Discussion and Similar Approaches
	7 Conclusions
	References

	Precise and Complete Propagation Based Local Search for Satisfiability Modulo Theories
	1 Introduction
	2 Overview
	3 Bit-Level
	4 Word-Level
	5 Experimental Evaluation
	6 Conclusion
	References

	Progressive Reasoning over Recursively-Defined Strings
	1 Introduction
	2 Motivation
	3 The Core Language
	4 Algorithm
	4.1 Preliminaries
	4.2 Progressive Search Strategy

	5 Implementation
	5.1 The Pruning Step
	5.2 Conflict Clause Learning

	6 Evaluation
	7 Related Work
	8 Conclusion
	References

	String Analysis via Automata Manipulation with Logic Circuit Representation
	1 Introduction
	2 Preliminaries
	3 String and Automata Operations
	3.1 Intersection
	3.2 Union
	3.3 Concatenation
	3.4 Deletion
	3.5 Replacement
	3.6 Emptiness Checking

	4 Counterexample Generation
	5 Filter Generation
	6 Extension to Symbolic Finite Automata
	7 Experimental Evaluation
	8 Discussions
	9 Conclusions
	References

	RAHFT: A Tool for Verifying Horn Clauses Using Abstract Interpretation and Finite Tree Automata
	1 Constrained Horn Clause Verification and Our Approach
	2 RAHFT Architecture and Interface
	2.1 Abstraction
	2.2 Refinement
	2.3 Implementation
	2.4 Strength and Weakness

	3 Future Work
	References

	Model Checking I
	Infinite-State Liveness-to-Safety via Implicit Abstraction and Well-Founded Relations
	1 Introduction
	2 Related Work
	3 Background
	4 Liveness-to-Safety for Infinite-State Systems
	4.1 Liveness-to-Safety with Implicit Abstraction
	4.2 Extending Liveness-to-Safety with Well-Founded Relations
	4.3 Implementation Within IC3IA

	5 Experimental Evaluation
	6 Conclusions
	References

	Proving Parameterized Systems Safe by Generalizing Clausal Proofs of Small Instances
	1 Introduction
	2 Overview
	3 Related Work
	4 Description of Algorithm
	4.1 Example: Busy Ring Arbiter
	4.2 Templatization
	4.3 Proof Generalization
	4.4 Testing Candidate Proofs
	4.5 Discussion

	5 Experimental Results
	6 Conclusions and Future Work
	References

	Learning-Based Assume-Guarantee Regression Verification
	1 Introduction
	2 Background
	2.1 Learning-Based Assume-Guarantee Verification
	2.2 Regression Verification

	3 Motivation
	3.1 An Example
	3.2 Our Solutions

	4 Fine-Grained Learning Technique
	5 Assume-Guarantee Regression Verification
	5.1 Data Structures of Contextual Assumptions
	5.2 Regression Verification Framework
	5.3 Correctness

	6 Evaluation
	6.1 Results for Small Changes
	6.2 Results for Significant Changes
	6.3 Results for a Single Example
	6.4 Impact of the Satisfiability Results to the Performance

	7 Related Work
	8 Conclusions and Future Work
	References

	Automated Circular Assume-Guarantee Reasoning with N-way Decomposition and Alphabet Refinement
	1 Introduction
	2 Preliminaries
	3 Circular Reasoning with N-way Decomposition
	4 Alphabet-Based Simplification
	5 Automated Circular Reasoning
	6 Iterative Construction of Assumptions over a Given Alphabet
	6.1 Assumption Generation in GenAssmp
	6.2 ApplyAG Algorithm
	6.3 Assumption Refinement in UpdateConstraints

	7 Alphabet Refinement
	7.1 Incremental Alphabet Refinement

	8 Evaluation
	9 Conclusion and Future Work
	References

	JayHorn: A Framework for Verifying Java programs
	1 Introduction
	2 Architecture of JayHorn
	3 Evaluation
	4 Related Work
	5 Conclusion
	References

	Program Analysis
	Trigger Selection Strategies to Stabilize Program Verifiers
	1 Introduction
	2 Background
	2.1 Matching Triggers
	2.2 Architecture of the Program Verifier

	3 Trigger Selection
	3.1 Annotating the AST
	3.2 Generating Candidates
	3.3 Picking Triggers and Preventing Matching Loops
	3.4 Splitting Quantifiers and Sharing Triggers

	4 Evaluation
	4.1 Improved Predictability
	4.2 Improved Verification Speeds
	4.3 Easier Debugging and Interaction
	4.4 Experimental Results

	5 Related Work
	6 Future Work
	7 Conclusion
	A Pseudo-Code for the Main Algorithm
	References

	Satisfiability Modulo Heap-Based Programs
	1 Introduction
	2 Illustrative Example
	3 S2SAT Algorithm
	4 Separation Logic Instantiation of S2SAT
	4.1 A Fragment of Separation Logic
	4.2 Implementation of Separation Logic Instantiation

	5 Soundness and Termination of S2SATSL
	5.1 Soundness
	5.2 Termination

	6 Sound Invariant Inference
	7 Implementation and Evaluation
	7.1 Robustness and Efficiency
	7.2 Modular Verification with S2SATSL
	7.3 Recursive Program Verification with S2SATSL

	8 Related Work
	9 Conclusion and Future Work
	References

	Automatic Verification of Iterated Separating Conjunctions Using Symbolic Execution
	1 Introduction
	2 Technical Challenges
	2.1 Smallfoot-Style Symbolic Execution
	2.2 Iterated Separating Conjunction

	3 Treatment of Permissions
	3.1 Symbolic Heap Representation
	3.2 Inhaling and Exhaling Permissions
	3.3 Integrating Predicates with Iterated Separating Conjunctions

	4 Treatment of Symbolic Values
	4.1 Symbolic Evaluation of Heap-Dependent Expressions
	4.2 Framing Heap-Dependent Expressions

	5 Controlling Quantifier Instantiations
	6 Evaluation
	7 Conclusions and Future Work
	A Additional Definitions and Symbolic Execution Rules
	References

	From Shape Analysis to Termination Analysis in Linear Time
	1 Introduction
	2 Programming Language and Running Example
	3 Termination Analysis
	3.1 Shape Analysis
	3.2 From Shape Analysis to a Well-Founded Relation
	3.3 Computing Loop Cuts
	3.4 Employing Modular Reasoning

	4 Partition-Based Shape Analysis
	4.1 Shape Analysis
	4.2 Partition-Based Shape Analysis

	5 Establishing Well-Founded Relations
	6 Interprocedural Analysis
	7 Implementation and Experimental Evaluation
	8 Related Work
	References

	RV-Match: Practical Semantics-Based Program Analysis
	1 Introduction
	2 Practical Semantics-Based Program Analysis
	3 Evaluation
	4 Conclusion
	References

	Timed and Hybrid Systems
	Under-Approximating Backward Reachable Sets by Polytopes
	1 Introduction
	2 Preliminary
	2.1 Backward Reachable Sets
	2.2 Convex Polytopes

	3 Under-Approximating Backward Reachable Sets
	3.1 Computing Under-Approximations
	3.2 Computational Complexity

	4 Examples, Discussions and Comparisons
	4.1 Examples and Discussions
	4.2 Comparisons

	5 Conclusion
	References

	Parsimonious, Simulation Based Verification of Linear Systems
	1 Introduction
	2 Preliminaries
	3 Computing Reachable Sets from Simulations
	3.1 Superposition Principle for Linear Systems
	3.2 Reach Sets from Exact Trajectories
	3.3 Computing Reachable Set from Validated Simulations

	4 Faster Reachable Set Computation for Special Initial Sets
	5 Extension to Hybrid Systems
	6 Experiments
	6.1 High Dimensional Linear Time Invariant Systems
	6.2 Verifying Linear Time Varying Systems
	6.3 Non-convex and Unbounded Initial Sets
	6.4 Discussion

	References

	Counterexample Guided Abstraction Refinement for Stability Analysis
	1 Introduction
	2 Polyhedral Switched System (PSS)
	2.1 Reachability Relations

	3 Stability
	4 Counterexample Guided Abstraction Refinement
	4.1 Abstraction
	4.2 Model-Checking and Counterexample Generation
	4.3 Validation
	4.4 Refinement

	5 Implementation
	6 Conclusions
	References

	Symbolic Optimal Reachability in Weighted Timed Automata
	1 Introduction
	2 Weighted Timed Automata
	3 Symbolic Algorithm
	3.1 The Symbolic Representation: priced Zones
	3.2 The Inclusion Test

	4 Effective Inclusion Check
	4.1 Formulation of the Optimization Problem
	4.2 Computing S(Z,Z',Y)
	4.3 Finding the Right Y

	5 Termination of the Computation
	6 Experimental Results
	7 Conclusion
	References

	Automatic Reachability Analysis for Nonlinear Hybrid Models with C2E2
	1 Introduction
	2 Related Tools
	3 New Features in C2E2
	4 Automatic Discrepancy Computation
	4.1 Overview
	4.2 Implementation and Enhancements

	5 Discussion of Performance and Conclusions
	References

	Author Index

