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Abstract

Alterations in the homeostasis of several adhesion GPCRs (aGPCRs) have been

observed in cancer. The main cellular functions regulated by aGPCRs are cell

adhesion, migration, polarity, and guidance, which are all highly relevant to

tumor cell biology. Expression of aGPCRs can be induced, increased, decreased,

or silenced in the tumor or in stromal cells of the tumor microenvironment,

including fibroblasts and endothelial and/or immune cells. For example,

ADGRE5 (CD97) and ADGRG1 (GPR56) show increased expression in many

cancers, and initial functional studies suggest that both are relevant for tumor

cell migration and invasion. aGPCRs can also impact the regulation of angio-

genesis by releasing soluble fragments following the cleavage of their extracel-

lular domain (ECD) at the conserved GPCR-proteolytic site (GPS) or other more

distal cleavage sites as typical for the ADGRB (BAI) family. Interrogation of in

silico cancer databases suggests alterations in other aGPCR members and

provides the impetus for further exploration of their potential role in cancer.

Integration of knowledge on the expression, regulation, and function of aGPCRs

in tumorigenesis is currently spurring the first preclinical studies to examine the

potential of aGPCR or the related pathways as therapeutic targets.

Keywords

Tumor cell migration • Tumor invasion • Metastasis • Tumor angiogenesis •

Tumor therapy
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Abbreviations

CCLE Cancer Cell Line Encyclopedia

CTF C-terminal fragment

ECD Extracellular domain

ECM Extracellular matrix

GAIN GPCR autoproteolysis inducing

GPS GPCR-proteolytic site

NTF N-terminal fragment

TG2 Tissue transglutaminase

TSR Thrombospondin repeat

1 Introduction

Cancer arises through the sequential accumulation of driver gene mutations which

ultimately confer a growth advantage upon the cells in which they have occurred,

leading to tumor formation through a clonal selection process. An important cancer

hallmark is the ability of cancer cells to acquire invasive and metastatic properties

which is associated with progression to systemic disease and reduced survival.

Invasion and metastasis require tumor cell detachment and migration, extravasation

into the circulation, and subsequent seeding at distant sites accompanied by altered

extracellular matrix (ECM) turnover and initiation of tumor neo-angiogenesis. Each

of these steps involves direct tumor cell-cell and tumor cell-microenvironment

interactions, including stromal elements such as tumor-associated fibroblasts, endo-

thelial cells, and tumor-infiltrating immune cells as well as the ECM. aGPCRs

regulate cell adhesion, migration, polarity, and guidance; cellular functions that are

also required for tumorigenesis. Characteristic for the aGPCRs is the large ECD

with multiple adhesive folds, which is coupled to a seven-span transmembrane

(7TM) domain and an intracellular domain (ICD) (see also [1–4]). Many aGPCRs

are cleaved at the GPS in the juxtamembrane region which is part of and regulated

by a GPCR autoproteolysis-inducing (GAIN) domain and results in an N- (NTF)

and a C-terminal fragment (CTF), which remain associated at the cell surface

(discussed in depth in [3, 5]). The various possible signaling scenarios resulting

from this bipartite structure have been reviewed recently [6, 7] and in [8–10].
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2 Software for the In Silico Interrogation of Cancer-Related
Databases

A number of online resources provide user-friendly software for the rapid

interrogation of large-scale cancer genomics data sets, and this in silico data mining

provides useful starting information on aGPCR expression or mutation in a variety

of cancer samples and cell lines.

1. The Cancer Cell Line Encyclopedia (CCLE) (www.broadinstitute.org/ccle)

contains detailed genetic characterization for more than 1000 human cancer

cell lines [11].

2. The cBioPortal for Cancer Genomics (www.cbioportal.org) provides analysis

tools to query, analyze, and visualize large-scale cancer genomics data sets,

including The Cancer Genome Atlas (TCGA) [12, 13].

3. The Human Protein Atlas (HPA) database (www.proteinatlas.org) contains

high-resolution images showing the spatial distribution of proteins in dozens

of normal and malignant tissues [14]. Note: the specificity of the used paraffin-

suitable antibodies is not verified in depth.

4. The Catalogue of Somatic Mutations in Cancer (COSMIC) (cancer.sanger.ac.

uk/cosmic) is designed to store and display somatic mutation information.

5. The SurvExpress is a biomarker validation tool and database for cancer gene

expression with survival analysis [15].

3 Identification of Adhesion GPCRs in Cancer

In the last two decades, it has become apparent that changes in aGPCRs occur in

cancer, either at the gene or protein expression level. Studies addressing the

relevance of these changes to the tumorigenesis process are currently limited.

CD97 was the first aGPCR identified to be correlated to cancer [16]. While it is

not expressed in normal thyrocytes and well-differentiated papillary and in part

follicular thyroid cancers, the protein was found to be elevated in anaplastic

carcinomas. In the following years other aGPCRs such as GPR56 were identified

to be cancer related [17]. Non-biased screens such as mRNA microarrays, genome-

wide association (GWA) studies, or proteome analyses confirmed previously

identified cancer-related changes in aGPCRs [18], showed alterations in new

tumor entities [19], or identified new aGPCRs involved in cancer [20]. Recently,

a whole-genome sequencing (WGS) approach in 441 human breast, lung, ovarian,

and prostate cancers identified the aGPCRs ADGRB3 (BAI3) and ADGRL3
(LPHN3) among 77 significantly mutated genes [21]. Further studies are warranted

to determine whether these mutations are functionally significant to cancer devel-

opment or progression or simply passenger mutations.
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4 Alterations in Adhesion GPCR Expression in Tumors
Compared to Normal Tissue

aGPCRs may be induced, increased, decreased, or silenced in tumor compared to

the corresponding normal cells. A quick way to determine whether a particular

aGPCRmay be present in tumor cells is to interrogate the CCLE [11]. This database

shows high levels of mRNA for ADGRA3 (GPR125), ADGRB2 (BAI2), ADGRC2

(CELSR2) and ADGRC3 (CELSR3), CD97, GPR56, ADGRG6 (GPR126),

ADGRL1 (LPHN1), and ADGRL2 (LPHN2) genes in hundreds of cell lines

derived from nearly all tumor entities (note: the normal corresponding cells are

not included in the database). The mRNA of other aGPCRs is absent in these cell

lines, including many members of the ADGRF and ADGRG families. Whether

expression in cultured cell lines reflects expression in tumor cells in vivo needs to

be addressed in each individual aGPCR and tumor type.

There is also evidence for changes in posttranslational modification of aGPCRs

associated with cancer, which could have functional consequences. This was first

shown for CD97. In normal smooth and skeletal muscle cells, the non-modified

CD97 protein core is present, whereas in their malignant counterparts, i.e., in

leiomyosarcoma and rhabdomyosarcoma cells, CD97 is found N-glycosylated

[66, 67]. It is well known that glycosylation patterns are modified in cancer

[88, 89]; therefore, it is important to determine whether such changes are relevant

to the tumorigenic process for each individual aGPCR. N-glycosylation of CD97 is

mapped to the adhesive EGF-like domains and is needed for the binding of the

interaction partner CD55 [67], which is consistent with CD97 and CD55 often

being co-expressed in cancer [53, 54, 90–93].

Regulation of aGPCR expression in stromal cells, such as tumor-associated

fibroblasts and endothelial or tumor-infiltrating immune cells, as shown for

ADGRA2 (GPR124) and all BAIs, may also support or suppress tumor progression.

For example, BAI1 has been shown to play a role as an engulfment receptor on

macrophages that can recognize apoptotic cells through binding of membrane-

exposed phosphatidylserine groups to BAI1’s extracellular thrombospondin repeats

(TSRs) [94]. Variation in BAI1 expression on macrophages or possibly tumor cells

may change the dynamics of dying tumor cell clearance from tumors, related

inflammation, and cancer metabolism.

5 Soluble Adhesion GPCR and Cleavage Fragments
in Tumorigenesis

As a direct consequence of the autocatalytic cleavage of aGPCRs at the GPS, as

well as through (additional) independent proteolysis events within their ECD, the

NTF or smaller fragments may be released from the receptor and appear in body

fluids. The existence of circulating soluble NTFs is reported for GPR124 [33], BAI1

[69, 85], BAI2 [95], CD97 [96], ADGRF5 (GPR116) [97], GPR126 [98], and

LPHN1 [99].
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Theoretically, soluble NTFs could engage with interaction partners over large

distances far away from the site at which they were released and thereby modulate

heterotypic tumor-stromal interactions that may be relevant to tumorigenesis. This

has been shown experimentally for the NTFs of the various isoforms of CD97,

which differ in the number of EGF-like domains in their ECDs. Soluble CD97

stimulates tumor angiogenesis in vitro and in vivo through binding of integrins and

chondroitin sulfate, a constituent of the ECM, in an isoform-specific manner

[100]. Soluble CD97 is found at sites of inflammation [96, 101, 102], most likely

released from CD97-positive immune cells, but not in body fluids of patients

suffering from CD97-positive tumors [48]. These data suggest either that unknown

cell-specific mechanisms control the release of the NTF or that an additional

independent proteolysis event, restricted to immune cells, is necessary for this

release.

In contrast to the pro-tumorigenic activity of CD97 NTFs, the NTFs of BAI1

have anti-angiogenic and anti-tumorigenic activities [69, 70] as further discussed

below.

6 Biological Functions of Adhesion GPCRs in Cancer

6.1 Proliferation, Apoptosis, and Cell Cycle Regulation

Little is known about the role of aGPCRs in tumor growth, either through alteration

in tumor cell division or cell death mechanisms including apoptosis. A few aGPCRs

have been shown to promote cell proliferation and/or prevent apoptosis, although

their role in signaling is not clarified. Downregulation of ADGRL4 (ELTD1) by

microRNA-139-5p leads to an inhibition of glioblastoma cell proliferation in vitro

[103]. CD97 protects fibrosarcoma HT1080 and cervical HeLa cancer cell lines

from serum starvation- and staurosporine-induced intrinsic apoptosis [104].

Preliminary studies examining the effect of GPR56 on in vitro tumor cell

proliferation and apoptosis have yielded contradictory results and may reflect the

different cancer types and studies performed. One study reported that the knock-

down of GPR56 expression induces a transient activation of apoptosis in several

cancer cell lines, suggesting that GPR56 may be important for cell survival and

have pro-tumorigenic functions [32]. This pro-apoptotic response could be over-

come, as this research group was able to generate stable cell lines with GPR56

knockdown. These clones show a reduction in anchorage-independent growth

in vitro, and some also have decreased tumor growth in vivo [32]. Similar

observations were reported in the EVI-1high leukemia cell line, in which GPR56

knockdown induced apoptosis although its effects on leukemia progression in vivo

were not explored [22]. This pro-growth function of GPR56 contrasts with

observations by another group in metastatic melanoma (A375P and MC-1) cell

lines. This study suggests that GPR56 is necessary for the subcutaneous growth of

these cells in mice, but does not affect their in vitro proliferation [60, 105]. The

mechanisms linking GPR56 to in vivo tumor growth are found to depend on
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regulation of proper ECM deposition by the melanoma cells [60]. A larger panel of

cell lines as well as a combination of in vitro and in vivo studies will be needed to

fully understand the function of GPR56 during cancer progression.

6.2 Cell Adhesion and Interaction with ECM

Some aGPCRs have been implicated in regulating tumor cell adhesion, but poten-

tial mechanisms of these effects have not been investigated in depth. Knocking

down Gpr125 in murine myeloid sarcoma lines that harbor KRASG12C and MLL/

AF10(OM-LZ) oncogenes leads to reduced myeloid sarcoma burden in mice, and a

decrease in cell adhesion in culture, possibly contributing to their reduced

tumorigenicity [106].

ECM proteins are large peptides that assemble into highly ordered structures

modulating various aspects of cell behavior, including cell adhesion, migration,

survival, and proliferation, which are key factors during tumorigenesis

[107]. GPR56 NTF was discovered to bind tissue transglutaminase (TG2) [105]

and collagen III [108]. It was reported that GPR56 internalizes TG2 from the

surface of melanoma cells, resulting in defects in ECM deposition in melanomas

[60]. This defect may contribute to the inhibitory function of GPR56 on melanoma

growth and metastasis. Knocking down GPR56 inhibits the adhesion of EVI-1high

leukemia cells to ECM [22], and granule cells from the rostral cerebellum of

Gpr56�/� mice are defective in adhering to fibronectin and laminin [109]. The

adhesion effect of GPR56 could be blocked by its NTF: purified recombinant GPR56

NTF inhibits adhesion of glioma cells to fibronectin [82]. Taken together, the above

studies point to a promoting role of GPR56 in cell-ECM adhesion, but whether this is

a shared mechanism among different tumor cells and whether it contributes to the

function of GPR56 in cancer progression remain to be investigated.

Several other aGPCRs such as ADGRE2 (EMR2) and GPR126 have also been

shown to interact with the ECM [110–112], but the impact of these interactions on

cancer has not been explored.

6.3 Cell Migration and Invasion

Among all aGPCRs, CD97 has been the most studied in the context of cell

migration and invasion (see also [113] on this topic). Its association with tumor

invasion is reported in several studies. It is upregulated at the invasive tumor front

[42, 48, 91], and its high expression correlates with lymph node invasion [48, 54],

advanced tumor stages [48, 53, 54, 91, 93], and patient survival [53, 77, 93]. The

positive effects of CD97 on tumor invasion are verified in experimental models

both in vitro and in vivo [49, 58]. Consistent with its function in promoting
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migration and invasion, CD97 is reported to enhance trans-well cell migration

toward fetal calf serum in 15 different colorectal cancer cell lines [48] and toward

fetal calf serum and lysophosphatidic acid (LPA) in AML cells (MV4-1 cell line)

[29]. Consistently, directed cell migration and invasion stimulated by fetal calf

serum are decreased following CD97 knockdown in a prostate cancer cell line

(DU145) [58]. Conflicting results have been published on the effect of CD97 in a

fibrosarcoma cell line (HT1080) on in vitro migration and in vivo formation of

tumors and metastases: in one study CD97 overexpression increases migration

in vitro and induces earlier tumor growth [49], whereas another study found the

opposite [114].

Other aGPCRs have also been reported to regulate cancer cell migration. GPR56

inhibits cell migration toward stromal cell-derived factor 1 in leukemia cell lines

[22], and GPR116 promotes cell migration and invasion toward serum in a breast

cancer cell line (MDA-MB-231) through the Gαq-p63RhoGEF-RhoA/Rac1
pathway [65].

6.4 Angiogenesis

Several aGPCRs are found to regulate tumor angiogenesis, the process through

which tumors elicit vessel formation that is critical for their sustained growth (see

also [115] on this topic). The most studied one is BAI1, which inhibits angiogenesis

in glioblastomas, the most malignant primary intracranial brain tumor which is

incurable [69, 70, 116, 117] as well as other cancer types [36, 37, 118, 119]. The

ECD of BAIs contains TSRs, and some TSRs are known to negatively regulate

angiogenesis [120, 121]. Cleavage of the BAI1 ECD leads to the release of two

fragments, dubbed vasculostatin-40 (Vstat40) and vasculostatin-120 (Vstat120) due

to their molecular size (Fig. 1), and both were shown to suppress blood vessel

formation in a variety of in vitro and in vivo assays [69, 70, 116]. When

overexpressed, GPR56 can also inhibit tumor angiogenesis in melanoma, probably

by blocking the secretion of vascular endothelial growth factor (VEGF) [61].

A number of aGPCRs also stimulate neovascularization in tumors. GPR124 was

described first as a tumor endothelial marker (TEM5) [125]. ELTD1 is identified as

part of a core angiogenic signature composed of genes whose expression jointly

correlates with that of several well-recognized angiogenesis and/or endothelial cells

“seed” genes, in more than 1000 human primary tumors, and is subsequently found

to be essential for angiogenesis and tumor growth [34]. The NTF of CD97 promotes

angiogenesis via binding to integrin α5β1 and αvβ3 and elicits a chemotactic

response in endothelial cells leading to their recruitment to the tumor [100].
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7 Families of Adhesion GPCR in Tumorigenesis

Table 1 gives an overview on published studies of aGPCRs in human tumors.

7.1 ADGRA

GPR124 was originally identified as an endothelial marker that is upregulated

during tumor angiogenesis [126]. A soluble GPR124 fragment, probably the

NTF, is shed from GPR124-transfected endothelial cells. Further proteolytic

processing creates a protein subunit that mediates endothelial survival and

subsequent tumor angiogenesis via interactions with glycosaminoglycans and the

integrin αvβ3 [33]. Only cell lines derived from Ewing sarcoma, chondrosarcoma,

and osteosarcoma strongly express GPR124 [11]. microRNA miR-138-5p, found to

be decreased in gefitinib-resistant non-small cell lung cancer (NSCLC) cell lines

(PC9GR, H1975), directly targets GPR124. Thus, downregulation of GPR124 is

discussed as a therapeutic approach to overcome NSCLC gefitinib resistance

[127]. Knockdown of Gpr125 reduces tumor cell aggregation and diminishes

myeloid sarcoma formation induced by transplantation of immortalized acute

myeloid leukemia [106].

7.2 ADGRB

The BAI1–3 proteins are predominantly expressed in the brain [116, 128]. The

human ADGRB1 (BAI1) gene is located on chromosome 8q24, and BAI1 is the

most studied member in this aGPCR subfamily. BAI1 contains several well-defined

protein modules in the N-terminus such as an integrin-binding Arg-Gly-Asp (RGD)

motif followed by five TSRs, a hormone binding domain and a GAIN domain with a

GPS (Fig. 1) [85]. BAI1 can be cleaved at the GPS releasing a soluble, 120 kDa

anti-angiogenic NTF called vasculostatin (Vstat120), which was reported to sup-

press the proliferation of endothelial cells by blocking αvβ5 integrin [129], reduce

the migration of cultured microvascular endothelial cells in a CD36-dependent

manner [70], and inhibit angiogenesis and glioma growth in vivo [69, 71, 72,

116, 130]. Subsequently, a novel more distal proteolytic processing event was

identified in BAI1, and it generates a more abundant cleaved NTF containing

only the RGD and the first TSR (Vstat40). This fragment was also able to inhibit

angiogenesis in vitro and in vivo [71]. At the other end of the protein, the

C-terminus of BAI1 contains an intracellular proline-rich region (PRR) and a

terminal PDZ-binding domain (Fig. 1), which associates with a number of intracel-

lular signaling and scaffolding proteins [131, 132], but the role of these signaling

events in cancer has not been studied to date. BAI1 also plays an important role in

myogenesis, synaptic plasticity, and phagocytosis [124], but it is unclear whether

any of these functions can also intersect with cancer.
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Fig. 1 Structure and functions of BAIs (ADGRBs). (a) Schematic of the three BAI proteins,

representing the major known structural and functional features as well as known proteolysis

events that generate either Vstat120 [69] or Vstat40 [71], and cancer-associated somatic mutations

[21, 122]. Abbreviations: TSR thrombospondin type 1 repeat, GAIN GPCR autoproteolysis-

inducing domain [123], GPS GPCR-proteolytic site, 7TM seven-transmembrane region, RGD
Arg-Gly-Asp integrin-binding motif, PRR proline-rich region. (b) Multiple functions of BAI1:
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BAI1mRNA levels are consistently downregulated in primary glioma specimens

and cell lines [72, 73], and in brain metastases from lung adenocarcinoma [37]. Pul-

monary adenocarcinomas, gastric, and colorectal cancers also show reduced BAI1

expression compared with normal tissue [36, 37, 44, 46]. A recent study also

suggests that BAI1 expression is significantly reduced in breast cancer and

correlates with poorer patient survival [62].

The human BAI2 and BAI3 genes were discovered as a result of their sequence

identity with BAI1 [128] and are localized on chromosomes 1p35 and 6q12,

respectively. The amino acid sequence is highly conserved in all three members;

however, BAI1 contains five TSRs, while BAI2 or BAI3 each contains only four. In

addition, the extracellular RGD motif and the intracellular proline-rich region

(PRR), a domain known to interact with Src homology 3 (SH3) and WW domain-

containing proteins [133], are unique to BAI1. Unlike BAI1, the expression of

BAI2 or BAI3 is not silenced in glioma cells [72]. Moreover, recent studies

determined higher BAI2 expression in tumor metastasis and advanced stages

[134, 135].

Importantly, recent discoveries have shown that the BAI genes are silenced

and/or undergo somatic mutations in several cancers (Fig. 1), including the lung,

breast, ovarian, and brain [21, 72, 122], suggesting that eliminating their function

might be required for tumor formation. Whether the identified mutations alter BAI1

function and may contribute to tumor formation has not been investigated to date.

The function of BAI2 and BAI3 in tumorigenesis needs to be further investigated.

7.3 ADGRC

Although the role of ADGRCs (CELSRs) as key components in planar cell polarity

(PCP) was clarified elegantly in knockout mice, our knowledge on their expression

and function in human malignancies is rather limited. Unbiased screening

approaches for cancer-related proteins often scored CELSRs as interesting hits,

but most of them await further validation as to their role in cancer. CELSR1 is

upregulated in B cells of patients with chronic lymphocytic leukemia (CLL) [25];

CELSR1 and CELSR3 are found to be present in gastrointestinal and brain tumors,

respectively [47]; and Celsr1 is overexpressed in Graffi murine leukemia virus

(MuLV)-induced hematologic malignancies with a lymphoid subtype [24]. Gene

expression profiling of mantle cell lymphoma shows that CELSR1 is downregulated
in the non-nodal form compared to other lymphomas [27], and CELSR1 expression
is increased in pure ductal breast carcinomas in situ (DCIS) compared to such

�

Fig. 1 (continued) BAI1 inhibits tumor cell growth in part by inhibiting angiogenesis. Moreover,

its TSRs interact with exposed phosphatidylserine at the outer leaflet on apoptotic cells and elicit

the engulfment in macrophages (Mϕ). BAI1 also promotes myogenesis. Deficiency of BAI1

promotes PSD-95 degradation at the synapses and induces enhanced long-term potentiation.

Figure adapted from [124]
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tumors with invasive components [63]. Moreover, the gene locus of CELSR1 is

hypermethylated in hepatocellular carcinoma (HCC) compared to control

tissue [51].

7.4 ADGRE

ADGRE1–3 (EMR1–3) expression is restricted to leukocytes. Thus, almost only

cell lines derived from hematologic malignancies express them [11]. EMR2 is not

or rarely expressed in gastric, pancreatic, esophageal, and colorectal carcinomas

[42, 136]. Here, only a subpopulation of tumor-infiltrating macrophages is strongly

EMR2 positive. Aberrant expression of EMR2 protein is reported in breast

carcinomas. It is associated with poor patient survival [64]. EMR2 is found

upregulated in glioblastoma, in particular in the mesenchymal subtype [74], and

is associated with poor overall survival and an invasive phenotype [75].

EMR3 is also found to be increased in glioblastoma and associated with poor

survival [76]. In colon cancer EMR3 is restricted to tumor-infiltrating immune

cells [137].

CD97 is the only ADGRE family member whose expression is not restricted to

immune cells. In human, its expression varies in cells of epithelial and mesenchy-

mal origin from negative, as in keratinocytes and thyrocytes, to low in enterocytes,

and high in pneumocytes and leukocytes. Cancer cell lines are almost all moder-

ately or strongly CD97 positive, suggesting that, compared to normal tissues, CD97

is frequently induced and/or increased in the corresponding malignancies. Low

CD97 levels are found only in cell lines derived from neuroblastomas. Small cell

lung cancer (SCLC) cell lines are nearly all CD97 negative, while non-small cell

lung cancer (NSCLC) cell lines are strongly CD97 positive, a fact that could be

helpful in discriminant analysis on lung cancers.

In thyroid cancer, CD97 is induced and expression levels correlate with malig-

nant progression [16, 57], i.e., only few papillary and follicular thyroid carcinomas

are CD97 positive, whereas most anaplastic cancers strongly express CD97. In

normal human intestinal epithelial cells, CD97 resides at low levels in lateral cell

contacts, whereas in colorectal cancer, the molecule is increased. In part, this

upregulation parallels its new cellular location within the cytoplasm

[48, 49]. Overexpression of CD97 in scattered tumor cells is observed at the

tumor invasion front [48]. The presence of these CD97-positive scattered tumor

cells correlates with higher tumor stage and higher lymphatic vessel infiltration,

both prognostic factors in colorectal cancer. CD97 is also upregulated in gastric

cancer [42]. Further supporting an oncogenic role, in mouse models of colorectal

and gastric cancer, CD97 supports local tumor growth and promoted metastatic

spread [49, 138].

In gall bladder carcinoma, CD97 expression is an independent risk factor for

overall survival [53]. CD97 is highly expressed in tumor cells of poorly differentiated

pancreatic ductal adenocarcinoma and in tumor-infiltrating leukocytes in chronic

pancreatitis samples, but not on normal pancreatic epithelial cells [139]. In a study of
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37 pancreatic cancer patients, CD97 correlates with aggressiveness and was

associated with prognosis [54]. In esophageal cancer CD97 is among the 19 genes

with promoter hypomethylation and upregulation [140].

CD97 mediates invasion in prostate cancer cells, at least in part, by associating

with lysophosphatidic acid receptor 1 (LPAR1), leading to enhanced

LPA-dependent RHO and extracellular signal-regulated kinase (ERK) activation.

Consistent with its role in invasion, depletion of CD97 in prostate cancer cells (PC3

cell line) results in decreased bone metastasis without affecting subcutaneous tumor

growth. CD97 and LPAR1 are significantly co-expressed in clinical prostate cancer

specimens.

CD97 is highly expressed in glioblastoma (WHO grade IV) and has prognostic

significance in two independent cohorts of 187 and 539 glioblastoma patients,

respectively [18, 77]. CD97 is also identified as a potential biomarker for glioma-

initiating cells through an in vivo phage display screen [78], suggesting it represents

a potential new therapeutic target [77]. In contrast, CD97 expression is minimal in

WHO grade II and III astrocytomas [79]. Experimental data suggest that CD97

regulates tumor cell invasion in glioblastomas. Decreasing CD97 by siRNA reduces

migration and invasion, but not proliferation in two glioblastoma cell lines

[77]. Mass spectroscopy-based proteomic analysis showed that CD97 is enriched

in membrane fractions of invadopodia, actin-rich protrusions, of invasive glioblas-

toma cells [18]. The mechanism underlying CD97-mediated promotion of invasion

of glioblastoma cells is under investigation. Suppression of Wilms’ tumor gene

product WT1 by siRNA led to a decrease in the invasiveness of glioblastoma cell

lines paralleled by a suppression of CD97 RNA [80].

Further evidence for a role of CD97 in tumorigenesis comes from screening

studies demonstrating that it is a direct target of the tumor suppressor microRNA-

126 in the breast cancer cell line MDA-MB-231 [141].

Additionally, evaluation of CD97 expression in leukemia is highly informative.

Gene expression studies and characterization of the leukemia cell surface proteome

identified CD97 as a marker for minimal residual disease in acute lymphoblastic

leukemia (ALL) [19]. CD97 expression also accounts for the most informative

differences between normal and malignant cells in ALL [26]. CD97 has further

been identified as a leukemic stem cell marker in acute myeloid leukemia (AML)

[28]. In AML, expression levels of CD97 are associated with internal tandem

duplications within the juxtamembrane region of the FMS-like tyrosine kinase

receptor FLT3 (LFT3-ITD) [29].

Whether the function of CD97 in tumorigenesis could be modulated by other

interaction partners such as LPAR1 is unknown. CD55 [142], chondroitin sulfate B

[110], α5β1 and αvβ3 integrins [100], and CD90 [143] bind distinct sites within the

NTF of CD97 at immune cells; nothing is known whether these interaction partners

also bind CD97 in tumors. A few articles have been published on co-expression of

CD55 and CD97 in solid tumors but not on the resulting functional consequence

[53, 54, 91–93].
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7.5 ADGRF

GPR116, highly enriched in fetal and adult lung [144–146], is part of a gene

expression signature that differentiates adenocarcinoma of lung and breast origin

in effusions [20]. Knockdown of GPR116 suppresses migration and invasion,

whereas ectopic expression enhances invasion of the breast cancer cell line

MDA-MB-231 [65]. GPR116 promotes constitutively breast cancer metastasis via

the Gαq-p63RhoGEF-Rho GTPase pathway [65]. Its expression is significantly

correlated with breast tumor progression, recurrence, and poor prognosis.

7.6 ADGRG

Among the ADGRG members, GPR56 is the most studied in the context of cancer

progression. It was reported in 1999 to be downregulated in highly metastatic

melanoma cell lines compared with poorly metastatic lines [17]. Its inverse corre-

lation with metastatic potential was evaluated in more depth later in an experimen-

tal metastasis model which shows the downregulation of GPR56 in several highly

metastatic melanoma derivatives compared with their poorly metastatic parental

line (A375P). Re-expression of GPR56 inhibits the growth and metastasis of

melanoma cells [105], supporting a tumor suppressor role for GPR56 in melanoma.

Mechanistic studies in one of the metastatic derivatives (MC-1) revealed that

GPR56 overexpression inhibits the activation of PKCα, resulting in the suppression
of VEGF secretion from melanoma cells, leading to angiogenesis inhibition [61]. In

contrast to the full-length receptor, expression of the CTF of GPR56 or deletion of

the serine threonine proline (STP)-rich segment (ΔSTP-GPR56) leads to enhanced

activation of PKCα, VEGF secretion, and angiogenesis. These opposing functions

of GPR56 and its CTF indicate that GPR56 might exist in different activation states,

although the signaling mechanisms of GPR56 in cancer have not been elucidated.

The NTF of GPR56 binds to tissue transglutaminase (TG2) [105] and collagen III

[108]. The interaction between GPR56 and collagen III in cancer progression is not

reported. TG2 is a cross-linking enzyme in the ECM and thought to play pleiotropic

roles in cancer progression [147]. The interaction of GPR56 with TG2 in melanoma

growth was evaluated recently in a xenograft model using the immunodeficient

Tg2�/� mice [60]. TG2-knockdown melanomas growing in these mice are depleted

of TG2 in both cancer cells and stroma and found to be much smaller than the

control tumors growing in Tg2+/+ mice, arguing that TG2 promotes melanoma

growth. This tumor-promoting function is abolished by GPR56 overexpression,

probably via receptor-mediated TG2 internalization from the cell surface [60].

Whether GPR56 functions similarly in metastasis and in other cancer types remains

to be determined.

In contrast to the situation in melanoma, GPR56 is often found upregulated in

other cancer types relative to the corresponding normal tissues [32, 43, 148, 149], so

perhaps its function in cancer is cell of origin and/or stage specific. Knocking down

of GPR56 induces transient apoptosis and reduces the in vitro growth of several
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cancer cell lines derived from colon (HCT116), melanoma (M14), and cervix

(HeLa). Notwithstanding this pro-apoptotic response, the authors were able to

derive stable GPR56 knockdown in all the cancer cell lines they tested, including

those from the cervix (HeLa), colon (HCT116), melanoma (A2058 and M14),

ovary (OVCAR3 and OVCAR8), prostate (PC3), pancreas (AsPC1), and lung

(NCI-H460). A reduction in anchorage-independent growth in vitro was observed

in all the knockdown lines, and decreased tumor growth in vivo was observed in the

knockdown of A2058, PC3, and HCT116 cell lines [32]. This study suggests that

GPR56 plays a tumor-promoting role in certain cancer cells. Similar

pro-proliferation effects of GPR56 are observed in EVI1high leukemia cell lines

AML1 and HNT34, in which knocking down of GPR56 enriches cells at the subG1
phase of the cell cycle and induces apoptosis [22].

The discrepancies among the above studies need to be followed up in future

investigations. It is possible that GPR56 has both pro- and anti-growth functions

during cancer progression, for example, via distinct binding partners. In fact, in a

recent study [60], knocking down of both GPR56 and TG2 leads to a much more

severe reduction in subcutaneous growth of MC-1 cells than TG2-knockdown
alone, suggesting that GPR56 may have tumor-promoting functions in MC-1 cells

in the absence of TG2. This effect of GPR56 was not observed in the WM115

melanoma cell line, pointing again to the complexity of GPR56 function in cancer.

Very recently, GPR56 was identified as a novel and stable marker for leukemic

subpopulations with high repopulating capacity, a key feature attributed to leuke-

mia stem cells, for the majority of acute myeloid leukemia (AML) samples

[30]. High GPR56 expression was significantly associated with high-risk genetic

subgroups and poor outcome.

The second member of the ADGRG group, GPR64, was found upregulated in

Ewing sarcomas (ES) compared with normal tissues and other sarcomas

[68]. Gpr64 knockdown in Ewing sarcoma lines led to a reduction in tumor growth

and metastasis. This tumor-promoting function of Gpr64 was mediated by the

induction of placental growth factor (PGF) and matrix metalloproteinase

1 (MMP1) [68]. The mRNA of GPR64 was detected at high levels in cell lines

from prostate cancer, non-small cell lung cancer (NSCLC), and melanomas and at

moderate to low levels in cell lines from brain, ovary, breast, and colon cancers

[68]. It was also identified as a marker for a subgroup of medulloblastomas

characterized by overactive WNT signaling [87]. GPR64 silencing in the highly

motile cancer cell lines Hs578T and MDA-MB-231 resulted in a reduction of cell

adhesion and migration [150].

ADGRG4 (GPR112) was identified as a marker for neuroendocrine carcinoma

cells [151] and was predicted to be one of the candidate genes for targeted therapy

of ileal carcinoids [50].

None of the other ADGRG members (ADGRG3, GPR97; ADGRG5, GPR114;

GPR126; ADGRG7, GPR128) have been reported to affect tumorigenesis or be

dysregulated in cancer samples.
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7.7 ADGRL

The CCLE predicts high expression of LPHN1 and LPHN2 in many tumors [11]. A

gene identification study in breast tumors led to Latrophilin-1 [59]. Indeed, a

number of breast tumor cell lines apparently overexpress the gene [152]. An

invasion-associated four-gene signature including Latrophilin-1 obtained from the

NCI-60 cell line panel has significant prediction in non-small cell lung cancer

(NSCLC) [40]. A genome-wide screen between a recurrent muscle-invasive cis-

platin-resistant urothelial bladder carcinoma and its adjacent non-tumor tissue

found cancer-associated alternative splicing with differential exon usage for

LPHN2 [153]. Linkage studies have revealed numerous Latrophilin-3 loss-of-

function mutations in breast, lung, ovarian, and prostate cancers [21].

ELTD1 is a regulator of physiological and tumor angiogenesis in vitro and

in vivo [34]. ELTD1 showed higher expression on endothelium in peritumoral

vessels compared to vessels of matched normal tissues [34]. Silencing of ELTD1
in human ovarian and colorectal cancer xenografts implanted in mice inhibited

tumor growth [34]. The transcriptome of the microvasculature associated with

glioblastoma identified ETLD1 as 1 of 95 upregulated genes [35]. Indeed, ELTD1

can be used as a vascular biomarker in glioblastoma [84]. It displays higher

expression in high-grade compared with low-grade gliomas. miR-139-5p

suppresses glioma cell proliferation by targeting ELTD1 and regulating the cell

cycle [103].

7.8 ADGRV

To identify molecular biomarkers associated with low-grade glioma-associated

epileptic seizures, one of the initial symptoms of this tumor, RNA sequence data

were collected [154]. A lower expression level of ADGRV1 (VLGR1) was found in

patients with epileptic seizures compared to seizure-free patients and was con-

firmed by quantitative RT-PCR.

8 Tumor Therapy and Adhesion GPCRs

Accumulating evidence of the direct involvement of aGPCRs in tumor pathogene-

sis provides a solid foundation for their further study as potential therapeutic

targets. Some aGPCRs are silenced with tumor formation and appear to have

tumor suppressor activity (BAI1), while others are overexpressed in cancer and

may act as oncogenic factors (CD97, GPR116, ELTD1).

The observation that BAI1 is epigenetically silenced in malignant glioma

[72, 155], along with the recent findings of multiple somatic point mutations in

the BAI1–3s in several cancers [21, 122], suggests that tumorigenesis may select

for BAI1 silencing or inactivation. Importantly, exogenous restoration of BAI1

expression reduces growth and vascularization of tumors derived from gliomas and
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pancreatic and renal cell carcinomas [36, 119, 156, 157]. Taken together, these

studies suggest that BAI1 fulfills the criteria for a bona fide tumor suppressor, and

there is significant potential for BAI1 and its extracellular fragments as therapies for

the treatment of human cancers. BAI1 is silenced in glioblastoma multiforme due to

methylation of a CpG island in the gene regulatory region, which leads to binding of

methyl-CpG-binding domain protein 2 (MBD2) and transition to a suppressive

chromatin conformation [72]. Treatment of glioma cells with 5-aza-2-
0-deoxycytidine (5-Aza-dC) or knockdown of MBD2 by shRNA resulted in reacti-

vation of BAI1 expression and restoration of BAI1 functional activity in that it

conferred potent anti-angiogenic activity to glioma cell conditioned media in vitro

and in vivo [72]. These findings have therapeutic implications since inhibiting

MBD2 could offer a strategy to reactivate BAI1 expression and suppress tumor

growth. Sequence-specific antisense inhibitors of MBD2 have been shown to

inhibit both anchorage-independent growth of human cancer cell lines in vitro

and the growth of human tumor xenografts in vivo [158, 159]. At present, epige-

netic approaches in cancer therapy have focused primarily on inhibitors of the DNA

methyltransferases and histone modifiers (e.g., HDACs). Thus, targeting MBD2 to

reactivate BAI1 may represent a novel promising cancer therapeutic intervention.

In contrast to BAI1, some aGPCRs are overexpressed in tumors. Expression of

CD97 was found in human thyroid carcinomas, but not in the corresponding normal

thyrocytes [16, 57]. In human thyroid cancer cell lines, CD97 depletion reduced

Rho-GTP and decreased lysophosphatidic acid (LPA)-stimulated invasion

[57]. Similarly, GPR116 protein expression correlates with clinical progression

stages in breast cancer and peaks in tumors with distant metastases [20, 65]. Knock-

down of GPR116 in highly metastatic breast cancer cells (MDA-MB-231)

suppressed cell migration, invasion, and metastasis in vivo [65]. These studies

suggest that modulation of aGPCR expression in tumors may be effective thera-

peutics. A recent study identified ELTD1 as a novel angiogenesis regulator [34, 35,

84]. ELTD1 is upregulated in tumor endothelial cells and is a good prognostic

marker. Moreover, targeting Eltd1 blocks tumor angiogenesis and substantially

inhibits tumor growth in vivo [34]. The function of GPR56 in different cancer

types was found to differ, with both pro- and anti-tumorigenic properties, so the

therapeutic implication of targeting GPR56 in cancer in general awaits careful

evaluation. ADGRG4 (GPR112) was reported to serve as a marker for neuroendo-

crine carcinoma cells [151] and proposed a therapeutic target for treating ileal

carcinoids [50].

In summary, alterations in the expression pattern of different aGPCRs have been

documented in several cancers, suggesting that they may potentially serve as

biomarkers of disease or therapeutic targets. Undoubtedly, the interest in the

therapeutic targeting of the aGPCR family will continue to grow in the upcoming

years, but first requires a more comprehensive characterization of their fundamental

biological function.
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