
Reasoning in Attempto Controlled English:
Non-monotonicity

Norbert E. Fuchs(&)

Department of Informatics and Institute of Computational Linguistics,
University of Zurich, Zurich, Switzerland

fuchs@ifi.uzh.ch

http://attempto.ifi.uzh.ch/

Abstract. RACE is a first-order reasoner with equality for Attempto Controlled
English (ACE) that can show the consistency of a set of ACE axioms and
deduce ACE theorems and ACE queries from ACE axioms. This paper presents
various forms of non-monotonic reasoning.

Keywords: Controlled natural language � Attempto Controlled English �
ACE � RACE � Monotonic reasoning � Non-monotonic reasoning � Abduction

1 Introduction

Attempto Controlled English (ACE)1 is a logic-based knowledge representation lan-
guage that uses the syntax of a subset of English. The Attempto Reasoner RACE2

– one
of several reasoners available for ACE3

– allows users to show the consistency of an
ACE text, to deduce one ACE text from another one, and to answer ACE queries from
an ACE text. More about ACE and RACE is found in the relevant documentation4.

A previous system description [1] of RACE detailed its structure, its functionality,
its implementation and its user interfaces. The main part of [1] covered reasoning with
what could be called the first-order subset of ACE, that is all ACE constructs –

including alethic modality – that can be directly or indirectly mapped to first-order
formulas. Furthermore, [1] described summation, a form of second-order reasoning
combining the results of first-order proofs.

A closer look reveals that all reasoning examples found in [1] have one feature in
common, namely that they rely on monotonic logic, i.e. adding axioms will not
invalidate deductions from the original axioms.

This paper extends RACE’s reasoning to non-monotonic logic5 and presents
solutions to some of its many facets. Please note that the paper is a further system
description focussing on RACE’s implementation. Thus you will not learn much about

1 http://attempto.ifi.uzh.ch/.
2 http://attempto.ifi.uzh.ch/race/.
3 http://attempto.ifi.uzh.ch/site/resources/.
4 http://attempto.ifi.uzh.ch/site/docs/.
5 https://en.wikipedia.org/wiki/Non-monotonic_logic.

© Springer International Publishing Switzerland 2016
B. Davis et al. (Eds.): CNL 2016, LNAI 9767, pp. 13–24, 2016.
DOI: 10.1007/978-3-319-41498-0_2

http://attempto.ifi.uzh.ch/
http://attempto.ifi.uzh.ch/race/
http://attempto.ifi.uzh.ch/site/resources/
http://attempto.ifi.uzh.ch/site/docs/
https://en.wikipedia.org/wiki/Non-monotonic_logic


non-monotonic reasoning in general beyond what is needed to explain the selected
topics and examples.

The rest of this paper is organised as follows. In Sect. 2, I recall general features of
RACE. Section 3 recounts summation and shows that it has both monotonic and
non-monotonic aspects. In Sect. 4, I focus on variations of non-monotonic reasoning.
Section 5 presents a form of abduction. Section 6 concludes with a summary of the
presented solutions and with a discussion of their strengths and limitations, specifically
addressing the question of their suitability.

2 General Features of RACE

For the convenience of the reader and to make this paper self-contained the material of
this section is partially copied from [1].

RACE has the following general features:

• RACE offers consistency checking, textual entailment and query answering of ACE
texts.

• For inconsistent ACE axioms RACE will list all minimal subsets of the ACE
axioms that lead to inconsistency. If ACE axioms entail ACE theorems, respectively
ACE queries, RACE will list all minimal subsets of the ACE axioms that entail the
theorems, respectively queries.

• RACE is loosely based on the model-generator Satchmo [2], but offers much
additional functionality.

• RACE is implemented as a set of Prolog programs that can be used locally. Fur-
thermore, RACE can be accessed remotely via its web-client6 or via its
web-service7.

• RACE uses about 50 auxiliary axioms to represent domain-independent general
knowledge. These auxiliary axioms are not expressed in ACE, but in Prolog.

• Using the entailment A ⊢ T of ACE theorems T from ACE axiom A as an example,
here is a sketch RACE’s proof procedure.

In a first step, the ACE axioms A and the ACE theorems T are separately translated
by the Attempto Parsing Engine (APE)8 into semantic representations called discourse
representation structures DRS_A, respectively DRS_T [3].

In a second step, (DRS_A & ¬ DRS_T) is translated into a set of clauses clause
(Body, Head, Index) where Body is true or a conjunction of logical atoms and
Head is fail or a disjunction of logical atoms. Body implies Head. Index contains
the number of the ACE axiom, respectively ACE theorem, from which the clause was
derived. Negation is expressed as implication to fail.

In a third step, the clauses are executed bottom-up by forward-reasoning. If the
Body of a clause is true or can be proved from the data base then Head is asserted to

6 http://attempto.ifi.uzh.ch/race/.
7 http://attempto.ifi.uzh.ch/ws/race/racews.perl.
8 http://attempto.ifi.uzh.ch/site/resources/.

14 N.E. Fuchs

http://attempto.ifi.uzh.ch/race/
http://attempto.ifi.uzh.ch/ws/race/racews.perl
http://attempto.ifi.uzh.ch/site/resources/


the database together with a list that contains Index and the sentence indices of all
clauses that were used to prove Body. This amounts to building a proof-tree labelled
with lists of indices. Range restriction9 ensures that all atoms added to the data base are
ground. If Head is fail then the respective branch of the proof-tree is considered
closed, the indices of its leaf are stored and its nodes are removed from the data base.

Forward-reasoning ends when no (further) clause can be executed. The result is
either a set of ground atoms in the data base constituting a minimal Herbrand model of
the clauses – indicating that the clauses are consistent, the ACE axioms do not entail
the ACE theorems – or an empty data base and a set of closed branches. If all branches
of the proof-tree are closed – indicating a succeeding proof– then the indices of their
leaves are combined and mapped to their respective ACE axioms that constitute a
minimal subset of the ACE axioms needed to entail the ACE theorems. Since RACE
checks all possibilities to prove the bodies of the clauses, it can generate more than one
proof.

3 Monotonic and Non-monotonic Summation

If ACE axioms entail ACE theorems RACE will list all minimal subsets of the axioms
that entail the theorems. In other words, RACE will generate more than one proof of a
theorem if the axioms allow for this. Here is a simple example shown as a screen-shot
of the output window of RACE’s web-client.

The example relies on RACE using the unique name assumption, i.e. the men John
and Johnny are by default distinct. Thus there are two proofs for the theorem There is a
man.

RACE provides also summation, i.e. second-order aggregation over first-order
proofs. Using the same axioms and the theorem There are two men. we get.

9 A clause is called range-restricted if all variables of its head occur already in its body. Clauses
derived from discourse representation structures are by default range-restricted.

Reasoning in Attempto Controlled English: Non-monotonicity 15



Now let’s add the axiom John is not Johnny. and try both proofs again.

As we see, we get the same results as before. RACE behaves monotonically since
the additional axiom does not prevent the deductions from the original axioms.
Actually, this is no wonder since the additional axiom is just an explicit statement of
the unique name assumption.

Alternatively, let’s add the axiom John is Johnny. and try both proofs again.

16 N.E. Fuchs



While the theorem There is a man. can be reproduced as before, the theorem There
are two men. cannot since the unique name assumption is explicitly overridden, and we
have only one man that happens to carry two names. Thus in this case RACE behaves
non-monotonically since the additional axiom prevents a deduction from the original
axioms.

To sum up, RACE exhibits both monotonic and non-monotonic behaviour for
summation. While this behaviour was unintended, it motivated me to extend RACE by
non-monotonic reasoning in general.

4 Non-monotonic Reasoning

Reasoning is called monotonic when derived conclusions are not invalidated by added
premises. However, there are also highly relevant forms of reasoning – called
non-monotonic – that derive tentative conclusions from assumed premises. Both the
assumed premises and the tentative conclusions may have to be withdrawn or replaced
in the light of further evidence. Non-monotonic reasoning plays an important role in
everyday thinking and argumentation, in semiformal settings like medical diagnosis, or
in formal domains like expert systems and physics.

Since the 1980s various formal frameworks have been developed for
non-monotonic reasoning [4]. In the last years the focus has been on logic-based
approaches like Answer Set Programming (ASP)10. Given RACE’s foundation in
first-order logic, it is not surprising that also its approach to non-monotonic reasoning is
logic-based.

Of the many different forms of non-monotonic reasoning11 I will consider two:

• Contradictory premises where one or the other premise may have to be withdrawn
or modified to remove the contradiction; this case is traditionally not subsumed
under the label “non-monotonic reasoning”, but shows many similarities.

• Default reasoning where conclusions depend on default premises that express
knowledge that is typically, but not necessarily always, true. Default reasoning
comes in many variations some of which will be addressed.

10 http://www.kr.tuwien.ac.at/staff/tkren/pub/2009/rw2009-asp.pdf.
11 http://plato.stanford.edu/entries/logic-nonmonotonic/.

Reasoning in Attempto Controlled English: Non-monotonicity 17

http://www.kr.tuwien.ac.at/staff/tkren/pub/2009/rw2009-asp.pdf
http://plato.stanford.edu/entries/logic-nonmonotonic/


Contradictory Axioms. The next example was specifically chosen to show that
contradictory axioms are not necessarily so easily perceived that the user becomes
aware of the contradiction. RACE, however, will detect it and notify the user.

RACE handles alethic modality (necessity, possibility) by mapping modal language
constructs to standard first-order logic constructs12. The following example makes use
of the fact that the modal statement John must sleep. entails both the modal statement
John can sleep. and the non-modal statement John sleeps. Thus the two axioms are
contradictory. Notice that – as if RACE would make an effort to give the user as much
information as possible – the theorem is nevertheless derived from the first axiom.
More importantly, there is a warning message and the user must decide how to remove
the contradiction.

Worse, contradictory axioms allow users to derive a theorem – e.g. John wakes.
– that does not follow at all from the axioms though it seems related to the subject
matter. RACE cannot prevent its users from constructing cases like this one, but alerts
them by issuing a warning message, and inviting them to change the axioms.

12 https://en.wikipedia.org/wiki/Standard_translation.

18 N.E. Fuchs

https://en.wikipedia.org/wiki/Standard_translation


Default Reasoning: Defeasible Information. John is checking a train time-table for a
specific train. Not finding this train he concludes that it does not exist. John’s reasoning
is based on the so-called closed-world assumption13 that states that the information
available is assumed complete, that everything that is true is known to be true, and that
everything that is not known to be true is considered false. The closed-world
assumption leads to defeasible conclusions, i.e. conclusions that may have to be
withdrawn in the light of new evidence. When John detects that he by mistake checked
an outdated time-table and that the actual time-table does contain the train he is looking
for, he has to revise his previous conclusion.

In addition to logical negation ACE provides language constructs (… does/do/is/are
not provably…, it is not provable that…) that stand for negation as failure (NAF)14.
Using these language constructs together with logical negation I implemented the
closed-world assumption in RACE. RACE allows negation as failure constructs only in
the preconditions of ACE’s if-then statements which leads to entries naf(NAF) in the
bodies of RACE’s clauses. NAF is a list of logical atoms that RACE tries to prove as
described in Sect. 2. If the proof of NAF succeeds then naf(NAF) fails, and vice versa.

Here is the train example for the initial situation when John searches the outdated
time-table, and – not finding the specific train – concludes that it does not exist.

If John looks for and finds the specific train in the actual time-table, he no longer
deduces that the train does not exist. RACE also reproduces this behaviour.

13 https://en.wikipedia.org/wiki/Closed-world_assumption.
14 https://en.wikipedia.org/wiki/Negation_as_failure.

Reasoning in Attempto Controlled English: Non-monotonicity 19

https://en.wikipedia.org/wiki/Closed-world_assumption
https://en.wikipedia.org/wiki/Negation_as_failure


Default Reasoning: Working With Exceptions. An often-cited example of default
reasoning concerns the fact that birds typically fly, but that there are exceptions like
penguins that are birds, but do not fly. Thus the statement All birds fly. does not
correctly represent reality. Replacing this statement by All birds fly with the exception
of penguins, ostriches, kiwis, dead birds, young birds, wounded birds, … obviously is
not practicable for automatic reasoning since the list of non-flying birds would have to
be updated again and again.

As in the previous case negation as failure in combination with logical negation
offers a convenient way to express typicality and its exceptions.

We can represent the bird example in two ways, once with a rule that birds fly if
there is no evidence to the contrary, and once with a rule that birds do not fly if there is
no evidence that in fact they do.

The next two figures show these two cases. Notice that in the first case the negation
as failure and the logical negation occur in the precondition of the if-then statement that
expresses the typicality plus exception, while in the second case the negation as failure
occurs in the precondition and the logical negation in the consequence. Which for-
mulation to choose depends among other considerations on the theorem to be proved.

Default Reasoning: Frame Problems. The frame problem15 of artificial intelligence
emerges when one parameter of a complex situation is changed and the question arises
how to represent that all other parameters of the situation that are not dependent on the
changed parameter stay unchanged. Of the many solutions to the frame problem those
that are based on default logic16 and on answer set programming (ASP)17 seem to be

15 https://en.wikipedia.org/wiki/Frame_problem.
16 https://en.wikipedia.org/wiki/Frame_problem#Default_logic_solution.
17 https://en.wikipedia.org/wiki/Frame_problem#Answer_set_programming_solution.

20 N.E. Fuchs

https://en.wikipedia.org/wiki/Frame_problem
https://en.wikipedia.org/wiki/Frame_problem%23Default_logic_solution
https://en.wikipedia.org/wiki/Frame_problem%23Answer_set_programming_solution


the simplest since they directly express the common sense law of inertia, also called
Leibniz law, that everything can be assumed to remain in the state in which it is.

Taking the ASP formulation of the frame axiom – if r(X) is true at time T, and it
can be assumed that r(X) remains true at time T + 1, then we can conclude that r(X)
remains true – as a guidance here is an example how the frame problem can essentially
be solved by RACE.

The first axiom – like ASP relying on a combination of logical negation and
negation as failure – expresses the persistence of situation parameters not affected by
the change of another parameter. The second and third axiom describe an elementary
situation.

Default Reasoning: Nixon Diamond. Default reasoning can also lead to an impasse.
In the problem called Nixon diamond default assumptions lead to mutually inconsistent
conclusions that require additional reasoning steps. The situation is as follows: Nixon is
both a quaker and a republican. Quakers tend to be pacificists, while republicans
usually do not. From these premises one can deduce that Nixon is both a pacifist and no
pacifist.

Please note that in the following screen-shot the word quaker is prefixed by n: to
identify it as noun since quaker is not found in RACE’s lexicon.

To get out of this impasse there are several possibilities – all of which could in
principle be implemented in RACE, but are not. First, one can assume either a skeptical
attitude – the conflicting conclusions must not be drawn – or a credulous attitude – the
conflicting conclusions are derived, but must be resolved in one way or other in the

Reasoning in Attempto Controlled English: Non-monotonicity 21



light of further evidence. Second, like [5] one can introduce priorities for the two
default rules so that only one conclusion is derived.

5 Abduction

Abduction – another form of non-monotonic reasoning – strives to find a likely
explanation for a phenomenon. In terms of reasoning this means extending given
premises that do not give the desired conclusions by further premises selected from a
background theory, possibly subject to constraints like simplicity or plausibility.

The question is where to find the additional premises. One answer is suggested by
Abductive Logic Programming18 that introduces logic programs with clauses whose
bodies consists of so-called abducible predicates that are only partially defined and that
possibly underlie a set of first-order constraints. The idea of abductive logic pro-
gramming is to extend the given logic program by definitions of the abducible pred-
icates – respecting the constraints – so that the extended program generates the desired
answer. In essence, the information that leads to abducted premises is contained in the
bodies of the given clauses.

This approach inspired RACE’s strategy for a form of abduction:

• axioms contain if-then statements whose preconditions are incompletely defined;
possibly there are some constraints for these preconditions

• theorems are matched against the conclusions of the if-then statements; matching
may have to extend to all given axioms if noun phrases occur in the conclusions
only as anaphoric references, but are actually defined elsewhere

• if matching succeeds then the precondition of the respective if-then statement is
added to the axioms respecting the constraints and avoiding inconsistency and
duplication

Here is a simple example19: If your lawn is wet then it either rained or you had
switched on the sprinkler. If the sky is clear you must exclude rain as the cause, so that
the sprinkler is the cause.

First the example without the constraint.

18 https://en.wikipedia.org/wiki/Abductive_logic_programming.
19 https://en.wikipedia.org/wiki/Abductive_logic_programming#Example_1.

22 N.E. Fuchs

https://en.wikipedia.org/wiki/Abductive_logic_programming
https://en.wikipedia.org/wiki/Abductive_logic_programming%23Example_1


We get two sets of abducted axioms that each – together with the original axioms –
prove the theorem.

Now we add the constraint that it cannot rain from a clear sky and the fact that the
sky is clear.

As expected we get only one set of abducted axioms that together with the original
axioms prove the theorem.

6 Conclusions

I extended the Attempto Reasoner RACE by non-monotonic reasoning using small
examples that focus on the respective issues.

As described in [1] RACE relies on auxiliary axioms that add domain-independent
general knowledge to the domain-specific knowledge of the given axioms. Since these
auxiliary axioms are coded in Prolog that has the power of the Turing machine, RACE
could in principle deduce any conclusion from the axioms. As a consequence – in
addition to the usual questions of correctness and completeness of a theorem prover – a
further question arises, namely what RACE should actually deduce. The answer to this
question depends on the domain investigated and on the expectations and intuitions of
the users, and – as my experience has shown – may be highly debatable.

In non-monotonic reasoning a similar question of suitability arises, this time related
to the reasoning methods I chose. While default reasoning based on ACE’s language
constructs negation and negation as failure seems quite general and powerful, the same
cannot yet be said for RACE’s strategy for abduction inspired by abductive logic
programming. Thus questions arise, for example which of my methods is dictated by
the example problems, and which is powerful and general enough to be applied to other
types of problems. In other words, the methods and implementations of non-monotonic
reasoning that I presented in this paper need further investigations.

RACE now covers all language constructs of Attempto Controlled English with the
exception of those that have no direct logical representations – imperative sentences
and the modal operators for recommendation (should) and admissibility (may) – and
the operations on lists, sets and strings that – not posing any problems as far as
reasoning is concerned – will be implemented in RACE at some other time.

Reasoning in Attempto Controlled English: Non-monotonicity 23



Acknowledgements. I would like to thank the three anonymous reviewers of the first version of
this paper for their constructive comments. Many thanks go to the Department of Informatics and
the Institute of Computational Linguistics, University of Zurich, for their hospitality.

References

1. Fuchs, N.E.: First-order reasoning for Attempto Controlled English. In: Rosner, M., Fuchs, N.E.
(eds.) CNL 2010. LNCS, vol. 7175, pp. 73–94. Springer, Heidelberg (2012)

2. Manthey, R., Bry, F.: SATCHMO: a theorem prover implemented in prolog. In: Overbeek, R.,
Lusk, E`. (eds.) CADE 1988. LNCS, vol. 310, pp. 415–434. Springer, Heidelberg (1988)

3. Bos, J.: Computational semantics in discourse: underspecification, resolution, and inference.
J. Logic Lang. Inf. 13, 139–157 (2004). Fuchs, N.E., Kaljurand, K., Kuhn, T.: Discourse
Representation Structures for ACE 6.6, Technical Report ifi-2010.0010, Department of
Informatics, University of Zurich (2010)

4. Genesereth, M.R., Nilsson, N.J.: Logical Foundations of Artificial Intelligence. Morgan
Kaufmann Publishers, San Mateo (1987)

5. Grosof, B.N.: Courteous logic programs: prioritized conflict handling for rules. IBM Research
Report RC 20836. IBM T. J. Watson Research Center (1997)

24 N.E. Fuchs


	Reasoning in Attempto Controlled English: Non-monotonicity
	Abstract
	1 Introduction
	2 General Features of RACE
	3 Monotonic and Non-monotonic Summation
	4 Non-monotonic Reasoning
	5 Abduction
	6 Conclusions
	Acknowledgements
	References


