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Abstract Knowledge is changing rapidly within the engineering process of
Cyber-Physical Production Systems (CPPS) characterized by the collaborative
work of engineers from diverse engineering disciplines. Such rapid changes lead to
the need for management and analysis of knowledge changes in order to preserve
knowledge consistency. Knowledge change management and analysis (KCMA) in
Multidisciplinary Engineering (MDEng) environments is a challenging task since it
involves heterogeneous, versioned, and linked data in a mission-critical fashion,
where failure to provide correct data could be costly. Although, there are several
available solutions for addressing general issues of KCMA, from fields as diverse as
Model-Based Engineering (model co-evolution), Databases (database schema
evolution), and Semantic Web Technology (ontology versioning), solving KCMA
in engineering remains a challenging task. In this chapter, we investigate issues
related to KCMA in MDEng environments. We provide a definition of this task and
some of its challenges and we overview technologies that can be potentially used
for solving KCMA tasks from the three research fields mentioned above. We then
define a technology agnostic solution approach inspired by the Ontology-Based
Information Integration approach from Semantic Web research as a first step toward
a complete KCMA solution and provide an indication of how this solution concept
could be implemented using state of the art Semantic Web technologies.
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7.1 Introduction

The process of designing a Cyber-Physical Production System (e.g., modern power
plants or steel mills) often requires teams of engineers from diverse engineering
domains (e.g., mechanical, electrical and software engineering) to work together.
As a result, this design process typically takes place in a multidisciplinary engi-
neering (MDEng) environment, in which experts from various engineering domains
and organizations work together toward creating complex engineering artifacts
(Serral et al. 2013). Figure 7.1 depicts such a typical MDEng setting. Domain
specific engineers (shown on the right hand side) use their own tools to create
models that represent parts of the final system. Therefore, the MDEng environment
is highly heterogeneous, as it involves a wide range of data models, processes, and
tools that were originally not designed to cooperate seamlessly. Despite this situ-
ation, as shown on the left-hand side of Fig. 7.1, other engineers and project
managers need to perform tasks that require access to project-level data as opposed
to domain specific data alone. For these actors, there is a need for accessing inte-
grated data at project level. In response to this need, knowledge engineers aim to
integrate models and data from different engineering domains based on the
requirements and feedback of engineers and project managers.

In addition to the characteristics described above, the process of designing
complex mechatronic objects, such as CPPS, requires iterations and redesign
phases, which lead to continuous changes of the data and knowledge within the
MDEng environment. To deal with these changes, industrial partners need to keep
data versions, move backwards to previous versions, and query different versions of
large data (schema and instances) from heterogeneous local data sources. Fur-
thermore, the effective and considerate propagation of changes is essential to ensure

Fig. 7.1 Problem setting for KCMA in MDEng environments
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a consistent view of the project, to minimize defects and risks, as well as facilitate
acceptance of new solutions by domain experts. To achieve this, changes origi-
nating from one engineering discipline need to be communicated and coordinated
with participants of other disciplines, where those changes are relevant. Ideally, this
communication should focus on high-level changes (e.g., defined in terms of
domain concepts such as “Motor X updated to new version”) as opposed to
low-level individual changes (i.e., change operations on versioned files) to ease the
data analysis process. To cater for all these needs, a process and tool support should
be available for knowledge change management and analysis (KCMA) within
MDEng environments.

Technology solutions for data integration and knowledge change management in
general, and to some extent for multidisciplinary engineering in particular, have
been proposed by research fields as diverse as Database Systems, Model-Based
Engineering (MBE), and the Semantic Web. Although the general strengths and
weaknesses of these solution approaches are somewhat known, a precise compar-
ison of how well they could support KCMA in the MDEng environments is
hampered by two major factors. First, there is a lack of understanding of require-
ments for KCMA in MDEng, i.e., a characterization of the problem that needs to be
solved. Second, a baseline setting that would allow an objective comparison of
these technologies is also missing.

To overcome these shortcomings, this chapter makes two important contribu-
tions. First, it provides a characterization of KCMA by means of key requirements
that should be fulfilled (Sect. 7.2). These requirements were derived from concrete
industry specific projects where the author investigated the need for knowledge
change management. Second, this chapter provides a brief introduction in typical
solutions to knowledge change management from the areas of Database Systems,
Model-Based Engineering (MBE), and the Semantic Web (Sects. 7.3 and 7.4).
Based on this analysis spanning the three major research fields of interests, the
chapter provides a technology agnostic reference process for solving KCMA
(Sect. 7.5). This reference process is suitable to play the role of a baseline for
comparing the strengths and weaknesses of implementations relying on either of the
three major families of technologies described in this chapter. Additionally, a
proposal of implementation based on Semantic Web technologies is presented in
Sect. 7.6. We sum up the chapter and discuss future work in Sect. 7.7.

7.2 KCMA in Engineering

In this section, we take a detailed look to the needs for KCMA in engineering
settings. To that end, we provide an illustrative real-world example (Sect. 7.2.1)
and then discuss a set of requirements for KCMA in Sect. 7.2.2.
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7.2.1 KCMA Example

An illustrative MDEng setting is the engineering of a modern power plant. Similar
to any other large-scale project, the development of a power plant requires coor-
dinated work of engineers from multiple disciplines that needs to converge into a
high-quality product. Such a heterogeneous team of experts should be coordinated
in a way that fulfills important technical and management project-level constraints
(e.g., the mass and dimension constraints of the base plate are not exceeded by
individual equipment). Such coordination requires aggregating relevant data across
teams from various disciplines, but it is hampered by the semantic heterogeneity of
the data, with different disciplines possibly using diverse terms to refer to the same
entities.

For illustration purposes, we provide an excerpt of the data (usually called a
“signal list”) exchanged between the engineers participating the engineering pro-
cess of a hydropower plant (Table 7.1). A signal list is typically serialized and used
by engineers as spreadsheet files. The header of Table 7.1 represents the data
schema used within the signal list, while its body represents data instances. The
combination of the first four columns (ANR, L1, L2, and SIG) identifies the
engineering signals/objects, while the later three (DIFF MAX, GRADIENT MAX,
and RESISTANCE VALUE) represent signal/object properties.

To add more complexity, the MDEng project models and the project data change
over time due to:

1. Changes in the represented domains, such as the introduction/removal of
domain concepts (e.g., the removal of RESISTANCE VALUE column from
Table 7.1 since it is not relevant anymore in the domain) or granularity changes
(e.g., adding more detailed information than at signal level);

2. Changes in the underlying data sources, such as when new data elements
become available and old data elements become obsolete (e.g., a new spreadsheet
file is produced to replace the old file without changing the data schema); or

Table 7.1 Excerpt of the engineering data of a hydropower plant engineering process

ANR L1 L2 SIG S3 DIFF
MAX

S3
GRADIENT
MAX

RESISTANCE
VALUE

0 BAA30 GS100 XB01 0.025 0.8 500
0 BAA30 GS191 YB01 0.025 0.8 500
0 BAA30 GS191 YB02 0.025 0.8 500
0 BFB10 GS100 XB01 0.025 0.8 500
0 BFB10 GS100 XM01 0.025 0.8 500
0 BFB10 GS100 YB01 0.025 0.8 500
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3. Changes in the intended use of the models and data, such as by changing
requirements of the currently supported tools or the design of new tools (e.g., a
new data schema is introduced and it has to be mapped into the old schema in
Table 7.1).

To address such changes, an integrated versioning of the MDEng data needs to
be prepared for facilitating this evolution and the consequent data transformations
and propagation, according to the evolved model.

7.2.2 Requirements for KCMA in Engineering

Dealing with the types of possible changes described above requires both activities
for managing and analyzing changes. In terms of change management, it is
important to record data versions and to be able to move backwards to previous
versions, as well as to query different versions of integrated data (schema and
instances) originating from heterogeneous local data sources.

Furthermore, on a more analytics related level, it is essential to enable the
effective and considerate propagation of changes across data from different disci-
plines. This will ensure a consistent view of the project and it will minimize defects
and risks. To achieve this, changes originating from one discipline need to be
communicated and coordinated with participants of other disciplines, where those
changes are relevant, especially in cases when data from different engineering
disciplines is closely interlinked. The KCMA approach should also provide
high-level change definitions instead of low-level ones to ease the analysis process
of data.

Based on our involvement and experiences in several industrial engineering
settings where KCMA was required, we have identified a set of requirements and
characteristics of KCMA in engineering (specifically in MDEng environments) as
follows:

1. Closely interlinked knowledge. In the engineering process of a CPPS, engi-
neering models and data created by different engineering disciplines reflect
diverse views on the same system and are therefore naturally interlinked (e.g.,
an electrical signal activates a mechanical component as a result of executing a
certain software routine). Therefore, knowledge changes within one discipline
may require changes in other disciplines too due to this relation between data in
different disciplines. For example, a signal change in electrical engineering area
will require the adaptation of the corresponding machinery part (mechanical
engineering) or reprogramming of the relevant software components (software
engineering).

2. Large amounts of data. Engineering projects typically deal with large amounts
of data required to describe any complex system. For example, an average size
power plant design data contains data about hundreds of thousands to tens of
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millions of signals. This already large data size is further multiplied due to many
iteration processes during the design time of the system, which should all be
versioned and stored (Mordinyi et al. 2014).

3. Changes in schema and instances. In MDEng environments, both data models
(i.e., schema) and actual data (instances) is likely to change. Indeed, the
heterogeneity of data sources within MDEng environments and the environ-
ment’s dynamism means that additional tools could be added anytime, which
may imply changes in the data models of all engineering disciplines involved.
At the same time, data instances (e.g., signals with changed characteristics,
added, or deleted signals) within MDEng environment will change even more
frequently due to revisions and engineering process iterations.

4. Change validation support. Given the mission-critical nature of projects in
MDEng environments, domain experts and engineers do not want to fully rely
on automatic change validation mechanisms (e.g., to decide whether changes
initiated by one discipline will break the overall consistency of the project wide
data). Therefore, instead of fully automated change validation, the involvement
of domain experts in the validation workflow is important for making critical
decisions about changes.

5. High-level change definition and detection. Typical tools currently used in
individual engineering disciplines are able to produce report data that consists of
signal lists that represent those parts of a CPPS, which these specific tools
handle (Vogel-Heuser et al. 2014). The differences between two versions of
signal lists represent changes between them. However, it is challenging for a
project manager to grasp the meaning of such low-level changes in data, i.e.,
signal changes. Instead, they would highly benefit from changes to data being
presented in a more meaningful manner as high-level changes. Such presenta-
tion could be achieved in terms of domain level common concepts, e.g., relo-
cation of specific engine to different machine rack.

6. Support for data evolution and versioning. A KCMA approach should be
able to address both data evolution and data versioning. Data evolution focuses
on how to modify the data in response to the changes in the surrounding. Data
versioning covers the management of different versions of data schema caused
by the data evolution (Noy and Klein 2004; Roddick 1995).

7.3 Solutions for KCMA in the Engineering Domain

This section introduces brief summaries of approaches related to the KCMA in the
engineering domain from the Database systems (Sect. 7.3.1) and Model-Based
Engineering research communities (Sect. 7.3.2).
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7.3.1 Database Schema Evolution and Versioning

One of the earliest works concerning knowledge change management is reported in
the field of database systems. Roddick summarized the issues of schema evolution
and versioning in database systems (Roddick 1995). He explains that change
management is closely related to data integration, claiming that both areas are the
flavors of a more generic problem: using multiple heterogeneous schemata for
various tasks. To solve the issues suggested by Roddick, there were several pro-
posed conceptual approaches. One of them is the Hyper-graph Data Model (HDM),
which targets schema evolution for heterogeneous database architectures (McBrien
and Poulovassilis 2002). The HDM schema consists of Nodes, Edges, and Con-
straints. Nodes and Edges in the schema define a labeled (Nodes require unique
names), directed (the Edges may link sequences of Nodes or Edges), and nested
(Edges could link an unlimited number of other Nodes and Edges) hypergraph,
while Constraints define a set of Boolean valued queries over the HDM schema.

In the field of MDEng, there are limited concrete solutions that are utilizing
relational databases as the basis for managing and analyzing changes in engineering
data from multiple engineering datasets. One exception is the Engineering Database
(EDB), a solution based on relational databases that was introduced as an attempt to
provide versioning management of engineering data using database technology
(Waltersdorfer et al. 2010). The Engineering Database is a concrete implementation
of Engineering Knowledge Base (EKB) that is explained in Chap. 4. The EDB
stores engineering data as a flat database table, consisting of objects, properties,
values, and important metadata information such as change commit information and
provenance from the original data sources. The approach is capable of handling
closely linked knowledge from different engineering disciplines.

To conclude, the maturity of database approaches in general provides a solid
basis for handling change management of a large number of data. Additional
KCMA-related solutions from database systems, not covered in this chapter, are
also worth further investigations.

7.3.2 Model-Based Engineering (MBE) Co-Evolution

A lot of attention has been given to the comparison and versioning of software
models in the Model-Based Engineering (MBE) research community, with more
than 450 papers written in this area1, covering various topics such as change
modeling and definition of evolution frameworks. Similar to other research areas,
the domain of Engineering is not the main application area of these works. An
exception is the work of Göring and Fay, which proposes a metamodel language for
modeling temporal changes of automation systems together with their physical and

1http://pi.informatik.uni-siegen.de/CVSM.
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functional structures (Goring and Fay 2012). Their work extends the IEC 81346
standard, which already includes product, function, and location aspects. In the
approach, however, they do not explain how to map their metamodel to other
metamodels that are potentially used in the same system and therefore it is not clear
how data integration is achieved.

Another line of MBE work focuses on change propagations of model variants of
a single metamodel, to ensure the consistency of changes as well as the adoption of
relevant changes in different model variants (Kehrer et al. 2014). Recently, the
authors of (Berardinelli et al. 2015) provide means of a prototype-based model
co-evolution, showing the capability of providing various levels of validation
configuration to be applied in a top-down co-evolution approach.

Meyers and Vangheluwe propose one of the most recent frameworks for evo-
lution of model and modeling languages, which claim that any possible model
co-evolution could be derived as a composite of the basic co-evolution schema
shown in Fig. 7.2 (Meyers and Vangheluwe 2011). It consists of a model m that
conforms to metamodel domain (MMD). Model m needs to be transformed into T
(m) via transformation T, which again will conform to image metamodel (MMi).
This co-evolution framework could theoretically address the requirements of
knowledge change management within closely linked discipline data.

In conclusion, these works from the MBE research community partially address
the requirements of KCMA in MDEng environment as mentioned in Sect. 7.2.2.
Benefits of using MBE techniques for knowledge change management in engi-
neering projects include the availability of a good tool support and solid theoretical
frameworks (Meyers and Vangheluwe 2011; Taentzer et al. 2014).

7.4 Semantic Web for KCMA in Engineering

Advances in Semantic Web research could also provide partial solutions to the
challenges of KCMA in MDEng discussed in Sect. 7.2. For example, the Prove-
nance Ontology (PROV-O2), a recent W3C recommendation, is highly suitable to
represent and interchange provenance information and could be used to record
which changes were performed by which stakeholders.

Fig. 7.2 Basic co-evolution
schema, adapted from
(Meyers and Vangheluwe
2011)

2https://www.w3.org/TR/prov-o/.
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An important observation is that, in MDEng environments, the integration of
heterogeneous data sources is a prerequisite to addressing KCMA challenges and
that knowledge change management must be applicable over the totality of inte-
grated data sources that represent the data of an engineering project.

In the Semantic Web area, such integration settings can be addressed by relying
on the Ontology-Based Information Integration (OBII) approach (e.g., in Calvanese
et al. 2001; Wache et al. 2001), which provides a solution approach for integrating
data from heterogeneous data sources using Semantic Web technologies. There are
three different ways of applying the OBII approach as described by Wache et al.
(2001).

1. Single Ontology approach, which relies on a single ontology for integrating all
data sources. The approach is typically hard to maintain since it is susceptible to
changes in each information sources. In other words, the ontology must be
updated anytime a change in a data source occurs and then its compatibility with
the other data sources must be ensured.

2. Multiple Ontology approach is characterized by defining one ontology per
data source and subsequently linking the ontologies with each other indepen-
dently. The drawback of this approach is that the mappings between different
ontologies are challenging to define and maintain, due to the different granu-
larities and aggregation between ontologies.

3. Hybrid approach, which combines the benefits of both single and multiple
ontology-based approaches thus eliminating most of their drawbacks. An
example of a Hybrid-style OBII system used to integrate engineering data of a
power plant is shown in Fig. 7.3 and consists of three components. First, local
ontologies represent data specific to one engineering discipline, i.e., local data.
Second, a common ontology represents the aggregation of relevant and related
concepts at the organizational level, e.g., power plant. Third, mappings between
local and common ontologies enable linking and integration between the
heterogeneous data sources. Similar to (Calvanese et al. 2001), we will use the
term OBII to refer to the Hybrid OBII approach, unless stated otherwise.

The OBII approach aims to solve data integration and, as such, by itself it does
not provide support for KCMA, which is essential for MDEng environments.
Ontology change management has been investigated as a generic problem, not in
conjunction with data integration, to address the dynamics of ontology data and its
derivative challenges (e.g., Klein 2004; Noy et al. 2006; Stojanovic 2004; Zablith
2011).

However, it is not clear how applicable the currently available generic ontology
change management solutions are to improve the KCMA support of an OBII
approach in the context of MDEng environment. Therefore, the availability of a
generic reference process of KCMA in MDEng environment is crucial to assess
whether these ontology change management approaches sufficiently address the
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KCMA requirements (e.g., change propagation to the overlapped data in other
disciplines). In particular, an implementation of the KCMA process with ontology
change management approaches would allow verifying their suitability to support
KCMA in MDEng environments.

7.4.1 Ontology Change Management

The Semantic Web community has performed significant research in the area of
ontology change management. In this section, we summarize works in this area
based on our literature study (described in more detail in Ekaputra et al. 2015) and
in terms of the requirements stated in Sect. 7.2. Table 7.2 provides an overview of
the extent to which each requirement is addressed by each work we overview.

1. Closely interlinked knowledge. Closely interlinked knowledge is a condition
where changes in one ontology within a system of interlinked ontologies may
require propagation of the changes to the linked ontologies to maintain the
global validity of the knowledge. This is not the typical setting for KCMA in
Semantic Web community, which primarily focuses with open web data. This

Fig. 7.3 Example of an OBII system for integrating engineering data from a power plant
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difference is reflected within most of traditional KCMA that focused on change
management in a single ontology (Graube et al. 2014; Gröner et al. 2010; Noy
et al. 2006; Papavassiliou et al. 2009; Zablith 2011) or multiple loosely inter-
linked ontologies (Horridge et al. 2013; Klein 2004; Redmond et al. 2008;
Vander Sande et al. 2013), where changes in an ontology are independent and
do not have to be propagated in order to maintain the validity of overall
knowledge within a system. The work of Stojanovic is an exception to this
trend, where she provided an attempt to propagate changes to relevant ontolo-
gies (Stojanovic 2004). However, her work is not further continued.

2. Large amounts of data. Horridge et al. provide an answer to the large-scale
challenge of the changed data by introducing binary formats for storing ontol-
ogy data and differences between ontology versions (Horridge et al. 2013).
Their approach is claimed to handle more than one million triples. A different
approach is adopted by Graube et al., where named graphs are used to store
changes and ontology versions (Graube et al. 2014). Their approach did not
scale well for change data analysis, since the query performance on the change
data dropped significantly after several thousands of triples. Papavassiliou et al.,
on the other hand, successfully experimented their approach on almost 200 k
triples (Papavassiliou et al. 2009). While the current approaches seem promis-
ing, given the closely coupled nature of the engineering data, these approaches
need to be reevaluated in order to asses their feasibility.

3. Changes in schema and instances. Instance changes are required for
addressing changes in the underlying data sources, whereas schema changes are
crucial for addressing changes in the represented domains and changes in the
intended use of the models and data, as previously mentioned in Sect. 7.2.
Several ontology change management approaches are already able to deal with
both schema and instance level changes (Horridge et al. 2013; Papavassiliou
et al. 2009; Stojanovic 2004), where other approaches either focus on schema
(Gröner et al. 2010; Noy et al. 2006; Zablith 2011) or focus on instances
(Graube et al. 2014; Vander Sande et al. 2013).

4. Change validation support. This aspect of validation provides a mechanism to
ensure the validity of data changes according to a predefined set of validation
rules (automatic validation) or in combination with domain experts’ involve-
ment according to certain workflows (semi-automatic validation). Several
approaches already support automatic change validations (Horridge et al. 2013;
Stojanovic 2004). Furthermore, there are approaches from general Semantic
Web concerning data validation and linked data quality, e.g., RDFUnit (Kon-
tokostas et al. 2014) and Shape Expression (Boneva et al. 2014) that can be
adapted to support ontology change validation. In the direction of
semi-automatic validation, Stojanovic et al. proposed a mechanism to involve
domain experts to check the semantic validity of ontology changes over multiple
ontologies (Stojanovic et al. 2002). This involvement of stakeholders is indeed
important in the MDEng environment due to the mission-critical characteristic
of the domain, as we previously mentioned in Sect. 7.2.1.
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5. High-level change definition and detection. One of the goals of KCMA is to
provide stakeholders with a better decision support system. The high-level
change definition and detection process helps to achieve this goal by providing a
mean to detect and encapsulate atomic changes into more meaningful and higher
level changes in terms of domain concepts, which are easier to understand,
especially to non domain experts. In this regards, Papavassiliou et al. have
developed an algorithm to support the detection of high-level changes from
low-level changes, simplifying the effort to analyze changes in large datasets
and without compromising performance (Papavassiliou et al. 2009). Alterna-
tively, Gröner et al. used a subset of OWL-DL reasoning to recognize high-level
change patterns (Gröner et al. 2010). One of the prerequisites for high-level
change definition and detection is the formalization of low-level changes. This
formalization can be achieved using triple patterns (Papavassiliou et al. 2009;
Gröner et al. 2010; Vander Sande et al. 2013; Horridge et al. 2013; Graube et al.
2014) or specialized ontologies (Papavassiliou et al. 2009; Palma et al. 2009).

6. Support for data evolution and versioning. Ontology evolution (i.e., how to
modify the data according to relevant changes in the surrounding) and ver-
sioning (i.e., management of different versions of data schema and instances
caused by ontology evolution) are both important to the KCMA process and
should be available and easily accessible by relevant stakeholders. Most of the
ontology change management approaches focus either on ontology evolution
(Gröner et al. 2010; Klein 2004; Noy et al. 2006; Zablith 2011) or on ontology
versioning (Graube et al. 2014; Vander Sande et al. 2013). The rest of the
approaches we surveyed try to address both ontology evolution and versioning
(Stojanovic 2004; Horridge et al. 2013).

To conclude, parts of KCMA requirements in MDEng environment are already
well explored in Semantic Web research. Schema and instance changes, for
example, are addressed already by most approaches. Likewise, approaches for
change detection, ontology evolution and ontology versioning are well researched
and reported, providing ample options to choose from. However, due to the open
nature of web data, approaches for ontology changes in closely interlinked
knowledge settings are rarely investigated. Similarly, approaches for handling
changes of large amounts of data and validating changes are currently limited,
probably since these aspects are not the focus in current ontology change man-
agement research. There are options to use general ontology validation approaches
for ontology change validation, i.e., by adapting RDFUnit (Kontokostas et al. 2014)
or Shape Expression (Boneva et al. 2014) approach, but these adaptations are not
yet seen as integral part of general ontology change management approaches. We
therefore see the need to advance and combine existing approaches such that all
KCMA requirements are sufficiently addressed. The KCMA reference process
presented next provides a conceptual framework to guide this process.
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7.5 Reference Process for KCMA in MDEng Environment

In order to address the challenges of providing support for KCMA in MDEng
environments, we propose a generic reference process shown in Fig. 7.4. This is a
technology agnostic process that could be implemented with technologies drawn
from any of the three areas we previously discussed. Implementations using dif-
ferent techniques but following this reference process will be easier to compare and
will support a more objective comparison of the strengths and weaknesses of the
available technologies. There are KCMA requirements for which we cannot cater at
the process level but which should be considered during the implementation of the
reference process (e.g., dealing with large amounts of data).

The reference process was derived by adapting and extending the
Ontology-Based Information Integration approach (Wache et al. 2001; Calvanese
et al. 2001) thus closely connecting process steps for data integration and change
management. The reference process is technology agnostic: for this, we replaced all
Semantic Web specific terms with general terms, e.g., “ontologies” with “data
models.” The extension of OBII consisted in adding four more phases. These
phases were derived from relevant related work and requirements and are shown as
white boxes in the Fig. 7.4 while the original phases are shown as gray boxes. We
utilize an IDEF-03 style diagram to structure the proposed approach, in which

Fig. 7.4 Reference process model for KCMA in the MDEng environment. The white boxes
extend a typical OBII process (gray boxes)

3http://www.idef.com/idefo-function_modeling_method/.
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processes are shown as boxes and resources are shown as directed arrows. The
diagram clearly defines input (incoming arrows from the left-hand side of the box),
output (outgoing arrows to the right-hand side of the box), consumable resources
and stakeholders (input arrows from the bottom of the box) and standards (in-
coming arrows from the top of the box) used in the reference process.

There are three domain expert roles involved in the framework: Knowledge
Engineer (KE), Project Manager (PM), and Domain Expert (DE). Input and output
of the system is shown in the left- and right-side of the diagram, respectively. In the
following, we explain the seven main phases of the KCMA reference process:

1. Local Data Model Definition. This phase requires the Knowledge Engineer and
Domain Experts to translate the local tools data structure (e.g., MCAD model
for mechanical engineer) to the local data model instance definition.

2. Common Data Model and Mapping Definition. KE and DE will define the
common data model and its mappings to the local data models. To support this
goal, vocabularies and standards are required to formalize the data model and
mapping.

3. Local Data Model Extraction, Transformation, and Load (ETL). With
regards to the heterogeneous domain tools and their data formats within the
MDEng environment, we need to provide the suitable extract, transform, and
load (ETL) functions phase to produce the data in the required data model
formats.

4. Change detection. This phase focuses on the detection of low-level (i.e., triples)
and high-level (e.g., semantic and domain-specific) changes between two ver-
sions of engineering data. An important point to consider within this phase is to
balance the expressiveness of high-level changes defined as input and the
computational complexity of the detection algorithm, as mentioned in
(Papavassiliou et al. 2009).

5. Change validation. The phase of change validation requires the definition of
constraints for preserving the validity of data in the local (e.g., mechanical
engineering) and global data models (e.g., power plant). Workflow definition is
another important element, in order to configure involvement of validation
components (e.g., constraint validation engine and domain experts) in the val-
idation process.

6. Change propagation. Changes in the MDEng environment need to be propa-
gated to the relevant components (i.e., common data model and other relevant
local data models). This phase requires the common data model and mapping
definitions, as well as validated changes. The knowledge engineer will configure
the propagation based on the mapping definitions to make sure that no corrupted
or irrelevant data is included in the propagation process.

7. Data Store and Analysis. The goal of this phase is to enable relevant stake-
holders (e.g., project manager) to access and analyze the data and its changes
within the projects. The changed data will be stored within a designated data
store. Examples of queries that will be relevant to this data are: (1) Provenance
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information of the changes (e.g., committer, date, reasons of change),
(2) Change overview on specific objects, and (3) Analysis of completeness and
inconsistencies over changes.

7.6 A Potential Semantic Web-Based Implementation
of the KCMA Reference Process

We hereby provide an explanation of how the seven phases of the proposed ref-
erence process approach could be implemented with tools and techniques from the
Semantic Web community. The framework draws on several standards and tech-
nologies, (e.g., SPARQL4 for querying, PROV-O to represent provenance infor-
mation) which can be used for structuring and implementing the approach.

1. Local Data Model Definition. Based on our experience in the domain, the
W3C standard of RDF(S)5 and OWL6 languages are sufficient to define local
data models. For a more detailed explanation of data model definition and some
examples of engineering ontologies, we refer readers to Chap. 5.

2. Common Data Model and Mapping Definition. Similar to the case of local
data models, we assumed that the RDF(S) and OWL languages are sufficient for
common data model definitions. The mapping between common and local data
models, however, is more complicated due to the unavailability of W3C stan-
dards for this task. There are several proposed approaches, e.g., SPIN7 and
EDOAL8, as well as the generic SPARQL construct that could be utilized to
define mappings between ontologies. However, they have to be investigated
further to determine their suitability in the domain. Chapter 6 provides a detailed
investigation of technologies for establishing mappings between ontologies.

3. Local Data Model Extraction, Transformation, and Load (ETL). To extract
data from heterogeneous data formats, ontology programming frameworks, e.g.,
Apache Jena9 or OpenRDF Sesame10 can be used. Furthermore, there are a
number of applications for extracting data from various specific data formats,
e.g., RDF123 (Han et al. 2008) and for spreadsheets and XMLTab Protégé
plugin11 and for XML-based documents. Chapter 5 contains information about
data extraction from legacy data sources in engineering.

4http://www.w3.org/TR/sparql11-overview/.
5https://www.w3.org/TR/2004/REC-rdf-primer-20040210/; https://www.w3.org/TR/rdf-schema/.
6https://www.w3.org/TR/owl-ref/.
7https://www.w3.org/Submission/spin-overview/.
8http://alignapi.gforge.inria.fr/edoal.html.
9http://jena.apache.org/.
10http://rdf4j.org/.
11http://protegewiki.stanford.edu/wiki/XML_Tab.
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4. Change detection. Generic programming frameworks, e.g., Apache Jena or
OpenRDF Sesame, are typically able to detect low-level changes between two
ontologies at the level of triples. Specialized algorithms are however required to
detect high-level changes, either based on heuristics (Noy and Musen 2002),
structural differences (Papavassiliou et al. 2009; Redmond and Noy 2011), or
OWL reasoning (Gröner et al. 2010). Changes are represented either as triples
(e.g., DBPedia change representation from Stadler et al. 2010) or specialized
ontologies (e.g., change representation for OWL2 (Palma et al. 2009) and
CHAO (Noy et al. 2006)).

5. Change validation. To formulate the constraints in a Semantic Web based
solution, one possible option is to utilize the upcoming Shapes Constraint
Language (SHACL12) by SHACL W3C working group, which aims to provide
the standard constraint vocabulary for RDF graph data. SHACL strives to
aggregate previous efforts of ontology constraint language definition and
ontology quality assessment, e.g., RDFUnit (Kontokostas et al. 2014) and Shape
Expression (Boneva et al. 2014). Chapter 13 contains examples of using
SHACL.

6. Change propagation. The change propagation phase is closely related to the
ontology mappings defined in the second phase. An example of possible
Semantic Web-based solutions in this phase is to develop a change propagation
solution based on SPIN mapping or SPARQL constructs.

7. Data Store and Analysis. From the Semantic Web perspective, one possible
data storage solution is to utilize an RDF triplestore (e.g., OpenRDF Sesame).
The PROV-O W3C standard can be used for representing change provenance
information. Another important aspect in this phase is to provide different types
of stakeholders with comfortable access for analyzing the data (Ekaputra et al.
2013). An example of end-user interface for ontology data analysis in the
MDEng domain is presented in (Sabou et al. 2016).

To conclude, the current set of Semantic Web Technology tools and method-
ologies provides a relatively mature foundation for the implementation of the
KCMA process. Semantic modeling, for instance, is required for local data model
definition and common data model and mapping definition phases. This process can
be achieved by relying on widely accepted W3C standards such as RDF(S) and
OWL. The current set of ontology programming frameworks (e.g., Apache Jena and
OpenRDF Sesame; required for ETL and change detection phase) could also be
considered stable and well-maintained, while storage options for RDF graph data
shows encouraging signs with more than 15 tools (commercial and open source)
available at the moment13 (required for data store and analysis phase).

However, there are critical issues to address for Semantic Web-based imple-
mentations of MDEng KCMA, namely the standardization of ontology constraint
and mapping languages. Ontology constraint languages are required for the change

12https://w3c.github.io/data-shapes/shacl/.
13http://db-engines.com/en/ranking/rdf+store. Accessed on 16.02.2016.
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validation phase. The upcoming SHACL standard is an important development in
this direction and will be important for the ontology constraint aspect of the
KCMA. Ontology mapping languages are required for the common data model and
mapping definition and for the change propagation phases. Their development,
however, is still yet to converge to W3C standards. EDOAL, SPIN, and SPARQL
construct are currently the best options available. To overcome the lack of standards
for mapping definitions, the adaptation of mapping methodologies from other
research communities, (e.g., Triple Graph Grammars (Schürr and Klar 2008) from
Model Driven Engineering) could be considered as additional options.

7.7 Summary and Future Work

In this book chapter, we have defined the context and challenges of KCMA in
MDEng environments. To address the challenges, we have identified key require-
ments of KCMA in MDEng and provided an overview of techniques from three
relevant research areas, namely Database Systems, Model-Based Engineering, and
Semantic Web Technologies.

Our contribution in this book chapter is to generalize and extend the OBII
approach, previously proposed for the purposes of data integration, to become a
generic reference process of KCMA in MDEng environment. This generic and
technology agnostic reference process is meant to lay the foundation towards a
solution for providing a fully functional OBII-based KCMA solution for MDEng.

As our future work, we plan to provide a first concrete implementation of the
reference process utilizing a selection of Semantic Web Technologies as discussed
in Sect. 7.6. Additional concrete implementations using techniques from other
research area (i.e., database and MBE) are also planned to enable comparison of the
strengths and limitations of these different technologies for the KCMA tasks. We
also plan to generalize the approach to address similar problem settings in other
application domains, such as scholarly data management in empirical software
engineering (Biffl et al. 2014).
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