
Chapter 6
Semantic Matching of Engineering Data
Structures

Olga Kovalenko and Jérôme Euzenat

Abstract An important element of implementing a data integration solution in

multi-disciplinary engineering settings, consists in identifying and defining relations

between the different engineering data models and data sets that need to be inte-

grated. The ontology matching field investigates methods and tools for discovering

relations between semantic data sources and representing them. In this chapter, we

look at ontology matching issues in the context of integrating engineering knowl-

edge. We first discuss what types of relations typically occur between engineering

objects in multi-disciplinary engineering environments taking a use case in the power

plant engineering domain as a running example. We then overview available tech-

nologies for mappings definition between ontologies, focusing on those currently

most widely used in practice and briefly discuss their capabilities for mapping repre-

sentation and potential processing. Finally, we illustrate how mappings in the sample

project in power plant engineering domain can be generated from the definitions in

the Expressive and Declarative Ontology Alignment Language (EDOAL).

Keywords Ontology matching ⋅ Correspondence ⋅ Alignment ⋅Mapping ⋅ Ontol-

ogy integration ⋅ Data transformation ⋅ Complex correspondences ⋅ Ontology map-

ping languages ⋅ Procedural and declarative languages ⋅ EDOAL

6.1 Introduction

Ontology and data matching tasks are key steps for semantic data integration (Breslin

et al. 2010) and therefore they often surface in real-world applications that have the

need to exploit relations between the concepts and instances of two data sources.

O. Kovalenko (✉)

Institute of Software Technology and Interactive Systems, CDL-Flex,

Vienna University of Technology, Vienna, Austria

e-mail: olga.kovalenko@tuwien.ac.at

J. Euzenat

INRIA & Univ. Grenoble Alpes, Grenoble, France

e-mail: jerome.euzenat@inria.fr

© Springer International Publishing Switzerland 2016

S. Biffl and M. Sabou (eds.), Semantic Web Technologies for Intelligent
Engineering Applications, DOI 10.1007/978-3-319-41490-4_6

137

138 O. Kovalenko and J. Euzenat

Ontology alignments express these relations explicitly in order to be processed as

mappings for various applications, e.g., for data transformation or query rewriting

(Shvaiko and Euzenat 2013).

Although much work has been done on ontology schema matching and defin-

ing data-level mappings, it is not obvious, especially for non Semantic Web experts,

which of the provided tools and technologies will be well-suited in a specific real-life

application case and how to apply them (Vyatkin 2013). For engineering practition-

ers, it might be challenging to understand (a) which technologies can be used to

represent the relations between their data models and data sets; and (b) how to use

these for a specific application. On the other hand, Semantic Web researchers might

lack insight on (1) what are the needs (in terms of mappings) of real-world applica-

tions in engineering; and (2) how well existing mapping technologies can support

defining such mappings. In this chapter, we aim to address these gaps for the ben-

efit of practitioners and Semantic Web researchers alike. Therefore, we formulated

the following research questions for the chapter: (Q1) What kind of relations are

expected to occur often between the engineering data models and data sets? (Q2)

What are the available mapping languages developed by Semantic Web community

and what are their characteristics? (Q3) How well the existing mapping languages

can support defining and representing the relations identified for Q1?

In order to answer Q1 we synthesized our experiences from (a) implementing

semantic integration in the real-life application scenario from our industry partner,

a power plant systems integrator; and (b) literature analysis in the fields of ontology

matching and schema matching. As a result, we derive a catalog of schema and data

correspondences that are expected to arise often in ontology mediation applications

(see Sect. 6.4 for details). We focus on complex correspondence types that are not

obvious with respect to their representation, i.e., those that go beyond simple one-

to-one mapping (like owl:sameAs) between the entities. These are already well-

explored and supported by existing ontology matching solutions. For more informa-

tion about existing matching techniques, systems, and tools please see a comprehen-

sive review by (Otero-Cerdeira et al. 2015) or (Euzenat and Shvaiko 2013).

Our application scenario, a power plant engineering project, belongs to the

automation system engineering domain where mappings between ontologies are

used to support data integration. The intended application in this case is enabling

data transformation from the local ontologies of the different engineering disciplines

involved in a project into a common ontology in order to allow the project-level inte-

gration (see Sect. 6.3 for the detailed description). As in the presented use case ontol-

ogy mapping is used for data transformation, we will use it as default application for

the sake of coherence across the chapter. Therefore, when speaking about mappings

in this chapter, it can be assumed that they are done for data transformation.

In Sect. 6.5 we overview available technologies for mappings definition, repre-

sentation and processing and briefly discuss their main usages in current practice

and potential strengths and limitations w.r.t. representing correspondences identi-

fied in Sect. 6.4 (therefore, addressing Q2 and Q3). Finally, Sect. 6.6 introduces the

EDOAL language, gives the examples of how the identified correspondence types

can be implemented in this language and shows how they can be used for data trans-

6 Semantic Matching of Engineering Data Structures 139

formation. We chose EDOAL because, contrary to other languages, it combines the

features of both declarative and procedural languages: (a) it has been designed for

expressing correspondences (conforms to declarative languages); (b) but at the same

time those correspondences can be interpreted to perform linking, i.e., primitive Silk

scripts (Volz et al. 2009), SPARQL
1

queries, SPARQL+SPIN
2

can be generated to

perform data transformation for instance.

Our main contributions therefore are the following:

1. A catalog of complex correspondence types with the examples of those in real-

world application scenario in the automation systems engineering domain;

2. A succinct overview of existing mapping languages, their principal features and

capabilities;

3. A detailed analysis of EDOAL capabilities to support identified correspondences

types.

6.2 Ontology Matching: Background Information
and Definitions

In this section we provide background information on ontology matching and give

the definitions of the important terms, which will be used across the chapter. We will

follow the terminology from the “Ontology Matching” book (Euzenat and Shvaiko

2013) and from (Scharffe et al. 2014):

Ontology matching is the process of finding relations between the entities of dif-

ferent ontologies, e.g., identifying the entities that represent the same (or similar)

semantics in these ontologies.

Correspondence is the expression of a relation holding between entities (classes,

properties, or individuals) of different ontologies. Correspondences express the

essence of how the entities are related independently from any application or

implementation details in a specific mapping language.

Alignment is a set of correspondences between two ontologies. The alignment is

the output of the ontology matching process.

Mapping specifies the connection between ontology entities in enough details to

process or execute them for a certain task. Execution in this case means using a

specific engine/tool that can read the mapping, understand its semantics and run

it according to the intended application. The output of the execution will vary

depending on specific application. For instance, for data transformation it will

be data set conforming to the target ontology; and for query rewriting the initial

query (formulated in the source ontology vocabulary) will be transformed into

the query formulated according to the target ontology vocabulary. A mapping,

therefore, is a correspondence expressed in a specific mapping language with a

certain exploitation in mind.

1
https://www.w3.org/TR/sparql11-query/.

2
http://www.w3.org/Submission/spin-overview/.

https://www.w3.org/TR/sparql11-query/
http://www.w3.org/Submission/spin-overview/

140 O. Kovalenko and J. Euzenat

o

o

Ontologies matching A

Alignment

interpreting M
Set of
mappings

data

data

Fig. 6.1 Ontology matching for data transformation. Ontology matching generates an alignment

A between ontology o and o′. This alignment can be interpreted as a set of mappings M, which can

be used for transforming data expressed in ontology o into ontology o′

Both correspondences and mappings can be specified on the data (ontology

instances) or schema (ontology classes and properties) level.

The main terms defined above as well as possible articulation between these terms

(for the data transformation scenario) are illustrated in Fig. 6.1.

Three main dimensions may be distinguished in the ontology matching area (Noy

2004): (a) alignments discovery, i.e., ontology matching, (b) alignments representa-

tion, and (c) applying them as mappings.

The majority of works in the area is dedicated to ontology matching, which is a

challenging and complex problem. Although many tools have been developed using

different approaches, e.g., language-based, structure-based, or context-based, dis-

covery processes tend to be highly iterative and cannot be fully automated in the

majority of cases (Bernstein and Melnik 2007). Interested reader can find the detailed

description of various alignments discovery approaches in (Euzenat and Shvaiko

2013).

Another important issue in the ontology matching area is the application of map-
pings, i.e., to be applied for a specific task alignments should be implemented in

some mapping language; and then the obtained mappings can be processed for an

application at hand. The precise type of application will for a large part determine

the choice of a language to express mappings. Typically applications aim to reduce

semantic heterogeneity. The often reported applications are ontology merging, data

translation, and ontology integration.

Finally, the third dimension of the ontology matching area is dedicated to defining
and representing alignments and mappings. Different languages may be used for that

purpose with various characteristics (see Sect. 6.5 for more details). At the same

time, there is a lack of guidelines (especially for non Semantic Web experts) on how

to select a language for specific application and what are the important features of

these languages that will influence the choice.

In this chapter we focus on the representation problem, in particular when this

involves complex relations between entities. As we see in next sections, this is the

case in the engineering domain.

6 Semantic Matching of Engineering Data Structures 141

6.3 Running Example: The Power Plant Engineering
Project

Power plant engineering projects represent complex environments where partici-

pants from different disciplines (e.g., mechanical, electrical, and software engineer-

ing), have to collaborate to deliver high quality end products while satisfying tight

timeframes (Mordinyi et al. 2011).

This application scenario is based on a case study implemented in a power

plant engineering project of our industry partner, an automation system solution

provider. Initially, different disciplines within the project applied isolated engineer-

ing processes and workflows: (a) isolated data sets stored in various proprietary data

formats and discipline-specific relational databases; and (b) tools were loosely cou-

pled with limited capabilities for cross-disciplinary data exchange or/and data analy-

sis. The goal of the case study was to implement an ontology-based integration solu-

tion in order to allow cross-disciplinary data exchange and data analysis for advanced

applications, such as change propagation and consistency checking across the disci-

pline boundaries.

After analyzing the project requirements the hybrid ontology approach for inte-

gration according to (Wache et al. 2001) (see Fig. 6.2) has been chosen for the final

system. According to this approach, a local ontology is built for each engineering

discipline, gathering discipline-specific data models, knowledge, and constraints,

and finally, data. Then an additional integrating layer is introduced—a common

knowledge base—that contains only concepts, which are important on the project

level. These concepts are called common concepts (Biffl et al. 2011), because they

are typically relevant within at least two engineering disciplines. For more detailed

description of common concepts please see Chap. 4 “The Engineering Knowledge
Base Approach.” The final system can be implemented following one of the two

basic approaches: (a) the CC ontology defines the structure of the common knowl-

edge base and data is stored in database(s); or (b) the CC ontology is populated with

Fig. 6.2 Hybrid ontology integration (adapted from (Wache et al. 2001))

http://dx.doi.org/10.1007/978-3-319-41490-4_4

142 O. Kovalenko and J. Euzenat

Fig. 6.3 Ontology-based integration in the power plant engineering project

instances and serves itself as a common knowledge base for a project. In both cases

the advantage is that the CC ontology defines a common vocabulary on the top of

the engineering project and provides a single access point for data analysis across the

disciplines. Within the case study the second approach was chosen. In the applica-

tion scenario, mappings are defined between the local discipline-specific ontologies

and the CC ontology to serve as a basis for data transformation from the local level

into the CC ontology.

We present the part of the ontological system developed for the case study as

the running example in this chapter. In this example, the two domains are integrated:

(a) mechanical engineering (ME), responsible for designing the physical structure of

devices and connections between them, and (b) project management (PM), responsi-

ble for managing the information about past and current projects, and people involved

in the development. To construct and populate the CC ontology, it is necessary to

transform data from the domain models into the integrated model according to spec-

ified mappings between the domain ontologies and the CC ontology.

Figure 6.3 illustrates the constructed ontological system. Each domain is rep-

resented by its local ontology. The ME ontology comprises entities related to the

physical topology of a power plant, and the PM ontology includes entities related

to personnel involved in the development and project organization aspects. The CC

ontology includes only those entities that are relevant on the project level. For the

sake of simplicity, the set of objects and properties (shown in the running example)

is limited to the minimal set necessary to illustrate all the correspondences types

that are introduced further in Sect. 6.4 (see Fig. 6.3). These correspondences specify

the various relations between the entities of local ontologies and the CC ontology

and, when implemented as mappings, can define data transformations from the local

storages to the integrated storage.

6 Semantic Matching of Engineering Data Structures 143

6.4 Representing Relations Between Engineering Objects

In this section, we overview what kind of correspondences and mappings between

ontology entities may occur while capturing relations between the engineering data

models and data (though the described ones are not strictly specific to the engineering

domain and may arise in other domains as well).

In order to identify the presented correspondences we followed a bottom-up

approach. First, we analyzed what types of relations occur often in the engineer-

ing data, summarizing our experiences with implementing semantic integration in

the multi-disciplinary engineering projects of the industry partner. Second, we per-

formed a literature analysis in the ontology mediation, ontology matching, and

schema matching fields, in order to verify that identified correspondences are not

specific to our scenarios, but are indeed widespread and recognized by researchers

and practitioners from different domains and can be found in a wide range of applica-

tion scenarios. Besides describing the correspondences in general, we provide con-

crete examples of those from the application scenario presented in Sect. 6.3. To better

position the identified correspondences in the ontology matching field we link them

to the ontology alignment design patterns
3

and the work of F. Scharffe on correspon-

dence patterns (Scharffe 2009).

The presented correspondences can be expected to occur frequently in various

ontology mediation tasks. At the same time, they require the use of an expressive

formalism in order to be properly defined. We proceed with the detailed descrip-

tion of these correspondences in general and examples for those from the real-life

application scenario.

Value Processing (M1–M4)
Often, the relation between values of two entities can be represented by some func-

tion that takes a value on one side as an input and returns a value on another side

as an output, i.e., some processing is needed to map the entities. The complexity

of this processing varies from simple string operations to sophisticated mathemati-

cal functions. This type of correspondences is considered in (Scharffe 2009) as the

“Property value transformation” pattern, where the author distinguishes between the

string-based, operations on numbers and unit conversion transformations. In the fol-

lowing, several types of such correspondences are described in detail.

String Processing (M1)
Description. As string values are widely used for data representation, the process-

ing of string values is often needed while transforming data from one ontology into

another. Expressing such correspondences requires using special functions on string

values, e.g., “concat,” “substring,” or “regex.” An example of this correspondence

for the “concat” function can be found in (Scharffe 2009) under the name of “Class

Attribute to Attribute Concatenation Pattern.”

Example. In the ME ontology each physical component’s location is defined via

the hasLocation property, whose value is a string combining sector and region

3
http://ontologydesignpatterns.org/wiki/Category:AlignmentOP.

http://ontologydesignpatterns.org/wiki/Category:AlignmentOP

144 O. Kovalenko and J. Euzenat

Fig. 6.4 M1: String processing correspondence example

(defines location within a specific sector) information for a specific component.

In the CC ontology the location information of a physical component is explicitly

divided into two separate properties. The correspondence specifies that the initial

string must be split into two parts, which then will be used to construct values for

the hasSectorLocation and the hasRegionLocation properties in the CC

ontology (see Fig. 6.4).

Data Type Transformation (M2)
Description. It can happen that in a proprietary data model the data type of a certain

property was not modeled in an optimal way, e.g., the date can be represented in the

format of “string,” instead of “Date” or “DateTime.” This type of correspondence

encodes, therefore, how the value of one type in source ontology can be transformed

into value of a different type in a target ontology.

Generally, the data types can be compatible, partially compatible or incompatible

(Legler and Naumann 2007). For instance, “integer” and “string” are compatible data

types (although only uni-directionally); “date” and “string” are partially compatible

(the compatibility will depend on a specific value); and “DateTime” and “integer”

are incompatible data types. For the compatible data types there is also a possibility

to specify correspondence in a more general way, i.e., specifying how these data

types can be transformed into each other. For the example above it could be defining

how any “Date” value should be transformed into a “string” value. In this case, the

inverse mapping cannot be defined in a general way.

Example. All values of the hasStartingDate property in the PM ontology

are strings in the following format “DD/MM/YYYY.” But because the data type of

the corresponding property in the CC ontology is “Date,” a data type transformation

correspondence takes place between these two properties (see Fig. 6.5).

Fig. 6.5 M2: Transforming a string into xsd:date

6 Semantic Matching of Engineering Data Structures 145

Fig. 6.6 M3: Computing the duration of a project

Fig. 6.7 M4: Computing the amortization of a component based on its properties

Math Functions (M3)
Description. In this case value processing involves some mathematical operations or

is specified by a formula representing mathematical, physical, or other natural laws.

This, for an instance, can be such simple mathematical operations as addition or

multiplication, or more complex functions such as finding an integral or logarithm.

However, relation capturing in this case is done by the means of the used mapping

language.

Example. The value of the hasDuration property in the CC ontology is equal

to substracting hasStartingDate from hasEndingDate in the PM ontology

(see Fig. 6.6).

User-defined Functions (M4)
Description. For this type of correspondences, the relation is expressed by func-

tions that are not supported by the used mapping language/technology, but must be

additionally implemented. Therefore, it must be possible to call an external function,

e.g., implemented in Java, that will generate a property value or an entity in a target

ontology.

Example. The concept MechatronicComponent in the CC ontology cap-

tures information regarding complex composite components, which consist of many

physical components and basically can represent a plant itself. The anticipated amor-

tization value can be an important characteristic for such objects. The exact value will

depend on the location, price and installation date of a specific mechatronic compo-

nent (see Fig. 6.7).

146 O. Kovalenko and J. Euzenat

Structural Differences (M5–M6)
A frequent situation is that two ontologies, covering the same or similar knowledge

area, were designed by different people and in different time, following different

modeling approaches and not aware of each other. In this case, the same semantics

can be modeled very differently. This type of correspondences serves to smooth such

kind of differences.

Granularity (M5)
Description. In this case, the same real-life object is modeled at a different level of

detail in the two ontologies.

Example. In the ME ontology, the concept Physical_component is used

to represent both single devices, e.g., a specific sensor, and complex objects that

comprise many devices, e.g., a part of a production plant or the plant itself. In the

CC ontology, there are two objects that distinguish between composite and single

devices, i.e., a single device is represented by PhysicalComponent and com-

posite objects are represented by MechatronicComponent. To encode this con-

nection between the ME and CC ontologies, one has to properly classify specific

physical components in ME ontology. This is usually done by encoding a specific

conditioning into the defined correspondence.

For instance, for the presented example one can perform filtering of the mecha-

tronic components based on property value, i.e., saying that those physical compo-

nents, which weight more than a specific threshold, are mechatronic components

(see Fig. 6.8).

Another option could be to filter based on property occurence, i.e., saying that

mechatronic components are those physical components that contain other devices.

To check that one can use the existense of containsComponent property for a

specific physical component in the ME ontology (see Fig. 6.9).

One more example of filtering could be checking whether a physical component

also belongs to a specific type, e.g., saying that mechatronic components are those

physical components that are of type compositeDevice in the ME ontology (see

Fig. 6.10).

Fig. 6.8 M5a: Defining mechatronic components by property value

Fig. 6.9 M5b: Defining mechatronic component by property occurence

6 Semantic Matching of Engineering Data Structures 147

Fig. 6.10 M5c: Defining mechatronic component by instance type

Fig. 6.11 M6a: Correspondence between the property value in ME ontology and instance in CC

ontology

Similar types of correspondences and examples for them are reffered in (Scharffe

2009) as the “Class Correspondence by Path attribute Value,” “Property Correspon-

dence by Value,” “Class by Attribute Occurence Correspondence’ patterns. Also,

similar patterns are described by the “Class_by_attribute_occurence,” “Class_by_

attribute_type,” “Class_by_attribute_value,” and “Class_by_path_attribute_value”

ontology design paterns.
4

Schematic Differences (M6)
Description. In this case, there are substantial differences in the way the same

semantics is represented in the two ontologies.

Example1. Each employee in the PM ontology is represented by a string value of

the hasParticipants property, while in the CC ontology the concept Person
serves the same purpose. The correspondence captures this relation between a prop-

erty value and a class instance (see Fig. 6.11).

Example2. A connection between physical devices in the ME ontology is repre-

sented by the Connection concept with the sourceComponent and target
Component properties, while in the CC ontology the same semantics is expressed

with the connectedWith property of the PhysicalComponent concept (see

Fig. 6.12).

The correspondences with similar semantics and corresponding examples can be

found in (Scharffe 2009) denoted as the “Class Relation Correspondence,”

“Property–Relation Correspondence,” and “Class Instance Correspondence” and

also within the ontology design patterns (“Class correspondence defined by relation

domain”).

4
Mentioned design patterns can be found under http://ontologydesignpatterns.org/wiki/

Submissions:#pattern_name.

http://ontologydesignpatterns.org/wiki/Submissions:#pattern_name
http://ontologydesignpatterns.org/wiki/Submissions:#pattern_name

148 O. Kovalenko and J. Euzenat

Fig. 6.12 M6b: Correspondence between class in ME ontology and property in CC ontology

Fig. 6.13 M7: Aggregation of property values to get the weight of a mechatronic device

Grouping and Aggregation (M7)
Description. In some cases it is important to use grouping or/and aggregation of

entities in one or several ontologies in order to set the relation to another ontology.

This type of correspondence is also presented in (Scharffe 2009) as the “Aggrega-

tion” pattern.

Example. In order to calculate a value of the property hasWeight for a specific

MechatronicComponent in the CC ontology, values of the hasWeight prop-

erty of all devices from the ME ontology, which are contained in this component,

should be summed up (see Fig. 6.13).

Mapping Directionality
When speaking about mappings, an important characteristic is that they can be direc-

tional (Ghidini et al. 2007), i.e., can be specified in a direction from source to target

and the data flow cannot occur in the opposite direction. However, for some applica-

tions, such as for a data transformation, it could be beneficial to define bidirectional

mappings between the engineering objects. It would help to reduce the total amount

of mappings, thus facilitating their maintenance. However, in some cases, it may

be impossible to specify a bidirectional mapping—e.g., in the example for mapping

type M3 it will not be possible to specify the specific values for start and end dates

based only on the duration of a specific project.

Example. Examples for M1 and M2 (if specified in a specific mapping language)

can also serve as examples of bidirectional mappings.

6 Semantic Matching of Engineering Data Structures 149

6.5 Languages and Technologies for Mapping Definition
and Representation

This section provides a description of languages and technologies that can be applied

for ontology mapping. Even though many initiatives exist to map heterogeneous

sources of data to RDF such as XSPARQL (Akhtar et al. 2008) to transform XML

into RDF and RML (Dimou et al. 2014) to map CSV, spread sheets and XML to

RDF, we will only examine those languages that allow expressing alignments and

mappings between different ontologies.

Although the languages described below are of very different nature for the sake

of uniformity hereafter we will call them “mapping languages.” For this chapter,

we focus on those languages which are already well known and/or widely used.

This means that these languages already have implementations and tool support and,

therefore, would be the most probable and convenient choice for practitioners.

All mapping languages can be divided into the two categories: declarative and

procedural languges. A language is declarative, if it expresses something indepen-

dently from the way it is processed. Therefore, one should use external tools to

process the defined correspondences for an application at hand. A procedural lan-

guage, on the other hand, expresses how mappings are processed (for a specific or

various applications).

Another important characteristic of a mapping language is whether it is suited

to express correspondences at schema (classes and properties) or data (ontology

instances) level. Below we provide a brief description of existing mapping languages.

Table 6.1 position them with respect to these categories.

The Web Ontology Language (OWL) is an ontology language where one can

declare relations between concepts such as equivalence, subsumption, etc., and

allows one to infer additional information about instances by reasoning over the prop-

erties of classes and relations. Although one can define one-to-one correspondence

Table 6.1 Mapping languages and their characteristics: � = compliant; � = non compliant

Declarative Procedural Schema Data

OWL � � � �
SWRL � � � �
SPARQL CONSTRUCT � � � �
Jena rules � � � �
SPIN � � � �
SILK � � � �
SKOS � � � �
SEKT � � � �
Alignment format � � � �
EDOAL � � � �

150 O. Kovalenko and J. Euzenat

between the ontology entities using owl:equivalentClass, owl:
equivalentProperty and owl:sameAs for classes, properties and individ-

uals correspondingly, OWL itself has no means to define more complex correspon-

dences as those described in Sect. 6.4. Also, as OWL is a knowledge representation

language, it by itself possesses no means for data transformation between ontolo-

gies. One will need to use additional tools for that, such as OWL reasoners to infer

additional triples
5

from an OWL file. Thus, reasoners could be used in combination

with SPARQL CONSTRUCT queries to create a “reasoner-enabled” mapping.

The Semantic Web Rule Language, (SWRL)6 is a W3C submission for a

Semantic Web rule language, combining OWL DL—a decidable fragment of

OWL—with the Rule Markup Language.
7

Rules are thus expressed in terms of OWL

concepts. Rules are of the form of an implication between an antecedent (body)

and consequent (head). The intended meaning is: whenever the conditions speci-

fied in the antecedent hold, then the conditions specified in the consequent must also

hold. Note that SWRL rules are not intended for defining mappings, but to infer

additional information from an ontological system, i.e., if the intended application

is instance translating, they should be used in combination with SPARQL CON-

STRUCT queries for instance to create a target RDF graph out of a source graph.

One way to define mappings is to use a SPARQL CONSTRUCT8
query, which

returns an RDF graph created with a template for generating RDF triples based on

the results of matching the graph pattern of the query. To use this construct, one

needs to specify how patterns in one RDF graph are translated into another graph.

The outcome of a CONSTRUCT query depends on the reasoner and rule engine

used. A SPARQL endpoint not backed by an OWL reasoner will only do simple

graph matching for returning triples. A software agent that needs to compute these

inferences will therefore have to consume all the necessary triples and perform this

computation itself. The same holds for inferring additional information via business

rules. SPARQL CONSTRUCT, however, is not a rule language and “merely” allows

one to make a transformation from one graph match to another graph, i.e., a one-step

transformation.

Another option to define mappings is using rules that can be declared on top of

OWL ontologies. Apache Jena
9

includes a rule-based inference engine called Jena
Rules10

for reasoning with RDF and OWL data sources based on a Datalog imple-

mentation. Datalog is a declarative logic programming language that is popular for

data integration tasks (Huang et al. 2011).

SPARQL Inference Notation (SPIN)11
is currently submitted to W3C and

provides—amongst others—means to link class definitions with SPARQL queries

5
RDF triple: https://www.w3.org/TR/2004/REC-rdf-concepts-20040210/#section-triples.

6
http://www.w3.org/Submission/SWRL/.

7
http://wiki.ruleml.org/index.php/RuleML_Home.

8
http://www.w3.org/TR/rdf-sparql-query/#construct.

9
Apache Jena: http://jena.apache.org/.

10
https://jena.apache.org/documentation/inference/#rules.

11
http://www.w3.org/Submission/spin-overview/.

https://www.w3.org/TR/2004/REC-rdf-concepts-20040210/#section-triples
http://www.w3.org/Submission/SWRL/
http://wiki.ruleml.org/index.php/RuleML_Home
http://www.w3.org/TR/rdf-sparql-query/#construct
http://jena.apache.org/
https://jena.apache.org/documentation/inference/#rules
http://www.w3.org/Submission/spin-overview/

6 Semantic Matching of Engineering Data Structures 151

(ASK and CONSTRUCT) to infer triples. An implementation of SPIN is available

from TopBraid.
12

It is built on top of the Apache Jena framework, and therefore

inherits its properties.

Silk (Volz et al. 2009) is a link discovery framework for RDF data sets available

as a file or via SPARQL endpoints. It allows one to declare how different RDF data

sets relate to each other by specifying so-called linkage rules. These linkage rules

are used to identify which resources are related to generate, for instance, owl:sameAs

predicates. One is also able to define correspondences using other predicates, which

depend on the use case. These linkage rules can make use of aggregates, string met-

rics, etc. SILK allows describing how resources in two existing data sets relate to

each other, but does not possess means to process them for a certain application,

e.g., to perform the transformation.

Two systems for expressing relations between entities worth mentioning are

SKOS (Miles et al. 2005) and the Alignment format (David et al. 2011). How-

ever, they can only express correspondences between pairs of named entities of two

ontologies, so they are not suited to address the requirements in Sect. 6.4.

Another language to define mappings was developed by the SEKT project. This

language is designed to be independent from any ontology language, thus, it can be

used for ontologies written in different languages. Several syntaxes are available—

verbose human readable syntax and RDF and XML syntaxes. A Java API is also

available allowing parsing and serializing to and from the object model of the map-

ping document. This mapping language is quite expressive—it allows specifying

mappings between classes, properties, and instances of an ontology (also across)

using a set of operators, which have a cardinality, an effect and some related seman-

tics. One can also specify conditions, annotations, direction info (bidirectional or uni-

directional mapping) and extend the defined constructs with arbitrary logical expres-

sions (Scharffe et al. 2006).

The EDOAL13 (Expressive and Declarative Ontology Alignment Language)
(David et al. 2011) is a language for expressing alignments which is supported by

the Alignment API. The Alignment API allows to generate and parse alignments, to

manipulate them and to render these alignments in different languages, eventually

executable. EDOAL can express correspondences between more precise and com-

plex terms than the named entities. EDOAL also supports expressing transformations

on property values, which is of particular interest in our context.

Table 6.2 summarizes the level of support of the mapping languages listed above

for defining and representing complex relations between the ontologies described in

Sect. 6.4. The evaluation was done based on (a) checking the specification documents

for each language; (b) authors’ practical experiences with implementing ontology-

based integration solutions; and c) knowledge obtained during authors’ involvement

in the language development (for some languages).

Due to space limits we cannot provide a detailed analysis for each of the described

mapping languages. From Table 6.2, it is clear that everything can be written directly

12
http://www.topquadrant.com/.

13
http://alignapi.gforge.inria.fr/edoal.html.

http://www.topquadrant.com/
http://alignapi.gforge.inria.fr/edoal.html

152 O. Kovalenko and J. Euzenat

Table 6.2 Support for the complex relations definition and representation in various mapping

languages: �–supported; ��–partially supported; �– no support; *–vendor dependent

M1 M2 M3 M4 M5a M5b M5c M6a M6b M7

SWRL �� � � �� � � � � � �
SPARQL CONSTRUCT � � � � � � � � � �
Jena rules �� �� �� � * � � � � � �
SPIN � � � � * � � � � � �
SILK � � � � � � � � � ��
SKOS � � � � � � � � � �
SEKT � � � � � � � � � �
Alignment Format � � � � � � � � � �
EDOAL � � � � � � � � � �

with SWRL or SPARQL CONSTRUCT. Such languages have enough expressivity

and can be considered, at least for SPARQL, to have efficient implementations. How-

ever, they lack declarativity. For instance, they define oriented rules and changing the

orientation requires rewriting the rules. A language like EDOAL allows to express

declaratively the relations between two ontologies and can generate SPARQL CON-

STRUCT (or eventually SWRL in simple cases) to implement the transformations in

one way or the other. Therefore, we decided to focus on EDOAL. We continue with

detailed analysis of the EDOAL’s capabilities for representing complex correspon-

dences and the examples of those identified in the use case scenario (see Sect. 6.3).

6.6 Representing Complex Relations with EDOAL

Expressive and Declarative Ontology Alignment Language (EDOAL) is an exten-

sion of the Alignment format supported by the Alignment API (David et al. 2011).

It offers the capability to express correspondences that go beyound putting in rela-

tion named entities. In EDOAL correspondences may be defined between compound

descriptions, which allow to further constrain those entities that are put in correspon-

dences. Compound descriptions may be combination of concepts, e.g., a physical

component that is also a composite device, or restriction of concepts, e.g., a physical

component whose weight is over 125 pounds. Compound descriptions are defined

through a description language similar to that of description logics.

This is possible through:

Construction that constrains the object put in correspondence with classical

Boolean operators (disjunction, conjunction, complement) or property construc-

tion operators (inverse, composition, reflexive, transitive, and symmetric clo-

sures);

6 Semantic Matching of Engineering Data Structures 153

Restriction that restrains the values of objects put in correspondence (through

domain, range, cardinality and value restrictions). This is typically achieved by

requesting all or some values of a property to be in some domain (weight is

above 1025) or class (some member being a senior manager).

These constraints can be composed together to obtain more elaborate correspon-

dences. For instance, the meaning of some of the correspondences in Sect. 6.4 can

be simply expressed as EDOAL correspondences.

The snippet in Listing 6.1 combines M5a and M5c examples in one correspon-

dence (M5b can be treated in the exact same way). The first part (within the “and”)

is a class construction, while the AttributeValueRestriction part is a class

restriction.

Listing 6.1 EDOAL correspondence capturing M5a and M5c examples

<align:Cell rdf:about ="#M5">
<align:entity1 >

<Class >
<and rdf:parseType =" Collection">

<Class rdf:about ="&me;PhysicalComponent "/>
<Class rdf:about ="&me;CompositeDevice "/>
<AttributeValueRestriction >

<onAttribute ><Relation rdf:about ="&me;hasWeight"/></
onAttribute >

<comparator rdf:resource ="& edoal;greater -than"/>
<value ><Literal edoal:type ="&xsd;decimal"edoal:string

="1025.00"/ > </ value >
</AttributeValueRestriction >

</and >
</Class >

</align:entity1 >
<align:entity2 >

<Class rdf:about ="&cc;MechatronicComponent"/>
</align:entity2 >
<align:relation >=</align:relation >
<align:measure rdf:datatype ="&xsd;float ">1.0</ align:measure >

</align:Cell >

The Alignment API offers EDOAL alignment manipulation and rendering. So,

the correspondence presented in Listing 6.1 can be automatically transformed into

the SPARQL CONSTRUCT query shown in Listing 6.2, which can be used for trans-

forming data.

Listing 6.2 SPARQL CONSTRUCT query generated from the EDOAL correspondence in Listing

6.1

CONSTRUCT { ?s rdf:type cc:MechatronicComponent . }
WHERE {

?s rdf:type me:PhysicalComponent .
?s rdf:type me:CompositeDevice .
?s me:hasWeight ?w .
FILTER(?w >="1025.00"ˆˆ xsd:decimal).

}

The same can be achieved with the M6b correspondence example that connects

an object and a relation between objects (see Listing 6.3).

154 O. Kovalenko and J. Euzenat

Listing 6.3 EDOAL correspondence capturing M6b example

<align:Cell rdf:about ="#M6b">
<align:entity1 >

<Relation >
<compose rdf:parseType =" Collection">

<Relation >
<inverse ><Relation rdf:about ="&me;sourceComponent "/></

inverse >
</Relation >
<Relation >

<and rdf:parseType =" Collection">
<Relation rdf:about ="&me;targetComponent "/>
<RelationDomainRestriction >

<class ><Class rdf:about ="&me;Connection"/></class >
</RelationDomainRestriction >

</and >
</Relation >

</compose >
</Relation >

</align:entity1 >
<align:entity2 ><Relation rdf:about ="&cc;connectedWith "/></

align:entity2 >
<align:relation >=</align:relation >
<align:measure rdf:datatype ="&xsd;float ">1.0</ align:measure >

</align:Cell >

In addition to expressing the usual correspondences between two entities, EDOAL

correspondences are extended to support two types of information:

Transformations that specify how to transform an instance of the related entities

into the other;

Link keys that define under which conditions two individuals must be considered

the same (Atencia et al. 2014).

For this chapter we are mostly concerned with transformations. They allow

expressing how property values of two equivalent relations can be transformed into

one another. For that purpose EDOAL usually applies transformation functions on

the values.

This is, in general, sufficient to express the examples for M1–M4 and M7. In List-

ing 6.4 the correspondence covering M2 and M3 (where M2 is a simple conversion

from string to date; and M3 is a function call though the call of substract-dates) is

presented. In general, all M1–M4 examples would follow the same pattern.

Listing 6.4 EDOAL correspondence capturing M2 and M3 examples

<align:Cell rdf:about ="# M1extended">
<align:entity1 ><Class rdf:about ="±Project "/></align:entity1

>
<align:entity2 ><Class rdf:about ="&cc;Project "/></align:entity2

>
<align:relation >=</align:relation >
<align:measure rdf:datatype ="&xsd;float ">1.0</ align:measure >
<transformation >

<Transformation edoal:direction ="o-">
<entity1 >

<Apply edoal:operator ="xsd:date">
<arguments rdf:parseType =" Collection">

<Property rdf:about ="±hasStartingDate "/>

6 Semantic Matching of Engineering Data Structures 155

</arguments >
</Apply >

</entity1 >
<entity2 ><Property rdf:about ="&cc;hasStartingDate "/></

entity2 >
</Transformation >
<Transformation edoal:direction ="o-">

<entity1 >
<Apply edoal:operator ="op:subtract -dates">

<arguments rdf:parseType =" Collection">
<Property rdf:about ="±hasStartingDate "/>
<Property rdf:about ="±hasEndDate"/>

</arguments >
</Apply >

</entity1 >
<entity2 ><Property rdf:about ="&cc;hasDuration "/></entity2 >

</Transformation >
</transformation >

</align:Cell >

As it can be seen in the snippet in Listing 6.4, the same EDOAL correspondence

can support several transformations as, for two objects in the correspondence, there

may be several properties to be transformed.

Listing 6.5 EDOAL correspondence capturing M7 example

<align:Cell rdf:about ="# M1extended">
<align:entity1 ><Class rdf:about ="&me;PhysicalComponent "/></align

:entity1 >
<align:entity2 ><Class rdf:about ="&cc;MechatronicComponent"/></

align:entity2 >
<align:relation >=</align:relation >
<align:measure rdf:datatype ="&xsd;float ">1.0</ align:measure >
<transformation >
<Transformation edoal:direction="-o">

<entity1 >
<Aggregate edoal:operator ="&fn;sum">
<arguments rdf:parseType =" Collection">

<Property >
<compose rdf:parseType =" Collection">

<Relation rdf:about ="&me;component"/>
<Property rdf:about ="&me;hasWeight"/>

</compose >
</Property >
</arguments >

</Aggregate >
</entity1 >
<entity2 ><Property rdf:about ="&cc;hasWeight" /></entity2 >

</Transformation >
</transformation >

</align:Cell >

The example for M7 can be expressed in a similar way (see Listing 6.5) Alterna-

tively, the transformation here could have been added to the previous M5 example.

With regard to directionality, EDOAL correspondences are in general not ori-

ented: they express a relation between two terms and not a function from one term

to another. However, when generating a mapping from a correspondence, this may

direct the use of the correspondence, e.g., the SPARQL query above. Moreover,

transformations may be oriented. This is specified by the direction attribute: indeed,

156 O. Kovalenko and J. Euzenat

it is possible to compute a duration from the dates or a total weight of the compound

component from its component part weights but not the other way around.

Although EDOAL can express such transformations, it cannot process them.

These transformations are rendered in other languages that can be processed, such as

SPARQL. Transformations often rely on external functions, most of the time iden-

tified by XPath URIs. Hence, a renderer using them should be able to interpret such

operations as SPIN functions or SPARQL built-in functions, for instance.

One type of correspondences that is difficult to represent in EDOAL, are those,

like M6a, which introduce some new resources that have no counterpart in the ini-

tial data set. In M6a, the Person in the CC ontology does correspond to John/
Smith/078-05-1120, which is a simple string. Sometimes this can be easily

expressed, like for M6b, because the connectedWith relation relates two exist-

ing resources. But in general, this requires more information.

6.7 Conclusion

In this chapter, we described what types of complex relations between engineer-

ing objects may need to be captured, while implementing ontology-based integra-

tion solutions. We presented a catalogue of complex correspondences between the

ontologies and illustrated each correspondence type with an example from the real-

life power-plant engineering project. We also provided an overview on available

mapping languages and technologies that can be used to define, represent, and some-

times also process the correspondences between the different ontologies and briefly

explained their key characteristics and capabilities w.r.t. the complex relations cap-

turing. As space limitations do not allow us to perform the detailed analysis of each

mapping language, we decided to focus on EDOAL, because of its interesting qual-

ity to combine the features of both declarative and procedural languages (contrary to

other mapping languages). We therefore explained in detail what are the EDOAL’s

capabilities for representing complex relations and gave the examples of how the cor-

respondences identified for the power-plant engineering project can be implemented

with EDOAL.

As future work we would like to explore what languages and techniques are cur-

rently applied by engineers to link different models and data structures (especially

across the engineering disciplines and tools) during the engineering process and

to compare their representational capabilities with those provided by the Semantic

Web community. Another interesting direction for the future work will be analyzing

languages to define relations and constraints on different data models and data sets

developed within the Model-Driven engineering field and compare their application

aspects with the languages discussed in this chapter.

Acknowledgments This work was supported by the Christian Doppler Forschungsgesellschaft,

the Federal Ministry of Economy, Family and Youth, and the National Foundation for Research,

Technology and Development in Austria.

6 Semantic Matching of Engineering Data Structures 157

References

Akhtar, W., Kopeckỳ, J., Krennwallner, T., Polleres, A.: XSPARQL: Traveling Between the XML

and RDF Worlds—and Avoiding the XSLT Pilgrimage. Springer (2008)

Atencia, M., David, J., Euzenat, J.: Data interlinking through robust linkkey extraction. In: Proceed-

ing 21st European Conference on Artificial Intelligence (ECAI), Praha (CZ), pp. 15–20 (2014)

Bernstein, P.A., Melnik, S.: Model management 2.0: manipulating richer mappings. In: Proceedings

of the 2007 ACM SIGMOD International Conference on Management of Data, pp. 1–12. ACM

(2007)

Biffl, S., Moser, T., Winkler, D.: Risk assessment in multi-disciplinary (software+) engineering

projects. Int. J. Softw. Eng. Knowl. Eng. 21(02), 211–236 (2011)

Breslin, J.G., O’Sullivan, D., Passant, A., Vasiliu, L.: Semantic web computing in industry. Comput.

Ind. 61(8), 729–741 (2010)

David, J., Euzenat, J., Scharffe, F., Trojahn Dos Santos, C.: The Alignment API 4.0. Semant. Web

J. 2(1), 3–10 (2011)

Dimou, A., Vander Sande, M., Colpaert, P., Verborgh, R., Mannens, E., Van de Walle, R.: RML:

a generic language for integrated RDF mappings of heterogeneous data. In: Proceedings of the

7th Workshop on Linked Data on the Web (LDOW2014), Seoul, Korea (2014)

Euzenat, J., Shvaiko, P.: Ontology Matching, 2nd edn. Springer, Heidelberg (DE) (2013)

Ghidini, C., Serafini, L., Tessaris, S.: On relating heterogeneous elements from different ontologies.

In: Modeling and Using Context, pp. 234–247. Springer (2007)

Huang, S.S., Green, T.J., Loo, B.T.: Datalog and emerging applications: an interactive tutorial. In:

Proceedings of the 2011 ACM SIGMOD International Conference on Management of Data, pp.

1213–1216. ACM (2011)

Legler, F., Naumann, F.: A classification of schema mappings and analysis of mapping tools. BTW,

Citeseer 103, 449–464 (2007)

Miles, A., Matthews, B., Wilson, M., Brickley, D.: SKOS core: simple knowledge organisation for

the web. In: International Conference on Dublin Core and Metadata Applications, p. 3 (2005)

Mordinyi, R., Winkler, D., Moser, T., Biffl, S., Sunindyo, W.D.: Engineering object change man-

agement process observation in distributed automation systems projects. In: Proceedings of the

18th EuroSPI Conference, Roskilde, Denmark (2011)

Noy, N.F.: Semantic integration: a survey of ontology-based approaches. ACM SIGMOD Rec.

33(4), 65–70 (2004)

Otero-Cerdeira, L., Rodríguez-Martínez, F.J., Gómez-Rodríguez, A.: Ontology matching: a litera-

ture review. Exp. Syst. Appl. 42(2), 949–971 (2015)

Scharffe, F.: Correspondence patterns representation. Ph.D. thesis, University of Innsbruck (2009)

Scharffe, F., de Bruijn, J., Foxvog, D.: Ontology mediation patterns library v2. Deliverable D4, 3

(2006)

Scharffe, F., Zamazal, O., Fensel, D.: Ontology alignment design patterns. Knowl. Inf. Syst. 40(1),

1–28 (2014)

Shvaiko, P., Euzenat, J.: Ontology matching: state of the art and future challenges. IEEE Trans.

Knowl. Data Eng. 25(1), 158–176 (2013)

Volz, J., Bizer, C., Gaedke, M., Kobilarov, G.: Silk: a link discovery framework for the web of data.

LDOW 538 (2009)

Vyatkin, V.: Software engineering in industrial automation: state-of-the-art review. IEEE Trans.

Ind. Inf. 9(3), 1234–1249 (2013)

Wache, H., Voegele, T., Visser, U., Stuckenschmidt, H., Schuster, G., Neumann, H., Hübner, S.:

Ontology-based integration of information—A survey of existing approaches. In: IJCAI-01

Workshop: Ontologies and Information Sharing, Citeseer, vol. 2001, pp. 108–117 (2001)

	6 Semantic Matching of Engineering Data Structures
	6.1 Introduction
	6.2 Ontology Matching: Background Information and Definitions
	6.3 Running Example: The Power Plant Engineering Project
	6.4 Representing Relations Between Engineering Objects
	6.5 Languages and Technologies for Mapping Definition and Representation
	6.6 Representing Complex Relations with EDOAL
	6.7 Conclusion
	References

