Chapter 5
Semantic Modelling and Acquisition
of Engineering Knowledge

Marta Sabou, Olga Kovalenko and Petr Novak

Abstract Ontologies are key Semantic Web technologies (SWTs) that provide
means to formally and explicitly represent domain knowledge in terms of key
domain concepts and their relations. Therefore, the creation of intelligent engi-
neering applications (IEAs) that rely on SWTs depends on the creation of a suitable
ontology that semantically models engineering knowledge and the representation of
engineering data in terms of this ontology (i.e., through a knowledge acquisition
process). The tasks of semantic modelling and acquisition of engineering knowl-
edge are, however, complex tasks that rely on specialized skills provided by a
knowledge engineer and can therefore be daunting for those SWT adopters that do
not possess this skill set. This chapter aims to support these SWT adopters by
summing up essential knowledge for creating and populating ontologies including:
ontology engineering methodologies and methods for assessing the quality of the
created ontologies. The chapter provides examples of concrete engineering
ontologies, and classifies these engineering ontologies in a framework based on the
Product-Process-Resource abstraction. The chapter also contains examples of best
practices for modelling common situations in the engineering domain using
ontology design patterns, and gives an overview of the current tools that engineers
ca use to lift engineering data stored in legacy formats (such as, spreadsheets, XML
files, and databases, etc.) to a semantic representation.
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5.1 Introduction

Engineering knowledge is a specific kind of knowledge oriented towards the pro-
duction of artifacts, and, as such, requires knowledge modelling and representation
approaches that differ from other types of knowledge, such as, for example, taxo-
nomical knowledge that is characteristic for the life sciences domain (Sicilia et al.
2009). Ontologies are information artefacts that can be used to explicitly represent
such engineering knowledge and as such, they play an important role when creating
intelligent engineering applications (IEAs) relying on Semantic Web technologies
(SWTs). Chapter 3 provides a detailed insight into ontologies and their role in SWT
based solutions.

Yet, the creation of semantic structures (which we refer to as semantic mod-
elling) in general, and of ontologies in particular, is a complex process because of a
set of factors (Gomez-Perez et al. 2004). First, the creation process needs to lead to
a complete and correct representation of the subject domain to the extent required
by the intended use of the ontology. This step requires a deep knowledge of the
underlying subject domain as well as a good understanding of the way the ontology
will be used. Multi-disciplinary engineering settings such as those specific for
creating cyber-physical production systems (CPPSs), pose a challenge from this
perspective because (1) they require knowledge of several engineering disciplines
and (2) they are built for only a partially specified set of applications with new
applications being added over time. Second, an optimal machine-understandable
representation of the engineering knowledge must be chosen that enables taking full
advantage of advanced ontology exploitation mechanisms such as querying and
reasoning. To support ontology engineers in finding the best conceptualizations for
a variety of modelling requirements, the ontology engineering community has
distilled a set of ontology design patterns (ODP)—modelling best practices
applicable to typical conceptualization scenarios (Gangemi and Presutti 2009).

The complexity of the semantic modelling process often hinders the adoption of
ontology-based technologies. Adopters of ontology-based solutions from industry
are confronted with answering questions which naturally arise while following
ontology engineering methodology steps discussed in Sect. 5.2: What is the process
of building an ontology? What kind of knowledge should the ontology contain?
What other relevant ontologies exist and can these be reused for the project at
hand? How can the quality of an ontology be assessed? If a new ontology must be
designed, what are typical modelling issues to be considered and what typical
solutions are applied? How can semantic data be created from legacy data sour-
ces? In this chapter, we aim to answer such questions. Concretely, we:

e Provide a brief introduction to ontology engineering methodologies (Sect. 5.2)
and the main techniques for ontology evaluation (Sect. 5.3).

e Synthesize the types of engineering knowledge that are most often captured by
ontologies (Sect. 5.4) and propose an ontology classification framework based
on ontology content.
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e Provide an overview of a set of engineering ontologies and classify those
according to their content (Sect. 5.5).

o Exemplify a set of of ontology design patterns and their use for the semantic
modelling of engineering knowledge (Sect. 5.6).

e Provide an overview of techniques and tools for transforming engineering data
from legacy data formats (spreadsheets, Extensible Markup Language' (XML),
databases) into Semantic Web representations (Sect. 5.7).

Section 5.8 concludes the chapter with a summary of its content and future
work.

5.2 Ontology Engineering Methodologies

A wealth of methodologies exists for guiding the creation of ontologies some dating
back to as early as 1990 (Lenat and Guha 1990). Overviews of these methodologies
are available in (Corcho et al. 2003; Suarez-Figueroa 2012; Poveda-Villal6n 2016).
In this section, we summarize the most representative ontology engineering
methodologies for supporting ontology adopters in choosing the best-suited
methodology for their context. Readers not familiar with the notion of ontologies
might wish to consult Chap. 3 for foundations about ontologies.

From the proposed methodologies, the ontology creation guideline of Noy and
McGuinness (2001) captures the essential steps of any ontology building process
and, thanks to its many examples, it offers an excellent resource for developing
one’s first ontologies. Hereby, we summarize the main steps indicated in this
guideline to give an intuitive overview of a typical ontology creation activity:

1. Determine the domain and scope of the ontology. This step defines the
domain that the ontology will cover (e.g., mechanical engineering, functional
testing), the expected usage of the ontology in terms of the questions that the
ontology should be able to answer (also known as, competency questions), and
the expected stakeholders involved with the ontology (maintainers, users). All
these aspects are crucial for focusing the development of the ontology. The
competency questions provide a means to define the scope of the ontology, and
also, to validate the ontology during or at the end of the development cycle.

2. Consider reusing existing ontologies. One of the recommended practices in
ontology development is to reuse (parts of) existing ontologies. The promise of
reuse is that the developers will be able to build ontologies faster and with less
effort, and that the applications that make use of these ontologies will interop-
erate easier. The practice of reuse is particularly useful in enterprises thus
ensuring enterprise-level knowledge reuse, especially if the reused parts fit
already well for the new purpose.

"XML: https://www.w3.0rg/TR/REC-xml/.
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3. Enumerate important terms in the ontology. After defining the scope of the
ontology (Step 1), the development of the ontology starts with collecting the
most important terms by using the competency questions as input. The com-
petency questions help identify key concepts, their properties and relationships
that hold in the domain. This term list acts as an input to steps 4 and 5 for
creating the ontology’s class hierarchy and properties.

4. Define the classes and the class hierarchy. To create a class hierarchy,
ontology engineers can choose one of three approaches. (1) In a top-down
approach, the hierarchy is constructed starting from the most generic concepts
(top concepts) and then creating the more specialized concepts. For example, in
the mechanical engineering domain, the concept Device is created first, and then
sub-concepts are created for the various types of devices (see for example, the
ontology snippet in Fig. 3.3). (2) The opposite of the top-down approach con-
sists in starting with the most specific classes of a domain (e.g., the various types
of devices), and then grouping these into more generic classes. This approach is
known as the bottom-up approach. (3) A combination approach is taken that
combines the top-down and bottom-up approaches, and intertwines these, as
most suitable for the ontology expert.

5. Define the properties of classes. Another important step is describing the
declared classes in terms of their properties, including both their characteristics
or relations to other classes. For example, the class Device has characteristics
such as weight or maximum allowed working hours. It is connected to the class
Supplier with the hasSupplier property.

6. Define the property constraints. This step envisions further enriching the
ontology model by defining characteristics of its properties in more detail. These
include the domain and range of properties, as well as any cardinality and
value-based constraints, which specify the number and type of values that the
property takes. Chapter 3 exemplifies how such constraints can be represented
using primitives of the Web Ontology Language (OWL).

7. Create instances. In this step, users populate the classes in the ontology with
concrete entities, that exist in the domain, a.k.a, instances or individuals. For
example, a concrete device is represented as an instance of the class Device,
and a user fills its properties with concrete values (e.g., weight = 100 kg). In
many cases, the actual instances of an ontology are not part of the ontology
itself, but are rather acquired using automatic data transformation processes,
such as those described in Sect. 5.7.

The On-to-Knowledge methodology (Staab et al. 2001) takes a broader view of
the ontology life cycle than (Noy and McGuinness 2001) and focuses on an ap-
plication-oriented development of ontologies in the context of creating Knowledge
Management applications. Therefore, its steps consider not only the development of
the ontology per se, but also that of the application that will make use of the
ontology. The methodology consists of five stages:
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1. Feasibility study identifies problems and opportunity areas from an organiza-
tional perspective, and selects the most promising focus areas and suitable
solutions.

2. Ontology kickoff produces an ontology requirements specification document,
which identifies the ontology’s goal, domain and scope. This document also
identifies the applications that will make use of the ontology, the knowledge
sources from which the ontology could be built (e.g., domain experts, relevant
documents) and the competency questions it should provide answers to. This
phase also covers the identification of ontologies that could be reused and
therefore spans steps 1 and 2 in the Noy and McGuinness’ guidelines (2001).

3. Refinement refers to the development of a mature and application-oriented
ontology, and therefore covers activities such as described by Noy and
McGuinness’ (2001) steps 3-7. Similarly, it envisions stages for eliciting
knowledge from domain experts at an epistemological level (i.e., enumerating
important terms and their relations) and then formalizing this knowledge in
terms of a formal knowledge-representation language such as OWL.

4. Evaluation focuses on assessing the quality of the output ontology both in
terms of (1) satisfying the ontology requirements document, as well as (2) pro-
viding the desired functionality as part of the applications that make use of the
ontology. Feedback from the requirements and application-oriented evaluations
are used to modify the ontology accordingly. Therefore, On-to-Knowledge
envisions a feedback loop between the Evaluation and Refinement stages.

5. Maintenance covers activities of updating and versioning the ontology to reflect
changes in its environment (e.g., new user requirements, supporting new
applications, changes in the engineering knowledge).

The METHONTOLOGY methodology (Fernandez-Lopez et al. 1997), (Blaz-
quez et al. 1998) goes beyond the On-to-Knowledge methodology in terms of
breadth and distinguishes between management, development, and support activi-
ties. Management activities include scheduling, control, and quality assurance.
Development covers the entire life cycle of an ontology, and similarly to On-to-
Knowledge ranges from feasibility study, through development (specification,
conceptualization, formalization, and implementation) and post-developmental use
to maintenance. Support activities include knowledge acquisition, evaluation,
documentation, merging and alignment.

Proposed in 2010, the NeOn Methodology (Suarez-Figueroa 2012; 2015) rec-
ognized the need of catering for diverse ontology-engineering scenarios, as opposed
to prescribing a generic process for building ontologies, as was the case for the
previously-mentioned methodologies. The NeOn methodology identifies nine dif-
ferent scenarios that can be followed when building ontologies. The base scenario
refers to those cases when ontologies are created from scratch without reusing
existing resources. This scenario typically includes stages for requirements speci-
fication (identifying the goal, scope, and relevant competency questions for the
desired ontologies), scheduling of the ontology creation task, conceptualizing the
knowledge in relevant models, and then formalizing and implementing this
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knowledge in terms of formal representation languages such as OWL, similarly to
the steps envisioned by the guidelines of Noy and McGuinness (2001).

Ideally, the effort needed for the base scenario could be reduced by bootstrap-
ping the ontology-creation activity through the reuse of ontological or
non-ontological resources. Scenario 2 of this methodology envisions creating an
ontology by re-engineering non-ontological resources such as classification
schemes, thesauri, lexicons, and folksonomies. Scenario 3 covers cases when an
ontology can be re-used instead of building a new ontology. In some cases, it might
be necessary to re-engineer an existing ontology (Scenario 4), to merge several
suitable ontologies into one (Scenario 5), to reuse a set of ontologies that are
merged and also re-engineered (Scenario 6) or to restructure an existing ontology
(Scenario 8). Scenario 7 envisions creating ontologies by reusing Ontology Design
Patterns, which are high-quality ontology modelling solutions. Scenario 9 refers to
creating a new ontology by localizing an ontology to better fit other language or
culture communities.

Several ontology engineering methodologies considered scenarios of collabo-
rative ontology development. Representative for this set of methodologies is
DILIGENT (Pinto et al. 2004), which has a strong focus on managing the col-
laborative evolution of an ontology. In a first stage, a small and consensual
ontology is built by the key stakeholders in the ontology creation process (Build
phase) by following one of the classical ontology development methodologies
described above. This version of the ontology is distributed among its users, who
can modify their local ontology copy according to their needs (Local adaptation
phase). In a follow-up Analysis phase, an ontology control board discusses the
changes made locally by users as well as their arguments for introducing their
changes. Based on these inputs and their analysis, in a Revision phase, the shared
ontology is revised and extended to cover an agreed set of changes. During Local
update, the users update their local ontology to the new version of the shared
ontology.

In summary, ontology-engineering methodologies exist for covering a wide
range of settings: focusing on ontology creation per se; considering the lifecycle of
the ontology-based applications as well as the organizational context, ontology
creation supported by various reuse activities, and collaborative ontology devel-
opment. These methodologies can provide ample guidelines to practitioners, who
wish to create ontologies and ontology-based applications. An important step in
ontology engineering is ontology evaluation and, therefore, we focus on this
specific aspect in Sect. 5.3.

5.3 Ontology Evaluation

Ontology evaluation is “the activity of checking the technical quality of an ontology
against a frame of reference” (Sabou and Fernandez 2012). Ontology evaluation is
also important during other ontology-related activities, such as: the evolution of an
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ontology; the selection of an ontology for reuse, or during the process of modu-
larizing an ontology (for assuring the high quality of the resulting modules).

The ontology evaluation goal determines the key aspects of the ontology to
be assessed and determines the evaluation approaches and measures to be applied.
According to (Sabou and Fernandez 2012), the most frequently evaluated ontology
aspects are:

1. Domain coverage—Does the ontology cover a topic domain? The goal is to
assess the extent to which an ontology contains the knowledge necessary to
describe a given (aspect of a) domain. For example, one could assess how well
an ontology covers terms and their relations when describing mechanical
engineering aspects of certain types of production systems. This assessment is
important to be made both during the development of an ontology and during
the selection of an already built ontology. Typically, evaluations with this goal
involve the comparison of the ontology to frames of references such as a ref-
erence (i.e., gold standard) ontology (Maedche and Staab 2002), or various data
sets that are representative for the domain. These datasets can be user-defined
terms (Alani et al. 2006; Fernandez et al. 2006), folksonomy tag sets (Cantador
et al. 2007), or representative document corpora (Brewster et al. 2004). Typical
evaluation measures are similarity measures that compare two ontologies at
lexical (i.e., average string matches between the set of gold standard terms and
the set of ontology terms), taxonomic, or relation level (Maedche and Staab
2002).

2. Quality of the modelling. The evaluation can either focus on the quality of the
design and development process (Does the ontology development process
comply with ontology modelling best practices?) or on the quality of the
resulting ontology (Is the ontology model correct?). The quality of the ontology
model can be assessed using a wide range of approaches focusing on logical
correctness or syntactic, structural, and semantic quality. Logical correctness
(e.g., logical consistency) is automatically assessed by reasoners. Other aspects,
such as syntactic quality, require human judgment and therefore rely on
approaches involving human assessment (Burton-Jones et al. 2005). Last but not
least, semantic quality can be assessed with metrics such as essence (assess if an
entity is true in every possible world) or unity (recognizes all the parts that form
an individual entity) (Guarino and Welty 2004). The OOPS! (OntOlogy Pitfall
Scanner!) tool” provides online support for verifying ontology modelling quality
(Poveda-Villalén et al. 2014).

3. Suitability for an application/task—Is the ontology suitable for a specific
application/task? While the previous evaluation goals focus on assessing the
ontology quality in general, here the aim is to assess to what extent an ontology
is suitable for use within a concrete application or for a certain task (e.g.,
semantic search, question answering). Different applications/tasks might require
ontologies with diverse characteristics. For example, for applications that use

200PS! Tool: http://oops.linkeddata.es/.
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ontologies to support natural language processing tasks such as semantic search,
domain coverage is often more important than logical correctness. Therefore,
measuring ontology quality generically is not enough to predict how well the
ontology (developed or reused) will support an application or a task.
Task-centric evaluations help assessing suitability for a task or application
(Porzel and Malaka 2004; Fernandez et al. 2009). The typical approach here is
to measure ontology quality indirectly and as an approximation of an expected
application/task performance. For example, for a semantic-search system the
precision and/or recall of the system obtained when using different ontologies
will be an indication of the ontology’s suitability for that task. The best ontology
is the one that leads to the best task performance.

4. Adoption and use—Has the ontology been reused (imported) as part of other
ontologies? How did others rate the ontology? (Cantador et al. 2007) When
selecting an ontology for reuse, the extent of its adoption is of particular interest.
The assumption is that there is a direct correlation between the quality of the
ontology and the level of adoption by the community. One approach to assess
adoption is analyzing the degree of interlinking between an ontology and other
ontologies (e.g., in terms of reused terms or ontology imports). Ontology
libraries often offer such statistics (d’Aquin and Noy 2012). Social rating sys-
tems have also been used to reflect community-level reuse and evaluation of
ontologies (Cantador et al. 2007).

The evaluation process is guided by the evaluator’s understanding of what is
better and what is worse. In some cases, these boundaries (which we refer to as
frame of reference) are clearly defined and tangible (e.g., a reference ontology, a
reference alignment), but in other cases, they are weakly defined and may be
different from one person to another, or even across evaluation sessions. This often
renders ontology evaluation a non-trivial task.

In summary, several approaches and measures exist for evaluating ontologies,
and their selection should be derived based on the goal of the evaluation.

5.4 Classification of Engineering Ontologies

The domain of engineering cyber-physical production systems (CPPS) is a broad
and complex domain. Building IEAs for this domain will therefore require creating
a diverse variety of ontologies covering the many aspects of the domain. When
creating such ontologies, two important aspects to consider are:

o What kinds of knowledge should be covered by the engineering ontology? This
is an important question for determining the scope of the ontology, but that
generally, ontology engineers (i.e., Semantic Web practitioners), who have little
knowledge of this complex domain, find difficult to answer.
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e How to find suitable engineering ontologies for reuse? Ontology reuse is an
important step envisioned by all ontology engineering methodologies. Yet,
Legat et al. (2014) observe that the reuse of ontologies in the automation domain
is difficult, in part because of a lack of a principled way to create and classify
ontologies in an use-case agnostic way.

One approach to alleviate these difficulties in scoping, classifying, and reusing
ontologies is the availability of meaningful schemes for classifying the type of
knowledge relevant for engineering complex CPPS. Such a scheme could support
better scoping ontologies in terms of use-case-independent topics, and could greatly
support meaningful selection of relevant ontologies.

In this section, we propose such a classification scheme, which we derived by
combining two orthogonal views on the types of engineering knowledge in CPPS.
First, the Product-Process-Resource (PPR) abstraction (Sect. 5.4.1) provides an
intuitive view of the domain of production systems (Schleipen and Drath 2009).
Second, we made use of an initial ontology-classification scheme (Sect. 5.4.2),
proposed by Legat et al. (2014). This scheme is much more oriented on structure
than the PPR view, because it considers the different physical and logical views on
the elements of a production system. The proposed categorization framework for
engineering ontologies, which combines these two views, will allow practitioners to
find easier the ontologies that cover the relevant engineering content for their
project. The categorization framework will also be useful to Semantic Web prac-
titioners, who require a better understanding of knowledge needs, when building
IEAs and scoping their ontologies.

5.4.1 The Product-Process-Resource Abstraction

To better understand the types of engineering data needed to describe a complex
manufacturing plant, we start with the Product-Process-Resource abstraction
explained in (Schleipen and Drath 2009). The three views of this abstraction are
dominant, and of key interest for industry, as described in more detail next.

Product. The intention of any production system is to produce products (e.g.,
cars, bread). The term “product” refers to the final produced goods as well as to the
produced artefact in one of its intermediary stages. A product designer describes a
product by its geometric, functional, material, and other relevant characteristics.
Depending on the kind of product, the product structure can be described with
mechanical information, e.g., 3D CAD and kinematics.

Process. To create a product, a set of production process steps is applied to
manufacture the product from raw materials or semi-finished products. Processes
modify intermediate products and create a final product. Example processes are
welding, transporting, and filing. The process view is concerned with the set of
processes (their parameters, and their chains) needed to create a product from input
materials. The production process corresponds to the function description of the
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production resources, and to the control, e.g., a PLC program. However, the pro-
duction process can also be described more explicitly, e.g., with GANTT charts or
some general form of behaviour description, e.g., state machines.

Resource. Production resources are entities involved in production that provide
functions to production processes. Resources include both hardware (e.g., robots,
conveyors, machines) and software entities (SCADA systems), and are typically
organized hierarchically into a plant topology. The properties of production
resources are mostly their function capabilities (e.g., welding, transporting, and
filing), mechanical information, electrical information, and control-related infor-
mation; in addition, further technical information can be specified.

There is a strong connection between these three views: a product is manipulated
by a resource as part of a process. For example, in the case of a tetra-pack pro-
duction system described in (Schleipen and Drath 2009), the process transport
might be linked to a resource conveyor and a product fetra pack.

Although it is useful to consider these three views in separation, they all con-
tribute to the definition of a production system. The intention of any production
system is to execute production processes using production resources in order to
create products. Example production systems are: car body welding shops,
combustion-turbine-based power plants or process plants for polyvinyl chloride
generation. Therefore, a production system contains a set of interlinked production
resources each of them able to execute a certain production process step (drilling,
welding, etc.). The production system designer describes a production system by
the information given in Fig. 2.6 and provided by the different engineers named in
Chap. 2. This information includes:

topology information describing the hierarchy of production resources;
geometry and kinematics information;

network information (electrical, pneumatic, communication, ...); and
control information.

The aim of each production system is the creation of products. Therefore, the
PPR abstraction follows the Input-Processing-Output principle. Input materials are
processed in processes to lead to output products (and waste) by exploiting
resources.

5.4.2 A Classification Scheme for Engineering Ontologies

While the PPR view provides a concise description of the main concepts in the
production systems engineering domain, which could be covered by ontolo-
gies, Legat et al. (2014) propose a complementary view on typical ontology content
which was developed in a bottom-up fashion during a survey and classification of
already available automation ontologies. Concretely, Legat et al. (2014) observe
that the reuse of ontologies in the automation domain is difficult. One solution that
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they propose is that ontology reuse could be improved by modularizing ontologies
along topics that are independent of a specific use case. The module structure they
propose, provides good insight into the types of information that are relevant when
describing CPPS.

In the following, we discuss the main categories of information identified by
Legat et al. (2014) and how these relate to the PPR abstraction. By combining these
two orthogonal views we obtain a broader classification scheme of engineering
knowledge that connects the well-accepted topics from industry (PPR) with
use-case-agnostic topics typically covered by ontologies. This framework is
depicted in Table 5.1, where columns correspond to PPR concepts and rows rep-
resent to the main categories of information according to Legat et al. (2014),
namely:

e Physical objects description. This description category refers to the catego-
rization of available objects, such as equipment in a plant (e.g., sensors, actu-
ators), product parts that need to be assembled. The properties, functionalities,
and structures of these objects are covered by other ontologies. As such, this
category in Legat et al.’s classification covers both products and production

Table 5.1 Ontology classification framework combining PPR concepts (columns) and Legat
et al.’s modular ontology view (rows)

Product Production process Production resource
Physical Ont. of product | OntoCAPE, ISO 15926 Ont. of resource types,
objects types, OntoCAPE, CCO, AMLO,
OntoCAPE, ManufOnto, eClassOWL,
eClassOWL 1SO 15926, AutomOnto
Structure Ont. of product | NF Ont. of resource structures,
structure, OntoCAPE, ManufOnto,
OntoCAPE EquipOnt, CCO, AMLO, 1SO
15926, AutomOnto
Functionality | NF Ont. of production process | Ont. of production resource
types, OntoCAPE, capabilities (skills), AMLO,
ISO 15926, ManufOnto ManufOnto, EquipOnt,
1SO 15926
Process NF Ont. of production process | ManufOnto
structures, OntoCAPE,
1SO 15926, ManufOnto
Materials Ont. of bills of | NF NF
materials,
eClassOWL
Observations, | NF Ont. of process states and | Ont. of resource states, SSN,
measurements its observability, SSN, AutomOnto
OntoCAPE, ISO 15926
Quantities, Ont. of product | Ont. of production Ont. of production resource
dimensions, characteristics, processes characteristics, characteristics, ManufOnto,
units eClassOWL OntoCAPE, ISO 15926 CCO, SSN, AutomOnto

Example ontologies added in italics. NF = not feasible
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resources in PPR, meaning that ontologies that describe types of products or
types production resources can be considered, from Legat et al.’s perspective, as
ontologies describing physical objects (see Table 5.1).

e Structures description. Ontologies are also needed to describe various structural
information about how the physical objects are composed. For example, one can
describe how products need to be assembled, how production resources are
structured, or how production systems (plants) are constructed. Structure-related
information can be conveyed in different ways, according to Legat et al. (2014):
(1) interface-based composition describes the capabilities expected from an
interface and can enable reasoning tasks about the correctness of a system’s
structure; (2) containment hierarchies are a well accepted and frequently
occurring organizational paradigm in mechatronic engineering settings.

e Functionality describes the behaviour of devices (or organizational units), i.e.,
what these elements can do in terms of contributions to a production process.
Functionality descriptions are characterized by their properties, parameters and
constraints, for example in terms of materials they can be applied on. Func-
tionality descriptions are relevant both for individual production resources (e.g.,
a description of the function fulfilled by a resources, such as filling or drilling) as
well as by production processes (that is, a function achieved by a process).

e Process descriptions are closely related to production resource functionality;
they enable describing the composition of functionalities into obtaining func-
tionalities that are more complex. Examples here are workflow patterns, such as
the sequential or parallel execution of functions. Process ontologies provide
useful primitives for describing the structure of production processes, for
example, the workflow structure in which its steps are organized.

e Material descriptions contain collections of materials used within a production
process and their hierarchical organization (e.g., wood, iron). Ontologies
describing bills of materials needed for creating a product fit this category.

e Observations and measurements capture data produced during a system’s
operation, and as such differ in nature from the previously mentioned knowledge
categories. Such information is essential to capture physical changes that happen
in the physical world in which a CPPS operates. Relevant types of ontologies
would be those describing the state of production processes or production
resources.

e Physical quantities, dimensions, and units provide auxiliary information for
describing aspects of most of the knowledge categories mentioned above,
related to temporal aspects, weight, spatial dimensions (e.g., length). Such
ontologies can be used to describe the various characteristics of products,
production processes, production resources, and production systems.

From Table 5.1 it becomes evident that ontologies in engineering vary widely
and span different aspects of different engineering concepts. Beyond the identified
types of ontologies, there are several engineering-discipline-specific ontologies in
place. These ontologies usually cover only the concepts relevant within a special
application case, such as production system simulation at resource level, or, they
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may cover special engineering discipline knowledge, such as an automation glos-
sary.” In Sect. 5.5 we provide examples of engineering ontologies, and classify
them according to the classification scheme proposed in this section.

5.5 Examples of Engineering Ontologies

In this section, we provide an overview of engineering ontologies and classify them
according to the classification scheme defined in Sect. 5.4.2. We start by describing
ontologies published in literature, and conclude with two ontologies created at the
CDL-Flex Laboratory*: the AutomationML Ontology (AMLO) and the Common
Concepts ontology (CCO), in Sects. 5.5.1 and 5.5.2 respectively.

OntoCAPE’ is an ontology for supporting computer-aided process engineering
(CAPE). It was designed at the RWTH Aachen University, and it is discussed in
numerous publications in details (Morbach et al. 2009). It has a modular structure
consisting of 60 + OWL files (with the meta-model, it has more than 80 files).

OntoCAPE has a layered logical design spanning from foundational to
domain-specific layers. The lowest level is called the application-specific layer, and
it contains application-specific knowledge. The next level is the application-ori-
ented layer, which describes the plant and process control equipment. This level
also includes the view on the particular technology from the process point of view.
The third level is the conceptual layer, which provides supporting concepts for
modelling of processes, materials, and other representations and characteristics
needed for modelling of processes. The top level is called the upper layer, and
provides expressive means for representing networks, coordinate systems, and
others. OntoCAPE is defined through a meta model, which is also denoted as the
meta layer of OntoCAPE. The meta layer is represented as a stand-alone OWL
ontology, which provides foundations for meta-modelling structures and other
fundamental concepts.

In terms of the terminology introduced in Chap. 3, OnfoCAPE combines
ontology layers that include domain ontologies, generic ontologies (i.e., the con-
ceptual layer) and foundational ontologies (i.e., the meta-layer). OntoCAPE is
highly axiomatized. Because of its breadth, OntoCAPE can be classified in our
classification scheme (Sect. 5.4.2) under several types of ontologies. From the PPR
perspective, it entirely covers the production process criterion. OntoCAPE also
addresses all other criteria, but focuses mainly on physical objects and structure
levels, according to the classification by Legat et al. (2014).

3 Automation glossary: http://ai.ifak.eu/glossar2/.
4CDL-Flex Laboratory: http://cdl.ifs.tuwien.ac.at/.
50ntoCAPE is available at: https://www.avt.rwth-aachen.de/AVT/index.php?id=730.
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ISO 15926° is a complex standard dealing with industrial automation systems
and integration (ISO 15926). Although it has been originally intended for the oil
industry, its ideas and approaches are general and usable also in other domains. The
main part of the standard is Part 2, dealing with description of objects and activities
during various stages of the plant life cycle. The ontology includes diverse views on
the process plant depending on the involved engineering disciplines. The original
version of the standard (Parts 2—4) use the EXPRESS language, which was difficult
to use and has a limited tool support. Hence, the standard was enhanced with Parts
7-10, relying on the OWL language. The OWL representation of Part 2 is available
online.

The ISO 15926 defines an ontology that is generic, heavyweight and covers
mainly information about production processes. It also includes information about
production resources and their evolution, especially in terms of physical objects,
structure, functionality, and materials.

ManufOnto. Alsafi and Vyatkin (2010) developed the Manufacturing Ontology
to model modular manufacturing systems. The ontology (ManufOnto in Table 5.1)
describes the machinery and operations in a semantic way, in order to facilitate
flexibility and agility of manufacturing. The ontology is not available online for
reuse, but nevertheless provides an example of the types of ontologies designed for
manufacturing systems. The top (e.g., most generic) part discussed in (Alsafi and
Vyatkin 2010) includes 29 concepts and 39 properties. The main idea reflected in
the ontology is to separate and interrelate (i) the required operations, (ii) the
physical machinery performing the required operations, and (iii) the control of the
machinery. Based on the available description, we classify it as a lightweight,
domain ontology, which covers aspects such as: resource types, process types, and
products from the perspective of processes, functionalities, and structures.

EquipOnt. Lohse et al. (2006) describe the Equipment Ontology, EquipOnt,
designed to support Reconfigurable Assembly Systems (RAS), i.e., systems that
allow configuring and reconfiguring assembly systems based on changing
requirements of the assembled product. The authors rely on the function-
behaviour-structure paradigm in the design of the ontology, because they con-
sider these three aspects of an equipment essential for their use case (i.e., deciding
whether a piece of equipment can be reused in an assembly system). In their view,
“functions express the capabilities of a module based on the intention of their
designer”. The behaviour of an equipment defines its reaction to changes in the
environment. The physical model of the equipment represents its structure. The
authors adopt a modular ontology design, with different modules being dedicated to
covering the three aspects of function, behaviour and structure. The class Equip-
ment is a key class in the ontology, and a superclass for different types of equipment
such as Device, Unit, Cell, Workstation. The internal structure of elements is
modelled with the subComponents relation (partOf) as well as with elements to
describe connections between components. Each Equipment is also associated to a

IS015926 is available at: https://www.posccaesar.org/wiki/ISO15926inOWL.
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Function and a Behaviour object. Similar to Equipment, functions and behaviour
are also organized in specialization hierarchies.

The Equipment Ontology is not available online. Based on the available
description, we classify EquipOnt as a lightweight, domain ontology, which covers
aspects of production resource structures and capabilities.

eClassOWL" (Hepp 2006) is an OWL representation of the eClass standard,®
which is a cross-industry catalogue describing the nature and features of various
products and services. eClass spans more than 30,000 product and service types
and includes over 5,000 product or services properties. The parts of eClassOWL
related to engineering include: machines or devices (for special applications)
(17,000,000); electrical engineering, automation, process control engineering
(27,000,000); and automotive technology (28,000,000).

eClassOWL aims to provide semantic representation of the types and properties
of products and services while preserving the original semantics of eCI/@ss as much
as possible. Since the eCI@ss catalogue was designed from a purchasing manager
perspective, it does not have a proper subsumption hierarchy. This is the reason
why eClassOWL creates two classes for each eCl@ss category: a “generic” class to
represent the actual product or service, and a “faxonomic” class with a wider
semantics (meaning that something can be related to this category). The intention is
to use generic concepts for describing the actual products (e.g., a “machine”), and to
use taxonomic concepts to describe something that is not a product, but is related to
it (e.g., “machine maintenance”).

eClassOWL is tightly connected with GoodRelations ontology, developed for
the eCommerce domain and describing such product aspects as demand, prices and
delivery options. The GoodRelations metamodel is used as a schema skeleton for
eClassOWL. Therefore, eClassOWL inherits the following property types from the
GoodRelations meta-model: a) quantitative properties (for product features with a
numeric range); b) qualitative properties (for product features with predefined value
instances); and c) datatype properties (used only for a few features with the data-
types string, date, time, datetime, or Boolean). The domain of all properties in
eClassOWL is gr:ProductOrService.

Due to copyright and pricing issues, the current version of the eClassOWL
ontology represents version 5.1.4 of the standard, and therefore lags behind sig-
nificantly from the latest version of eCI/@ss which is 9.0. Nevertheless, the process
of extracting an OWL ontology from eCl@ss is well documented and available
(Hepp 20006). Therefore, it can be potentially reused for extracting the ontology
from newer versions of the standard. eClassOWL is a large, lightweight, domain
ontology which covers various aspects of product types and characteristics.

The Semantic Sensor Network (SSN) ontology’ was developed by W3C’s
Semantic Sensor Networks Incubator Group (SSN-XG) (Compton et al. 2012).

7eC1@ssOWL: http://www.ebusiness-unibw.org/ontologies/eclass/5.1.4/eclass_514en.zip.
8¢Cl@ss standard: http://www.eclass.de/eclasscontent/standard/overview.html.en.
°SSN Ontology: www.w3.0rg/2005/Incubator/ssn/ssnx/ssn.owl.
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The main motivation for this group was to develop an ontology, which captures
(a) the event based nature of sensors and sensor networks, for the cases in which the
temporal and spatial relationships need to be taken into account; and (b) complex
physical constraints (e.g., limited power availability, limited memory, variable data
quality, and loose connectivity) that need to be considered for effective reasoning
and inference.

The SSN ontology describes sensors, their observations, and related concepts in
a general way. This means that no domain-specific information is given: domain
semantics, specific units of measurement, etc., can be included, if necessary, via
OWL imports, while instantiating the SSN ontology for a particular domain.
The SSN ontology focuses on the description of the physical and processing
structure of sensors. “Sensors” are not limited simply to physical sensing devices.
Rather a sensor is anything that can estimate or calculate the value of some phe-
nomenon. Thus, a device or computational process, or combination of those can be
considered as a sensor. A “sensor” in the ontology links together what it measures
(the domain phenomena), the physical sensor (the device) and its functions and
processing (the models). Therefore, depending on the application at hand, the SSN
ontology allows focusing on different perspectives: (a) a sensor perspective (what
senses, how it senses, and what is sensed); (b) a data or observation perspective;
(c) a system perspective; and (d) a feature and property perspective.

The SSN ontology is a generic, heavyweight ontology. It has a careful onto-
logical design. For example, it is aligned with the DOLCE Ultra Lite upper
ontology to facilitate its usage with other ontologies or linked data resources
developed elsewhere. It is also based on the Stimulus-Sensor-Observation Ontology
Design Pattern'® introduced by (Janowicz and Compton 2010). The SSN ontology
is best suited to describe process states and their observability, as well as resource
states.

The Automation Ontology captures knowledge about industrial plants and their
automation systems to support engineering of simulation models (AutomOnto in
Table 5.1). It has been presented in (Novak et al. 2015). The automation ontology
has a mechatronic nature and provides support for simulation model design and
integration.

The automation ontology covers four domains and their mappings: a real plant
domain, a variable domain, a parameter domain, and a simulation domain. The real
plant domain represents the topology of a real system, i.e., it includes physical
devices and their connections. Each real device can have assigned one or more
parameters and can have input and output variables. Both parameters and variables
are formalized in their respective domains. Parameters are considered as physical
properties representing device features, such as size or length and other charac-
teristics. They are constant values (i.e., independent on time). On the contrary,
variables annotate process variables, inputs, and outputs. A tag can be assigned to

"The  Stimulus-Sensor-Observation ODP: http://www.w3.0rg/2005/Incubator/ssn/XGR-ssn-
20110628/#The_Stimulus-Sensor-Observation_Ontology_Design_Pattern.
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each variable, which is a unique name for the variable shared among automation
system tools and algorithms. Values of variables/tags are considered as time-series
of physical quantities that are either measured by sensors in the real plant or
exported by software parts of automation systems. Finally, the simulation domain is
focused on supporting the engineering process of simulation models, which
approximate the behavior of the real plant. This is the reason why the simulation
domain and the real plant domain are mapped, which is useful for redesigning and
reusing simulation artifacts. The simulation artifacts annotated with the automation
ontology are simulation modules, which are parts of specific simulation models, or
simulation blocks, which are the smallest artifacts supported in this formalization.
In addition, the ontology includes expressiveness for representing how all these
entities are hierarchically organized and how they correspond to each other. The
simulation domain is mapped to parameters and variables/tags as well to support
efficient interface description and configuration. Further details about this ontology
from an application perspective can be found in Chap. 10.

5.5.1 The AutomationML Ontology

AutomationML (AML) is an open, XML-based data exchange format developed to
support exchange of engineering data within the engineering process in production
systems (Drath 2010). AML includes information about system topology, geome-
try, kinematics, and control behaviour. For more details about AML one can check
the specification (IEC 62714). The AML representation is based on the four main
concepts of CAEX (Computer Aided Engineering Exchange), a data format for
storing hierarchical object information, such as the hierarchical architecture of a
plant (IEC 62424 2008):

o The RoleClassLibrary allows specifying the vendor-independent requirements
(i.e., the required properties) for production-system-equipment objects. A role
class describes a physical or logical object as an abstraction of a concrete
technical realization (e.g., a robot or a motor). In this way, a role class specifies
the semantics of an object enabling automatic interpretation by a tool. Addi-
tionally, a role class allows defining attributes that are common for an object.

o The SystemUnitClassLibrary allows specifying the capabilities of solution
equipment objects that can be matched with the requirements of objects defined
with the role classes. A system unit class describes a physical or logical object
including the concrete technical realization and internal architecture. For
example, a System Unit Class KR1000 that matches with the role class robot
may describe attributes of the KUKA KR 1000, which has a payload of
1,000 kg. Thereby system unit classes form a multi-level hierarchy of
vendor-specific objects that can be instantiated within the InstanceHierachy.

e The InterfaceClassLibrary defines a complete set of interfaces required to
describe a plant model. An interface class can be used to define two types of
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relations. First, it can define relations between the objects of a plant topology
(these include all kind of relations, e.g., of mechanical nature or signals and
variables related to the PLC code). Second, an interface class can serve as a
reference to information stored outside the CAEX file (e.g., a 3D description for
a robot).

e The InstanceHierarchy contains the plant topology, comprising the definition of
a specific equipment for an actual project—the instance data. Therefore, all
project participants can refer to the instance hierarchy to define the context for
their work tasks and results. The instance hierarchy contains all data including
attributes, interfaces, role classes, relations, and references.

e Although facilitating data exchange is already an important improvement, there
is still a lack of infrastructure for supporting advanced engineering activities
across the disciplines and tools in AutomationML-based projects, e.g., for data
linking, change propagation across connected datasets, data analysis and con-
sistency checking. In order to address this need, we developed an Automa-
tionML ontology. We provide a solution for moving from AutomationML XML
files to an OWL representation, as a prerequisite for developing an
ontology-based integration and cross-disciplinary analytics on the top of data
represented in this format.

Ontology creation process. As a starting point for the ontology creation, we
took the available XML Schema Definitions (XSDs) providing the AutomationML
language definitions in machine-readable and structured form. The actual
ontology-building process is divided into two main steps. In the first step, we
performed an automatic transformation from XML Schema to OWL using Apache
Jena'' to obtain an initial ontology draft. Here our goal was to provide an ontology
draft, that is equivalent to the available XSDs, and that will allow to build efficient
tool support. In the second step, we enhanced the draft ontology with additional
axioms that would reflect the domain knowledge, but which was not available in the
XSD. We also optimized the draft ontology obtained in the first step to reflect more
accurately the AutomationML specification, and to use more efficiently the
graph-based nature of ontologies. In particular, we replaced the string values of
some properties (storing the path expressions to AutomationML structural ele-
ments) with relations, which actually refer to those elements.

Using the automatic conversion of the XML schema document into OWL
allowed us to rapidly bootstrap the ontology. The final ontology directly matches
the original XSD structure, which makes the data transformation from the original
AML format to OWL straight-forward. Figure 5.1 presents the core concepts of the
AutomationML ontology'? derived from the AutomationML XSD schema. The
AutomationML ontology depicts the inheritance taxonomy of the main concepts as
well as selected containment (part-of) relationships.

llApache Jena: https://jena.apache.org.
12 AutomationML Ontology: http://data.ifs.tuwien.ac.at/aml/ontology#.
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Fig. 5.1 AutomationML ontology: core concepts and their relations

The ontology concepts describe various aspects of production plant design.
RoleClass represents production plant elements by describing vendor-agnostic
functionality of the plant components, e.g., a robot or a motor. SystemUnitClass is
used for storing vendor-specific plant elements, i.e., physical plant “building
blocks” that can be ordered from a vendor and used for plant implementation. The
instantiation of system units takes place in the InstanceHierarchy. InstanceHier-
archy stores current plant system, putting the defined InternalElements in a hier-
archical structure. InternalElement describes a specific element of the actual
designed plant, including attributes, interfaces, relations, and references. Inter-
faceClass encodes the syntactical and semantic specification of user specific
interfaces. Detailed description of the engineering elements can be given by
defining various Afttributes, e.g., material, weight, maximum power consumption.
Attributes can be assigned to interfaces, roles, system units and internal elements.
The AutomationML ontology also contains other auxiliary concepts (not shown in
Fig. 5.1) covering additional information about the tool that was used to create a
specific AutomationML file (such as the name of the exporting software tool, its
vendor, version and release information), or a project identifier and title.

The AutomationML ontology supports the full representation of the content of
any AutomationML file. As a result, Semantic Web tools and technologies may be
applied on AutomationML data as well. For example, a semantic representation of
AutomationML files is a pre-requisite for providing methods that semantically
integrate those files, and allow advanced analytics on the integrated datasets. An
example of such a tool is the AutomationML Analyzer (Sabou et al. 2016).

In summary, the AutomationML ontology is a lightweight domain ontology,
capturing the structural elements of the AutomationML standard. The ontology
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covers, therefore, elements of production plant design, such as vendor-specific
information about the devices used as building blocks for the plant; vendor-agnostic
functions of the plant components; containment relations between the plant ele-
ments; and interfaces between the elements and references to other files or engi-
neering objects.

5.5.2 Common Concepts Ontology

The Common Concepts Ontology (CCO)" aims to capture the most essential
concepts necessary to ensure communication between stakeholders involved in the
engineering of complex mechatronic systems. This ontology captures high-level
concepts in the mechatronic domain, and it can be used to bridge the conceptual gap
among engineers from different engineering domains and, between engineers and
project managers. As such, the CCO ontology provides a useful approach to foster
communication across the diverse stakeholder groups by capturing their shared
understanding of the engineering domain.

Besides its value in supporting human communication, the CCO is an infor-
mation model that acts as a key element of the Engineering Knowledge Base
(EKB) described in Chap. 4. Namely, it is used as a global ontology to which
concepts from local ontologies are mapped in settings where project-level data
integration and access is needed. In such settings, IEAs built to explore the inte-
grated data should answer a variety of competency questions, such as: questions
about the project and various engineering roles; questions about engineering objects
created by different engineering disciplines and their interconnection. Therefore, the
focus of the ontology is primarily on describing the product of the engineering
process, without considering in detail information about engineering processes and
resources.

The methodology for engineering the CCO followed the guidelines of Noy and
McGuinness (2001), where the knowledge elicitation step involved workshops with
various domain experts. CCO was built in the CDL-Flex Laboratory and it was
re-used and improved in several engineering projects for building diverse mecha-
tronic objects (e.g., steel mills, hydro power plants). CCO represents a set of
concepts that can be reused in other engineering projects of similar nature, espe-
cially focusing on the creation of production plants. This ontology might have
limited use for different engineering projects than the ones that inspired its
derivation. Naturally, projects that reuse this ontology might need to adapt it to
meet their own needs and characteristics.

The CCO consists of two major parts. First, as depicted on the left hand side of
Fig. 5.2, the ontology contains concepts that describe organizational level aspects.
These concepts include the Project, the Customer for whom the project is

13CCO Ontology: http://data.ifs.tuwien.ac.at/engineering/cco.
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Fig. 5.2 The common concepts ontology

performed, as well as the Engineers (and Engineering Roles) necessary to realise
the project. Engineers conduct Engineering Activities, which take as input and
create as their output various Engineering Documents (e.g., signal lists, design
documents). Engineering documents are versioned and reviewed by the customer,
thus constituting an important exchange medium between the customer, who
requested a project, and the engineering team executing that project.

Second, the CCO describes various Engineering Objects created during the
engineering project (right-hand side of Fig. 5.2). The ontology identifies different
types of engineering objects, such as Software Objects, Mechatronic Objects, and
Electrical Objects. Each engineering project leads to the creation of a Plant, which
is a type of Mechatronic Object. The ontology also clarifies the various parts of a
mechatronic object, their internal structure and connections among them. To that
end, the ontology captures different types of Mechatronic, Electrical and Software
objects, and details their internal structure at a high level of abstraction. Physical
Signals and Logical Signals represent the links between engineering objects created
by different engineering disciplines and how these diverse components can com-
mand or exchange data with each other. In addition to these signals, detailed
descriptions of the various mechatronic components are also available as engi-
neering documents (e.g., PLC programs for software objects, or ECAD diagrams
for the electrical wiring).

The internal structure of the components captured by the ontology emerged
during several projects, and can also be represented using other approaches, such as
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the AutomationML instance hierarchy or domain-specific structuring standards. For
example, in the domain of power plants, the Kraftwerk-Kennzeichensystem (KKS)'
system is used to describe the structure of mechatronic components using a
four-level structuring scheme: level O denotes the plant, level 1 denotes the function
key (e.g., system), level 2 describes an equipment unit key (e.g., Pumpunit), and
level 3 corresponds to a concrete component (e.g., a drive).

CCO is a lightweight domain ontology, which can be used to describe types and
structures of various engineering objects, either at the level of the production
system or at the level of production resources.

5.6 Ontology Design Patterns for Engineering

In this section, we discuss more detailed aspects of modelling engineering
knowledge. In particular, we identify a non-exhaustive collection of typical mod-
elling needs in engineering, and then exemplify how selected modelling needs can
be addressed by various modelling solutions, such as, for example, Ontology
Design Patterns (ODPs).

To identify representative needs for modelling engineering knowledge in
mechatronic systems, we consider elements of systems engineering (Stevens et al.
1998), which have been adopted as the basis of mechatronic development process
(VDI 2004). More concretely, we consider the elements of the SysML language
(OMG 2006), which is a wide-spread modelling language for describing systems.
As also discussed in Chap. 12, SysML distinguishes between a component’s def-
inition and its usage. A system’s definition consists of the declaration of parts and
their connections as well as the declaration of constraints on parts; e.g., each car
has exactly 1 engine. Usage related aspects refer to the role that a component plays
as part of another component. Accordingly, important modelling scenarios in
system’s engineering include:

e Modelling Part-whole relations. Legat et al. (2014) observe that containment
hierarchies are a well-accepted and frequently occurring organizational para-
digm from modelling part-whole relations in mechatronic engineering settings.

e Modelling connections between components. Legat et al. (2014) observe that
interface-based composition describes the capabilities expected from an inter-
face and can enable reasoning tasks about the correctness of a system’s
structure.

o Modelling component roles. Component roles refer to their functions and
behaviour that they play in the system.

In what follows, we discuss modelling approaches for part-whole relations and
connections between components.

KKS System: https:/de.wikipedia.org/wiki/Kraftwerk-Kennzeichensystem.
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Modelling Part-Whole Relations. Expressing part-whole relations is an
important aspect in several domains, most prominently in engineering and life
sciences. Typical use cases involve the creation of inventory applications that,
given an engineering object, could report all its parts and the subparts of those; or
applications where the composition of an engineering object is explored one level at
a time (i.e., only the direct components of the object are shown at any time).

Mereology (or mereotopology) refers to the study of part-whole relations and has
been extensively investigated (Artale et al. 1996; Odell 1994; Winston et al. 1987).
However, ontology modelling languages, such as RDF(S) and OWL, do not pro-
vide built-in primitives for modelling part-whole relations as they do, for example,
for modelling subsumption hierarchies (e.g., rdfs:subClassOf). There are,
however, several approaches to model different types of part-whole relations. We
hereby provide an overview of some modelling options.

In Chap. 12, the authors report on the Components ontology (depicted in Fig.
12.2), which was designed for capturing part-whole relations in a use case from the
car manufacturing industry. The ontology describes Components in general and
distinguishes between Composite Components and Atomic Components.
A non-transitive hasPart relation is introduced to represent direct subparts of a
component. This modelling caters for use cases, where it is sufficient to retrieve the
direct parts of a given component. Inventory-type applications, which should
recursively return all the parts of subparts, require the use of a transitive relation
hasSubpart. As discussed in Chap. 3, a transitive property satisfying equation
Eq. 5.1 supports the computation of the transitive closure of all parts.

hasSubPart(A, B) A hasSubPart(B, C)EhasSubPart(A, C) (5.1)

The Component ontology also declares an inverse relation for hasPart, namely
isPartOf. Note that inverse relations can significantly slow description logic
reasoners, and therefore they should be used with care (Rector and Welty 2005).

The ontology engineering community has identified generic modelling approa-
ches for common modelling problems, such as part-whole relations. The ontolo-
gydesignpatterns.org is a community-curated portal,'> which contains Ontology
Design Patterns (ODP) for meronomy and other common situations. This portal
recommends three ODPs for modelling part-whole relations:

e The PartOf ODP'® allows modelling of part-whole relations in a transitive
fashion. To that end, it introduces the hasPart transitive relation between two
Entities, as well as its inverse, 1sPartOf (also transitive).

e The Componency ODP'’ is a specialization of the PartOf ODP, and offers a
solution for modelling part-whole relations in such a way that a distinction can
be made between direct and non-direct (i.e., transitively-assessed) parts of an

SODP community portal: http://ontologydesignpatterns.org/.
1%partOf ODP: http://ontologydesignpatterns.org/wiki/Submissions:PartOf.
""Componency ODP: http://ontologydesignpatterns.org/wiki/Submissions:Componency.
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Object. The difference from the PartOf ODP is the introduction of the
non-transitive hasComponent relation as a subproperty of hasPart. Note
that sub-properties do not inherit the constraints of their super-properties, and
therefore hasComponent is non-transitive. Furthermore, i sComponentOf
is declared as the inverse of isPartOf. Similar to the modelling described in
Chap. 12, this ODP caters for deducing both direct and indirect parts of an
object. Since isComponentOf is a sub-Property of part of, it is sufficient to
assert it between relevant Object instances, as the part of relation will be
automatically deduced (by virtue of the semantics of subPropertyOf con-
struct). Interested readers can further investigate an example of how this pattern
is used to model components of a car.'® This pattern corresponds to the basic
modelling pattern'® recommended by Rector and Welty (2005).

e The TimelndexedPartOf ODP* caters for situations, which require modelling of
a situation in which an object is part of another for a specified time interval. The
pattern relies on n-ary relationships to establish time-based part-whole relations
between a part, a whole, and a time interval.

Besides the patterns described above, other modelling approaches have also been
put forward, but their discussion exceeds the scope of this chapter. For example,
Rector and Welty (2005) provide five different modelling patterns, while the
modelling of ISO 15926 uses property chains for modelling part-whole relations.?’

While several modelling solutions are proposed, it is also important to avoid
confusing part-whole relations with other relations. Rector and Welty (2005)
mention typical confusions with relations such as containment, membership, con-
nections, constituents and subClassOf. For example, constituency refers to a
relation without a clear part of relationship (e.g., different types of wood con-
stitute a table) and special ODPs are offered for modelling constituency.**

Modelling Connections. As discussed in Chap. 12, the behaviour of a system is
determined by interactions between its parts, and such interactions are abstracted to
connections representing flows of energy, matter, or signals between components.
Therefore, an important aspect in defining a system is declaring connections among
its components. Chapter 12 presents an approach for modelling connections as part
of the Connection ontology depicted in Fig. 12.3. This ontology provides a pattern
for modelling connections at a high-level of abstraction for any entity that can have
connections (which is conceptualized as TopologicalIndividual). For
example, systems and individual system components can be considered as types of
TopologicalIndividuals, when applying this pattern to describe connec-
tions between them. A Connection is established between two Topologi-
calIndividuals. The concept Connection represents an n-ary relationship

18Example use of componency ODP: http://mowl-power.cs.man.ac.uk/2011/07/sssw/lp.html.
Yhttps://www.w3.0rg/2001/sw/BestPractices/OEP/SimplePartWhole/part.owl.
2TimeIndexedPartOf: http://ontologydesignpatterns.org/wiki/Submissions: TimeIndexedPartOf.
2!part-whole modelling in ISO15926: https://www.posccaesar.org/wiki/[SO15926inOWLPart2.
Z2Constituency ODP: http://ontologydesignpatterns.org/wiki/Submissions:Constituency.
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between two components: it points to the two components that are involved in the
connection, it specifies the direction of the connection and also specifies the
component level Connectors that are involved (i.e., a connector corresponds to

the notion of a port in UML or SysML).
While in this section the main focus was on how to correctly model engineering

knowledge in ontologies, an important next step is the population of engineering
ontologies with concrete instances (c.f. guideline Step 7 of Noy and McGuinness
2001). This process requires extracting data from engineering artefacts and con-
verting it into Semantic Web formats, i.e., RDF(S) and OWL. Section 5.7 describes
how semantic data may be acquired from engineering artefacts stored in legacy data
formats such as spreadsheets, XML files and databases.

5.7 Acquisition of Semantic Knowledge from Engineering
Artefacts

Section 5.2 describes in detail different strategies for ontology engineering. In short,
two main phases can be distinguished in the ontology development process:
(1) constructing the ontology skeleton (i.e., classes and properties) that can be
achieved either manually or by using ontology learning techniques (Maedche
2012); and (2) creating ontology instances, a process known as ontology population
(Petasis et al. 2011).

Ontology learning and population for engineering applications often require
extracting data from legacy systems and existing proprietary data. Considering the
scale of data in such systems, the (automated) tool-support for these processes is of
vital importance, as performing them manually is time-consuming and error-prone.
Engineering data comes in many formats, most commonly as (semi-) structured
data, i.e., spreadsheets, XML, and databases (Villazén-Terrazas et al. 2010).

Spreadsheets as data representation format are often used to share, store, and
exchange data in engineering environments despite of a set of important drawbacks,
such as: the implicit data schema hampers automatic and effective processing;
high-level of freedom and, therefore, high variability in data representation, which
often does not adhere to best practices of data representation. These weaknesses are
balanced by the positive characteristics of spreadsheets. Indeed, from a user point of
view, spreadsheets are easy to understand, they do not require sophisticated skills to
create and work with; and have adequate representational power and expressiveness
for many common tasks.

XML facilitates the encoding of documents readable for both humans and
machines. XML stores data in plain text, wrapping the information in tags. XML
supports nested elements, which allows easy capturing of hierarchical structures
omnipresent in engineering. The fact that XML does not restrict the use to pre-
defined tags has both advantages and disadvantages. On the positive side, it leads to
high flexibility in defining XML document structures according to the user or
corporate preferences. However, XML (and its extensions) can become overly
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verbose and complex. An additional drawback is that XML does not define the
semantics of data, but rather its structure, leaving space for ambiguity in data
interpretation (Bray et al. 2008).

A large amount of engineering data (similar to other domains) is stored in
relational databases (RDBs) thanks to their maturity of technology and tools,
enabling support for scalability, optimized query execution, efficient storage and
security (Sahoo et al. 2009). RDBs represent data in structured ways and, if
modeled according with the best practices potentially incorporate significant share
of domain knowledge, especially in a large company, where RDBs are typically
maintained over a long period. This makes RDBs a valuable source for data
extraction as not only the stored data, but also the schemas, defined queries and
procedures can be used (with the support of domain experts) for ontology learning
and population (Spanos et al. 2012).

Besides the three main data formats described above, a variety of other com-
pany- or discipline-specific proprietary formats are used in multi-disciplinary
engineering settings. In this section we will focus on acquiring semantic knowledge
from spreadsheets, XML-based documents, and databases.

The Semantic Web community and tool vendors have developed numerous tools
and mapping techniques to enable (semi-)automated data transformation from
legacy data sources into Semantic Web formats. For instance, the following tools
can be used for extracting data from spreadsheets and converting that data into
Semantic Web formats: Open Refine (former Google Refine),”> Anzo for Excel**
from Cambridge Semantics, RDF123 (Han et al. 2006), XLWrap (Langegger and
WoB 2009), MappingMaster plug-in for Protégé (O’Connor et al. 2010) and the
Cellfie plugin,® and to some extent Populous (Jupp et al. 2012). For converting
from XML files one can use Protégé’s XMLTab,”® Rhizomik ReDeFer’’ or the
xSPARQL language (Bischof et al. 2012). Data transformation from an RDB into
OWL and RDF formats is supported by e.g., Relational. OWL (De Laborda and
Conrad 2005), the DataMaster plug-in for Protégé (Nyulas et al. 2007), and D2RQ
(Bizer and Cyganiak 2006). Also, much work on this topic is covered within the
W3C RDB2RDF Working Group®® which focuses on the development of
R2RML,** a language to define customized mappings from relational databases to
RDF datasets. Some tools support generating semantic data from various types of
data sources, e.g., the RML language (Dimou et al. 2014) allows specifying

23Open Refine: http://openrefine.org.

24Anzo for Excel: http://www.cambridgesemantics.com/solutions/spreadsheet-integration.
BCellfie: https://github.com/protegeproject/cellfie-plugin/wiki.

26protégé XML Tab: http://protegewiki.stanford.edu/wiki/XML_Tab.

2’Rhizomik ReDeFer: http://thizomik.net/html/redefer/.

2W3C’s RDB2RDF Working Group: https://www.w3.0rg/2001/sw/rdb2rdf/.

2R2RML: https://www.w3.org/TR/r2rml/.
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mappings from CSV and XML to RDF, and TopBraid Composer3 % from
TopQuadrant can manage spreadsheets, XML and databases.

Another approach to manage the legacy engineering data is ontology-based data
access (OBDA). According to OBDA, an ontology is used as a mediator to access
local data sources. Here data remains stored in the original databases and the
ontology defines a global schema that provides a common vocabulary for query
formulation, thus separating user from the details of the actual structure of the local
data sources. The OBDA-based system rewrites user queries (formulated in terms
of global schema) into queries built in terms of local data sources, and then dele-
gates the query execution to data sources (Rodriguez-Muro et al. 2008; Civili et al.
2013). This approach is especially intended for applications that rely on large
amounts of data. An example of tool supporting the ODBA is Ontop
(Rodriguez-Muro et al. 2013).

As the available tools for data extraction and transformation from legacy data
formats vary in many aspects (e.g., input and output formats supported, license and
price, or a required level of user expertise) it can be difficult to select the best fitting
tool for a specific usage context. Therefore, practitioners need to be supported to
select the most suitable tool for their context.

To address the need for supporting practitioners in choosing the most appro-
priate data transformation tool for their context, Kovalenko et al. (2013) developed
a tool selection framework as a means to facilitate choosing appropriate tools for
ontology population from spreadsheet data. The framework has been applied to a
set of transformation tools from spreadsheets. The developed framework considers
nine criteria: general information (maturity, license and type of tool-plug-in or
stand-alone tool); usability (availability of GUI and required user knowledge to start
working with a tool); supported input/output formats; mapping definition aspects
(i.e., how mappings are represented internally and to the user; and how they are
stored); expressiveness (what complexity of data can be managed with a tool);
multi-user support; required additional software (e.g., for plug-ins); and additional
features (any other functionality that is provided by a tool). The proposed frame-
work is used to classify the existing tools, thus, providing a focused summary on
selection-critical aspects of tools for non-Semantic Web experts. Depending on a
project and available project resources (e.g., budget or availability of knowledge
engineer), various weights will be assigned for different criteria. The selection
framework is adaptable based on specific engineering project requirements and
needs. Similar tool selections frameworks should be developed to facilitate the
selection of ontology learning and population tools from XML documents and
relational databases for engineering practitioners.

30TopBraid Composer: http://www.topquadrant.com/tools/modeling-topbraid-composer-standard-
edition/.
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5.8 Summary and Future Work

This chapter aimed to provide introductory material on major issues related to the
semantic modelling and acquisition of engineering knowledge that potential
adopters of SWTs should consider. Concretely, the chapter introduced and dis-
cussed the following key topics:

e Ontology engineering methodologies prescribe concrete steps for creating and
maintaining ontologies (Sect. 5.2). A wealth of methodologies exists focusing
on different settings and contexts, starting from generic ontology creation
guidelines suitable for beginners (the guidelines of Noy and McGuinness), to
methodologies that cover a broader view of ontology engineering including their
use in applications and organizations (On-to-Knowledge, METHONTOLOGY),
scenario-based methodologies (NeOn Methodology) as well as methodologies
suitable in collaborative ontology engineering settings (DILLIGENT).

e Ontology evaluation is an important issue that needs to be considered when
building, reusing or modularizing ontologies (Sect. 5.3). There is an abundance
of techniques and metrics to perform ontology evaluation, but their choice
depends on the goal of the evaluation, which, most often focuses on one of the
following issues: domain coverage, quality of modelling, suitability for an
application or task and adoption by the community.

o Classification of engineering ontologies is currently an open research topic, with
the exception of an initial classification scheme, which was derived based on a
review of the content of existing ontologies by Legat et al. (2014). In Sect. 5.4,
we report on aligning this classification scheme with the PPR view in order to
create a classification scheme that is meaningful to ontology experts and
industry practitioners alike.

o Examples of engineering ontologies in Sect. 5.5 give an insight into the variety
of the existing ontologies and demonstrate the usefulness of the previously
proposed scheme for ontology classification.

e Ontology modelling with ontology patterns described in Sect. 5.6, approaches
the issue of semantic modelling in more depth. It provides examples of recur-
ring, engineering-specific modelling needs, and shows how these can be
addressed, for example, by modelling best practices, such as ontology design
patterns.

e Ontology learning and population from legacy data formats are important tasks
as they facilitate the transition from legacy information systems to Semantic
Web-based solutions. As discussed in Sect. 5.7, engineering data is most often
stored in databases, XML files or spreadsheets. Several tools are available for
transforming data from these formats into ontologies and ontology instances.
A major issue for practitioners is the selection of the most appropriate tool for
their context. This issue is alleviated through tool selection frameworks, such as
the one developed for evaluating and selecting tools for translating spreadsheet
data.
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The following topics emerged as interesting for future investigations. There is a
clear need for supporting both industry adopters and Semantic Web experts with
tools for identifying existing ontologies. A prerequisite is the availability of
ontology classification schemes, which can be easily understood by both stake-
holder groups, as well as the availability of surveys that would provide a com-
prehensive view of engineering ontologies. We expect that ontology reuse would be
highly facilitated, if these elements were in place. For supporting the actual mod-
elling of ontologies ODPs are useful. However, these are currently presented in a
domain-agnostic manner, which hampers their adoption. Future work could
therefore also investigate how to bring ODPs closer to creators of engineering
ontologies. This step could involve, for example, a catalogue of frequently
emerging modelling needs and guidelines of solving these with ODPs adapted to
the engineering domain. Finally, practitioners would highly benefit from the
availability of tool selection frameworks that support them in evaluating and
selecting the most suitable tools for their context of data transformation from legacy
data sources.
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