
Chapter 14
Applications of Semantic Web Technologies
for the Engineering of Automated
Production Systems—Three Use Cases

Stefan Feldmann, Konstantin Kernschmidt and Birgit Vogel-Heuser

Abstract The increasing necessity to adapt automated production systems rapidly

to changing requirements requires a better support for planning, developing and oper-

ating automated production systems. One means to improve the engineering of these

complex systems is the use of models, thereby abstracting the view on the sys-

tem and providing a common base to improve understanding and communication

between engineers. However, in order for any engineering project to be successful,

it is essential to keep the created engineering models consistent. We envision the use

of Semantic Web Technologies for such consistency checks in the domain of Model-

Based Engineering. In this chapter, we show how Semantic Web Technologies can

support consistency checking for the engineering process in the automated produc-

tion systems domain through three distinct use cases: In a first use case, we illustrate

the combination of a Systems Modeling Language-based notation with Web Ontol-

ogy Language (OWL) to ensure compatibility between mechatronic modules after

a module change. A second use case demonstrates the application of OWL with

the SPARQL Query Language to ensure consistency during model-based require-

ments and test case design for automated production systems. In a third use case,

it is shown how the combination of the Resource Description Framework (RDF)

and the SPARQL Query Language can be used to identify inconsistencies between

interdisciplinary engineering models of automated production systems. We conclude

with opportunities of applying Semantic Web Technologies to support the engineer-

ing of automated production systems and derive the research questions that need to

be answered in future work.

Keywords Automated production systems ⋅ Semantic Web Technologies ⋅Model-

Based Engineering ⋅ Knowledge-based systems ⋅ Inconsistency management

S. Feldmann (✉) ⋅ K. Kernschmidt ⋅ B. Vogel-Heuser

Institute of Automation and Information Systems, Technische Universität München,

Boltzmannstraße 15, 85748 Garching near Munich, Germany

e-mail: feldmann@ais.mw.tum.de

K. Kernschmidt

e-mail: kernschmidt@ais.mw.tum.de

B. Vogel-Heuser

e-mail: vogel-heuser@ais.mw.tum.de

© Springer International Publishing Switzerland 2016

S. Biffl and M. Sabou (eds.), Semantic Web Technologies for Intelligent
Engineering Applications, DOI 10.1007/978-3-319-41490-4_14

353

354 S. Feldmann et al.

14.1 Introduction

Rapidly evolving system and product requirements impose an increasing need regard-

ing the efficiency and effectivity in engineering of automated production systems.

Whereas such systems were mainly dominated through mechanical and electri-

cal/electronic parts within the last decades, the significance of software is and will be

increasing (Strasser et al. 2009). As a consequence, automated production systems

need to fulfill ever increasing functionality and, thus, are becoming more and more

complex. It is obvious that the engineering of automated production systems must

follow this trend: methods and tools to better support engineers in developing and

operating automated production systems need to be developed and further improved.

One means to improve the engineering of automated production systems is the use

of Model-Based Engineering, thereby abstracting the view on the interdisciplinary

system and providing a common base to improve understanding and communica-

tion. However, the multitude of disciplines and persons involved in the engineering

process of automated production systems requires the use of a variety of different

modeling languages, formalisms, and levels of abstraction and, hence, a number of

disparate, but mostly overlapping models is created during engineering. Therefore,

there is a need for tool support for, e.g., finding model elements within the models

and keeping the engineering models consistent among each other.

In order to overcome this challenge, this Chapter illustrates how applying Seman-

tic Web Technologies can support Model-Based Engineering activities in the auto-

mated production systems domain. Based on an application example (Sect. 14.2), the

challenges that arise during engineering of automated production systems are pre-

sented in Sect. 14.3, followed by a short introduction of related works in the field of

inconsistency management in Sect. 14.4. Subsequently, the technologies being used

throughout this Chapter, namely, Resource Description Framework (RDF), Web

Ontology Language (OWL), and SPARQL Query Language, are briefly introduced

in Sect. 14.5. Three distinct use cases that illustrate how Semantic Web Technologies

can support the engineering are introduced in Sect. 14.6:

∙ Use case 1 (Sect. 14.6.1) describes the combination of a Systems Modeling Lan-

guage (SysML)-based notation with OWL to ensure compatibility between mecha-

tronic modules after a change of modules.

∙ Use case 2 (Sect. 14.6.2) demonstrates how consistency can be ensured dur-

ing model-based requirements and test case design by means of OWL and the

SPARQL Query Language.

∙ In use case 3 (Sect. 14.6.3) we show how the combination of RDF and the

SPARQL Query Language can be used to identify inconsistencies between inter-

disciplinary engineering models of automated production systems.

The paper closes with a summary of the opportunities that can be gained for engi-

neering of automated production systems by means of Semantic Web Technologies

and with directions for future research.

14 Applications of Semantic Web Technologies for the Engineering ... 355

14.2 Application Example: The Pick and Place Unit

In the following, as a basis to illustrate our research results, we introduce an appli-

cation example, namely, the Pick and Place Unit (PPU). The PPU is a bench-scale

academic demonstration case derived from industrial use cases to evaluate research

approaches and results at different stages of the life cycle in the automated manu-

facturing systems domain. Although the PPU is a simple demonstration case, it is

complex enough to demonstrate an excerpt of the challenges that arise during engi-

neering and operation of automated production system. To provide an evaluation

environment as close to reality as possible, the PPU solely consists of industrial

components. Furthermore, all scenarios and models that have been developed for

the PPU were derived from real industrial use cases (Vogel-Heuser et al. 2014).

We assume that, in its initial configuration (Fig. 14.1), the PPU consists of four

modules: a stack, a crane, a stamp, and a ramp module. The source of work pieces is

represented through the stack module. Work pieces are pushed from the stack into a

handover position, at which sensors are installed to identify the type of work pieces

provided by the stack. Subsequently, depending on the type of work piece—either

plastic or metallic—work pieces are transported to the stamp or ramp modules. In

the stamp module, work pieces are detected at the handover position, subsequently

positioned and clamped below a bistable cylinder, and finally stamped by applying

pressure to the work piece. The final work piece depot is represented through the

ramp module.

The transport between the different modules is realized by the crane module.

Therein, a vacuum gripper, which is mounted on a boom, grips, or releases work

Stack
(0°)

Stamp
(180°)

Ramp
(90°)

Crane

stm [State Machine] PPU Manufacturing Process [PPUManufacturingProcessDiagram]

StartWaiting for
start

Providing
work piece

Transporting
work piece
to stamp

Transporting
work piece

to ramp

Storing work
piece

Stamping
work piece

[Work piece
available]

[type == “metal”]

[else] [Work piece
at stamp][Work piece

at ramp]
[Work piece

stamped]

Fig. 14.1 Overview on the Pick and Place Unit (PPU) and its manufacturing process, extended

from Feldmann et al. (2015a)

356 S. Feldmann et al.

pieces. Using a bistable cylinder, the boom and, hence, the work pieces held by the

vacuum gripper are lifted or lowered. The entire assembly is mounted on a turning

table. A DC motor attached to the turning table allows for moving the crane to the

respective modules. In order to detect the current angular position of the crane, three

micro switches are attached to the bottom of the turning table: one at 0° (stack), one

at 90° (ramp), and one at 180° (stamp). Figure 14.2 provides a detailed overview of

the modules of the PPU.

During the engineering of the PPU, a multitude of different engineering models

is created. For instance, disparate discipline-specific models are used by different

engineers to cover aspects from the mechanical, electrical/electronic, or software

engineering discipline (cf. use case 1 in Sect. 14.6.1) as well as to capture require-

ments and generate test cases from these (cf. use case 2 in Sect. 14.6.2). All these

disciplines require distinct modeling approaches, formalisms as well as tools in order

to cover the aspects of interest for the respective discipline. Although one common

Fig. 14.2 Modules of the Pick and Place Unit (PPU)

14 Applications of Semantic Web Technologies for the Engineering ... 357

principle in Model-Based Engineering is to separate the resulting views on the sys-

tem as much as possible, complete separation cannot be achieved, leading to overlaps

in the models. One example for such an information overlap is the representation of

components in the different disciplines: For instance, a sensor is represented as a geo-

metrical block in a CAD system, as a digital input in an electrical circuit diagram,

and as a respective software variable in the control software. As a consequence of

creating these interdisciplinary engineering models, the risk of introducing incon-

sistencies arises, which makes appropriate strategies for identifying and resolving

inconsistencies necessary (cf. use case 3 in Sect. 14.6.3).

14.3 Challenges in the Automated Production
Systems Domain

Requirements on the system and product are changing rapidly in the automated pro-

duction systems domain, especially in the context of Industrie 4.0 (cf. Chap. 2). As

a consequence, a number of challenges arise that need to be addressed in the engi-

neering phase of automated production systems. An excerpt of these challenges has

been introduced in (Feldmann et al. 2015b) and is briefly described in the following:

Challenge 1: Heterogeneity of Models. In order to address the concerns of the var-

ious stakeholders involved in the design and development of automated production

systems adequately, a multitude of different formalisms, modeling languages, and

tools is required. As an example for the PPU demonstrator, a requirements model

could be used for early phases of the design, whereas a detailed CAD model could

be applied for the detailed planning of the mechanical plant layout. Moreover, while

some models are needed to specify particular aspects of a system (e.g., the mecha-

tronic structure of the PPU), others are applied for the purpose of analysis (e.g., to

predict the work piece throughput of the PPU in a simulation model). As a conse-

quence, a set of disparate models is created that make use of fundamentally different

formalisms, different abstraction levels, and whose expressiveness is restricted to

concepts that are relevant to a specific application domain. This heterogeneity of

models poses a major challenge (Gausemeier et al. 2009), as the composition of

these models is hard, if not impossible to define a priory. Consequently, mechanisms

for symbolic manipulation across these heterogeneous models are required.

Challenge 2: Semantic Overlaps Between Models. Although heterogeneous mod-

els are created during the life cycle of automated production systems, these mod-

els are overlapping, as different stakeholders have overlapping views on the system

under study. These overlaps result from the presence of either duplicate or related

information. For instance, a requirement on the minimum work piece throughput

could be imposed in an early design stage of the PPU. In later verification phases,

a simulation model could be used to analyze the work piece throughput that can be

predicted under the given circumstances and system configuration. Clearly, there is

http://dx.doi.org/10.1007/978-3-319-41490-4_2

358 S. Feldmann et al.

a relation between the specified minimum work piece throughput and the predicted

work piece throughout. Therefore, we say that statements are made about semanti-

cally related entities. We refer to such overlaps as semantic overlaps. As a conse-

quence, such semantic overlaps between models need to be identified and specified

as a basis for inconsistency management.

Challenge 3: Automated InconsistencyManagement within and AcrossModels.
Especially because of the heterogeneity of engineering models that are created for

automated production systems (challenge 1) and the resulting overlap between these

models (challenge 2), the risk of inconsistencies appearing in and across engineer-

ing models is high. Two strategies are commonly employed in order to manage these

inconsistencies: (1) avoiding inconsistencies and (2) frequently searching for and

handling inconsistencies. The first strategy requires to provide modelers with nec-

essary and sufficient information about the different decisions, which are made by

other stakeholders and impact their models. The second strategy is often employed

in process models that include review (and testing) activities.

As models often consist of thousands of entities, at least some degree of automa-

tion and, hence, mechanisms for automated inconsistency management are required.

Consequently, we argue that if a mechanism for symbolic manipulation across het-

erogeneous models is used and an appropriate method for identifying and defining

semantic overlaps can be identified (i.e., if both challenges 1 and 2 can be addressed),

both strategies become feasible. However, due to the lesser amount of knowledge that

needs to be encoded and processed, we argue that the second strategy is likely to be

more effective and less costly.

Challenge 4: Integrated Tool Support. In practice, especially in industrial envi-

ronments, it is essential to keep the number of tools and methods that are applied

as low as possible. In particular, for technicians and non-trained personnel, who are

often involved during maintenance, start-up and operation of automated production

systems, trainings are often costly. As a consequence, it is inevitable to integrate

such support systems into existing tools instead of providing additional tools for the

special purpose of managing inconsistencies. Thereby, stakeholders can work with

the models and tools they are familiar with, without having to deal with additional

models and tools focusing on inconsistency management. One essential challenge

therein is to provide the mappings between the discipline-specific models and the

respective symbolic manipulation mechanisms (cf. challenge 1) as a basis for incon-

sistency management.

14.4 Related Works in the Field of Inconsistency
Management

In practice, inconsistency management is often included in complex review and ver-

ification tasks. However, the main challenge in identifying inconsistencies among

14 Applications of Semantic Web Technologies for the Engineering ... 359

the multitude of heterogeneous engineering models is that tools and models are often

loosely coupled (see, e.g., (Kovalenko et al. 2014) as well as Chaps. 8 and 13). Conse-

quently, even if modeling tools can import and export models serialized in standard-

ized formats such as XML (World Wide Web Consortium 2008) or AutomationML

(International Electrotechnical Commission 2014), such tool-specific implementa-

tions may differ and, thus, lead to compatibility issues. In some cases, point-to-point

integrations (e.g., using model transformations) and tool-specific wrappers are used

to alleviate this challenge but, nevertheless, are fragile and costly to maintain (Feld-

mann et al. 2015b).

A comparison of inconsistency management approaches in the related literature

(Feldmann et al. 2015a) revealed that these approaches can be broadly classified into

proof-theory-based (i.e., deductive), rule-based (e.g., inductive and abductive) as

well as model synchronization-based (i.e., model transformation-based) approaches

(Feldmann et al. 2015a). In proof-theoretic approaches, consistency to an underly-

ing formal system can be shown and, thus, proof-theoretic approaches provide logi-

cally correct results. However, they have several practical limitations. For instance,

proofs of engineering models require a complete and consistent definition of the

underlying formal system, which in most cases is labor-intensive (if even possible).

Model synchronization-based approaches require the transformation between differ-

ent formal systems, which is not always possible without encoding large amounts of

additional knowledge and information in transformations. Due to the effort in cre-

ating these transformations, this is unlikely to be feasible (practically and econom-

ically). While being less formal than proof-theoretic approaches, we conclude that

rule-based approaches are a more flexible alternative as rules can be added without

complete knowledge of an underlying formal system. Nevertheless, the rules used in

rule-based approaches need to be maintained (revised and grown), resulting in pos-

sibly time-consuming and costly work. However, the completeness of such sets of

rules can be varied, allowing for an economic trade-off. Therefore, for the purpose

of inconsistency management in heterogeneous engineering models, we envision the

use of a rule-based approach.

14.5 Semantic Web Technologies in a Nutshell

In order to address the aforementioned challenges in an appropriate manner, a highly

flexible and maintainable (software) system is required. As a basis to achieve flexibil-

ity and maintainability, we envision the application of Semantic Web Technologies.

In the following, the core technologies to providing effective and efficient engineer-

ing support in the automated production systems domain are presented. For a more

detailed overview and introduction to basics of Semantic Web Technologies, please

refer to Chap. 3.

http://dx.doi.org/10.1007/978-3-319-41490-4_8
http://dx.doi.org/10.1007/978-3-319-41490-4_13
http://dx.doi.org/10.1007/978-3-319-41490-4_3

360 S. Feldmann et al.

From a Procedural Software System to a Knowledge-Based System

An exclusively procedural software system requires the explicit inclusion of knowl-

edge about the structure and semantics of the various models involved during engi-

neering within the code (Feldmann et al. 2015b). As a consequence, especially when

a variety of disparate models is created (cf. challenge 1), maintaining and evolving

such a software system is costly: in the worst case, the management of n models

requires n ⋅ (n − 1)∕2 bi-directional model integrations. A practical realization of a

framework for supporting the engineering of automated production systems there-

fore requires a high degree of flexibility and extensibility. One means to achieve such

a flexible and extensible framework is to represent models in a common representa-

tional formalism (Estévez and Marcos 2012) and to put appropriate mechanisms for,

e.g., identifying and resolving inconsistencies in place. Consequently, we envision a

knowledge-based system to be used to support the engineering in the automated pro-

duction systems domain (Feldmann et al. 2015b). Among others, knowledge-based

systems typically consist of two essential parts: a knowledge base that is used to rep-

resent the facts about the world (i.e., the knowledge modeled in the different models)

and an inference mechanism that provides a set of logical assertions and conditions

to process the knowledge base (i.e., to identify and resolve inconsistencies). Fur-

ther typical parts of knowledge-based systems are the explanation and acquisition
components as well as the user interface, which are, however, not in focus of this

Chapter.

Representing Knowledge in Knowledge Bases: RDF(S) and OWL

One formal language used to describe structured information and, hence, to represent

knowledge in the context of Semantic Web Technologies is the Resource Descrip-
tion Framework (RDF) (World Wide Web Consortium 2014). Originally, the goal

of RDF is to allow applications to “exchange data on the Web while preserving

their original meaning” (Hitzler et al. 2010), thereby allowing for further process-

ing knowledge. Hence, the original intention of RDF is close to the challenge of

heterogeneous models—to describe heterogeneous knowledge in a common repre-

sentational formalism. Therein, RDF is similar to conceptual modeling approaches

such as class diagrams in that it allows for statements to be made about entities,

e.g., stack is a module and consists of a monostable cylinder and a micro switch.

Such statements about entities are formulated by means of subject–predicate–object

triples (e.g., stack – is a – module, stack – consists of – micro switch), thereby form-

ing a directed graph. An exemplary RDF graph is visualized in Fig. 14.3. To leave

no room for ambiguities, RDF makes use of so-called Unified Resource Identifies
as unique names for entities (e.g., ex:stack and ex:Module) and properties (e.g.,

ex:consistsOf) being used. By means of so-called RDF vocabularies, collections of

identifiers with a clearly defined meaning can be described. For such a meaning to

be described in a machine-interpretable manner, besides specifying knowledge on

instances (i.e., assertional knowledge), the RDF recommendation allows for spec-

ifying background information (i.e., terminological knowledge) by means of RDF

14 Applications of Semantic Web Technologies for the Engineering ... 361

ex:microSwitch

ex:stack

ex:monostable
Cylinder

ex:Module

ex:consistsOf

ex:consistsOf

ex:Sensor

ex:Actuatorrdf:type

rdf:type

rdf:type

Stack

Legend

RDF Resource

RDF Property

Literal ex:name

ex:costs

30.0

ex:costs

100.0

Fig. 14.3 Exemplary RDF graph

Schema (RDFS). RDF(S) provides language constructs to formulate simple graphs

containing class and property hierarchies as well as property restrictions. With its

formal semantics, RDF(S) leaves no room for interpretation of what conclusions can

be drawn from a given graph, thereby providing standard inference mechanisms for

any RDF(S)-compliant graph. RDF(S) can, hence, be used as a language to model

simple ontologies, but provides limited expressive means and is not suitable to for-

mulate more complex knowledge (Hitzler et al. 2010). Examples for knowledge that

cannot be formulated in RDF(S) are the phrases Each Module consists of at least
one component and Components are either actuators or sensors.

One mean to formulate more complex knowledge are rules that can be used to

draw conclusions from a premise statement, i.e., by applying rules in the form of IF
premise THEN conclusion. Another mean to formulate complex knowledge is the

use of the Web Ontology Language (OWL) (World Wide Web Consortium 2009),

which provides further language constructs defined with description logics based

semantics. OWL moreover contains two sub-languages
1

to provide a choice between

different degrees of expressivity, scalability, and decidability, namely, OWL Full and

OWL DL. Therein, for the purposes of this Chapter, OWL DL
2

enables maximum

expressivity while maintaining decidability (Hitzler et al. 2010). The OWL DL for-

mal (description logics based) semantics allow to define what conclusions can be

drawn from an OWL DL ontology. For instance, the aforementioned phrases Each
Module consists of at least one component and Components are either sensor or
actuators can be formulated as specified in OWL

3
axioms (1) and (2).

MODULE EquivalentTo (consistsOf some COMPONENT) (1)

COMPONENT EquivalentTo (SENSOR or ACTUATOR) (2)

1
Note that, in addition to OWL DL and OWL Full, there are three profiles for a variety of applica-

tions, namely, OWL EL, QL, and RL which, however, are out of the scope of this Chapter.

2
For reasons of simplicity, we use the term OWL when referring to OWL DL.

3
To enhance readability, OWL Manchester Syntax is used throughout the paper.

362 S. Feldmann et al.

Therein, the concepts Module, Component, Sensor, and Actuator refer to the set

of possible individuals that are modules, components, sensors, or actuators. Thereby,

typical types of inferences can be drawn from an OWL ontology, e.g.,

∙ Satisfiability Checking identifies, whether a concept is satisfiable. For instance, the

question, Can an instance be both a module and a component? can be answered

by identifying whether the concept MODULE and COMPONENT is satisfiable.

∙ Subsumption identifies, whether class hierarchies exist. In our example, the class

hierarchy SENSOR SubClassOf COMPONENT and ACTUATOR SubClassOf COM-

PONENT can be inferred from axioms (1) and (2).

∙ Consistency Checking identifies whether inconsistencies in the model exist.

Accessing Knowledge in Knowledge Bases: SPARQL Query Language

A set of specifications providing the means to retrieve and manipulate information

represented in RDF(S) (or OWL, respectively) is the SPARQL Protocol and RDF
Query Language (World Wide Web Consortium 2013). The primary component of

the standard is the SPARQL Query Language.
4

SPARQL is in many regards similar

to the well-known Structured Query Language (SQL), which is supported by most

relational database systems.

A query consists of three major parts: namespace definitions being used within

the query, a clause identifying the type of the query and a pattern to be matched

against the RDF data. SPARQL is highly expressive and allows for the formula-

tion of required and optional patterns, negative matches, basic inference (e.g., prop-

erty paths to enable transitive relations), conjunctions, and disjunctions of result sets

as well as aggregates, i.e., expressions over groups of query results. Four disparate

query types can be used in SPARQL

∙ SELECT queries return values for variable identifiers, which are retrieved by

matches to a particular pattern against the RDF graph,

∙ ASK queries return a Boolean variable that indicates whether or not some result

matches the pattern,

∙ CONSTRUCT queries allow for substituting the query results by a predefined tem-

plate for the RDF graph to be created, and

∙ DESCRIBE queries return a single RDF graph containing the relevant data about

the result set. As the “relevance” of data is strongly depending on the specific

application context, SPARQL does not provide normative specification of the out-

put being generated by DESCRIBE queries.

An example for a SPARQL SELECT query is shown in Fig. 14.4. Using this

query, the RDF graph in Fig. 14.3 is queried for entities x that consist of an entity

y, which, in turn, is described by the cost value c. By using the BIND form, the

Boolean result of the formula ?c > 50.0 can be assigned to variable moreThan50,

which denotes, whether the cost value c is greater than 50 or not.

4
For reasons of simplicity, we use the term SPARQL when referring to SPARQL Query Language.

14 Applications of Semantic Web Technologies for the Engineering ... 363

Namespace
definitions

Pattern

Clause

Exemplary query

Results of query execution

ex:stack ex:monostableCylinder 100.0 true

ex:stack ex:microSwitch 30.0 false

?x ?y ?c ?moreThan50

Fig. 14.4 Exemplary SPARQL query (top) and results when executing the query

14.6 Use Cases for Applying Semantic Web Technologies
in the Automated Production Systems Domain

Within the following, three distinct use cases are presented, which aim at supporting

the engineering in the automated production systems domain by means of Semantic

Web Technologies.

14.6.1 Use Case 1: Ensuring the Compatibility Between
Mechatronic Modules

Automated production systems are characterized by a multitude of mechanical, elec-

trical/electronic and software components with tight interrelations between them. In

order to facilitate the development of automated production systems and reduce costs

of the engineering process, companies usually define mechatronic modules including

components from different disciplines, which can be reused in various systems.

During the life cycle of such a system, frequent changes have to be carried out to

different system components or modules, e.g., if new customer requirements have to

be fulfilled or if specific components/modules have to be replaced but are not avail-

able on the market any more. A challenge in carrying out changes during the life cycle

of an automated production system is to ensure the compatibility of the exchanged

component/module with the existing system (e.g., regarding data ranges of specified

properties, type compatibility, etc., (Feldmann et al. 2014a)). Lacking consideration

of change influences can lead to further necessary changes in the system, which are

costly and can prolong the downtime unnecessarily.

Therefore, this use case describes how a model-based approach can be used to

analyze changes before they are implemented in the real system (Feldmann et al.

2014a). Consequently, we aim at combining such a model-based approach with

364 S. Feldmann et al.

Semantic Web Technologies to provide the means (1) to identify compatible modules

in case a module needs to be replaced, and (2) to identify and resolve incompatibili-

ties in a given system configuration. A more detailed description of this use case can

be retrieved from (Feldmann et al. 2014a).

Overall Concept

In order to specify the relevant aspects for checking the system for incompatibilities,

an information model is defined that contains the information necessary for identify-

ing whether two modules are compatible or not. By that, any Model-Based Engineer-

ing (MBE) approach can be combined with our compatibility information model,

which can directly be used to compute the formal knowledge base. Figure 14.5 shows

the relation between the MBE approach, the formal knowledge base and the informa-

tion model with its elements and relations. As shown in the information model, struc-

tural aspects of mechanical, electrical/electronic, and software components, which

can be combined to mechatronic modules, and the respective interfaces in the dif-

ferent disciplines are considered for the compatibility check. Furthermore, the func-

tionalities, which are fulfilled by a component/module, are considered.

MBE approach

Mechanical
Engineering

Electrical
Engineering

Software
Engineering

Formal knowledge base

Design system/
initiate change

Visualize model

Provide required
information /view

Store in knowledge base/
analyze compatibility

fulfils
Element Functionality

Module Component

Mechanical-
Component

E/E-Component

Software-
component

contains

Interface
Direction

Mechanical-Interface

Software-Interface
Operation

E/E-Interface
LowerValue
UpperValue
DefaultValue

mandatory
For DataType

Mechanical-
DataType

E/E-
DataType

Software-
DataType

owns
owns

Attribute
Name
Value

has

Information model

Fig. 14.5 Combination of MBE approach and a formal knowledge base to analyze changes,

extended from Feldmann et al. (2014a)

14 Applications of Semantic Web Technologies for the Engineering ... 365

Visual Model for Modeling Systems Comprehensibly

Regarding the visual model, Model-Based Engineering (MBE) approaches gained

more and more influence over the past years. Especially for systems engineering, the

Systems Modeling Language (SysML) (Object Management Group 2012) was devel-

oped as a graphical modeling language to represent structural and behavioral aspects

during development. Through specific modeling approaches, based on SysML, the

relevant aspects for analyzing changes can be integrated into the model. In this use

case, SysML4Mechatronics (Kernschmidt and Vogel-Heuser 2013) is used as mod-

eling language, as it was developed specifically for the application of mechatronic

production systems. An exemplary SysML4Mechatronics model for the PPU appli-

cation example is shown in Fig. 14.6. Next to the mechatronic modules (stack, crane,

stamp, and ramp), the bus coupler, the PLC and the mounting plate are depicted as

separate blocks, which are required by the modules, e.g., all modules are connected

to the mounting plate of the system mechanically and, if required, communicate

through a Profibus DP interface.

OWL and SPARQL for Compatibility Checking

For identifying incompatibilities between mechatronic modules, we argue that two

disparate types of compatibility rules exists

∙ Inherent compatibility rules apply for arbitrary types of automated production sys-

tems and must not be violated by any system under study. Examples for such inher-

ent compatibility rules are type and direction compatibility.

∙ Application-specific compatibility rules apply within a given context (e.g., for spe-

cific types of systems or for a concrete project). For instance, project-specific nam-

ing conventions are often applied for specific projects or applications.

In order to allow for flexibly maintaining and extending a software system for

checking compatibility of mechatronic modules, we envision the application of

«module»

: Crane
MoveWPTo0 ; MoveWPTo90 ;
MoveWPTo180

C2

«module»

: Stack
SeparateWP

S2 S1

«eeblock»
: DP-Bus-Coupler

«eeblock»
: PLC

«mechanicalblock»
: MountingPlate

4P2P1P7P5P P6

S3 C3

P3

«module»

: Stamp
StampWP

L2 L1

C4 L3

«module»

: Ramp
SortWP

R1C1

Mass = 1.0 : kg Mass = 1.5 : kg Mass =
0.5 : kgMass = 2.0 : kg

Mass =
2.0 : kg

Mass = 0.5 : kg Mass = 5.0 : kg

Fig. 14.6 Exemplary SysML4Mechatronicsmodel for the PPU application example

366 S. Feldmann et al.

OWL, which provides the means to formulate the knowledge in a compatibility infor-

mation model shown in Fig. 14.5, and SPARQL, which allows identifying whether

certain compatibility rules are violated or not. Within OWL, a domain ontology is

used, which defined the concepts and relations necessary to represent the knowl-

edge in our compatibility information model. Using this domain ontology, knowl-

edge on available modules, interface types, etc., can be formulated in the ontology’s

terminological knowledge. Accordingly, knowledge on the instances available for

the system under study is represented in the ontology’s assertional knowledge. As a

consequence, SPARQL queries can easily be formulated using the terms defined in

the compatibility domain ontology. We argue that SPARQL queries can, hence, be

defined, maintained, and managed more efficiently using such a domain ontology.

The representation of the crane application example in an OWL ontology as well

as some exemplary compatibility rules are illustrated in Fig. 14.7. Using SPARQL

SELECT queries, incompatibility patterns are described; any result returned by

querying the ontology stands for incompatible elements within the model. Through

Inherent compatibility rules Application-specific compatibility rules

1
–

In
te

rf
a

ce
s

da
ta

 ty
pe

s
2

–
In

te
rf

a
ce

s
da

ta
 r

a
ng

e
s

3
–

N
am

in
g

co
nv

en
tio

ns

SELECT ?x ?y WHERE {
?x :connectedTo ?y .
?x a (:Interface and :owns some ?xType) .
?y a (:Interface and :owns some ?yType) .
FILTER (?xType != ?yType) . }

SELECT ?x ?y WHERE {
?x :connectedTo ?y . ?y :UpperValue ?yUpp .
?x :UpperValue ?xUpp ; :Direction ?xDir .
FILTER (?xDir = In ||?xDir = InOut) .
FILTER (?yUpp > ?xUpp) . }

SELECT ?x WHERE {
?x a :Element ; :Name ?n .
FILTER (! regex (?n , ^[^0-9].*)) . }

Crane

Module

EEInterface

Interface Datatype

EEDatatype

ProfibusDP

C2 P7 DP-Bus-Coupler

EEComponent

Component

Element

InOut InOut

MoveWPTo0

Functionality

Direction Direction

ownsowns

owns owns

rdf:typerdf:type
connectedTo

connectedTo

mandatoryForfulfils

rdf:type
rdf:type

C
om

pa
tib

ili
ty

D

om
ai

n
O

n
to

lo
gy

E
le

m
en

t t
yp

e
kn

ow
le

dg
e

(T
B

ox
)

E
le

m
en

t
in

st
an

ce

kn
ow

le
dg

e
(A

B
o

x)

owns owns

Fig. 14.7 Representation of the crane example in OWL (top) and exemplary compatibility rules

formulated in SPARQL (bottom)

14 Applications of Semantic Web Technologies for the Engineering ... 367

queries 1 and 2, it can be identified whether data types and ranges of two ports are

compatible or not. Query 3 defines an application-specific compatibility rule that

requires entities’ names not to start with a number.

Proof-of-Concept Implementation

The conceptual architecture introduced previously was realized in terms of a proof-

of-concept implementation, see Fig. 14.8. The models are defined in the Eclipse

Modeling Framework (EMF).
5

The necessary model transformations, i.e., between

SysML4Mechatronics, the compatibility information language and OWL, were real-

ized by means of the Query/View/Transformation Operational (QVTo) standard

(Object Management Group 2011) and executed using the Eclipse QVTo imple-

mentation.
6

For OWL, a meta model was developed in the well-known Ecore format

based on the respective W3C standard (World Wide Web Consortium 2009). Subse-

quent XSL Transformations allow for transforming between the EMF-specific XML

format and the respective tool-specific XML formats. Pellet
7

was used as the rea-

soner and querying engine for executing the queries.

Validation

In the current state (shown in Fig. 14.6), the crane has four distinct interfaces for

the connection to the rest of the system. During the life cycle of the system, the crane

has to be replaced. Due to the aspired shift to a Profinet bus system, a crane module

with Profinet interface shall be used for the exchange. Except for the change of the

bus system, the crane module shall fulfill the same functionalities. Figure 14.9 shows

the SysML4Mechatronics model of the system with the replaced crane module.

Having transformed the modeled information into the OWL DL ontology of the

formal knowledge base, the respective SPARQL queries can be executed. Using the

Eclipse QVTo
Implementation

Eclipse
XSLT

Project

Eclipse Modeling Framework

Compatibility
model
(*.xmi)

Compatibility
meta model

(*.ecore)

conforms to

OWL
model
(*.xmi)

OWL meta
model

(*.ecore)

conforms to

Pellet
(OWL DL reasoning and

query execution)

OWL
ontology
(*.owl)

QVTo
Transformation

(*.mtl)

XSL
Trans-

formation
(*.xslt)

refers to

Compati-
bility rules
(*.sparql)

Fig. 14.8 Overview on the architecture for compatibility checking

5
https://eclipse.org/modeling/emf/, retrieved on 12/11/2015.

6
https://wiki.eclipse.org/QVTo, retrieved on 12/11/2015.

7
https://github.com/complexible/pellet, retrieved on 12/11/2015.

https://eclipse.org/modeling/emf/
https://wiki.eclipse.org/QVTo
https://github.com/complexible/pellet

368 S. Feldmann et al.

«module»

: CraneUpdate

Mass = 2.5 : kg

«eeblock»
: PLC

Mass =
2.0 : kg

«mechanicalblock»
: MountingPlate

Mass = 5.0 : kg

MoveWPTo0 ; MoveWPTo90 ;
MoveWPTo180

C2

«module»

: Stack
SeparateWP

S2 S1

«eeblock»
: DP-Bus-Coupler

4P2P1P7P5P P6

S3 C3

P3

«module»

: Stamp
StampWP

L2 L1

C4 L3

«module»

: Ramp
SortWP

R1C1
Name: P7
Conjugated: true
InterfaceBlock:
DP InterfaceBlock
(DataType: Profibus
DP, Direction: InOut)

Mass = 1.0 : kg Mass = 1.5 : kg Mass =
0.5 : kg

Mass = 0.5 : kg

Name: C2
Conjugated: false
IsMandatoryFor:
MoveWPTo0 ;
MoveWPTo90 ;
MoveWPTo180
InterfaceBlock:
ProfinetInterfaceBlock
(DataType: Profinet,
Direction: InOut)

Fig. 14.9 Exchanged crane module (represented as SysML4Mechatronics module)

example queries as described above, an incompatibility between the Profinet and

the Profibus DP interface can be identified (cf. query 1), as the respective datatypes

are not compatible. Queries 2 and 3 do not identify incompatibilities, as data ranges

are not applicable for the illustrated example (cf. query 2) and no violations of the

naming conventions for entities can be identified (cf. query 3).

14.6.2 Use Case 2: Keeping Requirements and Test Cases
Consistent

In the automated production systems domain, requirements are often specified in an

informal and textual manner (Runde and Fay 2011). This may lead to ambiguous

and erroneous interpretations of requirements. As a consequence, inconsistencies in

these requirements specifications may arise. These inconsistencies are often identi-

fied late and can, thus, lead to additional costs (Heitmeyer et al. 1996). In addition,

the automatic generation of test cases is not yet state of the art in the automated pro-

duction systems domain (Hametner et al. 2011): test cases are often defined during

design and not during requirements specification. To address these challenges, this

use case introduces an integrated approach for systematic requirements and test case

design as well as for ensuring consistency between requirements and test cases (Feld-

mann et al. 2014b). On the one hand, the approach makes use of a modeling approach

for specifying requirements and test cases in a semi-structured manner. On the other

hand, Semantic Web Technologies are applied to allow for consistency checking of

the models and, thus, of the modeled requirements and test cases. For a detailed

description of the models being used in this use case, please refer to (Feldmann et al.

2014b).

14 Applications of Semantic Web Technologies for the Engineering ... 369

Modeling Requirements and Test Cases

The approach for modeling requirements and test cases systematically and graphi-

cally consists of three primary modeling elements, namely, feature, requirement, and

test case (cf. Fig. 14.10).

Features. Features refer to a plant component or functionality, e.g., the capability

of transporting or detecting a work piece. In the PPU application example, the fea-

ture PPU as well as its sub-features Stack, Stamp, Ramp, and Crane are defined.

In addition, features are characterized by parameters that either represent sensors

or actuators of the system under study (namely, in- and out-parameters) or para-

meters that describe the product and environment. By means of these parameters,

requirements on features can be further specified. For instance, the crane feature is

further defined by the in-parameters source, which defines the source of the trans-

port function (either “ramp”, “stack,” or “stamp”), velocity, which characterizes the

crane module’s velocity, as well as the work piece’s Mass and type. Out-parameters

Out-Values

ID 1 Vers. 1.0

Classification Functional

Category Basic

<<feature>>
PPU

Meta Data

Content

ID 2 Vers. 1.0

Classification Functional

Category Basic

<<feature>>
Stack

Meta Data

Content

ID 3 Vers. 1.0

Classification Functional

Category Basic

<<feature>>
Stamp

Meta Data

Content

ID 5 Vers. 1.0

Classification Functional

Category Basic

<<feature>>
Crane

Meta Data

ID 4 Vers. 1.0

Classification Functional

Category Basic

<<feature>>
Ramp

Meta Data

Content

Formalization

<<requirement>>
Transport

Descr. WPs shall be
transported.

Content

Meta Data

Testability

Variation

Name Variation

Source *

Target *

Type *

Error *

<<requirement>>
Velocity range

Descr. Velocity must lie in
betw. 20 and 40 °/s.

Content

Meta Data

Testability

Variation

Name Variation

Velocity 20 < x < 40

Error {101, None}

<<requirement>>
Mass range

Descr. Mass must lie in
betw. 0.5 and 4 kg.

Content

Meta Data

Testability

Variation

Name Variation

Mass 0.5 < x < 4

Error {102, None}

Formalization Formalization

Descr. Transport functionality for
plastic and metal work pieces.

Content

Parameters

Dir. Name Values

In Source Enum {Ramp, Stack, Stamp}

In Velocity Float {10 <= x <= 50}

In Mass Float {0 <= x <= 4}

Out Target Enum {Ramp, Stack, Stamp}

In Type Enum {Metal, Plastic}

Out Error Enum {101, 102, None}

In-Values

<<testcase>>
Test Case #1

Meta Data

Execution

Source Stack

Name Value

Content

Velocity 21.0

Mass 1.0

Type Plastic

Target Ramp

Name Value

Error None

Out-Values

In-Values

<<testcase>>
Test Case #2

Meta Data

Execution

Source Stack

Name Value

Content

Velocity 21.0

Mass 1.0

Type Metal

Target Stamp

Name Value

Error None

Out-Values

In-Values

<<testcase>>
Test Case #3

Meta Data

Execution

Source Stack

Name Value

Content

Velocity 20.0

Mass 0.5

Type Metal

Target

Name Value

Error

= Stamp

Source = Stack T

Type = Metal T

Error = None T

Formalization of
Requirement

Transport

= Ramp

Source = Stack T

Type = Plastic T

Source = Stamp F

Type = Metal F

Error = None T

F

F

T

T

T

Target

Formalization of an Out-
Parameter’s value

= None

20 < Velocity < 40 T

Formalization of
Requirement

Velocity range

= 101

20 < Velocity < 40 F

Error

= None

0.5 < Mass < 4.0 T

= 102

0.5 < Mass < 4.0 F

Error

Formalization of
Requirement
Mass range

Row-by-row:
AND-Condition

Column-by-column:
OR-Condition

Fig. 14.10 Example requirements and test case model for the PPU application example, extended

from Feldmann et al. (2014b)

370 S. Feldmann et al.

that are available for the crane feature are target, which specifies the target of the

transport function, and error, which defines an error code (either “101”, “102,” or

“None”).

Requirements. A requirement is associated to a set of features, thereby characteriz-

ing their intended behavior by means of parameter restrictions. In our PPU applica-

tion example, three distinct requirements are defined: a transport requirement defines

how work pieces are transported, and the velocity and mass range requirements spec-

ify applicable ranges for the crane’s velocity and a work piece’s mass. Parameter

variations in requirement specifications define in which range a parameter needs to

be tested for a given requirement. For instance, the crane must be able to operate

for work pieces that weigh between 0.5 and 4 kg. These variations can furthermore

be used for generating test cases, e.g., by generating all possible combinations of

in-parameter values with respect to their variations. As requirements can either be

functional or nonfunctional, the modeling approach allows modelers to either tex-

tually specify a (nonfunctional) requirement or to specify their (functional) require-

ments in a semi-structured manner by means of formalizations. These formalizations

provide the means to define for which condition a certain parameter holds a specific

value, i.e., which implication can be drawn from a given condition. The implication

is thereby equivalent to setting an out-parameter’s value; the condition is a set of

logical phrases that can be evaluated to a truth value.

For the graphical representation of the formalizations, a subset of SPECTR-ML

(Leveson et al. 1999) is used and represented by means of truth tables; an exam-

ple for formulating the functional requirements of the crane feature is illustrated in

Fig. 14.10. Each truth table represents an out-parameter and contains the parameter’s

possible values, i.e., possible implications that can be drawn from given conditions.

For instance, the target parameter can be set to either one of the values “stamp” or

“ramp”. For each implication, a set of conditions can be defined by means of rows

in the truth tables. In each row of the truth tables, the far left column refers to the

logical phrase. Each of the other columns refers to a conjunction of logical phrases

and contain the truth values related to the logical phrase, i.e., true (T), false (F),

and don’t care (*). Consequently, as can be seen in Fig. 14.10, a column evaluates to

true if all of its related rows match the truth values of the associated predicates. For

instance, regarding the target parameter, the following formalizations are specified

in Fig. 14.10:

∙ The target parameter must be set to stamp if, given that no error occurs, a metal
work piece is available at the stack.

∙ The target parameter must be set to ramp if, given that no error occurs, either a

plastic work piece is available at the stack or a metal work piece is available at the

stamp.

Test Cases. To ensure that a certain requirement is fulfilled, test cases are defined for

a given set of requirements. These test cases can either be specified manually (e.g.,

for non-functional requirements) or generated automatically (e.g., from formaliza-

14 Applications of Semantic Web Technologies for the Engineering ... 371

tions of functional requirements). A test case therefore consists of a set of parameter

values to be considered for a test: based on given in-parameter values, expected out-

parameter values are defined. Three exemplary test cases for the PPU application

example are shown in Fig. 14.10.

Ensuring Consistency Between Requirements and Test Cases

Although the previously introduced modeling concept provides a starting point for

discussing and communicating the system under study, potential inconsistencies in

the requirement and test case specification may arise. Among others, the following

types of inconsistencies are likely to occur:

∙ Inconsistencies between features and (functional) requirements: Parameters are

specified by valid parameter ranges in the feature. These parameters are used and

further detailed in requirements associated to the feature by means of parameter

variations that define in which range a parameter must be tested. In order for a

model to be valid, the parameter ranges defined in the feature must be consistent

with the parameter variations specified for a requirement.

∙ Inconsistencies in between (functional) requirements: The set of requirements

defined for a feature is formalized by means of logical conditions and implica-

tions. Consequently, the entire set of requirements defined for a feature describes

the system behavior as desired by the modeler. These requirements may consist of

contradicting formalizations, leading to potential inconsistencies between require-

ments. Consistency must therefore be ensured between the formalizations of a

feature’s requirements.

∙ Inconsistencies between (functional) requirements and test cases: Based on the

parameter variations defined in a feature’s requirements, test cases can be gener-

ated, e.g., by identifying all permutations of available in-parameters. Neverthe-

less, for each given permutation of in-parameters, a unique combination of out-

parameters must be determinable in order for a model to be consistent.

It is obvious that all of these types of inconsistencies can be identified as a logi-

cal consequence of contradiction statements. Hence, the use of OWL, its description

logics based semantics and the inference types that can be drawn from an OWL

model (e.g., whether a concept is satisfiable or whether inconsistencies in the model

exist) is an appropriate solution approach. As a consequence, based on the parame-

ter ranges in a feature we formulate a set of possible feature states by means of an

OWL concept. Each implication defined in the requirements’ truth tables can then be

specified as a sub-concept of this feature state—an OWL reasoner can consequently

determine whether or not this concept is satisfiable, i.e., whether the requirement

is consistent to the feature. If implications are over-specified (see, for instance, the

specification of the implication Error = None in Fig. 14.10), the respective impli-

cation is defined as the intersection of the existing set of implications. If the set of

implications is inconsistent, an OWL reasoner identifies the model to be inconsis-

tent, i.e., that there is an inconsistency between the requirements. Finally, test cases

are regarded as states of the feature concept and, hence, if contradictions between

372 S. Feldmann et al.

a test case and the requirement occur, an OWL reasoner identifies the model to be

inconsistent. Consequently, using such an OWL model, all aforementioned types of

inconsistencies can be identified.

In the resulting OWL model, parameters defined in respective features are rep-

resented by OWL data properties. As we assume that for each parameter only one

value exists in a feature’s state, the corresponding data properties are defined to be

functional. Consequently, we formulate a feature’s state as an OWL concept, which

is equivalent to the intersection of the respective parameter ranges defined in the

feature. For instance, the crane feature’s state can be formulated within a respective

concept CRANESTATE (cf. axiom (3)).

CRANESTATE EquivalentTo (Error some {“101”, “102”, “None”})

and (Source some {“Stack”, “Stamp”, “Ramp”})

and (Target some {“Stack”, “Stamp”, “Ramp”})

and (Type some {“Metal”, “Plastic”})

and (Velocity some float[≥10, ≤50]) and (Mass some float[≥0, ≤4]) (3)

Respectively, formalizations in truth tables of requirements are defined as OWL

concepts being sub-concepts of the feature’s state. For instance, the formalization of

requirements velocity and mass range are specified in axioms (4)–(6):

ERROR101 EquivalentTo CRANESTATE and (not Velocity some float[>20, <40]) (4)

ERROR102 EquivalentTo CRANESTATE and (not Mass some float[>0.5, <4]) (5)

ERRORNONE EquivalentTo CRANESTATE and (Velocity some float[>20, <40])

and (Mass some float[>0.5, <4]) (6)

Accordingly, the implications being defined in the requirements’ truth tables

can be formulated as the necessary conditions for the respective concepts, see

axioms (7)–(9).

ERROR101 SubClassOf (Error value “101”) (7)

ERROR102 SubClassOf (Error value “102”) (8)

ERRORNONE SubClassOf (Error value “None”) (9)

The formalizations of the requirement transport are specified accordingly. Using

the model, it can be identified whether contradictions exist between requirements and

features as well as in between requirements. In the present PPU application exam-

ple, it is obvious that no inconsistency exists and, hence, an OWL reasoner infers

the model to be consistent. However, if we formulate the test cases as depicted in

Fig. 14.10 to be instances of the feature state’s concept CRANESTATE, an inconsis-

tency can be detected for test case 3: as both the velocity and mass parameters violate

the formalizations imposed in the velocity and mass range requirements, an OWL

reasoner infers the error parameter to hold both the values “101” and “102”. Never-

theless, as all properties were defined to be functional, the OWL reasoner identifies

an inconsistency. This ambiguity is identified and the engineer is notified that the

requirements need to be specified further; it is identified that the test case 3 cannot

be consistent to the requirements.

14 Applications of Semantic Web Technologies for the Engineering ... 373

Proof-of-Concept Implementation

In order to evaluate the concept for modeling requirements and test cases and

for ensuring consistency, a proof-of-concept implementation was developed. An

overview on the architecture of the prototypical tool is given in Fig. 14.11. Model

instances are created by the modeler using the Eclipse Modeling Framework (EMF).

Therefore, a metamodel was defined in the well-known Ecore format, which allows

for providing a simple tree editor in EMF. The mapping to the respective OWL ontol-

ogy was defined by means of the MOF Model to Text Standard (MOFM2T) (Object

Management Group 2008), which can, e.g., be executed in the Acceleo
8

MOFM2T

implementation. It has to be noted that the domain ontology (that, e.g., defines the

base properties and classes to be used) is independent from the created models

and, hence, is imported by the respective model-specific application ontologies. The

resulting OWL ontology can then be processed by available OWL reasoners—in our

implementation, Pellet was used.

14.6.3 Use Case 3: Identifying Inconsistencies in and Among
Heterogeneous Engineering Models

During the development and operation of automated production systems, a multi-

tude of stakeholders from different disciplines is involved. In order for the specific

concerns of these stakeholders to be addressed, views on the system under study are

Pellet
(OWL DL

reasoning)

Acceleo MOFM2T
implementation

Eclipse Modeling
Framework

Requirements and
test case model

(*.xmi)

OWL
ontology
(*.owl)

Meta model
(*.ecore)

conforms to refers to

MOFM2T
Transformation

(*.mtl)

Fig. 14.11 Overview on the architecture for consistency checking among features, requirements

and test cases

8
http://www.eclipse.org/acceleo/, retrieved on 12/11/2015.

http://www.eclipse.org/acceleo/

374 S. Feldmann et al.

formed. To adequately address these concerns, a variety of different formalisms,

modeling languages and tools is necessary (Broy et al. 2010). Two distinct for-

malisms that address different stakeholders’ concerns were shown in the previous

sections: one for the detailed design of automated production systems (cf. use case

1) and one for requirements and test case management (cf. use case 2). Nevertheless,

although it is considered good practice to separate concerns as much as possible,

completely separating concerns is impossible. As a consequence, some concerns are

addressed by the various stakeholders and, hence, lead to overlaps in the models. An

example of such a model overlap can be seen in use cases 1 and 2: both models refer

to the different modules of the PPU, therefore specifying overlapping information

on the system under study and, hence, leading to the potential for inconsistencies to

occur. Consequently, it is inevitable to ensure that the set of models is free of incon-

sistencies, which is being addressed in this use case. A detailed description of the

use case can be found in (Feldmann et al. 2015b).

Using RDF to Represent Heterogeneous Models in a Common Formalism

As argued beforehand, effectively and efficiently handling inconsistencies necessi-

tates a high degree of flexibility. Consequently, we argue that representing the het-

erogeneous models in a common representational formalism is inevitable for any

inconsistency management framework to be economical.

Information in knowledge bases is typically represented using predicated state-

ments about entities (Giarratano and Riley 1994). This is similar to how information

and knowledge are represented in the abstract syntax of models (Herzig et al. 2011):

For instance, one fact encoded in use case 1 asserts that the PPU is composed of

(among other modules) a crane. This fact can be represented as PPU composedOf
crane, where PPU and crane are predicable entities, and composedOf a predicate.

Consequently, we argue that Semantic Web Technologies are an appropriate way to

represent the knowledge modeled in disparate modeling formalisms. In the follow-

ing, we use RDF(S) as the common representational formalism; Fig. 14.12 shows an

excerpt of the RDF(S) representations of the models being used in use cases 1 and 2.

In a similar manner, overlaps can be captured in RDF. Given that a common rep-

resentational formalism is used, one can formulate statements in which entities from

any model are referenced. This can be seen as an additional model, describing rela-

tionships among the different models. For instance, given an RDF namespace over-
laps for this additional model, and given the definition of an RDF property equiv-
alentTo, which is to be used for defining the synonymy for two predicable entities,

the statement sysml4mech:expVelocity overlaps:equivalentTo req:reqVelocity (see

Fig. 14.12) expresses the fact that both entities are semantically equivalent. Such

semantic relations can either be defined manually and a priori or by applying appro-

priate inference mechanisms.

14 Applications of Semantic Web Technologies for the Engineering ... 375

SysML4Mechatronics
model

Legend

RDF Resource

RDF Property

Literal

req:
velocityRange

40.0

req:
reqVelocity

req:definedIn

req:
Parameter

req:maxValue

req:
Requirement

rdf:type

rdf:type

sysml4mech:
crane

sysml4mech:
expVelocity

sysml4mech:value

50.0

sysml4mech:
Attribute

sysml4mech:
Modulerdf:type

rdf:type

Requirements/Test case
model

overlaps:equivalentTo

sysml4mech:owns

20.0

req:minValue

Fig. 14.12 Excerpt of the RDF representation for the use case models

Vocabularies for Identifying Cross-Model Inconsistencies

Given that RDF(S) as the common representational formalism is used, inconsisten-

cies among the heterogeneous models can be identified. However, with an increasing

number of models involved, the number of necessary integration between models

arises, making mechanisms for efficient and effective handling of inconsistencies

necessary. Therefore, we argue that a common terminology is required that bridges

the gap between different domain models and, thus, (1) provides a common syntax,

and (2) allows for defining the semantic relations between the modeled information.

We hypothesize that—at least at some level of (semantic) abstraction—there exist

concepts common to specific domains, which can be represented using different lan-

guages, and that concepts exist that are common to all domains, e.g., the term value
that is used in both use cases 1 and 2. Using such a base vocabulary (cf. Fig. 14.13),

some common inconsistencies among and between multiple domain models can be

managed. Clearly, the definition of semantic overlaps may not always require the

full expressiveness of domain models; thus, the base vocabulary is semantically

much weaker than domain vocabularies or language vocabularies and represents

a “common denominator” to all other vocabularies. The base vocabulary ideally

remains unchanged, while integrating a further type of domain model necessitates

only a respective novel RDF representation and the definition of a semantic media-
tion between the novel domain vocabulary and the base vocabulary.

376 S. Feldmann et al.

Base
Vocabulary

Domain
Vocab. #1

Domain
Vocab. #2

…

Domain
Vocab. #n

Systems and
Requirements
Engineering

Simulation and
Analysis

Mechatronic
Engineering

Language
Vocab.
#1.1

…

Language
Vocab.

#1.k
Language

Vocab.
#2.1

… Language
Vocab.
#2.m

SysML

Excel

Requirements
and Test Case

Modelling

Language
Vocab.

#1.1

…

Language
Vocab.

#1.k

SysML4Mechatronics

CAD models

MATLAB/
Simulink

Fig. 14.13 Semantic mediation between language, domain, and base vocabularies

The result of a mediation from the respective use case models to the base vocab-

ulary is illustrated in Fig. 14.14. As can be seen, attributes’ values are mediated

to the common concept Constraint, which, in turn, can be either an EqualsCon-
straint (attribute’s value is specified to have a specific value), a LessThanConstraint
(attribute’s value is specified to be less than a specific value) and a GreaterThanCon-
straint (attribute’s value is specified to be greater than a specific value). By that,

inconsistency rules can be formulated by referring to the concepts defined in the

base vocabulary.

SPARQL Queries for Identifying Inconsistencies

For engineering of physical systems such as automated production systems, it is

impossible to say whether or not such systems are fully consistent (Herzig et al.

2011). The main reason is the lack of perfect knowledge about the processes and the

req:
reqVelocity

sysml4mech:
expVelocity

40.0

req:maxValue sysml4mech:value

50.0

:_b0
base:LessThan

Constraint
rdf:type

40.0

:_b2
base:Equals
Constraint

rdf:type

50.0

base:constrainedBy

:_b1
base:GreaterThan

Constraint
rdf:type

20.0

20.0

req:minValue

overlaps:equivalentTo

base:constrainedBy base:constrainedBy

SysML4Mechatronics
model

Requirements/Test
case model

Base vocabulary

Legend

RDF Ressource

RDF Property

Literal

Fig. 14.14 Result of mediating the use case models to the base vocabulary

14 Applications of Semantic Web Technologies for the Engineering ... 377

phenomena in nature (e.g., regarding precision of manufacturing processes). The

best one can do is to identify specific types of inconsistencies defined a priori by

an expert. Such inconsistencies can, for instance, result from logical contradictions

(e.g., over- or under-specifications of attributes’ values) or from violations of agreed

heuristics and guidelines (Feldmann et al. 2015b). Thinking of types of inconsisten-

cies in this manner makes the representation of inconsistencies as rules, i.e., in the

form IF condition THEN action, feasible. Consequently, to identify specific instances

of inconsistencies according to the known types of inconsistencies, we use SPARQL

SELECT queries to (1) formulate the context of, and conditions for inconsistencies

using a graph pattern (the condition) and (2) retrieve a list of those elements which

were checked for a type of inconsistency and either met, or did not meet the condi-

tion for inconsistency (the action). In this manner, inconsistency checks are similar

to unit tests.

Two exemplary inconsistency rules that serve the purpose of identifying, whether

the constraints imposed in Fig. 14.14 contradict each other or not, are illustrated in

Fig. 14.15. Therein, query 1 matches any two entities x and y identified as seman-

tically equivalent, that are constraint by an EqualsConstraint (entity x) and a Low-
erThanConstraint (entity y), respectively. The comparison of the entities’ values,

namely, ?xVal < ?yVal, is bound to the variable isInconsistent and denotes whether

the constraints are inconsistent or not. Query 2 is formulated accordingly to allow

for comparing EqualsConstraints with GreaterThanConstraints.
In the presented use cases 1 and 2, the value of the SysML4Mechatronics prop-

erty expVelocity is defined to be 50.0, whereas the value of reqVelocity in the require-

ments and test case model is defined to be greater than or equal to 20.0 as well as

lower than or equal to 40.0. Consequently, using the queries 1 and 2, it can be iden-

tified that the respective LowerThanConstraint is violated (cf. query 1), whereas the

GreaterThanConstraint is fulfilled.

Q
u

er
y

#1
Q

u
er

y
#2

Fig. 14.15 Exemplary inconsistency queries for the use case models

378 S. Feldmann et al.

Proof-of-Concept Implementation

As a proof-of-concept, a technology demonstrator was developed to demonstrate

and evaluate the technical feasibility and viability of the conceptual approach. An

overview on the basic architecture of the demonstrator is illustrated in Fig. 14.16.

For the knowledge base, the RDF triple store Apache Fuseki
9

was used. For the

purpose of demonstrating the technology, we assume that a mechanism exists for

automatically transforming the models into an RDF representation (cf. use cases 1

and 2). The mediation between the different vocabularies was formulated and per-

formed using the Apache Jena Rule Reasoning Framework.
10

The mechanism for

identifying inconsistencies is composed of a set of SPARQL queries, as well as a

SPARQL-compliant query engine. For the latter we have used ARQ,
11

which is also

a part of the Apache Jena framework. Within the control and representation layer

of our technology demonstrator, the queries can be managed, handed to the query

engine and the query results can be interpreted and visualized to the user.

Fig. 14.16 Technology demonstrator for managing inconsistencies in heterogeneous models,

extended from Feldmann et al. (2015b)

9
http://jena.apache.org/documentation/serving_data/, retrieved on 12/11/2015.

10
http://jena.apache.org/documentation/inference/, retrieved on 12/11/2015.

11
http://jena.apache.org/documentation/query/, retrieved on 12/11/2015.

http://jena.apache.org/documentation/serving_data/
http://jena.apache.org/documentation/inference/
http://jena.apache.org/documentation/query/

14 Applications of Semantic Web Technologies for the Engineering ... 379

14.7 Conclusion and Directions for Future Research

This Chapter is motivated by the challenge of developing modern automated pro-

duction systems that meet the requirements to manufacture smaller lot sizes up to

customer specific products. Such systems have to enable changes in all phases of the

system life cycle, to react on new customer or system requirements. Consequently,

it is inevitable to support the engineering of such automated production systems

by means of, e.g., ensuring consistency. As a basis to overcome this challenge, the

Chapter presented three distinct use cases that make use of Semantic Web Technolo-

gies as one means to apply logical inference and, by that, to identify inconsistencies

in and between the models. In particular, compatibility checking between mecha-

tronic modules, consistency checking between requirements and test cases, as well

as, inconsistency management between heterogeneous models were introduced in

this Chapter. Consequently, we argue that Semantic Web Technologies can be used

to support the engineering of automated production systems. Especially the applica-

tion of a knowledge-based system, in which Model-Based Engineering is combined

with Semantic Web Technologies, provides an integrated approach in which engi-

neers can apply the notations and modeling approaches that are common to them.

Although some of the challenges introduced at the beginning of this Chapter can

be addressed by the presented concepts, clearly much research is left to be done.

Research Direction 1: Identification of semantic overlaps. In our use cases, we

assumed that semantic overlaps between model entities were defined a priori by a

human. However, for more complex models and systems, we expect that manually

defining and managing overlaps is too costly. However, explicit knowledge of seman-

tic overlaps is indispensable for finding most types of inconsistencies. One means to

identify semantic overlaps was proposed in (Herzig and Paredis 2014) using a prob-

abilistic reasoning approach. We moreover argue that background knowledge of the

domain (e.g., of the automated production systems domain) can be used to efficiently

identifying and defining semantic overlaps.

Research Direction 2: Flexible definition and execution of inconsistency rules.
As shown in the use cases, RDF(S), OWL and SPARQL provide the means to for-

mulate and check for different types of inconsistencies. However, we expect that fur-

ther types of inconsistencies exist, making the investigation of the appropriateness

of the mechanism for identifying inconsistencies necessary. Furthermore, we argue

that dependencies between different types of inconsistencies occur. For instance, in

some cases, the detection of one inconsistency can make the execution of a second

inconsistency rule obsolete. Hence, preconditions for executing inconsistency rules

needs to be incorporated in future research.

Research Direction 3: Support in resolving inconsistencies. The ultimate goal of

inconsistency management is to support stakeholders in resolving inconsistencies.

Consequently, besides the visualization of detected inconsistencies, support for trac-

ing and deciding on how an inconsistency should be resolved is indispensable. In

380 S. Feldmann et al.

this way, the development of automated production systems is facilitated through

the use of Semantic Web Technologies and thus, enables engineers to create less

failure-prone systems.

Research Direction 4: Estimating the suitability of available techniques for
inconsistencymanagement. In this Chapter, Semantic Web Technologies were used

as the core technology for inconsistency management in the automated production

systems domain. Further approaches that make use of Semantic Web Technologies

are, e.g., the works of Kovalenko et al. (2014) that make use of OWL and SPARQL

as well as Steyskal and Wimmer (cf. Chap. 13) that make use of the Shapes Con-

straint Language (SHACL) (World Wide Web Consortium 2015), which is a current

working draft of the W3C. Further technologies that are being used for inconsistency

management are, e.g., the Object Constraint Language (OCL) (Object Management

Group 2014) as well as XML-based methodologies. Surely, each of these technolo-

gies has its advantages as well as disadvantages regarding, e.g., usability, compre-

hensibility as well as scalability and performance for different types and sizes of

models. One aspect to be addressed in future work is, hence, to identify, which tech-

nology is most suitable for which use case.

Acknowledgments This work was supported in part by the German Research Foundation (DFG)

Collaborative Research Centre ’Sonderforschungsbereich SFB 768—Managing cycles in innova-

tion processes—Integrated development of product-service systems based on technical products’.

Moreover, parts of this work were developed as part of the IGF-project 17259 N/1 of the Deutsche

Forschungsgesellschaft für Automatisierung und Mikroelektronik (DFAM) e.V., funded by the AiF

as part of the program to support cooperative industrial research (IGF) with funds from the Federal

Ministry of Economics and Technology (BMWi) following an Order by the German Federal Parlia-

ment. We moreover thank Christiaan J.J. Paredis, Sebastian J.I. Herzig and Ahsan Qamar (Georgia

Institute of Technology) for their support and fruitful discussions.

References

Broy, M., Feilkas, M., Herrmannsdoerfer, M., Merenda, S., Ratiu, D.: Seamless model-based devel-

opment: from isolated tools to integrated model engineering environments. Proc. IEEE 98(4),

526–545 (2010). doi:10.1109/JPROC.2009.2037771

Estévez, E., Marcos, M.: Model-based validation of industrial control systems. IEEE Trans. Ind.

Inf. 8(2), 302–310 (2012). doi:10.1109/TII.2011.2174248

Feldmann, S., Kernschmidt, K., Vogel-Heuser, B.: Combining a SysML-based modeling approach

and semantic technologies for analyzing change influences in manufacturing plant models. In:

CIRP Conference on Manufacturing Systems (2014a). doi:10.1016/j.procir.2014.01.140

Feldmann, S., Rösch, S., Legat, C., Vogel-Heuser, B.: Keeping requirements and test cases con-

sistent: towards an ontology-based approach. In: IEEE International Conference on Industrial

Informatics (2014b). doi:10.1109/INDIN.2014.6945603

Feldmann, S., Herzig, S.J.I., Kernschmidt, K., Wolfenstetter, T., Kammerl, D., Qamar, A., Linde-

mann, U., Krcmar, H., Paredis, C.J.J., Vogel-Heuser, B.: A comparison of inconsistency manage-

ment approaches using a mechatronic manufacturing system design case study. In: IEEE Interna-

tional Conference on Automation Science and Engineering (2015a). doi:10.1109/CoASE.2015.

7294055

http://dx.doi.org/10.1007/978-3-319-41490-4_13
http://dx.doi.org/10.1109/JPROC.2009.2037771
http://dx.doi.org/10.1109/TII.2011.2174248
http://dx.doi.org/10.1016/j.procir.2014.01.140
http://dx.doi.org/10.1109/INDIN.2014.6945603
http://dx.doi.org/10.1109/CoASE.2015.7294055
http://dx.doi.org/10.1109/CoASE.2015.7294055

14 Applications of Semantic Web Technologies for the Engineering ... 381

Feldmann, S., Herzig, S.J.I., Kernschmidt, K., Wolfenstetter, T., Kammerl, D., Qamar, A., Lin-

demann, U., Krcmar, H., Paredis, C.J.J., Vogel-Heuser, B.: Towards effective management of

inconsistencies in model-based engineering of automated production systems. In: IFAC Sympo-

sium on Information Control in Manufacturing (2015b). doi:10.1016/j.ifacol.2015.06.200

Gausemeier, J., Schäfer, W., Greenyer, J., Kahl, S., Pook, S., Rieke, J.: Management of cross-domain

model consistency during the development of advanced mechatronic systems. In: International

Conference on Engineering Design (2009)

Giarratano, J.C., Riley, G.: Expert Systems: Principles and Programming, 2nd edn. PWS Publishing

Co., Boston (1994)

Hametner, R., Kormann, B., Vogel-Heuser, B., Winkler, D., Zoitl, A. Test case generation approach

for industrial automation systems. In: IEEE International Conference on Automation, Robotics

and Applications (2011). doi:10.1109/ICARA.2011.6144856

Heitmeyer, C.L., Jeffords, R.D., Labaw, B.G.: Automated consistency checking of requirements

specifications. ACM Trans. Softw. Eng. Methodol. 5(3), 231–261 (1996). doi:10.1145/234426.

234431

Herzig, S.J.I., Paredis, C.J.J.: Bayesian reasoning over models. In: Workshop on Model-Driven

Engineering, Verification, and Validation (2014). http://ceur-ws.org/Vol-1235/paper-09.pdf

Herzig, S.J.I., Qamar, A., Reichwein, A., Paredis, C.J.J.: A conceptual framework for consistency

management in model-based systems engineering. In: ASME International Design Engineering

Technical Conference & Computers and Information in Engineering Conference (2011)

Hitzler, P., Krötzsch, M., Rudolph, S.: Foundations of Semantic Web Technologies. CRC Press,

Boca Raton, FL, USA (2010)

International Electrotechnical Commission: Engineering Data Exchange Format for Use in Indus-

trial Automation Systems Engineering—Automation Markup Language (2014)

Kernschmidt, K., Vogel-Heuser, B.: An interdisciplinary SysML based modeling approach for ana-

lyzing change influences in production plants to support the engineering. In: IEEE Interna-

tional Conference on Automation Science and Engineering (2013). doi:10.1109/CoASE.2013.

6654030

Kovalenko, O., Serral, E., Sabou, M., Ekaputra, F., Winkler, D., Biffl, S.: Automating cross-

disciplinary defect detection in multi-disciplinary engineering environments. In: Janowicz, K.,

Schlobach, S., Lambrix, P., Hyvnen, E. (eds.) Knowledge Engineering and Knowledge Man-

agement, Lecture Notes in Computer Science, vol. 8876, pp. 238–249. Springer International

Publishing (2014). doi:10.1007/978-3-319-13704-9_19

Leveson, N.G., Heimdahl, M.P.E., Reese, J.D.: Designing specification languages for process con-

trol systems: lessons learned and steps to the future? In: Software Engineering, Lecture Notes in

Computer Science, vol 1687, pp. 127–146. Springer, Berlin (1999). doi:10.1007/3-540-48166-

4_9

Object Management Group: MOF Model To Text Transformation Language (2008). http://www.

omg.org/spec/MOFM2T/1.0/

Object Management Group: Meta Object Facility (MOF) 2.0 Query/View/Transformation (2011).

http://www.omg.org/spec/QVT/1.1/

Object Management Group: Systems Modeling Language (SysML) (2012). http://www.omg.org/

spec/SysML/1.3/

Object Management Group: Constraint Language (OCL), Version 2.4 (2014). http://www.omg.org/

spec/OCL/2.4/

Runde, S., Fay, A.: Software support for building automation requirements engineering—an appli-

cation of semantic web technologies in automation. IEEE Trans. Ind. Inf. 7(4), 723–730 (2011).

doi:10.1109/TII.2011.2166784

Strasser, T., Rooker, M., Hegny, I., Wenger, M., Zoitl, A., Ferrarini, L., Dede, A., Colla, M.: A

research roadmap for model-driven design of embedded systems for automation components.

In: IEEE International Conference on Industrial Informatics (2009). doi:10.1109/INDIN.2009.

5195865

http://dx.doi.org/10.1016/j.ifacol.2015.06.200
http://dx.doi.org/10.1109/ICARA.2011.6144856
http://dx.doi.org/10.1145/234426.234431
http://dx.doi.org/10.1145/234426.234431
http://ceur-ws.org/Vol-1235/paper-09.pdf
http://dx.doi.org/10.1109/CoASE.2013.6654030
http://dx.doi.org/10.1109/CoASE.2013.6654030
http://dx.doi.org/10.1007/978-3-319-13704-9_19
http://dx.doi.org/10.1007/3-540-48166-4_9
http://dx.doi.org/10.1007/3-540-48166-4_9
http://www.omg.org/spec/MOFM2T/1.0/
http://www.omg.org/spec/MOFM2T/1.0/
http://www.omg.org/spec/QVT/1.1/
http://www.omg.org/spec/SysML/1.3/
http://www.omg.org/spec/SysML/1.3/
http://www.omg.org/spec/OCL/2.4/
http://www.omg.org/spec/OCL/2.4/
http://dx.doi.org/10.1109/TII.2011.2166784
http://dx.doi.org/10.1109/INDIN.2009.5195865
http://dx.doi.org/10.1109/INDIN.2009.5195865

382 S. Feldmann et al.

Vogel-Heuser, B., Legat, C., Folmer, J., Feldmann, S.: Researching Evolution in Industrial Plant

Automation: Scenarios and Documentation of the Pick and Place Unit. Technical Report TUM-

AIS-TR-01-14-02, Technische Universität München (2014). https://mediatum.ub.tum.de/node?

id=1208973

World Wide Web Consortium: Extensible Markup Language (XML) 1.0 (2008). http://www.w3.

org/TR/xml

World Wide Web Consortium: OWL 2 Web Ontology Language Document Overview (2009).

http://www.w3.org/TR/owl2-overview/

World Wide Web Consortium: SPARQL Protocol and RDF Query Language 1.1 Overview (2013).

http://www.w3.org/TR/sparql11-overview/

World Wide Web Consortium: Resource Description Framework (RDF) (2014). http://www.w3.

org/RDF/

World Wide Web Consortium: Shapes Constraint Language (SHACL) (2015). http://www.w3.org/

TR/shacl/

https://mediatum.ub.tum.de/node?id=1208973
https://mediatum.ub.tum.de/node?id=1208973
http://www.w3.org/TR/xml
http://www.w3.org/TR/xml
http://www.w3.org/TR/owl2-overview/
http://www.w3.org/TR/sparql11-overview/
http://www.w3.org/RDF/
http://www.w3.org/RDF/
http://www.w3.org/TR/shacl/
http://www.w3.org/TR/shacl/

	14 Applications of Semantic Web Technologies for the Engineering of Automated Production Systems---Three Use Cases
	14.1 Introduction
	14.2 Application Example: The Pick and Place Unit
	14.3 Challenges in the Automated Production Systems Domain
	14.4 Related Works in the Field of Inconsistency Management
	14.5 Semantic Web Technologies in a Nutshell
	14.6 Use Cases for Applying Semantic Web Technologies in the Automated Production Systems Domain
	14.6.1 Use Case 1: Ensuring the Compatibility Between Mechatronic Modules
	14.6.2 Use Case 2: Keeping Requirements and Test Cases Consistent
	14.6.3 Use Case 3: Identifying Inconsistencies in and Among Heterogeneous Engineering Models

	14.7 Conclusion and Directions for Future Research
	References

