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Abstract. Data outsourcing allows data owners to keep their data in
public clouds, which do not ensure the privacy of data and computations.
One fundamental and useful framework for processing data in a distrib-
uted fashion is MapReduce. In this paper, we investigate and present
techniques for executing MapReduce computations in the public cloud
while preserving privacy. Specifically, we propose a technique to out-
source a database using Shamir secret-sharing scheme to public clouds,
and then, provide privacy-preserving algorithms for performing search
and fetch, equijoin, and range queries using MapReduce. Consequently,
in our proposed algorithms, the public cloud cannot learn the database
or computations. All the proposed algorithms eliminate the role of the
database owner, which only creates and distributes secret-shares once,
and minimize the role of the user, which only needs to perform a sim-
ple operation for result reconstructing. We evaluate the efficiency by
(i) the number of communication rounds (between a user and a cloud),
(ii) the total amount of bit flow (between a user and a cloud), and
(iii) the computational load at the user-side and the cloud-side.

1 Introduction

Data and computation outsourcing move databases and computations from a pri-
vate cloud to a public cloud, which is not under the control of a single user. Thus,
the outsourcing results in less burden on a private cloud in terms of the main-
tenance of databases, infrastructures, and executions of queries. Unfortunately,
the ease in storing data and executing computations in the public clouds implies
a risk of violating security and privacy of the databases and the computations.

Details appear as a technical report in [7]. We thank Jeffrey Ullman for valuable
comments. This work is supported by the Rita Altura Trust Chair in Computer
Sciences, Lynne and William Frankel Center for Computer Sciences, Israel Science
Foundation (grant 428/11), the Israeli Internet Association, and the Ministry of Sci-
ence and Technology, Infrastructure Research in the Field of Advanced Computing
and Cyber Security.
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MapReduce [4] provides efficient and fault tolerant parallel processing of
large-scale data without dealing with security and privacy of data and com-
putations. The main obstacle for providing privacy-preserving framework for
MapReduce in the adversarial (public) clouds is computational and storage effi-
ciency. An adversarial cloud may breach the privacy of data and computations.
In this paper, we present techniques for executing MapReduce computations in
public cloud while preserving privacy.

Motivating examples. We present an example of equijoin to show the need
for security and privacy of data and query execution using MapReduce in the
public cloud.

Secure and privacy-preserving equijoin of two relations X(A,B) and
Y (B,C). Problem statement : The join of relations X(A,B) and Y (B,C), where
the joining attribute is B, provides output tuples 〈a, b, c〉, where (a, b) is in X
and (b, c) is in Y . In the equijoin of X(A,B) and Y (B,C), all tuples of both the
relations with an identical value of the attribute B should appear together for
providing the final output tuples.

Consider that the relations X and Y belong to two organizations, e.g., a com-
pany and a hospital, while a third user wants to perform the equijoin. However,
both the two organizations want to provide results while maintaining the pri-
vacy of their databases, i.e., without revealing the whole database to the other
organization or the user. Hence, it is required to perform the equijoin in a secure
and privacy-preserving manner.

Our contributions. We are interested in making a secure and privacy-preserving
computation execution and storage-efficient technique for MapReduce computa-
tions in the public clouds. Hence, our focus is on information-theoretically secure
data and computation outsourcing technique and query execution using MapRe-
duce. Specifically, we use Shamir secret-sharing (SSS) [14] for making secret-
shares of each tuple of a relation and send them to the clouds. A user can execute
her queries using accumulating-automata (AA) [5] on these secret-shares without
revealing queries/data to the cloud. We can perform count (Sect. 4.1), search and
fetch operations (Sect. 4.2) in a privacy-preserving manner. Due to the space lim-
itation, we omit details of privacy-preserving range selection and equijoin, which
may be found in [7].

Related work. PRISM [2], PIRMAP [12], EPiC [1], MrCrypt [16], and
Crypsis [15] provide privacy-preserving MapReduce execution in the cloud on
encrypted data. However, all these protocols increase computation time due to
dependency on encryption and decryption of data.

The authors [8] provide a privacy-preserving join operation using secret-
sharing. However, the approach [8] requires that two different data owners share
some information for constructing an identical share for identical values in their
relations. The authors [9] provide a technique for data outsourcing using a varia-
tion of SSS. However, the approach [9] suffers from two major disadvantages, as
follows: (i) in order to produce an answer to a query, the data owner has to work
on all the shares, and hence, the data owner performs a lot of work instead of the
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cloud; and (ii) a third party cannot directly issue any query on secret-shares,
and it has to contact with the data owner. In [9], the authors provide a way for
constructing polynomials that can maintain the orders of the secrets. However,
this kind of polynomial is based on an integer ring (no modular reduction) rather
than a finite field; thus, it has potential security risk.

There are some other works [3,10,11] that provide searching operations on
secret-shares. In [11], a data owner builds a Merkle hash tree [13] according to
a query. In [10], a user knows the addresses of the desired tuples, so they can
fetch all those tuples obliviously from the clouds without performing a search
operation in the cloud.

Table 1. Comparison of different algorithms with our algorithms.

Algorithms Communication Computational cost # rounds Matching Based

cost on

User Cloud

Count operation

EPiC [1] O(1) O(1) O(n) 1 Online E

Our solution 4.1 O(1) O(1) nw 1 Online SS

Search and single tuple fetch operation

Chor et al. [3] O(nmw) O(1) O(nmw) log2n Online SS

PRISM [2] O((nm)
1
2 w) O((nm)

1
2 w) O(nmw) q E

Our solution 4.2 O(mw) O(mw) O(mw) 1 Online SS

Search and multi-tuples fetch operation

rPIR [10] O(nm) O(1) O(nmw) 1 No SS

PIRMAP [12] O(nmw) O(mw) O(nmw) 1 No E

Goldberg [11] O(n + m) O(m) O(nm) 2 Offline SS

Emekci et al. [9] O(�m) O(�m) O(n) 2 Offline vSS

Our solution:

knowing

addresses 4.2

O((log�n +

log2�)�
) O((log�n +

log2�)�
) O((log�n +

log2�)�nw
) �log�n� +

�log2�� + 1

Online SS

Our solution:

fetching

tuples 4.2

O((n + m)�w) O((n + �m)w) O(�nmw) 1 Online SS

Equijoin

Our solution

(see in [7])

2nwk+2k�2mw 2nw +2k�2mw 2�2kmw 2k Online SS

Notations: Online: perform string matching in the cloud. Offline: perform string matching at the user-

side. E: encryption-decryption based. SS: Secret-sharing based. vSS: a variant of SS. n: # tuples, m: #

attributes, �: # occurrences of a pattern (� ≤ n), w: bit-length of a pattern.

To the best of our knowledge, there is no algorithm that (i) eliminates
the need of a database owner except one time creation and distribution of
secret-shares, (ii) minimizes the overhead at the user-side, and (ii) provides
information-theoretically secure MapReduce computations in the cloud. In this
paper, we build a technique for data and computation outsourcing based on SSS
and AA [5]. In addition, our algorithms can perform a string matching oper-
ation on secret-shares in the cloud, without downloading the whole database of
the form of secret-shares. However, most of the existing secret-sharing based
privacy-preserving algorithms are unable to do string matching operations in
the cloud; see Table 1.
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The proposed technique overcomes all the disadvantages of the existing
secret-sharing based data outsourcing techniques [3,8–11]. Thus, there is no
need for (i) sharing information among different data owners, (ii) working at the
database owners, except creation and distribution of secret-shares, (iii) having
an identical share for multiple occurrences of a value, and (iv) a third party can
directly execute her queries in the clouds without revealing her queries to the
clouds.

2 System and Adversarial Settings

We consider, for the first time, data and computation outsourcing of the form
of secret-shares to c non-communicating clouds that they do not exchange data
with each other, only exchange data with the user or the database owner.

The system architecture. The architecture is simple but powerful and
assumes the following:
Step 1. A data owner outsources her databases of the form of secret-shares to
c (non-communicating) clouds only once; see Step 1 in Fig. 1. We use c clouds
to provide privacy-preserving computations. Note that a single cloud cannot
provide privacy-preserving computations using secret-sharing.
Step 2. A preliminary step is carried out at the user-side who wants to perform
a MapReduce computation. The user sends a query of the form of secret-shares
to all c clouds to find the desired result of the form of secret-shares; see Step 2
in Fig. 1. The query must be sent to at least c′ < c number of clouds, where c′

is the threshold of SSS.

Fig. 1. The system architecture.

Step 3. The clouds
deploy a master
process that exe-
cutes the compu-
tation by assigning
the map tasks and
the reduce tasks;
see Step 3 in Fig. 1.
The user interacts
only with the mas-
ter process in the
cloud, and the mas-
ter process provides
the addresses of the
outputs to the user.
It must be noted
that the communi-
cation between the
user and the clouds
is presumed to be
the same as the communication between the user and the master process.
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Step 4. The user fetches the outputs from the clouds and performs interpolation
(with the help of reducers) for obtaining the secret-values; see Step 4 in Fig. 1.

Adversarial Settings. We assume, on one hand, that an adversary cannot
launch any attack against the data owner. Also, the adversary cannot access
the secret-sharing algorithm and machines at the database owner side. On the
other hand, an adversary can access public clouds and data stored therein. A
user who wants to perform a computation on the data stored in public clouds
may also behave as an adversary. Moreover, the cloud itself can behave as an
adversary, since it has complete privileges to all the machines and storage. Both
the user and the cloud can launch any attack for compromising the privacy
of data or computations. We consider an honest-but-curious adversary, which
performs assigned computations correctly, but tries to breach the privacy of
data or MapReduce computations. However, such an adversary does not modify
or delete information from the data. We assume that an adversary can know
less than c′ < c clouds locations that store databases and execute queries. In
addition, the adversary cannot eavesdrop all the c′ or c channels (between the
database owner and the clouds, and between the user and the clouds). Hence,
we do not impose private communication channels. Under such an adversarial
setting, we provide a guaranteed solution so that an adversary cannot learn the
data or computations. It is important to mention that an adversary can break
our protocols by colluding c′ clouds, which is the threshold for which the secret
sharing scheme is designed for.

Parameters for analysis. We analyze our privacy-preserving algorithms on
the following parameters: (i) communication cost : is the sum of all the bits that
are required to transfer between a user and a cloud; (ii) computational cost : is
the sum of all the bits over which a cloud or a user works; and (iii) number of
rounds: shows how many times a user communicates with a cloud for obtaining
the results.

3 Creation and Distribution of Secret-Shares of a
Relation

Assume that a database only contains English words. Since the English alphabet
consists of 26 letters, each letter can be represented as a unary vector with 26 bits.
Hence, the letter ‘A’ is represented as (11, 02, 03, . . . , 026), where the subscript
represents the position of the letter; since ‘A’ is the first letter, the first value in
the vector is one and others are zero. Similarly, ‘B’ is (01, 12, 03, . . . , 026), and so
on.

The reason of using unary representation here is that it is very easy for
verifying two identical letters. The expression S =

∑r
i=0 ui × vi, compares two

letters, where (u0, u1, · · · ur) and (v0, v1, · · · , vr) are two unary representations. It
is clear that whenever any two letters are identical, S is equal to one; otherwise, S
is equal to zero. Binary representation can also be accepted, but the comparison
function is different from that used in the unary representation [6].
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A secure way for creating secret-shares. When outsourcing a vector to the
clouds, we use SSS and make secret-shares of every bit by selecting different
polynomials of an identical degree. For example, we create secret-shares of the
vector of ‘A’ ((11, 02, 03, . . . , 026)) by using 26 polynomials of an identical degree,
since the length of the vector is 26. Following that, we can create secret-shares
for all the other letters and distribute them to different clouds.

Since we use SSS, a cloud cannot infer a secret. Moreover, it is important to
emphasize that we use different polynomials for creating secret shares of each
letter; thereby multiple occurrences of a word in a database have different secret-
shares. Therefore, a cloud is also unable to know the total number of occurrences
of a word in the whole database.

Secret-shares of numeral values. We follow the similar approach for creating
secret-shares of numeral values as used for alphabets. In particular, we create a
unary vector of length 10 and put all the values 0 except only 1 according to
the position of a number. For example, ‘1’ becomes (11, 02, . . . , 010). After that,
use SSS to make secret-shares of every bit in each vector by selecting different
polynomials of an identical degree for each number, and send them to multiple
clouds.

4 Privacy-Preserving Query Processing on Secret-Shares
Using MapReduce in the Clouds

4.1 Count Query

We present a privacy-preserving algorithm for counting the number of occur-
rences of a pattern, p, in the cloud; throughout this section, we denote a pattern
by p. This algorithm is divided into two phases, as: Phase 1: Privacy-preserving
counting in the clouds and Phase 2: Result reconstruction at the user-side.

In short, we apply a string matching algorithm, which is done using AA that
compares each value of a relation with p. If a value and p match, it will result
in 1; otherwise, we have 0. We apply the same algorithm on each value and
accumulate all one that provide the number of occurrences of p. Note that all
the values of a relation, a pattern, and the result, i.e., 0 or 1, are of the form of
secret-share.

Working at the user-side. A user creates unary vectors for each letter of p. In
order to hide the vectors of p, the user creates secret-shares of each vector of p,
as suggested in Sect. 3, sends them to c clouds. In addition, the user sends length
(x) of p and the attribute of the relation (m′) where to count p, to c clouds.

Working in the cloud. Now, a cloud has two things, as: (i) a relation of the
form secret-shares, and (ii) a searching pattern of the form of secret-shares with
its length, x. In order to count the number of occurrences of p, the mapper in
the cloud performs x+1 steps, see Table 2, for comparing the pattern with each
value of the specified attribute of the relation.
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Table 2. The steps executed by a mapper for
a pattern of length x.

Step 1: N1 = 1, N0
x = 0

Step 2: N
(i)
2 = N1 × v1

Step 3: N
(i)
3 = N

(i)
2 × v2

.

.

.

Step x + 1: N(i)
x = N(i−1)

x + N
(i)
x−1 × vx−1

The notation N
(i)
j shows that the node j is

executing a step in iteration i. The final value
of the node Nx+1, which is sent to the user, is
the number of occurrences of the pattern

At this time, the mapper is
unable to know the value of the
node Nx+1 in each iteration and
sends the final value of Nx+1 to
the user of form of a 〈key , value〉
pair, where a key is an identity
of an input split over which the
operation has performed, and the
corresponding value is the final
value of the node Nx+1 of the
form of secret-shares. The user col-
lects 〈key , value〉 pairs from all the
clouds or a sufficient number of
clouds such that the secret can be generated using those shares.

Result reconstruction at the user-side. We need to reconstruct the final
value of the node Nx+1. The user has 〈key , value〉 pairs from all the clouds.
All the values corresponding to a key are assigned to a reducer that performs
Lagrange interpolation and provides the final value of the node Nx+1. If there
are more than one reducer, then after the interpolation the sum of the final
values shows the total occurrences of p.

Aside. If a user searches John in a database containing names like ‘John’ and
‘Johnson,’ then our algorithm will show two occurrences of John. However, it is a
problem associated with string matching. In order to search a pattern precisely,
we may use the terminating symbol for indicating the end of the pattern.

4.2 Search and Fetch Queries

In this section, we provide a privacy-preserving algorithm for fetching all the
tuples containing p. The proposed algorithms first count the number of tuples
containing p, and then, fetch all the tuples after obtaining their addresses. Specif-
ically, we provide 2-phased algorithms, where: Phase 1: Finding addresses of
tuples containing p, and Phase 2: Fetching all the tuples containing p.

Unary occurrence of a pattern. When only one tuple contains p, there is
no need to obtain the address of the tuple, and hence, we fetch the whole tuple
in a privacy-preserving manner. Here, we explain how to fetch a single tuple
containing p.

Fetching the tuple. The user sends secret-shares of p. The cloud executes a map
function on a specific attribute, and the map function matches p with ith value
of the attribute. Consequently, the map function results in either 0 or 1 of the
form of secret-shares, if p matches the ith value of the attribute, then the result
is 1. After that the map function multiplies the result (0 or 1) to all the m values
of the ith tuple. In this manner, the map function creates a relation of n tuples
and m attributes. When the map function finishes over all the n tuples, it adds
and sends all the secret-shares of each attribute, as: S1||S2|| . . . ||Sm to the user,
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where Si is the sum of the secret-shares of ith attribute. The user on receiving
shares from all the clouds executes a reduce function that performs interpolation
and provides the desired tuple containing p.

Aside. When we multiply the output of the string matching operation, which
is of the form of secret-shares, to all the values in a tuple, it results in all the
value of the tuple either 0 or 1 of the form of secret-shares. Thus, the sum of
all the secret-shares of an attribute results in only the value of the attribute
corresponding to the tuple containing p. By performing identical operations on
each tuple and finally adding all the secret-shares of each attribute, the cloud is
unable to know which tuple is fetched.

Multiple occurrences of a pattern. When multiple tuples contain p, we can-
not fetch all those tuples obliviously without obtaining their addresses. There-
fore, we first need to perform a pattern search algorithm to obtain the addresses
of all the tuples containing p, and then, fetch the tuples in a privacy-preserving
manner. Throughout this section, we consider that � tuples contain p. This algo-
rithms has 2-phases, as follow: Phase 1: Finding the addresses of the desired �
tuples, and Phase 2: Fetching all the � tuples.

Tree-based algorithm. We propose a search-tree-based keyword search algorithm
that consists of two phases, as: finding the address of the desired � tuples in
multiple rounds, and then, fetching all the � tuples in one more round. We can
also obtain the addresses (or line numbers) in a privacy-preserving manner, if
there is only a tuple contains p. Thus, for the case of finding addresses of �
tuples containing p, we divide the whole relation into certain blocks such that
each block belongs to one of the following cases:

1. A block contains no occurrence of p, and hence, no fetch operation is needed.
2. A block contains one/multiple tuples but only a single tuple contains p.
3. A block contains h tuples, and all the h tuples contain p.
4. A block contains multiple tuples but fewer tuples contain p.

Finding addresses. We follow an idea of partitioning the database and counting
the occurrences of p in the partitions, until each partition satisfies one of the
above mentioned cases. Specifically, we initiate a sequence of Query &Answer
(Q&A) rounds. In the first round of Q&A, we count occurrences of p in the
whole database (or in an assigned input split to a mapper) and then partition
the database into � blocks, since we assumed that � tuples contain p. In the
second round, we again count occurrences of p in each block and focus on the
blocks satisfying Case 4. There is no need to consider the blocks satisfying Case
2 or 3, since we can apply the algorithm given for unary occurrence of a pattern,
in both the cases. However, if the multiple tuples of a block in the second round
contain p, i.e., Case 4, we again partition such a block until it satisfies either
Case 1, 2 or 3. After that, we can obtain the addresses of the related tuples using
the method similar to the algorithm given for unary occurrence of a pattern.

Fetching tuples. We use the approach described in the naive algorithm for fetch-
ing multiple tuples after obtaining the addresses of the tuples.
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5 Conclusion

MapReduce provides efficient large-scale data processing without dealing with
the privacy and security of data and computations. In order to avoid overheads
for maintaining and executing queries at the database owner side, a database is
outsourced to untrusted public clouds that can reveal the database and computa-
tions. We proposed a new information-theoretically secure data and computation
outsourcing technique. By the proposed techniques, users can execute their com-
putations in the public cloud without any need of the database owner, and the
cloud cannot learn the database or the computations. We provided MapReduce
based privacy-preserving algorithms to execute count, search, and fetch quires
in the public clouds. Due to the space limitation, privacy-preserving range queries
and equijoin are presented in [7]. As compared to the existing algorithms, our
algorithms provide perfect privacy protection without introducing computation
and communication overhead.
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8. Emekçi, F., Agrawal, D., El Abbadi, A., Gulbeden, A.: Privacy preserving query
processing using third parties. In: ICDE, p. 27 (2006)
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