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Preface

These proceedings contain the papers selected for presentation at the 30th IFIP WG
11.3 Conference on Data and Applications Security (DBSec16), held in Trento, Italy,
July 18–20, 2016.

DBSec16 received 54 submissions that were evaluated on the basis of their sig-
nificance, novelty, technical quality, and appropriateness to the DBSec audience. Each
paper was reviewed by at least three members of the Program Committee. After
intensive reviewing and electronic discussions, 17 full papers and 7 short papers were
selected for presentation at the conference. Their topics cover a wide range of data and
application security and privacy problems including those of mobile devices, collab-
orative systems, databases, big data, virtual systems, cloud computing, and social
networks. The program also included two invited talks.

We would like to thank all the people who invested their time and energy to make
this year’s edition of DBSec happen. In particular, we thank the authors for submitting
their manuscripts and the attendees for contributing to the conference discussion. We
are also very grateful to the members of the Program Committee and to the external
reviewers for carefully reviewing and discussing the submissions, and for their com-
mitment to meeting the strict deadlines.

We thank the people at Springer for their assistance in publishing these proceedings.
Last but certainly not least, our thanks go to everybody involved in the organization
of the event, most notably to Sabrina De Capitani di Vimercati (IFIP WG 11.3 Chair)
for her guidance and support, Alessandro Armando (Conference Chair), Giovanni
Livraga (Publicity Chair), Roberto Carbone (Local Organization Chair), and Federico
Sinigaglia (Web Master).

We hope you find the proceedings of DBSec16 interesting, stimulating, and
inspiring for your future research.

July 2016 Silvio Ranise
Vipin Swarup
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Deciphering Text from Touchscreen Key Taps

Haritabh Gupta1, Shamik Sural1(B), Vijayalakshmi Atluri2,
and Jaideep Vaidya2

1 Department of Computer Science and Engineering, Indian Institute of Technology,
Kharagpur, India

{haritabh,shamik}@sit.iitkgp.ernet.in
2 Management Science and Information Systems Department, Rutgers University,

Newark, USA
{atluri,jsvaidya}@rutgers.edu

Abstract. Exploiting acoustic emanations from electronic as well as
mechanical devices as a means for side channel attack has recently
emerged as a topic of security concern. In this paper, we present an attack
methodology that can be used to extract the text typed by a user from
the sound recorded by the built-in microphones of a mobile phone. We
use signal processing techniques to initially extract a likely set of charac-
ters per tap on the touchscreen and then use natural language processing
algorithms to find the most probable words and sentences that can be
constructed from a given tap sequence. We also discuss the causes that
result in this vulnerability and briefly present some countermeasures.

Keywords: Acoustic emanation · Touchscreen · Side-channel attack ·
Time Difference of Arrival (TDoA) · NLP

1 Introduction

In recent times, mobile phones have almost become a necessity rather than a lux-
ury for a large section of people throughout the world. Reports show that mobile
phone penetration will reach approximately 70 % of the global population by the
year 2020. With increased reliance on mobile phones, especially for personal and
confidential information exchange like mobile-commerce applications, the level
of security ensured by these devices is an important topical issue.

Many users have started using phones for doing almost all of the work that
they used to do on computers even a few years back. Although these mobile
devices are yet to replace computers in their entirety, still a majority of the work
has now shifted to the mobile devices due to various reasons such as mobility,
portability, etc. Tasks range from composing e-mails, editing documents and
accessing e-banking sites to surfing the net, using various applications (apps) like
cab and hotel booking, chatting and participating in online social networking.
All these tasks involve text input using a keypad, which is typically touchscreen
in nature. In this paper, mobile phones (including smartphones and tablets) are

c© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing Switzerland 2016. All Rights Reserved
S. Ranise and V. Swarup (Eds.): DBSec 2016, LNCS 9766, pp. 3–18, 2016.
DOI: 10.1007/978-3-319-41483-6 1



4 H. Gupta et al.

hereinafter referred to simply as phones and they represent mobile devices that
have a touchscreen user interface and have features like Internet access, support
for recording and storing media files.

Most phones today are equipped with at least two microphones. Since these
microphones are attached to the phone body, they pick up even the slightest
sound produced on the surface of the phone. As a user taps on the touchscreen
while typing, it produces a sound that may not be quite audible to the human
ear due to the presence of ambient noise. Such tap sounds can, however, be
captured using the microphones of the phone itself. A user hardly ever denies
microphone use permission and Internet access to an app while installing the
same. Also, an app is not considered to be suspicious unless it asks for some
unusual combination of permissions. We show that even the above two seemingly
innocuous permissions can be maliciously exploited to extract the text typed on
the device and thus cause a security breach.

In the past, there has been some limited work that shows ways to recover
text using acoustic emanations from mechanical keyboards [7]. They use external
microphones to capture the sound and the recorded sound is used to train classi-
fiers that differentiate between the sounds produced by different keys. It has also
been shown that the sensors equipped with mobile phones such as accelerometer
and gyroscope can be used for text extraction [8,10,11]. While such an approach
uses the sensors attached to the phone, still it requires supervised learning. The
possibility of exploiting the audio signal captured by the built-in microphones
of a phone to decipher the typed text has never been studied, to the best of our
knowledge.

This paper presents a novel methodology for carrying out a side-channel
attack using acoustic emanations from the touchscreen keypad of a phone and
that too using readily available tools. The approach is based on phone geometry
and keypad layout, while using signal processing and natural language processing
(NLP) techniques.

The rest of the paper is organized as follows: Sect. 2 describes our method-
ology and the associated algorithms in detail. Section 3 provides the complete
workflow of an implemented system. Section 4 presents the results obtained in
terms of accuracy of the proposed methodology. Related work is reviewed in
Sect. 5. Some preventive measures are discussed in Sect. 6. Finally, Sect. 7 con-
cludes the paper and presents some directions in which this work can be carried
forward in future.

2 Attack Methodology

The complete methodology of the attack can be divided into two phases. The
first phase, which is described in Subsect. 2.1, uses signal processing techniques
to determine the probability of different characters that might have been entered
with each tap using the audio signal received by the two microphones. It exploits
the phone geometry and touchscreen keypad layout. In the second phase (Sub-
sect. 2.2), NLP techniques are used to extract the probable word sequence that
has been typed by processing the output of the first phase.
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2.1 Character Sequence Extraction Using Microphone Data

Most of the phones nowadays are equipped with at least two microphones with
stereo recording capability. As a user types on the phone touchscreen, it pro-
duces a sound for each tap. The microphones, which are quite close to the touch
surface, capture this sound. There is hardly any damping as the microphones are
solidly attached to the phone body. The two microphones are almost invariably
positioned at unequal distances from the point of touch. As a result, from the
recorded sound of key taps, the time difference of arrival (TDoA) of peaks in the
two microphones can be computed. For each TDoA, the locus of the touch point
such that the difference of its distance from the two microphones is constant,
forms a hyperbola, with the two microphones at its two foci. Depending on the
sign of TDoA, it can be inferred which half of the hyperbola is meaningful for
a given key tap. We compute TDoA using cross correlation [2] between the two
audio signals recorded at the two microphones as explained below.

The co-ordinate system is defined such that the top left corner of the phone,
while holding it upright and facing front, coincides with the origin and the left
edge is parallel to the x-axis. As a result, one microphone (denoted as m1)
lies on the y-axis and the other (denoted as m2) is in the first quadrant. Let
the coordinates of the microphones be (0, p) and (l, q), respectively. Then the
phone can be represented as shown in Fig. 1a. Thus, the vertex of the hyperbola,
as mentioned above, also lies in the first quadrant. Hence, we use the general
equation of a hyperbola with vertex at (x0, y0). The equation to represent this
hyperbola from the obtained TDoA is as follows:

(x − x0)2

a2
− (y − y0)2

b2
= 1 (1)

m1( 0 , p )

m2 ( l  , q  ) 

( x , y  ) 

d1
d2

2c

( x 0 , y 0 )

(a) (b)

Fig. 1. (a) Hyperbola coverage on keyboard with k = 3. (b) Hyperbola coverage on
keyboard with k = 6.
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In Eq. 1, (x, y) represents any arbitrary tap point while a and b denote para-
meters of the desired semi-hyperbola. The following equations are used to com-
pute these parameters in terms of other known and measurable quantities.

a =
Δd

2
, where Δd = |d1 − d2| (2)

Here, di is the distance of the ith microphone from the tapped point on the
touchscreen, i ∈ {1, 2}. From Fig. 1a, it is seen that

c =

√
(l − 0)2 + (q − p)2

2
(3)

Here, l, p, q are phone parameters of which l denotes the length of the phone
(dimension of the longer edge). p and q denote the distances of the microphones
m1 and m2, respectively from the base of the phone. Hence, we can write:

b =
√

c2 − a2 (4)
x0 = c (5)

y0 = min(p, q) (6)

Simplifying and solving for x in terms of y from Eq. 1, we get:

x = x0 ±
(a

b

√
b2 + (y − y0)2

)
(7)

We use this equation to obtain the values of x corresponding to the values of
y, where y = [0, w], w being the width of the phone. Δd is computed using the
TDoA obtained and the parameters of the recorded sound, namely, the sampling
frequency fs and the sample offset Δs. Sample offset is the value by which one
of the audio signals needs to be shifted so that the correlation between the
two signals is maximum. The rest of the parameter values are computed using
Eqs. 2 to 7. Δd is obtained from Δs and fs using Eqs. 8 and 9 as follows:

TDoA =
Δs

fs
(8)

Δd = vsound · TDoA (9)

Thus, by computing the value of TDoA, we can obtain the desired hyper-
bola. Hence, the problem of determining the hyperbola parameters reduces to
estimating the TDoA (or sample offset Δs) between the signals received by the
two microphones. In the rest of the text, the terms TDoA and Δs are used
interchangeably because from Eq. 8, it is evident that we can compute one from
the other as fs is kept constant.

From the recorded audio signals of the microphones, the first task is to detect
the tap instants (peaks in the signal). We present an automated scheme for
peak detection, which is shown as the Detect Peak Intervals algorithm (Algo-
rithm 1). It takes the audio signals as input and returns a set of time intervals,
each containing only one tap. A detailed description of the algorithm follows.
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Algorithm 1. Detect Peak Intervals

Input: Sound signal xi(t) where i ∈ {1, 2}, half window size wh, threshold θ
Output: Set of intervals containing taps: intervals
1: for t=1 to n do � Calculate Energy
2: Ai(t) =

∑t+10
n=t x2

i (n), where i ∈ {1, 2}
3: end for
4: for t = 1 to A.length do � A ∈ {A1, A2}
5: sk and ek store beginning and end of a window around the selected time t
6: [M, I] ← max(Ai(sk : ek)) where i ∈ {1, 2} � I : index of the maximum value
7: if t = I + sk and M > θ · max(A) then
8: tmpIntr ← tmpIntr ∪ (sk : ek)
9: end if

10: end for
11: intervals contains time readjusted and center positioned peaks
12: return intervals

In Algorithm 1, the for loop of Lines 1–3 computes the energy levels of
the signal by accumulating 10 sample points together. Next, in the for loop of
Lines 4–10, for each sample point, first the beginning and end points of the
interval window are set in variables sk and ek for the kth sample point. Lines
6–9 compute the maxima of the signal in the interval. If this value is greater
than the threshold computed according to θ, then the corresponding interval is
added to the set tmpIntr. Finally, the computed time intervals are readjusted
so that the peaks are positioned at the center of each interval.

Algorithm 1 runs in O(n) time as there are three loops in the algorithm of
complexity O(n), O(n) and O(k), respectively. Here, n is the number of sample
points of the audio signal, k is the number of taps in the recording and n � k.

The output of Algorithm 1 is a set of intervals, each of which contains a tap.
These intervals are further processed to get the TDoA corresponding to each
tap. We next propose an algorithm (Compute TDoA) to find the sample offset
Δs of the two signals in a given interval, which is shown in Algorithm 2. It takes
the audio signals (x1 and x2) from the two microphones (m1 and m2) and for
each of the intervals obtained from Algorithm 1, finds their cross-correlation.
Then it takes the median of the top p peaks.

The for loop of Lines 3–13 in Algorithm 2 selects each interval from the set of
intervals one at a time. Next, the for loop of Lines 7–11 selects the top p peaks
(empirically set to a value of 3) from the cross correlation. Line 12 adds the
computed median to the set lagMedian. The final lagMedian set is returned
by the algorithm.

The set of time lags thus obtained is used to determine the hyperbola cor-
responding to each tap. The locus of the valid semi-hyperbola obtained using
Eq. 7, when overlayed on the keyboard layout as shown in Fig. 1b, returns the
shortest distance of each key from the semi-hyperbola. The probability with
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Algorithm 2. Compute TDoA

Input: Set of intervals intervals each containing one peak, audio signal xi(t) where
i ∈ {1, 2}
Output: Set of TDoA corresponding to each peak: lagMedian
1: lagMedian ← φ
2: p ← 3 � Median of p peaks is computed
3: for n = 1 to intervals.length do
4: si = xi(sn : en), where (sn, en) = interval[n] and i ∈ {1, 2}
5: [acorr, lag] ← xcorr(s1, s2) � Compute cross-correlation
6: lagTemp ← φ
7: for i = 1 to p do
8: [M, I] ← max(||acorr||) � I is the index of the maximum value
9: acorr[I] ← 0

10: lagTemp ← lagTemp ∪ M
11: end for
12: lagMedian ← lagMedian ∪ median(lagTemp)
13: end for
14: return lagMedian

which a key is pressed, i.e., the individual character entered by the user, is con-
sidered to be inversely proportional to the shortest distance of the key from the
semi-hyperbola. Thus, we obtain the top k most probable characters for each
TDoA and hence, for each key tap.

2.2 Word and Sentence Inferencing from Probable Character
Sequence

This subsection describes the methodology used to construct sentences from the
sequence of characters obtained using Algorithm 2 of Subsect. 2.1.

To carry out the attack, uni-gram, bi-gram and tri-gram probabilities are
used. The character-level n-grams as well as word-level n-gram counts are learned
from the e-mail corpus1 in a pre-processing step.

The probability of occurrence of an n-gram is the count of that n-gram
divided by the total number of n-grams. However, since the number of n-grams
is very large, the probability value comes out to be too small. To compute the
probability of a string, we need to multiply these n-gram probabilities. If we
use the actual probability values, the product might cause an underflow. On the
other hand, taking the product of the count of n-grams results in an overflow.
Hence, to avoid both underflow and overflow, instead of using the probabilities
directly, we introduce the notion of pseudo − probability, which is the log of
the count of n-grams. The steps for computing pseudo-probability are shown in
Algorithm 3 (Compute pseudo-probability of a string).

1 Enron Mail corpus: https://www.cs.cmu.edu/∼./enron/.

https://www.cs.cmu.edu/~./enron/
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Algorithm 3. Compute pseudo-probability of a string

Input: Candidate string str, weight factor ω, maximum n-gram length nGrams
Output: Pseudo-probability of string: prob
1: prob ← 0
2: for l = 1 to nGrams do
3: if l > str.length then
4: break
5: end if
6: probt ← 0
7: for i = 1 to str.length do
8: subStr ← str[i : i + l]
9: probt ← probt + log(gramCount(subStr)) + 1

10: end for
11: prob ← prob + (probt) · ωl � weighted sum of n-gram pseudo-probabilities
12: end for
13: return prob

In this algorithm, the outer for loop of Lines 2–12 runs the inner loop con-
sidering i-grams in its ith iteration. The inner for loop of Lines 7–10 picks up an
i-gram from the string, computes its pseudo-probability, and adds it to the tem-
porary variable probt. Finally, Line 11 adds the temporary probability (probt)
to the total probability variable prob of the string after multiplying it with the
appropriate weight factor.

There are two loops in Algorithm 3. The outer loop runs n times if n-grams
are used for the computation, while the inner loop runs in the order of the length
of the string, denoted here as l. Hence, the overall time complexity is O(n · l)

From the computed score of strings, we build an inference tree to determine
the most probable text that was typed. The language model is based on n-
gram and inference based tree [4,13]. The character-level n-grams are used to
construct a word-level inference tree. At each level, we include the next set of
probable characters and recompute the probabilities of the strings thus obtained.
At every level, only the top k nodes are retained and the rest are pruned. This
prevents the tree from expanding exponentially. In the last level of the tree, we
are left with k most probable words that can be constructed using the character
sequences obtained from the algorithms presented in Subsect. 2.1.

The node used to create the tree in Algorithm 4 is a three-tuple represented as
node = 〈string, prob, children〉, where string is the partial word that is stored
in the node. prob stores the pseudo-probability of this partial word computed
using Algorithm 3. The children for this node is stored in the list children. In
this tree, for any child node c, if p is its parent node, then p.string is a prefix
of c.string (Property 1 ). Also, the tree is constructed in such a way that at any
level l of the inference tree, the maximum number of nodes does not exceed n,
where n is a user-defined input parameter (Property 2 ).

We propose an algorithm (Generate Word − level inference tree) that
builds the word-level inference tree whose properties and node structure are
defined in the previous paragraph. It is shown in Algorithm 4.
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Algorithm 4. Generate Word − level inference tree

Input: Probable characters of a word in 2-d array aplha, child count c
Output: set of c most probable words: words
1: initialize root node and set all parameters to φ
2: for i = 1 to alpha.length do
3: allLeaves ← getLeaves(root)
4: trLeaves ← truncateLeaves(allLeaves, c)
5: for all curr ∈ trLeaves do
6: for all ch ∈ alpha[i] do
7: t ← φ
8: t.string ← curr.string · ch � append ch to the string of parent node
9: t.prob ← stringProb(t.string)/t.string.length � Compute

pseudo-probability of string t.string and normalize by string length
10: curr.children ← curr.children ∪ t
11: end for
12: end for
13: end for
14: return getLeaves(root)

This algorithm builds the inference tree one level at a time. Each level of
the tree adds to the tree, the set of probable characters corresponding to the
next tap. The outermost for loop of Lines 2–13 selects the set of characters
corresponding to the ith tap in the ith iteration. Next, the leaf nodes in the
tree are pruned so that the tree retains Property 2. The for loop of Lines 5–12
selects each of the remaining leaves one at a time. Pruning of leaves is done
using the Truncate leaves procedure as shown in Algorithm 5. The for loop of
Lines 6–11 adds new child nodes to the current node and sets the string so that
they satisfy Property 1. The prob value in new nodes (denoted as t) is computed
using Algorithm 3. Algorithm 4 terminates when all the probable characters
corresponding to all the key taps have been added to the tree.

There are three nested for loops in Algorithm 4, with time complexity of
O(n), O(c) and O(k), respectively. Here, n is the total number of taps, k is
the number of probable characters returned per tap and c is the number of
allowed child nodes per level. Invocation of Truncate leaves() contributes to
O(l) time, where l is the number of nodes at a level prior to pruning. So, the
time complexity of Algorithm 4 is O(n · (O(l) + (c · k))). c and k being fixed
parameters and independent of the input size n, the time complexity becomes
O(n · l).

A similar approach is used to build a sentence-level inference tree based on
the most probable word sequence. As in the word-level inference tree, at each
level, we prune all the nodes except the top k (based on the pseudo-probability
value). In the last level, we are then left with the top k most probable sentences
that can be constructed from the set of probable words and hence from the set
of probable characters.

Both the word-level as well as sentence-level inference trees use leaf prun-
ing to prevent exponential expansion of the tree. The pruning algorithm
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(Truncate leaves) first takes the list of all children at the current level as shown
in Algorithm 5. It then deletes all nodes except the top c nodes and returns the
modified list. The time complexity of this algorithm is O(n · c), where n is the
number of leaves prior to pruning and c is the desired number of leaves after
pruning. Since c is a constant, the overall time complexity is O(n).

Algorithm 5. Truncate leaves

Input: List of leaves lo, maximum number of child nodes c
Output: Set of c most probable leaves: lt
1: d.prob ← −1 � d is a dummy node
2: for i = 1 to c do
3: max.prob ← −1
4: for all t ∈ lo do � Node with maximum pseudo-probability is stored in max
5: if t.prob > max.prob then
6: max ← t
7: index ← lo.indexOf(t)
8: end if
9: end for

10: lt ← lt ∪ max � Add max to modified set of leaves
11: lo[index] ← d � Replace max by dummy node d
12: end for
13: return lt

In this section, we have described the two phases of the proposed attack
methodology and the algorithms used to carry out the attack. The next section
presents the details of implementation of a complete system for carrying out
such an attack.

3 Implementation Details

This section presents an implementation flow of the attack starting from the
recording of sound to the extraction of estimated typed text. A trojan app is
installed on the victim’s phone that creates audio files from the recorded tap
sounds. It needs only microphone permission during installation and Internet
access permission so that the audio files can be sent to the attacker’s server
for further processing. The processing of audio files needs information extracted
from preprocessed text corpus which is quite large to store in the phone and the
word extraction will be quite computation expensive for the phone processor.
Hence, we propose to perform all computations on the server rather than on the
phone.

The first module at the server end processing in the overall block diagram of
Fig. 2 takes the raw audio file as input and generates the list of time intervals that
contain peaks (taps on the touchscreen). Our recording environment emulated
any quiet room like library, office, conference room, etc., typical places where



12 H. Gupta et al.
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 for processing

Fig. 2. Block diagram of attack flow implementation

a user is likely to reveal personal information or carry out online transactions.
During the experiments, the source of ambient noise was ceiling fan and air
conditioner.

The list of peaks is given as input to the next module along with the audio
file. This module, as described in Algorithm 2, computes the cross correlation
between the sound waves from the two microphones. Figure 3a shows the energy
spectrum of the audio signals as captured by the two microphones corresponding
to a tap. It is seen in the figure that there are sharp peaks during the tap,
preceded and followed by periods of silence. This property of the microphone
captured signal is used to extract peaks from the audio files.

The time domain representation of the two audio signal amplitudes in Fig. 3b
shows that there is a noticeable shift between them. Figure 4a presents a detailed
view of the two audio signals corresponding to a tap. Cross correlation is com-
puted between these two signals. The cross correlation peak is the actual TDoA
between the signals. The computed TDoA is used as a parameter for the hyper-
bola that corresponds to the probable region of tap. It is also observed from
Fig. 3a and b that out of the two signals, one has higher amplitude than the
other. This difference in amplitude is used to select the valid semi-hyperbola. As
an example, if signal from microphone m1 has higher amplitude, then the tap
sound must be emanating from the left half of the keyboard (the half that is
closer to microphone m1).

Note that, the sign of TDoA can also be used to select the correct half of the
hyperbola. For example, if the peak in the signal from microphone m1 occurs
before the peak in the signal from microphone m2, it can be concluded that the
click originated from that half of the keypad which is closer to microphone m1.

The magnitude of the TDoA is used next to obtain the probable region
on the keyboard layout where the tap occurred. This is shown in Fig. 4b. In
this example, the key a was tapped. The computed TDoA was used to plot the
hyperbola and depending upon the sign of the TDoA, the other half of the hyper-
bola was discarded. We see that the maximum probability region passes over a.
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Fig. 3. (a) Energy spectrum of the input signal corresponding to a single tap. (b) Input
signals in time domain corresponding to a tap.
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Fig. 4. (a) Shift between two signals captured by the two microphones in time domain.
(b) Overlay of hyperbola region on phone keyboard.

Thus, for every tap, we determine the most probable region of the tap.
To get the k most probable characters, we set the width of the band in
such a way that k number of keys fit into the band of the hyperbola. The
Probable Character Extraction module of Fig. 2 then returns the k characters
that have the highest intersection area with the plotted region.

Text inferencing from the probable sequence of letters is done by building the
inference tree and pruning leaves at each level as explained in Algorithms 4 and 5.
This approach is used for both word level as well as sentence level inferencing of
Fig. 2.

4 Experimental Results

We carried out detailed experiments with our system implementation described
in Sect. 3. In this section, we present several important observations that
were made during the experiments as well as quantitative result on accuracy.
The results consist of two parts. Subsection 4.1 presents the results obtained till
the extraction of the probable characters from the audio signal captured by the
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microphones. Subsection 4.2 then presents the results of the stages related to
inferencing of words from probable characters and that of sentences from the
probable set of words.

The dataset that we used to test the hypothesis and proposed methodol-
ogy has following statistics. On average, the audio encoding of each character
takes ≈82 kB per character, while the average typing speed was ≈2 characters per
second. Moreover, the complete methodology presented in Sect. 2, takes about
70 s to decipher text from a recording containing ≈100 taps.

4.1 Audio Processing Results

Figure 5 shows the plot of various TDoAs measured in number of sample
points and the character set that are returned corresponding to each TDoA.
In one of the phones used for experimentation (layout shown in Fig. 1b),
TDoA ∈ [−8, 10]. We plot each TDoA over the keyboard layout keeping k = 3
as described in Sect. 3 and return the character set corresponding to that TDoA.
A linear trend is seen in the values of TDoA and the characters returned also shift
from the left end of the keypad to the right end. For example, for TDoA = 10,
the returned character set is {q, w, a} and for the minimum value of TDoA = −8,
the returned character set is {p, l, o}.

Fig. 5. Character sets for different values of TDoA

In Fig. 6a, we plot the distribution of the computed value of TDoA for one
particular letter (clicked letter is a). The set of top k most probable characters
containing the typed character can be extracted with quite good accuracy. From
Fig. 6b it is seen that, using k = 3, the character that was actually typed is
present in the set of probable characters 90 % of the time. For the rest 10 %,
the computed TDoA deviates only by 1. Hence, it can be concluded that TDoA
is a robust feature to be used for the proposed attack methodology. This set of
probable characters is used as input for the NLP module, the results of which
are presented in the next subsection.
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Fig. 6. (a) Computed values of TDoA obtained from cross-correlation for 100 taps of a.
(b) Distribution of the computed TDoA.

4.2 Text Extraction Results

Figure 7a shows the variation in word occurrence frequency and word level accu-
racy with change in word length. We took a test set of 30 messages of varying
sizes. The text was deciphered using the proposed attack methodology from
the tapping sounds picked up by the two microphones and compared with the
actual typed text. The bars in the graph show the fraction of the count of occur-
rences and the fraction of the number of times they were recovered correctly.
The piecewise continuous line represents the accuracy and a linear trend line
is also plotted in the graph for reference. From the figure, it is observed that
accuracy approaches 1.0 when the word length is 1 or 2. This is because these
are usually stop words like a, an, be, at, etc. Such words are quite common and
thus can be inferred accurately. The next peaks occur at word lengths 3, 4 and 5.
This is due to the fact that, in the English language, the average word length
is 5.1 letters [3]. Words with greater length occur rarely, as a result of which,
there are less number of samples with longer length to train the language model.
Therefore, while inferring, the accuracy decreases with increasing word length
beyond 5. The average word level accuracy is 0.81.

Figure 7b shows the variation in accuracy of complete text with message size.
For this study, we use the same data set as in Fig. 7a. It is seen from the figure
that the accuracy lies in the range of 0.57–0.95, with an average of 0.88. It is
also observed that accuracy tends to increase with increasing length of the text.
The NLP algorithm assumes that the text is composed of English words only.
Hence, such a trend is observed, because with increase in message size, the ratio
of valid English words to the total number of words increases.

A few local variations are also seen in the figure. This point was further
investigated. It was found that our assumption that the user would be typing in
English, i.e., using words from the valid English vocabulary did not always hold.
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(a) (b)

Fig. 7. (a) Accuracy for different word lengths (b) Variation in accuracy with message
size

Often the message contained certain words like URLs, dates, proper nouns, etc.,
that are not there in the English dictionary, which caused some degradation in
performance.

5 Related Work

It has been shown in the literature that emanations from devices can be exploited
in ways to reveal information associated with the source, thereby breaching secu-
rity. There are several variations of this type of attack based on the type of
emanation [6,9]. Particularly, acoustic emanations from various devices is an
important field of research.

Asonov et al. [1] show that the keyboard strokes can be recovered using the
acoustic emanations from mechanical keyboards. They argue that although the
emanations from different keys sound similar to human ear, they are actually
different and a classifier can be trained to distinguish between the keys. Fast
Fourier Transform is used as the feature set of the sound and backpropagation
neural network is used for classification.

The above issue was readdressed by Zhuang et al. [14], who presented a
novel technique using which even random keystrokes can be recovered. Unlike
the attack methodology of [1], which requires labeled data to train the neural
network before it can be used as a classifier, this attack uses the statistical con-
straints of the English language to train a model by unsupervised learning. They
use cepstrum features, which were shown to be superior to FFT. Another related
work [5] provides a brief explanation and analysis of the possible attacks that
can be carried out using mobile phones. It presents a nomenclature for various
attacks. Some preventive measures are suggested that can be implemented to
minimize the risk from the identified possibilities of attack.

Since our work is aimed at deciphering text from touchscreen mobile phones,
we next present some work in this field. Miluzzo et al. [10] discuss the possibility
of use of the accelerometer and gyroscope sensors of phones and present a method
to recover the tap position as well as the typed text. They propose that each
point on the screen, when tapped, produces different values of linear and angular
acceleration, which can be captured using the phone sensors.
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Zhu et al. [12] present a context-free attack technique to recover keystrokes
using phones as recording devices placed in the vicinity of the keyboard being
typed on. With enough number of such external microphones, the keystroke
region can be pinpointed with good accuracy. To make the attack even more
general, the keyboard orientation is also assumed to be unknown beforehand.
Keyboard reconstruction is formulated as an optimization problem and the most
likely keyboard layout is taken as the orientation of the keyboard. Finally, the
keystrokes are recovered.

There is, however, no work that recovers key taps from touchscreen keypads
using built-in microphones of a mobile phone as reported in this paper. Such an
attack is more realistic than the ones mentioned above since the previous attacks
require external hardware to record the sound of key presses. Setting up of extra
hardware in the vicinity of the victim while he is typing is susceptible to detec-
tion. Since the proposed methodology uses the microphone already attached to
the device, it can silently record and transmit the audio signals to the attacker’s
server.

6 Preventive Measures

There are a few basic preventive measures, which however, might reduce the
impact of such an attack, even though it cannot be eliminated fully. For instance,
if the user keeps the key-press tone ON, then with each tap, an additional sound
will be generated masking the actual sound created by the tap to a certain
extent. A similar effect may be achieved if the vibration on each key-press is
kept ON. However, both of these counter-measures are inconvenient for the user
and they drain the battery as well.

Another approach that may be adopted by the operating system developers
is that the OS can display notifications (using icons) to depict which devices are
currently being used in the background. Thus, the user will be notified if the
microphone or any other sensor is running in the background. The OS may also
display the apps which are currently using that sensor data. In this way, the
user can become aware of any background app trying to eavesdrop and possibly
terminate it to prevent the attack. However, such measures demand a certain
level of maturity and knowledge on the part of the user.

7 Conclusion

The primary goal of this paper was to bring to light the vulnerabilities of touch-
screen phones, which we have exploited and devised an attack methodology that
is reasonably accurate. It may be noted that, any form of encryption will not
help to prevent this attack as the proposed methodology records the tap sounds
generated at the time of typing itself.

The direction for future work on improving the attack methodology is three-
fold: (i) improving accuracy of the signal processing unit (ii) use of other NLP
techniques to enhance the performance of the text inferencing phase and also to
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detect special characters and numerals. This would allow the attack to detect
passwords as well. (iii) Fusion of data from more number of sensors. Sensors such
as gyroscope and accelerometer are also present in almost all smartphones. For
each key tap, the accelerometer and gyroscope values would vary. Although this
data is a bit more difficult to make use of as compared to the microphone data,
still it is a possibility that is worth exploring to see how the attack performs.
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Abstract. Mobile communication has grown quickly in the last two
decades. Connections can be wirelessly established from almost any hab-
itable place in the earth, leading to a plethora of connection-based track-
ing mechanisms, such as GPS, GSM, RFID, etc. Trajectories representing
the movement of people are consequently being gathered and analysed
in a daily basis. However, a trajectory may contain sensitive and private
information, which raises the problem of whether spatio-temporal data
can be published in a private manner.

In this article, we introduce a novel distance measure for trajecto-
ries that captures both aspect of the microaggregation process, namely
clustering and obfuscation. Based on this distance measure we propose a
trajectory anonymisation heuristic method ensuring that each trajectory
is indistinguishable from k − 1 other trajectories. The proposed distance
measure is loosely based on the Fréchet distance, yet it can be computed
efficiently in quadratic time complexity. Empirical studies on synthetic
trajectories show that our anonymisation approach improves previous
work in terms of utility without sacrificing privacy.

1 Introduction

Not long ago, visual identification was the only mean to collect spatio-temporal
data from people. Nowadays this task is far easier since there is no need of direct
human intervention for monitoring and tracking. Instead, surveillance cameras,
social networks, credit card transactions, and many other worldwide adopted
technologies and services, automatically collect this type of data. Today’s per-
vasiveness of location-aware devices like mobile phones and GPS receivers helps
even further companies and governments to easily collect huge amount of infor-
mation about people’s movement.

Analysing and mining this type of information, also known as trajectories,
might reveal new trends and previously unknown knowledge to be used in traf-
fic, sustainable mobility management, urban planning and supply chain manage-
ment. By doing so, resources might be optimised and business and government

c© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing Switzerland 2016. All Rights Reserved
S. Ranise and V. Swarup (Eds.): DBSec 2016, LNCS 9766, pp. 19–34, 2016.
DOI: 10.1007/978-3-319-41483-6 2



20 C.F. Torres and R. Trujillo-Rasua

decisions can be solid and well-founded. In this sense, both companies and citi-
zens profit directly from the publication and analysis of databases of trajectories.

Despite of all these benefits, there are obvious threats to people’s privacy if
their movement data are published in a way which allows re-identification of the
person behind a trajectory. Just considering the locations visited by a trajectory,
it may reveal sensitive information about users like religious, political, or sexual
preferences. The privacy threat grows when the time information exposes user’s
habits that may be used for unauthorized advertisement and user profiling.

A tentative solution to achieve anonymity is de-identification by means of
removing identifying attributes of individuals. However, this is often insufficient
to preserve privacy due to other type of attributes called quasi-identifiers, which
are non-identifying attributes that together with external information might
uniquely identify the individual behind a record. Unfortunately, in the case of
spatio-temporal data, every location can be regarded as a quasi-identifier [25].
Therefore, just knowing some locations visited by an individual could be enough
to identify his trajectory in a database. As an example, let’s consider a GPS
application recording trajectories of citizens. Daily routine indicates that an early
morning trajectory is likely to begin at the user’s home and end at the user’s
workplace. This simple assumption might be enough to accurately re-identify a
user’s trajectory.

The above problem has been addressed relying on k-anonymity [18,19], a
widely used privacy notion. A set S is said to satisfy k-anonymity if each combina-
tion of quasi-identifier attribute values is shared by at least k records in S. There-
fore, considering that all identifying attributes have been removed, k-anonymity
ensures that no anonymised record can be correctly linked to an individual with
probability higher than 1/k. In microdata, the set of quasi-identifiers is typically
considered small and known in advance. In spatio-temporal data, however, a simi-
lar assumption can hardly hold; any location can be regarded as a quasi-identifier.
As a result, anonymisation methods aimed at achieving k-anonymity on micro-
data cannot be directly applied on spatio-temporal data and vice versa.

Contributions. In this article we propose a distance measure for trajectories
specially suited for clustering and obfuscation. The distance is loosely based on
the Fréchet distance [3], yet it is efficiently computable. The novel construc-
tion has significant advantages: (i) it can deal with non-overlapping trajectories,
(ii) it outputs, in addition to a distance value, a set of matching points that
are exploited later in the obfuscation process, and (iii) it considers the shape
of the trajectories due to the very nature of the Fréchet distance. We use the
proposed distance measure as the basis of a trajectory anonymisation technique
that releases datasets satisfying k-anonymity, regardless of the adversary knowl-
edge. We show, through experiments on synthetic spatio-temporal data, that our
approach outperforms previous comparable work in terms of utility.

Outline of the Paper. This paper is structured as follows. Section 2 next pro-
vides related work. Section 3 introduces a novel distance measure based on the
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Fréchet distance and the Manhattan norm. A microaggregation-based method
for trajectory anonymisation is proposed in Sect. 4, which is empirically evalu-
ated in Sect. 5. Finally, Sect. 6 draws conclusions and future work.

2 Related Work

Trajectory k-anonymity is aimed at hiding a single trajectory into a crowd of at
least k − 1 other trajectories. The idea is that every trajectory in the published
dataset be indistinguishable from k −1 other trajectories and, as a consequence,
an adversary cannot identify the individual behind a trajectory with probability
higher than 1/k.

An approach to achieve k-anonymity is by means of suppression of attribute
values, which is generally used on discrete and/or semantic data where perturba-
tion methods are not well suited. One of the first suppression-based methods for
trajectory anonymization is due to Terrovitis and Mamoulis [20]. They consider
trajectories to be sequences of addresses taken from an address domain P. The
adversary controls subsets of addresses of P, and thus his knowledge is repre-
sented as projections of original trajectories over the addresses in P that are in
the adversary’s knowledge. A greedy algorithm aimed at guaranteeing that no
address unknown by the adversary can be linked with an user with probabil-
ity higher than a given threshold is proposed in [20]. The main problem with
this approach is that dealing with all possible adversary’s knowledge becomes
harder than the original k-anonymity problem, which is already known to be
NP-Hard [13]. There exist other suppression-based methods in the literature,
e.g., [6]. However, they target privacy notions different to k-anonymity.

Like Terrovitis and Mamoulis in [20], Yarovoy et al. also consider an adversary
controlling a subset of user’s locations or quasi-identifiers [25], with the distinc-
tion that such a subset may differ for different users. Trajectory k-anonymity is
defined in terms of a bipartite attack graph relating original trajectories with
the anonymised trajectories. The authors propose to create anonymised groups
through generalisation with respect to the joint set of quasi-identifiers from the
users within the group. K-anonymity is thus achieved by creating anonymised
groups such that the bipartite attack graph is symmetric and the degree of each
vertex representing an anonymised trajectory is at least k. It is worth remark-
ing that the privacy model considered in this article is different, as any user’s
location is regarded as a quasi-identifier.

Another generalisation-based approach was proposed by Monreale et al. [14].
As in [20], they ignore the time information. Therefore, k-anonymity is achieved
if the generalisation of every original trajectory is a sub-trajectory of the gener-
alisation of k−1 other trajectories. In order to preserve the utility of the original
dataset, a Voronoi tessellation of the geographical area is created so that each
location is transformed into the Voronoi cell that contains it. Utility is measured
by simply comparing clustering results.
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In [8,9], Domingo-Ferrer et al. propose a different approach based on
microagrregation and permutation rather than on generalisation. First, they
introduce a novel distance measure that consider both spatial and temporal
aspects of trajectories. The distance measure is flexible enough to be used either
for spatio-temporal data or time series. Based on this distance measure, the
authors propose to create clusters of trajectories so as to minimise the intra-
cluster distance. Within a given cluster, locations are randomly swapped with
other k − 1 unswapped close locations. Locations that cannot be swapped are
removed and so are the trajectories without swapped locations.

Abul et al. [1,2] proposed two trajectory anonymisation methods: Never Walk
Alone (NWA) and Wait For Me (W4M). Both are partially based on microg-
gregation [7]. The microggregation technique works as follows. The dataset of
trajectories is partitioned into several clusters of size at least k and at most
2k − 1. To do so, NWA relies on the Euclidean distance while W4M uses on
the edit distance on real sequences (EDR) [5]. Trajectories within a cluster are
perturbed by using space translation. The claimed privacy of these proposals
has proven to be flawed [22], though.

In [15,16], Nergiz et al. consider a trajectory to be a sequence of square
geographical areas where a user moves randomly within a given time frame.
For clustering, the authors use the log cost metric that balances the spatial
and temporal distortion with user-provided weights. Since the log cost metric
is based on point matching, the anonymisation process is directly inferred from
the clustering process, which improves efficiency.

Recently, Gao et al. proposed a privacy-preserving technique that does not
target trajectory k-anonymity directly, as most previous work do, but a trade-
off between privacy and utility [12]. Privacy is measured in terms of anonymity
sets that are created based on a similarity measure that takes the angles and
directions of the trajectories into account. Utility relies on the classical Euclidean
distance.

In the literature we can find a variety of distance measures for trajectories and
time-series. Vlachos et al. proposed two distance measures based on the Longest
Common Subsequence problem (LCSS) [24]. The first one matches only points
that are within a given spatio-temporal region. Unmatched points are discarded
and taken as outliers. This criterion for outliers detection is smoothed in their
second distance measure by using a weighted matching function that considers
the distance between points. Another distance measure that has been designed to
cope with noise is the Edit Distance on Real sequences (EDR) [5]. The problem
is that it requires a fixed and global distance threshold that defines whether
a location is too far from another location. A survey on distance measures for
trajectory clustering can be found in [27].

3 A Distance Measure for Trajectory Microaggregation

We consider trajectories describing the movements of objects on the surface of
the earth. Even though a movement is assumed to be continuous, it is typically
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described by a finite polyline. Formally, a trajectory is defined as a sequence of
time-stamped locations τ = �1 · · · �n such that �i.t < �i+1.t ∀i ∈ {1, · · · , n − 1}
where �.t, �.x, and �.y, denote the time, latitude, and longitude of the location �,
respectively. In general, trajectories can be recorded at different and irregular
sampling rates, are not noise-free, and the velocity between two consecutive
locations is assumed to be constant. A collection of trajectories is called a spatio-
temporal database. For large databases, the size of a trajectory is considered to
be significantly smaller than the size of the database.

The choice of the distance measure is critical in microaggregation. It influ-
ences the way trajectories are clustered and usually it also impacts on the
anonymisation process. There exist different factors that characterise a trajec-
tory distance measure. For example, a distance measure may consider only tra-
jectories within a given timespan, or look for spatial similarity regardless of
direction and sampling rate, or take into account trajectory’s features such as
speed and angle.

The distance measure we propose in this article is loosely based on the
Fréchet distance [11]. The Fréchet distance, also known as the dog-leash dis-
tance, assumes that a person walks over one trajectory and his dog over the
other trajectory. Both may travel at independent but positive speed. The Fréchet
distance outputs the minimum-length leash required for that person to walk his
dog. Intuitively, the shorter the leash the closer the two curves.

Alt and Godau proposed in 1995 an algorithm to compute the Fréchet dis-
tance for two polylines [3] with computational complexity O(pq log(p+q)) where
p and q are the size of the polylines. To the best of our knowledge, this computa-
tional complexity has not been improved significantly without making assump-
tions on the curves. We thus consider variations of the Fréchet distance such as
the Coupling distance [10] and the Dynamic Time Warping (DTW) distance [26],
which are significantly simpler and run in O(pq) time complexity.

We say that a sequence L = (ua1 , vb1) · · · (uan
, vbn

) is a coupling between
two trajectories U = u1 · · · up and V = v1 · · · vq if the following conditions are
satisfied:

– a1 = 1 and b1 = 1
– an = p and bn = q
– For every i ∈ {1, · · · , n − 1} it holds that ai+1 = ai or ai+1 = ai + 1, and

bi+1 = bi or bi+1 = bi + 1

A coupling can be seen as sequence of matching points, as defined in the
Edit Distance on Real sequences (EDR) [5]. The difference, however, is that a
coupling respects the order of the locations and also ensures that all points are
considered.

Definition 1 (Coupling distance). Let U = u1 · · · up and V = v1 · · · vq be
two trajectories and let L be the set of all couplings between U and V . Let ‖.‖
denote a norm on L. The coupling distance is defined as follows:

coupling dist(U, V ) = min{‖L‖|L ∈ L}
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The coupling distance can be computed by a simple dynamic algorithm.
The norm that directly relates to the original discrete Fréchet distance is the
Infinite norm. Given L = (ua1 , vb1) · · · (uan

, vbn
), the Infinite norm ‖L‖∞ is

the longest distance between a pair of linked locations in L, i.e., ‖L‖∞ =
maxi∈{1,··· ,n} d(uai

, vbi
). Another relevant norm, which we use in this article,

is the Manhattan norm, defined as ‖L‖1 =
∑

i∈{1,··· ,n} d(uai
, vbi

).
Using the Infinite norm in the coupling distance has a clear interpretation in

microaggregation of trajectories, that is, the longest distance that ought to be
covered in order to spatially translate a trajectory into another one. However,
accounting for the longest distance may lead to non-robust behaviors, because
small variations in the trajectories can cause large variations in the distance
function. For this reason, we propose to use the infinity norm to compute the
optimal coupling between trajectories, yet we consider the average Manhattan
norm to represent the actual distance between them. We claim that the average
Manhattan norm approximates better the required distortion to microaggregate
trajectories. Formally, the distance measure used in the present article is defined
as follows.

Definition 2 (Fréchet/Manhattan coupling distance). Let U = u1 · · · up

and V = v1 · · · vq be two trajectories and let L be the set of all couplings between
U and V . Let L ⊆ L such that for every l ∈ L it holds that ‖l‖∞ is minimum
amongst the couplings in L. The average coupling distance is defined as:

min
l∈L

1
|l| ‖l‖1

Computing the Fréchet/Manhattan distance is a bit more elaborated than
computing the coupling distance. Nevertheless, it can still be computed in O(pq)
time complexity as shown by Algorithm 1. Given two trajectories U = u1 · · · up

and V = v1 · · · vq, we create a matrix I of size p × q where we store the optimal
coupling with respect to the Infinite norm. Such computation is performed by
the standard dynamic approach proposed in [10]. In order to determine the
Fréchet/Manhattan distance, we consider another matrix M where we store the
optimal coupling distance with respect to the Manhattan norm among those
optimal couplings with respect to the Infinite norm. To do so, we need to find
where those optimal couplings with respect to the Infinite norm come from.
Let us analyse what is the impact of having the pair (ux, vy) in an optimal
coupling l. First, we should notice that if (ux, vy) ∈ l then ‖l‖∞ ≥ d(ux, vy).
Indeed, if d(ux, vy) < min{I[x − 1, y], I[x − 1, y − 1], I[x, y − 1]} then ‖l‖∞ =
min{[x − 1, y], [x − 1, y − 1], [x, y − 1]}, otherwise ‖l‖∞ = d(ux, vy). We thus
store in a set C all pairs that lead to an optimal coupling with respect to the
Infinite norm amongst the pairs {I[x − 1, y], I[x − 1, y − 1], I[x, y − 1]}. Finally,
M [x, y] is computed as min{M [x, y]/L[x, y]|[x, y] ∈ C} where L[x, y] is the size
of the optimal coupling with respect the Manhattan norm for the subtrajectories
u1 · · · ux and v1 · · · vy.
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Algorithm 1. Average coupling distance
Require: Two trajectories U = u1 · · · up and V = v1 · · · vq

1: Let I, M , L be three matrices of size p × q. Intuitively, I and M represent the
Infinity and Manhattan norms, respectively, while L is the length of the optimal
coupling

2: Let d represent the Euclidean distance.
3: I[1, 1] = M [1, 1] = d(u1, v1)
4: L[1, 1] = 1
5: for i = 2 to p do
6: I[i, 1] = max{I[i − 1, 1], d(ui, v1)}
7: M [i, 1] = M [i − 1, 1] + d(ui, v1)
8: L[i, 1] = i
9: end for

10: for j = 2 to q do
11: I[1, j] = max{I[1, j − 1], d(u1, vj)}
12: M [1, j] = M [1, j − 1] + d(u1, vj)
13: L[1, j] = j
14: end for
15: for i = 2 to p do
16: for j = 2 to q do
17: Let R be the set {[i − 1, j], [i − 1, j − 1], [i, j − 1]}
18: Let C ⊆ R such that for every [x, y] ∈ C it holds that I[x, y] ≤ d(ui, vj)
19: if C is empty then
20: Let [a, b] ∈ R such that for every [x, y] ∈ R it holds that I[a, b] ≤ I[x, y]
21: I[i, j] = I[a, b]
22: Add to C every element [x, y] in R such that I[x, y] = I[a, b]
23: else
24: I[i, j] = d(ui, vj)
25: end if
26: Let [x, y] ∈ C such that M [x, y]/L[x, y] ≤ M [a, b]/L[a, b] for every [a, b] ∈ C
27: M [i, j] = M [x, y] + d(ui, vj)
28: L[i, j] = L[x, y] + 1
29: end for
30: end for
31: return M [p, q]/L[p, q]

4 A Microaggregation-Based Approach

The anonymisation method proposed in this article is based on k-
microaggregation, that is, a process whereby clusters of at least k homogeneous
trajectories are anonymised independently. A usual homogeneity criterion is the
sum of squared pairwise distances between trajectories within a cluster (intra-
cluster distance). Hence, an optimal microaggregation can be intuitively defined
as the one maximising the within-groups homogeneity.

The optimal microaggregation problem for multivariate points, like tra-
jectories, has proven to be NP-hard [17]. That justifies the use of heuristics
in microaggregation-based approaches for trajectory anonymisation [23]. An
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additional challenge to be addressed is that distance measures between trajec-
tories tend to be computationally expensive. This implies that computing all
pairwise distances between trajectories in a large database may not be feasible.

Below, we detail the two main components of our microaggregation-based
approach, namely the proposed heuristic for trajectory clustering and the obfus-
cation technique.

4.1 Clustering

We use a greedy approach to address the k-microaggregation problem explained
above. Each cluster is represented by a pivot trajectory, and contains k−1 other
trajectories that are close to the pivot trajectory. In other words, we consider as
homogeneity criterion the sum of squared distances between the pivot trajectory
and the other trajectories in the cluster. Once a cluster C is created from a
pool D of trajectories, all trajectories in C are removed from D. As shown by
Algorithm 2, this process is repeated until D contains less than k trajectories.

Algorithm 2. Trajectory clustering
Require: D = {τ1, . . . , τN} a set of trajectories; a distance measure d : D ×D → R; a

natural number δ representing the number of clusters generated at each iteration;
and an anonymisation parameter k

1: Let C be an empty set of clusters of trajectories
2: while |D| ≥ k do
3: Let τ ′

1 be a random trajectory in D
4: Let τ ′

δ be the farthest trajectory to τ ′
1 with respect to d

5: Let τ ′
1, τ

′
2, · · · , τ ′

δ be δ trajectories in D that minimises the sum of squares∑
i∈[1..δ−1] d(τ ′

i+1, τ
′
i)

2

6: Let C0 be an empty set of trajectories and d0 = ∞
7: for all i = 1 to δ do
8: Create the cluster of trajectories Ci containing τ ′

i and the closest k − 1 tra-
jectories to τ ′

i

9: Compute di =
∑

τ∈Ci
d(τ ′

i , τ)2

10: if di < d0 then
11: C0 = Ci and d0 = di

12: end if
13: end for
14: C = C ∪ {C0}
15: Remove all trajectories in C0 from D
16: end while
17: return C

In our approach, depicted in Algorithm 2, finding the optimal set of clusters is
equivalent to finding the optimal sequence of pivot trajectories. The most effec-
tive greedy solution to this problem is to choose the best cluster amongst the |D|
clusters that can be created considering each trajectory in D a pivot trajectory.
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However, that requires the computation of all pairwise distances between the
trajectories in D. As a trade-off, given a natural number δ � |D|, we choose a
random trajectory τ ′

1 in D and find the sequence τ ′
1, τ

′
2, · · · τ ′

δ such that: (i) τ ′
δ is

the farthest trajectory to τ ′
1 and (ii) the sum of squares

∑
i∈[1..δ−1] d(τ ′

i+1, τ
′
i)

2

is minimum. We thus choose the best cluster amongst the δ clusters that can be
built considering either τ ′

1, or τ ′
2, · · · , or τ ′

δ, as pivot. Note that, if δ = |D| then
we actually find the optimal set of clusters.

4.2 Obfuscation Technique

Our privacy-preserving method for the publication of trajectories is based on
the clustering technique and the Fréchet/Manhattan coupling distance described
above. Even though the coupling distance deals well with trajectories recorded at
different sampling rates, the lower is the sampling rate the better it approximates
the classical Fréchet distance. We thus use linear interpolation to decrease and
homogenise the sampling rate of two trajectories as follows. Let U = u1 · · · up

and V = v1 · · · vq be two trajectories. For every i ∈ {1, · · · , p}, we insert in V

by using linear interpolation a new point at time v1.t + (vq.t−v1.t)(ui.t−u1.t)
up.t−u1.t . An

analogous procedure is used to increase the sampling rate of U with respect to
V . Note that, the trajectories U ′ and V ′ resulting from re-sampling U and V ,
respectively, have equal size.

We use the Fréchet/Manhattan distance in Algorithm 2 to partition a
collection of trajectories {τ1, · · · , τN} into a set of homogeneous clusters
{C1, · · · , Cm}. For every i ∈ {1, · · · ,m}, let X be the pivot trajectory in
the cluster Ci as considered in Algorithm 2. For each Y ∈ Ci (X �= Y ), let
(ua1 , ub1) · · · (uan

, vbn
) be the optimal coupling between X and Y with respect

to the Fréchet/Manhattan distance, where U = u1 · · · up and V = v1 · · · vq are
the re-sampling of X and Y , respectively. For each j ∈ {1, · · · , n} and if uaj

∈ X,
i.e., if uaj

is an original location of X rather than an interpolated location added
during the re-sampling procedure, we add to the set S(uai

) the location vbi
. Once

this process is finished for all trajectories in Ci, we consider, for every location
x ∈ X, the set S(x) containing those locations from other trajectories in Ci that
formed a pair with x in an optimal coupling. We always include x into S(x) when-
ever S(x) is not empty. The anonymised trajectory for the cluster Ci will be that
formed by the average locations obtained from the sets {S(x)|x ∈ X,S(x) �= ∅}.
A pseudo-code description of this procedure is given in Algorithm 3.

4.3 Privacy Analysis

Several notions of trajectory k-anonymity exist. For example, in [14,20], the
adversary ignores the time dimension. In [1,2], an adversary is considered unable
to distinguish two locations if their distance is below a predefined threshold.
In [9], the model is defined considering that original locations must be preserved,
which means that random spatial distortion is disallowed.
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Algorithm 3. Trajectory anonymisation algorithm
Require: {τ1, . . . , τN} a collection of original trajectories; a number δ to be used in the

clustering process; the Fréchet/Manhattan distance d; an anonymisation parameter
k

1: Use the clustering technique defined by Algorithm 2 on input {τ1, . . . , τN}, the
distance measure d, δ, and k, to obtain a set of clusters {C1, · · · , Cm}

2: Let D� be an empty set of trajectories
3: for i = 1 to m do
4: Let X be the pivot trajectory in Ci as defined in Algorithm 2
5: Let S(x) be an empty set for every x ∈ X
6: for Y ∈ Ci and X 	= Y do
7: Let (ua1 , vb1) · · · (uan , vbn) be the optimal coupling between X and Y with

respect to the Fréchet/Manhattan distance d, where U = u1 · · · up and V =
v1 · · · vq are the re-sampling of X and Y , respectively

8: for j = 1 to n do
9: if uaj ∈ X then

10: S(uaj ) = S(uaj ) ∪ {vbj }
11: end if
12: end for
13: end for
14: Let τ be an empty trajectory
15: for x ∈ X and S(x) 	= ∅ do
16: S(x) = S(x) ∪ {x}
17: Add to τ the average location formed by the locations in S(x)
18: end for
19: D� = D� ∪ {τ, . . . , τ

︸ ︷︷ ︸
k

}

20: end for
21: return D�

In this article we consider trajectory k-anonymity as a property of the
anonymised dataset regardless the adversary capabilities. Our notion of k-
anonymity is indeed similar to that presented in [15,16] for generalised trajectories.

Definition 3 (Trajectory k-anonymity). Let D� be a collection of trajecto-
ries. D� meets trajectory k-anonymity if every trajectory in D� is equal to other
k − 1 trajectories in D�.

Theorem 1. Let D be a collection of original trajectories and D� the output of
Algorithm 3 on input D. D� satisfies trajectory k-anonymity.

Proof. The proof trivially follows from the fact that Algorithm 3 produces k
equal trajectories for each cluster (see Step 19 in Algorithm 3). 
�

5 Empirical Evaluation

As the privacy-preserving anonimisation technique introduced in this article
replaces a cluster of k close, but potentially different, trajectories by k iden-
tical trajectories, it is of paramount importance to evaluate utility loss in
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this method. Next, we introduce spatial-range queries as a measure of utility
loss. We finally compare our anonymisation approach with other state-of-the-art
privacy preserving techniques.

5.1 Trajectory Analysis and Utility Measures

There exist a plethora of trajectory analysis techniques developed within the
Geographic Information Science and Data Mining fields. These techniques
may look for movement patterns such as flocking, leadership, commuting, and
encounter, or may be aimed at answering basic queries such as nearest neighbor
or range queries.

In this article we mainly focus on queries that are used for aggregate statistics.
This queries are typically measurable, and thus they can be defined as functions
on the domain of all spatio-temporal databases ranging over a metric space.
Let D be the universe of all possible collections of trajectories and let (M,d)
be a metric space. A spatio-temporal query Q is formally defined as a function
Q : D → M . Examples of measurable queries are traffic density, travel time,
peak hours, amongst many others.

Measurable queries can be naturally used to define utility measures for
anonymisation techniques as follows. Let D ∈ D be an original spatio-temporal
database and D� ∈ D its anonymised version. Given a measurable query
Q : D → M , we measure utility loss by the formula d(Q(D), Q(D�)). The closer
this measure to zero the better D� approximates D with respect to Q.

A well-known type of measurable query in trajectory analysis is spatio-
temporal range queries, which were introduced by Trajcevski et al. in [21] in
2004. In particular, we consider the two following queries.

– Sometime Definitely Inside(T, R, tb, te) is true if and only if there exists a
time t ∈ [tb, te] at which trajectory T is inside region R.

– Always Definitely Inside(T, R, tb, te) is true if and only if at every time
t ∈ [tb, te], trajectory T is inside region R.

At a first sight, it may seem that the query Always Definitely Inside(AI) is
stronger than Sometime Definitely Inside(SI). However, with the later we can
formulate questions at a local level like: how many users pass through the Grand
Place in Belgium?, whilst with AI the shape of trajectories becomes more rele-
vant and might be useful for questions like: how many users take the toll highway
placed between Barcelona and Tarragona cities?

Other important points to be remarked are the area of R and the time inter-
val [tb, te]. Both provide flexibility when dealing with uncertain or perturbed
trajectories. Asking for trajectories passing through a single location at a given
time-stamp is meaningless in this type of imprecise data. The size of the area
and the time interval should not be too large either, though.

Similarly to [1,2,9], we used both queries to define a distortion metric of the
anonymised dataset T � with respect to original dataset T . The idea is to define a
large set of queries according to some distribution of regions and time intervals.
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The same set of queries is applied to both datasets T � and T and the number
of trajectories satisfying SI and AI are counted as shows the following SQL
style code.

– Query Q1(T , R, tb, te):
SELECT COUNT (*) FROM T WHERE SI(T .traj, R, tb, te)

– Query Q2(T , R, tb, te):
SELECT COUNT (*) FROM T WHERE AI(T .traj, R, tb, te)

Two different range query distortions SID(T , T �) and AID(T , T �) are defined
by using the accumulative queries Q1 and Q2, respectively.

– SID(T , T �) = 1
|ξ|

∑
∀<R,tb,te>∈ξ

|Q1(T ,R,tb,te)−Q1(T �,R,tb,te)|
max (Q1(T ,R,tb,te),Q1(T �,R,tb,te))

where ξ is a
large set of SI queries.

– AID(T , T �) = 1
|ξ|

∑
∀<R,tb,te>∈ξ

|Q2(T ,R,tb,te)−Q2(T �,R,tb,te)|
max (Q2(T ,R,tb,te),Q2(T �,R,tb,te))

where ξ is a
large set of AI queries.

Both metrics SID and AID are bounded by 0 and 1. The minimum is
achieved when Qi(T , R, tb, te) = Qi(T �, R, tb, te), and the maximum if Qi(T �, R,
tb, te) = 0, where i ∈ {1, 2}. Therefore, the lower the range query distortion the
lower the utility loss of the anonymised dataset.

5.2 Implementation Details of the Considered Methods

We compare our method with the generalisation-based and permutation-based
approach proposed in [9,16], respectively. The generalisation-based method relies
on a distance threshold, which allows the Log-cost distance measure to discard
outlier locations. Because in this section we only consider noiseless synthetic
data, we have set up such a distance threshold to its maximum value. The
permutation-based method, instead, discard outlier locations during the obfus-
cation process by considering both a distance and a time threshold. Again, we
set up both thresholds to their maximum values so as to avoid outlier removal
in a noiseless dataset. The permutation-based method considered in this article
is the one named SwapLocations in [9].

5.3 Results on Synthetic Trajectories

We compare our anonymisation method with other approaches by using a
synthetic dataset generated with Brinkhoff’s framework [4], which is used
often to evaluate privacy-preserving approaches. Synthetic data generated with
Brinkhoff’s generator have the advantage of being easily transferable and repro-
ducible. We thus provide next the parameters used to generate the dataset of
trajectories considered in our experiments.

The generation parameters over the map of Oldenburg were: 6 moving object
classes and 3 external object classes; 5 moving objects and 3 external object
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generated per time-stamp; the maximum lifespan of a trajectory was set up to
1, 000 time-stamps; speed 10; and report probability 1, 000. This resulted in
5, 000 synthetic trajectories provided by Brinkhoff’s generator [4], which contain
a total of 492, 105 locations in the German city of Oldenburg and 98.421 locations
per trajectory in average.
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Fig. 1. Six charts showing the range query distortions of three different anonymisation
methods. Charts on the left depict the SI query distortion (SID), while charts on the
right show the AI query distortion (AID). (Color figure online)
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In order to generate spatial-range queries, we considered regions whose radius
randomly distributes over the interval of natural numbers [0, 500]. The maximum
of this interval is a small fraction of the average length of each trajectory, which is
7284. Remark that the smaller the spatial interval the tighter is the spatial-range
query and the harder become for an anonymisation technique to apply spatial
distortion without bringing down utility. We respect to the time dimension we
considered different time intervals [0, 0], [0, 300], [0, 600], [0, 1800], [0, 3600]. For a
given time interval [0, t], we generate a spatial-range query by choosing a random
interval [tb, te] such that 0 ≤ tb ≤ te ≤ t.

We generated for each time interval 100, 000 spatial-range queries of both
types: Q1 and Q2. Armed with these set of queries, we computed the range
query distortions SID and AID of the anonymised data sets provided by three
different anonymisation methods: the Generalisation-based approach [16], the
Permutation-based approach [9], and our method. Each anonymisation method
provided three different datasets satisfying k-anonymity with k ∈ {2, 4, 8}. The
results are depicted in Fig. 1.

It can be seen from Fig. 1 that our method performs better than the
approaches proposed in [9,16] for every cluster size and every time interval.
The improvement in terms of utility increases as the offered privacy increases.
For k = 2, our method is just slightly better than the generalisation-based app-
roach, while for k ∈ {4, 8} our method performs significantly better. This means
that our technique clusters and anonymises trajectories more efficiently.

Figure 1 also shows that more research on trajectory anonymisation tech-
niques ought to be conducted. The ideal range query distortion is zero, and none
of the three considered techniques gets close to this optimal value. This issue can
be overcome by considering larger datasets of original trajectories. Intuitively,
the larger the dataset the easier is to find clusters with low intra-cluster dis-
tance. Other solution approach consists in removing outlier trajectories, that
is, trajectories that cannot be clustered with other k − 1 trajectories without
dramatically increasing the intra-cluster distance. The study and evaluation of
these solution approaches, as well as reporting on results over real-life datasets,
are left as future work.

6 Conclusions

In this article we have introduced a novel distance measure for trajectories, which
is well suited for both clustering and anoymisation. The proposed distance mea-
sure resembles to other types of coupling distance measures, such as the Fréchet
distance, with the particularity that the Infinite norm and the Manhattan norm
are considered together. To demonstrate the suitability of our distance measure,
we presented a trajectory-anonymisation heuristic method that creates cluster
with low intra-cluster distance and satisfies trajectory k-anonymity. Empirical
results show that our method offers better utility than other state-of-the-art
methods, such as the generalisation-based and permutation-based approaches.
Future work will be directed towards reaching optimal range-query distortion
values.
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11. Fréchet, M.: Sur quelques points du calcul functionnel [On some points of functional
calculus]. Rendiconti del Circolo Matematico di Palermo 22, 1–74 (1906)

12. Gao, S., Ma, J., Sun, C., Li, X.: Balancing trajectory privacy and data utility using
a personalized anonymization model. J. Netw. Comput. Appl. 38, 125–134 (2014)

13. Meyerson, A., Williams, R.: On the complexity of optimal k-anonymity. In: Pro-
ceedings of the Twenty-Third ACM SIGMOD-SIGACT-SIGART Symposium on
Principles of Database Systems, PODS 2004, pp. 223–228. ACM, New York (2004)

14. Monreale, A., Andrienko, G., Andrienko, N., Giannotti, F., Pedreschi, D.,
Rinzivillo, S., Wrobel, S.: Movement data anonymity through generalization. Trans.
Data Priv. 3(2), 91–121 (2010)

15. Nergiz, M.E., Atzori, M., Saygin, Y.: Towards trajectory anonymization: a
generalization-based approach. In: Proceedings of the SIGSPATIAL ACM GIS
2008 International Workshop on Security and Privacy in GIS and LBS, SPRINGL
2008, Irvine, California, USA, 4 November 2008, pp. 52–61. ACM (2008)

16. Nergiz, M.E., Atzori, M., Saygin, Y., Guc, B.: Towards trajectory anonymization:
a generalization-based approach. Trans. Data Priv. 2(1), 47–75 (2009)

17. Oganian, A., Domingo-Ferrer, J.: On the complexity of optimal microaggregation
for statistical disclosure control. Stat. J. Unit. Nations Econ. Comm. Eur. 18,
345–354 (2001)



34 C.F. Torres and R. Trujillo-Rasua

18. Samarati, P., Sweeney, L.: Protecting privacy when disclosing information:
k-anonymity and its enforcement through generalization and suppression. Tech-
nical report SRI-CSL-98-04, SRI Computer Science Laboratory (1998)

19. Sweeney, L.: k-anonymity: a model for protecting privacy. Int. J. Uncertain. Fuzz.
10(5), 557–570 (2002)

20. Terrovitis, M., Mamoulis, N.: Privacy preservation in the publication of trajecto-
ries. In: IEEE International Conference on Mobile Data Management, Los Alami-
tos, CA, USA, pp. 65–72. IEEE Computer Society (2008)

21. Trajcevski, G., Wolfson, O., Hinrichs, K., Chamberlain, S.: Managing uncertainty
in moving objects databases. ACM Trans. Database Syst. 29, 463–507 (2004)

22. Trujillo-Rasua, R., Domingo-Ferrer, J.: On the privacy offered by (k, δ)-anonymity.
Inf. Syst. 38(4), 491–494 (2013)

23. Trujillo-Rasua, R., Domingo-Ferrer, J.: Privacy in spatio-temporal databases:
a microaggregation-based approach. In: Navarro-Arribas, G., Torra, V. (eds.)
Advanced Research in Data Privacy. SCI, vol. 567, pp. 197–214. Springer,
Switzerland (2015)

24. Vlachos, M., Gunopulos, D., Kollios, G.: Robust similarity measures for mobile
object trajectories. In: Proceedings of the 13th International Workshop on Data-
base and Expert Systems Applications, pp. 721–726, September 2002

25. Yarovoy, R., Bonchi, F., Lakshmanan, L.V.S. Wang, W.H.: Anonymizing moving
objects: how to hide a mob in a crowd? In: Proceedings of the 12th International
Conference on Extending Database Technology, EDBT 2009. ACM International
Conference Proceeding Series, vol. 360, Saint Petersburg, Russia, 24–26 March
2009, pp. 72–83. ACM (2009)

26. Yi, B.-K., Jagadish, H.V., Faloutsos, C.: Efficient retrieval of similar time sequences
under time warping. In: Proceedings of the Fourteenth International Conference on
Data Engineering, ICDE 1998, Washington, DC, USA, pp. 201–208. IEEE Com-
puter Society (1998)

27. Zhang, Z., Huang, K., Tan, T.: Comparison of similarity measures for trajectory
clustering in outdoor surveillance scenes. In: Proceedings of the 18th International
Conference on Pattern Recognition, ICPR 2006, vol. 3, Washington, DC, USA,
pp. 1135–1138. IEEE Computer Society (2006)



Security and Privacy in Databases



Guaranteeing Correctness of Bulk Operations
in Outsourced Databases

Luca Ferretti(B), Michele Colajanni, and Mirco Marchetti

Department of Engineering “Enzo Ferrari”,
University of Modena and Reggio Emilia, Modena, Italy

{luca.ferretti,michele.colajanni,mirco.marchetti}@unimore.it

Abstract. The adoption of public cloud services, as well as other data
outsourcing solutions, raises concerns about confidentiality and integrity
of information managed by a third party. By focusing on data integrity, we
propose a novel protocol that allows cloud customers to verify the correct-
ness of results produced by key-value databases. The protocol is designed
for supporting efficient insertion and retrieval of large sets of data through
bulk operations in read and append-only workloads. In these contexts,
the proposed protocol improves state-of-the-art by reducing network over-
heads thanks to an original combination of aggregate bilinear map signa-
tures and extractable collision resistant hash functions.

Keywords: Database · Outsourcing · Cloud · Integrity · Authenticity ·
Completeness · Aggregate · Signature · Accumulator · Bilinear map ·
ECRH · BLS

1 Introduction

The adoption of cloud services and other data outsourcing solutions is often hin-
dered by data confidentiality needs and by limited trust about the correctness
of operations performed by the service provider. Data confidentiality issues are
addressed by several proposals based on encryption schemes (e.g., [10,12,21]).
The correctness may be guaranteed through standard authenticated data struc-
tures [15,24] based on message authentication codes [1] and digital signatures [19]
that are affected by large network overheads and by limited database operations.
Recent proposals, such as [13,16,17,20], improve standard protocols but they
cannot be adopted to guarantee results correctness in outsourced key-value data-
bases because they incur either in network overheads [13,16,20] or in high compu-
tational costs [9,16,17]. For these reasons, we propose Bulkopt, a novel protocol
that allows us to detect unauthorized modifications on outsourced data, as well
as the correctness of all results produced by a cloud database service. Bulkopt
guarantees authenticity, completeness and freshness of results produced by out-
sourced databases including cloud related services. It is specifically designed
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to work efficiently in read and append-only workloads possibly characterized by
bulk operations, where large amounts of records may be inserted in the key-value
database through one write operation. Moreover, Bulkopt supports efficient fine-
grained data retrievals by reducing network overhead related to the verification
of bulk read operations in which multiple, possibly dispersed, keys are retrieved
at once.

Closer cryptographic protocols [8,14] proposed for memory checking data
model [5] efficiently support operations on large numbers of records, but they do
not support standard database queries and they cannot be immediately extended
to database outsourcing scenarios. Bulkopt supports standard insert and read
operations on key-value databases and limits communication overhead and veri-
fication costs of bulk operations. It recasts the problem of verifying the correct-
ness of results produced by an untrusted database in terms of set operations by
leveraging an original combination of bilinear map aggregate signatures [7] and
extractable collision resistant (ECR) hash functions [4,8].

The remainder of the paper is structured as following. Section 2 outlines the
system and threat models assumed by the Bulkopt protocol. Section 3 describes
the main ideas behind the Bulkopt protocol and outlines the high-level design of
the solution. Section 4 proposes the implementation based on aggregate signa-
tures and ECR hash functions. Section 5 outlines the Bulkopt main contributions
and compares it with related work. Finally, Sect. 6 concludes the paper and out-
lines future work.

2 System and Threat Models

We adopt popular terminology for database outsourcing [23]. We identify a data
owner that stores data on a database server managed by an untrusted service
provider, and many authorized users that retrieve data from the server. The
server offers a query interface that can be accessed by the data owner and the
authorized users to retrieve values by providing a set of keys. We consider a
publicly verifiable setting [23] and assume that only the data owner knows his
private key, that is required to insert data into the database, and that authorized
users know the public key of the owner that is required to verify results produced
by the server. We note that in this first version of the protocol, we do not consider
delete and update operations and focus on efficient insert and read database
operations.

Our threat model assumes that the owner and all users are honest, while
the server is untrusted. In particular we assume that the server (or any other
unauthorized party, that does not have legitimate access to the private key)
may try to insert, modify and delete data on behalf of the owner. The Bulkopt
protocol allows all users and the owner to verify the correctness of all results
produced by the server. We distinguish three types of results violations:

– authenticity: results that contain records that have never been previously
inserted by the data owner or that have been modified after insertion;
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– completeness: results that do not include all keys requested by the client
but that have been previously inserted by the data owner;

– freshness: results that are based on an old version of the database. In the con-
sidered operation workload the server can only violate freshness if he returns
results that are both authentic and complete, but refer to an old version of
the database.

3 Protocol Overview

We describe the formal model used by Bulkopt to represent data and opera-
tions (Sect. 3.1) and to express authenticity and completeness guarantees as set
operations (Sects. 3.2 and 3.3). We note that since in this version of the proto-
col we do not consider delete and updates, the server can only violate freshness
if he returns results that are both authentic and complete, but that refer to
an old version of the database. As a result, clients can detect freshness viola-
tions by always using updated cryptographic digest to compute authenticity and
completeness proofs. For details about verification operations please refer to the
candidate implementation of the protocol described in Sect. 4.

3.1 Data Model

We model the key-value database as a set of tuples D = {(k, v)}, where k is
the key and v is the value associated to k. The owner populates the key-value
database by executing one or more insert operations. For each insert operation
the owner sends a set of tuples Bi = {(k, v)}, where i is an incremental counter
that uniquely identifies an insert operation. The set Bi contains at least one
tuple, and may contain several tuples in case of bulk insertions. Without loss of
generality, in the following we refer to each set of tuples Bi as a bulk. We define
as Ki the set of keys included in Bi, and Dn = ∪n

i=1Bi the set of records stored
in the database after n bulk insertions.

We assume that the server has access to a lookup function that given a set of
keys {k} allows him to retrieve the set of insert operation identifiers {i} in which
these keys were sent by the owner. Such function can be obtained by deploying
any standard indexing data structure of preference (e.g., a B-tree).

Any client (including the owner) can issue a read operation requesting an
arbitrary set of keys X = {k}. If the server behaves correctly he must return the
subset of the database A, defined as:

A = {(k, v) ∈ Dn | k ∈ X} (1)

We define R as the set of keys included in A, that is:

R = {k ∈ X | (k, v) ∈ A} (2)

While executing read operations issued by clients, the server distinguishes
two different sets of keys: T and T̄ .
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T is the union of all sets Ki that contain at least one key among those
requested by a client:

T =
⋃

Ki | Ki ∩ X �= ∅ (3)

Within each Ki we identify two subsets of keys: Ri = Ki ∩ X and Qi = Ki\Ri.
We define Q as the union of all sets Qi, and we note that the union of all sets
Ri is equal to set R (see Eq. (2)). Thus, set Q is the complement of R in T .

T̄ is the union of all sets Ki that do not contain any key among those
requested by a client:

T̄ =
⋃

Ki | Ki ∩ X = ∅ (4)

To better explain how these sets are built and the relationships among them,
we refer to a simple example shown in Fig. 1. In this example we have a key-
value database on which the owner already executed five bulk insert operations,
each involving a different amount of tuples. The keys included in the database
are represented by sets K1 to K5. We assume that a legitimate client executes
a read operation, asking to retrieve six keys belonging to three different bulks.
The set of keys requested is represented by X. Since X includes keys belonging
to bulks K1, K3 and K4, all keys of these bulks belong to T , while T̄ includes
all keys belonging in the remaining bulks (K2 and K5). Sets R1, R3 and R5

include only the keys requested by the client and belonging to K1, K3 and K5,
respectively. Set R includes all the keys belonging to the union of R1, R3 and
R5. Sets Q1, Q3 and Q5 include only the keys that were not requested by the
client and that belong to K1, K3 and K5, respectively. Finally, set Q includes
all the keys belonging to the union of Q1, Q3 and Q5.

Sets Q and T̄ are the main building blocks that Bulkopt leverages to identify a
violation of the security properties or to prove the correctness of results produced
by the server.

3.2 Authenticity

Bulkopt builds proofs of authenticity by demonstrating that:

R ∪ Q ∪ T̄ = KD (5)

where KD represents the set of keys included in Dn. We recall from Sect. 2 that
authenticity is violated if the server produces a result containing a key that has
not been inserted by the owner. Let us assume that R includes a fake key kf that
has been created by the server but does not belong to KD. Then it is obvious
that Eq. (5) does not hold, since R is not a subset of KD.

An obvious solution to demonstrate that R is a subset of KD would be for
the client to have the complete set KD. Of course this is not applicable, since it
would require all clients to maintain a local copy of the whole key-value database.

To overcome this issue, Bulkopt requires the owner to maintain a crypto-
graphic accumulator σ(KD) that represents the state of the keys stored in the
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Fig. 1. Example of sets computed over a key-value database.

database Dn. This accumulator is updated after each insert operation and has
to be available to all users. Moreover, the server builds two witness data struc-
tures WQ and WT̄ that represent the sets Q and T̄ , and sends them to the client
together with its response A. We remark that cryptographic accumulators and
witnesses are small and fixed-size data structures, that can be transmitted with
minimal network overhead [3,6].

To verify Eq. (5) a client can extract the set of keys R from A, and use two
accumulators verification functions. In particular, it checks whether the witness
data structures received by the database validates the results with respect to the
requested data and the current state of the database that is maintained locally.
Intuitively, the client verification process can be represented as following:

verify (verify (σ(R),WQ) ,WT̄ ) ?= σ(KD) (6)

where verify denotes accumulators verification functions.
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If Eq. (6) is verified, then the user knows that the two witnesses produced
by the server are correct and that Eq. (5) is also verified. Hence R is a subset of
KD and authenticity holds. On the other hand, if Eq. (6) is not verified, either
the witnesses produced by the server are not correct or R is not a subset of KD.
In both cases, the client is able to efficiently detect a misbehavior of the server.

3.3 Completeness

Bulkopt builds proofs of completeness by demonstrating that:

X ∩ (KD\R) = ∅ (7)

that is, the set of keys requested by the client X and the set of keys not returned
by the server KD\R share no common keys. We recall that KD\R is equal to
Q ∪ T̄ , hence Eq. (7) can be expressed as the following equation:

X ∩ (Q ∪ T̄ ) = ∅ (8)

Bulkopt proves such conditions by leveraging properties of ECR hash functions.
In particular, as shown by [8], ECR hash functions can be used to efficiently
express set intersections by using polynomial representations of sets. That is, an
empty intersection between sets correspond to polynomials having great common
divisor (gcd) equal to 1 (that is, informally we say that since the sets do not
share any common elements, the corresponding polynomials do not have common
roots).

Let us denote as CM (s) a polynomial representation of a generic set M
w.r.t. variable s [8,11], and a set P = Q ∪ T̄ . To prove that the gcd of the
polynomials is 1, the server must generate two polynomials ṗ, ẋ such that:

CP · ṗ + CX · ẋ = 1, (9)

The server sends witnesses WP , Wṗ and Wẋ in addition to WQ and WT̄ that were
already sent to prove authenticity. A user can now exploit verification functions
of the considered cryptographic signature to verify Eq. (9). If Eq. (9) is verified,
then the client knows that the witnesses produced by the server are correct and
that Eq. (7) is also verified. Hence R includes all keys X requested by the client
that are available in the server database, and completeness holds. On the other
hand, if Eq. (9) is not verified, either the witnesses produced by the server are
not correct or X shares common elements with sets of keys Q or T̄ that were
not sent by the server, thus violating completeness. In both cases, the client is
able to efficiently detect a misbehavior of the server.

4 Protocol Implementation

In this section we describe the Bulkopt protocol by referring to its main three
phases: setup and key generation (Sect. 4.1), insert operations (Sect. 4.2) and
read operations (Sect. 4.3).
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4.1 Setup and Key Generation

Setup. Let g be a generator of the cyclic multiplicative group G of prime order
p, GT a cyclic multiplicative group of the same order and ê : G×G → GT be the
pairing function that satisfies the following properties: bilinearity: ê(ma, nb) =
ê(m,n)ab ∀m,n ∈ G, a, b ∈ Z

∗
p; non-degeneracy: ê(g, g) �= 1; computability: there

exists an efficient one-way algorithm to compute ê(m,n), ∀m,n ∈ G.
Let h be a cryptographic hash function and hz(·), hg(·) be two full domain

hash functions (FDH) secure in the random oracle model [2,7] defined as follow-
ing:

hz : {0, 1}∗ → Z
∗
p (10)

hg : {0, 1}∗ → G (11)

Let us denote as CM (s) the characteristic polynomial that uniquely repre-
sents the set M , generated by using as roots of the polynomial the sum opposite
of the elements of the set and as variable the secret key s [22]. Polynomial CM (s)
can be computed as following:

CM (s) =
∏

m∈M

(m + s) (12)

Let FM = (f(M), f ′(M)) be the output of an extractable collision resis-
tant (ECR) hash function [4] with secret key (s, α) ∈ Z

∗
p × Z

∗
p and public

key [g, gs, . . . , gsq

, gα, gαs, . . . , gαsq

], where M denotes a set of values m ∈ Z
∗
p.

The output of the function can be computed through two different algorithms
depending on the knowledge of the secret key s. For this reason, we denote
as (fsk(M), f ′

sk(M)) the computation of (f(M), f ′(M)) with knowledge of the
secret key and (fpk(M), f ′

pk(M)) the computation of (f(M), f ′(M)) with only
knowledge of the public key. We will use notation FM , f(M) and f ′(M) to
identify the black-box outputs of the functions when it is indifferent if they
were computed with or without knowledge of the secret key. Functions fsk(M)
and fsk(M) can be computed by using straightforwardly the polynomial CM (s)
shown in Eq. (12) as following:

fsk(M) = gCM (s) = g
∏|M|

i=1(mi+s), (13)

f ′
sk(M) = gαCM (s) = gα

∏|M|
i=1(mi+s), (14)

Functions fpk(M) and f ′
pk(M) can be computed by using the coefficients

of the polynomial CM (s). That is, if we consider the set of the coefficients
{ai}i=[1,...,|M |] of the polynomial CM (s) such that CM (s) =

∑|M |
i=1 ai · si, fpk(M)

and f ′
pk(M) can be computed as following:
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fpk(M) =
|M |∏

i=1

(
gsi

)ai

(15)

f ′
pk(M) =

|M |∏

i=1

(
gαsi

)ai

(16)

Although functions (fsk(·), f ′
sk(·)) and (fpk(·), f ′

pk(·)) have the same behavior,
computing of (fsk(·), f ′

sk(·)) is more efficient due to the computation of only one
exponentiation in the group G. Without knowledge of the secret key, ECR hash
functions can be verified as following:

ê(f(M), gα) ?= ê(f ′(M), g) (17)

Otherwise, the secret key allows a more efficient verification:

f(M)α ?= f ′(M) (18)

Although knowledge of the secret key improves the algorithm efficiency, it allows
one to cheat in the computation of the hash function. Hence, it cannot be given to
parties that have advantages in breaking the security of the ECR hash function.
Key Generation. We denote the owner’s secret and public keys as sk and pk
and generate them as follows:

sk = (u, s, α), (u, s, α) R←−Z
∗
p × Z

∗
p × Z

∗
p (19)

pk = (U, [gs, . . . , gsq

, gα, gαs, . . . , gαsq

]), U = gu (20)

where q ∈ N must be greater than or equal to the maximum number of records
involved for each insert or read operation, and u, s and α be different from each
other.

4.2 Insert Operations

The owner issues an insert operation by sending the tuple (Bi, σi, Γi), where:

– i ∈ N is the operation identifier, that is the incremental counter maintained
locally by the owner and by the server that identifies the insert operation (see
Sect. 3);

– Bi = {(k, v)} is the set of keys and records inserted in the database at opera-
tion i. We also denote as Ki the set of the keys {k} inserted in this operation;

– σi is the bulk signature of the set of keys Ki inserted at operation i. It is
computed by the tenant as:

σi(Ki) =
(
[hg(i) · fsk(Ki)]

u
, [hg(i) · f ′

sk(Ki)]
u)

=

=
([

hg(i) · g
∏

k∈Ki
(k+s)

]u

,
[
hg(i) · gα

∏
k∈Ki

(k+s)
]u)

(21)
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– Γi is the set of the record signatures of the records Bi, computed by using a
BLS aggregate signature scheme [7]:

Γi(Bi) = {γi(k, v)}(k,v)∈Bi
(22)

γ(k, v) = hg(k ‖ v)u (23)

where ‖ denotes the concatenation operator. We assume that the concatena-
tion of the values k and v does not compromise the security of hg(·). If the
security of the candidate implementation of hg(·) in this context, one should
apply a collision resistant hash function or a message authentication code
algorithm on the value v previous to the concatenation operation [1].

We note that the bulk signature σi (Eq. (21)) is similar to the computation
of a bilinear map accumulator [18]. The original scheme would compute the
signature of fsk(Ki) as fsk(Ki)

u. Our scheme differs for the factor hg(i)
u, that

could be seen as a BLS signature of the operation identifier i. This variant allows
us to bind the bulk signature σi(Ki) to the operation identifier i in which the
insert operation is executed. As we describe in Sect. 4.3, this design choice also
allows us to verify correctness of the server answers by using security proofs that
were originally proposed for the memory checking setting [8].

Both the owner and the server keep track of the operation identifier i locally,
without exchanging it in each insert operation. After each insert operation, the
server stores all records Bi, the bulk signatures σi and the record signatures Γi

in the database associated to the operation identifier i.
The owner does not store any bulk signature σi or record Γi, but he main-

tains a cryptographic structure of constant size to keep track of the state of the
database. We call it the database signature D = (σ�

last, FDlast
), where last is the

value of the operation identifier i for the last insert operation executed on the
server, and σ�

last and FDlast
are the bulk signature and ECR hash function of all

the keys inserted in the database.
The owner computes the bulk signature σ�

last as following:

– after the first insertion (i = 1) he sets the initial value of the database signa-
ture as σ�

1 = σ1;
– after any other insert operation (i > 1), the owner computes the database

signature σ�
i by computing the product of the current version of the database

signature σ�
i−1 and the bulk signature σi of the last executed insert operation

as σ�
i = σ�

i−1 · σi−1.

As a result, the value of the database signature σ�
last is equal to the product of

all the bulk signatures σi ever sent by the owner to the server:

σ�
last =

i=last∏

i=1

σi (24)
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The owner computes the database ECR hash function FDlast
as following:

– after the first operation (i = 1), the database accumulator is equal to the
ECR hash function of the keys included in the first bulk of data, that is
FD1 = (fsk(K1), f ′

sk(K1));
– after any other operation (i > 1), the database accumulator is computed as

FDi
= F

CKi
(s)

Di−1
.

As a result, the value of FDlast
after the last insert operation is the following:

FDlast
= (g

∏last
i=1 CKi

(S), gα
∏last

i=1 CKi
(S)) (25)

4.3 Read Operations

To execute a read operation a client must send a set of keys X = {k} to the
server. The server returns the following tuple:

response (X) := (I,A, πauth, πcomp, πrec) (26)

where I = {i} is the set of the operation identifiers associated to the bulks that
include at least one of the keys X requested by the client; A = {Ai}i∈I is the set
of the key-value records that compose the actual response to the client, grouped
by the corresponding operation identifier i from which the server retrieved it;
πauth, πcomp and πrec are the keys authenticity proof, the keys completeness proof
and the records authenticity proof used to prove keys authenticity, completeness
for the returned keys and authenticity of the values associated to the keys, respec-
tively. Although from a security perspective keys authenticity and completeness
proofs depend on each other, we distinguish them for the sake of clarity. We also
observe that guaranteeing records correctness does not require any completeness
proof because we are considering a key-value database where projection queries
are not allowed. We recall from Sect. 3 that the elements of each set of the
response Ai is a key-value tuple (k, v), and we denote as Ri the set of the keys
included in the set Ai. In the following we describe separately the generation and
the verification processes for keys authenticity proofs, keys completeness proofs
and records authenticity proofs.

Keys Authenticity. The keys authenticity proof is a tuple that includes the
following values:

πauth = ({FQi
}i∈I , FT ,WT̄ ), (27)

where {FQi
}i∈I is the set of the bulk witnesses, FT is the aggregate ECR hash

function of bulks that include at least one of the keys requested by the client,
WT̄ is the aggregate bilinear signature of the bulks that do not include any of
the keys requested by the client.
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The server generates each bulk witness FQi
by computing the ECR hash

function fpk (see Eq. (16)) on the set complement Qi of Ri with respect to Ki,
as following:

FQi
=

(
fpk(Qi), f ′

pk(Qi)
)

=
(
fpk(Ki\Ri), f ′

pk(Ki\Ri)
)

=

=
(
gCKi\Ri

(s), gα·CKi\Ri
(s)

)
, ∀i ∈ I (28)

Moreover, the server computes the aggregate bilinear signature WT̄ as the wit-
ness for bulks that do not include any keys requested by the client by aggregating
the owner signatures as following:

WT̄ =
∏

i∈I

σi(Ki) =

[
∏

i∈I

hg(i)gCKi

]u

(29)

The client verifies authenticity of the keys {Ri} returned by the server by
using values included in the authentication proof πauth and the database signa-
ture σ�

last stored locally (see Eq. (24)). The client verifies correctness of the ECR
hash function FT by using Eq. (17). Then, the client verifies that the ECR hash
function FT is built correctly with respect to the aggregate bilinear signature
WT̄ by using the locally maintained database signature σ�

last, as following:

ê (FT , U) ?= ê

(
σ�
last

WT̄

, g

)
(30)

Finally, the client uses FT to verify authenticity of the returned records {Ri}i∈I

by using the bulk witnesses {FQi
}i∈I , as following:

ê

(
∏

i∈I

hg(i), g

)
∏

i∈I

ê (fpk(Ri), FQi
) ?= ê (FT , g) (31)

After this verification process the client is sure about the following guarantees:

– FT is a valid witness for the bilinear aggregate signature WT̄ , as the proba-
bility of generating or extracting any other owner signature would break the
non-extractability guarantees of aggregate bilinear signatures [7];

– all the returned keys {Ri}i∈I are authentic, because the server proved exis-
tence of the witnesses Qi with respect to bulks aggregate hash function FT

and generating false witnesses would break extractable collision resistance
(ECR) guarantees of the ECR hash function (f(·), f ′(·)) [8];

– all the operation identifiers i ∈ I sent by the client are authentic, as generating
identifiers that satisfy Eq. (31) would break either the FDH function hg(·) or
the collision resistance guarantees of aggregate bilinear signatures [7].

Keys Completeness. As described in Sect. 3.3, to prove completeness of the
response the server must produce witnesses that prove disjunction the requested
keys X with respect to the complement sets Q and T̄ . The completeness proof is
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a tuple that includes such witnesses, and additional values that allow the client
to verify that the server generated them correctly:

πcomp = (FP , Fṗ, Fẋ), (32)

where FP is the ECR hash function of the set union including the complement
sets Q and T̄ , (Fq̇ and Fẋ) the witnesses that prove disjunction of the set of the
requested keys X with respect to sets T̄ and Q.

First, the server computes the ECR hash function of Q ∪ T̄ as:

FP =
(
fpk(Q ∪ T̄ ), f ′

pk(Q ∪ T̄ )
)

=
(
gCQ∪T̄ (s) , gα·CQ∪T̄ (s)

)
(33)

The two witnesses Fṗ and Fẋ of polynomials ẋ and ṗ are generated by the server
to show that the gcd between the characteristic polynomials CX and CQ∪T̄ of
sets X and Q ∪ T̄ is 1, that is equivalent to prove disjunction of sets X, Q and
T̄ , as shown in [8]:

ẋ, ṗ : CX(s) · ẋ + CP (s) · ṗ = 1 (34)

Fṗ =
(
fpk(ṗ), f ′

pk(ṗ)
)

(35)

Fẋ =
(
fpk(ẋ), f ′

pk(ẋ)
)

(36)

The client verifies correctness of the ECR hash functions FP , Fq̇ and Fẋ sent
by the server by using Eq. (17). Then, he verifies whether FP represents the set
complement of R with respect to D by checking the value of FP against the
database accumulator FDlast

(see Eq. (25)) publicly distributed by the owner:

ê (fpk(R), FP ) ?= ê (FDlast
, g) (37)

Now that the client verified the correct generation of the witnesses FP , he can
verify disjunction of X, Q and T̄ by testing Eq. (34) as following:

ê(fpk(X), Fẋ) · ê(FP , Fṗ)
?= ê(g, g) (38)

Records Authenticity. The server computes the proof of authenticity πrec by
aggregating all the record signatures γk,v = γ(k, v) previously received by the
owner for all the records returned to the client, as following:

πrec =
∏

(k,v)∈Ai,∀Ai∈A

γk,v (39)

The client verifies authenticity of the response A given the server integrity proof
πint and the owner public key U by verifying the following condition:

ê

⎛

⎝
∏

(k,v)∈Ai,∀Ai∈A

hg(k ‖ v), U

⎞

⎠ ?= ê(πrec, g) (40)



Guaranteeing Correctness of Bulk Operations in Outsourced Databases 49

This concludes the description of the protocol: any client that is enabled to
query the database and that knows the owner’s public key pk and the state
of the database D can verify correctness of the results by using the described
verification operations. We recall that if a client knows the secret key sk, such as
in symmetric settings, he can verify results correctness more efficiently by using
the secret exponents u and α.

5 Related Work

Most literature related to security of data outsourcing and cloud services aims
to protect data confidentiality of tenant data against malicious insiders of cloud
providers. These works typically assume the honest-but-curious threat model
where an insider within the cloud provider may access and copy tenant data
without corrupting or deleting them. To solve this issue several works already
proposed in the literature leverage architectures based on partially homomorphic
and property preserving encryptions that allow cloud computations and efficient
retrieval on encrypted data (e.g., [10,12,21]). Unlike these works, in this paper
we do not trust the cloud provider to behave correctly, but we assume a threat
model where the cloud provider can violate authenticity and completeness of
tenant data, either due to hardware/software failures or deliberate attacks. The
main problem in this context is to combine authenticity and completeness guar-
antees without affecting the database performance and functionalities. As an
example, standard message authentication codes or digital signatures can guar-
antee authenticity of outsourced data. However, they cannot guarantee results
completeness without incurring in great network overhead.

A well-known solution to guarantee results correctness is to adopt Merkle
hash trees [9], that allow to build efficient proofs for range queries by authen-
ticating the sorted leafs of the tree with respect to an index defined at design
time. However, they do not support efficient queries on arbitrary values and
efficient proofs on dispersed key values. Other solutions allow the tenant to
verify authenticity and completeness of outsourced data by means of RSA accu-
mulators [13,16,17]. Although RSA accumulators provide constant asymptotic
complexity for read and update operations, their high constant computational
overhead often prevent their practical application in most scenarios [9]. A dif-
ferent approach is proposed in [25], that relies on the insertion of a number of
fake records in the database. These records are then retrieved to verify their
presence, and possibly identify completeness violations. However, since no cryp-
tographic verification is executed on the real database, such a solution provides
lower security guarantees based on probabilistic completeness verification. The
protocols proposed in [8] guarantees authenticity of operations in a memory-
checking model by maintaining an N-ary tree of constant height. Since only the
values of the nodes change (but not the number of cells), these protocols can
produce proofs of constant size with respect to the cardinality of the sets stored
in each memory cell. However, their proposal cannot be easily adopted in the
data outsourcing scenario because the amount of sets is not constant and the
tree structure would require expensive re-balancing operations.
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6 Conclusion

This paper proposes Bulkopt, a novel protocol that provides authenticity and
completeness guarantees for key-value databases. Bulkopt is specifically designed
for providing data security guarantees in the context of cloud-based services sub-
ject to read/write workloads, and efficiently support bulk insert operations, as
well as read requests that involve the retrieval of multiple and not contiguous
keys at once. Efficient verification of bulk operations is achieved by modeling
data security constraints in terms of set operations, and by leveraging crypto-
graphic proofs based for set operations. In particular, Bulkopt is the first protocol
that combines extractable collision resistant hash functions and aggregate bilin-
ear map signatures to achieve novel cryptographic constructions that allow the
verification of authenticity and completeness over large sets of data by relying
on small cryptographic proofs. More work is needed to tune the protocol per-
formance by using data structures to cache partial proofs at the server side, as
well as further developments to also support update operations.
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Abstract. We show a privacy-preserving and performance-preserving
approach to provably transform any database search protocol into a
(pull-mode or batch-mode) publish-subscribe protocol, and viceversa.
This enhances functionality of both protocol types, notably implying
practically efficient publish-subscribe solutions for a large class of sub-
scriptions (e.g., index, keyword, range and conjunction). Previous work
either missed practicality or focused on customized solutions for specific
subscription types. We also show simple padding techniques that enhance
the confidentiality of database search and publish-subscribe protocols
against communication eavesdroppers. Specifically, these techniques pro-
vide optimal hiding of the number of matching database records or pub-
lications, while restricted to keeping the communication increase below
a specified limit.

1 Introduction

Private information retrieval, in its early results (i.e., [1,8]), showed the surpris-
ing possibility of accessing data while provably not leaking undesired information
about a database or a query, although at significant applicability restrictions [1]
or performance costs [8]. After several advances, more recent literature on prov-
ably privacy-preserving database retrieval (DR) protocols contains constructions
with practical efficiency (i.e., only a constant factor slower than an analogue non-
private solution to the problem) for specific query types, and in a 3-party model.
There, a help server facilitates a querying client and a data owner achieve their
goal, where the only leakage is to the help server and can be provably character-
ized as ‘access-pattern’ over encrypted data. Intriguing questions related to this
area include: what other types of protocols are possible with similar (or better)
privacy and efficiency guarantees?

In this paper, we answer this question for a large class of publish/subscribe
(PS) protocols. We show a general paradigm to transform a class of DR protocols
into a related class of (pull-mode or batch-mode) PS protocols, while preserving
privacy and practical efficiency. The resulting PS protocols provably protect the
privacy of publications and subscriptions, and have efficiency only a constant
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factor slower than an analogue non-private solution to the problem. Moreover,
they can benefit from practically efficient 3-party database retrieval protocols,
without inheriting their drawbacks (‘access pattern’ leakage to the matching
server). To the best of our knowledge, this is the first example in the area of
an application where this combination of properties is achievable. We also show
a converse transformation of a class of (pull-mode) publish-subscribe protocols
into a related class of database retrieval protocols that have practical latency and
provably protect privacy of database and queries. Finally, we show how simple
padding approaches can further enhance confidentiality against eavesdroppers
for both DR and PS protocols. To capture tradeoffs between privacy and com-
munication, we formulate a restricted padding problem, and define a simple
padding algorithm that provably increases the eavesdropper’s uncertainty about
the number of matched database records or publications. Using entropy, we can
then quantify the improved confidentiality, and show that the proposed simple
padding algorithm is optimal within the considered restriction model.

Related work. We note that designing PS or DR protocols using general solu-
tions from the area of secure function evaluation protocols in the 2-party [10]
or 3-party [4,6] model, would not result in practically efficient solutions. Practi-
cally efficient 3-party DR protocols with provable privacy include [3,7,9] for the
case of index, keyword, range and conjunction queries. Practically efficient PS
protocols with provable privacy in the 3-party model include [2] for the case of
subscriptions based on boolean circuits. (See references therein for more related
work on DR and PS protocols.)

2 Models and Definitions for DR and PS Protocols

DR protocols. A database is an n-row, (m + 1)-column matrix Db =
(A1, . . . , Am+1), where each row is associated with a data record, denoted as reci,
for i = 1, . . . , n, each column is associated with an attribute, denoted as Aj , for
j = 1, . . . ,m+1, and each entry is denoted as Aj(i). The first m columns are value
attributes, where entries Aj(i) are values in a domain Domj = {0, 1}� allowing
suitable operations, and the last column Am+1, is a payload attribute, where
entries are from a domain Domm+1 = {0, 1}r, for integers �, r > 0. The data-
base schema, including all parameters and domain descriptions, is known to all
parties. A query is a sequence q = (qv1, . . . , qvs,mc), where s ≥ 1, mc is a boolean
(matching) circuit and, for h = 1, . . . , s, each query value qvh ∈ Domj , for some
j ∈ {1, . . . ,m}. An equality query gate (A(i), q, j, h), for some j ∈ {1, . . . , m}
and h ∈ {1, . . . , s}, is a function that takes as input Aj(i) and qvh, and out-
puts 1 if Aj(i) = qvh and 0 otherwise. An equality-based query is a query where
mc = mc′(x1, . . . , xt), where mc is a boolean circuit and, for h = 1, . . . , t, each
xh is the output of the h-th equality query gate.
A secure database retrieval (DR) protocol in the 3-party model is an interactive
protocol between 3 types of efficient parties: a querier Q, having as input a
query; a data owner D, having as input database Db = (A1, . . . , Am+1); and a
help server HS, helping Q and D to more efficiently reach their goals. To align
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with many results in the area, we consider DR protocols with the following 4
subprotocols, as detailed in Fig. 1:

1. (Key Setup) D and Q share a key k that is unknown to HS;
2. (Db Setup) D sends an encrypted (using k) version of its database to HS;
3. (Query) Q sends an encrypted (using k) version of its query value(s) to HS;
4. (Answer) HS computes an answer over the received encrypted data, possibly

interacting with Q and without involving D, and resulting in Q returning an
output.

We define correctness and privacy requirements for DR protocols.
Correctness. The protocol’s outcome should be Q’s retrieval of the payload(s)
Am+1(i) such that C’s query is ‘matched’ by attribute values A1(i), . . . , Am(i).
Important examples of queries and matching conditions are as follows:

1. index query: an index ind ∈ {1, . . . , n}; matching condition: i = ind;
2. keyword query: a keyword v ∈ Domj ; matching condition: Aj(i) = v;
3. conjunction query: multiple keywords v1 ∈ Dom1, . . . , vt ∈ Domt; matching

condition: (A1(i) = v1) ∧ . . . ∧ (At(i) = vt) for a specific column j;
4. range query: a range [v1, v2] ⊆ Domj ; matching condition: v1 ≤ Aj(i) ≤ v2.

Privacy. The protocol communication should not reveal to any efficient adversary
Adv corrupting any one among C, S or HS, any information other than system
parameters σ,m, s, r, �, κ, n, or the following: (a) when Adv corrupts C, the query
and the matching payloads which C is entitled to retrieve in the correctness
requirement; (b) when Adv corrupts HS, ‘access pattern’ information relative
to when HS accesses encrypted data provided by D. Given this intended leakage,
a formal privacy definition can be derived using known approaches frequently
used in the cryptography literature [5]. Note that such protocols, even when all
communication is encrypted, can leak information to an eavesdropper, such as
an upper bound on the number of matching records [3]. We study how to limit
this leakage in Sect. 4.

S

Q HS

HS answers Q’s query by 
computing over received 

encrypted Db and query value(s)

Query value(s) Database Db = (A1,…,Am,Am+1)

Q’s output: Db payloads Am+1(i), 
for all i=1,…,n such that 

A1(i),…,Am(i) match Q’s query

k-Encrypted Db  

D

Q and D share a key k (unknown to HS)

k-Encrypted query value(s)  

Fig. 1. Structure of 3-party DR protocols

S

P MS

TP matches subscription and
publication by computing over

received encrypted data

SubscriptionPublication(s) (A1,…,Am,Am+1)

S’ output: publication data Am+1(i), 
for all i=1,…,n such that publication

A1(i),…,Am(i) match S’ subscription

k-Encrypted subscription  

S

P and S share a key k (unknown to MS)

k-Encrypted publication(s)  

Fig. 2. Structure of 3-party PS protocols
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PS protocols. We formally define a data model for PS protocols so to exactly
mirror the one for DR protocols; that is, publications are defined like data-
base records, subscriptions like queries, and equality-based subscriptions like
equality-based queries. A secure publish/subscribe retrieval protocol is an interac-
tive protocol between 3 types of efficient parties: a subscriber S, having as input
a subscription; a publisher P , having as input a publication; and a matching
server, denoted as MS, maintaining a repository rp and helping subscribers and
publishers to store their subscriptions, publications and carry out their desired
functions, including matching publications with subscriptions based on matching
circuit mc. To align with some results in the area, we consider publish-subscribe
protocols as made of the following 4 subprotocols, with a specific structure, as
detailed in Fig. 2:

1. (Init): P and S share a key k that is unknown to MS;
2. (Subscribe): S sends an encrypted (using k) version of its subscription to MS;
3. (Publish): P sends an encrypted (using k) version of its publication to MS;
4. (Pull-based Match): Upon S’ request, MS determines if there is a match

between the subscription and the publication, based on the received encrypted
data and matching predicate mc, resulting in S returning an output.

We define correctness and privacy requirements for pull-mode PS protocols.
Correctness. At the end of the protocol S should receive a publication item datai

for all publications issued by S and matching with C’s current subscription.
Privacy. The communication transmitted during the protocol should not reveal
to any efficient adversary Adv that corrupts any one among S, P or HS, any
information other than system parameters σ,m, s, r, �, κ, n, and the following:
(a) when Adv corrupts S, the matching publication data items which S is enti-
tled to retrieve in the correctness requirement; (b) when Adv corrupts MS,
the number of matching publication data items in each execution of subproto-
col PbMatch. Given this intended leakage, a formal privacy definition can be
derived using known approaches from the cryptography literature [5]. Note that
such protocols, even when all communication is encrypted, can leak informa-
tion to an eavesdropper, such as the number of matching publications, as it is
intended to be leaked to S by the correctness requirement. We study how to
limit this leakage in Sect. 4.

3 Enhanced Functionality for PS and DR Protocols

In this section we describe our privacy-preserving transformations of any DR
protocol into a PS protocol. Our first result is the following

Theorem 1. Assuming the existence of pseudo-random functions, and of a
secure 3-party DR protocol πdr for equality-based queries, there exists (con-
structively) a secure 3-party pull-mode PS protocol πps for equality-based sub-
scriptions, satisfying:
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1. publication correctness;
2. privacy against any polynomial-time adversary Adv corrupting any one

among S, P or MS (that is, other than intentionally revealed data, πps only
leaks to MS the number of matching publication data items in any execution
of PbMatch)

3. latency and round complexity of πdr is the same as those of πps;
4. if πdr has communication complexity linear in number of matching records,

then πps has communication complexity linear in the number of matching
publications.

Among mentioned examples of equality-based query and subscription types, The-
orem 1 is applicable to index subscriptions, keyword, range and conjunction sub-
scriptions. Remarkably, even if πdr leaks information like ‘access pattern’ to
encrypted data to the help server HS, its application in constructing πps does
not result in any leakage of this same type. This is due to the following: in PS
protocols, encrypted publications are only processed once and are deleted after-
wards, while in DR protocols, encrypted data records remain stored with HS
until they are explicitly deleted.

Description of protocol πps. We now describe the four subprotocols (Init for
initialization, Subscribe for subscription, Publish for publication, and PbMatch
for pull-mode matching) of our PS protocol. The overall main idea consists of
the following ingredients: P and MS create an encrypted database from a batch
of publications issued by P ; S defines a subscription as a database query, and
finally an execution of the PbMatch subprotocol can be defined as an execution
of the Answer subprotocol. We note that our publication, subscription and pull-
based match models well mirror the database record, query and answer models,
respectively. Thus, this main idea almost defines the entire construction, by
preserving efficiency of the original DR protocol. Only two more refinements
are needed to satisfy correctness and privacy requirements. With respect to
correctness, we note a potential issue: Subscribe may be run before Publish, while
Query needs to run after DbSetup. We circumvent this issue as follows: during
Init , a first batch of publications is collected and used by MS with Db-Setup to
create a first publication database; later, the next batches of publications for the
next publication databases are collected by MS between any two consecutive
executions of PbMatch. With respect to privacy, note that repeated use of the
same key k during Subscribe and Publish may result in subscription leakage to
MS (e.g., repeated occurrences of the same subscription). We avoid this issue
using a fresh session key ki at the i-th execution of Subscribe, for i ≥ 1. Each
session key is derived from the originally agreed upon key k using standard key
derivation techniques. A high-level pictorial description of the protocol can be
found in Fig. 3.

Our next result and protocol are somewhat dual and simpler than our first
ones. Formally, we obtain the following

Theorem 2. Assuming the existence of pseudo-random functions, and of a
secure 3-party pull-mode PS protocol πps for equality-based queries, there exists
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Publisher Matching Server Subscriber

Subscribe: Using Query, S 
sends to MS a ki-encrypted 

subscription + matching circuit

Pull-based Match: S and MS run 
Answer using current database Db and 

current subscription, to let S obtain 
publications matching subscription  

Init: P and S agree on key k unknown to MS using Key 
Setup. MS uses Db-Setup to create a k1-encrypted 

database Db containing first n publications issued by P

Publish: P sends next ki-encrypted 
publication to MS, who prepares database 

Db’, using Db-Setup, to replace Db after next 
Pull-based Match execution 

Fig. 3. Our construction of PS protocols

Data Owner Help Server Client

Query: C sends to HS a k-
encrypted query computed 

using Subscribe

Answer: C and HS run Pull-based Match 
using the k-encrypted pDb and the k-

encrypted query, from which C derives 
any records matching the query 

Key Setup: D, C agree on key k unknown to HS using Init

Db Setup: Given records from database Db, 
D sets batch of publications = these records, 

runs Publish to generate a k-encrypted 
publication database pDB and send it to HS. 

Fig. 4. Our construction of DR protocols

(constructively) a secure 3-party DR protocol πdr for equality-based subscrip-
tions, satisfying:

1. publication correctness;
2. privacy against any polynomial-time adversary Adv corrupting any one

among C, D or HS (that is, other than intentionally revealed data, πdr only
leaks the number of matching records to HS for each execution of subprotocol
Answer);

3. latency and round complexity of πps is the same as in πdr;
4. if πps has communication complexity linear in number of matching publica-

tions, then πdr has communication complexity linear in the number of match-
ing records.

Among the mentioned examples of equality-based query and subscription types,
Theorem 2 is directly applicable to index, keyword, conjunction and range
queries. A pictorial description of the protocol can be found in Fig. 4.

4 Enhanced Confidentiality for both Types of Protocols

In this section we describe our main results on enhanced confidentiality against
eavesdroppers of DR and PS protocols. First, we define the problem of con-
fidentiality against eavesdroppers in both protocol types. Then, we define a
padding algorithm that reduces confidentiality loss while limiting communica-
tion increase. Using entropy, this loss can be shown to be optimal within the
considered class of padding algorithms.

The eavesdropper confidentiality problem. As proved in [3], in any DR pro-
tocol in our model, including both those from the literature and the one obtained
from Theorem 2, an eavesdropper can infer information about the number of
matching database records. Note that this happens even when the communica-
tion is encrypted, since encryption, as is well known, does not hide the length of
the plaintext. Padding is an often mentioned approach to reduce such leakage. We
study a constrained version of the problem where we use an additive constraint
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on the amount of affordable padding, and ask the following questions: (1) what
is the reduction in leakage to the adversary under any such padding strategies,
and (2) is there an optimal padding strategy, where optimality is in the sense of
minimizing leakage about m to an eavesdropper. (Note that although we study
the problem for DR protocols, a similar study can be done for PS protocols,
where an eavesdropper can infer information about the number of publications
matching a given subscription.)

Let X(i) denote the random variable that is = 1 (resp., 0) if the i-th database
record matches (resp., does not match) the client’s query, for i = 1, . . . , n. We
assume that all X(i) are independently and uniformly distributed on {0, 1}. Also,
let hwX denote the random variable that is equal to the Hamming weight (i.e.,
the number of 1’s) in the vector X = (X(1), . . . ,X(n)).

Let pA be an efficient (possibly probabilistic) padding algorithm that takes as
input m ∈ {1, . . . , n} and always returns a non-decreasing output m′ = pA(m);
that is, for any m ∈ {1, . . . , n}, with probability 1, it holds that m′ ≥ m. We
say that pA is a c-restricted padding algorithm if for any m ∈ {1, . . . , n}, with
probability 1, it holds that m′ = pA(m) ≤ c · m. Let phwX denote the random
variable returning the output of algorithm pA on input a value drawn from
random variable hwX.

To analyze the information leaked about m, we use the well-known notion of
entropy of a random variable, denoting as H the entropy function which maps a
random variable to a real number ≥ 0. In what follows, we study the conditional
entropy H(X|phwX = m′), modeling the uncertainty that an (even infinitely
powerful) adversary has on matching bits X(1), . . . , X(n), after eavesdropping
a communication consistent with m′ matching records, for some m′ returned by
a c-restricted padding algorithm.

Entropy-based confidentiality analysis. First of all, we analyze the uncer-
tainty on X from a value for the number of matching records hwX. Then, we
define a c-restricted padding algorithm pA and show the implied uncertainty on
X from the resulting value for phwXpA. Finally, we show that algorithm pA
is optimal, in that it maximizes the uncertainty among all c-restricted padding
algorithms.
Uncertainty on X from a value for hwX. Let m be an integer in {1, . . . , n}. We
observe that Prob[X = x|hwX = m ] is 0 when the Hamming weight of n-bit
vector x, denoted as hw(x), is �= m. Otherwise, when hw(x) = m, we have that

Prob[X = x|hwX = m ] =
Prob[X = x ] · Prob[hwX = m|X = x ]

∑
x Prob[X = x ] · Prob[hwX = m|X = x ]

=
2−n · 1

∑
x:hw(x)=m 2−n · 1

=
2−n

(
n
m

) · 2−n
=

1
(

n
m

) ,

where the first equality follows from Bayes’ rule, and the second on the assump-
tion of X’s distribution. Denoting px,m = Prob[X = x|hwX = m ], we obtain
that
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H(X|hwX = m) = −
∑

x

px,m log(px,m) = −
∑

x:hw(x)=m

px,m log(px,m) = log

(
n

m

)

.

Defining an algorithm pA. Let m be an integer in {1, . . . , n}. We define the c-
restricted padding algorithm pA as the algorithm that maps m to the next larger
integer m′ that is an integer multiple of c. Formally, m′ = (q + 1)c, where (q, r)
is the only pair of non-negative integers such that m = qc + r. Note that pA is
a deterministic algorithm.
Uncertainty on X from a value for phwXpA. We observe that Prob[X =
x|phwX = m ] is 0 when hw(x) �∈ {m − c + 1, . . . ,m} or m is not an inte-
ger multiple of c. Otherwise, when hw(x) ∈ {m − c + 1, . . . ,m} and m = kc, for
some positive integer k, we have that

Prob[X = x | phwXpA = m′ ] =
Prob[X = x ] · Prob[ phwXpA = m′|X = x ]
∑

x Prob[X = x ] · Prob[ phwXpA = m′|X = x ]

=
2−n · 1

∑
hw(x)∈[m′−c+1,m′] 2

−n · 1 =
2−n

∑m′
j=m′−c+1

(
n
j

) · 2−n

=
1

∑m′
j=m′−c+1

(
n
j

) ,

where the first equality follows from Bayes’ rule. Denoting px,m′ = Prob[X =
x|phwXpA = m′ ], we obtain that H(X|phwXpA = m′) is equal to

−
∑

x

px,m′ log(px,m′) = −
∑

hw(x)∈[m′−c+1,m′]

px,m′ log(px,m′) =
m′
∑

j=m′−c+1

(
n

j

)
.

Optimality of padding algorithm pA. Note that the described algorithm pA
always increases the uncertainty on X since H(X|phwXpA = m′) is strictly
larger than H(X|hwX = m). It turns out that pA is the best algorithm among
all c-restricted padding algorithms. This can be proved into two parts, depend-
ing on whether we consider deterministic or probabilistic algorithms, and the
proof is based on the above computed expressions and known properties of the
entropy function.

Implications on DR and PS protocols. Consider a DR protocol, where a
help server HS can augment its answer to C based on a c-restricted padding
algorithm. Because of our analysis above, this increases the eavesdropper’s uncer-
tainty on the Hamming weight of vector X denoting how many database records
were matched with C’s query, and this increase is optimal among all c-restricted
padding algorithms. Consider a PS protocol obtained from a DR protocol via
Theorem 1, where additionally a matching server MS can augment its answer to
S based on a c-restricted padding algorithm. Because of our analysis above, this
increases the eavesdropper’s uncertainty on the Hamming weight of vector X
denoting the number of publications matching S’ subscription, and this increase
is optimal among all c-restricted padding algorithms.



60 G. Di Crescenzo et al.

Acknowledgements. Part of this work was supported by the Intelligence Advanced
Research Projects Activity (IARPA) via Department of Interior National Business
Center (DoI/NBC) contract number D12PC00520. The U.S. Government is authorized
to reproduce and distribute reprints for Governmental purposes notwithstanding any
copyright annotation hereon. Disclaimer: The views and conclusions contained herein
are those of the authors and should not be interpreted as necessarily representing the
official policies or endorsements, either expressed or implied, of IARPA, DoI/NBC, or
the U.S. Government.

References

1. Chor, B., Kushilevitz, E., Goldreich, O., Sudan, M.: Private information retrieval.
J. ACM 45(6), 965–981 (1998)

2. Di Crescenzo, G., Burns, J., Coan, B., Schultz, J., Stanton, J., Tsang, S., Wright,
R.N.: Efficient and private three-party publish/subscribe. In: Lopez, J., Huang, X.,
Sandhu, R. (eds.) NSS 2013. LNCS, vol. 7873, pp. 278–292. Springer, Heidelberg
(2013)

3. Di Crescenzo, G., Cook, D., McIntosh, A., Panagos, E.: Practical private informa-
tion retrieval from a time-varying, multi-attribute, and multiple-occurrence data-
base. In: Atluri, V., Pernul, G. (eds.) DBSec 2014. LNCS, vol. 8566, pp. 339–355.
Springer, Heidelberg (2014)

4. Feige, U., Kilian, J., Naor. M.: A minimal model for secure computation (extended
abstract). In: Proceedings of ACM STOC, pp. 554–563 (1994)

5. Goldreich, O.: General cryptographic protocols: the very basics. In: Secure Multi-
Party Computation, pp. 1–27 (2013)

6. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a com-
pleteness theorem for protocols with honest majority. In: Proceedings of ACM
STOC, pp. 218–229 (1987)

7. Jarecki, S., Jutla, C.S., Krawczyk, H., Rosu, M., Steiner, M.: Outsourced symmetric
private information retrieval. In: Proceedings of ACM CCS (2013)

8. Kushilevitz, E., Ostrovsky, R.: Replication is not needed: single database,
computationally-private information retrieval. In: Proceedings of IEEE FOCS, pp.
364–373 (1997)

9. Pappas, V., Krell, F., Vo, B., Kolesnikov, V., Malkin, T., Choi, S.G., George, W.,
Keromytis, A.D., Bellovin, S.: Blind seer: a scalable private DBMS. In: Proceedings
of IEEE SOSP (2014)

10. Yao, A.C.-C.: How to generate and exchange secrets (extended abstract). In: Pro-
ceedings of IEEE FOCS, pp. 162–167 (1986)



Privacy Preserving Probabilistic Record Linkage
Using Locality Sensitive Hashes

Ibrahim Lazrig1, Toan Ong2, Indrajit Ray1(B), Indrakshi Ray1,
and Michael Kahn2

1 Department of Computer Science, Colorado State University, Fort Collins, USA
{lazrig,indrajit,iray}@cs.colostate.edu

2 Anschutz Medical Campus, University of Colorado, Denver, USA
{Toan.Ong,Michael.Kahn}@ucdenver.edu

Abstract. As part of increased efforts to provide precision medicine to
patients, large clinical research networks (CRNs) are building regional
and national collections of electronic health records (EHRs) and patient-
reported outcomes (PROs). To protect patient privacy, each data contrib-
utor to the CRN (for example, a health-care provider) uses anonymizing
and encryption technology before publishing the data. An important prob-
lem in such CRNs involves linking records of the same patient across multi-
ple source databases. Unfortunately, in practice, the records to be matched
often contain typographic errors and inconsistencies arising out of for-
matting and pronunciation incompatibilities, as well as incomplete infor-
mation. When encryption is applied on these records, similarity search
for record linkage is rendered impossible. The central idea behind our
work is to create characterizing signatures for the linkage of attributes of
each record using minhashes and locality sensitive hash functions before
encrypting those attributes. Then, using a privacy preserving record link-
age protocol we perform probabilistic matching based on Jaccard similar-
ity measure. We have developed a proof-of-concept for this protocol and
we show some experimental results based on synthetic, but realistic, data.

1 Introduction

The problem of privacy preserving record linkage arises in many data shar-
ing applications that limit the access to certain information on a need-to-know
basis. A typical example of this problem is that of record linkage in large clini-
cal research networks. As part of increased efforts to provide precision medicine
to patients, large clinical research networks (CRNs) are building regional and
national collections of electronic health records (EHRs) and patient-reported
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outcomes (PROs). To protect patient privacy, each data contributor to the CRN
(for example, a health-care provider) uses anonymizing and encryption technol-
ogy before publishing the data. A medical researcher (data subscriber) on the
other hand requests medical data from different data contributors and needs to
aggregate the records of different patients. The challenging scenario occurs when
many competitor data publishers are willing to anonymously and securely share
some information with a subscriber, but do not want to share the encryption keys
in order to protect their clients’ privacy. The researcher is interested in finding
linked (matched) patient records across the datasets and to be able to retrieve
updates on some previously queried patients as well. In addition, the subscriber
is not only interested in finding deterministically matched records only, but also
records that potentially matches with high probability.

If the data is encrypted with a shared (or same) key, the matching process
could be performed deterministically [11]. However, in a typical real-world setting,
where the data publishers operate independently of each other, there is no guar-
antee that the same datum is consistent across different publishers. This occurs
owing to factors such as, different structures (FName versus First Name), seman-
tics (whooping cough vs. pertussis), typographic and formatting errors (John vs.
Jhon), or the way the data is captured, entered and maintained by each entity.
As a result, deterministic matching becomes difficult or ineffective. If the data is
encrypted with different keys (as would typically be done by independent data
publishers that do not trust each other), finding matches between the records
are even more challenging. For privacy preserving record matching to be effec-
tive under such circumstances, we need to consider as many of the discrepancies
in the data as possible that can potentially occur during acquisition (input) such
as spelling mistakes, formatting errors, abbreviations, punctuations, pronuncia-
tions, users background, or different underlying assumptions about the structure
of the data, and attempt to determine how similar the encrypted data are.

In this work, we build upon our previous secure record matching protocol
[11], that performs a deterministic record matching using the services of a semi-
trusted broker, in order to construct a probabilistic record matching protocol. It
takes into account the different types of discrepancies mentioned above. Proba-
bilistic in the context of this work means that the matching is performed based on
the likelihood of similarity with certain probability. We call the set of attributes
used to perform the record matching, the linkage attributes. (Note that in the lit-
erature the term “quasi-identifier” is often used for the combination of attributes
used for linkage. We do not use the term “quasi-identifier” because it explicitly
excludes attributes that are themselves unique identifiers. In our case, the link-
age attributes can be key attributes too.) In order to hide the identities of the
matched entities from all of the parties, the matching process is performed on
encrypted data under different keys. Any two records of different data sets are
said to be matched if they belong to the same individual/entity. In our demon-
stration, we use personal identification information as the linkage attributes
(e.g. names. SSN, email address, DOB, Driving License number, etc.) for finding
candidates for record matching. However, our protocol is easily generalizable to
any other attributes that are of interest.
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1.1 Related Work

The record linkage problem is defined as the process of finding records belonging
to the same entity, across two or more data sets [6]. It has been widely studied
in the context of linking records stored on different databases so as to identify
duplicate records that appear to be different. Approximate comparison of string
values and distance measures allow researchers to deal with data discrepancies
and errors that causes such apparent differences in duplicate records [2,12,13,15].
In this work, we rely on Jaccard similarity measure that is calculated based on
the common sub-strings of bi-grams between the strings to be compared. The
min-hash technique, which has been proven to be a good approximation to the
Jaccard similarity [2,12], is used to construct a locality-sensitive hash function
that speeds up the calculation of the Jaccard similarity [12].

Sharing individual data, such as medical or financial records, among multiple
parties is a two edge sword that has its research benefits and privacy concerns
for both the parties (who might be competitive) and the subjects (individuals)
whose data is to be shared. Because privacy is a big concern, many research has
been conducted to address privacy issues in the record linkage of shared data.
The research resulted in the development of a number of privacy preserving
record linkage protocols. Some of the protocols allow the parties to directly
communicate and perform the matching process, and some utilize the service of
a third party to accomplish the task of record matching. Our work belongs to the
second category, where the third party blindly performs the matching process.

Some research developed protocols targeted at private set intersection [3,7,9]
and secure multi-party computation (SMC) [1,4,5,8] to solve the record linkage
problem. However these techniques do not fit directly in our scenario because
either they require a shared key or the parties involved learns the result of the
computation. Further more, some of these techniques do not scale very well with
the number of parties and the size of the data sets, and incur large computation
or communication overhead [19].

In [10], a framework for privacy-preserving approximate record linkage is
proposed. The framework is based on a combination of secure blocking and
secure matching. The secure blocking is based on phonetic algorithms statisti-
cally enhanced to improve security, and the secure matching is performed using
a private approach of the Levenshtein Distance algorithm. The main advantage
of blocking is that it results in a huge decrease of record comparisons.

A three-party protocol, proposed in [17], relies on identical encryption at the
sources and uses Bloom filters to perform similarity search. The linkage cen-
ter performs probabilistic record linkage with encrypted personally identifiable
information and plain non-sensitive variables. To guarantee similar quality and
format of variables and identical encryption procedure at each site, the link-
age center generates semi-automated pre-processing and encryption templates
based on information obtained via a new method called data masking that hides
personal information.

Similarity preserving data transformation approaches like [14,16,18,20] have
been also presented. In [16], a protocol that provides privacy at the levels of
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both data and schema matching was presented. In this protocol, records are
mapped into an Euclidean space using a set of pre-defined reference values and
distance function, while preserving the distances between record values. Then
the semi-trusted (HBC) third party will compare the records in the metric space
in order to decide their matching. The secure schema matching requires global
schema, provided by the third party, on which the parties map their own local
schemas. In [20], an approach based on the work in [16], that doesn’t need a
third party was presented. A complex plain is created then an adjustable width
slab is moved within the complex plain to compute likely matched pairs. In [14],
public reference tables are used to encode names as the distance to all reference
points. Then a third party will estimate the distance between pairs based on
their encoding.

In [18], a Bloom filters with a set of cryptographic hash functions are used
to encode the attributes of the data records. The encoded records are then
compared via a set-based similarity measure.

Most of these protocols where either theoretically or experimentally proven to
be efficient. However most of these works do not fit directly into our scenario [1,3,
7,9,19] Because The data source parties participate in the matching process will
know the matching results, or they work for deterministic match [3,7], require
a shared key [17], or rely on expensive SMC operations that do not scale very
well with the size of the data [1,4,5,8].

2 Problem Formulation, Definitions and Background

We abstract the problem as that of a group of n ≥ 2 publishers (data sources)
{P1, · · · , Pn}, with n data bases {D1, · · · ,Dn} who would like to share infor-
mation with another group of m ≥ 1 subscribers (e.g. researchers) {S1, · · · , Sm}
while protecting the privacy of their clients. At the end of the linkage process,
we require that 1) the subscriber(s) gets the linked records identified by some
random non-real ids, 2) none of the publishers knows the result of the linkage
process, or that a certain client’s information exists at other party’s records, 3)
none of the parties, including the party conducting the linkage process, should
know the real identity of any client that it did not know a priori.

Definition 1 - Linkage Attributes: For a database Di of publisher Pi with
a schema C = (A1, · · · , Aw) that has a set of w attributes, we define the set
of linkage fields L ⊆ C as a subset of t ≤ w attributes that uniquely define
the personal identity of the database records. We denote the linkage fields set as
L = {L1, · · · , Lt} and the set of records of Di as R = {R1, · · · , Rv}. We refer
to the value of the linkage field Lj of the record Rk by Rk · Lj.

Definition 2 - Linkage Parameters: We associate with the linkage fields L
sets of linkage parameters K,St,W , such that for each linkage field Li ∈ L,
we define some linkage parameters, Ki ∈ K that represents the number of hash
functions used for similarity calculations of the values of that field, similarity
threshold 0 ≤ Sti ≤ 1 which defines the minimum similarity threshold to consider
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the values of the linkage field as a match, and Linkage Field weight wi ∈ W :∑
1≤j≤t wj = 1 that represents the importance of that field in the matching

decision.

Definition 3 - Field Match Score: Given two values Rj ·Li, Rk ·Li of linkage
field Li of two records Rj , Rk, similarity function Sim, field similarity threshold
Sti, and field weight wi, a field match score FMi is defined as:

FMi(Rj · Li, Rk · Li) =

{
0 if Sim(Rj · Li, Rk · Li) < Sti

wi · Sim(Rj · Li, Rk · Li) otherwise

Definition 4 - Record Match Decision: Given a similarity threshold TR
and a set of Field Match scores {FMi : 1 ≤ i ≤ t} of two records Rj , Rk, the
record match decision RM of Rj , Rk is defined as:

RM(Rj , Rk) =

{
Match if

∑
1≤i≤t FMi ≥ TR

Non − Match otherwise

2.1 Adversary Model

This work derives from the deterministic matching protocol of our previous work
[11] that relies on a semi-trusted broker. Data publishers are considered com-
petitors who do not want to share data with each other. Each publisher tries to
determine information about the clients of competitor publisher, or at a mini-
mum, tries to determine if any one of its clients is also a client of its competitor.
However, publishers are also honest in the execution of the protocol steps and are
willing to share information with subscribers privately, that is, without revealing
real identities, and securely, that is, without any leakage of information to other
data publishers, and without revealing the publisher’s identity to the subscribers.

A data subscriber, on the other hand, needs to determine if any information
that came from different publishers belong to the same individual so they could
be grouped together as such and treated accordingly. For example, if a researcher
is looking for the side effects of a new drug used for skin treatment on patients
who has kidney problems, then he has to match patients from the Dermatology
and Nephrology departments to find patients under these conditions. We need
to allow such grouping at the subscriber side.

Further more, the subscriber is allowed to issue retrospective queries regard-
ing some individual client, for example, update queries regarding the progress
of treatment of certain patients. Subscribers (researchers) are considered curi-
ous in the sense they will try to determine the real identities of the individ-
uals. Some information about individual identities might be leaked from their
non-identification information (i.e. eye color, age, weight, etc.) using statisti-
cal inference techniques. This is a separate problem that needs to be addressed
with anonymization (i.e. k-anonymity) or other sanitization methods, and is not
considered in this work.

The broker is honest in the sense that it will not collude with any of the
parties, but is curious and not trusted to keep a secret, secret. The broker will
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work as a mediator between the data publishers and the subscribers by honestly
performing the following tasks:

– Hide the source of information (publishers and clients’ identities) from the
subscribers.

– Blindly determine record linkages among the encrypted publishers’ records
and assign alternate random identifiers to the linked records before sharing
them with the subscribers. The broker will just know the linkages between
two encrypted records without knowing the real identifiers.

2.2 The Secure Deterministic Matching Protocol

The current work builds on our previous work [11] where we introduced the deter-
ministic matching protocol using a semi-trusted broker. To facilitate understand-
ing of the current protocol we briefly describe the previous work. Our previous
protocol has three phases, the setup phase, the encryption of query results phase,
and the secure matching phase:

– Setup phase: It is executed only once. In this phase the publishers collabo-
ratively and securely create a set of encryption key converters, one for each
publishers, using El-Gamal homomorphic encryption and the broker’s pub-
lic key pk. The inputs to this phase are each publisher’s initial temporary
encrypted key converter ti→i = Encpk(r−1

i ), and the publisher’s secret key ski,
where ri is an initial random secret of this publisher di. At the end of this
phase, each publisher has its initial key converter value (ti→final) securely
processed (using homomorphic operations under the broker’s public key) by
all other publishers. Then publisher di sends its final encrypted key converter
value to the broker, and saves a copy of it for future updates in case new
publishers join the system or to refresh its secret key. Then, For each ti→final,
the broker extracts the key conversion δi using its private key sk such that:

δi = Decsk(ti→final) = r−1
i

N∏

j=1
j �=i

skj

– Encryption of query results phase:
Each publisher has the publicly known ElGamal EC parameters, i.e., the curve
parameters E (Fq) and the point on the curve P of prime order n. The pub-
lic/private key pair will be (ri · ski · P, ri · ski) and both of the keys are kept
secret. Each publisher encrypts the identification part of its data set id, which
in our multiplicative scheme needs to be a scalar. We denote by E(.) the
encryption of ElGamal based on EC.
The publisher first hashes the identifying part of every record in its data set
using a universal hash function H. Then uses its secret key multiplied by the
corresponding random value, (ri · ski), to encrypt the resulting hash. That is,
the encryption of any identifier id will be:

E(ri·ski)(H(id)) = H(id) · ri · ski · P
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Finally, the publisher substitutes the real identifying part, id, by
E(ri·ski)(H(id)) for all records in its data set before being sent to the broker.
Publishers can avoid having the broker store the key converter (δi)i∈[N ]. For
this purpose, each publisher encrypts the identifiers of the query results with
a new random value ri, updates the key converter ti→final, then sends these
results to the broker accompanied with the new key converter. This solution
adds negligible communication overhead, but ensures a zero-key stored on the
broker side.

– Secure matching phase:
The broker receives the encrypted identifiers under different keys from different
publishers. The broker’s job is to merge similar clients’ records from different
publishers such that they will map to the same newly generated identifier. It
uses the δi values to convert any identifier id encrypted by publisher di under
its secret key (ri · ski), to a value encrypted under a different unknown secret
key Δ, i.e., EΔ(H(id)). The key Δ =

∏N
i=1 ski is resulting from the product of

all the secret keys of all publishers, and cannot be computed by the broker who
posses only the key converters of publishers. In order to perform the secure
record matching, the broker re-encrypts the encrypted identifying parts of the
records coming from the publisher di using the corresponding key converter
δi as:

Eδi

(
E(ri·ski)(H(id))

)
= EΔ(H(id))

3 The Secure Probabilistic Matching Protocol

In order to allow the parties to perform secure similarity match based on Jac-
card measure, we improve our previous deterministic protocol to perform the
match probabilistically with a predefined threshold. We improve the string set
representation of the matching (linkage) attributes, then create signatures based
on Locality Sensitive Hash scheme explained below. To prevent any correlation
analysis, the signatures are lexicographically sorted and encrypted using the
publishers’ secret keys.

3.1 Minhash Functions and Similarity

To calculate the similarity of two strings A and B, we use the Jaccard Similar-
ity measure. First the two strings are converted to a set representation SA, SB

respectively (e.g. using bi-grams). Then the Jaccard similarity, Sim(A,B), is
calculated on SA and SB as:

Sim(A,B) =
| SA ∩ SB |
| SA ∪ SB |

If Sim(A,B) is close to 1, then A and B are very similar. Let Ω be the set of
all possible values of the set representation of the strings (e.g. all possible bi-
grams of the alphabet), then MinHash (also called min-wise hash) is computed
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by applying a random permutation π : Ω → Ω on any given set S and selecting
the minimum value.

MinHashπ(S) = min{π(S)}
It was proven by A. Broder [2] that the probability of the minhashes of any two
sets SA and SB being the same is equal to the Jaccard similarity of the two sets;
that is:

Pr(MinHashπ(SA) = MinHashπ(SB)) =
| SA ∩ SB |
| SA ∪ SB | = Sim(A,B)

Thus, we can estimate the Jacard similarity of the two strings A and B by
choosing a set of n (e.g. n = 100) independent random permutations, apply them
to each string set representation to get a set of n minhashes (we also use the term
signatures) of those strings, and compute how many corresponding minhashes
of the two sets are equal. It is possible to simulate the n random permutations
by n independent random hash functions (e.g. selecting a hash function and use
n different random seeds).

3.2 Locality Sensitive Hashing – LSH

Locality sensitive hashing or LSH is a well known technique in the information
retrieval community, that is used for determining similar items by hashing them
in such a way that their hash values will collide with high probability. Let St1, St2
be a similarity metric (e.g. Jaccard similarity) and P1, P2 be two probabilities,
then a family of functions H (e.g. minhashes) is called the (St1, St2, P1, P2)-
sensitive LSH if for every h ∈ H and any x, y:

1. if Sim(x, y) ≥ St1, then the probability that h(x) = h(y) is at least P1.
2. if Sim(x, y) ≤ St2, then the probability that h(x) = h(y) is at most P2.

From above, a family of K minhash functions with a similarity threshold St0
is a (St0, 1 − St0, St0, 1 − St0)-sensitive LSH for Jaccard similarity. For a better
accuracy of the similarity estimation it is preferred to have St1 and St2 as close
as possible and P1 and P2 as far as possible. We construct a (St0, 1 − St0, γ, β)-
sensitive LSH family from a family of K minhash functions by grouping the
minhashes (while keeping the order) into b groups of size r each, such that K =
b ·r, and then hash each group to get b new signatures. Hence, γ = 1− (1−Str0)

b

and β = (1 − Str0)
b, where the probability that the new b signatures of x and y

agree in at least one signature is γ.
We can further reduce the number of false positives by requiring that the

b-signatures of x and y agree on at least m signatures (e.g. m = 2), then the
probability of the b signatures to agree in at least m signatures will be:

∑

m�i�b

(
b

i

)
Str·i

0 (1 − Str0)
b−i

However, experiments show that m = 1 is sufficient.
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3.3 Choosing LSH Parameters

For a similarity threshold St0, and K minhash functions we set the values of b
(number of groups/signatures) and r (number of minhash values in each group)
such that for any two strings x,y that have Sim(x, y) ≥ St0, the probability of
getting at least m out of b of their corresponding signatures to match is greater
than 0.5. This is done as follows:

m 	 b · Str0 and b = K/r so r = K · Str0/m or r = ln(r · m/K)/ln(St0),
solve for r then use b = 
K/r� to calculate b. All the values K,b, and r must be
integers. The similarity threshold could also be approximated based on r and b
as St0 	 (1/b)1/r.

3.4 String Set Representation

In order to apply the LSH technique to get the signatures of the strings, we first
need to convert the strings to sets of Q-grams (e.g. Bi-grams, for Q=2). In our
implementation we extend the bi-gram set representation of our strings in such
a way that it accounts for missing and flipped character positions. We add bi-
grams constructed from tri-grams with the middle character being deleted. For
example, the the extended set representation of the string abcde is constructed
as follows:

– create the set of bi-grams B as B = { a, ab, bc, cd, de, e }
– create the set of Tri-grams T as T = { ab, abc, bcd, cde, de }
– From T create the set of extensions X as X = { b, ac, bd, ce, d }
– The Extended set E will be E = B ∪ X

With this extension the possibility of matching strings with flipped character
increases; for example the two strings John and Jhon will be considered a match
with .75 Jaccard similarity using this technique. While the same strings without
this extension will have .25 Jaccard similarity. We represent dates as strings and
append some characters before and after the month, day and year components
to make the bi-grams generated form those components look different in case
they have the same digits.

3.5 Creation of LSH Signatures

During the setup phase, all data sources (publishers) agree on the set of size t
linkage fields L = {L1, · · · , Lt} and their corresponding similarity computation
parameters, which are Ki hash functions (or, it could be one hash function with
Ki different seeds), and similarity threshold Sti for each linkage field Li ∈ L.
We would like to emphasize here that those linkage fields not necessarily a single
database attribute, they might be concatenations of certain attributes, as it is
the case in many record matching works. Then each party calculates bi (number
of groups/signatures) and ri (number of minhash values in each group) for each
record linkage field Li as discussed in Sect. 3.3 above. The steps for signature
creation are as follows: We denote by Sig

(i)
j the set of signatures of the column
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i of record j, and ESig
(i)
j is its corresponding encrypted signatures. Each party

A with records set RA = {R1, · · · , Rn} having linkage fields L = {L1, · · · , Lt},
creates the linkage field signatures for each record Rj ∈ RA, 1 ≤ j ≤ n as follows:

– For each linkage field value Rj .Li ∈ Rj create its corresponding Encrypted
signature ESig

(i)
j as follows:

1. Convert the value Rj .Li ∈ Rj to an extended bi-grams set E
2. Apply Ki hash functions to the set E and get the Ki minhash values

minh = {min(hf (E)) : 1 ≤ f ≤ Ki}
3. Group the set minh into bi groups of ri items each, and without changing

their order, i.e. Gx = {minh[(x−1)∗ri +1]‖ · · · ‖minh[x∗ri]}, 1 ≤ x ≤ bi.
Then, using a universal hash function H, hash each group into one value
getting the set of bi signatures of the value Rj .Li as: Sig

(i)
j = {H(Gg) :

1 ≤ g ≤ bi}
4. The encrypted signatures of the value Rj .Li will be:

ESig
(i)
j = {EskA,Li

(Sig
(i)
j [g]||g||Li) : 1 ≤ g ≤ bi}, where skA,Li

is the
secret key of party A for linkage attribute Li. This secret key could be
the same for all attributes.

– sort ESig
(i)
j values in lexicographical order and append them as new field to

the record.

3.6 Record Matching Phase

Each data source (publisher) will send the encrypted signatures of the linkage
fields (columns) (as separate or combined) table(s) along with random record
identifiers of its data set to the broker. To determine if record A.Rk matches the
record B.Rj , the broker executes the following steps:

– For each set of encrypted signatures of each linkage column (Li ∈ L) of both
records i.e. A.Rk.ESig

(i)
k , and B.Rj .ESig

(i)
j , apply the key-conversion as fol-

lows:
Use the key converter of A (δA values) to convert the signatures of linkage
fields A.Rk.ESig

(i)
k of the record A.Rk encrypted by publisher A under its

secret key skA, to signatures encrypted under a different secret key Δ, i.e.,
EΔ(Sig

(i)
k ) for every linkage field Li. The key Δ =

∏N
p=1 skp is resulting from

the product of all the secret keys of all parties (publishers). That is,

EδA

(
ESig

(i)
k

)
= EδA

(
EskA(Sig

(i)
k )

)
= EΔ(Sig

(i)
k )

The same applies to B, that is,

EδB

(
ESig

(i)
j

)
= EδB

(
EskB (Sig

(i)
j )

)
= EΔ(Sig

(i)
j )

– Compare the resulting signature sets encrypted under the same key Δ,
B.EΔ(Sig

(i)
j ) and A.EΔ(Sig

(i)
k ) to find the number of equal signatures esi and
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update the results table for this linkage field Li. If the number of equal signa-
tures is zero (0), then the similarity between these two values of this linkage
field is less than the pre-set similarity threshold Sti, and hence the field match
score FMi(Rj · Li, Rk · Li) will be zero. Otherwise, calculate the Estimated
similarity of the two records for this linkage field Li as Si 	 (esi/bi)1/ri , then
calculate the field match score based on its weight wi using the Eq. 3 shown
in Sect. 2. FMi(Rj · Li, Rk · Li) = wi · Si

– To make a record match decision RM(Rj , Rk) and declare the records Rj and
Rk as a match or not, first compute the overall record match score using the
field match scores computed in the previous step.

RecScore =
∑

1≤i≤t

FMi

Then compare the record match score with the pre-set record match threshold
TR as shown in Eq. 4 in Sect. 2. If a match is found, save the matched record
identifiers as a matched pair in the results table.

At the end, the broker will have an association (mapping) between the record
random identifiers of the publishers based on the scores computed from the
matched signatures of the corresponding fields. For example, suppose we have
two publishers A, and B that send the encrypted signatures of their records as
tables with the following schema:

Publisher A: A.col1SigTable(ARecId, Col1Sigs), A.col2SigTable(ARecId,
Col2Sigs), · · · , A.coltSigTable(ARecId, ColtSigs)
Publisher B: B.col1SigTable(BRecId, Col2Sigs), B.col2SigTable(BRecId,
Col2Sigs), · · · , B.coltSigTable(BRecId, ColtSigs)

Then the Broker will find the matched records and create the mappings
between A’s record Ids and B’s record Ids and save them as new table with a
schema similar to this: matchingResultTable(ARecId,BRecid, Score).

4 Implementation and Results

To evaluate the performance and the accuracy of this protocol, we implemented
it and tested it against some data sets of different sizes and using combinations of
different linkage fields. We adopted the following two approaches, (1) using each
single attribute as a linkage field, and (2) using concatenation of some attributes
as a linkage field. We evaluated the accuracy and performance based on these
two approaches.

We define accuracy in terms of precision and recall based on true positive
(TP), false positive (FP), true negative (TN) and false negative(FN). TP (True
Positive) is the number of originally-matching records that are correctly iden-
tified as match. FP (False Positive) is the number of originally-non-matching
records that are falsely identified as match. TN (True Negative) is the number of
originally-non-matched records correctly identified as a non-match. Finally, FN
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(False Negative) is the number of originally-matched records falsely identified as
a non-match. Based on these values, we compute the following:

1. TPR (True Positive Rate) Or Sensitivity/recall: Fraction of originally
matched records that are correctly declared as match: TPR = TP

TP+FN
2. TNR (True Negative Rate) Or Specificity: Fraction of originally non-matched

records that are correctly declared as non-match: TNR = TN
TN+FP

3. PPV ( Positive Predictive Value) Or Precision: Fraction of correctly matched
records from all records declared as a match: PPV = TP

TP+FP
4. ACC (Accuracy): Fraction of records correctly declared as a match and cor-

rectly declared as non-match: ACC = TP+TN
TP+TN+FP+FN

5. F1 score (F-Measure) is the harmonic mean of precision (PPV) and recall
(TPR), calculated as F1score = 2 × (PPV ×TPR)

(PPV +TPR) .

4.1 Results of Using Realistic Synthetic Dataset

We use two datasets generated by the Mocaroo realistic data generator (http://
www.Mocaroo.com) and consisting of 10 K records each, and 6 K of the records
are true matches. The record attributes (fields) used in this data were (ID, SSN,
FirstName, LastName, email, DOB, Gender, ZipCode). We used two versions of
the datasets, one is more corrupted than the other. We opt to use realistic syn-
thetic datasets for many reasons, like known linkage results, shareable dataset for
reproducibility (i.e., synthetic data don’t require IRB approval), and controlled
error/missing values rate. The data contains randomly generated real names,
SSNs, addresses, and so other attributes. The corruption percentage is based
on the number of modified (removed/inserted/swapped) characters to simulate
errors occurred when acquiring the data (input into the database). The greater
the data corrupted the more errors it contains.

We ran an extensive set of experiments with different configurations on both
versions of the datasets (less corrupted and highly corrupted), and for conve-
nience we will discuss only some of them here. After some experiments using
signatures for single attributes, we picked similarity threshold for each attribute
(low threshold to allow more permissiveness, and high threshold for strictness in
the matching criteria).

1. Using the Less corrupted Vs. the highly corrupted Datasets:
The more corrupted the data the lower the similarity between the records will
be. So the similarity threshold of each linkage field that effect the its signatures
creation will effect the matching results as well. For more permissiveness the
threshold should be low, and vice versa. However the lower threshold will
effect the False positive rate, so it is better to keep false positive as low as
possible. For example, the F1-score result of two experiments of low (ssn =
0.85, first = 0.65, last = 0.65, email = 0.75, DateOB = 0.85, zip = 0.85) and
high (ssn = 0.85, first = 0.75, last = 0.75, email = 0.75, DateOB = 0.85,
zip = 0.85) thresholds settings of seven different sets of combinations of the
single attributes, and using the less corrupted data is shown in Fig. 1, where
the sets used are:

http://www.Mocaroo.com
http://www.Mocaroo.com
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Fig. 1. F1 score using low (Exp1) and high (Exp2) Similarity thresholds for single
attributes, and different combinations (Color figure online)

– Set#1: [first, last, zip]
– Set#2: [first, last, DateOB]
– Set#3: [first, last, DateOB, zip]
– Set#4: [first, last, email, DateOB, zip]
– Set#5: [ssn, DateOB, zip]
– Set#6: [ssn, first, last, DateOB, zip]
– Set#7: [ssn, first, last, email, DateOB, zip]

2. Using Single Attributes Vs. Concatenated Attributes as Linkage
Attributes
Using logical expressions constructed from combinations of single attributes
gives more flexibility to form matching criteria, and allows fine tuning of the
matching threshold of each attribute separately. However it incurs more com-
putation and storage overhead and make the signatures more susceptible to
frequency attacks on some attributes. On the other hand, using the concate-
nated values of certain attributes before creating the signatures will limit the
matching criteria to the combinations of these concatenations and reduce the
flexibility of matching conditions. However such concatenated attributes, if
properly constructed, will reduce the computations required in both signature
creation and matching process, and limit the frequency attacks.
In our experiments we used the first technique to evaluate the accuracy of the
protocol, and since the signatures are encrypted from the source with different
keys, the frequency analysis is only possible if conducted by the broker. If the
publishers use new random with each signature, update their key-converter δ
and include it with the signatures, they can limit the broker frequency attack
to those matched attributes, though will add communication overhead.
Table 1 shows the results of using four different combinations of the set
of attributes. The top part of the table for the combinations using single
attributes signatures, each has its similarity threshold, the bottom part of
the table for the concatenated attributes and the similarity threshold is set
for the whole concatenated attributes of each combination. The combinations
are as follows:
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– comb1: First Name, Last Name, Date of birth
– comb2: Date of birth, SSN
– comb3: Last name, SSN
– comb4: Three Letters First Name, Three Letters Last Name,

Soundex(First Name), Soundex (Last Name), Date of birth, SSN
Any two records matched by any of the above combinations is considered a
match. From the results in Table 1, we were able to fine tune the threshold
similarity of each attribute, using the single attribute technique, to control
the true positives and false positive and get better results. It is much harder
to do that in the second technique. The combination (Comb4) where con-
structed by creating a new attribute (we named “Special1”) that consists of
the concatenations of the first four parts of comb4 above (i.e. “Three Letters
First Name” + “Three Letters Last Name” + “Soundex (First Name)” +
“Soundex (Last Name)”), then create the signatures for it.

Table 1. Matching quality results of using single and concatenated combinations of
attributes with different similarity thresholds settings

Using signatures of single attributes

Sim. Threshold for (SSN,First,Last,DOB,Special1) TP FP PPV ACC F1 Time (ms)

(0.85, 0.85, 0.85, 0.85, 0.85) 5161 14 0.997 0.915 0.924 384589

(0.85, 0.85, 0.85, 0.95, 0.85) 4916 2 1 0.891 0.901 261302

(0.85, 0.75, 0.75, 0.98, 0.85) 5022 0 1 0.902 0.911 498038

Using signatures of concatenated attributes

Sim. Threshold for (comb1, comb2, comb3, comb4) TP FP PPV ACC F1 Time (ms)

(0.95, 0.95, 0.95, 0.95) 5140 9 0.998 0.913 0.922 3895

(0.98, 0.988, 0.99, 0.99) 4710 0 1 0.871 0.880 2009

(0.98, 0.98, 0.98, 0.95) 4848 0 1 0.885 0.894 2364

Finally, Table 1 also shows the time used in the matching process using both
techniques. It is evident how the second technique out performed the first,
for the reasons mentioned above. In conclusion, our system achieved good
matching quality results with good performance.

5 Conclusion

In this paper, we addressed the problem of privacy preserving probabilistic record
linkage across multiple encrypted datasets when the records to be matched contain
typographic errors and inconsistencies arising out of formatting and pronuncia-
tion incompatibilities, as well as incomplete information. We create characterizing
signatures for the linkage of attributes of each record using minhashes and local-
ity sensitive hash functions before encrypting those attributes. Then, using a pri-
vacy preserving record linkage protocol we perform probabilistic matching based
on Jaccard similarity measure. We show some experimental results based on syn-
thetic, but realistic, data. The results show that our matching protocol is flexible
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and achieved good matching quality without too much computation or commu-
nication overhead. Our future work will focus on improving the matching quality
results by incorporating automation methods for selecting the best matching crite-
ria and properly adjusting the similarity thresholds and weights of the attributes.
In terms of security we will work on making the secure matching protocol resilient
to collusion by making the broker collude with at least k out of n parties in order
to get the encryption key.
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Abstract. Temporal role-based access control (TRBAC) extends role-
based access control to limit the times at which roles are enabled. This
paper presents a new algorithm for mining high-quality TRBAC poli-
cies from timed ACLs (i.e., ACLs with time limits in the entries) and
optionally user attribute information. Such algorithms have potential to
significantly reduce the cost of migration from timed ACLs to TRBAC.
The algorithm is parameterized by the policy quality metric. We consider
multiple quality metrics, including number of roles, weighted structural
complexity (a generalization of policy size), and (when user attribute
information is available) interpretability, i.e., how well role member-
ship can be characterized in terms of user attributes. Ours is the first
TRBAC policy mining algorithm that produces hierarchical policies, and
the first that optimizes weighted structural complexity or interpretabil-
ity. In experiments with datasets based on real-world ACL policies, our
algorithm is more effective than previous algorithms at their goal of min-
imizing the number of roles.

1 Introduction

Role-based access control (RBAC) offers significant advantages over lower-level
access control policy representations, such as access control lists (ACLs). RBAC
policy mining algorithms have potential to significantly reduce the cost of migra-
tion to RBAC, by partially automating the development of an RBAC policy
from an access control list (ACL) policy and possibly other information, such
as user attributes [4]. The most widely studied versions of the RBAC policy
mining problem involve finding a minimum-size RBAC policy consistent with
(i.e., equivalent to) given ACLs. When user attribute information is available, it
is also important to maximize interpretability (or “meaning”) of roles—in other
words, to find roles whose membership can be characterized well in terms of user
attributes. Interpretability is critical in practice. Researchers at HP Labs report
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“the biggest barrier we have encountered to getting the results of role mining to
be used in practice” is that “customers are unwilling to deploy roles that they
can’t understand” [2]. Algorithms for mining meaningful roles are described in,
e.g., [8,11].

Temporal RBAC (TRBAC) extends RBAC to limit the times at which roles
are enabled [1]. TRBAC supports an expressive notation, called periodic expres-
sions, for expressing sets of time intervals during which a role is enabled. A role’s
permissions are available to members only while the role is enabled. This allows
tighter enforcement of the principle of least privilege.

This paper presents an algorithm for mining hierarchical TRBAC policies. It
is parameterized by a policy quality metric. We consider multiple policy quality
metrics: number of roles, weighted structural complexity (WSC) [8], a generaliza-
tion of syntactic policy size, interpretability (INT) [8,11], described briefly above,
and a compound quality metric, denoted WSC-INT, that combines WSC and
INT. Our algorithm is the first TRBAC policy mining algorithm that produces
hierarchical policies, and the first that optimizes WSC or interpretability.

Our algorithm is based on Xu and Stoller’s elimination algorithm for RBAC
mining [11] and some aspects of Mitra et al.’s pioneering algorithm for mining flat
TRBAC policies (i.e., policies without role hierarchy) with minimal number of
roles [6,7], which inspired our work. Our algorithm has four phases: (1) produce a
set of candidate roles, (2) merge candidate roles where possible, (3) organize the
candidate roles into a role hierarchy, and (4) remove low-quality candidate roles.
The generated policy is not guaranteed to have optimal quality. Fundamentally,
this is because the problem of finding an optimal policy is NP-complete (this
follows from NP-completeness of the untimed version of the problem ([8]).

To evaluate the algorithm, we created datasets based on real-world ACL
policies from HP, described in [2] and used in several evaluations of role min-
ing algorithms, e.g., [7,8,11]. We could simply extend the ACLs with temporal
information to create a temporal user-permission assignment (TUPA), and then
mine a TRBAC policy from the TUPA and attribute data. However, it would
be hard to evaluate the algorithm’s effectiveness, because there is nothing with
which to compare the quality of the mined policies. Therefore, we adopt a sim-
ilar methodology as Mitra et al. [7]. For each ACL policy, we mine an RBAC
policy from the ACLs and synthetic attribute data using Xu and Stoller’s elimi-
nation algorithm [11], pseudorandomly extend the RBAC policy with temporal
information numerous times to obtain TRBAC policies, expand the TRBAC
policies into equivalent TUPAs, mine a TRBAC policy from each TUPA and
fixed attribute data, and compare the average quality of the resulting TRBAC
policies with the quality of the original TRBAC policy, with the goal that the
former is at least as good as the latter.

We created two datasets, using different temporal information when extend-
ing RBAC policies to obtain TRBAC policies. For the first dataset, we use simple
periodic expressions, each of which is a range of hours that implicitly repeats
every day. For the second dataset, we use more complex periodic expressions
based on a hospital staffing schedule.
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In experiments using number of roles as the policy quality metric, Mitra
et al.’s algorithm, designed to minimize number of roles, produces 34 % more
roles than our algorithm, on average. In experiments using WSC-INT as the
policy quality metric, our algorithm succeeds in finding the implicit structure in
the TUPA, producing policies with comparable (for the first dataset) or moder-
ately higher (for the second dataset) WSC and better interpretability, on average,
compared with the original TRBAC policy.

We explored the effect of different inheritance types on the quality of the
mined policy and found that weakly restricted inheritance leads to policies with
significantly better WSC and slightly better interpretability, on average. We
experimentally evaluated the benefits of some design decisions and quantified
the cost-quality trade-off provided by a parameter to our algorithm that limits
the number of candidate roles.

2 Background on TRBAC

An RBAC policy is a tuple 〈User ,Perm,Role,UA,PA,RH 〉, where User is a set
of users, Perm is a set of permissions, Role is a set of roles, UA ⊆ U ×Role is the
user-role assignment, PA ⊆ Role × Perm is the permission-role assignment, and
RH ⊆ Role×Role is the role inheritance relation (also called the role hierarchy).
Specifically, 〈r, r′〉 ∈ RH means that r is senior to r′, hence all permissions of r′

are also permissions of r, and all members of r are also members of r′. A role r′

is junior to role r if rRH+r′, where RH+ is the transitive closure of RH .
A periodic expression (PE) is a symbolic representation for an infinite set of

time intervals. The formal definition of periodic expressions in [1,7] is standard
and somewhat complicated; instead of repeating it, we give a brief intuitive
version. A calendar is an infinite set of consecutive time intervals of the same
duration; informally, it corresponds to a time unit, e.g., a day or an hour. A
sequence of calendars C1, . . . , Cn, Cd defines the sequence of time units used in
a periodic expression, from larger to smaller. A periodic expression has the form∑n

k=1 Ok · Ck � d · Cd where O1 = all , Ok is a set of natural numbers or the
special value all for 2 ≤ k ≤ n, and d is a natural number. The first part of a PE
(before �) identifies the set of starting points of the intervals represented by the
PE. The second part of the PE (after �) specifies the duration of each interval.

For example, consider the sequence of calendars Quadweeks, Weeks, Days,
hours, where a Quadweek is four consecutive weeks—similar to a month, but
with a uniform duration. The periodic expression [all · Quadweeks + {1,3} ·
Weeks + {1,2,3,4,5} · Days + {10} · Hours � 8 · Hours] represents the set of
time intervals starting at 9am (the time intervals in each calendar are indexed
starting with 1, so for Hours, 1 denotes the hour starting at midnight, 2 denotes
the hour starting at 1am, etc.) and ending at 5pm (since duration is 8 h) of every
weekday (assuming days of the week are indexed with 1 = Monday) during the
first and third weeks of every quadweek.

A bounded periodic expression (BPE) is a tuple 〈[begin, end ], pe〉, where begin
and end are date-times, and pe is a periodic expression. A BPE represents the
set of time intervals represented by pe except limited to the interval [begin, end ].
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A role enabling base (REB) is a set of BPEs, representing the union of the
sets of time intervals represented by the BPEs.

A temporal RBAC (TRBAC) policy is a tuple 〈User ,Perm,Role,UA,PA,RH ,
IT ,REBA〉, where the first six components are the same as for an RBAC policy,
IT is the inheritance type (described below), and REBA is the role enabling base
assignment (REBA), which is a mapping from roles in Role to REBs [1]. A role r
is enabled during the set of time intervals represented by REBA(r).

We consider two types of inheritance [5]. In both cases, a senior role r inherits
permissions from each of its junior roles r′. With weakly restricted inheritance,
denoted by IT = WR, a permission inherited from r′ is available to members
of r during the time intervals specified by REBA(r). With strongly restricted
inheritance, denoted by IT = SR, a permission inherited from r′ is available to
members of r during the time intervals specified by REBA(r′).

A temporal user-permission assignment (TUPA) is a set of triples of the form
〈u, p, reb〉, where u is a user, p is a permission, and reb is a REB (even though
reb is not associated with a role, we call it a REB, because it has the same type
as a REB). We refer to such a triple as an entitlement triple. Such a triple means
that u has permission p during the set of time intervals represented by reb. A
TUPA should contain at most one entitlement triple for each user-permission
pair. A TUPA can therefore be regarded as a mapping from user-permission
pairs to REBs.

The meaning of a role r in a TRBAC policy π, denoted [[r]]π, is a TUPA that
expresses the entitlements granted by r, taking inheritance into account. The
meaning [[π]] of a TRBAC policy π is a TUPA that expresses the entitlements
granted by π.

3 The Relaxed TRBAC Policy Mining Problem

A policy quality metric is a function from TRBAC policies to a totally-ordered
set, such as the natural numbers. The ordering is chosen so that small values
indicate high quality.

Number of roles is a simplistic but traditional policy quality metric.
Weighted Structural Complexity (WSC) is a generalization of policy size [8]. We

adapt WSC to TRBAC. For a TRBAC policy π of the above form, the WSC of π is
defined by WSC(π) = w1|Role|+w2|UA|+w3|PA|+w4|RH |+w5WSC(REBA),
where the wi are user-specified weights, |s| is the size (cardinality) of set s, and
WSC(REBA) is the sum of the sizes of the REBs in REBA. The size of an REB is
the sum of the sizes of the BPEs in it. The size of a BPE is the size of the PE in it
(the beginning and ending date-times are always the same size, so we ignore them).
The size of a PE is the sum of the sizes of the sets in it plus 1 for the duration,
with the special value all counted as a set of size 1.

Interpretability is a policy quality metric that measures how well role mem-
bership can be characterized in terms of user attributes. User-attribute data is a
tuple 〈A, f〉, where A is a set of attributes, and f is a function such that f(u, a)
is the value of attribute a for user u. An attribute expression e is a function from
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the set A of attributes to sets of values. A user u satisfies an attribute expression
e iff (∀a ∈ A. f(u, a) ∈ e(a)). For example, if A = {dept , level}, the function e
with e(dept) = {CS} and e(level) = {2, 3} is an attribute expression, which can
be written with syntactic sugar as dept ∈ {CS} ∧ level ∈ {2, 3}. We refer to
the set e(a) as the conjunct for attribute a. Let [[e]] denote the set of users that
satisfy e. For an attribute expression e and a set U of users, the mismatch of
e and U is defined by mismatch(e, U) = | [[e]] 	 U |, where the symmetric differ-
ence of sets s1 and s2 is s1 	 s2 = (s1 \ s2) ∪ (s2 \ s1). The attribute mismatch
of a role r, denoted AM(r), is mine∈E mismatch(e, asgndU(r)), where E is the
set of all attribute expressions, and asgndU(r) = {u | 〈u, r〉 ∈ UA}. We define
policy interpretability INT as the sum over roles of attribute mismatch, i.e.,
INT(π) =

∑
r∈Role AM(r).

Compound policy quality metrics take multiple aspects of policy quality into
account. We combine metrics by Cartesian product, with lexicographic ordering
on the tuples. Let WSC-INT(π) = 〈WSC(π), INT(π)〉.

A TRBAC policy π is consistent with a TUPA T if they grant the same
permissions to the same users for the same sets of time intervals. When the
given TUPA contains noise, it is desirable to weaken this requirement. A TRBAC
policy π is ε-consistent with a TUPA T , where ε is a natural number, if they
grant the same permissions to the same users for the same sets of time intervals,
except that, for at most ε entitlement triples 〈u, p, reb〉 in T , the policy π either
does not grant p to u or grants p to u at fewer times than reb [7]. Note that
consistency is a special case of ε-consistency, corresponding to ε = 0.

The relaxed TRBAC policy mining problem is: given a TUPA T and a policy
quality metric Qpol and a consistency threshold ε, find a TRBAC policy π that
is ε-consistent with T and has the best quality, according to Qpol , among policies
ε-consistent with T . Note that auxiliary information used by the policy quality
metric, e.g., user-attribute data, is implicitly considered to be part of Qpol in this
definition. Note that the temporal part of T strongly influences π, even using
WSC with w5 = 0, because it determines how entitlements can be grouped in
roles.

Suggested role assignments for new users. The system can compute and store a
best-fit attribute expression er for each role r, i.e., an attribute expression that
minimizes the attribute mismatch for r. When a new user u is added, the system
can suggest that u be made a member of the roles for which u satisfies the best-
fit attribute expression, and it presents these suggested roles in descending order
of the attribute mismatch.

4 TRBAC Policy Mining Algorithm

Inputs to the algorithm are the TUPA T , the type of inheritance IT to use in the
generated policy, the consistency threshold ε, and the policy quality metric Qpol .
User attribute data, if available, is used only indirectly, via the policy quality
metric, if it considers interpretability.



84 S.D. Stoller and T. Bui

Rinit = new Set()
for u in U
for 〈P, reb〉 in permREB(u, T )

∪ permREB+(u, T )
addRole(Rinit, {u}, P, reb)
for bpe in reb

addRole(Rinit, {u}, P, {bpe})

permREB(u, T ) =
{〈P, reb〉 | (∃p.〈u, p, reb〉 ∈ T )

∧ P = {p | 〈u, p, reb〉 ∈ T}}

permREB+(u, T ) =
{〈P, reb〉 | (∃p.〈u, p, reb〉 ∈ T )

∧ P = {p | 〈u, p, reb′〉 ∈ T
∧reb � reb′}}

function addRole(R, U, P, reb)
// if there is an existing role with
// permissions P and REB reb,
// add users in U to it, otherwise
// create a new role with users U ,
// permissions P , and REB reb.
if U , P , or reb is empty

return
if ∃ r in R s.t. asgndP0(r) = P

∧ REBA(r) = reb
asgndU0(r).addAll(U)

else
r = new Role()
asgndP0(r) = P
asgndU0(r) = U
REBA(r) = reb
R.add(r)

Fig. 1. Phase 1.1: Generate initial roles. “s.t.” abbreviates “such that”.

Phase 1: Generate roles. Phase 1 generates initial roles and then creates addi-
tional candidate roles by intersecting sets of initial roles.

Phase 1.1: Generate initial roles. Pseudocode for generating initial roles appears
in Fig. 1. The set of permissions P that each user u has for exactly the same
REB reb are grouped to form the permissions of an initial role; this is the effect
of using permREB in Fig. 1. If there are any permissions that u has for a REB
that semantically contains reb, then we also create another role that has those
permissions in addition to permissions in P ; this is the effect of using permREB+.
In addition, for each BPE bpe in reb, we create an initial role with permissions
P and with REB {bpe}. The algorithm uses a semantic containment relation �
on PEs, BPEs, and REBs: x1 � x2 iff the set of time instants represented by x1

is a subset of the set of time instants represented by x2.

Phase 1.2: Intersect roles. Phase 1.2 starts to construct a set Rcand of candi-
date roles, by adding to Rcand all of the initial roles in Rinit and all non-empty
intersections of all subsets of the initial roles. In other words, for each subset of
initial roles, if the intersection of their permission sets is a non-empty set P , and
the intersection of their REBs is a non-empty REB reb, then create a candidate
role with permissions P , REB reb, and the union of their user sets. REBs are
intersected semantically, not syntactically; for example, if reb1 represents 9am–
5pm on Mondays and Wednesdays, and reb2 represents 1pm–2pm on Mondays
and Fridays, then their intersection is a REB that represents 1pm–2pm on Mon-
days. This phase is similar to role intersection in CompleteMiner [10] and the
elimination algorithm [11].
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This phase is expensive for large datasets. We use two techniques to reduce
the cost when necessary; they provide a trade-off between cost and policy quality.
(1) Compute intersections for all pairs (instead of all subsets) of initial roles,
as in FastMiner [10]. This reduces the worst-case complexity of this step and
the overall algorithm from exponential to quadratic. (2) Compute intersections
involving only the largest roles, specifically, roles whose relative size is in the top
RIC (mnemonic for “role intersection cutoff”), where 0 ≤ RIC ≤ 1. For example,
RIC = 0.3 means that intersections are computed among roles whose size is in
the top 30 %. Role size is quantified as covEntit(r), defined below.

Phase 2: Merge roles. Phase 2 merges candidate roles to produce a revised set
of candidate roles. We use three types of merges. (1) If candidate roles r and
r′ have the same set of users U and the same REB reb, then they are replaced
with a new role with users U , permissions asgndP0(r) ∪ asgndP0(r′), and REB
reb. (2) If candidate roles r and r′ have the same users U and same permissions
P , then they are replaced with a new role with users U , permissions P , and
REB reb(r) � reb(r′). The function � denotes semantic union of REBs; in other
words, reb1 � reb2 is a REB that represents the set of time instants represented
by reb1 or reb2. We distinguish two sub-cases. (2a) If reb1 and reb2 represent
disjoint sets of time intervals, then reb1 � reb2 is simply reb1 ∪ reb2. (2b) If
reb1 and reb2 represent sets of overlapping or consecutive time intervals, then
BPEs in them are merged, if possible, to simplify the result. For example, if reb1
represents 9am-noon on weekdays, and reb2 denotes noon-5pm on weekdays,
then reb1 � reb2 contains a single BPE denoting 9am–5pm on weekdays.

Phase 3: Construct role hierarchy. Phase 3 organizes the candidate roles into
a role hierarchy with full inheritance. A TRBAC policy has full inheritance if
every two roles that can be related by the inheritance relation are related by
it, i.e., ∀r, r′ ∈ R. [[r]]π ⊇ [[r′]]π ⇒ 〈r, r′〉 ∈ RH ∗. Guo et al. call this property
completeness in the context of RBAC [3].

Phase 3.1: Compute inheritance. Phase 3.1 determines inheritance relationships
between candidate roles, based on the requirement of full inheritance. Function
isAncestorFullInher(r′, r) tests whether r′ is an ancestor of r with full inher-
itance; if IT = WR, the function avoids inheritance relationships that would
lead to cycles in the role hierarchy.

isAncestorFullInher(r′, r) =
asgndP0(r′) ⊆ asgndP0(r) ∧ asgndU0(r) ⊆ asgndU0(r′)
∧ (IT = SR ⇒ REBA(r′) � REBA(r))
∧ (IT = WR ⇒ ¬(asgndP0(r) ⊂ asgndP0(r′) ∧ asgndU0(r′) ⊂ asgndU0(r)))

This function is called for every pair of candidate roles. If isAncestorFullInher(r′, r)
is true, and there is no intervening role r̄ such that isAncestorFullInher(r′, r̄)
isAncestorFullInher(r̄, r), then r′ is aparent of r.This phaseproducesmapsparents
and children, such that parents(r) and children(r) are the sets of parents and chil-
dren of r, respectively.
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Phase 3.2: Compute assigned users and permissions. Phase 3.2 computes the
directly assigned users asgndU(r) and directly assigned permissions asgndP(r) of
each role r, by removing inherited users and permissions from the role’s originally
assigned users asgndU0(r) and originally assigned permissions asgndP0(r).

Phase 4: Remove roles. Phase 4 removes roles from the candidate role hierarchy
if the removal preserves ε-consistency with the given ACL policy and improves
policy quality. When a role r is removed, the role hierarchy is adjusted to preserve
inheritance relations between parents and children of r, and the sets of directly
assigned users and permissions of other roles are expanded to contain users and
permissions that they previously inherited from r.

The order in which roles are considered for removal affects the final result.
We control this ordering with a role quality metric Qrole , which maps roles to
an ordered set, with the interpretation that large values denote high quality
(note: this is opposite to the interpretation of the ordering for policy quality
metrics). Low-quality roles are considered for removal first. We use a role quality
metric that is a temporal variant of the role quality metric in [11] that gave the
best results in their experiments. Specifically, Qrole(r) = 〈redun(r), clsSz(r)〉,
where redun(r) and clsSz(r) are defined next, and the ordering on these tuples
is lexicographic order.

The redundancy of a role r measures how many other roles also cover the
entitlement triples covered by r. We say that a role r covers an entitlement
triple t if t ∈ [[r]]π. Removing a role with higher redundancy is less likely to
prevent subsequent removal of other roles, so we eliminate roles with higher
redundancy first. The redundancy of role r, denoted redun(r), is the negative
of the minimum, over entitlement triples 〈u, p, reb〉 covered by r, of the number
of removable roles that cover 〈u, p, reb〉 (we take the negative so that roles with
more redundancy have lower quality). A role is removable in policy π, denoted
removable(r) (the policy is an implicit argument), if the policy obtained by
removing r is ε-consistent with T .

The clustered size of a role r measures how many entitlements are covered
by r and how well they are clustered. A first attempt at formulating this metric
(ignoring clustering) might be as the fraction of entitlement triples in T that are
covered by r. As discussed in [11], it is better for the covered entitlement triples
to be “clustered” on (i.e., associated with) fewer users rather than being spread
across many users. The clustered size of r is defined to equal the fraction of the
entitlements of r’s members that are covered by r. In the temporal case, each
entitlement triple 〈u, p, reb〉 is weighted by the fraction of the time represented
reb that is covered by REBA(r).

covEntit(r) =
∑

u∈asgndU(r)

p∈asgndP(r)

dur(REBA(r))

dur(T (u, p))
clsSz(r) =

covEntit(r)

|entitlements(asgndU(r), T )|

where T (u, p) is the REB reb such that 〈u, p, reb〉 ∈ T , dur(reb) is the fraction
of one time unit in calendar C1 that is covered by reb, and entitlements(U, T ) is
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the set of entitlement triples in T for a user in U . For example, if the sequence of
calendars is C1 = Year, . . . , Cn = Hour, Cd = Hour, and reb is 9am–5pm every
day, then dur(reb) = 1/3, since reb covers 1/3 of the time in a year.

Our algorithm may remove a role even if the removal worsens policy quality
slightly. Specifically, we introduce a quality change tolerance δ, with δ ≥ 1,
and we remove a role if the quality Q′ of the RBAC policy resulting from the
removal is related to the quality Q of the current RBAC policy by Q′ < δQ
(recall that, for policy quality metrics, smaller values are better). Choosing δ > 1
partially compensates for the fact that a purely greedy approach to policy quality
improvement is not an optimal strategy.

Pseudocode for removing roles appears in Fig. 2. It repeatedly tries to remove
all removable roles, until none of the attempted removals succeeds in improving
the policy quality. The policy π is an implicit argument to auxiliary functions
such as removeRole and addRole. Function addRole(r) adds role r to the candi-
date role hierarchy: inheritance relations involving r are added, and the assigned
users and assigned permissions of r’s newly acquired ancestors and descendants
are adjusted by removing inherited users and permissions. Removing a role r
and then restoring r using addRole leaves the policy unchanged.

The following auxiliary functions are used in removeRole. isDescendant(r,r′)
holds if r is a descendant of r′, as determined by following the parent-child rela-
tions in the children map. The set of authorized users of r, denoted authU(r),
is the set of users in asgndU(r) or asgndU(r′) for some r′ senior to r; this is the
same as in RBAC. The notion of authorized permissions must be defined differ-
ently in TRBAC than RBAC, because, with strongly-restricted inheritance, the
inherited permissions of a role r may be associated with REBs different than
REBA(r). With strongly-restricted inheritance, the set of authorized permis-
sions of r, denoted authP(r), is the set of permission-REB pairs 〈p, reb〉 such
that (1) each directly assigned permission of r is paired with REBA(r) and
(2) each permission p inherited by r is paired with the semantic union of the
REBs of the junior roles from which it is inherited. With weakly-restricted inher-
itance, authP(r) is the set of permission-REB pairs 〈p,REBA(r)〉 such that p
is in asgndP(r) or asgndP(r′) for some r′ junior to r; we use a set of pairs for
uniformity with the case of strongly-restricted inheritance.

5 Datasets

Our datasets are based on real-world ACL policies from HP, described in [2],
and the high-fit synthetic attribute data for these ACL policies described in
[11]; see those references for general information about the policies. As outlined
in Sect. 1, for each ACL policy, we mine an RBAC policy from the ACLs and
the attribute data using Xu and Stoller’s elimination algorithm [11], and pseudo-
randomly extend the RBAC policy with temporal information several times to
obtain TRBAC policies. For each ACL policy except americas small, we cre-
ate 30 TRBAC policies. For americas small, which is larger, we create only 10
TRBAC policies, to reduce the running time of the experiments. We extend the
RBAC policies in two ways, using different temporal information.
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π = policy from Phase 3
q = Qpol(π)
workL = list of removable roles in π
changed = true
while ¬empty(workL) ∧ changed

sort workL in ascending order by Qrole

changed = false
for r in workL

removeRole(r)
// if ε-consistency is violated,
// restore r.
if |T \ [[π]] | > ε

addRole(r)
workL.remove(r)

else
// if policy quality improved,
// keep the change.
if Qpol(π) < δq
changed = true
q = Qpol(π)
workL.remove(r)

else
// undo the change, i.e., restore r
addRole(r)

function removeRole(r)
for parent in parents(r)

// remove r from its parents
children(parent).remove(r)
for child in children(r)

// if child is not a descendant of parent
// after removing r, add an inheritance
// edge between child and parent.
if ¬ isDescendant(child,parent)
children(parent).add(child)
parents(child).add(parent)

for u in asgndU(r)
// if u is not authorized to parent after
// removing r, add u to assigned users
// of parent.

if u 	∈ authU(parent)
asgndU(parent).add(u)

for child in children(r)
parents(child).remove(r)
for p in asgndP(r)

// if p is not fully authorized to child
// after removing r, add p to assigned
// permissions of child.
if 〈r,REBA(child)〉¬ ∈ authP(child)

asgndP(child).add(p)
Rcand.remove(r)

Fig. 2. Phase 4: Remove roles.

Dataset with simple PEs. A simple PE is a range of hours (e.g., 9am–5pm)
that implicitly repeats every day. This dataset uses the same simple PEs as in
[7], namely, [6, 11], [7, 10], [8, 9], [8, 11], [9, 11], [10, 11], [10, 12], [11, 13], [14, 15],
[16, 17]. These PEs are designed to cover various relationships between intervals,
such as overlapping, consecutive, disjoint, and nested. We choose the number of
PEs in each REB pseudorandomly using a similar probability distribution as in
[7], namely, pr(1) = 0.78, pr(2) = 0.2, pr(3) = 0.02. We choose the specific PEs
in each REB pseudorandomly using a uniform distribution.

Dataset with complex PEs. For this dataset, we use periodic expressions based on
a hospital staffing schedule, based on discussions with the Director of Timekeep-
ing at Stony Brook University Hospital. The periodic expressions are not taken
directly from the hospital’s staffing schedule, but they reflect its general nature.
The schedule does not repeat every week, but rather every few weeks, because
weekend duty rotates. Clinicians may work 3 days/week for 12 hours/day start-
ing at 7am or 7pm, or 5 days/week for 8.5 hours/day starting at 7am, 3pm, or
11pm. We create two instances of each of these five types of work schedules, by
pseudorandomly choosing the appropriate number of days of the week in each of
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the four weeks of a Quadweek. Each REB is based on exactly one of the result-
ing 10 work schedules. Multiple PEs are needed to represent work schedules
that wrap around calendar units; for example, a 7pm–7am shift is represented
using two PEs, with time intervals 7pm-midnight and midnight-7am. The PEs
are based on the following sequence of calendars: C1=Quadweeks, C2=Days,
C3=Hours, Cd=Hours. The days in a Quadweek are numbered 1..28. Including
Week in the sequence of calendars is not helpful, because most workers’ schedules
do not repeat on a weekly basis.

6 Evaluation

The experimental methodology is outlined in Sect. 1. All experiments use quality
change tolerance δ = 1.001 (this value gave the best results for the experiments
in [11]), ε = 0, All and wi = 1 for all weights in WSC. The policy quality metric is
WSC-INT, and the inheritance type is weakly restricted, except where specified
otherwise.

Our Java code, datasets, and an extended version of the paper are available
at www.cs.stonybrook.edu/stoller/policy-mining/. Periodic expressions are an
abstract data type with two implementations: (1) simple PEs, as defined in
Sect. 5, and implemented as pairs of integers, and (2) (general) PEs, as defined in
Sect. 2, and implemented as arrays of arrays of integers. These implementations
are used in the experiments in Sects. 6.1 and 6.2, respectively. Running times
include the cost of an end-to-end correctness check that checks equivalence of
the input TUPA and the meaning of the mined TRBAC policy; the average
cost is about 7 % of the running time. The experiments were run on a Lenovo
IdeaCentre K430 with a 3.4 GHz Intel Core i7-3770 CPU.

6.1 Experiments Using Dataset with Simple PEs

In experiments on this dataset, role intersection is configured to use FastMiner
for emea and americas small, CompleteMiner for the other policies, and RIC = 1
for all policies.

Comparison of original and mined policies. Fig. 3 shows detailed results from
experiments on this dataset. In the column headings, μ is mean, σ is stan-
dard deviation, CI is half-width of 95 % confidence interval using Student’s t-
distribution, and time is the average running time in minutes:seconds. There is
no standard deviation column for INT, because interpretability is unaffected by
the REBA and is the same for all TRBAC policies generated by extending the
same RBAC policy. Ignore the last 2 columns for now. The averages and stan-
dard deviations are computed over the TRBAC policies created by extending
each RBAC policy. The WSC of the mined TRBAC policy ranges from about
1 % lower (for apj) to about 11 % higher (for domino) than the WSC of the orig-
inal TRBAC policy. The interpretability of the mined policy ranges from about
35 % lower (for firewall-2) to about 1 % higher (for apj) than the interpretability

www.cs.stonybrook.edu/stoller/policy-mining/
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Original Policy Mined Policy Avg |R|
Dataset WSC INT WSC INT Time OurAlg Mitra+

μ σ μ σ CI μ σ CI μ

americas small 6975 7.5 189 7100 78 29 140 7 2.5 58:56 297

apj 4879 10.0 385 4826 22 8.1 388 3.5 1.2 1:04 468 527

domino 449 2.5 23 499 70 26 20 1.5 0.57 0:02 30 40

emea 3929 4.4 32 4038 68 25 32 0.2 0.07 0:49 100 115

firewall1 1533 4.1 48 1653 58 22 44 3.7 1.4 1:45 97 130

firewall2 960 1.4 7 966 9.2 3.4 5 1.0 0.38 0:02 12 17

healthcare 168 1.4 14 168 3.9 1.5 14 0.42 0.16 0:01 15 25

Fig. 3. Results of experiments with simple PEs.

of the original TRBAC policy. On average over the seven policies, the WSC is
3 % higher, and the interpretability is 12 % lower. Thus, our algorithm succeeds
in finding the implicit structure in the TUPA and producing a policy with com-
parable WSC and better interpretability, on average, than the original TRBAC
policy.

Comparison of inheritance types. We ran our algorithm again on the same
dataset, specifying strongly restricted inheritance for the mined policies. This
caused a significant increase in the WSC of the mined policies. The percentage
increase averages 67 % and ranges from 15 % for apj to 140 % for firewall-1. Intu-
itively, the reason for the increase is that, with strongly restricted inheritance,
the temporal information associated with directly assigned and inherited per-
missions may be different, and this may prevent removing inherited permissions
from a role’s directly assigned permissions. Inheritance type has less effect on
the average INT, increasing (worsening) it by about 9 % on average, excluding
the outlier firewall-2, for which the average INT decreases from 4 to 1.

Evaluation of choice of initial roles. We evaluated two ways of reducing the cost
of the algorithm by creating fewer initial roles. (1) We modified Phase 1.1 to
create fewer initial roles by removing the use of permREB+ in Fig. 1. Note that
Mitra et al.’s algorithm does not use an analogue of permREB+. This change
increased the average WSC by 36 % on average over the policies used in this
experiment (all except emea and americas small, which were omitted because of
their longer running time), ranging from 13 % for apj to 69 % for healthcare. It
increased (worsened) the average INT by 37 % on average over those policies,
ranging from 9 % for apj to 67 % for domino. (2) We modified Phase 1.1 to create
fewer initial roles by removing the first call to addRole. Note that Mitra et al.’s
algorithm does not include an analogue of this call. This change increased the
average WSC by 8 % on average over the policies used in this experiment (all
except emea and americas small), ranging from 7 % for domino and firewall-2
to 9 % for apj. It increased (worsened) the average INT by 7 % on average over
those policies, ranging from 0 % for firewall-2 to 11 % for domino.
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Comparison with Mitra et al.’s algorithm. We ran Mitra et al.’s algorithm [7],
and our algorithm with number of roles as policy quality metric (because Mitra
et al. use this metric), on our dataset with simple PEs. Their code supports only
simple PEs, so we used only the simple PE dataset in the comparison. Their
code, implemented in C, gave an error (“malloc: ...: pointer being freed was
not allocated”) on some TRBAC policies generated for emea and firewall-1; we
ignored those results. Their code did not run correctly on americas small, so we
omitted it from this comparison.

The last two columns of Fig. 3 show the numbers of roles generated by the two
algorithms. Standard deviations are omitted to save space but are small: on aver-
age, 3 % of the mean, for both algorithms. Mitra et al.’s algorithm produces 34 %
more roles than ours, on average. Our algorithm produces hierarchical policies,
and their algorithm produces flat policies, but this does not affect the number
of roles. There are many other differences between the algorithms, discussed in
Sect. 7, which contribute to the difference in results. The above paragraph on
evaluation of choice of initial roles describes two experiments that explore dif-
ferences between our algorithm and Mitra et al.’s and quantify the benefit of
those differences. The effects of some other differences between our algorithms,
such as the use of elimination vs. selection in Phase 4, were investigated in the
untimed case in [11] and likely have a similar impact here.

6.2 Experiments Using Dataset with Complex PEs

In experiments on this dataset, role intersection is configured to use CompleteM-
iner for firewall2 and FastMiner for the other policies.

Comparison of original and mined policies. Fig. 4 shows detailed results from
experiments on this dataset. The original TRBAC policies here have higher WSC
than the ones in Sect. 6.1, because complex PEs have higher WSC than simple
PEs. For apj, emea, and firewall1, we created 5 TRBAC policies (instead of
30) from each, to reduce the running time of the experiments. The WSC of
the mined TRBAC policy ranges from about 2 % higher (for firewall2) to about
57 % higher (for firewall1) than the WSC of the original TRBAC policy. The
interpretability of the mined TRBAC policy ranges from about 34 % lower (for
healthcare) to about 2 % higher (for apj) than the interpretability of the original
TRBAC policy. On average over the six policies, the WSC is 20 % higher, and
the interpretability is 16 % lower. Thus, our algorithm finds most of the implicit
structure in the TUPA and produces a policy with moderately higher WSC and
better interpretability, on average, than the original TRBAC policy. The results
can be improved by using larger RIC, at the expense of higher running time.

The higher running times, compared to the dataset with simple PEs, are due
primarily to the larger number of candidate roles created by role intersection
(there are more overlaps between REBs in this dataset), and secondarily to the
larger overhead of manipulating more complex PEs.
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Original Policy Mined Policy
Dataset WSC INT WSC INT RIC Time

μ σ μ σ CI μ σ CI μ

apj 16836 159 385 17434 337 419 391 1.9 2.3 0.7 50:43

domino 1156 49 23 1278 80 30 16 1.8 0.7 1 0:35

emea 5975 99 32 8683 284 353 32 0 0 0.7 201:10

firewall1 3712 97 48 5832 199 247 46 2.2 2.8 0.7 165:30

firewall2 1269 37 7 1291 52 19 5.3 0.68 0.3 1 1:00

healthcare 560 35 14 582 40 15 9.3 1.7 0.6 1 8:57

Fig. 4. Results of experiments with complex PEs.

Benefit of general PEs. PEs can be translated into sets of simple PEs. For
example, the REB {[all · Weeks + {1,2,7} · Days + {1} · Hours � 8 · Hours]} can
be translated to the REB {[1,9], [25,33], [145,153]}. However, PEs are generally
more compact and efficient. In experiments with the healthcare policy, using this
translation and simple PEs was about 19x slower than using general PEs.

Effect of role-intersection cutoff. We investigated the cost-benefit trade-off when
varying the role-intersection cutoff RIC. Figure 5 shows running time and WSC
as functions of RIC, averaged over three of the smaller policies (domino, firewall2,
healthcare). The trade-off is favorable: as RIC decreases, running time decreases
more rapidly than WSC increases. For example, at RIC = 0.8, running time is
40 % lower than with RIC = 1, and WSC is only 13 % higher.

Fig. 5. Relative running time and relative WSC as functions of RIC. (Color figure
online)

7 Related Work

We discuss related work on TRBAC policy mining and then related work on
RBAC mining. Role mining (for RBAC or TRBAC) is also reminiscent of some
other data mining problems, but algorithms for those other problems are not
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well suited to role mining. For example, association rule mining algorithms are
designed to find rules that are probabilistic in nature. They are not designed to
produce a set of rules strictly consistent with the input that completely covers
the input and is minimum-sized among such sets of rules.

7.1 Related Work on TRBAC Policy Mining

Mitra et al. define a version of the TRBAC policy mining problem and present
an algorithm for mining a TRBAC policy from a TUPA [7]. It is an improved
version of their earlier work [6].

Our algorithm is more flexible, because it can optimize a variety of metrics,
including WSC and interpretability. Their algorithm is designed to optimize only
the number of roles. The importance of interpretability is discussed in Sect. 1.
WSC is a more general measure of policy size than number of roles and can
more accurately reflect expected administrative cost. For example, the average
number of role assignments per user is a measure of expected administrative
effort for adding a new user [9], and this can be reflected in WSC by giving
appropriate weight to the size of the user-role assignment.

Our algorithm produces hierarchical TRBAC policies. Their algorithm pro-
duces flat TRBAC policies. Role hierarchy is a well-known feature of RBAC
that can significantly reduce policy size and administrative effort by avoiding
redundancy in the policy.

Some other differences are: (1) Our algorithm determines which candidate
roles to include in the final policy by elimination of low-quality roles, instead of
selection of high-quality roles. We showed that elimination gives better results in
the untimed case [11]. (2) Our algorithm creates more initial roles than theirs.
The benefit of creating these additional initial roles is shown in Sect. 6.1 in
the paragraph on evaluation of choice of initial roles. Their algorithm creates
unit roles, which are similar to initial roles but have only one permission; our
algorithm does not create unit roles. (3) Our algorithm performs fewer types
of role intersections than theirs. Specifically, it omits types of role intersections
that create PEs with time intervals that do not appear in the input, since these
PEs are probably not natural (intuitive) ones in the application domain.

Our implementation supports periodic expressions for specifying temporal
information, while theirs supports only ranges of hours that implicitly repeat
every day. Design and implementation of operations on sets of PEs is non-trivial.

7.2 Related Work on RBAC Mining

A survey of work on RBAC mining appears in [4]. The most closely related work
is Xu and Stoller’s elimination algorithm [11]. We chose it as the starting point
for design of our algorithm, because in the experiments in [11], it optimizes WSC
more effectively than Hierarchical Miner [8], while simultaneously achieving good
interpretability, and it optimizes WSCA, an interpretability metric defined in [8],
more effectively than Attribute Miner [8].
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Our algorithm retains the overall structure of the elimination algorithm but
differs in several ways, due to the complexities created by considering time. Our
algorithm introduces more kinds of candidate roles than the elimination algo-
rithm, because it needs to consider grouping permissions that are enabled for the
same time or a subset of the time of other permissions. Our algorithm attempts
to merge candidate roles; the elimination algorithm does not. Construction of
the role hierarchy is significantly more complicated than in the elimination algo-
rithm; for example, with strongly restricted inheritance, a permission p can be
inherited by a role r from multiple junior roles with different REBs, which may
together cover all or only part of the time that p is available in r. This also com-
plicates adjustment of the role hierarchy when removing candidate roles. The
role quality metric used to select roles for removal is more complicated, to give
preference to roles that cover permissions for more times.

Acknowledgements. We thank the authors of [7]—Barsha Mitra, Shamik Sural,
Vijayalakshmi Atluri, and Jaideep Vaidya—for sharing their code and datasets with
us and helping us understand their work.
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Abstract. Relationship-based access control (ReBAC) models define
authorization policies and make authorization decisions on the basis of
relationships between the entities in a system. We present a framework
through which multiple ReBAC model instances can interoperate so that
requests initiated in one system may target resources in a second system.
Further, our framework is able to support requests passing through a
chain of inter-connected systems, thus enabling many systems to be con-
nected together or a single large system to be decomposed into numerous
component subsystems. Whilst the underlying principles of this frame-
work can be applied to any ReBAC model, we introduce its formal appli-
cation to our RPPM model [3], the first, and most actively developing,
general computing ReBAC model.

Keywords: Access control · Path condition · Relationship · Principal
matching · Policy graph · Principal activation · Authorization · Secure
inter-operation

1 Introduction

Access control is a fundamental security service, employed within a system
to manage the interaction between (user) processes and (system-protected)
resources. Historically, access control in general-purpose computing systems has
used discretionary and role-based access control (RBAC) models. Recent work
on relationship-based access control (ReBAC), inspired originally by social net-
works [1,2,6], has shown that alternatives are viable for both specialist and
general computing applications [4,5,8]. In ReBAC, the specification and evalu-
ation of authorization policies is based on the relationships which exist between
entities of a system. The use of paths of relationships has several advantages over
roles, not least because they can naturally reflect the more complex, context-
specific nature of human interaction which otherwise requires the use of many,
highly parameterized, roles [3].

Whilst the consideration of paths of relationships is key to request evalu-
ation in any ReBAC model, different models support varying capabilities and
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constructs for representing and processing these relationships. However, the rela-
tionships between entities in the modelled system are, intuitively, always rep-
resented as an edge-labelled graph. Such system graphs indicate the scope of
a model instance; the system’s entities (vertices in the graph), relationships
(labelled edges), and policies are bounded by the graph and the system’s autho-
rization requests are evaluated within it. Whilst a system is modelled by a single
ReBAC model instance (and therefore by a single graph), there are several moti-
vating situations in which multiple model instances may need to interact.

Firstly, systems are frequently connected together in order to support a wider
range of services. In such cases, a subject in one system may request to perform
an action on an object in a remote system. Currently such requests cannot
be supported in ReBAC models unless a single “super-graph”1 model captures
every entity and relationship within the two, and all intermediary, systems. This
requires global policies, outside of the “authority” of any one component system,
putting at risk the autonomy of all. The inter-connection of discrete autonomous
subgraphs is, therefore, desirable. Secondly, ReBAC models containing very large
system graphs (stand-alone, or super-graph as just discussed) will be impacted
by the fact that request evaluation in such models has a time complexity linked to
the number of nodes in the graph, whether they are relevant to the request being
evaluated or not. It is, therefore, desirable to decompose such very large system
graphs into smaller discrete autonomous subgraphs. Whilst request evaluation
complexity in each of these subgraphs will still be linked to the number of nodes,
the practical complexity is expected to be greatly reduced as many requests will
only involve a subset of subgraphs (assuming appropriate routing is available).

We, therefore, develop a framework by which two ReBAC system graphs
may be connected and requests initiated in one may be authorized in the other.
We introduce a formal application of this framework in RPPM, as we believe
RPPM is naturally suited to this task. It supports the modelling of general
computing environments, to which inter-operation is highly relevant. Further,
its two step request evaluation process and use of security principals provide a
natural “break point” at which a request may be transferred from one system
to another (particularly when employing graph-based policies). RPPM provides
a convenient basis for combining paths from multiple graphs without searching
end-to-end across the, potentially numerous, inter-connected system graphs.

Due to space limitations we do not provide a review of the operation of
stand-alone RPPM instances; this background can be found in [3,4]. Section 2
introduces the Inter-RPPM framework as a specific example of our ReBAC inter-
operation approach. Section 3 describes its request evaluation process. In Sect. 4
we discuss related work and in Sect. 5 we draw conclusions. The Appendix con-
tains pseudocode for three algorithms required to support Sect. 3.

1 We use the term super-graph to identify a large system graph which models multiple
systems which might otherwise be modelled by distinct stand-alone system graphs.
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2 Inter-RPPM

The goal of our inter-operation framework is to connect distinct and autonomous
system graphs in such a way that we are not required to define and evaluate
relationship paths traversing a single super-graph. We, therefore, introduce an
inter-operation framework which maintains the autonomy of individual system
graphs by preserving their individual request evaluation scopes, system models
and policies. In order to provide connectivity between system graphs, a construct
external to the system graphs is required. We, therefore, introduce the concept
of a bridged system group and employ bridging relationships2, called bridges,
between hub entities within distinct component system graphs. A request to
access a remote resource will need to be evaluated by a sequence of RPPM
systems. Bridges provide the link through which we propagate information about
the outcome of each system’s “local” request evaluation to the next system in
the sequence; where it subsequently informs another local evaluation.

We employ a hierarchical dot notation to label elements: that is G.v and G′.v
represent different nodes (with the same label v) when G and G′ are distinct
system graphs.3 When all of the elements of a tuple, such as (v, v′, r), belong to
the same system graph G, we will write G.(v, v′, r) to simplify notation.

Definition 1. Let G = {G1 = (V1, E1), . . . , Gn = (Vn, En)} be a set of system
graphs. A bridge is an edge of the form (Gi.v,Gj .v, bridge-to) such that Gi �= Gj.
A bridged system group is a pair (G, β), where β is a set of bridges.

Informally, a bridged system group comprises two or more RPPM model
instances whose system graphs are connected by one or more bridges. Each bridge
connects two hub entities; one each from two distinct component system graphs.
We illustrate this framework with a simple example which we construct from
two, initially disconnected, model instances, identified by their system graphs
G1 = (V1, E1) and G2 = (V2, E2), shown schematically in Fig. 1a.

In Fig. 1b we illustrate the inter-connection of G1 and G2 through the
bridge (G1.h,G2.h

′, bridge-to) and develop the example further in Fig. 1c to
incorporate three system graphs inter-connected via six bridges.4 Bridges are
directed – (G1.h

′, G3.h
′, bridge-to) connects G1.h

′ to G3.h
′, but not vice versa

– and are represented by an arrow. However, there may also exist a bridge
(G3.h

′, G1.h
′, bridge-to) in which case we will use a double-headed arrow to rep-

resent the pair of bridges between G1.h
′ and G3.h

′.
Any bridged system group defines inter-system paths, obtained by traversing

the bridges. A system graph sequence defines the sequence of system graphs along
2 We require an extra-model administrator to be responsible for the management of
these bridging relationships.

3 Where there is no ambiguity through context or element naming we continue to
leave out the prefix for convenience and clarity. So we do not prefix V1 and E1 in
G1 = (V1, E1), for example.

4 Note that the example of Fig. 1c could equally represent three distinct system graphs
which have been connected together, or a large stand-alone system graph which has
been decomposed into three subsystems.
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Fig. 1. Bridged system group examples

such a path, where no system graph may be repeated and the directionality of
the bridging relationships constrain the sequence. System graph sequences are a
key component of the request evaluation process as they identify a path from the
system originating a request to the system graph containing the target object.
Multiple such paths may exist; we require that the access control policy decision
point (PDP) within a system be able to determine the single, least cost path.

To achieve this we require that an extra-model administrator assign costs to
bridges, and that hub entities maintain and exchange system path information
using a modified path-vector routing protocol. Each hub communicates with
adjacent hubs to which it directs a bridging relationship, retrieving the cost
of their total (least) cost path to every other hub, and therefore every other
system graph, in the bridged system group (where an infinite cost indicates an
unreachable hub).5 Upon receiving these path costs the hub adds to each the
cost of the bridge connecting it to that neighbour; it will then update its local
system path table to reflect the least cost path (if it didn’t already know it) to
every remote hub, along with which adjacent hub each least cost path passes via.
A system’s PDP can collate this information from each of its local hub entities
in order to determine the single, least cost path to a target system graph, or to
determine that no such path exists. Henceforth, when identifying a system graph
sequence between two system graphs we assume the least cost such sequence.

3 Request Evaluation in Inter-RPPM

The basic RPPM model evaluates local requests within a stand-alone system
graph using two steps: compute principals (where principal-matching rules are
evaluated to determine whether security principals match to the request) and
compute authorizations (where authorization rules are evaluated to determine if
the matched security principals are authorized to perform the requested action).

5 The directionality of bridges is enforced by hub entities not exchanging system path
information against the direction of an incident bridge.



100 J. Crampton and J. Sellwood

Within Inter-RPPM, remote requests are made by a subject G.s to perform
a remote action G′.a (where G �= G′) on a remote object G′.v. To support
these remote actions we introduce an originating remote request (ORR) and an
incoming remote request (IRR).6 The ORR represents the remote request as it is
specified within the originating system graph. The IRR contains additional data
which enable subsequent system graphs to contribute to the evaluation. When
processing remote requests, every traversed system graphs’ PDP employs the
compute principals step (whether evaluating an ORR or IRR), but only the tar-
get system graph’s PDP computes authorizations. Essentially, non-originating
system graphs re-compute the set of matched principals based on the set com-
puted by the preceding system graph and identified in the IRR.

A policy graph is used during the compute principals step to order the eval-
uation of principal-matching rules and to enable principals to be “activated”
when specific other principals are matched to a request.

Definition 2. Given a system graph G = (V,E) and a set of principals P , a
policy graph Gρ is a directed acyclic graph with a unique root (of in-degree 0)
such that each vertex is a principal-matching rule (φ, ψ, p). The set of principals
includes a special principal called the null principal and the principal-matching
rule for the root is defined to be (all, none, null).

The edges of the policy graph determine which rules trigger other rules. The
concept of the principal-matching rule’s target is extended to support rules in
which the targets (positive, φ, and negative, ψ) may identify sets of principals
which must exist (or not) in the current set of matched principals or, as pre-
viously, paths of relationships which must exist (or not) in the system graph.
More formally, we evaluate a policy graph with respect to a request, in order to
compute a set of matched principals, as per Algorithm 1 (see Appendix).7

A remote request is initiated in the originating system graph as an originating
remote request (ORR), which is evaluated as per Algorithm 2 (see Appendix).8

Definition 3. Given two distinct system graphs G = (V,E) and G′ = (V ′, E′)
in a bridged system group (G, β), an originating remote request takes the form
G.q = (G.s,G′.v,G′.a),9 where G.s ∈ V , G′.v ∈ V ′ and G′.a ∈ G′.A.

6 Recall that a system graph sequence will document the chain of system graphs
between the originating system graph and the target system graph.

7 Note that we do not add the null principal to the set of matched principals (line 4
of Algorithm 1) so that it does not interfere with authorization decisions, no matter
the conflict resolution strategy employed; and that the algorithm is passed a set of
matched principals to which any it matches are added.

8 In Algorithms 2 and 3 calls to EvaluatePolicyGraph have been simplified, removing
the system graph and policy graph arguments so as to highlight the start entity,
target entity, and set of matched principals arguments.

9 Note that the originating remote request G.q = (G.s,G′.v,G′.a) retains the same
underlying structure as a local request made within the same system graph
G.q = G.(s, v, a).
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When processing the ORR, the originating system’s PDP must take into
account that the target object is located in a distinct system graph from the sub-
ject. Therefore, the ORR is processed by performing compute principals between
the subject and the hub entity which links the originating system graph to the
next graph in the system graph sequence (lines 1, 3 and 4).10 Note that line
4 passes an empty set to the EvaluatePolicyGraph algorithm (defined in Algo-
rithm 1) as no principals have yet been matched to this remote request. The
result of processing the policy graph is a set of matched principals for traversing
the originating system graph. This is then passed, along with the details of the
request, across the bridging relationship to the next system in the system graph
sequence (lines 5 and 6).11

In non-originating system graphs, the remote request takes the form of an
incoming remote request (IRR), evaluated as per Algorithm 3 (see Appendix);
its processing differs in intermediate and target system graphs. Within an IRR,
the subject component of the ORR is replaced with a tuple identifying the
originating subject, the hub entity through which the request was received by
the current system and the set of matching principals which resulted from the
preceding system’s processing of the request.

Definition 4. Given a bridged system group (G, β) and a system graph sequence
(G1, . . . , Gi−1, Gi, . . . , G�), an incoming remote request processed by system
graph Gi = (Vi, Ei) takes the form Gi.q = ((G1.s,Gi.h,Gi−1.�ρ�), G�.v,G�.a),
where Gi.h ∈ Vi is the hub through which the request entered Gi and Gi−1.�ρ� is
the set of matched principals computed by the preceding system graph.

When processing an IRR in an intermediate system graph, the system’s
PDP must take into account that neither the subject nor target object are located
in the current system graph. Therefore, the IRR is processed by performing
compute principals between two hub entities: the hub entity Gi.h through which
the request entered the system and the hub entity which links the intermediate
system graph to the next graph in the system graph sequence (lines 4 and 5).
The set of matched principals from the preceding system graphs is input into
the graph policy evaluation (line 5) and may result in additional principals being
activated (and added to it), as discussed in Sect. 2. As with processing an ORR,
the cumulative set of matched principals that results is then passed, along with
the details of the request, across the bridging relationship to the next system in
the system graph sequence (lines 6 and 7). This process continues until it reaches
the target system.

When processing an IRR in the target system graph, the policy graph eval-
uation is performed between the hub entity through which the request entered
the system and the object of the request, note Gi = G� (line 10). Once again this
makes use of the preceding system graph’s set of matched principals. However,

10 The function DetermineLeastCostPathToSystemGraph requires the PDP to interrogate
its local hubs and to collate their responses, as described in Sect. 2.

11 An appropriate mechanism (e.g. digital signatures) must be in place to enable the
receiving system to ensure the authenticity and freshness of such details.
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once a local set of matched principals is determined the compute authorizations
step is performed. This allows a set of authorization decisions to be determined
(line 11). A definitive decision is then determined, with RPPM’s default decision
process and conflict resolution process employed as with local requests (line 12).

4 Related Work

Whilst our work in respect of ReBAC inter-operation is novel, the inter-operation
of other access control model instances has been considered in previous literature.
In particular, research into the use of RBAC in multi-domain scenarios has led
to several approaches to inter-operation based principally upon role mapping.

Shehab et al. define a distributed secure interoperability protocol in which
users are assigned roles in remote domains based upon cross domain access
agreements [10]. The order in which roles are acquired within each domain they
access is referred to as the user’s access path. These paths are checked to ensure
the principles of autonomy and security [7] are both satisfied. In Inter-RPPM
remote requests, by construction, are unable to target local resources and the
outcome of local request evaluation is unchanged by the additions discussed in
this paper. Therefore, both of these principles are satisfied trivially.

Shafiq et al. take this further by introducing a policy composition framework
that integrates the RBAC policies of initially distinct domains [9]. They, addi-
tionally, implement a conflict resolution technique to deal with conflicts which
may arise from the differences in how each domain models or references its access
control policies. Within Inter-RPPM we have intentionally avoided integrating
the policies of component model instances, and instead have provided a frame-
work through which those policies may be applied to remote requests.12 This
places a greater requirement upon the manual definition of appropriate policies
within each component model instance; however, it ensures a consistent policy
language.

5 Conclusion

We have defined an inter-operation framework through which multiple RPPM
system graphs may be connected and remote authorization requests may be
evaluated. The connecting of systems is commonplace; however, the ability to
decompose large systems into inter-connected smaller systems is a significant
contribution of this paper and of particular importance in the application of
ReBAC models. Decomposition enables a trade-off to be made between the com-
putational complexity of a ReBAC model against the number of model instances
which are employed to control authorizations within a large system.

The inter-connection of ReBAC (system) graphs through directed bridging
relationships, and the use of system graph sequences and the path-vector routing

12 That being said we support the use of remote principals where desired to provide
for more robust policies.
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protocol to identify paths between those graphs is applicable to remote request
evaluation, no matter the model. This paper introduces its formal application in
RPPM, although it is equally applicable to our more recent model, ARPPM [5]
(something we leave for future work).13 In cases where principal abstraction is
not available, however, an alternative means of allowing each component graph’s
evaluation to contribute must be developed. We leave the development of such
mechanisms to future work, only noting that an end-to-end path approach will
produce a super-graph and thus, potentially, be limited by the increase in com-
putational complexity associated with an increase in the number of nodes.

Appendix: Algorithms

The pseudocode for the algorithms used to support inter-connection of RPPM
instances is shown below.

Algorithm 1. EvaluatePolicyGraph (ordered compute principals)
Require: System graph G = (V, E), start node u ∈ V , target node v ∈ V , policy graph

Gρ = (Vρ, Eρ), and set of matched principals �ρ�
Ensure: Returns set of matched principals �ρ�
1: while Perform breadth-first search of Gρ starting at root vertex do
2: Evaluate current vertex, (φ, ψ, p) ∈ Vρ

3: if G, u, v |= φ and G, u, v �|= ψ then
4: if p �= null then
5: �ρ� ← �ρ� ∪ p
6: end if
7: else
8: Prune child vertices from evaluation
9: end if
10: end while

Algorithm 2. ProcessORR
Require: System graph G = (V, E), ORR G.q = (G.s, G′.v, G′.a), policy graph G.Gρ = G.(Vρ, Eρ)
Ensure: Malformed ORR rejected or set of matched principals G.�ρ� sent to next system graph in

system graph sequence
1: LCPG,G′ ← DetermineLeastCostPathToSystemGraph(G′)
2: if G′ reachable then
3: G.h ← IdentifyLocalHubForLCP(LCPG,G′ )
4: G.�ρ� ← EvaluatePolicyGraph(G.s, G.h, ∅)
5: G′′.h ← IdentifyNeighbourHubForLCP(LCPG,G′ )
6: Securely send G.q and G.�ρ� to G′′.h via G.h
7: else
8: Reject malformed ORR
9: end if

13 We believe that administrative requests will always be local to a model instance
(maintaining system autonomy) and so only operational requests (equivalent to the
requests discussed in this paper) may be conducted remotely.



104 J. Crampton and J. Sellwood

Algorithm 3. ProcessIRR
Require: System graph Gi = (Vi, Ei), IRR Gi.q = ((G1.s, Gi.h, Gi−1.�ρ�), G�.v, G�.a), policy

graph Gi.Gρ = Gi.(Vρ, Eρ)
Ensure: Set of matched principals Gi.�ρ� sent to next graph in system graph sequence (intermediate

system graph) or authorization decision made (target system graph)
1: if Gi �= G� then
2: // intermediate system graph
3: LCPGi,G�

← DetermineLeastCostPathToSystemGraph(G�)

4: Gi.h
′ ← IdentifyLocalHubForLCP(LCPGi,G�

)

5: Gi.�ρ� ← EvaluatePolicyGraph(Gi.h, Gi.h
′, Gi−1.�ρ�)

6: Gi+1.h ← IdentifyNeighbourHubForLCP(LCPGi,G�
)

7: Securely send Gi.q and Gi.�ρ� to Gi+1.h via Gi.h
′

8: else
9: // target system graph
10: Gi.�ρ� ← EvaluatePolicyGraph(Gi.h, G�.v, Gi−1.�ρ�)
11: Gi.��� ← ComputeAuthorizations(Gi.�ρ�)
12: DecideAuthorizationResult(Gi.�ρ�, Gi.���)
13: end if
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Abstract. Currently, collaboration is a major challenge in adopting
cloud Infrastructure-as-a-Service (IaaS). Enterprise work-flow intrinsi-
cally mandates collaboration across its tenant boundaries as well as with
associated organizations’ tenants in the cloud. In this paper, we inves-
tigate a Circle-of-Trust approach where tenants establish trust within
a circle of tenants for the purpose of collaboration. We present a novel
extension of role-centric access control models to provide collaboration in
the context of homogeneous and heterogeneous circles. In a homogeneous
circle, our approach allows tenants to equally assert cross-tenant user
assignments to enable access to shared resources. In a circle with non-
uniform tenants, attributes are added to distinguish user-assignments
where tenants are differentiated by type in the heterogeneous circle. Par-
ticularly, tenant-trust relation is established within a group of tenants
authorizing user-role assignments across tenants.

Keywords: Circle-of-Trust · Federation · Attribute-based access con-
trol · Collaboration · Multi-tenant · Authorization · Security

1 Introduction

Cloud IaaS is firmly accepted by enterprises for its cost benefits, reliability, and
dynamicity at scale [12]. Its benefits are well documented and well practiced in
the industry, but still organizations resist to fully migrate to cloud IaaS which
arises from security, performance, and vendor lock-in concerns. Enabling collab-
oration mitigates such concerns regarding vendor lock-in and different security
levels required, and improves performance by utilizing distinct cloud providers.

In multi-tenant platforms which utilize shared physical infrastructure, users’
data are isolated into tenants to protect privacy and integrity. A tenant could
be an organization, a department of an organization, or an individual cloud
consumer, which is represented by an account in AWS [1] or a domain in Open-
Stack [2]. Furthermore, current cloud service providers offer federation APIs to
enable collaboration between tenants such as AWS and OpenStack platforms.
Besides federation between two tenants, collaboration can also be established
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between a set of organizations where tenants adhere to a common set of poli-
cies, trust relations and collaboration interfaces within a circle. We denote this
collaboration model as a Circle-of-Trust. Scenarios such as a large enterprise
with multiple tenants collaborating in a public cloud, an organization with ten-
ants across public and private clouds, or tenants from multiple organizations
performing collaborative tasks are motivating use cases for Circle-of-Trust.

In this paper we present novel role-based and role-centric attribute-based
access control models to enable federation in a multi-tenant cloud IaaS Circle-of-
Trust. Our scope of contribution is homogeneous and heterogeneous multi-tenant
circles in cloud IaaS.

Fig. 1. ACME corporation Multi-
Tenant Circle-of-Trust.

To better clarify the concept, consider the
example in Fig. 1 where ACME, a multina-
tional technology corporation, aims to imple-
ment its enterprise requirements with cloud
services. ACME migrates its IT infrastruc-
ture to a public cloud service provider where
each tenant represents a department. ACME
utilizes multiple tenants to satisfy distinct
security levels required for each depart-
ment. For example, Finance Dept. resources
should not co-locate in the same tenant with
Research & Development Dept., as Finance
Dept. retains sensitive data. Furthermore,
ACME organizational structure demands col-
laboration between its departments which is
thereby required in its cloud adoption. To
this end, ACME establishes a Circle-of-Trust among its tenants in the cloud and
starts adding its tenants to the circle. For instance a new tenant created as Sales
tenant in ACME, requests to join the circle. Adding additional tenants requires
all ACME circle members to agree on trusting the new Sales tenant. When Sales
tenant joins the circle, it trusts members assertions and its assertions are likewise
trusted by other ACME circle members. In particular, Circle-of-Trust offers an
association of ACME principals to collaborate in the circle.

Role-based access control (RBAC) [5,16] and its variations has been success-
fully applied to cloud IaaS providing collaboration within single-cloud [17,18]
and multi-cloud systems [13]. In RBAC access permissions are assigned to roles
and roles are assigned to users. Roles are central to RBAC for formulating policy
and its commercial success, where it abstracts permissions into roles and role
relations. With its dominance for the past two decades, RBAC limitations have
been recognized leading to a push towards using attributes [6,7,15] with roles [9].
One method, is to add attributes to roles as role-centric attributes which takes
advantage of roles’ simplicity and attributes flexibility [8]. Attributes are defined
as name:value pairs representing entities’ properties. We anticipate cloud service
providers will incorporate ABAC features to their current RBAC models such
as role-centric to adopt convenience of RBAC with flexibility of ABAC models.
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Our contribution in this paper is to design multi-tenant role-centric mod-
els with cross-tenant user-assignments. To our knowledge this is the first work
considering role-centric models in Circle-of-Trust context.

The remainder of this paper is organized as follows. Section 2 overviews
trust properties applicable in Circle-of-Trust and corresponding trust relations
between tenants. In Sect. 3, our multi-tenant role-based access control in cir-
cle denoted MT-RBACc is proposed and specified. Section 4 introduces our
multi-tenant role-centric attribute-based model in circle denoted MT-RABACc.
Related work and conclusion is presented in Sects. 5 and 6 respectively.

2 Concept of Trust in Circle

In a Circle-of-Trust, trust relationships are defined between all circle entities.
We use terms entities and principals interchangeably. Principals make assertions
in the circle, assigning users to roles.

2.1 Trust Properties in Circle

Trust in the circle has the following properties, entity coupling, initiation, direc-
tion, and transitivity. Figure 2 gives a logical hierarchy of these trust properties
discussed below. Vertical placement of characteristics is selected to better illus-
trate trust relations in our scope of contribution.

Fig. 2. Circle-of-Trust characterization.

Entity Coupling (Homogeneous vs. Heterogeneous). In a circle-of trust,
type of entities engaging in interactions determines homogeneity or heterogene-
ity of the circle, shaping its authorized interactions between tenants. Moreover,
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with each circle type a set of trust properties are applicable. By homogeneous
circle we denote the case where entities are uniform. For instance a circle of
universities forms a homogeneous circle. In a homogeneous circle, collaborating
principals are equally authorized to make cross-tenant authorization assertions.
A heterogeneous circle, is an association of non-uniform entities where each type
of entity is authorized specifically to make certain assertions. For instance, a
circle consisting of universities, insurance companies, and banks establishes a
heterogeneous circle. In this scenario, universities can assign users to discounted
insurance plans in insurance companies while insurance companies cannot assign
their users to resources in the universities. In this paper, we use type and domain
interchangeably denoting the type of entities in a heterogeneous circle.

Initiation (Multilateral vs. Unilateral). If trust initiation to join a circle is
required to be confirmed by all circle members, trust is considered multilateral.
In special situations when joining members are not authorized to make assertions
(in heterogeneous circles) trust initiation is not required to be confirmed by all
circle members denoted as unilateral trust. For instance a domain of insurance
companies joins a heterogeneous, unilateral circle of institutions. Insurance enti-
ties in the circle are not authorized to make assertions whilst institution entities
are authorized to assert their users to discounted plans available to universities.

Direction (Bidirectional vs. Unidirectional). In a circle, direction of trust
determines whether both participating circle members have equal authoriza-
tions or only one side is authorized to make assertions. If partners are autho-
rized equally to make assertions, trust relation is bidirectional, otherwise it is
unidirectional trust. Homogeneous circles’ relations are bidirectional while het-
erogeneous circles support both trust directions. Unilateral heterogeneous circles
such as given example above are only unidirectional in trust relations. Circle of
universities is an example of bidirectional trust in a homogeneous circle. Sharing
files in Dropbox is an example of a unidirectional trust where a user can share
files with a group of users unidirectionally.

Transitivity (Transitive vs. Non-transitive). In a trust relation when prin-
cipal “A trusts B” and “B trusts C” result in implication that “A trusts C”,
trust relation is denoted as transitive. In a homogeneous circle, bidirectional
trusts are essentially transitive where all members trust and likewise trusted
by other circle members. In heterogeneous unidirectional circles, trust relations
cannot be transitive. For example, in the heterogeneous unidirectional circle of
institutions, banks, and insurance companies, an institution can assign students
to bank specific account types in banks whilst banks can assign employees to
health insurances in insurance companies. Considering heterogeneous domains
in the circle, a university trusting a bank and a bank trusting an insurance entity
does not necessarily imply that the university can assign students to insurance
resources.

In this paper, we consider multilateral, bidirectional, and transitive trust
relationships for homogeneous circles. Trust relations between tenants in hetero-
geneous circles are considered multilateral, unidirectional, and non-transitive.
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In the following we identify how trust relations authorize cross-tenant assign-
ments in a Circle-of-Trust federation model.

2.2 Tenant-Trust in Circle

In a circle, trust is defined between tenants as tenant-trust relationship. In a
unidirectional trust relationship, common in peer-to-peer, trust is initiated and
established between two tenants denoted as trustor and trustee. In a trust rela-
tion, trustor tenant is willing to trust another tenant denoted as trustee tenant.
In our scope, trust is initiated multilaterally between principals in a circle. In
the context of circle, trustor and trustee are not distinguished in trust relations
between tenants. We identify tenants involve in a cross-tenant assignment as
user-owner and resource-owner tenants. User-owner tenant owns the users in the
cross-tenant assignment and resource-owner tenant owns the roles to which users
are assigned. Central to tenant-trust defined in this paper, is authorizing user-
owner or resource-owner tenants to assert cross-tenant user-role assignments.

We use “�” to represent tenant-trust where TA � TB signifies that tenant A
trusts tenant B. In this relation, TA is user-owner tenant and TB is resource-
owner tenant. Regardless of circle entity coupling, we define two types of tenant
trust relations denoted as type-ε and type-ζ. Each tenant-trust relation type
is applied to all tenants in the circle. In type-ε circle, user-owner tenants are
authorized to assign users to roles in the circle. The following defines type-ε
tenant-trust illustrated in Fig. 3a.

(a) A trusts B in Circle Type- . (b) A trusts B in Circle Type-ζ.

Fig. 3. User-Role assignment in Circle-of-Trust Tenant-Trust.

Definition 1. If TA �ε TB, then tenant TA is authorized to assign its users to
TB’s roles. Tenant TA controls user assignments.

In type-ζ circle, resource-owner tenants are authorized to assign users in the
circle to their roles. Type-ζ is defined as follows and is depicted in Fig. 3b.
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Definition 2. If TA �ζ TB, then tenant TB is authorized to assign TA’s users to
its roles. Tenant TB controls user assignments.

In homogeneous circles, all peers trust each other and trust is transitive,
therefore TA � TB if and only if TB � TA. However, in heterogeneous circles trust
relations are unidirectional and non-transitive as a result TA �TB may not imply
TB�TA or vise versa. Each tenant-trust type caters to a different security concern
and objective in the Circle-of-Trust collaboration. Type-ε enable tenants in the
circle to assign their users to roles of other tenants in the circle. The advantage
is its simplicity to administer and implement as long as tenants’ resources shared
are not sensitive within the circle and tenants are willing to delegate user-role
assignments to trusted tenants in the circle. For instance, an academic Circle-
of-Trust is a motivation of this type of circle where academic tenants establish
a Circle-of-Trust to share computing resources. Any academic tenant can assign
its users to resources across tenants in the circle.

Type-ζ on the other hand, follows a different purpose to protect shared
resources where user-role assignments are administered by resource-owner ten-
ants. Tenants do not want to delegate trusted tenants permission to make asser-
tions to their shared resources. A circle of financial institutions is a motivating
example of type-ζ tenant-trust. Financial institutes do not want to expose their
resources for collaboration in the circle since their resources are highly sensitive
even with respect to trusted tenants in the circle. In this scenario, a resource-
owner tenant administrator assigns users in the circle to its roles, authorizing
access to its shared resources.

3 Homogeneous Role-Based Circle-of-Trust

This section introduces a multi-tenant role-based access control model to enable
federation in a homogeneous Circle-of-Trust which we refer to as MT-RBACc.
In a homogeneous circle, tenants are equally authorized to make assertions. Col-
laboration in MT-RBACc is issued through cross-tenant user-role assignments
with respect to circle types ε and ζ. MT-RBACc model component sets and rela-
tions are depicted in Fig. 4. We use a circle of institutions called Cyber Security
Research (CSR) shown in Fig. 5 as a running example to exemplify the concepts
throughout this section. The formal definition of MT-RBACc is given in Table 1.
We discuss MT-RBACc in parts through the following subsections, in context of
these figures and table.

3.1 MT-RBACc Basic Sets and Functions

The basic sets of MT-RBACc are as follows: tenants (T ), users (U), private
roles (Rprv), public roles (Rpub), roles (R), operations (OPS), objects (OBS),
and permissions (PRMS). Many of these are familiar from the traditional RBAC
models [5,16] and will not be further discussed here. The new sets in MT-RBACc

are tenants (T ) and private and public roles (Rprv and Rpub respectively).
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Fig. 4. Multi-Tenant RBAC Circle-of-Trust.

Fig. 5. Example of a Multi-Tenant RBACc homogeneous Circle-of-Trust. (Color figure
online)

A tenant is considered as a virtual container with tenant-specific environment
for cloud services leased to cloud consumers. Practically, a tenant hosts a project,
a department, or an organization. Each tenant is represented as t ∈ T where T
is the global set of tenants in the cloud. In Fig. 5, each tenant represents an
institution, UTSA, UTA, and UTD respectively. Each user, role, and object is
identified with a single owner tenant, shown within the dashed tenant boundary
in Fig. 5. UTSA and UTD have similar Researcher roles, however in the cloud
they are distinguished as Researcher#UTSA and Researcher#UTA. Similarly
for objects and users.

Within each tenant the roles are partitioned into disjoint sets of public roles
and private roles, Rpub and Rprv respectively, as depicted in Fig. 4 and expressed
in Table 1 by the owner functions. In Fig. 5 private roles are shown as blue
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circles named in italics while public roles are shown as red circles named in
regular script, e.g., the UTSA tenant has private roles Professor, Researcher and
Research Staff and a public role Scholar.

A central principle of MT-RBACc is that permission to role assignment can
only occur within a tenant boundary, and only to private roles. This is formalized
in the definition of the permission assignment (PA) relation in Table 1. It is our
first departure from traditional RBAC which in general allows any permission
to be assigned to any role.

3.2 MT-RBACc Tenant-Trust and User-Role Assignment

A Circle-of-Trust (CoT ) is a subset of tenants T who mutually trust each other
within the scope of MT-RBACc. In Fig. 5, UTSA, UTA, and UTD form a homo-
geneous CoT of institutes. In general, multiple and possibly overlapping CoT s
can be established among different subsets of tenants. For our purpose in this
paper it suffices to focus on a single CoT . Tenant-trust between two members of a
circle is indicated by the � symbol, which is a reflexive, transitive and symmetric
relation.

MT-RBACc distinguishes two kinds of trust, named type-ε and type-ζ and
distinguished by a subscript applied to the symbols CoT and �. In type-ε trust
each tenant in the CoTε can assign users from another tenant in the circle to
its own public roles. In type-ζ trust each tenant in the CoTζ can assign it own
users to public roles belonging to another tenant in the circle. In Fig. 5, if CSR
is a type-ε circle then the tenant administrator of UTA can assign its users,
e.g., David and May, to roles in UTSA and UTD. If CSR is a type-ζ circle then
the tenant administrator of UTA can assign users from UTSA, e.g., Alice and
John, as well as users from UTD to roles in UTA. In both types of circles such
cross-tenant user-role assignments is limited to public roles. These concepts are
formalized in Table 1. These restrictions on user-role assignment constitute a
second major departure from traditional RBAC.

3.3 Limited Role Hierarchy

A third significant departure from traditional RBAC is to limit the role hierarchy
with respect to public and private roles. We use the symbol � to represent the
role hierarchy where r1 � r2 means that the permissions assigned to role r2 are
also available to users assigned to role r1. MT-RBACc imposes the following
requirements on the role hierarchy.

– Private roles can inherit private roles only if both are owned by the same
tenant, e.g., Senior Researcher � Researcher in the UTD tenant in Fig. 5.

– Private roles cannot inherit public roles. The Researcher role in UTD tenant
cannot be senior to the Scholar role in UTSA.

– Public roles can inherit private roles only if both owned by the same tenant.
In the UTD tenant, Security Scientist role inherits the Researcher role.
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Table 1. MT-RBACc component sets and functions.
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– Public roles can inherit public roles from trusted tenants in the circle. In UTD
tenant, Senior Scientist � Security Scientist where both are UTD’s public
roles. It is also possible for a public role of one tenant to be senior to a public
role in another tenant. We include this possibility for generality, although role
to role assignment is outside the scope of MT-RBACc.

3.4 MT-RBACc Trust Properties

In terms of the circle trust properties of Sect. 2.1 MT-RBACc is homogeneous in
entity coupling since all tenants in the circle are treated equivalently. In term of
initiation in joining or leaving a circle of trust, MT-RBACc does not explicitly
formalize this aspect. As such MT-RBACc is neutral on this issue. Different
models of initiation such a multilateral or unilateral are compatible with MT-
RBACc. Regarding direction and transitivity, a circle in MT-RBACc is explicitly
defined to be bidirectional and transitive.

4 Heterogeneous Role-and-Attribute Based
Circle-of-Trust

This section, introduces a multi-tenant role-centric attribute-based access control
model (MT-RABACc) enabling federation in a heterogeneous Circle-of-Trust.
Our model is motivated by a previously defined role-centric model [8] for combin-
ing roles and attributes. In a heterogeneous circle, entities are from non-uniform
types. In MT-RABACc, tenants are not equally authorized and cross-tenant
user-role assignments are limited with respect to tenant’s domain type attribute.

MT-RABACc adds attributes to enforce cross-tenant user-role assignment
separation. Attributes are used to denote tenant types where tenants are only
authorized to assert cross-tenant user assignments on certains type of tenants.
Figure 6 depicts elements in MT-RABACc, where tenant attributes (TATT ),
user attributes (UATT ), and object attributes (OATT ) are added to the tenant,
user, and object components of Fig. 4 respectively. We use a heterogeneous circle
of institutions (UTA and UTSA) and a bank (BoA) in Fig. 7 as a running exam-
ple to exemplify the concepts throughout this section. The extensions and modi-
fications to the MT-RBACc model to obtain MT-RABACc are formally given in
Table 2. Similar to the description of MT-RBACc in the previous section, we will
describe MT-RABACc systematically in the following subsections, in context of
the afore-mentioned figures and table.

4.1 MT-RABACc User and Object Attributes and Meta-Attributes

An attribute is considered as a function which takes a tenant, user or object as
input and return a value from the attribute’s range. For example, an atomic-
valued user attribute function such as employeeType returns employee status of a
user john where employeeType ∈ UATT , john ∈ U and employeeType(john) =
full time. Range or scope of an attribute is a finite set of atomic values specifying
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Fig. 6. Multi-Tenant Role-Centric ABAC Circle-of-Trust.

Fig. 7. Example of a Multi-Tenant RABACc heterogeneous Circle-of-Trust. (Color
figure online)

the valid range of attribute functions. Attribute functions either return a single
value or set of values, which are respectively called atomic-valued and set-valued
attribute types. In MT-RABACc, users and objects are respectively associated
with attributes in the sets UATT and OATT . Each user attribute uatt ∈ UATT
is a partial function since not every attribute is defined for every user. Similarly,
each object attribute oatt ∈ OATT is a partial function.

Each user and object attribute is owned by a single tenant. This is realized
by means of meta-attributes uattOwner and oattOwner. Users and objects can
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only be assigned attribute values for attributes owned by the same tenant as the
user or object. User and object attributes do not impact user-role assignment
and are included in the model for generality and uniformity.

4.2 MT-RABACc Tenant Attributes

Tenant attributes are fundamental to MT-RABACc to enforce constraints on
cross-tenant user-role assignments. Each tenant administrator can only assign val-
ues to its set of tenant attributes. In a heterogeneous circle, tenants are from differ-
ent types which needs to be recognized in cross-tenant user-role assignments. To
that end, we define a domain as a set of tenants grouped together with respect
to their type in the system. Each domain is a subset of T defined in Table 2.
For instance in Fig. 7, circle includes two types of tenants, Institute and Bank
domains. Particularly, a tenant is related to a domain with an atomic-valued
required attribute function, tenantDomain. It is defined as an atomic attribute
to signify that each tenant only belongs to one domain. In Fig. 7, UTSA and UTA
have Institute and BoA has Bank tenantDomain attribute values. Moreover, to
separate user-role assignments in MT-RABACc, trustedDomains is defined as a
required set-valued tenant attribute. In MT-RABACc, each tenant administra-
tor specifies the group of domains it trusts with their assertions, including its own
domain. For instance in Fig. 7, UTSA trusts assertions from Institute and Bank
domain while UTA only trusts Bank domain assertions meaning UTA does not
trust assertions from its own domain. In the heterogeneous circle in Fig. 7, BoA
does not allow any assertions from tenants in the circle.

4.3 MT-RABACc Tenant-Trust

In MT-RABACc, tenant-trust is limited with trustedDomains attributes. In
type-ε circle, user-owner tenant can assign its users to roles from tenants which
it is a member of their trustedDomains attribute set. In type-ζ, user assignment
is modified to satisfy the condition where role-owner tenant can assign users
from tenants in the circle, if it is a member of their trustedDomains attribute
set. Type ε and ζ is defined in Table 2. In Fig. 7, if circle is a type-ε, then the
tenant administrator of UTA can assign its users, e.g., David and May, to roles
in UTSA since UTSA trusts assertions from its domain. If circle is a type-ζ,
then the tenant administrator of BoA can assign users from UTSA, e.g., Alice
and John, as well as users from UTA to roles in BoA since both UTSA an UTA
trust assertions from Bank domain tenants.

In this context, user-assignment is modified with respect to trustedDomains
attributes. A user is assigned to a role only if

(owner user(u) = owner role(r) ∧ r ∈ R) ∨
(owner user(u) �ε owner role(r) ∧ r ∈ Rpub∧

tenantDomain(owner user(u)) ∈ trustedDomains(owner role(r)))∨
(owner user(u) �ζ owner role(r) ∧ r ∈ Rpub∧

tenantDomain(owner role(r)) ∈ trustedDomains(owner user(u)))
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Table 2. MT-RABACc component sets and functions.
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In a Circle-of-Trust we allow only one trust type in the circle. We don’t allow
both type ε and ζ at once in a circle due to assignment conflict. Permission-
assignment remains unchanged where a permission is assigned to a role only if

(owner role(r) = owner object(o) ∧ r ∈ Rprv)
Authorized user permisisons denotes the set of permissions available to a user
with respect to tenant types in the circle which is not changed from Table 1.

4.4 MT-RABACc Trust Properties

In terms of the circle trust properties of Sect. 2.1 MT-RABACc is heterogeneous
in entity coupling since tenants in the circle are distinguished by their domain,
and thereby not treated equivalently. In term of initiation in joining or leaving
a circle of trust, MT-RABACc does not explicitly formalize this aspect. As such
MT-RABACc is neutral on this issue. Different models of initiation such a mul-
tilateral or unilateral are compatible with MT-RBACc. Regarding direction and
transitivity, a circle in MT-RBACc is explicitly defined to be unidirectional and
non-transitive.

5 Related Work

The Liberty Alliance Project [20] identified the conceptual framework and guide-
lines in a Circle-of-Trust as part of their federated identity vision. Considerable
research on Circle-of-Trust has been devoted to identity federation such as [10]
where trust requirements and patterns in a Circle-of-Trust identity federation
are identified. In [3], Circle-of-Trust collaboration trust considerations in identity
federation for assessment of entities’ trust outside the circle are considered. Our
work is focussed on authorization federation in a collaboration group of entities
considered as tenants.

Sharing resources among organizations has been investigated in multiple
aspects. ROBAC [21] extended RBAC to consider authorization in multiple orga-
nizations, but collaboration within organizations is not considered. GB-RBAC [11]
extends RBAC with groups to support collaboration. In GB-RBAC, administrator
cannot manage users in the groups. In our model, each tenant administers its col-
laboration policy by controlling users or roles in user-role assignments across the
tenants in the circle. In [19], a dynamic coalition-based access control (DCBAC)
model is proposed that allows automatic access to resources of one coalition entity
by users from another coalition entity. O2O [4] defined an approach to deal with
access control in interoperability context based on virtual private organizations
(VPO) and role single-sign on (RSSO). Our contribution is differentiated based
on the collaboration framework to enable collaboration between tenants. In O2O,
each organization is responsible to define its security policy for roles whereas in our
federation framework, each tenant defines its collaboration policy through public
roles for a group of tenants in the circle.

Further in cloud IaaS, models such as CTTM [17] extended RBAC to enable
collaboration in multi-tenant cloud systems. In [13], cross-tenant collaboration
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models discussed enabling federation in multi-cloud environments. In this paper,
we focus on Circle-of-Trust federation compared to [17] and [13] where col-
laboration is enabled in a Peer-to-Peer federation. In ABAC collaboration in
cloud, MT-ABAC [14] proposed collaboration between tenants by cross-tenant
attribute assignment in cloud IaaS. Such attribute-based federation provides
Peer-to-Peer collaboration, however our role-centric model provides federation
in a circle.

6 Conclusion

This paper elaborated a fine-grained collaboration model in a Circle-of-Trust.
We introduced the MT-RBACc model in a homogeneous circle, in which col-
laboration is enabled through user to public role assignments. We identified,
private and public roles with limited role hierarchy to control access on ten-
ants’ resources. Trust is defined on tenants with circle types ε and ζ authorizing
user-owner and resource-owner tenants’ assertions respectively. Moreover, tenant
attributes in MT-RABACc classifies tenants into domains in heterogeneous cir-
cles, where tenant-trust is defined conditionally with trustedDomain attributes.
Using roles and attributes to enable cross-tenant user-role assignments is general
and dynamic enough to address current issues while it is applicable to current
platforms. For future work, we plan to extend this work with attribute-based
models into further generalization in multi-cloud environments and implement
proposed models in the current cloud platforms such as OpenStack.
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Abstract. Logical formulas and enumeration are the two major ways
for specifying authorization policies in Attribute Based Access Con-
trol (ABAC). While considerable research has been done for specifying
logical-formula authorization policy ABAC, there has been less attention
to enumerated authorization policy ABAC. This paper presents a finite
attribute, finite domain ABAC model for enumerated authorization poli-
cies and investigates its relationship with logical-formula authorization
policy ABAC models in the finite domain. We show that these models
are equivalent in their theoretical expressive power. We also show that
single and multi-attribute ABAC models are equally expressive.

1 Introduction

Attribute Based Access Control (ABAC) has gained considerable attention from
businesses, academia and standard bodies, such as NIST [6], in recent years.
ABAC uses attributes on users, objects and possibly other entities (e.g. context
or environment) and specifies rules using these attributes to assert who can
have which access permissions (e.g. read or write) on which objects. Although
ABAC concepts have been around for over two decades there remains a lack of
well-accepted ABAC models. Recently there has been a resurgence of interest in
ABAC due to continued dissatisfaction with the three traditional models (DAC
[14], MAC [12], RBAC [13]), and particularly with the limitations of RBAC.

To demonstrate expressive power and flexibility, several ABAC models
including [7,15,16,18] have been proposed in past few years. These models adopt
the conventional approach of designing attribute based authorization policies as
logical formulas. Logical-formula authorization policies (LAPs) are powerful and
convenient to specify even complicated business requirements in a concise way.

An alternate to specify authorization policies is by enumeration, called enu-
merated authorization policies (EAPs). Examples in this category include Policy
Machine (PM ) [5] and LaBAC [2]. These models demonstrate expressiveness
by their ability to configure traditional models.

Thus, LAPs and EAPs are two viable approaches to express authorization
policies in an ABAC model. While ABAC models with LAPs (denoted LAP -
ABAC) have received considerable attention, design and development of ABAC
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with EAPs (denoted EAP -ABAC) are relatively neglected. As a result, there
is scant literature on development of EAP -ABAC. Nonetheless, a comparison
between these two approaches is required to further fundamental understanding
of ABAC.

This paper presents a finite attribute, finite domain model for EAP -ABAC
and investigates its relationship with LAP -ABAC in the finite domain. We
show that LAP -ABAC and EAP -ABAC are equivalent in theoretical expres-
sive power. We also show that single and multi-attribute models are equally
expressive.

Rest of this paper is organized as follows. Section 2 discusses different styles
and scopes for ABAC. Section 3 presents multi-attribute EAP -ABAC and LAP -
ABAC models. We show that these models are equivalent in theoretical expres-
sive power in Sect. 4. Related work is presented in Sect. 5. Finally, Sect. 6 con-
cludes the paper.

2 Authorization Policy Representation

In this section, we discuss two types of authorization policies—logical-formula
and enumeration with respect to finite domain ABAC models.

Finite Domain ABAC Models. Most of the ABAC models (for example,
[7,15,16,18]) assume a finite set of user and object attributes and that values
of these attributes come from a finite set. This assumption is useful in many
practical cases. For example, values of roles, clearance or age are bounded and
mostly static. But attribute values can be unbounded as well. For example,
if values of an attribute include users or objects in a system (e.g. the attribute
owner for an object) and these values may grow indefinitely, they are unbounded.
This paper focuses on finite-domain ABAC models that have a finite set of
attributes with finite ranges for attribute values.

Logical-Formula Authorization Policy. A logical-formula authorization pol-
icy is defined as a boolean expression consisting of subexpressions connected with
logical operators (for example, ∧,∨,¬). These subexpressions compare attribute
values with other attribute or constant values. LAPs are usually expressed in
propositional logic and support a large set of logical and relational operators.
A LAP grants an authorization request if the applicable formula evaluate true
for attribute values of the requesting user and requested object. Authread ≡
clearance(u) � classification(o) is an example of LAP which allows a user to
read an object if the user’s clearance dominates classification of the object.

Enumerated Authorization Policy. An enumerated authorization policy
consists of a set of tuples. Each tuple, represented as (user-attr-values, obj-
attr-values), grants privileges to a set of users to exercise an action on a set
of objects identified by the user and object attribute values mentioned in the
tuple. In an EAP, each tuple is distinct and grants privileges independently. User
and object attribute values used in the tuple can be atomic or set valued. For
example, (mng, TS ) and ({mng, dir}, {TS,H}) are atomic and set valued tuples
respectively.
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Fig. 1. Components of (a) EAP -ABACm,n (b) LAP -ABACm,n

3 Finite Domain ABAC Models

In this section, we define a multi-attribute enumerated authorization policy
ABAC model named EAP -ABACm,n (shown in Fig. 1(a)). To the best of our
knowledge, EAP -ABACm,n is the first such model. PM [5] also defines a multi-
attribute EAP -ABAC model, but its interpretation of attributes is different
than the traditional interpretation of attributes as (attr. name, value) pairs.
We also define a multi-attribute LAP -ABAC model named LAP -ABACm,n

(shown in Fig. 1(b)) by abstracting its policy language and potentially accepting
any computational logic as policy language.

Multi-attribute EAP -ABAC (EAP -ABACm,n): EAP -ABACm,n has m user
attributes and n object attributes. Components of EAP -ABACm,n are shown
in Fig. 1(a). The unbounded set of users and objects, and finite set of actions
are represented by U , O and A respectively. The values denoted by UL1, UL2

through ULm (UL1 and ULm are shown in the figure) represent range of m
user attribute functions named uLabel1, uLabel2 through uLabelm respectively.
Similarly, OL1 OL2 through OLn specify values of n object attributes. For
simplicity, we do not consider subjects or sessions, distinct from users, here.
They do not materially affect the discussion.

The set of policies is represented by Policy. We define one policy per action.
A policy is defined a set of policy-tuples. A policy-tuple includes subset of values
for each user and object attribute.

The formal definition of the model and semantics of the authorization func-
tion are given in Table 1. Segment I of the table defines basic sets and relations
discussed above. In Segment II, shows notation of policy tuples and defines a pol-
icy as subset of tuples. Finally, the authorization function is authorized(s, a, o)
is presented in Segment III. It allows a user u to perform an action a on an
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Table 1. EAP -ABACm,n model

I. Sets and relations

- U,O, and A (users, objects and actions respectively)

- UL1, UL2, ...ULm (values for uLabel1, uLabel2, ... , uLabelm)

- OL1, OL2, ...OLn (values for oLabel1, oLabel2, ... , oLabeln)

- uLabeli : U → 2ULi , for 1 ≤ i ≤ m;

- oLabeli : O → 2OLi , for 1 ≤ i ≤ n

II. Policy components

- Policy-tuples = (2UL1 × 2UL2 × ... × 2ULm) × (2OL1 × 2OL2 × ... × 2OLn)

- Policya ⊆ Policy-tuples and Policy = {Policya|a ∈ A}
III. Authorization function

- is authorized(u : U, a : A, o : O)=(∃(ULS1, ULS2, ..., ULSm, OLS1, OLS2, ...OLSn)

∈ Policya)[ULSi ⊆ uLabeli(u), for 1 ≤ i ≤ m ∧ OLSi ⊆ oLabeli(o), for 1 ≤ i ≤ n]

Table 2. LAP -ABACm,n model

I. Sets and relations

- U,O and A (set of users, objects and actions respectively)

- UAV1,UAV2, ...,UAVm (range of user attribute functions)

- OAV1,OAV2, ...,OAVn (range of object attribute functions)

- UA = {ua1, ua2, ..., uam} (set of user attributes); uai : U → 2UAVi , for 1 ≤ i ≤ m

- OA = {oa1, oa2, ..., oan} (set of object attributes); oai : O → 2OAVi , for 1 ≤ i ≤ n

II. Policy components

- fa : (2UAV1 , ..., 2UAVm , 2OAV1 , ..., 2OAVn) → {true, false} (policy for a ∈ A).

- LFs = {fa|a ∈ A} (set of all policies)

III. Authorization function

- is authorized(u:U,a:A,o:O) = ∃fa ∈ LFs[fa(ua1(u), ua2(u), ..., uam(u), oa1(o),

oa2(o), ...oan(o)) = true]

object o if in the policy Policya for action a, there exists a tuple that satisfies
following conditions—(i) u possesses attribute values used in the tuple, and (ii) o
is assigned attribute values mentioned in the tuple.

Multi-attribute LAP -ABAC (LAP -ABACm,n): LAP -ABACm,n is specified
in Fig. 1(b). This model is based on LAPs. Other than authorization policies,
this model is similar to EAP -ABACm,n. It defines a LAP as a boolean function
fa that takes values of m user and n object attributes as arguments. An autho-
rization request for action a is granted if fa() is evaluated true for attribute
values of requesting user and requested object. The formal definition is given in
Table 2, similar to Table 1.



126 P. Biswas et al.

Table 3. Mappings

4 Theoretical Expressive Power of EAP and LAP Models

This section establishes equivalence between different EAP -ABAC and LAP -
ABAC models with respect to their theoretical expressive power. We consider
single and multi-attribute EAP -ABAC and LAP -ABAC models. The relation-
ship among the models we consider is schematically presented in Fig. 2. Sin-
gle attribute and multi-attribute models are presented on left and right side of
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Fig. 2. Equivalence of EAP and LAP ABAC models

the Y-axis respectively. Enumerated and logical-formula policy models are pre-
sented above and below the X-axis respectively. These models all have set valued
attributes. Policy tuples are represented differently in EAP -ABAC1,1 and EAP -
ABACm,n models. The former uses atomic valued tuples (e.g. (manager, TS))
and the later uses set valued tuples (e.g. ({manager} {TS})).

Four different equivalences are discussed here labeled one to four in Fig. 2.
They are equivalence of (i) single and multi-attribute EAP models, (ii) multi-
attribute EAP and LAP models, (iii) single and multi-attribute LAP models,
and (iv) single attribute LAP and EAP models.

The equivalence of single and multi-attribute EAP models are demonstrated
in Segment I and II in Table 3. In Segment I, we show that multiple attributes
can be represented as a single attribute comprising of cross product of values of
multiple attributes. Segment II is trivial as EAP -ABAC1,1 is a special case of
EAP -ABACm,n. Segment III shows how to construct a LAP formula using m
user and n object attributes from a enumerated policy of same set of attributes.
Segment IV shows the converse. Similar to Segment I, Segment V shows how
a logical formula of multiple user and object attributes can be represented as
a logical formula of single user and object attributes. Segment VI is trivial as
LAP -ABAC1,1 is a special case of LAP -ABACm,n. The equivalence of single
attribute EAP and LAP models presented in Segment VII and VIII is a special
case of the equivalence of multi-attribute EAP and LAP models presented in
Segment III and IV.

5 Related Work

Several ABAC models have been proposed in the literature. Most of them are
based on LAPs. For example, ABACα [7] is among the first few models to for-
mally define a LAP -ABAC. HGABAC [15] is a more general purpose LAP -
ABAC model. Other works include [8,11,16–18].

Damiani et al. [4] describe an informal framework for attribute based access
control in open environments. Bonatti et al. [3] present a uniform structure
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to logically formulate and reason about both service access and information
disclosure constraints according to related entity attributes. NIST ABAC guide
[6] is significant in defining concepts, required components, considerations and
architecture for designing an enterprise ABAC system. Other notable works
include XACML [9], UCON [10] and Armando et al. [1].

6 Conclusion

We have presented a finite attribute, finite domain ABAC model using enu-
merated authorization policies. We show that enumerated authorization policy
and logical-formula authorization policy ABAC models are equivalent in their
theoretical expressive power. We believe, analysis of these two models beyond
expressive power is required to better understand these models and ABAC in
general.

Acknowledgement. This research is partially supported by NSF Grants CNS-
1111925 and CNS-1423481.
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Abstract. The shuffle index provides confidentiality guarantees for
accesses to externally outsourced data. In this paper, we extend the shuf-
fle index with support for access control, that is, for enforcing authoriza-
tions on data. Our approach bases on the use of selective encryption and
on the organization of data and authorizations in two shuffle indexes.
Our proposal enables owners to regulate access to their data supporting
authorizations allowing different users access to different portions of the
data, while at the same time guaranteeing confidentiality of access.

1 Introduction

The rapid advancement in ICT and the increasing adoption of cloud comput-
ing paradigms have produced an ever increasing reliance on external parties for
storing and processing data. Together with the clear benefits in term of low
cost and high availability (e.g., [11]), the involvement of external providers for
storing data and providing services raises also issues of ensuring proper protec-
tion of information against the providers themselves (e.g., [12,15]). The research
and industrial community have recognized these issues and investigated different
aspects of the problem, with considerable attention paid to the need to maintain
information confidential to the providers themselves that, even if trustworthy
to provide the service, should not be allowed visibility over the stored data. In
addition to the need to protect confidentiality of the stored data (content confi-
dentiality), recent proposals have been devoting attention to the need to protect
confidentiality of the accesses executed on the data (access confidentiality), that
is, protecting confidentiality on the fact that an access aims at a specific piece of
information or that two accesses aim at the same target (this latter also referred
to as pattern confidentiality). There are several reasons for which access confi-
dentiality should be protected, including the simple fact that breaches to access
confidentiality may leak information on access profiles, and, in the end, even
on the data themselves, therefore breaking data confidentiality itself. Among
the recent proposals specifically considering the access confidentiality problem

c© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing Switzerland 2016. All Rights Reserved
S. Ranise and V. Swarup (Eds.): DBSec 2016, LNCS 9766, pp. 130–147, 2016.
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in database management scenarios (and therefore with attention to efficiency
and functionality guarantees that should be provided) is the shuffle index [5].
The shuffle index provides an index-based hierarchical organization of the data
supporting efficient and effective access execution and provides access confiden-
tiality with limited (compared to classical solutions) performance overhead. The
key idea to provide access confidentiality is a dynamic re-allocation of data at
every access so to breach the otherwise static correspondence between data and
physical blocks in which they are stored.

The shuffle index, while supporting accesses by multiple users [6], assumes
all users to be entitled to access the complete data structure: data are encrypted
with a key shared between the data owner and all users, and all users can retrieve
and decrypt these data, hence accessing the plaintext content. Encryption is
applied only to provide confidentiality (of content and access) with respect to
the storing server. However, in many situations access privileges may need to be
granted selectively, that is, different users should be authorized to view only a
portion of the stored data. While existing solutions for enforcing authorizations
in data outsourcing context in presence of honest-but-curious providers (e.g.,
selective encryption [2,3]) have emerged, they cannot be simply applied in con-
junction with the shuffle index, given the specific characteristics of the index
and its access execution, as well as the need to ensure access confidentiality
guarantees.

In this paper, we provide an approach to support access control over the shuf-
fle index (Sect. 2) to ensure that access to the data be granted only in respect
of authorizations specified by the data owner. Our approach leverages the avail-
ability of selective encryption to provide a self-enforcing layer of protection over
the data themselves. To allow for authorizations enforcement while maintaining
access confidentiality guarantees, our approach makes use of two shuffle indexes:
a primary index, storing and providing access to selectively encrypted data, and
a secondary index, enabling enforcement of access control (Sects. 3 and 4). We
show that our proposal correctly enforces the access control policy established
by the data owner and has limited performance overhead (Sect. 5).

2 Shuffle Index

The shuffle index [5] is a dynamically allocated data structure offering access and
pattern confidentiality while supporting efficient key-based data organization
and retrieval. A data collection organized in a shuffle index is a set of pairs
〈index value, resource〉 with index value a candidate key for the collection (i.e.,
no two resources share the same value for index value) used for index definition,
and resource the corresponding resource associated with the index value. For
simplicity, we assume the data collection to be a relational table R defined over
a simplified schema R(I,Resource), with I the indexed attribute and Resource
the resource content. At the abstract level, a shuffle index for R over I is an
unchained B+-tree (i.e., there are no links between the leaves) with fan-out F
defined over attribute I, storing the tuples in R in its leaves. Each node stores
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up to F −1 ordered values v1, v2, . . . , vq, and has as many children as the number
of values stored plus one. The first child of a node is the root of the subtree
including all values v < v1; its last child is the root of the subtree including all
values v ≥ vq; its i-the child (i = 2, . . . , q) is the root of the subtree including
all values vi−1 ≤ v < vi. Actual resources are stored in the leaves of the tree in
association with their index value. At the logical level, each node is associated
with a logical identifier. Logical identifiers are used in internal nodes as pointers
to their children and do not reflect the order relationship among the values
stored in the nodes. At the physical level, each node is stored in encrypted form
in a physical block and logical identifiers are translated into physical addresses
at the storing server. For the sake of simplicity, we assume that the physical
address of a block storing a node corresponds to the logical identifier of the node
itself. The encrypted node is obtained by encrypting the concatenation of the
node identifier, its content (values and pointers to children or resources), and a
randomly generated nonce (salt). Formally, block b storing node n is defined as
E(k, salt||id||n), where E is a symmetric encryption function with key k and
id is the identifier of node n. Encryption protects the confidentiality of nodes
content and the structure of the tree, as well as the integrity of each node and
of the structure overall. Figure 1(c–e) illustrates an example the abstract (c),
logical (d), and physical (e) level, respectively, of a shuffle index storing the 19
tuples in Fig. 1(a), indexed according to the values of attribute I. Actual tuples
are stored in the leaves of the index structure, where, for simplicity, we however
report only the index values.

To retrieve the tuple with a given index value in the shuffle index, the tree
is traversed from the root following the pointers to the children until a leaf is
reached. Since the shuffle index is stored at the server in encrypted form, such a
process is iterative, with the client retrieving from the server (and decrypting)
one node at a time to determine the child node to be read at the next level.
To protect access and pattern confidentiality, in addition to storing nodes in
encrypted form at the server, the shuffle index uses the following three techniques
in access execution.

– Cover searches: in addition to the target value, additional values, called covers,
are requested. Covers, chosen in such a way to be indistinguishable from the
target and to operate on disjoint paths in the tree (also disjoint from the
path of the target), provide uncertainty to the server on the actual target. If
num cover searches are used, the server will observe access to num cover+1
distinct paths and corresponding leaf blocks, any of which could be the actual
target.

– Repeated access : to avoid the server learning when two accesses refer to the
same target since they would have a path in common, the shuffle index always
produces such an observable by choosing, as one of the covers for an access,
one of the values of the access just before it (if the current access is for the
same target as the previous access, a new cover is used). In this way, the server
always observes a repeated access, regardless of whether the two accesses refer
to the same or to a different target.
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I Resource
1 A Aresource
2 B Bresource
3 C Cresource
4 D Dresource
5 F Fresource
6 G Gresource
7 H Hresource
8 I Iresource
9 J Jresource

10 L Lresource
11 M Mresource
12 N Nresource
13 O Oresource
14 P Presource
15 Q Qresource
16 R Rresource
17 S Sresource
18 T Tresource
19 U Uresource

(a)

Search
target: C
repeated: S
cover: J

(b)

Abstract Index

(c)
Logical Index

(d)
Physical Index

(e)

Fig. 1. An example of a relation (a), an access over it (b), and of abstract (c), logical
(d) and physical (e) shuffle index

– Shuffling : at every access, the nodes involved in the access are shuffled (i.e.,
allocated to different logical identifiers and corresponding physical blocks),
re-encrypted (with a different random salt and including the new identifier of
the block) and re-stored at the server. Shuffling provides dynamic reallocation
of all the accessed nodes, thus destroying the otherwise static correspondence
between physical blocks and their content. This prevents the server from accu-
mulating knowledge on the data allocation as at any access such an allocation
is refreshed.

To illustrate, consider the shuffle index in Fig. 1(c–e) and the search in
Fig. 1(b) for the tuple with index value C, assuming S as repeated access and
J as fresh cover. The access entails reading (i.e., retrieving from the server)
the nodes annotated in the figure, with the server only observing downloads of
the corresponding encrypted blocks in Fig. 1(e) but not able to learn anything
on the block content or on the roles (target, repeated, cover) of the blocks.
Shuffling could produce, after the access, a re-allocation of the accessed nodes.
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Original Relation Primary Index Secondary Index
I Resource ACL

1 A Aresource . . . u1 u2 u3
2 B Bresource . . . u1 u2
3 C Cresource . . . u1 u2
4 D Dresource . . . u2 u3
5 F Fresource . . . u2 u3
6 G Gresource . . . u1 u3
7 H Hresource . . . u1 u3
8 I Iresource . . . u1
9 J Jresource . . . u1

10 L Lresource . . . u1
11 M Mresource . . . u1
12 N Nresource . . . u2
13 O Oresource . . . u2
14 P Presource . . . u2
15 Q Qresource . . . u2
16 R Rresource . . . u3
17 S Sresource . . . u3
18 T Tresource . . . u3
19 U Uresource . . . u3

I Resource
12 ι(A) 123, E(k123, Aresource)
17 ι(B) 12, E(k12, Bresource)
4 ι(C) 12, E(k12, Cresource)
3 ι(D) 23, E(k23, Dresource)
7 ι(F) 23, E(k23, Fresource)
9 ι(G) 13, E(k13, Gresource)

10 ι(H) 13, E(k13, Hresource)
8 ι(I) 1, E(k1, Iresource)
6 ι(J) 1, E(k1, Jresource)

11 ι(L) 1, E(k1, Lresource)
2 ι(M) 1, E(k1, Mresource)

14 ι(N) 2, E(k2, Nresource)
5 ι(O) 2, E(k2, Oresource)

18 ι(P) 2, E(k2, Presource)
16 ι(Q) 2, E(k2, Qresource)
15 ι(R) 3, E(k3, Rresource)
19 ι(S) 3, E(k3, Sresource)
1 ι(T) 3, E(k3, Tresource)

13 ι(U) 3, E(k3, Uresource)

I Resource
10 ι1(A) E(k1, ι(A))
18 ι2(A) E(k2, ι(A))
22 ι3(A) E(k3, ι(A))
5 ι1(B) E(k1, ι(B))
6 ι2(B) E(k2, ι(B))
9 ι1(C) E(k1, ι(C))

25 ι2(C) E(k2, ι(C))
27 ι2(D) E(k2, ι(D))
4 ι3(D) E(k3, ι(D))

19 ι2(F) E(k2, ι(F))
3 ι3(F) E(k3, ι(F))

11 ι1(G) E(k1, ι(G))
7 ι3(G) E(k3, ι(G))

20 ι1(H) E(k1, ι(H))
24 ι3(H) E(k3, ι(H))
15 ι1(I) E(k1, ι(I))
12 ι1(J) E(k1, ι(J))
8 ι1(L) E(k1, ι(L))
1 ι1(M) E(k1, ι(M))

14 ι2(N) E(k2, ι(N))
23 ι2(O) E(k2, ι(O))
26 ι2(P) E(k2, ι(P))
2 ι2(Q) E(k2, ι(Q))

13 ι3(R) E(k3, ι(R))
16 ι3(S) E(k3, ι(S))
21 ι3(T) E(k3, ι(T))
17 ι3(U) E(k3, ι(U))

(a) )c()b(

Fig. 2. Relation of Fig. 1(a) with acls associated with its resources (a), relation for the
primary index (b), relation for the secondary index (c)

For instance, 205→204, 204→207, 207→205 (where X→Y denotes the fact that
the content of node X is moved to Y).

3 Primary and Secondary Indexes for Access Control

Providing access control means enabling data owners to regulate access to their
data and selectively authorize different users with different views over the data.
Figure 2(a) illustrates possible authorizations on the data of Fig. 1(a), consider-
ing three users (u1, u2, u3). The figure reports, for each tuple r in the dataset,
the corresponding acl(r), that is the set of users authorized to access it. (Note
that authorizations do not explicitly report the access privileges, which is con-
sidered to be ‘read’, since we assume access by users to be read-only, with write
operations reserved to the owner.) When clear from the context, with a slight
abuse of notation, in the following we will denote the access control list of a
tuple r as either acl(r) or acl(r[I]), with r[I] its index value. For instance,
acl(A) = {u1,u2,u3}, while acl(B) = {u1,u2}.

Before diving into our solution, we note that there could be two natural and
straightforward approaches to enforce authorizations in the shuffle index, each of
which would have however limitations and drawbacks. A first natural approach
would be to simply associate a key ki with each user ui and produce different
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replicas of the data. Each tuple would be replicated as many times as the number
of users authorized to access it. Each copy would be encrypted with the key of the
user for which it is produced. For instance, with reference to Fig. 2(a) three copies
would be created for index value A and the corresponding resource Aresource,
encrypted with keys k1, k2, and k3, respectively. Different shuffle indexes would
then be defined, one for each user, organizing and supporting accesses to the
tuples that the user is authorized to access. Such an approach, besides bearing
obvious data management problems (as replicas would need to be maintained
consistent) would affect the protection offered by the shuffle index. In fact, it
would organize each shuffle index only on a limited portion of the data (for
each user, only those tuples that she can access, that is, less than half of the
original tuples for each user in our example) with consequent limitations in the
choice of covers. An alternative solution could then be to maintain the shuffle
index as a single structure (so to build it on the complete dataset), and avoid
replicas by producing only one encrypted copy for each tuple. Replicas can be
avoided by considering different encryption keys not only for individual users
but also for user sets (i.e., acls), with a user ui knowing her encryption key ki as
well as those of the acls in which she is included. Each resource would then be
encrypted only once and the encryption key with which it is encrypted known
only to its authorized users. For instance, with reference to Fig. 2(a), Aresource
would be encrypted with key k123 known to all users while Bresource would be
encrypted with key k12 known to u1 and u2 only. While such selective encryption
correctly enforces access to the encrypted resources, it leaves the problem of
ensuring protection (and controlling the possible exposure) of the index values
with which the shuffle index is organized. As a matter of fact, on one hand,
leaving such index values accessible to all users for traversing the tree would
disclose to every user the complete set of index values, even those of the tuples
she is not authorized to access. On the other hand, such index values cannot be
encrypted with the same encryption key used for the corresponding resources,
as otherwise the ability to traverse the tree by users would be affected.

Starting from these observations, we build our approach essentially providing
selective encryption while protecting index values themselves against unautho-
rized users without affecting their ability to retrieve those tuples they are autho-
rized to access. Our approach is based on the definition of two different indexes.
A primary index, defined over an encoded version of the original index values,
and a secondary index, providing a mapping enabling users to retrieve the value
to look for in the primary index. Both indexes make use of an encoding of the
values to be indexed to make them intelligible only to authorized users. We then
start by defining an encoding function as follows.

Definition 1 (Encoding Function). Let R(I,Resource) be a relation with I
defined over domain D. A function ι : D → E is an encoding function for I iff ι
is: (i) non-invertible; (ii) non order-preserving; (iii) injective.

Intuitively, an encoding function maps the domain of index values I onto
another domain of values E , avoiding collisions (i.e., ∀vx, vy ∈ I with vx 	= vy,
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ι(vx) 	= ι(vy)), and in such a way that the original ordering among values is
destroyed. Also, non-invertibility ensures the impossibility of deriving the inverse
function (from encoded to original values). For instance, an encoding function
can be realized as a keyed cryptographic hash function operating on the domain
of attribute I.

The second building block of our solution is the application of selective
encryption, namely encryption of each resource with a key known only to autho-
rized users. To apply selective encryption, we then define a key set for the encryp-
tion policy as follows.

Definition 2 (Encryption Policy Keys). Let R(I,Resource) be a relation, U
be a set of users, and, ∀r ∈R, acl(r)⊆ U be the acl of r. The set K of encryption
policy keys for R is a set K = {ki | ui ∈ U} ∪ {ki1,...,in | ∃r ∈ R, {ui1 , . . . , uin} =
acl(r)} of encryption keys. Each key kX ∈ K has a public label �X . Each user
ui ∈ U knows the set Ki = {ki} ∪ {kX | kX ∈ K ∧ i ∈ X} of keys.

Definition 2 defines all the keys needed (and the knowledge of users on them)
to apply selective encryption, meaning to encrypt the data selectively so that
only authorized users can access them while optimizing key management and
avoiding data replication. The public label associated with a key allows referring
to the key without disclosing its value. Note that knowledge by a user of all
the keys of the access control lists to which she belongs does not require direct
distribution of the keys to the user, since hierarchical organization of keys and use
of publicly available tokens enabling key derivation can provide such a knowledge
to the user [3].

We are now ready to define the first index used by our approach. This first
index, called primary , is the one storing the actual data on which accesses should
operate (i.e., tuples in R). To provide selective access as well as enable all users
to traverse the index without leaking to them information (index values and
resources) they are not authorized to access, the index combines value encoding
and selective encryption. Formally, the primary index is defined as follows.

Definition 3 (Primary Index – Data). Let R(I,Resource) be a relation,
I be the indexing attribute, ι be an encoding function for I computable only
by the data owner, and K be the set of encryption policy keys for R. A pri-
mary index for R over I is a shuffle index over relation P(I,Resource) having
a tuple p for each tuple r ∈ R such that p[I] = ι(r[I]) and p[Resource] =
〈�i1,...,in , E(ki1,...,in , r[Resource])〉, with E a symmetric encryption function,
acl(r) = {ui1 , . . . , uin}, and ki1,...,in ∈ K

The primary index stores original data in encrypted form, encrypting each
tuple with the key corresponding to its acl (i.e., known only to the users autho-
rized to read the tuple). The inclusion in r[Resource] of the label enables autho-
rized users to know the key to be used for the decryption of the resource. The
primary index is built on encoded values computable only by the data owner.
For instance, the encoding function can be implemented through a cryptographic
hash function, using a key ko known only to the data owner (i.e., the encoded
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Fig. 3. Primary shuffle index for the relation in Fig. 2(b)

value ι(v) for a tuple r with index value v can be computed as hash(v,ko)). Note
that, although each resource singularly taken appears encrypted in the leaves of
the primary index, all the nodes are (also) encrypted with a key k known to
every user in the system. This second encryption layer is necessary to enable
shuffling (Sect. 2).

Building the index on the encoded values provides protection of the original
index values, and their order relationship, against users and storing server that
observe the index on the encoded values. In fact, the encoding is non-invertible
(hence the encoded values do not leak any information on the original values),
and destroys the original ordering (hence the order relationship between encoded
value does not leak anything on the order relationship among the original values).

Figure 2(b) illustrates a primary index P for our running example. The order-
ing among the encoded values is reported with numbers on the left of the table.
Figure 3 illustrates the tree structure for such primary index. Note how the dif-
ferent order among the values to be indexed causes a different content within
the leaves and a different ordering among them, with respect to the shuffle index
in Fig. 1(a) built over the original (non-encoded) index values.

While the index on the encoded values provides the ability to traverse the
tree to look for the resource associated with an encoded value, to retrieve a given
resource (i.e., the resource corresponding to an original value for the indexing
attribute) one would need to know the encoding of such value. For instance,
resource Aresource would be stored in association with index value ι(A). The
encoding (i.e., the fact that ι(A) corresponds to A) is however known only to the
data owner.

The second index of our approach allows the data owner to selectively disclose
to users the mapping of encoding ι, releasing to every user the mapping for (all
and only) those values she is authorized to access. Such knowledge is provided
to each user ui encrypted with the user key ki (so to make it non intelligible to
other users and to the server) and is indexed with a user-based encoding, so to
provide a distinct mapping for every user ui, which can be computed only by
ui. The second index of our approach is therefore a secondary index providing
user-based mapping as follows.
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Fig. 4. Secondary shuffle index for the relation in Fig. 2(c)

Definition 4 (Secondary Index – User-based Mapping). Let R(I,
Resource) be a relation, I be the indexing attribute, P be a primary index for R
over I with encoding function ι, U be a set of users, {ιi | ui ∈ U} be a set of encoding
functions for I such that ιi is computable only by user ui and by the data owner,
and K be the set of encryption policy keys for R. A secondary index for R and P
is a shuffle index over relation S(I,Resource) having a tuple s for each pair 〈r, ui〉,
r ∈ R and ui ∈ acl(r), such that s[I] = ιi(r[I]) and s[Resource] = E(ki, ι(r[I])),
with E a symmetric encryption function and ki ∈ K.

For instance, the encoding function of each user ui can be implemented
as a cryptographic hash function, using a key ki known to user ui only (i.e.,
ιi(v) = hash(v,ki)). Figure 2(c) illustrates a secondary index for our running
example. Again, the number on the left of the table is the ordering among the
index values of the secondary index. Notice how, once again, the encoding does
not convey any information on the ordering of the original index values. Note
that the secondary index has a larger number of tuples than the original index,
since the encoding of an original index value is encrypted as many times as the
number of users who can access it. For instance, in our example, there are three
instances of ι(A). Figure 4 illustrates the tree structure for the index in Fig. 2(c).
We note however that the secondary index is very slim as the resources are sim-
ply the encryption, with the key of a user, of the owner encoding. While in our
examples, for simplicity, we maintain the same topology, the structure of the sec-
ondary index is independent from the structure of the primary index, meaning
that they may have different fan-out and height.

Note that the property of the encoding function of destroying the ordering
among original index values is particularly important to guarantee protection.
In fact, users will know all encoded values computed by the data owner (i.e.,
the co-domain of function ι), but will know the actual mapping (i.e., the actual
value v corresponding to ι(v)) only for the values they are allowed to access.
Figure 5(a–b) illustrates a possible logical organization for the primary and sec-
ondary index of our example, where for simplicity of illustration we assume the
logical organization to reflect (at this initial time) the abstract organization of
the tree. We distinguish blocks of the primary and secondary index by adding



Access Control for the Shuffle Index 139

prefix P and S, respectively, to their identifiers. The coloring represents the visi-
bility of users u1. Encoded values with grey background are those which remain
non intelligible to u1 as they are encoded with the mapping of other users (for
the secondary index) or their owner encoding is not disclosed to u1 (for the
primary index).

Since encoding does not preserve ordering, encoded values non intelligible to
a user will remain protected, as no inference can be drawn on them from their
presence or order relationships with respect to other encoded values which are
intelligible to her. For instance, consider the primary index in Fig. 5(b). User u1,
being authorized for B will know that ι(B) is the corresponding encoding. At the
same time, however, ι(Q), stored in the same node, remains non intelligible to
her. User u1 simply observes the presence of another encoded value but will be
able to infer neither its corresponding original value nor its order relationship
with respect to B.

4 Access Execution

We now illustrate how the two indexes described in the previous section are
jointly used for accessing a tuple of interest. To retrieve a tuple in R with value
v for I, a user ui would need to perform the following steps:

1. compute the user-based mapping ιi(v) = hash(v ,ki);
2. search ιi(v) in the secondary index S, retrieving the corresponding encoded

value ι(v);
3. search ι(v) in the primary index P, retrieving the corresponding target tuple.

As an example, consider the indexes in Fig. 5(a–b) and suppose that user u1

searches index value C. User u1 computes ι1(C) =hash(C,k1) and then searches
it in the secondary index in Fig. 5(a). The search returns block S205, from which
ι(C) is retrieved. Hence, u1 searches ι(C) in the primary index in Fig. 5(b). The
search returns block P202, from which u1 can retrieve resource Cresource.

Note that the steps above assume the searched value to be present in the
index. If the value is not present in the secondary index, its user-based mapping
does not appear in the block returned by step 2. In such a case, the process will
continue providing a random value for the search in step 3, so to provide to the
server the same observation as a successful search. Note also that the search for
a value that is present in the dataset but for which the searching user is not
authorized, present to the searching user the same observable as the search for a
missing value (hence not disclosing anything to the user about values she is not
authorized to access).

The steps above simply illustrate how to retrieve a target value. However,
both the primary and the secondary index are shuffle indexes and accesses should
not simply aim at the target value but should also be protected with the tech-
niques (cover, repeated searches, and shuffling) devoted to protect access confi-
dentiality. The application of these techniques on the two indexes is completely
independent, meaning that the choice of covers, repeated searches, and shuffling
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Secondary Index

(a)

Primary Index

(b)

Secondary Index

(c)

Primary Index

(d)

Fig. 5. Secondary and primary index before (a–b) and after (c–d) the access by u1 over
C. Secondary index: (i) cover: ι2(F), (ii) repeated access: [S001,S101,S202], (iii) shuf-
fling: S101→S102, S102→S103, S103→S101, S202→S205, S205→S209, S209→S202.
Primary index: (i) cover: ι(Q), (ii) repeated access: [P001,P102,P205], (iii) shuffling:
P101→P103, P102→P101, P103→P102, P202→P208, P205→P202, P208→P205. The
gray background denotes encoded values non intelligible to u1



Access Control for the Shuffle Index 141

can be completely independent in the two indexes. The only dependency among
the two indexes is the fact that - clearly - the target to be searched in the primary
index is the tuple retrieved by the search on the secondary index.

Covers, repeated searches, and shuffling on the primary and secondary index
work essentially in the same way as they work in the shuffle index in absence
of authorizations (Sect. 2). However, the nature of these indexes requires minor
adjustments in their application, as follows.

– Cover searches. For both the secondary and the primary indexes, cover
searches should be chosen from the set of encoded values, in contrast to the set
of original values. The reason for this is that every user has limited knowledge
on the set of original index values while she can have complete knowledge of
the encoded values in the indexes (i.e., of the complete co-domains of all the
encodings of all the users and the complete co-domain of the encoding of the
owner). Since the encoding is non-invertible, this knowledge does not leak any
information and allows the widest possible choice to the user.

– Repeated accesses. Repeated accesses for the primary and secondary indexes
should refer to blocks, instead of specific values. The reason for this is that
two subsequent accesses can be performed by two different users and therefore
considering repeated searches referred to values would leak to the second user
the target of the search of the previous user. Although such a leakage would be
only on encoded values, we avoid it simply by assuming repeated accesses to be
referred to blocks (and not to values) and to consider all accessed blocks, not
only the target. At every access we then store at the server the identifiers of the
blocks (target, covers, or repeated accesses) accessed during the last search.
The knowledge of such identifiers is sufficient for a user to repeat an access
to one of the paths visited by the search just before hers without revealing to
the user the target of the previous search (which might have been performed
by others).

– Shuffling . Shuffling works just like in the original proposal. We note that
when shuffling, a user may move also content which is not intelligible to her.
However, she will not be able to change the content for which she is not autho-
rized (since she would not know the encryption key and tampering would be
detected). Note that since all physical blocks stored at the server are encrypted
(with a key shared between all users and the data owner) and encryption of
the block as a whole is refreshed at every shuffle, the server cannot detect
whether the content of a block (or part of it) has changed or not. Hence, the
fact that a user can operate only on a portion of the block does not prevent
correct execution of the shuffling operation.

The pseudocode of the algorithm accessing and managing the primary and
the secondary index is reported in Appendix.

Figure 5(a–b) illustrates an example of access execution for search of value C by
user u1, assuming ι2(F) as cover and path [S001,S101,S202] as repeated access for
the secondary index, and ι(Q) as cover and path [P001,P102,P205] as a repeated
access for the primary index. Accessed nodes are, besides the root, those anno-
tated (as target, cover, or repeated) in the figure. Figure 5(c–d) illustrates the new
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structure of the indexes that would result assuming shuffling: for the secondary
index as S101→S102, S102→S103, S103→S101, S202→S205, S205→S209, and
S209→S202; for the primary index as P101→P103, P102→P101, P103→P102,
P202→P208, P205→P202, P208→P205.

5 Analysis

We discuss the protection guarantees (i.e., the correct enforcement of authoriza-
tions and the protection of access and pattern confidentiality) and the perfor-
mance of our approach.

Access control enforcement. To demonstrate that the primary and secondary
indexes described in Sect. 3 guarantee the correct enforcement of the access con-
trol policy, we need to prove that each user ui can access all and only the
resources and index values in R she is authorized to access. Formally, ∀ui ∈ U :
(i) ui can access resource r[Resource] iff ui ∈ acl(r); (ii) ui can see an index
value v iff ∃r ∈R s.t. r[I] = v and ui ∈acl(r).

Consider a user ui s.t. acl(r)= {ui1 , . . . , uin} and ui ∈{ui1 , . . . , uin}. We need
to show that ui can retrieve the plaintext content of tuple r. A user ui can retrieve
and decrypt r iff: (i) ui can compute ιi(r[I]); (ii) ∃!s ∈ S s.t. s[I] = ιi(r[I]) and
s[Resource] = E(ki, ι(r[I])); (iii) ∃!p ∈ P s.t. p[I] = ι(r[I]) and p[Resource] =
〈�i1,...,in , E(ki1,...,in , r[Resource])〉; and (iv) ui can visit S and P.

User ui can compute ιi(r[I]) since it is defined as hash(r[I], ki) and ui knows
key ki, by Definition 2. Tuple s exists and belongs to S by Definition 4. Tuple
p exists and belongs to P by Definition 3. User ui can decrypt the content of
s[Resource] as she knows ki ∈ Ki, and the content of p[Resource] as she knows
ki1,...,in ∈Ki because ui ∈acl(r), by Definition 2. Any authorized user, including
ui, can visit both S and P since she knows both the encryption key k used by
the data owner to encrypt nodes content to enable shuffling, and the co-domain
of the encoding functions.

Consider now a user ui s.t. acl(r)= {ui1 , . . . , uin} and ui 	∈ {ui1 , . . . , uin}.
We need to show that ui can access neither the plaintext content of r[Resources],
nor index value r[I]. It is immediate to see that ui cannot access the plaintext
content of the tuple since it is encrypted with a key kX (Definition 3) that ui does
not know. In fact, by Definition 3, since ui does not belong to acl(r), she does
not know the corresponding encryption key. User ui cannot compute or guess
index value r[I] because r[I] is never represented in internal or leaf nodes of the
primary and secondary indexes; it is instead represented via its encoded value
(i.e., ι(r[I]) in the primary index and ιj(r[I]), ∀uj ∈ acl(r), in the secondary
index). Since the encoding function is, by Definition 1, non-invertible, ui cannot
exploit her knowledge of encoded values to retrieve the corresponding original
index values. Also, the traversal of the primary (and secondary) index does not
reveal ui anything about the original index values. In fact, by Definition 1, the
encoding function does not preserve the order relationship among values. Hence,
similar encoded values (e.g., represented in the same leaf) may not correspond
to similar original values (and vice versa).
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Access confidentiality. We first consider the storing server as our observer and
analyze the protection offered by our proposal for the novel aspects introduced
with respect to the shuffle index proposal in [7]. Like in the original proposal, we
focus the analysis on the leaves of the shuffle index. In fact, nodes at a higher
level are subject to a greater number of accesses, due to the multiple paths that
pass through them, and are then involved in a larger number of shuffling oper-
ations, which increase their protection. A search operation on the primary and
secondary index operates as in the original proposal. Hence, it enjoys the pro-
tection guarantees given by the combined adoption of covers, repeated searches,
and shuffling. In the considered scenario, however, we operate with two indexes
and each search for a value entails an access to the secondary index followed by
an access to the primary index. The targets of the two accesses are related as
they are the encoding of the same original index value. However, both indexes
protect the target of accesses (as well as patterns thereof) and the covers and
repeated searches adopted for the two indexes are different. This practice pre-
vents the server from identifying any correspondence between the values in the
leaves of the two indexes.

We now consider a user as our observer. A user can observe the blocks
accessed by another user in a previous access (for repeated accesses), but she
cannot identify the target of the access. In fact, this set of blocks includes the tar-
get, covers, and repeated accesses. Furthermore, each leaf stores multiple encoded
values, which correspond to index values that are not close to each other since
the encoding function is not order-preserving. A user can also possibly trace
shuffling operations, but this would require her to download the whole index at
each access.

Performance evaluation. The performance of the system is assessed as the
average response time experienced by an authorized client when submitting an
access request. System configurations providing a primary index and a secondary
index with fixed heights and different fan-outs exhibit similar average response
times for the client request. Moreover, varying the number of authorized users
and the size of the access control lists do not significantly influence the perfor-
mance of the system as long as the fan-out of the secondary index is chosen to
be reasonably large. Our experiments show that the latency of the network is
the factor with the greatest impact in a large-bandwidth LAN/WAN scenario.
To assess the performance of our algorithm, we configured the primary index
and the secondary index as 3-layer unchained B+-trees with fan-out 512, both
of them built on a numerical candidate key of fixed-length to allow the indexing
of more than 200K different values. The size of the blocks (nodes) of each index
was 8KiB. The hardware used in the experiments included a client machine
with an Intel Core i5-2520M CPU at 2.5GHz, L33MiB, 8GiB RAM DDR3 1066,
running an Arch Linux OS. The server machine run an Intel Core i7-920 CPU
at 2.6GHz, L38MiB, 12GiB, RAM DDR3 1066, 120GiB SSD disk running an
Ubuntu OS. The network environment was configured through the NetEm suite
for Linux operating systems to emulate a typical WAN interactive traffic with
a round-trip time modeled as a normal distribution with mean of 100ms and



144 S. De Capitani di Vimercati et al.

standard deviation of 2.5ms. The performance figures obtained for accessing the
secondary and the primary index exhibit an average value equal to 750ms, which
compares favorably with the response time of 630ms experienced by the client
when accessing two plain encrypted indexes (i.e., without shuffling).

6 Related Work

Classical works on data outsourcing protect data (content) confidentiality
by wrapping a layer of encryption around them, and support query evalua-
tion through indexes (i.e., metadata complementing the outsourced encrypted
dataset) or through specific cryptographic techniques that support keyword-
based searches (e.g., [10,18]). Solutions for protecting access and pattern con-
fidentiality are based on Private Information Retrieval (PIR) techniques or
on dynamically allocated data structures, which change the physical location
where data are stored at each access (e.g., [1,5–8,13,14,16,17,19]). PIR solu-
tions are computationally expensive and do not protect content confidential-
ity (e.g., [1,14]). The Oblivious RAM (ORAM) dynamic structure, which has
been extensively studied, guarantees content, access, and pattern confidentiality
(e.g., [19]). While preliminary proposals suffer from high computational and com-
munication overheads, recent attempt to make ORAM more practical in real-
world scenarios (e.g., ObliviStore [16] and Path ORAM [17]). Besides ORAM
structure, also tree-based dynamically allocated structures have been studied
that provide a good trade-off between privacy and performance (e.g., [5–8,13]).
In particular, the shuffle index has first been proposed in [5] and then extended
to support concurrent accesses by different users [6], to operate in a distributed
scenario characterized by the presence of multiple (three) storage servers [8],
and to support insertion and removal of tuples in the outsourced relation [7]. All
these solutions, however, are based on the implicit assumption that a user can
access either all the tuples in the leaves of the shuffle index or none of them.

A related line of work addresses the problem of enforcing access control
restrictions over outsourced data. These solutions are based on the idea that the
data themselves should enforce the access control policy. Current approaches fol-
low two different strategies: selective encryption (e.g., [3]), and attribute-based
encryption (e.g., [9]). Our work extends selective encryption proposals since we
combine the shuffle index with selective encryption to enable efficient access to
the data through a tree-based index, while not revealing to users index values
they are not authorized to access [4].

7 Conclusions

We have presented an approach to enrich the shuffle index with access control.
The enriched shuffle index provides guarantees of access confidentiality while
enabling data owners to regulate access to their data selectively granting visibil-
ity to users. Also, like the original proposal, it has limited performance overhead.
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A Access Execution Algorithm

Figure 6 illustrates the algorithm, executed at the client side, searching for a
value in the primary and secondary index. The algorithm operates as discussed
in Sect. 4 and relies on function Search to access the primary and secondary
index structures.

Function Search receives as input the shuffle index T on which it should
operate, the index value target value target of the access, and the number
num cover of covers to be adopted. It returns the tuple r with index value
target value (if any). The function randomly chooses num cover+1 values in
the domain of the (primary or secondary) index and it downloads from the server
the identifiers of the blocks visited by the previous search (lines 1–3). It then
visits the shuffle index level by level, starting from the root. At each level level,
the function determines the identifiers of the nodes along the path to the target,
covers, and repeated access (lines 5–8). If the block along the path to the target
has been accessed by the previous search, it is repeated (an additional cover is
used). The function downloads from the server and decrypts the blocks of inter-
est (line 13) and shuffles their content (line 16). To guarantee the correctness
of the search and of the index structure, the function updates the references to
children of the nodes accessed at level level-1 (which are the parents of the nodes
shuffled at level level), variables target, repeated, and cover[1, . . . , num cover]
(lines 17–21). The nodes at level level-1 are then encrypted and written at the
server. The identifiers of the nodes accessed at level level are then used to update
repeated search[level] (line 23). Once the leaf node where target value is pos-
sibly stored has been reached, the function extracts and returns the tuple with
index value equal to target value (lines 25–27).

Given the request by user ui to search for value target value, the algorithm
computes the user-based mapping ιi(target value) and invokes function Search
to search for such a value in the secondary index (lines 1–4). It decrypts the
tuple retrieved by function Search, obtaining the encoded value ι(target value)
for target value (line 5). If such a value is not null (meaning that there is a
tuple that ui can access with index value equal to target value), the algorithm
invokes function Search over the primary index, looking for ι(target value). It
then computes/retrieves the encryption key necessary to decrypt the retrieved
resource and decrypts it. It returns the plaintext resource to the user (lines 7–11).
If the result of function Search over the secondary index is null, the algorithm
runs a fake search over the primary index (not to disclose any information to
other users and to the server about ui’s privileges) and returns an empty resource
to the user (lines 12–14).
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/* P, S : primary and secondary index */
/* num cover : number of cover searches */
/* ui,ki : user performing the access and her key */
/* hash : non-invertible cryptographic hash function */

INPUT target value : value to be searched in the shuffle index
OUTPUT resource with index value target value

MAIN
1: /* Phase 1: compute the user-based mapping ιi(target value) */
2: target idx := hash(target value, ki)
3: /* Phase 2: search ιi(target value) in the secondary index */
4: s := Search(S,target idx ,num cover)
5: target idx := decrypt s [Resource] with ki /* encoded value ι(target value) */
6: /* Phase 3: search ι(target value) in the primary index */
7: if target idx = null then
8: p := Search(P,target idx ,num cover)
9: k := retrieve key k with label , where p [Resource]= ,content

10: result := decrypt content with k
11: return(result)
12: else target idx := randomly choose a value for ι(target value)
13: Search(P,target idx ,num cover)
14: return(null)

SEARCH(T ,target value,num cover)
1:repeated search[0, . . . , T .height] := download and decrypt the blocks of accesses for T
2:randomly choose cover value[1. . .num cover+1] for target value in the co-domain of hash
3:repeated := repeated search[0] /* identifier of the root block */
4: for level:=1. . .T .height do
5: /* identify the blocks to read from the server */
6: target := identifier of the node at level level along the path to target value
7: cover [i] := id of the node at level level along the path to cover value[i], i=1. . .num cover+1
8: repeated := block identifier in repeated search[level] that is a descendant of repeated
9: if target is the identifier of a node in repeated search[level] then

10: repeated := target, num cover := num cover−1
11: ToGet := {target,repeated} ∪ cover [1. . .num cover ] /* ids of the blocks to be downloaded */
12: /* read blocks */
13: Nodes := download and decrypt the blocks with identifier in ToGet
14: /* shuffle nodes */
15: let π be a permutation of the identifiers of nodes in Nodes
16: shuffle nodes in Nodes according to π
17: update pointers to children of the parents of nodes in Nodes according to π
18: encrypt and write at the server nodes accessed at iteration level − 1
19: target := π(target)
20: cover [i] := π(cover [i]), i=1. . .num cover+1
21: repeated := π(repeated)
22: /* update the repeated search at level level */
23: repeated search[level] := ToGet
24: encrypt and write at the server nodes accessed at iteration T .height and repeated search
25: let n∈Nodes the node with n.id=target
26: let r∈n be the tuple such that r [I ]=target value
27: return(r )

Fig. 6. Shuffle index access algorithm

References

1. Cachin, C., Micali, S., Stadler, M.A.: Computationally private information retrieval
with polylogarithmic communication. In: Stern, J. (ed.) EUROCRYPT 1999.
LNCS, vol. 1592, pp. 402–414. Springer, Heidelberg (1999)

2. De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Paraboschi, S., Samarati, P.:
Over-encryption: management of access control evolution on outsourced data. In:
Proceedings of VLDB, Vienna, Austria, September 2007



Access Control for the Shuffle Index 147

3. De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Paraboschi, S., Samarati, P.:
Encryption policies for regulating access to outsourced data. ACM TODS 35(2),
12:1–12:46 (2010)

4. De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Paraboschi, S., Samarati,
P.: Private data indexes for selective access to outsourced data. In: Proceedings of
WPES 2011, Chicago, IL, October 2011

5. De Capitani di Vimercati, S., Foresti, S., Paraboschi, S., Pelosi, G., Samarati,
P.: Efficient and private access to outsourced data. In: Proceedings of ICDCS,
Minneapolis, MN, June 2011

6. De Capitani di Vimercati, S., Foresti, S., Paraboschi, S., Pelosi, G., Samarati, P.:
Supporting concurrency and multiple indexes in private access to outsourced data.
JCS 21(3), 425–461 (2013)

7. De Capitani di Vimercati, S., Foresti, S., Paraboschi, S., Pelosi, G., Samarati, P.:
Shuffle index: efficient and private access to outsourced data. ACM TOS 11(4),
19:1–19:55 (2015)

8. De Capitani di Vimercati, S., Foresti, S., Paraboschi, S., Pelosi, G., Samarati, P.:
Three-server swapping for access confidentiality. IEEE TCC (2016). pre-print

9. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: Proceedings of CCS, Alexandria, VA,
October–November 2006
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Abstract. Data outsourcing allows data owners to keep their data in
public clouds, which do not ensure the privacy of data and computations.
One fundamental and useful framework for processing data in a distrib-
uted fashion is MapReduce. In this paper, we investigate and present
techniques for executing MapReduce computations in the public cloud
while preserving privacy. Specifically, we propose a technique to out-
source a database using Shamir secret-sharing scheme to public clouds,
and then, provide privacy-preserving algorithms for performing search
and fetch, equijoin, and range queries using MapReduce. Consequently,
in our proposed algorithms, the public cloud cannot learn the database
or computations. All the proposed algorithms eliminate the role of the
database owner, which only creates and distributes secret-shares once,
and minimize the role of the user, which only needs to perform a sim-
ple operation for result reconstructing. We evaluate the efficiency by
(i) the number of communication rounds (between a user and a cloud),
(ii) the total amount of bit flow (between a user and a cloud), and
(iii) the computational load at the user-side and the cloud-side.

1 Introduction

Data and computation outsourcing move databases and computations from a pri-
vate cloud to a public cloud, which is not under the control of a single user. Thus,
the outsourcing results in less burden on a private cloud in terms of the main-
tenance of databases, infrastructures, and executions of queries. Unfortunately,
the ease in storing data and executing computations in the public clouds implies
a risk of violating security and privacy of the databases and the computations.
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MapReduce [4] provides efficient and fault tolerant parallel processing of
large-scale data without dealing with security and privacy of data and com-
putations. The main obstacle for providing privacy-preserving framework for
MapReduce in the adversarial (public) clouds is computational and storage effi-
ciency. An adversarial cloud may breach the privacy of data and computations.
In this paper, we present techniques for executing MapReduce computations in
public cloud while preserving privacy.

Motivating examples. We present an example of equijoin to show the need
for security and privacy of data and query execution using MapReduce in the
public cloud.

Secure and privacy-preserving equijoin of two relations X(A,B) and
Y (B,C). Problem statement : The join of relations X(A,B) and Y (B,C), where
the joining attribute is B, provides output tuples 〈a, b, c〉, where (a, b) is in X
and (b, c) is in Y . In the equijoin of X(A,B) and Y (B,C), all tuples of both the
relations with an identical value of the attribute B should appear together for
providing the final output tuples.

Consider that the relations X and Y belong to two organizations, e.g., a com-
pany and a hospital, while a third user wants to perform the equijoin. However,
both the two organizations want to provide results while maintaining the pri-
vacy of their databases, i.e., without revealing the whole database to the other
organization or the user. Hence, it is required to perform the equijoin in a secure
and privacy-preserving manner.

Our contributions. We are interested in making a secure and privacy-preserving
computation execution and storage-efficient technique for MapReduce computa-
tions in the public clouds. Hence, our focus is on information-theoretically secure
data and computation outsourcing technique and query execution using MapRe-
duce. Specifically, we use Shamir secret-sharing (SSS) [14] for making secret-
shares of each tuple of a relation and send them to the clouds. A user can execute
her queries using accumulating-automata (AA) [5] on these secret-shares without
revealing queries/data to the cloud. We can perform count (Sect. 4.1), search and
fetch operations (Sect. 4.2) in a privacy-preserving manner. Due to the space lim-
itation, we omit details of privacy-preserving range selection and equijoin, which
may be found in [7].

Related work. PRISM [2], PIRMAP [12], EPiC [1], MrCrypt [16], and
Crypsis [15] provide privacy-preserving MapReduce execution in the cloud on
encrypted data. However, all these protocols increase computation time due to
dependency on encryption and decryption of data.

The authors [8] provide a privacy-preserving join operation using secret-
sharing. However, the approach [8] requires that two different data owners share
some information for constructing an identical share for identical values in their
relations. The authors [9] provide a technique for data outsourcing using a varia-
tion of SSS. However, the approach [9] suffers from two major disadvantages, as
follows: (i) in order to produce an answer to a query, the data owner has to work
on all the shares, and hence, the data owner performs a lot of work instead of the
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cloud; and (ii) a third party cannot directly issue any query on secret-shares,
and it has to contact with the data owner. In [9], the authors provide a way for
constructing polynomials that can maintain the orders of the secrets. However,
this kind of polynomial is based on an integer ring (no modular reduction) rather
than a finite field; thus, it has potential security risk.

There are some other works [3,10,11] that provide searching operations on
secret-shares. In [11], a data owner builds a Merkle hash tree [13] according to
a query. In [10], a user knows the addresses of the desired tuples, so they can
fetch all those tuples obliviously from the clouds without performing a search
operation in the cloud.

Table 1. Comparison of different algorithms with our algorithms.

Algorithms Communication Computational cost # rounds Matching Based

cost on

User Cloud

Count operation

EPiC [1] O(1) O(1) O(n) 1 Online E

Our solution 4.1 O(1) O(1) nw 1 Online SS

Search and single tuple fetch operation

Chor et al. [3] O(nmw) O(1) O(nmw) log2n Online SS

PRISM [2] O((nm)
1
2 w) O((nm)

1
2 w) O(nmw) q E

Our solution 4.2 O(mw) O(mw) O(mw) 1 Online SS

Search and multi-tuples fetch operation

rPIR [10] O(nm) O(1) O(nmw) 1 No SS

PIRMAP [12] O(nmw) O(mw) O(nmw) 1 No E

Goldberg [11] O(n + m) O(m) O(nm) 2 Offline SS

Emekci et al. [9] O(�m) O(�m) O(n) 2 Offline vSS

Our solution:

knowing

addresses 4.2

O((log�n +

log2�)�
)

O((log�n +

log2�)�
)

O((log�n +

log2�)�nw
)

�log�n� +

�log2�� + 1

Online SS

Our solution:

fetching

tuples 4.2

O((n + m)�w) O((n + �m)w) O(�nmw) 1 Online SS

Equijoin

Our solution

(see in [7])

2nwk+2k�2mw 2nw +2k�2mw 2�2kmw 2k Online SS

Notations: Online: perform string matching in the cloud. Offline: perform string matching at the user-

side. E: encryption-decryption based. SS: Secret-sharing based. vSS: a variant of SS. n: # tuples, m: #

attributes, �: # occurrences of a pattern (� ≤ n), w: bit-length of a pattern.

To the best of our knowledge, there is no algorithm that (i) eliminates
the need of a database owner except one time creation and distribution of
secret-shares, (ii) minimizes the overhead at the user-side, and (ii) provides
information-theoretically secure MapReduce computations in the cloud. In this
paper, we build a technique for data and computation outsourcing based on SSS
and AA [5]. In addition, our algorithms can perform a string matching oper-
ation on secret-shares in the cloud, without downloading the whole database of
the form of secret-shares. However, most of the existing secret-sharing based
privacy-preserving algorithms are unable to do string matching operations in
the cloud; see Table 1.
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The proposed technique overcomes all the disadvantages of the existing
secret-sharing based data outsourcing techniques [3,8–11]. Thus, there is no
need for (i) sharing information among different data owners, (ii) working at the
database owners, except creation and distribution of secret-shares, (iii) having
an identical share for multiple occurrences of a value, and (iv) a third party can
directly execute her queries in the clouds without revealing her queries to the
clouds.

2 System and Adversarial Settings

We consider, for the first time, data and computation outsourcing of the form
of secret-shares to c non-communicating clouds that they do not exchange data
with each other, only exchange data with the user or the database owner.

The system architecture. The architecture is simple but powerful and
assumes the following:
Step 1. A data owner outsources her databases of the form of secret-shares to
c (non-communicating) clouds only once; see Step 1 in Fig. 1. We use c clouds
to provide privacy-preserving computations. Note that a single cloud cannot
provide privacy-preserving computations using secret-sharing.
Step 2. A preliminary step is carried out at the user-side who wants to perform
a MapReduce computation. The user sends a query of the form of secret-shares
to all c clouds to find the desired result of the form of secret-shares; see Step 2
in Fig. 1. The query must be sent to at least c′ < c number of clouds, where c′

is the threshold of SSS.

Fig. 1. The system architecture.

Step 3. The clouds
deploy a master
process that exe-
cutes the compu-
tation by assigning
the map tasks and
the reduce tasks;
see Step 3 in Fig. 1.
The user interacts
only with the mas-
ter process in the
cloud, and the mas-
ter process provides
the addresses of the
outputs to the user.
It must be noted
that the communi-
cation between the
user and the clouds
is presumed to be
the same as the communication between the user and the master process.
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Step 4. The user fetches the outputs from the clouds and performs interpolation
(with the help of reducers) for obtaining the secret-values; see Step 4 in Fig. 1.

Adversarial Settings. We assume, on one hand, that an adversary cannot
launch any attack against the data owner. Also, the adversary cannot access
the secret-sharing algorithm and machines at the database owner side. On the
other hand, an adversary can access public clouds and data stored therein. A
user who wants to perform a computation on the data stored in public clouds
may also behave as an adversary. Moreover, the cloud itself can behave as an
adversary, since it has complete privileges to all the machines and storage. Both
the user and the cloud can launch any attack for compromising the privacy
of data or computations. We consider an honest-but-curious adversary, which
performs assigned computations correctly, but tries to breach the privacy of
data or MapReduce computations. However, such an adversary does not modify
or delete information from the data. We assume that an adversary can know
less than c′ < c clouds locations that store databases and execute queries. In
addition, the adversary cannot eavesdrop all the c′ or c channels (between the
database owner and the clouds, and between the user and the clouds). Hence,
we do not impose private communication channels. Under such an adversarial
setting, we provide a guaranteed solution so that an adversary cannot learn the
data or computations. It is important to mention that an adversary can break
our protocols by colluding c′ clouds, which is the threshold for which the secret
sharing scheme is designed for.

Parameters for analysis. We analyze our privacy-preserving algorithms on
the following parameters: (i) communication cost : is the sum of all the bits that
are required to transfer between a user and a cloud; (ii) computational cost : is
the sum of all the bits over which a cloud or a user works; and (iii) number of
rounds: shows how many times a user communicates with a cloud for obtaining
the results.

3 Creation and Distribution of Secret-Shares of a
Relation

Assume that a database only contains English words. Since the English alphabet
consists of 26 letters, each letter can be represented as a unary vector with 26 bits.
Hence, the letter ‘A’ is represented as (11, 02, 03, . . . , 026), where the subscript
represents the position of the letter; since ‘A’ is the first letter, the first value in
the vector is one and others are zero. Similarly, ‘B’ is (01, 12, 03, . . . , 026), and so
on.

The reason of using unary representation here is that it is very easy for
verifying two identical letters. The expression S =

∑r
i=0 ui × vi, compares two

letters, where (u0, u1, · · · ur) and (v0, v1, · · · , vr) are two unary representations. It
is clear that whenever any two letters are identical, S is equal to one; otherwise, S
is equal to zero. Binary representation can also be accepted, but the comparison
function is different from that used in the unary representation [6].
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A secure way for creating secret-shares. When outsourcing a vector to the
clouds, we use SSS and make secret-shares of every bit by selecting different
polynomials of an identical degree. For example, we create secret-shares of the
vector of ‘A’ ((11, 02, 03, . . . , 026)) by using 26 polynomials of an identical degree,
since the length of the vector is 26. Following that, we can create secret-shares
for all the other letters and distribute them to different clouds.

Since we use SSS, a cloud cannot infer a secret. Moreover, it is important to
emphasize that we use different polynomials for creating secret shares of each
letter; thereby multiple occurrences of a word in a database have different secret-
shares. Therefore, a cloud is also unable to know the total number of occurrences
of a word in the whole database.

Secret-shares of numeral values. We follow the similar approach for creating
secret-shares of numeral values as used for alphabets. In particular, we create a
unary vector of length 10 and put all the values 0 except only 1 according to
the position of a number. For example, ‘1’ becomes (11, 02, . . . , 010). After that,
use SSS to make secret-shares of every bit in each vector by selecting different
polynomials of an identical degree for each number, and send them to multiple
clouds.

4 Privacy-Preserving Query Processing on Secret-Shares
Using MapReduce in the Clouds

4.1 Count Query

We present a privacy-preserving algorithm for counting the number of occur-
rences of a pattern, p, in the cloud; throughout this section, we denote a pattern
by p. This algorithm is divided into two phases, as: Phase 1: Privacy-preserving
counting in the clouds and Phase 2: Result reconstruction at the user-side.

In short, we apply a string matching algorithm, which is done using AA that
compares each value of a relation with p. If a value and p match, it will result
in 1; otherwise, we have 0. We apply the same algorithm on each value and
accumulate all one that provide the number of occurrences of p. Note that all
the values of a relation, a pattern, and the result, i.e., 0 or 1, are of the form of
secret-share.

Working at the user-side. A user creates unary vectors for each letter of p. In
order to hide the vectors of p, the user creates secret-shares of each vector of p,
as suggested in Sect. 3, sends them to c clouds. In addition, the user sends length
(x) of p and the attribute of the relation (m′) where to count p, to c clouds.

Working in the cloud. Now, a cloud has two things, as: (i) a relation of the
form secret-shares, and (ii) a searching pattern of the form of secret-shares with
its length, x. In order to count the number of occurrences of p, the mapper in
the cloud performs x+1 steps, see Table 2, for comparing the pattern with each
value of the specified attribute of the relation.
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Table 2. The steps executed by a mapper for
a pattern of length x.

Step 1: N1 = 1, N0
x = 0

Step 2: N
(i)
2 = N1 × v1

Step 3: N
(i)
3 = N

(i)
2 × v2

.

.

.

Step x + 1: N(i)
x = N(i−1)

x + N
(i)
x−1 × vx−1

The notation N
(i)
j shows that the node j is

executing a step in iteration i. The final value
of the node Nx+1, which is sent to the user, is
the number of occurrences of the pattern

At this time, the mapper is
unable to know the value of the
node Nx+1 in each iteration and
sends the final value of Nx+1 to
the user of form of a 〈key , value〉
pair, where a key is an identity
of an input split over which the
operation has performed, and the
corresponding value is the final
value of the node Nx+1 of the
form of secret-shares. The user col-
lects 〈key , value〉 pairs from all the
clouds or a sufficient number of
clouds such that the secret can be generated using those shares.

Result reconstruction at the user-side. We need to reconstruct the final
value of the node Nx+1. The user has 〈key , value〉 pairs from all the clouds.
All the values corresponding to a key are assigned to a reducer that performs
Lagrange interpolation and provides the final value of the node Nx+1. If there
are more than one reducer, then after the interpolation the sum of the final
values shows the total occurrences of p.

Aside. If a user searches John in a database containing names like ‘John’ and
‘Johnson,’ then our algorithm will show two occurrences of John. However, it is a
problem associated with string matching. In order to search a pattern precisely,
we may use the terminating symbol for indicating the end of the pattern.

4.2 Search and Fetch Queries

In this section, we provide a privacy-preserving algorithm for fetching all the
tuples containing p. The proposed algorithms first count the number of tuples
containing p, and then, fetch all the tuples after obtaining their addresses. Specif-
ically, we provide 2-phased algorithms, where: Phase 1: Finding addresses of
tuples containing p, and Phase 2: Fetching all the tuples containing p.

Unary occurrence of a pattern. When only one tuple contains p, there is
no need to obtain the address of the tuple, and hence, we fetch the whole tuple
in a privacy-preserving manner. Here, we explain how to fetch a single tuple
containing p.

Fetching the tuple. The user sends secret-shares of p. The cloud executes a map
function on a specific attribute, and the map function matches p with ith value
of the attribute. Consequently, the map function results in either 0 or 1 of the
form of secret-shares, if p matches the ith value of the attribute, then the result
is 1. After that the map function multiplies the result (0 or 1) to all the m values
of the ith tuple. In this manner, the map function creates a relation of n tuples
and m attributes. When the map function finishes over all the n tuples, it adds
and sends all the secret-shares of each attribute, as: S1||S2|| . . . ||Sm to the user,
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where Si is the sum of the secret-shares of ith attribute. The user on receiving
shares from all the clouds executes a reduce function that performs interpolation
and provides the desired tuple containing p.

Aside. When we multiply the output of the string matching operation, which
is of the form of secret-shares, to all the values in a tuple, it results in all the
value of the tuple either 0 or 1 of the form of secret-shares. Thus, the sum of
all the secret-shares of an attribute results in only the value of the attribute
corresponding to the tuple containing p. By performing identical operations on
each tuple and finally adding all the secret-shares of each attribute, the cloud is
unable to know which tuple is fetched.

Multiple occurrences of a pattern. When multiple tuples contain p, we can-
not fetch all those tuples obliviously without obtaining their addresses. There-
fore, we first need to perform a pattern search algorithm to obtain the addresses
of all the tuples containing p, and then, fetch the tuples in a privacy-preserving
manner. Throughout this section, we consider that � tuples contain p. This algo-
rithms has 2-phases, as follow: Phase 1: Finding the addresses of the desired �
tuples, and Phase 2: Fetching all the � tuples.

Tree-based algorithm. We propose a search-tree-based keyword search algorithm
that consists of two phases, as: finding the address of the desired � tuples in
multiple rounds, and then, fetching all the � tuples in one more round. We can
also obtain the addresses (or line numbers) in a privacy-preserving manner, if
there is only a tuple contains p. Thus, for the case of finding addresses of �
tuples containing p, we divide the whole relation into certain blocks such that
each block belongs to one of the following cases:

1. A block contains no occurrence of p, and hence, no fetch operation is needed.
2. A block contains one/multiple tuples but only a single tuple contains p.
3. A block contains h tuples, and all the h tuples contain p.
4. A block contains multiple tuples but fewer tuples contain p.

Finding addresses. We follow an idea of partitioning the database and counting
the occurrences of p in the partitions, until each partition satisfies one of the
above mentioned cases. Specifically, we initiate a sequence of Query &Answer
(Q&A) rounds. In the first round of Q&A, we count occurrences of p in the
whole database (or in an assigned input split to a mapper) and then partition
the database into � blocks, since we assumed that � tuples contain p. In the
second round, we again count occurrences of p in each block and focus on the
blocks satisfying Case 4. There is no need to consider the blocks satisfying Case
2 or 3, since we can apply the algorithm given for unary occurrence of a pattern,
in both the cases. However, if the multiple tuples of a block in the second round
contain p, i.e., Case 4, we again partition such a block until it satisfies either
Case 1, 2 or 3. After that, we can obtain the addresses of the related tuples using
the method similar to the algorithm given for unary occurrence of a pattern.

Fetching tuples. We use the approach described in the naive algorithm for fetch-
ing multiple tuples after obtaining the addresses of the tuples.
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5 Conclusion

MapReduce provides efficient large-scale data processing without dealing with
the privacy and security of data and computations. In order to avoid overheads
for maintaining and executing queries at the database owner side, a database is
outsourced to untrusted public clouds that can reveal the database and computa-
tions. We proposed a new information-theoretically secure data and computation
outsourcing technique. By the proposed techniques, users can execute their com-
putations in the public cloud without any need of the database owner, and the
cloud cannot learn the database or the computations. We provided MapReduce
based privacy-preserving algorithms to execute count, search, and fetch quires
in the public clouds. Due to the space limitation, privacy-preserving range queries
and equijoin are presented in [7]. As compared to the existing algorithms, our
algorithms provide perfect privacy protection without introducing computation
and communication overhead.
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Abstract. Digital data theft is difficult to detect and typically it also
takes a long time to discover that data has been stolen. This paper intro-
duces a data-driven approach based on Markov chains to create believ-
able decoy project folders which can assist in detecting potentially ongoing
attacks. This can be done by deploying these intrinsically valueless fold-
ers between real project folders and by monitoring interactions with them.
We present our approach and results from a user study demonstrating the
believability of the generated decoy folders.

Keywords: Data theft detection · Data theft · Intrusion detection ·
Decoy · Honey pot · Trap-based defense · Deception

1 Introduction

Digital data theft is becoming a huge problem in our ever more digitalized society.
The total number of data breach incidents as well as the damage caused are rising
an alarming rate. One strategy to detect ongoing digital attacks is baiting data
thieves with digital decoys. These decoys are valueless, therefore any interaction
with them is suspicious and will alert the responsible security offer.

One type of decoys is decoy documents. A decoy document is a file which
contains seemingly sensitive information. These documents are usually stored
with other sensitive documents and closely monitored. Interactions with them are
reported and stored. However, while decoy documents are useful tools to obtain
intelligence about an ongoing attack, most of a company’s intellectual property
comprises multiple files and folders, grouped together in a project folder. Yet,
deceptive approaches as detection strategy are hardly used in this setting, since
manually creating believable project decoys is a cumbersome, labor intensive task.

In this work we present a data-driven approach for dynamically creating
new project folders from a set of existing folders based on multiple Markov
models using maximum-likelihood parameter estimation. After the decoy model
is learned, it can be used to sample believable project folders which resemble

c© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing Switzerland 2016. All Rights Reserved
S. Ranise and V. Swarup (Eds.): DBSec 2016, LNCS 9766, pp. 161–169, 2016.
DOI: 10.1007/978-3-319-41483-6 12



162 S. Thaler et al.

the original folders and can be used as deceptive bait. This deceptive bait can
be placed between “real” projects. Assuming the decoys are properly monitored,
they can aid in the detection of malicious activity around these real project
files, since any interaction with a decoy is per definition suspicious. We have
implemented a prototype and conducted a user study to evaluate whether the
generated project decoys are perceived as being realistic.

We begin this paper with a brief review on related approaches in Sect. 2 to
highlight gaps and motivate our approach. In Sect. 3 we describe our approach.
We start by giving a high level intuition of our approach which is followed by a
formal definition of our decoy model. In Sect. 4, we provide empirical evidence
for the believability of the generated decoys. In Sect. 5 we discuss the results and
limitations of our work. We conclude this paper by highlighting possible future
improvements.

2 Related Work

Deception has been an element of warfare since a long time. In the context of
IT security, Clifford Stoll reported one of the first uses of deception [9] to catch
a hacker. Lance Spitzner coined the term honeypot and honeytoken [8], which
are descriptive synonyms for computing resources that are created to deceive an
attacker. Bringer et al.’s survey provides an overview over recent advances in
the field [3].

In this paper we introduce a data-driven approach to create believable project
folders that can be deployed to detect data theft attempts. Previous approaches
focused on creating and placing single decoy documents([2,10,11,13]) or file
systems [6]. Conceptually we also create decoys to detect data theft. However,
instead of creating single documents we focus on creating project folders with a
believable structure, file names and properties.

3 Decoy Project Folder Generation

On a high level our approach can be divided into two phases, a learning phase
and a sampling phase. Both phases are subdivided into two steps each.

The first step of the learning phase is to normalize the training data. In
this step we replace properties of the source files and folders with placeholders.
Examples of such properties are occurrences of the project name or access rights.
We use this normalized training data to learn Markov chains representing the
folders and property distributions, which is the second step of the learning phase.
The decoy model is defined in Sect. 3.2.

In the sampling phase we use the previously learned model to generate decoy
project folders. The first step of this phase is to generate the decoy directory
structure. The second step is to instantiate the decoy project folder by assign-
ing attributes to the nodes of the directory structure and replacing property
placeholders with instantiation values.
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3.1 Preliminaries and Assumptions

We assume the following concepts used in the paper are known: we will use first-
order, finite-state, discrete-time, Markov chains (simply called Markov chains
below) to model the co-occurrence of files and folders within one directory. We
use the maximizing likelihood estimator [5] to learn the Markov chain parameters
from observed sequences of files and folders.

In order to maximize the information of our learned decoy model, we will use
a heuristic based on the mutual information [7] of files occurring together.

We will use a (finite) forest [4], i.e. a set of trees, to model our training file
systems.

Learning requires multiple samples. To be able to effectively learn the content
of folders we assume that two folders with the same name have similar contents.

Assumption 1. If two folders within a context have the same name, they have
similar contents.

3.2 Definition of the Decoy Model

In this section we formally define our decoy model in a bottom-up manner.
To build the model we will use a training file system that contains a number

of projects which structure objects such as files and directories in the form of a
tree and assigns properties to these objects.

Definition 1. We assume a fixed set of objects O, a set of attributes A and a
(training) file system TT over these objects is given. Here an attribute a ∈ A is
a function from objects to a domain Doma and file system TT is a forest over
objects.

Intuitively, Definition 1 states that we use a set of project folders as input
for our decoy model. These project folders are organized within a directory tree,
which is common in Windows- and Unix-based operating systems. An object
represents a file or a folder within a project directory, and each file or folder
has certain attributes such as a name, permissions or creation- and modification
dates.

Some attributes are dependent on the project, for example filenames contain-
ing the project title or creation time of files that will be within the running time
of the project. Therefore, to learn a common structure from different projects
we ‘normalize’ the project to make them consistent. For example, we replace all
occurrences of the project name by a ‘placeholder’. We then refer to the normal-
ized objects as nodes, and the normalized TT as NodeTree. For simplicity a file
is represented as a node without children.

Definition 2. We assume a fixed set N , called Nodes, a node tree NT over nodes
and normalization function µ : O → N , mapping objects to nodes, are given.



164 S. Thaler et al.

The only attribute that we assume is always there is ‘name’. The other
attributes may depend on the operating system, therefore we do not further
specify them here. Instead, we simply assume they are available.

We aim to learn the content of folders. Assumption 1 states that similar
names convey similar contents. Therefore, we group nodes (i.e. normalized files
and folders) by their name. Next, we look at the content i.e. the children of these
nodes.

Definition 3. A NameGroup NG(d) for a name d ∈ Domname is the set
nodes that have name d. A NameGroupChildren NGC(d) for a name d ∈
Domname is a set of sets, capturing the content of these folders.

NG(d) = {n ∈ N | name(n) = d}
NGC(d) = {ch(d′) ∪ {ss, se} | d′ ∈ NG(name(d))}

Here, ss represents an artificial node ‘start state’, i.e. the start of a directory
and se represents the end of a directory.

From a NameGroupChildren we can find the frequencies of occurrence of
nodes. However, simply taking their frequency may not be sufficient; some nodes
will naturally occur together or will exclude each other. As such combination
might allow an attacker to easily spot a fake project folders we need to take such
dependencies into account. Thus we need to estimate the probability of certain
nodes co-occurring in a folder. Yet, learning the complete joint probability of
all nodes with any accuracy is not very realistic because the number of samples
needed grows exponential with the number of (possible) children nodes of a node.

As a compromise we use Markov chains to model the probabilities. This
allows taking into account pairwise dependencies between some nodes. In order to
train our Markov chains we will treat the children of the nodes of a NameGroup
as encountered observations. In this construction the order of the nodes matters;
dependencies are only taking into account between the current and next node.
After visiting an intermediate node this information is lost. As such nodes with
a relevant dependency on each other should occur next to each other to ensure
the dependency is expressed in the model.

Definition 4. To help optimize the amount of information about dependencies
that we can capture in our model we use a simple, greedy heuristic ‘sorted’
which starts with the start state ss and then continuously selects follow-up nodes
with maximum mutual information max(I(ni, ni+1)), where ni+1 has not been
selected before. In case of a tie we prefer nodes that occur together often, i.e.
P(ni+1|ni) is higher. ‘sorted’ always ends with the end state se.

Next, we want to learn a Markov chain with states S and a transition matrix
P for a name group NG. That is, we want to learn a Markov chain that represents
the distribution of files and folders of all directories with the same name (see
Assumption 1). To do so, we treat the sets of nodes c ∈ NGC(d) as sequence of
‘observed events’.
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Definition 5. Let d be a name d ∈ Domname and NGC(d) the name group chil-
dren of d. Then, we define the states S of the Markov Chain MC for a NGC
with:

S = (
⋃

c∈NGC(d)

c)

Furthermore, we will refer to a Markov chain MC that for the
NameGroupChildren of a node NGC(d) as MCd. Next, we estimate transition
probabilities of MCd.

Definition 6. Let us assume that each c ∈ NGC(d) has been sorted by the
heuristic which was introduced in Definition 4. Then the transition probabili-
ties P for two successive nodes ni,ni+1 of a Markov chain MCd are estimated
using a Maximum Likelihood Estimators, using each c ∈ NGC(d) as an observed
sequence of events.

So far we have modeled single directories. A tree model captures a whole
directory tree.

Definition 7. The tree model TM is a function that maps a name d ∈
Domname to a corresponding Markov chain MCd.

TM : d → MCd

In order to capture the probabilities of the node attributes, we learn the
probability that certain nodes have. Here Assumption 1 is used to cluster the
group of properties.

Definition 8. The attribute model captures the frequency of occurrence of
an attribute value within a name group. It is a function from N to probability
measures P over the domain of a. P is defined as:

Pa,NG(n)(x) =
#{n′ ∈ NG(n) | a(n′) = x}

#NG(n)

and the attribute model AM as:

AM(n, a) = Pa,NG(n)

Finally, using the previous definitions we define our decoy model as follows:

Definition 9. The decoy model DM comprises the tree model TM and
attribute model AM . Intuitively, the tree model captures the learned, normalized
directory structure, whereas the attribute model contains the learned, normalized
file- and folder attributes.
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3.3 Sampling Decoys

A learned decoy model can be used to sample decoy project folders. First, the
user chooses instantiation values for the placeholders, e.g. a project name for the
decoy project. Then, the directory structure is created by a recursive random
walk over the tree model. This recursive random walk starts with the Markov
chain MCp, where p is the placeholder for the project name. This random walk
generates a set of nodes, which represents the content of this folder. The recursion
step performs random walks over the Markov chains for each of these nodes.

Thereafter, we instantiate the generated directory structure, which outputs
the decoy project folder. We randomly pick the attributes from the attribute
model AM for each node of the directory structure. Finally, we replace all
attribute placeholders with the chosen instantiation values and write the instan-
tiated nodes as files or folders to the disk.

4 Validation

Decoys have several desirable properties ([2,12]), but the most important one
is believability, i.e. capable of eliciting belief or trust [2]. Therefore, we have
conducted a user study to validate whether human judges are able to distin-
guish between real projects and decoys. To conduct the experiments, we have
implemented a prototype of our approach in Python 2.7.

Survey setup. In this study, we presented 30 software project folders to 27 human
judges. Half of the presented software project folders were generated using our
prototype, the other half were real project directories. The study participants
were asked to decided which ones were real and which ones were decoys. The
software project folders were shared on-line and the participants could click
around freely within the projects.

We learned three different decoy models, one for Java projects, one for Python
projects and one for Ruby on Rails projects. We chose three different project
types to identify differences in the trained model and the effect of the believability
of the decoy. In total we used 25 open source projects for each project type to
learn the decoy models. The number 25 was determined using trial and error
and based on believability and variability of the generated decoy projects. The
“real” projects that we use for training were different from the “real” ones that
we presented to the survey participants. We obtained the projects by searching
GitHub for certain terms, e.g. “Java and Security” and chose popular projects
to related topics. Since evaluating 30 projects would take a long time, the study
was split into three parts, one for each project type. Each participant was free
to chose which of the parts and the number of parts they wanted to complete.
Each partial surveys contained a section with demographic questions.

We recorded the answers to the surveys as well as the clicks of the participants
within the folders. We neither counted survey answers where we did not have
any corresponding clicks nor clicks on folders that could not be correlated to
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participants of the study. The data was collected within the period from February
1st to February 8th in 2016.

In total, we had 27 unique participants and we have collected 23 complete
surveys for Java, 19 for Python and 15 for Rails projects resulting in 570 answers.
We rejected 27 answers where the monitoring showed that the corresponding
project was not looked at by this user. Thus in total we collected 543 valid
judgments.

The majority of our study participants (81.5 %) was highly educated, i.e. had
a college or post graduate degree and also most of them (70.37 %) rated their own
software development skills as average or better. Most of the participants (78.3 %
/ 68.3 %) who responded to the Java and Python part of survey stated that
they have at least some knowledge of the Java programming language / Python
programming language respectively, whereas only 20 percent of the participants
had some knowledge of the Rails framework. On average participants rated their
Java, Python and rails framework knowledge respectively as 2.87, 2.43 and 1.40
on a scale from 1 to 5 with 5 being the highest.

To avoid participants’ bias towards project names, we replaced the project
names that occurred in all files and folders of a project with a randomly num-
bered placeholder of the form Pxx, where xx was a randomly chosen number
between 01 and 20. The study participants were informed about this measure.
Apart from that, the participants knew that they were presented partially gen-
erated and partially real folder listings. To counter any bias originating from
this knowledge, we phrased the evaluation question in a non-suggestive way,
i.e.: “The number of real/decoy projects does not necessarily have to be balanced.
There may be 0 real projects, there may also be up to 10 real projects.”.

Survey results. In total, of the 543 valid answers 271 were on real projects and
272 were on decoy projects. 143 of the answers on real projects labeled them
correctly as real and 128 declared them as decoys (52.7 %). 135 of the answers
on decoys labeled them incorrectly as real and 137 were correctly identified as
decoys (50.37 %). The average accuracy per project type was 52.19 % correct
answers for Java projects, 53.63 % for Python projects and 46.32 % for Rails
projects. In total 51.20 % of the 543 answers were correct.

The minimum recorded accuracy of the individual judges was 30 %, and about
a quarter of the participant’s accuracies were below 50 % total accuracy while
the highest accuracy was 90 %. The total average individual performance was
53.3 %, which is slightly better than random guessing.

5 Discussion and Limitations

We have presented a data driven approach to create decoy project folder. These
decoys may aid detecting potential data theft attacks by placing them closely
monitored between real projects. A perfect decoy would be indistinguishable
from the object it tries to mimic, therefore ideally the performance of the judges
should be close to random guesses. In our believability study, the participants
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were able to identify real projects and decoys in 51.57 % of the answers, which
suggests that they had difficulty distinguishing generated projects from real ones.

We have empirically shown that the generated decoys are perceived as believ-
able, however, we did so in a limited way. We did not take into account some of
the external factors that can influence the believability of the decoy, for example
the context where a decoy is deployed, the choice of source projects that are used
to train the decoy model as well as the choice of projects that decoys will be com-
pared to during the study. In order to more properly interpret the results of our
study, further investigations on a well-founded baseline are required. Finally, we
have to validate whether the decoys can be effectively used to detect data-thefts.

Our proposed approach has some limitations. First of all, currently we need
to specify instantiation parameters such as the name of the project decoy man-
ually. We assume that these parameters contribute to the effectiveness of our
approach, thus ideally they are also learned from the source projects as well
as the target context. Next, our approach will not work if an attacker already
knows which project they want to steal, because then they do not need to browse
other projects to determine their value. Also, in other contexts simply refusing
access to the data works better than deceiving an attacker [1]. Finally, potentially
sensitive data could be leaked using our approach.

6 Conclusion and Future work

In this paper we presented a data driven approach based on first-order Markov
chains that can be used to automate the generation of decoy project folders
within a specific, topical context. We have implemented a prototype of this app-
roach, generated decoy project folders and validated their perceived believability
via a user study with 27 participants and 543 evaluated projects. The user study
showed that the participants could only correctly identify 51.2 percent of the
projects, which is only slightly better than random guessing.

To address the previously mentioned limitations and thereby improve our
approach, we plan to include methods for learning and generating the patterns of
existing file names so that we can create new ones. Furthermore, we believe that
hybrid methods which are based on templates as well as on data could further
improve the believability of the generated project folder structure. Additionally,
we are investigating on methods to learn instantiation parameters such as the
project name from existing sources.

While our approach has certain limitations, we envision decoy project folders
being deployed as cheap, supportive measure to detect ongoing data thefts.

Acknowledgements. This work has been partially funded by the Dutch national
program COMMIT under the THeCS project.
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Abstract. Exciting advances in big data analysis suggest that sharing
personal information, such as health and location data, among multiple
other parties could have significant societal benefits. However, privacy
issues often hinder data sharing. Recently, differential privacy emerged
as an important tool to preserve privacy while sharing privacy-sensitive
data. The basic idea is simple. Differential privacy guarantees that results
learned from shared data do not change much based on the inclusion or
exclusion of any single person’s data. Despite the promise, existing dif-
ferential privacy techniques addresses specific utility goals and/or query
types (e.g., count queries), so it is not clear whether they can preserve
utility for arbitrary types of queries. To better understand possible util-
ity and privacy tradeoffs using differential privacy, we examined uses
of human mobility data in a real-world competition. Participants were
asked to come up with insightful ideas that leveraged a minimally pro-
tected published dataset. An obvious question is whether contest submis-
sions could yield the same results if performed on a dataset protected
by differential privacy? To answer this question, we studied synthetic
dataset generation models for human mobility data using differential
privacy. We discuss utility evaluation and the generality of the models
extensively. Finally, we analyzed whether the proposed differential pri-
vacy models could be used in practice by examining contest submissions.
Our results indicate that most of the competition submissions could be
replicated using differentially private data with nearly the same util-
ity and with privacy guarantees. Statistical comparisons with the origi-
nal dataset demonstrate that differentially private synthetic versions of
human mobility data can be widely applicable for data analysis.

Keywords: Differential privacy · Human mobility · Utility · Hubway

1 Introduction

Sharing human related activity data can offer many important benefits to society.
For example, mining human mobility data based on cell phone usage can reveal
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timely information about traffic conditions. “Smart cities” demonstrations show
ways human activity data can improve city services. Often, these models require
sharing beyond the person or even the government. A vision is that some of
the best possible benefits result from sharing personal activity among organiza-
tions. However, the greater the sharing, the greater the risks may be of personal
harms. So, privacy concerns may hinder widespread data sharing. Concerns are
not unfounded. For example, by correlating location of the individual at a given
time of the week, it may be possible to infer someone’s religion. Similarly, pri-
vacy attacks ranging from stalking to sensitive information disclosure have been
widely reported in practice against human mobility data [5,10].

Of course, personal data can be shared widely if it cannot be personally
attributed to a specific person. The idea is that no one can be harmed if his infor-
mation cannot be isolated in shared data. To address these kinds of privacy chal-
lenges, computer scientists have proposed mathematically rigorous techniques in
the framework of differential privacy [7]. The main idea in differential privacy is
that disclosed results do not change noticeably with the inclusion or exclusion
of any given individual’s data. Recently, differential privacy has been applied in
many different settings ranging from answering basic count queries [2] to build-
ing support vector machines [8]. In almost all of these cases, the underlying
differential privacy tools are designed for specific use cases and utility is defined
and tested for that given use case (e.g., measuring utility for differential private
count queries by comparing the euclidean distance between original count query
results vs. differentially private results). Usually, it is not clear whether a given
approach can support a wide range of uses to which an actual human data sci-
entist may put the data. In this work, we try to understand whether we can
provide differentially private synthetic data sets that can be shared instead of
an original dataset with confidence that the resulting data will retain utility in
different usage scenarios.

One challenge in understanding all the potential uses of a given dataset is
that it is impossible to model human imagination. In other words, different
data scientists may want to use the data in very different ways. To address this
challenge, we look into an existing data set disclosed as a part of the Hubway
Data Visualization Challenge [1]. The Hubway is a public bicycle sharing sys-
tem with stations throughout Boston, Cambridge, Somerville and Brookline;
and it is designed to provide a convenient form of active public transportation
by providing access to bicycles. The Hubway system stores users’ information
and generates trip data every day. Hubway data contains users’ bike rides his-
tory and some personal information, so if it is released publicly or shared with
other stakeholders an adversary can take advantage of it and may potentially
figure out private information of its target. In 2012, Hubway and Metropolitan
Area Planning Council (MAPC) jointly hosted a challenge named Hubway Data
Visualization Challenge asking participants to come up with some projects that
involve visualizations, animations, artistic representations or interactive data
analysis tools. After this challenge, there were reports that some of the disclosed
data could be used to identify individuals using location information disclosed on
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Twitter [9]. Still, submissions to the competition give us a good understanding
of what data scientists may want to do with a given human mobility dataset.

To answer the question mentioned above, we propose a model built under
differential privacy here. Our model generates differentially private synthetic
human mobility dataset from an original dataset that preserves users’ privacy.
Furthermore, our synthetic dataset also shows a very good accuracy in most
important statistical comparisons with the original dataset. Finally, we analyze
whether the disclosed differentially private synthetic dataset can adequately pro-
vide what data scientists need by analyzing the utility of our disclosed data based
on the Hubway challenge submissions. Main contributions of this paper are-

– We present a generic Sanitization Model built under differential privacy for
resource sharing based human mobility services to generate differentially pri-
vate synthetic dataset that preserves users’ trip level privacy while sacrificing
as little as possible data utility.

– To show the applicability of the generated synthetic data, we compute and
compare the most compelling statistics from both synthetic and original
datasets. We observe that synthetic data upholds a very impressive accuracy.

– Moreover, a thorough and extensive utility evaluation of synthetic distribution
has been done with respect to four different utility metrics.

In Sect. 2, we talk about some preliminaries about differential privacy. Our
sanitization model is described in Sect. 3. The experimental evaluation and pos-
sible application of it are discussed in Sects. 4 and 5. Section 6 talks about related
works and the conclusion in Sect. 7.

2 Preliminaries

Definition 2.1. Differential Privacy [7]: A privacy mechanism A gives ε-
differential privacy if for any database D and D̂ differing on at most one record,
and for any possible output O ∈ Range(A),

Pr[A(D) = O] ≤ eε × Pr[A(D̂) = O] (1)

where the probability is taken over the randomness of A.

Definition 2.2. Global Sensitivity [7]: For any function f : D → R
d, the L1-

sensitivity of f is,
∇f = max

D,D̂
‖ f(D) − f(D̂) ‖1 (2)

for all D, D̂ differing on at most one record.

Theorem 2.3. Laplace Mechanism [7]: For any function f : D → R
d, and ε >

0, the following mechanism A, called the Laplace Mechanism, is ε-differentially
private: Af (D) = f(D) +

〈
Lap(∇f/ε)

〉d.
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3 Sanitization Model

In this section, we propose a Sanitization Model, shown in Algorithm1, which
is built under differential privacy. The model takes original dataset, D and pri-
vacy budget, ε as input and generates ε-differentially private synthetic data, D̂
as output. First, it removes invalid entries and outliers from original dataset
applying the statistical 3IQR [11] rule to attributes. Second, the attributes form
some non-disjoint groups based on their associativity. The associativity among
the attributes can be examined using well-known Chi-square Test for Indepen-
dence/Homogeneity or G-Test. We would like to emphasize that, no statistics are
disclosed as a part of this step here. We assume that the grouping of attributes is
public information.1 Third, the model builds desired synthetic distributions for
each group which is described in Sect. 3.1. Finally, the synthetic dataset is gener-
ated by taking samples from these distributions and aggregating them together
which is discussed in Sect. 3.2.

Algorithm 1. SanitizationModel(D, ε)
Input: Original Dataset D, Privacy budget ε
Output: Synthetic Dataset D̂

1: remove invalid entries and outliers from D
2: G = {<G1, G2, ..., Gm>|(Gi∩Gj) �= ∅; 1 ≤ i, j ≤ m; Gi, Gj ⊂ {X = all attribute set}}

3: Φ̂ = {<φ̂1, φ̂2, ..., φ̂m>|φ̂i = diff private dist of(Gi, ε); 1 ≤ i ≤ m}
4: D̂ = ε-differentially private synthetic dataset sampling from Φ̂

3.1 Constructing Synthetic Distributions

The first step of constructing a distribution is to create a contingency table (CT)
for it. For any particular group G, frequency distribution of all possible distinct
combinations of values of all attributes belong to the group represents a CT of
that group. Now using the equation mentioned in Theorem2.3 if we add laplace
noise to each frequency, it will become a synthetic CT. In case of negative values,
we set them zero since frequency cannot be negative. The frequencies are then
normalized to compute respective probability density function.

In our case, hubway dataset has nine attributes- (1) id (trip id), I,
(2) start station id, S, (3) end station id, E, (4) start time, ST , (5) duration,
L, (6) end time, ET , (7) zip code, Z, (8) subscription type, U and (9) gender, G.
In step-2 of Algorithm 1, we divide the attributes into five groups: G1- {S,E},
G2- {S, ST}, G3- {S,E,L}, G4- {S,Z}, and G5- {Z,U,G}. Note that, we do not
include ET in any group because it can be calculated from ST and L. For G1, we
first make a CT and after adding laplace noise we convert the resulting synthetic
CT finally to CDF which is represented as Trip CDF, Φ̂T . For G2, G3, G4 and G5,
1 Since our main focus is slightly different, we skip the discussion about Chi-square
Test for Independence/Homogeneity and G-Test here.
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rather than making a single CDF, we make a number of CDF s for each group
instead. More specifically for G2 and G4, we build a total of |S| number of CDF s
one corresponds to a specific station in S. Likewise, for G5 we build a total of |Z|
number of CDF s one for each zip code. G2 has an attribute ST which, in essence,
is a combination of year, month, date and hour sub-attributes (we ignore min
and sec here). Taking these four sub-attributes into account, we build a CDF
for each start station in S. The StartTime CDF is denoted by Φ̂ST . For G4,
we build zip distribution for each start station and the CDF for this group is
denoted by Φ̂SZ . Similarly, for G5 we construct Subscription-Gender distribution
for each zip and it is represented by Φ̂ZUG . In case of G3, instead of fitting dura-
tion into an existing parametric distribution, we build total ||S| × |S|| empirical
distributions for Duration where one corresponds to a particular combination of
start and end stations. The reason for building empirical distributions is that
they show better results than the fitted parametric Exponential, Normal and
Log-normal distributions. And we build ||S| × |S|| duration distributions rather
than only |S| distributions like G2 and G4 because duration mainly depends
on the distance between two stations. The number of bins is set to 7. These
empirical distributions are indeed CT s for duration and their corresponding
synthetic CDF is denoted by Φ̂L. Note that we add laplace noise to the degree
that satisfies the equation stated in Theorem 2.3 to make synthetic distributions
ε-differentially private. In all cases, global sensitivity ∇f is 2 since adding or
removing or changing an entry can change the function value at most 2.

3.2 Differentially Private Synthetic Data Generation

In this section we will describe how to generate differentially private synthetic
data for The Hubway from the distributions constructed in Sect. 3.1. Among nine
attributes, id I is unique in the original dataset. Thus, we assign an unique id
for each newly generated trip entry. The steps to generate other attributes of a
particular trip, i, as follows: First, select a trip (si, ei) by a random sampling from
trip CDF, Φ̂T for i. Second, start time for trip i, sti is randomly sampled from
Φ̂ST (si). Here, Φ̂ST (si) returns sample from the start time CDF of station, si.
Since it gives year, month, date and hour only, we add min and sec by taking
samples from Uniform(0, 59) distribution. Third, to get duration li for trip i,
we need to take a random sample from duration distribution of trip (si, ei),
Φ̂L(si, ei). In this case, each sample taken from Φ̂L(si, ei) returns a bin with its
start value, a and end value, b. To get the exact value of duration for trip, i, we
take a random sample from Uniform(a, b) distribution. By adding li to sti, eti
is calculated accordingly. Fourth, we get zi from a random sample taking from
station-zip CDF of si, Φ̂SZ(si). Finally, a sample (zi, ui, gi) is taken from Φ̂ZUG
where zi is restricted to the value computed in step Fourth.

4 Experimental Evaluation

In our experiment, we use hubway trip history data released in [1] in February
2014. It contains total of 1029739 entries. For simplicity and without loss of



Practical Differentially Private Modeling of Human Movement Data 175

Org. Syn. (0.9)

Pop. st. Trips(%) Avg. Trips(%) σ

67 2.98 2.98 0.019
22 2.89 2.89 0.020
53 2.21 2.21 0.017
113 2.19 2.19 0.013
36 2.07 2.07 0.017

(a)

Org. Syn. (0.9)

Pop. st. Trips(%) Avg. Trips(%) σ

67 3.04 3.04 0.015
22 2.89 2.89 0.020
74 2.22 2.22 0.020
36 2.14 2.14 0.014
113 2.11 2.11 0.012

(b)

Org. Syn. (0.9)

Pop. day Trips(%) Avg. Trips(%) σ

2013-10-03 0.56 0.54 0.013
2013-10-02 0.55 0.52 0.011
2013-09-20 0.55 0.52 0.013
2013-09-17 0.54 0.53 0.012
2013-10-18 0.54 0.52 0.013

(c)

Org. Syn. (0.9)

Trip Trips(%) Avg. Trips(%) σ

53 - 67 0.47 0.47 0.007
67 - 53 0.46 0.46 0.007
33 - 67 0.25 0.25 0.006
67 - 33 0.24 0.24 0.004
40 - 22 0.20 0.20 0.005

(d)

Fig. 1. Statistical Analysis: (a) Top 5 popular stations (outgoing trips), (b) Top 5
popular stations (incoming trips), (c) Top 5 popular days and (d) Popular Top 5 trip-
routes in original and synthetic (ε = 0.9) data [20 runs].

generality, we work on nine attributes among them. We will show some aspects of
applicability and effective use of synthetic data in this section. Our experiments
show that 0.9 is the lowest value of ε where we get maximum utility. We run the
experiment 20 times and compute the following statistics in each run. In Fig. 1,
we show the average and standard deviation σ of 20 runs.

For each station, there are two types of trips: outgoing and incoming. A trip
is considered as outgoing to its starting station and as incoming to its destina-
tion. Both are statistics are important in practice and so we study both cases
here. Figure 1(a) shows the outgoing trips percentage of top 5 popular stations
in original data and their corresponding percentage in synthetic data with σ.
As we observe, the percentages of trips shown in the table are identical in both
datasets with very low deviation. Similar statistics considering incoming trips
are shown in Fig. 1(b) and it holds similar observation. Besides popular stations,
finding popular days is an another essential statistics needed for planning pur-
poses. Figure 1(c) shows the top 5 popular days in original dataset with trips
percentage and the corresponding percentage in synthetic data along with their
standard deviation. As we see, the percentage of each of the popular days in
original and synthetic data is almost same and the corresponding σ is very low
as well. Finding popular trip routes is also another statistics that carries impor-
tant information. In Fig. 1(d), we show the top 5 popular trip routes in original
data and the corresponding statistics in synthetic datasets. Popularity is mea-
sured based on their percentages in entire dataset. The result shows that all top
5 popular trip routes in original data have same percentage of trips in synthetic
data as well with very low σ.
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We also compute some other statistics but due to space constraint the figures
are not shown in the paper. We briefly discuss these statistics here. Comparing
the trip percentages in different time periods between two datasets is another
important measure for understanding utility. Results show that the noise impact
is negligible and in all cases, Morning, Afternoon and Night, synthetic data
preserves the original statistics almost precisely. For example, the difference in
morning trip percentage is 0.15 with σ 0.103 only. Gender distribution for each
station may be useful in some practical applications (e.g., targeting adds for
given stations). We pick few stations randomly to see their gender distributions.
According to the results, synthetic data shows promising results in this case
as well. For example, station 67 has gender distribution: Male- 62.68%, Female-
14.04%, X- 23.28% in original data and in synthetic data it is: 57.74%, 19.00%,
23.26% with σ 0.25, 0.22 and 0.20 respectively. The subscription distribution
per station seems another relevant statistics that has also a significant impact
in resource optimizations (e.g., for Smart City). The subscription distribution
of (Registered, Casual) for station 67 in original data is (76.72%, 23.28%) and
in synthetic data it is (76.74%, 23.26%) with σ 0.20 which is to some extent
identical with original statistics. Result is very much alike for other stations
as well. However, the comparison between original and synthetic trip duration
shows that synthetic data almost accurately measures overall average duration
but failed to measure maximum and minimum durations precisely. The result
is even worse if we use parametric distribution for duration. We notice in the
empirical distribution that a significant number of cells have very low frequency.
Due to this fact, a notable noise impact is reflected in the synthetic results.

Furthermore, we study four utility metrics (Average Relative Error (Avg.
RLE), Earth Mover’s Distance (EMD), True Positive (TP) and Utility Loss
(UL)) to compare synthetic distributions with their original distributions. The
results show that the range of Avg. RLE is [0.06 − 0.30] with σ range [0.003 −
0.015] for ε 0.1 to 1. EMD, TP and UL are [0.06 − 0.99], [95.25 − 97.5] and
[4.41−10.1] with σ range [0.021−0.124], [2.22−3.08] and [2.22−3.03] respectively.
Due to space constraints, figures are not shown here.

5 Discussion

In 2012, Hubway and Metropolitan Area Planning Council (MAPC) jointly
hosted a challenge named Hubway Data Visualization Challenge [1] asking par-
ticipants to come up with projects that involve visualizations, animations, artis-
tic representations or interactive data analysis tool. It had received total 67
projects that used original data provided by the host. We went through short
description and/or little demo provided with each of these projects to find out
the statistics that were computed by most of the participants. The compari-
son of top 7 of these statistics are shown in Sect. 4 and it seems that releasing
differentially private data preserves utility in each case.

Due to the way original data is released, we do not provide user level privacy,
our synthetic data provides trip level instead (e.g., sensitivity is computed based
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on adding or removing one trip, not on adding or removing individual). The syn-
thetic data is also provides more protection than original dataset w.r.t. Intimate
Stalker Threat [10]. First, unlike the original data set, synthetic data does not
release real time visit information. Moreover, it is ε-differentially private which
means it hides a particular trip information with ε privacy. As a result, identity
as well as location resolution would be more harder for an intimate stalker using
the synthetic data compared to original data.

6 Related Work

Few works [2–4,6] have been done on publishing and characterizing human mobil-
ity based on cellular network and other spatio-temporal data. All these papers
built their model under Differential privacy. Chen et al. [4] study the problem
of publishing trajectory data of commuters in Montreal. In paper [3], authors
make use of the variable-length n-gram model. Mir et al. [6] models the human
mobility based on Call Detail Records from a cellular telephone network. Acs
et al. [2] presents a new anonymization scheme to release the spatio-temporal
density of Paris in France. All these papers addressed the specific utility goal.
This inspires us to study the possible utility for arbitrary queries.

7 Conclusion

In this paper, we propose a sanitization model for hubway dataset built under
differential privacy that preserves users’ trip level privacy. To show the applica-
bility and utility of the generated synthetic data for arbitrary range of queries,
we compare the most essential and compelling statistics derived from both syn-
thetic and original datasets. Based on the comparison results, we conclude that
most of the information required by human analysts can be provided accurately
by differentially private synthetic data. We also discuss that the synthetic data
release could be used to reduce threats due attacks such as Intimate Stalker
compared to original data release.

Acknowledgement. The research reported herein was supported in part by NIH
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Abstract. Over the last few years, data storage in cloud based services
has been very popular due to easy management and monetary advan-
tages of cloud computing. Recent developments showed that such data
could be leaked due to various attacks. To address some of these attacks,
encrypting sensitive data before sending to cloud emerged as an impor-
tant protection mechanism. If the data is encrypted with traditional
techniques, selective retrieval of encrypted data becomes challenging. To
address this challenge, efficient searchable encryption schemes have been
developed over the years. Almost all of the existing searchable encryp-
tion schemes are developed for keyword searches and require running some
code on the cloud servers. However, many of the existing cloud storage
services (e.g., Dropbox (https://www.dropbox.com), Box (https://www.
box.com/), Google Drive (http://drive.google.com/), etc.) only allow sim-
ple data object retrieval and do not provide computational support needed
to realize most of the searchable encryption schemes.

In this paper, we address the problem of efficient execution of com-
plex search queries over wide range of encrypted data types (e.g., image
files) without requiring customized computational support from the cloud
servers. To this end, we provide an extensible framework for supporting
complex search queries over encrypted multimedia data. Before any data
is uploaded to the cloud, important features are extracted to support dif-
ferent query types (e.g., extracting facial features to support face recogni-
tion queries) and complex queries are converted to series of object retrieval
tasks for cloud service. Our results show that this framework may support
wide range of image retrieval queries on encrypted data with little over-
head and without any change to underlying data storage services.

1 Introduction

Cloud computing is being adopted by organizations and individuals to address
various types of computation needs including file storage, archiving, etc. How-
ever, there have been several incidents of data leak in popular cloud stor-
age service providers [1,25]. To ensure the security of the sensitive data and
prevent any unauthorized access, users may need to encrypt data before upload-
ing to cloud. If data uploaded to cloud is encrypted using traditional encryp-
tion techniques, executing search queries on the stored data become infeasible.
c© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing Switzerland 2016. All Rights Reserved
S. Ranise and V. Swarup (Eds.): DBSec 2016, LNCS 9766, pp. 179–195, 2016.
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To alleviate this situation many searchable encryption techniques have been pro-
posed [4–6,9,11,13,16,19,20]. Among those approaches, searchable symmetric
encryption (SSE) [4–6,9,13,16,19] emerges as an efficient alternative for cloud
based storage systems due to minimal storage overhead, low performance over-
head, and relatively good security.

However, almost all searchable encryption techniques require executing some
code on the cloud servers to enable efficient processing. On the other hand,
popular commercial personal cloud storage providers1,2,3 only support basic file
operations like read and write file that makes it infeasible to apply traditional
SSE techniques. Furthermore, complex queries on multimedia data may require
running different and expensive cryptographic operations. These limitations cre-
ate a significant problem for wide adoption of SSE techniques. Therefore, devel-
oping SSE schemes that can run on the existing cloud storage systems without
requiring the cloud service providers cooperation emerges as an important and
urgent need. To our knowledge, only [19] considered a setup without computa-
tional support from the cloud storage but the proposed solution does not support
efficient complex querying over encrypted data.

Even though, one can wish that an alternative SSE as a service could be
offered in the near future by the cloud service providers, due to network effects,
many of the existing users may not want to switch their cloud service providers.
Therefore, any new “secure” cloud storage with SSE providers may have a hard
time in getting significant traction. So supporting SSE on the existing cloud
storage platforms without requiring any support from the cloud storage service
providers is a critical need.

In addition, adoption of multimedia (e.g., image, music, video, etc.) data for
social communication is increasing day by day. KPCB analyst Mary Meeker’s
2014 annual Internet Trends report4 states 1.8 billion photos shared each day.
However, indexing multimedia data is harder compared to text data. A signifi-
cant pre-processing is required to convert raw multimedia data to a searchable
format and queries made on multimedia data are complex as well. So building
efficient cryptographic storage system that can easily handle multimedia content
is a very important problem.

To address these challenges, in this paper, we propose an efficient searchable
encryption scheme framework that can work on existing cloud storage services
and can easily handle multimedia data. Our proposed framework only requires
file storage and retrieval support from cloud storage services. Furthermore, by
leveraging the extensible extract, transform and load operations provided by
our framework, very complex queries can be executed on the encrypted data. As
an example, we show how our framework could be used to run face recognition
queries on encrypted images. To our knowledge, this is the first system that
can support complex queries on encrypted multimedia data without significant

1 https://www.dropbox.com.
2 https://www.box.com/.
3 http://drive.google.com/.
4 http://www.kpcb.com/blog/2014-internet-trends.
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computational support from the cloud service provider (i.e., without running cus-
tomized code in the cloud). Main contributions of this work can be summarized
as follows:

– We propose a generic outsourcing framework that enables secure and effi-
cient querying on any data. Our framework supports complex querying on
any encrypted data by allowing queries to be represented as series of simple
equality queries using the features extracted from the data. Later on, these
extracted features are transformed into encrypted indexes and these indexes
are loaded to cloud and leveraged for efficient encrypted query processing.

– We prove that our system satisfies adaptive semantic security for dynamic
SSE.

– We show the applicability of our framework by applying it to state-of-the-art
image querying algorithms (e.g., face recognition) on encrypted data.

– We implement a prototype of our system and empirically evaluate the effi-
ciency under various query types using real world cloud services. Our results
show that our system introduces very little overhead, which makes it remark-
ably efficient and applicable to real-world problems.

The rest of the paper is organized as follows: Sect. 2 discusses previous related
works, Sect. 3 provides the general setup and threat model of our system, Sect. 4
describes internal details of each phases, Sect. 5 extends our initial framework
making it dynamic, in Sect. 6 we discuss the security of our system, Sect. 7 shows
an application of our proposed framework, Sect. 8 shows the experimentations,
and in Sect. 9 we conclude our work.

2 Related Work

Currently there are few ways to build encrypted cloud storage with content based
search. Searchable symmetric encryption(SSE) is one of those, which allows users
to encrypt data in a fashion that can be searched later on. Different aspects of
SSE has been studied extensively as shown in an extensive survey of provably
secure searchable encryption by Bösch et al. in [4]. Curtmola et al. [9] provided
simple construction for SSE with practical security definitions, which was then
adopted and extended by several others in subsequent work. Few works also
looked into dynamic construction of SSE [5,13,14,16] so that new documents
can be added after SSE construction.

Another branch of study related to SSE is supporting conjunctive boolean
query. Cash et al. [6] proposed such a construction, where authors used multi-
round protocol for doing boolean query with reasonable information leakage.
In the process they also claimed to build the most efficient SSE in terms of
time and storage. Kuzu et al. [15] proposed an efficient SSE construction for
similarity search, where they used locality sensitive hashing to convert similarity
search to equality search. There are also work towards supporting efficient range
query, substring matching query, etc. [10], where a rich query is converted to an
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exact matching query. However, these constructions require specialized server.
Importantly, we can easily adopt such a conversion technique in our framework.

Naveed et al. [19] proposed a dynamic searchable encryption schema with
simple storage server similar to our setup. The system also hides certain level
of access pattern. However, authors did not consider complex query problem in
their work, which is one of the major challenges that we solved in this work.

Another way of querying encrypted database is oblivious RAM (ORAM) [11,
20] that also hides search access pattern and much secure. Despite recent devel-
opments [21], traditional ORAM remains inefficient for practical usage in cloud
storage system as described in [3]. Furthermore, our proposed system converts
complex operations into sequence of key value read and write operations, which
can easily be combined with ORAM technique to hide the access pattern.

Qin et al. [22] proposed an efficient privacy preserving cloud based secure
image feature extraction and comparison technique. Similar construction for
ranked image retrieval is proposed by [17,23,29]. These systems depend on highly
capable cloud server for preforming image similarity query.

Finally, there are few commercial secure cloud storage systems, e.g., Spi-
derOak5, BoxCryptor6,Wuala7, etc. Even though these systems are easy to use
and provide reliable security, these systems provide neither server based search
nor complex query support. All these systems depend on either operating system
or local indices to provide search functionalities. As a result, to provide search
functionalities these systems need to download and decrypt all the data stored
in cloud server, which might not be efficient solution in all circumstances.

3 Background and Threat Model

Searchable Symmetric Encryption (SSE) is one of the many mechanisms
to enable search over encrypted data. In a SSE schema, we not only encrypt the
input dataset, but also we create an encrypted inverted index. The index contains
mapping of encrypted version of keywords (called trapdoors) to list of document
ids that contains corresponding plain text keywords. Formally, a SSE schema
is defined as collection of 5 algorithms SSE = (Gen,Enc, Trpdr, Search,Dec)
Given security parameter Gen generates a master symmetric key, Enc generates
the encrypted inverted index and encrypted data sets from the input dataset.
Trpdr algorithm takes keywords as input and outputs the trapdoor, which is used
by Search algorithm to find list of documents associated with input keywords.
Finally, the Dec algorithm decrypts the encrypted document given the id and
proper key. We refer the reader to [9] for further discussion of SSE. Furthermore,
in a typical SSE settings, Gen, Enc, Trpdr, and Dec are performed in a client
device and the Search algorithm is performed in a cloud server. For this reason,
we need a server with custom computational support to run a SSE based system.
Here, we focus on building a framework that enables us to build SSE alike schema
5 https://spideroak.com/.
6 https://www.boxcryptor.com/.
7 https://www.wuala.com/.

https://spideroak.com/
https://www.boxcryptor.com/
https://www.wuala.com/


A Practical Framework for Executing Complex Queries 183

with complex query processing capabilities using file storage servers that does
not have custom computation support.

Threat Model. In this study, we consider a setup, where a user owns a set
of documents, which includes multimedia documents. User wants to store these
documents into a cloud storage server in encrypted form. User also wants to
perform complex search queries over the encrypted data. Most importantly, user
wants to utilize existing cloud storage service, which is not capable of executing
any custom code provided by user. Formally cloud storage server Z can only
preform read and write operations. This simple requirement of cloud storage
server makes the system easily adoptable in several real world scenario. On
the other hand, user have devices with sufficient computation power that can
perform modern symmetric cryptography algorithms and are called clients.

In our system, the communication between server and client is done over
encrypted channel, such as https. So eavesdroppers can not learn any meaning
full information about the documents capturing the communication, apart form
existence of such communication. We also assume that the cloud storage server
Z is managed by Bob, who is semi-honest. As such, he follows the protocol as
it is define but he may try to infer private information about the document he
hosts. Furthermore, the system does not hide search access pattern, meaning Bob
can observe the trapdoors in search query. Based on the encrypted file accesses
after subsequent search queries Bob also can figure out trapdoor to document ids
assignments. However, Bob can not observe the plain text keyword of trapdoors.

4 The Proposed System

Our main motivation is to build encrypted cloud storage that can support com-
plex search query with support of simple file storage server. We generalize the
required computations into a five phase Extract, Transform, Load, Query, Post-
Process (ETLQP) framework. These five phases represent chronological order
of operations required to create, store encrypted index, and perform complex
operations. Figure 1(a) and (b) illustrates an overview of different phases in our
system.

4.1 Extract

In this phase we extract necessary features from a dataset. Let, D = {d1, d2, ..., dn}
bea set ofdocuments, id(di)be the identifier ofdocumentdi,Θ = {θ1, θ2, ..., θm}be
a set of m feature extractor functions. Functions in Θ can extract set of feature and
value pairs (f, v) from documents. We build list Ui with all the feature value pairs
extracted from di. For all the feature extractors θj ∈ Θ we compute (f, v) ← θj(di)
and store (f, v) in Ui. Finally we organize the result in P, such that P[id(di)] ←
Ui. Such an example P is illustrated in Fig. 1(c). Here, we have four documents
{D1, ..D4}. D1 has feature value pairs U1 ={(fa, vα),(fb, vβ), (fb, vγ)}, etc.

To clarify further, let us assume that, we want to build an encrypted image
storage application that can preform location based query over the encrypted
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Fig. 1. Overall workflow of our proposed system and important data structures. (a)
Index creation consists of extract, transform and load phases. (b) Search consists of
query and post-process phases. (c) P, output of extract phase that maps document ids
to feature value pairs, (d) Inverted index I, that maps search signatures to document
ids.

images. In other word, the system is capable of answering queries, such as, find
images taken in Italy. To support such a query, we implement a feature extractor
function θl, where θl extracts location information from image meta data. Output
of θl is defined as a feature value pair (“LOCATION”, “longitude and latitude
of image”). We define as many feature extractor necessary based on application
need. However, all feature extractor functions returns values in similar format.
In Sect. 7 we discuss in details how we defined more feature extractors and use
those to answer much more complicated queries.

4.2 Transform

In this phase we transform the extracted feature values into much simpler form so
that complex search operations can be expressed as series of equality searches.
We compute search signatures s form feature-value pairs and associate corre-
sponding documents with s. This association at query stage can be used to infer
existence of a feature-value pair in a document. Essentially here we define sets of
transform functions T = {t1, .., tp}, where each transform function is designed to
generate search signatures from a feature value pair (f, v) and Tf defines subset
of transformation functions that can be applied to feature f .

With these transform functions T , we generate an inverted index I that is
indexed by search signatures and contains list of document ids. For all the feature
value pairs in P, we generate search signature st

f,v ← t(f, v) where t ∈ Tf . We
build document id list Vs for all the unique search signature s that contains
id(Di) if and only if there exists a feature value pair (f, v) that is in Ui and
at least one transformation function t that generates search signature s. Finally
we fill the inverted index I such that I[s] ← Vs. In Fig. 1(d) we show such an
example I, which is created from P of Fig. 1(c). Here, search signature s1, s2, s3,
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s4, s5 are generated from feature value pairs (fa, vα), (fb, vβ), (fb, vγ), (fa, vσ),
(fa, vδ) accordingly.

Similarly, in our encrypted image storage application example, we define a
transform function tl that takes geographic location and document id as input,
converts the location information to mailing address using reverse address lookup
service, takes the country information and document id to construct a search
signature using a collision resistant hash function.

Using such extract transform model has several benefits over adhoc model.
The proposed model helps us to organize the necessary computation into mod-
ules, which intern increase development efficiency. The feature extractor func-
tions can be reused in other project.

4.3 Load

In this phase we setup our encryption schema, encrypt the inverted index, and
upload the encrypted version into a file storage server Z. We initialize a master
encryption key K, three random constants C1, C2, C3, a secure pseudo random
permutation function ϕ, and a keyed pseudo random function H. Given a key, ϕ
encrypts data, ϕ−1 decrypts corresponding result, and H generates authentica-
tion code of messages. In addition, we define a small synchronized cache C and
an encryption key KC for encrypting the cache. C is always synchronized with
storage server Z. Synchronization is achieved by updating the server’s version
after any change in client’s version and before updating the cache locally most
recent version is downloaded from the server first. In C, we store document id
list size of all search signatures of I, which is notated by C.freq. Later, we also
use this cache to store information related to individual files to make the query
phase easier.

We divide all the document id lists in I into b length blocks and add padding
to last block if needed. The value of b is determined by defining and minimizing
a cost function (described in Subsect. 4.6). We generate trapdoors T s

j and Ks
j for

jth block of document list of I[s]. We use Ks
j to encrypt block contents and T s

j

as the key for encrypted inverted index E . To query the inverted index later on,
our system will regenerate these two trapdoors and perform inverse operations
to build the original document id list. In addition, we store number of documents
associated with a signature s in C.freq[s], then encrypt and upload the cache.
Algorithm 1 describes the operations necessary for load phase.

4.4 Query

In previous phases we have created an encrypted inverted index and uploaded
into file storage server Z. Query and post-process phases are dedicated for query-
ing the index and returning proper output to user. First, given a user query q,
we extract and transform it to a set of search signatures Q. We use number of
document ids per block, stored in C.freq, to compute block counts, which in
turn used to compute trapdoors Ks

j and T s
j for each block of search signatures.
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Algorithm 1. Load encrypted index
1: Require: K = Master key, I = Inverted index of search signatures, C = Synchro-

nized cache, KC = encryption key for cache, Z = File storage server.
2: b ← optimize(I)
3: for all signature s in I do
4: blockss ← � |I[s]|

b
�

5: for j = 1 → blockss do
6: T s

j ← H(K, s || j || C1), Ks
j ← H(K, s || j || C2)

7: sub ← I[s].slice((j − 1) × b, j × b)
8: E [T s

j ] ← ϕ(Ks
j , pad(sub))

9: end for
10: C.freq[s] ← |I[s]|
11: end for
12: for all trapdoor t in E do
13: Z.write(t, E [t])
14: end for
15: Csig ← H(KC || C3, 1)
16: Z.write(Csig, ϕ(KC , C))

Using these trapdoors we retrieve and decrypt document ids. Finally, the result
is organized into a hash table R such that R[s] = I[s] for all s ∈ Q. Algorithm 2
contains the detail operations of query phase.

Algorithm 2. Query
1: Require: K = Master key, q = Query, b = block size, Z = File storage server
2: Q ← Extract and Transform q
3: for all search signatures s in Q do
4: blockss ← �C.freq[s]

b
�

5: for i = 1 → blockss do
6: T s

j ← H(K, s || j || C1), Ks
j ← H(K, s || j || C2)

7: L ← Z.read(T s
j )

8: add ϕ−1(Ks
j , L) in R[s]

9: end for
10: end for
11: return R

4.5 Post-Process

In this step we further process the result of query phase to remove false posi-
tive entries. Given result set R from query phase for query q, we remove id of
document that does not match the original query. Therefore, R.remove(id(d))
if q(d) �= True. Query that only contains exact search features, this phase is
optional.
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4.6 Optimal Block Size Analysis

Block size has a direct impact on performance of our proposed system. Larger
block size implies waste of space for padding and smaller block size implies
many blocks to process. So we need to find an optimal value of block size b
that keeps the over all cost to minimal. In our construction for each block we
have a fixed cost and a dynamic cost that is related to block length. We define
fixed cost as α and co-efficient of dynamic cost β. Cost can be in terms of time
and size. Both linearly depends on block size in our construction. So cost for
a b length block is (α + β × b). Let, J (s) is |I[s]| meaning document id list
size for search signature s and total cost G(b) for blocking and encrypting given
inverted index I for block length b then G(b) =

∑
s∈I

⌈
J (s)

b

⌉
(α + β × b). We

want to minimize the above function for b. However, if contains a ceiling function,
which can not be minimize by taking derivatives and equating to zero. So we
approximate the probability distribution of J , i.e., lengths of document id list
in I. We assumed that, distribution is Pareto distribution, which is defined by
probability density function (PDF) f(x|γ, xm) = γxγ

m

x(γ+1) , where x is the random
variable, γ is distribution parameter, and xm is minimum value of x. After several
algebraic simplification (explained in details in full version [24]), we find the first
order derivative

G′(b) = β − xγ
mβb−γ + (α + βb)xγ

mγb−γ−1 − γxγ
mb−γ(

α

b
+ β) − γxγ

m

γ − 1
b−γ−1α

Now we minimize b by setting G′(b) = 0 and solving the equation for b. In
experimentation we observe that method of moments estimation for xm and γ
gives almost correct value.

5 Dynamic Document Addition

Here we are going to improve our algorithms to support dynamic addition of
documents. Given a new document set for addition we first perform extract and
transform to build an inverted index. Next we compute number of blocks and
number of empty spaces in last block for each signature the cache C. If there
exists empty space we fill the empty spaces than create new blocks as needed. On
the other hand, if a new signature is observed in new inverted index we perform
exact same steps of load. Due to space limitation we deffer further discussion on
dynamic document addition for full version of the paper [24].

6 Security

Over the years, many security definitions have been proposed for searchable
encryption for semi-honest model. Among those simulation based adaptive
semantic security definition by Curtmola et al. [9] is widely used in literature.
Later it is customized to work under random oracle model in [14]. We adapt this
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definition to prove our security model. In short, we define, history Hη, trace λ
(the maximum amount of information that a data owner allows its leakage to
an adversary) and view v (the information that is accessible to an adversary) of
our system and show the existence of polynomial size simulator S such that the
simulated view vS(Hη) and the real view vR(Hη) of history Hη are computa-
tionally indistinguishable. Due to space limitation we defer the formal security
proof to our full version [24].

7 Application of ETLQP Framework

As an application of our ETLQP framework we built an image storage system
that saves encrypted images in cloud storage and built an encrypted index to
search later on. Before going into further detail of our ETLQP framework imple-
mentation we briefly describe Fuzzy Color and Texture Histogram (FCTH) [7],
Eigenface [27], Locality Sensitive Hashing (LSH) [12], and range query to exact
query conversion mechanism [10].

Fuzzy Color Texture Histogram (FCTH) [7] is an histogram of image
that combines texture and color information. It is widely used in content based
image retrieval systems (CBIR), e.g. [8,18]. FCTH of an image can be considered
as a vector with 192 dimensions and distance between FCTH vector of images
can be used to determine similarity among images.

Eigenface [27] is a very well studied, effective yet simple technique for face
recognition using static 2D face image. In summary, face images are considered
as a point in a high dimensional space. An eigenspace consisting few significant
eigen vectors are computed for approximating faces in a training face dataset.
Next, test face images are projected into the computed eigenspace. Distances of
test face images and all training faces images are computed. If any distance is
bellow a pre-determined threshold then those faces are considered a match for
associated test face. A detail formal explanation of eigen-face schema is presented
in full version [24].

Locality sensitive hashing is a technique widely used to reduce dimen-
sions. Core concept of LSH is to define a family of hash functions such that
similar items belong to same bucket with high probability. More specifically we
utilized LSH in euclidean space and adopted widely accepted projection over
random line technique described in [2]. Let, r be a random projection vectors, v
be an input vector, o be a random number used as offset, and w be bucket length
parameter fixed by user. The bucket id is computed by Round(v.r+o

w ) function.
Finally, several such projection vectors are used to generate several bucket ids
for a single input vector. In this setting, nearby items will share at least a same
bucket with very high probability.

Range query to exact query conversion. We adopt the range query
mechanism described in [10]. Let, a be a discrete feature that has value ranging
from 0 to 2t−1, meaning it requires t bits to represent in binary. We first create
binary tree of t depth representing the complete range. Each leaf node (at depth
t) represent an element in the range and we level all left edge as 0 and right
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edge as 1. So, the path from the root to a leaf node essentially represent the
binary encoding of that leaf. In transform phase, we convert an input value of
the range to t feature-value tuples, where the feature is concatenation of field
name, depth i and value is binary encoding of inner node at depth i. During the
query phase given a range we first find the cover as described in [10], create the
corresponding search signatures and perform the query.

7.1 ETLQP for Image Storage

To build an application using ETLQP framework described system section, pro-
grammer has to define proper extract and transformation functions. Load, Query
and Post-Process phases remain the same. For our image storage software we
consider four features location - where the picture was take, time - when the
picture was taken, texture and color - for searching similar pictures, and faces -
for face recognition. In our implemented system queries of first two features are
equality search and later two are similarity search. Similarity searches are diffi-
cult to perform since result not only contains exact matches but also contains
results that are similar. So, we need to have a similarity measure for the fea-
ture in question. To accomplish such a similarity queries we utilize LSH, which
essentially helps us to convert the query to sequence of equality search. In addi-
tion, result of LSH can contain false positives. We need extra post processing to
remove those.

Extract. Location and time data are extracted from Exif8 meta-data. Exif
is a very popular standard for attaching image meta-data into image used by all
popular camera manufacturers. Camera with Global Positioning System (GPS)
module can store longitude and latitude of a picture taken into Exif data, which
can be extracted easily using available libraries9. We use FCTH for similarity
analysis and used a open source implementation of FCTH analyzer [18]. Finally,
for face recognition using Eigenface, we extract frontal faces from images using
haar cascade [28] frontal face pattern classifier.

Transform. Now we define appropriate transformations for extracted fea-
tures. Main idea behind the definition of transformation functions is to make the
query easier later on. So definition of transformation functions is mainly guided
by the query demand.

– Location. Location information in terms of longitude and latitude is difficult
to use in practice. We use OpenStreetMap’s reverse geolocation service10 to
determine address of latitude and longitude associated with the image. To
make query easier later, we generate search signatures of six sub-features of
the address - full address, city, county, country, state, and zip.

– Time. Similarly we break created date of an image into five sub-features
- complete date, year, month, day of month, and day of week. We generate
search signatures based on these sub-features. In addition, to support range

8 http://www.cipa.jp/std/documents/e/DC-008-2012 E.pdf.
9 https://drewnoakes.com/code/exif.

10 http://wiki.openstreetmap.org/wiki/Nominatim.

http://www.cipa.jp/std/documents/e/DC-008-2012_E.pdf
https://drewnoakes.com/code/exif
http://wiki.openstreetmap.org/wiki/Nominatim
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query based on date we convert the time into unix time stamp that essentially
represents seconds passed from 1 January 1970 without considering the leap
second. Then we divide the time stamp by number of seconds in a day (86400),
that gives us the number of days passed from epoch. Finally, we build the range
query binary tree with depth 20, which essentially is capable of covering dates
till year 4840. Then we create the feature value list as described earlier.

– Texture and Color. In the extract phase we extracted FCTH of provided
image, which is a 192 dimensional vector. We can treat each dimension as
different sub features but that will make it difficult to perform similarity search
later on. Instead we define an euclidean LSH schema that put near elements
into same bucket and use the bucket ids to generate search signatures.

– Face. We built an eigenface schema with extracted face images. Again to
preserve similarity we built an euclidean LSH schema with weight vectors of
faces and store the eigenspace related information into synchronized cache C.
In particular we store the average face, selected top eigenfaces, and weights of
all faces. Storing such information is the major reason of defining the cache C.

Query and Post-Process. With previously defined extract and transform
functions client can perform time queries, such as find images that are taken
on specific year, month, day of week, day of moth, or in a rang of dates, etc.
Client can also perform location queries, such as find pictures taken in a country,
state, city, etc. In both of these cases, we transform a query into encrypted
search signatures and retrieve associated encrypted document ids from the cloud
storage server. Finally we decrypt and display the result directly to the user.
On the other hand, for face recognition and image-similarity query, we extract
appropriate feature values from a query image and transform these values into
LSH bucket ids of previously defined LSH schema. We generate encrypted search
signature, retrieve encrypted document ids, and decrypt the result like date and
time queries. However, before showing results to user we remove false positive
results introduced by the LSH schema.

8 Experimental Evaluation

Setup. In our proposed design we have two components client and server. Client
processes images, performs cryptographic operations, and produces encrypted
inverted index that is stored in server. In query phase client retrieves partial
index from the server based on user-query.

ETQLP client is written in Java using several other libraries for image
feature extraction. Cryptographic operations are performed using Java Crypto-
graphic Extension (JCE) implementation. During our experimentation, we exe-
cute the client program in a computer with Intel(R) Core(TM) i7-4770 3.40GHz
CPU, 16GB RAM running Ubuntu 14.04.4 LTS. Our implemented client can
store encrypted inverted index into different types of servers.

- File storage server in local network. We developed a very simple
web based storage service that has two end points file read and file write. Our
server is written in Python (v2.7.6) using Flask (v0.10.1) microframework and
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files are stored in a MongoDB (v3.2.0). We deployed our local storage server in
a machine with Intel(R) Xeon(R) CPU E5420 2.50GHz CPU, 30GB of RAM
running CentOS 6.4. In addition, our client computer is also in the same network.

- Amazon S311 is very popular commercial object and file storage system,
which provides easy to use representational state transfer (REST) application
program interface (API) for storing, retrieving and managing arbitrary binary
data or file. Amazon also provides very extensive software development kit (SDK)
for building applications to utilize it’s services. In our implementation, search
signatures of encrypted inverted index E are keys of S3 objects and content of
the objects are associated encrypted document id list.

- Personal file storage services. In our implementation the client is capa-
ble to use popular commercial file storage services, for example - Dropbox12,
Box13, and Google Drive14. However, due to rate limitation of these services we
could not perform extensive analysis. Details are presented in full version [24].

Dataset. We randomly selected 20109 images from Yahoo Flickr Creative
Commons 100 Million Dataset (YFCC100M) in [26], which contains basic infor-
mation of 100 million media objects. Size of this random dataset is 42.3 GB,
average file size is 2.15 MB, number of faces detected 7027, and 4102 images
have latitude and longitude embedded in EXIF data.
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Experiments. We measure performance
of different phases of our framework for
varying number of randomly selected images
from above dataset. Horizontal axis of most
of the reported graphs is number of ran-
domly selected images used to build the
index and vertical axis is the observation. We
repeat each experiment for at least 3 times
and report the average observation value.
We extracted four features of the images
as discussed in Sect. 7. Figure 2 illustrates
size growth of unencrypted inverted index,
encrypted inverted index, and synchronized cache. The growth is linear, which
implies index size increment is proportional to the number of files added. More-
over, in our experiment we observed that for 20000 images encrypted inverted
index size is only 7.05 MB, which is about four average size images in our dataset.
So size over head of our proposed system is very low.

We also observe that feature extraction is the most time consuming phase
of our system. Figure 3(a) illustrates required time for extracting features. We
observe that face detection and extraction time is the dominating factor in this
phase. It requires 464.54 min to detect and extract faces from 20000 images in
sequential manner, averaging about 1.39 s per image. In addition, other three

11 https://aws.amazon.com/s3/.
12 https://www.dropbox.com.
13 https://www.box.com/.
14 http://drive.google.com/.
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Fig. 3. Time required in different phases of building and uploading the index for dif-
ferent number of images.
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Fig. 4. Time required for different type of queries vs number of files.

features takes 85.87 min for 20000 images, averaging 0.26 s per images. Even
though it looks like a long time for a lot of images but time required for individ-
ual image is very little. Furthermore, these experiments are done in sequential
manner. A multi-threaded implementation will certainly reduce the over all time.
In addition, in this prototype we implemented a separate program to call native
OpenCV API to detect faces and communicate the results back to the main
process, which added extra overhead. In contrast, transform phase is one of the
fastest phase in our implementation. Here, extracted feature values are trans-
formed into inverted index of search signatures and document ids. We observed
that the growth is almost linear and for 20000 images it only requires 696 ms,
shown in Fig. 3(b).

Next we encrypt and load the inverted index into a cloud storage server. In
our experiments, we load the encrypted index into (1) Local server and (2) Ama-
zon S3. Figure 3(c) shows the time required for encrypting and loading inverted
index into local and Amazon S3 server. For 20000 images it requires 20.52 s to
encrypt and load the entire inverted index split into 1 MB blocks into local stor-
age server and 5.65 min to complete in Amazon S3 server. Furthermore, the time
growth is linear due to the linear growth of index size.

Once encrypted inverted index are uploaded in storage server, we perform
queries with different extracted features. In each of the cases we randomly select
five value of the respected feature and perform the query and report the average.
Figure 4 illustrates performance of the location, date, FCTH, and face queries.
Among the location queries we observe that query by full address is fastest
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Query by state takes longest to finish and query by city performs in between.
This is because time require to finish a query is proportional to the number to
blocks fetched and processed. Very few images are like to have same full address
however more images likely to have common state or city. Among the date queries
range query and query by year-month-date (YMD) combination is the fastest
for similar reason. Finally, FCTH and face query requires longest time due to
long extract, transform, and post-processing step. We had to keep our discussion
short here because of space limitation. Detail analysis of these results and few
more experiment results are presented in the full version [24].

9 Conclusion

In this study, we addressed the problem of searchable encryption with sim-
ple server that can support complex queries with multimedia data type. We
made several contributions including an extensible general framework with secu-
rity proof and its implementation. Our defined extract, transform, load, query
and post-process (ETLQP) framework can build efficient searchable encryption
scheme for complex data types (e.g., images). With this framework we can per-
form very sophisticated queries, such as face recognition, without needing cryp-
tographic computational support from the server. Our implementation shows
small overhead for building encrypted search index and performing such com-
plex queries. In addition, we also show that overhead of general cryptographic
operations is negligible compared to other necessary operations of a cloud based
file storage system.
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Abstract. As social networks, shared editing platforms and other col-
laborative systems are becoming increasingly popular, the demands for
proper protection of the data created and used within these systems
grows. Yet, existing access control mechanisms are not suited for the
challenges imposed by collaborative systems. Two main challenges should
be addressed: collaborative specification of permissions, while ensuring
an appropriate levels of control to the different parties involved, and
enabling transparency in decision making in cases where the access
requirements of these different parties are in conflict. In this paper we
propose a data governance model for collaborative systems, which allows
the integration of access requirements specified by different users based
on their relation with a data object. We also study the practical feasibil-
ity of enabling transparency by comparing different deployment options
for transparency in XACML.

1 Introduction

Collaborative systems such as social networking websites, document shar-
ing/editing platforms and audio/video conferencing tools, are gaining increasing
popularity over the years. These systems provide an environment wherein users
can collaborate and share information. This information, however, can be sen-
sitive and, thus, needs to be protected from unauthorized access and accidental
loss or modification.

Access control is widely used to protect sensitive information. Access control
mechanisms rely on policies defining which actions users are allowed to perform
on data objects. However, existing authorization mechanisms are not able to
deal with the security demands of collaborative environments [21]. In particular,
we identify two main drawbacks that limit their application to collaborative
systems: the lack of (i) a data governance model for shared data objects and
(ii) transparency in decision making.

Most access control mechanisms assume that data objects are under the con-
trol of a single entity (e.g., the system or the owner). However, in collaborative
systems several users can contribute to the creation, governance and manage-
ment of data [3,7]. For instance, data can be provided by one or more users,

c© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing Switzerland 2016. All Rights Reserved
S. Ranise and V. Swarup (Eds.): DBSec 2016, LNCS 9766, pp. 199–216, 2016.
DOI: 10.1007/978-3-319-41483-6 15



200 R. Mahmudlu et al.

can be stored by some other user, and refer to yet other users where each of
these users retains some level of authority on the data. In particular, each user
can define its own authorization requirements for the protection of data. There-
fore, we need a way to combine those requirements in order to define the policy
ultimately regulating the access to data.

Several approaches for policy combination [8,11,12,14] and integration [13]
have been proposed. These approaches provide strategies to combine policies
specified by different entities and automatically resolve policy conflicts at evalu-
ation time based on predefined priorities between decisions or based on the policy
structure. However, they consider every user ‘equally’ and they do not account
for the relation of users with the data to be protected in order to determine how
user policies should be combined.

Although the use of these strategies is necessary to guarantee the proper
functioning of the system as a conclusive decision has to be made (either allow-
ing or denying the access to the data), it results in a decision making process
that is non-transparent to users. Every user expects its policies to be enforced by
the system. This, however, is often not possible, for instance when users specify
conflicting authorization requirements for the same resource. To resolve policy
conflicts, policy combination strategies sacrifice some policies to reach a conclu-
sive decision. Authorization mechanisms make decisions in a blackbox manner
[5] and, thus, users are often unaware whether their policies have actually been
enforced. This lack of confidence may reduce the level of trust users have towards
the system and thus users’ willingness to engage in collaboration.

In a previous work [2] we have introduced the notions of archetype and policy
mismatch to address these issues. Archetypes are used to represent the relation
of users with a given data object. Policy mismatches are used to identify the
difference between the authorization requirements of single users and the final
decision enforced by authorization mechanisms. We have also shown how the
notion of policy mismatch can be used as a baseline for the realization of trans-
parent authorization mechanisms which increases user awareness about access
decision making.

This paper extends our previous work in two directions. First, we propose a
data governance model for collaborative systems, which allows the integration
of authorization requirements specified by different users based on their relation
with a data object. In particular, the governance model provides a general frame-
work to reason on the level of authority that users have over shared data and
allows the use of existing policy combination and integration strategies to resolve
policy conflicts. Moreover, we investigate the feasibility of transparency in exist-
ing authorization mechanisms. In particular, we have developed a transparency
service that has been deployed in SAFAX [10], an XACML-based framework
offering authorization as a service. A main feature of SAFAX is that all the
components of the XACML reference architecture are designed as loosely cou-
pled services. We exploit the flexibility provided by this design to evaluate the
impact of the transparency service with respect to different deployment models.
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The remainder of the paper is organized as follows. The next section intro-
duces preliminaries on XACML. Section 3 presents our approach to shared data
control. Section 4 discusses the problem of decision mismatches, and Sect. 5
describes the design, implementation and deployment of the transparent ser-
vice. Section 6 presents experimental results. Finally, Sect. 7 discusses related
work, and Sect. 8 concludes the paper and provides directions for future work.

2 Preliminaries

This section provides preliminaries on XACML [14], the de facto standard for
the specification and enforcement of access control policies. This work is based
on XACML v2. However, it can be easily adapted to comply with XACML v3.

2.1 Policy Language

XACML provides an attribute-based language that allows the specification of
composite policies by using three policy elements: policy sets, policies and rules.
Policy sets comprise a list of policy sets and policies; policies comprise a list of
rules. Rules specify an effect, i.e. whether an access request should be allowed
(Permit) or denied (Deny). Each policy element has a (possibly empty) target
which restricts the applicability of the policy element. The target is specified in
terms of attributes characterizing the subject, resource, action and environment
and denotes the access requests covered by the policy element. A rule may addi-
tionally have a condition, i.e. a predicate that must be satisfied for a rule to be
applicable. Policy sets and policies can also be associated with obligations, i.e.
mandatory requirements that have to be fulfilled.

The evaluation of an access request against a policy element results in an
access decision. If the request matches both the target and condition of a rule,
the rule is applicable to the request and yields the decision specified by its
effect, either Permit or Deny. If the rule is not applicable, a NotApplicable deci-
sion is returned. If an error occurs during evaluation, an Indeterminate decision is
returned. Each composite policy element (i.e., a policy set or a policy) specifies a
combining algorithm that is used to combine the decisions of its comprising ele-
ments. XACML provides a number of combining algorithms: permit-overrides
(pov), deny-overrides (dov), first-applicable (fa) and only-one-applicable (ooa).
These algorithms evaluate composite policies based on the order of the pol-
icy elements and priorities between decisions. Hereafter, we use the following
abstract notation to represent the policy evaluation process in XACML: P
denotes the set of XACML policies, Q the set of access requests, and function
�p� : Q → {Permit,Deny,NotApplicable, Indeterminate} denotes policy evalua-
tion, i.e. �p�(q) is the decision according to a policy p ∈ P for a request q ∈ Q.

2.2 XACML Architecture

The XACML reference architecture is shown in Fig. 1. Access requests are
intercepted by the Policy Enforcement Point (PEP). Upon receiving an access
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request, the PEP forwards the request to the Context Handler (CH) which, after
translating the request from the application’s native format to XACML, sends
it to the Policy Decision Point (PDP) for evaluation. The PDP fetches the poli-
cies from the Policy Administration Point (PAP). If additional attributes are
required to evaluate the request, the PDP queries the CH for such attributes.
The CH retrieves these attributes from the Policy Information Point (PIP) and
sends them to the PDP. The PDP evaluates the request against the policies and
returns a response specifying the access decision (and possibly a set of obliga-
tions to be fulfilled) to the CH. The CH sends the response to the PEP, which is
responsible for the enforcement of the decision and the fulfillment of obligations.

3 Shared Data Control

In collaborative systems like social media and document sharing platforms, data
objects can be under the control of multiple stakeholders. The level of author-
ity that each stakeholder has on a shared data object depends on its relation
with the object. In this section we discuss the problem of shared data control
and propose an approach to regulate the access to data by taking into account
both the authorization requirements of the stakeholders related to the data and
their relationship with the shared data. We start by introducing a scenario in
healthcare that is used as a running example throughout the paper.

Example 1. A University Medical Center (UMC) provides medical treatment
for a variety of diseases. The UMC also has an advanced research program, and
several researchers conduct clinical research studies within the UMC. Patient
data are stored in a central database at the UMC. The UMC is responsible for
guaranteeing the security of patient data and for determining the purposes and
means of its processing. Different departments at the UMC can define policies to
regulate the access to patient data. Here, we consider two such departments: the
Security Department and the Data Center. The Data Center manages the UMC
database and is mainly concerned that medical, research and administrative
staff of the UMC have access to the data they need to perform their duties. On
the other hand, the Security Department mainly focuses on the protection of
patient data and on the compliance with regulations and laws that are in place.
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Table 1. Access Requirements

Stakeholder Access requirements

Alice Her treating doctors and nurses can access her medical information

Any other access to her information is denied

Caroline Doctors and nurses can access her medical information

Researchers can read her genetic information

Any other access to her information is denied

UMC Data Center Doctors and nurses can access patient information

Researchers can access patient information

UMC Security Department Medical staff can access patient data to provide medical treatment

Technicians can access and modify patient data for maintenance

purposes

Regulatory Body Data subjects can access their medical information

Personal data shall be collected and processed only if the data

subject has given his explicit consent to their processing

Access is allowed without data subject’s consent to comply with a

legal obligation imposed upon the controller

Access is allowed without data subject’s consent to protect the

data subject’s vital interests

National Privacy Authority Unlawful and unfair data processing operations are forbidden

Ethical Medical Committee Researchers can only access anonymized patient information

Our scenario focuses on Alice and Caroline, two monozygotic twins, who both
rely on UMC’s services for treatment. Caroline has also engaged in a clinical
trial and shared her genetic information with the UMC for research purposes.

Privacy is a highly regulated subject, especially in healthcare. Most coun-
tries have regulations and laws in force, which impose stringent requirements
on the collection and processing of personal data [6]. To explicitly model the
access requirements defined by privacy regulations, we introduce a Regulatory
Body as a stakeholder in our scenario.1 This entity issues and revises regulations
to protect the privacy of citizens. Privacy regulations like the EU Directive on
data protection (Directive 1995/46/EC) require the creation of an independent
authority to protect the fundamental rights of citizens. This authority, hereafter
referred to as National Privacy Authority, has the task of overseeing the compli-
ance of organizations with privacy regulations. Moreover, it can prohibit unlawful
or unfair data processing operations. Next to the National Privacy Authority,
we also consider an Ethical Medical Committee of the Ministry of Health. This
entity defines requirements on the use of medical data, especially for research
purposes.

Each aforementioned stakeholder can specify requirements to regulate the
access and usage of data. These requirements are summarized in Table 1.

1 Note that legal requirements can also define the relation between stakeholders. In
the next section we will discuss how these requirements can be accommodated in
the framework.
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3.1 Data Governance Model

In collaborative systems, multiple stakeholders can contribute to the creation and
management of data objects. Each stakeholder related to a data object should
retain some authority on the object. However, not all these stakeholders might
have the same level of authority. The degree of authority a user has depends on its
role with respect to the data. Thus, the actual permissions on shared data should
be defined by taking into account both stakeholders’ access requirements and
their relation with the data. In this section, we investigate a general framework
to explicitly express the relations between stakeholders and data objects as well
as to prioritize such relations.

To characterize the relation between stakeholders and shared data, we use
the notion of archetype proposed in [2]. The archetypes for a shared data object
capture the roles that stakeholders can have with respect to the object. The role
determines the extent of control over the object. In this work we introduce the
notion of archetype hierarchy to reflect the level of authority that users have on
shared resources.

Definition 1. Let A be the set of archetypes for a shared data object o. An
archetype hierarchy H has the form:

H = L | (L, pr,H)
L = (σ, [a1, . . . , an])
pr = t | + | −

A level L consists of a set of archetypes a1, . . . , an ∈ A, whose requirements
are combined using an intra-level aggregator σ. An archetype hierarchy H is
(recursively) built over levels by concatenating a level with a hierarchy according
to a given priority pr that can be total (denoted by t), positive (denoted by +)
or negative (denoted by −).

Intuitively, a level groups those archetypes that have the same level of author-
ity on shared data. An intra-level aggregator specifies how the requirements of
the stakeholders associated to the archetypes in a level should be evaluated. Our
framework does not pose restrictions on the intra-level aggregator that can be
used. In the next section we provide some examples of intra-level aggregators
and discuss how they can be realized.

Example 2. Consider the genetic information provided by Caroline in the sce-
nario of Example 1. We identify two main archetypes for this information: Data
Controller and Data Subject. The Data Controller is the entity responsible for
the security of the data and defines who can access a data element and how
data can be processed. In our scenario, the UMC plays the role of Data Con-
troller for Caroline’s genetic information. In particular, the UMC Data Center
and Security Department are two instances of the Data Controller. The Data
Subject is the person to whom the information refers. In the scenario, Caroline
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is the Data Subject for her genetic information. In addition, given the twin rela-
tionship between Alice and Caroline, we also consider Alice as the Data Subject
for the genetic information provided by Caroline. Next to these archetypes, we
define an archetype for each of the other stakeholders in the scenario, namely
Regulatory Body, National Privacy Authority and Ethical Medical Committee.

In an archetype hierarchy, levels are ordered according to the degree of
authority that the archetypes forming a level have. We distinguish three types
of priorities between levels: total, positive and negative. Total priority indicates
that the access requirements associated to the higher level always override the
ones associated to lower levels. However, in some cases only the positive access
requirements (i.e., access requirements defining positive authorizations) associ-
ated to the higher level should take precedence; otherwise, the access require-
ments defined by stakeholders at the lower level should also be evaluated. This
is achieved using the positive priority. Negative priority is the dual of positive
priority where only negative requirements from the higher level take precedence.

Example 3. The archetypes for our running example, identified in Example 2,
can be organized in a hierarchy. Figure 2a presents a graphical representation of
this hierarchy. Regulatory Body has the highest priority. The next level comprises
the Data Subject, followed by a level formed by the National Privacy Authority
and the Ethical Medical Committee. The lowest level is formed by the Data
Controller. In order to comply with data protection regulations and to satisfy the
intrinsic characteristics of the roles, the following priorities are defined between
levels:

– The Regulatory Body has the right to override the decisions of the Data Sub-
jects to permit access to patients’ medical records, e.g. to protect their vital
interests or comply with legal obligations [6]. Therefore, a positive priority is
used between the first and second level.

– Data Subjects have the right to determine who can (or cannot) access and
process their information. However, even if they permit access to their infor-
mation, the National Privacy Authority and the Ethical Medical Committee
hold the right to deny it if the request is not in compliance with their require-
ments. Such a requirement is achieved through a negative priority between
the Data Subject and the lower level.

– The National Privacy Authority and Ethical Medical Committee can influence
how the Data Controller processes personal data. In particular, they can
deny an unlawful or unfair access, or permit the access for research purposes
regardless of the Data Controller’s requirements. A total priority between the
levels can be used to achieve this requirement.

3.2 Data Governance Instantiation

Access control policy languages like XACML allow stakeholders to express their
access requirements as policies and provide means to combine these policies



206 R. Mahmudlu et al.

Regulatory Body

Data Subject

National Privacy
Authority

Ethical Medical
Committee

Data Controller

l3

l2

l1

l4

(a) Archetype hierarchy

polRB

polA polC

polNPA polEMC

polSD polDC

l3

l1

l2

l4

(b) Global policy

Fig. 2. Data Governance Model and Instantiation for the scenario in Example 1

in a single policy (hereafter referred to as the global policy), which is used to
determine the actual permissions on shared data. In this section, we present
how the global policy can be created from user policies taking into account the
archetype hierarchy. We first introduce a grammar for the specification of the
global policy. This grammar is inspired by XACML, thus making the encoding
into XACML policies straightforward.

Definition 2. The global policy PH is constructed upon the following grammar:

PH = PL | (fa, [PL, PH ]) | (pov, [PL, PH ]) | (dov, [PL, PH ])
PL = (ca, [Pa, . . . , Pa])
Pa = (ca, [p1, . . . , pn])

where p1, . . . , pn are user policies and ca represents a policy combining algorithm.

An archetype policy Pa combines the policies of those users who are associ-
ated to an archetype a. To this end, every archetype is associated with a policy
combining algorithm that determines how the policies defined by the stake-
holders having such an archetype are combined. A level policy PL combines the
policies associated to the archetypes in a level L. The combining algorithms used
to construct archetype and level policies should reflect the security and privacy
needs for the specific domain. In particular, the combining algorithm for level
policies should reflect the constraints on the combination of archetypes in a level
as given in the archetype hierarchy (Definition 1). Note that our policy language
does not impose any restriction on the policy combining algorithms to be used to
combine user policies and archetype policies.2 For instance, archetype/level poli-
cies can make use of the standard XACML combining algorithms (see Sect. 2) or

2 Although any combining algorithm can be used to combine user policies and
archetype policies, the use of noncommutative algorithms can have undesired effects.
In fact, these algorithms often represent a priority between policies based on their
order (e.g., first-applicable in XACML), whereas there is no order within an archetype
or a level.



Data Governance and Transparency for Collaborative Systems 207

more advanced combining algorithms such as the consensus and majority com-
bining algorithms defined in [11]. The global policy is recursively built over level
policies. This is necessary to account for the use of different priority between
levels in the archetype hierarchy. Priorities are encoded in terms of combining
algorithms. In particular, the total, positive and negative priorities are encoded
using first-applicable (fa), permit-overrides (pov) and deny-overrides (dov), respec-
tively.

Next we define how the global policy is constructed from the archetype hier-
archy and user policies.

Definition 3. Let A be the set of archetypes for an object o and U the set of
users. Let UA ⊆ U × A be the user-archetype assignment, i.e. (u, a) ∈ UA iff
user u has archetype a. Let P be the set of user policies and let pu denote the
policy of user u. We denote by A2ca(a) the combining algorithm ca specified for
archetype a. To combine user policies according to the archetype hierarchy, we
first create archetype policies:

A2P(a) = (A2ca(a), [pu1 , . . . , pum
])

where u1, . . . , um are the users such that (u1, a), . . . , (um, a) are in UA. Next,
archetype policies are combined to form level policies:

L2P((σ, [a1, . . . , an])) = (ca, [A2P(a1), . . . ,A2P(an)])

where ca is the combining algorithm realizing the intra-level aggregator σ. The
global policy is obtained by recursively combining level policies with respect to
the priorities between levels:

{
H2P(L) = L2P(L)

H2P((L, pr,H)) = (pr2CA(pr), [L2P(L),H2P(H)])

where
pr2CA(t) = fa pr2CA(+) = pov pr2CA(−) = dov

In the next example we illustrate how to derive a global policy from the
archetype hierarchy and user policies based on our running example.

Example 4. Figure 2b shows the structure of global policy G obtained by instan-
tiating the archetype hierarchy in Fig. 2a based on the scenario given in Exam-
ple 1. Formally, the global policy can be represented as follows:

G = pov(polRB , dov(pov(polA, polC), fa(wc(polNPA, polEMC), dov(polSD, polDC))))

Here we assume that the policies specified by the data subjects (i.e., Alice and
Caroline) are combined using permit-overrides, i.e. access to the data is granted
if at least one of the data subjects permits the access. The policies of the
UMC Security Department and Data Center are combined using deny-overrides.



208 R. Mahmudlu et al.

Finally, we combine the policies of the National Privacy Authority and the Eth-
ical Medical Committee using the weak-consensus algorithm as defined in [11].
According to this algorithm, user policies should not conflict with each other:
Permit a request if some user policies permit a request, and no user policy denies
it; Deny a request if some user policies deny a request, and no user policy permits
it; otherwise Indeterminate should be yielded.

4 Policy Mismatches

In the previous section, we have shown how the policies of different stakeholders
can be combined by taking into account their relationship with the resource to
be protected. Ideally, the authorization system should enforce the access require-
ments of all stakeholders. However, this is not always possible. In fact, users can
have conflicting authorization requirements, which results in conflicting policies.

Many access control mechanisms like XACML use policy combining algo-
rithms to automatically resolve policy conflicts. Although solving conflicts is
necessary for an authorization mechanism to make a conclusive decision, it makes
the decision making process non-transparent to users. Users expect their policies
to be enforced by the authorization system; however, in practice, their policies
can be overridden by the policies of other entities. The main problem is that,
in most existing authorization systems, policy conflict resolution is embedded in
the policy evaluation process and, thus, policy conflicts are not identified and/or
recorded. This makes users unaware whether their policies have actually been
enforced.

We argue that the lack of transparency can affect the collaboration among
users and, in particular, their willingness of sharing sensitive information needed
for the success of the collaboration. Below we exemplify this issue using our
running example.

Example 5. As shown in Example 1, each stakeholder has certain authorization
requirements over the genetic information provided by Caroline. Suppose that
David, a researcher at the UMC, requests access to this information. Based on
the global policy in Example 4 and access requirements in Table 1, the autho-
rization system allows David to access the information. If we look at the require-
ments of the single users, we have that: the enforced decision is consistent with
Caroline’s and the UMC Data Center’s policy; however, access should have been
denied according to Alice’s policies; finally, the Regulatory Body’s policy returns
a NotApplicable as it delegates the Data Subject the authority to decide whether
its data can be used for research purposes and thus does not define a specific pol-
icy about researcher accessing genetic information. We can observe that Alice’s
access requirements are not enforced. This can reduce her trust towards the
UMC and, thus, can make her reluctant to share information in the future.

We use the notion of policy mismatch introduced in [2] to capture policy
conflicts.
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Definition 4. Let p1, . . . , pn be the policies of n users and p the global policy
obtained by combining such policies. Given an access request q, a user i (with
i ∈ {1, . . . , n}) has a mismatch if �p�(q) �= �pi�(q).

A mismatch occurs when the decision enforced by the authorization system
differs from the decision obtained evaluating the policy of a user. Likely, only
mismatches where a user’s policy is applicable (i.e., �pi� �= NotApplicable) are
relevant for the user. However, we do not restrict the (type of) mismatches that
can be reported to users. In particular, we allows each user to specify mismatches
preferences, indicating the types of mismatches the user wants to be notified (see
Sect. 5.1). In the next section, we show how the notion of mismatch can be used
to augment the XACML reference architecture with a transparency service while
being compliant with the XACML specification.

5 Transparency Service

The goal of this work is to enable collaborations between stakeholders in a
trusted, secure and privacy-preserving way. Sharing resources and managing
access to them are essential for such collaborations. However, as shown in the
previous section, stakeholders may have conflicting authorization requirements.
This section presents a transparency service, which aims to make the stakehold-
ers engaged in a collaboration aware of these conflicts and how they are resolved
by the authorization system.

The transparency service has been designed to be fully compliant with the
XACML standard. This ensures that the service can be used within existing
XACML implementations without these implementations being modified. In the
remainder of the section, we discuss the design and implementation of the trans-
parency service as well as possible deployment configurations within the XACML
reference architecture.

5.1 Service Design

The transparency service aims to detect mismatches between the decision
enforced by the authorization system and the access requirements of a certain
stakeholder. Any mismatch found is then reported to the stakeholders whose
decision was not enforced, provided they are interested in this type of discrep-
ancy.

A näıve approach to identify decision mismatches would be to evaluate an
access request against the global policy and against each user policy, and com-
pare the obtained decisions. In particular, user policies could be stored separately
in the PAP; then, the PDP can fetch one policy at the time for the evaluation of
the access request. This näıve approach, however, has a number of drawbacks.
First, the selective fetching of policies is not supported by most existing XACML
implementations; they typically fetch all policies available in the PAP and then
combine the decisions obtained evaluating the fetched policies using a root com-
bining algorithm [14]. Therefore, this approach would requires a modification
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of existing XACML implementations. In addition, it requires instantiating the
PDP for each user policy, affecting performance.

To address these drawbacks, we introduce viewpoints to distinguish user poli-
cies in the global policy. Every user u submits an XACML policy pu implement-
ing its authorization requirements. To reflect the viewpoint the target of pu is
extended with an environment attribute ViewPoint. Two values are assigned to
this attribute: the identifier of u, representing the user viewpoint, and “global”.
The evaluation with respect the global perspective provides the access decision
which is actually enforced by the authorization mechanism. It is worth noting
that the target is applicable to a given access request (and thus a user pol-
icy is evaluated) only if at least one of these two attribute values for attribute
ViewPoint is provided in the request. User policies are combined based on the
role of the corresponding stakeholder with respect to the resource to be protected
as described in Sect. 3. The resulting policy is stored in the PAP and is fetched
by the PDP for the evaluation of access requests.

The architecture of the transparency service is presented in Fig. 3. The ser-
vice comprises three main components: Global Decision Handler, Mismatch Han-
dler and Notification Handler. The service allows users to specify their prefer-
ences about which mismatches they want to be notified (e.g., access is permitted
whereas the user wants to deny it) along with their contact information. Upon
receiving a request, the Global Decision Handler adds attribute ViewPoint with
value “global” to the request and passes on the enriched request for evaluation.
The response is passed on for enforcement; it is also sent to the Mismatch Han-
dler. This component checks the mismatch preferences provided by every user to
determine the users u1, . . . un who are interested in mismatches corresponding
to the decision reached. For each such user u, the Mismatch Handler creates a
new access request which consists of the original request but now extended with
attribute ViewPoint taking value u, the identifier of the user. As the policies
specified by other users will not be applicable (due to a non-matching value for
attribute ViewPoint) this request is only evaluated against the policy of the
corresponding user. When a response to a viewpoint specific requests does not
match the global decision and the user is interested in this specific type of mis-
match, the Mismatch Handler calls the Notification Handler. This component
retrieves the contact information of the users from the database and notifies
them of the mismatches that occurred.

5.2 Service Implementation and Deployment

We have implemented the transparency service within the SAFAX framework
[10]. SAFAX is an XACML-based architectural framework that offers authoriza-
tion as a service. A main characteristic of SAFAX is that all components in the
XACML reference architecture are designed as loosely coupled services. These
services communicate with each other in JSON or XML via preregistered inter-
faces (defined in a service registry). SAFAX has been implemented in Java and
runs on Apache Tomcat server using Jersey as a service framework. Back-end



Data Governance and Transparency for Collaborative Systems 211

Global
Decision
Handler

Mismatch
Handler

Notification
Handler

Mismatch
Preferences

request
response

request(global)

response(global)

response(global)
request(u1)
. . .
request(un)

response(un)
. . .
response(u1)

. . .
notification(u1)

notification(um)
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(a) Mismatch Preferences (b) Response

Fig. 4. SAFAX GUI

persistent data are stored in a MySQL server. To manage the authorization ser-
vice configuration and policies, SAFAX offers a User Interface (referred to as
SAFAX GUI) that consumes SAFAX services.

The transparency service has been implemented as a SAFAX service and the
SAFAX GUI has been extended to manage its configurations. Figure 4a shows
a screenshot of the interface used to manage viewpoints and set stakeholders’
mismatch preferences. These preferences are stored in a persistent database on
the MySQL server and used by the Notification Handler to determine, for each
stakeholder, which mismatches should be notified. For demonstration purposes,
the evaluation outcome for every request and the notified mismatches are shown
in the SAFAX GUI (Fig. 4b).

Thanks to the service-oriented nature of SAFAX, the transparency service
can be deployed at two different locations within the XACML reference archi-
tecture. In particular, it can act as either PEP or PDP. Depending on its use,
the transparency service and its interfaces have to be registered in the SAFAX
service registry accordingly. As shown by the architectures in Figs. 5 and 6, the
transparency service encapsulates rather than replacing the corresponding com-
ponents. By creating a dependency between the transparency service and one
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of the existing PEP and PDP services, the expected message flow for the corre-
sponding configuration is achieved.

When the transparency service is used as PEP (Fig. 5), it can be seen as an
external service offered to users by a (possibly) different provider. On the other
hand, when the transparency service is used as PDP (Fig. 6), it can be seen
as additional functionality offered by the authorization service itself. SAFAX is
able to support both configurations without the need of modifying existing com-
ponents due to its service-oriented nature. In contrast, other existing XACML
implementations can only support the transparency service as an external ser-
vice because they implement the XACML reference architecture as a monolithic
component. Deployment of the transparency service as the PDP would require
a modification of these XACML implementations.

6 Evaluation

As discussed in the previous section, the transparency service generates multiple
requests to identify mismatches between the decision enforced by the system and
user policies. Therefore, we need to evaluate the introduced overhead to ensure
it does not affect user experience, thus hampering the adoption of the service
in existing infrastructures. For the experiments we created a dataset consisting
of policies of different size, where the size of a policy is characterized by the
number of rules in the policy. Since the number of generated requests depends
on the number of viewpoints, we added a varying number of viewpoints to these
policies (i.e., 5, 10, 20, 30 and 40 viewpoints). The same policies were evaluated
when the transparency service is deployed as PEP and PDP as well as when the
transparency service is not used. We computed the average evaluation time over
ten runs; a new policy dataset was created for each run.

The results of the experiments are shown in Fig. 7. These graphs show that
the transparency service when deployed as PEP (Fig. 7b) introduces a larger
overhead than when it is deployed as PDP (Fig. 7a). When the transparency
service is deployed as PEP, every generated request has to be handled by the
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(a) Transparency service as PDP (b) Transparency service as PEP

Fig. 7. Evaluation of the overhead introduced by the transparency service (Color figure
online)

PEP, CH and PDP (see Fig. 5). On the other hand, when the service is deployed
as PDP, requests are only handled by PDP (see Fig. 6), thus leading to a lower
overhead. In addition to the deployment method, the results show that the eval-
uation time depends on the number of viewpoints and policy size. In particular,
the number of viewpoints has an impact on the number of requests that are
generated. The observed results imply that the delay introduced by the com-
munication among the components of the system is more significant than the
overhead due to the evaluation of the requests.

Although enabling transparency unavoidably comes at the cost of compu-
tation time, it should be noted that the decision enforced by the authorization
mechanism is obtained from the evaluation of the request with the ‘global’ view-
point. The other requests are only needed to detect policy mismatches and gen-
erate notifications. Therefore, they can be generated and evaluated offline to not
affect the functioning of the system.

7 Related Work

With the growing popularity of collaborative systems, the risks of data breaches
have increased due to the intrinsic difficulty of establishing a data government
model for such systems. Several mechanisms have been proposed to balance the
ease of collaboration and the level of security with collaborative systems (see
[21] for a survey). For instance, solutions such as Role-Based Access Control
[16], Task-Based Access Control [20] and Team-Based Access Control [19] use
the roles within an organization, the purpose of the usage or group membership
to regulate the access to sensitive data. While these solutions provide some basic
features to enable access control in collaborative systems, they usually assume
that data objects are under the control of a single entity and, thus, they lack
support for policy administration of shared resources.

A few models have been proposed for collaborative authorization manage-
ment of shared data. For instance, Squicciarini et al. [18] consider resources co-
owned by multiple users who can separately specify their policies for the shared
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data, and use the Clarke-Tax model for the collective enforcement of these poli-
cies. Hu et al. [7] propose a multiparty access control model where, in addition to
the owner of data, other controllers (e.g., contributor, dissiminator, stakehold-
ers) can regulate the access to shared data. The owner of the data can choose an
appropriate strategy (e.g., owner-overrides, full-consensus-permit, majority-permit)
to resolve policy conflicts. To account for the different level of authority, the
model uses a voting scheme that allows the specification of different weights for
controllers. Similarly to the model proposed in [7], our governance model uses
policy combination strategies for conflict resolution; however, our model allows
a more fine-grained governance of shared resources by representing and ordering
levels of authority through an archetype hierarchy that can be instantiated using
an arbitrary combination of policy combining algorithms.

Policy combination strategies are often used by authorization mechanisms to
define how policy conflicts should be resolved. Examples of conflict resolution
strategies are: deny takes precedence [8], permit takes precedence [8], most-
specific takes precedence [8,12] and explicit specification of priorities [17]. Sim-
ilarly, Reeder et al. [15] propose specificity precedence, deny precedence, order
precedence, recency precedence or the combination of these when a single strat-
egy fails. The most prominent authorization mechanism that supports (most of)
these strategies is XACML [14]. In particular, XACML encodes conflict resolu-
tion strategies as policy combining algorithms (see Sect. 2). Our solution, being
based on XACML, natively supports these strategies as well. Moreover, given the
extensible nature of XACML, accommodating other conflict resolution strategies
as the ones proposed in [8,11,12] is straightforward.

Mazzoleni et al. [13] argue that policy combination algorithms provided by
XACML, and in general conflict resolution strategies, are not enough to inte-
grate policies specified by autonomous parties. To this end, they define a policy
similarity process and a number of policy integration algorithms. The policy
similarity process is used to analyze the behavior of policies with respect to
access requests. The result of this analysis, along with policy integration prefer-
ences given by the users, is used to select the policy integration algorithms for
building the global policy. Differently from [13], our framework integrates poli-
cies specified by multiple administration entities based on their relation with a
data object, thus reflecting the level of authority that these entities have on the
object. The policy similarity process and policy integration algorithms proposed
in [13] can be employed in our framework to form archetype and level policies.

Although methods for integrating policies specified by autonomous entities
(as well as conflict resolution strategies) are necessary to ensure the proper
functioning of the system, their application makes access decision making non-
transparent to users. Transparency has become a major demand for modern
IT governance, social and medical systems [1,4,9]. However, very little research
has been conducted towards its introduction into access control. To the best of
our knowledge, CollAC [2] is the only work that proposes a transparent access
control solution which detects conflicts during policy evaluation and notifies the
users whose decisions have been overridden. This work extents [2] along two main
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directions. First, this work introduces archetype hierarchies to reason about the
level of authority that users have over shared objects together with a method
for obtaining the global policy from the archetype hierarchy and user policies.
Moreover, we demonstrate how the notion of transparency can be accommodated
in existing XACML-based access control mechanisms, thus showing its practical
applicability.

8 Conclusion

This paper has introduced a governance model for collaborative systems, which
enables the integration of the access requirements of all entities involved in the
protection of a data object with respect to their relation with the object. This
way, all entities are offered an appropriate level of control over shared resources.
We have implemented the model in XACML, allowing each user to provide its
requirements as a policy and using appropriate combining algorithms to achieve
the right precedence between their policies.

Even if the use of combining algorithms is necessary to automatically resolve
policy conflicts and thus guarantee the proper functioning of the system, it can
result in a user’s policy to be overruled without the user being aware. This may
lower the user’s trust in the system. To this end, we have introduced trans-
parency in the decision making, allowing users to choose to be notified about
conflicts between their access requirements and the decision enforced by the sys-
tem. Our implementation within SAFAX shows that a transparency service can
be deployed both as a PEP and a PDP. Our experiments show that deployment
as a PDP has a lower overhead. While the solution is not optimized for perfor-
mance, it can be applied to many scenarios, especially given the fact that the
introduced overhead is not on the critical path for access to resources.

The proposed transparency service only notifies users about policy mis-
matches. To enhance user awareness, users should be also able to understand
why a certain decision was taken [5]. An interesting direction for future work
is to augment users’ notification with information explaining why their policies
were overridden.
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Abstract. We study users behavior in online social networks (OSN) as a
means to preserve privacy. People widely use OSN for a variety of objec-
tives and fields. Each OSN has different characteristics, requirements,
and vulnerabilities of the private data shared. Sharing-habits refers to
users’ patterns of sharing information. These sharing-habits implied by
the communication between users and their peers hides a lot of addi-
tional private information. Most users are not aware that the sensitive
private information they share might leak to unauthorized users. We use
several different well-known strategies from graph flows, and the sharing-
habits of information flow among OSN users to define efficient and easy
to implement algorithms for ensuring privacy preservation with a prede-
fined privacy level.

1 Introduction

Online Social networks (OSN) are websites enabling users to build connections
and relationships among each other. The OSN structure represents social interac-
tions and relationships between entities which are the users of the OSN. Social
networks are widely used by members for information sharing with the pur-
pose of reaching as many friends as possible. The shared-information spread, is
influenced by human decisions, and users are not fully aware of the possible con-
sequences of their preferences when specifying access rules to their shared data.
It is the responsibility of OSN administrators to effectively control the shared
information, reduce the risk of information leakage, and constantly evaluate the
potential risks of shared-information leakage. Most access rules are defined in
terms of the degree of relationship required to access ones data. These rules are
not refined enough to allow for dynamic denial of content from certain peers of
the community.

We propose a model for access control that works with minimal user inter-
vention. The model is based on users’ patterns of sharing information denoted as
Sharing-habits. Naturally some users are more likely to share information with
others. To minimize the probability of information leakage, the social network is
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analyzed to determine based on these habits, the probability of information flow
through network connections. In a graph representation of the network, where
edges indicate relationship between users, the challenge is to select the set of
edges that should be blocked to prevent leakage of the shared information to
unwanted recipients. We review some methods for handling and preserving pri-
vacy in social networks, and present our new privacy preserving approach, based
on sharing-habits data. Our model combines algorithms that use graph flow
methods such as max-flow-min-cut, and contract. Experimental results show the
effectiveness of these algorithms in controlling the flow of information sharing
to allow sharing with friends while hiding from others. The paper is structured
as follows: in the next section we review related work, in Sect. 3 we define the
privacy assurance in OSN problem, and in Sect. 4 we present our method for deal-
ing with this problem. We explain our evaluation method and primary results in
Sect. 5 and conclude by summarizing our contribution and discussing directions
for future work in Sect. 6.

2 Related Work

There are various types of Online Social Networks, each with different prop-
erties. Privacy preservation can be viewed and handled from various aspects.
Carmagnola et al. [5] present a research about the factors that help users identi-
fication, and information leakage in social networks, based on entity resolution.
They conducted a study on the possible factors that make users vulnerable to
identification, and of personal information leakage, and the perception of users
about privacy related to the spreading of their public data. To find the risk
factors, they studied the relations between the user behavior (habits) on OSNs
and the probability of users’ identification. Kleinberg and Ligett [7] describe the
social network as a graph where nodes represent users, and an edge between
two nodes indicates that those two users are enemies that do not wish to share
information. The problem of information sharing is described as the graph col-
oring problem, Kleinberg and Ligett [7] analyze the stability of solutions for this
problem, and the incentive of users to change the set of partners with whom
they are willing to share information. Tassa and Cohen [11], handle the infor-
mation release problem, and present algorithms to compute an anonymization
of the released data to a level of k-anonymity; the algorithm can be used in
sequential and distributed environments, while maintaining high utility of the
anonymized data. Vatsalan et al. [3] conducted a survey of privacy-preserving
record linkage (PPRL) techniques, with an overview of techniques that allow
the linking of databases between organizations while at the same time preserv-
ing the privacy of these data. In this paper Vatsalan et al. [3] present taxonomy
of PPRL which characterize the known PPRL techniques along 15 dimensions,
highlight shortcomings of current techniques avenues for future research. Jae-
hong and Ravi [6] present the ORIGIN CONTROL access control model where
every piece of information is associated with its creator forever. Ranjbar and
Maheswaran [1], describe the social network as a graph where nodes represent
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users, and an edge between two nodes indicates that those two users are friends
that wish to share information. They present algorithms for defining communities
among users, were the information is shared among users within the community,
and algorithms for defining a set of users that should be blocked in order to
prevent the shared information from reaching the adversaries, and leaking out-
side the community. In OSN, communities are subsets of users connected to each
other; the community members have common interests and high levels of mutual
trust, it can be described by a connected graph, where each user is a node in
the graph, and an edge connecting two nodes indicates a relationship between
two users. A community is defind by Ranjbar and Maheswaran [1] from the view
point of an individual user. myCommunity is defined as the largest sub-graph
of users who are likely to receive and hold the information without leaking. In
other words, myCommunity is the subset of an individual users friends that
have intense and frequent interactions and describes a grouping abstraction of
a set of users that surrounds an individual based on the communication pat-
terns used for information sharing. Our study is based on the ideas described
in their paper; while they only share information within the defined community,
and block users that might leak information to adversaries, we relax the limita-
tion defined in their study, and block only edges on the path to the adversaries,
instead of blocking all the information from the source user to the users that
might leak the information.

3 The Privacy Assurance in OSN Problem

In this section we define the general problem of privacy assurance in OSN and
our proposed method that uses information from users sharing-habits.

Let G = (V,E) be a directed graph that describes a social network, where
V is the set of network’s users, and E is the set of directed and weighted edges
representing the users’ information flow relationships. An edge (ui, uj) ∈ E
exists only if ui shares information with uj . The distance between two vertices,
distG(ui, uj) is the length of the shortest path from ui to uj in G. Ego is an indi-
vidual focal node, it is the specific user from which we consider the information
flow. A network has as many egos as it has nodes, ego-community is the collec-
tion of ego and all nodes to whom ego has a connection at some path length.
The δ-community of a user, represented by the ego vertex ui is the sub-graph
Gδ(ui)=(Vδ(ui),Eδ(i)), where for each vi ∈ Vδ(ui), vi �= ui, distG(ui, vi) ≤ δ.

The following definitions are as defined by Ranjbar et al. [1]: pi is the prob-
ability that user ui is willing to share the information with some of his friends.

pi =
{

(outflow/inflow) (outflow < inflow),
1 (outflow ≥ inflow). (1)

– Outflow is the number of sharing interactions from ui to his friends.
– Inflow is the number of sharing interactions from u′

is friends to ui.

The likelihood of ui sharing information with uj along the edge (ui, uj) is repre-
sented by wi,j , the weight on the edge (ui, uj); This weight is derived from the
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relationship between ui and uj , it is a fixed number indicating the willingness of
ui to share information with uj , it does not change or change very infrequently,
and may be set by the user. The probability of flow between two neighbor users,
ui and uj is denoted as pij , and calculated by pi,j = pi × wi,j . Since the flow
may change quite often this probability may also changes with it. We assume
that the user behavior is consistent; user ui shares all the data with user uj with
probability pi,j . This probability can change with time, but it does not depend
on the content of the shared information. The Probability of Information Flow
(PIF ), is the maximum probability of information flow throughout the entire
paths between ui and uj . A path probability flow between ui and uj is the flow
of the edge with the minimum pi,j . It is denoted as PATHi,j . The PIF is the
maximum among of all paths between ui and uj of PATHi,j . The function f
which denotes flow, is computed by using the log of the edges’ probabilities on a
path between ui and uj . To prevent information flow from one user to another
we search for the minimal set of edges that when removed from the commu-
nity graph, or blocked, disables the flow. We denote this set of blocked edges
as B. Note that after edges are removed, the PIF and therefore f should be
recomputed.

3.1 Problem Goal

Our aim is to enable a user ui to share information with as many friends and
acquaintances as possible, while preventing information leakage to adversaries
within the user’s community. Ranjbar et al. [1] describe a method for sharing
information within the source user ui defined community, while blocking users
(friends and acquaintances) that might leak information to adversaries. We relax
the limitation due to blocking friends, and instead of blocking all the information
from the source user ui to the users that might leak the information, block only
edges on the path from ui to his adversaries. We use the following criteria to
define and evaluate the resulting ui ego-community graph:

1. Minimum Friends Information Flow: the minimum information flow from ui

to every user within his community must preserve a certain percentage of the
original information flow to every user denoted by α.
Let Gδ(ui) = (Vδ(ui), Eδ(ui)) be the δ-community of ui, v ∈ V (ui)

f(ui, v) ≥ α · foriginal(ui, v) (2)

2. Close Friends Distance: Close friends are defined by their distance from ui.
Gβ(ui) = (Vδ(ui), Eδ(ui)) is the β-community of ui, v ∈ V (ui), β < δ. This
criteria reflects the requirement that all the users within u′

is β-community
must receive the entire information from ui, and cannot be blocked.
Let B be the set of blocked edges, than

B ⊂ {(us, ut)|dGδ
(ui, us) ≥ β, us, ut, ui ∈ VGδ

(ui)} (3)

We assume that there are no adversaries within u′
is β-community, otherwise

the above condition can never be fulfilled.
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3. Maximum Adversaries Information Flow: the maximum information flow from
ui to each of his adversaries cannot be more than γ from the original infor-
mation flow to each adversary.

f(ui, uadv) ≤ γ · foriginal(ui, uadv) (4)

For example the threshold parameters can be: α = 0.9, β = 2, and γ = 0.1. The
problem goal is to remove the least number of edges such that the three Eqs. 2,
3, 4 will be satisfied.

Fig. 1. u′
is community graph (Color figure online)

Figure 1 describes a δ-community graph for ui. The dotted area surrounds u′
is

δ-community graph with δ = 4, i.e. all acquaintances within distance ≤ 4. The
blue area surrounds u′

is β-community, i.e. all friends within distance ≤ 2.
As shown by the figure the δ-community of friends is much larger than the
β-community of close friends.

3.2 Cuts in Graphs

A cut in a graph is a set of edges between two subsets of a graph, one con-
taining ui, and the other containing u′

is adversaries, such that when removed,
prevents information flow from one subset to the other.
A naive algorithm for solving the problem would be an algorithm that finds any
cut between the adversaries’ set and u′

is community, and defines this cut as the
blocked edges list. Algorithm 1 is a naive algorithm for blocked users.

The naive algorithm is not suitable for our problem, since it doesn’t comply
with the (1) Minimum Friends Information Flow, (2) Close Friends Distance-
criteria of our problem. Condition (1) requires minimum information flow from
ui to all members in u′

is community, the naive algorithm doesn’t handle this
requirement. Condition (2) defines close friends by their distance from ui, the
naive algorithm doesn’t handle this requirement. While the naive algorithm is
not sufficient to our problem, it is important for understanding the theoretical
problem defined here.
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Algorithm 1. Naive algorithm for blocked users
Input: G = (V, E) a directed graph that describes the social network.

ui the ego user.

δ the community distance criteria.

AdversariesList: the list of u′
is adversaries.

Output: B:the set of blocked edges.

1: set B = ∅
2: for all uj ∈ V and (uj /∈ AdversariesList) and (distG(ui, uj) ≤ δ) do
3: insert uj to Vδ(ui)
4: for all uj ∈ AdversariesList do
5: insert uj to Vδ(adversaries)
6: Choose any cut between the community graph, Vδ(ui) and the adversaries

Vδ(adversaries).
7: for all eij ∈ {the cut between Vδ(ui) and Vδ(adversaries)} do
8: insert eij to B
9: return B

4 The Sharing-Habits Based Privacy Assurance
in OSN Solution

In our solution we propose a model for finding the set of edges that should be
blocked in order to achieve maximum information sharing among the community
of the information source with minimum information leak. Our model uses two
methods for defining candidate sets for blocked edges, along with the evaluation
method for choosing the best set to be blocked. Our method consists of two major
steps, the first is the initialization step that creates a multi-graph with a super-
vertex s1 containing u′

is β-community, this step is described in Subsect. 4.1. The
second step described in Subsect. 4.2, uses two methods to find candidates-sets
for blocked edges.

Algorithm 2 warps these steps to construct the set of edges to be blocked.

Fig. 2. Construct blocked edges main building blocks



Sharing-Habits Based Privacy Control in Social Networks 223

Algorithm 2. Construct blocked edges
Input: ui: the ego vertex.

Gδ(ui) = (Vδ(ui), Eδ(ui)): u′
is δ-community graph.

α, γ: Flow thresholds.

β: β-community distance.

AdversariesList: the list of u′
is adversaries.

Output: B:a set with edges to be blocked.

1: MultiSet function Initialize(ui, Gδ(ui), β, AdversariesList)
2: set s1 = {ui}
3: for all (uj ∈ Gδ(ui)) and (distGδ (ui, uj) ≤ β) do
4: if (uj /∈ AdversariesList) then
5: insert uj to s1
6: else
7: return ∅
8: return s1

{———–Main——————————}
9: s1 =Initialize(ui, Gδ(ui), β, AdversariesList)

10: if (s1 �= ∅) then
11: InitialCandidatesSet=CondtructBlockedEdgesCandidates(ui, Gδ(ui), s1,

AdversariesList, α, γ)
12: B = SelectBestBlockedEdges(InitialCandidatesSet)
13: return B

Figure 2 describes the main building blocks of the algorithm for defining the edges
to be removed from u′

is δ-community in order to prevent information leakage to
u′

is adversaries.
Next we detail each one of these building blocks.

4.1 Initialization

The δ-community of u′
is consists of all users uj connected to ui with a path with

distance ≤ δ. The β parameter defines the size of the community of close friends.
Therefore, a β-community of ui would be a sub-graph contained in δ-community
were β ≤ δ, as demonstrated in Fig. 1. The privacy criteria that is defined in
Subsect. 3.1 requires that the entire information shared by ui must be shared
with u′

is close friends (2). In order to comply with (2), the Initialization step
creates a multi-graph with one super-vertex s1 containing ui and his close friends
with distance ≤ β. This step ensures that the algorithm won’t define edges for
blocking on paths between ui and his close friends, since ui and his close friends
are in the same super-vertex, s1, see Fig. 3.

Figure 3(a) describes a δ-community graph for u0, with 10 members, δ=3, 4
are close friends with distances=1 (blue vertices), 4 acquaintances (green ver-
tices), and 2 adversaries (red vertices). Figure 3(b) describes the graph after
initialization.
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4.2 Construct Blocked Edges Candidates

We use two methods derived from flow problems, to find the initial candidates-
set of edges to be blocked. This candidates-set is a cut between two sets of
vertices, one set containing ui, u′

is β-community, and some vertices from of u′
is

δ-community. The other set containing the remaining part of u′
is δ-community,

and u′
is adversaries.

This candidates-set is evaluated to filter out the final candidates-sets by
selecting a set that complies with the required privacy criteria. This process is
described in Sect. 4.3; the two methods we use for finding the initial candidates-
sets of edges to be blocked are:

1. Min-Cut : based on Ford-Fulkerson [4], Max-flow-min-cut algorithm, to find
the minimum cut between super-vertex s1 that contains ui and his close
friends, and each of u′

is adversaries. This process is described in Subsect. 4.2.1.
2. Contract : based on Karger et al. [9], contract algorithm, to find any cut

between super-vertex s1 that contains ui and his close friends, and each of
u′

is adversaries. This process is described in Subsect. 4.2.2.

4.2.1 Block Edges by Min-Cut
Algorithm 3 implements the Sharing-habits privacy assurance based on the max-
flow min-cut method by Ford and Fulkerson [4], and then checks for privacy
criteria compliance:

1. Find a minimum cut between super-vertex s1 and u′
is adversaries [4].

2. Check if the cut complies with the required privacy criteria as defined in
Subsect. 3.1, and select the final candidates-set. This process is described in
Subsect. 4.3.

Algorithm 3. Block edges by Min-Cut
Input: ui: the ego vertex.

Gδ(ui) = (Vδ(ui), Eδ(ui)): u′
is δ-community graph, after the initialization step.

α, γ: Flow threshold.

AdversariesList: the list of u′
is adversaries.

Output: B:a set with edges to be blocked.

1: set B = ∅
2: InitialBlockedEdges= FindMinCut(ui,Gδ(ui),AdversariesList)

3: if (InitialBlockedEdges �= ∅) then
4: B=ComputeFinalCandidatesSet(ui,Gδ(ui),AdversariesList,InitialBlockedEdges,α, γ)

5: return B
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Algorithm 4. Block edges by Contract
Input: ui : the source.

Gδ(ui) = (Vδ(ui), Eδ(ui)): u′
is δ-community graph, after the initialization step.

α, γ: Flow thresholds.

AdversariesList: the list of u′
is adversaries.

Output: B:the set with the blocked edges.

1: set B = ∅
2: InitialBlockedEdges= ContractFindCut(ui,Gδ(ui), AdversariesList)

3: if (InitialBlockedEdges �= ∅) then
4: B=ComputeFinalCandidatesSet(ui,Gδ(ui),AdversariesList,InitialBlockedEdges,α, γ)

5: return B

Algorithm 5 is called by Algorithm 4 to find a cut between two vertices by
randomly selecting an edge and contracting the two vertices connected by the
selected edge into one super-vertex.

Algorithm 5. ContractFindCut
Find a cut in a graph by repeatedly contracting vertices into two super vertices
Input: Gδ(ui) = (Vδ(ui), Eδ(ui)): δ-community multi-graph, after the initialization

step.

ui: the source.

AdversariesList: the list of u′
is adversaries.

Output: CutSet: the resulting cut.

1: set CutSet = ∅
2: repeat
3: if (all edges (u, v) are tested) then
4: return CutSet
5: else
6: choose an edge (u, v) uniformly at random from E \ testededges
7: if (u and v don’t contain each others’ adversaries) then
8: contract the vertices u and v to a super vertex w
9: keep parallel edges, remove self loops

10: until (G has only two super-vertices)
11: set CutSet = the edges between the two vertices
12: return CutSet

4.2.2 Block Edges by Contract
The minimum cut between Gβ(ui), and u′

is adversaries, found by BlockEdges-
ByMinCut algorithm, might not be the optimal solution for our problem, since
the edges in this cut may not satisfiy the privacy criteria. Thus, we use the con-
tract algorithm, that finds a variety of other cuts possibly complying with the
required privacy criteria.
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(a) (b)

Fig. 3. u′
0s δ-community graph: (a) u′

0s community (b) after initialization (Color figure
online)

Algorithm 4 implements the Sharing-habits privacy assurance based on the
contract method by Karger and Stein [8,9].

In each iteration, the contract algorithm finds a different cut between the
super-vertex containing Gβ(ui) and the super-vertex containing u′

is adversaries.
The contract algorithm repeatedly contract vertices to super-vertices until it
gets two super-vertices connected by a set of edges that defines a cut between
the two sets of vertices contained in each super-vertex.

Algorithm 4 is composed of the following main steps:

1. Find a cut between super-vertex Gβ(ui) and u′
is adversaries; this step uses

the contract algorithm presented [8,9]
2. Check if the cut complies with the required privacy criteria as defined in

Subsect. 3.1, and select the final candidates-set. This process is described in
Subsect. 4.3.

Figures 4 and 5 describe a simple community graph and some steps of one
run of the contract algorithm.

(a) (b)

Fig. 4. Contract: (a) Edge (5,10) was randomly selected, (b) Edge (5, 2) cannot be
selected, since the algorithm can’t contract a super-vertex containing u0 with a super-
vertex containing u′

0s adversary. (Color figure online)
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(a) (b)

Fig. 5. Contract: (a) Edge (3, 7) is randomly selected (b) The obtained cut from one
run of Contract algorithm (Color figure online)

4.3 Compute Final Candidates Set

After selecting the initial candidates-set of edges to be blocked, each method
uses Algorithm 6 for selecting the final candidates-set of edges that should be
removed from u′

is δ-community graph. In the first step of the algorithm, we
check if by removing the initial-candidates-set of edges from u′

is δ-community
graph, the remaining δ-community graph for user ui complies with the required
privacy criteria. If it doesn’t comply with the required privacy criteria, we try to
remove edges from the initial blocked candidates-set, and insert them back into

Algorithm 6. Compute final candidates-set
Input: ui : the source.

Gui : u′
is δ-community multi-graph, after the initialization step.

AdversariesList: the list of u′
is adversaries.

InitialBlockedEdges: the list of edges to be blocked.

α, γ: Flow thresholds.

EdgeMethod : the method for selecting the next edge for unblocking.

Output: BlockedEdges: the final set of edges to be blocked.

1: while ((ComputeCriteria(ui, Gui , AdversariesList, InitialBlockedEdges, α, γ)
�= TRUE) and (InitialBlockedEdges �= ∅)) do

2: switch (EdgeMethod)
3: case Random:
4: e ← select random (u, v) ∈ Eui

5: case MaxPIF:
6: e ← arg max(u,v)∈Eui

PIF

7: case MinPIF:
8: e ← arg min(u,v)∈Eui

PIF

9: end switch
10: InitialBlockedEdges = InitialBlockedEdges \(u, v)
11: BlockedEdges = InitialBlockedEdges
12: return BlockedEdges
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u′
is δ-community graph, until the remaining community graph complies with the

required criteria, or until we tested the entire edges in the initial candidate-set,
and couldn’t find a set of edges to be blocked. We propose three methods for
selecting and removing an edge from the initial candidates-set, and insert the
selected edge back to δ-community graph:

1. Randomize: select an edge randomly.
2. Maximum PIF: select the edge with the maximum probability of information

flow.
3. Minimum PIF: selecting the edge with the minimum probability of informa-

tion flow.

Algorithm 6 implements the three methods and Algorithm 7 tests the criteria.

Algorithm 7. Compute the required criteria
Input: ui : the source.

Gui : u′
is δ-community multi-graph, after the initialization step.

AdversariesList: the list of u′
is adversaries.

BlockedEdges: the list of edges to be removed.

α, γ: Flow thresholds.

Output: ComplyCriteria: indicator whether the community graph without the

blocking-set complies with the required privacy criteria.

1: for all v ∈ Gui do
2: if (f(ui, v) < α · foriginal(ui, v)) then
3: return FALSE
4: for all aadv ∈ AdversariesList do
5: if (f(ui, uadv) > γ · foriginal(ui, uadv)) then
6: return FALSE
7: return TRUE

5 Evaluation

In this section we describe the evaluation method we use for the proposed algo-
rithm, and the results we obtained using real data [10]. We first demonstrate our
methods and the difference between them using a toy community.

5.1 Demonstration on a synthetic community

We demonstrate our algorithms on a small graph representing a synthetic com-
munity that we built from the example in [2], containing 11 vertices, and 23
edges. We selected community distance δ = 3, close friends distance β = 1, and
assigned 2 adversaries. The algorithms were tested with different probabilities
of information flow from source user U0 to the community members. In the
following example, Fig. 6 describes the synthetic community graph with high
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Fig. 6. Synthetic community graph with collision (Color figure online)

Table 1. PIF from U0 to his community

User 1 2 3 4 5 6 7 8 9 10

MAX PIF 0.76 0.62 0.43 0.67 0.4332 0.4154 0.2949 0.4281 0.4115 0.4332

Table 2. Min-Cut candidates

Edge PIF

(5,9) 0.95

(6,9) 0.19

(8,9) 0.8

(3,8) 0.9

(3,7) 0.62

(5,10) 1

Table 3. Contract candidates

Edge PIF

(4,5) 0.62

(1,5) 0.57

(2,6) 0.67

(3,8) 0.9

(7,10) 0.85

probability of information flow on the edges to adversaries. This situation sim-
ulates a collision, and it is hard to select α and γ such that we get minimum
leakage of information flow to u′

is adversaries, and maximum information flow
to u′

0s community.
In this community graph U0 is the source, U0 has four close friends: 1, 2, 3, 4,

four acquaintances: 5, 6, 7, 8, and two adversaries: 9, 10.
Each adversary has three incoming edges.
{(6, 9), (5, 9), (8, 9) } with probabilities (0.19, 0.95, 0.8) respectively.
{(5, 10), (7, 10), (8, 10) } with probabilities (1, 0.85, 0.95) respectively.

The maximum probability of information flow from U0 to the members of his
community graph is depicted in Table 1.

Next, using this example we show why the contract approach has better
chance of finding a good set of edged that can be blocked while satisfying the
privacy criteria.

Block edges by Min-Cut method. The Minimum cut found by Min-Cut
method is depicted in Table 2. If we remove the initial candidates-set edges from
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u′
0s community graph, the probability of information flow to 7 and 8 will be 0,

meaning no flow at all. In the final step of Algorithm6, we try unblocking each
edge from the initial candidates-set, and reach the required privacy criteria,
which is computed by Algorithm7; in this example the only edge that improves
the PIF to community without increasing the information leakage to u′

0s adver-
saries is (3, 7), thus the final candidates-set is {(3, 7)}. In this example we can’t
define α, and γ with values that comply with the required privacy criteria, which
is computed by Algorithm 7.

Block edges by Contract method. A Cut found by an iteration of contract
method is depicted in Table 3.

If we remove the initial candidates-set edges, the probability of information
flow to 5, 6, and 8 will be 0, meaning no flow at all. Algorithm6 tries unblocking
each edge from the initial candidtes-set, and reach the required privacy criteria,
which is computed by Algorithm7; the final candidates-set is empty, since each
edge we unblock not only improves the information flow to u′

0s community, but
also increases the information leakage to u′

0s adversaries.
It is obvious that when the edges to the adversaries have high probabilities,
the max-flow-min-cut methods might not select those edges, and might not find
a solution that comply with the required privacy criteria, while the contract
method might find the trivial cut that contains only the edges to the adversaries,
and thus comply with the required privacy criteria.

5.2 Test on SNAP Database

We evaluated our algorithms on the Facebook network data from Stanford Large
Network Data-set Collection [10]. The SNAP library is being actively developed
since 2004 and is organically growing as a result of Stanford research pursuits in
analysis of large social and information networks. The website was launched in
July 2009. The social network graph describes the Social circles from Facebook
(anonymized) and consists 4,039 nodes (users), and 88,234 edges, it describes the
Social circles from Facebook (anonymized). We took the structure and relation-
ship from the SNAP database, and assigned random probabilities to the edges in
the network graph in the following way. We defined four types of users, the type
reflects the user’s willing to share information: very high sharing users, medium,
sometimes, and very low. For each user in the graph we randomly assigned
a type. To conform the edges’ probabilities to the users’ types, we randomly
assigned probabilities to the users’ edges according to their types, from the fol-
lowing ranges: very high sharing users (probability 0.75-1), medium (0.5-0.75),
sometimes (0.25-0.5), very low (0-0.25). The four types were generated uniformly
among all the network users.

Preliminary Results. Tables 4, 5 summarize the results of four different eval-
uation runs, for different communities.

Table 4 presents four runs with the four different sub-communities. The com-
munity size is derived by the user selected as the sharing user. Friends column
refers to the amount of first degree friends. Table 5 present the results obtained by
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Table 4. Data size

Run Vertices Edges Friends Adversaries

1 334 968 15 2

2 1036 2428 26 3

3 1495 6886 40 10

4 206 3755 29 2

the four runs. Columns 2–3 and 4–5 present the initial set of edges to be blocked
and the final set of edges found by min-cut and contract algorithm respectively.
Columns 6–8 present the threshold parameters used for the run. The difference
between the two algorithms is the method for finding the initial candidates set,
min-cut versus contract. Both algorithms use the same method for computing the
privacy criteria. For each community graph we performed the algorithms with
extreme thresholds, (α = 0, β = 1, γ = 1, and α = 1, β = 1, γ = 0), and with
random thresholds. The remark indicates which edges were found as candidates
for blocking. We can see that in the simple case (e.g., run 1 and 2) the solution
is trivial and the blocked edges were the edges to the adversaries. While both
algorithm are complete, in the non trivial cases, min-cut finds the best solution
with respect to blocking adversaries, while contract may return a compromised
solution that is less efficient in blocking adversaries but allows more sharing with
friend. However, the time performance of the contract is much better.

It is important to note that the contract algorithm if executed multiple times,
is guaranteed to eventually find the optimal solution with respect to the threshold
criteria. In the case where there is no solution, the contract algorithm will provide
the best cut that satisfies the threshold.

Table 5. Evaluation runs results

Run MinCut MinCut Contract Contract α β γ Remark

initial final initial final

edges edges edges edges

1 2 2 7 7 0 0 1 All edges to adv

1 2 2 7 7 1 0 0 All edges to adv

1 2 2 7 7 0.783 1 0.5654 All edges to adv

2 2 2 2 2 0 0 1 contract=mincut= edges to adv

2 2 2 2 2 1 0 0 contract=mincut= edges to adv

2 2 2 2 2 0.056 1 0.4266 contract=mincut= edges to adv

3 29 29 5 5 0 0 1 mincut=adv, contract=mix

3 29 29 5 0 1 0 0 mincut=adv, contract=mix

3 29 29 12 0 0.8867 1 0.0376 mincut=adv, contract=mix

4 2 0 34 34 0 0 1 mincut=mix, contract=mix

4 2 0 51 19 1 0 0 mincut=mix, contract=mix

4 2 0 286 181 0.0846 1 0.6478 mincut=mix, contract=mix



232 S. Levy et al.

6 Conclusion

The problem of uncontrolled information flow in social network is a true concern
to ones privacy. In this paper we address the need to follow the social trend of
information sharing while enabling the owner to prevent their information from
flowing to undesired recipients. The goal of the suggested method is to find the
minimal set of edges that should be excluded from ones community graph to
allow sharing of information while blocking adversaries. To reduce side effect of
limiting legitimate information flow, we minimize this impact according to the
flow probability. Our algorithms can be used within the ORIGIN CONTROL
access control model [6]. In this model every piece of information is associated
with its creator forever. The set of cut edges found by our algorithms, is stored for
each user and can be checked when the origin controlled information is accessed.
This way the administrator can check whenever this information is access by a
certain user, if the edge between them was cut for the originator user. In future
work, we intend to expand the evaluation and test our algorithms on differ-
ent types of social networks (e.g., twitter). We intend to further explore more
approaches to identifying the edges to be blocked, such as genetic algorithm.
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Abstract. The growing popularity of social networks has generated
interesting data analysis problems. At the same time, it has raised impor-
tant privacy concerns, because social networks contain personal and sensi-
tive information. Consequently, social graphs, which express the relations
between the actors in a social network, ought to be sanitized or anonymized
before being published. Most work on privacy-preserving publication of
social graphs has focused on dealing with passive attackers while active
attackers have been largely ignored. Active attackers can affect the struc-
ture of the social network graphs actively and use structural information,
as a passive attacker does, to re-identify a user in a social graph. In this
article we propose, to the best of our knowledge, the first anonymization
method that resists to active attacks.

Keywords: Privacy · Social networks · Active attacks · Antidimension

1 Introduction

Human interaction and socialization has changed as communication and informa-
tion technology evolves. Emotions, feelings, thoughts, can all be shared instantly
by simply pressing a button in one’s favorite social network application. This
adds a degree of freedom to what we share and how we show it in comparison
to, for example, face-to-face communication. While the latter is confined to a
bounded physical space and builds upon the subtleties of human physical inter-
action, online social networks make it easier to disclose personal feelings as users
are typically hidden behind a computer screen.

A social graph is a static representation of a social network; a sort of snapshot.
Every vertex corresponds to a user who connects to other users through edges
representing social links, e.g., friendship, co-authorship, and financial exchange.
Researchers rely on graph theory and methods from modern sociology to extract
useful knowledge by means of community detection, link prediction, identifica-
tion of prominent actors, etc.

People tend to appreciate the discovery and revelation of new knowledge, but
when it comes to personal information, one immediately perceives a privacy risk.
Social graph analysis, although useful, may indeed jeopardize an individual’s
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privacy. An adversary could identify a user in a published social graph and
learn sensitive information such as political and religious preferences. Ergo, social
graphs ought to be sanitized or anonymized before making them available for
analysis.

A fundamental anonymization technique consists in removing identifying
attributes from the social graph, such as name, email address, and social secu-
rity number [8]. Other types of attributes, often called quasi-identifiers, which in
combination may uniquely identify an individual, ought to be removed as well.
This makes it harder to identify the user behind a node in a social graph, which
is often call re-identification. The challenge is that even a simple graph without
attributes attached to its vertices can be subject to re-identification attacks. For
example, an adversary who knows the number of social links of a target victim
can identify the victim as a hub1 in the social network. The re-identification can
be made more precise if the number of connections is unique in the network.

Re-identification attacks to social graphs are typically categorized as passive
or active. In a passive attack the adversary attempts to re-identify the victim
only after the social graph has been published. In an active attack, instead, the
adversary proactively inserts sybil nodes in the network and tries to establish
links with the targeted victims. The links are made in such a way that every
victim connects to the set of sybil nodes in a unique and re-identifiable manner.
Once the social graph is released, the adversary identifies his own set of sybil
nodes, which are used to re-identify users by using their connections to the set
of sybil nodes [1,13].

Active attacks are by definition stronger than passive attacks, yet little atten-
tion has been paid to counteract this type of privacy attack. The first privacy
notion that accounts for such active privacy attacks has been proposed just
recently in [10]. This notion, which is called (k, �)-anonymity, expresses that
a user cannot be re-identified with probability higher than 1/k by an active
attacker able to introduce � sybil nodes in the graph. It has been shown in [10]
that real-life social graphs tend to be (1, 1)-anonymous, which is the lowest pri-
vacy level possible. Indeed, in terms of offered privacy, (k, �)-anonymity forms
a lattice (a square grid) where (1, 1)-anonymity is the minimum. This leads to
the question whether it is possible to define privacy-preserving transformation
techniques that defy active attacks by transforming a graph with low anonymity
into a graph with higher anonymity that can be published without risking re-
identification. In this paper, we take a first stab at defining such transforma-
tions. In particular, we will study the transformation of a graph into a graph
with higher anonymity than (1, 1)-anonymity, while only adding edges.

Contributions: In this article we propose, to the best of our knowledge, the
first privacy-preserving anonymization approach that resists active attacks. We
use the privacy measure (k, �)-anonymity as proposed in [10] and provide an
efficient method to transform a graph G into another graph G′ such that G′

1 A hub is a special node in a network with significant more connections than other
nodes.
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is not (1, 1)-anonymous. That is to say, the obtained graph G′ satisfies (k, �)-
anonymity with k > 1 or � > 1. Our anonymization method is based on edge
addition operations only. As such, it preserves the original number of vertices
in the graph. We provide a theoretical bound on the number of edges that our
method needs to add in order to transform a graph into one that is not (1, 1)-
anonymous. Finally, we provide empirical results showing the impact of our
transformational approach in terms of resistance to well-known active attacks
such as the walk-based attack [1].

Structure of the Paper: Section 2 explains in detail passive and active pri-
vacy attacks in social graphs. Definitions and useful notions used throughout
this article are provided in Sect. 3. Section 4 presents and proves properties of
(1, 1)-anonymous graphs, which form the theoretical foundation of the proposed
anonymization approach (also introduced in Sect. 4). Section 5 consists of empir-
ical evaluations of the proposed method on random graphs. Conclusions are
drawn in Sect. 6.

2 Related Work

Most privacy notions for social graphs are based on k-anonymity [9], which
was originally proposed as a privacy measure for microdata. We thus start this
section by briefly depicting the role of k-anonymity in microdata, and how it has
been adapted to social graphs in order to resist passive attacks. Related work
on active attacks is provided at the end of this section.

k-anonymity in microdata. A pioneer study on re-identification attacks was
published in 2002 by Sweeney [9]. Sweeney estimated that 87% of the population
in United States can be uniquely identified by combining seemingly innocuous
attributes such as gender, date of birth and zip code.

Background knowledge is what makes a privacy attacker stronger. Either
through public sources (e.g., census data) or by malicious actions, an adversary
harvests information about a target victim which is used later to re-identify
the victim in other databases. Hence, the challenge is how to publish data in
such a way that users cannot be re-identified, regardless of the adversary’s back-
ground knowledge. A property known as k-anonymity gives a possible solution
approach [8].

A dataset is said to satisfy k-anonymity if every record is indistinguishable
from k − 1 other records with respect to a given adversary’s background knowl-
edge. Consequently, k-anonymity ensures that the considered adversary cannot
pinpoint the user behind a record with probability higher than 1/k. Moreover,
a k-anonymous dataset can still be considered useful for analysis; researchers
are interested in aggregate data describing the general behavior of a population
rather than in the characteristics of a single individual.

k-anonymity in social graphs. While Sweeney’s revelation mainly concerns
relational databases, later in 2009 Narayanan et al. showed that one third of
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social network users in Flickr and Twitter can be re-identified by a simple passive
attack on the anonymized Twitter graph with only 12% error rate [6]. Several
notions of k-anonymity have been consequently proposed in order to mitigate
the impact of passive attacks in social graphs.

Privacy notions based on k-anonymity rely on a proper definition of the
adversary’s background knowledge. In microdata this knowledge consists of a
set of quasi-identifiers, while in social graphs it is normally defined as a struc-
tural property on the graph, e.g., vertex degree or distance. Two vertices are said
to be indistinguishable if they are structurally equivalent with respect to the con-
sidered structural property. For example, Liu et al. [4] considered an adversary
who knows the degree of the victim node. This simple structural property leads
to the notion of k-degree anonymity, which is satisfied if for every vertex there
exist k − 1 other vertices with the same degree.

A privacy notion strictly stronger than k-degree anonymity is k-
neighbourhood anonymity [14]. This property requires that for every vertex v
in the graph there exist at least k − 1 other nodes v1, ...vk−1 such that the sub-
graph induced by v’s neighbours is isomorphic to the subgraph induced by vi’s
neighbours, for every i ∈ {1, . . . , k − 1}. This notion was soon generalized to
k-automorphism [3,15]. Two vertices u and v are equivalent if there exists an
isomorphism from the graph to itself where u maps to v [3]. The problem, how-
ever, is that real-life social graphs can hardly satisfy k-anonymity with respect
to automorphism [15].

Active attacks. The privacy notions described above do not account for an
adversary with the ability to actively manipulate the structure of the social
network. That would allow the adversary to influence the structural property of a
victim node, which is actually stronger than just knowing structural information.

Backstrom et al. were the first to show the impact of active privacy attacks
in social networks [1]. They propose an attack where the adversary plants a well-
constructed and uniquely identifiable subgraph in the social network graph. The
nodes in the adversary’s subgraph are used to establish links with the victim
nodes (e.g., by sending friendship requests), in such a way that every victim has
a unique fingerprint of links to the adversary’s subgraph. Once the social graph
is released, the adversary retrieves the planted subgraph and re-identifies those
nodes that preserve the expected fingerprint.

A recent improvement over the methods in [1] is the Seed-and-Grow attack
proposed by Wei et al. [13]. They combine the creation of a uniquely identifiable
subgraph with a progressive and self-reinforcing strategy, which starts with the
initial fingerprint and extends to other new vertices by using the knowledge
acquired during the re-identification procedure.

Preventing active attacks is challenging. Indeed, none of the privacy notions
described above [3,4,14,15] is well-suited to counteract active attacks. To the
best of our knowledge, the first privacy measure to evaluate the resistance of
social graphs to active attacks was proposed just recently in [10]. Trujillo-Rasua
and Yero model the adversary’s background knowledge as the distance vector
of a vertex with respect to the adversary’s subgraph. This leads to the privacy
notion (k, �)-anonymity [10].
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In this article we take a first step on defining graph transformations aimed
at improving privacy in terms of (k, �)-anonymity. Therefore, we provide in the
next section a formal definition for this privacy concept and introduce various
notations that we use throughout the article.

3 Preliminaries

We model a social graph G = (V,E) as a simple graph where V represents
individuals and E their relationships. The distance dG(v, u) between two vertices
v and u in G is the number of edges in the shortest path connecting them. Often
we simply write d(v, u) if it does not lead to ambiguity. The degree of a vertex
is the number of edges connected to it. An end-vertex is a vertex with degree
one. The eccentricity εG(v) of a vertex v in a connected graph G is the greatest
number of edges in a shortest path between v and any other vertex in G. We
call a shortest path an eccentricity path for v if its length is equal to εG(v).

Definition 1 (Metric representation). The metric representation of a vertex
v with respect to an ordered subset of vertices S = {u1, ..., ut} in a graph G =
(V, E) is the vector r(v|S) = (dG(v, u1), . . . , dG(v, ut)).

The metric representation is the structural property used in [10] to represent
the adversary’s background knowledge in active attacks.

Definition 2 (k-antiresolving set). Let G = (V,E) be a simple connected
graph and let S = {u1, · · · , ut} be a subset of vertices of G. The set S is called a
k-antiresolving set if k is the greatest positive integer such that for every vertex
v ∈ V − S there exist at least k − 1 different vertices v1, · · · , vk−1 ∈ V − S with
r(v|S) = r(v1|S) = · · · = r(vk−1|S).

As an example, consider the star graph in Fig. 1. The distance from v1 to
any other vertex in the graph is 1, thus {v1} is a 4-antiresolving set. On the
other hand, any set {vi} with i ∈ {2, 3, 4, 5} is a 1-antiresolving set because
r(v1|{vi}) = (1) while r(vj |{vi}) = (2) for every j ∈ {2, 3, 4, 5} and j �= i. Finally,
we consider the subset {v1, v5}. We observe that r(v2|{v1, v5}) = r(v3|{v1, v5}) =
r(v4|{v1, v5}) = (1, 2), implying that {v1, v5} is a 3-antiresolving set.

Fig. 1. A star graph.

Definition 3 (k-metric antidimension). The k-metric antidimension of a
simple connected graph G = (V,E) is the minimum cardinality amongst the
k-antiresolving sets in G.
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Considering again the star graph depicted in Fig. 1, we observe that {v2} is
a 1-antiresolving set with cardinality 1. Ergo, the 1-metric antidimension of this
graph is 1. Determining the 2-metric antidimension is a bit more troublesome.
We should first notice that v1 should be included in any 2-antiresolving set,
while {v1} itself is a 4-antiresolving set. Therefore, the 2-metric antidimension
of the star graph is greater than or equal to 2. However, the subset {v1, vi}
for every i ∈ {2, 3, 4, 5} is a 3-antiresolving rather than a 2-antiresolving set.
Consequently, the 2-metric antidimension of the graph in Fig. 1 is 3, given that
{v5, v1, v3} is a 2-antiresolving set. We refer the interested reader to [2] and [11]
for results on the metric dimension and the k-metric antidimension, respectively.

Definition 4 ((k, �)-anonymity). A graph G is said to meet (k, �)-anonymity
if k is the smallest positive integer such that the k-metric antidimension of G is
lower or equal than �.

A graph G satisfying (k, �)-anonymity ensures that every subset of vertices
with cardinality at most � is a k′-antiresolving set for some k′ ≥ k. Thus, every
vertex in G is indistinguishable from at least k − 1 other vertices with respect
to their metric representation to any subset of vertices of cardinality at most �.

4 Protecting (1, 1)-anonymous Graphs

In this section we provide theoretical properties of (1, 1)-anonymous graphs, and
use them to prove convergence of our anonymization method.

4.1 Properties of (1, 1)-anonymous Graphs

If G contains a 1-antiresolving set, say {v}, then there exists a vertex u such
that d(v, u) �= d(v, w) for every w ∈ V −{v, u}. Following terminology from [10],
we call such a vertex u a 1-resolvable vertex, in particular, we say that u is
1-resolvable by {v}. It follows that containing a 1-resolvable vertex is a sufficient
and necessary condition for a graph G to be (1, 1)-anonymous.

Proposition 1. A simple connected graph G = (V,E) satisfies (1, 1)-anonymity
if and only if it contains a 1-resolvable vertex.

Proof. If G contains a 1-resolvable vertex v, then there exists a vertex u in G
such that {u} is a 1-antiresolving set. Ergo G is (1, 1)-anonymous.

Now, let us assume that G is (1, 1)-anonymous and that there does not exist a
1-resolvable vertex in G. This implies that there does not exist a 1-antiresolving
set of cardinality 1 in G. Therefore, if a 1-antiresolving set in G exists then G
is (1, �)-anonymous for some � > 1, otherwise G is (k, �)-anonymous for some
k > 1. In either case G is not (1, 1)-anonymous, which is a contradiction. ��

Because the presence of 1-resolvable vertices implies (1, 1)-anonymity, we are
interested in finding those vertices in the graph which are 1-resolvable. A first
trivial result in this direction is the following.
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Lemma 1. For every end-vertex v in a graph G = (V,E) it holds that v’s
neighbour is 1-resolvable by {v}.
Proof. We should first notice that if |V | = 2 then both v and v’s neighbour are 1-
resolvable. Thus, let us assume that |V | > 2 and let u be v’s neighbour. Because
any path to v passes through u, we obtain that d(w, v) = d(w, u) + d(u, v) >
d(u, v) = 1 for every w ∈ V − {v, u}. Therefore, {v} is a 1-antiresolving set and
u is a vertex 1-resolvable by {v}. ��

A consequence of Lemma 1 is that every graph with end-vertices is (1, 1)-
anonymous. Hereinafter we thus assume that social graphs do not contain end-
vertices; they can be either removed from the social network or connected to
other nodes. It is also worth remarking that, if v is an end-vertex, then v’s
neighbor lies in every eccentricity path of v. We prove next that, indeed, every
vertex 1-resolvable by {v} lies in an eccentricity path of v.

Lemma 2. Let G be a simple connected graph, let {v} be a 1-antiresolving set
in G, and let v1 · · · vm be an eccentricity path of v, i.e., v1 = v. For every vertex
u that is 1-resolvable by {v} there exists i ∈ {1, . . . , m} such that u = vi.

Proof. Let us assume that u �= vi ∀i ∈ {1, . . . , m}. By definition, the eccentricity
of v satisfies that ε(v) ≥ d(v, w) for every w ∈ V (G) and, in particular, ε(v) ≥
d(v, u). Given that d(v, vm) = ε(v) ≥ d(v, u), there must exist i ∈ {1, . . . , m}
such that d(v, u) = d(v, vi) (see Fig. 2 left). Consequently, either u = vi or u is
not 1-resolvable by {v}, which both lead to a contradiction. ��

The next result is rather simple, yet it is the core of our anonymization
approach. It provides a necessary condition for a vertex to be not 1-resolvable
by vertices within a cycle of odd order.

Proposition 2. A cycle graph Cn of odd order satisfies (2, 1)-anonymity.

Proof. Every vertex v in Cn has two diametral vertices (see Fig. 2 right), ergo
{v} is a 2-antiresolving set. ��

Fig. 2. Left: An eccentricity path v1 − vi − vm and a vertex u located out of that
path. Right: A cycle of odd order. A vertex (in Black) has the same distance to both
diametral vertices (in Gray).
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4.2 A Graph Transformation Approach

Our elimination approach of 1-resolvable vertices is based on Proposition 2 and
Lemma 2. We aim at including all 1-resolvable vertices lying in a given eccentric-
ity path into a cycle of odd order by adding a single edge. This transformation
is defined as follows.

Definition 5 (v-transformation). Let v be a vertex in a graph G = (V,E)
such that {v} is a 1-antiresolving set, and let v1 · · · vm be an eccentricity path of
v where v1 = v. Let i and j be the lowest and largest positive integers, respectively,
such that vi and vj are 1-resolvable by v in G. A v-transformation results in the
graph (V,E ∪ {(vi−1, vj)}) if j − i is odd, otherwise in (V,E ∪ {(vi−2, vj)}).

The remaining results within this section are aimed at proving properties of
a v-transformation in a graph.

Theorem 1. Let G = (V,E) be a simple connected graph, {v} a 1-antiresolving
set, and G′ the graph resulting from a v-transformation in G. Let S be the set
of vertices in G contained in an eccentricity path of v in G. Every w ∈ S is not
1-resolvable by {v} in G′.

Proof. Let v1 · · · vm be an eccentricity path where v1 = v. Let i and j be the
lowest and largest positive integers, respectively, such that vi and vj are 1-
resolvable by v in G. G1 and G2 denote the v-transformation of G when j −
i is odd and even, respectively. Next, we consider a vertex w ∈ {v1, . . . , vm}
and analyze different cases regarding the position of w in the eccentricity path
v1 · · · vm. Figure 3 depicts the three scenarios.

Fig. 3. An eccentricity path v1 − vm within the graph G. The dashed edge G1 (resp.
G2) represents the v1-transformation if j − i is odd (resp. even).

Case 1 (w ∈ {v1, . . . , vi−2}). In this case w is not 1-resolvable by {v1} in G.
Therefore, let w′ ∈ V − {v1, . . . , vm} such that dG(v1, w) = dG(v1, w′). We
choose k ∈ {1, . . . , m} to be the largest positive integer such that dG(v1, w′) =
dG(v1, vk)+dG(vk, w′). On the one hand, it holds that dG(vk, w′) = dG1(vk, w

′) =
dG2(vk, w

′). On the other hand, it is easy to note that k < i − 1, otherwise
dG(v1, w′) ≥ i − 1 > dG(v1, w). This implies that dG(v1, vk) = dG1(v1, vk) =
dG2(v1, vk) and, thus, dG(v1, w) = dG1(v1, w) = dG2(v1, w) = dG(v1, w′) =
dG1(v1, w

′) = dG2(v1, w
′). Ergo, w is not 1-resolvable by {v} in G1 and G2.
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Case 2 (w ∈ {vi−1, . . . , vj}). Now consider that w ∈ {vi−1, . . . , vj}, which means
that w is contained in the cycles vi−1vi · · · vjvi−1 and vi−2vi · · · vjvi−2 from G1

and G2, respectively. Considering Proposition 2, we obtain that if j − i is odd
then w is not 1-resolvable by {v} in G1, otherwise w is not 1-resolvable by {v}
in G2.

Case 3 (w ∈ {vj+1, . . . , vm}). Finally, consider that w ∈ {vj+1, . . . , vm}. In this
case we obtain the following.

dG1(v1, w) = dG1(v1, vi−1) + dG1(vi−1, vj) + dG1(vj , w)
= dG(v1, w) − (j − i) (1)

Similarly we obtain:

dG2(v1, w) = dG(v1, w) − (j − i + 1) (2)

On the other hand, dG1(v1, w
′) = dG1(v1, vk)+dG1(vk, w

′) and dG2(v1, w
′) =

dG1(v1, vk′) + dG1(vk′ , w′) for some k, k′ ∈ {1, . . . ,m}. We notice that
dG1(vk, w

′) = dG(vk, w′) and dG1(v1, vk) ≥ dG(v1, vk) − (j − i), which gives
the following inequality.

dG1(v1, w
′) ≥ dG(v1, vk) + dG(vk, w′) − (j − i) (3)

Analogously we obtain:

dG2(v1, w
′) ≥ dG(v1, vk′) + dG(vk′ , w′) − (j − i + 1) (4)

Moreover, dG(v1, vk)+dG(vk, w′) ≥ dG(v1, w′) = dG(v1, w) and dG(v1, vk′)+
dG(vk′ , w′) ≥ dG(v1, w′) = dG(v1, w), which applied to Eqs. 3 and 4 gives:

dG1(v1, w
′) ≥ dG(v1, w) − (j − i)

dG2(v1, w
′) ≥ dG(v1, w) − (j − i + 1). (5)

Finally, Eqs. 1 and 2 together with the inequalities in 5 give that dG1(v1, w
′) ≥

dG1(v1, w) and dG2(v1, w
′) ≥ dG2(v1, w). Therefore, there exists a vertex w′′ in

the v1 − w′ path such that dG1(v1, w
′′) = dG1(v1, w). We observe that w′′ �= w,

given that dG(v1, w′) ≥ dG1(v1, w
′) ≥ k implying that dG(v1, w) must be greater

or equal than k as well. We conclude that w is not 1-resolvable by {v} in G1.
We draw the same conclusion for G2 by following an analogous reasoning.

We conclude this proof by recalling Lemma 2, which states that every 1-
resolvable vertex by {v} lies in the path v1 · · · vm. This means that i and j are
unique amongst all eccentricity paths of v in G. ��

Theorem 1 states that a v-transformation G′ satisfies that all vertices in G
which are included in an eccentricity path of v are not 1-resolvable by {v} in
G′. Consider, for example, the vertex vi in Fig. 3. While dG(v1, vi) �= dG(v1, u)
for every vertex u in G, it is easy to see that dG1(v1, vi) = dG1(v1, vj) and
dG2(v1, vi) = dG2(v1, vj−1). We next determine sufficient conditions by which a
vertex not contained in an eccentricity path of v is not 1-resolvable by {v} in a
v-transformation.



242 S. Mauw et al.

Theorem 2. Let G = (V,E) be a simple connected graph, {v} a 1-antiresolving
set, and G′ the graph resulting from a v-transformation in G. Let S be the
set of vertices in G contained in an eccentricity path of v in G. Let v1 · · · vm
an eccentricity path of v where v1 = v. For a given vertex w ∈ V − S let
k ∈ {1, . . . , m} be the largest positive integer such that dG(v1, w) = dG(v1, vk) +
dG(vk, w). Then k < i or k ≥ j implies that w is not 1-resolvable by {v} in G′.

Proof. As above, we use G1 and G2 to denote the v-transformation of G when
j − i is odd and even, respectively, where i and j are the lowest and largest
positive integers, respectively, such that vi and vj are 1-resolvable by v in G.

First, consider that k < i, in which case dG(v1, w) < dG(v1, vi), other-
wise there exists w′ ∈ V − {v1, . . . , vm} such that dG(v1, w′) = dG(v1, vi), a
contradiction. This means that dG(v1, w) ≤ i − 2. Because G1 and G2 result
from the addition of one edge to G, then dG1(v1, w) ≤ dG(v1, w) ≤ i − 2 and
dG2(v1, w) ≤ dG(v1, w) ≤ i−2. If dG(v1, w) = i−2, then vi−1 and vj satisfy that
dG1(v1, w) = dG1(v1, vi−1) = i−2 and dG2(v1, w) = dG2(v1, vj) = i−2 in G1 and
G2, respectively. If dG(v1, w) < i−2, then dG1(v1, w) = dG1(v1, vl) = dG2(v1, vl)
where l = dG(v1, w) + 1. We conclude that in both G1 and G2 the vertex w is
not 1-resolvable by {v}.

Next, consider that k ≥ j. Given that G1 and G2 result from the addition of
the edge (vi−1, vj) and (vi−2, vj), respectively, to G, we obtain that dG(vj , w) =
dG1(vj , w) = dG1(vj , w). Therefore, we obtain the following equalities.

dG(v1, w) = dG(v1, vj) + dG(vj , w)
dG1(v1, w) = dG1(v1, vj) + dG(vj , w)
dG2(v1, w) = dG2(v1, vj) + dG(vj , w)

Let vl be the vertex in v1 · · · vm such that dG(v1, vl) = dG(v1, w). It should
be noticed that l > j and dG(v1, vl) = dG(v1, vj) + dG(vj , vl), hence dG(vj , w) =
dG(vj , vl). As before, we obtain that dG(vj , vl) = dG1(vj , vl) = dG1(vj , vl).
Because dG(vj , w) = dG(vj , vl), we can rewrite the equalities above as follows.

dG(v1, w) = dG(v1, vj) + dG(vj , w)
dG1(v1, w) = dG1(v1, vj) + dG1(vj , vl)
dG2(v1, w) = dG2(v1, vj) + dG2(vj , vl)

Consequently, dG1(v1, w) = dG1(v1, vl) and dG2(v1, w) = dG2(v1, vl), imply-
ing that in both G1 and G2 the vertex w is not 1-resolvable by {v}. ��

We observe that even if i ≤ k < j a vertex w can still remain not 1-
resolvable by {v} in a v-transformation. This is the case, for example, in the
v1-transformation shown by Fig. 4. We thus provide next a sufficient condition
for a vertex w to be not 1-resolvable by {v} in a v-transformation regardless of
the position of k with respect to i and j.

Proposition 3. Let G = (V,E) be a simple connected graph, {v} a 1-
antiresolving set, G′ the graph resulting from a v-transformation in G, and
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Fig. 4. An example showing that a v-transformation may create new 1-resolvable ver-
tices.

v1 · · · vm an eccentricity path of v where v1 = v. For every w ∈ V −{v1, . . . , vm}
it holds that dG(v1, w) ≤ m − j + i − 1 implies that w is not 1-resolvable in G′.

Proof. Let v1 · · · vm be an eccentricity path where v1 = v. Let i and j be the
lowest and largest positive integers, respectively, such that vi and vj are 1-
resolvable by v in G. We call G1 and G2 to the v-transformation of G when j − i
is odd and even, respectively.

If dG1(v1, vm) ≥ dG1(v1, w) then w is not 1-resolvable by {v1} in G1. It is easy
to note that dG1(v1, vm) = dG1(v1, vi−1)+dG1(vi−1, vj)+dG1(vj , vm) = i−1+m−
j and analogously dG2(v1, vm) = i−2+m−j. Given that dG1(v1, w) ≤ dG(v1, w)
and dG2(v1, w) ≤ dG(v1, w) we conclude that if dG(v1, w) ≤ m − j + i − 1
then w is not 1-resolvable by {v1} in G1. Similarly, we can conclude that if
dG(v1, w) ≤ m − j + i − 2 then w is not 1-resolvable by {v1} in G2. ��

Finally, we provide a convergence result for our approach.

Theorem 3. Let G be a simple graph. We define a sequence of graphs Gi (for
i ≥ 0) inductively as follows:

– G0 = G.
– If there exists a 1-antiresolving set {v} in Gi then Gi+1 is the result of applying

a v-transformation to Gi.
– Otherwise, Gi+1 = Gi.

Let Si be the set of vertices in Gi such that v ∈ Si implies that {v} is a 1-
antiresolving set in Gi. Then Sj is empty for j ≥ ∑

∀v∈V εG0(v) − |V |.
Proof. Consider Gi−1 = (Vi−1, Ei−1) and Gi = (Vi, Ei) where Gi−1 �= Gi.
That is to say, Gi results from a v-transformation to Gi−1 where {v} is a 1-
antiresolving set in Gi−1. Let v1 · · · vm be the eccentricity path of v in Gi−1, i.e.,
v1 = v, such that Gi = (Vi−1, Ei−1 ∪ {(vi, vj)}) for some i, j ∈ {1, . . . , m}.

On the one hand, dGi
(v1, vm) = dGi

(v1, vi) + dGi
(vi, vj) + dGi

(vj , vm) =
dGi−1(v1, vi) + 1 + dGi−1(vj , vm). On the other hand, by definition of a v-
transformation the edge (vi, vj) satisfies that j−i ≥ 2. Therefore, dGi−1(vi, vj) ≥
2, which implies that dGi−1(v1, vm) > dGi

(v1, vm). We conclude then that
εGi

(v) < εGi−1(v).
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The result above states that every v-transformation from Gi−1 to Gi makes
the eccentricity of v to decrease. Because an eccentricity path cannot be shorter
than 1, the maximum number of v-transformations that can be applied to G0 is
bounded by εG0(v) − 1. Considering that every vertex could potentially form a
1-antiresolving set, we obtain the following upper bound:

∑
∀u∈V εG0(v) − |V |.

Consequently, the graph Gi with i =
∑

∀v∈V εG0(v) − |V | does not contain 1-
resolvable vertices. ��

Our anonymization approach simply consists of the successive application
of v-transformations until a graph without 1-resolvable vertices is found. The
number of v-transformations depends on how fast these transformations converge
to a graph without 1-resolvable vertices. According to Theorem 3, this number is
upper bounded by

∑
∀v∈V εG(v)−|V |, which is higher than or equal to |V |(εG−1)

where εG is the eccentricity of G. Considering that finding the shortest path
between every pair of vertices in a graph has computational complexity O(|V |3),
we obtain that the computational complexity of our method is O(|V |4(εG − 1)).

We end this section by remarking that the upper bound provided in Theo-
rem 3 is tight. That is, there exists a graph G = (V,E) such that the number of
edges added by our method is equal to

∑
∀v∈V εG(v) − |V |. Moreover, such an

upper bound corresponds to the minimum number of edges required to trans-
form G into G′ through edge addition operations only and such that G′ is not
(1, 1)-anonymous. The graph G we are referring to can be constructed as follows.

Consider the complete graph Cn = (V,E) with n vertices V = {v1, . . . , vn}.
Given a vertex vn+1, G is defined by G = (V ∪ {vn+1}, E ∪ {(vn, vn+1)}) (see
Fig. 5). On the one hand, any edge added to G has the form (vn+1, vi) for some
i ∈ {1, . . . , n}, which makes the distance between vn+1 and vi to become 1. On
the other hand, if the edge (vn+1, vi) for some i ∈ {1, . . . , n} is not added to
G, then the distance between vn+1 and vi remains equal to 2, implying that
vn+1 is 1-resolvable by {vi}. Therefore, there exists only one transformation
of G into a graph that is not (1, 1)-anonymous, that is, the transformation to
the complete graph Cn+1. This requires n additional edges, which is equal to∑

∀v∈V εG(v) − |V | = εG(vn) +
∑

∀v∈V −{vn} εG(v) − |V | = 1 + 2n − (n + 1) = n.

Fig. 5. An example graph.
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5 Experiments

In this section we evaluate the proposed anonymization method in terms of
privacy and utility loss2. Privacy is measured as the resistance of a graph to the
walk-based attack introduced in [1], while utility loss is measured as the number
of added edges.

5.1 The Walk-Based Attack

Given a social graph G = (V,E), the walk-based attack consists of inserting
new nodes X = {x1, . . . , xn} into G, resulting in the graph G′ = (V ∪ X,E).
The attacker chooses an arbitrary set Y = {y1, . . . , ym} of users in G as the
target of the attack. For each vertex yi ∈ Y , a subset Ni ⊆ X is designated as
the fingerprint of yi, such that i �= j =⇒ Ni �= Nj ∀i, j ∈ {1, . . . ,m}. The
fingerprint is created by connecting each vertex yi ∈ Y to all vertices in Ni. It is
worth remarking that such a fingerprint is nothing but the metric representation
of the vertex yi ∈ Y with respect to X, i.e., r(yi|X).

The goal of the attacker is to re-identify the set of vertices X in an
anonymized version of G′, which is used to re-identify the set of targeted ver-
tices Y by considering their unique fingerprints with respect to X. To do so,
the attacker creates random internal connections between the vertices in X by
adding the edge (xi, xj) with probability 1/2 for every i �= j ∈ {1, . . . , n}. We
use G(X) to denote the sub-graph in G′ induced by the vertices in X. Once
G′ is released, the attacker computes the set X containing all sub-graphs in
G′ isomorphic to G(X). Assuming that G(X) does not have a trivial automor-
phism as advocated in [1], the adversary determines for each fingerprint Ni with
i ∈ {1, . . . , m} the candidate set Vi = {v ∈ V |u ∈ Ni ⇐⇒ dG′(v, u) = 1}
containing all vertices in V whose fingerprint to G(X) is determined by Ni. We
consider that the adversary succeeds if all vertices in Y are correctly re-identified.
Therefore, the probability of success of the attack is:

∑
G(X)∈X

∏
1≤i≤m pi

|X | where pi =
{

1/|Vi| if yi ∈ Vi

0 otherwise.

5.2 Empirical Evaluation on Random Graphs

In order to validate the performance of the proposed anonymization method we
ran experiments on random graphs with different density values. We fix 50 as
the number of vertices in each random graph, implying that every density value
corresponds to a fixed number of edges. A random graph is thus created by
adding random edges, i.e., connecting random pairs of vertices, until the desired
number of edges is reached.

The density values range in {0.1, . . . , 1}, while we considered attacks with 1
and 4 sybil nodes. For each density value and a given number of sybil nodes,

2 Experiments were performed on the UL HPC platform [12].
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we build a random graph G with the previously mentioned density. In order to
simulate the walk-based attack, G is transformed into G′ by adding the sybil
nodes and their connections to the victim nodes. Two anonymized versions of G′

are considered: G′
1 and G′

2 corresponding to our anonymization method and a
random approach, respectively. The random approach consists in adding random
edges to G′. The particularity is that the random approach adds as many edges
as our approach, i.e., the number of edges in G′

1 is equal to the number of edges
in G′

2. Doing so, both approaches perform equally in terms of utility loss. Their
performance in terms of privacy are depicted in Fig. 6.

Fig. 6. Two charts depicting the average probability of success of the walk-based attack
in three types of graphs: random graphs (“Original”), random graphs anonymized
by our method (“Our approach”), and random graphs anonymized by the random
approach (“Random approach”). Left: the adversary can enrol a single node in the
network. Right: the adversary can enrol four nodes. (Color figure online)

Figure 6 shows the average probability of success of the walk-based attack in
250, 000 random graphs, and their corresponding anonymization versions by our
method and the random approach. Both anonymization approaches improve the
resistance to the walk-based attack with respect to the original graph. Indeed,
this attack succeeds with probability close to 1 on the original graphs for all den-
sity values above 0.2. Amongst the two anonymization approaches, ours performs
significantly better for most density values. In particular, our method ensures
that the probability of success of an adversary with the capability to insert a
single attacker node into the network is 0.

The pronounced non-monotonic behaviour of the curves in Fig. 6 corresponds
to the same type of behaviour of the curves in Fig. 7, which shows the average num-
ber of added edges by both our method and the random approach. It is indeed an
open question what would be the trend of a curve depicting the minimum number
of edges needed to transform a graph into another that is not (1, 1)-anonymous for
different density values. We observe that, for example, 1 and 2 edges need to be
added to a path graph of odd and even order, respectively. This means that such
minimum number of edges does not depend on the graph density only.
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Fig. 7. Two charts depicting the average number of edges added by our method,
referred to as “Our approach”. The charts also show the upper-bound as determined
in Theorem 3 (“Upper-bound”) and the maximum number of edges that can be added
(“Maximum”). Left: the adversary can enrol a single node in the network. Right: the
adversary can enrol four nodes. (Color figure online)

Figure 7 shows, as sketched in the previous section, that the minimum number
of edges added by our method, the upper bound provided by Theorem 3, and
the maximum number of edges that can be added, meet when the density of
the random graph is 1 and the adversary adds a single node to the graph. This
leads to the type of graph shown in Fig. 5. For other density values, the upper
bound in Theorem 3 is clearly above the actual number of edges added by our
technique.

6 Conclusions

In this article we have proposed, to the best of our knowledge, the first privacy-
preserving transformation method for social graphs that counteracts active
attacks. The proposed method is theoretically sound and outputs a graph that
satisfies (k, �)-anonymity with k > 1 or � > 1. We provide a theoretical upper-
bound on the utility loss, in terms of number of added edges, of our approach.
And we prove that such upper-bound is tight. Experiments on random graphs
show that the proposed method effectively counteracts active attack even when
the adversary is able to insert more than one sybil node in the network.
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Abstract. We propose a framework, called FATHoM (FormAlizing
THreat Models), to define threat models for virtualized systems. For each
component of a virtualized system, we specify a set of security proper-
ties that defines its control responsibility, its vulnerability and protection
states. Relations are used to represent how assumptions made about a
component’s security state restrict the assumptions that can be made
on the other components. FATHoM includes a set of rules to compute
the derived security states from the assumptions and the components’
relations. A further set of relations and rules is used to define how to
protect the derived vulnerable components. The resulting system is then
analysed, among others, for consistency of the threat model. We have
developed a tool that implements FATHoM, and have validated it with
use-cases adapted from the literature.

1 Introduction

Addressing security concerns in computing systems requires careful considera-
tion of the threats, usually described through threat models. But for virtual-
ized systems, attacks, solutions and threat models have evolved considerably
over the years [10]. Before presenting a security solution, research papers usually
describe their assumptions on the environment where the solution is meant to be
deployed. However, threat models are given in a descriptive rather than a formal
syntax, which is also not standardized. As a consequence, many publications rely
on implicit, and different, assumptions or lack clarity in their assumptions for
which there is no commonly understood semantics. For example, different terms
are used to refer to a component assumed to be insecure such as “malicious”,
“untrusted”, “in control of the attacker”, when the underlying assumption is
whether the component is inside or outside the trusted computing base (TCB).

We believe that using a precise model for threat modelling in virtualized
systems would help understanding: (i) the meaning of each assumption, by
harmonizing the terminology; (ii) whether the threat model has included all
the required assumptions at all architectural levels; and (iii) whether these
assumptions are consistent. Currently, the relations among components, and
how assumptions on one component impact (e.g., restrict) assumptions that can
be made on other components, are usually not considered. We propose a model,
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Published by Springer International Publishing Switzerland 2016. All Rights Reserved
S. Ranise and V. Swarup (Eds.): DBSec 2016, LNCS 9766, pp. 251–267, 2016.
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FATHoM, that allows developers and system designers to precisely state the con-
ditions under which a component can be assumed trusted (or untrusted) given
that another component is assumed trusted (or untrusted). FATHoM allows
designers to define and analyse a threat model to determine whether it is consis-
tent and complete. The framework, which can be applied with fine granularity,
can also be used to describe how components are protected. Furthermore, the
framework is compositional.

The main contributions of this work are:

– a precise notation to define threat models (FATHoM), which considers the
components’ security states, the relations among them, and the rules to com-
pute the derived security states based on the assumptions and the relations;

– a set of relations and rules used to define how to protect vulnerable compo-
nents, derived by checking the threat model definition for consistency;

– a prototype tool that implements FATHoM that can be used to define and
analyse threat models. FATHoM allows system designers to check the threat
model for consistency, completeness, and equality among threat models given
a subset of required states.

The paper is structured as follows. In Sect. 2 we list some existing threat mod-
els and discuss their limitations. In Sect. 3 we describe FATHoM, including
the assumptions, relations and the composition rules. Section 4 describes how
threat models are defined in the FATHoM prototype tool, and how they can
be analysed. In Sect. 5 we show some instantiations of threat models using our
approach. Section 6 discusses related works, while we conclude in Sect. 7.

2 Current Threat Models in Virtualized Systems

Virtualization is a technique used to emulate in software the physical proper-
ties of a computer, which is encapsulated in a virtual machine (VM) managed
independently from other VMs. This allows physical resources such as processor,
memory, storage and I/O channels, to be shared between concurrent VMs, while
preserving isolation. This enables a more efficient use of the resources, e.g. on
Cloud computing datacenters, as they can be allocated on-demand. A virtual
machine monitor (VMM) is the software component that creates, manages and
monitors VMs. In virtualized systems, the assumptions described in a threat
model form the basis from which security control is enforced. For example, if
in one threat model physical access is not considered possible, attacks trying to
subvert the VMM from the lower levels may not be taken into account by the
solution, but may still exist. Similarly, if the threat model assumes the VMM to
be with no (exploitable) bugs, whereas the OS is vulnerable, then a proposed
protection solution can be deployed directly inside the VMM while considering
attacks against the kernel as possible. Threat models have considerably evolved
over the years, in an attempt to cope with novel attacks. However, we lack a
standard approach to define and analyse the threat models, which is used across
the research community [10]. Some approaches, such as STRIDE [11], allow
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designers to draw trust boundaries across components, and check for a set of
known (classes of) vulnerabilities. However, they are not used to check if the
definition of threat model is consistent and, furthermore, it is not possible to
perform custom analysis, e.g. to compare two threat models for equality. Note
that inconsistencies in the description of a threat model can arise as the exact
meaning of each assumption is not precise, and how assumptions on a component
are related to assumptions on other components is not defined. It is therefore
difficult to compare two threat models because, even if they appear similar, they
could mean different things to their designers. Furthermore, if some component is
not included in the model, the consequences to the trustworthiness of the model,
when this component exists in the real world, are not determined. Concerning
the nomenclature, the most common set of assumptions encountered in the lit-
erature is expressed using a terminology that includes terms such as trusted,
vulnerable (or exploitable), untrusted or malicious. However, the words are not
used consistently, or with a well understood semantics. Our goal is to provide a
framework that enables the definition of the threat models more precisely and
clearly. The properties and features of the model we want to provide are: (i) it
should be easy to define a threat model based on this framework; (ii) it should be
clear what the assumptions are; (iii) the threat model should be consistent and
complete; (iv) it should be possible to compose several components together.

3 Language for the Threat Models

The system we represent is composed of different components that have different
security properties (also called security states), and different relations between
them. We denote by A the nonempty set of components of the system:

A ::= {A,B,C, · · · }.
Components can be added or removed from the system. We denote by Insert
the function for adding a new component to the system, and by Remove the one
that removes a component from the system:

Insert(A, E) := A ∪ {E} Remove(A,D) := A\{D}
where E is a new component inserted to A, while D is removed from A.

We denote by Φ the set of all formulas of our system. Given the set of
components, A, the formulas of our system φ ∈ Φ, are defined by the grammar:

φ :: = true | false | φ ∧ φ | φ ∨ φ | φ → φ | (φ) | π | ¬π | ρ

π :: = υ(A), where υ ∈ V ρ:: = �(A,A), where � ∈ R
where A is a component of our system (A ∈ A), V is the set of all security
properties of the components, and R the set of all relations between components.
The connectors ∧, ∨, →, (, ), and ¬ are the standard ones. Through our language,
we can define a set of rules which governs how the relations are used to compute
the different properties of the components starting from other properties.
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3.1 Security Properties of Components

The components of our system can have different security properties, for simplic-
ity just properties, which are associated with their trustworthiness, reliability and
restorability values. We divide the properties of our system in basic, high-level,
derived and accessory properties, respectively divided in the following sets VB,
VH, VD, VA, as represented in Table 1. These sets compose the set of properties
of our system: V = VB ∪ VH ∪ VD ∪ VA.

Table 1. The Security Properties Sets for FATHoM

The designer has to specify only the assumptions of the basic properties,
which are the most important ones. The rest of the properties are mostly syn-
tactic sugar and can be derived from the basic properties and the relations. The
high-level properties, VH, are constructed from the basic ones. As the high-level
properties are commonly used, the designer sometimes specifies these proper-
ties instead of the basic ones. We distinguish between the derived and accessory
properties (VD and VA) of the system components and the assumed ones that
are given by a designer. For sake of simplicity we will consider the high-level,
derived, and accessory properties as properties of their own.

Basic Properties. The basic properties represent the main assumptions we can
make about the properties of a component. These define whether the com-
ponents are assumed to be under control of the defenders or the attackers,
by using the controlled property (trustworthiness), assContr and ¬assContr
respectively. When a component is controlled, we consider whether it is assumed
to be exploitable or not by attackers (reliability), and thus can be compromised.
We use the properties assSafe, and ¬assSafe, respectively for a reliable com-
ponent and an exploitable (vulnerable) one. If the component is compromised
(¬assContr), we consider whether it can be protected or not (restorability), and
introduce protectable or unprotectable, respectively assProt and ¬assProt.

Derived Properties. The system also includes the derived version of the assumed
properties: derContr, derSafe, and derProt, taken from VD. Note that the rela-
tions between these properties are the same as their assumed version. Thus, we
omit the assumed/derived prefix for them in Fig. 1, which shows the security
properties associated with system components. When a component is Controlled
the relevant properties are Safe and Vulnerable, which specify whether a compo-
nent A cannot be compromised (Safe(A)) or is vulnerable (¬Safe(A)), because
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it has known vulnerabilities or is believed it can be maliciously exploited by
an attacker. This property identifies components that need to be protected.
Alternatively, if a component is Compromised (and thus not controlled), the
relevant properties are Protectable and Unprotectable, which specify whether a
compromised component A can be protected (Prot(A)) or not (¬Prot(A)). The
difference with the previous case is that a Vulnerable component can always be
protected, since it is Controlled, whereas an Unprotectable component refers to
a Malicious component, such as an external attacker, a malicious provider, or
more generally any external component already compromised and that impacts
the security properties of other components, and cannot always be reverted to
the Controlled state.

Fig. 1. Security properties

High-Level Properties. Let us introduce FATHoM’s high-level properties, which
can be defined from the basic ones. We define a component A assumed trusted,
if it is assumed controllable and safe:

assTrust(A) := assContr(A) ∧ assSafe(A).

A component is assumed vulnerable, if it is assumed controllable and not safe:

assV uln(A) := assContr(A) ∧ ¬assSafe(A).

A component is assumed untrusted, if it is assumed not controllable (compro-
mised) but is assumed protectable:

assUntrust(A) := ¬assContr(A) ∧ assProt(A).

Finally, a component is assumed malicious, if it is assumed not controllable and
not protectable:

assMalic(A) := ¬assContr(A) ∧ ¬assProt(A).

We represent the rules between these properties and the basic ones in Table 2.
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Table 2. Derivation rules between basic and high-level properties in FATHoM

In Table 3 we show the semantics of each combination, and give examples of
their occurrence in virtualized systems. Recalling the terms discussed in Sect. 2,
which are used frequently in related works, if we compare our nomenclature
with these terms, we can see that the combinations of security properties in
Table 3 correspond to (from top to bottom): Trusted (assTrust), a component
that is assumed to be trustworthy; (ii) Vulnerable (assV uln), a component that
can have bugs and/or can be attacked but is not in the hand of the attacker;
(iii) Untrusted (assUntrust), assuming that an attacker has full control of this
component; (iv) Malicious (assMalic), i.e., a component that is compromised
by the attacker and cannot be recovered or protected.

3.2 Relations and Derivation Rules

In FATHoM components can have the following relations between them:

R := {Contr, Threat, Protect, Ign,Contain,Group,Merge}.

Contr defines a binary relation, where Contr(A,B) means that component
A controls component B, e.g., when A is at lower virtualisation layer than B, or
A is more privileged than B. Therefore, A can (potentially) change B’s security
properties by attacking or protecting it. This relation is already given to the
system, or it can be implied by other relations. Contr is transitive.

Threat defines a binary relation, where Threat(A,B) means that component
A can threaten (attack) component B. Thus, A may be able to exploit B’s
vulnerabilities, e.g., when A is a remote attacker and B a reachable server from
the Internet, or A is a component at a higher level (e.g., application) and B
one at a lower level (e.g., OS). A successful attack must be carried out by a
compromised component A against a vulnerable one B. Component A threatens
an other component B because of the design of the system, or if A controls B
and component A is assumed/derived compromised.

Contr(A,B) ∧ (¬assContr(A) ∨ ¬derContr(A)) → Threat(A,B)

Some examples of these relations, in the context of virtualized systems, are shown
in Fig. 2.

As we focus on threat models, we consider the worst-case scenario. This
means that, for example, if A controls B, and A is assumed not controlled, then
we cannot assume B to be controlled. Thus, we consider as not controlled all
components that could be compromised within our knowledge. We can now intro-
duce one of the accessory properties from VA, which is the can be compromised
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Table 3. Combinations of security properties for components

assContr assSafe assProt Meaning Examples High-level

property

✓ ✓ A component that is

assumed not to

have been

compromised and

that cannot be

exploited

A micro-kernel OS

formally verified, or

an app that is

protected from

integrity attacks

from lower levels, or

where the attacker

has no access

Trusted

(assTrust)

✓ ✗ A component that is

assumed not to

have been

compromised but

that can be

compromised in

the future due to a

vulnerability

An OS with bugs

during the boot,

where the attacker

has not direct access

to it but can, for

example, access it

remotely

Vulnerable

(assV uln)

✗ ✓ A component that is

assumed to be

compromised and

that can be

protected

The OS kernel in a VM,

assumed to be

compromised, and

that is protected at

run-time through

the hypervisor for

control-flow

integrity attacks

Untrusted

(assUntrust)

✗ ✗ A component that is

assumed to be

compromised and

that cannot

protected

An external component

(the attacker has

full control of it) on

which the security

solution cannot do

anything to change

its state

Malicious

(assMalic)

property, derCanBeCompr, that can be derived from the above relation. We say
that B can be compromised, if it is controlled by a compromised component, or
if B is threatened by a compromised component and B is vulnerable:

((Contr(A,B) ∧ (assContr(B) ∨ derContr(B)))
∨(Threat(A,B) ∧ (¬assSafe(B) ∨ ¬derSafe(B))))

∧(¬assContr(A) ∨ ¬derContr(A) ∨ derCanBeCompr(A)) → derCanBeCompr(B).

The derived versions of the high-level properties: derTrust, derV uln,
derUntrust, and derMalic, which are part of VD, are defined as follows:

derTrust(A) := ¬derCanBeCompr(A) ∧ assTrust(A)
derV uln(A) := ¬derCanBeCompr(A) ∧ assV uln(A)

derUntrust(A) := derCanBeCompr(A) ∨ assUntrust(A)
derMalic(A) := assMalic(A).

We represent in Table 4 the derivation rules between derived properties. Finally,
the Ign (Ignore) relation, used to ignore components, forces the model to assume
a given component as trusted: Ign(A) → assTrust(A).



258 D. Sgandurra et al.

Fig. 2. Examples of Controls and Threatens relations

Table 4. Derivations rules between derived properties in FATHoM

3.3 Composability

We further introduce the possibility of composing components together, by
exploiting three compositional relations: Contains, Groups and Merges. They
are respectively used to: (i) enforce consistency among the state of a composite
component and the state of its set components; (ii) simplify the description of
the threat model, by grouping components together; (iii) abstract from inner
components by introducing a new component that summarizes their security
states and relations.

Contain is a binary relation, where Contain(A,B) means that A contains
B, and all of A’s internal components must have the same security property
as A. This is useful when an external component always includes an internal
one, such as a VM that includes the OS, and the security states need to be
coherent among them. This relation is transitive given the assumptions in the
internal components, represented in Table 5 (1)–(5). Group is a binary relation,
where Group(A,B) means that A is a new (virtual) component, which groups B
(together with, possibly, other components). In this case A is a new component,
and Group is consistent in terms of Contr and Threat relations, as shown in
Table 5 (6)–(12). The last composability relation is Merge, where Merge(A,B)
means that a new component A is used to consolidate all the internal components
(B, and possibly other components) into a new one and merges their states and
relations, as represented in Table 5 (13)–(18). The internal components are no
longer considered, and assumptions and relations can be now expressed about
A. This is useful when we want to consider several, similar, components in a
single one with the same properties. The difference between Groups and Merges
is that the Groups relation is only used to facilitate the definition of several
rules and assumptions on several components together, but the external (virtual)
component is not used by the rules, only the internal (real) ones. Instead, Merges
is used to remove from the model similar components and replaces them by a
new (real) one. In this case, the assumptions and the relations are firstly given
on the internal component B, and applied to the external one. Note that a
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Table 5. The composability rules in FATHoM

Fig. 3. Contains (a), Groups (b) and Merges (c) Relations

precondition to merge components together is that they are similar, i.e., there
are no conflicts. An example of these three relations is shown in Fig. 3.

3.4 Protecting Components

We introduce in FATHoM two versions of the Protect relation. This relation is
given by the system/designer, and through it we can derive a very important
security property derIsProt, which defines the property of a component being
protected. The first version of Protect is a binary relation, where Protect(A,B)
means that A can protect component B from the threats considered in the model.
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The second version is a ternary relation, where Protect(A,C,B) means that
component A can protect component B, with the help of a new component C.
This relation is reflexive, where Protect(A,C,A) means that component A can
protect itself, with the help of a new component C (that enhances A). For
the ternary Protect relation, the new component C is inserted in the set of
components of A. We show these relations in Fig. 4 (for the sake of readability,
we split the ternary relation in two cases, (a) and (c)).

The Protects relations are used to define the derIsProt property, which
means that a component is in the state of being protected. There are four cases
when we can derive that a component is protected, as shown in Table 6. We say
that A is protected when it is derived trusted, as shown in (19). We say that A
is protected when there exists a controlled component B that protects A (and
B can control A), in case A is not safe or protectable, as shown in (20). We say
that A is protected when there exists a controlled component B that protects
A, with the help of another component C, where B controls A and A is not safe
or protectable, as shown in (21). In this case, C is a new component, inserted
in the set of components, that is contained in B, and is assumed controlled or
is controlled by B. Finally, we say that A is protected when it can protect itself

Fig. 4. Rules Protects relation: (a) Using a patch, (b) Using an external component,
(c) Enhancing an external component with a patch

Table 6. The four cases when a component is derived protected
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with the help of C, where A is controllable, exploitable or protectable, as shown
in (22). In this case, C is a new component, contained in A, assumed or derived
controlled by A. Note that with the current rules, a component is derived Vul-
nerable only if it is assumed so. Furthermore, a component is derived Malicious
iff it is assumed so, using the worst-case rule. However, in some situations, we
need to take into account threat models where a component A is assumed to be
vulnerable and either (i) it is the target of the protection solution itself or (ii) it
is assumed protected by another component (e.g., a vulnerable VMM protected
by a trusted module). Hence, it is assumed, and required for the threat model
definition, that the component is vulnerable. To limit the cascading effect of this
vulnerable component being exploited, we need to check whether it is already
protected. This is captured by one of the properties in VA:

derCanBeExpl(A) := derCanBeCompr(A) ∧ assV uln(A)

where a component is derived exploitable if it can be compromised and it is
assumed vulnerable.

4 Using FATHoM to Define and Analyse a Threat Model

We now discuss the implementation of FATHoM, and how it can be used to
define and analyse threat models.

4.1 FATHoM Prototype Tool

We have designed and developed a tool implementing FATHoM (available at
http://rissgroup.org/fathom/) that includes in its knowledge base all the gen-
eral rules discussed so far. The tool is used also to load a template with the
components and relations. A graphical interface facilitates the description of
the threat model, which is converted into FATHoM language. (An example of
a template is described in Sect. 5.) After loading the template, the user can
customize some components, and then specify the security states of the compo-
nents. Finally, the FATHoM tool compiles the threat model (derived from the
template and the user choices) and the model’s rules into an executable program
for XSB1. After converting the threat model and the rules for XSB, a designer
can query the FATHoM tool to analyse the system: to display those components
whose assumed state is different from the derived ones (i.e., a consistency check);
to add protection components and exploit the Protects relations. At this point,
FATHoM re-compiles the updated threat model (i.e., the derived initial model
plus the new protection components and relations), and shows the derived and
final threat model.

1 http://xsb.sourceforge.net/.

http://rissgroup.org/fathom/
http://xsb.sourceforge.net/
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4.2 Definition of the Threat Model

The following steps are used to define threat models within our model:
(i) FATHoM loads the rules already defined for all domains, i.e., Controls and
Threatens; (ii) the user defines (or imports an existing) template that includes
the components’ ontology for the domain of interest (e.g., virtualized system),
which defines: the components specific to the domain and the Controls and
Threatens relations on these components; (iii) the user selects those components
that need to be Merged (if any) and those to Ignore (if any); (iv) the user can
add new components (optional) or new relations in the model to both existing
or new components (optional); finally, (v) the user sets, for each component, the
assumed value for Trusted or Vulnerable or Untrusted or Malicious. In contrast
to the current, verbose, definitions of threat models, which often span several
pages in research papers, in FATHoM users only need to define the assumed
security states for all the components, e.g., through a table, such as Table 7, or
through a figure, such as Fig. 5b. Not only is the representation very succinct,
but the underlying semantics is also common across all the threat models.

4.3 Derivation and Analysis

Once the model has been defined (and possibly customized), and the values of the
assumptions on the security states has been chosen, FATHoM is used to derive
the security states. FATHoM allows the developer to analyse the consistency
and completeness of the model, and query possible combinations of assumptions
to derive a desired target model. In particular, FATHoM allows the designers
to check if there are some security states whose assumptions are different from
the derived ones. When an inconsistency is found, the developer is asked to only
update the inconsistent assumptions. FATHoM also forces the designers to define
the security states for all the components. When a security state for a component
is not defined, unless the user has specifically chosen to Ignore it, a warning
is returned. Designers can analyse possible solutions to protect the vulnerable
and protectable components in the derived threat model. This can be done by
refining the model as follows: (i) the user introduces new protection components
in the system, such as a hardware co-processor; (ii) the users specifies which
components are used to Protect which other components, e.g. the Vulnerable
ones. Then, FATHoM enables the user to perform the same analyses on the
improved model.

5 Use-Cases Analysis: Virtualized Systems

We show an instantiation of FATHoM for virtualized systems including the tem-
plate we have defined for a use-case scenario.
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5.1 Ontology of Components and Relations

The components we model in this template are defined at four layers: (i) vir-
tualization level: OS, application (App), administrative VM (AVM), co-resident
VM (CO-VM), VT-Driver-domain (i.e., a VM that interfaces all the requests to
the devices using shared drivers); (ii) hypervisor level: VMM, VMM interface;
(iii) firmware level: BIOS (or UEFI), SMM; (iv) hardware level: DMA, Trusted
Boot, which can be specialized in static-root-of-trust (SRTM), dynamic-root-of-
trust (DRTM), Intel SGX [2], Memory (MEM), which can be refined into RAM
and L2-Cache, CPU2. We augment these elements with additional ones to con-
sider further threats. In detail, when the virtualized environment is run by an
external provider, the trust placed in that provider also needs to be considered
[5,7,9,14]. Hence, other components that we introduce are: (i) physical-access:
a component that defines whether physical access is possible for the attacker;
(ii) actors: the Cloud service provider (CSP), the tenant and a generic external
attacker. Note that for some components, such as actors and physical-access,
the only relevant security state is the Controlled/Compromised one, which is
semantically equivalent to the component being trusted or not, whereas the Pro-
tected/Vulnerable may not need to be considered. Hence, we will restrict their
security states to Trusted and Malicious only. Furthermore, the actors in the
system can be further refined if we consider entities such as the manufacturer
of the hardware used by the provider, the developers of the software run by the
provider, and, in general, any third-party involved with the Cloud provider [3].

The template we have defined includes the following relations: (i) we Group
the components at the hardware-, firmware-, hypervisor- and virtualization-level;
(ii) any element at lower-levels can Control those at higher ones (and physical
access Controls all the levels); (iii) the Tenant Controls the user VM; (iv) the
remote attacker Threatens all the Virtualization level and VMM; (v) the CSP
Controls all the VMs, the VMM and lower levels; (vi) the VT-d Threatens the
VM, VMM; (vii) the AVM Controls the VM, VMM; (viii) the Co-resident VM
Threatens the VM, VMM. These relations used on the previous ontology give
rise to the template shown in Fig. 5a.

5.2 Analysis of the Threat Model

Defining the Threat Model and Checking for Inconsistencies. This analysis is
used to identify inconsistencies in the threat model’s assumptions, by showing
the derived security states that are different from the assumed ones. In this
use-case, we firstly customize the template depicted in Fig. 5a to adapt it to
the description of this use-case. Here, we consider a threat model that assumes
the VMM to be Vulnerable, the tenant and remote attacker to be Malicious,
and co-resident VM to be Untrusted. The goal, from the point of view of the
provider, is to protect the OS from attacks by tenants and remote attackers by

2 Further components that could be considered here are virtualization extensions,
chipset, hard-disk firmware.
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(a) FATHoM Template for Virtualized
System: Components and Relations

(b) Use-Case of Assumptions on a
FATHoM Threat Model

Fig. 5. FATHoM template and initial assumptions

enhancing the VMM to check the integrity of the OS. This use case is adapted
from [13,15]. In particular, we consider that a trusted boot-based solution is
used to protect the loading of the hypervisor. Then, the provided solution will
describe how a new component inside the VMM is used to protect the OS.
In detail, we use the FATHoM compositional rules on the template as follows:
(i) we Merge RAM and L2Cache into MEM; (ii) we Merge SRTM and DRTM
into a single Tboot component; (iii) we Merge BIOS and SMM into a Firmware
component; (iv) MEM and CPU are Ignored ; (v) SGX is Ignored. We then set
the assumptions on the security states as shown in Fig. 5b (the relations are not
shown, since after loading the template we only need to define the assumptions).
This graphical description is then translated in the FATHoM syntax, and then
compiled for XSB. By using these assumptions, and by querying the FATHoM
tool for inconsistencies among assumptions and derived states, FATHoM shows
that the components App, OS, AVM, Co-VM and hypervisor are inconsistent3.
These components are those whose assumed states is different than the derived
one. In this specific case, FATHoM shows that, by letting the attacker being able
to threaten the hypervisor, he/she can compromise the AVM and Co-VM too, as
well as the OS and App, and this is not consistent with the initial assumptions.
Furthermore, the tenant can compromise the OS. Note that, since in this use-
case we have assumed the VMM to be vulnerable, but protected by a Tboot
solution4, we need to update the model with the relations to protect the VMM
from Tboot, and check the model again. By querying FATHoM we see that
the hypervisor is consistent with the assumptions, and, hence, we only need to
change the App and OS to “untrusted” to be consistent. We have now an initial

3 For the sake of conciseness, we do not show the complete rules, ontology, assump-
tions, and analysis in XSB here. All the examples are available at http://rissgroup.
org/fathom/, along with a technical report.

4 We only focus on static integrity protection.

http://rissgroup.org/fathom/
http://rissgroup.org/fathom/
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Table 7. Components and assumptions of the use-cases

Component Trusted Vulnerable Untrusted Malicious

APP ✓

OS ✓

Co-VM ✓

Vt-Driver ✓

AVM ✓

Hypervisor ✓

Firmware ✓

Tboot ✓

DMA ✓

Physical Access ✓

CSP ✓

Tenant ✓

Remote Attacker ✓

consistent threat model, whose instantiation is shown in Table 7. As we can see,
the formulation of the threat model is very succinct.

Protecting the Components and Derivation Analysis. On this stable threat
model, we then introduce a patch in the VMM to protect the OS5. Then, by
recompiling the threat model with the new protection component, and its rela-
tion(s), we query the FATHoM tool again to check the derived Protected com-
ponents. In this case, FATHoM derives VMM and OS as Protected as well.

6 Related Work

Mulval [8] is a logic-based analyser that enables the modelling and reasoning
about components’ interaction. The main difference with our model is that in
FATHoM we define assumptions on the security of components, not vulnerabil-
ities or attack paths. Furthermore, our goal is to formalize these assumed secu-
rity states using a common terminology and ontology, and check its soundness.
The CORAS method [4] defines a language, and a set of UML-based diagrams,
for threat and risk modelling. FATHoM differs from CORAS as it focuses only
on threat modelling. Furthermore, FATHoM facilitates the description of the
system’s assumptions, and follows a worst-case approach, instead of a proba-
bilistic one, and can analyse its soundness. The goals are also different: using
CORAS it is possible to implement a risk-evaluation plan, while in our model
we depict a static scenario. Similarly, CySeMoL [12] is a modelling language

5 The description of the patch is outside the scope of the use-case.
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targeted at enterprise architectures, to enable administrators to perform a prob-
abilistic inference analysis. The model includes a set of meta-components to
define probabilistic dependencies, attack-paths, preconditions, etc. In FATHoM
we are focused on describing the initial security preconditions of the system in
an easy and sound way, and to take into account generic attacks. Nemesis [6] is
a risk-assessment framework to test Cloud systems, by collecting measurements
on known vulnerabilities of the system components, modelling the threats and
assessing the risk. FATHoM is a framework to define in a consistent way the
threat model and used to reason on generic security solutions valid for a set
of use-cases. Finally, [1] exploits model checking to verify system-level security
properties of interacting VMs, and is focused in particular on distributed access
control policies. Even if the context is similar, i.e., virtualized environment, the
goal of FATHoM is the formalization and analysis of threat models, rather than
the verification of access control policies. In summary, none of the the existing
works allows designers to (i) define in a compact way threat models, and (ii) per-
form custom analysis, e.g. to check their consistency. Most existing tools allow
users to perform predefined queries over such a threat model (i.e., to check for
vulnerabilities), which is supposed to be consistent. Hence, these approaches and
FATHoM are complementary.

7 Conclusion and Future Work

Current threat models lack a common terminology to describe the trusted com-
ponents, and the relations between them. This gives rise to possible inconsis-
tencies, and incompleteness, of the considered definition. This issue may also
impact the assumptions on which a security solution is built upon. In this paper
we have proposed FATHoM to describe and analyse threat models and have
demonstrated that in real-world scenarios the usability of the FATHoM model
is very simple, since it only requires to load an existing template, optionally
customize it, and set the assumed values for the security states. We are consid-
ering other attacker’s goals, such as confidentiality, to be defined in the relations
and rules, and other scenarios (e.g., mobile). Finally, the worst-case assumptions
underlying our model could be mitigated using probabilistic assumptions on the
relations and rules.

Acknowledgement. Supported by FP7 EU-funded project Coco Cloud under grant
no. 610853, and EPSRC Project CIPART grant no. EP/L022729/1.

References

1. Alexander, P., Pike, L., Loscocco, P., Coker, G.: Model checking distributed manda-
tory access control policies. ACM Trans. Inf. Syst. Secur. 18(2), 6:1–6:25 (2015)

2. Anati, I., Gueron, S., Johnson, S., Scarlata, V.: Innovative technology for CPU
based attestation and sealing. In: 2nd Workshop on Hardware and Architectural
Support for Security and Privacy, HASP 2013 (2013)



Formalizing Threat Models for Virtualized Systems 267

3. Bleikertz, S., Mastelic, T., et al.: Defining the cloud battlefield - supporting secu-
rity assessments by cloud customers. In: 2013 IEEE Cloud Engineering (IC2E),
pp. 78–87, March 2013

4. Brændeland, G., Dahl, H.E.I., Engan, I., Stølen, K.: Using dependent CORAS
diagrams to analyse mutual dependency. In: Lopez, J., Hämmerli, B.M. (eds.)
CRITIS 2007. LNCS, vol. 5141, pp. 135–148. Springer, Heidelberg (2008)

5. Butt, S., Lagar-Cavilla, H.A., et al.: Self-service cloud computing. In: ACM Con-
ference on Computer and Communications Security, pp. 253–264. ACM (2012)

6. Kamongi, P., Gomathisankaran, M., Kavi, K.: Nemesis: automated architecture for
threat modeling and risk assessment for cloud computing. In: Academy of Science
and Engineering, USA (2015)

7. Li, M., Zang, W., Bai, K., Yu, M., Liu, P.: Mycloud: supporting user-configured
privacy protection in cloud computing. In: Annual Computer Security Applications
Conference, ACSAC 2013, pp. 59–68. ACM (2013)

8. Ou, X., Govindavajhala, S., Appel, A.W.: MulVAL: a logic-based network security
analyzer. In: 14th USENIX Security Symposium, SSYM 2005, vol. 14, p. 8 (2005)

9. Santos, N., Rodrigues, R., Gummadi, K.P., Saroiu, S.: Policy-sealed data: a new
abstraction for building trusted cloud services. In: 21st USENIX Conference on
Security Symposium, Security 2012, p. 10 (2012)

10. Sgandurra, D., Lupu, E.: Evolution of attacks, threat models, and solutions for
virtualized systems. ACM Comput. Surv. 48(3), 46:1–46:38 (2016)

11. Shostack, A.: Threat Modeling: Designing for Security. Wiley (2014)
12. Sommestad, T., Ekstedt, M., Holm, H.: The cyber security modeling language: a

tool for assessing the vulnerability of enterprise system architectures. IEEE Syst.
J. 7(3), 363–373 (2013)

13. Srivastava, A., Raj, H., Giffin, J., England, P.: Trusted VM snapshots in untrusted
cloud infrastructures. In: Balzarotti, D., Stolfo, S.J., Cova, M. (eds.) RAID 2012.
LNCS, vol. 7462, pp. 1–21. Springer, Heidelberg (2012)

14. Szefer, J., Keller, E., Lee, R.B., Rexford, J.: Eliminating the hypervisor attack
surface for a more secure cloud. In: 18th ACM Conference on Computer and Com-
munications Security, CCS 2011, pp. 401–412. ACM (2011)

15. Xiong, X., Tian, D., Liu, P.: Practical protection of kernel integrity for commodity
OS from untrusted extensions. In: NDSS (2011)



Reasoning About Firewall Policies Through
Refinement and Composition

Ultan Neville(B) and Simon N. Foley(B)

Department of Computer Science, University College Cork, Cork, Ireland
ultan.neville@insight-centre.org, s.foley@cs.ucc.ie

Abstract. An algebra is proposed for constructing and reasoning about
anomaly-free firewall policies. Based on the notion of refinement as safe
replacement, the algebra provides operators for sequential composition,
union and intersection of policies. The algebra is used to specify and
reason about iptables firewall policy configurations. A prototype policy
management toolkit has been implemented.
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1 Introduction

Firewall configuration management is complex and error-prone, and a misconfig-
ured policy may permit accesses that were intended to be denied or vice-versa.
We regard the specification of a firewall policy as a process that evolves. Threats
to, and access requirements for, resources behind a firewall do not usually remain
static, and over time, a policy or distributed policy configuration may be updated
on an ad-hoc basis, possibly by multiple specifiers/administrators. This can be
problematic and may introduce anomalies; whereby the intended semantics of
the specified access controls become ambiguous.

In this paper, we present a firewall policy algebra FW1 for constructing and
reasoning over anomaly-free policies. The algebra allows policies to be composed
in such a way that the result upholds the access requirements of each policy
involved; and permits one to reason as to whether some policy is a safe (secure)
replacement for another policy in the sense of [11,14]. The proposed algebra
is used to reason about iptables firewall policy configurations. A partial map-
ping for the iptables filter table is given in the algebra. iptables is a command
line utility used to define policies for the Linux kernel firewall Netfilter [1]. We
focus on stateful firewall policies that are defined in terms of constraints on
source/destination IP/port ranges, the TCP, UDP and ICMP protocols, and
additional filter condition attributes.

The primary contribution of this paper is an algebra FW1, that can be used
to reason about firewall policies using refinement and composition operators.
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The effectiveness of the algebra is demonstrated by its application to anomaly
detection, and standards compliance.

The paper is organised as follows. Section 2 introduces the notion of adja-
cency, which is at the heart of reasoning about/composing firewall rules that
involve IP/port ranges. In Sect. 3 we define datatypes for firewall rule attributes,
such as IP/port ranges. Section 4 defines the firewall policy algebra FW1. In
Sect. 5, we use FW1 to reason about firewall policies in practice. Section 6
describes a prototype policy management toolkit for iptables and presents some
preliminary results. Related work is outlined in Sects. 7 and 8 concludes the
paper. The Z notation [19] is used to present the algebra and has been syntax-
and type-checked using the fuzz tool.

2 A Theory of Adjacency

A firewall policy is conventionally defined as a sequence of order-dependent rules.
A rule is composed of filter conditions and a target action. Filter conditions usu-
ally consist of fields/attributes from IP, TCP/UDP headers; with the most com-
monly used attributes being source/destination IP/port, and network protocol.
Target actions are usually allow or deny [3,8].

Range-based filter condition attributes (IPs/ports) have logical mappings to
intervals of N. For example, the port range that includes all ports from SSH
up and including HTTP can be written as the interval [22..80]. Consider as
part of a running example, a system that is capable of enforcing firewall rules
where the filter condition attribute for the rules is destination port range. Then
if we had a rule that allowed all ports from SSH to HTTP, it may look like:
(i , [22..80], allow), where i is the index of the rule in the policy, [22..80] is
the required port range, and allow means that network traffic matching this
pattern be permitted traversal of the firewall. Suppose we had a second rule, that
specifies allow everything from Quote Of The Day (QOTD) up to and including
FTP Control. Then (j , [17..21], allow), specifies that for the rule at index j ;
the required port range [17..21] is allowed. Intuitively, we can see that the port
ranges for the rules at index i and index j are adjacent, and we may want to join
rules i and j into a single rule that looks like (k , [17..80], allow). This notion
of adjacency becomes more complex when we consider comparing/composing
firewall rules comprising 2..n filter condition attributes.

2.1 The Adjacency Specification

In this section we define the filter condition attribute relationships of adjacency,
disjointness and subsumption. These relationships are at the heart of adjacency,
and ultimately the FW1 algebra.

Let IV[min,max ] be the set of all intervals on the natural numbers, from
min up to and including max . Intervals are defined by their corresponding sets.

IV[min,max ] == {S : PN | ∃ ⊥,� : S • ∀ x : S • min ≤ ⊥ ≤ x ≤ � ≤ max}
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For example, IV[1, 3] gives {[1..1], [1..2], [1..3], [2..2], [2..3], [3..3]}. For ease of
exposition and when no ambiguity arises, we may write an interval as a pair
[⊥..�], rather than by the set it defines. Let IPv4 define the set of all possible
IPv4 address ranges, and similarly, let Port define the set of all possible network
port ranges, where IPv4 == IV[0, 232 − 1] ∧ Port == IV[0, 216 − 1].

Adjacency. Two intervals are adjacent if their union defines a single interval. We
generalize this to any attribute of type X , whereby for a, b ∈ X , if a 	X b, then
a and b are adjacent in the set X .

[X ]
	 : PX 
→ (X ↔ X )

∀ a, b : X •
a 	X a ∧ (a 	X b ⇒ b 	X a)

For example, interval [1..2] is adjacent to interval [3..3], thus [1..2] 	IV[1,3] [3..3].
It follows for a, b ∈ N that a 	N b ⇔ (a = b ∨ a + 1 = b ∨ b + 1 = a), and given
S ,T ∈ PX then S 	PX T ⇔ true.

Disjointness. Two intervals are disjoint if they don’t intersect. Given a, b ∈ X ,
a |X b denotes a and b are disjoint in X .

[X ]
| : PX 
→ (X ↔ X )

∀ a, b : X •
¬ (a |X a) ∧ (a |X b ⇒ b |X a)

For example, [1..2] and [3..3] are disjoint, thus [1..2] |IV[1,3] [3..3]. It follows for
a, b ∈ N that a |N b ⇔ a �= b, and given S ,T ∈ PX then S |PX T ⇔ S ∩T = ∅.

Subsumption. An interval I subsumes (covers) an interval J , if J ⊆ I . For
a, b ∈ X , if a X← b then b covers a in X . The properties of reflexivity, transitivity
and antisymmetry define X← as a non-strict partial order over X [5].

[X ]
← : PX 
→ (X ↔ X )

∀ a, b, c : X •
a X← a ∧ (a X← b ∧ b X← c ⇒ a X← c) ∧ (a X← b ∧ b X← a ⇒ a = b)
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For example, [1..3] covers [3..3], thus [3..3]
IV[1,3]← [1..3]. It follows for a, b ∈ N

that a N← b ⇔ a = b, and given S ,T ∈ PX , then S PX← T ⇔ S ⊆ T .
For a set X and S ∈ PX , the flattening function �S� gives the cover-set for

the elements of S .

[X ]
� � : PX 
→ PX

∀S : PX •
�S� = S \ {a, a ′ : S | a X← a ′ ∧ a �= a ′ • a}

For example, �IV[1, 3]� = {[1..3]}. We define a difference operator for S ,T ∈
PX , where S \PX T gives the relative compliment of T in S .

[X ]
\ : P(PX ) �→ PX×PX → PX

∀S ,T : PX •
S \PX T = �{a : S ; c : X | c X← a ∧ (∀ b : T • ¬ (c

X← b)) • c}�

For example, �IV[1, 3]� \IV[1,3] {[1..1], [3..3]} = {[2..2]}.

3 Filter Condition Attribute Datatypes

In this section we define the datatypes used to construct the filter condition
attributes for the FW1 policy model.

3.1 The Adjacency Datatype

For a set X , the Adjacency datatype α[X ], is the set of all closed subsets of X
partitioned by adjacency.

α[X ] == {S : PX | (∀ a, b : S | a �= b • ¬ (a 	X b))}

For example α[IV[1, 3]] gives {{[1..1]}, {[1..2]}, {[1..3]}, {[2..2]}, {[2..3]}, {[3..3]},
{[1..1],[3..3]}}, and α[IPv4] defines the set of all closed subsets for the intervals
of the IPv4 address range partitioned by adjacency.

Adjacency Ordering. An ordering can be placed over Adjacency-sets, and is
defined as follows.
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[X ]
⊥, 
 : α[X ]
not : α[X ] → α[X ]

≤ : α[X ] ↔ α[X ]
⊗ ,
⊕ : α[X ]×α[X ] → α[X ]

⊥ = ∅ ∧ 
 = �X �
∀S ,T : α[X ] •

notS = 
 \α[X ] S ∧
S ≤ T ⇔ (∀ a : S • ∃ b : T • a

X← b) ∧
S ⊗ T = �⋃{U : α[X ] | ∀ c : U • ∃ a : S ; b : T • c

X← a ∧ c
X← b}� ∧

S ⊕ T =
⋂{U : α[X ] | ∀ c : U • ∃ a : S ; b : T • a

X← c ∨ b
X← c}

The elements ⊥,� ∈ α[X ] define the least and greatest bounds, respectively,
on α[X ], where for any S ∈ α[X ], then ⊥ ≤ S ≤ �. Adjacency negation defines a
valid complement operator in α[X ], where (S ⊕notS ) = � and (S ⊗notS ) = ⊥.

Adjacency Intersection. Under this ordering, the meet, or intersection S ⊗ T of
S ,T ∈ α[X ] is defined using subsumption, as the cover-set for the generalized
union of all Adjacency-sets, where each element of (S ⊗ T ) is covered by an
element in both S and T . Intuitively, this means that the values of the meet are
all non-empty intersections of each value in S with each value in T . Under the
ordering relation ≤, ⊗ provides a greatest lower bound (glb) operator, and S ⊗T
is covered by both S and T , that is (S ⊗ T ) ≤ S and (S ⊗ T ) ≤ T .

Adjacency Union. The join of S ,T ∈ α[X ] is defined using subsumption, as the
generalized intersection of all Adjacency-sets, where each element of (S ⊕ T )
covers an element in either S or T . Intuitively, this means that the values of the
join are exactly a union of the elements from both S and T . Given the definition
of ordering using subsumption, it follows that the Adjacency join provides a
lowest upper bound (lub) operator. Since ⊕ provides a lub operator we have
S ≤ (S ⊕ T ) and T ≤ (S ⊕ T ).

Proposition. The poset (α[X ],≤) forms a distributive lattice with compliment
operator not. This follows from the definition of ≤ as a subsumption order-
ing/an antisymmetric preorder, the properties of not, the intuitive definition of
the meet of S ,T ∈ α[X ] as all non-empty intersections of each value in S with
each value in T , and the intuitive definition of the join operation as an exact
union of the elements from both S and T [18].

Given the adjacency, disjointness and subsumption relations; then for S ,T ∈
α[X ], we define S 	α[X ]T ⇔ true ∧ S |α[X ] T ⇔ S⊗T = ⊥ ∧ S

α[X ]← T ⇔ S ≤ T .
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3.2 The Duplet Datatype

A duplet is an ordered pair, where the set of all duplets for types X ,Y , is
defined as δ[X ,Y ], where δ[X ,Y ] == X×Y . For example, δ[IV[1, 1], IV [1, 2]]
gives {([1..1],[1..1]), ([1..1],[1..2]), ([1..1], [2..2])}, and δ[α[IPv4], α[Port ]] gives
the set of all duplets for adjacency-free IP/port-ranges.

Recall the earlier example of the firewall system that supports only destina-
tion port range filter conditions. Suppose we want to extend the expressiveness
of the policy rules for this system to include a definition for destination IP range.
Then α[δ[α[IPv4], α[Port ]]], is the set of all closed subsets of adjacency-free
IP/port-range duplets, partitioned by adjacency. Consider two policy require-
ments, where network traffic is to be allowed to the IP range [1..3] on ports
[1..3], and to the IP range [2..4] on ports [2..4]. Then modelling this using sets
of adjacency-free duplets, we have S ,T ∈ α[δ[α[IPv4], α[Port ]]], where S ==
{({[1..3]}, {[1..3]})} and T == {({[2..4]}, {[2..4]})}.

Duplet Disjointness. A pair of duplets are disjoint if the attributes in the first
coordinate are disjoint, or the attributes in the second coordinate are disjoint.
For (a1, b1), (a2, b2) ∈ δ[X ,Y ], then:

(a1, b1) |δ[X ,Y ] (a2, b2) ⇔ (a1 |X a2 ∨ b1 |Y b2)

For example, ¬ (S |α[δ[α[IPv4],α[Port]]] T ).

Duplet Adjacency. A pair of duplets are adjacent if the attributes in the first
coordinate are adjacent, and the attributes in the second coordinate are not
disjoint. Thus, we have:

(a1, b1) 	δ[X ,Y ] (a2, b2) ⇔ (a1 	X a2 ∧ ¬ (b1 |Y b2))

For example, S 	α[δ[α[IPv4],α[Port]]] T .

Duplet Subsumption. A duplet is distinguished from a standard ordered pair,
whereby we explicitly define orderings separately in each coordinate. For exam-
ple, suppose we wanted to join adjacent policies S and T , then under a ‘standard’
Cartesian product ordering we have S ⊕T = {({[1..4]}, {[1..4]})}. This obviously
results in an overly permissive policy, conversely; an overly restrictive policy if we
were composing deny rules. A duplet (a1, b1) covers a duplet (a2, b2) in δ[X ,Y ],
if a1 covers a2 in X , and b2 covers b1 in Y . Thus:

(a2, b2)
δ[X ,Y ]← (a1, b1) ⇔ (a2

X← a1 ∧ b1
Y← b2)

Then we have S⊕T = {({[1..4]}, {[2..3]}), ({[1..3]}, {[1..1]}), ({[2..4]}, {[4..4]})}.
Thus, the join, or union (S ⊕ T ) of S and T , defines the adjacency-free coa-
lescence of all duplets from S and T . For reasons of space, we do not give the
implementation definition for this operation.
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3.3 The Stateful/Protocol Datatype

In this section, we define the network protocols of interest for the model and
encode a notion of state. The iptables command line utility allows the end-user
to specify one (or all) of seven different protocols in a rule [1]. For reasons of
space, we focus only on the TCP, UDP and ICMP protocols.

Let Flags be the set of TCP flags, where Flags ::= syn | ack | fin | psh |
rst | urg. The TCP protocol is defined as the set of all sets of pairs of sets of
Flags, whereby for each pair; the first set contains the flags that are to be exam-
ined in a packet-header, and the second set contains the flags that must be set
(in a packet-header). In [1], these are referred to as the comp and mask values
for a packet, respectively. Let TCP be the set of all sets of comp/mask pairs,
where TCP == P(PFlags×PFlags). Let [TypesCodes] be the set of all valid
ICMP Type/Code pairs. For simplicity and reasons of space, we do not con-
sider how the values of TypesCodes may be constructed, other than to assume
that the usual human-readable notation can be used, such as (8,0) and (17,0)
∈ TypesCodes. The iptables conntrack modules’ statelist [1] may be defined as fol-
lows. Let State be the set of connection tracking states for a packet/connection,
where State ::= new | established | related | invalid | untracked.

Let Protocol define the set of all protocols, given as the set of all duplets over
TCP , UDP ([0..1]), ICMP (PTypesCodes) and the set of all sets of connection
tracking states (PState).

Protocol == δ[TCP , δ[{0, 1}, δ[PTypesCodes,PState]]]

Proposition. The Protocol datatype forms a product-lattice structure. This fol-
lows from the definition of Protocol as the product of powerset/binary lattices [5].

4 The FW1 Policy Algebra

In this section we define an algebra FW1, for constructing and reasoning about
anomaly-free firewall policies. We focus on stateful firewall policies that are
defined in terms of constraints on source/destination IP/port ranges, the TCP,
UDP and ICMP protocols.

A filter condition is a five-tuple (s, sprt , d , dprt , p), representing network
traffic originating from source IP range s, with source port range sprt , destined
for destination IP range d , with destination port range dprt , using stateful-
protocols p. Let FC define the set of all filter conditions, where:

FC == δ[α[IPv4], δ[α[Port ], δ[α[IPv4], δ[α[Port ],Protocol ]]]]

A firewall policy defines the filter conditions that may be allowed or denied
by a firewall. Let Policy define the set of all firewall policies, whereby:

Policy == {A,D : α[FC ] | ∀ a : A; d : D • a |FC d}
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A firewall policy (A,D) ∈ Policy defines that a filter condition f ∈ A should
be allowed by the firewall, while a filter condition f ∈ D should be denied.
Given (A,D) ∈ Policy then A and D are disjoint: this avoids any contradiction
in deciding whether a filter condition should be allowed or denied. Given that A
and D are also both adjacency-free; then Policy defines the set of anomaly-free
firewall policies in the sense that they contain no redundancy, shadowing, or
other anomalies [4].

Note that (A,D) ∈ Policy need not partition �FC �: the allow and deny sets
define the filter conditions to which the policy explicitly applies, and an implicit
default decision is applied for those filter conditions in �FC � \α[FC ] (A ⊕ D).
For the purposes of modelling iptables firewalls it is sufficient to assume default
deny, though we observe that FW1 can also be used to reason about default allow
firewall policies. The policy destructor functions allow and deny are analogous
to functions first and second for ordered pairs:

allow , deny : Policy → α[FC ]

∀A,D : α[FC ] •
allow (A,D) = A ∧ deny (A,D) = D

Policy Refinement. An ordering can be defined over firewall policies, whereby
given P ,Q ∈ Policy then P � Q means that P is no less restrictive than Q , that
is, any filter condition that is denied by Q is denied by P . Intuitively, policy P is
considered to be a safe replacement for policy Q , in the sense of [11,14] and any
firewall that enforces policy Q can be reconfigured to enforce policy P without
any loss of security. The set Policy forms a lattice under the safe replacement
ordering and is defined as follows.

FW1

⊥,� : Policy
� : Policy ↔ Policy
� ,
� : Policy×Policy → Policy

⊥ = (∅, �FC �) ∧ � = (�FC �, ∅)
∀P ,Q : Policy •

P � Q ⇔ ((allow P ≤ allow Q) ∧ (deny Q ≤ deny P)) ∧
P � Q = (allow P ⊗ allow Q , deny P ⊕ deny Q) ∧
P � Q = (allow P ⊕ allow Q , deny P ⊗ deny Q)

Formally, P � Q iff every filter condition allowed by P is allowed by Q and
that any filter conditions explicitly denied by Q are also explicitly denied by
P . Note that in this definition we distinguish between filter conditions explicitly
denied in the policy versus those implicitly denied by default. This means that,
everything else being equal, a policy that explicitly denies a filter condition is
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considered more restrictive than a policy that relies on the implicit default-deny
for the same network traffic pattern. Safe replacement is defined as the Cartesian
product of Adjacency orderings over allow and deny sets and it therefore follows
that (Policy ,�) is a poset.

⊥ and � define the most restrictive and least restrictive policies, that is, for
any P ∈ Policy we have ⊥ � P � �. Thus, for example, any firewall enforcing
a policy P can be safely reconfigured to enforce the (not very useful) firewall
policy ⊥.

Policy Intersection. Under this ordering, the meet P �Q , of two firewall policies
P and Q is defined as the policy that denies any filter condition that is explicitly
denied by either P or Q , but allows filter conditions that are allowed by both
P and Q . Intuitively, this means that if a firewall is required to enforce both
policies P and Q , it can be configured to enforce the policy (P �Q) since P �Q
is a safe replacement for both P and Q , that is; (P � Q) � P and (P � Q) � Q .
Given the definition of safe replacement as a product of two Adjacency lattices,
it follows that the policy meet provides the glb operator. Thus, P � Q provides
the ‘best’/least restrictive safe replacement (under �) for both P and Q .

Policy Union. The join of two firewall policies P and Q is defined as the pol-
icy that allows any filter condition allowed by either P or Q , but denies filter
conditions that are explicitly denied by both P and Q . Intuitively, this means
that a firewall that is required to enforce either policy P or Q can be safely
configured to enforce the policy (P � Q). Since � provides a lub operator we
have P � (P � Q) and Q � (P � Q).

Proposition. The set of all policies Policy forms a lattice under safe replacement.
This follows from the definition of � as a Cartesian product of two Adjacency
lattice orderings.

4.1 Constructing Firewall Policies

The lattice of policies FW1 provides us with an algebra for constructing and
interpreting firewall polices. The following constructor functions are used to build
primitive policies. Given a set of adjacency-free filter conditions A, then (AllowA)
is a policy that allows filter conditions in A, and (DenyD) is a policy that
explicitly denies filter conditions in D .

Allow,
Deny : α[FC ] → Policy

∀S : α[FC ] •
Allow S = (S , ∅) ∧ Deny S = (∅,S )

This provides what we refer to as a weak interpretation of allow and deny.
Network traffic patterns that are not explicitly mentioned in parameter S are
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default-deny and therefore are not specified in the deny set of the policy. The
following provides us with a strong interpretation for these constructors:

Allow+,
Deny+ : α[FC ] → Policy

∀S : α[FC ] •
Allow+ S = (S ,not S ) ∧ Deny+ S = (notS ,S )

In this case (Allow+ A) allows filter conditions specified in A, while explic-
itly denying all other filter conditions, and (Deny+ D) denies filter conditions
specified in D while allowing all other filter conditions.

Proposition. A firewall policy P ∈ Policy can be decomposed into it’s corre-
sponding allow and deny sets, and re-constructed using the algebra; for any
(A,D) ∈ Policy , since A and D are disjoint then:

(Allow+ A) � (DenyD) = (A, �FC � \α[FC ] A) � (∅,D)
= (A,D)
= (AllowA) � (Deny+ D)

5 Reasoning About Policies in Practice

Sequential Composition. A firewall policy is conventionally constructed as a
sequence of rules, whereby for a given network packet, the decision to allow or
deny that packet is checked against each policy rule, starting from the first, in
sequence, and the first rule that matches gives the result that is returned. The
algebra FW1 can be extended to include a similar form of sequential composition
of policies. The policy constructions above can be regarded as representing the
individual rules of a conventional firewall policy.

Let (AllowA) o
9 Q denote a sequential composition of an allow rule (AllowA)

with policy Q with the interpretation that a given network packet matched in
A is allowed; if it does not match in A then policy Q is enforced. The resulting
policy either: allows filter conditions in A (and denies all other filter conditions),
or allows/denies filter conditions in accordance with policy Q . We define:

(AllowA) o
9 Q = (Allow+ A) � Q

= ((A ⊕ allow(Q)), ((�FC � \α[FC ] A) ⊗ deny(Q)))
= ((A ⊕ allow(Q)), (deny(Q) \α[FC ] A))

which is as expected. A similar definition can be provided for the sequential
composition (DenyD) o

9 Q , whereby a given network packet that is matched in
D is denied; if it does not match in D then policy Q is enforced. We define:

(DenyD) o
9 Q = (Deny+ D) � Q

= (allow(Q) \α[FC ] D , deny(Q) ⊕ D)
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While in practice its usual to write a firewall policy in terms of many con-
structions of allow and deny rules, in principle, any firewall policy P ∈ Policy
can be defined in terms of one allow policy (Allow allow(P)) and one deny pol-
icy (Deny deny(P)) and since the allow and deny sets of P are disjoint we have
P o

9 Q = (Deny deny(P)) o
9 (Allow allow(P)) o

9 Q . We define this as:

o
9 : Policy×Policy → Policy

∀FW1; P ,Q : Policy •
P o

9 Q = (Q � (Allow+ (allow(P)))) � (Deny+ (deny(P)))

Let Rule define the set of all firewall rules, where Rule:: = allow 〈〈FC 〉〉 |
deny 〈〈FC 〉〉. We define a rule interpretation function as:

I : Rule → Policy

∀ f : FC •
I(allow f ) = Allow({f }) ∧ I(deny f ) = Deny({f })

A firewall policy is defined as a sequence of rules 〈r1, r2, .., rn〉, for ri ∈ Rule,
and is encoded in the policy algebra as I(r1) o

9 I(r2) o
9 .. o

9 I(rn).

Policy Negation. The policy negation of P ∈ Policy allows filter conditions
explicitly denied by P and explicitly denies filter conditions allowed by P . We
define:

not : Policy → Policy

∀FW1; P : Policy •
notP = (Allow+ (deny (P))) � (Deny (allow (P)))

From this definition it follows that (notP) is simply (deny (P), allow (P))
and thus not (DenyD) = (AllowD) and not (AllowA) = (DenyA). Note how-
ever, that in general policy negation does not define a complement operator in
the algebra FW1, that is, it not necessarily the case that (P � notP) = � and
(P � notP) = ⊥.

5.1 Anomaly Analysis

A firewall policy is conventionally constructed as a sequence of order-dependent
rules, and when a network packet matches with two or more policy rules, the
policy is anomalous [3,4,8]. By definition, the adjacency-free allow and deny sets
of some P ∈ Policy are disjoint, therefore P is anomaly-free by construction.
We can however define anomalies using the algebra; by considering how a policy
changes when composed with other policies.
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Redundancy. A policy P is redundant given policy Q if their composition results
in no difference between the resulting policy and Q , in particular, if P o

9 Q = Q .

Shadowing. Some part of policy Q is shadowed by the entire policy P in the
composition P o

9 Q if the filter condition constraints that are specified by P
contradict the constraints that are specified by Q , in particular, if (notP) o

9Q =
Q . This is a very general definition for shadowing. Perhaps a more familiar
interpretation of this definition is one where the policy P is a specific allow/deny
rule that shadows a part or all of the policy with which it is composed. Recall
that (not(AllowA)) = (DenyA) and, for example, in (AllowA) o

9 Q all or part of
policy Q is shadowed by the rule/primitive policy (AllowA) if Q denies the filter
conditions specified in A, that is, (DenyA) o

9 Q = Q . Similarly, in (DenyD) o
9 Q

part or all of policy Q is shadowed by the rule/primitive policy (DenyD) if
(not (DenyD)) o

9 Q = Q . Further definitions for shadowing may be constructed
using the algebra. For example, an initial interpretation of the generalisation
anomaly [3] in the composition P o

9 Q ; is where Q is generalised by P if all of
P shadows (specifically) part of Q . We are currently investigating how this and
other anomalies can be reasoned about within the algebra.

Inter-policy Anomalies. Anomalies can also occur between the different policies
of distributed firewall configurations [4]. In the following, assume that P is a
policy on an upstream firewall and Q is a policy on a downstream firewall.

An inter-redundancy anomaly exists between policies P and Q if some part
of Q is redundant to some part of P , whereby the target action of the redundant
filter conditions is deny. Given some set of filter conditions A denied by P , and
some set of filter conditions B denied by Q , if (DenyA) o

9 (DenyB) = (DenyA)
then there exists an inter-redundancy between P and Q .

An inter-shadowing anomaly exists between policies P and Q if some part
of Q ’s allows are shadowed by some part of P ’s denies. Given some set of filter
conditions A denied by P , and some set of filter conditions B allowed by Q ,
if (DenyA) o

9 (AllowB) = (DenyA), then there is an inter-shadowing anomaly
between P and Q .

An inter-spuriousness anomaly exists between policies P and Q if some part
of Q ’s denies are shadowed by some part of P ’s allows. Again, given some set
of filter conditions A allowed by P , and some set of filter conditions B denied
by Q , if (AllowA) o

9 (DenyB) = (AllowA), then there exists an inter-spuriousness
anomaly between P and Q .

5.2 Standards Compliance

RFC 5735 [7], details fifteen IPv4 address blocks/ranges that have been assigned
by the Internet Assigned Numbers Authority (IANA) for specialized/global pur-
poses. Some of these address spaces may appear on the Internet, and may be
used legitimately outside a single administrative domain, however, while the
assigned values of the ranges do not directly raise security issues; unexpected
use may indicate an attack [7]. For example, packets with a source IP address
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from the private address space 172.16.0.0/12, arriving on the Wide Area Net-
work interface of a network router, may be considered spoofed, and may be part
of a Denial of Service (DoS), or Distributed DoS attack.

RFC 5735 Compliance. An IP spoof-mitigation compliance policy RFC5735 is
defined. Best practice recommendations are implemented for each of the fifteen
specialized IP ranges in [7], resulting in one hundred and twenty iptables deny
rules. In [10], we defined this deny ruleset for a firewall management tool, we
do not give the definition here for reasons of space. The compliance policy ter-
minates with a final iptables rule that specifies all other traffic be permitted.
To model these iptables rules in the algebra, we define some additional filter
condition attributes and provide a more formal definition of RFC5735.

An Extended Firewall Policy. An attribute for the iptables filter table chains
may be defined as Chain ::= input | output | forward. Direction-based filtering
may be given as Dir ::= ingress | egress, and the set of all sets of interfaces on
a machine may be given as P Iface, where for simplicity, we assume elements of
Iface resemble eth0, wlan0, tun0, etc. Let AdditionalFC be the set of all duplets
for additional filter condition attributes of interest for this paper, whereby:

AdditionalFC == δ[PChain, δ[PDir ,P Iface]]

A revised definition for the set of all filter conditions FCI is given as:

FCI == δ[α[IPv4], δ[α[Port ], δ[α[IPv4], δ[α[Port ], δ[Protocol ,AdditionalFC ]]]]]

A revised definition for the set of all policies PolicyI is given as:

PolicyI == {A,D : α[FCI ] | ∀ a : A; d : D • a |FCI d}
The compliance policy RFC5735 ∈ PolicyI , defines the minimum requirement

for what it means for some perimeter network firewall policy to mitigate the
threat of IP spoofing for all traffic, in accordance with RFC 5735. Thus, we have
for all P ∈ PolicyI , if P � RFC5735, then P complies with the best practice
recommendations outlined in [7] for IP spoof-mitigation.

6 Encoding and Evaluating Iptables Policies

A prototype policy management toolkit has been implemented in Python for
iptables. We reason over PolicyI policies using (o9,�,�); time-based performance-
analysis tests were conducted. The test-bed for the experiments was a 64-Bit
Ubuntu 14.04 LTS OS, running on a Dell Latitude E6430, with a quad-core
Intel i5-3320M processor and 4 GB of RAM. Every experiment was conducted
three times; the median result chosen for inclusion in this paper. Overall, the
results are promising.
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Evaluating Sequential Policy Composition. Two datasets were generated for
experimentation. Each dataset consists of iptables policies of size 24..211. One
dataset contains policies where no rule is adjacent to any other rule (other
than itself), and the other dataset consists of policies where every new rule
is adjacent to the previous rule; to ensure the maximum number of possi-
ble rules are generated as a result of composition. The rules all have a tar-
get action of allow. The implementation parses the system’s currently enforced
iptables ruleset 〈r1, r2..rn〉 by chain, and then normalizes each rule to a prim-
itive/singleton policy 〈I(r1), I(r2)..I(rn)〉. The overall policy for the chain is
evaluated as I(r1) o

9 I(r2) o
9 .. o

9 I(rn). For reasons of space, we give the results for
the sequential composition experiments as lists of tuples (P,T (P)), where P is
the policy named by the number of iptables rules it was constructed from for
the experiment, and T (P) is the time taken in seconds for the evaluation of the
sequential composition of the rules in P. For the adjacent dataset we have [(24,
0.80), (25, 2.02), (26, 5.13), (27, 15.32), (28, 51.18), (29, 183.42), (210, 707.15),
(211, 2792.81)]. We observe that the evaluation time for the sequential compo-
sition of 29 rules is around three minutes, and T (211) is approximately forty six
minutes. For the non-adjacent dataset, we have [(24, 0.07), (25, 0.13), (26, 0.29),
(27, 0.67), (28, 1.73), (29, 4.98), (210, 16.09), (211, 57.81)], and we see that for
the largest ruleset, 211, T (211) is approximately one minute.

Evaluating Policy Union. Experiments were conducted to test policy lub,
whereby each policy in the adjacent dataset was split into two policies, where
the first policy contains the odd (index) rules from the original policy, and the
second policy contains the even (index) rules from the original policy. Then for
each P ,Q ∈ PolicyI in this split dataset, the time taken for the operation P �Q
is encoded in the matrix in Table 1. The times taken for composition of policies
of equal size are approximately the same as (slightly less than) those for the
results given in the adjacent sequential composition dataset. This is highlighted
through the diagonal in the matrix, and is as expected; given that we used all
allow rules.

Table 1. Time taken to compute P � Q (in seconds)

P
Q

23 24 25 26 27 28 29 210

23 0.65 0.79 0.81 0.99 1.40 2.51 5.73 16.93

24 0.79 1.86 2.09 2.32 2.91 4.50 8.83 22.19

25 0.81 2.09 4.97 5.45 6.78 9.17 15.50 32.89

26 0.99 2.32 5.45 14.70 17.01 21.93 32.29 57.47

27 1.40 2.91 6.78 17.01 48.85 58.44 76.94 119.28

28 2.51 4.50 9.17 21.93 58.44 179.87 217.34 294.56

29 5.73 8.83 15.50 32.29 76.94 217.34 699.11 839.49

210 16.93 22.19 32.89 57.47 119.28 294.56 839.49 2722.63
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Evaluating Policy Compliance. A further dataset consisting of iptables policies
of size 24..211 was generated to test policy compliance. Each policy in this dataset
was RFC 5735 compliant by construction. Results are again given as a list of
tuples (P,T (P)), where P is the policy named by the number of iptables rules
it was constructed from for the experiment, and T (P) is the time taken in
seconds for the evaluation of P � RFC5735. We have [(24, 1.07 ×10−3), (25, 1.62
×10−3), (26, 2.23 ×10−3), (27, 3.50 ×10−3), (28, 5.24 ×10−3), (29, 1.03 ×10−2),
(210, 2.76 ×10−2), (211, 4.95 ×10−2)], and we see that for each P ∈ PolicyI in
this compliance-dataset T (P) is negligible.

7 Related Work

In [3], a firewall policy is modelled as a single rooted tree, relations between
rules are defined on a pairwise basis, and definitions for firewall configuration
anomalies are provided. In [4], the work is extended to distributed firewall poli-
cies. In [8], a firewall policy is modelled as a linked-list, and in [13] rule rela-
tions within a policy are modelled in a directed graph. In [20] Binary Decision
Diagrams are used to model firewall rulesets. We model a firewall policy as
an ordered pair of disjoint adjacency-free sets, where the set of policies Policy
forms a lattice under �, and each P ∈ Policy is anomaly-free by construction.
In [3,4,8,13,20] an algorithmic approach is taken to detect/resolve anomalies.
We follow an algebraic (as opposed to algorithmic) approach towards modelling
anomalies in a single policy, and across a distributed policy configuration through
policy composition. In earlier work [12], we developed the algebra FW0, and
used it to reason over host-based and network access controls in OpenStack.
In the FW0 algebra, we focused on stateless firewall policies that are defined
in terms of constraints on individual IPs, ports and protocols. In this paper,
the algebra FW1 is defined over stateful firewall policies constructed in terms
of constraints on source/destination IP/port ranges, the TCP, UDP and ICMP
protocols, and additional filter condition attributes. We argue that FW1 gives a
more expressive means for reasoning over OpenStack security group and perime-
ter firewall configurations. In [16], cloud calculus is used to capture the topology
of cloud computing systems and the global firewall policy for a given configura-
tion. This paper could extend the work in [16], given that FW1 may be used
in conjunction with cloud calculus to guarantee anomaly-free dynamic firewall
policy reconfiguration, where the ordering relation � may give a viable alterna-
tive for the given equivalence relation defined over ‘cloud’ terms for the formal
verification of firewall policy preservation after a live migration. In [21], a fire-
wall policy algebra is proposed. However, the authors note that an anomaly-free
composition is not guaranteed as a result of using their algebraic operators. Our
work differs, in that policy composition under the �,� and o

9 operators defined
in this paper all result in anomaly-free policies. In [2], an abstract model for
Netfilter is proposed, and a language to specify firewall configurations is intro-
duced that is similar to the XML-based access control language supported by
Or-BAC presented in [9]. In [17], a formal model of Netfilter is defined, and the
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properties of reachability and cyclicity within firewall policy configurations are
investigated. In [6], a theorem-proving approach is used to reason about fire-
wall policies. The proposed algebra FW1 is used to reason about and compose
anomaly-free policies and therefore we do not have to worry about dealing with
conflicts that may arise. Anomaly conflicts are dealt with in composition by
computing anomaly-free policies, rather than using techniques such as [15] to
resolve conflicts in policy decisions. Encoding a definition for Network Address
Translation in FW1 is a topic for future research.

8 Conclusion

A policy algebra FW1 is defined in which firewall policies can be specified and
reasoned about. At the heart of this algebra is the notion of safe replacement,
that is, whether it is secure to replace one firewall policy by another. The set of
policies form a lattice under safe replacement and this enables consistent opera-
tors for safe composition to be defined. Policies in this lattice are anomaly-free
by construction, and thus, composition under glb and lub operators preserves
anomaly-freedom. A policy sequential composition operator is also proposed that
can be used to interpret firewall policies defined more conventionally as sequences
of rules. The algebra can be used to characterize anomalies, such as shadowing
and redundancy, that arise from sequential composition. Best practice policy
compliance may be defined using �. The algebra FW1 provides a formal inter-
pretation of the network access controls for a partial mapping to the iptables
filter table. FW1 is a generic algebra and can also be used to model other fire-
wall systems. The results in this paper are described in terms of the algebra
FW1, for stateful firewall policies that are defined in terms of constraints on
source/destination IP/port ranges, the TCP, UDP and ICMP protocols, and
additional filter condition attributes.
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Abstract. Secure multi-party computation (SMC) techniques are
increasingly more efficient and practical, due in part, to various improve-
ments. For instance, recent research has shown that different protocols
that are implemented using different sharing mechanisms (e.g., boolean
and arithmetic sharings) can have varying computational and commu-
nication costs. Although there are some approaches to automatically
mix protocols of different sharing schemes to enhance execution effi-
ciency, none provide a generic optimization framework to discover the
least expensive mixed-protocol SMC execution for cloud deployment.

In this work, we introduce a generic SMC optimization framework
CheapSMC that can invoke any mixed-protocol SMC circuit evaluation
tool as a black box to uncover the cheapest SMC cloud deployment
option. To do so, CheapSMC computes one-time benchmarks for the tar-
get cloud service and gathers performance statistics for basic circuit com-
ponents. Relying on these statistics, an optimization layer of CheapSMC
invokes several heuristics to find the cheapest mix-protocol circuit evalu-
ation. Subsequently, the optimized circuit is passed to a mixed-protocol
SMC tool for actual executable generation. Our empirical results, gath-
ered by running cases studies on large range of complexity in data volume
and functions for computation, show that significant cost savings can be
achieved via our optimization framework in comparison to the state-of-
the-art.

1 Introduction

Over the last couple of years, various two-party secure multi-party computation
(SMC) protocols have been proposed to address different secure computation
needs, ranging from privacy-preserving face recognition (e.g., [1]) to secure bio-
metric identification (e.g., [3]). In addition, numerous generic two-party circuit
evaluation platforms (e.g. [5,12]) have been developed to improve the efficiency
of existing secure protocols. Most of these platforms (e.g., [4]) also provide high-
level programming language support that can automatically generate circuits
from programs written in C-like languages. These recent advances have enabled
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two-party SMC protocols to be more practical and push towards actual deploy-
ment of such technologies.

At the same time, there remain several critical challenges to making these
platforms practical. One challenge in particular that has received little attention
is performance optimization. Recent research [6] has shown that different two-
party SMC protocols can have different computational and communication cost
profiles. For example, arithmetic sharing-based circuit evaluation protocols may
be better for certain tasks in comparison to Yao’s garbled circuit evaluation
protocols. On the other hand, Boolean secret sharing-based circuit evaluation
techniques can achieve the best performance in certain situations. Based on such
observations, it has been shown [6] that the combination of these techniques can
perform much better than each in isolation. This begs the question: How can we
find the best combination of two-party SMC techniques for a given task?

Most of the existing work to date fails to consider the problem of finding the
optimal combination of different sharing- based protocols for a given task. Rather,
they require the end user to manually specify the specific sub-protocols that must
be invoked. There has been some investigation into optimization and automation
of the selection process (e.g., [7]), but it is limited in scope with respect to the cost
dimensions that the user can choose to optimize. For example, if one party lever-
ages a cloud infrastructure for running the protocol, the network communication
may significantly impact the overall cost (in terms of money) paid by the parties.
As such, it is clear that we need an optimization framework that can automatically
consider communication, computation and monetary costs when searching for the
optimal two-party SMC protocol composition.

The goal of this paper is to introduce an optimization framework where the
given two-party SMC task can be automatically optimized under a set of prede-
fined cost constraints. In doing so, the optimal (or near optimal) combination of
different sharing-based subprotocols (e.g., arithmetic, boolean, and Yao’s secret
sharing protocols) can be selected automatically. This goal is similar to other
automatic task optimization frameworks associated with other systems. In our
optimization framework, we especially focus on the cloud setting because it is
being widely adopted by organizations in a wide range of application domains [8]
due to its flexibility and low initial management cost. In the cloud setting, in
addition to minimizing the overall run time of the system, we may need to bal-
ance the network traffic, and computation time to achieve overall lowest mone-
tary cost. This makes the problem more challenging because it suggests we need
to consider both communication and computation costs in the optimal mixed-
protocol circuit generation.

Overview of the CheapSMC. The objective of the system1 is to make it
easier for users to implement and execute SMC protocols, while minimizing the
monetary cost of the SMC execution in the cloud. To ease the implementation
phase and make CheapSMC extensible to available SMC tools, we partition it
into three primary components. First, the Programming API acts as the fron-
tend for the users, which enables implementation of SMC protocol using a C++
1 Please see https://arxiv.org/abs/1605.00300 for the full version of our paper.

https://arxiv.org/abs/1605.00300
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library. This layer is ultimately responsible for representing the user protocol
as a circuit of atomic operations. It should be noted that CheapSMC can be
further extended by designing a custom language (e.g., SFDL of Fairplay [4]),
which uses our Programming API in the background. In this work, we do not
focus on such integration and instead focus on the optimization aspects.

Second, the Optimization Module is responsible for assigning secret sharing
schemes (e.g., Arithmetic, Boolean, Yao sharing as in the ABY framework [6];
Additively homomorphic, Yao sharing as in the Tasty framework [12]) to the
nodes in the circuit, such that the total cost of executing the protocol in the
cloud is minimized. Finding an optimal solution to this problem is NP-Hard, so
this module provides heuristics to find near-optimal solutions.

Finally, the SMC Layer implements the optimized circuit given an existing
SMC tool (e.g., ABY or Sharemind [5]). We recognize the development of effi-
cient SMC tools is a vibrant research area, such that the design of CheapSMC
does not focus on a single SMC tool that could limit its usefulness. Rather, we
leverage a given SMC tool as a black box, provided that it is a mixed-protocol
SMC tool (i.e., it allows for implementation using different sharing schemes).

CheapSMC relies on several atomic operations (e.g., addition, multiplication,
binary xor, as well as binary and) that cover various application scenarios. In
Sect. 4, we show the results of applying our system to several case studies, while
further applications can be realized using our C++ library. Moreover, the process
of optimizing the circuit is decoupled from the circuit generation and other
layers, so that proposing a new heuristic and implementing it can be achieved
with minimal effort.

2 The Optimal Partitioning Problem

2.1 Problem Definition

Let S = {s1, . . . , sn} be the set of provided secret sharing mechanisms. Then,
given a variable x in some domain I, let [x]si represent the secret sharing of x
using si.

Next, we define the set of operations O = {o1, . . . , ok}, such that each opera-
tion oi ∈ O takes a set of parameters that are secretly shared in sj and outputs
a single variable secretly shared in sj . Note that the number of inputs that an
operation takes is fixed, regardless of the secret sharing scheme. An operation
oi is supported in sj , if there exists an execution protocol that takes the input
parameters to oi and outputs a result secretly shared in sj . Let δ(oi) ⊆ S repre-
sent the secret sharing mechanisms that support operation oi ∈ O.

Since an operation can be executed in the cloud environment, one should
approximate the monetary cost of performing the protocol execution in a certain
setup. In order to achieve this goal, we focus on the processing and network
transfer costs of executing a single operation in the pay-as-you-go cloud model.
In this computing model, a customer of a cloud provider service is charged a
constant amount per unit time for using a particular type of virtual machine
(VM), while the prices vary depending on the processing capabilities of the VM.
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On the other hand, the monetary cost of transferring a single byte in and out
of the VM is fixed based on the VM specifications. The unit cost of network
transfer vary as the network capacity of the VM changes.

Under such circumstances, we define the processing and network transfer
costs of executing an operation oi ∈ O in the secret sharing scheme sj ∈ δ(oi) as
P(oi, sj) and N(oi, sj), respectively. Furthermore, we define the processing and
network transfer cost of converting a variable that is secretly shared in si ∈ S
to sj ∈ S as CP(si, sj) and CN(si, sj), respectively. Note that defined costs may
vary based upon VM specifications.

Given the set of operations O, the parties in the computation (i.e., the server
and the client) implement a circuit C that is represented as a directed acyclic
graph (DAG) and consists of m nodes c1, . . . , cm. Each node represents a single
operation and takes input from other nodes, whereas the number of inputs is
decided by the operation. To be more concrete, let α(ci) ∈ O represent the
operation that is assigned to the node ci ∈ C, while β(ci) ⊆ C is the set of nodes
that supply input to ci

2. Furthermore, let γ(ci) ∈ S be the secret sharing scheme
assigned to ci. Then the monetary cost of executing a node ci ∈ C is simply:

cost(ci) = P(α(ci), γ(ci)) + N(α(ci), γ(ci)) +
∑

cj∈β(ci)

CP(γ(cj), γ(ci)) + CN(γ(cj), γ(ci)) (1)

Using the above definitions, the optimal partitioning problem investigated in
this paper is formally defined as follows:

Definition 1. Given the processing and network transfer cost for a set of oper-
ations O using a set of secret sharing schemes S, the cost of conversion between
different secret sharing schemes, and a circuit C = {c1, . . . , cm} of m nodes,
where each node ci is assigned an operation α(ci) ∈ O, assign a secret sharing
scheme to each node ci, such that the total monetary cost of executing the circuit
with the assigned secret sharing schemes is minimal.

Given :O,S, C, P(o, s) and N(o, s) ∀o ∈ O,∀s ∈ δ(o),
CP(si, sj) and CN(si, sj) ∀si, sj ∈ S, α(ci) ∀ci ∈ C

Minimize :
∑

ci∈C
cost(ci) Subject to : γ(ci) ∈ δ(α(ci)) ∀ci ∈ C

(2)

The partitioning problem is NP-Hard, and the reduction can be realized via
the Integer Programming problem.

3 The Details of CheapSMC

3.1 Architecture

CheapSMC is composed three primary parts: (i) The programming interface
(API), (ii) the optimization module, and (iii) the SMC layer. Each part is
2 Note that this circuit representation of a computation can be provided by the pro-

gramming language.
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responsible for a different task: The programming interface morphs a user’s
program into its circuit representation. The optimization module heuristically
assigns the secret sharing schemes to each node in the circuit using. The SMC
layer generates the executables using state-of-the-art cryptographic primitives
and techniques. The user of CheapSMC is expected to provide two inputs:
(A) the specifications of the protocol that are going to be executed securely
and (B) the unit costs for the operations and secret sharing schemes supported
by the SMC framework. As discussed later, we provide a benchmark suite to
automatically learn these unit costs for any target cloud service to assist the
user.

User Inputs. It is assumed that the user knows the secure protocol for the
application for CheapSMC will be invoked. One input to our system is the pro-
tocol specification, which can either be implemented using the associated C++
library or via a custom programming language, whose compiler turns the user
input to an output compatible with our programming API. Next, the user must
input the unit monetary cost of the operations for the hardware specifications
that secure executables will work over. We have implemented a set of benchmark
applications that can be executed by a user to discover the unit costs of each
operation. It should be recognize that this is a one-time operation per tested
cloud environment.

Programming API. We implemented an extensible library in C++ that allows
a user to implement a secure protocol (e.g., set intersection or biometric match-
ing). We provided several operations in the API that cover a variety of appli-
cations. Currently, the set of operations O include addition (Add), subtraction
(Sub), multiplication (Mul), greater (Ge), equality (Eq), multiplexer (Mux), binary
xor (Xor), and binary and (And). There are also two additional operations in the
form of input (In) and output (Out), which allow the programmer to specify
secret inputs to the circuit and to learn the outputs of the protocol execution.

As a proof of concept, we provided the interface as a C++ library that can be
used to generate cost-optimal SMC executables. The interface can be bound with
the compiler of a custom programming language, though which the system user
can type the protocol specifications. Next, the compiler can generate the C++
program that uses the CheapSMC programming interface. In any scenario, the
programming interface transforms the protocol into the circuit representation
(See Sect. 2).

Optimizer. Given the circuit representation of the user protocol and the secret
sharing schemes that are provided by the SMC layer, the optimizer module
applies one of the heuristics (cf. Sect. 3.2) to assign secret sharing schemes to each
node in the circuit. As discussed earlier, this module is responsible for finding the
assignment that minimizes the monetary cost of executing the protocol securely.

Due to the fact that the optimal partitioning problem is NP-Hard, finding
the optimal assignment may be impractical (even for a circuit of moderate size).
As such, we introduced several heuristics (See Sect. 3.2) that are oriented to find
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a reasonable solution. In the background, CheapSMC applies each heuristic and
chooses the one that gives the best result.

SMC Layer. Once the secret sharing schemes are assigned to each node in the
circuit, CheapSMC passes the circuit to the SMC layer to generate the SMC exe-
cutables. It should be recognized that there are several related investigations that
provide mixed-protocol SMC tools, including the ABY framework by Demm-
ler et al [6], the TASTY framework by Henecka et al. [12], and the Sharemind
framework by Bogdanov et al. [5]. The SMC layer in CheapSMC is responsible
for automatically implementing the optimized circuit from such existing tools.
Note that since the selected SMC tool provides the low-level implementation
of the cryptographic primitives (e.g., oblivious transfer [10,11], multiplication
triplets [2], and sharing and reconstructing secret inputs), we focus on optimiz-
ing the user protocol using sharing assignments.

3.2 Optimization Heuristics

In addition to two existing heuristics, we developed two new heuristics to solve
the optimal partitioning problem. Here, we provide a high-level description of
thee heuristics.

Bottom-up Heuristic. The key idea in this heuristic is to assign an optimal
secret sharing scheme to the nodes in their topological order in the circuit.
When a node ci ∈ C is ready to be processed, the heuristic first assigns sharing
schemes to the nodes that provide input to ci. Based on the values assigned
to the children, this heuristic selects the scheme that minimizes the expected
monetary cost for ci.

Top-Down Heuristic. This technique processes the nodes of the circuit in a
manner quite the opposite of the Bottom-Up heuristic. Specifically, it assigns
secret sharing schemes to the higher-level nodes first and iterates down to the
lower levels. The idea in this heuristic is to assign the scheme that minimizes
the cost of the current node, given that the schemes for the nodes for which its
input to are already known. Now, assume that the secret sharing scheme for the
node ck is set to sk previously. When assigning the secret sharing scheme for the
node ci, this heuristic takes into account that the result of the node ci should be
converted to sk. The optimal decision is made with this consideration in mind.

Fixed Secret Sharing. In this optimization heuristic, each node in the circuit
is assigned the same secret sharing scheme. However, in some SMC tools, certain
secret sharing schemes may not necessarily support each single operation (e.g.,
Arithmetic sharing in ABY framework does not support And, Xor, and Mux).
In such a case, this heuristic selects one scheme that supports each CheapSMC
operation. One common secret sharing scheme that is included in almost all
SMC tools and supports each operation is garbled circuit sharing (based on
Yao’s garbled circuit protocol [13]). Using this heuristic, we can measure the
monetary cost of executing the user protocol by a single secret sharing scheme
(e.g., pure SMC by garbled circuit sharing).
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Hill-Climbing. This heuristic is based on the technique of Kerschbaum et
al. [7]. The basic idea is to start by assigning a common secret sharing scheme
(e.g., garbled circuit sharing) to each node in the circuit. Next, we check if the
total cost can be reduced by changing the current secret sharing scheme of a
node. This loop continues until the total cost cannot be improved by any further
assignment.

4 Case Studies

4.1 Experiment Setup

We conducted empirical performance evaluations in two scenarios: (1) Intra-
Region, where the parties are in the same Amazon EC2 region and (2) Inter-
Region, where the parties are not in same region, for four different Amazon EC2
VM models. We tested each scenario and VM model with four techniques: the
three optimization heuristics - (i.e., Top-down, Bottom-up, and Hill Climbing)
- and Pure-Yao, which assigns Yao-style (i.e., garbled circuit) sharing to each
node in the circuit.

In addition to the monetary cost of running CheapSMC, we measure the
average running time of the four techniques. As mentioned in Sect. 3.2, our
optimization problem can be enhanced by introducing performance constraints
(e.g., the expected running time should be less than some threshold t). Given
such a performance constraint, the heuristic solver may prune any solution that
fails to satisfy the estimated performance constraint.

4.2 Biometric Matching

Biometric matching applications cover a two-party scenario, where (i) the server
has a set of private entries and (ii) a client, holding its private entry, wants to
learn the closest entry in the server’s dataset based on some similarity measure.
There are various problems related to this case study (e.g., biometric identifica-
tion [3], fingercode authentication [9], and face recognition [1,14]). One of the
commonly used distance metric is squared Euclidean distance. In this protocol,
the server and the client proceed over the server’s dataset one by one, which
results in the client learning the entry with the minimal distance to its private
input. We implemented this case study using our Programming API for a dataset
of 30 rows with 5 attributes of 32-bit numbers.

We performed tests on four different Amazon EC2 VM configurations.
Detailed information on the specifications of each VM configuration can be found
in the full version of this paper.

Table 1 shows the average running time for the Biometric Matching case
study, two different scenarios, four VM models, and four secret-sharing assign-
ment heuristics. As expected, the performance is much better in the Intra-Region
scenario. In all cases, applying any of the heuristics yields lower running times
compared to the Pure-GC assignment (i.e., where each node is assigned the Yao
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Table 1. The average execution time for the Biometric Matching case study in the
Amazon EC2 Cloud. The results are for two different scenarios, four different VM
models, and four different techniques.

Execution time (ms)

Pure-GC Hill TD BU

INTRA m3.med 1229.481 398.02 348.43 416.944

m3.large 715.5147 355.2913 321.388 372.529

c4.large 577.333 293.544 256.363 284.378

c4.xlarge 561.602 352.197 292.522 326.393

INTER m3.med 5518.04 6738.14 6237.37 6749.467

m3.large 4801.94 6096.73 6103.647 6083.193

c4.large 8731.577 35580.13 33267.77 35569.97

c4.xlarge 9118.693 6916.357 6381.093 6826.727

Table 2. The average computational, network, and total cost of running the Biometric
Matching case study in the Amazon EC2 Cloud. The results are for two different
scenarios, four different VM models, and four different techniques.

Computation Cost ( 10−3) Network Cost ( 10−3) Total Cost ( 10−3)
Pure-GC Hill TD BU Pure-GC Hill TD BU Pure-GC Hill TD BU

IN
T

R
A

m3.med 4.78 1.55 1.36 1.62 0.00 0.00 0.00 0.00 4.78 1.55 1.36 1.62
m3.large 5.57 2.76 2.50 2.90 0.00 0.00 0.00 0.00 5.57 2.76 2.50 2.90
c4.large 3.72 1.89 1.65 1.83 0.00 0.00 0.00 0.00 3.72 1.89 1.65 1.83

c4.xlarge 7.24 4.54 3.77 4.21 0.00 0.00 0.00 0.00 7.24 4.54 3.77 4.21

IN
T

E
R

m3.med 27.74 33.88 31.36 33.93 990.71 189.71 129.71 189.71 1018.46 223.58 161.07 223.64
m3.large 45.75 58.09 58.15 57.96 990.71 189.71 129.71 189.71 1036.46 247.80 187.86 247.67
c4.large 63.79 259.93 243.04 259.86 990.71 218.29 173.27 218.29 1054.50 478.23 416.31 478.15

c4.xlarge 133.23 101.06 93.23 99.75 990.71 189.71 129.71 189.71 1123.95 290.76 222.94 289.45

sharing). Moreover, our Top-Down heuristic yields the best running time for all
VM models. Specifically, it is 15% better than the Hill Climbing heuristic of
Kerschbaum et al [7] in terms performance. For the Inter-Region scenario, we
find that Pure-GC performs much better than the other techniques in terms
of performance, except for the last model c4.xlarge. Since the physical distance
between the two parties is large (i.e., between Tokyo and North Virginia), net-
work latency plays a vital role in the overall performance. And it is shown that
Yao sharing is much better than any other solution in high-latency networks.
Since our primary optimization objective is to minimize cost (and not to mini-
mize performance) the Inter-Region results are not surprising.

Table 2 shows the monetary cost for the Biometric Matching case study with
the aforementioned setup. In the Intra-Region scenario, we see that the Top-
Down heuristic performs better than any other technique in all VM models.
This is due to a better assignment of secret sharing schemes to the nodes in the
circuit for this particular case study. Note that the network communication cost
within the same region is 0 in Amazon EC2, which is why the network cost in
Table 2 is simply 0. In the Inter-Region scenario, the Top-Down heuristic once
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again delivers the cheapest assignments for all VM models. It performs 30%
better than the Hill Climbing heuristic. In terms of computation cost, we see
that Pure-GC performs better due to the reasons discussed earlier (i.e., high
network latency). However, in terms of total cost, Top-Down heuristic induces
up to 80% reduction.

5 Conclusion

This paper introduced CheapSMC, an SMC framework that aims to minimize
the cost of executing SMC protocols in the cloud. We performed extensive cost
profiling for the Amazon EC2 cloud service leveraged the gathered statistics
and applied our system two case studies (i.e., biometric matching and matrix
multiplication). We evaluated CheapSMC using four VM models and two sce-
narios (i.e., Inter-Region and Intra-Region). and we showed that the cost of
executing SMC using our heuristics is up to 96% and 30% less than pure gar-
bled circuit and Hill-Climbing methods, respectively. The evidence suggests that
purchasing faster and more expensive VM models from Amazon EC2 do not nec-
essarily reduce the total monetary cost of executing SMC protocols. In general,
compute-optimized VMs can result in more expenses, while those which are
memory-optimized can produce cheaper SMC executions.

Acknowledgement. The research was supported by grants from the NIH
(R01LM009989, R01HG006844, & 1U01HG008701) and NSF (CNS-1111529, CNS-
1228198, & CICI-1547324).

References

1. Sadeghi, A.-R., Schneider, T., Wehrenberg, I.: Efficient privacy-preserving face
recognition. In: Lee, D., Hong, S. (eds.) ICISC 2009. LNCS, vol. 5984, pp. 229–
244. Springer, Heidelberg (2010)

2. Beaver, D.: Efficient multiparty protocols using circuit randomization. In:
Feigenbaum, J. (ed.) Advances in Cryptology – CRYPTO ’91. LNCS,
pp. 420–432. Springer, Heidelberg (1992)

3. Evans, D., et al.: Efficient privacy-preserving biometric identification. In: NDSS
(2011)

4. Malkhi, D., et al.: Fairplay-secure two-party computation system. In: USENIX
Security (2004)

5. Bogdanov, D., Laur, S., Willemson, J.: Sharemind: a framework for fast privacy-
preserving computations. In: Jajodia, S., Lopez, J. (eds.) ESORICS 2008. LNCS,
vol. 5283, pp. 192–206. Springer, Heidelberg (2008)

6. Demmler, D., et al.: ABY - a framework for efficient mixed-protocol secure two-
party computation. In: NDSS (2015)
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Abstract. Diversity as a security mechanism has received revived inter-
est recently due to its potential for improving the resilience of software
and networks against unknown attacks. Recent work show diversity can
be modeled and quantified as a security metric at the network level. How-
ever, such an effort does not directly provide a solution for improving the
network diversity, and existing network hardening approaches are largely
limited to handling previously known vulnerabilities by disabling exist-
ing services. In this paper, we take the first step towards an automated
approach to diversifying network services under various cost constraints
in order to improve the network’s resilience against unknown attacks.
Specifically, we provide a model of network services and formulate the
diversification requirements as an optimization problem. We devise opti-
mization and heuristic algorithms for efficiently diversifying relatively
large networks under different cost constraints. We also evaluate our
approach through simulations.

1 Introduction

Many critical infrastructures, governmental and military organizations, and ent
erprises have become increasingly dependent on networked computer systems
today. Such mission critical computer networks must be protected against not
only known attacks, but also potential zero day attacks exploiting unknown vul-
nerabilities. However, while traditional solutions, such as firewalls, vulnerability
scanners, and IDSs, are relatively successful in dealing with known attacks, they
are less effective against zero day attacks.

To this end, diversity has previously been considered for a security mecha-
nism for hardening software systems against unknown vulnerabilities, and it has
received a revived interest recently due to its potential for improving networks’

c© IFIP International Federation for Information Processing 2016
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resilience against known attacks. In particular, a recent work shows diversity can
be modeled and quantified as a security metric at the network level [23,26]. How-
ever, the work does not directly provide a systematic solution for improving the
network diversity under given cost constraints, which can be a challenging task
for large and complex networks. On the other hand, existing efforts on network
hardening (a detailed review of related work will be given later in Sect. 2) are
largely limited to handling previously known vulnerabilities by disabling existing
services.

In this paper, we propose an automated approach to diversifying network ser-
vices under various cost constraints in order to improve the network’s resilience
against unknown attacks. Specifically, we devise a model of network services and
their different instances by extending the resource graph model; such a model
allows us to formulate the diversification requirements and cost constraints as
an optimization problem; we apply optimization techniques to solve the formu-
lated problems, and design heuristic algorithms to more efficiently handle larger
networks. We evaluate our approach through simulations in order to study the
effect of optimization parameters on accuracy and running time, and the effec-
tiveness of optimization for different types of networks. In summary, the main
contribution of this paper is twofold:

– To the best of our knowledge, this is the first effort on formulating the prob-
lem of network service diversification for improving the resilience of networks,
which enables the application of existing optimization techniques and also
provides a practical application for existing diversity metrics [23,26].

– As evidenced by the simulation results, the optimization and heuristic algo-
rithms provide a relatively accurate and efficient solution for diversifying net-
work services while considering various cost constraints. By focusing on zero
day attacks, our work provides a complementary solution to existing network
hardening approaches that focus on fixing known vulnerabilities.

The remainder of this paper is organized as follows: The rest of this section
first builds the motivation through a running example. Section 2 reviews related
work. In Sect. 3, we present the model and formulate the optimization problem,
and in Sect. 4 we discuss the methodology and show case studies. Section 5 shows
simulation results and Sect. 6 concludes the paper.

1.1 Motivating Example

We present a motivating example to demonstrate that diversifying network ser-
vices can be a tedious and error-prone task if done manually, even if the consid-
ered network is of a small size. Figure 1 shows a hypothetical network, which is
roughly based on the virtual penetration lab described in [15]. Despite its rela-
tively small scale, it mimics a typical enterprise network, e.g., with DMZ, Web
server behind firewall accessible from public Internet, and a private management
network protected by another firewall.
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Specifically, the network consists of four hosts running one or more services
allowing accesses from other hosts. We assume the two firewalls and other host-
based mechanisms (e.g., personal firewalls or iptables) together enforce the con-
nectivity described inside the connectivity table shown in the figure. We consider
attackers on external hosts (represented as h0) attempting to compromise the
database server (h4), and we assume the network is secured against known vul-
nerabilities (we exclude exploits and conditions that involve the firewalls).

Fig. 1. Example network.

To measure the network’s resilience against unknown zero day attacks, we
consider the k-zero day safety metric [19] (which will be referred to as k0d from
now on for simplicity), which basically counts how many distinct zero day vul-
nerabilities must exist and be exploited before an attacker may reach the goal.
For simplicity, although the attacker may follow many paths to compromise h4,
here we only consider the Web servers as the initial targets. We can observe that
there must exist at least two distinct zero-day vulnerabilities, one for the Apache
servers (h2, h3, and h4) and one for the IIS server1 (h1), and the attacker must
exploit both in order to compromise h4. Finally, we assume the administrator
has the option of replacing those Web servers with either an NGINX 1.9 or a
Litespeed 5.0.14 Web server and each replacement will incur a given installa-
tion/maintenance cost (we will discuss the cost model in more details later in
Sect. 3). Based on above assumptions, consider the following scenarios:
1 If different software are considered likely to share common vulnerabilities, a

similarity-sensitive diversity metric may be needed [23,26].
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– Scenario 1: The administrator aims to render the network as resilient as pos-
sible to zero-day attacks (which means to maximize the aforementioned k0d
metric).

– Scenario 2: He/she aims at the same goal as in above Scenario 1, but under
the constraint that the overall diversification cost must be less than a given
budget.

– Scenario 3: He/she aims at the same goal as in above Scenario 2, but under
an additional constraint that at most two Web servers may be replaced.

– Scenario 4: He/she aims at the same goal as in above Scenario 3, but under
an additional constraint that replacing the IIS web server in the DMZ (h4)
should be given a higher priority.

Clearly, many more use cases may exist in practice than those listed above,
and the solution may not always be straightforward even for such a small net-
work. For example, while the administrator can easily increase the k0d metric
value to 4 under Scenario 1 (by having four different Web servers), the optimal
solution in other scenarios will critically depend on the specific cost constraints
and given budgets. Considering that the attacker may also follow other paths to
attack (e.g., starting with SMTP, instead of Web, on h1), the problem becomes
even more complicated. This shows the need for an automated approach, which
will be the subject matter of the remainder of this paper.

2 Related Work

In general, the security of networks may be qualitatively modeled using attack
trees [7,8,16] or attack graphs [2,17]. A majority of existing quantitative models
of network security focus on known attacks [1,22], while few works have tackled
zero day attacks [19,20,23,26] which are usually considered unmeasurable due
to the uncertainties involved [13].

Early works on network hardening typically rely on qualitative models while
improving the security of a network [17,18,21]. Those works secure a network
by breaking all the attack paths that an attacker can follow to compromise an
asset, either in the middle of the paths or at the beginning (disabling initial
conditions). Also, those works do not consider the implications when dealing
with budget constraints nor include cost assignments, and tend to leave that
as a separate task for the network administrators. While more recent works
[1,25] generally provide a cost model to deal with budget constraints, one of the
first attempts to systematically address this issue is by Gupta et al. [11]. The
authors employed genetic algorithms to solve the problem of choosing the best
set of security hardening options while reducing costs. Dewri et al. [7] build on
top of Gupta’s work to address the network hardening problem using a more
systematic approach. They start by analyzing the problem as a single objective
optimization problem and then consider multiple objectives at the same time.
Their work consider the damage of compromising any node in the cost model
in order to determine the most cost-effective hardening solution. Later on, in [8]
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and in [24], the authors extrapolate the network hardening optimization prob-
lem as vulnerability analysis with cost/benefit assessment, and risk assessment
respectively. In [14] Poolsappasit et al. extend Dewri’s model to also take into
account dynamic conditions (conditions that may change or emerge while the
model is running) by using Bayesian attack graphs in order to consider the like-
lihood of an attack. Unlike our work, most existing work on network hardening
are limited to known vulnerabilities and focus on disabling existing services.

There exist a rich literature on employing diversity for security purposes. The
idea of using design diversity for tolerating faults has been investigated for a long
time, such as the N-version programming approach [3], and similar ideas have
been employed for preventing security attacks, such as the N-Variant system [5],
and the behavioral distance approach [9]. In addition to design diversity and gen-
erated diversity, recent work employ opportunistic diversity which already exists
among different software systems. For example, the practicality of employing OS
diversity for intrusion tolerance is evaluated in [10]. More recently, the authors
in [23,26] adapted biodiversity metrics to networks and lift the diversity metrics
to the network level. While those works on diversity provide motivation and
useful models, they do not directly provide a systematic solution for improving
diversity, which is the topic of this paper.

3 Model

We first introduce the extended resource graph model to capture network services
and their relationships, then we present the diversity control and cost model,
followed by problem formulation.

3.1 Extended Resource Graph

The first challenge is to model different resources, such as services (e.g., Web
servers) that can be remotely accessed over the network, different instances of
each resource (e.g., Apache and IIS), and the causal relationships existing among
resources (e.g., a host is only reachable after an attacker gains a privilege to
another host). For this purpose, we will extend the concept of resource graph
introduced in [23,26], which is syntactically equivalent to attack graphs, but
models network resources instead of known vulnerabilities as in the latter.

Specifically, we will define an extended resource graph by introducing the
notion of Service Instance to indicate which instance (e.g., Apache) of a partic-
ular service (e.g., Web server) is being used on a host. Like the original resource
graph, we only consider services that can be remotely accessed. The extended
resource graph of the running example is shown in Fig. 2 and detailed below.

In Fig. 2, each pair shown in plaintext is a security-related condition (e.g.,
connectivity 〈source, destination〉 or privilege 〈privilege, host〉). Each exploit
node (oval) is a tuple that consists of a service running on a destination host,
the source host, and the destination host (e.g., the tuple 〈http, 1, 2〉 indicates a
potential zero day vulnerability in the http service on host 2, which is exploitable
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Fig. 2. The example network’s resource graph (Color figure online)

from host 1). The small one-column table beside each exploit indicates the cur-
rent service instance using a highlighted integer (e.g., 1 means Apache and 2
means IIS) and other potential instances in lighter text. The self-explanatory
edges point from pre-conditions to an exploit (e.g., from 〈1, 2〉 and 〈http, 2〉 to
〈http, 1, 2〉), and from the exploit to its post-conditions (e.g., from 〈http, 1, 2〉 to
〈user, 2〉).

A design choice here is whether to associate the service instance concept with
a condition indicating the service (e.g., 〈http, 2〉) or the corresponding exploits
(e.g., 〈http, 1, 2〉). While it is more straightforward to have the service instance
defined as the property of a condition, which can then be inherited by the cor-
responding exploits, we have opted to define this property as a label for the
exploit nodes in the graph, because this will make it easier to check the number
of distinct services along a path, as we will see later. One complication then
is that we must ensure all exploits with the same service and destination host
(e.g., 〈http, 1, 2〉 and 〈http, 3, 2〉) to be associated with the same service instance.
Definitions 1 and 2 formally introduce these concepts.

Definition 1 (Service Pool and Service Instance). Denote S the set of all
services and Z the set of integers, for each service s ∈ S, the function sp(.) :
S → Z gives the service pool of s which represent all available instances of that
service.

Definition 2 (Extended Resource Graph). Given a network composed of

– a set of hosts H,
– a set of services S, with the service mapping serv(.) : H → 2S,
– the collection of service pools SP = {sp(s) | s ∈ S},
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– and the labelling function v(.) : E → SP , which satisfies ∀hs ∈ S ∀h′
s ∈

S, v(〈s, hs, hd〉) = v(〈s, h′
s, hd〉) (meaning all exploits with common service and

destination host must be associated with the same service instance, as explained
earlier).

Let E be the set of zero day exploits {〈s, hs, hd〉 | hs ∈ H,hd ∈ H, s ∈ serv(hd)},
and Rr ⊆ C × E and Ri ⊆ E × C be the collection of pre and post-conditions
in C. We call the labeled directed graph, 〈G(E ∪ C,Rr ∪ Ri), v〉 the extended
resource graph.

3.2 Diversity Control and Cost Model

We employ the notion of diversity control as a model for diversifying one or
more services in the resource graph. Since we represent the service instance
using integers, it will be straightforward to regard each pair of service and des-
tination host on which the service is running as an optimization variable, and
formulate diversity control vectors using those variables as follows. We note that
the number of optimization variables present in a network will depend on the
number of conditions indicating services, instead of the number of exploits (since
many exploits may share the same service instance, and hence the optimization
variable). Since we only consider remotely accessible services in the extended
resource graph model, we would expect in practice the number of optimization
variables to grow linearly in the size of network (i.e., the number of hosts).

Definition 3 (Optimization Variable and Diversity Control). Given an
extended resource graph 〈G, v〉, ∀e ∈ E, v(e) is an optimization variable. A
diversity control vector is the integer valued vector V = (v(e1), v(e2), ..., v(e|E|).

Changing the value of an optimization variable has an associated diversifica-
tion cost and the collection of such costs is given in a diversity cost matrix in a
self-explanatory manner. We assume the values of cost are assigned by security
experts or network administrators. Like in most existing works (e.g., [7]), we
believe an administrator can estimate the diversification costs based on mon-
etary, temporal, and scalability criteria like (i) installation cost, (ii) operation
cost, (iii) training cost, (iv) system downtime cost and, (v) incompatibility cost.
We define the diversity cost, diversity cost matrix, and the total diversity cost.

Definition 4 (Diversification Cost and Diversity Cost Matrix). Given
s ∈ S and sp(s), the cost to diversify a service by changing its service instance
to another inside the service pool is called the diversification cost. The collection
of all the costs constraints associated with changing services in S are given as
a diversity cost matrix DCM in which the element at ith row and jth column
indicates the diversification cost of changing the ith service instance to be the
jth service instance. Let vs(ei) be the service associated with the optimization
variable v(ei) and V0 the initial service instance values for each of the exploits
in the network. The total diversification cost, Qd, given by the diversity vector
V is obtained by
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Qd =
|E|∑

i=1

DCMvs(ei)(V0(i),V(i))

We note that the above definition of diversification cost between each pair
of service instances has some advantages. For example, in practice we can easily
imagine cases where the cost is not symmetric, i.e., changing one service instance
to another (e.g., from Apache to IIS) carries a cost that is not necessarily the
same as the cost of changing it back (from IIS to Apache). Our approach of using
a collection of two-dimensional matrices allows us to account for cases like this.
Also, the concept can be used to specify many different types of cost constraints,
which we will examine in the coming section. For example, an administrator who
wants to restrict the total cost to diversify all servers running the http service
can do so by simply formulating the cost as the addition of all the optimization
variables corresponding to http.

3.3 Problem Formulation

As demonstrated in Sect. 1.1, the k0d metric is defined as the minimum number
of distinct resources on a single path in the resource graph [19]. For example, a
closer look at Fig. 2 shows that the k0d value for our example network is 1. That
is, an attacker needs only one zero-day vulnerability (in http service instance 1)
to compromise this network. The dashed line in Fig. 2 depicts the shortest path
that provides this metric value.

The k0d value can be increased by changing the service instances as long as
we respect the available budget of cost. For example, consider a total budget of
78 units, and assume the costs to diversify the http service from service instance
1 to 2, 3 or 4 be 78, 12, and 34 units, respectively. We can see that changing
〈http, 2, 3〉 from instance 1 to 2 would respect the budget, as well as increasing
the k0d value of the network to be 2. We may also see that this is not the optimal
solution, since we could also replace 〈http, 2, 3〉 and 〈http, 3, 4〉 with instances 3
and 4, respectively, increasing k0d to 3 and still respecting the budget. In the
following, we formally formulate this as an optimization problem.

Problem 1 (k0d Optimization Problem). Given an extended resource graph
〈G, v〉, find a diversity control vector V which maximizes min(k0d(〈G(V ), v〉))
subject to the constraint Q ≤ B, where B is the availble budget and Q is the
total diversification cost as given in Definition 4.

Since our problem formulation is based on an extended version of the resource
graph, which is syntactically equivalent to attack graphs, many existing tools
developed for the latter (e.g., the tool in [12] has seen many real applications to
enterprise networks) may be easily extended to generate the extended resource
graphs we need as inputs. Additionally, our problem formulation assumes a very
general budget B and cost Q, which allows us to account for different types of
budgets and cost constraints that an administrator might encounter in practice,
as will be explained in the following section.
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4 Methodology

This section details the optimization and heuristic algorithms used for solving
the formulated diversification problem and describes a few case studies.

4.1 Genetic Algorithm Optimization

The genetic algorithm (GA) is a simple and robust search method and optimiza-
tion technique inspired by the mechanisms of natural selection. We employ GA
for our automated optimization approach because it requires little information
to search effectively in a large search space in contrast to other optimization
methods (e.g., the mixed integer programming [4]). It also provides a simple
way to encode candidate solutions to the problem [6]. While inspired by [7], we
focus on service diversification and not on disabling services.

The extended resource graph is the input to our automated optimization
algorithm where the function to be optimized (fitness function) is k0d defined
on the resource graph (later we will discuss cases where directly evaluating k0d
is computationally infeasible). One important point to consider when optimizing
the k0d function on the extended resource graph is that, for each generation of
the GA, the graph’s labels will dynamically change. This in turn will change
the value of k0d, since the shortest path may have changed with each successive
generation of the GA. Our optimization tool takes this into consideration. We
also note one limitation here is that the optimization does not provide a priority
if there are more than one shortest path that provide the optimized k0d since
the optimization only aims at maximizing the minimum k0d.

The constraints are defined as a set of inequalities in the form of q ≤ b,
where q represents one or more constraint conditions and b represents one or
more budgets. These constraint conditions can be overall constraints (e.g., the
total diversity cost Qd) or specific constraints to address certain requirements
or priorities while diversifying services (e.g., the cost to diversify http services
should be less than 80 % of the cost to diversify ssh). Those constraints are
specified using the diversity control matrix.

The number of independent variables used by the GA (genes) are the opti-
mization variables given by the extended resource graph. For our particular
network hardening problem, the GA will be dealing with integer variables rep-
resenting the selection of the service instances. Because v(e) is defined as an
integer, the optimization variables need to be given a minimum value and a
maximum value. This range is determined by the number of instances provided
in the service pool of each service. The initial service instance for each of the
services is given by the extended resource graph while the final diversity control
vector V is obtained after running the GA.

The population size that we defined for our tool was set to be at least the
value of optimization variables (more details will be provided in the coming
section). This way we ensure the individuals in each population span the search
space. We ensure the population diversity by testing with different settings in
genetic operations (like crossover and mutation). In the following, we discuss
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several test cases to demonstrate how the optimization works under different
types of constraints. For all the test cases, we have used the following algorithm
parameters: population size = 100, number of generations = 150, crossover prob-
ability = 0.8, and mutation probability = 0.2.

Test case A: Qd ≤ 124 units with individual constraints per service. We start
with the simple case of one overall budget constraint (Qd ≤ 124). The solution
provided by the GA is V = [3, 2, 1, 4, 1, 1, 1] (represented by label column a
in Fig. 3). The associated costs for V (1), V (2), and V (4) are 12, 78, and 34,
respectively, and the test network’s k0d metric becomes 4 while keeping Qd

within the budget (Qd ≤ 124).

Fig. 3. Test case A: general and individual budget constraints. (Color figure online)

On the other hand, if we assign individual budgets per services, while main-
taining the overall budget Qd ≤ 124, the optimization results will be quite differ-
ent. In this case, assume the budget to diversify the http services cannot exceed
100 units (qhttp ≤ 100); for ftp, it cannot exceed 3 units (qftp ≤ 3); for ssh, it
cannot exceed 39 units (qssh ≤ 39); finally, for smtp, it cannot exceed 50 units
(qsmtp ≤ 50). The solution provided by the GA is a V vector where V (1) = 2
and V (2) = 3, with a cost of 78 and 12 units, respectively. The value of the k0d
metric rises to 3 with Qd = 90. This total diversification cost satisfies both the
overal budget constraint and each of the individual constraints per service.

From this test case, we can see that even with the minimum requeried budget
to maximize the k0d metric, additional budget constraints might not allow to
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achieve the maximum k0d possible. We can see the result of running the GA for
this test case in label column b in Fig. 3.

Test case B: Qd ≤ 124 units while qhttp + qssh ≤ 100. While test case 1
shows how individual cost constraints can affect the k0d metric optimization, in
practice not all services may be of concern and some may have negligible cost.
This test case models such a scenario by assigning a combined budget restriction
for only the http and ssh services, i.e., the cost incurred by diversifying these
two services should not exceed 100 units.

The solution provided by the GA is V = [3, 4, 3, 1, 1, 3, 2] (lable column a
in Fig. 4). Since V (1) to V (3) deal with the http service, we can see that the
total incurred cost for http is qhttp =12+34+12=58 units. Because V (6) and
V (7) are the only optimization variables that deal with the ftp and ssh services
respectively, we can see that qftp = 8, and qssh = 40. The value of the k0d metric
rises from 1 to 3 by incurring a total cost of Qd = 106 units. The combined
http/ssh budget constraint of 100 units is also satisfied since qhttp + qssh = 98
units.

Fig. 4. Test case B and test case C. (Color figure online)

Test case C: Qd ≤ 124 units while qhttp ≤ 0.8 · qssh. This final case deals
with scenarios where some services might have a higher priority over others. The
constraint in this test case is that the total incurred cost while diversifying the
http service should not exceed 80 % of what is incurred by diversifying the ssh
service.

The solution provided by the GA is V =[3,1,3,1,1,1,4] (see column b in
Fig. 4). Here V (1) and V (3) have changed from service instance 1 to 3, while
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V (7) have changed from service instance 1 to 4. The incurred cost for the http
service is qhttp = 12+12=24 units and for the ssh service is qssh = 34 units.
While the value of the k0d metric only rises from 1 to 2, the budget constraints
are satisfied.

As seen from the above test cases, our model and problem formulation makes
it relatively easy to apply any standard optimization techniques, such as the GA,
to optimize the k0d metric through diversity while dealing with different budget
constraints.

4.2 Heuristic Algorithm

All the test cases described above rely on the assumption that all the attack paths
are readily available. However, this is not always the case in practice. Due to the
well known complexity that resource graphs have inherited from attack graphs
due to their common syntax [23,26], it is usually computationally infeasible to
enumerate all the available attack paths in a resource graph for large networks.
Therefore, we design a heuristic algorithm to reduce the search complexity when
calculating and optimizing the k0d metric by only storing the m-shortest paths
at each step, as depicted in Fig. 5 and detailed below.

The algorithm starts by topologically sorting the graph (line 1) and proceeds
to go through each one of the nodes on the resource graph collection of attack

Fig. 5. A Heuristic algorithm for calculating m-shortests paths



Diversifying Network Services Under Cost Constraints 307

paths, as set of exploits σ(), that reach that particular node. The main loop
cycles through each unprocessed node. If a node is an initial conditions, the
algorithm assumes that the node itself is the only path to it and it marks it
as processed (lines 6–8). For each exploit e, all of its preconditions are placed
in a set (line 10). The collection of attack paths α(e) is constructed from the
attack paths of those preconditions (lines 10 and 11). In a similar way, σ′(ov(e))
is constructed with the function ov() which, aside of using the exploits includes
value of element of the diversity control vector that supervises that exploit.

If there are more than m paths to that node, the algorithm will use the
function Unique to first look for unique combinations of service and service
instance in α′(ov(e)). Then, the algorithm creates a dictionary structure where
the key is a path from α(e) and the value is the number of unique service/service
instance combinations given by each one of the respective paths in α′(ov(e)).
The function ShortestM() selects the top m keys whose values are the smallest
and returns the m paths with the minimum number of distinct combination of
services and service instances (line 13). If there are less than m paths, it will
return all of the paths (line 15). After this, it marks the node as processed (line
16). The process is similar when going through each one of the intermediate
conditions (lines 17–24). Finally, the algorithm returns the collection of m paths
that can reach the goal condition cg. It is worth noting that the algorithm does
not make any distinction in whether or not a particular path has a higher priority
over another when they share the same number of unique service/service instance
combinations.

5 Simulations

In this section, we show simulation results. All simulations are performed using
a computer equipped with a 3.0 GHz CPU and 8 GB RAM in the Python 2.7.10
environment under Ubuntu 12.04 LTS and MATLAB 2015a’s GA toolbox. To
generate a large number of resource graphs for simulations, we first construct a
small number of seed graphs based on real networks and then generate larger
graphs from those seed graphs by injecting new hosts and assigning resources in
a random but realistic fashion (e.g., the number of pre-conditions of each exploit
is varied within a small range since real world exploits usually have a constant
number of pre-conditions). The resource graphs were used as the input for the
optimization toolbox where the objective function is to maximize the minimum
k0d value subject to budget constraints. In all the simulations, we employ the
heuristic algorithm described in Sect. 4.2.

Figure 6 shows that the processing time increases almost linearly as we
increase the number of optimization variables or the parameter m of the heuris-
tic algorithm. The results show that the algorithm is relatively scalable with a
linear processing time. On the other hand, the accuracy of the results is also an
important issue to be considered. Here the accuracy refers to the approximation
ratio between the result obtained using the heuristic algorithm and that of the
brute force algorithm (i.e., simply enumerating and searching all the paths while
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assuming all services and service instances are different). For the simulations
depicted in Fig. 7, we settled for 50 iterations per graph per m-paths. The diver-
sity control vector provided by the GA is used to calculate the accuracy. From
the results, we can see that when m is greater or equal to 4 the approximation
ratio reaches an acceptable level. For the following simulations, we have settled
with an m value of 6 and 100 generations.

Our simulations also showed that (detailed simulation results are omitted
here due to page limitations), when no budget constraints are in effect, using
the GA with a crossover probability of 80 %, a mutation rate of 20 %, and setting
the number of generations to 50 will be sufficient to obtain good results. However,
this is no longer the case when dealing with budget constraints. We have noticed
that, by decreasing the crossover probability (and consequently increasing the
mutation rate), we can reach a viable solution with less generations. We have
therefore settled with a crossover probability of 40 % which provides us with a
fast (with less generations) way to converge to viable solutions. Additionally, our
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experiences also show that, when dealing with a diversity control vector (also
known as a chromosome in the GA) of less than 100 variables (genes in the GA),
the population size could be equal to the amount of variables in the diversity
control vector; when dealing with a bigger number, the population size should
be at least twice the amount of variables.

Figure 8 shows the results when the diversity control vector has different
numbers of sevice instances to take from (i.e., different sizes of the service pools).
In this simulation, we have picked graphs with a relative high difference in the
length of the shortest path before and after all services are diversified using the
algorithm (the maximum k0d value is 16 and the minimum 3). We can see an
increasing gain in the k0d value after optimization, when more service instances
are available. However, this trend begins to stall after a certain number (13).
From this observation it can be inferred that the number of available service
instances will affect the difference between the maximum k0d value possible and
the minimum k0d, but such an effect also depends on the size of the network
(or the extended resource graph) and increasing the number of available service
instances does not always help.

In Fig. 9, we analyze the average gain in the optimized results for different
sizes of graphs. In this figure, we can see that we have a good enough gain
for graphs with a relatively high amount of nodes. As expected, as we increase
the size of the graphs, the gain will decrease if we keep the same optimization
parameters. For those simulations, we have used a population size of 300, 50
generations, and a crossover fraction of 50 %. It is interesting to note that the
decrease in gain is very close to being linear.

Figures 10 and 11 show the optimization results on different shapes of
resource graphs. While it may be difficult to exactly define the depth of a resource
graph, we have relied on the relative distance, i.e., the difference of the short-
est path before and after all services are diversified. There is a relative linear
increase in the gain as we increase the relative distance in the shortest path.
While this does not provide an accurate description of the graph’s shape, it does
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provide an idea of how much our algorithm can increase the minimum k0d for
graphs with different depths, as shown in Fig. 10.

Finally, in Fig. 11, we can see the effect of the network’s degree of exposure,
which is defined as the number of exploits that are directly reachable by the
attacker from the external host h0. As we increase the degree of exposure, the
gain in optimization decreases in almost a linear way. That is, there will less
room for diversification if the network is more exposed.

6 Conclusions

In this paper, we have formulated service diversity as an optimization prob-
lem and proposed an automated diversity-based network hardening approach
against zero-day attacks. This automated approach used a heuristic algorithm
that helped to manage the complexity of computing the k0d value as well as
limiting the time for optimization to an acceptable level. We have shown some
sample cost constraints while our model and problem formulation would allow
for other practical scenarios to be specified and optimized. We have tested the
scalability and accuracy of the proposed algorithms through simulation results,
and we have also discussed how the gain in the k0d value will be affected by the
number of available service instances in the service pools and different sizes and
shapes of the resource graphs.

We discuss several aspects of the proposed automated optimization technique
where additional improvements and evaluations can be done.

– While this paper focuses on diversifying services, a natural future step is to
integrate this approach with other network hardening options, such as addition
or removal of services, or relocating hosts or services (e.g., firewalls).

– This study has relied on a simplified model by assuming all service instances to
be completely different from each another and all service instances are equally
likely to be exploited. A possible future research direction would be to model
the degree of difference (or similarity) between the different types of service
instances.

– We have assumed an abstract cost model in this paper and an important
direction is to elaborate the model from different aspects of potential cost for
diversifying network resources.

– We will also consider other optimization algorithms, in addition to GA, to com-
pare and potentially use them in hybrid optimization schemes when searching
for more efficient and effective solutions to our problem.

– This study relies on a static network configuration. A future research direction
would be to consider a dynamic network model in which both attackers and
defenders may cause changes in the network.
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Abstract. This paper follows a recent line of work that advocates the
use of formal methods to reason about privacy properties of system archi-
tectures. We propose an extension of an existing formal framework, moti-
vated by the need to reason about properties of architectures including
group authentication functionalities. By group authentication, we mean
that a user can authenticate on behalf of a group of users, thereby keep-
ing a form of anonymity within this set. Then we show that this extended
framework can be used to reason about privacy properties of a biomet-
ric system in which users are authenticated through the use of group
signatures.

Keywords: Privacy by design · Formal methods · Biometric systems

1 Introduction

The privacy-by-design approach promotes the consideration of privacy require-
ments from the early design stage of a system. As an illustration of the impor-
tance of this topic, the General Data Protection Regulation adopted by the
European trilogue (the European Commission, the European Parliament and
the Council) in December 2015 [7] introduces privacy-by-design and privacy-
by-default as legal obligations. Architectural choices have a strong effect on the
privacy properties provided by a system. For this reason, the authors of [1] argue
that key decisions regarding the design of a system should be taken at the archi-
tecture level. They introduce a formal framework for reasoning about privacy
properties of architectures. The description of an architecture within this frame-
work specifies the capacities of each component, the communications between
them, the location of the computations and the data, and the trust relationships
between the stakeholders. A dedicated privacy logic is used to express the pri-
vacy properties of the architectures. The use of formal methods enables precise
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definitions of properties and comparisons between architectures. It also makes it
possible to provide a rigorous justification for the design choices.

As a first contribution of this paper, we propose an extension of this formal
framework and show that it can be used to reason about properties of architec-
tures supporting group authentication. By group authentication, we mean that
a user can authenticate on behalf of a group of users. Several cryptographic
primitives have been designed to achieve this goal. Our work provides the for-
mal tools needed to reason about the properties of architectures involving these
primitives, especially the guarantees that are provided in terms of privacy.

As a second contribution of this paper, we apply our extended framework
to biometric systems. In a biometric system, users are authenticated with their
biometric traits. The work of [3] uses the formal framework of [1] to reason
about privacy properties of biometric architectures but it cannot deal with group
signatures. We show that the extended framework can be used to reason about
privacy properties of a biometric system in which users are authenticated by
group signatures.

The interest of group signature in the context of biometrics has been shown
in different contexts. For example, the biometric system architecture analysed in
this paper was proposed in TURBINE [16], a European project which aimed at
solving privacy concerns regarding the use of fingerprint biometrics for ID man-
agement. The application of this architecture was a pharmacy product research
system. Pharmacists, for instance working at their selling desks, authenticate
themselves to a pharmacy administration system. Authentication is based on a
card owned by the employee, as well as its fingerprint. Thanks to the use of group
signatures, a remote server (which does not get the fingerprint) is convinced that
a valid enrolled user authenticates without knowing precisely who he is among
the set of valid users (aka the employees).

Organization of the paper. Section 2 supplies an overview of the formal framework
of [1]. Section 3 introduces our extension of this model. Section 4 presents the
biometric architecture we are interested in, describes it within the architecture
language of the formal framework, and analyses its privacy properties. Finally, we
discuss in Sect. 5 some variants of the biometric architecture, before concluding
in Sect. 6.

2 Reasoning About Privacy Properties of Architectures

In this section, we provide an overview of the framework introduced in [1] which
is the foundation for our work. The interested reader can refer to [1] for a more
complete description of the framework.

This framework relies on a dedicated epistemic logic for expressing privacy
properties. Epistemic logics are good candidates to express privacy properties
since they deal with the notion of knowledge. However, the standard possible
worlds semantics for these logics lead to a well-known issue called the logical
omniscience problem [9]. In a nutshell, any agent knows all the logical conse-
quences of his knowledge. To get around this issue, the authors of [1] adopt an
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approach based on deductive algorithmic knowledge [13]. In this context, each
component of an architecture is endowed with its own deductive capabilities.

Architectures are described with a dedicated architecture language. Then
the semantics of a privacy property is defined as the architectures in which the
property holds.

2.1 A Privacy Architecture Language

First of all, the functionality of a system is described by a set Ω = {X = T} of
equations over the following term language.

T :: = X | c | F (X1, . . . , Xm)

A term T might be a variable X (X ∈ V ar), a constant c (c ∈ Const) or F a
function applied to some variables (F ∈ Fun).

Then the architecture of a system is described by the following architecture
language.

A :: = {R}
R :: = Hasi(X) | Receivei,j({St}, {X}) | Trusti,j

| ComputeG(X = T ) | V erifyi({St})

St :: = Pro | Att Att :: = Attesti({Eq})
Pro :: = Proofi({P}) Eq :: = Pred(T1, . . . , Tm)

P :: = Att | Eq

An architecture A is associated to a set of components C = {C1, . . . , C|C|}. In
the architectural primitives, i and j stand respectively for Ci, Cj and G ⊆ C
denotes a set of components.

In the above syntax, {Z} denotes a set of elements of category Z. Pred
denotes a predicate, the set of predicates depending on the architectures to be
considered. Hasi(X) denotes the fact that component Ci possesses (or is the
origin of) the value of X, which may correspond to situations in which X is
stored on Ci or Ci is a sensor collecting the value of X. Receivei,j({St}, {X})
means that Ci can receive the values of variables in {X} together with the
statements in {St} from Cj .

Attesti({Eq}) is the declaration by Ci that the properties in {Eq} hold
and Proofi({P}) is the delivery by Ci of a set of proofs of properties. V erifyi

is the verification by component Ci of the corresponding statements (proof or
authenticity). ComputeG(X = T ) means that the set of components G can
compute the term T and assign its value to X and Trusti,j represents the fact
that component Ci trusts component Cj .

Graphical data flow representations can be derived from architectures
expressed in this language. For the sake of readability, we use both notations
in the next sections.
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All architectures are assumed to satisfy minimal consistency assumptions,
in order to restrict the analysis to those which make sense. For instance, if a
component sends a variable, we assume that this variable can be sent, computed
or received by the component.

Events are instantiations of the architectural primitives (trust relations
excepted). Traces are sequences of events, defined according to the following
trace language.

θ :: = Seq(ε)
ε :: = Hasi(X : V ) | Receivei,j({St}, {X : V })

| ComputeG(X = T ε) | V erifyi({St})

Seq(ε) denotes an ordered sequence of events ε. When instantiating a primitive
containing a variable X, the notation X : V means that the variable X receives
the value V . Let V al be the set of values that the variables can take. T ε is a
term where values have been assigned to variables. The set V al⊥ is defined as
V al∪{⊥} where ⊥ �∈ V al is a specific symbol used to denote that a variable has
not been assigned.

As for architectures, only traces satisfying consistency assumptions are con-
sidered. 〈〉 denotes the empty trace (with no event).

A trace θ of events is said compatible with an architecture A if each event
in θ (except the computations) can be obtained by instantiation of an element
of A (Receive, Verify, etc.). Let T (A) be the set of traces which are compatible
with an architecture A.

Each component Ci is associated with a dependence relation Depi. For a
variable Y and a set X of variables, Depi(Y,X ) – equivalently (Y,X ) ∈ Depi –
means that the value of Y can be obtained by the component Ci if it gets access
to the value of X, for each X ∈ X .

Each component Ci is also associated with a deductive system, noted �i,
allowing it to derive new knowledge. �i is defined as a relation between equations
{Eq1, . . . , Eqn} �i Eq0, where equations over terms are defined according to the
following syntax.

Eq :: = Pred(T1, . . . , Tm) | Eq ∧ Eq

By a slight abuse of notations, Eq is an overloaded notation of the Eq definition
in the language architecture, where conjunctions of equations are also possible.

Finally, the semantics of an architecture is defined from the traces of events.
Each component is associated with a state. Each event in a trace of events affects
the state of each component involved in the event. The semantics S(A) of an
architecture A is defined as the set of states reachable by compatible traces.

2.2 A Privacy Logic

Privacy properties of architectures are expressed with the following language.

φ :: = Hasi(X) | Hasnone
i (X) | Ki(Eq) | φ1 ∧ φ2.
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The knowledge operator Ki represents the knowledge of the component Ci. The
formula Hasi represents the fact that Ci can get access to variable X.

The semantics S(φ) of a property φ is defined as the set of architectures
where φ is satisfied. The fact that a property φ is satisfied by a (consistent)
architecture A is defined for each property as follows.

– A satisfies Hasi(X) if there is a reachable state of Ci in which X is not
undefined.

– A satisfies Hasnone
i (X) if no compatible trace leads to a state in which Ci

assigns a value to X.
– A satisfies Ki(Eq) if from all reachable states Ci can deduce Eq.
– A satisfies φ1 ∧ φ2 if A satisfies φ1 and A satisfies φ2.

Based on the semantics of properties, [1] introduces a set of deductive rules
which can be used to reason about privacy properties of architectures. This
deductive system is shown correct and complete with respect to the semantics
of the properties.

A 
 φ denotes that φ can be derived from A – in other words, that there
exists a derivation tree such that each step belongs to the axiomatics and the
leaf is A 
 φ. A subset of this axiomatics, useful for this paper, is presented in
Fig. (1a).

3 Adding a Group Attestation to the Formal Model

As a first step to extend the architecture language of [1], we introduce the
primitive AttestG(E) where G is a group of components and E a set of equa-
tions. This primitive generalizes Attesti(E) which involves a single component
Ci. Section 3.1 defines the semantics of the traces containing these events and
Sect. 3.2 extends the set of deductive rules.

3.1 Semantics of Traces

The semantics of a trace is defined by specifying, for each event, its effect on the
states of the components.

The state of a component is either the Error state or a pair consisting of: (i)
a variable state assigning values to variables, and (ii) a property state defining
the current knowledge of a component. In the initial state of an architecture
A, denoted InitA = 〈InitA1 , . . . , InitA|C|〉, the variables are undefined and the
knowledge state only contains the trust primitives.

Let σ denote the global state, and σi denote the state of component i. The
semantics of traces, denoted ST , is defined recursively over sequences of events.

ST (〈〉, σ) = σ

ST (ε · θ, σ) = ST (θ, SE(ε, σ)).



318 J. Bringer et al.

Fig. 1. Axiomatics

The function SE , which defines the effect of the events, is defined for each type
of event. The modification of a state is noted σ[σi/(v, pk)] the variable and
knowledge states of Ci being replaced by v and pk respectively. σ[σi/Error]
denotes that the Error state is reached for component Ci. A component reaching
an Error state is no longer involved in any action.

Restricting our attention to the events which contains a group attestation
leads us to consider the events V erifyi(AttestG(E)) and V erifyi(Proofj(E)).
The semantics of the verification events are defined according to the (implicit)
semantics of the underlying verification procedures. In both cases, the knowledge
state of the component is updated if the verification passes, otherwise the com-
ponent reaches an Error state. The variable state is not affected. Informally, a
verification event containing a generalized attestation statement generates new
knowledge only if all possible authors of the attestation are trusted by the veri-
fying component Ci.
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SE(V erifyi(Proofj(E)), σ) =

{
σ[σi/Error] if the proof is not valid,

σ[σi/(σv
i , σpk

i ∪ newpk
Proof )] otherwise,

SE(V erifyi(AttestG(E)), σ) =

{
σ[σi/Error] if the attestation is not valid,

σ[σi/(σv
i , σpk

i ∪ newpk
Attest)] otherwise,

where the new knowledge newpk
Proof is defined as:

newpk
Proof := {Eq | Eq ∈ E ∨ (∃G ⊆ C : (AttestG(E′) ∈ E ∧ Eq ∈ E′

∧ ∀k ∈ G : Trusti,k ∈ σpk
i ))}; (1)

and the new knowledge newpk
Attest is defined as:

newpk
Attest := {Eq | Eq ∈ E ∧ ∀k ∈ G : Trusti,k ∈ σpk

i }. (2)

3.2 Axiomatics

The next challenge to deal with group attestation is the extension of the set
of deductive rules and the proof of the correctness and completeness properties
still hold. Our axioms for group attestation are presented in Fig. (1b). In the
remaining of this section, we show that the correctness and the completeness of
the axiomatics still hold with these new axioms.

Correctness. Let A be a consistent architecture and φ a property. The correctness
theorem states that if there exists a derivation tree for this property (A 
 φ),
then this property holds in the architecture (A ∈ S(φ)).

The proof is made by induction on the depth of the tree A 
 φ. Let us
restrict our attention to the cases where (K4+) and (K5+) are used. That is,
let us assume that A 
 Ki(Eq), and that the derivation tree is of depth 1. By
definition of the set of axioms, such a proof is obtained by application of (K1),
(K3), (K4+) or (K5+). Let us focus on the K4+ and K5+ cases.

K4+. Let us assume that V erifyi(Proofj(E)) ∈ A, AttestG (E′) ∈ E and
∀k ∈ G: Trusti,k ∈ A for some i, j and G. Our goal is to prove that ∀Eq ∈ E′:
A ∈ S(Ki(Eq)).

Let us consider a given state σ′ ∈ Si(A). By the architecture semantics, there
exists a consistent trace θ′, compatible with A, such that σ′ = ST (θ′, InitA).
Two cases may happen. Either θ′ contains an event V erifyi(Proofj(E)) such
that AttestG(E′) ∈ E, and we let θ := θ′, or it is not. In the latter case, we
extend θ′ into a trace θ such that θ contains such an event without breaking the
consistency of the trace.
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In either cases, there exists a trace θ which extends θ′ and contains an event
V erifyi(Proofj(E)) such that AttestG(E′) ∈ E. Let σ = ST (θ, InitA). Since
an Error state has not been reached (we have σ′ ∈ Si(A)), and since ∀k ∈ G :
Trusti,k ∈ σpk

i by definition of the initial state, then by the semantics of the
group attestation (Eq. (1)) we have ∀Eq ∈ E: Eq ∈ σpk

i .
By the definition of the architectures semantics, we deduce that σ ∈ S(A).

The prefix order over the traces together with the definition of the semantics of
the trace induce a prefix order over the states, hence σ ≥i σ′. By the reflexivity
of the deductive algorithmic knowledge, we have ∀Eq ∈ E′: σpk

i �i Eq. By the
semantics of the properties, we conclude that ∀Eq ∈ E′: A ∈ S(Ki(Eq)).

K5+. Let us assume that V erifyi(AttestG(E)) ∈ A and ∀k ∈ G: Trusti,k ∈ A.
We must show that ∀Eq ∈ E: A ∈ S(Ki(Eq)). Adaptation of the K4+ to the
K5+ case is straightforward, invoking Eq. (2) of the trace semantics instead of
Eq. (1).

Completeness. Let A be a consistent architecture and φ a property. The com-
pleteness theorem states that if the property holds in the architecture (A ∈
S(φ)), then there exists a derivation tree for this property (A 
 φ).

The proof is made by induction over the definition of the property φ. We
restrict our attention here to the knowledge operator Ki. Let us assume that
A ∈ S(Ki(Eq)) for a given component Ci and equation Eq. We must show that
A 
 Ki(Eq).

By the semantics of properties, A ∈ S(Ki(Eq)) means that ∀σ′ ∈ Si(A):
∃σ ∈ Si(A): σpk

i �i Eq. By the semantics of architectures, ∃θ ∈ T (A) such that
(σ = ST (θ, InitA) and σpk

i �i Eq). By the semantics of the traces, this implies
one among the following statements: either there exists ComputeG(X = T ε) ∈ θ
where Eq := (X = T ) and Ci ∈ G and T ε is obtained from T (by assigning
values to variables); or there exists V erifyi(Proofj(E)) ∈ θ where Eq ∈ E;
or there exists V erifyi(Proofj(E)) ∈ θ where AttestG(E′) ∈ E, Eq ∈ E′ and
∀k ∈ G: Trusti,k ∈ σpk

i and Eq ∈ E′; or there exists V erifyi(AttestG(E)) ∈ θ,
Eq ∈ E and ∀k ∈ G: Trusti,k ∈ σpk

i .
By the compatibility of the traces, we deduce that: either ComputeG(X) ∈ A

where Eq := (X = T ) and Ci ∈ G; or V erifyi(Proofj(E)) ∈ A where Eq ∈ E;
or V erifyi(Proofj(E)) ∈ A where AttestG(E′) ∈ E, Eq ∈ E′ and ∀k ∈ G:
Trusti,k ∈ A and Eq ∈ E′; or V erifyi(AttestG(E)) ∈ A, Eq ∈ E′ and ∀k ∈ G:
Trusti,k ∈ A. We conclude that A 
 Ki(Eq) by applying (respectively) (K1),
(K3), (K4+) or (K5+).

4 Modelling a Biometric Architecture Supporting Group
Authentication

4.1 A Biometric Architecture Using Group Signatures

Biometric systems involve two main phases: enrolment and verification (either
authentication or identification) [10]. Enrolment is the registration phase,
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in which the biometric traits of a person are collected and recorded within the
system. In the authentication mode, a fresh biometric trait is collected and com-
pared with the registered one by the system to check that it corresponds to the
claimed identity. In the identification mode, a fresh biometric data is collected
and the corresponding identity is searched in a database of enrolled biometric
references.

A group signature scheme [2] is an advanced cryptographic mechanism. It
enables a user to sign messages on behalf of a group of users while staying
anonymous inside this group. With a (public) verification algorithm, anyone can
be convinced, given a group public key, a message, and a signature, that a certain
member of the group authenticates the message.

The biometric system introduced in [4] aims at achieving some anonymity
from the server’s point of view. The server is convinced that the authentication
was successful for a certain enrolled user, but has no information about which
among them. During the enrolment, a biometric reference is registered by the
issuer. The issuer derives a user secret key from the biometric template and
computes a group secret key, that is, a certificate attesting the enrolment inside
the group. The user gets a card containing its biometric reference and the group
certificate.

During the verification phase, the terminal gets a fresh capture of the bio-
metric trait and computes a fresh template. A match between the fresh template
and the reference is performed by the terminal. In case of success, the terminal
derives the user secret key from the reference, produces a group signature thanks
to the user secret key and the certificate (both are needed to produce a valid
signature), and sends the signature to the server. The server checks the signature
attesting that a registered user authenticates. If the signature is valid, the server
is convinced of the correctness of the matching. However, it has no access to the
biometric templates, neither to the identity of the user who authenticates.

4.2 Description Within the Formal Framework

For the sake of clarity, let us distinguish the biometric system and its formal-
ization. We denote by Bgs the biometric system introduced in [4] and Ags its
definition within the formal framework, which we present below.

Fig. 2. High-level view of the biometric system architecture using group signatures



322 J. Bringer et al.

Upper case sans serif letters in Ags denote components. Components of the
Ags architecture are a set of N enrolled users U := {U1, . . . ,UN} (each user
Ui owning a card Ci), a server S, an issuer I and a terminal modelled by two
components TM and TS. The issuer I enrols the users. The server S manages
a database containing the enrolled templates. The terminal is equipped with a
sensor used to acquire biometric traits. Formally, the terminal is split into two
components TM and TS, corresponding respectively to its two functionalities.
The matcher TM, acquires the fresh template and performs the comparison, and
the signer TS authenticates on behalf of the group of users. As shown by the
variants below, this distinction is motivated by the different trust assumptions
a designer may consider.

Type letters denote variables. bri denotes the biometric reference template
of the user Ui built during the enrolment phase. rd denotes a raw biometric data
provided by the user during the verification phase. bs denotes a fresh template
derived from rd during the verification phase. A threshold thr is used during
the verification phase as a closeness criterion for the biometric templates. The
output dec of the verification is the result of the matching between the fresh
template bs and the enrolled templates br, considering the threshold thr. db
denotes the database of the registered biometric templates.

As in [3], we focus on the verification phase and assume that enrolment has
already been done. The database db is computed by the issuer from all the ref-
erences, using the function DB ∈ Fun. A verification process is initiated by the
terminal receiving as input a raw biometric data rd from the user. The termi-
nal, more precisely the TM component, extracts the fresh biometric template bs
from rd using the function Extract ∈ Fun. The matching is expressed by the
function μ ∈ Fun which takes as arguments two biometric templates and the
threshold thr. The terminal reads in the card the biometric template br. The
user receives the final decision dec of the matching from the terminal TM. Then
the terminal, here the TS component, attests that the fresh template belongs to
the set of enrolled templates.

The complete description of Ags within the architecture language is as follows.
Figure 2 sketches this description. When indices i are used, it is assumed that the
corresponding primitive exists in Ags for all users. For instance HasI(bri) ∈ Ags

implicitly means that ∀Ui ∈ U : HasI(bri) ∈ Ags.

Ags :=
{
HasI(bri),HasUi

(rd),HasTM(thr),
ComputeI(db = DB(br1, . . . , brN )), ComputeTM(bs = Extract(rd)),
ComputeTM(dec = μ(bri, bs, thr)), T rustS,Ui

, T rustS,TM, T rustS,TS,

ReceiveI,Ui
({AttestUi

(bri ∈ db)}, {}), ReceiveTM,Ui
({}, {rd}),

ReceiveCi,I({AttestUi
(bri ∈ db)}, {bri}), ReceiveUi,TM({}, {dec}),

ReceiveTM,Ci
({}, {bri}), ReceiveTS,TM({}, {dec}),

ReceiveTS,Ci
({AttestUi

(bri ∈ db)}, {bri}),

ReceiveS,TS({AttestU (bri ∈ db)}, {}), V erifyS({AttestU (bri ∈ db)})
}
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To complete the description of Ags, it remains to define the dependence relations
between the variables. The database is computed from all the references: ∀j ∈ C:
(db, {br1, . . . , brN}). Conversely, access to db gives access to all bri: ∀j ∈
C,Ui ∈ U : Depj (bri, {db}). Moreover, ∀j ∈ C,Ui ∈ U : we also have (bs, {rd}),
(dec, {bri, bs}), (dec, {bri, rd}) ∈ Depj .

4.3 Trusting a Group of Users

In the biometric system architecture Ags, the group of users is trusted by the
server, which is denoted ∀Ui ∈ U : TrustS,Ui

. However, the formalization does
not define which cryptographic primitive is used in the concrete Bgs system. Let
us discuss this point in more detail.

In a group signature scheme, users are typically not trusted, but a group
manager, called the issuer, is trusted. When it enrols a user, the issuer provides
a group secret key, aka a membership certificate – concretely, a signature of some
secret user-specific data. In other words, it attests that the user is enrolled. Then
the untrusted user proves that it is enrolled (by supplying a zero-knowledge proof
of her user secret data and the corresponding membership certificate). In our
case, the server does not trust the card, but trusts the issuer of the card. The
card contains an attestation that the user was indeed enrolled by the issuer, here
a certificate for a group signature, i.e., a group secret key.

The point to be noticed is that we do not model its internal machinery in
our formal architecture. We only express the fact that the group is trusted.
Whether this trust assumption is justified or not in practice is not part of the
reasoning about architecture: it rather regards the justification of the choice of
certain primitives to achieve the functionality. With the same trust assumption
(all users are trusted), other primitives can be used, as ring signatures [14], where
a member authenticates on behalf of a group without group manager.

The use of group signatures is a choice made at the protocol level. Checking
the conformity between the protocols and the architecture is out of scope of this
paper. This line of work has been initiated in [15].

4.4 Application of the Axiomatics

We now reason about the privacy properties of the Ags architecture from the
server point’s of view. Ags should enable the server to be sure that a certain
enrolled user authenticates, but the authenticated user is anonymous from the
server’s point of view: Ags 
 KS(bri ∈ db). But the server should have no access
to the templates: Ags 
 Hasnone

S (bri).
Regarding the template protection, the statement Ags 
 Hasnone

S (bri) is
shown using rule HN. A subtlety here is the presence of the dependence between
the biometric template bri and the database db. Therefore we first need to show
A � HasS(db).

HasS(db) �∈ Ags

� ∃−→
X : (db,

−→
X ) ∈ DepS

� ∃T : ComputeS(db = T ) ∈ Ags

� ∃j, � ∃S, � ∃E: ReceiveS,j(S,E) ∈ Ags ∧ db ∈ E

Ags �
 HasS(db)
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Now HN can be applied.

HasS(bri) �∈ Ags

(bri, {db}) ∈ DepS Ags �
 HasS(db)

� ∃T : ComputeS(bri = T ) ∈ Ags

� ∃j, � ∃S, � ∃E: ReceiveS,j(S,E) ∈ Ags ∧ bri ∈ E

Ags �
 HasS(bri)
HN

Ags 
 Hasnone
S (bri)

Ags 
 Hasnone
S (bs) is also shown by an application of HN.

Since the server trusts the users, an application of K5+ shows that the server
is ensured that some enrolled user authenticates.

V erifS(AttestU (bri ∈ db)) ∈ Ags ∀Ui ∈ U : TrustS,Ui
∈ Ags

K5+
Ags 
 KS(bri ∈ db)

5 Variants

Several variants [4] of the biometric system Bgs can be expressed and analyzed
in our formal framework.

5.1 Lowering the Trust on the Group Signing Functionality

If the server trusts the matching functionality TM of the terminal but does not
trust its signer functionality TS, then the component TS must supply a proof
that some user is enrolled. The architecture, denoted Ap

gs, becomes:

Ap
gs := Ags \ {

ReceiveS,TS({AttestU (bri ∈ db)}, {}), T rustS,TS,

V erifyS({AttestU (bri ∈ db)
}

∪ {
ReceiveS,TS({ProofTS(AttestU (bri ∈ db))}, {}),

V erifyS({ProofTS(AttestU (bri ∈ db))})
}

An application of the new rule K4+ enable to prove that the server is ensured
that some enrolled user authenticates.

V erifS(ProofTS(AttestU (bri ∈ db))) ∈ Ap
gs ∀Ui ∈ U : TrustS,Ui

∈ Ap
gs

K4+
Ap

gs 
 KS(bri ∈ db)

5.2 Combination with Match-On-Card

In the Ags architecture, the card is a plastic card. The biometric reference is just
printed on it, together with a group secret key. To enhance the protection of the
reference, a smart-card can be used instead of a plastic card, as in the Match-On-
Card (MOC) technology [8,11,12]. The card stores the reference template, and
the reference never leaves the card. During a verification, the card receives the
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fresh biometric template, carries out the comparison with its reference, and sends
the decision back. The terminal trusts the smart card for the correctness of the
matching. This trust is justified by the fact that the card is a tamper-resistant
hardware element.

The Ags architecture in which the plastic card is replaced by a smart-card
performing a MOC is modelled as follows. In addition to the comparison, the
card also computes the group authentication.

Amoc
gs :=

{
HasI(bri),HasUi

(rd),HasTM(thr), T rustTM,Ci
, T rustS,Ui

,

ComputeI(db = DB(br1, . . . , brN )), ComputeTM(bs = Extract(rd)),
ComputeCi

(dec = μ(bri, bs, thr)), ReceiveI,Ui
({AttestUi

(bri ∈ db)}, {}),
ReceiveCi,I({AttestUi

(bri ∈ db)}, {bri}), ReceiveTM,Ui
({}, {rd}),

ReceiveTM,Ci
({AttestCi

(dec = μ(bri, bs, thr)), AttestU (bri ∈ db)}, {dec}),
ReceiveCi,TM({}, {bs}), ReceiveUi,TM({}, {dec}),
ReceiveS,TM({AttestU (bri ∈ db)}, {}), V erifyS({AttestU (bri ∈ db)}),

V erifyTM({AttestCi
(dec = μ(bri, bs, thr))})

}

Using rule HN, it is easy to show that no component apart from I and Ci gets
access to bri.

The terminal should be convinced that the matching is correct: Amoc
gs 


KTM(dec = μ(bri, bs, thr)). The proof relies on the trust placed by the server
in the matching component TM of the terminal.

V erifyTM(AttestCi
(dec = μ(bri, bs, thr))) ∈ Amoc

gs

TrustTM,Ci
∈ Amoc

gs
K5+

Amoc
gs 
 KTM(dec = μ(bri, bs, thr))

Regarding the group authentication, an application of K5+ shows that the server
is ensured that some enrolled user authenticates.

5.3 Anonymity Revocation

As shown in [4], an additional mechanism can be used to revoke the anonymity
of a group authentication if there is any legal need to do so. After the matching
phase, the terminal has to encrypt the fresh template under the public key
of a specific tracing authority, to sign all messages together, and to send the
authentication result to the server. Then, at a later stage, the tracing authority
may decrypt the template and check, with an access to the database of the issuer,
that the templates were indeed close. This a posteriori check ensures a form of
accountability which can be requested in certain contexts.

The formal model introduced in [1] includes an additional architectural prim-
itive, called SpotCheck, which can be used to carry out a posteriori checks
and therefore to describe the above variant. However, the model including the
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SpotCheck primitive is proven complete only when all the functions of the term
language are at most unary. Since the comparison between templates, an essen-
tial operation of biometric systems, is inherently binary, we would then obtain
a correct but incomplete system.

We leave for future work the definition of a formal model with a posteriori
verifications which would be both correct and complete and would not suffer this
arity restriction in the term language.

6 Conclusion

In this paper, we have analysed the privacy properties of a biometric system in
which users can remain anonymous from the point of view of a remote server,
while the server is still convinced that a valid user authenticates. Table 1 sums up
the properties of the different architectures considered here. Architecture Amoc

gs

provides the best guarantees in terms of privacy. However, its deployment has
a cost, since it requires that each user owns a card with powerful capabilities.
Although quite demanding, these assumptions are not out of reach of the current
technology [5]. The main variant Ags is more realistic. The choice between Ags

and Ap
gs depends on the trust placed on each component in a specific deployment.

The possibility to express these trust assumptions in a formal way and to study
their consequences is one of the main benefits of the framework presented here
because it provides rigorous justifications to make well-informed design choices
for the architecture of a system.

Table 1. Comparison between architectures

Arch. Template protection Trust relations

Components accessing the reference bri Components accessing the query bs

Ags I, C, TM, TS TM (S, Ui), (S, TS)

Ap
gs I, C, TM, TS TM (S, Ui)

Amoc
gs I, C TM, C (S, Ui), (TM, Ci)

Components are: users Ui, terminal components TM and TS, server S, card C, issuer I. A trust
relation (i, j) means that component i trusts component j.

Acknowledgment. This work has been partially funded by the French ANR-12-
INSE-0013 project BIOPRIV. Part of this work has been conducted within the Inria
Project Lab on Privacy CAPPRIS [6].

References

1. Antignac, T., Le Métayer, D.: Privacy architectures: reasoning about data min-
imisation and integrity. In: Mauw, S., Jensen, C.D. (eds.) STM 2014. LNCS, vol.
8743, pp. 17–32. Springer, Heidelberg (2014)



Reasoning About Privacy Properties 327

2. Boneh, D., Shacham, H.: Group signatures with verifier-local revocation. In: ACM
Conference on Computer and Communications Security, CCS 2004, pp. 168–177.
ACM Press (2004)

3. Bringer, J., Chabanne, H., Le Métayer, D., Lescuyer, R.: Privacy by design in
practice: reasoning about privacy properties of biometric system architectures. In:
Bjørner, N., Boer, F. (eds.) FM 2015. LNCS, vol. 9109, pp. 90–107. Springer,
Heidelberg (2015)

4. Bringer, J., Chabanne, H., Pointcheval, D., Zimmer, S.: An application of the
Boneh and Shacham group signature scheme to biometric authentication. In:
Matsuura, K., Fujisaki, E. (eds.) IWSEC 2008. LNCS, vol. 5312, pp. 219–230.
Springer, Heidelberg (2008)

5. Canard, S., Girault, M.: Implementing group signature schemes with smart cards.
In: Smart Card Research and Advanced Application, CARDIS 2002, pp. 1–10.
USENIX (2002)

6. CAPPRIS. Collaborative Project on the Protection of Privacy Rights in the Infor-
mation Society. Inria Project Lab on Privacy. https://cappris.inria.fr/

7. European Parliament. European Parliament legislative resolution of 12 March 2014
on the proposal for a regulation of the European Parliament, of the Council on the
protection of individuals with regard to the processing of personal data, on the free
movement of such data. General Data Protection Regulation, Ordinary legislative
procedure: first reading (2014)

8. Govan, M., Buggy, T.: Acomputationally efficient fingerprint matching algorithm
for implementation on smartcards. In: Biometrics: Theory, Applications, and Sys-
tems, BTAS 2007, pp. 1–6. IEEE (2007)

9. Halpern, J.Y., Pucella, R.: Dealing with logical omniscience. In: Conference on
Theoretical Aspects of Rationality and Knowledge, TARK 2007, pp. 169–176
(2007)

10. Jain, A.K., Ross, A., Prabhakar, S.: An introduction to biometric recognition.
IEEE Trans. Circuits Syst. Video Techn. 14(1), 4–20 (2004)

11. National Institute of Standards and Technology (NIST). MINEXII - an assessment
of Match-On-Card technology (2011). http://www.nist.gov/itl/iad/ig/minexii.cfm

12. International Standard Organization. International standard iso/iec 24787 infor-
mation technology - identification cards - on-card biometric comparison (2010)

13. Pucella, R.: Deductive algorithmic knowledge. J. Log. Comput. 16(2), 287–309
(2006)

14. Rivest, R.L., Shamir, A., Tauman, Y.: How to leak a secret. In: Boyd, C. (ed.)
ASIACRYPT 2001. LNCS, vol. 2248, p. 552. Springer, Heidelberg (2001)

15. Ta, V.T., Antignac, T.: Privacy by design: on the conformance between protocols
and architectures. In: Cuppens, F., Garcia-Alfaro, J., Zincir Heywood, N., Fong,
P.W.L. (eds.) FPS 2014. LNCS, vol. 8930, pp. 65–81. Springer, Heidelberg (2015)

16. TURBINE. TrUsted Revocable Biometric IdeNtitiEs. Collaborative European
project 216339 call FP7-ICT-2007-1 (2007). http://cordis.europa.eu/project/rcn/
85447 en.html

https://cappris.inria.fr/
http://www.nist.gov/itl/iad/ig/minexii.cfm
http://cordis.europa.eu/project/rcn/85447_en.html
http://cordis.europa.eu/project/rcn/85447_en.html


Trust and Zero-Day Vulnerabilities



Whom You Gonna Trust? A Longitudinal Study
on TLS Notary Services

Georg Merzdovnik1(B), Klaus Falb2, Martin Schmiedecker1,
Artemios G. Voyiatzis1,2, and Edgar Weippl1,2

1 SBA Research, Vienna, Austria
{gmerzdovnik,mschmiedecker,avoyiatzis}@sba-research.org

2 TU Wien, Vienna, Austria

Abstract. TLS is currently the most widely-used protocol on the
Internet to facilitate secure communications, in particular secure web
browsing. TLS relies on X.509 certificates as a major building block to
establish a secure communication channel. Certificate Authorities (CAs)
are trusted third parties that validate the TLS certificates and establish
trust relationships between communication entities. To counter preva-
lent attack vectors - like compromised CAs issuing fraudulent certificates
and active man-in-the-middle (MitM) attacks - TLS notary services were
proposed as a solution to verify the legitimacy of certificates using alter-
native communication channels.

In this paper, we are the first to present a long-term study on the
operation of TLS notary services. We evaluated the services using active
performance measurements over a timespan of one year and discuss the
effectiveness of TLS notary services in practice. Based on our findings,
we propose the usage of multiple notary services in conjunction with a
semi-trusted centralized proxy approach, so as to protect arbitrarily-sized
networks on the network level without the need to install any software
on the client machines. Lastly, we identify multiple issues that prevent
the widespread use of TLS notary services in practice and propose steps
to overcome them.

1 Introduction

Secure communication is a key part of today’s Internet applications. The major-
ity of online applications, ranging from e-mail to VPN and browsing the web,
rely on SSL and TLS1 to provide secure communication mechansims such as
authenticity, confidentiality, and integrity. TLS 1.2 is, at the time of writing,
the most recent version [5], with TLS 1.3 currently in the making. Trust in the
TLS ecosystem is distributed over software vendors and an underlying public key
infrastructure (PKI) composed of various certificate authorities (CAs). To estab-
lish a secure connection, a client verifies the signature of a server’s certificate.
1 In this paper we use the term “TLS” to refer to all incarnations of SSL and TLS, if

not specified otherwise.
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If the server’s certificate is signed by a trusted certificate authority, the certifi-
cate is accepted, otherwise it is rejected. To determine if a CA is to be trusted,
the client relies on a so called “trust store”, i.e., a list of certificate authorities
that it can trust. These trust stores are usually shipped with the application or
are included in the operating system. If an attacker gets her hands on one of
the private keys of one of these certificate authorities, she is able to issue valid
(trusted) certificates for arbitrary-named servers, since the signatures can only
be validated against the local trust store. This allows for effective Man-in-the-
Middle (MitM) attacks against any kind of targets.

Recent incidents have shown that the subversion of the chain of trust is a
viable scenario. Examples include the infamously hacked certificate authorities
DigiNotar and Comodo [21], during which their private keys were stolen. Inci-
dents such as the case of Superfish [22] and the Dell eDellroot certificate [31]
demonstrate that sometimes even system vendors, like Lenovo or Dell, acciden-
tally introduce vulnerabilities. In these cases, trusted certificate authorities were
included in the local trust store of the operating system, which also included the
private keys to provide extended functionality, allowing everyone to extract the
CA private key and launch unnoticed MitM attacks. For affected users, there is
nearly no possibility to distinguish between valid server certificates and those
signed by fraudulent CAs, since there are no visible distinction marks and the
client’s software marks them as trusted.

To solve the problem of multiple valid and trusted certificate chains, several
solutions have been proposed recently. These solutions include DANE [15], public
key or certificate pinning using HPKP [10], and TLS notary services. The latter
are based on the principle of multi-path probing. Figure 1 depicts the usual
workflow of such notary services. The idea is to query different “notary” servers
if they are presented with the same certificate for a certain communication entity
as the client. Therefore, to launch an undetected MitM attack, an attacker would
need to intercept as well all the connections to the entity that originate from
all the queried notary servers. Since these notary servers are usually spread in
different networks around the globe, the risk of an effective, unnoticed MitM
attack is highly reduced, even if the certificate is trusted by the local trust store.
On the other hand, such a system could reduce the dependability on certificate
authorities, since the validation does not have to depend on trusted certificate
authorities, but could rely solely on the quorum of a set of notary servers.

DANE is far from being usable in practice as it relies on DNSSEC which is still
not widely deployed. Certificate and public key pinning are still supported only
by selected applications (e.g., Chrome, Firefox, and some mobile apps [11,27]).
On the other hand, TLS notaries are already implemented as browser extensions,
thus being usable in practice. However, there is still no complete study on the
long-term usage of notary services and how they react to changes in a real-world
setting. In this paper we therefore implement a modular system to evaluate
notary services in the long term and on a daily basis, independently of the used
browsers.
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Fig. 1. The usual flow of a request for certificate notary services.

The contributions of this paper are as follows:

– We present a longitudinal study on the effectiveness of three well-known notary
services over a one-year period.

– We describe a concept of mapping multiple TLS notaries for transparent end-
user protection and an implementation of it as a proxy service.

– We identify problems of combining these services, including lack of widespread
adoption and the problem of view inconsistencies.

The rest of the paper is organized as follows: In Sect. 2, we provide the nec-
essary background on TLS and notary services, as well as the related work. In
Sect. 3, we describe our concept of a proxy notary. In Sect. 4, we describe our
methodology for evaluating the proxy as well as the three TLS notary services
independently, whereas our results are described in Sect. 5. We discuss these
results in Sect. 6. Finally, Sect. 7 presents the conclusions of this paper and dis-
cusses future directions of work.
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2 Related Work

2.1 Large-Scale TLS Protocol Studies

The problems with SSL and trusted certificate authorities have been studied for
several years, and several large-scale studies that focused on the TLS ecosystem
have been conducted lately. One of the first large-scale studies targeting SSL cer-
tificates is the Electronic Frontier Foundation’s SSL Observatory [9]. Its dataset
includes publicly visible SSL certificates available through IPv4.

Holz and Durumeric [7,17] focused on the IPv4-wide analysis of TLS in the
context of HTTPS. Mayer et al. [24] and Holz et al. [16] mainly focused on
TLS in other application domains, like the e-mail ecosystem. In particular, the
recently proposed improvements to port-scanning as well as the open-source
release of tools like zmap [8] and masscan [14] made it easy to collect IPv4-wide
information on specific questions. Durumeric et al. also set up a special search
engine, Censys [6], which is backed by these Internet-wide scans and allows for
deeper analyses. While these studies provide an interesting and valuable view
on the TLS ecosystem, they are not designed to provide further information on
fraudulently issued certificates.

2.2 TLS Certificate Validation

Several approaches have been proposed in the literature to mitigate the short-
comings of a central point of trust. One method to provide protection against
fraudulent certificates is Certificate Pinning which is already distributed in
mobile applications [11,27]. However, recent studies showed that many mobile
applications incorrectly implement the validation of TLS certificates [11,12]. The
Internet Engineering Task Force also proposed the Public Key Pinning Exten-
sion for HTTP [10]. This allows a web server to set a special header, which tells
the browser to only accept a certain certificate or certificates signed by a specific
CA, for the specific server and for a specific amount of time.

Other protection mechanisms have been implemented in the form of browser
extensions. Soghoian et al. [29] implemented Certlock, an extension that is based
on the trust-on-first-use policy to bind the CA to the CommonName of a websites
certificate. This method is similar to pinning every certificate on first encounter.
Winter et al. [35] provide a system that uses an independent Tor circuit for
certificates that issued a browser warning. However, this does not protect against
valid but yet malicious certificates. Syverson and Boyce also employ Tor for page
verification [30], but they do not rely on probing the same server on the same
domain; instead, they host the site again on a .onion address and use this mirror
to compare the keys. Holz et al. [18] implemented CrossBear, a system which
employs hunter nodes to track down TLS MitM attacks.

TLS certificate notary services can be used to verify a certificate through
multiple paths. Wendlandt et al. [34] proposed Perspectives, which is based on
multiple servers to observe the state of TLS certificates. Convergence [23] builds
on the same principles as Perspectives and provides further methods for trust
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management. Bates et al. [2] tried to answer the question of what happens if
everyone is using the notary service Convergence; Fuchs et al. extended the
approach of centralized notary servers and implemented Laribus [13], a P2P-
based approach on notary services. Laribus is based on a social graph, which
allows users to build notary groups without the need to rely on a central notary
server.

3 Methodology and Measurement Setup

To monitor the effectiveness and behavior of different notary services, we set up
an automated crawling environment. Figure 2 gives an overview of the overall
design.

Fig. 2. Overview of our measurement setup.

We implemented the proxy in mitmproxy [4], which allowed us to validate
certificates through several extension modules. These extension modules imple-
ment interfaces to various notary services, which will be described in Sect. 3.2.
We used this system to collect daily statistics of these implemented extension
modules over a one-year period.

3.1 Data Collection System

The data collection system was implemented in such a way that it is extensible,
reusable and can furthermore be used by the end users to evaluate their own
browsing session. Therefore the overall data collection consists of three compo-
nents: (1) a web browser, (2) an intercepting proxy to monitor HTTPS sessions,
and (3) proxy plugins to query various notary services.
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Browser. To query the different webpages, we utilized wget with the proxy
settings pointing to our intercepting proxy. While we used a lightweight, GUI-
less browser for our periodic scans, any other full-blown browser could be used
as well. This makes the validation proxy described in the next paragraph easier
to deploy in combination with other systems. End users can use the proxy to
secure or evaluate TLS certificates against various notary services without the
need to install separate plugins in their browsers.

Intercepting Proxy. To conduct the certificate validation, we implemented an
HTTP/HTTPS proxy server in Python 2 using the mitmproxy [4] library as a
basis. The proxy server acts as an intermediary between the client and the web
server. For each encountered HTTPS certificate, the proxy server conducts the
certificate validation using the configured notary services.

Proxy Plugins. To make the system extensible, the communication with the
notary services is implemented as plugins. This makes it easy to extend our
system so as to evaluate additional notary services. The proxy in general supports
two modes of operation: synchronous and asynchronous. In synchronous mode,
the proxy waits for all the responses from the notary services before the original
page is passed to the requesting browser. In case of a validation error, this allows
to terminate the page load before the page content is rendered to the user.

The second proxy mode asynchronously collects validation information from
the notary services and logs them in the file system for later inspection and
analysis. In this mode, the page load cannot be interrupted or terminated, since
the page is served to the user without waiting for validation responses. For the
evaluation, we only look at the results from the asynchronous mode.

3.2 Notary Services

At the time of our initial analysis of the notary services ecosystem, we identified
three services that were in use and also had an active and open infrastructure,
namely Perspectives, Convergence, and ICSI. We give a short introduction to
the inner workings of these systems in the next paragraphs.

Perspectives. [3] pioneered the multi-path probing approach: The system em-
ploys multiple independent servers, called notaries, which observe publicly-
visible web servers and store data about their certificates. When a client contacts
a server using TLS, it queries a number of notaries. The notaries reply with
information about which certificate the server in question was using in which
time period. Using this information, the client can make a more informed trust
decision: Do the notaries see the same certificate as the client?

Convergence. [32] was developed by Moxie Marlinspike and builds on the same
design principles as Perspectives, but it incorporates other ideas and principles
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as well. Its central idea is “trust agility”, i.e., the users themselves can choose
whom to trust and may also revoke their trust. Similarly to Perspectives, Conver-
gence relies on notaries to decide if a certificate is trustworthy or not. However,
the decision process is somewhat different. Using a REST web service API, the
client sends a request containing the host, port number, and certificate hash to
each notary it wishes to query. The server sends one out of five different types of
responses, which can be distinguished by the HTTP status code. The possible
responses are:

– The notary could verify the certificate.
– The notary could not verify the certificate.
– The notary cannot decide whether to accept or reject the certificate; the client

should ignore this notary in its trust decision.
– The client sent a malformed request.
– The server could not perform the request due to an internal error.

This approach makes the implementation of a client rather simple, because
the client just has to count the votes collected from the notaries. The protocol is
described in more detail in [33]. The user can decide whether decisions are based
on majority voting or if an unanimous vote is mandatory in order to accept a
certificate.

ICSI Certificate Notary. [19] is a service from the University of Berkeley
that monitors certificates. In contrast to the two aforementioned services, the
ICSI Certificate Notary passively monitors traffic from multiple Internet sites
and builds a database of certificates seen in this traffic.

The database can be queried by clients by issuing a DNS query containing
the hash of the certificate. The service responds to the client whether it has
observed that certificate in the past, and if it could trace this certificate to a
valid root certificate through one of the following responses:

1. ICSI has seen this certificate:
(a) ICSI can establish a chain of trust to a certificate from the Mozilla root

store → ICSI replies 127.0.0.2 to the request.
(b) ICSI cannot establish a chain of trust → ICSI replies 127.0.0.1

2. ICSI has not seen this certificate or an error (such as a time-out) has occurred
→ no reply

Note that it is not possible to distinguish between the cases “a query timed
out” and “ICSI has not seen this certificate”, therefore our proxy plugin rejects
the certificate in both cases.

4 Data Collection

Our data collection involves periodic TLS certificate validation requests to the
set of analyzed notary instances for 1,000 web pages. The scans were conducted
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daily, and each scan involved queries to the three different notary services for each
of the encountered certificates. We conducted the evaluation of the validation
proxy in two steps: First, we collected a sample set of pages served through
HTTPS. Secondly, we conducted daily scans to validate the corresponding TLS
certificates against different notary services and analyzed their responses.

4.1 Sample Selection

To select samples, we initially obtained the list of Alexa Top 1,000,000 sites [1]
on November 29, 2013. From this list, we then selected the top 1,000 sites that
responded to an HTTPS query within 30 s. This selection represents the websites
that attract most of the visits by users, including pages such as Facebook, Twit-
ter, and Google. Many of the selected websites did respond to HTTPS queries,
but with an immediate redirection to a (non-secure) HTTP connection. This
means that while they do support HTTPS, many users will probably not use
it. However, we still included these sites in the evaluation under the assumption
that HTTPS is likely to be used in some parts of the website, like the login
pages.

4.2 Periodic Scan

Between January 31, 2014 and January 29, 2015, for a period of one year, the
collection was conducted daily. For each run of the scan, the proxy server was
started and the previously selected URLs were queried, with the different notary
plugins enabled. The data returned by the proxy plugins as well as the collected
certificates were stored for further analysis. To get a baseline for comparison,
we also queried the URLs without using a proxy server. Thus, in one evaluation
run, each site from our data set was queried for a total of four times.

For each pair of URL and validation method, the following measurements
were taken:

Verdict: Whether the validation method accepted or rejected the site’s X.509
certificate.

Reason: The reason why a certificate was rejected, if it had been rejected. This
metric is specific to each validation method.

Validation Time: The entire time the validation process of a certificate took,
including querying the notary server(s) and waiting for a response.

5 Results

In the following, we describe our results and findings from the collected dataset.
For each notary service, we analyzed how long it took to answer a validation
request and also how long it took to react to certificate changes. Furthermore,
we studied the availability of these services over the course of one year.



Whom You Gonna Trust? A Longitudinal Study on TLS Notary Services 339

5.1 Certificate Changes

To analyse the functionality of notary services, it is important to observe actual
certificate changes. Figure 3 depicts the number of different certificates per web-
site we encountered during the course of our study. In 80 % of the cases, the
websites changed at least once their certificate; some 10 % of them changed more
than 9 times their certificate within the one year that our study was active.

Fig. 3. Number of different certificates observed for each tracked domain

5.2 Validation Time

An important factor concerning notary services from a usability point of view is
their response time to validation requests. Therefore, we conducted an analysis of
the response time of the various services. With the 1,000 webpages crawled daily
for one year, we collected in total more than 350,000 response timing samples
per analyzed notary service. Figure 4 summarizes the timing information for the
three notary services.

The DNS-based approach of ICSI yields the fastest responses to queries, with
the majority (95 %) of answers received in under one second. While about half
of the responses for Convergence and Perspectives are also below this mark,
response times for these two services have a far higher fluctuation. This can be
an issue in the case where the notary services are used to validate certificates
before a page is loaded, as it could introduce noticeable page load delays for the
users. We note that Convergence usually employs a client cache for fingerprints,
in an effort to improve the loading times. We did not implement this caching
in our proxy so as to get a comparison of the notary service based on newly-
encountered pages.
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Fig. 4. Response times of notary services to validation requests. Outliers are cut off
at 10 s.

5.3 Certificate Acceptance Duration

While the response time is certainly important for the general usability in day-
to-day browsing, another temporal factor to take into consideration is the time
a notary needs to mark new or changed certificates as valid once they are intro-
duced or updated. Figure 5 depicts the time it took the different services to mark
a new certificate as valid after it was changed on the server. Since we conducted
daily crawls at a fixed time, the resolution of our scan is also on a daily basis.
Therefore, a value of zero days means that the certificate was changed by a server
as well as validated by a service within this 24-h time frame. The validations
are set in relation to the total amount of certificate changes that we observed
during our scanning period. In the case of Convergence we only considered the
server we setup ourselves and did not include the official server results, since the
latter only responded in error for the majority of our scans.

As depicted in Fig. 5, it takes less time to Convergence so as to adopt to
newly-changed certificates, with the majority of certificates seen as valid within
the first 24-h time frame. ICSI is only able to validate about 75 % of changed
certificates within the same time frame. This fact could be due to the nature
of ICSI, which relies on passive information collection, whereas Convergence
actively probes servers itself. The relatively low validation rate of Perspectives
(45 %) can most likely be accredited to the fact that more and more of the
servers failed; in the end, it was not possible to reach a quorum on the validity
of a certain certificate. Therefore, some of the changed certificates could not be
validated successfully anymore. However, even with these limitations in mind,
we can still see the general trend that it takes a longer time for Perspectives to
successfully validate certificates compared to the other two services. It takes one
day for Convergence and at most three for ICSI to fully synchronize.
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Fig. 5. Time until a newly-seen certificate is marked as validated in percent of the
total of observed certificate changes within the period of one year.

5.4 Service Availability

Figure 6 provides an overview on the status of certificate validation of the three
notary services during the course of one year. The return state for each of the
services is given as a percentage for all the collected service responses. It shows
the daily average of responses to the 1,000 page request made by the respective
crawler.

ICSI was constantly up and running during our scan. We experienced sev-
eral problems with both Convergence and Perspectives. The analysis of Conver-
gence was based on two servers. The first one was the official server available
at notary.thoughtcrime.org and the second one was a server we hosted on an
Amazon EC2 instance. The official server became unresponsive in the middle of
June 2014.

We encountered a similar problem with Perspectives, where the initially-
available servers one after the other shut down or responded in error. As
described earlier, the Perspectives validation of certificates operates with a
quorum-based approach, in which at least a certain amount of servers must
provide a valid response. Due to the fact that more servers answered with an
error state, this requirement was no longer met and therefore, from a certain
point in time, all certificates were rejected by the system, even if some of the
servers still provided a valid response.
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Fig. 6. Timeline of the responses collected from the different services over the course
of one year.

6 Discussion

Analyzing notary services on a longitudinal scale reveals several problems and
shortcomings that limit the usability of these services. In the following we discuss
the observed limitations and possible future directions for the deployment of
notary services.

6.1 Response and Validation Times

One problem with notary services is the delay that these services introduce in
page requests. As we described in Sect. 3.1, there are two approaches to verify
a certificate through a notary: synchronous and asynchronous. Both approaches
have positive and negative sides. Since the synchronous method waits for all



Whom You Gonna Trust? A Longitudinal Study on TLS Notary Services 343

notary responses before actually requesting the page, it can introduce a signifi-
cant delay (as shown in Sect. 5.2) in page loading, especially if a notary server
times out. On the other hand, the asynchronous method loads the page before
it receives all notary responses, therefore leaving a window of exposure before
notifying the user that something went wrong.

Another problem is the reaction to legitimate certificate changes, namely how
long it takes until a service marks a newly seen certificate as valid. Our study
shows that it can take up to several days until a certificate is considered as valid.
Until the new certificate is validated and has been seen by all the notary services,
it will appear as a MitM attack.

6.2 Adoption and Continuous Operation

For a notary service (or multi-path probing in general) to be useful for actually
validating certificates, there are two important factors that need to be met:
(i) Services need to be adopted by the users. This means that users have to
run their own servers which others can query. For example, if there is only one
official server you can query, this defeats the whole concept. (ii) It implies that
one has to fully trust this service, which introduces a single point of failure. A
single server could just provide wrong answers to the client’s queries without a
possibility to check these claims, which would be similar to a device-hosted trust
store. On the other hand, even if users set up their own servers, the question is
how long they can keep them up and running for other clients to use. Therefore,
an important factor to consider is that the amount of available servers could
fluctuate. The clients need to be informed of failing servers, since this influences
the weight of still-running services in the case of majority voting.

Currently it seems that the adoption of these services by users is low.
At the time of the writing, the Firefox Add-on for Perspectives has 5,334
users [28] and the plugin for Convergence only 77 users [25]. During our study
some of the official servers seem to be discontinued, which does not help to
increase the trust in this system. What our insights show is that either the incen-
tive for the users to host their own notary services has to be increased or the
system itself has to be adapted. One possible adaption is presented by tofu [20],
proposing a P2P-based system in which every client is automatically also a host.
While this system may be able to solve the problem of service availability, it
could still impose further risks that need to be analyzed in the future.

6.3 Privacy

Beside the technical aspects, there are others to be considered. One of them are
possible privacy implications. By using a third-party service to validate certifi-
cates, it is easy for its server(s) to collect information about the pages a client
visited. Therefore it is possible for the server(s) to build a browsing profile of the
specific user. One solution to this problem would be for the users to host their
own servers. However, this is not always an option and future research should
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focus on the possibilities to validate certificates without giving away too much
information about the client.

While we do not have solutions to these problems (yet), we still believe that
notaries are a viable alternative to increase the overall security of TLS. Thus,
they should be studied further so as to improve the current limitations.

7 Conclusion

In this work, we presented a longitudinal study on the availability and func-
tionality of different notary services. We conducted daily scans over a period of
one year and analyzed the collected data. We explored the ecosystem of notary
services and analyzed their behavior on a large scale. To conduct this study, we
developed a new proxy-based system to transparently query different notary ser-
vices for increased protection against MitM attacks and gave an overview on the
inner workings of these notary services. Lastly, we discussed the results of our
study in the context of the available notary services. We described the problems
and pitfalls that can arise by using the existing systems.

Existing notary services have the problem that the initial request for an
unknown page can introduce extra latency, since the notary has to query the
server for the certificate. With the rise of fast, Internet-wide scanning solutions,
there are several projects that analyze the TLS landscape. One of these projects
is scans.io [26] which hosts a regularly-collected dataset of TLS certificates.
Censys.io [6] provides a search engine over the scans.io datasets. Future research
could evaluate the possibilities to use these data sources either as alternative
initial data providers to bootstrap notaries or to wrap the data into a separate
notary service.
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Österreichische Staatsdruckerei GmbH. Additionaly the research was funded by the
Austrian Research Promotion Agency (FFG) through the BRIDGE 1 grant P846028
(TLSiP) and the COMET K1 program.

References

1. Alexa. Alexa top domains. http://www.alexa.com/topsites
2. Bates, A., Pletcher, J., Nichols, T., Hollembaek, B., Butler, K.R.: Forced per-

spectives: evaluating an SSL trust enhancement at scale. In: Proceedings of the
Conference on Internet Measurement Conference, IMC 2014, pp. 503–510. ACM,
New York (2014)

3. CMU. Perspectives project (2016). http://www.perspectives-project.org/
4. Cortesi, A.: mitmproxy, February 2016. https://mitmproxy.org/
5. Dierks, T., Rescorla, E.: The Transport Layer Security (TLS) Protocol Version 1.2.

RFC 5246 (Proposed Standard), August 2008. Updated by RFCs 5746, 5878, 6176

http://www.alexa.com/topsites
http://www.perspectives-project.org/
https://mitmproxy.org/


Whom You Gonna Trust? A Longitudinal Study on TLS Notary Services 345

6. Durumeric, Z., Adrian, D., Mirian, A., Bailey, M., Halderman, J.A.: A search
engine backed by Internet-wide scanning. In: Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security, pp. 542–553.
ACM (2015)

7. Durumeric, Z., Kasten, J., Bailey, M., Halderman, J. A.: Analysis of the HTTPS
certificate ecosystem. In: Internet Measurement Conference (2013)

8. Durumeric, Z., Wustrow, E., Halderman, J.A.: ZMap: fast Internet-wide scanning
and its security applications. In: Usenix Security, vol. 2013 (2013)

9. Eckersley, P., Burns, J.: An observatory for the SSLiverse. Talk at Defcon 18 (2010)
10. Evans, C., Palmer, C., Sleevi, R.: Public key pinning extension for HTTP (HPKP).

RFC 7469 (Draft) (2015)
11. Fahl, S., Harbach, M., Muders, T., Baumgärtner, L., Freisleben, B., Smith, M., Eve,
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an Internet-wide analysis of TLS-based protocols for electronic communication.
CoRR, abs/1511.00341 (2015)

17. Holz, R., Braun, L., Kammenhuber, N., Carle, G.: The SSL landscape: a thorough
analysis of the X.509 PKI using active and passive measurements. In: Proceedings
of the ACM SIGCOMM Conference on Internet Measurement Conference, pp.
427–444. ACM (2011)

18. Holz, R., Riedmaier, T., Kammenhuber, N., Carle, G.: X.509 forensics: detect-
ing and localising the SSL/TLS men-in-the-middle. In: Foresti, S., Yung, M.,
Martinelli, F. (eds.) ESORICS 2012. LNCS, vol. 7459, pp. 217–234. Springer,
Heidelberg (2012)

19. ICSI. ICSI certificate notary (2016). http://notary.icsi.berkeley.edu/
20. Jones, R.: tofu:// - the web security protocol which should have been, October

2013. https://gun.io/blog/tofu-web-security/
21. Leavitt, N.: Internet security under attack: the undermining of digital certificates.

Computer 44(12), 17–20 (2011)
22. Lenovo. Superfish vulnerability, October 2015. https://support.lenovo.com/at/de/

product security/superfish
23. Marlinspike, M.: SSL and the future of authenticity. In: Black Hat USA (2011)
24. Mayer, W., Zauner, A., Schmiedecker, M., Huber, M.: No need for black chambers:

testing TLS in the e-mail ecosystem at large. CoRR, abs/1510.08646 (2015)
25. Kazantsev, M.: Convergence extra Firefox Add-on, April 2016. https://addons.

mozilla.org/en-US/firefox/addon/convergence-extra
26. U. of Michigan. Scans.io - Internet-Wide scan data repository, February 2016.

https://scans.io/

https://github.com/robertdavidgraham/masscan
https://github.com/robertdavidgraham/masscan
http://notary.icsi.berkeley.edu/
https://gun.io/blog/tofu-web-security/
https://support.lenovo.com/at/de/product_security/superfish
https://support.lenovo.com/at/de/product_security/superfish
https://addons.mozilla.org/en-US/firefox/addon/convergence-extra
https://addons.mozilla.org/en-US/firefox/addon/convergence-extra
https://scans.io/


346 G. Merzdovnik et al.

27. Oltrogge, M., Acar, Y., Dechand, S., Smith, M., Fahl, S.: To pin or not to pin–
helping app. developers bullet proof their TLS connections. In: 24th USENIX Secu-
rity Symposium (USENIX Security 2015), pp. 239–254 (2015)

28. Schaefer, D.: Perspectives Firefox Add-on, April 2016. https://addons.mozilla.org/
en-US/firefox/addon/perspectives/

29. Soghoian, C., Stamm, S.: Certified lies: detecting and defeating government inter-
ception attacks against SSL (Short Paper). In: Danezis, G. (ed.) FC 2011. LNCS,
vol. 7035, pp. 250–259. Springer, Heidelberg (2012)

30. Syverson, P., Boyce, G.: Genuine onion: Simple, fast, flexible, and cheap website
authentication. In: Proceedings of the 9th Workshop on Web 2.0 Security and
Privacy (W2SP) (2015)

31. Thomas, L. P.: Response to concerns regarding eDellroot certificate (2015).
http://en.community.dell.com/dell-blogs/direct2dell/b/direct2dell/archive/2015/
11/23/response-to-concerns-regarding-edellroot-certificate

32. Thoughtcrime Labs. Convergence (2016). http://www.convergence.io/
33. Thoughtcrime Labs. Convergence notary protocol (2016). https://github.com/

moxie0/Convergence/wiki/Notary-Protocol
34. Wendlandt, D., Andersen, D.G., Perrig, A.: Perspectives: Improving SSH-style host

authentication with multi-path probing. In: USENIX Annual Technical Conference
on Annual Technical Conference, ATC 2008, pp. 321–334. USENIX Association,
Berkeley (2008)
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Abstract. It is argued that runtime verification techniques can be
used to identify unknown application security vulnerabilities that are a
consequence of unexpected execution paths in software. A methodology
is proposed that can be used to build a model of expected application
execution paths during the software development cycle. This model is
used at runtime to detect exploitation of unknown security vulnerabili-
ties using anomaly detection style techniques. The approach is evaluated
by considering its effectiveness in identifying 19 vulnerabilities across 26
versions of Apache Struts over a 5 year period.

1 Introduction

Contemporary software is routinely constructed from a myriad of components
and frameworks. With the emphasis on rapid construction and reuse comes a
tacit acceptance that it is neither practical nor expected that a programmer
should fully understand the minutiae of every component included with their
application. As a consequence, its not unusual for the programmer to focus on
understanding their application at the level of the business logic, while hoping
that abstraction neatly deals with the complex interoperation of its underly-
ing components. However, these underlying components often require particular
configuration and usage patterns in order to operate securely. These component
requirements may be ignored by the programmer, through ignorance or as a
result of coding error in the application. A programmer, while focused on using
an external software component to implement one task may overlook that the
application is implicitly enabled to perform another, unexpected task. Flaws
can also occur within the components themselves, for similar reasons; the com-
ponent developer may not have anticipated all possible use-cases. A consequence
of what can be described as “dark code” [11] or “the dark side of the code” [16],
is that while the programmer expects certain program execution paths, other,
unexpected paths may be possible and give rise to a security vulnerability.

The software industry’s approach to software vulnerabilities includes security
quality assurance processes such as code reviews, static analysis and penetra-
tion testing. However, it is rarely possible to cover the subtleties of all of the
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numerous components and their inter-operation. In addition, during applica-
tion development, third-party components are not routinely reviewed or tested
for vulnerabilities. Some of the security vulnerabilities that gained notoriety in
recent years, such as Heartbleed and Shellshock, were deployed for many years
before they were discovered, despite being used by large number of consumers.

Our position is that many software vulnerabilities can be attributed to pro-
gramming errors that enable unexpected software behavior. Runtime verification
[5] of software execution against a specified expected behavior can help identify
unexpected behavior in the software. For small applications, limited require-
ments on expected behavior can be specified a priori, for example as a temporal
proposition [5]; however, this does not scale when the requirement is to constrain
emergent behavior across large complex systems of interoperating components.
An alternative strategy, used by anomaly detection techniques [4,6,7,17], is to
learn a behavioral reference profile from system logs of past/normal behavior and
use this profile at runtime to check behavior. However, practical application of
this approach has tended to generate profiles with limited expressiveness [18] for
relatively small and uncomplicated software components [14], such as sendmail
or lpd, observed though system calls [7]. The practical challenges of applying
these techniques to contemporary enterprise software, such as dealing with scale
and alignment with software release processes have not been considered.

The contributions of the paper are as follows. The anomaly-detection model
proposed in [15] is extended to incorporate the notion of scope which provides an
effective way of dealing with scale in contemporary application systems. Based
on this model, an implementation framework is developed whereby existing soft-
ware testing techniques are adapted to generate profiles of expected behavior
that can be used for runtime verification. The approach has been evaluated
by considering its effectiveness in identifying code vulnerabilities across the 26
versions of Apache Struts over the past 5 years. Of significance is the result
that anomaly-detection/run-time verification techniques would have been quite
effective in identifying exploits of these zero-day vulnerabilities, prior to their
discovery. To the best of our knowledge this is the first successful construction
of profiles used to detect vulnerabilities in large-scale enterprise software.

The paper is organized as follows. Section 2 uses an example of contemporary
software development—a microblog application implemented with Struts—to
illustrate how easy it is for the programmer to unwittingly introduce a program-
ming flaw/security vulnerability. Section 3 reviews and considers the challenges
of applying techniques for anomaly detection to contemporary software systems
and describes our proposed approach. Section 4 discusses the evaluation of the
approach and Sect. 5 provides the conclusion.

2 Contemporary Software Development

Contemporary software is implemented using a variety of high-level program-
ming languages, software frameworks and third party components. While
application-level code may appear straightforward, enabling rapid and low-cost
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application development, its underlying system is a complex arrangement of
inter-dependent software whose behavior can be difficult for a programmer to
fully comprehend. There are a great many examples whereby misunderstanding
of contemporary software systems leads to errors in the application code that
can be exploited as security vulnerabilities. We consider this problem using a
simple example that runs through the paper.

2.1 A Micro-Blogging Application

A micro-blogging social networking application provides an online facility for
users to post short text messages and share them with others. The appli-
cation provides a web interface and REST API for integration with various
types of clients, including desktop browsers and mobile devices. The applica-
tion is built using Apache Struts, a popular Model-View-Controller framework
for J2EE. Struts abstracts application logic from HTTP request processing flow
by encapsulating it into objects called actions. For example, Fig. 1 shows how
the action responsible for posting a new micro-blog message is implemented in
just a few lines of code. Actions can be mapped to specific URL paths, such
as /api/post. Struts can separately handle routine tasks, including parameter
validation, authentication, session handling and CSRF protection, before pass-
ing parameter values to the action as associated by their setters. This facilitates
the separation of business logic from HTTP processing concerns. Thus, rather
than dealing with low-level operations such as accessing parameters by name, the
developer need only implement a public setter. This makes the code re-usable,
easier to maintain, document and test.

Fig. 1. Micro-blog application code and trace

Application behavior can be traced as a sequence of the under-
lying Java method calls. For example, invoking the application using
/api/post?message=Hello results in the included trace fragment. Each
method includes a reference to its calling class. In the above, Struts creates
an instance of PostAction, which is provided with its session and parameter
data and is in turn executed, and the return value sent as response.
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2.2 An Unexpected Vulnerability

While the implementation of the micro-blog post action appears straightforward,
it can be easy for a developer to overlook subtleties in the interoperation between
the application code and the underlying Struts framework. The code in Fig. 1
contains one such oversight, that results from how the getUser method operates
with Struts, and results in a security vulnerability. Suppose that this method was
not intended to be a part of the action’s interface, rather, it is implemented by the
programmer as a means to provide convenient access to the user object from the
session. The method returns a User object, which is a container for various user
attributes, such as name and identifier and accessor methods. The combination
of a public getter for the User object and public setters for the object makes
it possible to manipulate user information request parameters. For example, an
attacker Alice can invoke /api/post?message=Hello&user.id=frank in order
to modify the user-id stored in the session to Frank and submit a message on
Frank’s behalf. A fragment of the execution trace in this case is:
StrutsActionProxy: PostAction.<init>
ServletConfigInterceptor: ApiAction.setSession()
ParametersInterceptor: PostAction.setMessage("Hello")
ParametersInterceptor: PostAction.getUser()
PostAction: ApiAction.getSession()
ParametersInterceptor: User.setId("frank")
DeprecationInterceptor: PostAction.execute()
PostAction: PostAction.getUser()
PostAction: ApiAction.getSession()
PostAction: User.getId()
PostAction: Datastore.add("frank", "Hello")

The Struts ParametersInterceptor parses and interprets the user.id

attribute as an instruction to set the id property of the user property. This
results in a sequence of operations equivalent to getUser().setId("frank").
This oversight by the developer illustrates how easy it can be to program an
unexpected execution path that compromises security. Accessing object fields
though a chain of getters and setters is a useful and documented feature of
Struts. However, it can come as a surprise to a programmer, who is focused more
on application-level development, that something as intuitive as implementing a
getter for the current user results in a security vulnerability.

This problem is further highlighted by an almost identical vulnerability
(CVE-2014-0094) that was found within Struts itself. Even though the con-
sequences of exposing a public getter may have been clear to the Struts devel-
opers, it is easy to overlook the fact that every Java object (and therefore, every
Struts action) also contains a getClass method. This results in an unintended
exposure of an action’s Class object, accessed through request parameters [2].
Unfortunately, even after the problem was discovered, the implemented remedy
was incomplete. The initial remedy black-listed the class parameter, however,
it did not consider uppercase parameters (such as Class). Eventually, three
more vulnerabilities were reported on incomplete remedies before the issue was
believed addressed.

The micro-blogging application is one example of how programming error can
result in a security vulnerability whose identification and prevention require an
in-depth understanding of the underlying systems. However, given the complex-
ity of contemporary systems, our position is that there will always be some aspect
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of the behavior that the programmer does not fully understand. For example,
a study of developers by Oliveira et al. [13] found that 53 % of its participants
knew about a particular coding vulnerability, however they did not correlate it
with their own programming activity unless it was explicitly highlighted.

3 Security Vulnerabilities and Anomaly Detection

The use of anomaly detection in software execution has tended to focus on rela-
tively small-scale homogeneous applications. However, the microblogging exam-
ple illustrates that even very simple contemporary applications are in fact large
systems of interconnected components. This section considers the key challenges
encountered in applying anomaly detection techniques to contemporary applica-
tion software. For reasons of space, but without loss of generality, the discussion
is focussed on a common enterprise scenario of a web application/service built
on a high-level software platform (Java) and an MVC framework (Struts).

3.1 Abstraction and Scope

The activity of an application is observed as a sequence of events, such as a
system log. These observations can be made at different levels of abstraction. For
example, the micro-blogging application activity could be observed as a series of
high-level user actions, such as posting or viewing a message. At a lower level of
abstraction the actions can be observed as HTTP calls to the application server.
Further lower levels describe the activity of the application code and its libraries,
Java virtual machine, operating system, and so forth. The objective is to use the
observed activity/log of the system to build a behavior reference model for use
in anomaly detection. The challenge is determining a level of abstraction that
enables anomalous execution paths to identify security vulnerabilities.

Security vulnerabilities occur at different levels of abstraction. Building ref-
erence models from observations of low-level interactions, such as operating sys-
tem calls [4,7,12] or Javascript [17] calls has been shown to be quite effective
in detecting specific exploits on the application, such as buffer overflow vul-
nerabilities or cross-site scripting. However, the anomalous execution path in
the micro-blog example cannot be detected at a level of abstraction comparable
with [4,7,12,17] as observing the sequence of calls to the database looks the
same as valid behavior. While one may think of this anomaly as occurring at
a higher level of abstraction, making observations based on HTTP requests is
not sufficient in this case (although we note that there are other anomalies that
can be characterized at this high-level). An analysis algorithm is proposed [15]
that discovers a level of event abstraction that provides good anomaly-detection
accuracy in transaction-like behaviors; it has proven quite effective in discrimi-
nating actions that remain static from the parameters that can change within a
transaction.

In our experiments we found that observing (Java) application behavior in
terms of its method calls and permission checks is the most effective in distin-
guishing the un-expected execution paths that lead to software vulnerabilities.
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However, in practice it is unrealistic to base anomaly detection on every under-
lying method call invoked as a consequence of executing an application. For
example, the few lines of the microblog application Java code in Fig. 1 gen-
erate tens of thousands of method calls. Therefore, the scope of observation
is restricted to methods that belong to the specific component(s) of interest.
Section 2 considers detection of vulnerabilities in the microblog application code
and, therefore, restricts the observed scope to just those methods that belong to
this application’s Java package. In the experiment described in Sect. 4 the focus
is on detecting vulnerabilities in the code that implements Apache Struts and
therefore the scope is the 2400 methods defined within Struts packages.

3.2 Generating Baseline Activity

A baseline of observed activity must be obtained in order to build the behav-
ior reference model for the software component. In order to be applicable to
an enterprise environment, the method of establishing baseline activity has to
be systematic, repeatable and aligned with application development/deployment
lifecycle. Most importantly, the baseline generation must provide sufficient cov-
erage for the normal/expected behavior of the application.

A common position is that a satisfactory baseline can be obtained as a record-
ing of “normal” activity obtained though monitoring application operation in its
target environment [6,7,17]. However this has practical limitations for enterprise
software; in particular, the system must run over a period of time in order to gen-
erate a baseline with sufficient coverage. As the software industry adopts faster
and more automated delivery approaches and software releases are as frequent
as on daily basis, building a (normal) baseline based on observation of applica-
tion in production is impractical. It would not only require the application to be
active for a significant length of time without anomaly detection, it also may be
impossible to obtain a sufficient baseline before it becomes obsolete.

We argue that is more appropriate to obtain the baseline and corresponding
behavioral model during the software testing phase. In [16] it is suggested that
unit tests might be used to generate the necessary system logs. Such a base-
line is useful if the required scope and level of abstraction is consistent with
the unit tests. Notwithstanding coverage, unit tests are typically constructed
for a specific component, in isolation, and may only be suitable for relatively
simple components or utility libraries An alternative approach is using func-
tional and/or integration tests to also generate the baseline. Enterprise software
is often subjected to extensive testing, usually highly automated and with con-
trolled coverage. Traces resulting from such software tests may provide a reliable
and systematic baseline model. However, as with unit tests, the functional test
coverage is usually built only to a certain satisfactory level but is rarely complete.
Additional coverage may be obtained using fuzz testing or application scanners
that automatically exercise application in order to perform non-functional types
of testing such as security or performance. The application scanners often use
functional test execution as its starting point and then extend the coverage by
exploring the application further in automated fashion.
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In our experiments we found that using an application scanner allows the
application system to be explored in a comprehensive, un-biased and repeat-
able manner and was the most effective for our task. The application scanner
explores the application extensively to discover its structure, parameters, cook-
ies and so forth, and also engages in a series of tests in an attempt to discover
security vulnerabilities. While the scanner interacts via high-level requests to the
application’s external interfaces, a system log/trace of the consequent low-level
actions is generated. If the scanner does not discover any security vulnerabilities
then it is this log that provides the baseline of expected activity.

3.3 Behavioral Reference Model

A number of approaches can be used to infer a reference model of system behav-
ior based on observed past activity, with varying complexity and precision. Sta-
tistical models [8] probe various system characteristics periodically to establish
a baseline of metrics. Such models, while useful for simple intrusion detection,
are not sufficiently rich to detect anomalous software execution. Sequence-based
techniques have been designed to infer acceptable behavior/policies for anomaly
detection [7,15] and process mining [1]. Strengths and weaknesses of existing
techniques have been studied [3,18] and expected properties of the reference
model discussed [6,14].

In many applications, activity may be contained in finite and separate units
of work, where a sequence of operations that have clear beginning and end and, in
general, follow some repeatable pattern is performed. Application behavior may
contain multiple such transaction-like work units. For example, observing the
micro-blogging application at a method call level, can be modeled as a collection
of different kinds of transaction behaviors, such as posting a message or reading a
message. Activity observations related to invocations of the same transaction are
similar and activity related to invocations of different transactions substantially
different. For this type of activity, rather than merging all transactions into
a single set of short-range correlations [7], the reference model should be able
to express units of activity separately from each other [15], thus at increased
precision and reduced chance for mimicry attack [19].

Correlations between sequences of operations and their target values can be
used to discover repeating patterns of behavior and [15] uses this to develop
an automated technique to partition a system trace into a collection of behav-
ioral norms. In our experiments we use these behavioral norms [15] to provide
a reference model for anomaly detection. A collection of behavioral norms is
generated, from baseline activity log of Java events, for a given scope and level
of abstraction, each corresponding to a sequence of method calls parameterized
by common target attributes. The approach is not unlike process mining [1] or
sequence call monitoring [6], however, behavioral norms can be used to provide
a more precise model for system-level behavior.
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3.4 Runtime Verification and Application Integration

While traditional logging may be useful for retrospective detection of anomalous
behavior, integrating runtime verification/anomaly detection with the applica-
tion provides the ability to interrupt application execution before the anomalous
operations are executed. Contemporary software platforms provide integration
techniques such as Aspects that may be suitable for easy and non-disruptive
enablement of execution monitoring and runtime verification.

The trapping and monitoring of application execution is implemented using
Runtime Verifier, a customized Java Security Manager. Its purpose is to intercept
permission check requests, such as the permission to open a file, connect to server
or execute a process. According to its mode of operation, this manager may log
the events, check that event execution is compliant with a norm-model provided,
and if required, prevent the execution of anomalous event sequences.

While the Java Security Manager is a natural integration point for monitoring
and controlling application execution, it is limited to those methods that have
explicit permission checks such as input/output operations or security related
activity such as access to cryptographic keys. An arbitrary off-the-shelf compo-
nent might not have been programmed with its own permissions. In this case
it is insufficient to rely on the Security Manager, and therefore, a Java Aspect
was developed that can intercept specific method calls that match programmer-
specified pattern. For example, in the case of the micro-blog application, the
aspect was configured to intercept method calls that are provided by classes of
the application. The aspect, on intercepting a method call, invokes the Security
Manager, which in turn forwards the call details as an event to the Runtime
Verifier runtime. This is depicted in Fig. 2.

Fig. 2. Java Runtime Verifier Fig. 3. Experiment setup

Using a security manager in the implementation of the Runtime Verifier
permits control over application execution. Permissions and identified method
calls are checked prior to execution, and thus can be validated for compliance
with the behavioral model at runtime, and prevented, if considered anomalous.

4 Experimental Evaluation

The previous section outlined our implementation of Java application-level
anomaly detection based on behavioral norms: checking that the actual execu-
tion of an application is compliant with a model of expected behavior that was
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generated during software development. Our thesis is that unknown security
vulnerabilities in software components can be identified as runtime anomalies
arising from unexpected execution paths.

Testing this thesis using a catalog of vulnerabilities hand-crafted for the
purpose, may provide insight, but their design can be contrived/cherry-picked
and is not an effective evaluation of whether the approach would work ‘in the
wild’. We therefore decided to test the thesis against an application that used
a well-established and popular enterprise-scale software component that has a
history of security vulnerabilities. In particular, the objective is to test whether
vulnerabilities reported against earlier versions of software can be identified as
anomalies, while those same anomalies are not reported against later versions of
the software in which the corresponding vulnerability has been remedied.

In the following we considered the vulnerability history of 26 versions of
Apache Struts over a five year period, starting with version 2.3.1, released in
December 2011, to version 2.3.24.1, released in September 2015.

4.1 Experiment Setup

Figure 3 outlines the key elements of the experimental setup. In order to eval-
uate Struts behavior in its typical environment, we developed a small Struts-
based web application based on the micro-blogging program described in Sect. 2.
The application makes conventional use of Struts, with a standard configuration
including default interceptor stack and properties.

The application system is built automatically and the experiment is carried
out separately for each version of Struts. Experiment characteristics, such as
execution times and sizes, were comparable for the different versions of Struts.
Experiments were orchestrated by Apache Maven and each iteration for a dif-
ferent Struts version comprised of two phases. In the first phase, a trace of the
application system’s execution is generated and from which the behavioral model
is built for the given version of Struts. In the second phase the effectiveness of
anomaly checking based on the generated behavioral model is verified.

4.2 Building Behavioral Models

A commercial application security scanner was run against the micro-blogging
web application. The scanner configuration was standard and not tailored in any
particular way for Struts. The same scanner configuration was repeatedly used
against each deployment of the application with a different version of Struts. In
each experiment, the scanner interacts with the micro-blogging web application,
black-box testing an extensive collection of known vulnerabilities and misconfig-
urations. The Runtime Verifier was deployed with the application and used to
build/check the behavior models in each experiment.

In our experiment, we consider the behavior of Struts, in terms of how it
is used by the application. Therefore, the Runtime Verifier (Sect. 3.3) was con-
figured to intercept all method calls within the Struts packages scope, that is
org.apache.struts2.*., corresponding to 460 distinct methods that are used
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in the context of the micro-blogging web application. A single scan experiment
resulted in 8963 HTTP requests to the micro-blogging web application URLs
with a range of inputs, taking 8 min to complete. In monitoring the execution of
the application during this scan, the Runtime Verifier generates a 237 megabyte
baseline trace containing 2.76 million Struts events (in scope), which is analyzed,
and a set of behavioral norms is generated within approximately a further 5 s,
running on a mid-range computer. The norms are sequences of method calls,
such as 〈..., UrlHelper.encode, UrlRenderer UrlProvider.getAnchor,

UrlRenderer UrlProvider.isPutInContext, ...〉, represented as tri-grams.
Figure 4 plots an example of the number of distinct norms (transactional

behavior patterns) generated, against the number of HTTP requests made by
the scanner to the application deployed with Struts version 2.3.1. From the start
of the scan, as the number of requests increase, the number of norms resulting
from the requests rapidly increase initially, and then appear to stabilize after
a period. This graph suggests that our scan size of 8963 requests is adequate,
after which no new norms are identified. Similar results were achieved for the
other versions of Struts. Having generated a behavioral norm model for a given
version of Struts and included it with the Runtime Verifier in the application
deployment, the second phase of the experiment involves testing the effectiveness
of using the model to detect vulnerabilities for that version of Struts.

Fig. 4. Growth in behavioral norms (transactional patterns).

4.3 Vulnerability Tests

At the time of writing and based on the Common Vulnerabilities and Exposures
(CVE) entries in the National Vulnerability Database, there are 19 vulnerabili-
ties known to the general public for the 26 versions of Struts under study. For
each vulnerability, the CVE advisory was studied alongside the vulnerable Struts
code and the remediated version of the code, and an attack vector exploiting the
vulnerability was developed. Of the 19 vulnerabilities, attacks for the 18 listed
in Table 1 were developed; we could not find enough information to reproduce
the vulnerability identified in CVE-2012-4386. For each vulnerability, we imple-
mented an automated test case which attempts to exploit the vulnerability and
verify that the exploitation was successful.
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For example, CVE-2013-2115 is a vulnerability that allows a remote attacker
to execute arbitrary OGNL code via a crafted request. It affects Struts JSP tags
for rendering URLs. Using the tag is convenient and relieves the developer from
having to manually map actions to URLs and passing parameters, thus further
separating application logic from low-level details. In order to render a URL for
a search action, including the current page’s parameters, the developer can use:
<s:url action="SearchAction" includeParams="all">. The tag is eval-
uated to /api/search?name=Frank. However, the code for processing the
tag suffers from a security vulnerability. An attacker may add a request
parameter by including OGNL code and that code will be evaluated when
processing the tag. For example, the official security advisory for this vul-
nerability (CVE-2013-2115) describes that an attacker may append x=$

{@java.lang.Runtime@getRuntime().exec(’cmd’)} to the page parameters.
The OGNL code, enclosed in ${} is evaluated and custom Java code is executed
by the application. However, the attack results in activity caused not only by
an unexpected Struts execution path, but also by the injected code involved in
creating a process and accessing a file binary. Rather than injecting malicious
code that results in significantly different behavior, each test case attempts to
inject benign code that simply sets a variable that can be subsequently checked
to determine the success of the attack. The objective of each test is to generate
the minimal behavior needed to explore the path of the attack, but it does not
engage in subsequent behavior that might be easily recognized as anomalous in
its own right. In this way the test case is intended to represent a worst-case
scenario for anomaly detection.

In many cases developing the vulnerability test cases required some effort.
A number of the vulnerabilities are not clearly described in their respective
advisories and sometimes the details are intentionally undisclosed. For exam-
ple, CVE-2013-4310 (discussed below in this paper) is described as allowing “to
bypass security constraints under certain conditions”. In order to prepare the
test case for this vulnerability it was necessary to understand its nature though
analysis of source changes of Struts.

Vulnerability Test Results. Table 1 contains1 the outcome of testing each of
the 18 reported vulnerabilities against each of the 26 versions of Struts. Each
table cell contains three outcomes. The first indicates whether it was reported
that the particular version of Struts was indeed affected (+), or not (−) by the
vulnerability. The second outcome specifies whether the execution of the attack
for that vulnerability was successful (+), or not (−). The third outcome, specifies
whether th Runtime Verifier detected anomalous behavior during execution of
the test case (+), or not (−). For example, the outcome +++ means that the
version had the reported vulnerability, that the attack test case successfully
executed and that anomalies were detected (true positive).

1 Presented as a table, keeping in mind Edward R. Tufte’s (2004) observation that
“small non-comparative highly labeled data sets usually belong in tables”.
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Table 1. Attack Outcomes on different versions of Struts.

CVE ID 2.3.1 2.3.4 2.3.14 2.3.14.1 2.3.14.2 2.3.15 2.3.15.1 2.3.16 2.3.16.1 2.3.16.2 2.3.16.3 2.3.20 2.3.24 2.3.24.1

2015-5209 +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ −−−
2015-1831 −−− −−− −−− −−− −−− −−− −−− −−− −−− −−− −−− +++ −−− −−−
2014-7809 ++− ++− ++− ++− ++− ++− ++− ++− ++− ++− ++− −−− −−− −−−
2014-0116 +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ −−+ −−+ −−+ −−+

2014-0113 +++ +++ +++ +++ +++ +++ +++ +++ +++ −−+ −−+ −−+ −−+ −−+

2014-0112 +++ +++ +++ +++ +++ +++ +++ +++ +++ −−− −−− −−− −−− −−−
2014-0094 +++ +++ +++ +++ +++ +++ +++ +++ −−− −−− −−− −−− −−− −−−
2013-4316 +++ +++ +++ +++ +++ +++ +++ −−− −−− −−− −−− −−− −−− −−−
2013-4310 ++− ++− ++− ++− ++− ++− ++− −−− −−− −−− −−− −−− −−− −−−
2013-2251 +++ +++ +++ +++ +++ +++ −−− −−− −−− −−− −−− −−− −−− −−−
2013-2248 +++ +++ +++ +++ +++ +++ −−− −−− −−− −−− −−− −−− −−− −−−
2013-2135 +++ +++ +++ +++ +++ −−− −−− −−− −−− −−− −−− −−− −−− −−−
2013-2134 +++ +++ +++ +++ +++ −−− −−− −−− −−− −−− −−− −−− −−− −−−
2013-2115 +++ +++ +++ +++ −−− −−− −−− −−− −−− −−− −−− −−− −−− −−−
2013-1966 +++ +++ +++ −++ −−− −−− −−− −−− −−− −−− −−− −−− −−− −−−
2013-1965 +++ +++ +++ −++ −−− −−− −−− −−− −−− −−− −−− −−− −−− −−−
2012-4387 +++ +++ −−− −−− −−− −−− −−− −−− −−− −−− −−− −−− −−− −−−
2012-0393 +++ −−− −−− −−− −−− −−− −−− −−− −−− −−− −−− −−− −−− −−−
vulnerable attack successful anomalies not vulnerable attack failed no anomalies

Note that some outcomes were identical for different versions of Struts, and in the interest of saving space.

Considering CVE-2013-2115, the URL tag vulnerability described above, we
see from Table 1, that the attack test-case successfully exploited this vulnera-
bility, and was detected as an anomaly, for all versions 2.3.1 – 2.3.14.1 publicly
announced to be vulnerable (+++). A closer examination of the execution trace
fragment, generated from the attack test case,
DefaultUrlHelper DefaultUrlHelper.translateAndEncode
DefaultUrlHelper DefaultUrlHelper.translateVariable
OgnlInvoke invoke
ServletUrlRenderer ComponentUrlProvider.getAnchor
ServletUrlRenderer ComponentUrlProvider.isPutInContext

identifies the anomaly as OGNL code used in rendering the URL. Examin-
ing execution traces may help identify that part of the code that is responsi-
ble for the vulnerability. Indeed, a study of subsequent versions of the Struts
source code that repair the vulnerability reveals that the issue was attributed to
translateVariable that invoked OGNL processing. In the repaired code, the
method was removed as unnecessary. Carrying out the same test-case on sub-
sequent non-vulnerable versions results in an unsuccessful attack and no anom-
alous behavior (−−−), which is as expected. The corresponding trace fragment
for those versions shows that no OGNL code execution—the root cause of the
vulnerability in previous versions—was observed in the context of URL render-
ing:
DefaultUrlHelper DefaultUrlHelper.encode
ServletUrlRenderer ComponentUrlProvider.getAnchor
ServletUrlRenderer ComponentUrlProvider.isPutInContext

Some tests executed with unanticipated outcomes. A surprising result −++,
indicates a successful attack, with the anomaly detected, for Struts version
2.3.14.1 for which no vulnerability was reported in CVE-2013-1965 and CVE-
2013-1966. A closer examination of these two vulnerabilities confirms that, con-
trary to publicly available information, version 2.3.14.1 is indeed vulnerable.
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False Negatives. In most cases, Table 1 reports that the anomaly detection
identified successful attacks on vulnerable versions, while unsuccessful attacks
on non-vulnerable versions were not identified as anomalous. The table, however,
reports two vulnerabilities with a false negative result (++−), that is, a successful
attack on a vulnerable version for which anomalous behavior was not observed.

One false negative arises from CVE-2014-7809: a CSRF vulnerability caused
by a predictable token generated using a weak generator. It allows an attacker,
knowing a previous value of a token, to predict the value of the next token and
to use it to perform an attack. Although the attack is caused by a simple coding
error, we argue that it does not arise from an unexpected path of code execution.
A CSRF attack as a request using a token generated by the attacker results in
exactly the same behavior as a legitimate request made by the user. As such, it
can not be detected as an anomaly in the execution path.

Another false negative arises from CVE-2013-4310, which reports an ability
to bypass security constraints. Our investigation discovered that this vulnera-
bility is only applicable to applications that have a somewhat unusual security
mechanism. As mentioned in Sect. 2, actions in Struts are the basic unit of an
application’s business logic and are normally mapped to specific URL paths (such
as /api/post). Struts offers an alternative addressing through URL parame-
ters with action prefix, such as /api/other?action:post. The vulnerability
describes a scenario when a security control, implemented outside struts, based
on specific URL pattern is bypassed using the alternative addressing. It could be
argued such scenario does not really describe a Struts vulnerability, but rather a
faulty security control that documented feature of Struts allows to facilitate. In
our experiment, the attack exploiting CVE-2013-4310 was undetected because
the application we implemented included use of action: prefixes. Addressing
actions though parameters was considered a normal behavior of the application
and, when executed during the attack, did not cause anomalous behavior.

False Positives. In two instances, the test cases result in false positives, that
is, anomalous behavior is detected for an unsuccessful attempt to exploit non-
vulnerable version (−−+). This outcome is observed for CVE-2014-0114 and
CVE-2014-0116 in versions where these vulnerabilities are repaired. They are
variants of the problem discussed in Sect. 2 where the internal state of an appli-
cation can be modified through a chain of getters and setters, and in this case,
though crafted cookies. A study of the attack test-cases reveals that the anom-
alous behavior is related to the special treatment that Struts gives to particular
cookie names. The original vulnerabilities were repaired by adding a blacklist
of disallowed cookie names (such as starting with class). Thus, processing a
normal cookie results in a behavior that is different to processing a cookie with
blacklisted name. However, in its standard configuration, the application scanner
does not generate a request involving a Struts black-listed cookie and, therefore,
the generated model of expected behavior does not include an execution path
corresponding to the security processing of a blacklisted cookie. Thus, the test-
case, while not an attack, is flagged as an anomaly.
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Overall, this part of the experiment indicates that all vulnerabilities that
could be attributed to unintended code execution path in struts were success-
fully detected. It also shows that, with one exception of black-listed cookies,
in non-vulnerable versions, where malicious request is properly handled by the
application no anomalous behavior is reported.

4.4 Functional Tests

On generating an expected model of behavior (for a given version of Struts) we
check that its norms are sufficiently complete by engaging a further standard
application scan and confirm that no anomalies are identified. This confirms
that ‘normal’ expected behavior is properly recognized by the Runtime Verifier.
However, for the purposes of the evaluation, we are interested in confirming that
the anomaly detection can also discriminate between attacking behavior that
exploits a vulnerability versus other behavior that executes code in the region
of the vulnerability, but does not actually exploit the vulnerability. To this end,
a suite of functional tests were developed to check this ability to discriminate.

For example, the URL tag vulnerability CVE-2013-2115 described in Sect. 4.3
involves passing a crafted value through a URL parameter. The test calls an
application using an additional parameter but without OGNL code. Some vul-
nerabilities require more advanced test cases. For example, the attack test-case
for CVE-2013-2251 involves passing a crafted string through a Struts-specific
request parameter, allowing indirect action addressing. We developed two further
functional test-cases that check this particular functionality. First uses the indi-
rect addressing, but with a correct action name, and checks that the requested
action was called. Second has an incorrect action but checks whether the appli-
cation replied with expected/corresponding error. The purpose of these tests is
to check whether the anomaly detection actually reacts to a genuine vulnerable
path of execution or whether the path from related valid functionality is flagged
as an anomaly. By making sure that the functionality is exercised we can distin-
guish between these two cases, exercising particular functionality normally (even
if in error scenario) and during the attack.

Overall, we developed 19 test cases that explore non-attacking behavior in
the region of the 18 vulnerabilities. The outcome-score of each test is similar to
the vulnerability tests and represented using two values. The first outcome value
reports whether the test was successful, that is whether the tested functional-
ity worked correctly. Note, that because we have also tested an application’s
response to an incorrect request, a successful outcome may mean that the appli-
cation correctly responded to an incorrect value, such presentation of an error
page. The second outcome value reports whether an anomaly was detected dur-
ing execution of the test. Most of the test outcomes are indicating a successful
test with no anomalies. However, in two cases the outcome indicates test fail-
ure with no anomalies is observed. These are the test cases for indirect action
addressing using action: prefix. The test fails for all versions from 2.3.15.2. This
is because, as a response to CVE-2013-4310, this functionality was disabled.
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4.5 Experiment Insights

The application scanner may trigger an unexpected behavior, which if unat-
tended to, becomes part of the model used in runtime verification. However,
this phenomenon was not observed during our experiments. Furthermore, we
assume that any vulnerability identified during scanning will be remediated by
modifying the source code and the scan repeated.

Anomaly detection/prevention adds a performance overhead that should be
considered. In order to integrate anomaly detection with the application we used
a Java Security Manager and AspectJ. These tools are routinely used for imple-
menting security mechanisms and their performance impact has been investi-
gated [9,10]. During the Struts experiment, the average time to process an HTTP
request from the scanner to the application took 4950µs without instrumenta-
tion. With the Anomaly Manger enabled for runtime verification, the average
time increased by 3.85 % to 5140µs. However, the increase depends on how much
of application activity is covered by runtime verification: in the experiment this
was limited to the Struts library.

Part of our experimental setup involved inspecting the codebases of differ-
ent versions of Struts in order to identify the vulnerable code and implement
the attack tests. In carrying out this detailed code-level review we observed a
number of programming phenomena across the different versions. In particular,
the phenomena that some generic functionality of Struts allows for a specific
execution scenario that compromised security. The otherwise harmless features,
such as addressing actions, setting their parameters and evaluating expressions,
when used in a particular way allowed unintended operations. For example, five
vulnerabilities exploit the feature that allows setting action properties through
HTTP parameters and accessing sensitive objects such as session or class loader.

Overall, we observed that the majority of the programming issues relate to
rather simple programming errors. In particular, while a general functionality was
implemented, a specific, unexpected execution pattern was not considered nor
handled by the code. In some cases, such as accessing the class loader via parame-
ter (CVE-2014-0094), we conjecture that the developers were surely aware that
accessing properties though parameters can be a security risk. Some specific para-
meters, such as session object, were black listed but others that are less obvious,
such as class, were not. In other cases, when a vulnerability was identified in one
part of the framework it was not immediately correlated to another part that was
also vulnerable [2]. For example, the fix for CVE-2014-0094 addressed class loader
manipulation though request parameters but did not provide the fix for the same
attack using cookies. Our analysis of Struts vulnerabilities would seem to confirm
other studies [13] that indicate that developers tend to repeat security errors even
when they are aware of particular vulnerability.

5 Conclusion

We argue that many of the security vulnerabilities that are caused by program-
ing error can lead to unexpected execution paths that can be detected using
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anomaly detection techniques. However, applying such techniques to contem-
porary, enterprise software is not trivial and poses a set of challenges such as
selecting the scope and abstraction level of software monitoring, establishing a
base line behavior and choosing suitable behavioral model.

We propose a methodology for putting anomaly detection into use for con-
temporary software components and apply it to Apache Struts as a part of large
scale application. Our experiments demonstrate that it is possible to learn a suf-
ficiently rich model of the application’s expected use of Struts such that it can be
used to detect anomalies in its subsequent use of Struts. Indeed, results indicate
that all 16 execution path-related vulnerabilities identified over 26 versions of
Struts over 5 years are effectively identified as anomalies. While the experiments
were comprehensive, they are limited to Struts vulnerabilities. Nevertheless, we
believe the results point to the potential of using anomaly detection techniques
in contemporary software and that further research on this topic is worthwhile.
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