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Preface

In September 2014 we ran the sixth Summer School on Biomechanics that we have
organized. This one, entitled “Biomechanics: Trends in Modeling and Simulation”
was held at Graz University of Technology, Austria, and attended by about 90
Ph.D. students, postdoctoral researchers and university professors from more than
20 countries. We thought that it would be valuable to make the course material
more generally available by publishing the lecture notes so as to provide an
up-to-date account of some of the topics in the area. As things developed the
material in this book in some cases has turned out to be somewhat different from the
material that was presented in the Summer School, i.e., it has been updated sig-
nificantly to account for subsequent developments. In addition, we have included a
chapter on mixture theory which was not part of the Summer School. The subject of
biomechanics is highly multidisciplinary and the content of the present volume
ranges from multiscale continuum mechanics to computational modeling and
applications to areas of clinical relevance such as myocardial infarction and vas-
cular stenting.

The combination of modeling and computational methods provides the possi-
bility to simulate multiscale coupled processes as a means to predict (patho)phys-
iological functional interactions. This approach can, for example, provide
information of academic, industrial, and clinical relevance that would otherwise not
be possible. In the last few years modeling and simulation have significantly
advanced our knowledge of the development of pathologies such as atherosclerosis,
aneurysms, aortic dissections, and wound healing, and their prognosis. Simulations
of clinical applications based on coupled models and powerful computational
methods may lead to improved medical device implantations, diagnostics and
treatment of tissue disorders, surgical planning and intervention.

This volume comprises seven state-of-the-art chapters on topics of modeling and
simulation from the cellular to the tissue level. Chapter “Mixture Theory for
Modeling Biological Tissues: Illustrations from Articular Cartilage” provides an
introduction to mixture theory, and its application to articular cartilage with an
emphasis on studies that provide validations of theoretical predictions. Particular
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attention is given to the theory governing biphasic mixtures consisting of a
porous-permeable deformable solid matrix and an interstitial fluid. This chapter also
contains a brief overview of the application of mixture theory to solute transport,
reactive kinetics, and growth and remodeling. Chapter “A Bio-chemo-mechanical
Model for Cell Contractility, Adhesion, Signaling, and Stress-Fiber Remodeling”
focuses on a multi-field approach to modeling the mechanics of cell contractility,
adhesion, signaling and stress-fiber remodeling, specifically involving biological,
chemical, and mechanical interactions. Particular attention is given to the influence
of different flat or patterned substrates or arrays of compliant posts on the con-
tractile behavior of a cell, and the behavior is simulated using a finite element
approach.

Chapter “Nonlinear Continuum Mechanics and Modeling the Elasticity of Soft
Biological Tissues with a Focus on Artery Walls” provides a summary of the
nonlinear theory of continuum mechanics required for the modeling of the elastic
properties of soft biological tissues, with particular reference to the fiber structure of
such tissues and the influence of residual stresses. The theory is applied to a
prototype problem of the extension and inflation of a fiber-reinforced thick-walled
cylindrical tube taking account of fiber dispersion and residual stresses. Chapter
“Microstructure and Mechanics of Human Aortas in Health and Disease” sum-
marizes recent developments aimed at characterizing the microstructure and
mechanics of human aortic tissues and also of tissues subject to diseases such as
aneurysms and aortic dissection. In particular, a general fiber dispersion model is
reviewed and used to capture the differences that have been identified in the
microstructure and mechanics of healthy and aneurysmatic aortas. Modeling and
simulation of an aortic dissection is provided using the novel phase-field approach.
Finally, an aortic clamping simulation is provided for illustration including inelastic
phenomena such as stress softening and permanent deformation. Chapter “Arterial
and Atherosclerotic Plaque Biomechanics with Application to Stent Angioplasty
Modeling” focuses on the biomechanics of atherosclerotic plaques based on the
constitutive theory of tissue anisotropy, remodeling and constitutive damage
modeling, including material characterization based on experimental data.
Application of the theory is illustrated in the computational simulation of the
deployment of a stent during an angioplasty procedure. The main challenges for the
future in characterizing the complex atherosclerotic tissue and its modeling are
identified.

Chapter “Biomechanics of Myocardial Ischemia and Infarction” is concerned
with the biomechanics of heart disease, in particular myocardial ischemia and
infarction. The structure and the mechanical properties of a normal heart are
reviewed followed by a discussion of the structure and the mechanical properties of
a scar produced by myocardial infarction and its healing post infarction. Analytical
and computational models that provide insight into the functional consequences of
myocardial infarction are discussed along with potential therapies. Finally, there is
discussion of emerging models of wound healing and growth and remodeling in the
myocardium. The final chapter discusses a network approach to modeling the fiber
structure in tissues, with particular reference to translating the microscopic behavior
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to a macroscopic finite element scheme for networks of macromolecular fibers such
as collagen. This chapter provides a basic theoretical framework for studying
networks with reference to the computational demands in scaling up from the
microscopic to the macroscopic level.

We hope that this volume will be useful not only for those who work in the areas
of biomechanics and mechanobiology highlighted above but also for those in other
areas such as biomedical engineering, biophysics, mechanical and civil engineering,
applied mathematics, physiology, and materials science, who might wish to con-
tribute to this developing subject and tackle some of the challenges it faces.
Multiscale approaches and multidisciplinary studies bring together scientists with
expertise in novel multiscale modeling, computational analysis, and sophisticated
experimentation to determine the influence of the interactions of the structures,
biology, chemistry, and mechanics at the different scales. Continuing significant
advances in experimental techniques, including imaging, computational methods
and computer power and multiscale modeling make this a dynamic and rapidly
developing subject which offers many challenges for the future. The contents of this
book provide a platform for further developments in this exciting subject.

We would like to express our grateful thanks to the lecturers of the Summer
School and the contributors to this book and to Ms. Bettina Strametz for her help
with the detailed organization of the Summer School. Finally, we would like to
thank Silvia Schilgerius, Senior Publishing Editor of Applied Sciences at Springer,
for her encouragement to publish this volume.

Graz, Austria/Trondheim, Norway Gerhard A. Holzapfel
Glasgow, UK Ray W. Ogden
May 2016
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Mixture Theory for Modeling Biological
Tissues: Illustrations from Articular
Cartilage

Gerard A. Ateshian

Abstract Mixture theory has been used for modeling hydrated biological tissues
for several decades. This chapter reviews the basic foundation of mixture theory
as applied to biphasic mixtures consisting of a porous-permeable deformable solid
matrix and an interstitial fluid. Canonical problems of permeation, confined com-
pression, and unconfined compression are analyzed from theory and compared to
prior experimental measurements on articular cartilage, with an emphasis on studies
that provide validations of theoretical predictions. A brief overview is also provided
of the application of mixture theory to solute transport, reactive kinetics, and growth
and remodeling.

1 Mixture Theory

Continuum modeling of biological tissues poses a number of challenges related to the
structure and composition of these tissues, and their temporal evolution as a result of
biological and biochemical processes. Most biological tissues are anisotropic and all
soft tissues undergo large deformations. Similarly, most biological tissues are porous
and permeable, such that interstitial fluid pressurization and flow may contribute sig-
nificantly to their mechanics. In many cases, mass transport of soluble species within
the interstitial fluid plays an important role in the tissue’s metabolic response. Electri-
cally neutral and charged solutes, as well as charged molecular species bound to the
solid matrix of biological tissues, may also contribute to osmotic and electrical mech-
anisms, including pressures, potentials, flows, and currents. Growth mechanisms,
remodeling, and degradation all involve chemical reactions that alter composition,
ultrastructure and properties of these tissues.

Mixture theory provides a continuum framework for modeling all these mecha-
nisms and phenomena within a self-consistent formulation. For example, the solid
matrix of a biological tissue may be modeled as a heterogeneous mixture of solid
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2 G.A. Ateshian

constituents, such as collagen, elastin and charged proteoglycans. Porous tissues may
be modeled as a mixture of a fluid and a solid, where the fluid itself may consist of
a mixture of a solvent and multiple solutes. Chemical reactions among some or all
of these constituents may be incorporated to account for growth, remodeling and
degradation.

Mixture theory was initially formulated by Truesdell and Toupin (1960) and fur-
ther extended by a number of theoreticians in the 1960 and 70s (Eringen and Ingram
1965; Bowen 1968, 1976, 1980; Bedford and Drumheller 1983). The theoretical
application of mixture theory to biological tissues started in the mid-1970s (Kenyon
1976) and experimental investigations of biological tissues using this theoretical
framework began in earnest in the 1980s, most notably in the studies of articular
cartilage by Mow, Lai and co-workers (Mow et al. 1980; Mow and Lai 1980; Lai
et al. 1981; Armstrong et al. 1984; Mow et al. 1984, 1989; Mak et al. 1987).

One of the principal challenges in the adoption of mixture theory as a modeling
framework for biological tissues has been the apparent complexity of its general for-
mulation, especially when alternative traditional modeling frameworks already exist
to describe various phenomena under specialized conditions. As noted by Cowin
(2011), most papers that use mixture theory have an unusually large number of equa-
tions. Indeed, mixture theory has a steep learning curve and a prospective practitioner
must balance the burden of its adoption against its potential benefits.

In this chapter, I hope to present the case for the benefits of using mixture
theory, by taking the reader through a narrative of the application and extension
of this theory to the study of articular cartilage. This chapter neither provides an
exhaustive review of mixture theory, nor a complete review of the cartilage mechan-
ics literature. My primary aim is to illustrate how mixture theory encompasses and
combines classical continuum mechanics frameworks and how it may extend those
frameworks to accommodate challenges specific to biological tissues, and to demon-
strate experimental validations of its theoretical predictions.

2 Mass and Momentum Balance

Mixture theory is notoriously intimidating because it requires the formulation of
axioms of mass, momentum, and energy balance for each of the mixture constituents,
which may then be summed together to produce equivalent formulations for the mix-
ture as a whole. Since mixture constituents may exchange mass, momentum, and
energy with each other, the constituent equations include interaction terms unfamil-
iar to practitioners of classical continuum theories such as solid or fluid mechanics. In
a strict sense, the classical theories represent formulations for pure substances (e.g.,
a fluid consisting of only one substance). Truesdell conjectured that the mixture as
a whole should behave as a pure substance; this principle (which may be consid-
ered an axiom of mixture theory) places a constraint on the mass, momentum, and
energy exchanges between constituents. Some of these constraints may be accepted
intuitively while others may seem unfamiliar in the context of classical continuum
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mechanics. Importantly, as reviewed by Bedford and Drumheller (1983), the axiom
of entropy inequality may only be applied to the mixture as a whole, or else it would
overly constrain the formulation of constitutive relations.

As with all continuum theories of heterogeneous substances, mixture theory
assumes that all constituents coexist at every point in the continuum. In practice,
this mathematical assumption implies that all constituents coexist in a volume suffi-
ciently small to encompass the relevant microstructure; each point in the continuum
thus represents the center of mass of that region.

Each constituent in an unconstrained mixture may move independently of other
constituents. The motion of constituent α in the mixture is given by χα (Xα, t), where
t is time and Xα is the position of a material point of constituent α in the reference
configuration of that constituent. In the current configuration at time t , an elemental
region whose center of mass is x = χα (Xα, t) contains material from all constituents
α, each of which may have originated from a different location Xα in its reference
configuration.

It is also possible to consider constrained mixtures where different constituents
move together in the current configuration. This type of mixture is most commonly
used to model solid constituents (Humphrey and Rajagopal 2002). For example,
in biological soft tissues such as vascular wall or elastic cartilage, the extracellular
matrix may consist of a constrained mixture of collagen and elastin. Constrained mix-
tures may also be used to model discrete or continuous fiber distributions, where fiber
bundles initially oriented in different directions are treated as distinct constituents α

of a constrained solid mixture.
The equations of mass and momentum balance are sufficient to address a broad

range of analyses in biological tissue mechanics. These general equations are pre-
sented below. The energy balance equations are not reviewed in this chapter, as they
are are only needed for more specialized analyses, such as those arising in bioheat
transfer. The entropy inequality is needed to place constraints on constitutive rela-
tions for functions of state, such as the stress, mass supply, and dissipative momentum
exchange for each mixture constituent. Since the formulation of these constraints is
rather involved, only salient relations are summarized here, with proper references
to the prior literature provided for more interested readers.

2.1 Mass Balance

The axiom of mass balance for each constituent α of a mixture is given by

Dαρα

Dt
+ ραdivvα = ρ̂α, (1)

where ρα is the apparent density of constituent α, vα is the velocity of that con-
stituent, and ρ̂α is the apparent mass density supply to constituent α from all other
constituents. The apparent density ρα owes its name to the fact that it represents the



4 G.A. Ateshian

mass of constituent α per mixture volume (both taken in the current configuration);
similarly, ρ̂α represents the mass supply to constituent α per mixture volume. Sharing
the mixture volume as a common denominator makes it possible to sum these parame-
ters over multiple constituents. The operator Dα (•) /Dt = ∂ (•) /∂t + grad (•) · vα

represents the material time derivative in the spatial frame, following constituent α.
The mass balance for the mixture has the familiar form of the mass balance relation

for a pure substance, i.e.,
Dρ

Dt
+ ρdivv = 0, (2)

where ρ is the mixture density and v is the mixture velocity. The operator D (•) /Dt
is the familiar material time derivative in the spatial frame, following the mixture.
This equation is obtained by taking the summation of Eq. (1) over all α, defining the
relationships

ρ =
∑

α

ρα (3)

for the apparent densities, and

v = 1

ρ

∑

α

ραvα (4)

for the velocities, and producing the constraint

∑

α

ρ̂α = 0, (5)

in order to satisfy the requirement that the mixture as a whole behaves as a pure
substance. The mixture density ρ represents the mass of all constituents per mixture
volume. The mixture velocity v represents the velocity of the center of mass of the
elemental region at x. Equation (5) simply states that any mass gained by some
constituent α must be due to mass lost from other constituents in the mixture. It is
an intuitively self-evident requirement in a Newtonian mechanics framework.

2.2 Momentum Balance

The axiom of linear momentum balance for each constituent α is given by

ραaα = divTα + ραbα + p̂α, (6)

where aα = Dαvα/Dt is the acceleration of constituent α, bα represents external
body forces per mixture volume acting on constituent α, Tα is the apparent stress
in constituent α, and p̂α is the momentum supply to constituent α due to internal
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momentum exchanges with all other constituents in the mixture. The apparent stress
owes its name to the fact that the associated traction vector tα on a plane with unit
normal n, tα = Tα · n, represents the force vector acting on constituent α per mixture
area. Sharing the mixture area as a common denominator makes it possible to sum
traction vectors and stresses over multiple constituents. The momentum supply p̂α is
an internal body force that accounts for momentum exchanges among constituents.
These momentum exchanges may conserve or dissipate free energy, depending on
the presence of frictional interactions.

The momentum balance for the mixture has the familiar form

ρa = divT + ρb, (7)

where a = Dv/Dt is the mixture acceleration, and b is the mixture body force. This
form can be obtained by summing Eq. (6) over all constituents, so that the mixture
stress T is given by

T =
∑

α

Tα − ραuα ⊗ uα, (8)

where uα = vα − v is called the diffusion velocity of constituent α. The resulting
constraint on the momentum supplies becomes

∑

α

p̂α + ρ̂αuα = 0. (9)

In contrast to the mass balance equation, which produces intuitively self-evident
relations between the whole mixture and its individual constituents, the momentum
balance introduces less evident relations, such as that for the mixture stress T in
Eq. (8) or the constraint of Eq. (9). The unfamiliar term −ραuα ⊗ uα appearing in
Eq. (8) arises simply because ρa �=∑α ραaα in a heterogeneous mixture of uncon-
strained constituents, neither mathematically nor physically. In the special case of
a constrained mixture, where vα = v, ∀α, this term reduces to zero and the mix-
ture stress equals the sum of constituent stresses, which is intuitively more evident;
however, the general case accounts for the fact that mixture constituents may have a
nonzero diffusion velocity that contributes a rate of change of linear momentum rela-
tive to the center of mass. Similarly, in the absence of mass exchanges (ρ̂α = 0, ∀α),
Eq. (9) indicates that internal momentum exchanges should cancel out, a familiar
concept consistent with Newton’s third law of action and reaction. However, in the
presence of mass exchanges, such as those resulting from chemical reactions between
reactants and products, it is necessary to also account for the momentum loss from
decreasing reactant mass and momentum gain from increasing product mass.

The axiom of angular momentum balance reduces to Tα − (Tα)T = M̂α , where
M̂α is the skew-symmetric tensor whose dual vector represents the internal angular
momentum supply to constituent α due to interactions with all other mixture con-
stituents. Assuming that the mixture as a whole models a nonpolar material, the con-
straint on this angular momentum exchange reduces to

∑
α M̂

α = 0. In applications
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of mixture theory to biological tissues, it is most common to also assume that
M̂α = 0, ∀α, as there is no compelling physical argument for assuming that individ-
ual constituents behave as polar materials.

3 Biphasic Theory

A biphasic material is a binary mixture of a solid and a fluid constituent (α = s
and α = f). Biphasic theory was formulated for the purpose of modeling biological
tissues as porous-permeable deformable media. In this theory each constituent is
assumed to be intrinsically incompressible, there are no reactions between the solid
and fluid (ρ̂α = 0 for α = s, f), and isothermal conditions preclude heat flux. Bipha-
sic theory is most appropriate for modeling biological tissues whose interstitial fluid
is mobile, such as cartilage (Mansour and Mow 1976; Mow and Mansour 1977),
intervertebral disc (Gu et al. 1999), bone (Gailani et al. 2009), cornea (Bryant and
McDonnell 1998), or vascular tissue (Harrison and Massaro 1976; Vargas et al. 1979).
The mobility of the interstitial fluid may be tested using permeation experiments,
which drive fluid through the tissue under the action of a pressure gradient; or using
osmotic loading experiments, which drive fluid into or out of the tissue using osmo-
larity (chemical) gradients (Bayliss et al. 1986; Schneiderman et al. 1986; Bryant
and McDonnell 1998; Azeloglu et al. 2008).

Since water is nearly incompressible under physiological stress magnitudes, it
is reasonable to idealize the fluid constituent of a biphasic tissue as intrinsically
incompressible. The assumption that the solid matrix may be idealized in this manner
must be verified experimentally, for example by measuring its volumetric change
under the action of a hydrostatic fluid pressure, as reported for articular cartilage for
pressures up to 12 MPa (Bachrach et al. 1998).

By definition, when a constituent is intrinsically incompressible, its true density
ρα

T (mass of constituent α per volume of that constituent) is invariant in space and
time. The apparent and true densities are related by the volume fraction ϕα of the
constituent (volume of constituent α per mixture volume) according to ρα = ϕαρα

T . In
a saturated mixture (a mixture with no voids), volume fractions satisfy the saturation
condition ∑

α

ϕα = 1. (10)

For a biphasic mixture (α = s, f), the relation for ρα may be substituted into the mass
balance of Eq. (1) (with ρ̂α = 0) and the resulting relations for the solid and fluid
may be summed, then simplified using Eq. (10) to produce

div

(
∑

α

ϕαvα

)
= 0. (11)
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This relation may be viewed as a reformulation of the mass balance for the mixture
in the special case when all constituents are intrinsically incompressible.

In mixtures that contain a solid constituent it is natural to define the boundaries of
the mixture on the solid. Therefore, the summation appearing inside the divergence
operator in Eq. (11) may be rewritten as ϕsvs + ϕfvf = vs + w, where

w = ϕf
(
vf − vs

)
(12)

is the volumetric flux of fluid relative to the solid (volume of fluid passing through
a cross-section of the mixture perpendicular to the flow, per mixture area, and per
time).

3.1 Constitutive Assumptions

The functions of state in a biphasic material are the stresses Tα , the internal momen-
tum supplies p̂α , and the mixture free-energy density Ψr (free energy of solid and
fluid in the current configuration, per volume of the mixture in the reference con-
figuration). By restricting our choice of state variables, we decide which material
characteristics we would like to model. In biphasic theory we would like to model
the solid constituent as an elastic material, therefore, we include the solid defor-
mation gradient F as a state variable. We also would like to account for frictional
interactions resulting from the relative flow between fluid and solid, and therefore,
we also include the diffusion velocities uα in our list of state variables. However, we
are not interested in the frictional interactions within the fluid (viscosity) because
these can be shown to be negligible in comparison to frictional interactions between
constituents; therefore, we do not select the rate of deformation of the fluid as a state
variable. Similarly, we are not interested in modeling reactions between the fluid and
solid, therefore, there is no need to include measures of solid and fluid mass content
(such as ρα) in the list of state variables.

This list of state variables is substituted into the axiom of entropy inequality by
expanding the material time derivative of the free energy using the chain rule of
differentiation. The assumption of intrinsic incompressibility of the constituents is
introduced using the method of Lagrange multipliers (Lai et al. 1991), by adding the
product of Eq. (11) with the multiplier p. The resulting expression for the entropy
inequality places the following constraints on the constitutive behavior of the mixture
(Ateshian and Ricken 2010), i.e.,

Ψr = Ψr (F) , (13)

Ts = (−ϕs p − Ψ f
)
I + 1

J

∂Ψr

∂F
· FT, (14)

Tf = (−ϕf p + Ψ f
)
I, (15)
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p̂s = p gradϕs + gradΨ f + p̂s
d, (16)

p̂f = p gradϕf − gradΨ f + p̂f
d, (17)

∑

α

p̂α
d · uα ≤ 0, (18)

where Ψ f is the free-energy density in the fluid (free energy per volume in the current
configuration) and p̂α

d

(
F,us,uf

)
is the dissipative part of the internal momentum

supply to constituent α. The expression of Eq. (18) is called the dissipation inequality
(Coleman and Noll 1963), as it represents the dissipation of free energy due to
frictional interactions between the mixture constituents.

Equation (13) shows that the mixture free energy density only depends on the
solid deformation. Equations (14) and (15) provide the general relations between
constituent stresses and free-energy densities, which require functional expressions
for both Ψr and Ψ f . Conveniently, the dependence on Ψ f goes away when we sum
the solid and fluid stresses and make use of the saturation condition in Eq. (10),

TI ≡
∑

α

Tα = −pI + 1

J

∂Ψr

∂F
· FT, (19)

where TI is called the inner part of the mixture stress. Thus, only a formulation
for Ψr is needed to evaluate the constitutive relation for the mixture stress. This
expression also shows that the scalar multiplier p in the isotropic stress contribution,
−pI, represents the pressure in the interstitial fluid, since the remaining term only
depends on the solid deformation. The convenience of using TI instead of Ts implies
that the mixture linear momentum balance in Eq. (7) is a more convenient alternative
to the solid linear momentum balance in Eq. (6). Substituting the relations of Eqs. (15)
and (17) into the fluid linear momentum balance in Eq. (6) produces

ρfaf = −ϕf gradp + ρfbf + p̂f
d, (20)

which conveniently does not include Ψ f either. Therefore, this reduced form of the
fluid linear momentum balance may be used, together with the mixture momentum
balance, to solve problems in the biphasic theory. Alternatively, we may assume
constitutively that Ψ f = 0 on the basis that the free energy in the fluid is already
represented by the pressure p, as a proxy to free energy resulting from dilatation. In
that case, we recover the earlier biphasic theory formulation of Mow and co-workers
(Mow et al. 1980; Holmes 1985).

Similarly, summing Eqs. (16) and (17) and making use of Eq. (9) in the absence
of mass exchanges, along with Eq. (10), produces

∑

α

p̂α =
∑

α

p̂α
d = 0. (21)
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This relation shows that the dissipative part of internal momentum supplies satisfy
the same constraint as the more general term. Combining the dissipation inequality
of Eq. (18) with the constraint of Eq. (21) shows that the general form for p̂α

d is (Lai
et al. 1991; Ateshian 2007)

pα
d =

∑

β �=α

fαβ · (uβ − uα
)
, (22)

where fαβ(α, β = s, f) are second-order tensors called frictional drag coefficients
(Mow et al. 1980; Lai et al. 1991), which satisfy fβα = fαβ .

For a biphasic mixture these relations reduce to p̂f
d = −p̂s

d = f fs · (vs − vf
)
, where

f fs is a function of
(
F,us,uf

)
in general; thus, the dissipative (frictional) momentum

exchange between fluid and solid is proportional to the relative velocity between
these constituents. Substituting this expression into the fluid momentum balance in
Eq. (20) produces the relation classically described as Darcy’s law,

w = −k · [gradp + ρf
T

(
af − bf

)]
, (23)

where
k = (ϕf)2 (f fs)−1

(24)

is called the hydraulic permeability tensor. The relation of Eq. (23) relates the relative
fluid flux to its driving forces, namely, the gradient in fluid pressure and the difference
of inertia and body forces. In general, the permeability tensor k may depend on the
state variables

(
F,us,uf

)
; in a strict sense, Darcy’s law is recovered when k is

constant. Darcy’s law was originally formulated as a phenomenological relation in
porous media; mixture theory shows that it derives from the momentum balance for
the fluid constituent.

In practice, problems in biphasic theory may be solved by adopting several
additional simplifications applicable to biological tissues. First, inertial effects are
typically neglected relative to other terms in the linear momentum balance, since
they are relevant mostly in wave propagation problems, where the assumption of
intrinsic incompressibility of the constituents would not be valid; thus, acceleration
terms involving aα are dropped out of those equations. Second, the diffusive terms
−ραuα ⊗ uα in Eq. (8) for the mixture stress are typically neglected in comparison
to the stresses Tα , as may be verified from an order of magnitude analysis using
typical stress, diffusive velocity, and apparent density magnitudes expected to arise
in biological tissues; thus, the mixture stress and its inner part are assumed to be
the same, T ≈ TI. Finally, external body forces bα (typically representing gravity)
are only relevant in specific applications. Consequently, the most common usage of
biphasic theory employs the simplified expressions

divT = 0, (25)
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for the mixture momentum balance,

div (vs + w) = 0, (26)

for the mixture mass balance, and

w = −k · gradp, (27)

for the fluid momentum balance (Darcy’s law).
The expression for T is approximated by TI in Eq. (19), which may be rewritten

as
T = −pI + Te, (28)

where

Te = 1

J

∂Ψr

∂F
· FT (29)

is the stress resulting from solid matrix strain. This equation requires the formulation
of a constitutive relation for Ψr (F). A constitutive relation is also needed to describe
the dependence of k on F (its dependence on us and uf is neglected in practice). The
solid deformation gradient is uniquely related to the solid displacement u via F =
I + Gradu, where Gradu = ∂u/∂Xs and I is the identity tensor. The solid velocity is
also uniquely related to the displacement via vs = Dsu/Dt . Therefore, the unknowns
in a biphasic analysis are u and p, which may be solved from Eqs. (25) and (26),
using the relation of Eq. (27).

Many biological tissues undergo large deformations under normal physiological
conditions. Similarly, the solid matrix of many biological tissues exhibits anisotropy,
such that the constitutive relations for Ψr (F) and k (F) need to account for phys-
iologically relevant material symmetries. Therefore, it is often necessary to solve
these biphasic equations using numerical schemes, such as the finite element method
(Spilker et al. 1992; Maas et al. 2012), that facilitate the solution of the resulting
nonlinear equations.

Nevertheless, much insight may be gained into the response of biphasic materials
by obtaining analytical solutions under infinitesimal strains and rotations, assuming
that the solid matrix is isotropic. Under these conditions, the deformation gradi-
ent simplifies to F ≈ I + ε + ω, where ε = (gradu + gradTu

)
/2 is the infinitesimal

strain tensor and ω = (gradu − gradTu
)
/2 is related to the infinitesimal rotation ten-

sor, with gradu = ∂u/∂x representing the spatial gradient of the solid displacement.
Under infinitesimal strains and the constraint of frame invariance, the relation of (29)
simplifies to Te = ∂Ψr/∂ε. The solid matrix may thus be modeled using Hooke’s
law for isotropic elastic solids, i.e.,

Ψr (ε) = λs

2
(trε)2 + μstrε

2, (30)
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where the material constants λs and μs are the Lamé coefficients for the solid. It
follows from this relation that

T = −pI + λs (trε) I + 2μsε. (31)

The simplest model for permeability assumes that it is isotropic and strain indepen-
dent,

k = k I, (32)

where k is a scalar material constant.

3.2 Boundary Conditions

Boundary conditions are formulated by satisfying axioms of mass, momentum, and
energy balance across interfaces in the mixture. Interfaces could represent external
boundaries of the mixture, or they may separate two regions of interest within the
mixture with a surface Γ . If this interface Γ is an idealization of a material sur-
face (such as a thin membrane idealized as a mathematical surface), the interface
conditions need to allow for mass, momentum, or energy jumps across that surface
(e.g., surface tension in the membrane embodies a momentum jump). The boundary
conditions presented here apply to immaterial interfaces, such as boundaries of a
biphasic tissue with its surrounding environment, or boundaries between adjacent
elements in a finite element mesh of a biphasic material.

3.2.1 Mass Balance

Since there are two sides across an interface Γ , we may denote them with + and −.
The outward unit normal to the + side is n+ and that of the − side is n−, such that
n− = −n+. Assuming that each constituent is intrinsically incompressible and that
there are no reactions exchanging mass at the interface, the axiom of mass balance
for constituent α across Γ requires that

ϕα
+
(
vα

+ − vΓ

) · n+ + ϕα
−
(
vα

− − vΓ

) · n− = 0, (33)

where the subscripts + and − represent quantities on either side of the interface and
vΓ is the velocity of the interface Γ (Eringen and Ingram 1965; Ateshian 2007).
This expression summarizes the requirement that the volumetric flux of constituent
α normal to the interface must be continuous across Γ . For convenience, let us define
n ≡ n+ and � f � ≡ f+ − f− for any argument f , so that Eq. (33) may be rewritten
in a less cluttered form as

�ϕα (vα − vΓ )� · n = 0. (34)
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In a biphasic material, the interface Γ is typically defined to follow the motion
of the solid matrix, since the boundaries of a biphasic tissue are those of the solid.
In those cases we let vΓ · n = vs · n and we may examine boundary conditions for
three typical situations: At the interface between a biphasic material and a pure fluid
(ϕs = 0 and ϕf = 1), the jump condition of Eq. (33) as applied to α = f produces
ϕf
(
vf − vs

) · n = (v − vs) · n, where v is the velocity of the pure fluid. This expres-
sion may be rearranged as

(vs + w) · n = v · n. (35)

At the interface between two biphasic materials, the jump condition for the fluid
reduces to �ϕf

(
vf − vs

)
� · n = 0, indicating that the volumetric fluid flux across the

boundary is continuous, which may be rewritten as

�w� · n = 0. (36)

In this case, since vΓ · n is the same on both sides of Γ , it also follows that the normal
component of the solid velocity must be continuous across Γ ,

�vs� · n = 0. (37)

Finally, at the interface of a biphasic material and a pure solid (ϕs = 1 and ϕf = 0),
Eq. (34) applied to α = f reduces to ϕf

(
vf − vs

) · n = 0, implying that the fluid on
the biphasic side may not flow across the interface Γ ; equivalently,

w · n = 0. (38)

Note that there is no requirement imposed by the mass balance condition on
tangential components of the constituent velocities. Jump conditions on tangential
components may only be prescribed using constitutive assumptions. For example,
the tangential jump condition for the solid velocity between two adherent bipha-
sic materials (a constitutive assumption) requires that (I − n ⊗ n) · �vs� = 0. This
assumption, combined with the mass balance jump condition of Eq. (37), produces
�vs� = 0 in the case of adhesive biphasic interfaces.

3.2.2 Momentum and Energy Balance

For an immaterial interface Γ , the jump condition on the momentum balance for the
mixture reduces to (Eringen and Ingram 1965; Ateshian 2007)

�T� · n = 0. (39)

This condition is equivalent to requiring that the mixture traction vector, t = T · n,
be continuous across Γ . Letting T be given by the expression of Eq. (28), we may
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also write t = −pn + te, where te = Te · n is the traction resulting from the solid
matrix strain.

The jump conditions for the momentum balance of the solid and fluid constituents
involve the jump in internal momentum supply to these constituents. Similar to
the expressions of Eqs. (16) and (17), these momentum jumps may not be defined
uniquely without further constitutive assumptions. Therefore, to complete the set of
boundary conditions, we must turn to the jump condition derived from the energy
balance for the fluid constituents (Ateshian 2007), which reduces to �μ̃f� = 0, where
μ̃f is the mechano-electrochemical potential of the fluid (in units of energy per mass).
In the case of a biphasic material, the fluid is a pure substance (e.g., water) which is
electrically neutral, implying that its chemical and electrical potentials are constants
that may be set to zero with no loss of generality. In this case, μ̃f = p/ρf

T and the
jump condition arising from the fluid energy balance reduces to

�p� = 0, (40)

sinceρf
T is invariant for intrinsically incompressible constituents. This jump condition

implies that the interstitial fluid pressure p of a biphasic material is continuous across
the interface Γ . If there is no fluid on either side of Γ , the jump condition of Eq. (40)
does not apply.

3.3 Permeation

Permeation is a canonical problem for biphasic materials, since it analyzes the trans-
port of interstitial fluid through the porous solid matrix and provides a direct measure
of the hydraulic permeability k. Permeation experiments are typically performed on
a disk of tissue constrained within a tube with a rigid impermeable inner wall (Fig. 1).
The tissue specimen is placed against a free-draining rigid porous filter downstream
of the flow. Optionally, the specimen is clamped upstream as well, using another
similar filter, to a predetermined compressive strain. Either a known fluid pressure is
prescribed upstream (e.g., using a column of fluid), or a known fluid velocity (e.g.,
using a syringe pump). Permeation experiments are notoriously challenging because
of the risk of leakage around the tissue specimen, which may confound the true mea-
surement of the tissue permeability. Another common challenge is that these types of
experiments may take a long time to equilibrate to a steady-state response; therefore,
premature termination of the experiment may produce an unreliable measure of k.

An analytical solution to the permeation problem may help identify the conditions
that alleviate some of these challenges, and may assist in interpreting the results.
For a permeation problem along the z-direction as shown in Fig. 1, a cylindrical
coordinate system is adopted. For the one-dimensional axisymmetric conditions of
this configuration, the only nonzero components of the displacement and fluid flux
vectors, u and w, are uz and wz , respectively, and the dependent variables are only
functions of z and t . Under these conditions, the mass balance in Eq. (26) reduces to
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Fig. 1 Permeation through a
biological tissue

biological 
tissue

upstream 
fluid

porous 
free-draining 

filter

downstream 
fluid

z=0

z

z=h

v0

p0

∂

∂z

(
∂uz

∂t
+ wz

)
= 0. (41)

The fluid momentum balance in Eq. (27) simplifies to

wz = −k
∂p

∂z
, (42)

and the mixture momentum in Eq. (25), combined with the constitutive relation in
Eq. (31), produces

− ∂p

∂z
+ HA

∂2uz

∂z2
= 0, (43)

where HA = λs + 2μs is the aggregate modulus. Upstream, at z = 0, the boundary
conditions reduce to

∂uz

∂t
+ wz

∣∣∣∣
z=0

= va (t) , p (0, t) = pa (t) , T e
zz (0, t) = HA

∂uz

∂z

∣∣∣∣
z=0

= 0,

(44)
where va (t) is the flow velocity upstream of the tissue sample and pa (t) is the
upstream pressure (Fig. 1). Downstream, at z = h, boundary conditions reduce to

uz (h, t) = 0,
∂uz

∂t
+ wz

∣∣∣∣
z=h

= va (t) ,

p (z, t) = 0, T e
zz (h, t) = HA

∂uz

∂z

∣∣∣∣
z=h

= σa (t) ,

(45)

where σa is the normal traction component between the tissue sample and the porous
filter. Here, we have made implicit use of the equation of continuity of mass for
the fluid entering and leaving the biphasic tissue, by requiring that the upstream
and downstream fluid velocities both be given by va . We also assume that because
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the porous filter is free-draining, the downstream pressure is equal to zero, repre-
senting atmospheric pressure. It should be appreciated that if va is known a priori,
the upstream pressure pa and downstream traction σa can be determined a posteriori
upon completion of the analysis. Integrating the mass balance in Eq. (41) with respect
to z, and using the boundary condition either at z = 0 or at z = h, produces

wz = va (t) − ∂uz

∂t
. (46)

By eliminating ∂p/∂z from Eqs. (42) and (43) and using (46), we find that

HAk
∂2uz

∂z2
− ∂uz

∂t
+ va (t) = 0. (47)

This is a partial differential equation in the unknown uz (z, t) alone. Once solved,
the fluid pressure can be obtained from the integration of Eq. (43) with respect to z,
making use of the boundary condition of Eq. (45),

p (z, t) = HA

(
∂uz

∂z

∣∣∣∣
z

− ∂uz

∂z

∣∣∣∣
z=h

)
. (48)

3.3.1 Steady-State Permeation

The steady-state response may be obtained from these equations by letting ∂uz/∂t =
0 and va = v0 = constant. The mathematical steps leading to the solution are left to
the reader. The solution for the steady-state axial displacement is given by

uz (z) = v0h2

2HAk

(
1 − z2

h2

)
, (49)

whereas that for the fluid pressure is

p (z) = v0h

k

(
1 − z

h

)
. (50)

Since the pressure varies linearly with z, it can be concluded that the pressure gradient
is uniform through the thickness of the tissue sample at steady state. From this
expression, it is now possible to determine the upstream fluid pressure at z = 0,

p0 = v0h

k
. (51)

From an experimental perspective this is an important result because it shows that
the permeability can be determined from the measurement of p0 and the knowledge
of v0 and h, using k = v0h/p0. This result can also be substituted into the solution for
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uz in Eq. (49) to express the solid matrix displacement as a function of the upstream
fluid pressure p0,

uz (z)

h
= p0

2HA

(
1 − z2

h2

)
. (52)

The normal traction at the interface between the tissue and the porous filter is then
found to equal the upstream pressure in magnitude, σa = −p0. The normal strain in
the axial z-direction is obtained from the slope of the displacement, and is found to
vary linearly through the depth, i.e.,

εzz = duz

dz
= − v0

HAk
z = − p0

HA

z

h
. (53)

The results of this steady-state permeation problem show that the pressure
decreases linearly from p0 upstream to 0 downstream (Fig. 2a). The magnitude
of the upstream pressure is directly proportional to the fluid perfusion velocity and
sample thickness, and inversely proportional to the permeability. As the fluid flows
through the tissue, a drag-induced compaction occurs, as indicated by the displace-
ment profile (Fig. 2b). As a result, the height or thickness of the sample is reduced
by a magnitude of p0h/2HA. This compaction is nonuniform, with the axial normal
strain starting at zero upstream, where the fluid pressure is highest, and increasing
linearly in magnitude with depth, achieving its highest value at the interface with
the porous filter, where the fluid pressure is smallest (Fig. 2c). The maximum strain,
which is compressive, is given by −p0/HA; clearly, for the above small strain solu-
tion to remain valid, the upstream pressure p0 must remain small relative to the tissue
aggregate modulus HA.

When the axial normal strain (or, more strictly, the dilatation) changes in mag-
nitude as shown in Fig. 2c, the assumption that the permeability remains constant
may not necessarily be valid experimentally and the above solution may need to be

p z( )

p0

z

0

h
z

0

h

uz z( )

p0h 2HA

z

0

h

Ezz z( )

− p0 HA

(c)(b)(a)

Fig. 2 Solution of steady-state permeation analysis, presented as a function of the depth coordinate z
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reevaluated using a strain-dependent permeability function. However, it is of interest
that the above solution is in agreement with Darcy’s law, as long as the permeability
is assumed constant, considering that Darcy’s law does not address the deformation
of porous materials.

As a practical matter, in permeation experiments, the tissue sample needs to fit
tightly within the side wall of the test chamber to avoid compromising side leakage.
This is sometimes achieved by osmotically swelling the sample after it has been
placed in the test chamber, but more frequently a clamping strain is applied onto
the sample via a second rigid porous filter placed upstream. (Oversizing the tissue
sample relative to the diameter of the chamber and press-fitting it in place is generally
a less successful option, whereas, the use of glue should be avoided due to seepage
into the tissue.) The analysis of a clamped sample would be similar to the above,
although the boundary conditions for the displacement function would be different.

As a final remark, the expression of Eq. (51) can be rewritten as

p0

HA
= v0

HAk/h
, (54)

from which it can be construed that just as HA may represent a characteristic measure
of the stress in the tissue, so is HAk/h a characteristic measure of the interstitial
fluid velocity. For example, in articular cartilage, typical values of HA ∼ 0.5 MPa,
k ∼ 10−3 mm4/N·s, and h ∼ 2 mm produce a characteristic velocity of 0.25µm/s.
If the perfusion velocity is much smaller than this characteristic value, the upstream
pressure acting upon the tissue sample will be negligible compared to HA. Conversely,
if v0 approaches this characteristic value, then p0 becomes nonnegligible relative to
the aggregate modulus. Such analyses are helpful when designing an experimental
apparatus and deciding upon the full scale range of the instrumentation, such as
pressure transducers or syringe pumps. Since v0 is the convective velocity of the
interstitial fluid whereas HAk/h is its characteristic diffusive velocity through the
mixture, the ratio of these two quantities is the nondimensional Peclet number for
interstitial fluid flow through the tissue, i.e.,

Pw
e = v0h

HAk
. (55)

Usually, the Peclet number is invoked for transport of solutes in a solution (as the
ratio of convective to diffusive velocities) or for heat transfer (as the ratio of forced
convection to heat conduction). Here, we see that it is also applicable to fluid transport
in porous media. Since Pw

e = p0/HA in this problem, and since we already explained
that p0 should remain small compared to HA in order to keep the compressive strains
small, it follows that Pw

e should also remain small compared to unity. In practice,
Pw

e � 0.2 is acceptable.
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3.3.2 Transient Permeation

Permeation experiments on many biological tissues typically require a long time to
achieve the steady-state response described in the previous section, because of the
very low permeability of these tissues. To estimate the length of time required to
achieve steady state, it is necessary to solve for the transient response of uz (z, t),
either in response to a step increase in the perfusion velocity, va (t) = v0H (t), or a
step increase in upstream fluid pressure, pa (t) = p0H (t). The mathematical details
for deriving the transient solutions for these two cases are not provided here, though
they are readily solved by standard methods for linear second-order partial differential
equations with constant coefficients.

When the velocity is prescribed upstream, the solution for uz (z, t) is

uz (z, t)

h
= Pw

e

⎡

⎢⎣
1

2

(
1 − z2

h2

)
+ 2

π3

∞∑

n=1

(−1)n

(
n − 1

2

)3 cos

[(
n − 1

2

)
π
z

h

]
e
−
(
n− 1

2

)2
π2 t

τ

⎤

⎥⎦ ,

(56)

where the Peclet number Pw
e is given in Eq. (55) and

τ = h2/HAk (57)

may be called the gel time constant. The axial normal strain is then given by εzz =
∂uz/∂z, and the fluid pressure may be obtained from Eq. (48). In particular, the
upstream pressure at z = 0 is given by

pa (t)

HA
= p (0, t)

HA
= Pw

e

[
1 − 2

π2

∞∑

n=1

1
(
n − 1

2

)2 e−(n− 1
2 )

2
π2 t

τ

]
. (58)

Since the exponential term in these expressions will decay to zero as time increases
to infinity, it is easy to see that these equations reduce to the steady-state solutions
presented in the previous section. The complete transient response of the upstream
fluid pressure pa (t), normalized by its steady-state value, is plotted in Fig. 3a as a
function of normalized time. The pressure is found to increase monotonically with
time.

Let us address the question that first motivated this analysis: How long will it take
for the response to reach a steady state after initiation of the experiment? The easiest
way to address this question is to analyze the solution for the upstream pressure in
Eq. (58), since this pressure is typically measured in a permeation experiment where
va (t) is prescribed. Initially, at t = 0, this pressure is equal to zero. The steady-state
solution for the upstream pressure is pa (t → ∞) /HA = Pw

e ; in theory, according
to the solution, it will take an infinite amount of time to reach this steady-state value.
In practice however, we would be satisfied to stop the experiment after this upstream
pressure has reached perhaps 95 % of its steady-state value. The characteristic time
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Fig. 3 a Transient response of the upstream pressure pa (t) in a permeation experiment under a
prescribed fluid velocity va (t) = v0H (t). b Transient response of the fluid velocity va (t) across
the tissue sample in a permeation experiment with a prescribed upstream fluid pressure pa (t) =
p0H (t). The gel time constant τ is given in Eq. (57)

constant for the increase in pressure can be deduced by looking at the first two terms
of the infinite series in Eq. (58). The time constants for these exponential functions
are given by

τ1 = 4

π2
τ, τ2 = 4

9π2
τ. (59)

Since τ2 is nine times smaller than τ1, the response is clearly dominated by τ1. A
simple numerical calculation shows that the solution has reached 95 % of its steady-
state value when

0.95 ≈ 1 − 8

π2
e− π2

4
t
τ or t0.95 ≈ τ. (60)

This calculation shows that the gel time constant τ provides a good estimate
of the time required to nearly reach steady state. In Sect. 3.3.1 typical values of
HA, k and h were suggested for articular cartilage. Using these values, we find
t0.95 ≈ 8000 s ≈ 2 h 13 m, which confirms that permeation experiments can be time-
consuming. Since the time constant is proportional to h2, this time may be reduced
by a factor of four if the specimen thickness is halved.

When the fluid pressure is prescribed upstream, the solution for uz (z, t) is

uz (z, t)

h
= p0

2HA

(
1 − z2

h2
− 4

π2

∞∑

n=1

1

n2

[
1 − (−1)n cos

nπ z

h

]
e−n2π2 t

τ

)
, (61)

and the resulting fluid velocity across the tissue sample is

h

p0k
va (t) = 1 + 2

∞∑

n=1

e−n2π2 t
τ . (62)

Interestingly, we find that the initial velocity at t = 0+ is infinite, but eventually
reduces to p0k/h (Fig. 3b). This infinite value (which occurs because inertial effects
are neglected) arises from the fact that the initial fluid pressure p

(
z, 0+) increases to
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p0 instantaneously throughout the tissue thickness, 0 ≤ z < h, except at the down-
stream porous filter (z = h) where the pressure must be zero according to the down-
stream boundary condition. Therefore, for an infinitesimal amount of time, there
exists an infinite pressure gradient gradp at z = h that produces an infinite fluid flux
wz = −k gradp at a fixed boundary where ∂uz/∂t = 0.

The dominant time constant in the exponential decay of va (t) corresponds to
n = 1 in Eq. (62), and is given by τ1 = τ/π2. This value is four times smaller than
in the permeation problem with a prescribed upstream velocity, Eq. (59). Therefore,
it is more expedient to perform experiments with a prescribed upstream pressure
than a prescribed upstream velocity, as is also evident from a comparison of transient
responses in Fig. 3a, b.

3.3.3 Experimental Validations of Permeation

Permeation experiments have been reported for a number of connective soft tissues
such as articular cartilage (Mansour and Mow 1976), intervertebral disc (Gu et al.
1999), and ligament (Weiss and Maakestad 2006), as well as for vascular tissue
(Harrison and Massaro 1976; Vargas et al. 1979) and hydrogels, such as alginate and
agarose (Albro et al. 2007, 2010). Since these experiments aimed to characterize the
hydraulic permeability k of these tissues, they all focused on analyzing the steady-
state response to a prescribed fluid pressure or velocity. By varying the clamping
strain across the tissue specimen, they reported the strain-dependent characteristic
of k, typically exhibiting an exponential decrease with increasing compressive strain
magnitude. Therefore, other than confirming that these tissues were permeable to
their interstitial fluid, these studies did not provide direct validations of the biphasic
theory from permeation analyses.

Since limited experimental data have been published for transient permeation,
we provide an experimental data set obtained from the permeation study of Albro
et al. (2010) on agarose hydrogels. A disk of Type VII agarose (9 % w/v, 1.5 mm
thick) was clamped at 15 % compressive strain and subjected to an upstream fluid
pressure of p0 = 7.4 kPa using a fluid column. The volumetric flow rate of fluid
transporting across the gel was determined using time-lapse photography of the
fluid meniscus formed in a capillary tube connected to the downstream side of
the flow chamber. Experimental results reported in Fig. 4 show that the fluid flux
decreased with time, consistent with the theoretical prediction reported in Fig. 3b.
The permeability extracted from the steady-state fluid flux using Eq. (51) was
k = 3.4 × 10−3 mm4/N · s. The aggregate modulus was then obtained from a single-
parameter fit of the transient response, producing HA = 35 kPa. For comparison pur-
poses, direct measurements of HA for the same type and concentration of agarose
exhibited a strong dependence on compressive strain, decreasing exponentially from
203 ± 8 kPa in the limit of 0 % compression, down to 58 ± 0 kPa at 15 % compres-
sion. Therefore, under a clamping strain of 15 %, the best-fit value for HA obtained
from the permeation analysis was reasonably consistent with direct measurements,
especially when we recall that permeation produces a nonuniform compressive strain
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Fig. 4 Experimental results and theoretical curve fit of the fluid flux, using va (t) in Eq. (62), in
a permeation experiment performed on an agarose disk with h = 1.5 mm, under a prescribed fluid
pressure p0 = 7.4 kPa. Unpublished raw data is from the study reported by Albro et al. (2010)

distribution within the tissue sample as shown in Eq. (53) and Fig. 2. Thus, assum-
ing linear superposition of the clamping strain and permeation response, the actual
compressive strain within the sample at steady state ranged from 15 % upstream to
approximately 28 % downstream.

3.4 Confined Compression

Confined compression problems represent some of the simplest problems for which
closed-form solutions exist in the biphasic theory. The basic assumption of a con-
fined compression problem is that the kinematics of the solid and fluid constituents
are entirely one-dimensional. Typically, a cylindrical tissue sample of radius r0 and
thickness h is placed within a chamber of equal diameter, whose side wall is rigid
and impermeable. The bottom of the chamber may be either rigid impermeable or
rigid porous and the specimen is loaded with a rigid free-draining porous indenter
of diameter equal to that of the chamber, save for a clearance to avoid interference.
The free-draining nature of the loading indenter and, optionally, the bottom of the
chamber, is necessary to allow fluid to exude from the tissue as it is being com-
pressed (Fig. 5). If these pathways were not provided, the biphasic theory would
predict no deformation of the tissue sample since each of the constituents is assumed
intrinsically incompressible and the confined nature of the loading would prevent
any change in tissue volume. For practical purposes, tissue confinement can only be
maintained under axial compression, since tensile loading would reduce the diam-
eter of the cylindrical sample as its lateral surface recedes from the side wall of
the chamber, thereby violating the assumption of one-dimensional kinematics. Thus
one-dimensional problems of this kind are always understood to be confined com-
pression.

If a prescribed static load is applied onto the indenter, the sample will deform under
this steady load as the fluid exudes from the tissue. This time-dependent response
is known as creep. Conversely, if the deformation of the tissue is prescribed at the
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Fig. 5 Confined compression testing configuration. The cylindrical tissue sample is placed in a
chamber with rigid impermeable side wall and loaded by a free-draining rigid porous indenter.
a the bottom of the chamber is rigid impermeable; b the bottom of the chamber is free-draining
rigid porous

indenter, the reaction force exerted on the indenter by the tissue will rise as long
as the deformation is increased, then will relax when the deformation is maintained
constant. This time-dependent response is called stress relaxation. Creep and stress
relaxation confined compression are easy to implement experimentally and are often
used to characterize the material properties of biological tissues which can be mod-
eled with the biphasic theory. Clearly, the loading or deformation prescribed at the
indenter can be of a much more general nature than creep or stress relaxation; another
popular testing configuration is to prescribe a sinusoidal displacement or load at the
indenter and to analyze the response of the tissue under steady state. This dynamic
loading, which can yield the frequency response of the tissue, may also be used to
extract its material properties.

We assume that the cylindrical tissue sample is homogeneous. The governing
equations for a one-dimensional problem are analyzed in cylindrical coordinates, as
performed in the permeation analysis presented in Sect. 3.3. Therefore, the governing
equations are the same as those presented in Eqs. (41)–(43). For the configuration of
Fig. 5a, the boundary conditions at z = h are

∂uz

∂t

∣∣∣∣
z=h

= 0, wz (z = h, t) = 0, (63)

indicating that the solid velocity and relative fluid flux in the axial direction are equal
to zero at the bottom of the chamber at all times. These boundary conditions imply
that va (t) = 0 in Eq. (47). Since the displacement of the tissue at the bottom of the
chamber is constrained, one of the boundary conditions for this partial differential
equation is

uz (z = h, t) = 0. (64)
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Under the loading indenter, either the displacement or the applied traction may be
prescribed. For a displacement-control experiment,

uz (z = 0, t) = ua (t) , (65)

where ua (t) is the prescribed displacement. For a load-control experiment,
Tzz (z = 0, t) = σa (t), where Tzz = −p + HA∂uz/∂z is the total axial normal stress
and σa (t) is the prescribed traction, related to the applied load W (t) (assumed pos-
itive in compression) through σa (t) = −W (t) /πr2

0 . Because the loading indenter
is free-draining, the pressure of the interstitial fluid at the top surface of the tissue
sample is equal to the pressure of the fluid in the bathing solution. This is taken to
be zero gauge pressure,

p (z = 0, t) = 0, (66)

and thus the load-control boundary condition reduces to

HA
∂uz

∂z

∣∣∣∣
z=0

= σa (t) . (67)

Once the solution for uz (z, t) has been obtained, the interstitial pressure throughout
the tissue sample can be obtained from Eq. (48), which represents the difference
in elastic stress between the location where the pressure is sought and the surface
under the indenter. Typically, the initial condition on uz (z, t) is that the sample has
no deformation at the beginning of the experiment, uz (z, t = 0) = 0.

3.4.1 Creep

In the creep problem, a step load is applied onto the tissue and maintained constant
as the tissue undergoes creep deformation. For this load-control case, the applied
traction may be specified as

σa (t) = σ0H (t) , (68)

where σ0 = −W0/πr2
0 is the constant traction corresponding to the constant applied

load W0, and H (t) is the Heaviside unit step function. For this set of equations, the
solution for uz (z, t) is given by

uz (z, t)

h
= σ0

HA

{
z

h
− 1

(−1)n

(
n − 1

2

)2

+ 2

π2

∞∑

n=1

(−1)n

(
n − 1

2

)2 sin

[(
n − 1

2

)
π
( z
h

− 1
)]

e
−
(
n− 1

2

)2
π2 t

τ

}
. (69)

The axial normal strain is then obtained from εzz = ∂uz/∂z and the interstitial
fluid pressure may be evaluated from Eq. (48) as p = HA

[
εzz (z, t) − εzz (0, t)

]
.



24 G.A. Ateshian

In particular, at z = h, the fluid pressure is given by

p (h, t)

HA
= σ0

HA

2

π

∞∑

n=1

(−1)n

n − 1
2

e−(n− 1
2 )

2
π2 t

τ . (70)

Finally, the relative fluid flux may be evaluated from Eq. (46) as wz = −∂uz/∂t .
Recall from Sect. 3.3.1 that HAk/h = h/τ is a measure of the characteristic veloc-

ity of diffusive fluid flow within the biphasic matrix. We also note from the exponent
of the exponential function in the solution for the displacement that τ is also a char-
acteristic measure of the temporal response for creep problems. The typical creep
deformation response of confined compression is shown in Fig. 6, where it can be
observed that equilibrium is nearly reached at approximately two and half times the
gel time constant.

The axial normal strain distribution is shown as a function of z and various times
t in Fig. 7a. It is apparent from this result that there exists a boundary layer near
the surface at early times, where the normal strain rapidly varies from the value of
σ0/HA immediately under the porous indenter, to zero outside of the boundary layer.
However, as time progresses, the strain becomes more uniform with depth until it
reaches the constant value of σ0/HA throughout the tissue at equilibrium. A boundary
layer is also observed in the spatial distribution of the interstitial fluid pressure at
early times (Fig. 7b). At the porous indenter the pressure is equal to zero but at early
times this pressure rapidly rises to the value of σ0 outside of the boundary layer. Over
time, however, the pressure begins to decrease throughout the tissue until it reaches
the uniform value of zero at equilibrium.

The fluid flux, which is proportional to the gradient in pressure, is greatest at
early times and at the interface with the free-draining porous indenter and reduces
to a uniform value of zero at equilibrium. It can be noted that, instantaneously upon
loading, the relative fluid flux is infinite at the interface with the porous filter. How-
ever, immediately after that instant the relative fluid flux assumes finite values. The
equilibrium response for the creep problem can also be determined by taking the
limit of the solutions above as t → ∞, which reduces all the exponential terms to
zero, i.e.,

Fig. 6 Creep deformation at
the surface of a biphasic
tissue under confined
compression
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Fig. 7 a Axial normal strain εzz (z, t) and b interstitial fluid pressure p (z, t) in confined compres-
sion creep, as a function of the axial coordinate z/h, at various times t/τ

lim
t→∞

uz (z, t)

h
= σ0

HA

( z
h

− 1
)

, lim
t→∞ εzz (z, t) = σ0

HA
,

lim
t→∞

p (z, t)

HA
= 0, lim

t→∞
wz (z, t)

HAk/h
= 0.

(71)

We find that the deformation is linear through the depth at equilibrium, the axial
normal strain is uniform, and the interstitial fluid pressure and relative fluid flux
reduce to zero. At equilibrium, a linear isotropic biphasic material behaves like a
linear isotropic compressible elastic material.

One note of caution when interpreting these results is the need to distinguish
between the observed responses described above and the assumed responses of the
tissue under physiological loading conditions. Most generally, soft hydrated biolog-
ical tissues do not get loaded in situ via a porous indenter, therefore the boundary
layers in the strain, interstitial fluid pressure, and relative fluid flux observed in con-
fined compression are generally not physiologic. This is of particular importance
when live tissue explants are tested to monitor their biosynthetic response to con-
fined compression. Any biosynthetic activity observed near the interface with the
rigid porous indenter should be viewed as being specific to this choice of testing
configuration and not necessarily representative of the biosynthetic response of the
tissue in vivo.

3.4.2 Stress Relaxation

In the stress-relaxation problem the indenter displacement is prescribed to increase
linearly in time and then kept constant until the tissue’s load response reaches equi-
librium, i.e.,
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ua (t) =
{
v0t t < t0,
v0t0 t � t0,

(72)

where v0 is the indenter velocity during the ramp loading. For these equations, the
solution for uz (z, t) is

uz (z, t)

h
= −Pw

e

⎧
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n3 sin
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2π2 t0
τ − 1

)
t � t0,

(73)
where Pw

e is given in Eq. (55) and τ in Eq. (57). The axial normal strain εzz = ∂uz/∂z
may be evaluated from this solution, along with the interstitial fluid pressure p and
fluid flux wz . In particular, at z = h, the fluid pressure is

p (h, t)

HA
= Pw

e

⎧
⎪⎪⎨
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4
π2

∞∑
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1
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(
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4
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1
(2n−1)2

(
e−(2n−1)2π2 t−t0

τ − e−(2n−1)2π2 t
τ

)
t � t0.

(74)

To evaluate the stress-relaxation response, the axial normal stress can be evaluated at
the interface with the porous indenter, σa (t) = Tzz (0, t) = −p (0, t) + HA∂uz/∂z,

σa (t)

HA
= −Pw

e

⎧
⎪⎪⎨
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t
τ

+ 2
π2
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1
n2

(
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)
t < t0,

t0
τ

+ 2
π2
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n=1

1
n2

(
e−n2π2 t−t0

τ − e−n2π2 t
τ

)
t � t0.

(75)

The solution of Eq. (75) is presented for a representative case in Fig. 8a, with
t0/τ = 0.25 and Pw

e = 0.2, such that the equilibrium compressive strain has the
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Fig. 8 Confined compression stress-relaxation responses showing a the normal compressive
traction −σa (t) and interstitial fluid pressure at z = h, and b the interstitial fluid load support
−p (h, t) /σa (t), when t0/τ = 0.25 and Pw

e = 0.2
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magnitude v0t0/h = 0.05. During the ramp phase, the axial normal stress increases
nonlinearly with time. At the end of the ramp, the stress relaxes to an equilibrium
value. The interstitial fluid pressure at the bottom of the chamber (z = h) similarly
rises during the ramp phase, then relaxes down to zero. By taking the ratio of the
fluid pressure to the total normal stress σa (t), the interstitial fluid load support can
be evaluated as shown in Fig. 8b. Initially, at t = 0+, the fluid load support is 100 %
immediately upon application of tissue deformation. This occurs because the fluid
has not yet had time to escape and the mixture acts as an incompressible fluid (or
solid) with uniform pressure and zero deformation. As time progresses however,
fluid exudes from the tissue and the interstitial fluid pressure and fluid load support
start decreasing with time. The strain profile through the depth of the tissue follows
a similar history to the creep response, with tissue compaction (increased strain)
occurring initially near the interface with the porous indenter and slowly progressing
to a uniform strain distribution at equilibrium. The fluid flux is also initially confined
to a narrow boundary layer near the porous indenter. As in the case of the creep
response, the equilibrium stress-relaxation response can be obtained by taking the
limit of the above solutions as t → ∞. We find that the resulting expressions have
the same form as in the creep problem,

lim
t→∞

uz (z, t)

h
=
( z
h

− 1
) V0t0

h
, lim

t→∞ εzz (z, t) = −V0t0
h

,

lim
t→∞

p (z, t)

HA
= 0, lim

t→∞
wz (z, t)

HAk/h
= 0.

(76)

If we compare the exponents of the exponential responses in creep and stress relax-
ation, the time constant of the dominant term (corresponding to n = 1) is four times
greater in the creep problem than in the stress-relaxation problem. This means that
equilibrium is reached more slowly in creep than in stress relaxation, which is also evi-
dent when comparing the responses of Figs. 6 and 8. When designing an experiment
for testing biological tissue samples in confined compression, the shorter duration of
the stress-relaxation test may be considered beneficial, particularly when attempting
to minimize tissue degradation over long periods of testing.

3.4.3 Dynamic Loading

A frequent alternative to creep and stress-relaxation testing is dynamic loading in
confined compression. This testing configuration typically consists of prescribing a
sinusoidal load or displacement on the indenter and measuring the resulting response.
To get the complete time-dependent response for this kind of loading, we let

σa (t) = σ0 + σ1 sin ωt, (77)
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where σ0 is a tare stress, σ1 is the amplitude and ω is the angular frequency of the
dynamic stress. This problem is simply the superposition of the creep solution of
Sect. 3.4.1 with the solution to the sinusoidal loading problem,

σa (t) = σ1 sin ωt, (78)

so we only need to solve the latter problem to complete the solution. The applied
traction must remain compressive at all times to ensure that the porous indenter
does not lift off from the tissue; this constraint can be easily satisfied by having
|σ1| � |σ0|. The remaining boundary conditions are the same as those of the creep
problem described in Sect. 3.4.1.

The solution for the transient response under this dynamic loading configuration
is (Soltz and Ateshian 2000b)

uz (z, t)

h
= 2

σ1

HA

∞∑

n=1

(−1)n−1

ω2τ 2 + α4
n

sin
[
αn

( z
h

− 1
)]

×
(
α2
n sin ωt − ωτ cos ωt + ωτe−α2

n t/τ
)

, (79)

where αn = (n − 1/2) π . Plots of the transient displacement and corresponding fluid
pressure from this solution are presented in Sect. 3.4.4 below, where the solution is
compared to experimental measurements.

As a special case, it is also possible to get the steady-state response of the tissue
to dynamic loading by assuming that the general solution at steady state has the
form uz (z, t) = udz (z, ω) eiωt , where i = √−1 is the pure imaginary number. The
boundary conditions of Eqs. (64)–(67) have a similar form, with σa (t) = σ1eiωt . It
follows that the solution for udz (z, ω) is given by

udz (z, ω)

h
= σ1

HA

sinh
√
iωτ

( z
h

− 1
)

√
iωτ cosh

√
iωτ

. (80)

The terms in the above expressions have been grouped such as to be nondimensional,
e.g., udz /h, σ1/HA, or ωτ . The solutions for the fluid pressure and relative fluid flux
can be similarly obtained.

The expression of Eq. (80) is a complex number whose magnitude represents the
amplitude of the response and whose argument is the phase angle. For example, the
amplitude and phase of the displacement response at the interface with the porous
indenter are shown in Fig. 9 as a function of the loading frequency f = ω/2π . At
very low frequencies, f � τ−1, the displacement is effectively in phase with the
applied load and its amplitude (given by the engineering strain measure udz /h) is
equal to |σ1| /HA. (The figure shows a phase angle of π since the displacement uz

is positive when the prescribed compressive traction σ1 is negative, given our choice
of coordinate direction in Fig. 5a.) The load and displacement are in phase because
at very low frequencies there is plenty of time for the fluid to flow through the
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Fig. 9 a Amplitude and b phase angle for dynamic confined compression under load control, with
σ1/HA = −0.05

tissue matrix and there is negligible drag between the two constituents. The tissue
behaves elastically with a modulus of HA. At very high frequencies, f  τ−1, the
displacement is effectively π/4 out of phase with the applied load and the amplitude
of the deformation becomes negligible. This is because there is very little time for the
fluid to flow through the matrix as the load alternates back and forth; with negligible
exchange of fluid with the external environment the tissue acts as an incompressible
medium which cannot undergo any deformation in a rigid confining chamber; its
dynamic modulus theoretically tends to infinity as the frequency is increased. For
intermediate frequencies, f ≈ τ−1, the tissue response is markedly viscoelastic, with
nonnegligible relative fluid flow and biphasic drag forces and a dynamic modulus
greater than HA.

The interstitial fluid pressure can also be evaluated with this approach, producing

pd (z, ω)

HA
= σ1

HA

cosh
√
iωτ

( z
h

− 1
)

− cosh
√
iωτ

cosh
√
iωτ

. (81)

3.4.4 Experimental Validation of Confined Compression

The biphasic theory was introduced in two papers by Mow and colleagues (Mow and
Lai 1980; Mow et al. 1980). These papers provided theoretical solutions for confined
compression creep and stress relaxation. Experimental results on bovine and human
articular cartilage were also reported for these testing configurations. In the creep
experiments, an initial jump was observed in the displacement response which did not
agree with theory (Fig. 6) and was attributed to the lack of full initial confinement
of the specimen within the test chamber (Mow et al. 1980; Armstrong and Mow
1982). In stress relaxation, a successful comparison of theory with experimental
results on human knee cartilage was reported by Holmes et al. (1985) (Fig. 10), who
extended the theory to account for strain-dependent permeability as motivated by
earlier experimental findings (Mansour and Mow 1976; Mow and Mansour 1977;
Lai et al. 1981). These results established that biphasic theory could successfully fit
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Fig. 10 Comparison of biphasic theory and experimental measurements in confined compression
stress relaxation, as reported by Holmes et al. (1985) (reproduced with permission). The permeability
was modeled to depend on the solid matrix dilatation I s = trε according to k = k0eMI s

, where k0
is the hydraulic permeability in the limit of zero strain and M is a material parameter governing the
dependence on the strain

the response of articular cartilage in confined compression stress relaxation, which
was a necessary condition for validating the theoretical framework.

Since articular cartilage is a soft tissue that may undergo large deformations in
situ, finite deformation frameworks were subsequently formulated for biphasic theory
to account for large strains (Holmes and Mow 1990; Kwan et al. 1990). Ateshian
et al. (1997) performed stress-relaxation, creep and dynamic loading experiments
in confined compression on bovine articular cartilage to investigate the theoretical
framework proposed by Holmes and Mow (1990). In their studies, stress-relaxation
experiments were first performed to curve fit the material properties of the tested
specimen as follows: Samples were compressed using five consecutive ramp-and-
hold displacement profiles that each compressed the sample by 10 % of its initial
thickness, producing five stress-relaxation responses to a final compressive strain
of 50 % (Fig. 11). The elastic properties of the solid matrix were fitted from the
equilibrium responses of these five steps (Fig. 11b). Then, the hydraulic permeability
material constants from a strain-dependent model were fitted to the transient response
(Fig. 11a).

To validate this model and material properties obtained from fitting the stress-
relaxation responses, a creep test was also performed on the same specimens, fol-
lowed by dynamic loading at a frequency of 0.005 Hz. The fitted parameters from
the stress-relaxation response were used to predict the specimen deformation under
creep and dynamic loading under the same loading conditions. In this series of stud-
ies, no initial jump was observed in the creep response upon the application of the
step load, because an initial tare load was prescribed on the specimen to ensure full
confinement (Ateshian et al. 1997). Very good agreement was observed between
experimental results and theoretical prediction (Fig. 12), providing strong support
toward the validation of the theoretical framework. The ability to predict outcomes



Mixture Theory for Modeling Biological Tissues: Illustrations … 31

Fig. 11 Experimental stress responses and theoretical curve fit of confined compression stress
relaxation on bovine articular cartilage, as reported by Ateshian et al. (1997) (reproduced with
permission). a Complete transient response for five consecutive ramp-and-hold compression pro-
files that each compressed the sample by 10 % of its initial thickness. b Equilibrium stress-stretch
response from the end of each compression step. The elastic properties HA0 and β of the solid
matrix were obtained from fitting the equilibrium response. The hydraulic permeability parameters
k0 and M were obtained from fitting the transient response

Fig. 12 Experimental displacement response of bovine cartilage plug under confined compression
creep and dynamic loading (solid curve), and prediction of the response from biphasic theory
(Holmes and Mow 1990) using material constants fitted to the stress-relaxation response (Fig. 11).
Reproduced from Ateshian et al. 1997 (with permission)
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of an experiment that did not inform the model represents a sufficient step in the
validation of a theoretical framework.

In addition to predicting the deformation and stresses in the solid matrix, the
biphasic theory can also predict responses for the interstitial fluid pressure and flux.
As seen in Sect. 3.3.3, which reviewed experimental validations of biphasic perme-
ation, there is a dearth of experimental studies that report the transient response for
interstitial fluid flux within cartilage. However, starting with the work of Oloyede
and Broom (1991, 1993), experimental measurements of the interstitial fluid pres-
sure within cartilage have been reported. In the studies by Soltz and Ateshian (1998,
2000b), interstitial fluid pressure was measured in bovine articular cartilage at the
interface of the tissue sample and bottom of the confining chamber (z = h in Fig. 5a),
in creep and stress relaxation (Soltz and Ateshian 1998) and dynamic loading (Soltz
and Ateshian 2000b). The biphasic theory was used to extract HA and k by curve
fitting the tissue deformation at z = 0 (using Eq. (69) in creep and Eq. (80) for
dynamic loading experiments) or the stress response of Eq. (75) in stress relaxation.
The fluid interstitial pressure was then predicted from the theory, using Eq. (70) for
creep, Eq. (81) for dynamic loading, and Eq. (74) for stress relaxation, using these
values of HA and k. Very good agreement was obtained between the predicted and
measured interstitial fluid pressure in these studies (Fig. 13), validating the ability of
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Fig. 13 Experimental and theoretical responses of bovine articular cartilage under confined com-
pression dynamic loading, using data from the study of Soltz and Ateshian (2000b). a Experimental
deformation and curve fit of the tissue deformation uz (0, t) to Eq. (79), under the action of a dynamic
compressive stress with σ1 = −33 kPa and frequency f = 10−4 Hz, superposed over a static tare
stress of σ0 = −130 kPa; the fitted values are HA = 0.54 MPa and k = 1.6 × 10−4 mm4/N · s.
b Experimental response and prediction of the fluid pressure p (h, t) for the same specimen, using
the values of HA and k from the curve fit in (a). c Experimental response and prediction of uz (0, t)
for the same specimen at a loading frequency of 0.1 Hz, using properties from (a). d Experimental
response and prediction of p (h, t) for the conditions described in (c)
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the biphasic theory to predict the transient response of the interstitial fluid pressure
in confined compression.

3.5 Unconfined Compression

Unconfined compression is a testing configuration that subjects a cylindrical tissue
sample to compressive strains in the axial direction and tensile strains in the radial
and circumferential directions. Since many soft biological tissues have a fibrillar
solid matrix that resists tension with much greater stiffness than compression, we
may extend the constitutive model of Eq. (31) to include the contribution of fibrils
that may only sustain tensile loading,

Te = λs (trε) I + 2μsε + ξ

m∑

i=1

H
(
ε(i)
n

)
n(i) ⊗ n(i), (82)

where ξ is the tensile modulus of each fibril bundle, m is the number of fibril bundles,
n(i) is a unit vector along the direction of the i th fibril bundle, ε(i)

n is the normal
strain component along that bundle, ε(i)

n = n(i) · ε · n(i), and H (•) is the Heaviside
unit step function, which limits the contribution of the i th fibril bundle to loading
configurations that produce a positive normal strain, ε(i)

n > 0.
In the following analysis of unconfined compression the tissue is assumed to be

homogeneous and the loading platens are assumed frictionless. For the constitutive
model of Eq. (82), the governing equations for this problem can be reduced from the
general equations using cylindrical coordinates (r, θ, z) under axisymmetric condi-
tions (zero circumferential displacement and fluid flux, and no dependence of the
remaining displacement components and fluid pressure on θ ). For simplicity, we
assume that there are only three fibril bundles (m = 3), each oriented along one of
the coordinate directions, such that the fibril directions n(i) coincide with the basis
vectors of this cylindrical coordinate system (see Fig. 14).

Fig. 14 Geometry of
unconfined compression
problem
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We now make the following simplifying assumptions which anticipate the final
solution, in order to reduce the number of equations. These assumptions must be
consistent with the boundary conditions for this problem, which are described in
greater detail below. Because of the frictionless platens we expect the radial dis-
placement ur to be independent of the axial coordinate z since no bulging of the
specimen is expected under these conditions (∂ur/∂z = 0). Since the shear strain is
given by εr z = (∂ur/∂z + ∂uz/∂r) /2 and is directly proportional to the shear stress,
and since the shear traction is zero on the top and bottom surfaces as well as the
lateral boundary, this suggests that we should also assume ∂uz/∂r = 0 everywhere
within the tissue sample. The loading platens are impermeable so that the fluid flux
normal to the platens must be zero, wz = 0. This constraint implies that the pres-
sure gradient along z is zero at the top and bottom surfaces, and we assume it is
zero throughout the sample. Combining all these assumptions we get ur = ur (r, t),
uθ = 0, uz = uz (z, t), p = p (r, t), wr = wr (r, t), wθ = 0 and wz = 0. Finally, we
anticipate from the nature of this problem that the axial normal strain εzz is compres-
sive, whereas the radial and circumferential normal strains, εrr and εθθ respectively,
are tensile. Thus, only fibril bundles in the latter two directions contribute to the stress
response according to Eq. (82). Substituting these relations into the component form
of Eqs. (26) and (27), and the radial and axial components of Eq. (25) respectively,
we now get

1

r

∂

∂r

[
r

(
∂ur
∂t

+ wr

)]
+ ∂

∂t

∂uz

∂z
= 0, (83)

wr = −k
∂p

∂r
, (84)

− ∂p

∂r
+ H+A

∂

∂r

(
1

r

∂

∂r
(rur )

)
= 0, (85)

∂2uz

∂z2
= 0, (86)

where H+A = HA + ξ combines the stiffnesses of fibrils and ground matrix in this
fibril-reinforced model. Integrating the last of these relations with respect to z, we get
∂uz/∂z = ε (t), where ε (t) is the axial normal strain εzz in the cylindrical specimen,
which is found to be only a function of time in this problem. Substituting this result
into Eq. (83) and integrating the resulting equation with respect to r yields

r

(
∂ur
∂t

+ wr

)
= −ε̇ (t)

r2

2
+ v (t) , (87)

where v (t) is an integration function. Evaluating this equation at r = 0 shows that
v (t) = 0 in this problem. Using Eq. (84), the above relation now reduces to
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∂p

∂r
= 1

k

[
∂ur
∂t

+ ε̇ (t)
r

2

]
, (88)

which can be substituted into Eq. (85) to yield a partial differential equation in the
dependent variable ur (r, t),

∂

∂r

(
1

r

∂

∂r
(rur )

)
− 1

H+Ak

∂ur
∂t

= 1

H+Ak
ε̇ (t)

r

2
. (89)

The boundary conditions for this problem must be formulated at all the boundaries of
the cylindrical tissue sample: at r = 0 and r = r0 (where r0 is the specimen radius),
and at z = ±h/2. Because of axisymmetry, there is no radial displacement or fluid
flux at r = 0 and the axial displacement is symmetric relative to the z-axis. These
conditions lead to the relations

ur (0, t) = 0, T e
r z (0, t) = 0,

∂p

∂r

∣∣∣∣
r=0

= 0. (90)

The condition T e
r z = 0 is satisfied automatically throughout the cylindrical specimen

based on the assumptions summarized above; the condition ∂p/∂r = 0 is satisfied
automatically at r = 0 according to Eq. (88) as long as ur (0, t) = 0. At the radial
edge of the sample the total traction is zero, both in the normal and shear directions,
and the fluid pressure must be ambient,

T e
rr (r0, t) = H+A

∂ur
∂r

∣∣∣∣
r=r0

+ λs

[
ur (r0, t)

r0
+ ε (t)

]
= 0,

T e
r z (r0, t) = 0,

p (r0, t) = 0.

(91)

At the top and bottom surfaces (z = ±h/2), the shear traction T e
r z is equal to zero

because of the assumption of frictionless contact, and the normal fluid flux must be
zero because the loading platens are impermeable, thus ∂p/∂z = 0; these bound-
ary conditions are satisfied automatically based on our prior assumptions. For load
control experiments the integrated normal traction component at the top and bot-
tom surfaces must be equal to the applied load, whereas for displacement-control
experiments the axial displacement is prescribed,

{
2π
∫ r0

0 r
(−p + T e

zz

)
dr = W (t) load control

uz = ± 1
2ua (t) displacement control

at z = ±h

2
. (92)

The interstitial fluid pressure is obtained by integrating ∂p/∂r in Eq. (85) and making
use of the boundary condition on p in Eq. (91),
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p (r, t) = − H+A

(
∂ur
∂r

+ ur
r

)∣∣∣∣
r0

r

. (93)

The total normal load at the platens is then given by Eq. (92), W (t) = W p (t) +
W e (t), where

W p (t) = −2π

∫ r0

0
rp (r, t) dr, W e (t) = 2π

∫ r0

0
rT e

zz (r, t) dr. (94)

Here, W p (t) is the component of the total axial load contributed by the interstitial
fluid pressure and W e (t) is the component contributed by the effective stress. Using
the above results, these expressions reduce to

W p (t) = −πr2
0

[
λsε (t) + (H+A + λs)

ur
r

∣∣∣
r=r0

]
, (95)

W e (t) = πr2
0

[
HAε (t) + 2λs

ur
r

∣∣∣
r=r0

]
, (96)

W (t) = πr2
0 (HA − λs)

[
ε (t) − H+A − λs

HA − λs

ur
r

∣∣∣
r=r0

]
. (97)

Note that the boundary condition of Eq. (91) was used to eliminate ∂ur/∂r |r=r0
from

the right-hand side.

3.5.1 Instantaneous and Equilibrium Responses

For an unconfined compression stress-relaxation problem where the axial strain is
prescribed as a step function, let ε (t) = ε0H (t), where ε0 � 0. The instantaneous
response at t = 0+ may be obtained by recognizing that p

(
r, 0+) is uniform (thus

wr
(
r, 0+) = 0) over the range 0 ≤ r < r0, and ur

(
r, 0+) is a linear function of r

over that range. In that case, it can be shown that the instantaneous response is given
by

lim
t→0+

ur (r, t)

r0
= −ε0r

2r0
. (98)

It follows from this solution that

W p
(
0+) = πr2

0 (H+A − λs)
ε0

2
, W

(
0+) = πr2

0 (2HA + H+A − 3λs)
ε0

2
, (99)

so that the instantaneous fluid load support is given by

W p
(
0+)

W (0+)
= H+A − λs

2HA + H+A − 3λs
= 2μs + ξ

6μs + ξ
, (100)
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and the instantaneous (dynamic) unconfined compression modulus is

E0+
Y = W

(
0+)

πr2
0 ε0

= 3μs + 1

2
ξ, (101)

whereas the instantaneous effective Poisson’s ratio is given by

ν0+ = lim
t→0+

−εrr

εzz
= lim

t→0+
− 1

ε0

∂ur
∂r

= 1

2
, (102)

consistent with this instantaneous isochoric deformation. These results show that the
instantaneous stiffness of the tissue is significantly influenced by the fibril modulus
ξ : In the absence of fibrils (ξ = 0), the fluid load support in Eq. (100) reduces to
W p
(
0+) /W

(
0+) = 1/3 and the effective unconfined compression modulus reduces

to E0+
Y = 3μs; however, as ξ increases to values much greater than the ground matrix

shear modulus μs, the fluid load support approaches unity,

lim
ξ/μs→∞

W p
(
0+)

W (0+)
= 1, (103)

and E0+
Y increases in proportion to ξ/2. Thus, a relatively stiff fibril matrix has

the effect of enhancing fluid pressurization and interstitial fluid load support under
instantaneous loading; as a result of this fluid pressurization, the effective compres-
sive modulus is nearly proportional to the tensile stiffness of the fibrils. This coun-
terintuitive result implies that a hydrated biological tissue that is typically loaded in
compression, such as articular cartilage, may resist compressive loads more effec-
tively by having a fibril-reinforced solid matrix, even though fibrils may only sustain
tension.

Similarly, the equilibrium response as t → ∞ is obtained by setting time deriv-
atives to zero, recognizing that p = 0 and ur is similarly a linear function of r ,
thus

lim
t→∞

ur (r, t)

r0
= − λs

H+A + λs
ε0

r

r0
. (104)

The effective equilibrium Young’s modulus in unconfined compression is

E−Y = lim
t→∞

W (t)

πr2
0 ε0

= HA − 2λ2
s

H+A + λs
, (105)

and the corresponding effective equilibrium Poisson’s ratio is

ν− = lim
t→∞ −εrr

εzz
= lim

t→∞ − 1

ε0

∂ur
∂r

= λs

H+A + λs
. (106)
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Since the fibrils may only sustain tension, the results presented here are specific
to unconfined compression. In particular, it may be noted from these last equations
that E−Y → HA and ν− → 0 as ξ/λs → ∞; thus, in compression, Young’s modulus
behaves as the confined compression modulus HA as the fibrils become very stiff,
consistent with the finding that the effective Poisson’s ratio tends to zero, implying
little lateral expansion under compression.

3.5.2 Transient Response

The transient solution for ur (r, t) may be obtained by the method of Laplace trans-
forms and is given by

ur (r, t)

r0
= ε0

⎡

⎣ 1 − η

2η − 1

r

r0
+

∞∑

n=1

J1

(
γn

r
r0

)

γn J0 (γn)
(
2η − 1 − η2γ 2

n

)e−γ 2
n t/τ

⎤

⎦ , (107)

where η = H+A/ (H+A − λs) and the gel time constant for this problem is given by

τ = r2
0 /H+Ak. (108)

Here, γn’s are the roots of

ηγn J0 (γn) − J1 (γn) = 0, (109)

where J0 and J1 are Bessel functions of the first kind, of order 0 and 1, respectively
(γn > 0). The fluid pressure may then be obtained from Eq. (93) using

∂ur
∂r

= ε0

⎡

⎣ 1 − η

2η − 1
+

∞∑

n=1

γn J0

(
γn

r
r0

)
− r0

r J1

(
γn

r
r0

)

γn J0 (γn)
(
2η − 1 − η2γ 2

n

) e−γ 2
n t/τ

⎤

⎦ , (110)

and the fluid load support, evaluated from Eqs. (95)–(97), reduces to

W p (t)

W (t)
=

(2η − 1)

∞∑

n=1

J1 (γn)

γn J0 (γn)
(
2η − 1 − η2γ 2

n

)e−γ 2
n t/τ

ηζ − 1 + 1 − η

2η − 1
+

∞∑

n=1

J1 (γn)

γn J0 (γn)
(
2η − 1 − η2γ 2

n

)e−γ 2
n t/τ

, (111)

where ζ = 1 − HA/H+A.
A typical response for the time-dependent radial displacement ur (r, t) is pre-

sented in Fig. 15a as a function of time, for the case where η = 9/8 (or equivalently,
H+A = 9λs). The corresponding spatial distribution of the displacement is presented
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Fig. 15 Radial displacement in unconfined compression stress relaxation under an applied step
strain ε0 = −0.1, with H+A = 9λs, using Eq. (107). a Time-dependent radial displacement at
r = r0. b Radial displacement along r , at selected time points t/τ
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Fig. 16 a Spatial distribution of interstitial fluid pressure in unconfined compression stress relax-
ation, at selected time points t/τ ; and b interstitial fluid load support as a function of time when
HA = 3λs

in Fig. 15b at selected time points. Immediately upon loading (represented by the very
short time response t/τ = 10−4), an instantaneous lateral expansion of the cylindri-
cal specimen occurs, which varies linearly from 0 to r0 as predicted by Eq. (98), after
which the radial displacement slowly recoils to its equilibrium value with increasing
time.

The interstitial pressure for the same case is presented in Fig. 16a. The instanta-
neous response of the pressure is a homogeneous distribution whose magnitude is
given by −W p

(
0+) /πr2

0 in Eq. (99) (which evaluates to 4ε0/9H+A in this example),
except at the boundary r = r0 where the pressure reduces to zero. Over time the pres-
sure becomes inhomogeneous and decreases toward zero, though it is noteworthy that
the pressure near the center of the cylindrical specimen temporarily rises above its
instantaneous response before dropping down. The corresponding fluid load support
is given in Fig. 16b as a function of time, when ζ = 2/3 (or equivalently, HA = 3λs),
showing an initial jump, then a slow decrease toward zero as equilibrium is reached.
For the choices of η and ζ selected in this example, Eq. (100) predicts that the initial
peak fluid load support is 2/3.



40 G.A. Ateshian

3.5.3 Experimental Validation of Unconfined Compression

The analytical solution for unconfined compression presented in the previous sections
was first formulated by Armstrong et al. (1984) for the case ξ = 0 (no fibrils). In their
original study, these authors did not report experimental measurements to corroborate
their theoretical predictions. In fact, Brown and Singerman (1986) reported poor
agreement between their measurements on epiphyseal (growth plate) cartilage and
the unconfined stress-relaxation response of Armstrong et al. (1984). In those years,
the root cause for this poor agreement remained uncertain. Eventually, starting in the
late 1990s, a hypothesis emerged that could explain this discrepancy.

Cohen et al. (1998) proposed that the unconfined compression response should
account for the known disparity between the tensile and compressive properties of the
solid matrix of cartilage. Experimental studies had long demonstrated that articular
cartilage is much stiffer in tension than compression (Kempson et al. 1968; Armstrong
and Mow 1982; Akizuki et al. 1986), as its solid matrix consists of fibrillar (type
II) collagen that can resist tension, and aggregating proteoglycans (aggrecans) that
can resist compression (Maroudas 1976). To account for this disparity in the context
of classical solid mechanics, they modeled the solid matrix of articular cartilage
as a transversely isotropic elastic material. The stress-strain response in the axial
direction employed the compressive modulus, whereas that in the transverse plane
of isotropy employed the tensile modulus. They provided an analytical solution for
unconfined compression stress relaxation, similar to that of Eq. (107), that better
fitted the experimental response of bovine epiphyseal cartilage (Fig. 17).

Bursać et al. (1999) raised concerns about the use of a transversely isotropic
model to model articular cartilage, as this approach would produce inconsistent
results between confined and unconfined compression. In the same year, Soulhat
et al. (1999) and Li et al. (1999, 2000) proposed to model the solid matrix of bipha-
sic cartilage in unconfined compression using a fibril-network reinforced material.

Fig. 17 Experimental
response and theoretical
curve fits for unconfined
compression stress
relaxation of bovine
epiphyseal cartilage, as
reported by Cohen et al.
(1998) (reproduced with
permission). Using a
transversely isotropic model
for the solid matrix of
cartilage produced
significantly better fits than
the isotropic model
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In their approach, collagen fibrils were modeled using linear or nonlinear springs
that could only sustain tension, as shown in Sect. 3.5. They demonstrated good curve
fits of the stress-relaxation response of articular cartilage, under single or multiple
ramp-and-hold displacement profiles. Their formulation did not exhibit the limitation
raised in the study of Bursać et al. (1999).

Soltz and Ateshian (2000a) adopted the Conewise Linear Elasticity (CLE) frame-
work, formulated earlier by Curnier et al. (1995) for modeling elastic solids that
exhibit different behaviors in tension and compression, to model the solid matrix of
biphasic cartilage. They performed confined and unconfined compression and torsion
experiments on bovine articular cartilage disks to extract their compressive, tensile
and shear properties, as well as axial and radial permeability coefficients. They also
measured the interstitial fluid pressure at the center of the disk in unconfined com-
pression stress relaxation, and compared these measurements to predictions from this
biphasic-CLE model. These results showed very good agreement between theory and
experiments (Fig. 18), providing strong support for the validation of biphasic theory
in a framework that accounts for the tension-compression nonlinearity of articular
cartilage. Further validation using interstitial fluid pressure measurements in uncon-
fined compression was also reported subsequently in the study of Park et al. (2003),
who showed that the peak magnitude of interstitial fluid load support in unconfined
compression approached 100 % as the ratio of tensile to compressive moduli of the
solid matrix increased, consistent with Eqs. (100) and (103).

Fig. 18 Experimental and theoretical responses for unconfined compression stress relaxation of a
bovine articular cartilage disk, as reported by Soltz and Ateshian (2000a) (reproduced with permis-
sion). The transient axial stress response was fitted to extract material parameters for the biphasic-
CLE model adopted in that study. The interstitial fluid pressure was measured at the bottom center
of the disk, showing very good agreement with the fluid pressure predicted from the model using
the fitted material parameters
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Fig. 19 Equilibrium
stress-strain responses for
representative human
shoulder cartilage samples
tested in tension and
compression, as reported by
Huang et al. (2005)
(reproduced with
permission). Specimens
tested in tension were
harvested in the plane
tangential to the articular
surface, parallel or
perpendicular to the local
split-line direction
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At the time of these studies, all tensile measurements of cartilage properties had
been performed using specimens harvested parallel to the articular surface, whereas
compressive properties had been measured on disks harvested with their axis normal
to the articular surface. Thus, tensile and compressive moduli reported in the prior
literature were not measured along the same direction, raising the possibility that
cartilage could be linear elastic (having the same moduli in tension and compression
across the strain origin) but highly anisotropic (accounting for the larger moduli
parallel to the surface and smaller moduli perpendicular to the surface). This issue was
first resolved by Jurvelin et al. (2003), who reported that the compressive modulus of
human knee cartilage was statistically different, but of comparable magnitude, when
measured on disks harvested with their axis perpendicular (∼1.2 MPa) or parallel
(∼0.8 MPa) to the articular surface. Similar findings were subsequently reported by
Wang et al. (2003) and Chahine et al. (2004), who measured the compressive and
tensile properties of bovine articular cartilage cubes tested along three orthogonal
directions. Evidence of the large disparity between tensile and compressive properties
of articular cartilage is shown in the stress-strain responses reported by Huang et al.
(2005) for human shoulder cartilage (Fig. 19). Today, based on the preponderance
of evidence reviewed here, a fiber-reinforced elastic solid matrix is considered the
preferred modeling approach for articular cartilage.

4 Other Related Mixture Models

This chapter focused on a review of a biphasic mixture of intrinsically incompress-
ible solid and fluid constituents, with a review of selected studies that validated
the model against experimental measurements, mostly in articular cartilage. Since
biphasic theory provides a framework for modeling the solid matrix stresses and
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interstitial fluid flow within a porous deformable material, many of the validation
studies employed measurements of the interstitial fluid pressure or flux in response to
mechanical loading to provide direct evidence in support of theoretical predictions.
Fundamentally, mixture theory recovers the classical equations of elasticity theory
in the limit when the fluid pressure is set to zero. In the limit when the porous solid
matrix is rigid, it also recovers Darcy’s law, a well-attested phenomenological rela-
tion for flow through porous media. Therefore, the validation studies reported here
effectively demonstrate that the theory can also predict the coupling between solid
matrix deformation and interstitial fluid pressurization.

4.1 Modeling Solutes in Mixtures

Mixture theory has also been extended to include solute transport within the inter-
stitial fluid of a solid-fluid mixture. Extending the theory to incorporate solutes is
relatively straightforward, based on the governing equations covered in Sect. 2. When
solutes are included, the list of state variables must be extended to include the solute
apparent density ρα

r = Jρα (mass of solute α per volume of the mixture in the refer-
ence configuration). The dependence of the mixture free energy Ψr on solute density
is then embodied in the chemical potential μα = ∂Ψr/∂ρ

α
r . If solutes and the solid

matrix are electrically charged, an electric potential ψ may arise if it is assumed that
the mixture must satisfy the electroneutrality condition (much like the pressure p
arises from the assumption that the mixture constituents are intrinsically incompress-
ible). The fluid pressure p, electrical potential ψ , and chemical potential μα may
then be combined into a single scalar variable μ̃α called the mechano-electrochemical
potential. Then, according to the momentum equations, solvent and solute fluxes are
driven by gradients in μ̃α , as well as inertia and body forces, and resisted by dissi-
pative momentum exchanges p̂α

d similar to the presentation in Sect. 3.1 and Eq. (20).
The first extension of biphasic theory to include solutes was presented by Lai

et al. (1991), who modeled cartilage as a triphasic mixture consisting of a charged
porous deformable solid matrix, and an interstitial fluid consisting of a neutral sol-
vent (water) and two monovalent counterions from a dissolved salt (such as Na+ and
Cl−). These authors showed that mixture theory could reproduce Fick’s law of dif-
fusion in the limit of a free fluid solution, which arises from the momentum balance
for the solute. It could also reproduce Donnan’s law to predict the osmotic swelling
pressure arising from soluble charge segregation between the triphasic mixture and
its surrounding fluid environment. More generally, in addition to permeation, dif-
fusion and barophoresis, electrokinetic phenomena could also be recovered from
triphasic theory, such as electrophoresis, electro-osmosis, and streaming potentials
and currents (Gu et al. 1993; Lai et al. 2000). The triphasic formulation was later
extended by Gu et al. (1998) to include any number of electrolytes. These formula-
tions demonstrated that mixture theory provides the foundation for modeling a wide
range of phenomena encountered in biological tissues and cells.
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Mixture theory provides a fundamental framework that accounts for interactions
among all mixture constituents. Consequently, when classical phenomenological
relations emerge from the mixture equations, such as Darcy’s law and Fick’s law,
we may discover (or rediscover) terms that were neglected in these earlier formu-
lations. Mauck et al. (2003) formulated a mixture framework for a neutral solute in
a porous deformable hydrated solid matrix. While mixture theory accounts for fric-
tional drag tensors fαβ between every pair of constituents, the earlier triphasic (Lai
et al. 1991) and multi-electrolyte (Gu et al. 1998) models opted to neglect the friction
between solutes and the solid matrix, arguably because the resulting expressions were
sufficient to reproduce Darcy’s law and Fick’s law. By keeping the frictional drag
between solute and solid, Mauck et al. (2003) showed that the resulting momentum
equations for the solute could differentiate between solute diffusivity within a free
fluid versus the diffusivity within the mixture (inclusive of the solid matrix). While
experiments had long attested that these diffusivities could be different (depending
on the molecular size of the solute relative to the pore structure of the solid) (Deen
1987), most models of solute transport within porous media simply employed Fick’s
phenomenological law with an adjusted value of the solute diffusivity.

Mauck et al. (2003) showed that the mixture formulation could predict phenomena
resulting from the interaction of solid matrix deformation and solute transport that
were not anticipated by the phenomenological relations. Most notably, they found
that dynamic loading of a disk of tissue, or hydrogel, submerged in a bath contain-
ing a solute, would increase the solute concentration far above that predicted from
Fick’s law. A series of subsequent experimental studies validated these predictions
in agarose and articular cartilage (Albro et al. 2008, 2010, 2011; Chahine et al.
2009), providing further confidence that mixture theory is a sound framework for
extending classical formulations (Fig. 20). Similarly, using basic principles from
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Fig. 20 Experimental results (symbols) and theoretical predictions (solid curves) for the uptake of
70 kDa dextran into agarose disks of various concentrations (see legend) in response to dynamic
unconfined compression (±5 % strain amplitude at 1 Hz, superimposed on a 15 % compressive
strain offset, Albro et al. 2008) for 40 h. ĉ is the ratio of average dextran concentration in the
dynamically loaded disk to the average concentration achieved at steady state in the absence of
loading; it represents the enhancement ratio resulting from dynamic loading. Theoretical predictions
were obtained by independently measuring the mechanical and transport properties of this agarose-
dextran system and using them in the mixture model formulated by Mauck et al. (2003). Reproduced
from the study by Albro et al. (2010) (with permission)
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mixture theory and physical chemistry, Mauck et al. (2003) proposed a formulation
for solute partitioning between the pore space in the mixture and a surrounding
solution, which could account for solid matrix deformation and incomplete volume
recovery in response to osmotic loading. This formulation was later found to accu-
rately predict the response of hydrogels and chondrocytes to osmotic loading using
a variety of osmolytes (Ateshian et al. 2006; Albro et al. 2007, 2009).

4.2 Constrained Solid Mixtures

As shown by Humphrey and Rajagopal (2002), mixture theory may also be used to
model the solid matrix of biological tissues that have heterogeneous constituents,
such as mixtures of collagen, elastin, and smooth muscle cells, as found in the aortic
wall. When these constituents are physically bound together, it may be assumed that
the solid mixture is constrained such that all solid constituents α share the same veloc-
ity vα ≡ vs. It is noteworthy that this assumption simplifies the formulation of the
mixture governing equations, since the diffusion velocity uα and dissipative momen-
tum supply p̂α

d (Sect. 2.2) reduce to zero in the case of such mixtures. Moreover, it
may be assumed that each solid constituent in the mixture has a different reference
configuration Xα (Ateshian and Ricken 2010; Wan et al. 2010), even though all con-
stituents share the same current configuration x, which makes it possible to model
the evolution of residual stresses in growing tissues.

In hindsight, another model commonly adopted in the biomechanics of soft bio-
logical tissues implicitly describes constrained solid mixtures whose constituents all
share the same reference configuration. Notably, Lanir’s approach for modeling soft
tissues using continuous fiber distributions (Lanir 1979, 1983) relies on the superpo-
sition of fiber bundles that may contribute to the tissue response only if their normal
strain is tensile, as illustrated in Eq. (82). In his approach, which has been widely fol-
lowed in the biomechanics literature, only fiber bundles that are in tension contribute
to the response; thus, each fiber bundle may be viewed as a mixture constituent, even
while the number of constituents in the mixture varies with the state of loading. Yet,
all fibril bundles share the same reference and current configuration, satisfying the
assumption of a constrained solid mixture.

4.3 Growth and Remodeling

As shown in the mass balance equation (1) for each constituent, mixture theory
allows mass exchanges, thus chemical reactions, between its constituents. Reactions
that add or remove mass from the solid matrix of a biological tissue may describe
growth and remodeling. An elegant demonstration of this basic concept was presented
by Cowin and Hegedus (1976), who modeled interstitial growth and remodeling of
bone in response to mechanical loading using a mass supply term for the solid matrix,
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which depended on the state of strain. The supply of mass to the solid matrix came
from implicit soluble constituents available in the trabecular pore space. Modeling
growth using mixture theory has since been reprised by many authors, as reviewed
by Ambrosi et al. (2011) and Ateshian and Humphrey (2012), and is currently an
active topic of investigation.

It is intriguing that the theory of reactive mixtures may also be used to model
classical phenomena such as viscoelasticity, where the viscous behavior results from
bonds that break in response to loading, and reform in a stress-free state (Ateshian
2015). Other related phenomena, such as damage mechanics, may thus be similarly
modeled, where bonds break permanently in response to loading. A main advantage
of this approach is that bond mass densities are observable variables whose temporal
evolution is governed by the equation of mass balance. Since the evolving composi-
tion of a material may be measured experimentally, reactive mixture models may be
validated directly against such measurements.

5 Summary

Mixture theory is an elegant continuum mechanics framework that is well suited for
modeling biological tissues. While many biomechanics investigators have opted to
use this framework since its introduction in the 1960s, it is fair to state that some of
its earliest and most determined proponents were Van C. Mow and W. Michael Lai,1

who applied it to the modeling of articular cartilage, and worked over several decades
in an effort to validate and extend this framework to accommodate the complexities
of biological tissues. With their biphasic theory, they applied mixture theory to model
biological tissues as deformable porous media.

Porous media had already been successfully modeled using earlier theories, first
proposed by Fillunger, then Terzaghi, as reviewed in the captivating historical per-
spective of Boer (1996), subsequently advanced by Biot (1941) as consolidation the-
ory, and recast as poroelasticity theory by Rice and Cleary (1976). Indeed, Bowen
(1980) and Mow and Lai (1980) pointed out the equivalence of their approaches to
Biot’s earlier work. However, despite its elegance, the poroelasticity framework did
not provide the foundations for extending the theory to multiple constituents, nor
mass exchanges among the constituents. By using mixture theory, Lai et al. (1991)
showed that biphasic theory could be systematically extended to triphasic theory,
which laid the foundations for many subsequent developments, as partially reviewed
in Sect. 4.

Many other investigators have independently demonstrated the value of mix-
ture theory for modeling complex phenomena in biological tissues, as also partially
reviewed above. Because theoretical frameworks are critically dependent on con-
stitutive assumptions, there is no unique formulation of mixture theory for a given
combination of fluid and solid constituents. Consequently, I felt that an exhaustive

1Mow and Lai were this author’s doctoral advisors and mentors, starting in 1986.
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review and comparison of mixture models in biological tissues was beyond the scope
of this chapter. The modeling approach reviewed here provides the foundation of the
framework and I have found useful in my own investigations and applications to bio-
logical tissues. In collaboration with Jeffrey Weiss, Steve Maas and other colleagues,
we have strived to provide finite element computational tools (Maas et al. 2012) that
implement biphasic and multiphasic theories (Ateshian et al. 2011, 2013), includ-
ing contact mechanics (Ateshian et al. 2010, 2012) and chemical reactions (Ateshian
et al. 2014), to facilitate the dissemination of this framework within the biomechanics
community.
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A Bio-chemo-mechanical Model for Cell
Contractility, Adhesion, Signaling, and
Stress-Fiber Remodeling

Robert M. McMeeking and Vikram S. Deshpande

Abstract A bio-chemo-mechanical model is described that targets contractility,
adhesion, signaling, and cytoskeleton formation and remodeling, where the effort
in the case of the last phenomena is focused on actomyosin stress-fibers. The con-
tractility of the cell is driven by the stress-fibers, which also determine much of the
active and passive mechanics that characterize the cell’s mechanical behavior. The
stress-fibers attach to adhesion proteins that connect the cell to an extracellularmatrix
or to a substrate, and apply contractile force through them. This in turn generates
signals that can trigger cytoskeleton formation and remodeling. The signals can also
arise from external sources such as nervous impulses and biochemical changes to
the cell’s surroundings. The model is installed as a user element in a finite element
code and used to simulate cell behavior in vitro, such as contraction on a compliant,
smooth, flat substrate, or on a bed of compliant posts. Interactions with patterned
substrates are also modeled, such as where cells have a limited area to which they
can adhere, or where the cells interact with grooves. The results of these simulations
are very encouraging as they are largely consistent with observed cell behavior.

1 Introduction

About 10 years ago we became interested in the biomechanics of eukaryotic cells,
mainly due to the experiments of Chen and coworkers (Tan et al. 2003), where cells
are placed on a bed of small compliant posts and, adhering to them, contract and
cause bending of the posts. The post deflections can be measured, and as a result the
forces being applied by the cell, typically on the scale of tens of nanonewtons, can
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be quantified. Many interesting phenomena emerge from such experiments, such
as how cells interact with posts of various levels of stiffness, and with differing
numbers of posts. These phenomena are paralleled by equivalent observations of
cells on compliant, smooth, flat substrates, or on patterned substrates consisting
of topography (say grooves) or limited segments to which the cell can adhere. We
developed a bio-chemo-mechanical model for the cell contractility, its adhesion to its
substrate whether smooth or post-like, the relevant biochemical signaling that goes
on inside the cell, and the consequent activity within the cell such as cytoskeleton
formation and remodeling. Our purpose in developing the model was to aid in the
development of a deeper understanding of the cell behavior being observed in the
experiments, and to support the development of further experimental activity. In
addition, we hope that our model can be applied to situations where cell mechanics,
contractility, and adhesion are known to be important in biology and medicine, such
as cell motility, wound healing, development, and embryology, the behavior of stem
cells, and in diseases such as cancer, congestive heart failure and cardiac recovery
after infarctions where forces and stiffness are known to be relevant parameters. This
hope is as yet unrealized, but we aim to continue to develop our model to bring it to
a state of readiness where it may yet play such a role.

The purpose of this article is to summarize the model, originally presented in
Deshpande et al. (2006, 2007), and to describe some results obtained with it. In
doing so, we will describe the results of some experiments on the mechanobiology
of cells that we have been able to simulate. However, we do not intend this paper to
be a comprehensive review of the behavior of cells in a mechanical setting, or of their
active mechanical behavior. We only describe experiments that have either guided
our thinking in the development of our models or that we have simulated with some
degree of success. Similarly, we will not review the broad category of models for the
mechanobiology of cells and will focus only on our own work to provide a summary
of it. Furthermore, much of the biochemistry that is a background to our work, and
some of the mechanics, is described in the textbook of Alberts et al. (2008).

We note also that the model we describe is one currently in transition. There are
certain elements of it that have a high degree of phenomenology built in to them,
and our current view is that some of this should be replaced by model features that
possess a more fundamental treatment of the chemistry and physics. In fact, one of
us is a co-author of a recent paper that puts forward some of the ideas and treatments
that bring amore fundamental approach to some aspects of the chemistry and physics
of the cell behavior than has previously been embedded in our model. This paper,
Vigliotti et al. (2015b), addresses the response of cells under cyclic straining in vitro
on flat substrates and within 3-dimensional synthetic extracellular matrices. As a
result of this new treatment, the complex and subtle differences in behavior in the
relevant experiments have been rationalized, whereas the previous version was only
able to simulate the results of the experiments to a low level of fidelity. Therefore,
the more fundamental treatments embedded in the new version of the model, and
their success in their ability to model the situation described, encourage us that they
have value that can be exploited to simulate further important phenomena in the
mechanobiology of cells. This development may suggest that summarizing the prior



A Bio-chemo-mechanical Model … 55

features of the model in the current article is pointless; however, many aspects of
the model remain the same, and the phenomenological treatments that are used in
many cases give the same results as would arise from the new, more fundamental
treatment. Furthermore, at this turning point a retrospective assessment of where we
are has value and is briefly summarized in this paper.

2 Relevant Cell Features

The behavior of the cell that is described by the model arises from stress-fibers, long
fibrils that consist of actin protein chains entangled by myosin molecular motors.
These fibrils, described in further detail by Alberts et al. (2008), are one component
of the cell cytoskeleton. In addition to the stress-fibers, in the cytoskeleton there are
intermediate filaments and microtubules, also fibrillar elements. However, we focus
on the stress-fibers as they are the source of cell contractility, and therefore mechani-
cally provide one of the most important contributions to the cell active behavior. The
cytoskeleton lives within a lipid cell membrane that surrounds the cell, and within a
hydrous cytosol that has protein monomers for the fibrillar elements of the cytoskele-
ton dissolved in it. In addition, there are other elements within the cell such as the
endoplasmic reticulum, the mitrochondria and the golgi body that all play roles in
the biochemistry of the cell. For example, the mitrochondria generate ATP, the fuel
for many processes that take place within the cell, including the contractility driven
by the myosin motors. Central to the cell is the nucleus where its DNA is stored
and gene transcription takes place. All these features are described in more detail by
Alberts et al. (2008).

An illustration of the geometry of stress-fibers is shown in Fig. 1, where they have
been visualized in vitro by proteins that attach to them and cause fluorescence. In the
left-hand image the stress-fibers can be seen and in the right-hand image the bright

Fig. 1 A cell treated to enable visualization of stress-fibers (left) and focal adhesions. In the right-
hand image image the nucleus is also visible
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short streaks are focal adhesions. The latter consist of a plaque of various proteins
inside the cell membrane and adjacent to it. One protein within the plaque, integrin,
is transmembrane and attaches to ligands outside the cell. This anchors the focal
adhesion either to the extracellular matrix or, in vitro, to a substrate that has been
treated to present ligands. The other end of the integrin molecule attaches to the focal
adhesion plaque, which in turn attaches to the end of one or more stress-fibers. There
are usually multiple integrins associated with a given focal adhesion; indeed a focal
adhesion is defined to be an attachment that encompasses many integrin proteins.

In vitro, a substrate can be treated with materials, such as fibronectin, that present
ligands favored by integrins for attachment. This can be doneon aflat stiff surface, and
a cell in a nutrient bath adjacent to this surface will spontaneously adhere. However,
the most interesting results are obtained when the substrate is compliant so that the
cell is capable of deforming the substrate by its contractile apparatus. Experiments on
such surfaces have shown that many types of cells are indeed contractile, and respond
both biochemically andmechanically to the stiffness of the substrate, e.g., by growing
amore profuse cytoskeleton that is more powerful in contraction when the stiffness is
at a favorable level. The most easily quantifiable experiments in terms of mechanics
are those involving cells on posts, since it is straightforward to measure the forces
applied to the posts by the cells. An illustration of this set up, developed by Tan et al.
(2003), is shown in Fig. 2 which is a top view of a smooth muscle cell adhered to
PDMS posts having fibronectin on their tips. The posts are 3µm in diameter and tens
of μm long, and it can be seen that the cell is capable of bending the posts, having
done so by contracting. The results of an experiment visualizing the actin in the cell
and showing arrows that indicate the forces applied is illustrated in Fig. 3. A temporal
graph of the magnitudes of the forces applied to posts by a smooth muscle cell is
given in Fig. 4. In the relevant experiment by Tan et al. (2003) the cell was at first
down regulated so that it was relatively inactive, a state it was in at time zero in Fig. 4.

Fig. 2 A smooth muscle cell
adhered to PDMS posts
whose tips are coated with
fibronectin. The cell has
adhered to the posts,
contracted, and as a result
deflected the posts. The scale
marker is 10µm. Results
from Tan et al. (2003)
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Fig. 3 A cell imaged for
actin (green) with arrows
showing the magnitude and
direction of force applied to
the tip of the relevant post.
The arrow at bottom right is
a scale indicator whose
length equals 20nN

Fig. 4 Force magnitudes
applied to 25 posts by a
smooth muscle cell. Shown
as a function of time elapsed
after up-regulation of the
cell. Results from Tan et al.
(2003)

The cell was then stimulated biochemically at time zero, with the result that it remod-
eled its cytoskeleton, and in doing so increased the forces generated by its contractile
machinery. In this case, the post is attached to approximately 25 posts, and it can be
seen that the forces applied rise as high as 100nN and take approximately 5min to
mature. We note that some aspects of the behavior of cells on posts are influenced
by the fact that only discrete areas are available for the cell to adhere to, and that
the tips of the posts are all in the same plane. Therefore, the distribution of actin and
the degree of contractility may be influenced by the synthetic setting that the cell
is placed in. However, almost all of the phenomena observed in cells on posts are
reflected by the behavior of cells in other settings, such as in 3-dimensional gels.
Furthermore, we judge the response of cells on posts to be a valid set of results for
guiding the development of a model and for verifying and validating it.

The significance of focal adhesions is illustrated in the results of experiments
carried out by Théry et al. (2006), who formed patterned, flat, surfaces by coating
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Fig. 5 Cells on fibronectin patterns stained to allow visualization of fibronectin (left column),
vinculin (second column from the left) and actin (second column from the right). Vinculin is a
protein present in focal adhesion complexes. The column on the right is a merger of the other three
columns. Results from Théry et al. (2006)

fibronectin in shapes of the letters of the alphabet on a stiff substrate. They then
allowed cells to adhere to the fibronectin, with results shown in Fig. 5. In these
images it can be seen that the cells extend to cover almost the convex hull of the
fibronectin patterns, but the cells adhere directly only to the fibronectin, as vinculin,
a focal adhesion protein, is visible only where there is fibronectin available for the
adhesion to bind to. Furthermore, the focal adhesions are clustered around the edges
of the fibronectin patterns with highest curvature. The focal adhesions are providing
the means by which the cells anchor themselves to the substrate, which they do so by
binding to the fibronectin, which is an extracellular matrix protein. This illustrates
the role of the focal adhesions, or focal complexes, as they can connect the cells to
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the adjacent extracellular matrix, thereby enabling cells to perform their functions
in conjunction with nearby cells of like type.

We note that in the images of Fig. 5 there are significant areas of the cells that
are not adhered directly to the fibronectin, as there are large areas where vinculin is
absent. We see, therefore, that the focal adhesions form around the perimeter of the
available ligands, and that actin stress-fibers are strung fromone set of focal adhesions
to another. Although this behavior is not universal in vivo, it is a notable aspect of the
role that focal adhesions play.We note also that that there are pronounced amounts of
actin visible along the unadhered edges of the cells, and that these edges are concave
outwards due to contractility of the cell cytoskeleton.

3 The Model

As noted above, our model focuses on the cytoskeleton and the adhesions, but has
a rudimentary representation of other features of the cell, captured by background
elasticity. We use isotropic, linear infinitesimal strain elasticity, but this could be
replaced by something more complicated such as viscoelasticity or nonlinear large
strain elasticity. Indeed, in some versions of our model applied to some simulations,
the latter is what is used for the background mechanical behavior. The stress-fiber
model consists of three elements. The first is a signal that initiates the processes of
interest; it could be generated by a nervous impulse, or it could be the outcome of
a feedback loop that involves forces being applied to proteins within the cell. An
example of the latter is that focal adhesions are known to generate signals when
forces are applied to them. In the initial version of the model, the signal is very
simple, given by

C = e−ti /θ , (1)

where ti is the time elapsed since initiation of the signal and θ is its decay time.
Therefore the signal rises to unity very rapidly and decays to zero as time elapses
thereafter. This behavior is designed to simulate the concentration of signaling pro-
teins and ions, with an example of the latter being Ca++. The signal is applied
simultaneously everywhere in the cell; in later versions of the model developed by
Pathak et al. (2011) we have used reaction-diffusion equations to simulate signals,
including the release of signaling proteins from their sources as the signal initiates,
the downstream activation of further signaling proteins and the accompanying ions
such as calcium. We have found that in many settings the simple signal in Eq. (1)
applied simultaneously everywhere in the cell is an adequately accurate representa-
tion of the deeper complexities of the signaling process.

The second element of the model is the chemical kinetics of stress-fiber polymer-
ization and depolymerization. This is stated as

dη

dt
= (1 − η)

k̄fC

θ
−

(
1 − T

ηTmax

)
η
k̄b
θ

, (2)
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where at a material point in the cell η is a scaled concentration of stress-fibers
emanating from that point in a given orientation, t is time, k̄f/θ is the forward rate
constant for the polymerization reaction, k̄b/θ is the reverse, i.e., depolymerization
rate constant, T is the tension in the stress-fiber and Tmax is a cell phenotype dependent
constant. We note that the signal is embedded in the forward reaction term in Eq. (2),
and therefore sets off the process of polymerization of stress-fibers from actin and
myosin proteins. Furthermore, ηTmax is the isometric tension in a stress-fiber at
concentration η. The presence of the stress-fiber tension in the depolymerization
term of Eq. (2) makes the process mechanosensitive. If the tension T reaches the
isometric level, ηTmax, depolymerization is eliminated and a stable stress-fiber can
be retained. In the absence of the term in parenthesis containing the stress-fiber
tension the signal in Eq. (2), which decays to zero after its initial rise, would simply
initiate polymerization that would lead to depolymerization that would sweep away
the stress-fiber. Therefore, in our model stress-fibers can only be formed where they
can sustain isometric tension at some level of stress-fiber concentration, whichmeans
that theymust be constrained in someway to a foundation that can sustain the tension
applied to it. This foundation is considered to be focal adhesions that connect the
stress-fibers to the extracellular matrix or to a substrate to which the cell is affixed.
In the earliest version of the model, these focal adhesions form spontaneously on
demand so that they are always available to support stress-fibers that are able to attach
to them. As noted above, η is a scaled concentration equal to the number passing
through unit area divided by the maximum possible number that can do so. Its value
is therefore limited to 0 ≤ η ≤ 1.

The third element of ourmodel is a constitutive law for the stress-fiber contraction,
given by

T

Tmax
=

⎧⎪⎪⎨
⎪⎪⎩
0 ε̇/ε̇0 < −η/k̄v,

η + k̄v
ε̇

ε̇0
−η/k̄v ≤ ε̇/ε̇0 ≤ 0,

η ε̇/ε̇0 > 0,

(3)

where k̄v is a rate constant or viscosity parameter, ε̇ is the strain-rate of the stress-fiber
(positive in extension) and ε̇0 is amaterial constant. Themodel inEq. (3) is justified by
Hill (1938) muscle kinetics and is a simplified version of it, approximated into three
linear segments instead of the usual nonlinear function. Such justification relies on
the fact that the proteins in stress-fibers (myosin II and actin) are identical to those
present in the sarcomeres of skeletal muscle, and therefore will possess the same
dynamic constitutive response. Furthermore, stress-fiber shrinkage is a somewhat
slow process, and therefore the original Hill (1938) model is assumed to be an
adequate representation of their constitutive behavior.

The equations above are homogenized into a 2-dimensional or 3-dimensional
formulation through the construction of a representative volume element (RVE) that
is used to compute the stress. We will summarize the 2-dimensional case as it is
simpler and is valid for a spread cell whose thickness is very small compared to its
other dimensions. A 3-dimensional formulation is given in papers such as that by
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Fig. 6 A spread cell and a representative volume element (RVE) extracted from it. The layout of the
cytoskeleton is represented by stress-fibers emanating from the center of the disk in all orientations
within the plane of the flat cell, which has uniform thickness h. The density of stress-fibers passing
through unit area at the perimeter of the RVE is a function of position, φ, around the perimeter.
Similarly the concentration and distribution of stress-fibers at one point in the cell can be very
different from those elsewhere in the cell

Ronan et al. (2012) and Dowling et al. (2012). For the 2-dimensional formulation we
consider the disk shaped region shown in Fig. 6, sometimes known as a microdisk or
micropill. The layout of the cytoskeleton is represented by stress-fibers emanating
from the center of the disk in all orientations within the plane of the flat cell, which
has uniform thickness h. The density of stress-fibers passing through unit area at the
perimeter of the RVE is a function of position, φ, around the perimeter. Similarly
the concentration of stress-fibers at one point in the cell can be very different from
that elsewhere in the cell. We first compute the stress-fiber tension at φ according to
Eq. (3) and convert it to a stress by use of

σ(φ) = 2T (φ)

πRh
, (4)

where R is the radius of the RVE as shown in Fig. 6. A plane stress tensor at the
material point centered within the RVE is then given by

[
σ11 σ12

σ12 σ22

]
= 1

π

π/2∫
−π/2

[
σ(φ) cos2 φ 1

2σ(φ) sin 2φ
1
2σ(φ) sin 2φ σ(φ) sin2 φ

]
dφ. (5)
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Note that in this formulation we have assumed that the rigid rotation of the RVE
associated with the deformation is negligible and therefore no adjustment of the
stress components into the current configuration is used. In our paper Deshpande
et al. (2007) this adjustment is given to provide a more general case and is used
throughout our numerical computations. To the stress deduced fromEq. (5) are added
components to represent other elements of the cell acting in parallel to the stress-
fiber cytoskeleton. For example, linear or nonlinear continuum elasticity is used to
represent microtubules, intermediate filaments (i.e., other elements of the cytoskele-
ton are modeled as passive elements), the plasma membrane, the nucleus and other
organelles within the cell. The total Cauchy stress in the cell is therefore

Σi j = σi j + σA
i j , (6)

where σA
i j is the stress added in the manner described above. Note that the stress σA

i j
is usually derived from uniform mechanical properties within the cell such as the
elasticities, and therefore does not recognize spatial heterogeneities within the cell.
However, in some of our 3D computations, with a more elaborate stress tensor than
is given in Eq. (5), organelles such as the nucleus are identified explicitly as separate
regions of the cell and given their own mechanical properties.

We have developed user materials for finite element codes such as the Abaqus
software (2013) that encompass all the phenomena and formulations summarized in
Eqs. (1)–(6), thereby enabling us to undertake fairly elaborate computations. Simi-
larly, 3-dimensional user elements have been developed for the same purpose, and
have been used in papers such as Ronan et al. (2012) and Dowling et al. (2012).

4 Results

The model described above has been used to simulate a number of phenomena in
the response of cells to their mechanical environment. In one case, a spread cell
is attached to 121 compliant microposts that are represented as springs in a square
array in the numerical simulations. The cell is down regulated so that its stress-fiber
cytoskeleton is minimal and its contractile stress negligible. It is then stimulated
by a signal, so that stress-fibers polymerize, attach to posts through focal adhesion
connections, and, by contracting, pull on the posts. The results for post deflection
magnitudes, or equivalently the magnitude of forces applied to posts, are shown in
Fig. 7 as a function of time elapsed after stimulation. Since the problem has twofold
symmetry results for one quarter of the system are shown in Fig. 7, i.e., for the 25
posts in a given quarter that displace. Material and cell parameters can be identified
to quantify the forces generated and applied to the posts by the cell activity. This
will not be pursued here, but instead we will simply draw the reader’s attention to
Fig. 4, which displays the equivalent experimental results of Tan et al. (2003) for a
cell on 25 posts. The similarities between the results of the simulation in Fig. 7 and
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Fig. 7 Simulation results for the displacement of the tips of posts to which a contractile cell is
attached. The cell is at first quiescent, but is then stimulated, polymerizing a stress-fiber cytoskeleton
that attaches to posts via focal adhesions, and, by pulling on the posts through contractility, displaces
the tips of the posts by a magnitude U . The length of the posts is L and the result are shown as a
function of time elapsed after stimulation

those for the experiments in Fig. 4 are clear. Given that a 100nN force would deflect
a post tip by 1% of its length, and that the signal relaxation time, θ , is approximately
1min, the equivalency between the two sets of results is very close. Furthermore
the experimental observation that posts around the perimeter of the cell experience
greater force and displacement magnitudes than posts in the interior of the cell is
present also in the results of the simulation.

4.1 Influence of Substrate Stiffness on Cell Response

Having shown that the model simulates well the response of cells adhered to micro-
posts, we now investigate the influence of post stiffness on the cell’s behavior. The
motivation behind this step is the experimental observation of Lo et al. (2000), Dis-
cher et al. (2005) and others that cells generate a prominent cytoskeleton and apply
relatively high contractile forces to a substrate when that substrate is stiff, but when
the substrate is compliant the cytoskeleton is less well developed and the contractile
forces are lower. The relevant simulations, described by Deshpande et al. (2006), are
carried out for a square, spread cell that is attached to posts at each of its corners, and
are implemented for an initially quiescent cell that is stimulated by a signal at time
zero. As with the simulation for the cell on 121 posts, it then builds a cytoskeleton,
attaches stress-fibers to posts via focal adhesions, and, by contracting the stress-
fibers, pulls on the posts. Results for the post deflections and forces applied to the
posts are shown in Fig. 8. The lower of the diagrams in Fig. 8 demonstrates that stiffer
posts lead to higher forces being applied to the posts. The nonmonotonic response
observed for the higher stiffness posts is a result of the interplay among the various
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Fig. 8 Simulation results for
the post deflections and
forces applied to corner posts
by a square, spread cell. The
post deflections are
normalized by 50µm which
is the edge length of the cell,
and the force applied to the
post is normalized by
17.5nN, which is the largest
force the stress-fibers can
exert on a post. The signal
decay time, θ , is 720 s. The
number in the box over each
curve is the normalized
stiffness of the posts, where
the normalization factor is
0.35nN/µm

time constants in the model, details of which for these computations are given in
Deshpande et al. (2006). Note that the post displacements follow the opposite trend
and are larger for themore compliant posts. Thus themodel does not yield cell behav-
ior that conforms to homeostasis for the post deflections, i.e., the cell deformations
do not seek a fixed value of the final post deflections that is independent of the post
stiffness.

The source of the behavior summarized in Fig. 8 is the interaction of the post
stiffness with the depolymerization of stress-fibers. A stress-fiber attached to a stiff
post and pulling on it will not be able to shrink rapidly and, fromEq. (3), will generate
a high tension before the post has deflected very much. As a result T in Eq. (2) will
remain close to ηTmax and there will not be much depolymerization. That which
does occur will cease when ηTmax reaches a value equal to T , and the stress-fiber
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network will be stabilized in isometric condition at a relatively high value of η. Thus,
the stress-fiber cytoskeleton network will be relatively profuse. In turn, Eq. (3) tells
us that with a relatively high value of η, the force applied by the stress-fiber to the
post will be high. In contrast, when a stress-fiber is attached to a compliant post and
pulls on it, the stress-fiber will be able to shrink relatively rapidly as the post deflects
significantly. As a result T in Eq. (2) will fall significantly below ηTmax allowing a
great deal of depolymerization.ThusηTmax will equatewithT at a relatively lowvalue
of η, leaving an isometric network of stress-fibers that is not very well developed.
Furthermore, the result from Eq. (3) indicates that when η is low, the isometric force
generated by the stress-fiber is small, and thus the force applied to the post is relatively
low. These observations regarding the extent of cytoskeleton development and the
level of forces applied to the substrate are consistent with experimental observations,
such as those made by Lo et al. (2000) and Discher et al. (2005).

4.2 Influence of the Number of Posts to Which
a Cell Is Attached

Tan et al. (2003) carried out an experiment to investigate the behavior of smooth
muscle cells when allowed to adhere to a limited number of posts. They coated
fibronectin on a limited number of posts and attached cells to them where the posts
elsewhere had no fibronectin, and were thus unattractive for attachment by the cells.
In this way Tan et al. (2003) were able to adhere the cells to square arrays of 4, 9,
16, and 25 posts. In fact, the plot shown in Fig. 4 depicts the forces generated when
the cell is attached to 25 posts. From the post deflections, Tan et al. (2003) computed
the average magnitude of the forces applied to the posts, and obtained the surprising
result that this value rose with the number of posts. These results are shown in Fig. 9.
The reason why these results are surprising lies in the observation in Figs. 4 and 7
that the magnitude of the force applied to perimeter posts is larger, sometimes much
larger, than the magnitude applied to interior posts. Thus as one introduces more
interior posts by increasing the number in a square array, i.e., going from zero, to 1,
4 to 9 interior posts as the total number of posts is taken from 4 to 25, the force per
post should fall if the force applied to the perimeter posts retains its magnitude as
the number of posts increases. The experimental results indicate that this trend is not
occurring, and that the magnitude of the forces being applied to the perimeter posts
must be rising as the number of posts increases.

We have simulated this situation by placing our model cells on different numbers
of posts in square arrays, going as high as 21 by 21 posts, and initiating stress-fiber
polymerization by imposing a signal. The results are obtained in nondimensional
form, andwehavefitted one set of them to the experimental data by forcing agreement
with the experimental result for the largest number of posts in Fig. 9. Although Fig. 9
is not a linear plot on the abscissa, it happens that our four results when plotted on
Fig. 9 fall in a straight line, which is the dashed one shown in that figure. It can be
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Fig. 9 Average magnitude
of the force applied by a
smooth muscle cell to posts
as a function of the size of
the cell. The four bar graphs
correspond from left to right
to cells on 4, 9, 16, and 25
posts. The dashed line is a
result of one of our
simulations fitted to the
result for the largest cell

seen that our model correctly predicts the scaling of the average force per post as
the number of posts is increased. This behavior comes about in our model because
a cell sitting on many posts senses a stiff environment, whereas a cell attached to
only a few posts is in a compliant one. Therefore the cell responds with the same
trend that is seen when it interacts with stiff posts as opposed to the same number
of compliant post; the force magnitudes applied to the posts rise as the environment
stiffens. Thus, in the stiff environment where the cell is sitting on many posts it
responds by generating a high force per post, whereas in the compliant situation of
being on a few posts causes the cell to generate lower forces per post.

As noted above, we carried out our calculations for a very large number of posts
in a square array, up to 441. By that stage in some of our simulations for stiffer posts
the average magnitude of the forces applied to the posts is falling as the number of
posts is increased. This is an indication that the effect referred to above is occurring;
namely as more interior posts are introduced, the force per post is diluted because
the interior posts experience lower forces than the perimeter posts. To investigate
this situation, we consider experiments by Yan et al. (2007) for fibroblasts where
much smaller posts are used, so that many more can be placed under a cell of a given
size. We find that our simulations for this case agree with the data, which now see a
reduction in force per post as the number of posts is increased. Both the experimental
data and the results of the simulations are published in McGarry et al. (2009).

4.3 Cells Subject to Cyclic Stretch

Certain types of cells in the body are subject to stretching and shortening in a cyclic
manner; a prominent example is the vascular endothelial cell that lines arteries.
Since an artery’s diameter expands and contracts with the cardiac cycle, these cells
are subject to cyclic stretch at a frequency of approximately 1Hz. An experimental
observation is that in vivo stress-fibers align transverse to the direction of stretch, and
therefore align with the blood flow direction in the artery (Zhao et al. 1995). It should
be noted that fluid shear stress from the flowing blood also influences the stress-fiber
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orientation, but we will confine ourselves to the case where stretch dominates the
resulting morphology. This situation can be reproduced in vitro by placing a cell on
a flexible flat substrate and imposing a strain cycle on it, an experiment that has been
been carried out by several research groups. Results from some of these efforts are
summarized in the paper by Wei et al. (2008), and the experimental setup for one
of them, carried out by Kaunas et al. (2005), is depicted in Fig. 10. As indicated in
that graphic, in this case uniaxial strain in the plane of the substrate is imposed on
the cell, so that ε22 = 0. The amplitude of ε11 during cycling is varied from zero to
10%. Images of the cells after 6h of cycling at 1Hz are shown in Fig. 11, which
is taken from Kaunas et al. (2005). In the case of isometric strain imposed on the
cell, i.e., ε11 = 0, the distribution of stress-fibers is essentially isotropic at the end of
the experiment after steady state conditions have set in, with equal numbers found
in any orientation within the plane of the cell. At ε11 = 10% the stress-fibers at the
end of the experiment in steady state are almost all aligned in the direction of zero
strain, i.e., parallel to the x2-axis. Results from simulations carried out with our bio-
chemo-mechanical model are shown in Fig. 12. The graphs show the development
of stress-fiber polymerization with time during uniaxial cyclic stretch at 1Hz, with
the degree of polymerization shown in different orientations relative to the direction
of cyclic stretch which is at 0◦. It can be seen that by 6h the cell is in steady state,
and that 10% straining produces a greater degree of stress-fiber alignment than 3%.
A polar plot showing the stress-fiber orientations after 6h is also shown in Fig. 12,
which brings out clearly the greater degree of alignment in the case of the larger

Fig. 10 Experimental setup for the in vitro strain cycling of cells attached to flexible substrates.
The strain cycle imposed on the substrate is also experienced by the base of the cell where it adheres
to the substrate
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Fig. 11 Cells that have been subjected to uniaxial cyclic straining in vitro for 6h at 1Hz. The cells
have been stained to visualize the stress-fibers, with an increased degree of alignment associated
with an increased magnitude of cyclic stretch. Results from Kaunas et al. (2005)

Fig. 12 Degree of
polymerization of
stress-fibers as a function of
time during cyclic stretch at
1Hz as simulated using the
bio-chemo-mechanical
model. The results are shown
for various orientations
relative to the cyclic stretch
direction which is at 0◦.
Greater alignment is
achieved at 10% straining
than at 3% and the alignment
is then transverse to the
direction of cyclic stretch
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strain. It is also clear that the stress-fibers tend to align in the nonstretching direction,
just as is observed in the experiments.

In our model the phenomenon of alignment of the stress-fibers arises from the
tendency for them to polymerize and depolymerize. First we note that a signal is
initiated at the beginning of the stretching stage of the strain cycle, consistent with
the fact that focal adhesions generate signals when tension increments are applied
to them. Since the decay time for the signal is rather long compared to the period of
cycling, one signal has hardly decayed before the subsequent one replaces it. As a
consequence one may regard the simulations as ones in which the signal is perma-
nently on at itsmaximumstrength. This feature drives continued polymerization in all
orientations within the cell at all times during the simulations. The different results at
different orientations therefore depend solely on how depolymerization is occurring.
Because isometric behavior induces a large tension in the stress-fibers, and because
such a tension precludes significant depolymerization, many stress-fibers form and
are preserved in the isometric, nonstretching direction in all cases. In contrast, the
shortening stage of the cyclic straining leads to a lower tension in the stress-fibers,
allowing depolymerization to occur. It should be noted that the stretching stage of
the strain cycle is associated with a high tension in the stress-fibers so that significant
depolymerization does not then occur. However, the depolymerization associated
with the stage of shortening is sufficient to reduce the stress-fibers in the shortening
direction, leading to the results depicted in Fig. 12.

4.4 Cells on Patterned Substrates

As noted above in Sect. 2, Théry et al. (2006) formed patterns of fibronectin in
shapes of letters of the alphabet and allowed cells to adhere to them, with results
that are illustrated in Fig. 5. The features of these results have been described already
in Sect. 2, and will not be repeated here. To simulate these results, it was found
necessary to develop amore detailedmodel of focal adhesions, including their growth
that is coupled to the development of the stress-fiber network. For this development,
described in Deshpande et al. (2008), emphasis is placed on the role of integrins.
These proteins are transmembrane elements that are capable of connecting the focal
adhesion plaque to ligands external to the cell, and therefore binding the cell to the
extracellular matrix or to a substrate in vitro. The focal adhesion plaque is a complex
aggregate of proteins, including vinculin, and attaches to stress-fibers to make the
connection between the adhesion and the cytoskeleton. It is vinculin that is visualized
in Fig. 5 to provide the images of the locations of the focal adhesions.

4.4.1 Focal Adhesion Model

The integrin protein has two configurations, a bent state and a straight one as shown in
Fig. 13,where the gray patches at the bottomof themolecules represent themembrane
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Fig. 13 The integrin protein shown in its two configurations, the bent and straight states. The gray
patch at the bottom represents the membrane, in which the integrin sits

in which the integrin is embedded. In the straight configuration the integrin can bind
to the focal adhesion plaque and to extracellular ligands, and therefore becomes
immobilized. In the bent state, interactions among the complexes of the protein
preclude it from binding to any other entity. Furthermore, its embedment in the
membrane involves only physical bonds, so that the bent integrin is free to move
around on the membrane surface of the cell. In the bent state the energy of the protein
is low, whereas it is high when the integrin is straight. However, the difference in
energy between the two states is relatively low and thermal activation is capable
of spontaneously converting one to another. We therefore assume thermodynamic
equilibrium between integrins in the straight and bent states. The chemical potential
of the bent integrins is given as

χL = μL + kT ln

(
ξL

ξR

)
, (7)

where μL is the standard chemical potential or enthalpy of the protein, k is Boltz-
mann’s constant for the molecule, T is the absolute temperature, ξL is the number
of integrins per unit area of the membrane, and ξR is a reference datum for such
concentration. The chemical potential for the straight, bound integrins is

χH = μH + kT ln

(
ξH

ξR

)
+ Φ(Δ) − FΔ, (8)

where χH , μH , and ξH have definitions analogous to those for the bent integrins,
Δ is the distance between the integrin and an extracellular ligand with which it is
interacting, Φ is the internal energy of that interaction and therefore a function of Δ,
and F = dΦ/dΔ is the force of attraction between the integrin and the extracellular
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ligand. Thus the combinationΦ(Δ) − FΔ is the potential energy of the load applied
to the integrin, and installs mechanosensitivity in the chemical potential of the inte-
grin. The description of the mechanosensitive term in Eq. (8) given above is confined
to a one-dimensional picture that is adequate for flat, spread cells. In that case, the
integrin and the ligand to which it is attracted lie in the same plane and the parameter
Δ is the distance within that plane between the integrin and the ligand. The function
Φ is zero whenΔ = 0, with that state representing a perfect placement of the integrin
and the ligand in regard to their attraction to each other. The function Φ increases
monotonicallywithΔ and has a smoothminimumatΔ = 0. For example, a quadratic
dependence of Φ on Δ is a reasonable model adjacent to Δ = 0. For larger values of
Δ the functionΦ approaches an asymptote as the interaction between the integrin and
the ligand becomes insensitive to increasing distance between them. The asymptotic
value ofΦ at large values ofΔ, when averaged over many integrins, is analogous to a
surface energy as it represents the work that must be done to create a large separation
between the integrins and the ligands to which they are attracted. Furthermore, the
force attracting the integrin to a ligand is zero when they are well separated. We
note that the function Φ is such that Φ(Δ) − FΔ ≤ 0 when the magnitude of Δ is
less than a critical value. Beyond that value,Φ(Δ) − FΔ ≥ 0, andΦ(Δ) − FΔ = 0
only when Δ = 0, and at the critical separation where Φ(Δ) − FΔ changes sign. In
addition, there are complications when a given integrand is interacting with multiple
ligands. Details of these and other aspects of the model are given in Deshpande et al.
(2008) but will not be described here as they are not essential to an understanding of
the mechanosensitive behavior that Eq. (8) induces.

We note that μH > μL . Therefore in the absence of any displacement of the inte-
grin relative to a ligand to which it is bound, i.e., Δ = 0, the equilibrium condition
χH = χL requires exponentially more low affinity, bent integrins than straight ones.
However, if Δ �= 0, but lies below the critical level so that Φ(Δ) − FΔ ≤ 0, equi-
librium will demand an increased number of straight integrins, so that the formation
of focal adhesions is favored by the application of force to them. Such behavior
is observed in experiments, e.g., Chen et al. (2003). In contrast, if the integrin is
pulled strongly away from its favored ligand, Φ(Δ) − FΔ ≥ 0 and equilibrium will
encourage the focal adhesion to disintegrate.

In our model, equilibrium between the low and high affinity integrins is aug-
mented by a trafficking equation that moves the mobile, low affinity integrins on the
membrane by diffusional mass transport. Details of the mass transport equations are
given in the paper by Deshpande et al. (2008), and some enhancements are presented
by Pathak et al. (2011), but this aspect of the model will not be detailed here.

4.4.2 Results from the Simulations for Cells on Patterned Substrates

The resulting focal adhesion formulation, coupled to the cytoskeleton model sum-
marized in Eqs. (1)–(6), is used to simulate the cell behavior depicted in Fig. 5, with
results, developed by Pathak et al. (2008), summarized in Figs. 14 and 15.
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Fig. 14 Distribution of actin resulting from simulations of cells placed on fibronectin patterns. The
shape in blue is the fibronectin patch while the cell is depicted by the color contour plot representing
the concentration and orientation of stress-fibers. Red indicates a high concentration of stress-fibers
while blue depicts a low concentration. The orientation of the stress-fibers is shown by the dashed
lines in the color contour plot

As with many of our simulations, the process of development of the cytoskeleton
is initiated by a signal from a condition in which the cell is down regulated, without a
significant cytoskeleton and lacking adhesions. The integrins are initially distributed
uniformly on the cell membrane and are predominantly low affinity bent ones, with
a few straight ones in equilibrium with the bent type. After the signal is initiated,
polymerization of the stress-fibers begins and evolves into an isometric steady state,
with the resulting structure stabilized by the tension retained within the contractile
stress-fibers. This tension in the stress-fibers is transducted to the straight integrins
that bind to the stress-fibers. The force applied to the integrins encourages the forma-
tion of an ever-increasing concentration of straight ones, which are converted from
the bent type. The resulting depletion of the mobile, bent type of integrin induces
their diffusion on the membrane in an attempt to equalize their distribution. This has
the effect of bringing a fresh supply of low affinity integrins to the locations where
force is being applied to the straight ones, and enables further conversion of bent
ones to the straight configuration, binding them to the stress-fibers and permitting
continued growth of the focal adhesion cluster. This process continues to steady state.
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Fig. 15 Distribution of focal adhesions resulting from simulations of cells placed on fibronectin
patterns. The focal adhesions are the red zone and outline the perimeter of the fibronectin patch

As noted above, the outcomes are shown in Figs. 14 and 15, with the former
depicting the distribution of actin, i.e., the stress-fibers, and the latter giving the con-
centration of high affinity, bound integrins, i.e., the focal adhesions. These results
should be compared with Fig. 5, which shows the experimental observations of the
same features. The following characteristics can be observed in both the experimen-
tal results and the outcomes of the simulations. The actin concentration is highest
adjacent to the unadhered edges of the cell, i.e., in each case the cell has extended
beyond the fibronectin patch to almost cover its convex hull, so that there are regions
where the cell is not adhered to the substrate below it—it is at the edges of these
zones that the actin concentration is greatest. The stress-fibers are aligned parallel
to the nearby edge of the cell, and contractility has deformed the unadhered edge
of the cell into a concave outward configuration. The curvature of these edges in
the simulations agrees with that in the experiments. In both the simulations and the
experiments, the focal adhesions are formed around the perimeter of the fibronectin
patch, with low concentrations of bound integrins in the interior of the patch. In the
experiments the focal adhesions are largely confined to the high curvature edges of
the fibronectin patch, but in the simulations the focal adhesions have extended to such
an extent that they completely surround the fibronectin patch. This discrepancy is the
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only major deficiency in the results of our simulations. However, it should be noted
that during the transient process of developing the results shown in Fig. 15 the focal
adhesions first appear at the high curvature edges of the fibronectin patch. Unfortu-
nately they continue to grow until they completely surround the patch. This outcome
suggests that we have too many integrins present in our simulations, providing an
almost inexhaustible supply of components for the formation of focal adhesions. We
believe, therefore, that if we reduced the initial supply of integrins in our simulations
the growth of focal adhesions would terminate before completely surrounding the
fibronectin patch. In steady state this would leave the focal adhesions clustered near
the high curvature edges of the fibronectin patch, consistent with the experimental
observations.

4.5 Cells Adhered to Elastic Substrates

We have simulated the interaction of cells with flat, compliant substrates using a
3-dimensional extension of themodel. The results of these computations are reported
in Ronan et al. (2014), and an example of these is shown in Fig. 16. This figure is a
color contour plot for cells adhered to elastic substrates. The upper one is a cell on
a relatively stiff substrate, while the lower one sits on a more compliant substrate;
however, in both cases the elastic stiffness of the substrate is low enough that the
contractile tractions generated by the cell are able to distort the substrate. The red
color in the contour plots indicates a high concentration of stress-fibers while the
blue depicts a low concentration. It can be seen that the stiff substrate induces the cell

Fig. 16 A cell on a stiff elastic substrate (upper) and one on a compliant elastic substrate (lower).
The colors represent the concentration of stress-fibers with red being the highest level and blue
being low. The cell has a nucleus, which is the central feature in blue in each case surrounded by a
small concentration of stress-fibers
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to generate a profuse stress-fiber cytoskeleton while the more compliant substrate
does not. Furthermore, the tractions applied to the stiff substrate are much higher
in magnitude than those applied to the compliant substrate, a feature that correlates
with the degree of stress-fiber development. Furthermore, results of Ronan et al.
(2014) not depicted here show that the focal adhesion at the edge of the cell on
the stiff substrate is much larger than that at the edge of the cell on the compliant
substrate. These outcomes of the model in which a stiff substrate induces a greater
degree of cytoskeleton polymerization, higher contractile tractions and larger focal
adhesions are consistent with experimental observations, such as those of Engler
et al. (2006). We note also that the contractility of the cytoskeleton of the cell on the
stiff substrate applies a higher pressure to the nucleus of that cell than when the cell
is on a compliant substrate. This raises the possibility of the mechanics of the cell
playing a role in the biochemistry and genetic regulatory mechanisms that take place
in the nucleus.

4.6 Cells Subject to Shearing Deformations

The 3-dimensional formulation of the cell model has also been used to study the
response of chondrocyte cells being sheared, where these results are fully described
in the paper by Dowling et al. (2012). A schematic of the experimental setup is
shown in Fig. 17 with a simulated cell shown being deformed by the probe. The
cell is adhered to the substrate and the concentration of stress-fibers within it at the
stage of the simulation depicted is shown as a color contour plot with the red color

Fig. 17 A cell being sheared by a probe being moved horizontally relative to the substrate to which
the cell is adhered. The colors in the cell represent the concentration of stress-fibers, which remodel
during deformation of the cell. Red indicates a high concentration of stress-fibers while blue depicts
a low concentration
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indicating a high concentration of stress-fibers and the blue showing a low one. By
comparing Figs. 16 and 17 one can see that during the deformation the cell expe-
riences remodeling of its stress-fiber network, since initially, prior to deformation,
the cell’s stress-fiber network was somewhat similar to that depicted in Fig. 16, and
therefore symmetric about the nucleus. Comparison of the simulation results with
experimental observations by Dowling et al. (2012) indicates that the remodeling
predicted by the simulation is similar to that which occurs in the cell during the
shearing experiment.

In both the experiments and the simulations the load-deflection curve during
shearing is obtained, with all results shown in Fig. 18. The upper plots in the figure,
marked ‘Untreated cells’, are for active cells that are contractile and remodel. It can be
seen that the simulation agrees very well with the experimental results. To emphasize
the importance of the active contractility and the remodeling that occurs in the cell,
shearing was also carried out for a cell treated with cytochalasin D, which disrupts
the stress-fiber network and reduces its contractility. The lower plots in Fig. 18 are
for such cells, and it can be seen that the behavior is not just quantitatively but
qualitatively different from that of active cells. In fact the response of the cells treated
with cytochalasin D can be simulated using a passive, nonlinear elastic model that
stiffens slightly during deformation. Such a model is inadequate for simulating the
active cells, as the shape of their load-deflection curve contrasts with that for treated
cells in that the active cells exhibit stiff response followed by a reduction in tangent
stiffness. The initial stiff response is caused by the active remodeling, and is thus
absent from the behavior of the cells treated with cytochalasin D. These results, as

Fig. 18 Graph of the force versus displacement curve for cells subject to shearing deformation
by a probe. The blue data points are experimental results for a cell in an active state while the
red data points are experimental results for a down-regulated cell. The full lines are the results of
simulations, with the upper plot representing an active cell modeled by our coupled stress-fiber and
focal adhesion formulations. The lower plot is obtained using a passive nonlinear elastic model.
Results from Dowling et al. (2012)
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well as confirming the validity of our model, emphasize the importance of capturing
the active contractility and cytoskeleton remodeling that take place in cells in normal
conditions.

We note that we have obtained equivalent results for cells subject to compression
(Ronan et al. 2012), those being aspirated by pipetting (Reynolds et al. 2014), and for
those interacting with arrays of microposts (McGarry et al. 2009; Ronan et al. 2013).
We have also considered the role of contractility in regulating cell–cell junctions
(Ronan et al. 2015).

4.7 Cells on Grooved Substrates

Lamers et al. (2010) have studied the behavior of osteoblasts adhered to grooved
substrates. The width of the grooves, which in most cases were flat bottomed with
flat, square cross-sectioned ridges, ranged from 10nm to 2µm. In addition, the
study encompassed flat, ungrooved substrates. Lamers et al. (2010) found increasing
alignment of the cells as the pitch of the grooves increased. Of most interest to us
is the degree of alignment of the stress-fibers. In the case of the narrowest grooves
the distribution of orientations of the stress-fibers was indistinguishable from that
observed on the flat, ungrooved substrate, and therefore was essentially isotropic. On
the widest grooves, the stress-fibers aligned themselves so that none was more than
10◦ away from being parallel to the grooves. Examples of osteoblasts from these
experiments on grooves having pitches of 150 and 10nm are shown in Fig. 19. The
contrasting alignment of the stress-fibers is visible.

We have modeled this behavior, with results reported in Vigliotti et al. (2015a).
For this study we utilized reaction-diffusion equations to represent signaling in the
cell, according to Pathak et al. (2011). These simulations involved a 1-dimensional
geometry across a groove, but permitted formation of stress-fibers in any orientation

Fig. 19 Osteoblasts on grooved substrates. In one case, a, the pitch of the grooves is 150nm, and
in the other case, b, it is 10nm
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in the plane of the peaks of the grooves. As with many of our simulations, the process
of developing the stress-fibers is commenced with the initiation of a signal. However,
in this case, the signal emanates from the focal adhesions, which are confined to the
tops of the groove ridges where adhesion ligands are to be found. Due to the time
it takes for the reaction-diffusion equation to transmit the signal over the well of
the groove, the signal then initiates stress-fiber polymerization on a nonsynchronous
basis within the cell, with it commencing later over the well of the groove than
on the tops of the ridges. The development of the stress-fiber network is further
complicated by the fact that, after its initial period of activity, the signal dies away as
the signaling proteins and ions aremoppedupby the cell, implicitly being sequestered
in the reticulum, returned to the focal adhesions, or pumped out through the cell
membrane. As a consequence, the possibility arises that the signal will die before
it can completely cross the well of the groove. If the diffusion distances are great
enough, that is what happens, the case in point being the grooves with the widest
pitches. In that case, due to the absence of a signal over the center of the well,
stress-fibers cannot form there, and instead are confined to the tops of the grooves;
inevitably there are many more aligned with the grooves than transverse to them.
In contrast, when the grooves are narrow, the signal successfully crosses the groove
well, and there can bemany stress-fibers aligned transverse to the grooving direction.

This situation is reflected in the results shown in Fig. 20, which depicts the con-
centration of stress-fibers across the grooves as a function of groove pitch. In the
case of narrow grooves, stress-fibers are to be found above the well of the groove,
whereas for the widest grooves no stress-fibers are found there. As noted above, this

Fig. 20 Simulation results for the concentration of stress-fibers for osteoblasts adhered to a grooved
substrate. The scaling is such that the graph at the top is for narrow grooves and that at the bottom,
i.e., the heavy dark line, is for a wide groove. In the case of the wide groove there are no stress-fibers
above the well of the groove, and stress-fibers are only found on the ridges of the grooving. When
the grooves are narrower stress-fibers succeed in being polymerized across the wells of the grooves
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result translates into alignment of the stress-fibers with the grooves when the pitch
of the grooves is wide, and a lack of alignment for narrow grooves. It is found that,
statistically, the simulations are in agreement with the experimental results of Lamers
et al. (2010) in regard to the degree of alignment of the stress-fibers.

5 Discussion

We have provided a concise description of our bio-chemo-mechanical models for
stress-fiber contractility, cytoskeleton development and remodeling, the formation
of focal adhesions, and the mechanics associated with these phenomena. In addition,
we have described our simplistic representation of a cell signal, and given references
to work where a more realistic signal model, based on reaction-diffusion equations
for the signaling proteins and ions, can be found. We have illustrated how our model
capturesmany of the observed features ofmechanosensitivity in cells, andwe believe
that this validates and justifies our model. We note that the examples given in this
chapter are all focused on single cells; however, we have exercised the model to
simulate interactions between cells (Ronan et al. 2015), and in work by Legant et al.
(2009) that we have not reviewed here we have successfully applied the model to
tissues composed of many cells, and obtained satisfactory results.

Despite our success with the model described here, we are not entirely satisfied
with it. Some of the features, such as the mechanosensitivity present in Eq. (2),
though justifiable, are somewhat phenomenological and rather ad hoc. Furthermore,
to capture some additional effects beyond those summarized in connection with the
examples described in the present chapter it has been necessary to modify and extend
the model, with the updates described by Vigliotti et al. (2015b). We expect to see
further enhancements and improvements to the model in the coming years, to endow
it with greater versatility and relevance to problems of mechanobiology.
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Nonlinear Continuum Mechanics
and Modeling the Elasticity of Soft Biological
Tissues with a Focus on Artery Walls

Ray W. Ogden

Abstract This chapter provides a detailed summary of the background from the
nonlinear theory of continuum mechanics that is required in the modeling of the
elastic properties of soft biological tissues. In particular, it highlights methods for
including the fibrous structure of such tissues within the constitutive description of the
material properties at the macroscopic level. Of particular relevance in this connection
are the so-called preferred directions associated with fibers and the structure tensors
and associated deformation invariants that are needed for taking these fibers and
their dispersed directions into consideration. These are incorporated into the material
models and the effect of fiber structure on the material response is then illustrated
with several basic examples. Generalizations of structure tensors are also used for
including within the theory the important residual stresses that are evident in unloaded
tissues such as arteries and the myocardium, and the influence of residual stresses
on the material response is illustrated by considering the extension and inflation of
a thick-walled circular cylindrical tube.

1 Introduction

This chapter is based on lectures given at the Summer School on ‘Biomechan-
ics: Trends in Modeling and Simulation’ in Graz, Austria, in September 2014, but
includes additional material that was not presented in the lectures. Effective modeling
of the mechanics of soft biological tissues, such as the layered walls of arteries, the
myocardium and skin, requires a sophisticated application of the nonlinear theory of
continuum mechanics. Within the structure of these tissues a key component is the
protein collagen, which endows the material with anisotropic properties because of
its significant stiffness relative to the surrounding material within which it is embed-
ded. We refer to the surrounding (less stiff) material as the matrix, which, depending
on the tissue under consideration, includes elastin fibers, proteoglycans, and smooth
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muscle cells, for example. Tissues have a naturally fibrous structure, which has a
strong influence on their mechanical response. Thus, from the mechanical perspec-
tive, it is important to be able to understand the influence of the fiber structure on
the overall mechanical response of the composite materials of which the fibers are
constituents, and nonlinear continuum mechanics provides the vehicle for analyzing
this response.

Consider, for example, a length of artery, which may be idealized as a circular
cylindrical tube, as illustrated in Fig. 1. Typically, in the simplest terms, an artery
contains two families of collagen fibers that are helically arranged and symmetrically
disposed relative to its axis, with the fiber directions locally lying within the tangent
plane, i.e., they have no radial component. Suppose that each family makes an angle
ϕ with the circumferential direction. Of course, the picture is much more complex
than we have indicated here—for example, there is dispersion of the fiber directions
within each family, there is in general a small radial component of each fiber direction
and the arrangement is different within each layer of an artery wall. These matters
will concern us later in the chapter, but for our initial illustration we consider the
simple situation depicted in Fig. 1.

This enables us to provide a simple illustration of the influence of fiber orientation
on the mechanical response of an artery. This is the content of Fig. 2, which shows how
the pressure in a circular cylindrical tube depends on its radial expansion (as measured
by the circumferential stretch—the ratio of inner deformed radius to undeformed
radius) for different fiber orientations in the absence of axial extension. The curves
shown, which exhibit highly nonlinear behavior, are characteristic of those for arteries
found in the literature and are based on a model of these characteristics (see, for
example, Holzapfel et al. 2000). The response becomes stiffer as the fiber directions
become closer to circumferential than axial, which reflects the high stiffness of
collagen fibers. The shapes are also very similar to those obtained in uniaxial tests on,
for example, strip samples of different artery wall layers (see, for example, Holzapfel
et al. 2005). There is a soft ‘toe’ region where the wavy collagen fibers provide little
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Fig. 1 Depiction of an undeformed artery as a thin-walled circular cylindrical tube with two
symmetrically and helically arranged families of (collagen) fibers locally lying in the tangent plane
and with directions making angles ϕ with the circumferential direction. The two symmetrically
arranged arrows indicate the directions of the tangents to the fibers at a general point



Nonlinear Continuum Mechanics and Modeling the Elasticity of Soft Biological … 85

1 1.1 1.2 1.3 1.4 1.5 1.6

D
im

en
si

on
le

ss
 p

re
ss
ur

e

Circumferential stretch

=
π/

6

=
π/

5

=
π/

4

=
π/

3

φ φ φ φ

Fig. 2 Representative curves of (dimensionless) pressure versus circumferential stretch on inflation
of an artery without axial extension for several values of the angle ϕ shown in Fig. 1. The curves
highlight both the nonlinearity of the material response and the significant effect of fiber orientation.
The response is much stiffer for fibers oriented more toward the circumferential direction than the
axial direction

if any resistance to tension, which is borne by the soft matrix, followed by rapid
stiffening as they reach their natural lengths.

We are concerned here with the elastic response of arteries, but the framework
of the nonlinear theory of elasticity underpins the basic elastic response of all soft
fibrous materials and is a starting point for more general continuum theories. Our aim
is to describe the elastic behavior of these materials by the construction of constitutive
laws, informed by data from experimental tests. The fiber directions within a tissue
endow the material locally with so-called preferred directions, as a result of which
the mechanical response of the material is anisotropic.

From the point of view of modeling the elastic properties of tissues the complica-
tions associated with the fibrous structure are well known and have been the subject
of many publications, and for an extensive list of references we refer to Holzapfel
et al. (2000), Gasser et al. (2006) and Holzapfel and Ogden (2010), for example.
Another issue, which increases the complication, is the existence of residual stresses
in unloaded tissue exemplified by the residual stress in artery walls, as evidenced by
the so-called opening angle test (Vaishnav and Vossoughi 1983; Chuong and Fung
1986). In this, a short ring of excised artery (and therefore unloaded radially and axi-
ally) when cut radially springs open significantly into a sector, thereby demonstrating
the existence of residual stress in the intact state. A two-dimensional idealized ver-
sion of this experimental test, in which a circular ring of artery springs open into the
sector of a circular ring, is illustrated in Fig. 3.

Thus, both residual stresses and the tissue structure need to be accounted for in the
development of constitutive laws for soft biological tissues, and this is the concern of
this chapter as we develop nonlinearly elastic constitutive laws for these materials,
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(c)(b)(a)

α

Fig. 3 A ring of artery (a) is cut radially (b) and deforms into a sector of a circular ring (c) with
the opening angle α, thus demonstrating that in the unloaded configuration (a) there exist (radial
and circumferential) residual stresses relief of which results in configuration (c)

with a focus on their passive and time-independent response. For general background
on the mechanics of tissues we refer to the classical text of Fung (1993) and for
detailed discussion of the mechanical properties of arteries and, more generally
cardiovascular solid mechanics, the works of Humphrey (1995, 2002) should be
consulted. For developments in the continuum description of arterial wall mechanics
we refer to Holzapfel et al. (2000, 2015), Gasser et al. (2006), and Holzapfel and
Ogden (2010) and references therein, while for the myocardium we cite Holzapfel
and Ogden (2009a). See also the collections of papers in the edited volumes by
Holzapfel and Ogden (2003, 2006, 2009b).

In Sect. 2, we provide a description of the kinematics of deformation, introduce
a number of stress tensors and derive the equations governing equilibrium, while in
Sect. 3 we focus on general aspects of the constitutive law of an elastic material based
on a strain-energy function and the associated stress tensors. More comprehensive
treatments of the nonlinear theory of elasticity can be found in, for example, standard
texts such as Ogden (1997, 2003a), and Holzapfel (2000) and the collection of articles
in Fu and Ogden (2001). Particular attention is paid here to the role of structure tensors
and invariants associated with preferred directions in the development of the strain-
energy function for different material symmetries. The notion of a structure tensor
is also used to include residual stress in the constitutive law of an elastic material.

In Sect. 4 the theory for fiber-reinforced materials, with two fiber families (and
without residual stress), is then applied in a basic application to homogeneous defor-
mations, in particular to the problem of pure homogeneous strain of a thin sheet of
material, a setup that is often used in experiments for helping to characterize the
mechanical properties of fibrous materials. The general results are illustrated for
a special choice of constitutive law which has a role, in various modified forms,
throughout the chapter.

This is followed, in Sect. 5, by an application of the theory to a key boundary-
value problem involving a nonhomogeneous deformation relevant to the behavior
of arteries, namely that of the extension and inflation of a thick-walled elastic tube
reinforced symmetrically with two families of fibers. The corresponding thin-walled
approximation is derived and used for illustration of the pressure and axial load
response of a tube. The difference between the response with and without fibers and
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the effect of different fiber orientations is highlighted by applying the material model
from Sect. 4. The effect of residual stress is then illustrated by a further application to
the problem of extension and inflation of a thick-walled elastic tube in Sect. 5.3, and
a particular form of the residual stress is chosen along with simple constitutive laws,
enabling explicit expressions to be obtained for the pressure and axial load applied
to achieve a prescribed axial extension and inflation of the tube. For purposes of
numerical calculation and graphical illustration, a range of particular values of the
parameters of the problem is selected, leading to comparative plots of the pressure
and axial load for a residually stressed tube, with and without fiber reinforcement.

The model strain-energy function fits data for the overall response of an artery,
and it also fits well the data for the medial layer, but it does less well for the intimal
and adventitial layers. One possible explanation for this is that rather then being per-
fectly aligned the fibers are dispersed in their orientations, and this is more evident
in the adventitia than in the media, for example. Therefore, to take account of fiber
dispersion the model was modified by Gasser et al. (2006). In Sect. 6 is described the
model based on fiber dispersion, which is accounted for via a so-called generalized
structure tensor and associated generalized invariants. In particular, for three dimen-
sions a rotationally symmetric dispersion is considered which involves just a single
dispersion parameter as a measure of the degree of dispersion. A two-dimensional
counterpart of this is also examined.

For the rotationally symmetric model a π -periodic von Mises distribution is used
to quantify the dispersion, and with the same general structure the model strain-
energy function from the previous sections is modified to accommodate the disper-
sion. This extended model is applied to the extension–inflation problem to illustrate
the significant difference that inclusion of dispersion makes. Then, using the model
and data relating to the adventitia of a human iliac artery, the problem of the nonho-
mogeneous uniaxial extension of strips from the circumferential and axial directions
is examined using a finite element calculation, further highlighting the significant
influence of dispersion.

However, it has been found in the recent extensive series of experiments of Schriefl
et al. (2012) on separate intimal, medial, and adventitial layers of human thoracic
and abdominal aortas and common iliac arteries that the fiber dispersion does not
possess rotational symmetry in three dimensions. The dispersion was found to be
essentially symmetric in the circumferential/axial plane (in-plane) but has a small
radial component (out-of-plane). To accommodate these new data the rotationally
symmetric model of Gasser et al. (2006) has therefore been adapted in Holzapfel et al.
(2015) by developing new generalized structure tensors and generalized invariants.
This work is described in Sect. 6.4. In particular, this modification uses a bivariate von
Mises distribution to characterize the in-plane and out-of-plane dispersions involving
two dispersion parameters, one in-plane and one out-of-plane, as distinct from the
single dispersion parameter associated with a rotationally symmetric dispersion.

Within the same general structure as for the previous models, the strain-energy
function has been modified merely by updating the definitions of the generalized
invariants. Based on a set of data obtained from histology and imaging, values of
the dispersion parameters and mean fiber orientations were exemplified in Schriefl
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et al. (2012), and, with these values, the corresponding material parameters were
determined in Holzapfel et al. (2015) by fitting data from uniaxial tension tests
on circumferential and axial specimens of an adventitial layer of a human non-
atherosclerotic abdominal aorta. Following Holzapfel et al. (2015) this complete set
of parameters is used finally in a finite element simulation of a nonhomogeneous
uniaxial extension test on this adventitial layer. Some concluding remarks form the
content of Sect. 7.

In Holzapfel et al. (2015) we have provided a brief review of dispersion mod-
els, which are based on two main approaches, namely the angular integration (AI)
approach pioneered by Lanir (1983), and the generalized structure tensor (GST)
approach due to Gasser et al. (2006). We focus on the GST approach in this chapter
and refer the reader to Holzapfel et al. (2015) for pointers to the literature.

2 Fundamentals of Continuum Mechanics

Here we summarize the key notation used for describing the kinematics associated
with continuum deformation, followed by a brief account of the stress tensors used
to describe the stress within a deformed material and the associated equilibrium
equations. We do not analyze (time-dependent) motion in this chapter. For more
details of the background for this section we refer to Ogden (1997) and Holzapfel
(2000), for example.

2.1 The Geometry of Deformation

As is usual in continuum mechanics, we consider a material body which, when
unloaded (i.e., when not subject to either surface tractions or body forces) occupies
a reference configuration, which we denote by Br, the boundary of which is denoted
∂Br. Let an arbitrary point of Br be labeled by its position vector X. After deforma-
tion the body occupies the deformed configuration, denoted B, which has boundary
∂B. The material point X is then taken to the new position vector x in B, as depicted
in Fig. 4.

Mathematically, the deformation is described by the deformation function χ ,
which is a one-to-one, onto mapping from Br to B. Thus, we write

x = χ(X) for all X ∈ Br, (1)

and, without further comment, χ is assumed to possess sufficient regularity for the
analysis in this chapter.

In standard notation the second-order tensorF, the so-called deformation gradient
tensor, denotes the gradient of x = χ(X), explicitly
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Fig. 4 On the left-hand side is depicted a body in its (unloaded) reference configuration Br , which
has boundary ∂Br . As a result of the deformation χ the body occupies the deformed configuration
B, which has boundary ∂B, as depicted on the right-hand side

F = Grad x = Grad χ(X), (2)

where Grad denotes the gradient with respect to X, as distinct from the gradient
grad with respect to x. Likewise Div and div denote the divergence operators with
respect to X and x, respectively. We shall also use the notations (•)T and tr (•),
respectively, to denote the transpose and trace of a second-order tensor (•). With
reference to a rectangular Cartesian coordinate system, we write the components
of F as Fiα = ∂xi/∂Xα , where xi and Xα , i, α ∈ {1, 2, 3}, are the components of
x and X, respectively, Greek and Roman indices being associated with Br and B,
respectively.

We use the standard notation J for the determinant det F of F and, by convention,
this is taken to be positive, i.e.,

J ≡ det F > 0, (3)

which is clearly satisfied when B coincides with Br since then x = X, F = Ir, the
identity tensor in Br, and det F = 1. The physical interpretation of J is that it repre-
sents the local ratio of an infinitesimal volume element dv in B to the corresponding
volume element dV in Br based on X in Br, i.e., dv = JdV .

Thus, for an isochoric (volume preserving) deformation J = 1, while for an
incompressible material the constraint

J ≡ det F = 1 (4)

must be satisfied at each X in Br. This constraint is important here since many soft
biological tissues, including artery walls, can be treated as incompressible.

We now define an important kinematical quantity known as the stretch λ(M) in the
direction of a unit vector M based at X in Br. Let dS be the length of an infinitesimal
line element of material lying along the direction M in Br. Under the deformation
this becomes the infinitesimal line element FMdS based at x in B, which has length
|FM|dS. Thus, the ratio of deformed to undeformed length of the line element is
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|FM|, which defines the stretch in the direction M:

λ(M) = |FM| = [(FTFM) · M]1/2. (5)

The product FTF in (5) defines the right Cauchy–Green deformation tensor,
denoted C, which has Cartesian components Cαβ = FpαFpβ , where the usual Ein-
stein summation convention is used for repeated indices. Since Cαβ has two Greek
indices it is associated with Br, and C is referred to as a Lagrangian tensor. This
distinguishes it from its Eulerian counterpart, the left Cauchy–Green deformation
tensor B = FFT, which has Cartesian components Bi j = FiαFjα and is associated
with B. For future reference we record here the definitions

B = FFT, C = FTF. (6)

Scalar quantities known as the principal invariants of B (the same as those of C)
are the coefficients I1, I2, I3 in the identity

B3 − I1B2 + I2B − I3I = O, (7)

whereO is the zero tensor and I the identity tensor inB. This is the Cayley–Hamilton
theorem, and I1, I2, I3 are defined by

I1 = tr (B), I2 = 1

2
[I 2

1 − tr (B2)], I3 = det B ≡ J 2. (8)

Since I3 = J 2, we see that for an incompressible material I3 = 1. Furthermore, for
a plane strain deformation I2 = I1 and then, for an incompressible material, (7)
factorizes as

(B − I)[B2 − (I1 − 1)B + I] = O, (9)

thus yielding the two-dimensional (plane strain) version of the Cayley–Hamilton
theorem for an incompressible material, namely

B2 − (I1 − 1)B + I = O, (10)

wherein the tensors are now two-dimensional.
Valuable further analysis of the local deformation governed by F is provided by

the polar decomposition theorem, which enables F to be expressed in the two forms

F = RU = VR, (11)

each of which is uniquely defined. Here, R is a proper orthogonal tensor, which
represents a rotation, andU andV are positive definite and symmetric tensors, termed
the right and left stretch tensors, respectively. Their symmetry allows us to introduce
the spectral decompositions
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U =
3∑

i=1

λiu(i) ⊗ u(i), V =
3∑

i=1

λiv(i) ⊗ v(i), (12)

where λi > 0, i ∈ {1, 2, 3}, are the principal stretches, u(i) and v(i) are the (unit)
eigenvectors of U and V, respectively, and ⊗ denotes the tensor product: u(i) and
v(i) are referred to as the Lagrangian principal axes and Eulerian principal axes,
respectively. By taking M = u(i) in the definition (5) of stretch, we see that λ(u(i)) =
λi , the principal stretch corresponding to u(i).

The connections
C = U2, B = V2 (13)

are also recorded here for later reference. These each have eigenvalues λ2
1, λ

2
2, λ

2
3,

and their principal invariants I1, I2, I3 defined by (8) may now be expressed in terms
of the principal stretches as

I1 = λ2
1 + λ2

2 + λ2
3, I2 = λ2

2λ
3
3 + λ2

3λ
2
1 + λ2

1λ
2
2, I3 = λ2

1λ
2
2λ

2
3. (14)

Note that these are symmetric functions of λ1, λ2, λ3.
Finally in this section we note that from (3), (11) and (12) we may express J in

the alternative forms

J = det F = det U = det V = λ1λ2λ3. (15)

In particular, for an incompressible material, the principal stretches satisfy the con-
straint

λ1λ2λ3 = 1. (16)

2.2 Stress and Equilibrium

While deformation is essentially concerned with geometry, the forces acting on a
body that cause the deformation and changes in geometry are described in terms of
stresses, and this section therefore introduces the notion of stress and its representa-
tion in terms of tensors. For this purpose we consider an arbitrary subdomain of Br,
denoted Dr , and its deformed counterpart D in B. Let ∂Dr and ∂D be the boundaries
of Dr and D , respectively. An element of area dA on ∂Dr with unit outward normal
N is deformed into the area da on ∂D with unit normal n, as depicted in Fig. 5.

According to Cauchy’s stress theorem, the surface force acting on the area da
due to its contact with the surrounding material depends linearly on the normal n
and may be written as σ Tnda, where σ is the Cauchy stress tensor (a second-order
tensor). If the deformation results from the combined action of surface tractions on
∂B and a body force b per unit mass then for equilibrium of the domain D the total
force on it must vanish, i.e.,
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Fig. 5 An area element dA with unit outward normal N on the boundary ∂Dr of the reference
domain Dr ⊂ Br deforms into the area element da with unit outward normal n on the boundary
∂D of the domain D ⊂ B under the deformation χ

∫

∂D
σ Tn da +

∫

D
ρb dv ≡

∫

D
(div σ + ρb) dv = 0, (17)

where ρ is the mass density per unit volume in D , dv is an element of volume in
D , and the divergence theorem has been applied to the surface integral to obtain the
volume integral on the right-hand side.

Assuming that the integrand on the right-hand side of (17) is continuous the
arbitrariness of D allows us to deduce the standard local form of the equilibrium
equation, namely

div σ + ρb = 0. (18)

If there are no intrinsic couple stresses in the material then symmetry of σ follows
from the equilibrium of the moments of the forces acting on D , so that σ T = σ , and
the transpose on σ is no longer needed.

The equilibrium equation (18) is Eulerian in nature since x is the independent
variable. The equation may also be expressed in Lagrangian form, with X as the
independent variable, by using the standard kinematic identity Div (JF−1) = 0 and
the definition

S = JF−1σ (19)

of the so-called nominal stress tensor, which leads to the connection Div S = Jdiv σ .
By defining the mass density ρr per unit reference volume, invoking conservation of
mass ρrdV = ρdv and recalling that dv = JdV , we obtain the connection

ρr = Jρ, (20)

and hence the equilibrium equation (18) can be expressed in the equivalent form as

DivS + ρrb = 0. (21)
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The transpose ST of S is known as the first Piola–Kirchhoff stress tensor. For an
isochoric deformation (J = 1) we have ρ = ρr, which becomes an identity for an
incompressible material.

Note that, unlike σ , S is not in general symmetric but it follows from (19) and the
symmetry of σ that

STFT = FS. (22)

Another stress tensor that is often used, particularly in the computational mechan-
ics community, is the second Piola–Kirchhoff stress tensor, here denoted P. It is
symmetric and defined here for later reference through its connections with σ and
S, namely

P = JF−1σF−T = SF−T, (23)

where F−T = (F−1)T = (FT)−1.

2.2.1 Residual Stress

At this point we introduce the notion of residual stress. Here we adopt the definition
of Hoger (1985) that residual stress is a stress distribution that exists in the reference
configuration Br in the absence of loads, either surface tractions or body forces,
and should be distinguished from other types of initial stresses (often referred to as
prestresses) that are associated with loads. We denote the residual (Cauchy) stress by
τ and assume that there are no intrinsic couple stresses in Br, so that τ is symmetric:
τT = τ . The equilibrium equation that must be satisfied by τ is, from (21) with
b = 0,

Div τ = 0 in Br. (24)

Since there are no surface tractions, τ must also satisfy the boundary condition

τN = 0 on ∂Br. (25)

It is worth emphasizing at this point that residual stresses are necessarily nonuniform
and a material with residual stress is itself inhomogeneous. This follows from the
identity Div (τ ⊗ X) = (Div τ ) ⊗ X + τ , the use of (24), application of the diver-
gence theorem and then (25), which leads to

∫

Br

τ dV = O. (26)

Clearly, a nontrivial τ cannot be uniform, and the character of the inhomogeneity
depends on the geometry of the considered material body.
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3 Constitutive Theory

In this section we focus on the characterization of the elastic behavior of solids
based on the existence of a strain-energy function. Materials which possess a strain-
energy function are referred to as hyperelastic. First, by considering the virtual work
of the forces acting on the body, we motivate the introduction of a strain-energy
function. We then examine its general properties and its functional dependence for
particular classes of material symmetry through the use of invariants. We also show
how residual stress can affect the material response by its inclusion in the argument
of the strain-energy function.

3.1 The Elastic Strain-Energy Function

Consider the work done by the forces acting on the regionD in a virtual displacement,
i.e., a small increment in x, which we denote by ẋ. This work is

∫

∂D
(σn) · ẋ da +

∫

D
ρb · ẋ dv =

∫

D
tr (σgrad ẋ) dv, (27)

where the right-hand side has been obtained by an application of the divergence
theorem and use of the equilibrium equation (18). By means of the connections (19)
and dv = JdV this may also be written

∫

Dr

tr (SḞ) dV, (28)

where Ḟ = Grad ẋ. The work done is converted into stored elastic energy if there
exists a scalar function W (F) such that

Ẇ = tr (SḞ), (29)

in which case (28) represents the virtual change in the total elastic energy stored in
Dr. We assume that a strain-energy function W (F) exists, defined per unit volume in
Dr. If the material is inhomogeneous then W also depends separately on X, but for
a homogeneous material the dependence on X is through F(X) alone.

Because of (29) the nominal stress is considered to be work conjugate to the
deformation gradient. If there are no constraints on F then, since Ḟ is arbitrary, we
obtain the stress deformation relation

S = ∂W

∂F
, (30)

or, in index notation,
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Sαi = ∂W

∂Fiα
, (31)

the latter defining the convention used here for the order of the indices when differ-
entiating with respect to Fiα .

If F is subject to a constraint then its components are no longer independent and Ḟ
is not arbitrary so that (30) requires modification. In the case of the incompressibility
constraint, for example, (30) is replaced by

S = ∂W

∂F
− p F−1, det F = 1, (32)

where p is a Lagrange multiplier associated with the constraint.
The corresponding Cauchy stress tensor is then obtained from (19) as

σ = J−1F
∂W

∂F
, σ = F

∂W

∂F
− p I, (33)

for unconstrained and incompressible materials, respectively, with J = det F = 1 in
the latter, where I is again the identity tensor in B.

Let us take the strain energy to be measured from Br, where F = Ir, the identity
tensor in Br. This imposes the condition

W (Ir) = 0. (34)

If the configuration Br is stress free then we have

∂W

∂F
(Ir) = O,

∂W

∂F
(Ir) − p(r) Ir = O, (35)

for unconstrained and incompressible materials, respectively, where p(r) is the spe-
cialization of the Lagrange multiplier p to Br. The reference configuration Br is
sometimes referred to as a natural configuration if the conditions (34) and (35)1 (or
(35)2) hold simultaneously.

If Br is not stress free, but supports a residual stress τ then (35) does not hold
and Br is referred to as a residually stressed configuration. In this case W , still
measured from Br, depends on τ as well as F. We therefore include τ explicitly in
the arguments of W and write

W = W (F, τ ). (36)

We emphasize that τ , being inhomogeneous, depends onX, and therefore the material
itself is also inhomogeneous if it is residually stressed.

The formulas (30)–(33) are unaffected by the presence of τ but we now include
the dependence on τ and write
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S = ∂W

∂F
(F, τ ), σ = J−1FS = J−1F

∂W

∂F
(F, τ ) (37)

for an unconstrained material, and

S = ∂W

∂F
(F, τ ) − pF−1, σ = FS = F

∂W

∂F
(F, τ ) − pI (38)

for an incompressible material.
In Br there is no distinction between different stress tensors and each one must

reduce to the residual stress, in which case

τ = ∂W

∂F
(Ir, τ ), τ = ∂W

∂F
(Ir, τ ) − p(r)Ir, (39)

for an unconstrained and incompressible material, respectively, where again Ir is the
identity tensor in Br and p(r) represents the value of p in Br (see, for example,
Shams et al. 2011). These equations can be thought of as conditions providing either
constraints on the residual stress for a given strain-energy function or constraints
on the properties of the strain-energy function for a known residual stress. Some
specializations of these conditions will be seen in later sections. These are particular
constraints that apply for a residually stressed material and should be respected
when specific models are constructed. Forms of W should also be consistent with
data obtained from experimental tests that elicit the elastic properties of materials
they aim to model. Other constraints may arise from basic physical and mathematical
considerations, but we do not address these here. However, a key constraint, which
should always be adopted, arises from the notion of objectivity, otherwise referred
to as material frame indifference, which we discuss in the following.

3.2 The Principle of Objectivity

For a residually stressed material a general strain-energy function must satisfy the
conditions (39), but it is not as yet subject to any other restrictions. At each X it
depends on F and τ in an otherwise general way. However, not all candidates for
W (F, τ ) are admissible, and, importantly, after deformation W should be unaffected
by any superimposed rigid body transformation. Such a transformation has the form
x∗ = Qx + c, where, since we are not considering time dependence,Q is an arbitrary
constant rotation tensor and c is an arbitrary constant vector. The deformation gradient
F∗ = Grad x∗ associated with this new deformation is then given byF∗ = QF. Noting
that τ is defined in the reference configuration and is not therefore affected by the
rotation in B, the requirement imposed on W is that it must be invariant under this
transformation, i.e.,

W (QF, τ ) = W (F, τ ) (40)
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for arbitrary proper orthogonal Q and for any deformation gradient F.
This restriction on W is referred to as the principle of objectivity, or just objectivity

for brevity, and from now on we regard W as objective.
From the polar decomposition (11)1 we obtain QF = QRU and then by choosing

Q = RT, Eq. (40) yields W (F, τ ) = W (U, τ ), which shows that W is independent
of the rotational part R of the deformation gradient and depends on F only through
the stretch tensor U. Equivalently, since C = U2, we can regard W as a function of
C and τ . Each of C and τ is a Lagrangian tensor, unaffected by a rotation in B,
and therefore any function of these two tensors is necessarily objective. In particular,
without changing the notation for W on changing its argument, we write the strain-
energy function as

W (C, τ ), (41)

which automatically accommodates the required objectivity.
From this form of W we obtain the second Piola–Kirchhoff stress tensor

P = 2
∂W

∂C
, P = 2

∂W

∂C
− pC−1 (42)

for unconstrained and incompressible materials, respectively. We remark that P and
C/2 are therefore work conjugate stress and deformation tensors. In this case the
incompressibility constraint is I3 = det C = 1.

3.3 Material Symmetry (with no Residual Stress)

Objectivity applies irrespective of the material properties, but other restrictions arise
that depend on the character of the material considered, and, in particular, the mate-
rial may possess some intrinsic symmetry in its reference configuration. In order to
examine such symmetry we consider τ = O since nonzero residual stresses compli-
cate the arguments. For discussion of symmetry considerations in the presence of
residual stress we refer to Hoger (1985) and Ogden (2003b).

If the material response is the same with respect to different reference configura-
tions then this implies that the material has an intrinsic symmetry, and the transfor-
mation between the reference configurations is then known as a symmetry transfor-
mation.

To be specific, consider two reference configurations, denoted Br and B′
r, and

let a typical material point in these configurations have position vectors X and
X′, respectively. Suppose the transformation (deformation) from Br to B′

r has the
deformation gradient Q′ = GradX′, which should be distinguished from the rota-
tion Q in B. Then the deformation gradients of B relative to Br and B′

r, respec-
tively, are F and F′ = FQ′−1, as depicted in Fig. 6. In components the latter reads
∂xi/∂X ′

α = (∂xi/∂Xβ)(∂Xβ/∂X ′
α).
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Fig. 6 Depiction of the
reference configurations Br
and B′

r and the deformed
configuration B connected
by the deformation gradients
F, F′ and Q′, with F = F′Q′
in the space of deformation
gradients .

.

B

Br

B′
r

F

F′

Q′

The right Cauchy–Green tensor relative to Br is C, and that relative to B′
r is

C′ = F′TF′ = Q′−TCQ′−1. If the material properties, as characterized by the strain-
energy function W , are independent of this change of reference configuration then
we must have, for the given Q′,

W (Q′−TCQ′−1
) = W (C) (43)

for all right Cauchy–Green deformation tensors C, where the argument τ = O has
been omitted from W . Such a Q′ identifies a symmetry of the material in the original
reference configuration Br.

The set of all such changes of reference configuration for which (43) holds, i.e.,
the set of Q′ satisfying (43) for all right Cauchy–Green deformation tensors C, forms
a group of transformations, called the symmetry group of the material relative to the
reference configuration Br. In this chapter we consider only symmetries for which
the Q′’s are proper orthogonal transformations, so that Q′−1 = Q′T. It should be
emphasized that the rotation Q′ is applied in Br, whereas Q is applied in B. The
two rotations are entirely independent. We now consider the consequences of (43)
for some particular classes of symmetry groups.

3.3.1 Isotropy

With the restriction to proper orthogonal transformations, Eq. (43) becomes

W (Q′CQ′T) = W (C). (44)

An isotropic elastic material is one for which the symmetry group is the full proper
orthogonal group, i.e., (44) holds for arbitrary proper orthogonal Q′. Equation (44)
implies that W is an isotropic function ofC. This means, in particular, that W depends
on C through just three scalar deformation variables, which typically are taken to
be the three principal invariants I1, I2, I3 defined in (8) in terms of the left Cauchy–
Green tensor B. For convenience we now repeat them here in terms of C:
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I1 = trC, I2 = 1

2
[I 2

1 − tr (C2)], I3 = det C. (45)

We now write W = W (I1, I2, I3), and from (30) the nominal stress is given by

S = ∂W

∂F
=

3∑

i=1

Wi
∂ Ii
∂F

, (46)

where we have used the shorthand notation Wi = ∂W/∂ Ii , i = 1, 2, 3. All the infor-
mation about material properties is contained in the coefficients Wi , i = 1, 2, 3,
while the derivatives ∂ Ii/∂F are purely kinematic quantities. The latter can be cal-
culated simply from (45) as

∂ I1
∂F

= 2FT,
∂ I2
∂F

= 2(I1FT − CFT),
∂ I3
∂F

= 2I3F−1, (47)

and an expanded expression for S then follows from (46). The corresponding Cauchy
stress tensor σ = J−1FS is then given by

Jσ = 2W1B + 2W2(I1B − B2) + 2I3W3I. (48)

For an incompressible material I3 ≡ 1, W depends only on I1 and I2 and, instead
of (48), we have

σ = 2W1B + 2W2(I1B − B2) − p I, (49)

where p is the Lagrange multiplier (an arbitrary hydrostatic pressure) appearing in
(33)2.

Since, by (14), I1, I2, I3 are symmetric functions of the stretches, we can also
think of W as a symmetric function of the stretches and write W = W (λ1, λ2, λ3),
and it follows that

λi
∂W

∂λi
= 2λ2

i W1 + 2λ2
i (I1 − λ2

i )W2 + 2I3W3, i = 1, 2, 3. (50)

By (48) σ has the same principal axes as B. Thus, (50) represents the principal com-
ponents of (48) and enables the principal Cauchy stresses, denoted σi , i = 1, 2, 3,
to be identified as

σi = J−1λi
∂W

∂λi
, i = 1, 2, 3, (51)

for an unconstrained material. For an incompressible material this is replaced by

σi = λi
∂W

∂λi
− p, i = 1, 2, 3, (52)

which correspond to the eigenvalues of Eq. (49).
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Fig. 7 Transverse isotropy
with preferred direction M in
the reference configuration.
The material properties are
independent of rotations Q′
about M and reversal of the
direction of M: M → −M

M

−M

Q

3.3.2 One Preferred Direction (Transverse Isotropy)

If there is a single preferred direction in the material in its reference configuration,
as in the case of a fiber-reinforced material with a single family of (locally) aligned
fibers, then we identify that direction by the unit vector M in Br, which in general
depends on the point X. Such a material is said to be transversely isotropic with
direction of transverse isotropyM. In the plane transverse toM the material response
is isotropic.

The material properties are invariant with respect to an arbitrary rotation about
the direction M and to reversal of M, i.e., to rotations Q′ such that Q′M = ±M, as
depicted in Fig. 7.

From the mathematical point of view the strain-energy function must satisfy (44)
for all such Q′. Thus, W depends on M as well as C and we may regard W as a
function of both M and C, but since material properties are treated as independent of
the sense of M we can consider the M dependence to be through the tensor product
M ⊗ M and write W (C,M ⊗ M) instead of just W (C), and note that M ⊗ M is
unaffected by reversal of M. In general, M depends on X, in which case the material
is inhomogeneous. This is left implicit in W (C,M ⊗ M) since material symmetry
is a local property.

It follows that transverse isotropy may be characterized by W being an isotropic
function of the two symmetric tensors C and M ⊗ M (Liu 1982); for general back-
ground on transverse isotropy and more generally on the theory of invariants we refer
to Spencer (1971, 1972, 1984). Noting thatQ′M = MQ′T, the symmetry requirement
is then

W (Q′CQ′T,Q′M ⊗ Q′M) = W (C,M ⊗ M) (53)

for all orthogonal Q′. In this case there is no difference whether we restrict attention
to proper orthogonal Q′ or consider all orthogonal Q′ since we may replace Q′ by
−Q′ in (53) without changing its consequences. Similarly in Eq. (44). The tensor
M ⊗ M is referred to as a structure tensor.

The symmetry (53) is equivalent to W being a function of five independent invari-
ants for an unconstrained material in three dimensions. These are, for example, the
three isotropic invariants I1, I2, I3 defined in (45) and two invariants that depend on
M and C, these usually being denoted I4 and I5. The choice of I4 and I5 is not unique
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but, typically, they are defined by

I4 = M · (CM), I5 = M · (C2M). (54)

Note that in terms of the stretch λ(M) defined in (5), I4 = λ(M)2, the square of the
stretch in the direction M. The invariant I5 does not have a similar simple interpreta-
tion, and we refer to Merodio and Ogden (2002) for discussion of a related invariant
which does have a direct physical interpretation.

Then, by expanding out the formula (30) based on the invariants I1, . . . , I5, simi-
larly to that in the isotropic case, and using again the derivatives (47), supplemented
by the derivatives

∂ I4
∂F

= 2M ⊗ FM,
∂ I5
∂F

= 2(M ⊗ BFM + CM ⊗ FM), (55)

we obtain an expression for the nominal stress tensor S, which we do not write here.
The corresponding Cauchy stress tensor σ = J−1FS for a transversely isotropic
material is then given by

Jσ = 2W1B + 2W2(I1B − B2) + 2I3W3I + 2W4m ⊗ m + 2W5(m ⊗ Bm + Bm ⊗ m),

(56)

wherem = FM is the ‘push forward’ ofM fromBr toB and nowWi = ∂W/∂ Ii , i =
1, . . . , 5, with W = W (I1, I2, I3, I4, I5). This recovers the formula (48) for an
isotropic material when W4 = W5 = 0.

For an incompressible material I3 ≡ 1, so only the four independent invariants
I1, I2, I4, I5 are required inW to characterize the material, withW = W (I1, I2, I4, I5)
in general. Then, instead of (56), we have

σ = 2W1B + 2W2(I1B − B2) + 2W4m ⊗ m + 2W5(m ⊗ Bm + Bm ⊗ m) − p I.

(57)

Plane Strain

If attention is restricted to plane strain deformations, for example, then the number
of independent invariants is reduced. In particular, for plane strain with M in the
considered plane the connections

I2 = I1 + I3 − 1, I5 = (I1 − 1)I4 − I3 (58)

may be deduced (Merodio and Ogden 2002, 2003), and only three independent
invariants remain, which we can take as I1, I3 and I4, for example. In the incom-
pressible case just two invariants remain, namely I1 and I4, and we define the plane
strain specialization of W , denoted Ŵ , by
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Ŵ (I1, I4) = W (I1, I2, I4, I5) with I2 = I1, I5 = (I1 − 1)I4 − 1. (59)

For plane strain m = FM lies in the considered plane, and if we identify planar
second-order tensors with a superposed hat ˆ then the plane strain version of Cauchy
stress, denoted σ̂ , becomes simply

σ̂ = 2Ŵ1B̂ + 2Ŵ4m ⊗ m − p̂Î, (60)

where Ŵ1 = ∂Ŵ/∂ I1 and Ŵ4 = ∂Ŵ/∂ I4 and p̂ is an adjusted form of p that includes
various derivatives of W that contribute only hydrostatic terms to σ̂ .

3.4 A General Invariant Formulation

As we have seen, both isotropy and transverse isotropy can be formulated in terms of
invariants. More generally, suppose that there are N independent invariants associated
withC and the material structure. Let these be denoted by I1, I2, . . . , IN . They depend
on C and the material structure but not otherwise on the properties of the material,
i.e., not on the particular form of W . Thus, we can write W = W (I1, I2, . . . , IN ), and
for an unconstrained material the nominal and Cauchy stress tensors can be expanded
as

S =
N∑

i=1

Wi
∂ Ii
∂F

, σ = J−1F
N∑

i=1

Wi
∂ Ii
∂F

, (61)

where we have extended the notation Wi to i = 1, 2, . . . , N . The corresponding
expressions for an incompressible material are

S =
N∑

i=1,i 	=3

Wi
∂ Ii
∂F

− pF−1, σ = F
N∑

i=1,i 	=3

Wi
∂ Ii
∂F

− pI. (62)

In general, the derivatives Wi depend on the material properties through the strain-
energy function W , but, independently of that, apart from the case of isotropy, some
information about the material structure is also contained within the derivatives
∂ Ii/∂F, as for a transversely isotropic material for which ∂ I4/∂F and ∂ I5/∂F depend
on the structure through M.

In the remainder of this section we apply the above first to a material with two
preferred directions and second to a material with a general residual stress but no
preferred directions.
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3.4.1 Two Preferred Directions and the Special Case of Orthotropy

Consider the situation in which there are two preferred directions in the reference
configurationBr of the material, identified by the unit vectors M andM′ with associ-
ated structure tensorsM ⊗ M andM′ ⊗ M′. The strain-energy function now depends
on C, M ⊗ M and M′ ⊗ M′, and we write W (C,M ⊗ M,M′ ⊗ M′). Similarly to
the transversely isotropic model, W is an isotropic function of its three arguments,
i.e., it must satisfy

W (Q′CQ′T,Q′M ⊗ Q′M,Q′M′ ⊗ Q′M′) = W (C,M ⊗ M,M′ ⊗ M′) (63)

for arbitrary orthogonal Q′ and for any right Cauchy–Green tensor C.
This means that W can be expressed in terms of invariants of the three tensors and

their combinations. For an unconstrained material this requires eight independent
invariants. These are the invariants I1, . . . , I5 associated with C and M ⊗ M, but
additionally the invariants combining C and M′ ⊗ M′, denoted I6, I7, analogously
to I4, I5, and defined by

I6 = M′ · (CM′), I7 = M′ · (C2M′). (64)

Finally, there is the invariant [M · (CM′)]M · M′ that involves all three tensors when
M · M′ 	= 0. However, it is more convenient in the analysis to useM · (CM′) without
the geometric factor, and we denote this by I8. Thus,

I8 = M · (CM′), (65)

which is not strictly invariant since it changes sign if either M or M′ is reversed. An
alternative, which is invariant, is to use I 2

8 rather than I8 itself, and in any case the
strain-energy function should depend on I8 through I 2

8 . In fact, for the special case
in which M · M′ = 0, I 2

8 is not needed since it depends on the other invariants and
is given by (Merodio and Ogden 2006)

I 2
8 = I2 + I5 + I7 + I4 I6 − I1(I4 + I6). (66)

To form expressions for the stress tensors we require the derivatives of I6, I7 and
I8 with respect to F in addition to those given in (47) and (55) for I1, . . . , I5. These
are

∂ I6
∂F

= 2M′ ⊗ FM′,
∂ I7
∂F

= 2(M′ ⊗ BFM′ + CM′ ⊗ FM′), (67)

and
∂ I8
∂F

= M ⊗ FM′ + M′ ⊗ FM. (68)

These enable the Cauchy stress tensor σ for an unconstrained material to be given
via
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Jσ = 2W1B + 2W2(I1B − B2) + 2I3W3I + 2W4m ⊗ m + 2W5(m ⊗ Bm + Bm ⊗ m)

+ 2W6m
′ ⊗ m′ + 2W7(m′ ⊗ Bm′ + Bm′ ⊗ m′) + W8(m ⊗ m′ + m′ ⊗ m), (69)

where m = FM and m′ = FM′ and the notation Wi = ∂W/∂ Ii now applies for
i = 1, . . . , 8.

For an incompressible material the list of invariants reduces by one to I1, I2, I4,
. . . , I8 and the Cauchy stress is given by

σ = 2W1B + 2W2(I1B − B2) − pI + 2W4m ⊗ m + 2W5(m ⊗ Bm + Bm ⊗ m)

+ 2W6m′ ⊗ m′ + 2W7(m′ ⊗ Bm′ + Bm′ ⊗ m′) + W8(m ⊗ m′ + m′ ⊗ m),

(70)

the notation Wi = ∂W/∂ Ii now applying for i = 1, 2, 4, . . . , 8.
In general, the material response associated with two preferred directions is not

orthotropic, orthotropy being characterized locally by the existence of three mutually
orthogonal planes of symmetry in the reference configuration of the material. There
are two situations in which the response is orthotropic. The first situation arises in
the special case in which the two directions are orthogonal and the second for which
the preferred directions are mechanically equivalent (Spencer 1972).

In the second case, for example, the material properties are unaffected by inter-
change of M and M′, which implies that

W (I1, I2, I3, I4, I5, I6, I7, I8) = W (I1, I2, I3, I6, I7, I4, I5, I8). (71)

Plane Strain

As for the case of transverse isotropy, the number of independent invariants is reduced
for plane strain, and we have the connections given in (58) together with

I7 = (I1 − 1)I6 − I3, I 2
8 = I4 I6 − I3|M × M′|2, (72)

and there are only four independent invariants, such as I1, I3, I4, I6. In the incom-
pressible case we summarize the connections between the invariants as

I2 = I1, I5 = (I1 − 1)I4 − 1, I7 = (I1 − 1)I6 − 1, I 2
8 = I4 I6 − |M × M′|2,

(73)
and the strain-energy function depends on just three invariants: W → Ŵ (I1, I4, I6),
and the (planar) Cauchy stress has the form

σ̂ = 2Ŵ1B̂ + 2Ŵ4m ⊗ m + 2Ŵ6m′ ⊗ m′ − p̂Î, (74)

which generalizes the formula (60). Note that when M · M′ = 0, I 2
8 = I4 I6 − 1,

which is a special case of the three-dimensional formula (66).
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3.4.2 Invariant Formulation with Residual Stress

We now consider the residual stress τ within the invariant framework of Sect. 3.4.
First, we note that since τ is symmetric it can be written in spectral form as

τ =
3∑

i=1

τi Mi ⊗ Mi , (75)

where τi , i = 1, 2, 3, are its eigenvalues and Mi , i = 1, 2, 3, are the corresponding
eigenvectors. Each Mi ⊗ Mi , i = 1, 2, 3, can be considered as a structure tensor,
although they are not all independent since they satisfy

3∑

i=1

Mi ⊗ Mi = Ir. (76)

Thus, τ can be thought of as a generalized structure tensor, and we shall consider
the combined invariants of the two tensors C and τ , and without any other structure
in the material. Thus, generalizing the condition (53), the strain-energy function of
a residually stressed material must satisfy

W (Q′CQ′T,Q′τQ′T) = W (C, τ ) (77)

for all orthogonal Q′. Note that we are using the notation W for the strain-energy
function irrespective of its arguments.

Since Div τ = 0 in Br and τN = 0 on ∂Br it is easy to show that τ cannot
be purely isotropic (i.e., a hydrostatic stress); for a proof, see, for example, Ogden
(2003b). Thus, the response of a residually stressed material relative to Br is neces-
sarily anisotropic and the effect of τ on the response is similar to, but more complex
than, that of a single preferred direction. In particular, the condition (77) implies that
W can be expressed in terms of invariants, in fact only 10 independent invariants
in general, as discussed in Shams et al. (2011) and more generally, for a residually
stressed transversely isotropic elastic material with 18 invariants, as derived by Hoger
(1993) and used in the context of wave propagation by Ogden and Singh (2011).

Here we adopt the notation K1, K2, K3 for the isotropic invariants, i.e.,

K1 = trC, K2 = 1

2
[(trC)2 − tr (C2)], K3 = det C (78)

instead of I1, I2, I3 so as avoid a conflict with the notations for the remaining invari-
ants with the notations I4, I5, . . . for the other invariants considered heretofore. The
three invariants of τ , since they do not depend on C, are collected conveniently as

K4 ≡
{

tr τ ,
1

2
[(tr τ )2 − tr (τ 2)], det τ

}
, (79)
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and the set of independent invariants involving the combination of C and τ is taken
to be

K5 = tr (τC), K6 = tr (τC2), K7 = tr (τ 2C), K8 = tr (τ 2C2). (80)

For a residually stressed material we therefore consider the strain-energy function
W = W (K1, K2, K3, K4, K5, K6, K7, K8), K4 consisting of three separate invari-
ants in general.

For an incompressible material, since K3 = 1, nine independent invariants are
required in general. For the specialization to plane strain with a planar residual stress
the number of independent invariants is reduced, as was illustrated, for example, in
Sect. 3.4.1 for two preferred directions. We refer to Merodio et al. (2013) for details.

Note that when evaluated in the reference configuration Br the invariants that
depend on C reduce to

K1 = K2 = 3, K3 = 1, K5 = K6 = tr τ , K7 = K8 = tr (τ 2). (81)

Stress Tensors

With the considered set of invariants the expanded expressions for the stress tensors
given in (61) become

S =
∑

i ∈I

Wi
∂Ki

∂F
, σ = J−1FS, (82)

for an unconstrained material, where I is the index set {1, 2, 3, 5, 6, 7, 8}, while for
an incompressible material (62) reads

S =
∑

i ∈I

Wi
∂Ki

∂F
− pF−1, σ = FS, (83)

in which case the index set reduces to {1, 2, 5, 6, 7, 8}. Note that the derivative of K4

with respect to F vanishes and so is not included in the above expressions, although
K4 is included in the arguments of W . We emphasize here that in this section Wi

stands for ∂W/∂Ki as distinct from ∂W/∂ Ii used earlier. At this point we do not
include both residual stress and structure associated with preferred directions.

In addition to the expressions ∂Ki/∂F given by (47) for i = 1, 2, 3 with Ii replaced
by Ki , we require the corresponding expressions for i = 5, 6, 7, 8. Similarly to the
derivatives of I4 and I5 in (55), these are easily obtained as

∂K5

∂F
= 2τFT,

∂K6

∂F
= 2(τCFT + CτFT), (84)

∂K7

∂F
= 2τ 2FT,

∂K8

∂F
= 2(τ 2CFT + Cτ 2FT). (85)
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Using these in (82) we obtain the expanded Cauchy stress via

Jσ = 2W1B + 2W2(I1B − B2) + 2I3W3I + 2W5� + 2W6(�B + B�)

+ 2W7�B−1� + 2W8(�B−1�B + B�B−1�), (86)

where we have introduced the notation � = FτFT. This is the Eulerian counterpart
of the Lagrangian residual stress tensor τ and represents the push forward of τ from
Br to B.

For an incompressible material we obtain similarly, from (83),

σ = 2W1B + 2W2(I1B − B2) + 2W5� + 2W6(�B + B�)

+ 2W7�B−1� + 2W8(�B−1�B + B�B−1�) − pI. (87)

When evaluated in Br Eqs. (86) and (87) reduce to

τ = 2(W1 + 2W2 + W3)Ir + 2(W5 + 2W6)τ + 2(W7 + 2W8)τ
2 (88)

and
τ = (2W1 + 4W2 − p(r))Ir + 2(W5 + 2W6)τ + 2(W7 + 2W8)τ

2, (89)

respectively, wherein each Wi , i ∈ I , is evaluated for the invariants given in Br

by (81). These are the specializations of the general formulas in (39) to the present
circumstances.

From (88) and (89) we deduce that in Br the conditions

W1 + 2W2 + W3 = 0, 2(W5 + 2W6) = 1, W7 + 2W8 = 0 (90)

and
2W1 + 4W2 − p(r) = 0, 2(W5 + 2W6) = 1, W7 + 2W8 = 0, (91)

must hold for an unconstrained and incompressible material, respectively, as derived
by Shams et al. (2011).

Plane Strain

In the plane strain specialization, for example, in the (1, 2) plane with the residual
stress having only the in-plane components τ11, τ22, τ12 and C having nonzero com-
ponents C11,C22,C12,C33 = 1, considerable simplification is achieved and only the
invariants K1, K3, K4, K5 remain independent. They are given by

K1 = C11 + C22 + 1, K3 = C11C22 − C2
12, K4 = {τ11 + τ22, τ11τ22 − τ2

12, 0}, (92)

K5 = C11τ11 + C22τ22 + 2C12τ12, (93)
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and in terms of these the other invariants are given by

K2 = K1 + K3 − 1, K6 = (K1 − 1)K5 − K3(τ11 + τ22), (94)

K7 = (τ11 + τ22)K5 − (K1 − 1)(τ11τ22 − τ 2
12), (95)

K8 = (K1 − 1)K7 − K3[(τ11 + τ22)
2 − 2(τ11τ22 − τ 2

12)]. (96)

Similarly to the plane strain cases considered in Sects. 3.3.2 and 3.4.1 the planar
Cauchy stress σ̂ is given in a simple form via

J σ̂ = 2Ŵ1B̂ + 2K3Ŵ3Î + 2Ŵ5�̂, (97)

where Ŵ (K1, K3, K4, K5) is obtained from W (K1, K2, K3, K4, K5, K6, K7, K8)

with the specializations (92)–(96) and, as before, the hats refer to the plane spe-
cialization. For an incompressible material the details were given by Merodio et al.
(2013) and in the above the invariants specialize with K3 = 1, Ŵ depends on just
K1, K4, K5, and the plane Cauchy stress has the form

σ̂ = 2Ŵ1B̂ + 2Ŵ5�̂ − p̂Î. (98)

The latter formulation has been used in Merodio et al. (2013) in the analysis of the
azimuthal shear deformation of a residually stressed circular cylindrical tube.

4 The Role of Homogeneous Deformations

For the experimental determination of the elastic properties of soft biological tissues
homogeneous deformations play a key role. Theoretically they are exact deformations
for which the deformation gradient F is independent of position X, but experimen-
tally a uniformF is only achievable approximately. Provided the tissue specimens are
selected appropriately and the experiments are carefully conducted then the approx-
imation can be considered sufficiently good to allow certain tissue properties to be
elicited. In this connection homogeneous deformations have been discussed exten-
sively for isotropic, transversely isotropic and orthotropic fiber-reinforced materi-
als in the literature, and we refer to, for example, Ogden (2003b, 2009, 2015) and
Holzapfel and Ogden (2009c) and references therein for details.

Rather than repeating full details here, we shall consider only the case of the
homogeneous biaxial deformation of a thin rectangular sheet of material loaded in
tension in the plane of the sheet. The sheet is assumed to contain two preferred direc-
tions that represent two families of parallel fibers, the two families being disposed
symmetrically to the axes of biaxial tension, which are parallel to the sheet edges.
This deformation is an example of a so-called pure homogeneous strain, which is
defined in terms of rectangular Cartesian coordinates (X1, X2, X3) and (x1, x2, x3)

in the reference and deformed configurations, respectively, by
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x1 = λ1X1, x2 = λ2X2, x3 = λ3X3, (99)

where the principal stretches λ1, λ2, λ3 are constants, i.e., independent of
(X1, X2, X3).

With respect to these coordinates F and C have diagonal forms diag[λ1, λ2, λ3]
and diag[λ2

1, λ
2
2, λ

2
3], respectively, and for an incompressible material the constraint

(16) must be satisfied. For convenience of reference in this section we repeat this
here:

λ1λ2λ3 = 1. (100)

Note that for a homogeneous deformation there can be no residual stress.

4.1 Application to Fiber-Reinforced Materials

We now suppose that the preferred directions in the reference configuration, denoted
M and M′, are given by

M = cos ϕ e1 + sin ϕ e2, M′ = cos ϕ e1 − sin ϕ e2, (101)

where ϕ is a constant angle, as depicted in Fig. 8, and e1, e2 denote the in-plane
Cartesian coordinate directions. The directions M and M′ deform into the vectors m
and m′, which are given by

m = λ1 cos ϕ e1 + λ2 sin ϕ e2, m′ = λ1 cos ϕ e1 − λ2 sin ϕ e2. (102)

In terms of the principal stretches the invariants defined in (45), or (14), (54), (64)
and (65) are, for an incompressible material,

I1 = λ2
1 + λ2

2 + λ−2
1 λ−2

2 , I2 = λ−2
1 + λ−2

2 + λ2
1λ

2
2, (103)

where (100) has been used to replace λ3 in terms of λ1 and λ2,

I4 = I6 = λ2
1 cos2 ϕ + λ2

2 sin2 ϕ, I5 = I7 = λ4
1 cos2 ϕ + λ4

2 sin2 ϕ, (104)

and
I8 = λ2

1 cos2 ϕ − λ2
2 sin2 ϕ. (105)

In this situation, on applying the general formula (70) for the Cauchy stress tensor
σ , it can be seen that the components σ13 and σ23 are zero and the other components
are given by
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(a)

(b)

M

M

m

m

φ
φ

Fig. 8 Pure homogeneous strain of a thin sheet of material in the (1, 2) plane with two in-plane
symmetrically disposed families of fibers with directions M and M′ in the reference configuration
(a), and m and m′ in the deformed configuration (b)

σ11 = 2W1λ
2
1 + 2W2(I1λ

2
1 − λ4

1) + 2(W4 + W6 + W8)λ
2
1 cos2 ϕ

+ 4(W5 + W7)λ
4
1 cos2 ϕ − p, (106)

σ22 = 2W1λ
2
2 + 2W2(I1λ

2
2 − λ4

2) + 2(W4 + W6 − W8)λ
2
2 sin2 ϕ

+ 4(W5 + W7)λ
4
2 sin2 ϕ − p, (107)

σ12 = 2[W4 − W6 + (W5 − W7)(λ
2
1 + λ2

2)]λ1λ2 sin ϕ cos ϕ, (108)

σ33 = 2W1λ
2
3 + 2W2(I1λ

2
3 − λ4

3) − p. (109)

Clearly, the invariants in this case depend on just the two independent stretches
λ1 and λ2 and the angle ϕ and it is therefore convenient to reduce the dependence of
W on the seven invariants to dependence on these three quantities by means of the
notation W̃ (λ1, λ2, ϕ), which is defined by

W̃ (λ1, λ2, ϕ) = W (I1, I2, I4, I5, I6, I7, I8), (110)

where I1, I2, I4, . . . , I8 are given by (103)–(105). Note that ϕ is a material property,
not a deformation variable. For an isotropic material W depends on I1 and I2 only
and in this case W̃ is symmetric in λ1 and λ2, but otherwise W̃ is not symmetric
except in the particular case ϕ = π/4. It is then easy to obtain the simple formulas

σ11 − σ33 = λ1
∂W̃

∂λ1
, σ22 − σ33 = λ2

∂W̃

∂λ2
. (111)
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There is no corresponding simple formula for σ12, which is not in general zero
and hence, unlike σ33, the normal stresses σ11 and σ22 are not in general principal
stresses. However, there are particular circumstances in which they are principal
stresses. First, if ϕ = 0 or π/2 the two preferred directions coincide and the material
is transversely isotropic; second, if the two families of fibers have the same elastic
properties and then, for the specific deformation considered here, since I4 = I6 and
I5 = I7, W4 = W6 and W5 = W7 and σ12 = 0. In this second case the material is
orthotropic, as indicated in Sect. 3.4.1, and the axes of orthotropy coincide with the
Cartesian axes.

We emphasize at this point that, except in the case of incompressible isotropic
materials, biaxial tests provide only limited information about tissue elastic proper-
ties, but they are nevertheless very useful since experimental setups in which more
than two deformation components can be varied independently and the associated
stress components measured are rare. Indeed, for an incompressible material there
are seven constitutive functions W1,W2,W4, . . . ,W8 that are required to be known
in order to fully characterize material properties and at present it is not possible
experimentally to distinguish the effects on the material behavior of all the different
invariants and constitutive functions. As a result it is usual to specialize the depen-
dence of the strain-energy function to a limited number of invariants that are able to
capture the essence of the elastic behavior of tissues.

For the latter purpose strain-energy functions restricted to the invariants I1, I4 and
I6 are often considered and typically these have the general form

W (I1, I4, I6) = Wiso(I1) + Waniso(I4, I6), (112)

more particularly with the symmetry Waniso(I4, I6) = Waniso(I6, I4), reflecting the
fact that the two families of fibers have the same elastic properties. This decouples the
isotropic part Wiso, which models the matrix, from the contributions of the collagen
fibers embedded in the matrix and modeled by the anisotropic partWaniso. A particular
strain-energy function of this form has a neo-Hookean isotropic part

Wiso(I1) = 1

2
μ(I1 − 3), (113)

where μ (>0) is the shear modulus of the matrix in its reference configuration, and
Fung-type exponentials associated with the fiber elasticity, namely

Waniso(I4, I6) = k1

2k2
{exp[k2(I4 − 1)2] + exp[k2(I6 − 1)2] − 2}, (114)

where k1 (with the dimension of stress) and k2 (dimensionless) are material constants.
In this case σ12 = 0 and the other stress components are given by

σ11 = μλ2
1 + 4k1(I4 − 1) exp[k2(I4 − 1)2]λ2

1 cos2 ϕ − p, (115)

σ22 = μλ2
2 + 4k1(I4 − 1) exp[k2(I4 − 1)2]λ2

2 sin2 ϕ − p, (116)
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and σ33 = μλ2
3 − p. On setting σ33 = 0 and eliminating p and λ3, we then obtain

σ11 = μ(λ2
1 − λ−2

1 λ−2
2 ) + 4k1(I4 − 1) exp[k2(I4 − 1)2]λ2

1 cos2 ϕ, (117)

σ22 = μ(λ2
2 − λ−2

1 λ−2
2 ) + 4k1(I4 − 1) exp[k2(I4 − 1)2]λ2

2 sin2 ϕ, (118)

equations for the in-plane stress components σ11 and σ22 in terms of the independent
stretches λ1 and λ2, I4 being given by Eq. (104)1.

To illustrate these formulas and, in particular, their dependence on the fiber angle
we plot the dimensionless stress components σ 11 = σ11/μ and σ 22 = σ22/μ as func-
tions of λ1 for a fixed value of λ2 in Figs. 9 and 10, respectively. Results are shown
for the representative values λ2 = 1 with k̄1 = k1/μ = 1 and k2 = 1. Clearly, as is
apparent from Fig. 9, the response becomes stiffer as the fiber become closer to the
direction of the applied tension σ11.

Fig. 9 Plot of the
dimensionless stress
σ 11 = σ11/μ against λ1
based on Eq. (117) for
λ2 = 1, dimensionless
parameter values
k̄1 = k1/μ = 1 and k2 = 1
and the indicated values of
the fiber angle ϕ together
with the unmarked curve for
ϕ = π/2 (which has the
softest response)
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Fig. 10 Plot of the
dimensionless stress
σ 22 = σ22/μ against λ1
based on Eq. (118) for
λ2 = 1, dimensionless
parameter values
k̄1 = k1/μ = 1 and k2 = 1
and the indicated values of
the fiber angle ϕ
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In Fig. 10 the behavior of the lateral stress is illustrated, also as a function of the
active stretch λ1. These show a similar stiffening trend to that in Fig. 9 although there
is some overlap of the curves for different values of ϕ. The curves for ϕ = 0 and
ϕ = π/2 are identical since the anisotropic term vanishes, with ϕ = 0 and I4 = 1,
respectively, because we have chosen λ2 = 1.

5 Extension and Inflation of an Artery

We now consider the elastic deformation of an artery, which is modeled as a thick-
walled circular cylindrical tube. In particular, we restrict attention to the extension
and inflation of an artery in which there are two symmetrically and helically arranged
families of fibers with the two families having the same elastic properties. We obtain
general expressions for the pressure and axial load on the artery in terms of the radial
and axial stretches. As a special case, and as a first approximation, we examine the
specialization of the results to a thin-walled (or membrane) tube. A membrane does
not support residual stresses and in order to consider the effect of residual stresses
on the elastic behavior of the tube we then return to consideration of the thick-walled
model.

5.1 Geometry and Deformation

We consider first a thick-walled circular cylindrical tube with reference geometry
defined in cylindrical polar coordinates R,Θ, Z by

0 < A ≤ R ≤ B, 0 ≤ Θ ≤ 2π, 0 ≤ Z ≤ L , (119)

where A and B > A are the inner and outer radii of the tube and L is its length. We
consider that the unit tangents to the two families of continuously distributed fibers
are given by

M = cos ϕ EΘ + sin ϕ EZ , M′ = cos ϕ EΘ − sin ϕ EZ , (120)

locally with respect to unit basis vectors EΘ and EZ , as shown in Fig. 11, and sym-
metric with respect to the tube axis. In general we may take ϕ to depend on R, but
in order to maintain radial symmetry we assume that it is independent of Θ and Z .

A particular significance of the prior consideration of the biaxial deformation in
Sect. 4 is that locally (at each radius R) the deformation of the tube is biaxial and
several of the formulas in Sect. 4.1 carry over to the present situation. Indeed, if the
plane sheet shown in Fig. 8a is folded to form a cylinder then the straight lines (fiber
directions) in the sheet become helices in the thin-walled cylinder so formed. The
difference is that here the tube has a finite thickness and there is dependence on R.
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Fig. 11 Unit vectors M and
M′ lying in the (Θ, Z) plane
at radial distance R from the
tube axis in the reference
configuration and locally
tangent to the two helically
arranged families of fibers

EΘ
MM

EZφ φ

It is generally considered that the material of artery walls is incompressible, and
we therefore adopt the incompressibility assumption. Then, subject to the circular
cylindrical shape being maintained during deformation (which requires the applica-
tion of an appropriate internal pressure and axial load), the deformation of the tube
can be described by the equations

r2 = a2 + λ−1
z (R2 − A2), θ = Θ, z = λz Z , (121)

where r, θ, z are cylindrical polar coordinates in the deformed configuration, λz is
the constant (independent of R) axial stretch of the tube and a is its internal radius
in the deformed configuration. The external deformed radius, denoted b, is given by

b2 = a2 + λ−1
z (B2 − A2). (122)

An advantage of the deformation defined in (121) is that, as is the case for homo-
geneous biaxial deformation, the principal axes of deformation do not rotate, which
means that the radial, azimuthal, and axial directions are principal directions of the
deformation. We denote by λr , λθ , λz the corresponding principal stretches, the first
two of which are given by

λr = λ−1λ−1
z , λθ = r

R
, (123)

λr having been obtained from the incompressibility constraint, written here as

λrλθλz = 1. (124)

We now adopt the notations

λa = a/A, λb = b/B (125)

for the values of λθ at r = a and r = b, respectively, and we note that by expressing
(121)1 in terms of λθ we obtain
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λ2
aλz − 1 = R2

A2
(λ2

θλz − 1) = B2

A2
(λ2

bλz − 1). (126)

One implication of these connections is that the sign of λ2
θλz − 1 is independent of

R, and, in particular, if λ2
θλz − 1 = 0 at one radius then this holds for all R ∈ [A, B],

so that λθ is independent of R and the deformation is homogeneous.

5.2 Stresses and Loads

Circular symmetry is maintained during the considered deformation, and because
the two fiber families are symmetrically disposed and have the same elastic prop-
erties the (Cauchy) stresses required to maintain the deformation are the normal
stresses in the r, θ, z directions, which we denote by σrr , σθθ and σzz . These are prin-
cipal stresses, similarly to the situation for the homogeneous biaxial deformation
discussed in Sect. 4.1. This means that the elastic response is orthotropic and the
axes of orthotropy coincide with the cylindrical polar axes locally. For each radius
R the considered deformation has the form of a pure homogeneous strain and hence
the strain-energy function can be written as W̃ (λθ , λz, ϕ), as in (110), except that λ1

and λ2 are replaced by λθ and λz , respectively.
Thus, similarly to (111), the principal stress differences take the forms

σθθ − σrr = λθ

∂W̃

∂λθ

, σzz − σrr = λz
∂W̃

∂λz
, (127)

with the indices 1, 2, 3 corresponding to θ, z, r , respectively, and we emphasize that
in general W̃ (λθ , λz, ϕ) 	= W̃ (λz, λθ , ϕ).

The required invariants are

I1 = λ2
θ + λ2

z + λ−2
θ λ−2

z , I2 = λ−2
θ + λ−2

z + λ2
θλ

2
z , (128)

I4 = I6 = λ2
θ cos2 ϕ + λ2

z sin2 ϕ, I5 = I7 = λ4
θ cos2 ϕ + λ4

z sin2 ϕ, (129)

I8 = λ2
θ cos2 ϕ − λ2

z sin2 ϕ, (130)

which, with the identifications λ1 ↔ λθ and λ2 ↔ λz , can be seen to be the same as
(103)–(105). In general, λθ depends on R so all the invariants also depend on R, as
do the stress components σrr , σθθ and σzz .

We now apply the equilibrium equation (20) with body force b = 0, which, by
virtue of the radial symmetry (no dependence on θ or z), reduces to the radial equation

dσrr

dr
+ 1

r
(σrr − σθθ ) = 0. (131)
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Integration of this equation requires boundary conditions on the interior and exterior
boundaries r = a and r = b, and we assume that there is an internal pressure P (≥ 0)

on r = a but no traction on r = b. Thus, we set

σrr =
{−P on r = a

0 on r = b.
(132)

In order to maintain the deformation axial loads on the ends of the tube are needed
in addition to the pressure P on r = a. At any cross section of the tube the resultant
axial load, which is independent of z, is denoted N and given by

N = 2π

∫ b

a
σzzrdr. (133)

On integration of (131) and use of (127)1 and the boundary condition (132)2 we
obtain

σrr = −
∫ b

r
λθ

∂W̃

∂λθ

dr

r
, (134)

and then, on application of the boundary condition (132)1, it follows that

P =
∫ b

a
λθ

∂W̃

∂λθ

dr

r
. (135)

For given A and B, noting that from (122) b depends on a and λz , Eq. (135) yields
an expression for the P that is required to achieve the deformed internal radius a for
any given λz .

On use of the expressions in (127) and the equilibrium equation (131) it is straight-
forward to show that N can be recast in the form

N = π

∫ b

a

(
2λz

∂W̃

∂λz
− λθ

∂W̃

∂λθ

)
r dr + π

∫ b

a

d

dr
(r2σrr ) dr. (136)

Integration of the latter term and application of the boundary conditions (132) leads
to

N = π

∫ b

a

(
2λz

∂W̃

∂λz
− λθ

∂W̃

∂λθ

)
r dr + πa2P. (137)

Thus, N consists of two parts: the load that is applied on the ends between r = a
and r = b and the contribution πa2P of the pressure on the end area πa2 of a tube
with closed ends. The difference N − πa2P , which is the integral expression here, is
known as the reduced axial load, and for this we adopt the notation F = N − πa2P .
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5.2.1 Inclusion of Residual Stress

If residual stresses are included in the tube then some of the formulas in the previous
section are essentially unchanged, as we now show. An axial residual stress is not
compatible with the tube being circular cylindrical and a deformation independent
of Θ and Z , so we restrict attention to radial and circumferential residual stresses,
which we denote by τRR and τΘΘ . They satisfy the radial equation of equilibrium

dτRR

dR
+ 1

R
(τRR − τΘΘ) = 0, (138)

which is associated with the boundary conditions

τRR = 0 on R = A and B, (139)

these being the specializations of (24) and (25), respectively, to the present geometry.
The invariants I1, I2, I4, I5, I6, I7, I8 are again given by (128)–(130), the invari-

ants K4 in (79) reduce to just τRR + τΘΘ and τRRτΘΘ , and

K5 = λ−2
θ λ−2

z τRR + λ2
θ τΘΘ, K6 = λ−4

θ λ−4
z τRR + λ4

θ τΘΘ, (140)

K7 = λ−2
θ λ−2

z τ 2
RR + λ2

θ τ
2
ΘΘ, K8 = λ−4

θ λ−4
z τ 2

RR + λ4
θ τ

2
ΘΘ. (141)

The strain-energy function can then be written in the form

W̃ (λθ , λz, ϕ, τRR + τΘΘ, τRRτΘΘ), (142)

which is as in Sect. 5.2 except that τRR + τΘΘ and τRRτΘΘ are now included. With
this change accounted for, the formulas for the Cauchy stress differences have exactly
the same form as in (127), and likewise the formulas for P and N are given by (135)
and (137). Only the content of W̃ is different.

5.2.2 The Thin-Walled Approximation

As a first approximation arteries can be considered to be thin-walled tubes, which
can be treated on the basis of membrane theory. Membranes do not support through-
thickness stresses and, in particular, this means that σrr = 0 and there can be no
residual stress. However, the membrane approximation does allow us to obtain (for
general W̃ ) simple expressions for the pressure and axial load that do not involve
integrals. The analysis is as follows. Introduce the small parameter ε = (B − A)/A,
so the reference wall thickness B − A is small compared with the inner radius A,
and linearize (122) in ε to obtain, using the definitions λa = a/A, λb = b/B, the
approximation

λb = λa − ελ−1λ−1
z (λ2λz − 1), (143)
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where, to first order in ε, λ, the membrane azimuthal stretch, can be chosen to be in
[λb, λa].

To the first order in ε, on application of the mean value theorem to Eq. (135) and
use of (143), we obtain an approximation for P , namely

P = ελ−1λ−1
z

∂W̃

∂λ
(λ, λz, ϕ). (144)

Similarly, an approximation for the reduced axial load can be obtained from (137),
which yields

F = επ A2λ−1
z

[
2λz

∂W̃

∂λz
(λ, λz, ϕ) − λ

∂W̃

∂λ
(λ, λz, ϕ)

]
. (145)

Results for P and F in the case of a thick-walled tube will be illustrated in the
following with and without residual stress, and also for the membrane approximation.
In each case the results will be based on model constitutive equations, i.e., on special
choices of W̃ , which we discuss in the following section.

5.3 Constitutive Laws

We now illustrate the preceding theory by considering specific material models.
In Sect. 5.3.1 we consider a strain-energy function for a fibrous material without
residual stress, while in Sect. 5.3.2 we extend this to account for residual stress. This
is followed by an illustration in which residual stresses and fiber reinforcement are
combined.

5.3.1 Fiber Model

The fiber model is of the form (112) with (113) and (114). Thus, W̃ (λθ , λz, ϕ) is
given by

W̃ (λθ , λz, ϕ) = 1

2
μ(λ2

θ + λ2
z + λ−2

θ λ−2
z − 3)

+ k1

k2
{exp[k2(λ

2
θ cos2 ϕ + λ2

z sin2 ϕ − 1)2] − 1}, (146)

and hence
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λθ

∂W̃

∂λθ

= μ(λ2
θ − λ−2

θ λ−2
z ) + 4k1(λ

2
θ cos2 ϕ + λ2

z sin2 ϕ − 1)λ2
θ cos2 ϕ

× exp[k2(λ
2
θ cos2 ϕ + λ2

z sin2 ϕ − 1)2], (147)

and

λz
∂W̃

∂λz
= μ(λ2

z − λ−2
θ λ−2

z ) + 4k1(λ
2
θ cos2 ϕ + λ2

z sin2 ϕ − 1)λ2
z sin2 ϕ

× exp[k2(λ
2
θ cos2 ϕ + λ2

z sin2 ϕ − 1)2]. (148)

This is applied first for a membrane tube and then for a thick-walled tube. In
Fig. 12a, with λz = 1, the dimensionless pressure P∗ = P/με is plotted against λ

for the model with four values of the fiber angle ϕ and for representative values
of the material constants. Results for λz > 1 are qualitatively similar to those for
λz = 1 and are not therefore plotted separately. For λz < 1, in the absence of internal
pressure, the tube becomes unstable and this case is not therefore considered here.
Figure 12a illustrates the strong dependence on fiber orientation. In particular, as the
fibers approach the circumferential direction (decreasing ϕ) the pressure required
to reach a given circumferential stretch increases, i.e., the fibers have a stronger
restraining effect on inflation. In Fig. 12b the corresponding plots for a thick-walled
tube are shown for comparison, with η = 1.4 and the same values of the material
constants and for representative fiber angles. Qualitatively, these are very similar,
but, of course, larger pressures are required to achieve the same level of inflation as
for a membrane tube, although the dimensionless pressure is lower because of the
different scaling used. The pressure curves exhibit qualitatively the typical response
of artery walls. Note that the character of the curves in Fig. 12 is very similar to that
evident for σ 11 shown in Fig. 9 for the homogeneous deformation of a sheet.

For the thin-walled tube, the corresponding reduced axial load F is plotted against
λ in Fig. 13a in the dimensionless form F∗ = F/(π A2με), also for λz = 1 and four
values of the fiber angle ϕ. For the larger values of ϕ, i.e., for fibers closer to the axial
direction than the circumferential direction, there is initially, as λ increases from
1 under pressure, a tendency for the pressure to shorten the tube and an increasing
positive (tensile) value of F is required in order to maintain λz = 1. Then, as inflation
continues, F reaches a maximum and then becomes negative, so the trend is reversed
and the tube would elongate in the absence of the axial load. When the fibers are
aligned closer to the circumferential direction, on the other hand, F becomes negative
as soon as inflation begins and then decreases rapidly. Such ‘switching’ in response
has been noted previously, both for isotropic materials (Haughton and Ogden 1979)
and for a Fung-type model (Holzapfel and Gasser 2001). Some corresponding plots
for a thick-walled tube are also shown in Fig. 13b for comparison. These are broadly
similar.

Clearly, the membrane approximation gives a good qualitative picture of the pres-
sure and axial load versus stretch behavior. However, the membrane approximation
cannot account for the through-thickness stress distribution in artery walls and is
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Fig. 12 a Plots of the dimensionless pressure P∗ = P/με versus the azimuthal stretch λ for
the membrane approximate Eq. (144) for the strain-energy function given by (146) with k1/μ =
1, k2 = 1 and ϕ = π/16, π/6, π/4, 3π/10. b Plots of P∗ = P/[μ(η − 1)] versus the stretch λa ,
where η = B/A = 1.4 for a thick-walled tube based on Eq. (135), the same strain-energy function
and material parameters and ϕ = π/6, π/5, π/4, π/3
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Fig. 13 a Plots of the dimensionless reduced axial load F∗ = F/(π A2με) versus the azimuthal
stretch λ based on Eq. (145) with k1/μ = 1, k2 = 1 and the values ϕ = π/3, 3π/10, π/4, π/6. b
Plots of F∗ = (N − πa2P)/[π A2μ(η − 1)] versus λa for the thick-walled case based on Eq. (137)
with η = 1.4 and for the same values of the material constants, and ϕ = π/3, π/4, π/6

not able to support the residual stresses that have an important influence on the
mechanical response of arteries. See, for example, the papers by Holzapfel et al.
(2000), Ogden and Schulze-Bauer (2000) and Ogden (2003b) and references therein
for detailed discussion of these features. In the following, therefore, we consider a
thick-walled tube with residual stress.
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5.3.2 Residual Stress Model

In order to illustrate the influence of residual stress on the material response we now
specialize both the form of the residual stress and the strain-energy function. First,
we choose a simple form of τRR satisfying the boundary conditions (139) and then
use (138) to determine τΘΘ . Specifically, we take

τRR = α(R − A)(R − B), (149)

where α (>0) is a constant, and obtain

τΘΘ = α[3R2 − 2(A + B)R + AB]. (150)

Plots of τRR and τΘΘ are shown in Fig. 14 for α = 1. Since dependence on α is linear,
curves for other values are obtained by appropriate scaling.

The characteristics of τRR and τΘΘ shown in Fig. 14 are very similar to those
obtained for a single layer from the so-called ‘opening angle’ method (Ogden 2003b)
or from the assumption that the circumferential stress at a typical physiological
pressure is uniform (Ogden and Schulze-Bauer 2000).

Recalling the constitutive law of a residually stressed material discussed in
Sect. 3.4.2, we now specialize the strain-energy function to include the influence
of residual stress with dependence only on the invariants K1, K4 and K5 and without
dependence on fibers. Then W = W (K1, K4, K5) and from (87) the expression for
the Cauchy stress reduces to

σ = 2W1B + 2W5� − pI, (151)

and the restrictions (91) reduce to

Fig. 14 Residual stresses
τRR (dashed curve) and τΘΘ

(continuous curve) plotted
for α = 1 based on
Eqs. (149) and (150) as
functions of R/A for
B/A = 1.2, a typical value
for artery walls

1.05 1.10 1.15 1.20

-0.2

-0.1

0.1

0.2

R/A

τΘΘ

τRR



122 R.W. Ogden

2W1 − p(r) = 0, 2W5 = 1 (152)

in Br. Consistently with (152) we now consider the prototype model strain-energy
function given by

W = 1

2
μ(K1 − 3) + 1

2
(K5 − tr τ ), (153)

so that W = 0 in Br and (152) is satisfied with p(r) = μ, where μ (>0) is a constant.
For the considered problem the strain-energy function (142), on omission of ϕ,

becomes

W̃ (λθ , λz, τRR, τΘΘ) = 1

2
μ(λ2

θ + λ2
z + λ−2

θ λ−2
z − 3)

+ 1

2
[λ−2

θ λ−2
z τRR + λ2

θ τΘΘ − (τRR + τΘΘ)], (154)

and the stress differences (127) specialize to

σθθ − σrr = λθ

∂W̃

∂λθ

= μ(λ2
θ − λ−2

θ λ−2
z ) + λ2

θ τΘΘ − λ−2
θ λ−2

z τRR, (155)

and

σzz − σrr = λz
∂W̃

∂λz
= μ(λ2

z − λ−2
θ λ−2

z ) − λ−2
θ λ−2

z τRR . (156)

The next step is to evaluate the integrals in the expressions for the pressure P and
the reduced axial load F = N − πa2P from the integrals in (135) and (137). This
requires the expressions

λθ

∂W̃

∂λθ

= (μ + αAB)(λ2
θ − λ−2

θ λ−2
z ) − α(A + B)R(2λ2

θ − λ−2
θ λ−2

z )

+ αR2(3λ2
θ − λ−2

θ λ−2
z ), (157)

2λz
∂W̃

∂λz
− λθ

∂W̃

∂λθ

= 2μλ2
z − (μ + αAB)(λ2

θ + λ−2
θ λ−2

z )

+ α(A + B)R(2λ2
θ + λ−2

θ λ−2
z ) − αR2(3λ2

θ + λ−2
θ λ−2

z ),

(158)

which are obtained by substituting for the expressions (149) and (150) into (155)
and (156).



Nonlinear Continuum Mechanics and Modeling the Elasticity of Soft Biological … 123

The integrals are evaluated, with the help of the definition λθ = r/R, using the
radial part (121)1 of the deformation in the form r2 − λ

−1/2
z R2 = c, where the nota-

tion c = a2 − λ−1
z A2 = b2 − λ−1

z B2 has been introduced for brevity. The resulting
expressions for P and F , after some manipulation, are obtained as

P = (μ + αAB)λ−1
z log

(
aB

Ab

)
+ 1

2
μcλ−2

z

B2 − A2

a2b2
+ 2αc log

(
b

a

)

− 3

2
α
√
c(A + B)λ−1/2

z

[
tan−1

(
λ

1/2
z

√
c

A

)
− tan−1

(
λ

1/2
z

√
c

B

)]
(159)

and

F = πμ(B2 − A2)(λz − λ−2
z ) + πc

{
(μ + αAB)λ−1

z log

(
bA

aB

)
− αc log

(
b

a

)

+ α
√
c(A + B)λ−1/2

z

[
tan−1

(
B

λ
1/2
z

√
c

)
− tan−1

(
A

λ
1/2
z

√
c

)]}
. (160)

In the case λz = 1 these formulas were given in Ogden (2015).
For numerical purposes we now nondimensionalize all the quantities in the above

two equations but restricted to the case λz = 1.
First, we set P∗ = P/μ and F∗ = F/(π A2μ), which are different from the nondi-

mensionalizations used for the membrane model in Sect. 5.2.2. We also introduce
the notations

η = B

A
, α∗ = αA2

μ
, (161)

and, as a measure of the radial inflation,

e =
√
c

A
≡

√
λ2
a − 1. (162)

The connections
b2

a2
= η2 + e2

1 + e2
, λ2

b = 1 + η−2e2 (163)

then follow and hence P∗ and F∗ can be written

P∗ = 1

2
(1 + α∗η) log

[
(1 + e2)η2

η2 + e2

]
+ α∗e2 log

(
η2 + e2

1 + e2

)

+ 1

2

(η2 − 1)e2

(η2 + e2)(1 + e2)
− 3

2
α∗(1 + η)e tan−1

[
(η − 1)e

η + e2

]
, (164)
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Fig. 15 Plots of P∗ = P/μ versus λa based on Eq. (164) for a α∗ = 2 and b α∗ = 10 with η =
1.3, 1.6 in each case (continuous curves)—thin for η = 1.3 and thick for η = 1.6. Also shown are
the corresponding curves without residual stress (α∗ = 0—dashed for η = 1.3, thick dashed for
η = 1.6)

F∗ = −1

2
(1 + α∗η)e2 log

[
(1 + e2)η2

η2 + e2

]
− 1

2
α∗e4 log

(
η2 + e2

1 + e2

)

+ α∗(1 + η)e3 tan−1

[
(η − 1)e

η + e2

]
. (165)

Illustrative plots of P∗ versus λa are shown in Fig. 15a, b for a residual stress with
α∗ = 2 and α∗ = 10, respectively, and compared with corresponding plots without
residual stress. In each case we choose η = 1.3 and η = 1.6. For thin-walled tubes
with η between 1 and about 1.2 the effect of residual stress is small. For larger values
of η and α∗ it becomes more significant. Note that for larger α∗ and/or larger values
of η the negative value of the final term in (164) becomes significant and causes
a reduction in the pressure. In particular, by comparing Fig. 15a, b we see that the
pressure is larger for η = 1.6 than for η = 1.3 in Fig. 15a but the reverse is true in
Fig. 15b. The effect of residual stress is to reduce the pressure required to achieve a
given level of inflation compared with the case without residual stress. Moreover, if
the residual stress has a very large magnitude the pressure becomes negative, which
is unrealistic. Note: there is a typo in the sign of the final term in the corresponding
expressions for P and P∗ in Ogden (2015).

Plots of F∗ are illustrated in Fig. 16a, b for α∗ = 2 and α∗ = 10, respectively,
and compared with corresponding results without residual stress. The character of
F∗ changes because of the competing effects of the positive and negative terms in
(165). As Fig. 16a shows, for α∗ = 2, F∗ is negative for the considered values of η

and increases in magnitude as η increases (only curves for η = 1.3 and η = 1.6 are
shown). In this case F∗ is slightly less negative than in the absence of residual stress.
The tube has a tendency to elongate under pressure. But for larger α∗, F∗ turns from
negative to positive for the thicker walled tubes, exemplified by η = 2 in Fig. 16b, in
which case the tube has a tendency to shorten under pressure.
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Fig. 16 Plots of F∗ = F/(π A2μ) versus λa based on Eq. (165) for a α∗ = 2 with η = 1.3, 1.6
(continuous curves)—thin for η = 1.3 and thick for η = 1.6, and b α∗ = 10, with η = 1.3, 2 (con-
tinuous curves)—thin for η = 1.3 and thick for η = 2. Also shown are the corresponding curves
without residual stress α∗ = 0: a dashed for η = 1.3, thick dashed for η = 1.6; b dashed for
η = 1.3, thick dashed for η = 2

With both fibers and residual stress included in the strain-energy function we
combine (146) and (154) to obtain

W̃ (λθ , λz, ϕ, τRR, τΘΘ) = 1

2
μ(λ2

θ + λ2
z + λ−2

θ λ−2
z − 3)

+ k1

k2
{exp[k2(λ

2
θ cos2 ϕ + λ2

z sin2 ϕ − 1)2] − 1}

+ 1

2
[λ−2

θ λ−2
z τRR + λ2

θ τΘΘ − (τRR + τΘΘ)], (166)

and the associated

λθ

∂W̃

∂λθ

= μ(λ2
θ − λ−2

θ λ−2
z ) + 4k1(λ

2
θ cos2 ϕ + λ2

z sin2 ϕ − 1)λ2
θ cos2 ϕ

× exp[k2(λ
2
θ cos2 ϕ + λ2

z sin2 ϕ − 1)2] + λ2
θ τΘΘ − λ−2

θ λ−2
z τRR, (167)

λz
∂W̃

∂λz
= μ(λ2

z − λ−2
θ λ−2

z ) + 4k1(λ
2
θ cos2 ϕ + λ2

z sin2 ϕ − 1)λ2
z sin2 ϕ

× exp[k2(λ
2
θ cos2 ϕ + λ2

z sin2 ϕ − 1)2] − λ−2
θ λ−2

z τRR . (168)

Based on the general formulas (135) and (137) we now exemplify the characters
of P∗ and F∗. First, in Fig. 17, P∗ = P/[μ(η − 1)] is plotted for the representa-
tive parameter values α∗ = 2, η = 1.4, k1/μ = k2 = 1, and for four values of ϕ, as
indicated in the figure caption. For comparison, curves are also shown for α∗ = 0
(no residual stress) in order to illustrate the effect of residual stress. The residual
stress has a significant effect on P∗ only for fiber directions relatively close to the
axial direction, as illustrated for ϕ = π/3 in Fig. 17a, in which case the presence
of residual stress requires a significantly larger value of P∗ to achieve a given level
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Fig. 17 Plots of P∗ = P/[μ(η − 1)] versus λa based on (135) with (167) and parameters α∗ = 2,
η = 1.4, k1/μ = k2 = 1 for a ϕ = π/3, b ϕ = π/4, c ϕ = π/5, d ϕ = π/6 (dashed curves), and
corresponding plots for α∗ = 0 (continuous curves)

of inflation than in the absence of residual stress. As the fiber direction approaches
circumferential the residual stress has a smaller and smaller influence. The pattern
is very similar for larger values of α∗ and details are not therefore included here.

In Fig. 18a, b representative plots of F∗ = F/[π A2μ(η − 1)] are shown for the
same parameter values as for P∗. In Fig. 18c and d corresponding plots are shown
for α∗ = 20 in order to illustrate that larger values of α∗ have only a marginal effect
on the character of the curves. In each case the curves are compared with those
obtained in the absence of residual stress. For smaller values of ϕ there is only very
little difference between the curves with and without residual stress, and as for P∗
it is only for fiber directions close to axial that the residual stress has a significant
effect. While the residual stress has the effect of increasing the value of P∗ required
to achieve a given inflation it reduces the magnitude of F∗.
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Fig. 18 Plots of F∗ = F/[π A2μ(η − 1)] versus λa based on (137) with (167) and (168) and
parameters η = 1.4, k1/μ = k2 = 1 for a ϕ = π/3, b ϕ = π/4, with α∗ = 2, and c ϕ = π/3, d
ϕ = π/4, with α∗ = 20 (dashed curves), and corresponding plots for α∗ = 0 (continuous curves)

6 The Effect of Fiber Dispersion

The model discussed in the preceding section assumes that all fibers within a given
family are oriented in the same direction. This is patently not the case for actual
arteries. There is dispersion in the orientations of collagen fibers within each family,
as exemplified by histological data from human coronary and brain arteries obtained
by Canham et al. (1989), Finlay et al. (1995, 1998). In particular, it was found that
there is wider dispersion in the intimal and adventitial layers than in the medial
layer. This is reflected in uniaxial test data obtained for the separate layers of aged
human coronary arteries by Holzapfel et al. (2005). Mean data for such tests on strip
specimens from the circumferential and axial directions of intimal, adventitial and
medial layers are illustrated in Fig. 19. In the media, where the mean fiber direction is
closer to the circumferential direction than the axial direction, the uniaxial response
is stiffest in the circumferential direction, while for the intima and adventitia the
reverse is the case.

The model discussed in Sect. 5.3.1 gives a good representation of the data for the
media (and also for the intact, layer-unseparated artery, which behaves very similarly
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Fig. 19 Plots of the uniaxial Cauchy stress σ (kPa) versus the stretch λ based on mean data for
intimal, medial, and adventitial strips from uniaxial tension experiments on aged human coronary
arteries (Holzapfel et al. 2005). The tests were performed on strips from the circumferential direction
(continuous curves) and axial direction (dashed curves). Based on Holzapfel et al. (2005), Fig. 7,
with permission

to the media), but not of the data for the intima or adventitia. In Gasser et al. (2006)
this difference was attributed to the greater level of dispersion in the latter two layers
and led to the development of a model based on a so-called generalized structure
tensor, which takes account of the dispersion and generalizes the model in Sect. 5.3.1.
This is discussed in the following.

6.1 A Model of Fiber Dispersion in Three Dimensions

Consider a fiber dispersion with a general fiber direction N within the dispersion
referred to spherical polar angles Θ and Φ in the reference configuration, as depicted
in Fig. 20 with respect to rectangular Cartesian basis vectors e1, e2, e3. Thus, we have

N(Θ,Φ) = sin Θ cos Φ e1 + sin Θ sin Φ e2 + cos Θ e3, (169)

where Θ ∈ [0, π ] and Φ ∈ [0, 2π ].
It is assumed that the fiber orientations in the reference configuration are distrib-

uted according to an orientation density function (or probability density function),
which we denote by ρ = ρ(Θ,Φ), and it is also assumed that this is unaffected by
reversal of N, so that ρ(π − Θ,π + Φ) ≡ ρ(Θ,Φ).

The density is normalized according to
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Fig. 20 Unit vector N
representing the orientation
of a fiber within a dispersion
in the reference configuration
in terms of spherical polar
angles Θ and Φ relative to
background rectangular
Cartesian axes e1, e2, e3

N

Θ

Φ

e1

e2

e3

1

4π

∫

Ω

ρ(Θ,Φ)dΩ = 1, (170)

where Ω is the unit sphere {(Θ,Φ) | Θ ∈ [0, π ], Φ ∈ [0, 2π ]}, and the proportion
of fibers within the solid angle dΩ = sin ΘdΘdΦ is ρ(Θ,Φ)dΩ .

If there is no dispersion and all fibers in a family are aligned in the direction
M then the structure tensor M ⊗ M can be used to construct the invariants I4 and
I5, as in Sect. 3.3.2. This notion of a structure tensor is now generalized to form a
generalized structure tensor, denoted H, which is an average of N ⊗ N weighted by
ρ(Θ,Φ) over the unit sphere, i.e., it is defined by

H = 1

4π

∫

Ω

ρ(Θ,Φ)N ⊗ NdΩ. (171)

Clearly, H is symmetric, and because N is a unit vector it follows from (170) and
(171) that

trH = 1. (172)

Thus, in three dimensions H has five independent components in general, and when
the expression (171) is expanded using (169) the five components of H with respect
to the Cartesian basis e1, e2, e3 are

H11 = 1

4π

∫

Ω

ρ sin3 Θ cos2 ΦdΘdΦ, (173)

H22 = 1

4π

∫

Ω

ρ sin3 Θ sin2 ΦdΘdΦ, (174)

H12 = 1

4π

∫

Ω

ρ sin3 Θ sin Φ cos ΦdΘdΦ, (175)

H23 = 1

4π

∫

Ω

ρ sin2 Θ cos Θ sin ΦdΘdΦ, (176)
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H13 = 1

4π

∫

Ω

ρ sin2 Θ cos Θ cos ΦdΘdΦ, (177)

with Hi j = Hji , i, j ∈ {1, 2, 3}, and from (172) we also have H33 = 1 − H11 − H22.

6.1.1 Fiber Dispersion with Rotational Symmetry

In Gasser et al. (2006) the focus was on the special case in which ρ is independent
of Φ, and we therefore omit the dependence of Φ and write ρ = ρ(Θ). Then, the
fiber dispersion has rotational symmetry about the direction e3, and the normalization
condition (170) reduces to

1

2

∫ π

0
ρ(Θ) sin ΘdΘ = 1. (178)

This dispersion is sometimes referred to as a transversely isotropic dispersion, and
in this case e3 is the mean fiber direction.

Now there is only one independent component of H, and its components can be
written compactly as

H11 = H22 = κ, H33 = 1 − 2κ, Hi j = 0, i 	= j, (179)

where κ , which is a measure of dispersion, is defined by

κ = 1

4

∫ π

0
ρ(Θ) sin3 ΘdΘ. (180)

This allows the tensor H to be represented in the form

H = κIr + (1 − 3κ)M ⊗ M, (181)

where Ir is again the identity tensor in Br and M is a unit vector denoting the mean
fiber direction, which, in terms of the considered Cartesian axes, is M = e3. More
generally, without specifying the axes, (181) represents a rotationally symmetric
distribution about the mean direction M.

In general κ must lie in the interval [0, 1/2]. The limiting value κ = 0 corresponds
to the case where all fibers are aligned and there is no dispersion, in which case
H = M ⊗ M (ρ being a delta function). The intermediate value κ = 1/3 corresponds
to an isotropic fiber dispersion, i.e., the fibers are dispersed uniformly in all directions
in three dimensions, ρ = 1 and H = Ir/3. For the upper limit κ = 1/2 the fiber
dispersion is isotropic in two dimensions in the plane normal to M (and ρ is again a
delta function). We note that in some circumstances values of κ in the range (1/3, 1/2]
lead to unphysical results, as pointed out in Holzapfel and Ogden (2010); see also
Melnik et al. (2015).
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Dispersion Represented as a von Mises Distribution

The fiber dispersion can be measured approximately by imaging histological samples
and represented using a probability density function. In particular, it has been found
reasonable to represent ρ(Θ) by a π -periodic von Mises distribution (Gasser et al.
2006; Holzapfel et al. 2015) based on the exponential function exp[cos(2Θ)]. Here
we write it in the form

ρ(Θ) = 4

√
b

2π

exp(2b cos2 Θ)

erfi(
√

2b)
, (182)

which is symmetrical about Θ = 0 and the constant factor is needed to satisfy the
normalization (178), where erfi is the imaginary error function related to the standard
error function erf by erfi(x) = −i erf(ix), erf being defined by

erf(x) = 2√
π

∫ x

0
exp(−u2)du, (183)

and b is the so-called concentration parameter. Plots of ρ(Θ) versus Θ are shown
in Fig. 21 for several values of b, with larger values of b giving a more concentrated
distribution about Θ = 0, tending to a delta function as b → ∞, in which case there
is no dispersion. For ease of viewing ρ(Θ) is plotted for the range Θ ∈ [−π/2, π/2]
instead of [0, π ].

The integral in (180) can be evaluated explicitly to give κ as a function of b in the
form

κ = 1

2
+ 1

8b
− 1

4

√
2

πb

exp(2b)

erfi(
√

2b)
, (184)

and Fig. 22 provides a plot of this function. This shows, in particular, that κ → 0 as
b → ∞ and the isotropic case corresponds to b = 0 and κ = 1/3.

Fig. 21 Plot of ρ(Θ) versus
Θ for the von Mises
distribution (182) for
b = 2, 5, 8, the dashed,
continuous and thick dashed
curves, respectively
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Fig. 22 Plot of the
dispersion parameter κ as a
function of the concentration
parameter b based on the
formula (184)
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Generalized Invariants

Let us now recall the definition of the invariants I4 and I5 given in (54). These may
equivalently be written as

I4 = tr (CM ⊗ M), I5 = tr (C2M ⊗ M). (185)

These motivate the introduction of generalized invariants, which we denote by I ∗
4

and I ∗
5 , based on the generalized structure tensor H in (181). These are defined by

I ∗
4 = tr (CH), I ∗

5 = tr (C2H), (186)

and from (181) and (45) it follows that

I ∗
4 = κ I1 + (1 − 3κ)I4, I ∗

5 = κ(I 2
1 − 2I2) + (1 − 3κ)I5, (187)

in which we have used the definitions (185) with M now being the mean fiber
direction. Thus, for the considered rotationally symmetric fiber dispersion the gen-
eralized invariants I ∗

4 and I ∗
5 are combinations of isotropic and transversely isotropic

invariants, weighted with respect to the dispersion parameter κ . Implicit in this con-
sideration is that at a given point X in Br the deformation gradient F applies to each
fiber in the dispersion at X.

The generalized invariants do not, of course, capture complete information about
the dispersion. Further information on the structure can be obtained by considering
higher order structure tensors, an example of which is the fourth-order structure
tensor HHH with components given by

Hi jkl = 1

4π

∫ π

0
ρ(Θ)

∫ 2π

0
Ni N j NkNl sin ΘdΘdΦ, (188)

which has complete i, j, k, l symmetry and satisfies (in the summation convention)
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Hi i j j = 1, H11 j j = H22 j j = κ, H33 j j = 1 − 2κ, (189)

and also introduces an additional dispersion parameter, denoted κ1 and defined by

κ1 = 1

4

∫ π

0
ρ(Θ) sin5 ΘdΘ. (190)

The only nonzero components of HHH are

H1111 = H2222 = 3H1122 = 3

4
κ1, H1133 = H2233 = κ − κ1 (191)

and
H3333 = 1 − 4κ + 2κ1. (192)

Clearly, additional generalized invariants based on HHH and involving κ1 can be
constructed; indeed, extension to higher order structure tensors would introduce yet
more dispersion parameters. However, for our purposes it suffices to restrict attention
to H and its associated generalized invariants.

6.1.2 A Strain-Energy Function for a Rotationally
Symmetric Dispersion

In Sect. 3.3.2, for an incompressible material with a single preferred direction M,
we considered the strain-energy function to depend on the invariants I1, I2, I4, I5:
W (I1, I2, I4, I5). In view of the dependence noted in (187) this can be considered to
remain the case when there is a rotationally symmetric fiber dispersion with the pro-
viso concerning higher order generalized structure tensors mentioned above, except
that M in the definitions in (185) is now the mean fiber direction.

Thus, to account for the dispersion in the strain-energy function of an incom-
pressible elastic material with a single rotationally symmetric dispersion it suf-
fices to replace I4 and I5 by I ∗

4 and I ∗
5 , and we write the strain-energy function

as W ∗(I1, I2, I ∗
4 , I ∗

5 ), which depends on κ as well as (I1, I2, I4, I5).
The Cauchy stress is then calculated from (57) with the help of (187) as

σ = 2W ∗
1 B + 2W ∗

2 (I1B − B2) + 2W ∗
4 h + 2W ∗

5 (Bh + hB) − pI, (193)

where W ∗
1 = ∂W ∗/∂ I1, W ∗

2 = ∂W ∗/∂ I2, W ∗
4 = ∂W ∗/∂ I ∗

4 , W ∗
5 = ∂W ∗/∂ I ∗

5 and
h = FHFT, the latter being the push forward of H to B. Thus, compared with
(57) the role of m ⊗ m is taken by h. For a material with two families of dispersed
fibers with mean fiber directions M and M′ additional invariants I6 = M′ · (CM′),
I7 = M′ · (C2M′) and I8 = M · (CM′) can be defined as in (64) and (65) with the
new interpretation of M and M′, and an expression for the Cauchy stress formed,
extending (193).
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However, it is sufficient in what follows to restrict attention to the dependence ofW
on I1, I4, I6 instead of I1, I2, I4, I5, I6, I7, I8 in order to capture the effect of two fiber
families. For this purpose we introduce the notation W ∗(I1, I ∗

4 , I ∗
6 ) = W (I1, I4, I6),

where, analogously to (187),

I ∗
6 = κ ′ I1 + (1 − 3κ ′)I6, (194)

with I ∗
6 = tr (CH′) andH′ = κ ′Ir + (1 − 3κ ′)M′ ⊗ M′, κ ′ being the dispersion para-

meter associated with M′.
The Cauchy stress then has the form

σ = 2W ∗
1 B + 2W ∗

4 h + 2W ∗
6 h

′ − pI, (195)

where h′ = FH′FT.
We now recall the strain-energy function with the structure given by (112) in terms

of I1, I4, I6, i.e.,
W = Wiso(I1) + Waniso(I4, I6), (196)

and extend this to account for fiber dispersion by writing

W ∗ = W ∗
iso(I1) + W ∗

aniso(I
∗
4 , I ∗

6 ), (197)

where W ∗
iso(I1) characterizes the properties of the isotropic matrix in which the fibers

are embedded and W ∗
aniso(I

∗
4 , I ∗

6 ) characterizes the properties of the fiber dispersions.
As in (113) the isotropic part is taken to have the neo-Hookean form

W ∗
iso = 1

2
μ(I1 − 3) (198)

with the shear modulus μ (>0). The anisotropic part of (197) is now

W ∗
aniso = k1

2k2

∑

i=4,6

{exp[k2(I
∗
i − 1)2] − 1}, (199)

which is obtained from (114) by replacing I4 and I6 by I ∗
4 and I ∗

6 , respectively. In
particular, we note that when κ ′ = κ the two families of dispersed fibers have the
same elastic properties. The material constants k1 (>0) and k2 (>0) have the same
interpretation as in (114).

The strain-energy function (197) with (198) and (199) was introduced by Gasser
et al. (2006), and, in particular, we note that the anisotropic contribution (199)
involves the isotropic invariant I1 as well as the anisotropic ones I4 and I6. We
also note that it was assumed in Gasser et al. (2006) that the anisotropic term in I ∗

4
only contributes to the energy and the stress if I4 > 1 and similarly the term in I ∗

6
only contributes to the energy and the stress if I6 > 1, i.e., if the mean fiber direction
is extended in one or other family of fibers. In the case when there is no dispersion
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this is because it is assumed that individual fibers cannot support compression. When
there is dispersion, on the other hand, that the mean fiber direction is extended does
not in general mean that all fibers in a dispersion are extended and those that are
compressed should therefore be omitted from contributing to the energy and stress if
it is again assumed that compressed fibers do not support compression. Whether this
is the case or not is open to debate since closely packed fibers may well support some
compression. Equally, if, for example, I4 ≤ 1 then this does not in general mean that
all fibers in the dispersed family are under compression, so to omit the contribution
of the I ∗

4 term may not then be appropriate. See the discussion in Holzapfel and
Ogden (2015) and Melnik et al. (2015), for example. This is an issue that requires
further investigation.

6.2 Fiber Dispersion in Two Dimensions

In two-dimensional problems such as for plane strain or plane stress it is appropriate
to consider planar dispersions, and toward the analysis of such dispersions we confine
attention to the plane defined by the unit basis vectors e1 and e2. We follow the analysis
in Ogden (2009) and Holzapfel and Ogden (2010) but with different notation. Let
the direction of a general fiber lying in this plane be represented by the unit vector
N in the reference configuration, where

N = cos Θ e1 + sin Θ e2. (200)

Suppose that the fiber dispersion is symmetric about e1, which is then the mean fiber
direction. The orientation density ρ then depends only on Θ and satisfies ρ(−Θ) =
ρ(Θ).

The counterpart of the three-dimensional normalization in the considered two
dimensions is

1

π

∫ π/2

−π/2
ρ(Θ) dΘ = 1, (201)

and the (two-dimensional) generalized structure tensor is defined by

Ĥ = 1

π

∫ π/2

−π/2
ρ(Θ)N ⊗ N dΘ, (202)

where the hat is used to indicate the two-dimensional restriction. The only nonzero
components of Ĥ are Ĥ11 and Ĥ22, which satisfy Ĥ11 + Ĥ22 = 1, where

Ĥ22 = 1

π

∫ π/2

−π/2
ρ(Θ) sin2 Θ dΘ. (203)
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Let us introduce the notation Ĥ22 = κ as a characteristic parameter of the dispersion,
similarly to the three-dimensional situation. Then Ĥ can be expanded in the form

Ĥ = κ Îr + (1 − 2κ)e1 ⊗ e1, (204)

where Îr is the two-dimensional identity in the reference configuration of the con-
sidered plane.

More generally, if M is the mean fiber direction in the plane and the dispersion is
symmetric about M then (204) generalizes slightly to

Ĥ = κ Îr + (1 − 2κ)M ⊗ M. (205)

By way of illustration we now apply this to the case of plane strain for an incom-
pressible material. In respect of a single preferred direction, we recall the plane strain
connections I2 = I1 and I5 = (I1 − 1)I4 − 1 given in (59) and the expression

σ̂ = 2Ŵ1B̂ + 2Ŵ4m ⊗ m − p̂Î (206)

from (60) for the planar Cauchy stress, where Ŵ = Ŵ (I1, I4).
Similarly to the three-dimensional model considered in the preceding section we

accommodate the dispersion by replacing I4 by I ∗
4 = tr (CĤ), which in this case is

given by
I ∗
4 = κ(I1 − 1) + (1 − 2κ)I4, (207)

with Ŵ ∗(I1, I ∗
4 ) = Ŵ (I1, I4). A short calculation then leads to the planar Cauchy

stress
σ̂ = 2Ŵ ∗

1 B̂ + 2Ŵ ∗
4 ĥ − p̂Î, (208)

where ĥ = FĤFT, and, analogously to (195), if there are two fiber families with
mean fiber directions M and M′ in the plane, corresponding generalized invariants
I ∗
4 and I ∗

6 and dispersion parameters κ and κ ′, (208) extends to

σ̂ = 2Ŵ ∗
1 B̂ + 2Ŵ ∗

4 ĥ + 2Ŵ ∗
6 ĥ

′ − p̂Î, (209)

where Ŵ ∗ = Ŵ ∗(I1, I ∗
4 , I ∗

6 ),

ĥ′ = F[κ ′Îr + (1 − 2κ ′)M′ ⊗ M′]FT, (210)

and I ∗
6 = κ ′(I1 − 1) + (1 − 2κ ′)I6.



Nonlinear Continuum Mechanics and Modeling the Elasticity of Soft Biological … 137

6.3 The Influence of Fiber Dispersion on the Response
of an Artery

Again we denote the mean orientations of the two fiber families by M and M′ and
we assume that each dispersion is rotationally symmetric about its mean direction
with the same dispersion parameter κ . We take the mean fiber directions to be sym-
metrically disposed, making equal angles ϕ with the circumferential direction and
to lie in the tangential (Θ, Z) plane locally, as illustrated in Fig. 23. Hence,

M = cos ϕ EΘ + sin ϕ EZ , M′ = − cos ϕ EΘ + sin ϕ EZ . (211)

Note that with respect to Fig. 11 the sense of M′ has been reversed here.
Then, for the deformation described in Sect. 5.1 we again have

I1 = λ2
θ + λ2

z + λ−2
θ λ−2

z , I4 = I6 = λ2
θ cos2 ϕ + λ2

z sin2 ϕ, (212)

and the invariants I ∗
4 and I ∗

6 are

I ∗
4 = I ∗

6 = κ I1 + (1 − 3κ)I4. (213)

We again adopt the strain-energy function (197) with (198) and (199), which, under
the present assumptions, specializes to

W ∗ = 1

2
μ(I1 − 3) + k1

k2
{exp[k2(I

∗
4 − 1)2] − 1}. (214)

In order to illustrate the effect of the fiber dispersion it suffices to consider the
membrane equations for P and F given by (144) and (145), respectively, but now
with the strain-energy function W̃ in (146) replaced by W̃ ∗ obtained from (214) as

Fig. 23 Mean fiber
directions M and M′ locally
in (Θ, Z) planes at radial
location R through the tube
wall, with an indication of
the rotationally symmetric
fiber dispersions about M
and M′

EΘ
M

M

EZ

φ

φ
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Fig. 24 Plot of the
dimensionless pressure
P∗ = P/με against λ for the
strain-energy function (215)
with λz = 1, material
parameters
k1/μ = 1, k2 = 1 and
dispersion parameters
κ = 0.2 (dashed curves) and
κ = 0 (continuous
curves—no dispersion), and
angles ϕ = π/6, π/4, π/3,
based on the thin-wall
approximation (144)
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W̃ ∗(λθ , λz, ϕ, κ) = 1

2
μ(λ2

θ + λ2
z + λ−2

θ λ−2
z − 3)

+ k1

k2

[
exp{k2[κ(λ2

θ + λ2
z + λ−2

θ λ−2
z )

+ (1 − 3κ)(λ2
θ cos2 ϕ + λ2

z sin2 ϕ) − 1]2} − 1
]
. (215)

In Fig. 24 the dimensionless pressure P∗ = P/με is plotted as a function of λ for
the representative axial stretch λz = 1, dispersion parameter κ = 0.2 and material
parameters k1/μ = k2 = 1, with the three different values of the mean fiber angle
ϕ = π/6, π/4, π/3. These are the dashed curves in the figure and are compared with
corresponding results in the absence of dispersion (the continuous curves). The latter
are the same as the curves in Fig. 12a but the vertical scale has been reduced here
in order to highlight the significant difference that dispersion makes to the pressure
response for ϕ = π/6, π/4, in particular for mean fiber directions relatively close to
circumferential.

When the mean fiber direction is closer to axial the effect of dispersion is con-
siderably reduced. For larger values of κ our calculations show that the response
becomes less stiff and as κ approaches 1/3 (the isotropic case) the three dispersion
curves merge. The chosen values of λz , k1/μ and k2 serve to illustrate the main
features of the pressure response in the presence of dispersed fibers, and results for
other values of these parameters are qualitatively similar. Examples with different
parameter values corresponding to fitting to arterial wall data can be found in Gasser
et al. (2006) and Ogden (2009) in which P and/or P∗ is plotted against λ for fixed
λz or for F = 0 and against λz for F = 0.

Next, in Fig. 25, corresponding plots of the dimensionless reduced axial load
F∗ = F/(π A2με) as a function of λ are illustrated for the same parameters as in
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Fig. 25 Plot of the
dimensionless reduced axial
load F∗ = F/(π A2με)

against λ for the
strain-energy function (215)
with λz = 1, material
parameters
k1/μ = 1, k2 = 1 and
dispersion parameters
κ = 0.2 (dashed curves) and
κ = 0 (continuous
curves—no dispersion), and
angles ϕ = π/6, π/4, π/3,
based on the thin-wall
approximation (145)
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Fig. 24. In this case the dispersion has a significant effect for all values of ϕ, and, in
particular, for ϕ = π/3, F∗ changes from positive to negative as a result of dispersion
for the considered range of values of λ.

As a final example in this section we illustrate the influence of fiber dispersion
on circumferential and axial strips subjected to uniaxial tensile load with the ends of
the strips constrained so that the resulting deformations and stress distributions are
nonuniform. Based on data relating to an iliac adventitia, finite element results were
presented in Gasser et al. (2006) for a uniaxial tension of 1 N, with material parameter
μ = 7.64 kPa for the soft (neo-Hookean) matrix and k1 = 996.6 kPa, k2 = 524.6.
Here we show a small selection of their results, for full details of which we refer to
Gasser et al. (2006).

In Fig. 26 we show the distribution of the component of Cauchy stress in the
direction of the applied load for the case of no fiber dispersion (κ = 0) with fibers
oriented at an angle ϕ = 49.98◦ relative to the circumferential direction. Clearly,
the circumferential specimen, shown on the left of the figure, extends more than
the axial specimen because the stiff fibers are oriented closer to the axial than the
circumferential direction. For each specimen there is a significant lateral contraction
in the width of the specimens caused by rotation of the fibers, which tends to squeeze
the material in the width. This is accompanied by an expansion in the thickness
direction in which the stretch is, by incompressibility, λ3 = λ−1

1 λ−1
2 > 1, although

this is less evident near the ends of the specimens because of the end constraints.
Figure 27 shows the corresponding results for a case with fiber dispersion and

dispersion parameter κ = 0.226 and mean fiber angle ϕ = 49.98◦. In this case the
thickness is approximately constant and the uniaxial response is stiffer. Clearly, the
dispersion has a significant effect on the response.
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Fig. 26 Finite element
computation showing the
component of the Cauchy
stress distribution in the
direction of the applied load
for a uniaxial tensile load of
1 N applied to strips in the
circumferential and axial
directions with no fiber
dispersion (κ = 0).
Reproduced from Fig. 9 of
Gasser et al. (2006) with
permission
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6.4 Nonsymmetric Fiber Dispersion

Recent extensive experiments of Schriefl et al. (2012) have characterized the in-
plane (circumferential–axial) dispersion of collagen fibers in the intima, media, and
adventitia of human non-atherosclerotic thoracic and abdominal aortas and common
iliac arteries. They also measured out-of-plane (radial) fiber angles for each layer and
found that the out-of-plane dispersions are similar at all anatomic locations for each
layer. In particular, they determined that for each (three-dimensional) dispersion the
mean fiber angle was very close to tangential, and that the out-of-plane component
was very small. These results show that it is inappropriate to adopt rotationally
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Fig. 27 Finite element
computation showing the
component of the Cauchy
stress distribution in the
direction of the applied load
for a uniaxial tensile load of
1 N applied to strips in the
circumferential and axial
directions with fiber
dispersion parameter
κ = 0.226. Reproduced from
Fig. 12 of Gasser et al.
(2006) with permission
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symmetric dispersions for the two fiber families with mean fiber direction in the
circumferential–axial plane. The purpose of this section, therefore, it to provide a
modification of the rotationally symmetric dispersion model that takes account of
these new results. Our analysis here is based on the recent paper by Holzapfel et al.
(2015), but for consistency with the previous sections herein some of the notation
has been changed.

With reference to Fig. 20 we again assume that a general fiber direction N within
a dispersion is given by (169), which we repeat here for ease of reference as

N(Θ,Φ) = sin Θ cos Φ e1 + sin Θ sin Φe2 + cos Θ e3, (216)
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with Θ ∈ [0, π ], Φ ∈ [0, 2π ], and, locally, for a circular cylinder, e1, e2 defining
the tangential plane of a cylindrical coordinate system, e1 being the circumferential
direction and e2 the axial direction. Thus, e3 is the outward radial direction.

We again adopt the notation ρ(Θ,Φ) for the fiber orientation density, and this is
normalized according to (170). The requirement that ρ is independent of the sense of
N again gives ρ(π − Θ,π + Φ) = ρ(Θ,Φ). The experimental results of Schriefl
et al. (2012) suggest two additional symmetries, the in-plane symmetry ρ(Θ, π +
Φ) = ρ(Θ,Φ), and the out-of-plane symmetry ρ(π − Θ,Φ) = ρ(Θ,Φ), as a result
of which we can now focus on the ranges of values Θ ∈ [0, π/2] and Φ ∈ [0, π ].

Again we assume that the material properties are independent of the sense of N,
so that the strain-energy function depends on N via the tensor product N ⊗ N, as in
Sect. 6.1, through the (symmetric) generalized structure tensor H defined in (171),
which, in view of the symmetries mentioned above, we now write as

H = 1

π

∫

Ω ′
ρ(Θ,Φ)N ⊗ N sin ΘdΘdΦ, (217)

where Ω ′ = {(Θ,Φ) | Θ ∈ [0, π/2], Φ ∈ [0, π ]}.
With reference to the basis e1, e2, e3 we denote the components ofH by Hi j = Hji ,

so that (in the summation convention) H = Hi jei ⊗ e j . However, the symmetries of
ρ identified above ensure that H13 = H23 = 0. In view of the restriction (172) there
remain only three independent components of H. Thus, we consider

H11, H22, H12, with H33 = 1 − H11 − H22. (218)

It was found in Schriefl et al. (2012) that the in-plane and out-of-plane dispersions
are essentially independent, which means that ρ(Θ,Φ) can be decoupled as

ρ(Θ,Φ) = ρop(Θ)ρip(Φ), (219)

where ρop(Θ) and ρip(Φ) are the out-of-plane and in-plane fiber orientation densities,
respectively. The symmetries discussed above then impose the conditions

ρop(π − Θ) = ρop(Θ), ρip(π + Φ) = ρip(Φ). (220)

As a result, with the symmetries accounted for, the normalization (170) gives

1

π

∫ π/2

0
ρop(Θ) sin ΘdΘ

∫ π

0
ρip(Φ)dΦ = 1. (221)

Clearly, the out-of-plane dispersion has rotational symmetry, and guided therefore
by the normalization (178) in the case of rotational symmetry, we assume that ρop(Θ)

is normalized according to



Nonlinear Continuum Mechanics and Modeling the Elasticity of Soft Biological … 143

∫ π/2

0
ρop(Θ) sin ΘdΘ = 1, (222)

which leaves the normalization of ρip(Φ) in the form

1

π

∫ π

0
ρip(Φ)dΦ = 1. (223)

Analogously to the dispersion parameter κ defined in (180) we now define the
out-of-plane dispersion parameter κop by

κop = 1

2

∫ π/2

0
ρop(Θ) sin3 ΘdΘ, (224)

which lies in the range of values

0 ≤ κop ≤ 1/2, (225)

as discussed in Sect. 6.1.1 in respect of κ . Thus, in particular, κop = 1/3 corresponds
to an isotropic dispersion with ρop = 1.

Note that (223) is automatically satisfied if ρip(Φ) ≡ 1, which corresponds to
in-plane isotropy, in which case H12 = 0, H11 = H22 = κop, and H33 = 1 − 2κop,
so that the dispersion is rotationally symmetric with mean fiber direction e3. Three-
dimensional isotropy arises if ρop(Θ) = ρip(Φ) = 1 and κop = 1/3.

Having considered the out-of-plane dispersion in terms of κop, we now discuss
the in-plane dispersion. From the definitions (217), (226) and (227) with Eq. (219)
the components of H are calculated simply as

Hi j = 2κopκ̄i j , i, j ∈ {1, 2}, H11 + H22 = 2κop, H33 = 1 − 2κop, (226)

where κ̄11, κ̄22 and κ̄12 are given by

κ̄11 = 1

π

∫ π

0
ρip(Φ) cos2 ΦdΦ, κ̄22 = 1

π

∫ π

0
ρip(Φ) sin2 ΦdΦ, (227)

κ̄12 = 1

π

∫ π

0
ρip(Φ) sin Φ cos ΦdΦ. (228)

It follows from (223) that
κ̄11 + κ̄22 = 1. (229)

Note that in the case of in-plane isotropy, ρip(Φ) ≡ 1, it follows that κ̄12 = 0 and
κ̄11 = κ̄22 = 1/2.

If the mean in-plane fiber direction coincides with e1 or e2 then we also have κ̄12 =
0. We then consider a mean in-plane fiber direction M, as depicted in Fig. 28, with
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Fig. 28 Schematic of the
in-plane mean fiber direction
M = cos ϕ e1 + sin ϕ e2,
with in-plane unit vectors e1
(circumferential) and e2
(axial) and plane normal e3

e1

e2
e3

M

φ

the dispersion symmetric about M, which is a unit vector given by M = cos ϕ e1 +
sin ϕ e2, ϕ being the angle between M and the circumferential direction e1. With
respect to axes aligned with e′

1 = M and e′
2 = − sin ϕ e1 + cos ϕ e2, we denote the

dispersion parameters by κ̄ ′
i j and in this case also κ̄ ′

12 = 0. In such a case we drop
the bars and use the notation κ11 and κ22, noting that κ11 + κ22 = 1.

Then, the dispersion components κ̄i j are related to κi j , i, j ∈ {1, 2}, and the angle
ϕ by

κ̄11 = κ11 cos2 ϕ + κ22 sin2 ϕ, κ̄12 = (κ11 − κ22) sin ϕ cos ϕ, (230)

with κ̄22 given by (229), and hence

tan 2ϕ = 2κ̄12

κ̄11 − κ̄22
. (231)

Note that
(κ̄11 − κ̄22)

2 + 4κ̄2
12 = (κ11 − κ22)

2 (232)

is an invariant, i.e., independent of ϕ. Clearly then, given the angle ϕ, there is only
one independent in-plane dispersion parameter. We take this to be κ22, which we
denote by κip henceforth.

Now let us refer the structure tensor H to the axes e′
1, e

′
2 identified above, along

with e′
3 = e3, and let H ′

i j be the corresponding components of H, where

H ′
11 = 2κop(1 − κip), H ′

22 = 2κopκip, H ′
33 = 1 − 2κop (233)

and H ′
i j = 0, i 	= j . By using the identity e′

1 ⊗ e′
1 + e′

2 ⊗ e′
2 + e′

3 ⊗ e′
3 = Ir, the

spectral form of H, i.e.,

H = H ′
11e

′
1 ⊗ e′

1 + H ′
22e

′
2 ⊗ e′

2 + H ′
33e

′
3 ⊗ e′

3, (234)

can be rewritten as

H = 2κopκipIr + 2κop(1 − 2κip)M ⊗ M + (1 − 2κop − 2κopκip)Mn ⊗ Mn, (235)

where the unit vector Mn is now used in place of e3. This is the generalized structure
tensor associated with a fiber dispersion that has a single in-plane mean direction
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M, and because of the considered symmetries M is also the mean direction of the
three-dimensional dispersion.

We emphasize that H involves just two independent dispersion parameters, κop

and κip, and κop can be calculated when ρop is prescribed, while κ̄11, κ̄22 and κ̄12 can
be determined from a given form of ρip. The latter lead to the angle ϕ via (231). The
calculations are exemplified in the following section by considering ρop and ρip to
be von Mises distributions.

Special Cases

It is worthwhile at this point to identify the values of κop and κip for which the structure
tensor (235) reduces to the particular structure tensors considered previously. First,
by taking κip = 1/2, we obtain

H = κopIr + (1 − 3κop)Mn ⊗ Mn, (236)

which is the structure tensor of a rotationally symmetric dispersion with mean fiber
direction Mn. Alternatively, we may obtain

H = κIr + (1 − 3κ)M ⊗ M (237)

by setting κ = 2κopκip = 1 − 2κop, which is the structure tensor of a rotationally
symmetric dispersion with mean fiber direction M. If there is no dispersion then by
taking κop = 0 and κ = 0, respectively, in these two cases we obtain H = Mn ⊗ Mn

andH = M ⊗ M. The structure tensor for an isotropic dispersion of fibers is obtained
by taking either κop = 1/3 in (236) or κ = 1/3 in (237).

The structure tensor Ĥ for a two-dimensional dispersion given in (205) is obtained
from (235) by setting κop = 1/2 and κip = κ , and noting that the in-plane identity
is given by Îr = Ir − Mn ⊗ Mn. Then, with κ = 1/2, we obtain the structure tensor
for an isotropic in-plane dispersion, namely Ĥ = Îr/2.

6.4.1 Describing Dispersions in Terms of von Mises Distributions

We consider π -periodic von Mises distributions that account for the symmetries
identified at the beginning of Sect. 6.4. For general details of von Mises distributions
we refer to Fisher et al. (1987). We begin by representing the out-of-plane orientation
density ρop(Θ) as a von Mises distribution of the form

ρop(Θ) = 4

√
b

2π

exp(−2b cos2 Θ)

erf(
√

2b)
. (238)

This can be obtained from the ρ(Θ) given in (182) in Sect. 6.1.1 by replacing b by
−b and leads to the closed-form expression for κop given by
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κop = 1

2
− 1

8b
+ 1

4

√
2

πb

exp(−2b)

erf(
√

2b)
, (239)

which has the character shown in Fig. 22 as for κ in (184) but with b and −b inter-
changed.

For ρip(Φ) we consider the von Mises distribution

ρip(Φ) = exp(−a cos 2Φ)

I0(a)
, (240)

which has a different normalization from ρop(Θ), where the constant a is again a
concentration parameter, while I0(a) is the modified Bessel function of the first kind
of order 0 defined by

I0(x) = 1

π

∫ π

0
exp(x cos α)dα. (241)

The distribution (240) is slightly different from that used in Holzapfel et al. (2015)
and is chosen to have its maximum at the center Φ = π/2 of the integration interval.
The forms of the curves of ρip(Φ) for different values of a are, apart from the different
scale, identical to those shown in Fig. 21. When a → ∞, ρip(Φ) becomes a delta
function.

It is instructive to visualize the dispersion in three dimensions by plotting
ρ(Θ,Φ)N = ρop(Θ)ρip(Φ)N. Thus, Fig. 29 shows this for the different cases of
dispersions considered, as described in the figure caption.

Since the distribution (240) is symmetric about Φ = 0 it follows from the defin-
ition (228) that κ̄12 = 0, and from (227), on dropping the bars, that κ11 and κ22 can
be obtained in the closed forms

κ11 = 1

2
− I1(a)

2I0(a)
, κ22 = κip = 1

2
+ I1(a)

2I0(a)
, (242)

where

I1(x) = 1

π

∫ π

0
exp(x cos α) cos αdα (243)

is the modified Bessel function of the first kind of order 1. Note that the expressions
for κ11 and κ22 are reversed compared with those given in Holzapfel et al. (2015)
because of the different form of ρip(Φ) adopted here. Each of κ11 and κ22 lies in the
range [0, 1] subject to κ11 + κ22 = 1 and plots of them as functions of a are shown
in Fig. 30. The character of κ22 is very similar to that of κ shown in Fig. 22 although
the range of values is different.

If κ11 and κ22 are the dispersion parameters corresponding to a mean fiber direction
at an angle ϕ to the e1 direction (see Fig. 28) then the dispersion parameters κ̄11, κ̄22

and κ̄12 are given by (229) and (230).
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Fig. 29 Visualization of the fiber dispersion defined by ρ(Θ,Φ)N = ρop(Θ)ρip(Φ)N based on
the von Mises distributions (238) and (240). The plots have been scaled differently and represent a
a nonrotationally symmetric dispersion, b a rotationally symmetric dispersion, c perfectly aligned
fibers, d a 3D isotropic dispersion and e a planar dispersion. The planar isotropic case corresponds to
a circle in e. Except for case c the distance from the center to the surface represents the probability of
finding a fiber in the direction N. Reproduced from Fig. 6 of Holzapfel et al. (2015) with permission

Fig. 30 Plots of κ11 and κ22
versus a based on the
formulas in (242)
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6.4.2 Consideration of Data from Schriefl et al. (2012)

We now illustrate the results from Schriefl et al. (2012) by considering the angular
dispersion data from a single adventitial specimen of a human non-atherosclerotic
abdominal aorta which were included in the average data set in Fig. 5 of their paper.
In Fig. 31 we show the data as a probability density for the out-of-plane dispersion
together with a curve obtained by fitting ρop(Θ) obtained from (238) to the data
for which the concentration parameter was found to be b = 19.44. Incidentally, the



148 R.W. Ogden

ρop(Θ )

6

12

0
π/2 Θ π0

Fig. 31 Representative set of out-of-plane fiber angular dispersion data from Schriefl et al. (2012)
and the fit to these data with the orientation density function (238) with concentration parameter
b = 19.44 and with ρop(Θ) plotted against Θ . Based on Fig. 5b in Holzapfel et al. (2015), with
permission

Fig. 32 Representative set
of in-plane fiber angular
dispersion data from Schriefl
et al. (2012) and the fit to
these data with the
orientation density function
(240) with concentration
parameter a = 2.54 and
angle ϕ = 47.99◦ and with
ρip(Θ) plotted against Φ.
Based on Fig. 5a in Holzapfel
et al. (2015), with permission

ρip(Φ)

2

4

0
π/2 Φ π0

2φ

vertical scale shown in the corresponding figure (Fig. 5b) in Holzapfel et al. (2015)
is incorrect, and Fig. 31 corrects this.

In Fig. 32 we show the data of the in-plane bimodal dispersion, the data being
fitted by the curve shown using ρip(Φ) from (240) with Φ replaced by Φ + ϕ and
Φ − ϕ together, ϕ being determined as ϕ = 47.99◦, and the concentration parameter
as a = 2.54.

Note that the data shown in Figs. 31 and 32 are centered on Θ = π/2 rather than
the Θ = 0 used in Holzapfel et al. (2015).

From the formulas (239) and (242)2 with the values of b and a above we then
obtain the corresponding values of κop and κip as κop = 0.494 and κip = 0.885. Note
that in Holzapfel et al. (2015) the value of κop was 0.493 and, because we are using a
slightly different version of ρip here κip in Holzapfel et al. (2015) was 0.116, whereas
the value of κ11 here is 0.115.

6.4.3 An Extended Constitutive Law

We recall the generalized structure tensor defined in (235) as
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H = 2κopκipIr + 2κop(1 − 2κip)M ⊗ M + (1 − 2κop − 2κopκip)Mn ⊗ Mn, (244)

for a single family of dispersed fibers. We now consider a second family with mean
fiber direction M′ and the same material properties with structure tensor

H′ = 2κopκipIr + 2κop(1 − 2κip)M′ ⊗ M′ + (1 − 2κop − 2κopκip)Mn ⊗ Mn,

(245)
M and M′ lying in the (e1, e2) plane and symmetrically arranged with respect to the
axes, and Mn = e3 normal to that plane, as depicted in Fig. 33. Thus,

M = cos ϕ e1 + sin ϕ e2, M′ = cos ϕ e1 − sin ϕ e2. (246)

Note, with reference to Fig. 11, that e1 and e2 may be identified with EΘ and EZ ,
respectively.

The associated generalized invariants are denoted I ∗
4 and I ∗

6 , generalizing the
definitions used in (186)1 and (194), the latter with κ ′ = κ , and given by

I ∗
4 = tr (CH) = 2κopκip I1 + 2κop(1 − 2κip)I4 + (1 − 2κop − 2κopκip)In, (247)

I ∗
6 = tr (CH′) = 2κopκip I1 + 2κop(1 − 2κip)I6 + (1 − 2κop − 2κopκip)In, (248)

where In = Mn · (CMn)

Note, by considering the (orthogonal) unit bisectors of M and M′, namely e1 =
(M + M′)/2 cos ϕ and e2 = (M − M′)/2 sin ϕ, where 2ϕ is the angle between M
and M′, and using the identity

e1 ⊗ e1 + e2 ⊗ e2 + e3 ⊗ e3 = Ir, (249)

we obtain

In = I1 − I4 + I6 − 2I8 cos 2ϕ

sin2 2ϕ
, (250)

Fig. 33 Schematic of the
in-plane mean fiber
directions
M = cos ϕ e1 + sin ϕ e2 and
M′ = cos ϕ e1 − sin ϕ e2,
with in-plane unit vectors e1
(circumferential) and e2
(axial) and plane normal e3

e1

e2

e3

M

M′

φ

φ
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where I8 is defined by (65). Thus, In is in general an independent invariant, i.e.,
independent of I1, I4, I6, except in the special case in whichM andM′ are themselves
orthogonal, and the above reduces to In = I1 − (I4 + I6).

Now, instead of treating W as a function of just I1, I4, I6 we append the invariant
In, which appears only in I ∗

4 and I ∗
6 , and consider W (I1, I4, I6, In) = W ∗(I1, I ∗

4 , I ∗
6 ).

Recalling the connections (23) and the formula (42)2, the second Piola–Kirchhoff
stress tensor P is then given by

P = 2
∂W

∂C
− pC−1 = 2(W1Ir + W4M ⊗ M + W6M

′ ⊗ M′ + WnMn ⊗ Mn) − pC−1,

(251)

and the Cauchy stress tensor is obtained from σ = FPFT. When expressed in terms
of W ∗(I1, I ∗

4 , I ∗
6 ) it can then be shown that the Cauchy stress is given by

σ = −pI + 2W ∗
1 B + 2W ∗

4 h + 2W ∗
6 h

′, (252)

the same formula as in (195), where h = FHFT and h′ = FH′FT, but H and H′ are
now given by (244) and (245). Hence

h = 2κopκipB + 2κop(1 − 2κip)m ⊗ m + (1 − 2κop − 2κopκip)mn ⊗ mn, (253)

h′ = 2κopκipB + 2κop(1 − 2κip)m′ ⊗ m′ + (1 − 2κop − 2κopκip)mn ⊗ mn, (254)

with m = FM, m′ = FM′, mn = FMn.
We now extend the decomposition of the strain-energy function given in (197) to

the present situation by writing it as

W ∗(I1, I ∗
4 , I ∗

6 ) = W ∗
iso(I1) + W ∗

aniso(I
∗
4 , I ∗

6 ), (255)

but now with I ∗
4 and I ∗

6 given by (247) and (248). With this change, as in (198) and
(199), we take

W ∗
iso = 1

2
μ(I1 − 3) (256)

and

W ∗
aniso = k1

2k2

∑

i=4,6

{exp[k2(I
∗
i − 1)2] − 1}. (257)

Following Holzapfel et al. (2000), we make the common assumption that the
fibers do not resist any compression and are only active in tension. In this respect the
invariants I4 and I6 act as switches between fiber compression and tension so that
W ∗

aniso only contributes to the strain energy if either I4 > 1 or I6 > 1. Thus, if one
or both of these conditions is not satisfied then the corresponding part of W ∗

aniso is
omitted. If neither condition is satisfied then the tissue response is purely isotropic.
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For discussion of subtle points regarding the choice of switching criteria, we refer to
Holzapfel and Ogden (2015).

6.4.4 Material Parameter Identification

For the particular data considered in Sect. 6.4.2 the dispersion parameters κop and κip

and the angle ϕ, and hence the mean fiber directions M and M′, were determined on
the basis of histology and imaging. Thus, for the model (255) with (256) and (257), it
remains to determine the material parameters μ, k1 and k2. In Holzapfel et al. (2015)
they were determined by fitting the model to uniaxial data.

To review this we first refer to the definition of pure homogeneous strain in (99)
in terms of the principal stretches λ1, λ2, λ3, which satisfy the incompressibility
constraint λ1λ2λ3 = 1, in which context M and M′ were given by (101), the same
formulas as in (246). Correspondingly, m and m′ are given by (102) and mn =
λ3Mn = λ3e3.

From (103) and (104)1, the invariants I1, I4, I6 are given by

I1 = λ2
1 + λ2

2 + λ2
3, I4 = I6 = λ2

1 cos2 ϕ + λ2
2 sin2 ϕ, (258)

while In = λ2
3.

The nonzero components of h and h′ are calculated as

h11 = h′
11 = 2κop[κip + (1 − 2κip) cos2 ϕ]λ2

1, (259)

h22 = h′
22 = 2κop[κip + (1 − 2κip) sin2 ϕ]λ2

2, (260)

h33 = h′
33 = (1 − 2κop)λ

2
3, (261)

h12 = −h′
12 = 2κop(1 − 2κip)λ1λ2 sin ϕ cos ϕ, (262)

and hence I ∗
4 and I ∗

6 can be written simply as

I ∗
4 = I ∗

6 = h11 + h22 + h33. (263)

The nonzero components of the Cauchy stress tensor are obtained from (252) as

σ11 = μλ2
1 + 4k1(I

∗
4 − 1) exp[k2(I

∗
4 − 1)2]h11 − p, (264)

σ22 = μλ2
2 + 4k1(I

∗
4 − 1) exp[k2(I

∗
4 − 1)2]h22 − p, (265)

σ33 = μλ2
3 + 4k1(I

∗
4 − 1) exp[k2(I

∗
4 − 1)2]h33 − p. (266)

On specializing to the case of simple tension with σ22 = σ33 = 0, elimination of
p from (264)–(266) leaves two equations, namely the incompressibility condition
λ1λ2λ3 = 1 and the implicit equation σ22 − σ33 = 0, which determine λ2 and λ3 in
terms of λ1, so that σ11 can be expressed in terms of λ1, the material parameters
μ, k1 and k2 and the structural parameters κip, κop and ϕ. To determine the material
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Fig. 34 Fitting of the model (255)–(257) to the results of uniaxial tension tests. The Cauchy
stresses at a stretch of 1.3 are 16.6 kPa (axial) and 12.2 kPa (circumferential) and are identified here
for reference to values determined in a finite element simulation of a uniaxial tension test illustrated
in Fig. 35. Reproduced from Fig. 8 of Holzapfel et al. (2015) with permission

parameters, the values of the structural parameters given in Sect. 6.4.2 are used in con-
junction with (unpublished) experimental data from uniaxial tension tests performed
in the Graz lab on an adventitial layer of a human non-atherosclerotic abdominal
aorta cut along the axial and circumferential directions. Following Holzapfel et al.
(2015), and bearing in mind the different definitions of ρop and ρip herein, we use
the values ϕ = ±47.99◦, κop = 0.493, κip = 0.116 for this exercise.

Full details of the fitting procedure are given in Holzapfel et al. (2015) wherein
the material parameters μ = 10.07 kPa, k1 = 5.89 kPa, k2 = 21.62 (dimensionless)
were obtained, giving an excellent fit to the data, as shown in Fig. 34.

6.4.5 Application to the Extension of Adventitial Strips

In this section we illustrate the results of a finite element implementation of the
constitutive model (255)–(257) in which uniaxial extension tests related to the afore-
mentioned experiments on strips in the circumferential and axial directions of an
adventitial layer of a human non-atherosclerotic abdominal aorta are simulated. For
the implementation each strip was assumed to have initial length, width and thick-
ness of 10.0, 3.0 and 0.5 mm, respectively, and was subjected to a stretch of 1.3.
The ends of each strip were fixed as if in the mounting of a testing machine and
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were not allowed to deform, as a result of which the deformation of each strip was
nonhomogeneous.

We adopt the material parameters determined in Holzapfel et al. (2015) and take
them to be uniform over each strip. The two considered fiber families with symmet-
ric dispersions and mean fiber directions are assumed to make angles ϕ of ±47.99◦
with the circumferential direction, as indicated in Fig. 33, with dispersion parameters
κip = 0.116 and κop = 0.493. The implementation, details of which are described in
Holzapfel et al. (2015), was performed using the finite element analysis program
FEAP (2013). Specifically, numerical results were obtained for the distribution of
Cauchy stress component in the direction of the applied stretch for each nonhomo-
geneous extension, which was fixed at a stretch of 1.3.

The results are illustrated in Fig. 35 for both circumferential and axial specimens.
For both specimens the Cauchy stresses were found to be within the range of values
determined from the experimental results in Fig. 34. In fact, in the center of each

Fig. 35 Finite element
results for circumferential
and axial specimens based
on data from an adventitia,
subjected to a stretch of 1.3.
The distribution of the
component of the Cauchy
stress in the direction of the
applied stretch is shown in
each case. The undeformed
(initial) configuration is
indicated by solid lines.
Reproduced from Fig. 11 of
Holzapfel et al. (2015) with
permission
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specimen the values of the Cauchy stress in the direction of the applied stretch
were found to be marginally higher than the stresses at the same value (1.3) of the
(homogeneous) stretch noted in Fig. 34. This difference is attributed to the effect of
the boundary constraints on the ends.

7 Concluding Remarks

This chapter was in part aimed at illustrating the general value of using nonlinear
continuum mechanics as a mathematical modeling framework for describing and
predicting the mechanical, in particular the elastic, properties of fibrous soft biolog-
ical tissues. The approach adopted here is based on the notion of structure tensors,
which are used to characterize fiber directions within the tissues. In the present con-
text the starting point was the paper by Holzapfel et al. (2000), which incorporated
the fibrous structure into constitutive models of tissues. As more experimental evi-
dence, and more structural information, became available this allowed us to build
up the level of complexity of the model, first by incorporating dispersion into the
model (Gasser et al. 2006). On the basis of imaging and histology more detailed
information on the angular fiber dispersion was revealed in the work of Schriefl et al.
(2012), which determined, in particular, various structural parameters, showing that
the dispersion is not rotationally symmetric, and these new findings were incorpo-
rated into the recent model of Holzapfel et al. (2015). The fact that the structure
tensor approach can also be used to incorporate residual stresses into the constitu-
tive theory has also been highlighted. The problem of extension and inflation of an
artery, treated simply as a circular cylindrical tube, has been considered throughout
the chapter as an example application of the models to a prototype boundary-value
problem.

The modeling allows us to define strain-energy functions from which the stress
and the elasticity tensors can be computed, and these form the basis for implementing
the model within a finite element framework, although this is not the concern of the
present chapter. Expressions for the elasticity tensors have not been included here but
can be found in, for example, Holzapfel et al. (2015). For a more detailed discussion
we refer to Holzapfel (2000). Nevertheless, some examples of the results produced
by finite element computations have been illustrated in Sect. 6.

For artery walls many more data are needed to determine finer details of the
collagen fiber structure, in particular the dispersion of collagen fibers, and the inelastic
behavior of the tissues in both health an disease in order to inform further development
of the modeling process. This applies also to a range of other soft biological tissues,
in particular those for which the experimental and modeling activities have not thus
far been so extensive. In vivo data are really needed as a basis for constructing more
realistic models of tissue and organ mechanics.
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Microstructure and Mechanics of Human
Aortas in Health and Disease

Gerhard A. Holzapfel

Abstract Human aortas are three-layered fibrous composites assembled by a ground
matrix and embedded families of dispersed collagen fibers. The microstructural
arrangement of the collagen fibers alters due to diseases such as aneurysms. We
review a general dispersion model that is required to describe the mechanical response
of a variety of collagenous tissues such as aortic walls considering three structural
and three material parameters. The dispersion model is used to capture the remark-
able differences in the microstructure and mechanics of healthy and aneurysmatic
aortas. Related modeling/simulation of an aortic dissection is provided using the
recently developed phase-field approach. An energy-based anisotropic failure crite-
rion is used to numerically simulate the evolution of the crack phase-field in a simple
shear test. Model parameters are provided and numerical results agree favorably with
the experimental findings. Finally, an aortic clamping simulation is described by con-
sidering the individual aortic layers, residual stresses, nonsymmetric blood pressure
after clamping, patient-specific data and damage-induced inelastic phenomena, i.e.,
stress softening and permanent deformations.

1 Introduction

The human aorta is an elastic blood vessel which is composed of three distinguishable
layers, the intima (tunica intima), the media (tunica media), and the adventitia (tunica
externa). In healthy young individuals, the intima is very thin but in old individuals
the intima makes a significant contribution to the solid mechanical properties of the
aortic wall. In each individual aortic layer, two collagen fiber families are present,
and they are helically and almost symmetrically arranged with respect to the vessel
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axis. In some cases a third and sometimes a fourth collagen family is present in
the intima in axial and circumferential directions. This structural arrangement is
different in muscular arteries and veins where there is a transition from the helical
arrangement to two nearly orthogonal fiber families aligned in the circumferential
and axial directions. The material properties of the aorta depend on the network
structure of elastin and collagen. Changes in the structural components lead to an
alteration of the mechanical aortic response, and play a key role in the pathogenesis
of aneurysms.

This book chapter deals with the biomechanics and the related modeling and sim-
ulation of aortic walls by considering the collagen microstructure. We focus attention
on (i) the aortic wall with nonatherosclerotic intimal thickening, (ii) the structural and
mechanical changes that occur during disease progression such as in an aneurysm,
(iii) modeling and simulation aspects of aortic dissections, and (iv) the modeling
of stress softening and permanent deformations in aortic walls. In Sect. 2 we start
by reviewing a recently proposed nonsymmetric collagen fiber dispersion model for
arterial walls that is able to capture the significantly different fiber dispersions present
in the tangential plane and out-of-plane. This is accommodated with a bivariate von
Mises distribution that is used to capture the continuous fiber dispersion throughout
the entire thickness, which serves for the construction of a structure tensor. Explicit
expressions for the constitutive model are provided which includes several existing
dispersion models as special cases such as rotationally symmetric dispersion, per-
fect collagen alignment, 3D isotropic fiber dispersion, and planar (isotropic) fiber
dispersion; two special cases are discussed in this chapter. It should be noted that
the general dispersion model reviewed here is needed for describing the mechanical
response of a variety of collagenous tissues including cartilage.

In Sect. 3 we continue to provide microstructural and mechanical data for human
abdominal aortas and abdominal aortic aneurysms which are then analyzed and com-
pared. Second-harmonic generation imaging after optical clearing is used to identify
the collagen microstructure and biaxial stretching tests are performed to identify
the related mechanics. The dispersion model is then used to provide two indepen-
dent dispersion parameters, the angle between the mean fiber direction and the cir-
cumferential direction, and the (three) related material parameters. The remarkable
differences identified between healthy and diseased tissues are briefly discussed.

The first part of Sect. 4 focuses on the mechanics of aortic dissection providing
recently published experimental data obtained from shear tests using aneurysmatic
specimens from different thoracic aortas. Data indicate that the ‘in-plane’ shear
behavior is significantly different to the ‘out-of-plane’ shear behavior; ultimate shear
stresses and the corresponding amounts of shear are also provided. The next part of
Sect. 4 deals with failure modeling in aortic dissection using a recently developed
phase-field approach. We introduce the deformation map and the crack phase-field
at finite strains, and use a regularized crack surface by employing a length-scale
parameter which relaxes the sharp crack into a diffusive one. Subsequently, the
governing equations of the multifield problem are provided. A special case of the
dispersion model from Sect. 2 (perfect collagen alignment) is used as a constitutive
descriptor, and the evolution of the crack phase-field is based on an energy-based
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anisotropic failure criterion. The final part of Sect. 4 summarizes the finite element
formulation by providing the discrete residual vectors and the element matrices for
the two subproblems, and it shows the operator-splitting algorithm used to solve the
multifield problem composed of a mechanical predictor step and a crack evolution
step. Finally, with the phase-field approach simple shear fracture tests are simulated,
and elastic and crack phase-field parameters for anisotropic failure are provided.

Section 5 reviews a recently proposed pseudoelastic damage model capturing spe-
cific features including anisotropy, nonlinearity, and damage-induced inelastic phe-
nomena (in particular stress softening and permanent deformations) as they occur in
cardiovascular treatments such as arterial clamping and balloon angioplasty. From
the damage model explicit forms of the stress tensor are derived and material and
damage parameters are specified for one sample obtained from intimal strips of a
thoracic human aorta. Finite element results (from Abaqus/Standard) of the aortic
clamping process are also presented taking account of the three aortic layers, resid-
ual stresses, nonsymmetric blood pressure after clamping, and patient-specific data.
Section 6 provides some concluding remarks.

2 A Model of Nonsymmetric Collagen Fiber Dispersion

In arterial layers the collagen fiber orientations are nonsymmetrically distributed and
their accommodation in a constitutive model can be achieved by (i) a generalized
structure tensor (GST) that incorporates a measure of fiber dispersion, or (ii) an
angular integration approach in which the strain energy of a single fiber is considered
as a function of the fiber stretch, and integrated over a unit sphere to obtain the total
free-energy function of the fibers. We follow here the GST approach and summarize
a model to capture nonsymmetric fiber dispersion recently proposed by Holzapfel
et al. (2015).

2.1 A Measure for In-Plane and Out-of-Plane
Fiber Dispersion

A general fiber direction is described by a coordinate system which is characterized by
the unit rectangular Cartesian basis vectors e1, e2, e3 (see Fig. 1), with the unit vector
N representing a general fiber direction in the (unloaded) reference configuration,
defined by the two angles Φ ∈ [0, 2π ] and Θ ∈ [−π/2, π/2]. For a circular cylinder
e1 is taken to be the circumferential direction and e3 the radial direction, therefore
we refer to Φ and Θ as the in-plane and out-of-plane angles, respectively.

The in-plane and out-of-plane collagen fiber orientations are modeled with a
bivariate von Mises distribution ρ(Θ,Φ) = ρip(Φ)ρop(Θ) for the probability density
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Fig. 1 Unit vector N
representing a general fiber
direction defined by the
angles Φ, Θ with respect to
rectangular Cartesian unit
basis vectors e1, e2, e3
(Holzapfel et al. 2015)

N

Φ

Θ

e1

e3 e2

ρ of N (in-plane and out-of-plane dispersions are essentially independent, see Schriefl
et al. 2012), with the particular choice

ρip(Φ) = exp[a cos 2(Φ ± α)]
I0(a)

, ρop(Θ) = 2

√
2b

π

exp[b(cos 2Θ − 1)]
erf(

√
2b)

, (1)

where ρip(Φ) = ρip(Φ + π) and ρop(Θ) = ρop(−Θ) describe the in-plane and out-
of-plane dispersions, respectively, a and b are (constant) concentration parameters,
I0(a) is the modified Bessel function of the first kind of order 0 and α is the angle
between the mean fiber direction and the circumferential direction e1.

We introduce an in-plane dispersion κip (tangential plane of the artery) and an
out-of-plane dispersion κop that turns out to be dependent on the state of disease
(Niestrawska et al. 2016). Thus,

κip = 1

2
− I1(a)

2I0(a)
, κop = 1

2
− 1

8b
+ 1

4

√
2

πb

exp(−2b)

erf(
√

2b)
, (2)

where I1(a) is the modified Bessel function of the first kind of order 1, while 0 ≤
κip ≤ 1 and 0 ≤ κop ≤ 1/2.

2.2 Constitutive Model

The in-plane and out-of-plane fiber dispersion parameters are now used in structure
tensors, one for each fiber family, which we incorporate into the constitutive model.
We denote the deformation gradient by F, the right Cauchy–Green tensor by C =
FTF, the Green–Lagrange strain tensor by E = (C − I)/2 (Holzapfel 2000), and
introduce two symmetric fiber families with the (in-plane) mean fiber directions M4

and M6 according to

M4 = cos αe1 + sin αe2, M6 = cos αe1 − sin αe2, (3)
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where M4 and M6 make an angleα with the circumferential direction e1. Furthermore,
we introduce the invariants I1, I4, I6, and In as

I1 = trC, Ii = C : Mi ⊗ Mi , i = 4, 6, In = C : Mn ⊗ Mn, (4)

where Mn is a unit out-of-plane vector shown in Fig. 2.
Additionally, we introduce two generalized structure tensors H4 and H6 which

describe the material behavior, i.e.,

Hi = AI + BMi ⊗ Mi + (1 − 3A − B)Mn ⊗ Mn, i = 4, 6, (5)

where the constants A and B are

A = 2κopκip, B = 2κop(1 − 2κip). (6)

The structure tensors Hi are then incorporated into a decoupled free-energy function
Ψ per unit reference volume according to

Ψ = Ψg(C) +
∑

i=4,6

Ψfi (C, Hi ) + pI, (7)

where p represents the Lagrange multiplier which enforces incompressibility and I
is the second-order unit tensor. The function Ψg represents the ground matrix, i.e.,

Ψg(C) = c

2
(I1 − 3), (8)

where c is a parameter, and Ψfi the contribution of the two fiber families to Ψ , i.e.,

Ψfi (C, Hi ) = k1

2k2

{
exp

[
k2(I

	
i − 1)2

] − 1
}
, i = 4, 6, (9)

M4

M6

α

α

e1
Circumferential

e3 = Mn

Axial

e2

Fig. 2 Sample with two symmetric fiber families with mean fiber directions M4 and M6, each
making an angle α with the circumferential direction e1. The normal direction to the plane is Mn
(Holzapfel et al. 2015)
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with the stress-like parameter k1 > 0, the dimensionless parameter k2 > 0, and the
generalized invariants I 	

i defined by

I 	
i = tr(HiC) = AI1 + BIi + (1 − 3A − B)In, i = 4, 6, (10)

which includes the mean fiber directions Mi in terms of Ii and the two dispersion
parameters κip and κop in terms of A and B.

The resulting constitutive model contains three structural parameters (κip, κop, α)
to be determined by structural analysis, and three material parameters (c, k1, k2) to
be determined by mechanical data.

2.3 Two Special Cases of the Constitutive Model

As one special case we consider transversely isotropic dispersion about M for which
A = κ and B = 1 − 3κ in (6), where κ ∈ [0, 1/3] is a single dispersion parameter
and M is located in the (e1, e2) plane according to Fig. 2. Hence, Eq. (5) reduces to
one structure tensor of the form

H = κI + (1 − 3κ)M ⊗ M, (11)

as proposed by Gasser et al. (2006).
Another special case which is of interest for this chapter is the one where all

collagen fibers are perfectly aligned in the in-plane direction of M (no dispersion in
either plane), which corresponds to A = 0 and B = 1 in (6), and Eq. (5) reduces to

H = M ⊗ M, (12)

as proposed by Holzapfel et al. (2000), the HGO model. For the case a = b = 0 the
dispersion is isotropic in each plane, and κip = 1/2 and κop = 1/3.

The constitutive model (9) with (10) includes several other special cases which
are discussed in detail in Holzapfel et al. (2015).

3 Microstructure and Mechanics of Abdominal Aortas

One goal of this section is to provide a novel parameter set for the constitutive model
as introduced in the previous section. The parameters consist of microstructural
3D collagen orientation and dispersion which are linked to mechanical parameters.
Values for the parameters are reported as medians and interquartile ranges, and are
based on tissue samples from 17 human abdominal aortas (AA) and samples from
11 abdominal aortic aneurysms (AAA). The collagen microstructure of all samples
was examined by analyzing data obtained from second-harmonic generation (SHG)
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imaging after optical clearing according to the protocol documented in Schriefl et al.
(2013), while the mechanical investigation was performed using biaxial stretching
tests. It is important to note that SHG imaging yields a continuous distribution of the
collagen fabric throughout the thickness without destroying the tissue. The results
highlight remarkable differences between healthy (AA) and diseased (AAA) tissues
and the need to incorporate the significantly different AAA wall structure into the
constitutive model.

3.1 Data for Healthy Abdominal Aortas

Seventeen human abdominal aortas with nonatherosclerotic intimal thickening (63 ±
11 (SD) yr, range 45–84), were harvested as intact tubes within 24 h of death and
stored in 0.9 % physiological saline solution at 4 ◦C until testing. Small samples were
acquired for SHG imaging and mechanical testing according to the protocol detailed
in Niestrawska et al. (2016).

The layers displayed a highly organized structure both in the tangential plane
and through the thickness of the aortic wall. Figure 3a shows representative SHG
images of one AA sample; the three images (top) display in-plane sections of the
‘carpet-like’ structure in the intima (I), two families of fibers in the media (M)
and wavy and thicker fiber bundles in the adventitia (A), while the image below
displays the structure through the thickness ((I) on the left). The intensity plot of
Fig. 3b depicts the collagen fiber orientation and dispersion through the aortic wall.
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Fig. 3 Representative structure of a healthy abdominal aorta: a three SHG images (top) show in-
plane sections of the intima (I), media (M) and adventitia (A), while the image below shows a view
through the thickness, scale bar is 100µm; b intensity plot shows collagen structure through the
depth of the wall (TL = transition layer): dark red depicts preferred fiber directions, blue relates to
no distinguished orientations (Niestrawska et al. 2016)
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A fiber angle of 0◦ denotes the circumferential direction, whereas 90◦ denotes the
axial direction. Dark red depicts preferred fiber directions, whereas blue shows no
distinguished orientations. In the intensity plot the (I) shows a strong dispersion
around the circumferential direction that is followed by a transition layer (TL) (rapid
orientation change of collagen fibers toward the axial direction), which then changes
back to the circumferential direction in the (M). The images show two counter-
rotating fiber families around the circumferential direction. Another TL in the region
of the membrana elastica externa is reached displaying the transition of thinner media
collagen to thicker wavy collagen fiber bundles in the (A), appearing in two fiber
families and being oriented more toward the axial direction.

The structural parameters κip, κop, and α for the abdominal aorta samples were
averaged over the thickness of the separate layers. Together with the material parame-
ters c, k1, and k2 they are summarized in Table 1. In-plane fibers were slightly more
aligned in the media (κip = 0.208 ± 0.090) when compared with the intima; there
was no significant difference between the alignment in the media compared with
the adventitia. The out-of-plane dispersion κop was rather low in all three healthy
layers. The median of R2 for c, k1, and k2 was 0.95, 0.98, 0.95, and 0.96 for the
intima, media, adventitia, and the intact AA wall, respectively. The intima showed a
relatively short toe region with a rapid stiffening at a low stretch, as also documented
in Weisbecker et al. (2012), whereas the adventitia was rather compliant (c = 3.77,
k1 = 0.36), which stiffened at higher stretches, displaying a significantly higher k2

value in comparison with the media and the intact wall (k2 = 45.88). With the struc-
tural parameters fixed the material model was fitted to mechanical experimental data,
giving a very good fit although there are only three material parameters.

3.2 Data for Abdominal Aortic Aneurysms

An abdominal aortic aneurysm (AAA) is a localized and irreversible dilation of the
aorta, as described by, e.g., Vorp (2007) and Humphrey and Taylor (2008). Contin-
uous AAA growth may lead to wall rupture, an event frequently related to mortality
and life threatening morbidity if not addressed (Fleming et al. 2005). The underlying
pathogenesis has not yet been fully clarified (Humphrey and Holzapfel 2012).

Eleven wall samples from AAAs (69 ± 8 (SD) yr; range 53–76) were harvested
from open aneurysm repair and stored in Dulbecco’s Modified Eagle’s Medium
at 4 ◦C until testing. Except for one sample, specific layers within the AAA wall
could not be identified unlike for healthy AA walls, and even in samples without
obvious atherosclerotic alterations the structure was remarkably different from those
obtained from AAs. A substantial variability in fiber architecture, fiber diameter,
and waviness could be identified, even within the same AAA sample. In general,
samples showed a degenerated luminal layer, calcification and sometimes small fat
cells, and a deposition of aggregated parallel collagen sheets oriented more toward the
circumferential direction. Also cystic medial degeneration could be seen, including
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larger adipocytes. For the structural analysis only those images were considered
which did not show calcification or lipid adipocytes.

Figure 4a displays the only sample (AAA-6) with a microarchitecture comparable
to a healthy wall. The intensity plot on the side shows a rather isotropic structure for
the intima until a depth of about 400µm, while the media shows straight collagen
fibers resulting in high and narrow intensities, while the collagen fibers in the ablumi-
nal layers lost their waviness and exhibited rather straight and thick struts of collagen.
Figure 4b shows two patches taken from adjacent locations of sample AAA-4 and
displays an intact abluminal layer (AL) similar to a healthy adventitia layer, while no
media was visible in this sample. The upper left image (LL-1) (where (LL) stands for

(a) AAA-6

(b) AAA-4

(c) AAA-8

(d) AAA-10

circ

axial

D
ep

th
[ μ

m
]

D
ep

th
[μ

m
]

0

200

400

600

800

1000

1200

1400

1600

0

150

300

450

600

750

900

1050

1200

1350

1500

0

200

400

600

800

1000

1200

1400

1600

1800

0
100
200

300
400

500
600
700

800
900

1000
1100

-90 -45 0 45 90

-90 -45 0 45 09-09 -45 0 45 90

-90 -45 0 45 90

Fiber angle α [◦]

0 10 20 30 40 50 60 70 80 90 100

Fiber angle α [◦]

I M

A

LL-1 AL-1

LL-2 AL-2

LL

AL

LL

AL

I

M

A

Fig. 4 SHG images and intensity plots for AAA samples: a layered structure (I: intima, M: Media,
A: Adventitia), the only AAA sample to exhibit a layer-specific character. The intensity plot shows
three distinct layers—a rather calcified (I), two fiber families in (M) and (A); b structure of luminal
layer (LL) and abluminal layer (AL) of two patches taken from adjacent locations (−1, −2) dis-
playing differences. The lower left image (LL-2) shows wavy collagen fibers and calcification. The
first 450µm in the intensity plot shows a highly disturbed structure followed by an adventitia-like
structure with two alternating fiber families; c collagen structure in (LL) and (AL). The intensity
plot shows collagen preferably oriented toward the circumferential direction throughout the wall; d
ruptured sample exhibiting a (LL) with a highly oriented collagen structure and a significant number
of adipocytes toward the (AL) side. The intensity plot shows a collagen structure highly oriented
toward the circumferential direction followed by a rather isotropic (AL). All intensity plots start at
the top with the (LL). Scale bar is 100µm (Niestrawska et al. 2016)
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luminal layer) shows bright ‘stains’ representing a degenerated collagen structure,
and the lower left image (LL-2) displays an adjacent region in the same luminal layer
exhibiting a different structure with wavy collagen fibers and calcification. The first
450µm in the intensity plot indicates a disturbed structure merging into two alter-
nating fiber families. Figure 4c shows the (AL) of sample AAA-8 with thickened
collagen struts, still wavy but oriented more toward the circumferential direction,
while toward the (LL) the fibers became thinner, merging into a disturbed collagen
structure. The intensity plot on the side shows fibers preferably oriented toward the
circumferential direction throughout the wall. Figure 4d shows a ruptured sample
with a significant significant amount of cystic medial degeneration, infiltrated with
adiposytes in the (AL), preceded by a highly organized collagen structure in the (LL)
oriented more toward the circumferential direction. The (AL) is rather isotropic as
can be seen from the intensity plot.

The medians and interquartile ranges of the structural and material parameters
for the AAA walls are summarized in Table 2. All AAA samples with the exception
of one, which was ruptured, showed a similarly high alignment of collagen fibers
with a median of κip = 0.229, and the in-plane dispersion did not show any sta-
tistical difference with respect to intact AA walls, compare with Table 1. However,
the out-of-plane dispersion was significantly higher in AAA samples in compari-
son with the healthy AA samples (lower dispersion parameter κop for AAA walls).
Finally, when compared with intact AA walls, AAA samples showed a statistically
smaller angle α, see Table 1. The parameter c for AAA walls was significantly lower
in comparison to AA walls. However, the dimensionless parameter k2 with 57.17,
resembling the exponential stiffening of the loading curves due to the collagen fibers,
was significantly higher than for AA walls (k2 = 19.25). Interestingly, by comparing
the adventitia of AAs with AAA tissue the k2 value was not significantly different
between the two groups, however, AAA tissue differed significantly in both the c
value and the k1 value with respect to the adventitia of AAs.

4 Mechanics, Modeling, and Simulation
of Aortic Dissection

Aortic dissection is a severe vascular pathology which may occur spontaneously or
nonspontaneously as a result of trauma. The annual occurrence of aortic dissection
is about 5–30 cases per million of the population (Davies et al. 2002; Knipp et al.
2007); however, the mortality rate during the first 24–48 h is high if patients are not
treated appropriately.

Frequently, an aortic dissection initiates from an intimal tear (Thubrikar et al.
1999) or from a perforation of the intima caused by intramural hemorrhage and
hematoma formation (Khan and Nair 2002). This kind of intimal defect may continue
propagating along the radial direction to the media, and may cause a delamination
of the media or delaminate the media from the adventitia. One clinical consequence
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Fig. 5 Aortic dissection: the
intima of the aorta tears, and
the tear spreads into the
media or between the media
and adventitia creating a
‘false lumen’ (Holzapfel
2009)

Blood flow

Tear in intima

‘False’ lumen

DissectionAdventitia
Media
Intima

may be the creation of a ‘false lumen’, which affects the hemodynamics and changes
the stress distribution of the underlying wall. The false lumen narrows the true lumen
and decreases oxygen supply from the blood to the tissues. As a result, the mechani-
cal properties and the structural stability of the local aortic wall may also alter. Most
factors contributing to the initiation of dissection are trauma-related; other predis-
posing factors can be pathological changes due to hypertension and atherosclerosis
(Pratt and Curci 2010), but also inherited diseases such as Marfan syndrome and
Ehlers–Danlos syndrome may lead to a ruined aortic wall. For a schematic sketch of
an aortic dissection, see Fig. 5.

Aortic dissection is fatal when running to the adventitial side causing an acute rup-
ture of the wall which is relatively rare (Criado 2011). Biomechanically, a dissection
is primarily attributed to intralamellar failure of the main load-bearing microstruc-
tural components within the wall, i.e., elastin and collagen fibers (Pal et al. 2014). For
a recent review of the key advances in the mechanical characterization of tissue dis-
section in health and disease from the experimental and modeling point of view, also
focusing on the microstructure and morphology of dissected tissues, see Tong et al.
(2016). It is important to better understand the intrinsic mechanism in propagating
a dissection through an aortic tissue, which is basically a biomechanical process. In
this section, we briefly discuss the mechanical strength of aortic tissues undergoing
a dissection, then the related continuum modeling and finally we propose a novel
approach to simulate 3D aortic dissection using the finite element method.

4.1 Mechanics of Aortic Dissection

Biomechanical data of aortic dissections have the potential to provide more insight
and to be helpful in related surgical treatments. Compared to healthy aortic tissues,
aneurysmal aortic dissections are rarely studied from the biomechanical point of view.
Using the same experimental protocol as Sommer et al. (2008) (peeling tests), it seems
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that the first study was conducted by Pasta et al. (2012) who quantified/compared the
dissection properties of nonaneurysmal with aneurysmal human ascending thoracic
aortas with bicuspid/tricuspid aortic valve morphology. The results indicate that
aneurysmal tissues have a significantly lower delamination strength than tissues from
nonaneurysmal thoracic aortas. During peeling tests, as performed by Pasta et al.
(2012), rupture of elastin and collagen fibers is mainly caused by tensile stresses.
Consequently, peeling tests provide little information about the role of shear stresses
in the formation of aortic dissection.

The recent study of Sommer et al. (2016) developed a novel biomechanically based
approach for characterizing dissection pattern of tissues and failure modes in response
to shear deformation in different orientations. All tests were conducted with an
extension rate of 1.0 mm/min. Figure 6a, b shows the ‘in-plane’ shear stress versus the
amount of shear behavior for 9 successfully tested aneurysmatic specimens (obtained

(a) (b)

(c) (d)

Fig. 6 Cauchy shear stress versus amount of shear relationship during shear tests of 9 aneurysmatic
specimens from different thoracic aortas: a, b ‘in-plane’ shear behavior in the circumferential (rθ-
mode) and longitudinal (r z-mode) directions of the aorta; c, d ‘out-of-plane’ shear behavior in the
circumferential (zθ -mode) and longitudinal (θ z-mode) directions of the aorta. The photographs
show a specimen subjected to simple shear loading and ruptured into two parts (modified from
Sommer et al. 2016)
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Table 3 Ultimate shear stress τ u and corresponding amount of shear γ u for 9 aneurysmatic speci-
mens (from different thoracic aortas) subjected to ‘in-plane’ shear in the circumferential (rθ-mode)
and longitudinal (r z-mode) directions of the aorta, and ‘out-of-plane’ shear in the circumferential
(zθ-mode) and longitudinal (θ z-mode) directions of the aorta

Specimen ‘In-plane’ shear ‘Out-of-plane’ shear

τ u
rθ (kPa) γ u

rθ (−) τ u
r z (kPa) γ u

r z (−) τ u
zθ (kPa) γ u

zθ (−) τ u
θ z (kPa) γ u

θ z (−)

I 76 1.02 92 1.30 325 0.97 528 0.94

II 120 1.97 135 1.98 1122 1.24 1467 0.92

III 105 1.53 109 1.49 860 1.05 1349 1.14

IV 173 1.71 185 1.74 1011 0.99 1563 0.79

V 74 1.63 100 2.12 946 1.27 1138 1.08

VI 100 1.63 165 2.13 947 1.23 1292 1.26

VII 173 1.73 106 3.14 1035 1.74 1565 1.24

VIII 157 1.40 94 1.55 1479 1.31 1529 1.67

IX 61 1.12 80 1.15 533 1.33 548 0.88

Mean 115 1.53 118 1.84 918 1.24 1221 1.10

SD 41 0.28 34 0.56 313 0.22 388 0.25

from different thoracic aortas) in the circumferential (rθ -mode) and longitudinal (r z-
mode) directions of the aorta, while Fig. 6c, d shows the corresponding results of the
‘out-of-plane’ shear tests in the circumferential (zθ -mode) and longitudinal (θ z-
mode) directions. In Table 3 ultimate shear stresses and corresponding amount of
shear values of the aneurysmatic tissues are listed.

Interestingly, in comparison with ‘in-plane’ shear tests, ‘out-of-plane’ shear tests
exhibited much higher ultimate shear stress values (about a factor of 10!). Conse-
quently, aortic tissues indicate a much higher resistance to rupture under ‘out-of-
plane’ shear loading than under ‘in-plane’ shear loading. Most tissue specimens
(except VII and VIII) revealed higher ultimate shear stresses in the longitudinal
direction when compared with the circumferential direction under ‘in-plane’ shear
loading, while all specimens showed higher ultimate stresses in the longitudinal direc-
tion with respect to the circumferential direction under ‘out-of-plane’ shear loading
(Table 3). Hence, all shear tests showed significant anisotropic failure properties.
Recently Haslach Jr. et al. (2015) also performed shear tests on rectangular aortic
wall blocks observing that interstitial fluid is redistributed with shear deformation
which suggests that no simple modification of classical rupture theories suffices to
predict the rupture of hydrated soft biological tissue.
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4.2 Modeling Failure in an Aortic Dissection
Using the Phase-Field Approach

4.2.1 Ginzburg–Landau Type Phase-Field Model for Diffusive Cracks

We introduce a material body B ⊂ R
3 at time t0 ⊂ R, the reference configuration,

and denote X ∈ B as the material point. The placement of the body at t ⊂ Rwe refer
to as spatial configuration S ⊂ R

3 so that a material point X ∈ B is mapped to the
spatial point x ∈ S by the deformation map ϕ(X, t), subsequently considered as a
primary field variable. Next, we let ∂B ⊂ R

2 be the surface of B ⊂ R
3. Finally, we

introduce the crack phase-field d(X, t) ∈ [0, 1], an additional primary field variable,
where d = 0 characterizes an intact material, while d = 1 the ruptured state of a
material.

Let us now introduce the field equation for the crack phase-field in 1D and assume
an infinitely long 1D bar with a crack at x = 0. The crack phase-field d(x) ∈ [0, 1]
characterizes the crack topology with

d(x) = δ(x) :
{

1 for x = 0,

0 otherwise,
(13)

where δ(x) is the Kronecker delta function, see Fig. 7a. This sharp crack topology
may be approximated by a diffusive crack topology by

d(x) = exp(−|x |/ l), (14)

where l is the length-scale parameter regularizing the sharp crack topology. This
makes the crack spread over the whole length of the bar, see Fig. 7b. Relation (14) is
the solution of the homogeneous ordinary differential equation (Miehe et al. 2010)

d(x) − l2d ′′(x) = 0, (15)

xx

d(x)d(x)
11

ll

(a) (b)

Fig. 7 a Sharp crack topology described by d(x) = δ(x) for vanishing length-scale parameter
l → 0; b diffusive crack topology d(x) = exp(−|x |/ l) with length-scale parameter equal to l
(Gultekin et al. 2016)
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subjected to the Dirichlet-type boundary conditions d(0) = 1 and d(±∞) = 0. An
equivalent functional form may be given as

I (d) = 1

2

∫

B
(d2 + l2d ′ 2)dx . (16)

By scaling functional (16) with l we may define the crack surface density per unit
length as

γ (d, d ′) = 1

2l
(d2 + l2d ′ 2). (17)

The multidimensional formulation of the cracking in solids may be achieved in
a similar way to the 1D motivation. In particular, the analogue of Eq. (15) can be
written as

d − l2Δd = 0 in B and ∇d · N = 0 on ∂B, (18)

where Δd signifies the Laplacian of the crack phase-field, and N is the unit surface
normal oriented outward in the reference configuration. For a detailed derivation see
Gültekin (2014). The analogue of Eq. (17) in 3D is the volume-specific crack surface
density

γ (d,∇d) = 1

2l
(d2 + l2|∇d|2). (19)

4.2.2 Governing Equations of the Multifield Problem

As a point of departure we define the energy storage functional for the (elastic)
anisotropic tissue as

E(ϕ, d) =
∫

B
Ψ (C, Hi ; d)dV (20)

in terms of the free-energy function Ψ for a degrading tissue, with

Ψ (C, Hi ; d) = g(d)Ψ0(C, Hi ), (21)

where Ψ0 is the effective free-energy function of the hypothetical tissues as, e.g.,
provided in (7). A monotonically decreasing quadratic degradation function

g(d) = (1 − d)2 (22)

describes the degradation of the tissue with the evolving crack phase-field parameter
d, with the following growth conditions:

g′(d) ≤ 0 with g(0) = 1, g(1) = 0, g′(1) = 0. (23)
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The first condition ensures degradation, while the second and third conditions set
the limits for the intact and the ruptured state, and the final condition ensures the
saturation at d → 1.

Time derivative of (20) gives the rate of energy storage functional

E (ϕ̇, ḋ;ϕ, d) =
∫

B
(S : Ė − f ḋ)dV, (24)

with

S = 2
∂Ψ (C, Hi ; d)

∂C
, f = −∂Ψ (C, Hi ; d)

∂d
, (25)

where S is the second Piola–Kirchhoff stress tensor and f is the energetic force
which is work conjugate to the crack phase-field d. The external power functional
can be described as

P(ϕ̇) =
∫

B
ρ0γ · ϕ̇dV +

∫

∂Bt

T · ϕ̇dA, (26)

where ρ0, γ̄ , and T̄ are the density, the prescribed body force, and the surface traction
in the reference configuration, respectively.

Next, we define the crack energy functional Dc using the volume-specific crack
surface density (19), i.e.,

Dc(d) =
∫

B
gcγ (d,∇d)dV, (27)

where gc denotes the critical fracture energy required to convert an uncracked tissue
into a cracked tissue. The evolution of (27) yields the crack dissipation functional D
according to

D(ḋ) =
∫

B
gc[δdγ (d,∇d)]ḋdV, (28)

where δdγ denotes the variational derivative of the crack surface density γ (Miehe
et al. 2010), with the explicit form

δdγ = 1

l
(d − l2Δd). (29)

According to the second law of thermodynamics the dissipation functional has to be
nonnegative for all admissible deformation processes, i.e., D ≥ 0.

Finally, we provide the variational formulation based on the power balance which
is obtained from the stated functionals (24), (26), and (28), i.e.,

Π(ϕ̇, ḋ) = E (ϕ̇, ḋ) + D(ḋ) − P(ϕ̇) = 0. (30)
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On the basis of (30), a rate-type mixed variational principle can be constructed via a
minimization principle for the quasi-static process, i.e.,

{ϕ̇, ḋ} = Arg
{

inf
ϕ̇∈Wϕ

inf
ḋ∈Wd

Π(ϕ̇, ḋ)
}

, (31)

with the admissible domains for the state variables

Wϕ = {ϕ̇ | ϕ̇ = 0 on ∂Bϕ}, Wd = {ḋ | ḋ = 0 on ∂Bd}. (32)

The variation of the functional leads to the Euler–Lagrange equations which describe
the multifield problem for the fracture of an anisotropic tissue, i.e.,

Div(FS) + ρ0γ̄ = 0, ( f − gcδdγ )ḋ = 0, (33)

along with the loading–unloading conditions ensuring the principal of maximum
dissipation during evolution of d. Thus,

ḋ ≥ 0, f − gcδdγ ≤ 0, ( f − gcδdγ )ḋ = 0. (34)

The first condition ensures the irreversibility of the evolution of the crack phase-field
parameter. The second condition is an equality for evolving a crack, and it is negative
for a stable crack. The third condition is the balance law for the evolution of the crack
phase-field subject to the former conditions.

4.2.3 Constitutive Equations, Failure Criterion

For the numerical example provided in the next section, we use a simple constitutive
equation. In particular, we use A = 0 and B = 1 in (10) so that I 	

4 = I4 and I 	
6 = I6,

a case with perfectly aligned collagen fibers with the structure tensor given by (12).
Hence, to describe the mechanical response of the intact aortic tissue the free-energy
function Ψ0 in (21) is specified as

Ψ0 = Ψ iso
0 (J, I1) + Ψ ani

0 (I4, I6), (35)

where
Ψ iso

0 (J, I1) = κ̄(J − lnJ − 1) + μ

2
(I1 − 2lnJ − 3), (36)

is an isotropic function representing the mechanical behavior of the ground matrix,
while

Ψ ani
0 (I4, I6) = k1

2k2

∑

i=4,6

{exp[k2(Ii − 1)2] − 1}, (37)
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is an exponential anisotropic free-energy function taking into account the contri-
butions of the collagen fibers (Holzapfel et al. 2000), while J = detF > 0 denotes
the volume ratio. In (36) κ̄ denotes the penalty parameter whereas μ is the shear
modulus. In the anisotropic terms k1 and k2 stand for a stress-like material parameter
and a dimensionless parameter, respectively. The anisotropic functions should only
contribute when the fibers are extended, that is when I4 > 1 or I6 > 1. If one or more
of these conditions is not satisfied then the relevant part of the anisotropic function is
omitted. If, for example, I4 and I6 are less than or equal to 1, then the tissue response
is purely isotropic. Based on this constitutive descriptor it is straightforward to derive
the related stress and elasticity tensors.

Finally, we provide a novel energy-based anisotropic failure criterion that portrays
the tissue state at which the cracking starts and propagates. In order to describe
anisotropic failure, we further elaborate on the equation for the evolution of d using
(33)2 with (29), and (25)2 with (21), (22) for ḋ ≥ 0, i.e.,

f − gc

l
(d − l2Δd) = 0, f = 2(1 − d)Ψ0. (38)

We assume distinct failure processes for the ground matrix and the collagen fibers,
i.e.,

2(1 − d)Ψ iso
0 − giso

c

l
(d − l2Δd) = 0, 2(1 − d)Ψ ani

0 − gani
c

l
(d − l2Δd) = 0,

(39)

dual to the free-energy functions for the isotropic and the anisotropic parts, respec-
tively, see (35). In (39) we have introduced the critical fracture energies giso

c and gani
c

which relate to the isotropic ground matrix and the anisotropic fiber contribution,
respectively. We now introduce the dimensionless crack driving function H̄ , which
we additively decompose according to

H̄ = H̄ iso + H̄ ani, H̄ iso = Ψ iso
0

giso
c / l

, H̄ ani = Ψ ani
0

gani
c / l

, (40)

where H̄ iso relates to the isotropic part and H̄ ani to the anisotropic part.
By superposing the isotropic and anisotropic failure processes (39), and with the

use of (40), we obtain
d − l2Δd = (1 − d)H̄ . (41)

The left-hand side of this relationship is the geometric resistance to crack growth
whereas the right-hand side is the local source term for crack growth (Raina and
Miehe 2016). To enforce the irreversibility condition and prevent healing effects, the
dimensionless source term (40) is recast as
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H (t) = max
s∈[0,t]

[〈H̄ (s) − 1〉] , (42)

with the Macaulay brackets 〈 ( • ) 〉 = [ ( • ) + |( • )| ]/2. Hence, d does not evolve
for a dimensionless crack source term H̄ (s) < 1. The specific choice for H (t) in
(42) ensures irreversibility of the crack evolution.

4.3 Finite Element Simulation of Aortic Dissection

4.3.1 Finite Element Formulation

A staggered set of algebraic equations is obtained from the strong forms of the
coupled set of equations by a Galerkin type finite element formulation. The weak
form of the balance of static equilibrium is derived and consistently linearized along
both the deformation map ϕ(X, t) and the crack phase-field d(X, t). A temporal
and spatial discretization scheme is employed for ϕ and d. All field variables are
discretized with isoparametric shape functions yielding a set of algebraic equations
to be solved by a one-pass operator-splitting algorithm. A discrete time increment
τ = tn+1 − tn is considered, where tn+1 and tn stand for the current and the previous
time steps, respectively. The operator-splitting algorithm yields a decoupling within
the time interval and is the composition of the mechanical subproblem and the crack
growth subproblem according to

ALGOCM = ALGOC ◦ ALGOM. (43)

This algorithm converts the nonconvex coupled problem into two convex subprob-
lems. The algorithm of each subproblem is then obtained as

(M) :
{

Div(FS) + ρ0γ̄ = 0,

ḋ = 0,
and (C) :

{
ϕ̇ = 0,

d − l2Δd − (1 − d)H = 0.
(44)

The algorithm (M) is the mechanical predictor step to be solved for the frozen crack
phase-field parameter d = dn , while the algorithm (C) is the crack evolution step for
the frozen deformation map ϕ.

The discrete residual vector R and the (coupled) stiffness matrix K have the forms

R =
[
Rϕ

Rd

]
, K =

[
KM 0
0 KC

]
. (45)

Subsequently, we provide the discrete residual vector of each subproblem, i.e.,
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Rϕ =
nel⋃

e=1

nen∑

i=1

δx̂Ti

∫

Bh
e

(BTi
τ e − N iρ0eγ̄ e)dV −

nt
el⋃

e=1

nsf∑

i=1

δx̂Ti

∫

∂Bh
e

N i T̄edA = 0,

(46)

Rd =
nel⋃

e=1

nen∑

i=1

δd̂ i
∫

Bh
e

{N i [de − (1 − de)He] + ∇TN i l2
e∇de}dV = 0, (47)

where (•)e denotes the matrix form of the associated quantities, e.g., τ e is the 6 ×
1 Kirchhoff stress matrix, on a typical element. In addition, Bi is a 6 × 3 matrix
associated with node i , and consisting of the partial derivatives N i

, j , j = 1, 2, 3 of
the shape functionsN i with respect to the spatial coordinates x j . The nodal values of
each element domain are characterized with a superimposed hat,

⋃
is the assembly

operator, while nel is the number of finite elements while nt
el stands for the number

of surface finite elements, nen and nsf denote the number of nodes per volume and
surface element, respectively.

The element matrices KM and KC of each subproblem take on the following forms:

KM =
nel⋃

e=1

nen∑

i=1

nen∑

j=1

δx̂Ti
Ki j

ϕϕ,eΔx̂ j , KC =
nel⋃

e=1

nen∑

i=1

nen∑

j=1

δd̂ iKi j
dd,eΔd̂ j , (48)

where KM is the stiffness matrix related to the mechanical predictor, while KC is
the stiffness matrix describing the crack evolution. The components of the tangent
matrices Ki j

ϕϕ,e and Ki j
dd,e for one element related to the nodes i , j can be given as

Ki j
ϕϕ,e =

∫

Bh
e

(BTi
DeB j + ∇T

xN
iτ e∇xN

j )dV, (49)

Ki j
dd,e =

∫

Bh
e

[N i (1 + He)N
j + ∇TN i l2

e∇N j ]dV, (50)

where De designates the matrix form of the elasticity tensor for a typical element. The
operator-splitting algorithm is outlined in Table 4. It forms the basis for the numerical
scheme in which the phase-field d is driven by the local history field H (tn+1). The
phase-field model was implemented into the finite element analysis program FEAP
(2008).

4.3.2 Simple Shear Test of a Thoracic Aortic Specimen

Finally, we illustrate the performance of the crack phase-field model applied to
aortic fracture by means of finite element simulations to capture the experimental
data obtained from a specimen extracted from the media of a human thoracic aorta.
The performed simulations are based on data obtained from the specimen subjected
to simple shear along the circumferential θ -direction (referred to as zθ mode) and
the longitudinal z-direction (θ z mode); the experimental data from specimen AVIII
are displayed in Fig. 6c, d of this section.
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Table 4 Operator-splitting algorithm for the multifield problem in [tn, tn+1]

1. Initialization – At time tn given: deformation map, phase-field, history field ϕn ,
dn , Hn

2. Update – Update the prescribed loads γ̄ , ϕ̄ and T̄ at current time tn+1

3. Compute ϕn+1 – Determine ϕn+1 from the minimization problem of elasticity

ALGOM • Gϕ =
∫

B
sym[∇x (δϕ)] : τdV

− ∫
B δϕ · ρ0γ̄ dV − ∫

∂B δϕ · T̄dA = 0

4. Compute history – Check crack initiation/propagation condition, update history

• H (tn+1) ←
{
H (tn) if H (tn+1) < H (tn)

H (tn+1) else

5. Compute dn+1 – Determine dn+1 from the minimization problem of crack
topology

ALGOC • Gd =
∫

B
δd[d − (1 − d)H ]dV +

∫

B
∇(δd) · l2∇ddV = 0

The experiments are replicated computationally with respect to a monotonic shear
load applied to the specimens with symmetric incisions; for the related geometries
see Fig. 8a, c. The geometry of the specimen sheared along the θ -direction is dis-
cretized with 23 525 four-node tetrahedral elements, with a length-scale parameter
l = 0.167 mm, see Fig. 8b, and the specimen sheared along the z-direction is dis-
cretized with 22 657 elements, with l = 0.25 mm, see Fig. 8d. Note that l is chosen to
satisfy l > 2h in order to resolve the crack surface properly, see Miehe et al. (2010).
The finite element meshes are refined in the areas where the crack is expected to
propagate in order to resolve the crack zone. With respect to the Dirichlet boundary
conditions the nodes at z = 0 are constrained in three directions for the zθ mode,
while those located at θ = 0 are constrained in three directions for the θ z mode. The
elastic material parameters are obtained using a least-squares analysis. The critical
fracture energies giso

c and gani
c are predicted for each mode by comparing the Cauchy

stress versus the amount of shear curves of the simulation results with those of the
experiments. A list of the parameters used is provided in Table 5.

Figure 9 shows the finite element results in terms of the Cauchy stress versus
the amount of shear; they agree well with the anisotropic experimental response.
The numerical results provided in Fig. 9 are obtained by considering the average
of all nodal stresses at the edge z = θ = 3 mm for the zθ mode, and at the edge
θ = 3, z = 5 mm for the θ z mode. The onset of the cracks is observed at the two tips
of the symmetrically incised region where the stress concentration, and, therefore,
the energy of the intact tissue satisfies the failure condition. The two distinct crack
patterns meet in the middle of the refined region at which the complete failure phe-
nomenon manifests itself. This is accompanied by the sudden loss of the load-bearing
capacity, as depicted in the corresponding curves of the Cauchy shear stress versus
the amount of shear. Figure 10 illustrates the distributions of the crack phase-field d
and the Cauchy shear stress σθ z at the locations A, B, C, and D (indicated in Fig. 9b).
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Fig. 8 a, c Geometries of the specimens sheared in the circumferential θ-direction (zθ mode) and in
the longitudinal z-direction (θ z mode) by the displacement 3γ (thickness times amount of shear).
The structure of the media is characterized by two families of fibers, oriented in the directions
M4 and M6 in the reference configuration, and they are symmetrically arranged with respect to
the cylinder axis—α is the angle between the fibers and the circumferential direction; b, d finite
element meshes. Dimensions are provided in millimeters (Gultekin et al. 2016)

Table 5 Elastic and crack phase-field parameters for anisotropic failure of aneurysmatic aortic
specimens under simple shear along the circumferential (θ) and longitudinal (z) directions

Elastic μ = 80.74 kPa

k1 = 62.04 kPa

k2 = 0.23

α = 53.68◦

Crack phase-field giso
c = 80 kPa mm along the θ-direction

gani
c = 105 kPa mm along the θ-direction

giso
c = 120 kPa mm along the z-direction

gani
c = 240 kPa mm along the z-direction

The parameters are according to (36), (37), (39), while α is the angle between the fibers (arranged
in symmetrical spirals) and the circumferential direction of the media
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Fig. 9 Simple shear test data (triangles) and corresponding finite element results (solid curves):
a Cauchy shear stress σzθ versus amount of shear γ for the zθ mode; b Cauchy shear stress σθ z
versus γ for the θ z mode (Gultekin et al. 2016)

σθ

Fig. 10 Distributions of the numerical results of simple shear in the longitudinal z-direction (θ z
mode) with anisotropic failure at the locations A, B, C, and D according to Fig. 9b: (above) distrib-
ution of crack phase-field d; (below) corresponding Cauchy shear stress σθ z (Gultekin et al. 2016)
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5 Modeling Stress Softening and Permanent Deformation
in Artery Walls

In cardiovascular treatments such as arterial clamping and balloon angioplasty the
tissue is exposed to supraphysiological loading which may cause tissue damage.
Consequently, some inelastic phenomena such as stress softening and permanent
deformation may occur in the tissue. Figure 11 shows representative results of exper-
imental data obtained from the intima of a thoracic aorta for tissue strips taken along
the axial and circumferential directions (donor XII, see Weisbecker et al. 2012).
Clearly seen in the stress–stretch response is the anisotropic behavior of the tissue
and the softening during unloading from the primary loading path. As illustrated in
the zoomed plots, Fig. 11b, c, a permanent deformation is observed whenever the
load is completely removed. Stress softening and permanent deformation mainly
occur in the first cycle of each load step.

In several studies continuum damage mechanics has been used to model damage-
induced inelastic phenomena in arterial tissues (Rodríguez et al. 2006, 2008;
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Fig. 11 a Representative experimental data from cyclic uniaxial tensile tests performed on the
intima of a thoracic aorta (donor XII, see Weisbecker et al. 2012). The zoomed views—b tissue
strip taken along the circumferential direction, and c along the axial direction—show permanent
deformation after removing the stress (Fereidoonnezhad et al. 2016)
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Balzani et al. 2012; Maher et al. 2012; Marino and Vairo 2014; Schmidt et al. 2014).
An alternative phenomenological approach is to model damage on the basis of pseu-
doelasticity, see, e.g., Ogden and Roxburgh (1999) and Dorfmann and Ogden (2004).
The inherent simplicity of the pseudoelasticity approach makes it especially suitable
for practical applications. Weisbecker et al. (2012) used that approach for the descrip-
tion of damage in soft collagenous tissues. In particular, an anisotropic model was
proposed to account for the stress softening in aortic layers when loaded beyond
the physiological range while permanent deformation was not accounted for. Sub-
sequently, according to Fereidoonnezhad et al. (2016), we briefly review a damage
model for arterial tissue that takes into account both stress softening and permanent
deformation. The constitutive model is an extension of the model of Weisbecker et al.
(2012) to also take into account permanent deformation. We show that the model is
able to capture special features such as nonlinearity, anisotropy, and damage-induced
phenomena. Finally, we present finite element results of aortic clamping by consid-
ering the three aortic layers, residual stresses, nonsymmetric blood pressure after
clamping, and patient-specific mechanical data.

5.1 Constitutive Model

5.1.1 Pseudoelastic Damage Model

We use here a multiplicative decomposition of the deformation gradient F = J 1/3F,
where J = det F > 0 is the volume ratio and F is the modified deformation gradi-

ent (det F = 1). Consequently, C = F
T
F denotes the modified right Cauchy–Green

tensor (Holzapfel 2000).
By considering the pseudoelastic damage model, as introduced by Dorfmann and

Ogden (2004), for the pseudo-energy function Ψ of an arterial layer, we write

Ψ = Ψvol(J ) + Ψ (C, M4, M6, ηs, ηin), (51)

where Ψvol(J ) is the volumetric response and Ψ is the isochoric response of the
damaged tissue, while M4 and M6 denote the directions of the collagen fiber families
in the reference configuration, while ηs and ηin are two damage variables included to
capture the stress softening and permanent deformation, respectively. The damage
phenomenon is assumed to affect only the isochoric part of the deformation (Simo
1987).

Furthermore, the isochoric free-energy function of the undamaged tissue, say Ψ
0
,

is decomposed into an energy stored in the ground matrix, say Ψ
0
g, and an energy

stored in the collagen fibers, say Ψ
0
fi . Assuming that the softening phenomenon

occurs only in the collagen fibers (Weisbecker et al. 2012), then the isochoric part of
(51) may be represented as



184 G.A. Holzapfel

Ψ = Ψ
0
g( Ī1) +

∑

i=4,6

[ηsiΨ
0
fi ( Ī1, Īi ) + φi (ηsi )] − [(1 − ηin)N (C∗) + φin(ηin)],

(52)

where Ī1 = trC is the first invariant of C and Īi = C : Mi ⊗ Mi , i = 4, 6, are the
modified pseudo-invariants, which are the analogues of (4)2. The second part in (52)
represents the energy of the softened fibers while the last part is the inelastic contri-
bution related to the permanent set. In (52) φi and φin are dissipation functions and
N is the inelastic energy dissipation characterizing the permanent set, i.e., a function
of the modified right Cauchy–Green tensor at the peak deformation (deformation

state at which Ψ
0

is a maximum) of the loading history, say C∗. Note that C∗ (and
consequently N ) is only updated on unloading from the maximum deformation state.

5.1.2 Stress Tensor and Thermodynamic Consistency

Let us consider the Clausius–Duhem inequality

1

2
S : Ċ − Ψ̇ � 0, (53)

where the material time derivative of Ψ is denoted by Ψ̇ . Differentiating (51) in view
of (52), and substituting the result into inequality (53), we obtain

(
1

2
S − dΨvol

dJ

∂ J

∂C
− ∂Ψ

∂C
: ∂C

∂C

)
: Ċ −

−
∑

i=4,6

(
Ψ

0
fi + ∂φi

∂ηsi

)
η̇si −

(
N − ∂φin

∂ηin

)
η̇in � 0, (54)

which must be fulfilled for arbitrary Ċ. With standard arguments of continuum ther-
modynamics (Holzapfel 2000) we conclude that

S = Svol + S, Svol = 2
dΨvol

dJ

∂ J

∂C
, S = 2

∂Ψ

∂C
: ∂C

∂C
, (55)

where Svol = pJC−1, with p = dΨvol/dJ (p is the hydrostatic pressure), and S are
the volumetric and isochoric parts of the second Piola–Kirchhoff stress tensor S,
respectively. The isochoric part S is represented by

S = 2

{
∂Ψ

0
g

∂C
+

∑

i=4,6

(
ηsi

∂Ψ
0
fi

∂C
+ ∂ηsi

∂C
Ψ

0
fi + φ′

i

∂ηsi

∂C

)

−
[
(1 − ηin)

∂N

∂C
− ∂ηin

∂C
N + φ′

in
∂ηin

∂C

]}
, (56)
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where the prime denotes the derivative of the dissipative function (φi or φin) with
respect to the damage variable (ηs or ηin).

Furthermore, the inequality (54) can be represented in the following simplified
form:

−
∑

i=4,6

(
Ψ

0
fi + ∂φi

∂ηsi

)
η̇si −

(
N − ∂φin

∂ηin

)
η̇in � 0. (57)

In order to satisfy (57), we assume that damage evolves with the deformation so that

∂Ψ

∂ηsi
= Ψ

0
fi + φ′

i = 0,
∂Ψ

∂ηin
= −N + φ′

in = 0, (58)

which is in accordance with Dorfmann and Ogden (2004). Hence, the stress tensor
(56) may then be presented as

S = S
0
g +

∑

i=4,6

ηsiS
0
fi − (1 − ηin)Sin, (59)

where the abbreviations

S
0
g = 2

∂Ψ
0
g

∂C
, S

0
fi = 2

∂Ψ
0
fi

∂C
, Sin = 2

∂N

∂C
(60)

have been introduced. It is now straightforward to derive the explicit form of the
elasticity tensor, see Fereidoonnezhad et al. (2016).

5.1.3 Energy Functions and Damage Variables

Finally, we need specific forms of the energy functions and the damage variables.
According to Sect. 2.2 we assume two collagen fiber families, symmetrically distrib-
uted at an angle α with respect to the circumferential direction of the aortic layer. By
means of the analogue of (8) and (9) we have

Ψ
0
g( Ī1) = c

2
( Ī1 − 3), Ψ

0
f,i ( Ī1, Īi ) = k1

2k2

{
exp

[
k2( Ī

	
i − 1)2

] − 1
}
, i = 4, 6,

(61)

where c, k1, k2 are material parameters, and Ī 	
i = tr(HiC) = κ Ī1 + (1 − 3κ) Īi ,

where κ ∈ [0, 1/3] denotes again the dispersion parameter. This is the special case
of transversely isotopic dispersion about M4 and M6, as discussed in Sect. 2.3. In
addition, the convex form

Ψvol(J ) = 1

D

(
J 2 − 1

2
− ln J

)
(62)
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is considered for the volumetric energy (numerically used as a penalty function),
where 1/D is a penalty parameter. Moreover, we assume that the (anisotropic) inelas-
tic energy dissipation N has the same form as the elastic free-energy function, with
the related material parameters c∗, k∗

1 , k∗
2 , and κ∗.

Following Weisbecker et al. (2012) and assuming two mechanically equivalent
collagen fiber families, the damage variable ηsi may be specified as

ηsi = 1 − 1

r1
erf

[
1

m1

(
Ψ

max
fi − Ψ

0
fi

)]
, (63)

where erf(•) is the error function of (•) and Ψ
max
fi denotes the maximum strain energy

of the fiber family i obtained by the deformation history. The maximum material
damage that can be induced under loading is characterized by r1 > 1, while m1 > 0
determines the dependence of the damage on the deformation. The damage induced
in each fiber family can be characterized by the minimum value ηmin

si according to

ηmin
si = 1 − 1

r1
erf

(
1

m1
Ψ

max
fi

)
. (64)

During primary loading ηin = 1 and during unloading ηin is a decreasing function. It
is convenient to set ηin = 0 at C = I so that 0 � ηin � 1. One possible expression,
which satisfies the above restriction on the limiting values of ηin, is

ηin = tanh

[(
Ψ

0

Ψ
max

)m2
]

/ tanh(1), (65)

wherem2 is a parameter, andΨ
max

is the maximum strain energy of the tissue obtained
in the deformation history. With the particular forms of the energy functions, the
inelastic dissipation, and the damage variables we are now able to provide explicit
expressions for S, according to (59), and the elasticity tensor.

5.1.4 Material and Damage Parameters

The parameter identification was performed by the optimization toolbox MATLAB
(R2012a, The MathWorks, Inc.). Thereby, the Cauchy stress in the loading direction
was determined, then the lateral and through-the-thickness stretches were calculated
using J = 1 together with the constraint that the stress in the lateral direction equals
zero. With these stresses and stretches the parameter identification was performed
by employing the nonlinear least-squares trust region algorithm to minimize the
objective function

χ =
n∑

i=1

(σ
exp
i − σ mod

i )2, (66)
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Fig. 12 Representative model fit for cyclic uniaxial tension data of the intima taken from a thoracic
aorta (donor XII, see Weisbecker et al. 2012; compare also with Fig. 11 in this chapter). The inset
shows the low stretch region to highlight the permanent set of deformation (Fereidoonnezhad et al.
2016)

where n is the number of considered data points, σ
exp
i are the Cauchy stresses deter-

mined experimentally and σ mod
i are the corresponding values predicted by the model

for both the circumferential and the axial directions. With the obtained parameters
the lateral and the through-the-thickness stretches were updated and the parameter
identification was repeated until the solution converged. The goodness of fit was eval-
uated by calculating the coefficient of determination R2 = 1 − Serr/Stot, where Serr

and Stot are the sums of squares of the differences between model/experiment and the
mean of experiment/experiment, respectively (Holzapfel et al. 2015). The proposed
constitutive model is able to reproduce the experimentally determined stress–stretch
data in a good manner. A representative model fit for uniaxial data is shown in
Fig. 12. The experimental data are for the intimal strips of a thoracic aorta (donor
XII, see Weisbecker et al. 2012; compare also with Fig. 11 in this chapter), taken
along the axial and circumferential directions. The related parameters for this sam-
ple from donor XII are c = 0.024 MPa, k1 = 3.863 MPa, k2 = 0.001, α = 47.9◦,
κ = 0.18, c∗ = 0.0021 MPa, k∗

1 = 0.03239 MPa, k∗
2 = 0.0028, κ∗ = 0, r1 = 1.79,

m1 = 0.004 MPa andm2 = 2.0. The parameters together with the coefficient of deter-
mination R2 for the intima, media and adventitia of 14 human thoracic aortas and
of 9 human abdominal aortas are summarized in the study of Fereidoonnezhad et al.
(2016).

5.2 Aortic Clamping

Here, we briefly present finite element simulations of aortic clamping by considering
residual stresses, a multilayer structure of the wall with layer-specific, anisotropic



188 G.A. Holzapfel

Max. principal
nominal strain

+3.000e−04
+1.147e−02
+2.264e−02
+3.381e−02
+4.498e−02
+5.615e−02
+6.732e−02
+7.849e−02
+8.966e−02
+1.008e−01
+1.120e−01 (a)

(b)

(c)

Fig. 13 Distributions of the maximum principal nominal strain with respect to the physiological
configuration of the wall after unclamping for a a cylindrical clamp with 6 mm diameter, b a
cylindrical clamp with 10 mm diameter, and c a flat clamp with 6 mm width. The values represent
the damage-induced permanent strain in the aortic wall (Fereidoonnezhad et al. 2016)
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and nonlinear responses. The 3D FE model was built in Abaqus/Standard (2013).
For details on the opening angle and the geometry of the cylindrical segment, see
Fereidoonnezhad et al. (2016). In total 9 elements were considered through the aortic
wall thickness (3, 4, and 2 for adventitia, media, and intima, respectively). Eight-
node linear brick elements (C3D8H) were assigned to the finite element mesh, with
a total of 40 950 elements, and material parameters from a thoracic aorta (donor
XI) were used (Fereidoonnezhad et al. 2016). The cylinder was axially stretched
to 15 % and the axial direction remained fixed for all nodes at the edges for the
remainder of the simulation. The segment was pressurized with an internal mean
aortic pressure of 13.3 kPa. The aortic clamp, idealized as a pair of rigid cylinders
or a pair of rigid flat plates and modeled by 4-node 3D bilinear rigid quadrilateral
elements (R3D4), were moved toward each other until the vessel became completely
closed. The pressure drop due to clamping was simulated by a linear decay function
to 90 % of the mean aortic pressure in the downstream (blood free) region, and
increased with a linear function by 10 % in the upstream region; related values are
based on experimental measurements (Attia et al. 1976). Contact, enforced with the
penalty method, was defined between all contact surfaces and a friction coefficient of
0.1 was used. A surface to surface discretization method was chosen and the clamp
surface was selected as the master surface while the outer surface of the adventitia
was the slave surface.

The simulations were performed for three different types of clamp using the same
inelastic properties for the aortic wall. The chosen geometries are: (i) cylindrical
clamp with 6 mm diameter; (ii) cylindrical clamp with 10 mm diameter; (iii) flat clamp
with 6 mm width. Figure 13 illustrates the distribution of the maximum principal
nominal strains calculated with respect to the physiological configuration. The results
show the damage-induced permanent strains in the aortic wall after unclamping. As
can be seen from this figure there is no significant difference between the cylindrical
clamps with 6 and 10 mm in diameter. Higher values for the permanent strains are
observed for the flat clamp which implies that a higher injury is induced in the aortic
wall using a flat clamp.

6 Concluding Remarks

This chapter was partly aimed at summarizing some of the recent findings on
the microstructure and mechanics of human aortas in health and disease such as
aneurysms and aortic dissections. We focussed attention on the continuum mechan-
ical modeling of (i) the nonsymmetric collagen fiber dispersion occurring in aortic
walls, a constitutive framework using a generalized structure tensor that incorpo-
rates a measure of fiber dispersion, then (ii) aortic dissection using the phase-field
approach, and (iii) stress softening and permanent deformation as present in fibrous
tissues that are exposed to supraphysiological loading causing tissue damage. The
models are presented in a way that allows computational experts to implement them
in a finite element program; we have implemented the described models into FEAP
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and Abaqus/Standard. Finite element simulations were used to analyze simple shear
of an aneurysmatic tissue loaded up to rupture, and to better understand aortic clamp-
ing using three different types of clamps. The reviewed models can also be extended
to incorporate effects such as viscoelasticity and, in particular, muscle activation.
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Arterial and Atherosclerotic Plaque
Biomechanics with Application to Stent
Angioplasty Modeling

Brían L. O’Reilly, Claire Conway, J. Patrick McGarry
and Peter E. McHugh

Abstract This chapter provides a brief review of continuummechanics in relation to
application in vascular biomechanics. The initial focus is on arterial tissue,where fun-
damental constitutive representations, tissue anisotropy, tissue remodeling and dam-
agemodeling are overviewed. The focus then shifts to diseased tissue (atherosclerotic
plaque tissue), where experimental mechanical characterization, and constitutive and
damage modeling are reviewed. Conclusions are drawn on what has been achieved
thus far, and the main challenges for the future in characterizing and modeling this
complex tissue are identified. Finally, the application of the arterial mechanics in
the computational modeling of the stent angioplasty procedure is considered, with
future challenges identified.

1 Introduction

Mathematical modeling, both analytical and computational, is a vitally important
component of soft tissue biomechanics. In the case of vascular biomechanics, as is
of interest here, modeling can generate deep insight into the fundamental physical
andmechanical behavior of the tissue, in both healthy and diseased states. In addition,
modeling is vitally important for the analysis, design, and performance assessment of
devices and implants used in surgical interventions of the vasculature. Of particular
interest here is the stent angioplasty procedure, for the treatment of atherosclerosis,
where a stent is introduced into the blocked region of a diseased artery and expanded
to restore arterial lumen patency. All proper modeling investigations, not least in the
present case of vascular biomechanics, are built on the generation and availability
of accurate experimental data, for model development, calibration, and validation.
This chapter summarises some of the most important mathematical modeling work
performed in the vascular biomechanics domain over the past 20years or so, focusing
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on approaches that can be implemented computationally using the finite element
method. Particular attention is paid to reviewing modeling work on diseased tissue.

The chapter starts with a brief review of the aspects of continuum mechanics
that are most relevant to vascular biomechanics. The focus is then applied to arte-
rial tissue, where fundamental constitutive representations, tissue anisotropy, tissue
remodeling, and damage modeling are overviewed. The focus then shifts to diseased
tissue (atherosclerotic plaque tissue), where experimental mechanical characteriza-
tion, and constitutive and damage modeling are reviewed. Conclusions are drawn on
what has been achieved thus far, and the main challenges for the future in character-
izing and modeling this complex tissue are identified.

In the final section of the chapter, focus is applied to the computational modeling
of stent angioplasty, where many of the modeling features described in the previous
sections are implemented. The work reviewed in this section illustrates the practical-
ities of attempting to achieve an accurate numerical simulation of stent deployment,
and points up challenges still to be overcome in relation to such modeling efforts.
Finally, the reviewedwork is used to generate recommendations for the improvement
of regulatory body guidelines for the computational modeling of stent angioplasty
as part of the medical device regulatory approval process.

2 Finite Deformation Kinematics: Strain and Stress
Measures

Standard tensor and indicial notation is used throughout the following, and ten-
sor/vector components are written with respect to the standard orthonormal base
vectors e1, e2, and e3. The right and left Cauchy–Green tensors are given below,
respectively, where F is the deformation gradient tensor

C = FTF, B = FFT. (1)

Hyperelasticity is a type of constitutive model characterized by the strain-energy
density function W , which can be written as a function of F. The gradient of the
strain-energy density with respect to F yields the nominal stress S

S = ∂W (F)

∂F
. (2)

The Cauchy (true) stress, σ , is defined as the force over the area in the current con-
figuration, and is given by the following, where J is the Jacobian of the deformation
(determinant of F),

σ = 1

J
F

∂W (F)

∂F
, J = |F|. (3)
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In isotropic materials, W can be written in terms of the eigenvalues of C. These
eigenvalues are the squares of the principal stretches, λ1, λ2, and λ3, shown below

[C] =
⎡

⎣
λ2
1 0 0
0 λ2

2 0
0 0 λ2

3

⎤

⎦ . (4)

Invariants of the strain can be defined to eliminate coordinate axes dependence in
the constitutive expressions

I1 = λ2
1 + λ2

2 + λ2
3, I2 = λ2

2λ
2
3 + λ2

3λ
2
1 + λ2

1λ
2
2, I3 = λ2

1λ
2
2λ

2
3. (5)

The Jacobian determines volume change in a material and can be related to the third
invariant as follows:

J = √
I3. (6)

Using these relationships allows the Cauchy stress to be written in terms of the
invariants, with implied summation over the three invariant indices i = 1, 2, 3

σ = 1

J
F

∂W (F)

∂F
= 1

J
F

(
∂W

∂ Ii

∂ Ii
∂F

)
. (7)

This leads to the general result for an isotropic hyperelastic material

σ = 2

J

(
∂W

∂ I1
+ I1

∂W

∂ I2

)
B − 2

J

∂W

∂ I2
B2 + 2J

∂W

∂ I3
I. (8)

3 Arterial Tissue

3.1 Fundamental Representation

Arterial tissue has been extensively linked in studieswith the characteristics of hyper-
elasticity. Significant focus has been applied to the representationof tissue anisotropy;
models have been developed to capture the anisotropy that occurs due to the direc-
tionality of the collagen and elastin fibers in the different layers of the artery.

Arterial tissue consists of layers, where each layer makes a different contribution
to the collective mechanical properties of the tissue, with each layer having its own
fiber orientation characteristics. In the adventitial layer, for example, are helically
distributed collagen fibers. The layered structure and the corresponding fiber orien-
tations are illustrated in Fig. 1. The most popular constitutive model implemented in
recent studies of arterialmechanics is the nowcommonly referred to as theHolzapfel–
Gasser–Ogden (HGO) model, first presented by Holzapfel et al. (2000), and further
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Fig. 1 Representative image of the cross-section along an arterial displaying the layers and collagen
fiber orientations within the wall (Gasser et al. 2006). Reproduced with permission

elucidated in a series of papers, including Gasser et al. (2006). This model assumes
material incompressibility and introduces a unit vector M in order to define the ori-
entation of a family of transversely isotropic aligned collagen fibers in the arterial
tissue, and a related strain invariant I4, which represents the square of the stretch in
the fiber direction, through the following

I4 = M · (CM) = MiCi j M j , m = FM, mi = Fi j M j . (9)

An illustration of the fiber angle γ is given in Fig. 2.
In the context of incompressibility in thematerial J = 1and thegeneral expression

for the stress can be written as follows:

σ = −pI + 2

(
∂W

∂ I1
+ I1

∂W

∂ I2

)
B − 2

∂W

∂ I2
B2, (10)

where p is a Lagrange multiplier that can be interpreted as a hydrostatic pressure.
For the present consideration of the HGO model it is useful to introduce

isochoric (deviatoric) counterparts of the deformation gradient, deformation tensors,
and invariants

F = (J 1/3I)F, C = F
T
F, B = FF

T
, (11)

Ī1 = J−2/3 I1, Ī4 = J−2/3 I4. (12)
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Fig. 2 Representative image
of the cross-section along an
artery displaying the layers
and collagen fiber
orientations within the wall.
γ is the angle between the
fiber directions M and M′
and the circumferential
direction. Adapted from
Gasser et al. (2006).
Reproduced with permission
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The original quantities and their isochoric counterparts are equal for the incom-
pressible case, hence the isochoric quantities are used in the following for overall
consistency.

Ī4 can be utilized to split the energy density function into a term describing
the isotropic deformation of the ground substance (tissue matrix) and a second term
describing the anisotropic deformation of the transversely isotropic family of aligned
fibers, through the following equation

W = Wg( Ī1) + Wf( Ī4), (13)

which can be more comprehensively expressed as

Wg( Ī1) = 1

2
μ( Ī1 − 3), Wf( Ī4) = k1

k2
{exp[k2( Ī4 − 1)2] − 1}. (14)

The coefficients are as follows: μ is the shear modulus, k1 is a stress-like parameter,
and k2 is a dimensionless parameter.

The exponential function in the strain-energy function captures the strong stiff-
ening effects of the interior tensions in collagen fibers at higher strain levels. Using
these expressions the relationship for the Cauchy stress is defined as

σ = −pI + μB + 4k1( Ī4 − 1) exp[k2( Ī4 − 1)2]m ⊗ m, m = FM. (15)

Extending this framework to better represent arterial tissue structure is the inclu-
sion of a second fiber family which is transversely symmetrical to the first fiber
family (see Fig. 2), and identified by the unit vector M′. For completeness, the two
families are described below using the invariants Ī4 and Ī6

Ī4 = M · (CM), Ī6 = M′ · (CM′). (16)
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The strain-energy density can now be written as

W = Wg( Ī1) + Wf( Ī4, Ī6), (17)

Wf( Ī4, Ī6) = k1
2k2

∑

i=4,6

{exp[k2( Īi − 1)2] − 1}, (18)

with Wg( Ī1) given by (14)1, and thus

σ = −pI + μB + 2k1( Ī4 − 1) exp[k2( Ī4 − 1)2]m ⊗ m

+ 2k1( Ī6 − 1) exp[k2( Ī6 − 1)2]m′ ⊗ m′, (19)

withm′ = FM′ and m defined in (15)2.
Going further, consider that, anatomically, individual fibers in afiber family are not

aligned, but are distributed around a mean direction (see Fig. 2). In the HGO model,
this can be captured by introducing a generalized structure tensor H to account for
the dispersion around the mean M and M′ vectors in the arterial tissue, written for
theM case as follows:

H = κI + (1 − 3κ)M ⊗ M, κ = 1

4

∫ π

0
ρ sin3 Θ dΘ, (20)

where κ is a dispersion parameter and ρ is an orientation density function based on
a π periodic von Mises distribution of fibers rotationally symmetric around M. A
graphical representation of this function is given in Fig. 3, while a three-dimensional
representation is provided in Fig. 4.

Ī4 must then bemodified to account for dispersion and is replaced with Ī ∗
4 , defined

as follows:
Ī ∗
4 = H : C = Hi jCi j , (21)

which can also be simplified to the following:

Ī ∗
4 = κ Ī1 + (1 − 3κ) Ī4. (22)

This leads to the following expression for Wf

Wf ( Ī1, Ī4) = k1
k2

{exp[k2( Ī∗4 − 1)2] − 1} = k1
k2

{exp[k2(κ Ī1 + (1 − 3κ) Ī4 − 1)2] − 1}.
(23)

Repeating the process forM′ yields

H′ = κI + (1 − 3κ)M′ ⊗ M′, Ī ∗
6 = κ Ī1 + (1 − 3κ) Ī6. (24)
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Fig. 3 A two-dimensional graphical representation of the (transversely isotropic) von Mises dis-
tribution of collagen fibers (Gasser et al. 2006). Reproduced with permission
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tribution of collagen fibers (Gasser et al. 2006). Reproduced with permission
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and then finally
W = Wg( Ī1) + Wf( Ī1, Ī4, Ī6), (25)

where

Wf( Ī1, Ī4, Ī6) = k1
2k2

∑

i=4,6

{exp[k2( Ī ∗
i − 1)2] − 1} (26)

and Wg( Ī1) is again given by (14)1.
Figure5 shows the analytical solution to the HGO model for the case of a thin-

walled tube, showing the influence of the mean alignment and dispersion coefficient
on the overall mechanical properties. From the figure it can be seen that higher fiber
dispersion κ correlates with lower fiber family orientation angle dependence γ .

For the case of compressible or slightly compressible materials, a recent study by
Nolan et al. (2014) has demonstrated that the full forms of the anisotropic invariants
(I4, I6) must be used. If the isochoric forms of the anisotropic invariants ( Ī4, Ī6) are
used when material volume change is permitted (J �= 1) then significant errors in
the computed stress can emerge. An experimental study on ovine aortic tissue by
Nolan and McGarry (2015) reveals significant material volume change and suggests
that such tissue is compressible at a macroscopic continuum level. To fully charac-
terize such phenomena, there is a need for further experimentation to be performed
on muscular arterial tissue, including compressibility tests on healthy and diseased
human arterial tissue.

Two other phenomena that are important in the modeling of arterial tissue and
that have been addressed in the literature are remodeling and damage.

3.2 Remodeling

Remodeling of fiber directions in arterial layers has been considered by a number of
authors in the field of biomechanics. These studies typically assume that the mechan-
ical stimuli (stress or strain) on arterial tissue determine the local fiber orientations,
for example:

• Fibers will reorient towards the plane of maximum and intermediate principal
directions of the tensorial stimuli.

• In this plane, the angle of fiber alignment with respect to maximum principal
stimulus is determined by magnitudes of two maximum principal stimuli. In the
principal stress case, where γ is angle of fiber alignment with respect to the max-
imum principal stress, and σ1 and σ2 are the maximum and intermediate principal
stresses, tan γ can be written as a function, M , of the principal stress ratio:

tan γ = M(σ2/σ1). (27)
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Other approaches to the fiber remodeling have been discussed in more recent
studies. Driessen et al. (2004) developed principal stress-based approaches for fiber
remodeling using the principle discussed for dispersed fiber populations. Hariton
et al. (2007) proposed a stress-based approach using the Holzapfel-type fibrous
hyperelastic model discussed above (HGO without dispersion), where

tan γ = M(σ2/σ1) = σ2/σ1. (28)

Creane (2011) reviewed the topic of fiber remodeling and has developed a strain-
based remodeling algorithm for dispersed fiber populations, based on the HGO
model. This model uses an iterative method to create an optimal structure tensor
for the fiber orientation for each fiber family (Creane 2011; Creane et al. 2012).

3.3 Damage-Induced Softening

Damage models are used to replicate the effects of stress softening in soft tissues.
These types ofmodels are needed to account for damage induced in soft tissues during
supra-physiological loading, e.g., stenting procedure. This type of modeling uses a
continuum approach and is distinct from microstructure and material separation
modeling.

Most commonly, damage is modeled using a damage parameter, introduced into
finite-deformation elasticity laws, to account for tissue softening in terms of a reduc-
tion in the mechanical properties and stress, which represents damage to collagen
fibers and matrix in the tissue. A comprehensive review of this topic is given in
Conway (2013). Analysis of this type can be classified under two major headings:
continuumdamagemechanics approach and pseudo-elasticity approach (Weisbecker
et al. 2011).

3.3.1 Continuum Damage Mechanics Approach

A general form for a modified strain-energy density function, to account for damage,
is given as (Miehe 1995)

W (C, D) = (1 − D)W0(C), (29)

where D is the damage parameter and W0 is the undamaged strain-energy density
function. There are two sub-categories to consider: discontinuous damage and con-
tinuous damage, as reviewed in Miehe (1995) and Peña and Doblaré (2009).
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Discontinuous Damage

This form of damage is calculated by the accumulation of damage in the first loading
cycle of a strain-controlled loading. In any subsequent load cycle, further damage
may only be accumulated with strain energy exceeding the previous maximum strain
energy achieved.

This is best described by the relationship below, where damage is governed by
the quantity α, which represents the maximum undamaged strain-energy density
achieved during the loading history (time: 0 → t) (Miehe 1995):

α = maxW0(C(s)), s ∈ (0, t). (30)

During a typical loading history, involving loading, unloading, reloading, etc., there
is no (further) damage accumulation when W0(C) < α.

Continuous Damage

When determining this type of damage, the entire loading history is accounted for,
and this type of damage can account for the continuous softening of a material over
its lifespan. Damage is possible during loading in cycles of the same amplitude. The
variable β is used to govern the continuous damage and monotonically increases
with deformation through the following (Miehe 1995):

β =
∫ t

0
|Ẇ0(C(s))| ds. (31)

Comparison

Both discontinuous and continuous damage models are usually applied to only the
isochoric (deviatoric) part of the deformation gradient tensor. In algebraic form,
W ich

0 (C).
The discontinuous model approach has been the more commonly applied of the

two, arguably due to it being more physically relevant for soft tissues. For example,
the well-known Mullins effect is well described by this model type; capturing this
behavior is important because soft tissue loading and unloading curves have been
observed to clearly exhibit theMullins effect, as reviewed in Conway (2013). Studies
that have used the soft tissue discontinuous modeling approach include: Hokanson
and Yazdani (1997), Balzani et al. (2004, 2006, 2012), Rodríguez et al. (2006), Calvo
et al. (2007), Alastrué et al. (2007), Brinkhues et al. (2009),Maher et al. (2011, 2012),
Peña (2011).

Continuous damage modeling exhibits advantages in relation to the modeling
of cyclic loading, for example, in relation to capturing hysteresis in arterial tissue
cyclic stress-strain curves, and in relation to simulating the effects of preconditioning
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loading histories performed prior to the testing proper. Studies in this domain include:
Miehe (1995), Ehret and Itskov (2009), Peña and Doblaré (2009), Martin and Sun
(2013).

Very good predictive performance for cyclic loading has been achieved using
discontinuous and continuousmodeling combinations, for example in:Miehe (1995),
Peña et al. (2009), Martin and Sun (2013). Figure3 from Peña et al. (2009) compares
combined discontinuous and continuous model predictions for aortic tissue response
under cyclic loading (Fig. 6a) with predictions for a discontinuous only (Fig. 6b)
and a continuous only (Fig. 6c). The superior performance of the combined model
is evident in this case.

Continuum damage mechanics approaches have been developed and applied to
soft tissue in a range of contexts; in anisotropic tissue models to represent matrix
and fiber damage, to capture material rate dependence and permanent deformation
on unloading, and in models that include arterial tissue residual stresses. Example
studies include: Hokanson and Yazdani (1997), Volokh (2008) (isotropic damage
models); Balzani et al. (2004, 2006, 2012), Brinkhues et al. (2009), Gasser (2011)
(collagenous damage models); Calvo et al. (2007), Rodríguez et al. (2008), Gracía
et al. (2009), Peña et al. (2009), Weisbecker et al. (2011) (matrix and fiber damage
models); Peña (2011) (rate dependentmaterial damage);Maher et al. (2011) (inelastic
isotropic damage).

3.3.2 Pseudo-Elasticity Approach

The pseudo-elasticity approach is another discontinuous damagemodeling approach,
but its formulation is not classified under the heading of continuum damage mechan-
ics. In the pseudo-elasticity approach, if one considers strain controlled loading, then
damage accumulates during the first loading path, with no damage accumulation on
unloading, and in any subsequent load cycle there is no further damage unless the
previous maximum strain energy is exceeded.

Ogden and Roxburgh (1999) developed a pseudo-elastic model that is widely
used. This model was originally developed for modeling filled rubber elastomers that
display the Mullins effect; this would later become the basis for the implementation
of the Mullins effect in finite element software, i.e., Abaqus (2013).

Themodel can be described in terms of amodification of the strain-energy density
to generate a pseudo-energy density

W (C, η) = ηW0(C) + Φ(η), (32)

where η is a damage parameter, W0 is the undamaged strain-energy density and Φ

is a damage function.
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Fig. 6 Stress response of
aortic tissue during cyclic
biaxial tensile loading
comparing experimental
versus numerical models to
capture damage. The
different models used were
mixed model (a),
discontinuous model (b) and
continuous (c) (from Peña
et al. 2009). Reproduced
with permission
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Mullins Effect

The Mullins effect is important for arterial modeling as it is more physically relevant
than pure hyperelasticity. The Mullins effect (see Fig. 7) is described by the loading
and unloading curves following different loading paths, allowing for the formation
of hysteresis loops in stress–strain curves during cyclic loading.

The Ogden and Roxburgh (1999) model assumes incompressibility. In simple
tension, the stress is described by the following relationship, where λ is the principal
stretch in the loading direction:

σ = ηλ
∂W0

∂λ
. (33)

With reference to Fig. 7, on a virgin curve η = 1 and the loading follows the path
σ = λ∂W0/∂λ. Upon unloading η becomes less than 1; there a softening effect and
thematerial unloads along a lower stress path given by (33). As unloading progresses,
the damage parameter reduces gradually to a minimum value η = ηm < 1 which, in
turn, is determined by the original point of unload on the virgin curve. Upon reloading
thematerial reloads along the softer curvewith η gradually increasing, until the virgin
curve is re-joined (η = 1), and further loading continues along the virgin curve. If
a subsequent unloading event occurs, the process described above is repeated. An
explicit form of η is given in Ogden and Roxburgh (1999) as follows, where r andm
are model parameters, andWm

0 is the maximum value of the pseudo-energy function
reached over the loading history:

η = 1 − 1

r
erf

[
1

m
(Wm

0 − W0)

]
. (34)

Fig. 7 Stress/strain response
of a material exhibiting an
idealized Mullins effect.
Adapted from Ogden and
Roxburgh (1999).
Reproduced with permission
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The model is normally applied to the isochoric part of the deformation, but the
framework can be extended to compressible materials.

Pseudo-elastic modeling approach developments include the representation of
damage in anisotropic fibrous soft biological materials, better definitions of the hys-
teresis loops observed in cyclic loading and also the implementation of residual per-
manent deformation upon unloading. Example studies include: Ogden and Roxburgh
(1999), Dorfmann andOgden (2003, 2004), Franceschini et al. (2006), Ciarletta et al.
(2008), Peña and Doblaré (2009), Peña et al. (2011), Weisbecker et al. (2012).

Important differences between the continuum damage mechanics and pseudo-
elastic modeling approaches are that continuum damage mechanics allows for con-
tinuous and discontinuous softening, while pseudo-elastic model calibration from
experimental data is typically easier since material parameters and damage model
parameters can be fitted independently (Weisbecker et al. 2011).

4 Atherosclerotic Plaque

4.1 Introduction

Atherosclerotic plaque is an extremely complex structure with wide variations in
both geometries and constituents. It is really a term for a wide range of geometries
and structures that can change over time: soft lesions evolve to become hard calcified
lesions. A schematic of the cross section of an atherosclerotic plaque is presented in
Fig. 8. In this illustration, components such as lipid pools, calcifications and a fibrous
cap are shown. In more advanced stages, stable lesions can continue to grow and also
become highly calcified. Alternatively the fibrous caps can become unstable, leading
to rupture and the formation of thrombus material, which can lead to embolism
formation in the blood flow. A particularly dangerous situation is that of ‘vulnerable’
plaque, where the lesion can become unstable and the fibrous cap rupture early in
lesion development; detection of early stage plaque vulnerability is still a major
clinical challenge. For additional information on atherosclerosis please refer to Stary
(1999).

The experimental characterization and modeling of plaque tissue is distinctly
lacking in comparison to the extent of experimental characterization and modeling
of healthy arterial tissue, and still represents a frontier for vascular mechanics and
modeling. The importance of accuracy in the modeling of atherosclerotic plaque
is paramount in the accurate prediction of the performance of vascular implants,
such as vascular stents. Further to this, improvements in modeling capabilities for
the prediction of implant performance could be very beneficial in the evolution of
regulatory approval processes, for example, Food and Drug Administration (FDA
2010) requirements for the finite element modeling of stents as part of the medical
device regulatory approval process.
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Fig. 8 Schematic of the cross section of an atherosclerotic plaque. Plaque constituents usually
include lipid pools, a fibrous cap and calcifications

4.2 Experimental Mechanical Characterization and Testing

There are many challenges in the mechanical testing of atherosclerotic plaque tis-
sue; it can be very soft and typically contains fluidic regions leading to issues in
the handling and gripping of the tissue. There is difficulty in obtaining and isolating
plaque tissue, and in particular for human tissue, for obvious reasons. Such difficul-
ties present significant challenges in relation to trying to ensure material consistency
for testing across different testing programmes and in relation to test reproducibil-
ity. The tissue is inherently highly heterogeneous and a broad range of structural
variability exists, leading to a discussion of whether testing entire plaques or cut sec-
tions of a plaque is more appropriate. One major limitation to plaque tissue analysis,
characterization and testing is the lack of a robust animal model of atherosclerotic
plaque that is sufficiently representative of the disease in humans; the lack of such
a model has significant implications for material availability, consistency and test
reproducibility.

In the literature that is available, the main approach to experimental testing is
macroscopic mechanical testing, focusing on compressive and tensile loading, and
extracting overall mechanical response (stress–strain curves) andmechanical proper-
ties, including elastic modulus and ultimate strength (UTS), etc. Relatively speaking,
there has been a limited focus on determining local/sub-structure tissue mechanical
properties. Examples of studies focusing on macroscopic mechanical characteri-
zation include: Loree et al. (1994), Topoleski et al. (1997), Salunke et al. (2001),
Walraevens et al. (2008), Maher et al. (2009, 2011), Teng et al. (2009), Lawlor
et al. (2011), Mulvihill et al. (2013). Also reported in a number of these studies



Arterial and Atherosclerotic Plaque Biomechanics with Application … 209

Fig. 9 Data from Loree
et al. (1994) tensile
stress-strain curves for 6
fractured plaque specimens
categorized by plaque type.
Reproduced with permission

are macroscopic constitutive model fits to the experimental stress-strain data, using
neo-Hookean and polynomial hyperelastic models for example.

The study of Loree et al. (1994) is an influential early study where the broad
variation in mechanical response was clearly illustrated (see Fig. 9) as a function of
plaque material type. Useful data on basic stress-strain curve shapes, and fracture
stress and strain ranges, was reported; for example fracture stresses in the range 149–
701kPa, and strains in the range 15–60%, were reported. These data have been used
as the basis for a number of plaque constitutive model calibrations in subsequent
studies, including Gastaldi et al. (2010), Conway et al. (2012, 2014), Morlacchi et al.
(2013). Themore recent study ofMaher et al. (2009) also illustrates significant tissue
type dependence and also significant differences between tensile and compressive
loading response (see Fig. 10).

One difficulty, due to the heterogeneity and broad range of structural variability, is
that a definitive and standardized tissue type categorization has not been established,
and the tissue type descriptions reported in different studies are very much study
dependent, where the authors have made efforts to come to terms with the nature of
the tissue samples available in any given instance. This adds a layer of complexity
and uncertainty to the interpretation of mechanical property data that is not present
for traditional materials, where constituents, manufacturing route and mechanical
properties generally adhere to well established standards. The Loree et al. (1994)
and Maher et al. (2009) studies illustrate this point for plaque (Figs. 9 and 10);
‘cellular’, ‘hypocellular’ and ‘cholucent’ tissue types are identified, but these are
quite subjectively defined as determined by the specific tissue at hand and the specific
microscopy/characterization method employed. In the same vein, a recent study by
Barrett et al. (2016) has proposed a number of calcified plaque sub-classifications.
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Fig. 10 Figures fromMaher et al. (2009) for mechanical testing of carotid plaque: the upper figure
shows tensile stress-strain response, and the group of four figures show compressive stress-strain
response (unconfined compression), depending on tissue type. The average curves were obtained
using a mean set of hyperelastic constants using a second order polynomial hyperelastic strain-
energy function. Reproduced with permission

The relatively small number of studies focusing on plaque tissue sub-structure
characterization includes those given in Table1. A range of testing methods has been
used, including tensile and compressive mechanical testing, rheometry and nano-
indentation, to resolve the mechanical response and behavior of individual plaque
constituents such as the fibrous cap, lipid core, calcifications, etc. Anisotropy of
constituent layers in plaque has also been measured through tensile testing in axial
and circumferential arterial directions (Holzapfel et al. 2004; Teng et al. 2009).

Nano- and micro-indentation presents very useful possibilities for determining
constituents’ mechanical behavior, since the necessity for extracting test samples of
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Table 1 Experimental studies reporting on plaque tissue constituent mechanical characterization

Reference Location Method Constituents Data
reported/model fit

Chai et al. (2013) Carotid Indentation Fibrous cap Reported:
elastic moduliIntima

Lipid core

Barrett et al. (2009) Carotid Indentation Fibrous cap Model fit:
neo-Hookean

Ebenstein et al.
(2009)

Carotid Indentation Calcification Reported:
reduced moduliFibrous tissue

Hematoma (clot)

Holzapfel et al.
(2004)

Iliac Tensile Fibrous cap Reported:
stress–strain curvesFibrous intima

Fibrotic media Ultimate stress and
stretch

Loree et al. (1994) Synthetic Rheometer Lipid pools Reported:
storage and loss
moduli

Lee et al. (1991) Aorta Cyclic compressive Fibrous cap Reported:
elastic moduli

the different constituents can largely be avoided. Studies utilizing nano-indentation
(for example, Barrett et al. 2009) have shown large variation in local constituent
mechanical properties, similar to that seen at the macroscopic level for the tissue as a
whole. While useful for determining material properties in the physiological loading
regime, indentation is limited when response to higher (supra-physiological) loads
is being explored, including tissue rupture behavior.

It should be emphasized that it is necessary to determine plaque tissue mechanical
behavior in both the physiological loading and supra-physiological loading regimes;
the former is obviously relevant, but the latter is also of significant importance due, for
example, to the high local strains and stresses caused by vascular device deployment
and implantation.

Overall, looking into the future, mechanical testing and characterization of plaque
tissue at the sub-structural scale is vitally important, to address the unmet need for
more accurate atherosclerotic plaque constitutive and damage models.

For more information on these topics, the reader is referred to recent compre-
hensive review articles on plaque testing and mechanical properties (Cardoso and
Weinbaum 2014) and the special issue on ‘Plaque Mechanics’ in the Journal of
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biomechanics (Gijsen and Migliavacca 2014) that includes, for example, Akyildiz
et al. (2014), Chai et al. (2014), Holzapfel et al. (2014), Kolandaivelu et al. (2014),
Walsh et al. (2014).

4.3 Computational Modeling of Atherosclerotic Plaque

Based on the experimental mechanical property data that is available, constitutive
models for plaque have been developed and implemented in computational models
of atherosclerotic arteries. Linear elastic plaque representations have been developed
(typically found in earlier studies) based on measured elastic modulus data. As an
advancement on this, plaque tissue stress-strain curves have been used to calibrate a
range of hyperelastic models in the finite deformation kinematics regime, and this is
the most common approach reported in the literature to date. The majority of studies
have assumed material isotropy for individual plaque constituents or the plaque as a
wholewhere homogeneity and effective properties have been assumed.Anisotropy in
fibrous tissue has also been explored. Table2 gives a summary listing of reported com-
putational studies involving atherosclerotic artery representations, where the studies
have been categorized by spatial dimension (2D-planar or 3D), arterial geometry
(idealized or realistic/patient specific, as might be determined from medical imag-
ing), representation of the diseased tissue structure (whether homogenized or multi-
component/multi-phase), and material model(s) employed. An illustrative example
is that of Cilla et al. (2012) shown in Figs. 11 and 12, where a lipid core is repre-
sented using a hyperelastic idealization. In addition to this, the reader is referred
to the aforementioned reviews for further information (in particular Holzapfel et al.
2014), and also Morlacchi and Migliavacca (2013).

4.3.1 Plaque Tissue Inelasticity and Damage Modeling

A significant limitation in current atherosclerotic plaque computational modeling is
the accurate modeling of plaque inelasticity and damage. Clearly, significant chal-
lenges exist in characterizing plaque inelasticity and damage experimentally, going
beyond difficulties associated with elastic and hyperelastic property identification.
The small number of experimental studies that have investigated plaque inelasticity
have shown the existence of inelastic/non-recoverable deformation (Topoleski et al.
1997; Topoleski and Salunke 2000; Ebenstein et al. 2009;Maher et al. 2011) depend-
ing on plaque type. Intimately linked with tissue inelasticity is tissue damage, not
least because damage can manifest itself as inelastic deformation, with damage lead-
ing to material softening and rupture, and it is very clear from clinical practice that
plaque can experience damage and rupture as part of the angioplasty procedure for
example. As a consequence, there is a clear need for the accurate characterization of
these phenomena (inelasticity, damage, softening and rupture) for the development
of more accurate atherosclerotic artery computational models, in particular for the
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Table 2 Computational modeling studies involving representation of atherosclerotic plaque

Reference Type Geometry Constituents Material model

Lee et al. (1992) 2D Idealized Plaque Linear elastic

Lipid pool

Cheng et al. (1993) 2D Realistic–Digitized
tracing

Plaque Linear elastic

Lipid pool

Calcification

Petrini et al. (2003) 3D Idealized Plaque Hyperelastic 3rd
order polynomial

Chua et al. (2004) 3D Idealized Plaque Linear elastic

Migliavacca et al.
(2004)

3D Idealized Plaque ∗ 3 types Hyperelastic 3rd
order polynomial

Holzapfel et al.
(2005b)

3D Realistic—MRI scan Diseased intima Anisotropic
hyperelasticLipid pool

Calcification

Li et al. (2006) 2D Realistic—MRI scan Fibrous cap Hyperelastic ogden
n = 2Lipid pool

Migliavacca et al.
(2007)

3D Idealized Plaque Hyperelastic 3rd
order polynomial

Kiousis et al. (2007) 3D Realistic–MRI scan Lipid pool Hyperelastic

Timmins et al.
(2008)

3D Idealized Plaque(stiffness
varied)

Hyperelastic 3rd
order polynomial

Bluestein et al.
(2008)

3D Idealized Plaque Hyperelastic
Mooney–RivlinLipid pool

Calcification

Tang et al. (2009a) 2D Realistic–MRI scan Plaque Hyperelastic
modified

Lipid pool Mooney–Rivlin

Calcification

Tang et al. (2009b) 3D Realistic–MRI scan Plaque Hyperelastic
modified

Lipid pool Mooney–Rivlin

Calcification

Pericevic et al.
(2009)

3D Idealized Plaque ∗ 3 types Hyperelastic
polynomial n = 2

Gastaldi et al. (2010) 3D Idealized Plaque Hyperelastic
polynomial n = 2

(continued)
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Table 2 (continued)

Reference Type Geometry Constituents Material model

Gu et al. (2010) 3D Idealized Plaque Hyperelastic
polynomial n = 2

Sadat et al. (2010) 2D Realistic–MRI scan Plaque Hyperelastic ogden
n = 2Lipid pool

Calcification

Zahedmanesh et al.
(2010)

3D Idealized Plaque Hyperelastic ogden
n = 1

Wenk et al. (2010) 3D Idealized Fibrous tissue Hyperelastic fung

Lipid pool

Pant et al. (2011) 3D Idealized Plaque Hyperelastic
neo-Hookean

Grogan et al. (2011) 3D Idealized Plaque Hyperelastic
polynomial n = 6

Wong et al. (2012) 2D Realistic–MRI scan Lipid pool Linear elastic

Fibrous cap

Calcification

Cilla et al. (2012) 3D Idealized Lipid pool Hyperelastic
neo-HookeanPlaque

García et al. (2012) 3D Idealized Lipid pool Hyperelastic
neo-HookeanPlaque

Calcification

Conway et al.
(2012)

3D Idealized/Population
specific

Plaque Hyperelastic
polynomial n = 2

Plastic (range of
yield strengths)

Morlacchi et al.
(2013)

3D Realistic–CTA Plaque Hyperelastic
polynomial n = 6

Patient specific Plastic (yield = 400
kPa)

Grogan et al. (2013) 3D Idealized Plaque Hyperelastic
polynomial n = 2

Morlacchi et al.
(2014)

3D Idealized Plaque Hyperelastic
polynomial n = 6Calcification

(continued)
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Table 2 (continued)

Reference Type Geometry Constituents Material model

Iannaccone et al.
(2014)

3D Realistic Fibrotic media Anisotropic
hyperelastic with
continuum Damage
model

Lipid pool

Fibrous cap

Calcification

Conway et al.
(2014)

3D Idealized/Population
specific

Plaque Hyperelastic
polynomial n = 2,
ogden n = 1 and
n = 6, plasticity and
pseudo-elasticity

Lipid pool

Calcification

Fig. 11 Idealized geometry of an atherosclerotic arterial model (transversal section). Reproduced
from Cilla et al. (2012) with permission

simulation of vascular interventions, such as balloon angioplasty, stent implantation
and endarterectomy.

Inelasticity and Damage Modeling Approaches

Approaches reported in the literature for inelasticity and damage modeling include
the following (Holzapfel et al. 2014).

The fracture mechanics approach, where plaque damage and rupture has been
addressed as a crack initiation and growth problem, and some studies have used
cohesive zone/interface debondingmodels to simulatematerial separation. Examples
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Fig. 12 Contour plots of the maximum principal stress with residual stresses included in (a) the
longitudinal direction, (b) the longitudinal and circumferential directions, and (c) without either.
Reproduced from Cilla et al. (2012) with permission

of studies in this category include:Versluis et al. (2006),Gasser andHolzapfel (2007),
Ferrara and Pandolfi (2008), Nguyen and Levy (2010), Pei et al. (2013), McGarry
et al. (2014), Máirtín et al. (2014). Most recently, Leng et al. (2015a, b) investigated
the use of cohesive zone modeling to model the delamination of the plaque from the
arterial wall.

The continuum damage mechanics approach, as described above in Sect. 3.3.1,
where the plaque is simulated as a homogeneous continuum and with parameters
introduced to represent permanent deformation (inelastic strain) and damage (dam-
age parameter). Examples of studies in this category include Maher et al. (2011),
Balzani et al. (2012), and Iannaccone et al. (2014).

The pseudo-elasticity and elasto-plasticity approaches have been used. The princi-
ple of the pseudo-elasticmodeling approach has been described in Sect. 3.3.2, and has
been used by Conway et al. (2014) to account for plaque damage in a computational
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Fig. 13 Data on cyclic
compression testing of
atherosclerotic plaque
samples (human carotid
plaque) from Maher et al.
(2011): incremental cyclic
loading history (upper
figure), and a typical
stress–strain response (lower
figure the dotted line
represents the load envelope
of the tissue). Reproduced
with permission

model of stent angioplasty (see Sect. 5 below), motivated by the presence of the
Mullins effect in experimental cyclic stress-strain data for plaque tissue (Maher et al.
2011) (see Fig. 13). In the elasto-plastic approach, to account primarily for tissue
damage, the tissue has been idealized as an isotropic elastic-perfectly plastic mater-
ial, where the plasticity is characterized by von Mises plasticity, with a yield stress
determined from reported plaque stress–strain data. Examples of studies of this type
are: Gastaldi et al. (2010), Conway et al. (2012, 2014),Morlacchi et al. (2013), where
the Loree et al. (1994) data were used to identify a plaque yield stress of 400kPa.

The continuum damagemechanics, pseudo-elasticity and elasto-plasticity model-
ing approaches are very useful phenomenological modeling approaches for attempt-
ing to incorporate plaque tissue damage into computational models. They are
relatively easy to implement, as they are based on standard engineering mechanics
modeling methods, and they do directly deal with the mechanical effects of damage
in the tissue, viz., stress/load carrying capacity reduction (stress reduction/softening
in the case of continuum damage mechanics and pseudo-elasticity, and stress lim-
itation to the yield stress value in the case of elasto-plasticity). While attractive in
terms of implementation, they are highly idealized and not physically based in terms
of accounting directly for the microstructural deformation and failure mechanisms
that are at play in the material, in particular given the structural heterogeneity of the
material.
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Plaque Rupture Stresses

In an attempt to characterize the mechanical strength of atherosclerotic plaque tis-
sue, and to aid in assessing tissue rupture risk, significant attention has been paid
in the literature to the identification of a ‘plaque rupture stress’. These efforts have
typically involved diseased arterial tissue mechanical testing, backed up by com-
putational modeling, where the modeling is used to calculate the local peak tissue
stress at the point ofmacroscopic tissue rupture, thereby identifying the rupture stress
value (see Cardoso and Weinbaum 2014; Gijsen and Migliavacca 2014). Using such
an approach, a very widely quoted plaque rupture stress threshold of 300kPa was
established by Cheng et al. (1993); they also reported an average rupture stress of
545 ± 160kPa. The measure of stress used here was the peak circumferential stress
(PCS), the local stress component in the arterial circumferential direction.

In terms of using such data in computational models to assess tissue rupture risk,
arguably the best stress component to use generally to compare with these values is
the maximum principal stress, since it could be argued that it is more representative
of a critically loaded condition in a soft predominantly elastic fibrous material, in
comparison to von Mises stress, for example, which is more representative of a
critically loaded condition in predominantly plastically deforming materials that fail
through shape distortion deformation modes (such as ductile metals). Nonetheless,
useful critical von Mises stress data has also been reported for vulnerable plaque as
lying between 227 and 683kPa (Li et al. 2006).

Not surprisingly, rupture stresses have been found to be highly variable, depend-
ing on the plaque type examined; for example 342kPa for lipid dominant plaque
and 618kPa for calcified plaque (Mulvihill et al. 2013). Weinbaum and co-workers
(Maldonado et al. 2012; Kelly-Arnold et al. 2013; Cardoso and Weinbaum 2014)
have focussed on the very important topic of vulnerable cap rupture stress, finding
that the high stress concentrations around micro-calcifications (increasing stresses
up to ×15) could significantly lower effective rupture stresses for such tissue (see
Fig. 14), below the nominal value of 300kPa, with a value of 107kPa reported in
Maldonado et al. (2012).

4.4 Discussion and Limitations

Undoubtedly, despite the practical difficulties in relation to tissue sourcing and test-
ing, significant and important experimental and modeling work has been performed
to characterize and represent the mechanical behavior of atherosclerotic plaque. Sig-
nificant insights into the mechanical performance of the tissue have been established,
andmodels have been developed that have proven practically useful in computational
modeling investigations of vascular interventions such as stent angioplasty.

However, significant work remains to be done on a number of fronts. Although
difficult it would be very beneficial if a universally accepted standard for plaque
material type could be established. It is clear, however, that this will only be possible
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Fig. 14 a Illustrates the computational results for the analysis of stress concentrations caused by
calcifications in a soft tissue matrix, and the relationship between the separation distance and the
diameter, given by h and D, respectively. b and c show the finite element results for particles of
h/D of 0.4 oriented along tensile and transverse loading axes, respectively (Kelly-Arnold et al.
2013). Reproduced with permission

when greater experimental characterization has been performed, but it would be
hugely beneficial for the comparison of test data across different studies, and also
for the development of constitutive models.

As indicated above, the modeling of plaque inelasticity and damage to date has
primarily been phenomenological in nature, and while this is very useful for practical
implementation in computational analysis and design studies, it is quite idealized
and limited in its ability to accurately capture the details of material deformation
and failure. Overall, improved and more physically based constitutive and damage
model formulations are required (Holzapfel et al. 2014) that will be more physically
accurate and representative in their mechanical performance predictions.

As part of this, multi-scale modeling (Gijsen and Migliavacca 2014) linking
physically-based micromechanical modeling with macroscopic mechanical perfor-
mance, to generate and calibrate more representative material constitutive and dam-
age models, would be hugely beneficial. Current modeling efforts, where plaque
tissue sub-structure has been modeled (e.g., Table2), provide a roadmap for this, but
focus needs to be given to more physically representative modeling of individual
constituent behavior. In particular, focus needs to be applied to explicit represen-
tation of calcified particles and particle-matrix debonding as part of the damage
process, the fluidic nature of the lipid pool, and matrix tissue anisotropy. The focus
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of a number of recent studies on characterizing plaque calcification, and the effects of
calcified particles on tissue mechanical response and rupture stresses, is particularly
welcome in this regard (Maldonado et al. 2012; Kelly-Arnold et al. 2013; Cardoso
and Weinbaum 2014; Barrett et al. 2016).

Further experimentation is required to more comprehensively characterize plaque
tissue non-recoverable/plastic deformation, building on the limited work to date
(Topoleski et al. 1997;Topoleski andSalunke2000;Ebenstein et al. 2009;Maher et al.
2011), as this is essential for constitutivemodel development for use in computational
modeling investigations of vascular interventions such as stent angioplasty, where
tissue load-unload-reload behavior must be accurately captured.

Additionally, one area that has received little attention in the literature, in relation
to experimental characterization and modeling, is plaque tissue loading rate depen-
dence and viscoelasticity, although the existence of soft tissue viscoelasticity is well
accepted. Indeed the tissue preconditioning cyclic loading that is widely utilized in
mechanical testing programmes for soft tissue is largely intended to overcome tis-
sue rate effects and viscoelasticity, and to produce stabilized stress–strain response
curves for the testing programme proper. In relation to plaque tissue, Topoleski and
Salunke (2000) report a significant time-dependent (stress-relaxation) response for
the three plaque types that they considered (calcified, fibrous and atheromatous), indi-
cating viscoelastic behavior, and they discuss the possibility that a plaque ‘opened
during angioplasty may respond purely mechanically, reclosing after several days
because of viscoelastic recovery in the tissue’. On this basis, further experimental
work to obtain an accurate characterization of the rate dependence and viscoelas-
ticity of plaque tissue would be extremely beneficial, with a view to accounting for
such effects in constitutive and damagemodels. This would significantly enhance the
capabilities of computational models, for example in relation to assessing the effects
of balloon/stent deployment rate, and tissue strain recovery and stress relaxation over
time.

In relation to future testing programmes, standardization of material storage, sam-
ple preparation and testing protocols would be very welcome, along the lines pro-
posed by Walsh et al. (2014).

5 Applications in Stent Angioplasty

As is clear from the above sections, the development of tissue constitutive and
damage models to enable the accurate computational modeling of vascular inter-
ventions, such as angioplasty, is of significant interest to the computational bio-
mechanics community. This has, in part, been fueled by the industrial need for
numerical simulation ofmedical device performance as part ofmedical device regula-
tory approval process, for example theUSFoodandDrugAdministration (FDA2010)
requirements for the computational modeling of stent performance in angioplasty as
part of their regulatory approval process.

While the literature on the computational modeling of stenting is vast, studies that
have included explicit representations of plaque tissue sub-structure and constituents
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are quite rate. This is surprising, given what is now known on the importance of
having an accurate plaque tissue representation in computational models of this
type, as reviewed in detail above. Examples of such studies include: Holzapfel
et al. (2005b), García et al. (2012), Conway et al. (2014), Iannaccone et al. (2014),
Morlacchi et al. (2014).

5.1 Stent Design Assessment—Population Specific
Computational Modeling

As a practical application of the considerations discussed above, Conway et al. (2012,
2014) reported on the development of a computational test-bed for coronary angio-
plasty (using finite element analysis and the Abaqus software, Abaqus 2013) to facil-
itate stent mechanical performance assessment as part of the stent design process. In
terms of overall arterialmodel geometry, thework proposed to bridge the gap between
the use of highly idealized (straight or moderately curved cylindrical geometries) on
the one hand, that have been extensively studied in the literature, and patient spe-
cific arterial geometries (generated from medical imaging) that have the limitation
that they are by definition relevant for a particular individual, making generaliza-
tions difficult. Instead the population specific approach was taken where models for
a range of geometrical population categories were created (covering variations in
arterial curvature and stenosis level); this had the advantage of being more general
than patient specific, yet more realistic than a single idealized arterial structure. The
population specific arterial geometries are shown in Fig. 15, with the steps in the
stent deployment simulation illustrated in Fig. 16.

Fig. 15 The population-specific arterial geometries of Conway et al. (2012), covering three levels
of curvature (straight artery SA, moderately curved artery MCA, severely curved artery SCA) and
three stenosis levels (no stenosis, 50% lesion L50, 60% lesion L60). The curvature is quantified by
the tortuosity index (TI), with values 0.0, 0.1, 0.3, reading from the top to the bottom row (Serruys
2008). Reproduced with permission
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Fig. 16 Simulation of the
steps in stent deployment
simulation from Conway
et al. (2012).
a Pre-deployment;
b mid-deployment;
c maximum balloon
inflation; d post balloon
deflation and removal. Case
considered is a severely
curved artery with 60%
lesion (SCAL60), and the
Cypher-like stent.
Reproduced with permission

A second motivation of the work was to attempt to better inform regulatory body
guidelines formedical device approval, in particular the FDAguidelines on computa-
tional modeling of stent performance in angioplasty (US Food and Drug Administra-
tion, FDA 2010). It is interesting to note that these guidelines are relatively imprecise
in terms of prescribing details on the diseased artery model structure and the range
of arterial geometries that should be considered in these analyzes to generate an
accurate depiction of device performance in vivo.

Within the geometrical framework shown in Fig. 15 a three-layer arterial model
(intima, media, adventitia) was implemented using the HGOmodel described above,
with material constants as established in Holzapfel et al. (2005a, b). A wide range
of stenotic (plaque) tissue representations were considered. In Conway et al. (2012)
the tissue was represented as a homogeneous nonlinear elastic–plastic material with
the nonlinear elasticity characterized by a Mooney–Rivlin polynomial hyperelastic
model calibrated by Pericevic et al. (2009) to the Loree et al. (1994) experimental
data; a range of plaque tissue types (cellular, hypocellular, calcified) with a range of
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Lipid 
Pool

Fig. 17 Schematic diagram of SAL50 artery model (Fig. 15) with lipid pool, constituting 9.3% of
total atherosclerotic tissue volume (Conway et al. 2014). Reproduced with permission

Calcified 
Particles

Fig. 18 Schematic diagram of SAL50 artery model (Fig. 15) with calcified particles, constituting
0.5% of total atherosclerotic tissue volume (Conway et al. 2014). Reproduced with permission

plastic yield stresses (to represent plaque tissue damage) derived from the Loree et al.
(1994) data were used. As test cases, the computational test-bed was applied to two
stent geometries, based on the closed-cell Cypher stent and the open-cell Multi-Link
stent. In Conway et al. (2014) particular focus was applied to the plaque representa-
tion to include multiple constituents and constituent combinations, including matrix
tissue, lipid pool (Fig. 17) and calcified particles (Fig. 18). In addition, a range of
matrix tissue representations was considered, ranging from very soft tissue (using
a first-order Ogden hyperelastic model, calibrated from Maher et al. (2011) com-
pressive stress–strain data) to significantly stiffer tissue (using the Mooney–Rivlin
polynomial model calibration fromConway et al. 2012). Finally, two plaque (matrix)
tissue damage representationswere considered: elasto-plasticity (as perConway et al.
2012) and pseudo-elasticity (using the Ogden and Roxburgh 1999 model, calibrated
to the Maher et al. 2011 data—see Fig. 13). This computational test-bed formulation
allowed for the effects of each of the modeling features and variations to be con-
sidered, and insight gained into their relative importance for the practical purpose
of stent mechanical performance assessment, which in turn was assessed through
the following measures: stented vessel recoil, stent scaffolding capability (related to
radial strength) and tissue damage risk (related to peak tissue stress levels generated).
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As detailed in Conway et al. (2012, 2014) the results generated were highly
insightful. In relation to overall arterial geometry (Fig. 15), one surprising result
was that arterial curvature had only a minor influence on the stent performance
measures; relatively speaking, the stenosis level dominated the model predictions,
controlling the differentiation between the performance of the two stents (with the
open-cell design performing better for larger stenosis levels, and also for greater
arterial tortuosity), leading to the suggestion that stenosis level could be critically
important parameter in stent selection for the clinician.

Leading on from this, in addition to stenosis level (plaque size), the constitu-
tive description of the plaque tissue, and its sub-structure details, were seen to be
extremely influential in determining stent performance, and it was possible to infer
relative importance across the range of plaque tissue modeling features considered.
In this context, the choice of plaque tissue matrix properties was seen to dominate the
results, indicating the importance of establishing clearly defined plaque tissue types,
and achieving accurate experimental mechanical characterization that is tissue-type
dependent. In relation to damagemodeling, the elasto-plasticity approachwas signif-
icantly more influential than the pseudo-elasticity approach, and this could be related
to the significant peak stress limiting effect of the plasticity model on the loading
and reloading path, relative to the pseudo-elastic model. This clearly indicates the
need to accurately capture the stress softening effects of tissue damage in constitu-
tive models. In relation to plaque tissue sub-structure representation, the presence
of calcifications dominated over the presence of the lipid pool in determining stent
performance, through increasing vessel recoil (reducing lumen gain) and increasing
local tissue stresses (Fig. 19, and in particular Fig. 19f), with the lipid pool only being
influential in very soft matrix tissue cases; this emphasizes the importance of having
an accurate representation of calcified particles in the plaque tissue model, which is
consistent with the recent enhanced focus on characterizing the mechanical effects
of plaque tissue calcification, as noted above in Sect. 4.4 (Maldonado et al. 2012;
Kelly-Arnold et al. 2013; Cardoso and Weinbaum 2014; Barrett et al. 2016).

One interesting observation was the degree to which plaque tissue is subjected to
multi-axial stresses, including both tension and compression, indicating the need for
experimental characterization of plaque tissue undermulti-axial loading conditions to
drive the development of sufficiently representative constitutive and damage models.

5.2 Recommendations on Regulatory Body Guidelines

The results of the Conway et al. (2012, 2014) studies are of value from the per-
spective of informing regulatory body guidelines on numerical simulation of stent
performance as part of the medical device regulatory approval process. In the current
FDA guidelines document (US Food and Drug Administration, FDA 2010) there is
no specific requirement to include an atherosclerotic stenosis or to vary its geometry
or constitutive representation in such numerical simulations. However, based on the
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Fig. 19 Principal stress contour plots (MPa) in the plaque tissue at maximum balloon inflation,
for the soft Ogden matrix tissue model and the Cypher-like stent (Conway et al. 2014). Minimum
principal stresses (a, c, e); maximum principal stresses (b, d, f); lipid pool (c, d); calcifications
(e, f). Reproduced with permission

present computational test-bed simulation results, it is strongly recommended that
the guidelines on computationalmodeling of stent performance should be updated to:

• Require the inclusion of plaque tissue in such models and the assessment of stent
performance over a range of plaque tissue volumes, consistent with the target
diseased artery state.

• Require plaque tissue matrix elasticity to be varied over a range (stiff to compli-
ant) that is consistent with the target diseased artery state, and that plaque tissue
constituents such as calcifications (in particular) and lipid pools be included.

• Require plaque tissue damage to be represented in such models, perhaps using
a plasticity representation (due in part to ease of implementation), until more
physically representative models become established.

• Retain the representation of vessel curvature, adhering to the current guideline
curvature levels as a minimum. While its influence was seen to be less influential
in the test-bed simulations, its presence is nonetheless important to include when
different stent designs are being compared.
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6 Overall Conclusions

As this chapter has hopefully set out, outstanding progress has been made over
(circa) the last twenty years in the characterization of the biomechanics of healthy
and diseased vascular tissue, and in the use of such knowledge and data to develop
mathematical models (analytical and computational) that can be of significant benefit
in the analysis of vascular intervention procedures and in the analysis and design or
vascular implants and devices. This has undoubtedly been fueled by rapid advances
in imaging and characterization methodologies, and in computational power and
simulation software development.

Nevertheless challenges still exist, in particular in relation to the plaque tissue, to
more accurately characterize tissuemechanical behavior and quantify tissuemechan-
ical properties, and from this to develop enhanced physically based constitutive and
damagemodels. In relation to the latter,multi-scalemodelingmethods showpromise,
given that features and phenomena at different length scales in the material, such as
micro- (and nano-) calcifications, calcified particle-matrix debonding, matrix tissue
anisotropy and tissue inter-layer debonding, etc., can be explicitly represented, and
their effects interrelated, in computational models.

Such developments will continue to enhance the power of computational models
to be of significant importance in the analysis, design, and performance assessment
of next generation vascular implants, such as biodegradable stents (Grogan et al.
2011, 2013; Boland et al. 2015; McHugh et al. 2015) and stents for peripheral and
neural applications.
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Biomechanics of Myocardial Ischemia
and Infarction

Colleen M. Witzenburg and Jeffrey W. Holmes

Abstract Each year, over seven million people suffer a myocardial infarction (heart
attack). For those who survive the initial event, the mechanical properties of the scar
tissue that gradually replaces the damaged muscle are a critical determinant of many
life-threatening sequelae, such as infarct rupture and the development of heart failure.
Thus, understanding the mechanics of healing infarct scar, its interaction with the
rest of the heart, and the resulting changes in heart function are critical to devising
effective therapies. Computational models play an essential role in understanding
these potentially complex interactions. The first section of this chapter reviews the
structure and mechanical properties of the normal heart and the methods used to
study those properties. The second section discusses the structure and mechanical
properties of healing post-infarction scar. The remaining sections review landmark
analytical and computational models that provided insight into the functional conse-
quences of myocardial infarction and potential therapies. Finally, we briefly consider
emerging models of wound healing in the infarct region and growth and remodeling
in the surviving myocardium that are beginning to predict the long-term effects of
infarction and post-infarction therapies. In the future, multi-scale models that cap-
ture such remodeling in addition to the beat-to-beat mechanics of the heart hold great
promise for designing novel therapies, not only for myocardial infarction but also
for a wide range of cardiac pathologies.

1 Structure and Mechanical Properties of Myocardium

In order to assess changes inmyocardial structure,mechanics, and function that result
from ischemia and infarction, it is important to first understand the mechanics of the
normal heart. Thus, this section reviews the basic anatomy andmechanical properties
of heart tissue (myocardium), with an emphasis on the experimental testing methods
used to determine myocardial mechanical properties.
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1.1 Anatomy and Structure of the Heart

The heart is a muscular pump that circulates blood throughout the body. It is com-
prised of four chambers and four valves. Deoxygenated blood returning from the
body through the veins first reaches the right atrium; it then flows through the tricus-
pid valve into the right ventricle, and is pumped through the pulmonary valve to the
lungs. Oxygenated blood leaving the lungs enters the left atrium, flows across the
mitral valve into the left ventricle (LV), and is pumped through the aortic valve into
the network of arteries that carry blood throughout the body (West 1985).

The size and shape of the four heart chambers vary considerably, as does the
pressure they typically generate during contraction. The atria are irregularly shaped
with walls that are just 1–2mm thick; normal atria experience peak pressures of
roughly 10mmHg (a little more than 1kPa). By contrast, in adult humans the LV
is shaped like a truncated ellipsoid with 10mm thick walls and generates pressures
exceeding 100mmHg during contraction. The right ventricle is crescent-shaped in
cross section, wrapping partially around the LV, with which it shares a common wall
called the interventricular septum. The normal human right ventricular (RV) free
wall is 3–4mm thick. Pressures in the RV are roughly 1/5 those of the LV (West
1985).

The muscle cells (myocytes) in the heart are arranged end-to-end and cou-
pled tightly to one another both electrically and mechanically. Although individual
myocytes frequently branch and connect to two other myocytes rather than one, on
gross inspection or in low-magnification micrographs of any small region of the left
and right ventricles there is a clear preferred fiber orientation. Over the years, many
anatomists and physiologists have studied the muscle fiber structure of the LV and
sought to understand how this structure relates to heart mechanics and function; a
compilation of drawings from several influential studies is reproduced in Fig. 1 from
a review by Buckberg et al. (2008).

One central feature of the left ventricular muscle fiber structure is that the fiber
orientation changes through the depth of the wall. Near the outer surface of the heart
(epicardium), muscle fibers are oriented approximately 60◦ clockwise from the cir-
cumferential direction, while near the inner surface (endocardium), they are oriented
approximately 60◦ counterclockwise from the circumferential direction (Fig. 1). One
functional consequence of this arrangement is that as the heart contracts and relaxes,
it also twists. Among early studies of heart structure, the work of Streeter and col-
leagues exerted a particularly strong influence on subsequent computational models,
because these investigators carefully quantified both left ventricular shape and fiber
orientation, and fitted these data with continuous functions that are straightforward
to incorporate into analytical and finite element models of the heart (Streeter and
Hanna 1973a, b).

In addition to the muscle fibers, connective tissue surrounding and linking the
myocytes makes an important contribution to the mechanical properties of the heart
(Fomovsky et al. 2010). Histologic sections taken parallel to the muscle fibers show
large collagen fibers running parallel to themyocytes. These collagen fibers comprise
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Fig. 1 Drawings from several classic studies of left ventricular fiber structure, reproduced from
Buckberg et al. (2008): a McCallum (1900); b Rushmer et al. (1953); c Streeter (1979); d Torrent-
Guasp (1967). These drawings illustrate the oblique angles of muscle fibers in the inner and outer
layers of the heart wall, and the difference in fiber orientations between these layers

2–3%of the tissue volume in normal hearts, and at low pressures they appear wavy or
coiled whereas at high pressures they appear flat and unfolded. Therefore, at very low
pressures or stresses these fibers likely contribute little to the mechanical properties
of the heart, but as the heart is inflated to higher pressures and the collagen fibers
straighten, they gradually bear more of the load (Fomovsky et al. 2010). For the
passively inflated LV, this arrangement results in an exponential pressure-volume
curve that becomes quite steep at high pressures. In addition to these large collagen
fibers, histologic studies show layers of connective tissue that separate muscle fibers
into parallel sheets approximately 4–5 myocytes thick (LeGrice et al. 2001), as
well as small collagen struts that connect the myocytes and sheets to one another
(Caulfield and Borg 1979). Recent experimental and modeling studies suggest that
this laminar organization is an important determinant of left ventricular mechanics
(Costa et al. 1999;Usyk et al. 2000).However, the overall contributionof extracellular
matrix to heart mechanics remains an active and important area of investigation.
Furthermore, while it is generally recognized that collagen and myocyte structure in
other chambers—particularly the atria—differ from those in the LV (Ho et al. 2002;
Zhao et al. 2012), much work remains to define these structures and incorporate them
into models.

Muscle fibers and the surrounding extracellular matrix are arguably the most
important determinants of the mechanical properties of myocardium, but there are
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other important contributors that are not discussed in detail here. For example, a
network of coronary blood vessels supplies blood to the heart and interacts dynam-
ically with the surrounding myocardium. Compression of coronary vessels by the
myocardium limits blood flow during systole (Lee and Smith 2012), while pressur-
ization of the coronary tree alters the compliance of the heart (May-Newman et al.
1994). Many of the mechanical testing methods described below start by excising
tissue, disconnecting it from its blood supply; obviously, such tests cannot capture
the contributions of coronary blood flow to heart mechanics.

1.2 Mechanical Testing of Myocardium

The material properties that govern the response of normal and diseased tissues to
mechanical loading are centrally important in the field of biomechanics. However,
in the case of the heart, determining those material properties by appropriate testing
is complicated by the geometry and architecture outlined above. Pressures in the
individual chambers of the heart and deformation within its walls can be measured
directly in an intact heart, but the corresponding stresses must be estimated using
analytical or computational models and cannot be directly verified. Alternatively,
pieces of myocardium can be excised and tested ex vivo; however, in practice cut-
ting injury and contracture of the myocytes typically complicate such experiments.
Consequently, experimentally determining the properties of fully relaxed, passive
myocardium using the methods reviewed below has proven quite challenging. Yet
understanding the passive response is only a beginning, as myocardial material prop-
erties vary throughout the cardiac cycle due to the cyclic contraction and relaxation
of the individual myocytes.

1.2.1 Passive Inflation of Arrested Hearts

One of the most straightforward preparations for assessing heart mechanics is the
isolated heart. Typically, the heart is perfused with a cold, oxygenated cardioplegia
solution to block contraction while preserving cell viability. The heart is then excised
along with a portion of the aorta, which is mounted onto a cannula. Fluid flowing
into this cannula from the aorta toward the heart (retrograde perfusion) forces the
leaflets of the aortic valve closed and flows into the coronary arteries through their
ostia in the aortic root, providing control over myocardial temperature, oxygenation,
and chemical environment. Often, a balloon is introduced into the left ventricular
cavity to provide control over left ventricular volume, while a pressure transducer
integrated in the balloon provides real-time pressure data.

Suga andSagawa (1974) used a version of this isolated heart preparation to explore
the pressure-volume behavior of the actively contracting heart. They perfused the
coronary arteries of isolated hearts with warm, oxygenated blood and stimulated
the hearts electrically to induce contraction at a regular rate. One of their simplest
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experiments was to hold volume in the balloon constant during an entire contraction
and measure the maximum pressure the heart could generate under specified condi-
tions. Other studies included using a computer-controlled servopump to vary balloon
volume over time in order to simulate the filling, emptying, and isovolumetric phases
of a normal cardiac cycle. Many other physiologists have used similar approaches—
particularly a version called the Langendorff preparation—to study aspects of heart
physiology ranging from electrical activation to contraction tometabolism (Bell et al.
2011).

McCulloch et al. (1987) employed isolated, arrested canine hearts to study the
passive material properties of myocardium. In addition to inserting a balloon into
the left ventricular cavity, they placed a triangle of sutures on the epicardial surface
and tracked the motion of these markers using video during inflation of the intra-
cavitary balloon to simulate diastolic filling. Using the images of the markers, they
computed regional strains on the epicardial surface during inflation. They found that
principal strains during inflation differed substantially in magnitude, that the direc-
tion of principal epicardial stretch was close to the fiber direction, and that the LV
twists as it inflates. These data suggested that passive myocardium was mechani-
cally anisotropic and provided important validation data for emerging models of LV
mechanics.

The major advantages of the isolated heart preparation for characterizing left ven-
tricular mechanics are that: (i) the heart remains intact with its coronaries perfused;
(ii) the boundary conditions—pressure applied to the inner wall of the LV and defor-
mation constrained only at the mitral valve ring—are reasonably physiologic; (iii)
the myocardium can be activated for study of time-varying material properties. The
major disadvantages are that: (i) stresses in the LV wall cannot be measured directly;
(ii) the range of stresses that can be applied along the different material axes (e.g.,
parallel vs. transverse to the fibers) is limited by the geometry of the heart.

1.2.2 Planar Biaxial Testing

Circumferential and longitudinal stresses in the wall of the inflated LV are tensile,
while radial stresses are compressive on the endocardiumand zero (or very small if the
pericardium is intact) at the epicardial surface. Therefore, another common approach
to determine the passive material properties of myocardium is biaxial testing in the
circumferential-longitudinal plane (Fig. 2). Much of the early work in this area was
done by Yin and colleagues (Demer and Yin 1983; Yin et al. 1987). They prepared
samples for testing by slicing the LV wall into sheets 1–2mm thick, and mounted
them so that the test axes were aligned with the predominant fiber and crossfiber
directions. Then, they subjected the myocardial samples to many combinations of
stretch in the fiber and crossfiber directions while measuring the net forces imposed
along each test axis. They found that passivemyocardiumwas nonlinear, viscoelastic,
and anisotropic, having greater stiffness along the fiber direction (Demer and Yin
1983). Furthermore, the two directions were mechanically coupled: stress in each
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Fig. 2 Kinematics of planar biaxial testing of myocardium: a Schematic of typical test setup,
showing force transducers that measure a single force in each test direction, reproduced by per-
mission from Sommer et al. (2015). b Assuming a state of plane stress, in general there are five
nonzero components of the deformation gradient F and three independent, nonzero components of
the Cauchy stress matrix (t12 = t21, see text) related to the four force components fi j applied to the
sample edges. Computing three nonzero stresses from two net forces requires making additional
assumptions (Fomovsky and Holmes 2010; Sommer et al. 2015)

test direction depended on stretch in both directions (Demer and Yin 1983; Yin et al.
1987).

One of the best biaxial testing studies onmyocardiumwas published byHumphrey
et al. (1990a, b). Following an approach suggested by Rivlin and Saunders (1951)
for isotropic materials, Humphrey et al. (1990a, b) postulated a transversely isotropic
strain-energy function for myocardium that depended on two invariants of the right
Cauchy–Green tensor. They imposed combinations of stretches that held one invari-
ant constant while changing the other. Then, they used the measured stresses and
stretches to estimate the derivatives of the strain-energy function with respect to
those invariants. Plotting the derivatives against the invariants allowed them to deter-
mine the formof the polynomial strain-energy function that best fit their experimental
data. This elegant approach takes advantage of a major advantage of biaxial testing:
it provides excellent control over the loading protocol, allowing application of any
desired combination of fiber/crossfiber stretch or load. Other important advantages
include the ability to align the test axes with the anatomic fiber and crossfiber direc-
tions, and the ability to directly compute stresses from experimentally measured
forces. The major disadvantages of planar biaxial testing for characterizing the pas-
sive material properties of myocardium are the need for extensive dissection and the
related difficulty of preventing contracture of the sample.

One important warning regarding biaxial testing is that in practice, the computa-
tion of stresses is not always straightforward. As shown in Fig. 2, if samples are thin
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enough relative to their other dimensions so that plane stress is a reasonable assump-
tion, only three independent components of the Cauchy stressmatrix are nonzero (the
Cauchy stress matrix is symmetric, t12 = t21, per conservation of angular momen-
tum). When the fiber axis is aligned with one of the test axes, there is little or no
shear deformation, and the force components f12 and f21 and shear stresses t12 = t21
vanish. Such biaxial tests are useful in identifying material parameters that affect
resistance to stretch in the fiber or crossfiber direction, but do not provide informa-
tion on the shear behavior of the myocardium. In theory, it should be possible to
obtain additional information on shear behavior by intentionally orienting the fiber
direction oblique to the test axes, but in practice most testing devices are not designed
to separately measure the normal ( f11 and f22) and lateral ( f12 and f21) force com-
ponents applied to the sample edges. Rather, most investigators introduce additional
assumptions that may affect the accuracy of the computed stresses (Fomovsky and
Holmes 2010; Sommer et al. 2015).

An increasingly popular approach is to map deformation across biaxial samples
using large numbers of markers, and combine test data with sample-specific finite
element models to extract material parameters. A major advantage of this approach
is that it allows for more realistic variations in material properties across a sample.
However, conceptually such approaches are more like model-based extraction of
properties from isolated heart experiments—the results depend on the choice of the
underlying constitutivemodel, and predict spatial variations in stress that are difficult
to verify.

1.2.3 Extension and Torsion of Papillary Muscles

Humphrey et al. (1992) proposed an alternate approach to biaxial mechanical testing
of myocardium that requires less dissection and is therefore less influenced by cut-
ting injury. Taking advantage of prior theoretical work on torsion and extension of
cylinders, they developed an analytical solution for the stresses in the central region
of a papillary muscle induced by first stretching, then twisting the muscle. Papillary
muscles connect the left (or right) ventricular walls to the mitral (or tricuspid) valves
and surrounding valve rings. Dissecting them free requires cutting into myocardium
at one end (where they connect to the wall) and severing the chordae tendinae at the
other end (where they connect to the valve and surrounding valve ring). The resulting
sample is relatively long and thin, with muscle fibers aligned parallel to its long axis.
Although this process does induce some damage at one end, the damage appears
to have little effect on behavior in the central region of the muscle. Accordingly,
early cardiac physiologists often used papillary muscles for studies of basic cardiac
muscle physiology.

During uniaxial extension of a papillary muscle, relating the applied axial load
to measured axial stretch is straightforward and provides information about material
properties along the muscle fiber axis. Humphrey et al. (1992) realized that by twist-
ing the papillary muscle at different axial extensions and relating the appliedmoment
to measured shear strains, they could also obtain information on shear properties.
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Thus, they could experimentally determine coefficients for a transversely isotropic
constitutive law that depended only on the first invariant of the right Cauchy–Green
tensor and on the stretch in the fiber (axial) direction. Advantages of this approach
include: (i) ease of dissection; (ii) excellent control over the loading protocol; (iii)
known orientation of the test axes relative to the anatomic fiber and crossfiber direc-
tions; (iv) the ability to directly compute stresses from the measured axial force and
moment. The primary disadvantages of this approach relate to the anatomic differ-
ences between papillary muscles and the myocardium within the ventricular walls
that may limit use of information obtained from papillary muscles: (i) papillary mus-
cles are enclosed in a fibrous sheath that may contribute significantly to the measured
mechanics (Criscione et al. 1999); (ii) papillary muscles do not contain the laminar
sheet structure identified elsewhere in the heart wall. Thus, although a transversely
isotropic constitutive model may be appropriate for papillary muscles, the resulting
parameters do not capture the orthotropic nature of themyocardium in the heartwalls.
One other potential benefit of papillary muscle testing is the ability to study active in
addition to passive properties. Themost important caveat with such studies is that the
metabolic demands of cardiac muscle are quite high, even at rest; therefore, diffusion
from a surrounding fluid bath is often insufficient to supply papillary muscles with
adequate oxygen (Holmes et al. 2002). Testing the thinner right ventricular papillary
muscles or even very small trabeculae dissected from the inner surface of the heart
wall can help avoid confounding effects from hypoxia at the center of the muscles.

1.2.4 Shear Testing

Dokos et al. (2002) developed one final approach to material testing of passive
myocardiumdesigned tomore fully characterize properties of themyocardiumwithin
and across the laminar sheets (LeGrice et al. 1995, 2001). They cut myocardium into
cubes with the edges aligned with the local fiber, sheet (perpendicular to the fibers
within the sheets), and sheet-normal (perpendicular to the sheet surfaces) directions.
They then glued the top and bottom of each cube to parallel metal plates and sheared
them while measuring both the shear and axial forces applied by their device. By
applying shear in different directions to different faces of the cubes, these investi-
gators were able to quantify the response to a much wider range of deformations
than would be possible with any of the other tests discussed above, and clearly relate
those tests to the anatomic structure of the tissue. Relative to the other methods dis-
cussed here, the obvious disadvantage of testing small cubes of myocardium is that
it requires much more dissection.

1.3 Mathematical Descriptions of Myocardial Properties

Any mathematical description of passive myocardium must account for both its
anisotropic nature and its nonlinear behavior. The most common approach is to
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formulate a strain-energy function, a potential function with the property that its
derivatives with respect to strains or stretches yield expressions for the components
of the stress tensor. Polynomial, exponential, or pole-zero formulations for the strain-
energy function are the most frequently used in cardiac mechanics. Some of these
equations contain a large number of material coefficients; however, the testing meth-
ods described above allow the unique identification of only a handful of coefficients.

As described above, Humphrey et al. (1990a, b) used biaxial test data both to
determine the functional form of a polynomial strain-energy function and to identify
the material parameters in that formulation. They assumed myocardium was pseu-
doelastic, incompressible, transversely isotropic, and locally homogenous, and that
the stress was a function of only the first, I1, and the fourth, I4, invariants of the
right Cauchy–Green tensor C. Their strain-energy function contained five material
constants:

W = c1(
√
I4 − 1)2 + c2(

√
I4 − 1)3 + c3(I1 − 3)

+c4(I1 − 3)(
√
I4 − 1) + c5(I1 − 3)2. (1)

In a subsequent study, Novak et al. (1994) used the same strain-energy function to
quantify transmural mechanical differences across the heart wall and found that the
orientation of the preferred direction changes through the wall, and that myocardium
is stiffer near the endocardium and epicardium than at the midwall.

Guccione et al. (1991) employed a Fung-type exponential form in their finite
element simulations of inflation, extension, and torsion of a thick-walled cylinder
representing the passive canine LV:
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where C , b1, b2, b3, and b4 are material constants, E is the Green–Lagrange strain
tensor, and the subscripts R, F, C refer to the radial, fiber, and crossfiber direc-
tions, respectively. They also treated the myocardium as pseudoelastic, transversely
isotropic, and incompressible, and obtained best-fit values for the coefficients bymin-
imizing the error between model-predicted epicardial strains and those reported by
McCulloch et al. (1989) during passive inflation of isolated, arrested hearts. Based on
thework of LeGrice et al. (1995, 2001) andDokos et al. (2002) discussed in Sect. 1.2,
Costa et al. (2001) extended the strain-energy function employed by Guccione et al.
(1991) to model the myocardium as orthotropic rather than transversely isotropic.

Holzapfel andOgden (2009) proposed an alternate exponential strain-energy func-
tion that accounts for the orthotropy of myocardium, and fitted their function to both
the biaxial testing data of Yin et al. (1987) and the shear data of Dokos et al. (2002):
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W = a

2b
{exp[b(I1 − 3)] − 1} + aF

2bF
{exp[bF(I4F − 1)2] − 1}

+ aS
2bS

{exp[bS(I4S − 1)2] − 1} + aFS
2bFS

{exp[bFS I8FS2] − 1}, (3)

where I1 is the first invariant, I4F is the fourth invariant associated with the fiber
direction, I4S is the fourth invariant associated with the sheet direction, and I8FS is a
coupling invariant involving both the sheet and fiber directions.

One other approach in the literature is the pole-zero formulation. Again treating
myocardium as orthotropic and incompressible and guided by experimental results
showing an extremely steep rise in stress approaching a limiting strain in each direc-
tion, the group at the University of Auckland developed a strain-energy function of
the form

W = kFFEFF
2

|aFF − EFF|bFF + kNNENN
2

|aNN − ENN|bNN + kSSESS
2

|aSS − ESS|bSS

+ kFNEFN
2

|aFN − EFN|bFN + kFSEFS
2

|aFS − EFS|bFS + kNSENS
2

|aNS − ENS|bNS , (4)

where the subscripts N, F, S refer to the normal, fiber and sheet directions (Nash and
Hunter 2001). This function contains 18 material constants, making it impractical
to identify all the coefficients through direct mechanical testing. Accordingly, Nash
and Hunter (2001) suggested that some of the parameters might be estimated from
histological data.

Most studies simply select one of these formulations based on convenience, famil-
iarity, or ease of numerical implementation. However, a few studies have compared
various features of these strain-energy functions. Holzapfel and Ogden (2009) dis-
cussed the stability of these strain-energy functions and identified all of those listed
here as convex and strongly elliptic except for the polynomial form of Humphrey
et al. (1990a). Schmid et al. (2006, 2008) fitted the data of Dokos et al. (2002) both
directly and using a finite elementmodel. They compared several strain-energy func-
tions including the pole-zero formulation and the orthotropic exponential formulation
of Costa et al. (2001). They fitted each function to the test data and compared good-
ness of fit, between-specimen variability of the fitted parameters, and the numerical
stability of the optimization process. Overall, Schmid et al. (2006, 2008) concluded
that the exponential function of Costa et al. (2001) provided the best balance between
fitting the data well with fewer parameters and limiting between-specimen variability
in parameter values.
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2 Structure and Mechanical Properties
of Myocardial Scar Tissue

Following interruption of the normal blood supply to a region of the heart, the affected
myocytes stop contracting within the first minute (Tennant and Wiggers 1935) and
begin to die within the first hour (Connelly et al. 1982). Due to the prevalence of
coronary artery disease in Western societies, occlusion of coronary arteries long
enough to induce myocyte death—termed myocardial infarction (MI)—is common,
with over 7 million new infarctions per year worldwide (White and Chew 2008).
Most patients now survive the initial infarction, and many reach the hospital quickly
enough to undergo procedures such as thrombolysis or balloon angioplasty to reopen
the occluded arteries, limiting the total amount of damage. However, the myocytes
that die during the infarction cannot regenerate; instead, deadmyocytes are gradually
resorbed and replaced by a collagenous scar. Over the weeks and months following
MI, the evolving structure and mechanical properties of the healing infarct scar are
an important determinant of heart function as well as of the likelihood of a range
of serious post-infarction complications such as infarct rupture, infarct expansion,
and heart failure (Holmes et al. 2005). Accordingly, understanding the mechanical
properties of the evolving scar—and how those properties affect growth, remodel-
ing, and function of the heart—is an important and active area of cardiovascular
biomechanics research.

2.1 Myocardial Scar Structure

The cellular and extracellular composition of a healing myocardial infarct evolves
rapidly over the first days and weeks following the initial injury. Initially, white
blood cells invade the damaged region, secreting proteolytic enzymes and removing
debris through phagocytosis. These inflammatory cells also secrete growth factors
that encourage invasion and proliferation of fibroblasts, the cells that deposit the
extracellularmatrix proteins thatmake up the scar tissue. Extracellularmatrix (ECM)
deposition by fibroblasts increases rapidly after the first few days, and ECM protein
content continues to increase for the next several weeks. Although the maturing scar
contains many different collagens, proteoglycans, and other ECM proteins, collagen
is thought to account for most of the mechanical properties of post-infarction scar tis-
sue; accordingly, this section will focus on changes in collagen content and structure.
Several recent review articles provide more detail on the pathology of infarct healing
and changes in other ECM components (Lindsey and Zamilpa 2012; Frangogiannis
2014; Richardson et al. 2015).



244 C.M. Witzenburg and J.W. Holmes

2.1.1 Collagen Content and Crosslinking

Collagen content begins to rise 4–7 days after infarction and typically reaches a
plateau by 3–6 weeks, depending on the animal model. Whereas collagen occupies
about 3%of the area of a histologic section of normalmyocardium, reported collagen
area fractions range from roughly 30% in the rat (McCormick et al. 1994; Fomovsky
andHolmes 2010) to 60% in the pig (Holmes et al. 1997) and dog (Clarke et al. 2015)
following permanent coronary ligation. An alternate approach to measuring collagen
content is to measure the concentration of the modified amino acid hydroxyproline
and then estimate the percentage of collagen by weight assuming that the weight of
collagen is 7.42 the times the weight of hydroxyproline; this method gives slightly
lower estimates of about 25% collagen by weight in mature rat infarcts (McCormick
et al. 1994; Fomovsky and Holmes 2010) and 45% in dogs (Jugdutt and Amy 1986).
In addition to collagen content, the degree of crosslinking of the collagen molecules
can affect tissuemechanical properties. Studies of crosslinking during infarct healing
suggest that crosslink density initially rises with a similar time course to collagen,
but may continue to rise even after collagen content plateaus (Vivaldi et al. 1987;
Zimmerman et al. 2001; Fomovsky and Holmes 2010).

2.1.2 Collagen Alignment

Another potentially important determinant of scar mechanics is collagen fiber align-
ment. In some tissues such as tendon and ligament, highly aligned collagen results
in a mechanically anisotropic tissue that resists tension much more effectively along
the fiber axis than transverse to it. Early studies of infarct healing focused on col-
lagen content rather than alignment, but more recent studies have revealed that the
collagen fiber structure of healing infarct scars varies dramatically across different
animal models. One reason that many early studies missed this variation is that the
collagen fibers in healing infarcts lie in planes parallel to the epicardial surface, but
histologic sections are typically cut perpendicular to the epicardial surface, making
collagen fiber orientation difficult to visualize. Histologic sections cut parallel to the
epicardial surface reveal highly aligned fibers following permanent coronary liga-
tion in dogs (Whittaker et al. 1989; Clarke et al. 2015) and pigs (Holmes and Covell
1996); in these infarcts, the collagen fibers in the midwall are strongly aligned in
the circumferential direction, while at the epicardium and endocardium fibers are
oriented obliquely and are less strongly aligned (Holmes et al. 1997; Clarke et al.
2015). By contrast, Fomovsky and Holmes (2010) showed that following coronary
ligation in rats, collagen fibers are randomly oriented (Fig. 3), resulting in scars that
are not only structurally but also mechanically isotropic.

In a subsequent study, Fomovsky et al. (2012b) used liquid-nitrogen-cooled
probes to create cryoinfarcts (well-defined regions of cell death) with controlled
sizes, shapes, and locations on the rat LV. They found that infarcts in different loca-
tions on the LV experienced different patterns of stretch, which correlated with the
collagen fiber structure observed three weeks later: infarcts that stretched similarly in
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Fig. 3 Illustration of differences in collagen fiber alignment in histologic sections taken from the
center of the infarct scar in different experimental models and imaged under polarized light: a pig,
three weeks after ligation of a branch of the left circumflex (LCx) coronary artery (Holmes and
Covell 1996); b dog, eight weeks after ligation of the left anterior descending (LAD) coronary artery
(unpublished data fromClarke et al. 2015); c rat, three weeks after ligation of the LAD (unpublished
data from Fomovsky and Holmes 2010); d rat, three weeks after cryoinfarction of the anterior wall
at the mid-ventricle (unpublished data from Fomovsky et al. 2012b)

both the circumferential and longitudinal directions during healing formed scars with
randomly oriented collagen fibers (similar to rat ligation infarcts), while those that
stretched in only the circumferential direction contained circumferentially aligned
collagen fibers (similar to pig ligation infarcts). Therefore, differences in mechanics
during healingmay explain the different collagen fiber structures reported in different
animal models.

2.2 Myocardial Scar Mechanics

Withinminutes after a region of the heart is deprived of bloodflow, it stops contracting
actively and begins to stretch and recoil passively as the stress in the heart wall rises
and falls with each heartbeat. In some respects, the fact that the material properties
of the healing scar vary little over the cardiac cycle makes studying infarct mechan-
ics simpler than studying the mechanics of normal myocardium. However, because
infarct composition, material properties, and volume all change as the scar forms and
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remodels, comprehensive studies that measure infarct mechanics and composition
at multiple time points are needed to understand not only the natural time course of
healing but also the response of the heart to clinical post-infarction therapies. Given
the clinical importance of myocardial infarction, surprisingly few such studies have
been performed.

2.2.1 In Vivo Deformation

Some of the best early studies of infarct and scar mechanics used implantedmeasure-
ment devices to track changes in local deformation over time. Tyberg et al. (1974)
sutured strain gauges to the surface of the LV of dog hearts and plotted gauge length
in the fiber direction against the pressure in the LV cavity. During normal contraction,
these plots traced out counterclockwise loops very similar to the pressure-volume
loops often employed to study cardiac physiology: segment length increased as the
heart filled during diastole, remained nearly constant during isovolumetric contrac-
tion, decreased as the LV ejected blood into the aorta, and then remained nearly
constant during isovolumetric relaxation (Fig. 4a). Following occlusion of the coro-
nary artery supplying blood to the study region, the area inside the pressure-length
loops rapidly decreased, reflecting the loss of active mechanical work by the muscle
fibers; in some cases, the plots again traced out loops but in the opposite (clockwise)
direction, suggesting that the ischemic segments were dissipating work done by the
rest of the heart.

Tyberg et al. (1974) also reported an interesting shift in the end-diastolic dimen-
sions of the regions they studied. They found that even whenmeasured at an identical
pressure at end diastole, segment lengths were significantly longer after 30min of
coronary occlusion. This finding was surprising, because it seems unlikely that the

Fig. 4 a Pressure-circumferential segment length loops in an anesthetized dog at control (black)
and 15min after coronary ligation (red) showconversion fromactive shortening to passive stretching
and recoil (data from the study of Fomovsky et al. 2012a). bEvolution of diastolic pressure-segment
length curves in a healing canine infarct indicating substantial geometric remodeling of the healing
scar (Theroux et al. 1977)
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structure or composition of the ischemic region could change significantly in just
30min. Some have postulated that a phenomenon called strain softening, observed
in soft materials such as rubber, could play a role. However, Holmes et al. (2005)
proposed a simpler alternative explanation that highlights the potential limitations
of using in situ measurements to deduce information about material properties in
the heart: occluding a coronary artery decreases blood flow, tissue volume, and wall
thickness in the affected region of the heart. Holmes et al. (2005) estimated that this
decrease in wall thickness due to loss of perfusion could increase stresses enough
to explain the observation of Tyberg et al. (1974) of increased diastolic stretch at
matched pressure.

Around the same time that Tyberg et al. (1974) performed their study of acute
ischemia, Theroux et al. (1977) published a series of studies on longer term changes
in regional segment lengths during healing of myocardial infarcts in dogs. This
group used implanted sonomicrometers to measure segment lengths at multiple time
points in the same animals. They reported that end-diastolic lengths increased slightly
(3 ± 2%) immediately after injury (consistent with the study of Tyberg et al. 1974),
remained elevated for about a week, but then decreased as much as 30% by week 4
(Fig. 4b). A number of subsequent studies confirmed that infarcts can shrink in vol-
ume significantly as scar forms (Richardson et al. 2015), an important consideration
when predicting the long-term effects of post-infarction therapies (Clarke et al. 2015).

Because the diastolic portion of their pressure-length curves had an exponential
shape, Theroux et al. (1977) plotted lengths measured during filling (x-axis) against
the natural log of the corresponding pressures (y-axis) in each dog at each time
point and compared the slope of those curves as an index of regional stiffness. They
found that the slope increased nearly 10 fold in the first day, then remained nearly
constant over the next four weeks. However, as discussed in Sect. 1.2.1, the slopes
of such curves depend not only on the changing passive material properties of the
study region but also on the pressure and the geometry of the LV, which determine
where the material is operating along its nonlinear stress–strain curve. Accordingly,
ex vivo mechanical testing has provided the best information to date on changes in
infarct material properties during healing, as reviewed in the next section.

Since these early studies, many groups have used implanted markers, sonomi-
crometers, ultrasound, and MRI to examine patterns of deformation in healing
infarcts. Three broad themes emerge from these studies. First, in most animal models
of permanent ligation of a coronary, strains drop to near zero in the infarct region and
remain small throughout healing (Theroux et al. 1977; Holmes et al. 1994; Fomovsky
andHolmes 2010). In studieswith the resolution to distinguish these small strains sta-
tistically from zero, the circumferential and longitudinal strains are typically positive
(indicating stretching of the scar during systole) and the radial strain is negative (indi-
cating wall thinning in the infarct region). Unlike in the myocardium, where there
are large variations in strain magnitude across the heart wall, in transmural infarcts
the strains change little with depth (Villareal et al. 1991). The second broad trend
is that when the occluded coronary artery is reopened before all of the downstream
myocardium dies (‘reperfused’ infarcts), circumferential and longitudinal shortening
often recover partially (Theroux et al. 1977; Kramer et al. 1997; Bogaert et al. 1999;
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Kidambi et al. 2013). Finally, the third trend is that coupling to adjacent surviv-
ing myocardium can induce unexpected shears or other deformations in the infarct
region that are tricky to interpret. For example, Holmes et al. (1994) measured large
radial thickening strains in dense collagenous scars 3 weeks after infarction in pigs;
although such strains normally indicate wall thickening due to active contraction, no
surviving myocytes were apparent on histology in these scars.

One final point deserves mention regarding the interpretation of in vivo strains
in healing infarcts. The convention in most cardiac mechanics studies is to compute
deformation between end diastole, when muscle fibers in the heart wall are usually
at their maximum length, and end systole, when they are at their minimum length.
However, circumferential and longitudinal segment lengths in a passively deforming
infarct typically reach their minimum length at the end of isovolumetric relaxation,
when LV pressure is minimum, and their maximum at the end of isovolumetric
contraction, when wall stress is greatest (Richardson et al. 2015). Therefore, infarct
mechanics studies that compute strains frommeasurements taken only at end diastole
and end systole likely neglect a substantial portion of the deformation.

2.2.2 Ex Vivo Mechanical Testing

Two of the approaches reviewed in Sect. 1.2 have also been employed for ex vivo test-
ing of myocardial scar tissue: passive inflation of isolated arrested hearts and planar
biaxial testing. Holmes et al. (1997) inflated isolated, arrested pig hearts three weeks
following coronary ligation while tracking three-dimensional deformation in both
the infarct scar and the remote myocardium. Consistent with the highly anisotropic
collagen fiber structure shown in Fig. 3a, these scars stretched by as much as 40%
in the longitudinal direction but less than 15% in the circumferential direction at a
cavity pressure of 25mmHg; by comparison, peak strains in the remote myocardium
were approximately 30% (longitudinal) and 35% (circumferential) at the same cav-
ity pressure. By contrast, Omens et al. (1997) measured epicardial strains during
passive inflation of isolated arrested rat hearts 2 weeks after coronary ligation and
reported greater infarct stretch in the circumferential direction than in the longitu-
dinal direction. However, Fujimoto et al. (2007) reported equal circumferential and
longitudinal infarct strains in passively inflated rat hearts 8 weeks after MI. Unfortu-
nately, as discussed in Sect. 1.2.1, comparing infarct material properties across these
studies would require constructing computational models to estimate circumferential
and longitudinal wall stresses at each pressure.

To date, only two comprehensive biaxial testing studies have quantified the
mechanics of healing myocardial scar tissue over time, and these studies reached
very different conclusions. Gupta et al. (1994) studied anteroapical infarcts induced
by coronary ligation in sheep. They reported average circumferential and longitudinal
stresses at 15% equibiaxial extension at 4h, 1w, 2w, and 6w, and found that infarct
anisotropy variedwith time: longitudinal stresseswere significantly higher at 1week,
while circumferential stresses were higher at six weeks. They also found that stresses
in both directions peaked at 1–2 weeks and then decreased by six weeks, which was
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unexpected given that they also reported a progressive increase in collagen content
with time. By contrast,Morita et al. (2011) observed isotropic stretch under equibiax-
ial stress 8 weeks after MI in the same animal model. Fomovsky and Holmes (2010)
conducted biaxial testing of rat anteroapical infarcts induced by coronary ligation
and found that scars were mechanically isotropic at 1w, 2w, 3w, and 6w. Further-
more, the fittedmaterial coefficient in their isotropic strain-energy function increased
with time post-infarction, and correlated reasonably well with collagen content on a
sample-by-sample basis. While the fact that different animal models develop post-
infarction scars with different degrees of structural anisotropy (see Sect. 2.1.2) may
explain differences in the levels of mechanical anisotropy reported by Gupta et al.
(1994) and Fomovsky andHolmes (2010), it is more difficult to explain why collagen
content and material properties were correlated in Fomovsky’s study (Fomovsky and
Holmes 2010) but decoupled in Gupta’s (Gupta et al. 1994).

3 Analytical Models of Heart Function During Ischemia
and Infarction

The primary function of the heart is to pump blood through the body. Therefore,
the ultimate goal of studying the biomechanics of the normal and diseased heart is
to understand the underlying basis for the heart’s ability to perform this function,
and how disease impairs pump function. Due to the complex geometry of the heart,
measuring changes in tissue properties is usually necessary but not sufficient to
quantitatively predict changes in overall pump function; researchers also typically
employ a geometric or computational model to relate pressures and volumes inside
the chambers of the heart to the stress and strain experienced by the myocardium
that comprises those chambers. One of the most surprising things about the heart is
that despite the complexity of its anatomy, geometry, and material properties, very
simple analytical models can provide critical insight regarding heart function even
in the setting of a myocardial infarction.

3.1 Normal Pump Function of the Left Ventricle

One of the most useful conceptual frameworks for analyzing pump function of the
heart from an engineering perspective is the pressure-volume loop (Fig. 5). The idea
of plotting volume against pressure to analyze the performance of a pump or engine
is familiar tomost engineers who have taken a course in thermodynamics. Pioneering
physiologists such as Otto Frank applied this same idea to the heart over a century
ago, plotting the internal pressure and volume of the LV against one another; in the
1970s and 1980s, Kiichi Sagawa and his colleagues at Johns Hopkins University
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Fig. 5 a Simulated response of the isolated left ventricle to changes in filling pressure (preload) or,
b, resistance to ejection (afterload). Simulations performed using the Heart Simulator developed by
Kelsey et al. (2002) based on Santamore and Burkhoff (1991). c Connecting points at the same time
in the cardiac cycle illustrates the concept of time-varying elastance in the canine right ventricle
(Maughan et al. 1979, Fig. 4)

popularized this framework and applied it to myocardial infarction (Suga et al. 1973;
Suga and Sagawa 1974; Sunagawa et al. 1983).

When viewing a pressure-volume (PV) loop for the LV (Fig. 5), the events of
the cardiac cycle are as follows: (i) the mitral valve opens at the lower left corner
of the loop and blood flows from the left atrium into the relaxed LV (filling phase),
generating a large increase in volumebut relatively small change in pressure; (ii) at the
lower right corner, contraction begins and pressure rises but volume does not change
because both the mitral valve and aortic valve are closed (isovolumetric contraction);
(iii) at the upper right corner, the LV pressure exceeds aortic pressure, forcing the
aortic valve open and allowing the LV to eject blood into the aorta (ejection); (iv) at
the upper left corner, the aortic valve closes and the LV pressure drops as the muscle
in the wall relaxes (isovolumetric relaxation). The area within the loop represents
the mechanical work performed by the LV in ejecting blood into the circulation.

3.1.1 Diastolic Function

The portion of the cardiac cycle during which the heart is passively filling (bottom
portion of the PV loop) is called diastole. The main factors that control how much
the heart fills during this phase include the material properties of the myocardium,
the geometry of the LV, and the upstream pressure in the pulmonary veins and left
atrium. At high heart rates or when the material properties of the myocardium are
altered, the time available before the next contraction can also become an important
determinant of filling. In theory, the resistance to blood flow through the open mitral
valve could affect the rate of filling, but this is usually significant only in the setting
of pathologic narrowing (stenosis) of the valve.

Suga and Sagawa (1974) and Sunagawa et al. (1983) performed many of their
studies on isolated, blood-perfused canine hearts. This experimental preparation
allowed them to separately vary factors that influence pump function and explore
their impact individually. As one example, when they increased the upstream
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pressure but held heart rate and the resistance to ejection through the aorta con-
stant, the LV not only filled to higher volumes and pressures, but also ejected a larger
volume of blood (stroke volume) with each contraction (Fig. 5a). This fundamental
property of the heart is often called the Frank–Starling mechanism. At the level of
individual myocytes, this property arises because increased diastolic stretch alters
both the overlap between actin and myosin filaments and the binding of calcium
to the myofilaments, increasing the active force generated by each cell during the
subsequent contraction.

Another central experimental finding illustrated in Fig. 5a is that the lower right
corners of PV loops with different filling pressures appear to lie along a single
exponential curve. These points indicate pressures and volumes at the end of diastole
when the heart muscle is fully relaxed, and the curve connecting them is termed the
end-diastolic pressure-volume relationship (EDPVR). It is typically modeled using
a simple equation that includes a volume intercept to account for the fact that even
a completely unloaded, arrested LV has a nonzero cavity volume:

PED = A {exp [B(VED − V0)] − 1} . (5)

In part, the exponential shape of the diastolic pressure-volume relationship reflects
the exponential stress–strain relationshipsmeasured inmechanical tests of the passive
myocardium discussed in Sect. 1.2. However, one key point that may seem obvious
to a mechanics audience has caused considerable confusion over the years among
physicians and physiologists, because of the fact that many diseases alter the size and
shapeof the heart: both changes inmaterial properties of themyocardiumandchanges
in LV geometry will alter the EDPVR. One simple illustration of this concept is to
imagine a pressurized, thin-walled elastic sphere. A force balance on one half of the
sphere reveals that the force arising from the pressure pushing against the hemisphere
must be balanced by the force associated with the stress in its wall; setting these two
forces equal and simplifying yields an equation often termed Laplace’s law. Thus,

Pr2π = σ2rπh → σ = Pr

2h
, (6)

where h = wall thickness and r = radius. This equation shows clearly that at a
given pressure the wall stress increases as radius increases and decreases as the wall
thickens; thus, deformation will depend not only on material properties but also on
geometry. While this simple equation is not appropriate for computing stresses in
the thick-walled, elliptical LV, the same basic concepts apply to the heart: dilation
(increased radius) shifts the EDPVR rightward (lower pressure at any volume), while
wall thickening shifts the EDPVR leftward.
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3.1.2 Systolic Function

When Sagawa and colleagues varied the resistance to ejection through the aorta in
their isolated heart preparation and held heart rate and diastolic pressure constant,
they saw that the LV ejected less blood against high resistance andmore blood against
low resistance, as expected (Fig. 5b). They also found that the upper left corners of the
loops—indicating the pressure and volume at the end of systole for each beat—traced
out a straight line. Although there are a few exceptions, this end-systolic pressure-
volume relationship (ESPVR) is approximately linear in most animal models and
under most loading conditions; e.g., inflating the LV to different diastolic volumes
and then clamping the aorta to measure the maximum pressure generated during
‘isovolumetric’ beats yields basically the same relationship as connecting the upper
left corners of normal, ejecting beats (Suga et al. 1973).

The linearity of the ESPVR is perhaps the single most remarkable finding in
cardiac physiology: a complex structure composed of mechanically nonlinear and
anisotropic materials generates a maximum pressure that is linearly proportional to
cavity volume! The slope of the ESPVR, which Sagawa et al. (1988) termed the end-
systolic elastance, EES, provides a very useful index of the ‘contractility’ of the heart.
Drugs that increase calcium cycling and force of contraction in individual myocytes
also increase EES, indicating that the heart can generate more isovolumetric pressure
at a given volume or eject more blood against a given aortic resistance. The simple
equation Sagawa et al. (1988) used to the describe the ESPVR is

PES = EES(VES − V0), (7)

whereV0 is a volume intercept atwhich no active pressure is generated by contraction.
Sagawa and his colleagues made one more discovery about the behavior of the

LV that has proved invaluable in modeling heart function. When they varied filling
pressures (preload) and resistance to ejection (afterload) to generate a range of PV
loops, then connected PV points acquired at identical times after electrically stimu-
lating the heart, they found that these isochronal points were connected by a family
of lines (Fig. 5c). The slope of these lines increased as the LV contracted, reached a
maximum at end systole (hence EES is also often called Emax), and then decreased
again as the muscle in the LV relaxed. In other words, the LV can be reasonably
modeled as a single chamber or compartment with a time-varying stiffness (Suga
et al. 1973):

P(t) = E(t)(V (t) − V0). (8)

This is now known as the time-varying elastance model, and together with an exper-
imentally measured curve for the time-varying slope E(t), it provides a remarkably
accurate prediction of PV loops for a given LV across a wide range of hemodynamic
loading conditions. As we will see in the next section, the time-varying elastance
framework also forms the basis for an influential analytical model of LV function in
the setting of infarction.
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3.2 Functional Impact of Myocardial Infarction

There are many different mechanisms by which a myocardial infarction can impair
the pump function of the heart either directly or indirectly (Holmes et al. 2005);
the related mechanics and physiology are discussed in detail in review articles by
Holmes et al. (2005) and Richardson et al. (2015). This chapter focuses on the use of
computational models in understanding and simulating these mechanisms and their
effects on heart function; as an introduction, the mechanisms are reviewed briefly
here. (i) The firstmechanismbywhich infarction could impair function is particularly
dramatic: if post-infarction necrosis weakens the infarct toomuch in the first few days
before sufficient new collagen is deposited, the heart can rupture, leading to sudden
death. (ii) Amore commonmechanism in the first few days after infarction is that the
damaged region stretches passively as the rest of the heart contracts, reducingpressure
generation and ejection from the LV andwastingmechanical energy; this mechanism
and analytical models that capture it are discussed in detail in Sect. 3.2.1. (iii) Over
time, as collagenous scar forms in the damaged region, systolic stretching becomes
less problematic, but the stiff scar can limit LVfilling during diastole; thismechanism
is discussed in Sect. 3.2.2. (iv) Amore subtlemechanism bywhich the infarct impairs
LV function is that it is physically coupled to adjacent noninfarcted myocardium.
Therefore, stretching, thinning, and outward bulging (dyskinesis) of the infarct can
reduce thickening and inward motion in the borderzone, resulting in a region of
functional depression that is bigger than the actual infarct. Anatomically detailed
finite element models are needed to capture these three-dimensional interactions, as
discussed in Sect. 4 of this chapter.

In addition to direct effects on function, myocardial infarction triggers a process
of growth and remodeling that gradually alters function indirectly. (v) In the infarct
region, collagen deposition can increase stiffness, affecting both systolic and diastolic
function; in addition, gradual thinning of the infarct is common in most settings and
acts to increasewall stress in the infarct and adjacent borderzone. (vi) In the surviving
muscle, infarction triggers lengthening of individual myocytes withmodest increases
in cross-sectional area; at the chamber level, this is reflected in an increased cavity
volume with relatively modest changes in wall thickness, a geometric change that
increases wall stresses throughout the LV. Computational modeling of growth and
remodeling following myocardial infarction is a young but exciting field, and is
discussed in Sect. 5 of this chapter.

3.2.1 Systolic Function

The slope of the ESPVR provides a measure of the contractility of the heart. There-
fore, it seems reasonable to expect that myocardial infarctionwill decrease this slope.
Yet when Sunagawa et al. (1983) actually performed this experiment by ligating dif-
ferent coronary arteries in the isolated dog heart preparation, they found something
unexpected: the slope of the ESPVR, EES, changed little, while the intercept, V0,
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increased in proportion to the size of the infarct! They also constructed a simple
compartmental model that explained these apparently paradoxical results. The nota-
tion in the original paper is somewhat confusing, and has been modified here to
improve clarity.

Sunagawa et al. (1983) knew that within a few seconds after coronary ligation, the
ischemic region would stop contracting and begin passively stretching and recoiling
with each beat. Accordingly, they modeled the LV as consisting of two compart-
ments: a normally contracting compartment described by the usual time-varying
elastance model, and a passive ischemic compartment where pressure and volume
were related according to the EDPVR at all times. They assumed that the two com-
partments always operated at the same pressure but could contain different volumes,
and computed the ESPVR for the two-compartment model using a weighted average
of the end-systolic volumes that would be expected if the entire LV were contracting
normally or the entire LV were ischemic. In the normal compartment

PES = EES(VES − V0) → VES,n = (1 − R)VES = (1 − R)

(
PES
EES

+ V0

)
, (9)

and in the ischemic compartment

PES = A {exp [B(VES − V0)] − 1} → VES,i = R VES = R

[
1

B
ln

(
PES
A

+ 1

)
+ V0

]
,

(10)

yielding the overall ESPVR, i.e.

VES = VES,n + VES,i = (1 − R)

(
PES
EES

+ V0

)
+ R

[
1

B
ln

(
PES
A

+ 1

)
+ V0

]
,

(11)

where R is the size of the ischemic region as a fraction of the LV. Figure6 shows
the predictions of this model for pressures and volumes typical of the experiments
of Sunagawa et al. (1983), compared to original data from the paper. The key feature
of the acutely infarcted heart that is captured by this simple model is the exponential
nature of the EDPVR. Normally, diastolic pressures do not exceed 15–20mmHg
in the dog, but when the ischemic compartment is exposed to systolic pressures, it
moves to a very steep portion of the EDPVR. At these high pressures, the slope
of the EDPVR is very similar to the slope of the normal ESPVR, but the volumes
are much larger. Thus, a weighted average of the behavior of the two compartments
predicts a shift toward larger volumes (increased V0) without much change in slope
(unchanged EES).

The work of Sunagawa et al. (1983) is a wonderful example of the adage that
a model should be as simple as possible, but not simpler. In this case, represent-
ing the complex, infarcted LV using two compartments—essentially two balloons
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Fig. 6 a End-systolic pressure-volume relationships measured in six isolated dog hearts following
coronary occlusions affecting different sized regions (Fig. 5 of Sunagawa et al. 1983, letters indicate
which coronary brancheswere occluded).bPredictions of the two-compartmentmodel of Sunagawa
et al. (1983) (described in the text) for two different infarct sizes

connected by a straw—provides an accurate and useful analysis, as long as the expo-
nential nature of the passive myocardium is incorporated. By contrast, simplifying
the EDPVR by using a straight line—which is a fairly common and reasonable
simplification in compartmental models operating in the range of diastolic pressures
experienced by a normal heart—completely changes the behavior, resulting in an
erroneous predicted decrease in EES during ischemia. Even a sophisticated finite
element model would make similarly errant predictions if the ischemic region were
assumed to be linearly elastic.

3.2.2 Diastolic Function

Three years before Sunagawa et al. (1983) published their compartmental model,
Bogen et al. (1980) published amore complex analytical model that predicted similar
pressure-volume behavior. They modeled the LV wall as a thin membrane with two
sets of nonlinearly elastic material properties, simulating the myocardium as a softer,
highly nonlinear material at end diastole, and a stiffer, less nonlinear material at end
systole. Bogen et al. (1980) then assigned different material properties to one region
of the simulated LV to represent infarcts at different stages of healing following
infarction. Although representing the thick-walled LV as a thin-walled membrane
did produce some unphysiologic predictions such as a sudden jump in stress at the
infarct border, the model produced realistic diastolic and systolic pressure-volume
behavior for both baseline and acute infarction cases.

More importantly, the model of Bogen et al. (1980) produced a fundamental
insight about the impact of infarct stiffness onLV function that has since been verified
in more sophisticated finite element models and experiments: stiffening the infarct
improves systolic function by limiting bulging of the infarct, but impairs diastolic
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Fig. 7 a Predicted changes in end-systolic (ESPVR) and end-diastolic (EDPVR) pressure-volume
relationships as the passive material properties of a large (41% of LV) infarct region are increased
to simulate different stages of infarct healing (replotted from Bogen et al. 1980); the ESPVR and
EDPVR both shift left as infarct stiffness is increased. bModel ventricular function curves showing
the net stroke volume pumped by the LV at different filling pressures in the presence of a moderate
(25%) infarct; stiffening the infarct yields little change in pump function at most filling pressures

function by restricting filling. AsBogen et al. (1980) increased the simulated stiffness
of the infarct region in their model, the predicted ESPVR shifted to the left, reflecting
an improved ability to eject blood against a given aortic resistance (Fig. 7a). At the
same time, the predicted EDPVR shifted to the left, reflecting the fact that stiffening
part of the LV reduces the overall chamber compliance. In order to understand the
relative impact of these two effects, Bogen et al. (1980) plotted a ventricular function
curve, showing the total stroke volume that would be expected at each filling pressure
if afterload (resistance to ejection) were kept constant. Surprisingly, they found that
the diastolic and systolic effects of infarct stiffening offset almost exactly, yielding no
change in predicted pump function at most filling pressures across the entire range of
infarct properties tested (Fig. 7b). This remarkable prediction has held up extremely
well over more than three decades. More sophisticated finite element models (dis-
cussed in Sect. 4) have confirmed this prediction, and multiple experimental studies
using surgical reinforcement or injection of polymers have shown that stiffening
or reinforcing the infarct reduces diastolic and systolic volumes without changing
stroke volume or cardiac output (Clarke et al. 2014; Richardson et al. 2015).

3.2.3 Coupling to the Circulation and Reflex Compensation

In vivo, the heart is coupled to the circulatory system, which regulates resistance
to ejection from the ventricles during systole as well as the pressures driving filling
during diastole. Therefore, understanding the physiology and mechanics of the heart
in vivo often requires couplingmodels of the heart tomodels of the circulation.One of
the most influential circulation models is the windkessel model, which incorporates
the resistance of the peripheral arteries and capacitance of the aorta (Westerhof et al.
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1969). This simple model explains how the arteries buffer pulses of flow from the LV
during systole to provide continuous flow to the body. Building on the windkessel
concept, Westerhof et al. (1969) developed more sophisticated circuit models of
the circulation that better reflected the interaction between the heart and circulation
on both the arterial and venous sides. Such lumped-parameter approaches form the
basis for most mathematical models of the circulation. These lumped-parameter
representations of the circulation are easily couplednot only to time-varying elastance
models of heart mechanics but also to sophisticated finite element models (see, e.g.,
Kerckhoffs et al. 2007; Wall et al. 2012; Moyer et al. 2015).

The pressure in the systemic arteries is the driving force for blood flow through
the body, and is determined by the balance between cardiac output and resistance
to flow. The body senses changes to mean arterial pressure (MAP) through arter-
ial baroreceptors and acts through compensatory reflexes to maintain MAP. During
myocardial ischemia, reduced cardiac output should produce a fall inMAP; however,
the circulation rapidly compensates by (i) increasing heart rate, (ii) increasing cal-
ciumcycling and the force the survivingmyocardiumcangenerate (contractility), and
(iii) constricting peripheral blood vessels. Using a time-varying elastance model of
the left and right ventricles coupled to a lumped-parameter model of the circulation,
Burkhoff and Tyberg (1993) investigated the potential role of reflex hemodynamic
compensation in generating pulmonary edema, one of themost serious consequences
of acute left ventricular dysfunction. They found that even a large acute drop in left
ventricular function caused relativelymodest changes in pulmonary venous pressures
if the parameters of the circulatory model were unaltered. Next, they simulated dif-
ferent reflex compensations that might be expected following a drop in LV function
and found that only venoconstriction (a reduction in venous capacitance) substan-
tially increased pulmonary venous pressures. Thus, they concluded that pulmonary
edema was not a direct result of reduced left ventricular function, but rather a con-
sequence of the reflex venoconstriction. Their work demonstrates both the power of
mathematical modeling to provide new insights in cardiovascular physiology and the
importance of the circulation in determining the consequences of changes in heart
mechanics and function.

One of the most important long-term risks following myocardial infarction is the
risk of developing heart failure. Here again, interaction of the heart, circulation, and
hemodynamic reflexes likely plays an important role. Most standard post-infarction
treatments primarily modulate the circulatory system or reflex compensations rather
than the heart itself. Angiotensin converting enzyme (ACE) inhibitors, angiotensin
receptor blockers, and a number of other drugs dilate arteries and veins. Beta blockers
directly oppose reflex compensations, reducing both cardiac contractility and heart
rate. Assessing the impact of even one of these drugs can be difficult as they often
affect more than one cardiac or circulatory parameter. For example, Maurer et al.
(2009) studied the effect of a common beta blocker, carvedilol, on patients with
systolic heart failure. In patients who responded to carvedilol, Maurer et al. (2009)
attributed 56% of the increase in ejection fraction to heart rate reduction, 28% to
altered contractility, and 16% to the reduction in total peripheral resistance using
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multiple linear regression. In such situations, models can play an important role in
estimating the relative importance of multiple simultaneous changes.

4 Finite Element Models of Ischemia and Infarction

Despite the success of the analytical models reviewed above in explaining global
pressure-volume behavior in the infarcted heart, these simple models cannot accu-
rately represent distributions of stresses and strains through the wall, mechanical
interactions at the infarct border, or the effects of therapies such as polymer injection
that perturbmechanics locally. Therefore, somequestions related to the biomechanics
of myocardial ischemia and infarction require anatomically realistic, detailed finite
element models. Many investigators have developed and published finite element
models of the heart over the past several decades; this review focuses on a few of
these models selected for their historical value (Sect. 4.1) or as examples of particu-
larly interesting applications of modeling to answer physiologic questions (Sect. 4.2)
and design novel therapies (Sect. 4.3).

4.1 Early Models

One of the earliest modeling studies exploring interactions at the infarct border was
published by Janz and Waldron (1978). They constructed an axisymmetric model
of a rat LV based on geometry measured from a longitudinal (apex-base) slice
through a fixed heart. They simulated a thinned, infarcted region at the apex of the
model, and explored how stretches varied from the infarct into the adjacent normal
myocardium during simulated passive inflation (diastole). When they simulated stiff
chronic infarcts, circumferential stretchwas low in the infarct and gradually increased
with distance from the center of the infarct, reaching a normal (noninfarcted) value
only in elements a substantial distance away from the infarct border. This simple
result has potentially important physiologic consequences: because active force gen-
eration in cardiac muscle depends on diastolic sarcomere length (the Frank–Starling
mechanism, discussed in Sect. 3.1.1), active contraction in normal myocardium near
the infarct border could be impaired because diastolic prestretch is below normal.

Over the next two decades, most models of the ischemic or infarcted LV were
conceptually similar, employing an axisymmetric elliptical geometry composed of a
nonlinearly elastic passive material, then adding features such as active contraction
or the presence of appropriately oriented fibers. Bovendeerd et al. (1996) published
one of the last of this early class of models, integrating many of the most impor-
tant features now common to modern models of the infarcted heart. Their model
included muscle fibers with an orientation that varied through the wall, as described
by Streeter and co-workers (Sect. 1.1), active stress generation in the direction of the
fibers that depended on local diastolic prestretch, and a realistic infarct geometry
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based on the perfusion territory of a branch of the left anterior descending coronary
artery. They also simulated the full cardiac cycle rather than just end diastole and
end systole, and—perhaps most importantly—compared their model predictions to
hemodynamic data and epicardial surface strains measured in dogs during coronary
occlusion. Bovendeerd et al. (1996) achieved an excellent match to experimentally
measured fiber strains, then used their model to explore the impact of both transmural
and non-transmural ischemia on regional work in the infarct borderzone.

4.2 Understanding Coupling to Adjacent Myocardium

Both models discussed in the previous section showed that the functional impact of
a myocardial infarction could extend well beyond the infarct, into the surrounding
myocardium near the infarct border. A number of groups subsequently used detailed
finite element models of ischemia and infarction to explore this concept further.
Mazhari and McCulloch (2000) and Mazhari et al. (2000) combined experiments
and anatomically detailed finite element models of regional ischemia in the dog
to ask whether the gradual transition from impaired to normal function across the
infarct border implies a transition in local myocyte contractility. They found that
they could reproduce measured distributions of fiber and crossfiber strain across the
infarct border for a range of pressures and for different ischemic region locations
even if they assumed a sudden step in contractility at the border of the ischemic
region. In other words, mechanical interactions between the ischemic region and the
surrounding myocardium are sufficient to create gradients in function that extend
well beyond the infarct, even if the borderzone is composed of functionally normal
myocytes.

Herz et al. (2005) applied similarmodels of regional ischemia to develop strategies
for identifying and quantifying regional ischemia using three-dimensional echocar-
diography. Stress echocardiography is a common clinical test in which the heart is
imaged using ultrasound both before and during elevation of cardiac energy con-
sumption imposed by exercise or infusion of a drug such as dobutamine. Cardiolo-
gists typically evaluate the resulting images visually, looking for changes in inward
motion or wall thickening (wall motion abnormality, WMA) that indicate compro-
mised regional function due to a coronary stenosis that limits the increase in blood
flow that would normally occur in response to stress. Herz et al. (2005) used finite ele-
ment models to examine the relationship between the size of the simulated ischemic
region and the size of the WMA as detected by various quantitative measures of
endocardial motion. They found that with an appropriate choice of threshold, they
could use quantitative wall motion measures to estimate the size of ischemic regions
larger than about 10% of the LV. However, small ischemic regions did not produce
detectable wall motion abnormalities, because as the surrounding adjacent normal
myocardium moved inward, it carried the ischemic region with it. Later, Herz et al.
(2010) confirmed in animal experiments that most small ischemic regions induced
no detectable WMA. Thus, whereas Mazhari and McCulloch (2000) and Mazhari
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et al. (2000) showed that mechanical coupling to the ischemic region can cause dys-
function in surrounding myocardium, Herz et al. (2010) showed that coupling to the
surrounding myocardium can also mask dysfunction in the ischemic region.

One final aspect of mechanical coupling that is of interest is the increase in
wall stresses in the borderzone caused by the infarct. Myocytes generating higher
stresses consume more oxygen and are energetically less efficient, so elevated wall
stresses can be particularly disruptive in regions near an infarct where blood flow,
systolic function, or both are already compromised. In addition, some investiga-
tors hypothesize that increased wall stress is a stimulus for growth and remodeling
in myocardium, so elevated wall stress in the borderzone could contribute to the
post-infarction remodeling that often leads to heart failure. Yet one of the central
challenges of cardiac mechanics research is that it is virtually impossible to directly
measure forces or stresses in the intact heart wall. Therefore, finite element models
are an important tool for estimating wall stresses based on other, directly measurable
quantities such as cavity pressure and regional strains. For example, Walker et al.
(2005) constructed finite element models of the infarcted LV using geometry and
regional strains measured by MRI in individual sheep with healed, large infarctions.
They found that the presence of a healed infarct substantially increased stresses in the
adjacent myocardium, particularly in the crossfiber direction. These studies set the
stage for subsequent models of novel therapies intended to work partly or primarily
by reducing wall stress following infarction.

4.3 Modeling and Designing Novel Therapies

One of the most exciting applications of finite element modeling of the heart is the
design of novel post-infarction therapies. Drug and device therapies for heart disease
are usually developed through trial-and-error. As one example, many years ago a
series of studies tested the idea that lowering blood pressuremight reduce remodeling
of the heart following infarction. These studies culminated in a definitive clinical
trial that showed that while lowering blood pressure did improve survival, one of the
classes of antihypertensives—ACE inhibitors—conferred added benefit through an
independent and previously unknown mechanism (Cohn et al. 1991). By contrast,
current state-of-the-art finite element models are beginning to allow researchers to
screen potential therapies computationally, testing amuchwider range of ideas before
beginning experimental trials of the most promising candidates.

Wall et al. (2006) published one of the earliest studies to harness the potential of
model-based approaches in designing therapies. They used a finite element model
of the infarcted sheep heart to simulate the effects of polymer injection into the
infarct or adjacent borderzone, considering a range of potential polymer material
properties, injection volumes, and injection patterns. They found that the volume
of polymer injected was the most important determinant of how much the injection
reduced wall stress, and that even relatively small volumes injected into the bor-
derzone could substantially reduce elevated wall stresses by locally thickening the
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heart wall. Importantly, some of the predicted effects were counterintuitive, such as
the finding that stiffer polymers reduce wall stress when injected into the border,
but actually exacerbate elevated borderzone stresses when injected into the infarct.
Finally, some of the results confirmed predictions from earlier analytical models:
injecting a stiff polymer into the infarct reduced both systolic and diastolic volumes,
but produced no net improvement in the simulated ventricular function curve.

Fomovsky et al. (2011, 2012a) also published a series of studies illustrating the
power of finite elementmodels for designing post-infarction therapies. They returned
to the original prediction byBogen et al. (1980) that stiffening an infarct reduces dias-
tolic and systolic volumes but does not improve overall pump function. Fomovsky
et al. (2011) noted that prior analytical and finite element models of infarct stiff-
ening typically treated the infarct as isotropic, whereas healing infarcts are often
anisotropic (Sect. 2). Accordingly, they used a finite element model of the canine LV
following a large anteroapical infarction to explore the functional impact of a wide
range of both isotropic and anisotropic infarct material properties (Fig. 8a). They
varied the ratio of coefficients controlling circumferential and longitudinal infarct
stiffness in their Fung-type strain energy function from60:1 to 1:60 and computed the
predicted stroke volume at matched diastolic and systolic pressures for each choice
of parameters. Surprisingly, they found that a scar that is much stiffer in the longi-
tudinal direction than the circumferential direction—something that has never been
observed in any animal model—provided the best predicted pump function (Fig. 8b).
Unlike isotropic stiffening, selective stiffening in the longitudinal direction shifted
the ESPVR to the left without altering diastolic function. Fomovsky et al. (2012a)
then tested this prediction experimentally by selectively reinforcing acute canine
infarcts in the longitudinal direction, and confirmed that anisotropic reinforcement
provided the predicted improvement in pump function (Fig. 8c). This series of studies
illustrates the promise of finite element modeling for identifying novel and poten-
tially unexpected approaches by allowing exploration of a much larger parameter
space than could ever be tested experimentally.

5 Models of Myocardial Infarct Healing

The studies by Wall et al. (2006) and Fomovsky et al. (2011, 2012a) reviewed in the
previous section are excellent examples of the power of current models to predict the
immediate effects of a novel therapy. Yet because the heart can grow and remodel in
response to chemical or mechanical changes in its environment, predicting the short-
term response is only half the battle.ACE inhibitors havemodest acute effects onheart
function, but improve survival over the long term by limiting growth and remodeling
in the noninfarcted regions of the ventricle. Beta blockers—another class of drug
given to most patients following infarction—actually depress heart function acutely,
yet improve survival in the long term. The long-term effects of therapies on the
healing infarct region are also important: e.g., steroids and other anti-inflammatory
drugs were once tested as treatments to reduce infarct size, but ultimately abandoned
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because they interfered with scar formation and increased the risk of dilation and
rupture.

These examples illustrate the need to accurately predict not just short-term but
also long-term effects of therapies on infarct healing and myocardial growth and
remodeling. Predicting growth and remodeling is one of the newest and most excit-
ing emerging areas within the field of biomechanics. This section focuses on early
models of infarct healing, in keeping with the overall theme of the chapter. How-
ever, ongoing work on myocardial growth and remodeling in response to changes in
hemodynamic loading will also prove important to developing new treatments for
myocardial infarction, since the geometry and material properties of both the infarct
region and the remaining undamaged myocardium ultimately determine long-term
outcomes following myocardial infarction.

5.1 Inflammation and Cell–Cell Signaling

As discussed in Sect. 2, healing following myocardial infarction involves a series of
different cell types that infiltrate the damaged region, remove damaged myocytes,
and deposit scar tissue. The recruitment and activity of these cells are regulated in
large part through a series of secreted factors called cytokines; therefore, modu-
lating cell–cell signaling through cytokines is one potentially important approach
to modulating infarct healing. Accordingly, Jin et al. (2011) developed a system
of differential equations representing the infiltration and removal/death of key cell
types as well as communication among these cell populations through some of the
major known cytokines. Their model suggests that interactions among the different
cell types involved in infarct healing can produce unexpected results in response

Fig. 8 a Finite element model of anteroapical infarction in the dog employed by Fomovsky et al.
(2011). b Varying material parameters controlling circumferential and longitudinal infarct stiffness
revealed that infarcts with high longitudinal and low circumferential stiffness (circle) had the best
predicted pump function, while isotropic stiffening (diagonal line) had little effect across physiolog-
ically plausible values. cA subsequent experimental study confirmed that selective reinforcement in
the longitudinal direction improved the cardiac output curve in infarcted canine hearts (Fomovsky
et al. 2012a)
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to potential therapies. As one example, increasing the level of TGF-β—which is
generally considered a pro-fibrotic cytokine—actually reduced the predicted level of
collagen deposition, by increasing the recruitment of macrophages that produce the
collagen-degrading enzyme MMP-9.

5.2 Collagen Deposition and Alignment

Rouillard and Holmes (2012) developed an agent-based model (ABM) of infarct
healing focused more narrowly on predicting the evolution of collagen alignment.
The ABM tracked each fibroblast in the healing infarct as it migrated into the infarct,
reorganized existing collagen, and deposited new collagen. The model considered
two mechanisms by which fibroblast orientation could determine collagen orienta-
tion: fibroblasts deposited collagen fibers aligned with the cell, as has been shown
in culture under some circumstances (Canty et al. 2006), and reoriented nearby col-
lagen fibers, as has been demonstrated in collagen gels (Lee et al. 2008). At each
time step, each cell selected an orientation and direction of motion from a probabil-
ity distribution constructed by integrating multiple local factors known to influence
fibroblast orientation in vitro: the prior direction (persistence), the spatial gradient of
chemokines produced by inflammatory cells in the healing infarct (chemotaxis), the
orientation of nearby collagen fibers (contact guidance), and the principal direction
of stretch. The model also made a number of simplifications, such as attributing col-
lagen degradation to fibroblasts rather than including other cell types that produce
many of the collagen-degrading enzymes, and simulating the chemokine gradient as
constant in time rather than varying over the course of the healing process.

Nevertheless, the ABM of Rouillard and Holmes (2012) was able to reproduce
much of the data on scar structure reviewed under Sect. 2, including isotropic colla-
gen orientation in ligation-induced rat infarcts and in cryoinfarcts stretching biaxially
during healing, aligned collagen in rat cryoinfarcts stretching circumferentially dur-
ing healing, and transmural gradients in collagen fiber orientation and alignment
strength in healing pig infarcts, see Fig. 9. This last prediction was particularly inter-
esting, because it shed new light on previously published but unexplained data.
Experiments in healing pig infarcts revealed that during the first three weeks of heal-
ing the infarct experiences nearly uniaxial circumferential stretch; thus the direction
of principal stretch conflicted with the orientation of the preexisting matrix in the
epicardial (outer) and endocardial (inner) layers of the wall. The ABM predicted
that these two conflicting cues would produce a relatively weak alignment signal
in the inner and outer layers of the scar, and that collagen would gradually become
more circumferential over time due to ongoing collagen turnover. By contrast, at the
midwall the initial circumferential fiber orientation and the ongoing circumferential
stretch would act synergistically, producing very high alignment in the circumfer-
ential direction. Remarkably, these predictions—achieved without tuning any of the
parameters affecting cell and collagen orientation in the model—agreed very closely
with published measurements (Fig. 9).
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Fig. 9 Simulations of transmural variation in healing pig infarcts (data replotted from Rouillard
and Holmes 2012): a Predicted mean angle in all transmural layers gradually converges toward
0◦ (circumferential), the direction of principal strain. b After 21 days of simulated healing, mean
angles show some transmural variation, but less than in normal myocardium prior to infarction (0d);
predicted alignment is strongest in the midwall, where preexistingmatrix orientation and strain both
promote circumferential alignment, and weakest at the epicardium and endocardium, where matrix
and mechanical cues conflict. c Published data from Holmes et al. (1997) show a similar trend (data
replotted from Holmes et al. 1997). Note alignment in panels b and c is plotted on an arbitrary scale

Models such as the one by Rouillard and Holmes (2012) represent a first step
toward predicting the effects of therapeutic interventions on infarct healing. Their
ABM could be used to predict an intervention with clear, known effects on one
of the guidance cues (such as surgical reinforcement that alters stretch). However,
the ABM is not currently able to predict the effects of drugs that alter intracellu-
lar signaling within fibroblasts or the cell–cell cytokine interactions modeled by
Jin et al. (2011). Furthermore, changes in infarct healing may in turn influence scar
mechanics, ventricular remodeling, systemic levels of hormones involved in reflex
control of hemodynamics, etc. Ultimately, multi-scale models that represent intracel-
lular signaling, cell–cell communication, scar formation, scar mechanics, ventricular
mechanics and remodeling, and systemic hemodynamics and reflexes will be needed
to fully predict the long-term effects of individual interventions.

6 Conclusions

Several themes are apparent from the experiments and models reviewed above. First,
understanding the mechanics of myocardial infarction relies on high-quality data on
the structure and mechanical properties of healing infarcts. Yet only a handful of
studies have careful quantified these properties in multiaxial mechanical tests, and
those studies produced conflicting data; clearly, more fundamental testing data are
needed in order to understand the evolution of infarct mechanical properties and
possible differences across species. The second broad theme is that computational
models are essential in understanding the functional impact of myocardial infarc-
tion, because that impact depends not only on infarct mechanical properties but also
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on interactions between the infarct and the surviving myocardium, and between the
infarcted heart and the circulation. One clear, significant success of infarct biome-
chanics research to date is that current models are accurate enough to suggest novel,
unexpected therapeutic approaches that work as predicted when tested experimen-
tally. A critical future direction for infarct biomechanics is extending such models to
incorporate the effects of drug and device therapies on wound healing in the infarct
and on growth and remodeling in the rest of the heart. The final lesson apparent
from the work reviewed here is that models do not always have to be complicated in
order to provide useful insight. The analytical models of Sunagawa et al. (1983) and
Bogen et al. (1980) captured essential features of the mechanics and physiology of
the infarcted heart that remain relevant today, more than 30 years later.
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Fiber-Network Modeling in Biomechanics:
Theoretical and Analytical Approaches

Rohit Y. Dhume and Victor H. Barocas

Abstract Network problems arise in all aspects of bioengineering, including
biomechanics. For decades, the mechanical importance of highly interconnected net-
works of macromolecular fibers, especially collagen fibers, has been recognized, but
models at any scale that explicitly incorporate fiber-fiber interactions into a mechan-
ical description of the tissue have only started to emerge more recently. The purpose
of this chapter is to provide the reader with the basic tools to develop next-generation,
fiber-based models of tissue mechanics, a goal that is pursued in three steps. First, we
provide a brief introduction to the mathematical language for describing networks
in general. Second, existing single-scale mechanical network models are reviewed,
including a short discussion of how the different models differ in approach based on
the biophysics of their specific problems. Third, and finally, we describe a multiscale
approach in which individual network problems at the small scale are coupled to a
macroscopic finite element scheme. This approach is general and can be applied with
any microstructural model but has significant computational demands, so it should
be used only when the value of the scale coupling is great.

1 Introductory Remarks

Networks of all sorts are ubiquitous in nature (Fig. 1). Macromolecular networks
such as the actin of the cytoskeleton form the basis for the cells shape and ability
to deform the tissue around it. Fiber networks of collagen and elastin are critical
to the maintenance of tissue integrity and elasticity. Beyond mechanical networks,
systems biology has recognized the essential role of complex metabolic networks
in determining cell behavior, neural networks produce complex functions through
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Fig. 1 Examples of networks in nature. Image (a) courtesy V. Lai; for more information, see Lai
et al. (2012), Image (b) courtesy P. Alford; for more information, see Win et al. (2014), Image
(c) courtesy R. Tranquillo; for more information, see Morin et al. (2013). a Confocal image of a
collagen gel. b Actin network in a cell cytoskeleton. (Green is f-actin and blue is chromatin). c
Network of microvessels formed in a fibrin gel. d SEM image showing a network of collagen fibers
in a human facet capsular ligament

the interactions of relatively simple components, and vascular/capillary networks
distribute blood and oxygen throughout the body.

In light of the importance of bionetworks, our purpose in this document is three-
fold. First, we will present a brief description of the mathematical tools necessary
to describe networks in the abstract, as well as some common features of fiber net-
works. Second, we will present a review of recent work using network-based models
to explore the mechanics of biological materials; this review will describe a wide
range of networks and tissues, focusing primarily on the techniques and network
features rather than attempting to describe the biological ramifications in full detail.
Finally, we will present a multiscale approach that can be used to describe a macro-
scopic tissue in terms of the microstructure and microstructural response at specific
points.

The sections are organized to represent a hierarchy of demands if one is to develop
accurate network-based computational models of the mechanical behavior of large
tissues. For any model to succeed, it is obviously necessary that one have a math-
ematical statement of the physical problem at hand. One must, e.g., define a node
and a connection within the network and specify how they behave and interact.
These definitions, with our understanding of how to extract information from the
mathematical structures so formed, are the emphasis area for the first section. Sub-
sequently, we review how the network approach has been used. Many investigators
have developed network-based models of various forms and to describe various tis-
sues. Having established the methodology of the first section, we will discuss in
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the second section how different models were created and how they behave. The
third and final section addresses a critical issue in the use of such models: how can
we model a large piece of tissue, which may contain millions of fibers, varying in
composition, density, diameter, and orientation as a function of position within the
tissue, in a way that is computationally tractable and still realistic? To put the issue
another way, one must be able to communicate information between the large and
small scales efficiently and consistently. We will present a method we use, based on
volume averaging concepts previously used in other disciplines, to couple the two
scales.

2 Mathematical Fundamentals

In the next section,we discuss some basicmathematical concepts related to networks.
For further detail, the reader is referred to the excellent review by Boccaletti et al.
(2006).

2.1 Terminology and Basic Concepts

A network consists of two fundamental entities. Nodes are points, possibly but not
necessarily in a physically realizable space, that are connected to each other by
links. Both nodes and links may have properties that are independent of the network
topology but may be important in other contexts. For example, the surface chemistry
of a fiber might be very important in some interaction of a fiber network with a cell
entrapped in it, but the fiber network’s topology does not depend on fiber chemistry.
At its most basic level, the network is defined by which nodes are connected by
which links, and by which links are connected to which nodes. A simple example is
given in Fig. 2. The network contains six nodes and nine links. The nodes have been
numbered 1–6. The links could also be numbered, but that is not necessary for most
of this chapter, so for the time being, we will leave them unnumbered and will refer
to them simply as Li j for the link from node i to node j .

We can make certain observations about this network. First, we observe that the
graph is undirected, meaning that a link from node i to node j is also a link from node
j to node i . Directedness is a property of some networks but not others, depending on
what they represent. In a neural network, e.g., it is possible that neuron i stimulates
neuron j , but neuron j does not stimulate neuron i . Likewise, in ametabolic network,
it is possible that enzyme i synthesizes (or degrades) enzyme j , but enzyme j does
not affect enzyme i . In these cases, the directed network could be represented by
arrows showing which way the links act. For mechanical networks, however, the
effect of a link is normally symmetric. That is, if displacing node i leads to a force
on node j (by stretching the connection between them), then displacing node j leads
to a force on node i as well. Thus, it is common to use undirected graphs, such as
that in Fig. 2, to model mechanical networks.
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Fig. 2 An example of a
simple network

We next observe that although each link in the network connects exactly two
nodes, each node in the network can have any number of links attached to it. The
number of connections for a given node is that node’s degree or nodal degree. In
Fig. 2, nodes 1–4 are all of degree three, node 5 is of degree four, and node 6 is of
degree two.

The adjacency matrix of the network is a compact representation of all of the
connections. For an unweighted, undirected network such as in Fig. 2, the adjacency
matrix is constructed by setting

Ai j = A ji =

⎧
⎪⎨

⎪⎩

0, i = j

1, i �= j and nodes i and j are connected

0, i �= j and nodes i and j are not connected.

(1)

Since the links are undirected, the matrix [A] must be symmetric by construction
(that is, if i connects to j , then j connects to i). If one is interested in using the
adjacencymatrix to understand the topology of the network, then it ismost convenient
to set all of the diagonal elements to zero (that is, a node is not connected to itself).

The adjacency matrix has trace zero, so its eigenvalues must sum to zero, and the
spectral properties of the adjacency matrix have been used in a variety of ways to
characterize network topology in biological contexts (Larremore et al. 2012; Speck-
Planche et al. 2012; Hwang et al. 2014). For the network in Fig. 2, the adjacency
matrix [A] is

[A] =

⎡

⎢⎢⎢⎢⎢⎢⎣

0 1 1 0 1 0
1 0 0 1 1 0
1 0 0 1 0 1
0 1 1 0 1 0
1 1 0 1 0 1
0 0 1 0 1 0

⎤

⎥⎥⎥⎥⎥⎥⎦
. (2)
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When one is interested in interactions among the nodes and/or in some quantity
transported via the links, then it is often more convenient to consider the so-called
Laplacian matrix [L] rather than the adjacency matrix. The Laplacian matrix is
defined by

Li j = L ji =

⎧
⎪⎨

⎪⎩

ni i = j

−1 i �= j and nodes i and j are connected,

0 i �= j and nodes i and j are not connected,

(3)

where ni is the degree of node i . The Laplacian matrix, also called the Kirchhoff
matrix, is attractive in that it measures not only connectivity but also transport,
thus providing a representation similar to what one would derive from a network of
resistors (following Kirchhoff’s laws) or a heat- or mass-transport problem in which
conservation laws apply to nodes and transport is via links (i.e., a discrete analogue
of the Laplacian operator). For the network of Fig. 2, the Laplacian matrix [L] is

[L] =

⎡

⎢⎢⎢⎢⎢⎢⎣

3 −1 −1 0 −1 0
−1 3 0 −1 −1 0
−1 0 3 −1 0 −1
0 −1 −1 3 −1 0

−1 −1 0 −1 4 −1
0 0 −1 0 −1 2

⎤

⎥⎥⎥⎥⎥⎥⎦
. (4)

2.1.1 Eigenvalues of the Laplacian Matrix

It is readily seen that the matrix [L] is singular because each of its rows sums to zero,
a necessary result since there are ni links coming out of node i , so there will be ni
elements of value −1 in a row. Thus, [L] always has an eigenvalue 0 corresponding
to the eigenvector of all 1’s. If we think about this in light of the transport analogy,
the significance of this eigenvalue becomes clear: if all of the nodes have the same
(concentration, temperature, voltage), then there is no (diffusion, heat flow, current)
along any links, and the result is that the system does not change.

Our understanding of the Laplacian matrix’s meaning is enhanced by recogniz-
ing that in a system that has equal weight connections among nodes, the temporal
evolution of some nodal quantity (concentration, etc.) is given by

∂ci
∂t

= −
N∑

j=1

Li j c j , (5)

where ci is the concentration of interest at node i . In this problem, the eigenvalues
of [L] represent (inverse) time scales over which the system relaxes from a per-
turbation, and the corresponding eigenvectors represent perturbations that relax at
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different rates. The uniform perturbation (i.e., all concentrations increased by the
same amount) relaxes with rate zero because the shifted concentration is neutrally
stable. The largest eigenvalue of [L] represents the fastest-relaxing mode. In Fig. 2,
above, e.g., the largest eigenvalue of [L] is 5.68, corresponding to the eigenvector
[−0.42, 0.08, 0.42, −0.42, 0.62, −0.28]T. Notice that the values at nodes 3 and
5 are positive, and those at nodes 1, 4, and 6 are negative, creating large differences
(and thus high transport rates) along the links connecting nodes 3 or 5 to 1, 4, or 6.
Node 2, which connects to both positive and negative valued nodes, is assigned a
value near zero.

It is also possible for [L] to have more than one eigenvector corresponding to a
zero eigenvalue. To put it another way, the nullity of [L], that is the dimension of the
null space of [L], may be greater than one. What does that mean? The question is
answered best by considering the consequences of a second eigenvector in the null
space of [L] in terms of the conductivity or flow problem. The second eigenvector
means that there is another nontrivial solution to [L][x] = [0] beyond the uniform
solution mentioned in the previous paragraph. If we think in terms of conductivity,
we know that if one node has a higher voltage (temperature, pressure) than another
to which it is connected, there must be flow between them. Thus, the only way
that the second eigenvector could exist would be if the network was not completely
connected. For example, if the three dotted connections in Fig. 3 were removed, [L]
would become

[L] =

⎡

⎢⎢⎢⎢⎢⎢⎣

2 −1 0 0 −1 0
−1 3 0 −1 −1 0
0 0 1 0 0 −1
0 −1 0 2 −1 0

−1 −1 0 −1 3 0
0 0 −1 0 0 1

⎤

⎥⎥⎥⎥⎥⎥⎦
, (6)

which still has a zero eigenvalue with eigenvector all ones, [1, 1, 1, 1, 1, 1]T, but
also has a second eigenvector, [0, 0, 1, 0, 0, 1]T, with eigenvalue zero (note that

Fig. 3 Example network
with three links removed
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[1, 1, 0, 1, 1, 0]T is also an eigenvector since it is a linear combination of the other
two). This result arises because the cluster 1-2-4-5 and the cluster 3-6 are not con-
nected to each other. The nullity of [L] is thus the number of unconnected clusters in
the network. Although most mechanical network problems involve a single network
with all nodes connected, it is important to be aware of the possibility of the network
becoming disconnected, particularly if damage or digestion is to be considered.

2.1.2 Weighted Laplacian Matrix

All of the above analysis was for unweighted networks, but it is easily extended to
weighted networks by replacing the 1’s in [A] and the −1’s in [L] with the weight of
the connection, and by redefining ni to be the sum of the weights of all of the links
coming out of node i rather than just the number of links. That is

wi j =
{
0 nodes i and j are not connected

ω nodes i and j are connected by a link of weight ω,
(7)

ni =
N∑

j=1

wi j , (8)

Li j = L ji =
{
ni i = j

−wi j i �= j.
(9)

In the context of a transport problem, the weights of [L] represent different conduc-
tivities between nodes. That is, the weighted graph has some connections that are
stronger than the others. All of the previous analysis applies to weighted as well as
to unweighted graphs.

Suppose, e.g., that we make the dotted connections in Fig. 3 of lower weight. This
modified network would correspond to thinner vessels in a fluid transport network or
to greater resistance in an electrical network. Taking the solid lines to be of weight
3, e.g., and the dotted lines to be of weight 1, we get

[L] =

⎡

⎢⎢⎢⎢⎢⎢⎣

7 −3 −1 0 −3 0
−3 9 0 −3 −3 0
−1 0 5 −1 0 −3
0 −3 −1 7 −3 0

−3 −3 0 −3 10 −1
0 0 −3 0 −1 4

⎤

⎥⎥⎥⎥⎥⎥⎦
, (10)

and the eigenvector of the newLaplacianwith the largest eigenvalue is [0.42, −0.04,
−0.15, 0.42, −0.78, 0.13]T. Note that nodes 3 and 6, which are now less well
connected to the rest of the network, have smaller terms in the eigenvector.
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2.1.3 Aside: Network Partitioning

Although the primary emphasis in the chapter is on mechanical network models, we
divert our attention briefly to the problem of network partitioning. Often, one has
a single network, and one would like to subdivide that network into two or more
distinct smaller networks in some natural and automatic way. Such problems arise,
e.g., in the segmentation of images (e.g., Kamenskiy et al. 2012), the identification
of metabolic pathways (e.g., Hao et al. 2012), or the definition of social groups (e.g.,
Naug 2008; Molloy et al. 2014; Feng and Bhanu 2015). Two simple algorithms are
described here, the first because of its natural connection to the previous section, and
the second because we have used it in a mechanical context previously.

The random walker approach involves a series of steps. First, the user manually
identifies seed points within different regions of the image/network. That is, one
identifies specific nodes as being in distinct subnetworks fromeach other. Themethod
was developed for image segmentation (Grady 2006), so this step would involve
the user selecting some points from the image in, say, the heart, and others in the
lungs. Next, the algorithm solves the linear problem of steady conduction through a
resistor networkweighted according to the network’s Laplacianmatrix, with stronger
connections being represented by lower resistances (i.e., greater conductances). The
problem is solved with all of the seed node values set to zero except for one, which
is set to unity. That is, the following problem is solved once for each seed node,

xi = 1 node i is the target seed node, (11)

xi = 0 node i is a non target seed node, (12)

Li j x j = 0 node i is not a seed node. (13)

Finally, each non-seed node j is assigned to the segment containing the seed node
that yielded the largest x j value. This approach is simple, fast, and robust to noise,
but it requires manual identification of the subnetworks and may require that the user
select multiple seed points in each region to achieve proper segmentation.

A very popular alternative approach is based on the concept of betweenness. The
betweenness of a link in the network is defined as the number of shortest paths
between any two network nodes that include the link in question. Thus, to calculate
the betweenness, one constructs the shortest path between every pair of nodes and
counts how many times each link lies on the path, with fractional occurrences being
counted when multiple shortest paths exist between the same pair of nodes. If we
consider the unweighted network of Fig. 2, e.g., there are two shortest paths (both of
length 2) between nodes 3 and 5, so each of them would be counted as half of a path.
Newman (2001, 2004) developed an algorithm in which the connection of maximum
betweenness is removed, after which the process is repeated until the network has
been divided into subnetworks. The method can be applied to weighted networks
by appropriate weighting of the calculated betweenness values (Newman 2004).
Although this approach is much slower, it is extremely robust and does not require
a priori specification of seed points. We have applied this approach to segmenting
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images based on the deformation gradient jump between finite elements (Witzenburg
et al. 2015) as a prelude to solving complicated inverse mechanics problems.

2.2 The Mechanical Problem

We now have in hand the essential machinery to analyze a network problem, and we
turn to mechanics, specifically to the network that would be known as a truss in most
engineering concepts: a collection of units (henceforth called ‘fibers’ in this text but
potentially referring to any long, thin piece of connecting material) that can support
tensile or compressive loads, joined at nodes that allow free rotation. Thus, the force
balance at node k is

n(k)∑

j=1

f ( j)
i = 0, (14)

where n(k) is the degree of node k, j is a summation variable, f ( j) is the tension in
fiber j coming off from node k, and i is the coordinate index (i can go from 1 to 2
in 2-D or from 1 to 3 in 3-D). If one assumes an elastic network, the force on a fiber
depends only on its stretch ratio, so we can replace the above expression with

n(k)∑

j=1

(
x j
i − xki

|x j
i − xki |

)
f

(
|x j

i − xki |
l jk

)
= 0. (15)

The first term is the unit vector pointing from node k to node j . It gives the direction
of the force due to stretch in the connection between nodes k and j . The second term
is the scalar force, which depends on the distance from node k to node j , divided by
the rest length l jk of the fiber connecting the two nodes.

Three immediate observations must be made. First, the solution to the problem is
trivially that all of the fibers are at their rest length and there is no tension anywhere
in the network. This result is, of course, uninteresting, but it is the solution to the
problem as described. The reason that it is not the correct solution is that boundary
conditions must be imposed also. For example, one might specify that certain nodes
in the network are fixed and that others must move (e.g., to stretch or shear the
network), or one might specify that some are fixed and others are subject to some
external load. Regardless, something must be done to force the system away from
the trivial equilibrium.

Second, and perhaps most importantly, we observe that because position, dis-
placement, and force are vector, not scalar, quantities, the mechanical network has
two (in 2-D) or three (in 3-D) pieces of information associated with each node, not
just one. As a result, even a very simple network such as that of Fig. 4a becomes the
considerably more complicated Fig. 4b when one treats each component as a scalar.
Thus, the adjacency and Laplacian matrices for this system, if one thinks in terms of
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Fig. 4 Even a simple 2-D network (a) can become complicated in 3-D (b)

scalar quantities at each node, will be 12 × 12, not 4 × 4. Of course, the adjacency
of all three components is the same at a given node, so the 4 × 4 adjacency matrix
contains all of the information, but theweightings are not the same for all connections
at the same node, as we will explore in the next section.

Third, even if the force function is linear, the system is kinematically nonlinear
because of the fact that movement of the nodes causes both tension in the fibers and a
change in the direction of the forces acting on the nodes (because the fiber direction
changes). Thus, even the simplest network problems are nonlinear and can prove
quite challenging computationally.

2.2.1 The Maxwell Limit

Because of the importance of mechanical structures in bearing loads, trusses (i.e.,
connections of beams with free rotation at intersections) and frames (no rotation at
intersections) have been studied for over a century. The landmark analysis ofMaxwell
(1864) argued that a truss with N nodes and C rigid connections has 3N degrees of
freedom (X , Y , and Z position of each node) and C constraints (one translational
direction restricted by each connection). For the truss to be stable, it must have only
six degrees of freedom, representing the three translations and the three rotations of
the frame as a rigid body. Thus, Maxwell concluded that for a truss to be stable, it
must satisfy C ≥ 3N − 6; by similar arguments, a two-dimensional network must
satisfy C ≥ 2N − 3. For large networks, N and C are both much greater than 6, and
we may use C > 3N as a global stability limit (or C > 2N for a two-dimensional
network). Since each connection adds to the degree of two different nodes, this limit
is equivalent to requiring that the average nodal degree n be greater than 6 for a
three-dimensional network and be greater than 4 for a two-dimensional network. In
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biological systems, theremaywell exist networkswith lower degrees of connectivity;
such a network has zero stiffness in its rest state but can achieve finite stiffness as
its fibers become aligned in the direction of the pull, producing a large toe region
in the stress–strain curve even if the individual fibers are linear in their mechanical
response (Stylianopoulos and Barocas 2007a).

2.2.2 Non-affinity of Fiber Networks Under Load

The final topic for this section is that of affinity versus nonaffinity (Fig. 5). We begin
with a definition of affinity. Suppose that a fibrous material undergoes a macroscopic
deformation defined by the deformation gradient Fi j . Further suppose that each
individual fiber is characterized by a vector vi that defines its length and direction.
Then, if for every fiber in the network, the initial fiber vector v0i and the final fiber
vector v1i are related by v

1
i = Fi j v0j , then we say that the fibers are deforming affinely

with respect to the macroscopic deformation, or that the system is affine. We may
state that requirement in an alternativemanner by requiring that the same deformation
gradient Fi j applies at the microscopic as well as the macroscopic scale.

The affine assumption is an extremely powerful assumption because it elimi-
nates the need to consider microscale interactions. Since every fiber’s deformation
is defined perfectly by the macroscopic deformation gradient Fi j , each fiber can be
evaluated independently, and the total stress (or strain energy) at a point can be deter-
mined from the sum of independent fiber contributions. This assumption was made
by Lanir (1983), who argued that it is ‘intuitively justified by themultiplicity of inter-
connections (attachments) between the different fibers.’ Modern tissue mechanics
theory, which owes much to Lanir (1983), thus often involves the affine assumption,
as can be seen in many of the other chapters of this volume and throughout the
field (see, e.g., Martufi and Gasser 2013; Amini et al. 2014; Fata et al. 2014). The
affine assumption is, of course, a considerable simplification. We have found, e.g.,
that in simple two-dimensional networks (Chandran and Barocas 2006), the average
rotation of the fibers is predicted very well by an affine model, but the fiber stretch

Fig. 5 Example of nonaffine deformation in a network. The vector shown does not satisfy v1i =
Fi j v0j
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is overpredicted by a considerable amount, and some fibers may be in compression
(or may buckle) even though the network as a whole is in tension. Nevertheless, for
tissue-level studies, the affine model is often convenient, and the simplification it
introduces may be deemed acceptable in exchange for much more solution of the
problem.

In the subsequent sections,we provide a brief reviewof network-explicitmodeling
approaches to biomechanical problems, meaning those problems in which the indi-
vidual fibers/fibrils/filaments are modeled, and the affine assumption is not imposed
on individual fibers. These models, which focus on the small scale, provide a view
of the range of problems that can be done using a network-based approach. After
that review, we will present a theoretical framework for coupling a network-explicit,
nonaffine microscale model with a larger scale continuum model.

3 Single-Scale Fiber Models in Biomechanics

In this section, we look at different network modeling approaches that have been
utilized to model tissues over the past few decades. We start out with a brief review
of some of thewell known and still widely used affinemodels. Then,we proceed on to
discuss a few nonaffine network models beginning with ones that use homogeneous,
hyperelastic networks, followed by a section discussing evolving network models
(e.g., viscoelastic networks).

3.1 Affine Models

In the latter half of the twentieth century, several constitutive models were proposed
to predict and understand the behavior of various biological tissues. Many of these
models borrowed the idea behind their construction from polymer science. These
models were passive and assumed the tissue to deform in an affine manner. They
did not model the various network components and their interactions individually as
some of the more recent models (discussed later in this section) have done. These
constitutive models have played a major role in our understanding and modeling of
biological tissue over the last few decades, so we begin our network review with a
brief discussion of a few of the more well known and still widely used continuum
models.

3.1.1 Fung et al. (1979)

This constitutive equation was developed by Fung et al. (1979) to model the mechan-
ics of arteries and to match their nonlinear stress–strain curve obtained from exper-
imental testing. The strain energy as proposed by Fung et al. (1979) is given by
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W = C

2
exp(a1E

2
θθ + a2E

2
zz + 2a4Eθθ Ezz), (16)

where Eθθ and Ezz are components of the Green–Lagrange strain tensor, C is a
material constant with units of stress, and a1, a2, and a4 are nondimensional material
constants. Fung et al. (1979) ignored the radial stress in comparison to stress in
the other two directions, and the tissue was assumed to be incompressible (i.e.,
Err = f (Eθθ , Ezz)). There have been several modifications and generalizations to
thismodel (Kas’yanov andRachev1980;Deng et al. 1994;Humphrey 1995;Ateshian
and Costa 2009).

Although the model of Fung et al. (1979) was a major advance and was perhaps
the first tissue constitutive model to account for anisotropy (i.e., a1 �= a2) and cross-
directional coupling (via a4), theoretical and practical challenges, especially in 3-D,
have made it less popular today than fiber-based models except in limited cases.

3.1.2 Holzapfel et al. (2000)

Holzapfel et al. (2000) assumed the tissue to be a composite reinforced by fiber
families oriented in different directions. The strain energy was split into two parts,
the contribution from the nonfibrous, isotropic matrix (e.g., neo-Hookean) and that
from the fiber families. A general form of this equation is given as

W = Wiso + Waniso, (17)

Waniso =
n∑

i=1

k(i)
1

2k(i)
2

{exp[k(i)
2 (ai · Cai − 1)2 − 1]}. (18)

Here, n is the number of fiber families, k(i)
1 and k(i)

2 are material parameters for the
i th family, C is the right Cauchy–Green tensor and ai is the direction vector of the
i th family. The term ai · Cai represents the square of the stretch experienced along
the direction of the fibers. Future modifications to this model included parameters
to consider the amount of fibers present and their distribution around a primary
orientation direction (e.g., Driessen et al. 2005).

The constitutive equations described above were developed to fit experimental
data (mainly in the physiological range) and thus one must exercise caution when
applying these models to deformations lying outside of the experimental range of
data. The strain energy also depends strongly on the fitting parameters, and for
models with multiple free parameters, these values might not be unique. One must
also properly constrain the possible values of the free parameters while fitting the
data else it can result in the energy being undefined (e.g., the model of Takamizawa
and Hayashi 1987) or in the strain-energy function being non-convex.

The form of Eqs. (17) and (18), and similar forms such as the four-fiber-family
model of Baek et al. (2007) and the fiber orientation-based models of Sacks (2003)
and others (Annaidh et al. 2012; Avril et al. 2013; Nagel et al. 2014; Trajkovski
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et al. 2014), have proven extremely successful. They have been implemented in
finite element codes such as Abaqus (Hibbit et al. 2007) and FEBio (Maas et al.
2012), making them available to the general user, another significant advantage.
In general, methods of this type are the models of choice for fitting experimental
data and constructing finite element models of the tissue. The advantages of simple
structure, easy use, and rapid computation often outweigh the loss of ability to capture
microstructural interactions or nonaffine behavior.

3.1.3 Arruda and Boyce (1993)

This constitutive model, developed by Arruda and Boyce (1993), uses a statistical
mechanics approach tomodel polymermaterials. It was based upon the already exist-
ing three-chain and four-chain models for rubber and rubber-like materials (Flory
and Rehner 1943; Treloar 1946; Wang and Guth 1952). The earlier models predicted
the behavior of rubber rather well but did not capture the large-strain behavior shown
by other amorphous polymers (e.g., polycarbonate) in their plastic region. Themodel
of Arruda and Boyce (1993) also improved upon some of the issues seen with the
previous models, e.g., the inherent anisotropy of the four-chain model.

Themodel of Arruda andBoyce (1993) has a cubic representative volume element
(RVE) with eight chains (representing polymer macromolecules), connected to a
common node at the center, extending along the main diagonals to the corners of the
cube (Fig. 6). The assumption of hyperelasticity allows stresses in the network to be
calculated directly from the strain energy. Use of non-Gaussian statistics in modeling
the chains results in a ‘lockout’ length, at which the chains are fully extended, and
the material response shows a highly nonlinear strain hardening behavior. The strain
energy developed in the original paper was given by

W = nkBT N

(
λchain

N
β + ln

β

sinh β

)
, (19)

where n is the number of chains, kB is the Boltzmann’s constant, T is the absolute
temperature, N is the number of segments that make up one chain and β is the

Fig. 6 A RVE in the model
of Arruda and Boyce (1993)
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inverse Langevin function, i.e., β = L−1(λchain/N ), with L(x) = coth(x) − 1/x ,
which limits the chain extension.

In our opinion, the model of Arruda and Boyce (1993) is more important as a
conceptual advance than it is useful as a tissue constitutive equation. The expression
does not handle anisotropy well, and the model does not lend itself easily to incor-
poration of a complicated distribution of fiber orientations and/or properties. It does,
however, account explicitly for finite fiber extensibility, an issue largely ignored by
other models, and it recognizes that fibers are connected to form a network. This
second idea, that fibers are connected and interact with each other when the tissue is
deformed, is central to all of the work in the next section.

3.2 Homogeneous Hyperelastic Network Models

The next class of models to be discussed includes models that account explicitly
for the presence of a fibrous or filamentous network via an initially homogeneous
(often periodic) network of hyperelastic fibers. Thesemodels tend to be highly tissue-
specific and represent tissues with a distinctive matrix architecture. In such models,
three important factors influence the mechanics:

1. Network geometry.
2. Constitutive equation of individual components.
3. Interaction between different components.

The specific handling of these factors determines the behavior of each model.

3.2.1 Lens Capsule

Burd (2008) developed a model of a type IV collagen network to predict the behavior
of the lens capsule in the eye. This model used an irregular hexagonal network of
fibers to represent collagen IV embedded in a neo-Hookean matrix. The choice
of fiber structure was informed by histological studies and theoretical models on
the mechanisms of collagen IV assembly (Yurchenco and Ruben 1987; Inoue and
Leblond 1988; Barnard et al. 1992). Burd (2008) used periodic boundary conditions,
wherein the performance of the entire network was determined from the response
of the network within a repeating unit cell (Fig. 7). Periodic boundary conditions
eliminate the possibility of any adverse boundary effects creeping into the simulation
due to improper sizing of the representative volume, but they assume that the network
structure is infinite and repetitive and so it is not the optimal choice to model random
networks.

Burd (2008) experimented with two different types of constitutive equations for
the collagen fibers; one was linearly elastic, and the other included a strain energy
defined so that the incremental stiffness of the fibers approached a constant value
for increasing values of strain. The matrix surrounding the fibers was neo-Hookean.
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Fig. 7 The 2-D network
used by Burd (2008). The
dashed rectangle shows the
periodic cell whose repeated
translation forms the infinite
network shown. Image
reprinted from Burd (2008)
with permission from
Springer

Burd (2008) assumed that collagen networks primarily assemble into 2-D sheets and
that the surroundingmatrix is incompressible. Previously existingmodels for the lens
capsule (e.g., Fisher 1969) were based on constitutive equations developed for the
entire tissue and did not consider the geometric effects of the network structure, and
they did not capture the geometric nonlinearity of the networkwhichwas captured by
the model of Burd (2008). The model of Burd (2008) was able to match both uniaxial
and biaxial experimental data even though it used a simple neo-Hookean model for
the matrix. Interestingly, Pedrigi et al. (2007) have had success of late using a fiber-
composite type model to describe mechanics of the lens capsule, demonstrating that
different models may all work well for the same tissue depending on one’s goal. It
remains difficult if not impossible, however, to relate specific model parameters to
biological changes, such as those seen in Alport syndrome (Gyoneva et al. 2013).

3.2.2 Lung Tissue

The lung undergoes very large deformations without failure and recovers its original
shape. Like most other tissues, the lung has as its major extracellular matrix (ECM)
constituents collagen, elastin, microfibrils (e.g., fibrillin and fibullin), and proteo-
glycans (Setnikar 1955; Yuan et al. 2000). Among these fibers, collagen and elastin
dominate (Fung 1993). Collagen is a stiff and nonlinear fiber, and it provides the
structural framework of the alveolar walls. Elastin is very flexible and can stretch to
almost twice its length without failure, which gives the lung its resilient and elastic
nature. However, the mechanics of lung tissue depend not only on its underlying
constituents, but also on their organization. Keeping this in mind, many models have
been proposed for the lung which use fibrous networks to represent tissue.
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Themodels described below all aimed to develop an accurate numerical represen-
tation of the lung tissue and thereby to predict its behavior under normal physiological
conditions and under extreme (failure) conditions. The interactions between the dif-
ferent fibers found within the lung ECM were modeled by Black et al. (2008) via a
regular hexagonal network. Fibers were represented by springs whose elastic energy
was given as

Es = 1

2
kΔl2 + 1

3
bΔl3. (20)

This form of energy results in the springs being nonlinear with a quadratic force–
displacement relationship. The elastic constant k was assumed to include the effects
of both elastin and collagen, and the parameter b accounted for the nonlinear effect
of collagen. This choice of strain energy introduces nonlinearity to the system but
it is not optimal in that the energy becomes negative for sufficiently large negative
values of Δl, destroying the convexity of the mechanical system. Thus, Eq. (20) can
be used for sufficiently small compressions and appropriate values of b and k, but
care must be exercised because the constitutive equation is not universally valid.

Regular hexagonal structures with pin joints are intrinsically unstable because
they violate the Maxwell constraint. To stabilize the network, Black et al. (2008)
added a constraint on the rotation at each joint (effectively changing the network
from a truss to a frame) by introducing a rotational energy term in the total elastic
energy of the network given by

Er = 1

2
rΔθ2, (21)

where Δθ is the angular rotation of a fiber. The simulated annealing method of
Kirkpatrick et al. (1983) was used to determine the response of this network model
to an imposed strain. Values for k, b, and r were obtained by matching the simulation
to experimental data.

The advantages of this model are that it is easy to implement and matches the
experimental data well, but the actual structure of the networks in the lung ECM
can be more irregular in nature and might not be properly represented by a regular
hexagonal network. Also, introducing a rotational energy penalty term in the elastic
energy to stabilize the network alters the low strain behavior of the network which
is dominated by fiber reorientation into the direction of stress.

A follow-up by the same group (Ritter et al. 2009) investigated the role of the
network structure in the failure mechanics of lung tissue. It is well known that elastin,
an important component of lung ECM can strain up to 200% before failure, but lung
tissue fails at much lower strains (Fung 1993). To match these experimental findings
and to understand better the role of proteoglycans in the lungECM,Ritter et al. (2009)
modeled lung tissue with a ‘zipper’ network model (Fig. 8). In this network, elastin
fibers did not percolate through the network but overlapped from opposite sides in a
zipper-likemanner. These elastin fiberswere connected to each other via a network of
proteoglycans. The reasoning behind this construction was that elastin and collagen
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Fig. 8 The ‘zipper’ network
used by Ritter et al. (2009).
Thick lines represent elastin
fibers and thin lines are
proteoglycans. Image
reprinted from Ritter et al.
(2009) with permission from
Proc. Natl. Acad. Sci. USA

are load-bearing fibrous proteins embedded in a gel made up of proteoglycans, which
are necessary for the stability of the ECM. Each elastin and proteoglycan fiber were
represented by a linear spring with a torsional spring at the pin joints to constrain
rotation of fibers. The net elastic energy in the network was given by

E = 1

2
kΔl2 + 1

3
rΔθ2. (22)

This model used linear springs and a very simplified structure for the tissue net-
work, but an important point to be noted from the results are that the properties of a
network can vary greatly from those of its constituent fibers. In this case, Ritter et al.
(2009) noticed that the strain at failure for the tissue was much lower than that of an
individual elastin fiber, a result attributed to the presence of the proteoglycan fibers
in the network. The stress at failure was dependent on elastin fibers since these fibers
bore majority of the load (Fig. 8). The predictions of this model could be improved
by using nonlinear fibers and accounting for the presence of collagen.

The same group has also developed several similar models to study lung tissue
mechanics and diseases (e.g., fibrosis). They have looked atmechanics of the network
with variation in fiber properties (Oliveira et al. 2014) and effects of network failure
in lung tissue (Suki et al. 2012). However, these models use the same network model
with small variations and thus will not be discussed here.

Another model of lung tissue by Maksym et al. (1998) started with a similar
regular 2-D structure. Irregularity was added to the network by randomly perturbing
the node positions. Maksym et al. (1998) assumed each of their fibers to be a parallel
combination of a collagen and elastin fibril. Elastin was represented by a linear
spring element while collagen was represented by a string. As an individual pair was
stretched, the collagen string element was initially flaccid and provided no force as
long as the stretched length was less than a predetermined contour length. Beyond
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this threshold length, the string became taut, and the unit became much stiffer. The
force–displacement relations were of the form

F =
{
kelas(l − l0) l ≤ lk
kelas(l − l0) + kcol(l − lk) l ≥ lk .

(23)

Variability was added to the parameters lk , kelas, and kcol by selecting values using
a distribution function (e.g., Gaussian distribution or a power law distribution). The
model used a variation on the simulated annealing method (Kirkpatrick et al. 1983)
to find the equilibrium positions of the nodes.

The model of Maksym et al. (1998) is a highly simplified representation of lung
ECM, and it does not capture the nonlinear behavior of each fiber well. The combina-
tion of linear spring and stringwill lead to a sudden change in slope of the stress–strain
curve when the collagen fibers start extending, whereas the experimental data predict
a more gradual increase in stiffness. However, this model is computationally inex-
pensive and shows the heterogeneous load distribution within the network at large
strains and the formation of preferred pathways for stress transmission. Understand-
ing the formation of these pathways could be used to develop accurate bulk failure
models for lung tissue.

3.2.3 Red Blood Cell Cytoskeleton

The red blood cell (erythrocyte) cytoskeleton is a remarkable structure. It provides
a structural framework for the cell and can undergo and recover from large defor-
mations fairly easily. An erythrocyte has a life span of 120 days, during which it
circulates through the body around a million times, squeezing through narrow blood
vessels. These extraordinary mechanical properties arise due to the unique structure
of its cell membrane.

The redblood cell (RBC) cytoskeleton is primarily composedof a spectrin network
tethered to a phospholipid bilayer at sitesmediated by ankyrin, band3, and protein 4.2,
as shown in Fig. 9. The spectrin fibers connect with each other at junction complexes
composed of actin. This network allows the cell to be flexible and undergo significant
changes in shape while also providing a resilient lipid base that helps the cell recover
its original shape when under no load. However, it is believed that this network is
not stationary and it is constantly evolving. With the evolving spectrin network, it is
possible to explain the large deformations and plastic behavior exhibited by the cell.
Certain experiments have also shown that under physiological conditions, spectrin
filaments exist in a dynamic equilibrium between two states, tetramers and dimers
(Bennet 1985; Mohandas and Evans 1994; Li et al. 2007).

The following models aim to study the behavior of the erythrocyte cell mem-
brane and to understand better how its structure allows such remarkable mechanical
behavior. The real cell membrane has a complex topography andmany different com-
ponents but these models make assumptions to simplify the system to only its major



290 R.Y. Dhume and V.H. Barocas

Fig. 9 Arrangement of the components of the RBC cytoskeleton (Hansen et al. 1996)

contributors. A few of the models assume static networks while others incorporate
the effect of network evolution. The goal of all the models is to identify those unique
features of the erythrocyte cytoskeletal network that allows its extreme deformation
and resilient behavior.

A cytoskeleton model developed by Hansen et al. (1996) assumed the network to
be made up of spectrin tetramersconnected to each other at actin junctions. Hansen
et al. (1996) used images of the RBC cytoskeleton to obtain certain topological
parameters of the network structure (e.g., the average number of spectrin molecules
per actin junction, and the distribution of spectrin dimer lengths). These parameters
were then used to create simulated networks that were structurally different but had
similar parameter values. All the fibers in the network were modeled by an appro-
priately selected constitutive equation. Thus, this model accounted for two essential
properties of the RBC cytoskeleton, the network topology and the elasticity of indi-
vidual spectrin molecules. Networks were created using Delaunay triangulation with
each edge representing a spectrin tetramer and each node corresponding to an actin
junction. By controlling the standard deviation of nodal degree and the standard
deviation of mean fiber length, the Delaunay networks were modified to match the
network parameters measured from images. Hansen et al. (1996) assumed a linear
force–displacement relationship for the spectrin tetramers. Cauchy stresses in the
network were calculated from the reaction forces on the boundary nodes as
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(∑
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−

∑
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where the superscripts R, L, T and B denote the right, left, top, and bottom face of the
2-D network, respectively, while σi j are the components of the 4 × 4 Cauchy stress
tensor and F1 and F2 are the forces on the boundary nodes in the x and y direction,
respectively. The forces from opposite boundaries (top and bottom, left and right)
were averaged since normally, the forces on both sides, following this method of
calculation, need not be equal.

The model of Hansen et al. (1996) is relatively easy to implement and not
very computationally demanding, especially with the assumption of a 2-D network.
Another advantage of this model is that the network generation procedure can be
easily modified to include spectrin hexamers (by connecting the three nodes of a
Delaunay triangle with a Y -shaped element), thus allowing the creation of networks
made entirely of spectrin tetramers or hexamers or any combination of the two. Such
an approach is, however, sensitive to the sample size and boundary effects. Also, the
Cauchy stress tensor calculated from reaction forces will not necessarily be symmet-
ric since the forces on the top–bottom and left–right boundaries will not always be
the same. This network also does not take into account the entropic elastic effects of
spectrin and is entirely based on an enthalpic approach.

A different approach at modeling the cytoskeleton can be seen in the work by Li
et al. (2007). A molecular dynamics approach was used to model the cytoskeletal
network. This approach modeled the filaments and other nonfilamentous compo-
nents of the network as spheres that interacted with each other through appropriately
chosen potential energy functions. The chosen functions could be complex N -body
potentials or simple pair potentials like the Lennard-Jones (LJ) potential.

The method of Li et al. (2007) has the advantage that it can accurately model
interactions between fibers (e.g., due to steric effects and contact). It also captures
well the effect of temperature on the system behavior. Also, the use of the LJ potential
to describe spectrin–actin bonding leads to continuously evolving bonds, which can
break and reform as the distance between the spheres changes. The string of spheres
used to represent spectrin filaments can be thought of as a network of nodes with
nodal degree 2. The nodal degree of these nodes, however, changes as the spheres
in one filament interact with spheres representing other filaments and nonfilamen-
tous material. However, due to the small time scale and large number of degrees of
freedom, simulations can only be run for a very short amount of time. The choice of
potentials greatly affects the forces that the fibers experience.

Another cytoskeleton model proposed by Boal (1994) (see Fig. 10 therein) took
into account the entropic effects using freely jointed chains in a 3-D network. In
this model, each spectrin tetramer was represented by a self-avoiding chain of nseg
segments, each of which was composed of a straight flexible tether connected to
nseg + 1 vertices represented by spherical beads of diameter a. The ends of these
chainswere connected to junction verticeswith a coordination of 6 to form a network,
in the same way that spectrin tetramers are joined by actin and protein 4.2. The chain
midpoints were constrained to lie on the computational bilayer defined by the plane
z = 0, similar to the way spectrin is attached to the lipid bilayer by ankyrin. All other
chain segments could undergo free motion above the bilayer plane. In order to ensure
a nonintersecting chain, a minimum length of a and a maximum length of

√
2a were
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Fig. 10 Example of the
network used by Boal with
nseg = 20. a Viewed normal
to the bilayer b Viewed
along the bilayer. Notice that
no elements are allowed to
cross the bilayer (below
z = 0). Image reprinted from
Boal (1994) with permission
from Elsevier

imposed on the tethers. These lengths were enforced in the simulation by use of an
intervertex potential V given by

V (r) = Vattractive(r) + Vrepulsive(r), (26)

where the repulsive potential Vrepulsive was defined for all vertices as

Vrepulsive(r) =
{

∞ for 0 < r ≤ a

0 for r > a,
(27)

and the attractive potential Vattractive was defined only for nearest neighbor vertices
as

Vattractive(r) =
{

∞ for r >
√
2a

0 for r ≤ √
2a.

(28)

The model used a Monte Carlo algorithm to simulate and propagate the network
using periodic boundary conditions in the X and Y directions. At each step, the beads
were moved by a predetermined finite step size (in the published simulation a step
size of 0.1a was used), and the new configuration was accepted or rejected based on a
Boltzmannweight. The simulation generated a set of configurations whichwere used
to calculate the ensemble averages of macroscopic observables like the simulation
box lengths Lx and Ly and its area Axy . Network elastic constants can be determined
using these ensemble averages via fluctuations as
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βKA = 〈Axy〉
〈A2

xy〉 − 〈Axy〉2 , (29)

where β = 1/(kBT ), KA is the area compression modulus of the network and 〈•〉
denotes an ensemble average. The shear modulus μ is determined from (see Boal
1994 for the derivation)

(βKA)
−1 − (βμ)−1 = 4〈A〉

( 〈Lx L y〉
〈Lx 〉〈Ly〉 − 1

)
. (30)

Thismodel assumes the network to be composed entirely of spectrin tetramers, and
needs a considerable amount of computing power and time to obtain the large number
of configuration snapshots needed to make the ensemble averages meaningful (as
evident from their simulation taking 1 year to complete on a 40MHz processor).
It considers the effect of steric interactions and entropic effects on the network
behavior, however, which is a significant advantage. Boal’s results were different
from networks composed only of Gaussian springs, showing that steric effects at the
small length scales are important. Another possible drawback is that this model is
dependent on the chosen interparticle potential functions.

Li et al. (2005) modeled the cytoskeleton with a 2-D network formed on the
surface of a 3-D volume. This model captured the mechanical contribution of the
lipid bilayer aswell as themechanics of the fiber network underlying it. This approach
of modeling the entire RBC was based on a previously developed model by Discher
et al. (1994).

In themodel of Li et al. (2005), the network nodes are formed at actin junctions and
network edges represent spectrin fibers, as seen in earlier models. The entire network
is made up of triangular elements which form the surface of a three-dimensional
enclosed volume. Assuming that the triangles tessellate the entire surface of the
enclosed volume, the surface area and the volume of the cell can be calculated by
knowing the coordinates of the vertices of each element (xn , xm , xl):

A(i) = |(xm − xl) × (xn − xl)|
2

, Vtotal =
∑

i

x(i) · n(i)A(i)

3
. (31)

Here, x(i) = (xn + xm + xl)/3 is the center of mass of the triangular element i , and
n(i) is the normal to the element pointing toward the exterior of the cell.

The approach of Li et al. (2005) to simulate this system uses coarse grained
molecular dynamics which balances the forces on the nodes (i.e., f intn + f extn = 0) to
obtain their equilibrium positions. The forces in the previous equation are obtained
from an energy term defined as

Wtotal = Win−plane + Wbending + Wsurfacearea + Wcellvolume. (32)
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This energy term includes the contribution from in-plane stretching of the spectrin
network along with constraints on the curvature of the bilayer and cell volume and
surface area which are of the form

Wcellvolume = kv(Vtotal − Vdesired)
2, (33)

Wsurfacearea = ka(Atotal − Adesired)
2, (34)

Wbending =
∑

adjacent i, j

{kbend[1 − cos(θi j − θ0)]}, (35)

where the constants kv, ka and kbend include appropriate scaling terms. The bending
energy is calculated by summing over adjacent triangular elements where θ0 is the
ideal curvature angle between the normals of adjacent elements.

These terms act as a feedback control system, increasing the energy of the system
if any of the properties (curvature, volume, or area) deviate from the desired value.
Forces acting on nodes can be obtained from this energy density function. The forces
fWLC due to worm-like chain (WLC) fibers are given by

fWLC = −kBT

Lp

[
1

4(1 − x)2
− 1

4
+ x

]
, (36)

where L0 is the contour length, L is the chain end-to-end distance, and Lp is the
persistence length.

This model is able to track the shape evolution of the full cell and predict the
equilibrium shape of the surface of the cell. It also reasonably models experiments
where the cytoskeleton undergoes large deformations without failure (e.g., in an
optical tweezer stretching experiment).

3.2.4 Other Models

All the previous network approaches described here represented fibers as either lin-
ear or nonlinear springs or modeled them as molecules interacting with each other
through potential energy functions. Another popular approach (vanDillen et al. 2008;
Zagar et al. 2011; Ma et al. 2013; Nair et al. 2014; Wang et al. 2014; Zagar et al.
2015) discretizes fibers into beams (e.g., the beam of Timoshenko 1921), allowing
them to be solved using traditional finite element methods and commercially avail-
able FE software. Such models generally perform better than the models using truss
(line) elements to represent fibers in cases where the fibers are short and stiff (i.e.,
persistence length is greater than contour length). This is because beam elements
account for the shear and bending along the fiber, whereas in a line element only
axial loads can be considered and bending (if any) needs to be accounted for in other
ways.

One of the models using a discrete-fiber network approach by Ma et al. (2013)
simulated ECM remodeling and long-range stress transmission due to contractile
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activity of cells. The model of Ma et al. (2013) used confocal microscope images
of a cell and its surrounding environment to generate their network. A similar study
published later by Nair et al. (2014) used networks that were generated by uniformly
distributing fibers in the computational domain. Crosslinks were formed at the inter-
section of two fibers. This method of generating random fibers offers the advantage
of being simple to implement but it does not translate easily to three dimensions.

Fibers were represented by flexible Timoshenko beam elements. This led to the
following expression for the total strain energy

W = 1

2

Nfibers∑

i=1

∫ [
E I

(
∂ψ

∂s

)2

+ E A

(
∂u

∂s

)2

+ λGA

(
∂v

∂s
− ψ

)2
]

, (37)

where E is the Young’s modulus, G is the shear modulus, I is the second moment
of area of fibers, ∂u/∂s is the axial strain, ∂v/∂s is the rotation of the fiber and ψ

is the rotation of the plane perpendicular to the normal axis of the fiber (i.e., fiber
bending).

To simulate cells and cell contractility in the network, all the fibers lying inside
the area enclosed by the cell were removed, and those fibers that terminated on the
boundary were fixed to nodes generated on the cell boundary. An isotropic inward
displacement was applied on this boundary to mimic the effect of cell contraction.

Another study using the discrete-fiber network model used a more complex
method of generating random networks. Zagar et al. (2011) derived a scaling relation
for the nonlinear behavior of actin networks to study the mechanics of cell cytoskele-
tons. In their work, Zagar et al. (2011) used 3-D isotropic networks of athermal
filaments generated using the algorithm introduced by Huisman et al. (2007). An
attractive force field with a 1/r2 dependence set in motion filaments of initial length
l0 in a periodic box. The filaments were also assumed to be moving in a viscous
fluid which provided a drag force. Crosslinks between fibers were formed when two
filaments got within a predetermined cut off distance of each other. The number of
filaments in the box was determined by the concentration of the filament material.

3.3 Evolving Network Models

In this section we briefly discuss network models which account for the variations
in network properties over time, including viscoelasticity, network remodeling, and
failure.

3.3.1 Viscoelastic Network Models

Biological networks are viscoelastic in nature. For example, Fig. 11 shows the vis-
coelastic response observed in a collagen gel. Several studies numerically modeling
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Fig. 11 Viscoelastic
relaxation behavior observed
in a collagen gel

viscoelastic networks have aimed at understanding and modeling the behavior of
the cell cytoskeleton. Besides providing structure to the cell, the cytoskeleton of a
cell plays a very important role in cell functions such as locomotion, force sens-
ing, and remodeling of the external environment. The viscoelastic response of the
cytoskeleton has been seen in various experimental studies (e.g., Bausch et al. 1998;
Janmey and Weitz 2004; Mizuno et al. 2007). Different factors can contribute to the
viscoelasticity seen in microfilament networks such as sliding of entangled fibers,
the bending-stretching transitions in rigidly cross-linked networks, and the intrinsic
viscoelastic nature of the microfilament itself.

One of the methods used to model viscoelastic networks assumes the network to
exist in a volumefilledwith a viscous fluid.An example of this is themodel developed
by Bottino (1998) to represent the actin cytoskeleton of an amoeboid cell. This model
uses the immersed boundary method (Peskin and McQueen 1989). The network is
represented by N points Pi in a 2-D domain 
 connected by elastic links similar
to several other models described previously. The fluid surrounding the network is
modeled using the incompressible Navier–Stokes equation

ρ

(
∂u
∂t

+ u · ∇u
)

= −∇ p + μ∇u + F, (38)

where ρ is the fluid density, u is the fluid velocity, p is the pressure, μ is the fluid
viscosity, and F contains the forces acting on the fluid due to the immersed network.

Forces arise in the network as the nodes are carried along at local fluid velocities
u(Pi , t) leading to stretching of the interconnecting links. By varying the stiffness
of the links over time, Bottino (1998) achieved different network properties, e.g., a
simple fluid behavior when the stiffness of every link, Ki j (t) = 0, a memory net-
work when Ki j (t) = Ki j (0) and even network failure by dropping the stiffness of
‘ruptured’ links. The force F transmitted to the fluid from the immersed network is
calculated from the net forces acting on a small part of network enclosed by a rectan-
gular area ΔA = [x1, x2] × [y1, y2] due to the network lying outside this envelope.
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Fig. 12 Spring-dashpot
representation of a SLS

Thus,

F =
∫ x2

x1

[Ty(x, y2) − Ty(x, y1)]dx +
∫ y2

y1

[Tx (x2, y) − Tx (x1, y)]dy, (39)

where Tx and Ty are tractions on the surfaces with normals in the x and y directions,
respectively.

This method of modeling networks has the advantage that it can be used to model
two-phase flow and account for the interaction between the network fibers and sur-
rounding matrix. Another advantage is that with appropriate modifications (e.g., if
the viscous fluid is replaced by a viscoplastic solid model), matrix failure due to
high local stresses within the matrix can be modeled. Two possible modes of failure
within a network, failure of fibers and failure of the non-fibrillar matrix, can then be
considered. The potential pitfall of this method, however, is that it can become com-
putationally expensive as the fiber density of the networks is increased and especially
in the context of a 3-D multiscale approach as discussed in Sect. 4.

Another possible method of simulating viscoelastic networks, and the approach
that we have used in our rigidly cross-linked network models, represents fibers with
an appropriate constitutive equation (e.g., a Standard Linear Solid (SLS), as shown in
Fig. 12). 3-D networks are generated using either Delaunay or Voronoi tessellations.
Network parameters such as its fiber density, alignment, etc., are selected based on
the tissue being modeled. Networks are deformed by applying displacement bound-
ary conditions on the nodes lying on the faces of the network. Internal nodes are
allowed to equilibrate and find new positions such that the forces on these nodes
are minimized. Nodal forces arise due to fibers stretching and are evaluated using
the constitutive equations selected to represent fibers. An advantage of using such a
model is that it allows simple simulation of networks with multiple types of fibers
and/or fibers whose properties vary over time since only the parameters defining the
constitutive equation need to be changed. This model can also be used to simulate
network failure (Wang and Sastry 2000). However, the calculation of stresses is based
only on the fiber network and does not consider the matrix material surrounding the
fibers. This can be modified to include the matrix material such that the non-fibrillar
matrix component (e.g., neo-Hookean) is stretched in parallel to the fiber network
and its contribution to the overall stress is added to that calculated from the fiber
network (Stylianopoulos and Barocas 2007a; Lake and Barocas 2011; Lake et al.
2012). This method simplifies the simulation while slightly compromising on the
accuracy of the results (see the discussion in Zhang et al. 2013a, b).
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4 A Multiscale Approach to the Network Problem

In this final section, we address a fundamental challenge in network modeling of
tissue mechanics. As seen in Sect. 3, there are numerous biological systems in which
the network problem is interesting and important, and the high-level view offered by
the affine assumption is not always sufficient. Solving network problems, however,
is extremely demanding computationally, and the sheer size of the network problem
rapidly becomes prohibitive. A single migrating cell, e.g., may contain thousands or
even millions of actin filaments, and even a relatively dilute collagen gel contains
millions of collagen fiber segments per cubic millimeter. Thus, if one wishes to
account for network effects within a large system, some approximate scheme is
required. The scheme presented here represents an intermediate step between the
affine assumption and the fully explicit network model. Details may be found in
Chandran and Barocas (2007), Stylianopoulos and Barocas (2007b), Chandran et al.
(2008) and Sander et al. (2009).

4.1 Basic Assumptions

In themodeling framework, certain assumptions about the tissue properties aremade.
These assumptions are essential for the framework to be theoretically sound, and,
although the methods described will still produce results even if the assumptions are
violated, caution must necessarily be taken in their interpretation.

4.1.1 The Microscopic Network

It is assumed that the tissue consists of a network that contains fibers connected at
freely rotating joints (i.e., a truss network). This assumption is not formally necessary,
but wewill develop the theory for this case. In this assumption, we use the term ‘fiber’
in its general sense and do not distinguish among fibers, fibrils, filaments, etc.

It is also assumed that the network is at all times at mechanical equilibrium, so the
sumof the forces on any point is zero and the divergence of the stress anywherewithin
an individual fiber is zero. In extremely rapid situations (e.g., traumatic injury), the
inertia of the system would require a different theoretical approach.

The fiber network contains two types of nodes, interior nodes andboundary nodes.
It is required that the network be large enough that boundary artifacts are negligible
(typically having a network length scale at least ten times the connection length scale;
see Shasavari and Picu (2012) for more discussion of this matter).

Finally, it is assumed that the random networks in the model are statistically
homogeneous, that is any random network generated according to the problem spec-
ifications exhibits, to within reasonable error, the same macroscopic properties as
any other network so generated even though the fine details of the two networks
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may differ. This assumption is closely related to the previous one. Our experience
is that about 500 fibers is typically sufficient for a two-dimensional problem and
1000–2000 fibers is typically sufficient for a three-dimensional problem, depending
on the nature of the specific networks under study.

4.1.2 Displacement of the Representative Volume Element

The central construct of our multiscale approach is a RVE at each integration point in
the macroscopic finite element model. The networks within the RVE are constructed
as described above, but two additional restrictions on the RVE must be considered.

First, it is assumed that theRVE is small compared to the continuum (macroscopic)
scale. Of course, if the RVE is not small, then there is minimal benefit in constructing
a multiscale model since there are not really multiple scales. Nevertheless, it is
important to recognize that the RVE represents a region of finite size, and one should
always confirm that the RVE dimensions are significantly smaller than the finite
element dimensions.

Second,we assume that because the network is sufficiently large, the displacement
of the boundaries for eachRVE is given by themacroscopic displacement field around
the corresponding integration point. That is, all nonaffinity arises from motion of
the interior nodes in the RVE, whereas the boundary nodes of the RVE track the
macroscopic displacement field.

Those assumptions create the framework for the first step in the computation,
passing displacement information from the macroscopic (FE) to the microscopic
(RVE) scale.

4.2 The Multiscale Algorithm

4.2.1 Equilibrating the Microscopic Network

The system is assumed to be quasistatic, so mechanical equilibrium of the micronet-
work for each RVE is obtained by solving the force balance on all nodes simultane-
ously, in conjunction with the boundary conditions obtained from the macroscopic
scale:

Find a set of x (k)
i values such that

n(k)∑

j=1

f ( j)
i = 0 k is an interior node, (40)

x (k)
i = x (k),macro

i k is a boundary node, (41)
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where the superscript k refers to node number, the superscript j refers to fiber number
on each node, and the subscript i is the index and runs from 1 to 3 in three dimensions.
This problem is fairly straightforward and can be solved by a zero-finding method
(e.g., Newton iteration) or a minimization scheme (minimizing the system energy
instead of balancing the nodal forces). Once the nodal positions and fiber forces have
been determined, the next step is to compute the average stress within the RVE.

4.2.2 Average Cauchy Stress Within the RVE

Before continuing, we note one more important assumption underlying our method.
Although the fine detail is essential for defining the material behavior, it is assumed
that the average Cauchy stress varies slowly enough with respect to the macroscopic
scale that the integrals calculated via the integration points are accurate, and that the
average Cauchy stress is sufficient to represent the stress state of the tissue at the large
scale. That is, although σi j,k might be quite large, if we consider the volume-averaged
stress 〈σi j 〉, then 〈σi j 〉,k is not too large.

The average Cauchy stress within the material is defined as

〈σi j 〉 = 1

Vω

∫

ω

σi jdV, (42)

where ω is the RVE, and Vω is its volume. It is convenient to introduce a factor of
xi, j , which is just the derivative of x with respect to itself and thus the identity, so

〈σi j 〉 = 1

Vω

∫

ω

σik x j,kdV . (43)

Integration of the above by parts yields

〈σi j 〉 = 1

Vω

∫

ω

(σik x j ),kdV − 1

Vω

∫

ω

σik,k x jdV . (44)

The first term can be converted to a surface integral by the divergence theorem,
and the second term is zero because σik,k = 0 under the assumption of mechanical
equilibrium, so we write

〈σi j 〉 = 1

Vω

∫

∂ω

σik x j nkdA, (45)

where ∂ω is the boundary of ω, and nk is its unit outward normal. Noting that
σiknk is the traction vector fi on the surface, and assuming that the fiber diameter is
sufficiently small that x and f do not vary significantly over the area of intersection
between a given fiber and the boundary, we can replace the integral with a sum over
boundary nodes so that
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〈σi j 〉 = 1

Vω

∑

boundary
nodes b

f (b)
i x (b)

j . (46)

That is, the average Cauchy stress within the RVE is calculated from boundary node
forces and positions. It can be shown that if all forces in the network are along the
fibers, the above construction gives a symmetric average Cauchy stress tensor.

The averaged Cauchy stress for each RVE is calculated and passed up to the
macroscopic problem.

4.2.3 The Macroscopic Averaged Cauchy Stress Balance

If one wishes to allow the averaging volume to deform, as ours does, one must recog-
nize that the volume-averaged Cauchy stress can change because of local variations
or because of changes in the RVE shape with position. This result, which derives
directly from Leibniz’s Rule for differentiation of an integral, is derived elsewhere
(Chandran and Barocas 2006) and can be written as

〈σi j 〉, j = 1

Vω

∫

∂ω

(σi j − 〈σi j 〉)uk, j nkdA, (47)

where uk is the displacement of the RVE boundary. The term on the right-hand side
accounts for changes in the average due to correlations between boundarymotion and
stress. It is calculated from the RVE solution once the average stress 〈σi j 〉 has been
determined. This extra term, while theoretically important, is usually small (<5%
change in result) and can be time-consuming to compute, so it is often convenient to
omit it in preliminary calculations.

4.2.4 The Coupling Loop

The problem is solved in fully coupled form using Newton iteration. An initial
guess is made of the macroscopic displacements, from which each RVE’s boundary
displacements are determined. The individual RVE problems are solved (usually in
parallel on a high-performance computational platform), and the averaged stresses
are calculated. We also calculate the Jacobian matrix for the large nonlinear problem
analytically by calculating the derivative of the averaged stress with respect to the
macroscopic nodal positions. The key to the Jacobian calculation is to recognize that
changes in the macroscopic nodal positions lead to changes in the boundary node
positions in the RVE, which in turn lead to interior node position changes as the
system reequilibrates:
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∂〈σi j 〉
∂xmacro

k

=
(

∂〈σi j 〉
∂ f boundarym

)(
∂ f boundarym

∂xboundaryp

)

mechanical
equilibrium

(
∂xboundaryp

∂xmacro
p

)
. (48)

The first term is readily derived from Eq. (48) above, and the third term is like-
wise straightforward because the boundary nodes are required to move affinely with
the macroscopic displacement field. The second term, however, is somewhat more
complicated, and is best evaluated by breaking it down further,

(
∂ f boundarym

∂xboundaryp

)

mechanical
equilibrium

=
(

∂ f boundarym

∂x interiorq

)(
∂x interiorq

∂xboundaryp

)

=
(

∂ f boundarym

∂x interiorq

)⎡

⎣−
(

∂ f interiorr

∂x interiorq

)−1 (
∂ f interiorr

∂xboundaryp

)⎤

⎦ . (49)

The last expansion arises because when a boundary node moves, that causes
an imbalance in the interior forces ∂ f interior/∂xboundary, which must be corrected
by moving the interior nodes (∂ f interior/∂x interior)−1. The net effect of these two
terms is the differential change in interior node position required ∂x interior/∂xboundary

to remove the force imbalance generated by boundary node motion. The quantity
∂ f interior/∂x interior is calculated already as part of the Jacobian calculation for the
networkmechanics problem, so it does not require significant additional computation.

Thus, a full Newton loop is possible between the macroscopic and microscopic
scales. The RVE problems are solved, and the average stress balance of Eq. (49)
checked for each macroscopic finite element basis function. If it is not converged,
a Newton update step is performed, and the RVE calculations are repeated for the
new nodal positions. The new average stresses are passed back to the macroscopic
scale, and the process repeats until all macroscopic and microscopic calculations
have converged. Figure13 provides a schematic of the process.

4.3 More Advanced Models and Future Directions

The methods described in this section work very well for simple models of a single
component network, but their potential value is not in such simple problems. Rather,
it is in their ability to address issues on the single-fiber level and the continuum level
simultaneously. For example, failure of a tissue can be modeled at the continuum
scale (Ionescu et al. 2006), but then it is not obvious how to introduce changes in
tissue architecture into themodel parameters. Bymodifying themicrostructure in the
multiscale model, however, one can change the macroscopic behavior of the tissue
by changing only the structural and not the biomechanical parameters (Hadi et al.
2012b). This approach, especially if combined with more realistic models of the
tissue, has potential to produce some new and interesting results. Of course, defining
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Fig. 13 Flow chart of the multiscale finite element procedure

what a realisticmodel is is bynomeans trivial andhas numerous challenges, including
determining what components need to be considered, how they will be arranged, and
how different RVEs should be populated to account for variability within the tissue.
Nevertheless, it is our hope that as imaging methods continue to improve, more
and more information will become available about tissue architecture in health and
disease.

Similar comments could be made about tissue remodeling. A model in which
individual fibers change in response to degradation (Hadi et al. 2012a) or synthesis
could potentially provide a great deal of insight into the detailed mechanisms of
remodeling and how they translate from the microscopic to the macroscopic scale.
Cell-driven compaction can also be modeled (Aghvami et al. 2013), and models of
a cell in which the cytoskeleton is represented by a fiber network are also possible
(Lai et al. 2013). Even more than the failure problem, the mathematical modeling of
interactions between the cell and the ECM, or of the mechanics of the intracellular
matrix, remains a challenge from the biophysical standpoint and from a numerical
standpoint, but such problems could be studied within the context of the methods
described in this section if sufficient resources and information were available.
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