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    Chapter 9   
 Metabolic Control: Immune Control?                     

     Quirin     Zangl     and     Alexander     Choukèr       

9.1       The Essence of Metabolism 

 Metabolic challenges under the condition of space have been reported from the very 
beginning of human spacefl ight as by the effects on the muscular and skeletal sys-
tem. The causes and the consequences for metabolism, which includes “construc-
tion” (anabolism) and “destruction” (catabolism) of energy depots and tissues on 
the organic level, respectively, are not well understood because of their complex 
orchestrated network of endo-, auto-, and paracrine pathways in the regulation of 
the cell metabolic functions. Such metabolic and infl ammatory causes are, for 
example, considered to be strongly contributing to the degeneration of the musculo-
skeletal system, as observed during spacefl ights (Smith et al.  2015 ). 

 All metabolic changes result from substrate and enzyme interactions at the cel-
lular and subcellular levels. Here, the recurrent pathways use “downstream” prod-
ucts of carbohydrate-, fat-, and protein-metabolism to fi nally confl uence into the 
high-energetic reduction equivalents nicotinamide adenine dinucleotide (NADH/
H + ) and fl avin adenine dinucleotide (FADH 2 ). Together with oxygen, they are con-
verted into the ubiquitary cellular source of energy, adenosine triphosphate (ATP) in 
the mitochondria. To produce ATP, products of intermediate metabolism enter the 
Krebs cycle and deliver electrons for reduction equivalents NADH/H +  and FADH 2 . 
Finally, these equivalents are oxidized by oxygen while delivering energy for the 
creation of the proton gradient over the inner mitochondrial membrane. The estab-
lishment of the proton gradient is regulated by four distinct enzymes (mitochondrial 
“complexes 1-4”), located in the inner membrane and known as the  electron trans-
port chain . The backfl ow of protons into the mitochondrial matrix is used by ATP- 
synthase (mitochondrial complex 5) for ATP synthesis (Mitchell  1961 ). For this 
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reason, and besides many other physiological functions (Galluzzi et al.  2012 ), 
 mitochondria are considered the metabolic “heart” of the cells, tissues, and organs 
[for an overview, see Fig.  9.1 ].

   Besides well-known lethal effects of poisons such as cyanides that block the 
respiratory chain, there is only very little knowledge about clinically applicable 
pharmacological substances that affect mitochondrial function directly and exclu-
sively. In contrast, side effects of commonly used drugs on mitochondria are better 
established, but to the best of our knowledge, until now,  mito - drugs  do not exist 
(Parikh et al.  2009 ). However, manipulation of cellular metabolism on the mito-
chondrial level could be a unique and direct pathway to control and manipulate cell 
functions and thereby modulate organ-functioning under stressful situations, like 
lowered oxygen content in the living atmosphere (hypoxia), microgravity, disease 
states of individuals including infl ammatory processes and altered nutritional sup-
ply, as all those are related to the challenges man has to face to during exploration- 
class space missions in the future.  
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  Fig. 9.1    Overview of ATP-(adenosine triphosphate) synthesis in mitochondria: cytochrome c 
(Cyt), nicotinamide adenine dinucleotide (NADH/H+), fl avin adenine dinucleotide (FADH2), and 
Ubichinon (Q). Enzymes of electron transport chain ( I ,  II ,  III ,  IV ) and ATP-synthase ( V ): I-NADH- 
Q-oxidoreduktase; II-succinatdehydrogenase; III-Q-cytochrom-c-oxidoreduktase; IV- cytochrom-
c-oxidase; V-ATP-synthase. H+: protons       
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9.2     Homeostasis, Oxygen, and Metabolic Derangements 

 Understanding the cellular, the organs’ and the entire organisms’ metabolic adapta-
tion to environmental changes (stressors) in space is inherently multidisciplinary 
and complex and the metabolic adaptation during long-term space and exploration- 
class missions needs to be understood. Especially, the effects of gradual G forces as 
on Moon or Mars together with the effects of lowered oxygen tension (hypoxia) are 
a matter of concern. These additional environmental stressors will affect the space 
crew further, since reduced oxygen content is considered to be implemented on such 
missions and in future habitat designs for various operational and technical 
reasons. 

 Both, changes in gravity and living atmospheres can become key elements affect-
ing the cells’ metabolic states (Heer et al.  2001 ). Thus “metabolic control” has 
become more critical during such missions since it can mitigate unfavorable changes 
of the cells energy metabolism, the homeostasis. Homeostasis (Greek: ὁμoιoστάσις- 
balance) is the property of a system in which input and output variables are regu-
lated in a way that internal conditions remain stable and tissue-specifi c requirements 
can be realized on a cellular level. Here, there are many actuating variables, like the 
pH, electrolyte distribution, water distribution, membrane potential, and tempera-
ture, which have to be adjusted exactly by energy-consuming biochemical reactions 
to enable homeostasis also of the immune cells. Mitochondria are the cellular com-
ponents providing the energy for maintaining homeostasis. The function of these 
organelles is related to the use of oxygen since more than 90 % of the whole bodies’ 
oxygen consumption takes place in the mitochondria (Ernster and Schatz  1981 ). 
During basal metabolism, the oxygen yield is almost complete; experiments have 
shown that oxygen consumption in Complex 4 (cytochrom-c-oxidase, the actual 
place of oxygen consumption) cannot be increased more than 16–40 % (Gnaiger 
and Kuznetsov  2002 ; Boveris and Britton  1973 ; Gnaiger et al.  1995 ; Nolana et al. 
 2010 ). In contrast, increasing evidence demonstrates that, during critical situations 
like systemic infl ammatory response syndrome (SIRS), additional donation of oxy-
gen can boost the immune response and further aggravate potential disease states 
(Strewe et al.  2015a ; Zangl et al.  2014 ; Marconi et al.  2014 ; Saugstad  2005 ; 
Deulofeut et al.  2006 ; Deuber and Terhaar  2011 ; Kallet and Matthay  2013 ; Pagano 
and Barazzone-Argiroffo  2003 ; Deng et al.  2000 ; Garner et al.  1989 ; Rodríguez- 
González et al.  2014 ). This can be well explained by evolution of life on Earth since 
adaptation mechanisms were predominant to low oxygen concentrations (Hochachka 
 1998 ; Fisher and Burggren  2007 ; Kasting et al.  2003 ) while hyperoxic conditions 
probably did never exist in Earth history (Kasting et al.  2003 ) [see also Chap.   1    ]. To 
date, a good demonstration for such adaptation to lower oxygen levels is the intra-
uterine development of each individual life. Every fetus is subjected to oxygen par-
tial pressures far below the reference areas after birth, though enough oxygen and 
energy are provided to enable the development of all organs. During those most 
complex steps of life-development, arterial partial pressures are low and remain 
between 18 and 26 mmHg, which corresponds to approximately 25 % the worth 
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adults have (Martin et al.  2010 ). So the evading question remains, if and how 
hypoxic environments together with gravitational changes enable mitochondria to 
maintain energy supply for the (immune-)cellular homeostasis, and where a poten-
tial threshold of lowered oxygen tension acceptance will be identifi ed and defi ned 
for such missions?  

9.3     Mitochondria and Immune Control 

 Mitochondria play multiple roles and have a critical impact on the regulation of 
innate and adaptive immune responses. They are important in their functions as bio- 
energetic organelles – as stated above – and in their biosynthetic functions, and also 
as immune cell signaling elements (Weinberg et al.  2015 ). 

  Biosynthetic functions  include key steps of anaplerosis, which is the replenish-
ment of lacking but needed components to realize reaction chains of metabolism. To 
create the “closed loop” of the citrat cycle (TCA, see fi gure 9.1), mitochondria have 
to deliver essential components like acetyl-Co-A, which can also further modify 
proteins (Hensley et al.  2013 ). Another molecule, which is substituted in an anaple-
rotical way, is α-ketoglutarate, also used for further immune-signaling (Wellen and 
Thompson  2012 ). Also, reactive oxygen species (ROS) are mostly generated inside 
mitochondria. ROS from mitochondria play a crucial role in the regulation of tran-
scription via NF-kB (nuclear factor ‘kappa-light-chain-enhancer’ of activated 
B-cells), a specifi c transcription factor of almost all cell types in animals. Through 
the tight interaction between mitochondria and NF-kB, hundreds of immune genes 
that are involved in regulating cell growth, differentiation, development, and apop-
tosis, are regulated (Chandel et al.  2000 ,  2001 ). Further infl uences of mitochondria 
on immune cells beyond energy supply are the proper induction of antiviral signal-
ing (Reikine et al.  2014 ), T-cell activation (Sena et al.  2013 ), CD 4+ T-cell differen-
tiation (Berod et al.  2014 ), and regulation of CD 8+ T-cell memory formation 
(MacIver et al.  2011 ). There might be possible interactions between the antiviral 
immune functions and the energetic state of the mitochondria, especially under 
deviant oxygen conditions like hypoxia, which are not well understood today. 

 The role of mitochondria as  signaling elements  is based on the endosymbiotic 
theory, which postulates, that mitochondria and bacteria share the same origin (Nass 
and Nass  1963 ). New insights into the most severe forms of systemic infl ammation, 
sepsis and SIRS, have helped to understand the pathology of the infl ammation and 
the role of mitochondria and bacteria: The two clinical entities of sepsis (induced by 
bacterial components in blood) and SIRS (the immune system’s monotonous- 
systemic answer to any kind of lesion) are triggered by activation of pattern recogni-
tion receptors (PRR) by the innate immune system (Takeuchi and Akira  2010 ). In 
such infl ammatory condition of sepsis, PRR identify pathogen-associated molecu-
lar patterns (PAMPS) from bacteria as the molecular inductors of infl ammation. 
During SIRS, however, damage-associated molecular patterns (DAMPS), directly 
liberated from damaged mitochondria, activate the innate immune response via 
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PRR (Vargas-Parada  2010 ). Both components, PAMPS from bacteria and DAMPS 
from mitochondria, confl uence into a “crossover” activation of immune cells 
through the toll-like receptor-9 [TLR9] and formyl peptide receptor-1 [FPR1] on 
neutrophilic granulocytes (see Fig.  9.2 ), resulting in detrimental consequences for 
patients (Zhang et al.  2010 )

   Thus, the integrity and operational capability of mitochondria are of fundamen-
tal importance for immune functions: if homeostasis could not be balanced, mal- 
performance of immune functions with insuffi cient reactions to pathogens can 
result. Further decrease of mitochondrial metabolism can result in increased ROS 
release with the result of direct cellular damage by liberated radicals. If mal- 
performance of mitochondrial metabolism ensues, the breakdown of ATP-
production and activation of apoptotic pathways with consecutive cell death would 
be the result (Wang and Youle  2009 ). In the case of total metabolic breakdown, 
direct induction of SIRS by mitochondria can occur. Therefore, both mitochondrial 
integrity and functionality are the basis of adequate immune answers. The oxygen 
thresholds for mitochondria to perform suffi cient ATP production are not well 

  Fig. 9.2    PAMPs and DAMPs in the infl ammatory response. Similar to the release of bacterial 
DNA (deoxyribonucleic acid) following sepsis, the mitochondrial DNA released by severe trauma 
can also act through the toll-like receptor-9 (TLR9) to activate neutrophils. Similarly, formylated 
peptides released from bacteria and mitochondria activate the formyl peptide receptor-1 (FPR1) 
and attract neutrophils by the process of chemotaxis to sites of infl ammation and injury. In both 
cases, the outcome may be acute lung injury, which is part of the systemic infl ammatory response 
syndrome (SIRS).  DAMPs  damage-associated molecular patterns,  PAMPs  pathogen-associated 
molecular patterns (redraw after: 2010 Nature Publishing Group (Calfee and Matthay  2010 ))       
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established; in vitro experiments showed good metabolic performance, even under 
hypoxic conditions (Gnaiger et al.  2000 ). The well-known records of mountain 
climbers in the Himalayas demonstrate that acclimatization and training enable life 
with 25 % of the above-mentioned values, though adverse effects on immune func-
tions were observed depending on altitude and exposition time. Currently, inter-
space agency and polar institute research projects in the high Antarctic plateaus are 
conducted to investigate such effects in a systematic manner refl ecting space- 
mission- relevant atmospheric conditions and exposition times (Pagel and Choukèr 
 2016 ).  

9.4     Approaches and Benefi t of Metabolic Control 
During Spacefl ights 

 Obviously, there are many factors in the artifi cial environment of a spacefl ight that 
can negatively affect the maintenance of homeostasis [see Chaps.   1     and   2    ]. If a fast, 
cheap, reversible, and safe method for the (down-)regulation of cellular metabolic 
activity at the mitochondrial level would exist, the below-mentioned problems could 
positively be infl uenced and also related immune responses be controlled, accord-
ingly. The pathways of such an approach include the understanding of the metabolic 
control that can either include direct mitochondrial targeted drugs (such as adenos-
ine) or the regulation by variation of the oxygen concentrations delivered to the mito-
chondria. Ultimately, the control of the immune cells’ metabolisms and the reduction 
of the metabolic rate of the entire organism as such could lead to the induction of 
hibernation. Hibernation is an emerging scientifi c fi eld for biology, human and life 
sciences in general and can become an interesting application for space. It is known, 
from animals and clinical studies in humans that some effects of “tissue hibernation” 
effects can be elicited by the preconditioning of organs. Preconditioning seems to 
have strong biological similarities to physiological states as elicited in hibernation 
and reduces tissue energy consumption and preserves the energy charge of the organ. 
Thereby, it evokes tolerance to further reduced nutritional supply as characterized by 
dampened expression of genes, the functions of which infl uence glucose metabolism, 
protein turnover, cell cycle, regulation, and ion-channel abundance. These features 
together mimic hibernation and hypoxia tolerance, suggesting the existence of a con-
served endogenous genomic program of physiological adaptations to oxygen limita-
tion that improve survival (Stenzel-Poore et al.  2003 ; Heldmeier et al.  2004 ). 

 Cells’ metabolic states do inherently involve signaling through purines and their 
receptors. Adenosine is one of the key molecules that sense lack of oxygen and 
high-energy phosphates. Either cellular stress (hypoxia, reduction of tissue energy 
charge) can result in the production of adenosine and its binding to four different 
adenosine (A1, A2A, A2B, and A3) receptor sites and thereby regulate intracellular 
cAMP levels (Chouker et al.  2012 ; Abbracchio et al.  2009 ; Jinka et al.  2011 ). But 
also stress hormones (see Chap.   2    ), which are released in space, such as endocan-
nabionoids (ECS) (Strewe et al.  2015b ), are candidate ligands that can be involved 
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in cellular signaling related to metabolic control. Endocannabinoids are rapid- 
acting, lipid-signaling molecules that bind to endogenous endocannabinoid recep-
tors. They play a critical role in the integration of adaptive responses of the organism 
to aversive environmental conditions including emotional and physical stress and 
are immune-regulatory (Hill et al.  2008 ; Dlugos et al.  2012 ). Moreover, endocan-
nabinoid receptors are found on the mitochondrial membranes of cells, indicating a 
direct control of mitochondrial functions (Bénard et al.  2012 ).  

9.5     Summary 

 The complexity of requirements during human spacefl ights have led to develop-
ments in various scientifi c fi elds, especially in medicine. Knowledge regarding 
organ performance during critical situations, like degeneration of musculoskeletal 
system, severe illness, reduced nutritional support, and hypoxia is steadily increas-
ing. A potential target point to infl uence such critical conditions is to modulate the 
highly preserved subcellular metabolism in mitochondria. Hypoxic conditions, 
stimulation with external and internal adenosine (or similar [ant]-agonists), and 
cannabinoids may help to reduce cellular metabolism and consecutively reduce 
resources and enable a higher mission success. The use of such pharmacological 
approaches can become a promising tool to mitigate immune- and metabolism-
related risks and offer also new avenues to “metabolically shield” the human from 
the stressors that occur in such long-duration exploration missions.     
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