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Abstract
Advances in research technology with systematic and unbiased measurements of 
transcriptional activity revealed the surprising fact of pervasive transcription of 
mammalian genomes. However, most of these transcripts are not obviously pro-
tein coding nor do they reveal easily inferable biological relevance and thus have 
been termed “noncoding”. This universe of noncoding RNAs with diverse and 
versatile families such as transfer RNAs (tRNA), ribosomal RNAs (rRNA), 
micro-RNAs (miRNA) small nucleolar RNAs (snoRNA) has fuelled an entire 
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new branch of research and already challenged major dogmas in molecular biol-
ogy. Among the diverse classes of noncoding RNAs, long noncoding RNAs 
(lncRNA) have emerged as major regulators of transcription, nucleolar organiza-
tion, and chromatin-modifying complexes. The goal of this chapter is to present 
the state of research of lncRNAs in the context of heart disease and heart failure.

Abbreviations

ChIP-Seq	 Chromatin immunoprecipitation sequencing
eRNA	 Enhancer-associated RNA
lincRNA	 Long intergenic/intervening noncoding RNA
lncRNA	 Long noncoding RNA
ncRNA	 Noncoding RNA
PARP	 Poly ADP ribose polymerase
RPKM	 Reads per kilobase per million mapped reads
TAC	 Transverse aortic constriction
UTR	 Untranslated region

13.1	 �Introduction

Heart failure is among the most prevalent causes for morbidity and mortality in the 
Western world with as many as 1–2 % of the adult population afflicted (McMurray 
et al. 2012). Five-year survival is as a low as 50 %, numbers that underscore the 
severity of this condition (Go et al. 2014; Wong et al. 2014). Heart failure develops 
if the cardiac muscle is unable to comply with the oxygen demands of the organism 
due to either a decrease in systolic function (heart failure with reduced ejection frac-
tion) and/or an increase in ventricular-filling pressures (heart failure with preserved 
ejection fraction), both leading to a decrease in cardiac output and to clinical symp-
toms such as dyspnea, edema, and sudden cardiac death (Hill and Olson 2008).

Heart failure is a dynamic process and the consequence of an intricate network 
of cardiac remodeling processes, including cardiac physiological and pathological 
hypertrophy, atrophy, and dilatation (Frey et al. 2004; Burchfield et al. 2013; Lyon 
et al. 2015; van Berlo et al. 2013). A mechanistic understanding of cardiac signal-
ing cascades and structural cellular components, including receptors and kinases, 
sarcomeric “hubs,” such as the z-disk, transcription factors, and miRNAs, has 
helped to advance current and future medical therapy, for example, medications 
modulating the renin–angiotensin–aldosterone axis (Frank et al. 2006; Packer et al. 
2015; Olson 2014).

Elucidating the genomic sequence of humans has promised to deliver the blue-
print for combatting disease in a causal fashion, directly aimed at its molecular 
roots. Nevertheless, the promises of genomic medicine to develop novel therapies 
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have not been fulfilled yet, but helped to elucidate further levels of complexity in the 
regulation of cellular processes. Research efforts have now turned from individual 
genomic sequences toward sequencing thousands of individuals to unravel genomic 
variation (Lander et al. 2001; 1000 Genomes Project Consortium et al. 2012).

Furthermore, the efforts of research consortiums, such as ENCODE, FANTOM, 
or NIH Roadmap Epigenomics to catalog and analyze regulatory and functional 
elements of different genomes and their epigenetic states are thus only the begin-
ning and leave the research community with vast amounts of data of a complex 
regulatory landscape that now need individual characterization and further refine-
ment (ENCODE Project Consortium 2012; Forrest et  al. 2014; Kundaje et  al. 
2015).

Epigenetics is classically defined as the field of genetic research that analyses the 
phenotypic changes imposed by mechanisms, which do not depend on changes of 
the initial genomic sequence (Waddington 1942; Berger et al. 2009).

Epigenetics has recently contributed substantially to the deciphering of many key-
regulating factors of transcriptional and translational activity and to our understanding 
of a variety of pathologic conditions, especially in cardiovascular and cancer research 
(Backs and Olson 2006; Chang and Bruneau 2012; Weichenhan and Plass 2013).

Advances in research technology with systematic and unbiased measurements of 
transcriptional activity revealed the surprising fact of pervasive transcription of 
mammalian genomes (Carninci et al. 2005). However, most of these transcripts are 
not obviously protein coding nor do they reveal easily inferable biological relevance 
and thus have been termed “noncoding”. This universe of noncoding RNAs with 
diverse and versatile families such as transfer RNAs (tRNA), ribosomal RNAs 
(rRNA), micro-RNAs (miRNA) small nucleolar RNAs (snoRNA) has fuelled an 
entire new branch of research and already challenged major dogmas in molecular 
biology (Cech and Steitz 2014). Among the diverse classes of noncoding RNAs, 
long noncoding RNAs (lncRNA) have emerged as major regulators of transcription, 
nucleolar organization, and chromatin-modifying complexes. The main goal of this 
chapter is to present the state of research of lncRNAs in the context of heart disease 
and heart failure.

13.2	 �Pervasive Transcription and the Characterization 
of lncRNAs

The history of research in noncoding RNAs can be traced back to the 1950s with the 
discovery of rRNAs and tRNAs, followed by snRNAs and antisense transcription in 
the 1980s and 1990s. Apart from individual lncRNAs such as H19 and Xist, it was 
not before the technological advancements of the years after 2000, especially tiling 
microarrays and next-generation sequencing, together with sophisticated immuno-
precipitation approaches, that a systematic understanding of the RNA landscape 
emerged (Willingham and Gingeras 2006).

Pioneering research was conducted using tiling microarrays of human chromo-
somal transcription that allowed analysis of transcription at windows of only a 
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couple of nucleotides. Thereby it became evident that large parts of the human 
genome are pervasively transcribed and a high number of these new transcripts have 
very low or no potential at all to encode for proteins. Sequence analysis of mouse-
noncoding transcription revealed a lesser degree of conservation on average com-
pared to 5′- or 3′-UTRs. Conversely, the putative promoter regions of ncRNAs were 
more conserved than those of protein-coding genes. Noncoding RNAs were arbi-
trarily divided into short- and long-noncoding RNAs at a length of 200 nucleotides. 
Long-noncoding transcripts show specific expression patterns in cellular compart-
ments with partly restricted expression to the nucleus or cytosol and high degrees of 
tissue-specific expression. They tend to be lower expressed, compared to protein-
coding transcripts (Kapranov et  al. 2002; Rinn et  al. 2003; Bertone et  al. 2004; 
Cawley et  al. 2004; Kampa et  al. 2004; Cheng et  al. 2005; Carninci et  al. 2005; 
Kapranov et al. 2007).

The research conducted by the ENCODE-consortium added further understand-
ing to the class of long noncoding RNAs. The combination of RNA-sequencing 
maps of chromatin regulatory marks delineated that in fact 62.1 % and 74.7 % of the 
human genome give rise to processed transcripts (Djebali et al. 2012).

An in-depth analysis of all human coding and noncoding sequences exemplified 
a variety of important characteristics of long noncoding RNAs: The GENCODE 
analysis identified 14,880 human lncRNA transcripts, 9,518 of them from inter-
genic and 5,362 from intragenic transcriptional origin. Transcriptional start sites of 
long noncoding RNAs are comparable to protein-coding genes with respect to 
active histone marks (H3K4me2, H3K4me3, H3K9ac, H3K27ac), but show a higher 
level of marks associated with both silencing (H3K27me3) and activity (H3K36me3). 
LncRNAs are transcribed via polymerase II-dependent mechanisms and most of 
them are post-transcriptionally modified via 5′-capping and 3′-polyadenylation, 
although other modifications of lncRNAs, such as methylation at N(6)-
methyladenosine, have been described (Ponting et al. 2009; Zhang et al. 2014; Fu 
et al. 2014).

There is a high degree of correlation between expression of long noncoding RNA 
transcripts and neighboring protein-coding genes, both in cis and in trans, but gen-
erally more pronounced in cis. This observation of expression correlation holds also 
true for long noncoding RNAs that are intertwined with protein-coding genes and is 
partly attributed to transcriptional coregulation mechanisms (Derrien et al. 2012; 
Orom et al. 2010; Kim et al. 2010).

Classification of long noncoding RNAs correspond to genomic organization and 
association with DNA-regulatory elements, this is summarized in Table 13.1 and 
exemplified in Fig. 13.1.

Following these initial results, several groups reported catalogs of lncRNAs and 
refinements of systematic analyses, confirming this initially reported characteristics 
of lncRNAs. Complementary approaches using correlation of expression data with 
histone marks of activated protein and ribosome profiling further advanced our 
understanding, especially considering biological relevance and coding potential 
(Guttman et al. 2009; Mikkelsen et al. 2007; Guttman et al. 2013).
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13.3	 �Evolutionary Conservation of Long Noncoding RNAs

Strong evolutionary conservation is generally viewed as an indicator of biological 
significance, as evolution can be seen as nature’s experiment of function on the 
scale of millions of years. Thereby, understanding evolutionary conservation may 
aid understanding relevance. In the case of long noncoding RNAs, this has become 
increasingly more difficult. The combination of comparably lower transcriptional 
activity and interspecies sequence variation in noncoding regions led to the initial 
notion that transcription at noncoding loci is genomic “junk”, leading to “transcrip-
tional noise” without any biological significance (Ponjavic et al. 2007).

Two systematic analyses of lncRNA ancestry in 6 different mammals and 11 
tetrapod species identified families of homologous lncRNAs at different evolution-
ary stages. The highest degree of conservation and sequence constraints was found 
in older lncRNA families. However, newer families showed evidence of purification 
selection, especially at the promotor level. As a class, lncRNA are considered to be 
able to evolve fast and to show strong tissue specificity (Necsulea et  al. 2014; 
Washietl et al. 2014). Hezroni et al., directly compared transcriptomes from 17 dif-
ferent species using a novel computational pipeline to identify lncRNAs, sequence 

Table 13.1  Classification of long noncoding RNAs

Genomic localization Intergenic

Genic Exonic
Intronic
Overlapping

Genomic strand Sense

Antisense

Direction of transcription Sense

Antisense
Bidirectional

Association with DNA regulatory elements Promoter associated

Enhancer associated

(Modified after Derrien et al., Genome Res 2012)

Genomic Organization of IncRNAS:

Enhancer-associated RNA
(eRNA)

Enhancer

Antisense IncRNA

Protein coding Gene

Promoter
(e.g. bidirectional)

Exons

Intronic IncRNA

Intergenic Region

Intergenic IncRNA (lincRNA)

Fig. 13.1  Exemplifies the genomic organization of long noncoding RNAs, together with different 
regulatory elements e.g. promoter and enhancer regions and protein coding genes
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homology, orthologous and syntenic sequences. Their results confirmed several pre-
vious findings about long noncoding RNAs, but additionally led to the discovery 
that conserved lncRNAs are biased towards sequence conservation at their 5′ 
regions. Furthermore, exoneration of transposable elements plays a pivotal role in 
the evolutionary development of lncRNA sequences (Hezroni et al. 2015).

Diederichs summarizes the current research findings and distinguishes four dif-
ferent entities of long noncoding RNA conservation: sequence, structure, function, 
and expression from syntenic loci (Diederichs 2014).

These results led to interesting conclusions: First, lack of sequence similarity does 
not necessarily exclude evolutionary conservation and thus high biological relevance. 
Second, understanding of a long noncoding RNA can only be achieved in its genomic 
context and with understanding of the associated regulatory elements. Evolutionary 
conservation will be especially relevant to translate findings from research in cardio-
vascular model systems to humans, as morphology and physiology of the heart as an 
organ changed profoundly over the course of evolution, with obvious significance for 
human disease, that is, the low regenerative potential of the mammalian heart.

13.4	 �Long Noncoding RNAs in Cardiovascular Research: 
Bench

Research in mouse models of heart embryonic development and models mimicking 
human pathology have led to important discoveries and characterized lncRNAs as 
potent epigenetic regulators of cardiac gene expression and chromatin 
modification:

13.4.1	 �Polycomb, Trithorax, and Noncoding RNAs: Fendrr 
and Braveheart

Polycomb and Trithorax Group proteins are central modulators of epigenetic gene 
regulation, development and differentiation and are associated with cardiac devel-
opment and disease (Wang 2012). Proteins of the TrxG/MLL complex catalyze 
H3K4 methylation and act toward the activation of transcription (Schuettengruber 
et al. 2011). Proteins of the PRC2 complex act as a methyltransferases and catalyze 
methylation of H3K27, thereby repressing gene expression (Di Croce and Helin 
2013). It has been shown that components of both the PRC2 and the TrxG/MLL 
complexes are able to interact with long noncoding RNAs (lncRNAs) and this inter-
action might constitute an important regulatory mechanism (Khalil et  al. 2009; 
Wang and Chang 2011; Brockdorff 2013). RNA-immunoprecipitation of PRC2 
components combined with RNA-sequencing (RIP-Seq) in mouse embryonic stem 
cells led to discovery of more than 9000 different RNAs that bind to PRC2 (Zhao 
et al. 2010). This is mediated through specific binding mechanisms, as well as pro-
miscuous binding of RNAs. This led to ongoing controversy regarding the 
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prevailing mechanism and possible experimental artifacts (Davidovich et al. 2013). 
However, new data confirmed both specific and promiscuous RNA binding in vitro 
(Davidovich et  al. 2015). Polycomb and Trithorax proteins act antagonistically 
through DNA regulatory responsive elements. Interestingly, also Polycomb/
Trithorax response elements show transcriptional activity and can switch their 
respective function.

Recently, important roles for long noncoding RNAs in mediating regulatory 
effects via PRC2/TrxG in the heart have been elucidated: Long noncoding RNA 
“Fetal-lethal noncoding developmental regulatory RNA” (Fendrr) was identified 
from RNA-Seq and ChIP-Seq analysis from early somite stage mouse embryos. 
Fendrr is divergently transcribed upstream of the Foxf1-locus and predominantly 
expressed in lateral plate mesoderm. Knockdown of Fendrr leads to embryonic 
lethality around E13.75, accompanied by cardiac hypoplasia and omphalocoele. 
Fendrr is predominantly expressed in EOMES-positive cells of the early cardiac 
mesoderm lineage. Knockdown of Fendrr leads to increase of H3K4-promoter 
trimethylation of key cardiac developmental transcription factors Gata6 and 
Nkx2-5 and increased their expression at E8.5. At later stages, Gata6, Foxf1, 
together with Irx3 and Pitx2 show higher expression in mutant embryos. Fendrr 
mutant embryonic stem cells show reduced promoter occupancy of Ezh2 and 
Suz12 at several potential target genes of Fendrr. Fendrr directly binds PRC com-
ponents Ezh2 and Suz12 and TrxG/MLL component Wdr5. No binding could be 
observed for the parts of PRC1, suggesting specificity of discrimination between 
different histone-modifying complexes. Furthermore, a sequence domain of 
Fendrr is able to bind double-stranded Foxf1 and Pitx2 promoter regions. Taken 
together, Fendrr links PRC2 to its target promotors, thereby increasing PRC2 
occupancy and methylation of H3K27, which subsequently leads to the modula-
tion of cardiac developmental gene expression (Grote and Herrmann 2013; Grote 
et al. 2013).

Expression analysis of different mouse embryonic stem cells and the adult heart 
led to identification of the long noncoding RNA “Braveheart” (Bvht). Although 
knockdown of Bvht did not impede differentiation of embryonic stem cells toward 
all three lineages, differentiation of embryoid bodies toward cardiac myocytes was 
severely impaired. Transcriptome analysis of such depleted cells revealed failed 
activation of key cardiac transcription factors (among them MesP1, Hand1/2, 
Nkx2-5, Tbx20) and transcripts for epithelial–mesenchymal transition (Snai, 
Twist). A significant overlap between Bvht-depletion and MesP1-regulated genes 
was observed. Forced expression of MesP1 in Bvht-depleted embryonic stem cells 
was able to rescue this phenotype, that is, permitting differentiation to the cardiac 
lineage. Therefore, the authors concluded Bvht to function upstream of MesP1. 
Mechanistically, Bvht interacts with Suz12 as part of PRC2. Furthermore, knock-
down of Bvht in neonatal cardiac myocytes leads to disruption of myofibrillar 
ultrastructure and reduced expression of cardiac structural proteins. Taken together, 
the authors reveal Bvht as a novel key regulator of cardiac development (Klattenhoff 
et al. 2013).
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13.4.2	 �Antisense Transcription and Chromatin Remodeling 
at the Myosin Locus

The switch of cardiac myosin isoform expression between adult Myh6 (α-myosin) 
and fetal Myh7 (β-myosin) is a hallmark of cardiac hypertrophy and heart failure 
(Miyata et al. 2000). A role for antisense transcription in regulating myosin expres-
sion was described earlier; nevertheless, an understanding of downstream mecha-
nism has been lacking (Haddad et al. 2003). Antisense transcription and alternative 
splicing from exonic and intergenic regions of the Myh7-locus give rise to a cluster 
of cardiac specific long noncoding RNAs, named “Myhrt”. The most abundant iso-
form, Mhrt770, was characterized as a potent inhibitor of pathologic cardiac hyper-
trophy. Cardiac-specific overexpression of Mhrt is able to alleviate early and late 
cardiac hypertrophy in mice after TAC surgery. Mechanistically, Mhrt770 binds 
Brg1, a member of the SWI/SNF ATP-dependent chromatin-remodeling complex to 
form a feedback circuit. Brg1 interacts with several HDACs and PARPs to form a 
complex on Myh6 and Myh7 promoters for antithetic regulation (Hang et al. 2010). 
Mhrt770 prevents Brg1 to bind to its target genomic region at the promoters of 
Myh6, Myh7, and Opn. These findings could be translated to human cardiomyopa-
thies: Expression of MHRT is reduced in hearts from patients with cardiomyopa-
thies (Han et al. 2014) (Fig. 13.2).

13.4.3	 �Fetal Cardiac Enhancer-Associated Long Noncoding RNAs

Enhancers are defined as “intergenic or intragenic regulatory sequences that can 
activate gene expression […]” (Orom and Shiekhattar 2013). Enhancers harbor 
transcriptional activity and can even give rise to transcription of lncRNAs (Kim 
et al. 2010). These enhancer-associated long noncoding RNAs themselves can pro-
vide an enhancer-like function in regulating transcriptional activity (Orom et  al. 
2010). Furthermore, they can be distinguished as a class from promoter-associated 
lncRNAs with distinct characteristics concerning tissue specificity and expression 
levels, as well as evolutionary conservation. (Marques et al. 2013) Recently, analy-
ses of differential lncRNA expression at fetal cardiac enhancers during cardiac pro-
genitor cell differentiation, after TAC surgery and LAD ligation were able to identify 
many dynamically transcribed lncRNAs. These were correlated with transcriptional 
activity at neighboring genes. Knockdown of two selected cardiac-enhancer-
associated lncRNAs led to the suppression of gene expression of the corresponding 
genomic locus (Ounzain et al. 2014b).

13.4.4	 �Interactions Between miRNAs and lncRNAs

Long noncoding RNAs have also been characterized for their interactions with 
microRNAs via miRNA-binding sequence domains. Thereby, they serve as compet-
ing endogenous RNAs (ceRNAs) and bind miRNAs (as “sponges”), which reduces 
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Fig. 13.2  LncRNA Mhrt modulates DNA binding of Brg1–chromatin repressor complex in car-
diac hypertrophy: (a) During conditions of cardiac stress, chromatin repressor complex Brg1-
Parp-Hdac suppresses Myh6 and activates Myh7 transcription, promoting the myosin isoform 
switch. LncRNA Myhrt is an antisense-lncRNA, overlapping parts of the Myh7 locus and also 
transcriptionally repressed by the Brg1 complex, (b) The Brg1–Parp–Hdac complex interacts 
with the Myh6 promoter to repress the transcription of Myh6 and Mhrt. Mhrt binds the Brg1-
helicase domain and thereby impedes Brg1 to recognize its chromatin targets, (c) Pathological 
stress activates the Brg1–Hdac–Parp chromatin repressor complex to inhibit Mhrt transcription in 
the heart. Brg1 and Mhrt form a negative feedback loop. Brg1 is a mediator of cardiac hypertro-
phy and functions as a repressor of Myh6 and activator of Myh7. Mhrt inhibits Brg chromatin 
repressor complexes to recognize their targets and thereby leads to a normalization of Myh6/
Myh7-ratio, Parp poly (ADP ribose) polymerase, HDAC histone deacetylase, Myh6 alpha-myo-
sin heavy-chain, Myh7 beta-myosin heavy-chain, Mhrt myosin heavy-chain-associated RNA 
transcripts

target miRNA levels and alleviates its downstream effect (Salmena et al. 2011; Tay 
et al. 2014). The relevance of this interaction has been established in several exam-
ples for skeletal muscle transcriptional regulation and recently also in the heart 
(Cesana et al. 2011; Dey et al. 2014).

Long noncoding RNA AK048451, named “cardiac hypertrophy-related factor” 
(CHRF), is significantly induced after the treatment of cardiac myocytes with 
angiotensin-II and harbors a binding site for miR-489, with high interspecies 
sequence conservation. Knockdown and overexpression of CHFR modulates 
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expression levels of miR-489, followed by impaired or exaggerated hypertrophic 
response via change of sequestration of miR-489 and changed expression of down-
stream target Myd88 (Wang et al. 2014a).

Prohibitin subunit 2 (Phb2) is downregulated in cardiac myocytes after exposure 
to anoxia. Overexpression of Phb2 reduces mitochondrial fission, apoptosis, and 
size of myocardial infarction in mice. Vice versa, the knockdown increases mito-
chondrial fission and infarct size. Phb2 is specifically regulated though microRNA 
miR-539 via binding at the 3′ UTR.  Downregulation of miR-539 inhibited both 
mitochondrial fission and apoptosis induced by anoxia. These effects were abro-
gated by the knockdown of Phb2, therefore indicating a functional link of miR-539 
and downstream Phb2. Using bioinformatics, lncRNA AK017121 (named “CARL”) 
was identified, that is able to specifically bind miR-539 and, by modulating its 
expression, CARL exert functional effects on apoptosis and mitochondrial fission in 
cardiac myocytes (Wang et al. 2014b).

Autophagy is a key stress response in cardiac myocytes, aimed at preventing cell 
death at the expense of digesting short-term dispensable proteins and/or organelles. 
Atg7 encodes the E1 enzyme in the autophagosome and is involved in the regulation 
of autophagy and cell death. MicroRNA miR-188-3p is able to specifically bind to 
the 3′-UTR of Atg7 and thereby exerts an inhibitory effect on autophagic response 
of cardiac myocytes. LncRNA AK079427 (named “AFP”) is able to specifically 
bind miR-188-3p and thereby interferes with this signaling cascade. AFP partici-
pates in the autophagic regulation both in cardiac myocytes and in an in vivo model 
of ischemia-reperfusion injury (Wang et al. 2015).

13.4.5	 �LncRNAs, Short Open Reading Frames and Small Peptides

Attributing the coding potential of a transcript is usually achieved using a combi-
nation of several bioinformatics approaches, combining measures of evolutionary 
conservation of amino acid sequences known protein domains and other data 
(e.g., from ribosome sequencing, mass spectroscopy). This is especially difficult 
for short transcripts and is prone to error. Short open reading frames can be defined 
by their size ranging from 2 to 100 codons. Several transcripts originally attrib-
uted as noncoding were found to be coding after experimental validation, some of 
them being translated to micropeptides with important regulatory functions 
(Andrews and Rothnagel 2014): ELABELA is a 32 amino acid protein that is 
highly conserved between species. Experimental deletion in zebrafish leads to 
cardiac dysplasia of varying severity and even aplasia of the heart, due to impaired 
endodermal differentiation and possibly signaling as a novel apelin-receptor 
ligand (Chng et al. 2013).

LncRNA gene RNA 003 in 2 L (pncr003:2 L) in fruit flies was detected to harbor 
two evolutionary conserved small open reading frames of 28 and 29 amino acids 
length. Both transcripts are strongly expressed in somatic muscles and the postem-
bryonic heart. Overexpression and knockdown modulate calcium transients and 
induce cardiac arrhythmia. Both peptides show homology to sarcolipin and 
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phospholamban and were therefore named sarcolamban, as strong phylogenetic evi-
dence points toward a shared ancestral peptide (Magny et al. 2013).

Myoregulin is a conserved micropeptide encoded by a skeletal muscle-specific 
transcript, also originally attributed as a lncRNA. Myoregulin is a direct interaction 
partner of the calcium pump SERCA and inhibits calcium transport activity into the 
sarcoplasmatic reticulum. Genetic knockdown improves skeletal muscle exercise 
performance in mice (Anderson et al. 2015).

13.4.6	 �Signatures of Long Noncoding RNAs in Mouse Models 
of Cardiac Development and Disease

Several research groups reported differential ncRNA expression data from high-
throughput assays from different models of cardiac development and disease, such 
as pressure overload due to transverse aortic constriction or coronary artery ligation 
to induce myocardial infarction (Tarnavski 2009). We summarized the most signifi-
cant findings in Table 13.2 and Fig. 13.3.

13.5	 �Long Noncoding RNAs in Cardiovascular Research: 
Bedside

Low evolutionary conservation of lncRNAs makes translation of research results 
from experimental models difficult. Nevertheless, some groups already reported a 
role for lncRNAs in human myocardial infarction, heart failure and of course, 
sequence variation in noncoding regions.

13.5.1	 �Heart Failure

Mitochondrial lncRNA LIPCAR was identified in serum of patients post myocar-
dial infarction and characterized as a biomarker for heart failure. Initially, LIPCAR-
plasma levels decrease after myocardial infarction but show strong induction in 
patients who develop pathologic left ventricular (LV) remodeling in the future. 
Furthermore, it is also induced in patients suffering of heart failure from non-
ischemic etiology and expression levels strongly and independently correlate with 
mortality, with incremental diagnostic value compared to a model comprised of 
classic risk factors (Kumarswamy et al. 2014).

Analyses of human LV samples from ischemic and nonischemic cardiomyopa-
thies before and after implantation of a mechanical assist device (LVAD) compared 
to control hearts using RNA-sequencing identified signatures of lncRNAs that are 
able to distinguish between etiologies of heart failure and discriminate patients 
between pre- and post-LVAD state. Furthermore, correlation analysis of lncRNA and 
neighboring mRNA expression revealed a significant prevalence of cis-regulation of 
lncRNAs and neighboring protein-coding genomic loci (Yang et al. 2014).
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Table 13.2  High-throughput screening experiments in cardiac disease models

Authors Species Model Assay Key findings
Lee et al. 
(2011)

Mouse TAC RNA-Seq 15 and 135 differentially 
regulated lncRNAs between 
hypertrophy and control and 
failing and control, respectively. 
Strong induction of lncRNA H19. 
LncRNAs show a higher degree 
of tissue specific expression 
compared to protein coding genes

Li et al. 
(2013)

Mouse Isoproteronol Microarray Identification of 32 lncRNAs with 
the patterns of regulation in 
plasma, heart tissue, and 
peripheral blood cells that might 
be used as potential biomarkers 
for heart failure

Liu et al. 
(2014)

Mouse Ischemia 
reperfusion (LAD 
ligation)

Microarray Identification of 151 differentially 
regulated lncRNAs

Matkovich 
et al. 
(2014)

Mouse Embryonic heart 
E14.5, adult heart, 
TAC

RNA-Seq Cardiac hypertrophy does not 
lead to the activation of 
embryonic expressed lncRNAs. 
Larger extend of differentially 
regulated lncRNAs between 
embryonic and adult conditions 
than between adult and 
hypertrophic/failing state

Ounzain 
et al. 
(2014a)

Mouse LAD ligation RNA-Seq Identification of differentially 
regulated lncRNAs in a LAD-
ligation mouse model, correlation 
with chromatin-state maps 
(strongest correlation of lncRNAs 
with chromatin marks of 
enhancer activity) and validation 
of evolutionary conserved 
lncRNAs in human-diseased 
tissues

Ounzain 
et al. 
(2014b)

Mouse Embryonic stem 
cell differentiation, 
LAD ligation, TAC

RNA-Seq Identification and characterization 
of foetal cardiac enhancer-
associated lncRNAs. These are 
differentially regulated in the 
models of ischemia and pressure 
overload, knockdown of eRNAs 
regulates the transcription of 
associated target genomic locus

Zangrando 
et al. 
(2014)

Mouse LAD ligation Microarray 30 differentially regulated 
lncRNAs, most robustly induced 
are Miat1 and Miat2

Zhu et al. 
(2013)

Mouse Embryonic hearts 
E11.5, E14.5, 
E18.5

Microarray 1237 differentially regulated long 
noncoding RNAs
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13.5.2	 �Myocardial Infarction

Vausort et al. measured expression levels of five long noncoding RNAs with known 
relevance in the cardiovascular system in peripheral blood lymphocytes of 414 
patients with acute coronary syndromes and 86 control patients. They selected anti-
sense hypoxia-inducible factor 1α (aHIF), ANRIL within the 9p21-risk locus for 
coronary heart disease, KCNQ1-overlapping transcript 1 (KCNQ1OT1) that regu-
lates the imprinting of KCNQ1 sodium channel, myocardial infarction-associated 
transcript (MIAT), and metastasis-associated lung adenocarcinoma transcript 1 
(MALAT), one of the most abundantly expressed lncRNAs. In ST-elevation-
myocardial infarction, the expression of ANRIL, KCNQ1OT1, MIAT, and MALAT 
was reduced, compared to expression levels in non-ST-elevation-myocardial infarc-
tion. The authors later used univariate and multivariate analysis to identify several 
associations between ejection fraction, age, diabetes mellitus, and hypertension and 

Fig. 13.3  LncRNA expression levels are lower compared to protein coding transcripts and show 
a lower degree of differential regulation. RNA-Seq data from Calcineurin-transgenic mouse hearts 
and controls (unpublished data Kühl/Frey)
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expression values of lncRNAs. The measurement of ANRIL and KCNQ10T1 added 
significant discriminatory value in identifying patients at risk of developing LV dys-
function using multivariate analysis (Vausort et al. 2014).

13.6	 �Human Noncoding Variation and Heart Disease

The understanding of human genomic variation and mutations in noncoding regions 
and the effect on pathogenesis of human disease is incomplete. Data from the 
ENCODE and NIH Roadmap Epigenomics Project provide a resource to link genomic 
sequence, transcriptional activity, and chromatin state (Bernstein et al. 2010).

An analysis of data from the “1000 genomes project” aimed to characterize varia-
tions in noncoding regions of the human genome. Transcription factor-binding sites 
and noncoding RNAs were less constrained for SNPs compared to protein-coding 
sequences. Per contra, noncoding RNAs showed a higher degree of evolutionary 
constraint for insertions and deletions. A higher degree of purifying selection in a 
lncRNA correlated with higher levels of transcriptional expression (Mu et al. 2011).

The human genomic region 9p21.3 is among the most thoroughly studied suscep-
tibility loci for several entities of cardiovascular disease and has been characterized 
in different populations (Roberts 2014; Johnson et  al. 2013). Of note, this region 
contains the protein-coding genes CDKN2A and CDKN2B and the long noncoding 
RNA ANRIL (“antisense non-coding RNA in the INK4 locus”), which is strongly 
associated with several major SNPs of cardiac disease (Pasmant et al. 2011).

Ishii et al. conducted a case–control genetic association study and identified a 
new susceptibility locus for myocardial infarction located on chromosome 22q12.1 
and a novel long noncoding RNA, named MIAT (“myocardial infarction-associated 
transcript”) and characterized the impact of several SNPs that changed MIAT 
expression and binding to nuclear proteins (Ishii et al. 2006).

A large genomewide association trial of dilated cardiomyopathy in more than 
4,100 cases and 7,600 controls reported several single nucleotide polymorphisms 
(SNPs) on chromosome 6p21. Highest significance after replication was attributed 
to a SNP that mapped to a noncoding gene, HCG22 (Meder et al. 2014).

A recent systematic analysis of published genomewide association studies found 
that 93% of disease and trait-associated variants lie within noncoding sequences, 
which comprises noncoding DNA-regulatory regions such as enhancers, promoters, 
DNAse hypersensitivity sites but also lncRNAs (Maurano et al. 2012).

13.7	 �Summary

Research into long noncoding RNAs has led to important discoveries in cardiac 
physiology and pathophysiology. Characterizing lncRNAs sparked the discovery of 
intricate links between transcription, chromatin modification, and organization that 
will be translated to an improved understanding of cardiac pathophysiology and 
disease. Hopefully, this also will lead to new targets and novel therapies. For 
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example, targeting antisense transcripts instead of the coding transcript allows mod-
ifying transcriptional activity at a genomic locus without changing the locus itself. 
As expression of many lncRNA is restricted to a specific tissue, targeting via sys-
temically delivered gene therapy potentially causes fewer systemic off-target effects.

Looking at the growing body of research, several gaps remain. First, the wealth 
of long noncoding RNA sequences so far lacks clear annotation and is divided into 
a variety of databases. A unifying nomenclature has recently been proposed for 
human long noncoding RNA but needs to be introduced into all fields of lncRNA 
research (St Laurent et al. 2015; Wright 2014). The quality and depth of chromatin 
maps from human and mouse heart that allowed a more detailed understanding of 
cardiac lncRNAs is still not available for rat and zebrafish, two relevant species for 
cardiovascular research. Also, for an understanding of lncRNAs in the heart, we 
need to replicate the findings from ENCODE that did not include cells from the 
heart. So far, most results were obtained in heterogeneous cardiac cell populations. 
Thus, delineating the transcriptome of individual populations, such as cardiac myo-
cytes, fibroblasts, smooth muscle, and endothelial cells, will be another important 
goal. Second, we will need to readjust our knowledge about mutations in noncoding 
regions of the genome and will have to include them for a deeper understanding of 
hereditary factors and mutations in cardiac disease, such as hypertrophic cardiomy-
opathies. Third, the individual characterization and delineation of long noncoding 
RNA mechanisms will need translation to the bedside. Apart from a use as biomark-
ers – and in that case, lncRNAs have to prove their added value compared to classic 
biomarkers or miRNA signatures, we will need to develop novel approaches to tar-
get and modulate cellular lncRNA expression levels.
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