
Chapter 9
Reduction of the Controller Complexity

9.1 Introduction

The complexity (order of the polynomials R and S) of the controllers designed on
the basis of identified models depends upon

• the complexity of the identified model;
• the performance specifications; and
• the robustness constraints.

The controller will have a minimum complexity equal to that of the plant model but
as a consequence of performance specifications and robustness constraints, this com-
plexity increases (often up to the double of the size of the model, in terms of number
of parameters, and in certain cases even more). In many applications, the necessity
of reducing the controller complexity results from constraints on the computational
resources in real time (reduction of the number of additions and multiplications).

Therefore one should ask the question: can we obtain a simpler controller with
almost the same performance and robustness properties as the nominal one (design
based on the plant model)?

Consider the system shown in Fig. 9.1 where the plant model transfer function is
given by

G(z−1) = z−d B(z−1)

A(z−1)
(9.1)

and the nominal controller is given by:

K (z−1) = R(z−1)

S(z−1)
(9.2)
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172 9 Reduction of the Controller Complexity

Fig. 9.1 The true closed-loop system

where:

R(z−1) = r0 + r1z
−1 + · · · + rnR z

−nR (9.3)

S(z−1) = 1 + s1z
−1 + · · · + snS z

−nS = 1 + z−1S∗(z−1) (9.4)

Different sensitivity functions have been defined in Sect. 7.1 for the system given
in Fig. 9.1.

The system given in Fig. 9.1 will be denoted the “true closed-loop system”.
Throughout this chapter, feedback systems which will use either an estimation of
G (denoted Ĝ) or a reduced order estimation of K (denoted K̂ ) will be considered.
The corresponding sensitivity functions will be denoted as follows:

• Sxy—Sensitivity function of the true closed-loop system (K , G).
• Ŝxy—Sensitivity function of the nominal simulated closed-loop system (nominal

controller K + estimated plant model Ĝ).

• ˆ̂Sxy—Sensitivity function of the simulated closed-loop system using a reduced
order controller (reduced order controller K̂ + estimated plant model Ĝ).

Similar notations are used for P(z−1), P̂(z−1) when using K and Ĝ, ˆ̂P(z−1) when
using K̂ and Ĝ.

The specific objective will be to reduce the orders nR and nS of controller poly-
nomials R and S.

The basic rule for developing procedures for controller complexity reduction
is to search for controllers of reduced orders which preserve the properties of the
closed-loop as much as possible. A direct simplification of the controller transfer
function by traditional techniques (cancellation of poles and zeros which are close,
approximations in the frequency domain, balanced truncation, etc.) without taking
into account the properties of the closed-loop leads in general to unsatisfactory results
(see [1, 2]).

Two approaches can be considered for the controller complexity reduction

1. Indirect Approach

This approach is implemented in three steps

a. Reduction of the complexity of the model used for design, trying to preserve the
essential characteristics of the model in the critical frequency regions for design.

http://dx.doi.org/10.1007/978-3-319-41450-8_7
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b. Design of the controller on the basis of the reduced model.
c. Test of the resulting controller on the nominal model.

2. Direct Approach

Search for a reduced order approximation of the nominal controller which preserves
the properties of the closed-loop.

The indirect approach has a number of drawbacks

• Does not guarantee the complexity of the resulting controller (since the robustness
specifications will be more severe when using reduced order models).

• The errors resulting from model reduction will propagate in the design of the
controller.

The direct approach seems the most appropriate for the reduction of the controller
complexity since the approximation is done in the last stage of the design and the
resulting performance can be easily evaluated. A combination of the two approaches
is also possible (see Chap. 10), i.e., the resulting controller obtained by the indirect
approach, after it has been tested on the nominal plant model is further reduced
through the direct approach.

9.2 Criteria for Direct Controller Reduction

Two criteria can be considered for direct reduction of the controller complexity

• Closed-loop input matching (CLIM). In this case, one would like that the control
generated in closed-loop by the reduced order controller be as close as possible to
the control generated in closed-loop by the nominal controller.

• Closed-loop output matching (CLOM). In this case, one would like that the closed-
loop output obtained with the reduced order controller be as close as possible to
the closed-loop output obtained with the nominal controller.

These two criteria are illustrated in Fig. 9.2, where the nominal controller is
denoted by K and is given in (9.2) and the reduced controller is denoted by K̂
and is given by

K̂ (z−1) = R̂(z−1)

Ŝ(z−1)
(9.5)

where:

R̂(z−1) = r0 + r1z
−1 + · · · + rnR z

−nR (9.6)

Ŝ(z−1) = 1 + s1z
−1 + · · · + snS z

−nS = 1 + z−1 Ŝ∗(z−1) (9.7)

The closed-loop input matching is equivalent to minimizing the following norm:

http://dx.doi.org/10.1007/978-3-319-41450-8_10
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(a) (b)

Fig. 9.2 Criteria for controller complexity reduction. a Input matching. b Output matching
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(9.8)

where Ŝup is the input sensitivity function of the nominal simulated closed-loop

and ˆ̂Sup is the input sensitivity function when using the reduced order controller.
Therefore the optimal reduced order controller will be given by

K̂ ∗ = arg min
K̂

‖Ŝup − ˆ̂Sup‖ = arg min
K̂

‖Ŝyp(K − K̂ )
ˆ̂Syp‖ (9.9)

As it can be seen, the difference between the two controllers is heavily weighted
by the output sensitivity function. The maximum of its modulus corresponds to the
critical region for design. Therefore, the reduced order controller will very well
approximate the nominal controller in this critical frequency region for design.

If we now consider preservation of performance in tracking using the closed-loop
output matching, the reduced order controller should minimize the following norm:

‖Ŝyr − ˆ̂Syr‖ =
∥
∥
∥
∥
∥

K Ĝ

1 + K Ĝ
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(9.10)

To preserve the performance for output disturbance rejection, the reduced order
controller should minimize

‖Ŝyp − ˆ̂Syp‖ =
∥
∥
∥
∥

1

1 + K Ĝ
− 1

1 + K̂ Ĝ

∥
∥
∥
∥

(9.11)

Fortunately, these two norms are equal and the reduced order controller can be
obtained using the following expression:

K̂ ∗ = arg min
K̂

‖Ŝyp − ˆ̂Syp‖ = arg min
K̂

‖Ŝyp(K − K̂ )
ˆ̂Syv‖ (9.12)
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Fig. 9.3 Estimation of
reduced order controllers by
the closed-loop input
matching (CLIM) method.
Use of simulated data

Equations (9.9) and (9.12) show that a weighted norm of K − K̂ should be mini-
mized.

For closed-loop input matching (Fig. 9.2a) one tries to find a reduced order con-
troller which will minimize the difference between the input sensitivity function of
the nominal simulated system and the input sensitivity function of the simulated sys-
tem using a reduced order controller. This is equivalent to the search for a reduced
controller which minimizes the error between the two loops (in the sense of a certain
criterion) for a white noise type excitation (like PRBS).

For the tracking of the nominal output (Fig. 9.2b) the principle remains the same,
except that in this case one tries to minimize the difference between the nominal
complementary sensitivity function (7.8) and the reduced order complementary sen-
sitivity function computed with K̂ and Ĝ.

It can be seen immediately that in both cases the problem of finding a reduced
order controller can be formulated as an identification in closed-loop (see Chap. 8)
where the plant model is replaced by the reduced order controller to be estimated
and the controller is replaced by the available estimated model of the plant (dual
problem).

The reduction procedures and the validation techniques for reduced order con-
trollers to be presented next are available in the MATLAB® toolbox REDUC® [3]
(to be downloaded from the book website) or in the stand alone software iReg which
includes a module for controller complexity reduction.1

9.3 Estimation of Reduced Order Controllers
by Identification in Closed-Loop

9.3.1 Closed-Loop Input Matching (CLIM)

The principle of closed-loop input matching approach is illustrated in Fig. 9.3.

1See the website: http://tudor-bogdan.airimitoaie.name/ireg.html.

http://dx.doi.org/10.1007/978-3-319-41450-8_7
http://dx.doi.org/10.1007/978-3-319-41450-8_8
http://tudor-bogdan.airimitoaie.name/ireg.html


176 9 Reduction of the Controller Complexity

The upper part represents the simulated nominal closed-loop system. It is made
up of the nominal controller (K ) and the best identified plant model (Ĝ). This model
should assure the best closeness behaviour of the true closed-loop system and the
nominal simulated one. Identification of this plant model in closed-loop can be con-
sidered if the nominal controller can be implemented.

The lower part is made up of the estimated reduced order controller (K̂ ) in feed-
back connection with the plant model (Ĝ) used in the nominal simulated system.
The parameter adaptation algorithm (PAA) will try to find the best reduced order
controller which will minimize the closed-loop input error. The closed-loop input
error is the difference between the plant input generated by the nominal simulated
closed-loop system and the plant input generated by the simulated closed-loop using
the reduced order controller.

The output of the nominal controller is given by

u(t + 1) = −S∗(q−1)u(t) + R(q−1)c(t + 1) = θTψ(t) (9.13)

where

c(t + 1) = r(t + 1) − y(t + 1) (9.14)

y(t + 1) = − Â∗y(t) + B̂∗u(t − d) (9.15)

ψT (t) = [−u(t), . . . ,−u(t − nS + 1), c(t + 1), . . . , c(t − nR + 1)] (9.16)

θT = [s1, . . . , snS , r0, . . . , rnR ] (9.17)

To implement and analyze the algorithm, we need respectively the a priori (based
on θ̂ (t)) and the a posteriori (based on θ̂ (t + 1)) predicted outputs of the estimated
reduced order controller (of orders nŜ and nR̂) which are given by (see the lower part
of Fig. 9.3).

a priori:

û◦(t + 1) = û(t + 1|θ̂ (t)) = −Ŝ∗(t, q−1) û(t) + R̂(t, q−1) ĉ(t + 1)

= θ̂T (t)φ(t) (9.18)

a posteriori:
û(t + 1) = θ̂T (t + 1) φ(t) (9.19)

where

θ̂T (t) = [ŝ1(t), . . . , ŝnŜ
(t), r̂0(t), . . . , r̂n R̂

(t)] (9.20)

φT (t) = [−û(t), . . . ,−û(t − nŜ + 1), ĉ(t + 1), . . . , ĉ(t − nR̂ + 1)] (9.21)

ĉ(t + 1) = r(t + 1) − ŷ(t + 1) = r(t + 1) + Â∗ ŷ(t) − B̂∗û(t − d) (9.22)

The closed-loop input error is given by
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a priori:
ε◦
CL(t + 1) = u(t + 1) − û◦(t + 1) (9.23)

a posteriori:
εCL(t + 1) = u(t + 1) − û(t + 1) (9.24)

The equation governing the a posteriori prediction error becomes (see [4, 5] for
details)

εCL(t + 1) = Â

P
[θ − θ̂ (t + 1)]Tφ(t) (9.25)

and the parameter adaptation algorithm will be given by

θ̂ (t + 1) = θ̂ (t) + F(t)Φ(t)εCL(t + 1) (9.26)

F−1(t + 1) = λ1(t)F
−1(t) + λ2(t)Φ(t)ΦT (t) (9.27)

0 < λ1(t) ≤ 1; 0 ≤ λ2(t) < 2; F(0) > 0

εCL(t + 1) = ε◦
CL(t + 1)

1 + ΦT (t)F(t)Φ(t)
= u(t + 1) − û◦(t + 1)

1 + ΦT (t)F(t)Φ(t)
(9.28)

As we can see from (9.28), the a posteriori closed-loop input error εCL(t +1) can be
expressed in terms of the a priori (measurable) closed-loop input error ε◦

CL(t + 1).
Therefore, the right-hand side of (9.26) will depend only on measurable quantities
at t + 1.

Specific algorithms will be obtained by an appropriate choice of the observation
vector Φ(t) as follows:

• CLIM: Φ(t) = φ(t)

• F-CLIM: Φ(t) = Â(q−1)

P̂(q−1)
φ(t)

where
P̂(q−1) = Â(q−1)S(q−1) + q−d B̂(q−1)R(q−1). (9.29)

The introduction of the filtering of φ is motivated by the elimination of a positive
realness sufficient condition for stability and convergence which, in the case of the
CLIM algorithm, depends on Â/P̂ . A detailed analysis of the properties of these
algorithms can be found in [5].

The properties of the estimated controller in the frequency domain results from
the following expression (bias distribution) [5]:

θ̂∗ = arg min
θ̂∈D

∫ π

−π

|Ŝyp|2
[

|K − K̂ |2| ˆ̂Syp|2φr (ω) + φη(ω)
]

dω (9.30)

where φr (ω) is the excitation spectrum and φη(ω) is the measurement noise spectrum
(it does not have effect upon the minimization of |K − K̂ |).
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Estimation of reduced order controllers is also possible using real-time data (if
the prototype of the nominal controller can be implemented on the real system) [5].

9.3.2 Closed-Loop Output Matching (CLOM)

The principle of this method is illustrated in Fig. 9.4. Despite that, the point where
the external excitation is applied and the output variable is different with respect to
Fig. 9.2b, the transfer function between r(t) and u(t) in Fig. 9.4 is the same as the
transfer function between r(t) and y(t) in Fig. 9.2b. This means that in the absence
of disturbances (it is the case in simulation) u(t) generated by the upper part of the
scheme given in Fig. 9.4 is equal to y(t) generated in Fig. 9.2b. This allows one to
use for closed-loop output matching the CLIM (or F-CLIM) algorithm. For effective
implementation of the algorithm, the only changes occur in Eqs. (9.13) and (9.18),
where c(t) is replaced by:

x(t) = Ĝ(r(t) − u(t)) (9.31)

and ĉ(t) is replaced by:
x̂(t) = Ĝ(r(t) − û(t)) (9.32)

One should note that the order of the blocks in the upper part of Fig. 9.4 can be
interchanged (like the upper part of Fig. 9.2b) without affecting the operation of the
algorithm.

9.3.3 Taking into Account the Fixed Parts of the Nominal
Controller

It is often required that the reduced order controller contains some of the fixed
filters incorporated in the nominal controller (for example, model of the disturbance,
opening of the loop at 0.5 fS or at other frequency). In order to do this, one first

Fig. 9.4 Estimation of
reduced order controllers by
the closed-loop output
matching (CLOM) method.
Use of simulated data
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factorizes the nominal controller under the form K = KFK ′, where KF represents
all the fixed parts that one would like to be also incorporated in the reduced order
controller. The reduced order controller is factorized as K̂ = KF K̂ ′.

One replaces in the CLIM algorithm the input ĉ of the controller K̂ by the input
to the controller K̂ ′, denoted ĉ′, where ĉ′ is given by

ĉ′(t) = KF (q−1)ĉ(t) (9.33)

and in Φ(t), ĉ(t) is replaced by ĉ′(t). In the CLOM algorithm, one replaces x̂ by x̂ ′
given by

x̂ ′(t) = KF (q−1)Ĝ(q−1)(r(t) − û(t)). (9.34)

9.3.3.1 Validation of Reduced Order Controllers

Once a reduced order controller has been estimated, it should be validated before
considering its implementation on the real system.

It is assumed that the nominal controller stabilizes the nominal plant model (used
for controller reduction). One implicitly assumes that the model uncertainties have
been taken into account in the design of the nominal controller. The reduced order
controller should satisfy the following conditions:

• It stabilizes the nominal plant model.
• The reduced sensitivity functions (computed with the reduced order controller)

are close to the nominal sensitivity functions in the critical frequency regions for
performance and robustness. In particular, the output and input sensitivity functions
should be examined.

• The generalized stability margin (see Appendix A) of the system using the reduced
order controller should be close to the generalized stability margin of the nominal
closed-loop. This condition is expressed as

|b(K , Ĝ) − b(K̂ Ĝ)| < ε; ε > 0 (9.35)

where b(K , Ĝ) and b(K̂ Ĝ) are the generalized stability margins corresponding
to the nominal controller and to the reduced order controller respectively and
ε is a small positive number. The closeness of the two stability margins allows
maintaining the robustness properties of the initial design.

The proximity of the nominal and reduced sensitivity functions can be judged by
visual examination of their frequency characteristics. There is however the possibility
to make a numerical evaluation of this proximity by computing the Vinnicombe
distance (ν gap) between these transfer functions (see Appendix A). The Vinnicombe
distance allows with one number (between 0 and 1), to make a first evaluation of the
proximity of the reduced and nominal sensitivity functions.
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9.4 Real-Time Example: Reduction of Controller
Complexity

In Sect. 7.3, a controller based on the open-loop identified model has been designed
for the active vibration control system using an inertial actuator (see Sect. 2.2) and
tested experimentally. It was shown in Sect. 8.3 that the controller designed on the
basis of the model identified in open-loop provides similar performance to that of
the controller designed on the basis of the model identified in closed-loop. Therefore
in this section, the reduction of the complexity of the controller designed on the
basis of the model identified in open-loop (which achieves the specifications) will
be considered.

The criterion given in Eq. (9.8) will be considered, which corresponds to CLIM
with external excitation added to the input of the controller. The model of the plant
identified in closed-loop operation has been used. The excitation used was a PRBS
with the following characteristics: N = 11 (number of cells) and p = 2 (clock fre-
quency divider). The fixed parts of the controller have been preserved (internal model
of the disturbance, opening the loop at 0.5 fS and at 0 Hz).

Table 9.1 presents a summary of the controller order reduction results for various
values of nR and nS . The first column represents the controller number (the con-
troller with number 00 represents the initial nominal controller). The orders of the
reduced controllers are indicated in columns nR and nS . The next column gives the
Vinnicombe gap (Vg) between the initial controller and the reduced order controller.
Similarly, the Vinnicombe gaps for the input and output sensitivity functions are also
given in columns 5 and 6, respectively. A Vg of 0 indicates perfect matching while
a Vg of 1 indicates very important differences between the two transfer functions.
The generalized stability margin (see Appendix A) is given in column 7. For robust-
ness reasons, it should be close to the value obtained for the nominal controller.
The maximum of the output sensitivity function and the frequency in Hz for which
it is obtained are given in columns 8 and 9, respectively. Finally, the stability of
the closed-loop is indicated in the last column (1 represents a stable closed-loop,
0—unstable).

Only the first 12 reduced order controllers are shown in the table.2 For experi-
mental evaluation, controller 11 has been considered (nR = 19, nS = 22).

The output and input sensitivity functions obtained with the nominal and reduced
order controllers are shown in Figs. 9.5 and 9.6, respectively. As it can be observed,
the differences are very small within the frequency region of interest (except for the
input sensitivity function at the 50 Hz—but this does not affect nor the robustness nor
the performance). In Fig. 9.7 the transfer functions of the two controllers are shown.

It is important to remind that the comparison of the Bode characteristics of the
two controllers does not guarantees that the reduced order controller stabilizes the
system or that it assures good performances. It is the comparison of the sensitivity
functions and the stability test which gives the right answers.

2These results have been obtained using the software iREG. Similar results are obtained with the
compcon.m function from the toolbox REDUC.

http://dx.doi.org/10.1007/978-3-319-41450-8_7
http://dx.doi.org/10.1007/978-3-319-41450-8_2
http://dx.doi.org/10.1007/978-3-319-41450-8_8
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Table 9.1 Summary of the controller order reduction results
No. nR nS Vg( RS ) Vg(Sup ) Vg(Syp ) St-margin max(Syp ) [fmax] stable

00 29 32 0 0 0 0.3297 3.92 [60.0147] 1

01 29 32 0 0 0 0.3297 3.92 [60.0147] 1

02 28 31 0.001 0.003 0 0.3297 3.92 [60.0147] 1

03 27 30 0.0101 0.0284 0.0031 0.3296 3.8742 [60.0147] 1

04 26 29 0.0095 0.0282 0.0035 0.3306 3.8958 [60.0147] 1

05 25 28 0.0096 0.0327 0.004 0.3286 3.8958 [60.0147] 1

06 24 27 0.0103 1 0.0017 0.3263 3.9329 [60.0147] 1

07 23 26 0.0154 0.0498 0.0041 0.3213 3.9459 [60.0147] 1

08 22 25 0.0153 0.0545 0.0048 0.3232 3.9548 [60.0147] 1

09 21 24 0.0159 0.0514 0.0045 0.3232 3.9406 [60.0147] 1

10 20 23 0.0253 0.0972 0.0109 0.3268 3.9676 [60.0147] 1

11 19 22 0.0604 0.2645 0.0328 0.3089 3.9345 [59.3959] 1

12 18 21 1 1 1 0 3.7477 [59.3959] 0
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Fig. 9.5 Output sensitivity functions for initial and reduced order controllers

Finally, the controller has been tested in real time in the presence of a 70 Hz
sinusoidal disturbance. Time domain results in open and in closed-loop operation
are shown in Fig. 9.8. The difference between the two power spectral densities for
open-loop and closed-loop is shown in Fig. 9.9.3

For the reduced order controller, the following results have been obtained: (1)
the global attenuation is 48.2 dB (instead of 48.4 dB for the nominal controller), the

3Figures 9.8 and 9.9 should be compared with Figs. 7.15 and 7.17.

http://dx.doi.org/10.1007/978-3-319-41450-8_7
http://dx.doi.org/10.1007/978-3-319-41450-8_7
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Fig. 9.6 Input sensitivity functions for initial and reduced order controllers
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Fig. 9.7 Controller transfer function comparison between initial and reduced order controller

disturbance attenuation is 56.4 dB (instead of 62.4 dB but still much more than the
required attenuation) and the maximum amplification is 7.5 dB (instead of maxi-
mum 6 dB specified). A small reduction in performance with respect to the initial
nonreduced controller is observed but the number of parameters has been reduced
from 62 to 44. These results presented above have been obtained using a single
trial.



9.5 Concluding Remarks 183

0 5 10 15 20 25 30
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

Time [sec]

R
es

. F
or

ce
 [

V
]

Output System Comparison

Fig. 9.8 Time response results for a 70 Hz sinusoidal disturbance in open- and in closed-loop
operation using the reduced order controller

Fig. 9.9 Effective residual
attenuation/amplification
PSD estimates computed as
the difference between the
open-loop PSD and the
closed-loop PSD (reduced
order controller)
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9.5 Concluding Remarks

• The objective of controller reduction is to find a controller of reduced complexity
such that the characteristics of the closed-loop using the reduced order controller
are as close as possible to the characteristics of the closed-loop using the nominal
controller.

• Two specific objectives have been considered

– closed-loop input matching (CLIM); and
– closed-loop output matching (CLOM).

• The CLOM (CLIM) objective corresponds to the estimation of a reduced order
controller such that the error between the output (the control input) of the closed-
loop using the reduced order controller and the output (the control input) of the
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closed-loop using the nominal controller be minimized in the sense of a certain
criterion.

• Controller reduction can be viewed as a dual problem with respect to plant model
identification in closed-loop (similar algorithms will be used).

• The reduced order controllers should be validated before their effective use.
• Techniques for validation of the reduced order controllers have been provided in

this chapter.

9.6 Notes and References

The problem of controller reduction is clearly presented in [1, 2]. See also [6].
The basic references for the algorithms discussed in this chapter (analysis and

evaluation) are [5, 7, 8]. A unified view of identification in closed-loop and controller
reduction can be found in [8].
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