
Chapter 8
Identification in Closed-Loop Operation

8.1 Introduction

There are two reasons for considering identification in closed-loop operation in the
context of active vibration control systems:

• obtaining improved system models for controller redesign; and
• retuning of the controller without opening the loop.

The objective of identification in closed-loop is to obtain a plant model describing
as precisely as possible the behaviour of the real closed-loop system for a given
controller. In other words, the objective of system identification in closed-loop is to
search for a plant model that in feedback with the controller operating on the true
plant will lead to a closed-loop transfer function (sensitivity function) that is as close
as possible to that of the real closed-loop system. If the performance of the closed-
loop system is not satisfactory, it is expected that this model identified in closed-loop
will allow the redesign of the controller in order to improve the performance of the
real-time control system.

It has been shown in [1, 2], as well as in many other references, that identification
in closed-loop, provided that appropriate identification algorithms are used, leads in
general to better models for controller design.

In order to understand the potential of the identification in closed-loop as well as
the difficulties which can be encountered, let us consider the case of the plant model
identification in closed-loop where the external excitation is added to the controller
output (see Fig. 8.1a). Figure 8.1b shows an equivalent scheme that emphasizes the
transfer function between the external excitation ru and the plant input u, as well as
the effect of the measurement noise upon the plant input. Assume that the external
excitation is a PRBS that has almost constant frequency spectrum from 0 to 0.5fs.

One observes that the effective plant input corresponds to the external excita-
tion filtered by the output sensitivity function Syp (see Sect. 7.1), whose magnitude
has a maximum in the frequency regions close to the critical point [−1, j0] (see
Sect. 7.2.4). Therefore the frequency spectrum of the effective input applied to the
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Fig. 8.1 Identification in
closed-loop: a excitation
added to the control output,
b equivalent representation

(a)

(b)

plant will be enhanced in these frequency regions. As a consequence, the quality
of the identified model in these critical regions for stability and performance will
be improved. Unfortunately, in the meantime, the feedback introduces a correlation
between the measurement noise and the plant input. This leads to an important bias on
the estimated parameters if one would like to identify the plant model with open-loop
techniques.

Therefore, for a good identification in closed-loop operation one needs identifica-
tion methods that take advantage of the “improved” characteristics of the effective
excitation signal applied to the plant input but which are not affected by the noise
in the context of feedback. An efficient solution for this problem is provided by the
“closed-loop output error” method (CLOE) that will be presented next.

8.2 Closed-Loop Output Error Identification Methods

The Principle

The principle of closed-loop output error identification algorithms is illustrated in
Fig. 8.2. The upper part represents the true closed-loop system and the lower part
represents an adjustable predictor of the closed-loop. This closed-loop predictor uses
a controller identical to the one used on the real-time system.

The prediction error between the output of the real-time closed-loop system and
the closed-loop predictor (closed-loop output error) is a measure of the difference
between the true plant model and the estimated one. This error can be used to adapt
the estimated plant model such that the closed-loop prediction error is minimized
(in the sense of a certain criterion). In other words, the objective of the identification



8.2 Closed-Loop Output Error Identification Methods 155

(a)

(b)

Fig. 8.2 Closed-loop output error identification method. a Excitation superposed to control output.
b Excitation superposed to the reference

in closed-loop is to find the best plant model which minimizes the prediction error
between the measured output of the true closed-loop system and the predicted closed-
loop output. The use of these methods requires the knowledge of the controller.

As it can be seen from Fig. 8.2, the minimization of the closed-loop prediction
error will minimize the difference between real and estimated sensitivity functions.
For the case of the excitation added to the controller output, the difference between

Syυ = q−dBS

AS + q−dBR
(8.1)

and

Ŝyυ = q−dB̂S

ÂS + q−dB̂R
(8.2)
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will be minimized, where Â and B̂ are the estimates of the A and B polynomials.1

For the case of the excitation added to the reference, with T = R, the difference
between

Syr = q−dBR

AS + q−dBR
(8.3)

and

Ŝyr = q−dB̂R

ÂS + q−dB̂R
(8.4)

will be minimized. Since |Syr − Ŝyr | = |Syp − Ŝyp|, the difference between the true
and the estimated output sensitivity function will also be minimized.

In the context of active vibration control, we will be in general interested to get a
model which allows a better estimation of the output sensitivity function. Therefore,
often, the configuration of Fig. 8.2b will be used with T = R.2

The Algorithms

G(q−1) = q−dB(q−1)

A(q−1)
, (8.5)

where

B(q−1) = b1q
−1 + · · · + bnBq

−nB = q−1B∗(q−1) (8.6)

A(q−1) = 1 + a1q
−1 + · · · + anAq

−nA = 1 + q−1A∗(q−1) (8.7)

The plant is operated in closed-loop with an RST digital controller (without lack
of generality). The output of the plant operating in closed-loop is given by (see
Fig. 8.2a):

y(t + 1) = −A∗y(t) + B∗u(t − d) + Aη(t + 1) = θTϕ(t) + Aη(t + 1), (8.8)

where u(t) is the plant input, y(t) is the plant output, η(t) is the output noise and:

θT = [a1 . . . , anA , b1 . . . , bnB ] (8.9)

ϕT (t) = [−y(t) . . . ,−y(t − nA + 1), u(t − d) . . . , u(t − nB + 1 − d)] (8.10)

u(t) = −R

S
y(t) + ru, (8.11)

where ru is the external excitation added to the output of the controller (ru is equal
to T

S r if the external excitation is applied on the reference as in Fig. 8.2b).

1In this case, Syυ corresponds to the transfer function between ru(t) and y(t).
2This is equivalent to sending the excitation to the input of the filter R in Fig. 8.2b.
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For a fixed value of the estimated parameters, the predictor of the closed-loop (the
design system) can be expressed as:

ŷ(t + 1) = −Â∗ŷ(t) + B̂∗û(t − d) = θ̂Tφ(t), (8.12)

where

θ̂T = [â1 . . . , ânA , b̂1 . . . , b̂nB ] (8.13)

φT (t) = [−ŷ(t) . . . ,−ŷ(t − nA + 1), û(t − d) . . . , û(t − nB + 1 − d)] (8.14)

û(t) = −R

S
ŷ(t) + ru (8.15)

The closed-loop prediction (output) error is defined as:

εCL(t + 1) = y(t + 1) − ŷ(t + 1) (8.16)

It clearly results from Fig. 8.2a that for constant values of the estimated parameters,
the predictor regressor vector φ(t) depends only upon the external excitation. There-
fore under the assumption that the external excitation (r or ru) and the stochastic noise
η are independent, φ(t) and η(t) are not correlated (as well as φ(t) and εCL(t + 1)),
the scheme has the structure of an output error prediction.

If known fixed parts should be included in the estimated plant model, the equation
of the predictor for the closed-loop has to be modified in order to preserve the
input/output behaviour. See for details Sect. 8.2.4 and [3].

For all the methods, the parameter adaptation algorithm (PAA) has the general
form

Θ̂(t + 1) = Θ̂(t) + F(t)Φ(t)ν(t + 1) (8.17)

F(t + 1)−1 = λ1(t)F(t)−1 + λ2(t)Φ(t)ΦT (t) (8.18)

0 < λ1(t) ≤ 1 ; 0 ≤ λ2(t) < 2 ;

F(0) > 0 ; F(t)−1 > αF−1(0) ; 0 < α < ∞ (8.19)

F(t + 1) = 1

λ1(t)

[
F(t) − F(t)Φ(t)ΦT (t)F(t)

λ1(t)
λ2(t)

+ ΦT (t)F(t)Φ(t)

]
(8.20)

ν(t + 1) = ν◦(t + 1)

1 + ΦT (t)F(t)Φ(t)
, (8.21)

where ν◦(t+1) = f1(Θ̂(t), Θ̂(t−1), . . . , y(t+1), ν(t), ν(t−1), . . .) is the a priori
adaptation error, ν(t + 1) = f2(Θ̂(t + 1), Θ̂(t), . . . , y(t + 1), ν(t), ν(t − 1), . . .) is
the a posteriori adaptation error and Φ(t) is the observation vector.

For each recursive identification algorithm Θ , Φ, and ν◦(t+ 1) will have specific
expressions. Note that the sequences λ1(t) and λ2(t) allow to define the time profile
of the adaptation gain F(t). For convergence analysis in the stochastic environment,
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it is assumed that a PAA with decreasing adaptation gain is used (i.e., λ1(t) ≡ 1,
λ2(t) = λ2 > 0).

The fundamental differences with respect to the open-loop output error identi-
fication algorithm come from the structure of the adjustable predictor and of the
observation vector.

8.2.1 The Closed-Loop Output Error Algorithm

Replacing now the fixed predictor of the closed-loop given in (8.12) by an adjustable
predictor, one gets:

• a priori predicted output:

ŷ◦(t + 1) = ŷ(t + 1|θ̂ (t)) = θ̂T (t)φ(t); (8.22)

• a posteriori predicted output:

ŷ(t + 1) = ŷ(t + 1|θ̂ (t + 1)) = θ̂T (t + 1)φ(t); (8.23)

• a priori prediction error as:

ε◦
CL(t + 1) = y(t + 1) − ŷ◦(t + 1); (8.24)

• a posteriori prediction error as:

εCL(t + 1) = y(t + 1) − ŷ(t + 1). (8.25)

The equation for the a posteriori prediction error becomes in the deterministic envi-
ronment (no noise, see [4] for details):

εCL(t + 1) = S

P
[θ − θ̂ (t + 1)]Tφ(t) (8.26)

The rules given in Chap. 4 suggest a PAA with:

Θ̂(t) = θ̂ (t)

Φ(t) = φ(t)

ν◦(t + 1) = ε◦
CL(t + 1)

This is termed theClosed-LoopOutput Error (CLOE) algorithm [1, 2, 4]. It can be
shown (see [2, 4] that in both deterministic and stochastic environment the sufficient
condition for stability and unbiased asymptotic convergence is:

http://dx.doi.org/10.1007/978-3-319-41450-8_4
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H ′(z−1) = S(z−1)

P(z−1)
− λ2

2
(8.27)

should be strictly positive real (where maxt λ2(t) ≤ λ2 < 2).
To relax this condition, the following two solutions have been proposed.

8.2.2 Filtered and Adaptive Filtered Closed-Loop Output
Error Algorithms (F-CLOE, AF-CLOE)

Equation (8.26) for θ̂ = constant can also be rewritten as:

εCL(t + 1) = S

P
· P̂
S

[θ − θ̂] S
P̂

φ(t) = P̂

P
[θ − θ̂ ]φf (t), (8.28)

where

φf (t) = S

P̂
φ(t) (8.29)

P̂ = ÂS + q−dB̂R (8.30)

In Eq. (8.30), P̂ is an estimation of the true closed-loop poles based on an initial
estimation of the plant model (for example using an open-loop experiment). This
formulation leads to the Filtered Closed-Loop Output Error (F-CLOE) algorithm [2]
which uses the same adjustable predictor as CLOE (see Eqs. (8.22) and (8.23)) and
the PAA with:

Θ̂(t) = θ̂ (t)

Φ(t) = φf (t)

ν◦(t + 1) = ε◦
CL(t + 1)

It can be shown that by neglecting the non-commutativity of time-varying operators
(an exact algorithm can however be derived), under the sufficient condition that:

H ′(z−1) = P̂(z−1)

P(z−1)
− λ2

2
(8.31)

is strictly positive real, both asymptotic stabilities in deterministic environment and
asymptotic unbiasedness in a stochastic environment are assured [2].

One can further relax the condition of Eq. (8.31) by filtering φ(t) through a time-
varying filter S/P̂(t), where P̂(t) corresponds to the current estimate of the closed-
loop given by: P̂(t) = Â(t)S+q−dB̂(t)R, where Â(t) and B̂(t) are the current estimates
of the A and B polynomials (the AF-CLOE algorithm).



160 8 Identification in Closed-Loop Operation

8.2.3 Extended Closed-Loop Output Error Algorithm
(X-CLOE)

For the case where the noise model is η(t + 1) = C
A e(t + 1), where e(t + 1) is a

zero mean gaussian white noise and C(q−1) = 1 + q−1C∗(q−1) is an asymptotically
stable polynomial, an extended output error prediction model can be defined:

ŷ(t + 1) = −Â∗ŷ(t) + B̂∗û(t − d) + Ĥ∗ εCL(t)

S

= θ̂Tφ(t) + Ĥ∗ εCL(t)

S
= θ̂T

e φe(t) (8.32)

Equation (8.8) for the plant output becomes in this case:

y(t + 1) = θTφ(t) + H∗ εCL(t)

S
− C∗εCL(t) + Ce(t + 1) (8.33)

= θT
e φe(t) − C∗εCL(t) + Ce(t + 1), (8.34)

where

H∗ = h1 + h2q
−1 + · · · + hnH q

−nH+1 = C∗S − A∗S − q−dB∗R, (8.35)

H = 1 + q−1H∗ = 1 + CS − P, (8.36)

θT
e = [θT , h1, . . . , hnH ], (8.37)

θ̂T
e = [θ̂T , ĥ1, . . . , ĥnH ], (8.38)

φT
e (t) = [φT (t), εCLf (t), . . . , εCLf (t − nH + 1)], (8.39)

εCLf (t) = 1

S
εCL(t). (8.40)

Subtracting (8.32) from (8.34), one obtains the following expression for the
closed-loop prediction error (for details see [5]):

εCL(t + 1) = 1

C
[θe − θ̂e]Tφe(t) + e(t + 1). (8.41)

Equation (8.41) clearly shows that for θ̂e = θe the closed-loop prediction error
tends asymptotically towards e(t + 1).

Replacing the fixed predictor (8.32) with an adjustable one, a recursive identifi-
cation algorithm (X-CLOE) can be obtained by using a PAA with:

Θ̂(t) = θ̂e(t)

Φ(t) = φe(t)

ν◦(t + 1) = ε◦
CL(t + 1) = y(t + 1) − θ̂T

e (t)φe(t)
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Fig. 8.3 Taking into account the double differentiator behaviour for identification in closed-loop

The analysis in the deterministic case (C = 1, e = 0) using the theorem given in
Chap. 4 shows that global asymptotic stability is assured without any positive real
condition (since the a posteriori closed-loop prediction error equation in this case is
εCL = [θe − θ̂e(t + 1)]Tφe(t)).

Asymptotic unbiased estimates in a stochastic environment can be obtained under
the sufficient condition [2, 5] that:

H ′(z−1) = 1

C(z−1)
− λ2

2
(8.42)

is strictly positive real (where maxt λ2(t) ≤ λ2 < 2).

8.2.4 Taking into Account Known Fixed Parts in the Model

In the context of active vibration control systems, like for identification in open-loop
operation, it is wise to take into account that the secondary path has a known double
differentiator behaviour. This will require a modification of the controller used in
the closed-loop predictor. To take into account the double differentiator behaviour
when external excitation is superposed to the input of the controller (at the input of
the filter R) one should modify the CLOE configuration as shown in Fig. 8.3.3

3The external excitation effect is equivalently obtained by filtering the signal through R and adding
it to the output of the filter R in the upper part of the Fig. 8.3. Using algorithms from the CLID
toolbox, both T and R should be modified according to the Fig. 8.3.

http://dx.doi.org/10.1007/978-3-319-41450-8_4
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8.2.5 Properties of the Estimated Model

It is very important to asses the properties of the estimated model in the frequency
domain. This will allow to know in what frequency region the approximation of the
true plant will be best (it is expected that this should be particularly true in the critical
regions for design). Nevertheless, the properties of the estimated models will depend
on the point where the external excitation is applied. There are several options.
When the excitation is superposed to the output of the controller (like in Fig. 8.2a),
the properties of the estimated model in the frequency domain (bias distribution)
result from ([2]):

θ̂∗ = arg min
θ̂∈D

∫ π

−π

|Syp|2[|G − Ĝ|2|Ŝyp|2φru(ω) + φη(ω)]dω, (8.43)

where φru(ω) and φη(ω) are the power spectral densities of the excitation and the
measurement noise, respectively. This expression shows that

• The estimation of the plant model parameters is unbiased when G is in the model
set4;

• The bias distribution is not affected by the spectrum of the noise (which is the case
when using the (filtered) open-loop identification methods [2]);

• The approximation of the true model is not only weighted by the sensitivity func-
tion but is further weighted by the estimated output sensitivity function; and

• Quality of the estimated model is enhanced in the critical region for design.5

By contrast the bias distribution in the frequency domain for the open-loop output
error is given by:

θ̂∗ = arg min
θ̂∈D

∫ π

−π

[|G − Ĝ|2|φru(ω) + φη(ω)]dω (8.44)

As one can see, the basic difference is that in open-loop identification using output
error algorithm one has an equal weight for all the frequencies. The comparison
between (8.43) and (8.44), explains why identification in closed-loop may provide
better models for design.

When the external excitation signal is superposed to the input of the controller,
with T = R, the asymptotic bias distribution is given by:

θ̂∗ = arg min
θ̂∈D

∫ π

−π

|Syp|2[|G − Ĝ|2|Ŝup|2φru(ω) + φη(ω)]dω, (8.45)

4Both true plant model and estimated plant model have the same orders.
5Recall that the maximum of the output sensitivity function corresponds to the minimum distance
with respect to the Nyquist point.
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where Ŝup = −ÂR/P̂ is the estimated input sensitivity function.
For more details see [2, 6].

8.2.6 Validation of Models Identified in Closed-Loop
Operation

As in open-loop identification, it is the model validation that will tell us on one hand
if the identified model is acceptable and on the other hand it will allow us to select
the best model among the models provided by various identification methods.

The objective of the model validation in closed-loop operation is to find what
plant model combined with the current controller provides the best prediction of the
behaviour of the closed-loop system. The results of model validation in closed-loop
will depend upon the controller used.

Four validation procedures can be defined:

1. Statistical validation tests on the closed-loop output error (uncorrelation test
between εCL(t + 1) and ŷ(t)).

2. Closeness of the computed and identified poles of the closed-loop system.
3. Closeness of the computed and identified sensitivity functions of the closed-loop

system.
4. Time response validation (comparison of time responses of the real closed-loop

system and of the closed-loop predictor).

Statistical Validation

The statistical validation follows the same principles as for open-loop model iden-
tification; however, in this case one considers the residual prediction error between
the output of the plant operating in closed-loop and the output of the closed-loop
predictor. An uncorrelation test will be used.

Using the schemes shown in Fig. 8.2b (or Fig. 8.3), where the predictor is given by
Eq. (8.12) through (8.15), one computes with the identified values of the parameters:

• The cross correlations between the residual closed-loop output error εCL(t + 1)

and the predicted output ŷ(t));
• The covariance of the residual closed-loop output error.

This type of test is motivated on one hand by the fact that uncorrelation between
the predicted output and the residual closed-loop prediction error leads to unbiased
parameter estimates and on the other hand this uncorrelation implies the uncorrelation
between the closed-loop output error and the external excitation. This means that the
residual prediction error does not contain any information which depends upon the
external excitation and therefore all the correlations between the external excitation
and the output of the closed-loop system are captured by the closed-loop predictor.
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One computes:

Rε(0) = 1

N

N∑
t=1

ε2
CL(t) (8.46)

Rŷ(0) = 1

N

N∑
t=1

ŷ2(t) (8.47)

Rεŷ(i) = 1

N

N∑
t=1

εCL(t)ŷ(t − i) i = 1, 2, . . . , nA (8.48)

RNεŷ(i) = Rεŷ(i)

[Rŷ(0) · Rε(0)]1/2
(8.49)

As a confidence test, one can use the criterion

|RN(i)| ≤ 2.17√
N

, (8.50)

where N is the number of data (see also Sect. 5.5), as well as the practical criterion
|RN(i)| ≤ 0.15.

In many practical situations, one either has a previous plant model identified in
open-loop or several identification algorithms are used on the data collected in closed-
loop. Then a comparative validation has to be done and useful comparison indicators
are provided by Rε(0) and max |RNεŷ| for each model (however other comparison
criteria can be considered).

Pole Closeness Validation

If the model identified in closed-loop in feedback with the controller used during
identification allows constructing a good predictor for the real system, this implies
that the poles of the closed-loop system and of the closed-loop predictor are close
(assuming that a persistent excitation has been applied for identification). As a conse-
quence, the closeness of the closed-loop predictor poles (which can be computed) and
those of the real closed-loop system (which can be identified by an open-loop type
identification between the external excitation and the output) will give an indication
of the quality of the identified model.

The closeness of the two sets of poles can be judged by a visual examination of
the poles chart but a quantification of the closeness can be done (see next).

Sensitivity Functions Closeness Validation

From the same arguments as above it results that if the identified model is good,
the sensitivity functions of the closed-loop predictor (which can be computed) are
close to the sensitivity functions of the real system (which can be identified by an
open-loop type identification between the external excitation and the output).

http://dx.doi.org/10.1007/978-3-319-41450-8_5
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To some extent the closeness of the sensitivity functions can be assessed by visual
inspection. Moreover it is possible to quantify rigorously the distance between two
transfer functions by computing the Vinnicombe distance (see Appendix A).

Extensive simulations and a large number of experimental results have shown
that the statistical tests and the poles or sensitivity functions closeness give coherent
results and allow a clear comparison between several models ([1]).

Time Domain Validation

For the validation in the time domain, the time responses of the closed-loop sys-
tem and of the closed-loop predictor are compared. Unfortunately in practice it is
in general not easy to compare accurately several models using this technique. In
fact a good validation by poles or sensitivity functions closeness will imply a good
superposition of the time domain responses while the reciprocal is not always true.

8.3 A Real-Time Example: Identification in Closed-Loop
and Controller Redesign for the Active Control System
Using an Inertial Actuator

A first controller for this system has been designed in Sect. 7.3 using a plant model
identified in open-loop and it has been tested in real time. The objective in this section
is to illustrate the procedure for identification in closed-loop operation. For carrying
the identification in closed-loop operation the controller designed on the basis of the
open-loop identified model will be used. The identification experiment is done in the
absence of the narrow-band output disturbance.

In this example the objective of the identification in closed-loop will be to heavily
weight the differences between the estimated model and the true model in the fre-
quency regions close to the Nyquist point. This is achieved by adding the excitation
signal to the control signal (see Sect. 8.2.5).

To take into account the double differentiator behaviour of the secondary path
model, the solution indicated in Fig. 8.3 has been used, i.e., the double differentiator
has been added to the polynomials T(q−1) = S(q−1) and R(q−1).

Before running the identification algorithms, the input and output signals have
been centred. The orders of the model used for identification in closed-loop operation
are the same as those of the model identified in open-loop (nB = 23 and nA = 22).
The final order for the secondary path numerator after adding the known fixed part
will be nB = 25.

A parameter adaptation algorithm with decreasing gain has been used for all the
identification methods. The best results in terms of validation have been obtained
using the X-CLOE method. The uncorrelation validation test result for the closed-
loop identification is shown in Fig. 8.4. It can be seen that the model is valid. The
loss function is 7.7 × 10−5 an it is very small compared to the measured output.

http://dx.doi.org/10.1007/978-3-319-41450-8_7
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Fig. 8.4 Uncorrelation test
for the model identified in
closed-loop operation with
XCLOE
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Fig. 8.5 Comparison
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A comparison with an open-loop identification of the closed-loop has also been
accomplished to validate the model. The open-loop model does not pass the uncor-
relation test on the closed-loop data; the loss function for the open-loop identified
model on the closed-loop data is 1.3×10−3 (much higher than for the model identified
in closed-loop). One can conclude already that the model identified in closed-loop
operation is better than the model identified in open-loop operation. A Bode mag-
nitude comparison between the open-loop identified model from Sect. 6.2 and the
closed-loop identified model in the presence of the controller designed in Sect. 7.3
is shown in Fig. 8.5. It can be observed that the two models are very close in the
frequency region of interest (50–95 Hz). Note that the differences between the two
transfer functions appear in the frequency region over 150 Hz, where the magnitude
of the input sensitivity function is very low (see Fig. 7.14) and therefore there will
be a little impact on performances.

Further comparison between the two models requires an estimation of the closed-
loop transfer function. The closed-loop between excitation and measurement has

http://dx.doi.org/10.1007/978-3-319-41450-8_6
http://dx.doi.org/10.1007/978-3-319-41450-8_7
http://dx.doi.org/10.1007/978-3-319-41450-8_7
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Fig. 8.6 Closed-loop poles closeness comparison using the model identified in closed-loop oper-
ation (a) and the open-loop identified model (b)

been identified as an input/output model using XOLOE method. The identified model
of the closed-loop passed the whiteness test (i.e., it is a valid model). This allows to
compare the identified closed-loop poles with the calculated closed-loop poles using
the two models identified in open and in closed-loop operation. The pole closeness
between the poles of the identified closed-loop model and the poles computed with
the open-loop identified model and with the model identified in closed-loop are
shown in Fig. 8.6. The model identified in closed-loop gives a slightly better result.

Using the same specifications and controller design steps as described in Sect. 7.3,
a new controller has been obtained on the basis of the model identified in closed-loop
operation. The controller has been tested using the same procedure as before. Time
domain results in open-loop and in closed-loop are shown in Fig. 8.7. Frequency
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Fig. 8.7 The response results for a 70 Hz disturbance in open-loop and in closed-loop with the
redesigned controller

http://dx.doi.org/10.1007/978-3-319-41450-8_7
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Fig. 8.8 PSD of the residual
force in open-loop (dashed
line) and closed-loop (solid
line) for 70 Hz disturbance
using the redesigned
controller
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Fig. 8.9 Effective residual
attenuation/amplification
PSD estimates computed as
the difference between the
open-loop PSD and the
closed-loop PSD using the
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domain analysis has also been done and the results are shown in Figs. 8.8 and 8.9.
It can be seen that the controller effectively reduces the disturbance and the residual
force is at the level of the system’s noise. These figures have to be compared with
Figs. 7.15, 7.16, and 7.17.

The global attenuation of the newly designed controller is 49 dB, while for the
first controller it was 48.4 dB. As for the first controller, the maximum amplification
does not exceed the 6 dB limit (dashed line in Figs. 7.17 and 8.9). The disturbance
attenuation is of 62.4 dB for the new controller and 63 dB for the initial one. The
differences are negligible taking also into account that they were obtained on the
basis of a single trial (one realization of a stochastic process).6 One can conclude
that in this particularvadjust case, already the quality of the model identified in open-

6It was not possible to conduct a sufficiently large number of measurements for this example.

http://dx.doi.org/10.1007/978-3-319-41450-8_7
http://dx.doi.org/10.1007/978-3-319-41450-8_7
http://dx.doi.org/10.1007/978-3-319-41450-8_7
http://dx.doi.org/10.1007/978-3-319-41450-8_7
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loop was sufficient to get a good controller. Therefore, the initial controller based
on the open-loop identified model will be used in Sect. 9.4 to design a reduced order
controller.

8.4 Concluding Remarks

• Plant model identification in closed-loop operation provides efficient tools either
for improving open-loop identified models or for redesign and retuning of existing
controllers.

• The objective of identification in closed-loop operation is to obtain, for a given
controller, a plant model allowing the best description of the behaviour of the
closed-loop system.

• Identification in closed-loop is based on the use of an adaptive predictor for the
closed-loop which is re-parameterized in terms of the plant model to be identified.

• The estimated parameters minimize asymptotically a criterion in terms of the
closed-loop prediction error.

• As for the case of identification in open-loop, there is no single algorithm which
gives the best results in all the situations.

• Comparative validation of the identified models is crucial for the selection of the
best identified model.

• In addition to the statistical validation test, the pole closeness between the true
closed-loop poles (obtained through identification of the closed-loop) and the
computed ones, based on the identified model is a very useful validation tool.

8.5 Notes and References

Plant model identification in closed-loop operation has been considered for a long
time as a very difficult problem. See [7] for a survey.

It is the work done on the topics of “Identification for Control” and “Iterative
Identification and Controller Re-design” which contributed to put the problem of
identification in closed-loop operation in an appropriate context. See [8–13] for
details.

The original reference for the closed-loop output error is [4]. Further details and
comparative evaluations can be found in [1, 2, 6, 14].

http://dx.doi.org/10.1007/978-3-319-41450-8_9
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