
Chapter 7
Digital Control Strategies for Active
Vibration Control—The Bases

7.1 The Digital Controller

The basic equation for the polynomial digital controller to be used in active vibration
control (subsequently called RS controller) is (see Fig. 7.1)

S(q−1)u(t) = −R(q−1)y(t) (7.1)

where u(t) is the plant input, y(t) is the measured plant output, and

S(q−1) = s0 + s1q
−1 + · · · + snSq

−nS = s0 + q−1S∗(q−1), (7.2)

R(q−1) = r0 + r1q
−1 + · · · + rnRq

−nR , (7.3)

are, respectively, the denominator and numerator of the controller

K (q−1) = R(q−1)

S(q−1)
. (7.4)

Equation (7.1) can also be written as

u(t) = 1

s0

[−S∗(q−1)u(t − 1) − R(q−1)y(t)
]

(7.5)

Note that for a number of control algorithms (like pole placement) s0 = 1 in (7.2).
Consider

G(q−1) = q−d B(q−1)

A(q−1)
(7.6)

as the pulse transfer operator of the cascade DAC + ZOH + continuous-time
system + ADC, then the transfer function of the open-loop system is written as
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122 7 Digital Control Strategies for Active Vibration Control—The Bases

Fig. 7.1 Discrete feedback RS controller

HOL(z
−1) = K (z−1)G(z−1) = B(z−1)R(z−1)

A(z−1)S(z−1)
(7.7)

and the closed-loop transfer function between the reference signal r(t) and the output
y(t), using controller (7.4), has the expression

Syr (z
−1) = KG

1 + KG
= B(z−1)R(z−1)

A(z−1)S(z−1) + B(z−1)R(z−1)
= B(z−1)R(z−1)

P(z−1)
, (7.8)

where

P(z−1) = A(z−1)S(z−1) + z−d−1B�(z−1)R(z−1) (7.9)

= A(z−1)S(z−1) + z−d B(z−1)R(z−1) (7.10)

is the denominator of the closed-loop transfer function that defines the closed-loop
system poles. Syr is known also as the complementary sensitivity function.

In the presence of disturbances (see Fig. 7.2), there are other important transfer
functions to consider, relating the disturbance to the output and the input of the plant.

The transfer function between the disturbance p(t) and the output y(t) (output
sensitivity function) is given by

Syp(z
−1) = 1

1 + KG
= A(z−1)S(z−1)

P(z−1)
. (7.11)

The transfer function between the disturbance p(t) and the input of the plant u(t)
(input sensitivity function) is given by

Sup(z
−1) = − K

1 + KG
= − A(z−1)R(z−1)

P(z−1)
. (7.12)

Fig. 7.2 Discrete feedback RS controller with input/output disturbances and measurement noise
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Another important transfer function describes the influence on the output of a
disturbance υ(t) on the plant input. This sensitivity function (input disturbance-
output sensitivity function) is given by

Syυ(z−1) = G

1 + KG
= B(z−1)S(z−1)

P(z−1)
. (7.13)

The feedback system presented in Fig. 7.2 is asymptotically stable if and only if
all the four sensitivity functions Syr , Syp, Sup and Syυ are asymptotically stable.

As it will be shown soon, the perfect rejection of disturbances with known char-
acteristics or conversely opening of the loop for certain disturbances will require
the introduction of some fixed pre-specified polynomials in S and R. The general
structure of R and S will be of the form:

S(z−1) = S′(z−1)HS(z
−1) (7.14)

R(z−1) = R′(z−1)HR(z−1) (7.15)

where HS(z−1) and HR(z−1) are monic fixed polynomials, which are introduced in
the controller for achieving certain performances with respect to disturbances. Using
this parametrization, the closed-loop poles will be given by

P(z−1) = A(z−1)HS(z
−1)S′(z−1) + z−d−1B�(z−1)HR(z−1)R′(z−1) (7.16)

Note that HS(z−1) and HR(z−1) can be interpreted as an “augmentation” of the plant
model (for computation purposes).

The design of the RS controller can be done in the frequency domain using transfer
functions (operators).

7.2 Pole Placement

The pole placement strategy is applicable to plant models of the form of Eq. (7.6).
We will make the following hypothesis upon the plant model of Eq. (7.6):

(H1) No restrictions upon the orders of the polynomials A(z−1), B(z−1) and the
value of the delay d.

(H2) The orders nA, nB , the delay d and the coefficients of A(z−1) and B(z−1) are
known.

(H3) The zeros of B(z−1) can be inside or outside the unit circle.
(H4) A(z−1) and B(z−1) (or AHS and BHR) do not have any common factors.
(H5) The zeros of A(z−1) can be inside or outside the unit circle.

The control law is of the form (7.1) and the polynomials R(z−1) and S(z−1) have
the structure of Eqs. (7.14) and (7.15).
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The closed-loop behaviour is defined by

• the desired closed-loop poles;
• the choice of the fixed parts HR(z−1) and HS(z−1).

The desired closed-loop poles are chosen under the form as follows:

P(z−1) = PD(z−1) · PF (z−1) (7.17)

where PD(z−1) defines the dominant poles and PF (z−1) defines the auxiliary poles.
Often PD(z−1) is chosen to include all the stable poles of the plant in open-loop

with the option of eventually modifying the damping of the complex poles.
The role of PF (z−1) is on one hand to introduce a filtering effect at certain fre-

quencies and on the other hand to improve the robustness of the controller.
With the notations:

nA = deg A ; nB = deg B

nHS = deg HS ; nHR = deg HR

and under the hypotheses H1 to H5, (7.16) has a unique solution for S′ and R′, of
minimal degree for

nP = deg P(z−1) ≤ nA + nHS + nB + nHR + d − 1 (7.18)

nS′ = deg S′(z−1) = nB + nHR + d − 1 (7.19)

nR′ = deg R′(z−1) = nA + nHS − 1 (7.20)

with

S′(z−1) = 1 + s ′
1z

−1 + · · · + s ′
nS
z−nS (7.21)

R′(z−1) = r ′
0 + r ′

1z
−1 + · · · + r ′

nR
z−nR (7.22)

For a proof see [1, 2]. Various methods for solving this equation are available.1

7.2.1 Choice of HR and HS—Examples

Opening the Loop

In a number of applications, the measured signal may contain specific frequencies
which should not be attenuated by the regulator. In such cases the system should be
in open-loop at these frequencies.

1See functions bezoutd.m (MATLAB®) or bezoutd.sci (Scilab) on the book website.
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From (7.12) in the absence of the reference, the input to the plant is given by

u(t) = Sup(q
−1)p(t) = A(q−1)HR(q−1)R′(q−1)

P(q−1)
p(t) (7.23)

and therefore in order to make the input sensitivity function zero at a given frequency
f , one should introduce a pair of undamped zeros in HR(q−1), i.e.,:

HR(q−1) = (1 + βq−1 + q−2) (7.24)

where

β = −2 cos(ωTS) = −2 cos(2π
f

fS
)

In many cases it is desired that the controller does not react to signals of frequencies
close to 0.5 fS (where the gain of the system is in general very low). In such cases,
one uses

HR(q−1) = (1 + βq−1) (7.25)

where
0 < β ≤ 1

Note that (1 + βq−1)2 corresponds to a second order with a damped resonance
frequency equal to ωS/2 as follows:

ω0

√
1 − ζ 2 = ωS

2

and the corresponding damping ζ is related to β by

β = e
− ζ√

1−ζ2
π

For β = 1, the system will operate in open-loop at fS/2.
In active vibration control systems, the gain of the secondary path at 0 Hz is zero

(double differentiator behaviour). It is therefore not reasonable to send a control
signal at this frequency. The system should operate in open-loop at this frequency.
To achieve this, one uses

HR(q−1) = (1 − q−1) (7.26)

Perfect Rejection of an Harmonic Disturbance

The disturbance p(t) can be represented as the result of a Dirac function δ(t) passed
through a filter D(q−1) (called the model of the disturbance)

D(q−1)p(t) = δ(t) (7.27)
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In the case of an harmonic disturbance, the model is

(1 + αq−1 + q−2)p(t) = δ(t) (7.28)

with

α = −2 cos(ωTS) = −2 cos(2π
f

fS
) (7.29)

From (7.11) in the absence of a reference, one has

y(t) = A(q−1)HS(q−1)S′(q−1)

P(q−1)
p(t) (7.30)

The problem can be viewed as choosing HS(q−1) such that the gain of the transfer
function between p(t) and y(t) be zero at this frequency.

To achieve this one should choose

HS(q
−1) = (1 + αq−1 + q−2) (7.31)

In this case the expression of y(t) taking into account (7.28), (7.30) and (7.31)
becomes

y(t) = A(q−1)S′(q−1)

P(q−1)
δ(t) (7.32)

and it results that asymptotically y(t) tends to zero since P(q−1) is asymptotically
stable. This result is nothing else than the internal model principle which will be
stated next.

7.2.2 Internal Model Principle (IMP)

Suppose that p(t) is a deterministic disturbance, so it can be written as

p(t) = Np(q−1)

Dp(q−1)
· δ(t), (7.33)

where δ(t) is a Dirac impulse and Np(z−1), Dp(z−1) are coprime polynomials in z−1,
of degrees nNp and nDp , respectively (see also Fig. 7.1). In the case of stationary dis-
turbances, the roots of Dp(z−1) are on the unit circle. The energy of the disturbance
is essentially represented by Dp. The contribution of the terms of Np is weak asymp-
totically compared to the effect of Dp, so one can neglect the effect of Np for a
steady-state analysis of the effect of the disturbance upon the system.
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Internal Model Principle: The effect of the disturbance given in (7.33) upon the
output:

y(t) = A(q−1)S(q−1)

P(q−1)
· Np(q−1)

Dp(q−1)
· δ(t), (7.34)

where Dp(z−1) is a polynomial with roots on the unit circle and P(z−1) is an asymp-
totically stable polynomial, converges asymptotically towards zero if and only if the
polynomial S(z−1) in the RS controller has the following form:

S(z−1) = Dp(z
−1)S′(z−1). (7.35)

In other terms, the pre-specified part of S(z−1) should be chosen as HS(z−1) =
Dp(z−1) and the controller is computed using (7.16), where P , Dp, A, B, HR and d
are given.2

The IMC principle says that in order to completely reject a disturbance asymptoti-
cally (i.e., in steady state), the controller should include the model of the disturbance.

7.2.3 Youla–Kučera Parametrization

Using the Youla–Kučera parametrization (Q-parametrization) of all stable controllers
([3, 4]), the controller polynomials R(z−1) and S(z−1) get the following form:

R(z−1) = R0(z
−1) + A(z−1)Q(z−1) (7.36)

S(z−1) = S0(z
−1) − z−d B(z−1)Q(z−1) (7.37)

where (R0, S0) is the so-called central controller and Q is the YK or Q filter which
can be a FIR or an IIR filter. Figure 7.3 gives a representation of the Youla–Kučera
parametrization of the R–S controllers. The central controller (R0, S0) can be com-
puted by pole placement (but any other design technique can be used). Given the
plant model (A, B, d) and the desired closed-loop poles specified by the roots of
P(z−1) one has to solve

P(z−1) = A(z−1)S0(z
−1) + z−d B(z−1)R0(z

−1) . (7.38)

If Q(z−1) is considered to be a polynomial of the form (FIR filter):

Q(z−1) = q0 + q1z
−1 + · · · + qnQ z

−nQ . (7.39)

Equations (7.36) and (7.37) characterize the set of all stabilizable controllers assign-
ing the closed-loop poles as defined by P(z−1). It can be easily verified by simple
computation, that the poles of the closed-loop remain unchanged; however, the par-

2Of course it is assumed that Dp and BHR do not have common factors.
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Fig. 7.3 The Youla–Kučera
parametrized RS digital
controller

ticular interest of the YK parametrization is the fact that the internal model of the
disturbance can be incorporated in the controller by an appropriate choice of the
filter Q. This filter should be such that the resulting polynomial S has the form
S = S′Dp, i.e.,:

S′(z−1)Dp(z
−1) = S0(z

−1) − z−d B(z−1)Q(z−1) , (7.40)

To compute Q(z−1) in order that the polynomial S(z−1) given by (7.37) incorporates
the internal model of the disturbance (7.33) one has to solve the following diophantine
equation:

S′(z−1)Dp(z
−1) + z−d B(z−1)Q(z−1) = S0(z

−1) , (7.41)

where Dp(z−1), d, B(z−1) and S0(z−1) are known and S′(z−1) and Q(z−1) are
unknown. Equation (7.41) has a unique solution for S′(z−1) et Q(z−1) with: nS0 ≤
nDp + nB + d − 1, nS′ = nB + d − 1, nQ = nDp − 1. One sees that the order nQ of
the polynomial Q depends upon the structure of the disturbance model.

Consider now the case of a Q filter as ratio of rational polynomials (IIR filter)
with an asymptotically stable denominator as follows:

Q(z−1) = BQ(z−1)

AQ(z−1)
(7.42)

The YK controller will have the structure:

R(z−1) = AQ(z−1)R0(z
−1) + A(z−1)BQ(z−1) (7.43)

S(z−1) = AQ(z−1)S0(z
−1) − z−d B(z−1)BQ(z−1) (7.44)

but in this case the poles of the closed-loop will be given by

P(z−1)QI I R = P(z−1)AQ(z−1) (7.45)

In the case of IIR Q filters, the poles of the denominator of Q will appear as additional
poles of the closed-loop. This parametrization will be discussed in detail in Sects. 7.4
and 12.2 together with the preservation of the pre-specified fixed part of the controller
HR and HS .

http://dx.doi.org/10.1007/978-3-319-41450-8_12
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7.2.4 Robustness Margins

The Nyquist plot of the open-loop transfer function allows one to assess the influence
of the modelling errors and to derive appropriate specifications for the controller
design in order to assure the robust stability of the closed-loop system for certain
classes of plant model uncertainties.

The open-loop transfer function corresponding to the use of an RS controller is:

HOL(z
−1) = z−d B(z−1)R(z−1)

A(z−1)S(z−1)
(7.46)

By making z = e jω, where ω is the normalized frequency (ω = ωTs = 2π f/ fs , fs
sampling frequency, Ts sampling period), the Nyquist plot of the open-loop transfer
function HOL(e− jω) can be drawn. In general, one considers for the normalized
frequency ω the domain between 0 and π (i.e., between 0 and 0.5 fs). Note that the
Nyquist plot between π and 2π is symmetric with respect to the real axis of the
Nyquist plot between 0 and π . An example of a Nyquist plot is given in Fig. 7.4.

The vector connecting a point of the Nyquist plot with the origin corresponds to
HOL(e− jω) for a certain normalized frequency. The point [−1, j0] on the diagram
of Fig. 7.4 corresponds to the critical point. From Fig. 7.4, it results that the vector
connecting the critical point with the Nyquist plot of HOL(e− jω) has the following
expression:

1 + HOL(z
−1) = A(z−1)S(z−1) + z−d B(z−1)R(z−1)

A(z−1)S(z−1)
= S−1

yp (z−1) (7.47)

This vector corresponds to the inverse of the output sensitivity function Syp(z−1)

given by Eq. (7.11) and the zeros of S−1
yp are the poles of the closed-loop system. In

order that the closed-loop system be asymptotically stable, it is necessary that all the
zeros of S−1

yp lie inside the unit circle.
The necessary and sufficient conditions in the frequency domain for the asymptotic

stability of the closed-loop system are given by the Nyquist criterion. For the case of

Fig. 7.4 The Nyquist plot
of a discrete-time transfer
function and the critical point

H
OL

(e-jω )S      = 1 +
H

OL
yp
-1

critical point

-1

Im H

Re H

ω = 0

ω = π

(e-jω )
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Fig. 7.5 Modulus, gain and
phase margins
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open-loop stable systems (in our case this corresponds to A(z−1) = 0 and S(z−1) =
0 =⇒ |z| < 1), the Nyquist criterion is expressed as:

Stability Criterion (Open-Loop Stable Systems)

The Nyquist plot of HOL(z−1) traversed in the sense of growing frequencies (from
ω = 0 to ω = π leaves the critical point [−1, j0] on the left.

Using pole placement, the Nyquist criterion will be satisfied for the nominal plant
model because R(z−1) and S(z−1) are computed using Eq. 7.10 for an asymptotically
stable polynomial P(z−1) defining the desired closed-loop poles (P(z−1) = 0 =⇒
|z| < 1). Of course, we are assuming at this stage that the resulting S(z−1) is also
stable.3

The minimal distance between the Nyquist plot of HOL(z−1) and the critical
point will define a stability margin. This minimal distance according to Eq. (7.47)
will depend upon the maximum of the modulus of the output sensitivity function.

This stability margin which we will call subsequently the modulus margin could
be linked to the uncertainties upon the plant model.

The following indicators serve for characterizing the distance between the Nyquist
plot of HOL(z−1) and the critical point [−1, j0] (see Fig. 7.5):

• modulus margin (ΔM)
• delay margin (Δτ )
• phase margin (Δφ)
• gain margin (ΔG)

3See [5] for the case of open-loop unstable systems.
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Below are the definitions of the modulus margin and delay margin which will be
used in the robust control design (for the definition of the gain and phase margin, see
any classical control text):

Modulus Margin (Δ M)

The modulus margin (ΔM) is defined as the radius of the circle centred in [−1, j0]
and tangent to the Nyquist plot of HOL(z−1).

From the definition of the vector connecting the critical point [−1, j0] with the
Nyquist plot of HOL(z−1) (see Eq. (7.47)), it results that

ΔM = |1 + HOL(e
− jω)|min = (|Syp(e− jω)|max)

−1 = (‖Syp‖∞)−1 (7.48)

As a consequence, the reduction (or minimization) of |Syp(e− jω)|max will imply the
increase (or maximization) of the modulus margin ΔM .

In other terms the modulus margin ΔM is equal to the inverse of the maximum
modulus of the output sensitivity function Syp(z−1) (i.e., the inverse of the H∞ norm
of Syp(z−1)). If the modulus of Syp(z−1) is expressed in dB, one has the following
relationship:

|Syp(e− jω)|max(dB) = (ΔM)−1(dB) = −ΔM(dB) (7.49)

The modulus margin is very important because

• It defines the maximum admissible value for the modulus of the output sensitivity
function.

• It gives a bound for the characteristics of the nonlinear and time-varying elements
tolerated in the closed-loop system (it corresponds to the circle criterion for the
stability of nonlinear systems) [6].

Delay Margin (Δτ )

For a certain frequency the phase lag introduced by a pure time delay τ is:

∠φ(ω) = ωτ

If the Nyquist plot crosses the unit circle only once, one can therefore convert the
phase margin in a delay margin, i.e., to compute the additional delay which will lead
to instability. It results that:

Δτ = Δφ

ωcr
(7.50)

where ωcr is the crossover frequency (where the Nyquist plot intersects the unit
circle) and Δφ is the phase margin. If the Nyquist plot intersects the unit circle at
several frequencies ωi

cr (see Fig. 7.5), characterized by the associated phase margins
Δφi , the phase margin is defined as:

Δφ = min
i

Δφi (7.51)
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and the delay margin is defined by

Δτ = min
i

Δφi

ωi
cr

(7.52)

Remark This situation appears systematically for systems with pure time delays or
with multiple vibration modes.

Typical values of the robustness margins for a robust controller design are

• Modulus margin: ΔM ≥ 0.5(−6 dB)[min : 0.4(−8 dB)]
• Delay margin: Δτ ≥ Ts[min : 0.75Ts]
where Ts is the sampling period.
Important remarks:

1. A modulus margin ΔM ≥ 0.5 implies that ΔG ≥ 2(6 dB) and Δφ > 29◦. The
converse is not generally true. Systems with satisfactory gain and phase margins
may have a very small modulus margin.

2. Phase margin can be misleading according to Eq. (7.50). A good phase margin
may lead to a very small tolerated additional delay if ωcr is high.

The modulus margin is an intrinsic measure of the stability margin and will be
subsequently used together with the delay margin for the design of robust controllers
(instead of the phase and gain margin).

7.2.5 Model Uncertainties and Robust Stability

Figure 7.6 illustrates the effect of uncertainties or of the variations of the parameters of
the nominal model on the Nyquist plots of the open-loop transfer function. In general
the Nyquist plot corresponding to the nominal model lies inside a tube corresponding
to the possible (or accepted) tolerances of parameter variations (or uncertainties) of
the plant model.

Fig. 7.6 Nyquist plot of
the nominal model and
perturbed model

H

H

'
1 +

-1

Im H

Re H

H
OL

OL

OL
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We will consider an open-loop transfer function H ′
OL(z

−1) which differs from the
nominal one. For simplicity one assumes that the nominal transfer function HOL (z−1)

as well as H ′
OL(z

−1) are both stable (the general assumption is that both have the
same number of unstable poles, see [7, 8]).

In order to assure the stability of the closed-loop system for an open loop transfer
function H ′

OL(z
−1) which differs from the nominal one HOL(z−1), the Nyquist plot

of H ′
OL(z

−1) should leave the critical point [−1, j0] on the left side when traversed in
the sense of the growing frequencies. Looking at Fig. 7.6 one can see that a sufficient
condition for this, is that at each frequency the distance between H ′

OL(z
−1) and

HOL(z−1) be less than the distance between the nominal open-loop transfer function
and the critical point. This is expressed by:

|H ′
OL(z

−1) − HOL(z
−1)| < |1 + HOL(z

−1)| = |S−1
yp (z−1)| =

∣∣∣∣
P(z−1)

A(z−1)S(z−1)

∣∣∣∣

(7.53)

In other terms, the curve |Syp(e− jω)|−1 in dB (which is obtained by symmetry from
|Syp(e− jω)|) will give at each frequency a sufficient condition for the modulus of the
tolerated discrepancy between the real open-loop transfer function and the nominal
open-loop transfer function in order to guarantee stability.

In general, this tolerance is high in low frequencies and is low at the frequency
(or frequencies) where |Syp(e− jω)| reaches its maximum (=ΔM−1). Therefore, low
modulus margin will imply small tolerance to parameter uncertainties in a specified
frequency region.

The relationship (7.53) expresses a robustness condition in terms of the variations
of the open-loop transfer function (controller + plant). It is interesting to express this
in terms of the variations of the plant model. One way to do this, is to observe that
(7.53) can be rewritten as:

∣∣
∣∣
B ′(z−1)R(z−1)

A′(z−1)S(z−1)
− B(z−1)R(z−1)

A(z−1)S(z−1)

∣∣
∣∣ =

∣∣
∣∣
R(z−1)

S(z−1)

∣∣
∣∣ ·

∣∣
∣∣
B ′(z−1)

A′(z−1)
− B(z−1)

A(z−1)

∣∣
∣∣

<

∣
∣∣∣

P(z−1)

A(z−1)S(z−1)

∣
∣∣∣ (7.54)

Multiplying both sides of Eq. (7.54) by | S(z−1)

R(z−1)
| one gets

∣
∣∣∣
B ′(z−1)

A′(z−1)
− B(z−1)

A(z−1)

∣
∣∣∣ ≤

∣
∣∣∣

P(z−1)

A(z−1)R(z−1)
| = |S−1

up (z−1)

∣
∣∣∣ (7.55)

The left hand side of Eq. (7.55) expresses in fact an additive uncertainty for the
nominal plant model. The inverse of the modulus of the input sensitivity function
will give a sufficient condition for the tolerated additive variations (or uncertainties)
of the nominal plant model in order to guarantee stability. Large values of the modulus
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Fig. 7.7 Templates on the
output sensitivity function
for the modulus margin
ΔM = 0.5 and the delay
margin Δτ = Ts
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of the input sensitivity function in certain frequency range will imply low tolerance
to uncertainties in this frequency range. It will also mean that at these frequencies
high activity of the input will result under the effect of disturbances.

7.2.6 Templates for the Sensitivity Functions

Robustness margins and performance specifications in the frequency domain trans-
lates easily in templates for the various sensitivity functions [2, 5]. Figure 7.7 gives
the basic template for Syp for assuring the modulus margin constraint (ΔM � 0.5)
and the delay margin (Δτ � Ts). The template on the delay margin is an approxi-
mation (for more details see [2]). Violation of the lower or upper template does not
necessarily imply violation of the delay margin (which any way can be effectively
computed).

To this template, performance specification in terms of imposed attenuation and
bound on the “waterbed” effect can be added (see the example in Sect. 7.3).

Templates on the modulus of the input sensitivity function Sup are also considered.
In particular it is expected that Sup is low outside the frequency band of operation
of the controller. Low values of the modulus of the input sensitivity functions imply
a good robustness with respect to additive model uncertainties. Figure 7.8 gives an
example of template on the input sensitivity function. More details can be found on
the example given in Sect. 7.3.

7.2.7 Properties of the Sensitivity Functions

7.2.7.1 Output Sensitivity Function

Using an RS controller, the output sensitivity function is given by:
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Fig. 7.8 An example of
desired template for the
input sensitivity function

Sup  dB

 upper template

size of the tolerated additive uncertainity Wa

0
0.5fs

Sup
-1

Syp(z
−1) = A(z−1)S(z−1)

A(z−1)S(z−1) + z−d B(z−1)R(z−1)
(7.56)

where

R(z−1) = HR(z−1)R′(z−1) (7.57)

S(z−1) = HS(z
−1)S′(z−1) (7.58)

and

A(z−1)S(z−1) + z−d B(z−1)R(z−1) = PD(z−1) · PF (z−1) = P(z−1) (7.59)

In Eqs. (7.57) and (7.58), HR(z−1) and HS(z−1) correspond to the pre-specified
parts of R(z−1) and S(z−1) respectively. S′(z−1) and R′(z−1) are the solutions of
Eq. (7.16) where P(z−1) represents the desired closed-loop poles in pole placement
control strategy. The polynomial P(z−1) is factorized in order to emphasize the
dominant poles defined by PD(z−1) and the auxiliary poles defined by PF (z−1).

Property 1

The modulus of the output sensitivity function at a certain frequency gives the ampli-
fication or the attenuation of the disturbance.

At the frequencies where |Syp(ω)| = 1(0 dB), there is no attenuation nor ampli-
fication of the disturbance (operation in open-loop). At the frequencies where
|Syp(ω)| < 1(0 dB), the disturbance is attenuated. At the frequencies where
|Syp(ω)| > 1(0 dB), the disturbance is amplified.

Property 2 (The Bode Integral)

The closed-loop being asymptotically stable, the integral of the logarithm of the
modulus of the output sensitivity function from 0 to 0.5 fS is equal to 0 for the case
of stable open-loop systems4:

4See [9] for a proof. In the case of unstable open-loop systems but stable in closed-loop, this integral
is positive.
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∫ 0.5 fS

0
log |Syp(e− j2π f/ fS)|d f = 0

In other terms, the sum of the areas between the curve of the modulus of the output
sensitivity function and the 0 dB axis taken with their sign is null. As a consequence,
the attenuation of disturbances in a certain frequency region implies necessarily
the amplification of disturbances in other frequency regions.

Property 3

The inverse of the maximum of the modulus of the sensitivity function corresponds
to the modulus margin ΔM .

ΔM = (|Syp(e− jω)|max)
−1 (7.60)

From the Properties 2 and 3, it results that the increase of the attenuation band or
of the attenuation in a certain frequency band will in general imply an increase of
|Syp(e− jω)|max and therefore a decrease of the modulus margin (and therefore less
robustness).

Figure 7.9 shows the output sensitivity function for a closed-loop system, cor-
responding to a plant model A(z−1) = 1 − 0.7z−1, B(z−1) = 0.3z−1, d = 2.
The controller has been designed using the pole placement. The desired closed-loop
poles correspond to the discretization of a second order system with natural fre-
quency ω0 = 0.1 fs rad/s and damping ζ = 0.8. The system being subject to a tonal
disturbance located at 0.15 fs or at 0.151 fS , a double internal model corresponding
to these frequencies has been introduced in the controller fixed part HS . In the first
case a damping ζ = 0.3 has been considered leading to an attenuation of 8 dB and in
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Fig. 7.9 Modulus of the output sensitivity functions for a double internal model with 0 and 0.3
damping
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the second case full rejection of the disturbances have been considered using internal
models with ζ = 0 leading to an attenuation over 60 dB.5

One can clearly see that the increase of attenuation in a certain frequency region
implies necessarily a stronger amplification of the disturbances outside the attenua-
tion band. This is a direct consequence of Property 2. A similar phenomenon occurs
if for a given attenuation the attenuation band is expanded.

7.2.8 Input Sensitivity Function

The input sensitivity function is extremely important in the design of the linear
controller. The modulus of the input sensitivity function should be low at high fre-
quencies in order to assure a good robustness of the system with respect to additive
unstructured uncertainties located in the high-frequency region.6

The expression of the input sensitivity function using a RS controller with R and
S given by (7.57) and (7.58) is

Sup(z
−1) = − A(z−1)HR(z−1)R′(z−1)

A(z−1)HS(z−1)S′(z−1) + q−d B(z−1)HR(z−1)R′(z−1)
(7.61)

Property 1

The effect of the output disturbances upon the input is cancelled (i.e., Sup = 0) at
the frequencies where

A(e− jω)HR(e− jω)R′(e− jω) = 0 (7.62)

At these frequencies Syp = 1 (open-loop operation). The pre-specified values assur-
ing Sup = 0 at certain frequencies are of the same form as those used to make
Syp = 1.

Figure 7.10 illustrates the effect upon Sup of a pre-specified HR(z−1) of the form:

HR(z−1) = 1 + αz−1 ; 0 < α ≤ 1

For α = 1, one has Sup = 0 at 0.5 fs . Using 0 < α < 1 allows to reduce more
or less the input sensitivity function around 0.5 fs .7 This structure of HR(z−1) is
systematically used for reducing the magnitude of the input sensitivity function in
the high-frequency region.

5The structure of the HS is Hs = (1 + α1q−1 + α2q−2)(1 + α′
1q

−1 + α′
2q

−2).
6This is indeed true even in adaptive control since the uncertainties in the high-frequency region
are not in general handled by the adaptive controller.
7The input sensitivity function correspond to the system considered previously which includes in
the controller an internal model with zero damping located at 0.15 fs .
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Fig. 7.10 Effect of HR(z−1) = 1+αz−1, 0 < α ≤ 1 upon the input sensitivity function for various
values of parameter α

Property 2

At the frequencies where:

A(e− jω)HS(e
− jω)S′(e− jω) = 0

which corresponds to perfect rejection of the output disturbances (Syp = 0 at these
frequencies), one has

∣
∣Sup(e− jω)

∣
∣ =

∣∣
∣∣
A(e− jω)

B(e− jω)

∣∣
∣∣ (7.63)

i.e., the modulus of the input sensitivity function is equal to the inverse of the gain
of the plant at this frequency.

This implies that perfect rejection of disturbances (or more generally attenuation
of disturbances) should be done only in the frequency regions, where the gain of
the system is large enough. If the gain is too low, |Syp| will be very large at these
frequencies. Therefore, the robustness with respect to additive plant model uncer-
tainties will be reduced, and the stress on the actuator will become important [10].
This also indicates that problems will occur if B has complex zeros close to the unit
circle (stable or unstable). At these frequencies, rejection of disturbances should be
avoided.
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7.2.9 Shaping the Sensitivity Functions for Active
Vibration Control

Two sensitivity functions are of particular interest in active vibration control:

• Output sensitivity function (the transfer function between the disturbance p(t) and
the output of the system y(t)):

Syp(z
−1) = A(z−1)S(z−1)

P(z−1)
(7.64)

• Input sensitivity function (the transfer function between the disturbance p(t) and
the input of the system u(t)):

Sup(z
−1) = − A(z−1)R(z−1)

P(z−1)
(7.65)

In active vibration control they have to be shaped for performance and robustness
purposes. The first tool for shaping the sensitivity functions, once the “performance”
choices have been done (damping of some complex poles, introduction of the internal
model of the disturbance, opening the loop at certain frequencies), is the introduction
of the auxiliary poles.

The introduction of auxiliary asymptotically stable real poles PF (z−1) will cause
in general a decrease of the modulus of the sensitivity function in the domain of
attenuation of 1/PF (z−1).

From Eqs. (7.56) and (7.59), one can see that the term 1/PD(z−1)PF (z−1) will
introduce a stronger attenuation in the frequency domain than the term 1/PD(z−1) if
the auxiliary poles PF (z−1) are real (aperiodic) and asymptotically stable; however,
since S′(z−1) depends upon the poles through Eq. (7.16), one cannot guarantee this
property for all the values of PF (z−1).

The auxiliary poles are generally chosen as high-frequency real poles under the
form:

PF (z−1) = (1 − p1z
−1)nF ; 0.05 ≤ p1 ≤ 0.5

where:
nF ≤ np − nD ; np = (deg P)max ; nD = deg PD

The effect of the introduction of the auxiliary poles is illustrated in Fig. 7.11, for
the same system considered previously with a controller including an internal model
with 0 damping at 0.05 fS . One observes that the introduction of 5 auxiliary real poles
located at 0.5 “squeezes” the modulus of the output sensitivity function around 0 dB
axis in the high-frequency range.

Note that in many applications the introduction of high-frequency auxiliary poles
allows to satisfy the requirements for robustness margins.
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Fig. 7.11 Effect of auxiliary poles on the output sensitivity function

Simultaneous introduction of a fixed part HSi and of a pair of auxiliary poles PFi
in the form

HSi (z
−1)

PFi (z−1)
= 1 + β1z−1 + β2z−2

1 + α1z−1 + α2z−2
(7.66)

resulting from the discretization of the continuous-time band-stop filter (BSF):

F(s) = s2 + 2ζnumω0s + ω2
0

s2 + 2ζdenω0s + ω2
0

(7.67)

using the bilinear transformation8

s = 2

Ts

1 − z−1

1 + z−1
(7.68)

introduces an attenuation (a “hole”) at the normalized discretized frequency

ωdisc = 2 arctan(
ω0Ts

2
) (7.69)

as a function of the ratio ζnum/ζden < 1. The attenuation at ωdisc is given by

Mt = 20 log(
ζnum

ζden
) ; (ζnum < ζden) (7.70)

8The bilinear transformation assures a better approximation of a continuous-time model by a
discrete-time model in the frequency domain than the replacement of differentiation by a difference,
i.e., s = (1 − z−1)Ts (see [6]).
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Fig. 7.12 Effects of a resonant filter HSi /PFi on the output sensitivity functions

The effect upon the frequency characteristics of Syp at frequencies f << fdisc and
f >> fdisc is negligible.

Figure 7.12 illustrates the effect of the simultaneous introduction of a fixed part
HS and a pair of poles in P , corresponding to the discretization of a resonant filter
of the form of (7.67). One observes its weak effect on the frequency characteristics
of Syp, far from the resonance frequency of the filter.

This pole-zero filter (band-stop filter) is essential for an accurate shaping of the
modulus of the sensitivity functions in the various frequency regions in order to
satisfy the constraints. It allows to reduce the interaction between the tuning in
different regions.

Design of the Band-Stop Filter HSi/PFi

The computation of the coefficients of HSi and PFi is done in the following way:

Specifications:

• Central normalized frequency fdisc (ωdisc = 2π fdisc)
• Desired attenuation at frequency fdisc : Mt (dB)
• Minimum accepted damping for auxiliary poles

PFi : (ζden)min ≥ 0.3

Step I: Design of the continuous-time filter

ω0 = 2

Ts
tan(

ωdisc

2
) 0 ≤ ωdisc ≤ π ζnum = 10Mt/20ζden
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Step II: Design of the discrete-time filter using the bilinear transformation (7.68).
Using (7.68) one gets

F(z−1) = az0 + az1z−1 + az2z−2

az0 + az1z−1 + az2z−2
= γ

1 + β1z−1 + β2z−2

1 + α1z−1 + α2z−2
(7.71)

which will be effectively implemented as9

F(z−1) = HS(z−1)

Pi (z−1)
= 1 + β1z−1 + β2z−2

1 + α1z−1 + α2z−2

where the coefficients are given by10

bz0 = 4

T 2
s

+ 4
ζnumω0

Ts
+ ω2

0 ; bz1 = 2ω2
0 − 8

T 2
s

bz2 = 4

T 2
s

− 4
ζnumω0

Ts
+ ω2

0 (7.72)

az0 = 4

T 2
s

+ 4
ζdenω0

Ts
+ ω2

0 ; az1 = 2ω2
0 − 8

T 2
s

az2 = 4

T 2
s

− 4
ζdenω0

Ts
+ ω2

0

γ = bz0
az0

β1 = bz1
bz0

; β2 = bz2
bz0

(7.73)

α1 = az1
az0

; α2 = az2
az0

Remark For frequencies below 0.17 fs the design can be done with a very good
precision directly in discrete-time. In this case, ω0 = ω0den = ω0num and the damping
of the discrete-time filters HSi and PFi is computed as a function of the attenuation
directly using Eq. (7.70).

Remark While HS is effectively implemented in the controller, PF is only used
indirectly. PF will be introduced in (7.17) and its effect will be reflected in the
coefficients of R and S obtained as solutions of Eq. (7.59).

If the S polynomial contains the internal model of a sinusoidal disturbance, i.e.,
S = S′Dp and Dp is a second-order polynomial with zero damping and a resonance
frequency ω, the modulus of the output sensitivity function will be zero at this

9The factor γ has no effect on the final result (coefficients of R and S). It is possible, however, to
implement the filter without normalizing the numerator coefficients.
10These filters can be computed using the functions filter22.sci (Scilab) and filter22.m (MATLAB®)
to be downloaded from the book website.
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frequency, which means total rejection of a sinusoidal disturbance. Without any
shaping of the sensitivity function, there will be a “waterbed effect” in the vicinity
of this frequency; however, if the objective is to introduce just a certain amount of
attenuation, we should consider introduction of the “band-stop” filters which have
zeros and poles. The numerator will be implemented in the “S” polynomial while
the poles will be added to the desired closed-loop poles. In this case the waterbed
effect will be less important.

For n narrow-band disturbances, n band-stop filters will be used

SBSF (z−1)

PBSF (z−1)
=

∏n
i=1 SBSFi (z

−1)
∏n

i=1 PBSFi (z−1)
. (7.74)

A similar procedure can be used for shaping the input sensitivity function (HS in
Eq. (7.66) is replaced HR).

7.3 Real-Time Example: Narrow-Band Disturbance
Attenuation on the Active Vibration Control System
Using an Inertial Actuator

This section illustrates the methodology used for the attenuation of narrow-band
disturbances through an example. The active vibration control system with inertial
actuator described in Sect. 2.2 will be used as a test bench. An open-loop identification
for this system has been done in Sect. 6.2. The sampling frequency is fs = 800 Hz.

One sinusoidal disturbance at 70 Hz is applied to the system. The disturbance
is filtered by the primary path and its effects are measured by the residual force
transducer. The objective is to strongly attenuate the effect of this disturbance on
the residual force. The internal model principle together with the shaping of the
sensitivity functions will be used for the design of a linear robust controller.

The specifications are as follows:

• the controller should eliminate the disturbance at 70 Hz (at least 40 dB attenuation).
• the maximum allowed amplification of the output sensitivity function is 6 dB (i.e.,

the modulus margin will be ΔM � 0.5).
• a delay margin of at least one sampling period should be achieved.
• the gain of the controller has to be zero at 0 Hz (since the system has a double

differentiator behaviour).
• the gain of the controller should be zero at 0.5 fs where the system has low gain

and uncertainties exist.
• the effect of disturbances on the control input should be attenuated above 100 Hz

in order to improve robustness with respect to unmodelled dynamics (Sup(e jω) <

−40 dB, ∀ω ∈ [100, 400 Hz]).

The steps for the design of the linear controller are

http://dx.doi.org/10.1007/978-3-319-41450-8_2
http://dx.doi.org/10.1007/978-3-319-41450-8_6
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1. include all (stable) secondary path poles in the closed-loop characteristic poly-
nomial;

2. design the fixed part of the controller denominator in order to cancel the 70 Hz
disturbance (IMP)

HS(q
−1) = 1 + a1q

−1 + q−2, (7.75)

where a1 = −2 cos(2π f/ fS), f = 70 Hz. The modulus of the resulting out-
put sensitivity function is shown in Fig. 7.13 (curve IMP). As one can see the
maximum of the modulus of the output sensitivity function is larger than 6 dB;

3. open the loop at 0 Hz and at 400 Hz by setting the fixed part of the controller
numerator as

HR = (1 + q−1) · (1 − q−1) = 1 − q−2. (7.76)

The resulting output sensitivity function is shown also in Fig. 7.13 (curve IMP +
Hr). As it can be seen, it has an unacceptable value around 250 Hz (violation of
the delay margin constraint);

4. to improve robustness two complex conjugate poles have been added to the char-
acteristic polynomial, one at 65 Hz and the second at 75 Hz, both of them with
0.2 damping factor. The resulting output sensitivity function (curve IMP + Hr +
aux. poles) has the desired characteristics; however, as one can see in Fig. 7.14
(curve IMP + Hr + aux. poles), the modulus of the input sensitivity function is
higher than −40 dB between 100 and 400 Hz;
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for modulus and delay margins)
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Fig. 7.15 Time response results for a 70 Hz disturbance in open-loop and in closed-loop

5. add band-stop filters (BSF) on the Sup sensitivity function: one at 160 Hz, the
other at 210 Hz, with −20 and −15 dB attenuation respectively. Both have 0.9
damping factor for the denominator. One can see that this has the desired effect
on the input sensitivity functions and no effects on the output sensitivity function.

The resulting modulus margin is 0.637 and the resulting delay margin is 2.012·Ts .
The final controller satisfies the desired specifications both in terms of performance
and robustness.
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Fig. 7.16 PSD of the
open-loop disturbance
(dashed line) and effective
attenuation (solid line) for
70 Hz in closed-loop
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Real-Time Results

Time domain results in open-loop (yOL(t)) and in closed-loop (yCL(t)) are shown in
Fig. 7.15. A frequency domain analysis has been done and is shown in Figs. 7.16 and
7.17. It can be seen that the controller achieves all the desired specifications. Under
the effect of the controller the residual force is almost at the level of the system’s
noise.

7.4 Pole Placement with Sensitivity Function Shaping
by Convex Optimisation

In [11] it was shown that the problem of shaping the sensitivity functions in the
context of pole placement can be formulated as a convex optimisation problem, and
routines for convex optimisation can be used (available in the toolbox OPTREG11).

11To be downloaded from the book website.
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We will present this method which will be used in the context of active damping. This
method takes first advantage of the Youla–Kučera parametrization. It is assumed that

• the fixed parts of the controller HR and HS have been defined (in order to achieve
certain performances);

• a “central” stabilizing controller is already designed;
• the templates for the output and input sensitivity functions have been defined (in

order to obtain the required robustness margins and performance specifications).

One considers the Youla–Kučera parmetrization for the controller as follows:

R = HR(R0 + AHSQ) (7.77)

S = HS(S0 − z−d BHRQ) (7.78)

where the fixed parts of the controller (HR , HS), and (A, B) are polynomials in z−1

(z−d B/A is the nominal model) and Q is a rational transfer function proper and
asymptotically stable.12

The central controller R0/S0 (Q = 0) can be obtained by solving the following
Bezout equation for R0 and S0:

AHSS0 + z−d BHRR0 = PD, (7.79)

where PD is an asymptotically stable polynomial defined by the designer and which
contains the desired dominant poles for the closed-loop system. Expressing Q as a
ratio of proper transfer functions in z−1 such as

Q(z−1) = BQ(z−1)

AQ(z−1)
(7.80)

one gets
R

S
= HR(R0AQ + AHSBQ)

HS(S0AQ − z−d BHRBQ)
. (7.81)

The poles of the closed-loop system will be given by

P = AS + z−d BR = PD AQ,

where the zeros of PD are the fixed poles of the closed-loop (defined by the central
controller) and the zeros of AQ are the additional poles which will be introduced
by the optimization procedure. The output and input sensitivity functions can be
written as:

Syp = AS

AS + z−d BR
= AHS

PD

(
S0 − BnomHR

BQ

AQ

)
; (7.82)

12This particular YK parametrization allows to preserve the fixed parts HR and HS in the resulting
controller given in Eq. (7.4).
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Sup = AHR

PD

(
R0 + AnomHS

BQ

AQ

)
. (7.83)

As shown in the above Eqs. (7.82) and (7.83), the sensitivity functions can obviously

be expressed in the form T1 + T2
β

α
.

Imposing a certain frequency-dependent limit W (template) on the modulus of the
sensitivity functions (attenuation band, modulus margin, delay margin, restrictions
on the input sensitivity function) leads then to a condition of the form

∣∣∣∣T1 arg z + T2 arg z
β ′ arg z

α′ arg z

∣∣∣∣ ≤ |W arg z| ∀|z| = 1 (7.84)

Condition (7.84) is equivalent to the condition

∥∥∥∥T̄1 + T̄2
β ′

α′

∥∥∥∥∞
< 1 (7.85)

Thus, Eq. (7.84) implies the existence of α and β such that by setting T̄1 = W−1T1

and T̄2 = W−1T2 one obtains

∣∣W−1T1α + W−1T2β
∣∣ ≤ Re {α} (7.86)

and this is obviously a convex condition on α and β. Details can be found in [11,
12].

For point-wise testing of the conditions a frequency gridding is carried out (e.g.
32 points between f = 0 and f = 0.5 fs).

For the optimization procedures the polynomials AQ et BQ will take the form
(Ritz method):

AQ(xa) = 1 +
N∑

k=1

xakαk ; (7.87)

BQ(xb) = xb0 +
N∑

k=1

xbkβk, (7.88)

where αk , βk are stable polynomials (affine in xak et xbk) and N is the order of the
parametrization (i.e., the number of points on the sensitivity functions where the
constraints have to be verified). The parameters to be optimized are xak et xbk .

For the discrete-time cases αk and βk can be chosen as

αk = βk =
(

z0 − z−1

1 − z0z−1

)k

,

where z0 is the time constant of the parametrization (which can be adjusted).
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Using the parametrization and the constraints indicated above an (RS) controller
with desired properties can be obtained by convex optimization. For more details on
the optimization procedure see [13, 14].

The MATLAB® toolbox Optreg provides the appropriate routines for specifying
the constraints and finding the optimal controller. The method will be used in Chap. 10
for active damping.

7.5 Concluding Remarks

• The design of polynomial RS controllers for active vibration control systems has
been discussed in this chapter.

• The design of the controller requires the knowledge of the plant model (the sec-
ondary path in active vibration control).

• Asymptotic rejection of tonal disturbances can be achieved using the Internal
Model Principle (it requires the knowledge of the frequency of the disturbance).

• The Youla–Kučera parametrization of the controller provides a separation between
disturbance compensation and feedback stabilization.

• Robustness is not an intrinsic property of a control strategy. It results from an
appropriate choice of some control objectives related to the sensitivity functions.

• Two sensitivity functions are of major interest: the output sensitivity function and
the input sensitivity function.

• Modulus margin and delay margin are basic robustness indicators.
• Shaping of the sensitivity functions is a key issue in active vibration control in

order to achieve desired performance and robustness objectives.
• Performance and robustness specifications translate in desired templates for the

sensitivity functions.
• Pole placement combined with tools for shaping the sensitivity functions is an

efficient approach for designing active vibration control systems.
• Shaping of the sensitivity functions can be conveniently achieved by the selection

of the auxiliary poles and the use of band-stop filters.
• Pole placement combined with convex optimization can provide almost an auto-

matic solution to the design problem, once the desired templates for the sensitivity
functions are defined.

7.6 Notes and References

The first issue in the design of AVC systems (assuming that the plant model is
known) is the translation of the performance and robustness specifications in desired
templates for the sensitivity functions. Then any design method which allows to
achieve the desired sensitivity functions can be used, such as Pole placement

http://dx.doi.org/10.1007/978-3-319-41450-8_10
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[1, 6, 7, 15], Linear Quadratic Control [6, 7, 15], H∞ control [8, 16], CRONE
control [17–19], Generalized Predictive Control [2, 20].

The shaping of the sensitivity function can be converted in a convex optimization
problem [12] and the use of this approach is detailed in [11, 13, 14].

The Bode integral constraint in the context of AVC is discussed in [21, 22].
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the waterbed effect for local loop shaping. Automatica 62:177–183

http://dx.doi.org/10.3182/20060719-3-PT-4902.00059
http://dx.doi.org/10.3182/20060719-3-PT-4902.00059
http://www.sciencedirect.com/science/article/pii/S1474667015365228

	7 Digital Control Strategies for Active Vibration Control---The Bases
	7.1 The Digital Controller
	7.2 Pole Placement
	7.2.1 Choice of HR and HS---Examples
	7.2.2 Internal Model Principle (IMP)
	7.2.3 Youla--Kučera Parametrization
	7.2.4 Robustness Margins
	7.2.5 Model Uncertainties and Robust Stability
	7.2.6 Templates for the Sensitivity Functions
	7.2.7 Properties of the Sensitivity Functions
	7.2.8 Input Sensitivity Function
	7.2.9 Shaping the Sensitivity Functions for Active  Vibration Control

	7.3 Real-Time Example: Narrow-Band Disturbance Attenuation on the Active Vibration Control System Using an Inertial Actuator
	7.4 Pole Placement with Sensitivity Function Shaping  by Convex Optimisation
	7.5 Concluding Remarks
	7.6 Notes and References
	References


