
Chapter 5
Identification of the Active Vibration
Control Systems—The Bases

5.1 Introduction

To design an active control one needs the dynamical model of the compensator
systems (from the control to be applied to the measurement of the residual acceler-
ation or force).1 Model identification from experimental data is a well established
methodology [1, 2]. Identification of dynamic systems is an experimental approach
for determining a dynamic model of a system. It includes four steps:

(1) Input–output data acquisition under an experimental protocol.
(2) Estimation of the model complexity (structure).
(3) Estimation of the model parameters.
(4) Validation of the identified model (structure of the model and values of the

parameters).

A complete identification operation must comprise the four stages indicated above.
System identification should be viewed as an iterative process as illustrated in Fig. 5.1
which has as objective to obtain a model which passes the model validation test and
then can be used safely for control design.

The typical input excitation sequence is a PRBS (pseudorandombinary sequence).
The type of model which will be identified is a discrete-time parametric model
allowing later to directly design a control algorithm straightforwardly implementable
on a computer. Model validation is the final key point. The estimation of the model
parameters is done in a noisy environment. It is important to emphasize that it does
not exist one single algorithm that can provide in all the cases a good model (i.e.,
which passes the model validation tests). Therefore, the appropriate algorithmwhich
allows to obtain a model which passes the validation tests has to be used.

1Linear feedback regulator design will require also the model of the disturbance. Linear feedfor-
ward compensator design will require in addition a model of the primary path. Design of adaptive
regulators or of feedforward compensators require only the model of the secondary path.
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In what follows, we would like to summarize some of the basic facts in system
identification. For a detailed coverage of the subject, see [1, 3].

Figure5.2 shows the principle of parameter estimation of a discrete-time model.
An adjustable model of the discretized plant is built. Its parameters are driven by a
parameter adaptation algorithm such that the prediction error (the difference between
the true output and the predicted output by the model) is minimized in the sense of
a certain criterion.

Several assumptions are implicitly made when one uses this approach

• the order of the discrete-time model representing the system is known;
• in the absence of noise the adaptation algorithm will drive the prediction error
towards zero;

Fig. 5.2 Principle of model parameters estimation
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• in the presence of noise, the estimated parameters will be asymptotically unbiased2

(i.e., the noise does not influence asymptotically the precision of the parameter
estimation); and

• the input to the system (the testing signal) is such that null prediction error implies
null parameter errors (persistent excitation property).

The various steps indicated in Fig. 5.1 tries to assure that the parameter estimation
algorithm will provide the good parameter estimates.

5.2 Input–Output Data Acquisition and Preprocessing

5.2.1 Input–Output Data Acquisition Under
an Experimental Protocol

The experimental protocol should assure persistent excitation for the number of
parameters to be estimated. It can be shown (see Chap.4, Sect. 4.5 and [1]) that for
identifying 2nparameters, the excitation signal should contain at leastn + 1 sinusoids
of distinct frequencies. To go beyond this constraints one usually uses Pseudorandom
Binary Sequences (PRBS) since they contain a large number of sinusoidswith energy
equally distributed over the frequency domain. In addition themagnitude of the signal
is constant allowing and easy selection with respect to the magnitude constraints on
the plant input.

5.2.2 Pseudorandom Binary Sequences (PRBS)

Pseudorandom binary sequences are sequences of rectangular pulses, modulated in
width, that approximate a discrete-time white noise and thus have a spectral content
rich in frequencies. They owe their name pseudo random to the fact that they are
characterized by a sequence length within which the variations in pulse width vary
randomly, but that over a large time horizon, they are periodic, the period being
defined by the length of the sequence. In the practice of system identification, one
generally uses just one complete sequence and we should examine the properties of
such a sequence.

The PRBS are generated by means of shift registers with feedback (implemented
in hardware or software).3 The maximum length of a sequence is L = 2N − 1, where
N is the number of cells of the shift register.

2The parameter estimation error induced by the measurement noise is called “bias”.
3Routines for generating PRBS can be downloaded from the websites:
http://www.landau-adaptivecontrol.org and http://www.gipsa-lab.grenoble-inp.fr/~ioandore.
landau/identificationandcontrol/.

http://dx.doi.org/10.1007/978-3-319-41450-8_4
http://www.landau-adaptivecontrol.org
http://www.gipsa-lab.grenoble-inp.fr/~ioandore.landau/identificationandcontrol/
http://www.gipsa-lab.grenoble-inp.fr/~ioandore.landau/identificationandcontrol/
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Fig. 5.3 Generation of a
PRBS of length 25 − 1 = 31
sampling periods

B1   B2 B3 B4 B5

+

( summation modulo 2 )

Table 5.1 Generation of
maximum length PRBS

Number of cells
N

Sequence length
L = 2N − 1

Bits added
Bi and Bj

5 31 3 and 5

6 63 5 and 6

7 127 4 and 7

8 255 2, 3, 4 and 8

9 511 5 and 9

10 1023 7 and 10

Figure5.3 presents the generation of a PRBS of length 31 = 25 − 1 obtained by
means of a N = 5-cells shift register. Note that at least one of the N cells of the shift
register should have an initial logic value different from zero (one generally takes all
the initial values of the N cells equal to the logic value 1).

Table5.1 gives the structure enabling maximum length PRBS to be generated for
different numbers of cells. Note also a very important characteristic element of the
PRBS: the maximum duration of a PRBS impulse is equal to N (number of cells).
This property is to be considered when choosing a PRBS for system identification.4

In order to cover the entire frequency spectrumgenerated by a particular PRBS, the
length of a testmust be at least equal to the length of the sequence. In a large number of
cases, the duration of the test L is chosen equal to the length of the sequence. Through
the use of a frequency divider for the clock frequency of the PRBS, it is possible
to shape the energy distribution in the frequency domain. This is why, in a large
number of practical situations, a submultiple of the sampling frequency is chosen
as the clock frequency for the PRBS. Note that dividing the clock frequency of the
PRBS will reduce the frequency range corresponding to a constant spectral density
in the high frequencies while augmenting the spectral density in the low frequencies.
In general, this will not affect the quality of identification, either because in many
cases when this solution is considered, the plant to be identified has a low band pass
or because the effect or the reduction of the signal/noise ratio at high frequencies
can be compensated by the use of appropriate identification techniques; however, it
is recommended to choose p ≤ 4 where p is the frequency divider.

4Functions prbs.m and prbs.c available on the websites: http://www.landau-adaptivecontrol.org and
http://www.gipsa-lab.grenoble-inp.fr/ ioandore.landau/identificationandcontrol/ allow to generate
PRBS of various lengths and magnitudes.

http://www.landau-adaptivecontrol.org
http://www.gipsa-lab.grenoble-inp.fr/~ioandore.landau/identificationandcontrol/
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Fig. 5.4 Spectral density
of a PRBS sequence,
a N = 8, p = 1,
b N = 8, p = 2,
c N = 8, p = 3
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Figure5.4 shows the spectral density of PRBS sequences generated with N = 8
for p = 1, 2, 3. As one can see, the energy of the spectrum is reduced in the high
frequencies and augmented in the lower frequencies. Furthermore, for p = 3 a hole
occurs at fs/3.

Until now, we have been concerned only with the choice of the length and clock
frequencyof thePRBS; however, themagnitude of thePRBSmust also be considered.
Although the magnitude of the PRBS may be very low, it should lead to output
variations larger than the residual noise level. If the signal/noise ratio is too low,
the length of the test must be augmented in order to obtain a satisfactory parameter
estimation.

Note that in a large number of applications, the significant increase in the PRBS
level may be undesirable in view of the nonlinear character of the plants to be identi-
fied (we are concerned with the identification of a linear model around an operating
point).

5.2.3 Data Preprocessing

The first aspect is that one works with centred data (variations of the real data) so
that the first operation is the centering of the input/output data by subtracting their
mean value.

When identifying the compensator system in active vibration control systems, one
has to take into account the double differentiator behaviour. This means that a part
of the model is known and we should identify only the unknown part. To do this, the
input applied to the real system is filtered by a double discrete-time differentiator
filter

(1 − q−1)2 = 1 − 2q−1 + q−2 (5.1)
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This new input/output sequence is then centred and used together with the measured
output data for identifying the unknown part of the model. After the unknown part
of the model will be identified, the double differentiator should be included in the
final model (the two transfer operators will be multiplied).

5.3 Model Order Estimation from Data

It is extremely important to be able to estimate the order of the system from
input/output data since it is hard from physical reasoning to get a reliable estimation
of the order of the system. To introduce the problem of order estimation from data,
we will start with an example. Assume that the plant model can be described by:

y(t) = −a1y(t − 1) + b1u(t − 1) (5.2)

and that the data are noise free. The order of this model is n = nA = nB = 1.
Question: Is there any way to test from data if the order assumption is correct?

To do so, construct the following matrix:

⎡
⎢⎢⎢⎣

y(t)
... y(t − 1) u(t − 1)

y(t − 1)
... y(t − 2) u(t − 2)

y(t − 2)
... y(t − 3) u(t − 3)

⎤
⎥⎥⎥⎦ =

[
Y(t)

... R(1)

]
(5.3)

Clearly, if the order of the model given in Eq. (5.2) is correct, the vector Y(t) will
be a linear combination of the columns of R(1) (Y(t) = R(1)θ with θT = [−a1, b1])
and the rank of the matrix will be 2 (instead of 3). If the plant model is of order 2 or
higher, the matrix in (5.3) will be full rank. Of course, this procedure can be extended
for testing the order of a model by testing the rank of the matrix [Y(t),R(n̂)] where:

R(n̂) = [Y(t − 1),U(t − 1),Y(t − 2),U(t − 2) . . . Y(t − n̂),U(t − n̂)], (5.4)

YT (t) = [y(t), y(t − 1) . . .], UT (t) = [u(t), u(t − 1) . . .]. (5.5)

Unfortunately, as a consequence of the presence of noise, this procedure cannot
directly be applied in practice.

A more practical approach results from the observation that the rank test problem
can be approached by the searching of θ̂ which minimizes the following criterion for
an estimated value of the order n̂.

VLS(n̂,N) = min
θ̂

1

N
‖Y(t) − R(n̂)θ̂‖2 (5.6)
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whereN is the number of samples. But this criterion is nothing else than an equivalent
formulation of the least squares [4]. If the conditions for unbiased estimation using
least squares are fulfilled, (5.6) is an efficient way for assessing the order of themodel
since VLS(n̂) − VLS(n̂ + 1) → 0 when n̂ ≥ n.

In the meantime, the objective of the identification is to estimate lower order
models (parsimony principle) and therefore, it is reasonable to add in the criterion
(5.6) a term which penalizes the complexity of the model. Therefore, the penalized
criterion for order estimation will take the form:

JLS(n̂,N) = VLS(n̂,N) + S(n̂,N) (5.7)

where typically
S(n̂,N) = 2n̂X(N) (5.8)

and VLS represents the non penalized criterion. X(N) in (5.8) is a function that
decreases with N . For example, in the so called BICLS(n̂,N) criterion, X(N) = logN

N
(other choices are possible—see [3–5]) and the order n̂ is selected as the one which
minimizes JLS given by (5.7). Unfortunately, the results are unsatisfactory in practice
because in themajority of situations, the conditions for unbiasedparameter estimation
using least squares are not fulfilled.

In [5, 6], it is proposed to replace the matrix R(n̂) by an instrumental variable
matrix Z(n̂) whose elements will not be correlated with the measurement noise.
Such an instrumental matrix Z(n̂) can be obtained by replacing in the matrix R(n̂),
the columns Y(t − 1), Y(t − 2), Y(t − 3) by delayed version of U(t − L − i), i.e.,
where L > n:

Z(n̂) = [U(t − L − 1),U(t − 1),U(t − L − 2),U(t − 2) . . . ] (5.9)

and therefore, the following criterion is used for the order estimation:

JIV (n̂,N) = min
θ̂

1

N
‖Y(t) − Z(n̂)θ̂‖2 + 2n̂logN

N
(5.10)

and
n̂ = min

n̂
JIV (n̂). (5.11)

A typical curve of the evolution of the criterion (5.10) as a function of n̂ is shown in
Fig. 5.5.

It is shown in [5] that using this criterion a consistent estimate of the order n̂ is
obtained undermild noise conditions (i.e., limN→∞ Pr(n̂ = n) = 1wherePr denotes
the probability). Comparisons with other order estimation criteria are also provided
in this reference.
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Fig. 5.5 Evaluation of the
criterion for order estimation

Once an estimated order n̂ is selected, one can apply a similar procedure to estimate
n̂A, n̂ − d̂, n̂B + d̂, from which n̂A, n̂B and d̂ are obtained.5

5.4 Parameter Estimation Algorithms

The algorithms which will be used for parameter estimation will depend on the
assumptions made on the noise disturbing the measurements, assumptions which
have to be confirmed by the model validation.

It is important to emphasize that no one single plant + noise structure can describe
all the situations encountered in practice. Furthermore, there is no a unique parameter
estimation algorithm that may be used with all possible plant+ noise structures such
that the estimated parameters are always unbiased. The most typical structures for
plant + noise are shown in Fig. 5.6.

The various “plant + noise” models shown in Fig. 5.6 can be described by:

y(t) = q−dB(q−1)

A(q−1)
u(t) + η(t) (5.12)

For structure S1 one has:

η(t) = 1

A(q−1)
e(t) (5.13)

where e(t) is a discrete-time Gaussian white noise (zero mean and standard
deviation σ ).

For structure S2 one has:
η(t) = w(t) (5.14)

a centred noise of finite power and uncorrelated with the input u(t).

5Routines corresponding to this method in MATLAB (estorderiv.m) and Scilab (estorderiv.sci)
can be downloaded from the websites: http://www.landau-adaptivecontrol.org and
http://www.gipsa-lab.grenoble-inp.fr/ ioandore.landau/identificationandcontrol/.

http://www.landau-adaptivecontrol.org
http://www.gipsa-lab.grenoble-inp.fr/~ioandore.landau/identificationandcontrol/
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(a) (b)

(d)(c)

Fig. 5.6 Structure of the “plant + noise” models. a S1: A(q−1)y(t) = q−dB(q−1)u(t) + e(t).
b S2: A(q−1)y(t) = q−dB(q−1)u(t) + A(q−1)w(t). c S3: A(q−1)y(t) = q−dB(q−1)u(t) +
C(q−1)e(t). d S4: A(q−1)y(t) = q−dB(q−1)u(t) + (1/C(q−1))e(t)

For structure S3 one has

η(t) = C(q−1)

A(q−1)
e(t) (5.15)

and for structure S4 one has:

η(t) = 1

C(q−1)A(q−1)
e(t) (5.16)

Based on the experience of the authors in identifying active vibration control sys-
tems, one can say that in most of the situations they are represented correctly by
ARMAX models (structure S3). Therefore, most likely, algorithms for estimating
parameters for ARMAX models will provide good results (should be confirmed by
model validation). The simplest and in general most efficient algorithms for identify-
ing active vibration control systems are the “recursive extended least squares” and the
“output error with extend predictor model”.6 Details on these two type of algorithms
will be given next. Nevertheless, there is no guarantee that ARMAX representation
is the good one for all possible configuration which can be encountered in practice.
Therefore one has to be prepared to use also other parameter estimation algorithms if
the validation of the identified models using the above mentioned algorithms fails.7

6Routines for these algorithms can be downloaded from the websites:
http://www.landau-adaptivecontrol.org and http://www.gipsa-lab.grenoble-inp.fr/~ioandore.
landau/identificationandcontrol/.
7The interactive stand alone software iReg (http://tudor-bogdan.airimitoaie.name/ireg.html) pro-
vides parameter estimations algorithms for all the mentioned “plant + noise” structures as well as

http://www.landau-adaptivecontrol.org
http://www.gipsa-lab.grenoble-inp.fr/~ioandore.landau/identificationandcontrol/
http://www.gipsa-lab.grenoble-inp.fr/~ioandore.landau/identificationandcontrol/
http://tudor-bogdan.airimitoaie.name/ireg.html


90 5 Identification of the Active Vibration Control Systems—The Bases

All the recursive parameter estimation algorithms use the same parameter adap-
tation algorithm:

θ̂ (t + 1) = θ̂ (t) + F(t)Φ(t)ν(t + 1) (5.17)

F(t + 1)−1 = λ1(t)F(t)−1 + λ2(t)Φ(t)ΦT (t) (5.18)

0 < λ1(t) ≤ 1; 0 ≤ λ2(t) < 2;F(0) > 0

F−1(t) > αF−1(0); 0 < α < ∞
ν(t + 1) = ν◦(t + 1)

1 + ΦT (t)F(t)Φ(t)
(5.19)

What changes from an identification algorithm to another is:

• the structure of the adjustable predictor;
• how the adaptation error is generated;
• how the regressor vector is generated;
• how the adaptation error is generated; and
• the size of the adjustable parameter vector (the number of parameters).

The various options for the selection of the time profile of the adaptation gain F(t)
in (5.19) have been discussed in Sect. 4.3.4. For system identification of a linear
time invariant models, a decreasing adaptation gain type algorithm will be used or
an algorithm with variable forgetting factor. We will present next the “recursive
extended least squares” and the “output error with extended predictor”.

5.4.1 Recursive Extended Least Squares (RELS)

This method has been developed in order to identify without bias plant + noise
models of the form (ARMAX model):

A(q−1)y(t) = q−dB(q−1)u(t) + C(q−1)e(t) (5.20)

The idea is to simultaneously identify the plant model and the noise model, in order
to obtain a prediction (adaptation) error which is asymptotically white.

The model generating the data can be expressed as:

y(t + 1) = −A∗(q−1)y(t) + B∗(q−1)u(t − d) + C∗(q−1)e(t) + e(t + 1)

= θTφ0(t) + e(t + 1) (5.21)

(Footnote 7 continued)
an automated identification procedure covering all the stages of system identification. It has been
extensively used for identification of active vibration control systems.

http://dx.doi.org/10.1007/978-3-319-41450-8_4
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where:

θT = [a1 . . . anA , b1 . . . bnB , c1 . . . cnC ] (5.22)

φT
0 (t) = [−y(t) · · · − y(t − nA + 1), u(t − d) . . . u(t − d − nB + 1),

e(t) . . . e(t − nc + 1)] (5.23)

Assume that the parameters are known and construct a predictor that will give a white
prediction error:

ŷ(t + 1) = −A∗(q−1)y(t) + B∗(q−1)u(t − d) + C∗(q−1)e(t) (5.24)

Furthermore, this predictor will minimize E{[y(t + 1) − ŷ(t + 1)]2} [1].
The prediction error, in the case of known parameters, is given by:

ε(t + 1) = y(t + 1) − ŷ(t + 1) = e(t + 1) (5.25)

This allows rewriting Eq. (5.24) in the form:

ŷ(t + 1) = −A∗(q−1)y(t) + B∗(q−1)u(t − d) + C∗(q−1)ε(t) (5.26)

Subtracting now (5.26) from (5.21), one gets:

ε(t + 1) = −C∗(q−1) [ε(t) − e(t)] + e(t) (5.27)

i.e.,
C(q−1) [ε(t + 1) − e(t + 1)] = 0 (5.28)

Since C(q−1) is an asymptotically stable polynomial, it results that ε(t + 1) will
become white asymptotically.

The adaptive version of this predictor is as follows. The a priori adjustable pre-
dictor will take the form:

ŷ◦(t + 1) = −Â∗(q−1, t)y(t) + B̂∗(q−1, t)u(t) + Ĉ∗(q−1, t)ε(t) = θ̂T (t)φ(t)
(5.29)

in which:

θ̂T = [â1(t) . . . ânA(t), b̂1(t) . . . b̂nA(t), ĉ1(t) . . . ĉnA(t)] (5.30)

φT (t) = [−y(t) · · · − y(t − nA + 1), u(t − d) . . . u(t − d − nB + 1),

ε(t) . . . ε(t − nc + 1)] (5.31)

The a posteriori adjustable predictor will be given by:

ŷ(t + 1) = θ̂T (t + 1)φ(t) (5.32)



92 5 Identification of the Active Vibration Control Systems—The Bases

The a posteriori prediction error ε(t) which enters in the observation vector of the
predictor is given by

ε(t) = y(t) − ŷ(t) (5.33)

(where ŷ(t) is now the a posteriori output of the adjustable predictor) and the a priori
prediction error is given by:

ε◦(t + 1) = y(t + 1) − ŷ◦(t + 1) (5.34)

The a posteriori prediction equation is obtained subtracting (5.32) from (5.21) and
observing that (5.21) can be alternatively expressed as:

y(t + 1) = θTφ(t) − C∗(q−1)ε(t) + C(q−1)e(t) (5.35)

(by adding and subtracting the term ±C∗(q−1)ε(t)). One obtains:

ε(t + 1) = −C∗(q−1)ε(t) +
[
θ − θ̂ (t + 1)

]T
φ(t) + C(q−1)e(t) (5.36)

from which it results that:

ε(t + 1) = 1

C(q−1)

[
θ − θ̂ (t + 1)

]T
φ(t) + e(t) (5.37)

In the deterministic case C(q−1) = 1, e(t) ≡ 0 and it can be seen that (5.37) has the
appropriate format corresponding to Theorem4.1 given in Chap.4. One immediately
concludes, using the PAA given in (5.17) through (5.19), with Φ(t) = φ(t), ν(t) =
ε(t), and ν◦(t) = ε◦(t) that, in the deterministic case, global asymptotic stability is
assured without any positive real condition. In stochastic environment, either using
ODE or martingales, it can be shown [7] that the convergence is assured provided
that (sufficient condition):

H ′(z−1) = 1

C(z−1)
− λ2

2
(5.38)

is a strictly positive real transfer function for 2 > λ2 ≥ maxt λ2(t).

5.4.2 Output Error with Extended Prediction Model
(XOLOE)

This algorithm can be used for identification of plant + noisemodels of the ARMAX
form. It has been developed initiallywith the aim to remove the positive real condition
required by the output error algorithm. It turns out that theXOLOEcan be interpreted

http://dx.doi.org/10.1007/978-3-319-41450-8_4
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as a variant of the ELS. To see this, consider the a priori output of the adjustable
predictor for ELS (5.29), which can be rewritten as follows by adding and subtracting
the term ±Â∗(q−1, t)ŷ(t):

ŷ◦(t + 1) = −Â∗(q−1, t)ŷ(t) + B̂∗(q−1, t)u(t − d)

+
[
Ĉ∗(q−1, t)ε(t) − Â∗(q−1, t)[y(t) − ŷ(t)]

]
(5.39)

Defining:

Ĥ∗(q−1, t) = Ĉ∗(q−1, t) − Â∗(q−1, t) = ĥ1(t) + q−1ĥ2(t) + · · ·

with:
ĥi(t) = ĉi(t) − âi(t); i = 1, 2 . . .max(nA, nC)

Equation (5.39) can be rewritten as:

ŷ◦(t + 1) = −Â∗(q−1, t)ŷ(t) + B̂∗(q−1, t)u(t − d) + Ĥ∗(q−1, t)ε(t) (5.40)

= θ̂T (t)φ(t) (5.41)

where now:

θ̂T (t) =
[
â1(t) . . . ânA , b̂1(t) . . . b̂nB(t), ĥ1(t) . . . ĥnH (t)

]

φT (t) = [−ŷ(t), . . . ŷ(t − nA + 1), u(t − d) . . . u(t − d − nB + 1),

ε(t) . . . ε(t − nC + 1)]

Equation (5.40) corresponds to the adjustable predictor for the output error with
extended prediction model. One immediately concludes, using the PAA given in
(5.17)–(5.19),withΦ(t) = φ(t),ν(t) = ε(t), andν◦(t) = ε◦(t) (defined inEqs. (5.33)
and (5.34), respectively) that, in the deterministic case, global asymptotic stabil-
ity is assured without any positive real condition. In the stochastic context, one
has the (sufficient) convergence condition: H ′(z−1) = 1

C(z−1)
− λ2

2 should be SPR
(2 > λ2 ≥ maxt λ2(t)) similar to that for ELS.

Despite their similar asymptotic properties, there is a difference in the first nA
components of the vector φ(t). While the RELS algorithm uses the measurements
y(t), y(t − 1), . . . directly affected by the noise, the XOLOE algorithm uses the pre-
dicted a posteriori outputs ŷ(t), ŷ(t − 1)which depend upon the noise only indirectly
through the PAA. This explainswhy a better estimation is obtainedwithXOLOE than
with RELS over short or medium time horizons (it removes the bias more quickly).
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5.5 Validation of the Identified Models

The identification methods considered above (recursive extended least squares and
output error with extended predictor) belongs to the class of methods based on the
whitening of the residual errors, i.e., the identified ARMAX predictor is an optimal
predictor if the residual error is a white noise. If the residual prediction error is a
white noise sequence, in addition to obtaining unbiased parameter estimates, this
also means that the identified model gives the best prediction for the plant output in
the sense that it minimizes the variance of the prediction error. On the other hand,
since the residual error is white and a white noise is not correlated with any other
variable, then all the correlations between the input and the output of the plant are
represented by the identified model and what remains unmodelled does not depend
on the input.

The principle of the validation method is as follows:

• If the plant + noise structure chosen is correct, i.e., representative of reality.
• If an appropriate parameter estimation method for the structure chosen has been
used.

• If the orders of the polynomials A(q−1),B(q−1),C(q−1) and the value of d (delay)
have been correctly chosen (the plant model is in the model set).

Then the prediction error ε(t) asymptotically tends toward a white noise, which
implies:

lim
t→∞E{ε(t)ε(t − i)} = 0; i = 1, 2, 3 . . . ; −1,−2,−3 . . .

The validation method implements this principle.8 It is made up of several steps:

(1) Creation of an I/O file for the identified model (using the same input sequence
as for the system).

(2) Creation of a residual prediction error file for the identified model.
(3) Whiteness (uncorrelatedness) test on the residual prediction errors sequence.

5.5.1 Whiteness Test

Let {ε(t)} be the centred sequence of the residual prediction errors (centred:measured
value–mean value). One computes:

8Routines corresponding to this validation method in MATLAB and Scilab
can be downloaded from the websites: http://www.landau-adaptivecontrol.org and
http://www.gipsa-lab.grenoble-inp.fr/ ioandore.landau/identificationandcontrol/.

http://www.landau-adaptivecontrol.org
http://www.gipsa-lab.grenoble-inp.fr/~ioandore.landau/identificationandcontrol/
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R(0) = 1

N

N∑
t=1

ε2(t), RN(0) = R(0)

R(0)
= 1, (5.42)

R(i) = 1

N

N∑
t=1

ε(t)ε(t − i), RN(i) = R(i)

R(0)
, i = 1, 2, 3, . . . nA, . . . (5.43)

with imax ≥ nA (degree of polynomial A(q−1)), which are estimations of the (normal-
ized) autocorrelations.

If the residual prediction error sequence is perfectly white (theoretical situation),
and the number of samples is very large (N → ∞), then RN(0) = 1, RN(i) = 0,
i ≥ 1.9

In real situations, however, this is never the case (i.e., RN(i) �= 0; i ≥ 1), since on
the one hand, ε(t) contains residual structural errors (order errors, nonlinear effects,
non-Gaussian noises), and on the other hand, the number of samplesmay be relatively
small in some cases. Also, it should be kept in mind that one always seeks to identify
good simple models (with few parameters).

One considers as a practical validation criterion (extensively tested on applica-
tions):

RN(0) = 1; | RN(i) |≤ 2.17√
N

; i ≥ 1 (5.44)

where N is the number of samples.
This test has been defined taking into account the fact that for a white noise

sequence RN(i), i �= 0 has an asymptotically Gaussian (normal) distribution with
zero mean and standard deviation:

σ = 1√
N

The confidence interval considered in (5.44) corresponds to a 3% level of significance
of the hypothesis test for Gaussian distribution.

If RN(i) obeys the Gaussian distribution (0, 1/
√
N), there is only a probability of

1.5% that RN(i) is larger than 2.17/
√
N , or that RN(i) is smaller than −2.17/

√
N .

Therefore, if a computedvalueRN(i) falls outside the rangeof the confidence interval,
the hypothesis ε(t) and ε(t − i) are independent should be rejected, i.e., {ε(t)} is not
a white noise sequence.

The following remarks are important:

• If several identified models have the same complexity (number of parameters),
one chooses the model given by the methods that lead to the smallest |RN(i)|;

• A too good validation criterion indicates that model simplifications may be pos-
sible.

9Conversely, for Gaussian data, uncorrelation implies independence. In this case, RN(i) = 0, i ≥ 1
implies independence between ε(t), ε(t − 1) . . . , i.e., the sequence of residuals {ε(t)} is a Gaussian
white noise.
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• To a certain extent, taking into account the relative weight of various non-Gaussian
and modelling errors (which increases with the number of samples), the validation
criterion may be slightly tightened for small N and slightly relaxed for large N .
Therefore, for simplicity’s sake, one can consider as a basic practical numerical
value for the validation criterion value:

| RN(i) |≤ 0.15; i ≥ 1.

Note also that a complete model validation implies, after the validation using the
input/output sequence used for identification, a validation using a plant input/output
sequence other than the one used for identification.

5.6 Concluding Remarks

Basic elements for the identification of discrete-time models for dynamical systems
have been laid down in this chapter. The following facts have to be emphasized:

1. System identification includes four basic steps:

• input/output data acquisition under an experimental protocol;
• estimation or selection of the model complexity;
• estimation of the model parameters; and
• validation of the identified model (structure of the model and values of para-
meters).

This procedure has to be repeated (with appropriate changes at each step) if the
validation of the model fails.

2. Recursive or off-line parameter estimation algorithms can be used for identifica-
tion of the plant model parameters.

3. The various recursive parameter estimation algorithms use the same structure for
the PAA. They differ from each other in the following ways:

• structure of the adjustable predictor;
• nature of the components of the observation vector; and
• the way in which the adaptation error is generated.

4. The stochastic noises, which contaminate the measured output, may cause errors
in the parameter estimates (bias). For a specific type of noise, appropriate recur-
sive identification algorithms providing asymptotically unbiased estimates are
available.

5. A unique plant + noise model structure that describes all the situations encoun-
tered in practice does not exist, nor is there a unique identification method pro-
viding satisfactory parameter estimates (unbiased estimates) in all situations.
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5.7 Notes and References

Amore detailed discussion of the subject following the same pathway can be found in
[1]. The associatedwebsite: http://www.gipsa-lab.grenoble-inp.fr/~ioandore.landau/
identificationandcontrol/ provides MATLAB and scilab functions for system identi-
fication as well as simulated and real input/output data for training.

For a general coverage of system identification see [3, 4].
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