
Chapter 3
Active Vibration Control Systems—Model
Representation

3.1 System Description

3.1.1 Continuous-Time Versus Discrete-Time Dynamical
Models

Before discussing the system description aspects, one has to take in account that the
control law will be implemented on a digital computer. To do this there are two basic
options:

• Represent the system in continuous time, compute the control law in continuous
time and then discretize the continuous-time control law for implementation.

• Select the sampling frequency, represent the system in discrete time, compute the
control law in discrete time and implement it directly.

Since one deals with mechanical systems, differential equations can be written to
describe the dynamical behaviour of the various parts of the system allowing to build
a “dynamical model” to be used for the design of the active vibration control system
[1, 2].1 There are however several obstacles in using a continuous-time representation
of the system.

First of all, since the physical parameters are not precisely known, themodelwhich
can be obtained from the fundamental principles will not be very reliable. In addition
there are parts of the systems for which it is difficult to give a perfect representa-
tion and to associate the corresponding parameters. For a high performance control
design one needs an accurate dynamical model of the specific system to be controlled
and therefore one has to consider identifying dynamical models from experimental
input/output data, obtained by what is called an “identification protocol” (a “black
box model” will be obtained).

It turns out that identification techniques are more efficient and much easier to
implement if one considers the identification of discrete time dynamic models.

1Modern control design techniques use “model based control design”.
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It is also important to point out that using a continuous-time representation, the
objective of the discretization of the designed control law will be to copy as much
as possible the continuous-time control and this will require in general a very high
sampling frequency. Further analysis is required in order to be sure that the dis-
cretized control law guarantees the robustness and performance of the system (since
discretization introduces an approximation).

It turns out that if one considers the alternative situation, i.e., to discretize the input
and output of the system at a sampling frequency which is related to its band-pass,
one obtains through system identification a discrete-time dynamical model which
can be used to design a discrete-time control algorithm.

Using a discrete-time representation of the system will require a lower sampling
frequency2 (directly related to the higher frequencies to be controlled) and the control
algorithm to be implemented results directly from the design (no additional analysis
is necessary since the control algorithm has been designed at the sampling frequency
used).

Therefore because discrete time dynamical models allow:

• using a lower sampling frequency;
• using simpler and more efficient identification algorithms;
• getting directly the control algorithm to be implemented on a digital computer,

they will be used subsequently for representing active vibration control systems. The
design of the control algorithm will be based on identified discrete-time dynamical
models of the system.

3.1.2 Digital Control Systems

In this section, one reviews the basic requirements for the implementation of a dig-
ital control system. For a more detailed discussion of the various aspects see [3–6].
Figure3.1 represents the structure of a digital control system. In Fig. 3.1, the set3:
Digital to Analog Converter (D/A), Zero order hold (ZOH),4 Continuous-time plant,
Analog to Digital Converter (A/D) constitutes the discrete-time system to be con-
trolled by a digital controller implemented on the computer used for control.

3.1.2.1 Selection of the Sampling Frequency

A good rule for the selection of the sampling frequency is [3]:

2Numerous examples show that by using this approach, the sampling frequency can be reduced
with respect to the previous approach.
3Temporarily in this section t designates the continuous time and k the normalized sampling time
(k = time

Ts
). Starting from Sect. 3.1.3 the normalized discrete time will be denoted by t .

4ZOH keeps constant the signal delivered by the D/A converter between two sampling instants.



3.1 System Description 33

Fig. 3.1 A digital control system

fs = (6 → 25) f CL
B , (3.1)

where

• fs = sampling frequency (in Hz);
• f CL

B = desired bandwidth of the closed-loop system (in Hz).

Of course, the desired closed-loop bandwidth is related to the bandwidth of the
system to be controlled. The formula (3.1) gives enough freedom for the selection
of the sampling frequency.

As a general rule, one tries to select the lower sampling frequency compatible
with the desired performances.

Except in very particular cases, all the discrete-time models will feature a frac-
tional delay. Fractional delays are reflected as zeros in the transfer function of the
discrete-time models (these zeros will be unstable if the fractional delay is larger that
half of the sampling period [3]). For continuous-time systems with a relative degree
higher or equal to 2, high frequency sampling will induce unstable zeros [5]. The
consequence of the presence of unstable zeros in the discrete-time models used for
control design is that control strategies based on cancelling the zeros cannot be used.

3.1.2.2 Anti-aliasing Filters

The theory of discrete-time systems [5, 6] indicates that the maximum frequency
( fmax) of a signal sent to the analog to digital converter should satisfy:

fmax < fs/2, (3.2)

where fs is the sampling frequency and fs/2 is called the Nyquist or Shannon
frequency.

Sending frequencies over fs/2 produces distortion of the recovered discrete-time
spectrum called aliasing. Therefore, anti-aliasing filters should always be introduced
in order to remove the undesirable components of the signal. Anti-aliasing filters are
constituted in general as several second order filters in cascade (Bessel, ITAE, But-
terworth type). They should introduce a consequent attenuation of the signal beyond
fs/2 but their bandwidth should be larger than the desired closed-loop bandwidth.
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Their design will also depend on the level of undesirable signals at frequencies
beyond fs/2.

The anti-aliasing filters introduce a high frequency dynamics which can in general
be approximated by an additional small time delay. Since one directly estimates a
discrete-time model from data, their effect is captured by the estimated model.

3.1.3 Discrete-Time System Models for Control

The discrete-time models will represent the behaviour of the controlled system from
the discrete-time control applied to the system through a D/A converter and a ZOH
to the output of the A/D converter which will discretize the measured output. Single-
input single-output time invariant systems will be considered. They will be described
by input–output discrete-time models of the form:

y(t) = −
nA∑

i=1

ai y(t − i) +
nB∑

i=1

biu(t − d − i), (3.3)

where t denotes the normalized sampling time (i.e., t = time
Ts

, Ts = sampling period),
u(t) is the input, y(t) is the output, d is the integer number of sampling periods
contained in the time delay of the systems, ai and bi are the parameters (coefficients)
of the models.

As such the output of the system at instant t is a weighted average of the past
output over an horizon of nA samples plus a weighted average of past inputs over an
horizon of nB samples (delayed by d samples).

This input–output model (3.3) can be more conveniently represented using a
coding in terms of forward or backward shift operators defined as:

qy(t) = y(t + 1); q−1y(t) = y(t − 1) (3.4)

Using the notations

1 +
nA∑

i=1

aiq
−i = A(q−1) = 1 + q−1A∗(q−1), (3.5)

where

A(q−1) = 1 + a1q
−1 + · · · + anAq

−nA (3.6)

A∗(q−1) = a1 + a2q
−1 + · · · + anAq

−nA+1 (3.7)
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and

nB∑

i=1

biq
−i = B(q−1) = q−1B∗(q−1), (3.8)

where

B(q−1) = b1q
−1 + b2q

−2 + · · · + bnBq
−nB (3.9)

B∗(q−1) = b1 + b2q
−1 + · · · + bnBq

−nB+1. (3.10)

Equation (3.3) can be rewritten as

A(q−1)y(t) = q−d B(q−1)u(t) = q−d−1B∗(q−1)u(t) (3.11)

or forward in time
A(q−1)y(t + d) = B(q−1)u(t) (3.12)

as well as

y(t + 1) = −A∗y(t) + q−d B∗u(t) = −A∗y(t) + B∗u(t − d). (3.13)

It can be observed that (3.13) can also be expressed as

y(t + 1) = θTφ(t), (3.14)

where θ defines the vector of parameters

θT = [a1, . . . anA , b1, . . . , bnB ] (3.15)

and φ(t) defines the vector of measurements (or the regressor)

φT (t) = [−y(t) · · · − y(t − nA + 1), u(t − d) · · · u(t − d − nB + 1)] (3.16)

The form of (3.14) will be used in order to estimate the parameters of a systemmodel
from input–output data. Filtering both left and right sides of (3.11) through a filter
1/A(q−1) one gets

y(t) = G(q−1)u(t), (3.17)

where

G(q−1) = q−d B(q−1)

A(q−1)
(3.18)

is termed the transfer operator.5

5In many cases, the argument q−1 will be dropped out, to simplify the notations.
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Computing the z-transform of (3.3), one gets the pulse transfer function charac-
terizing the input–output model of (3.3)

G(z−1) = z−d B(z−1)

A(z−1)
(3.19)

It can be observed that the transfer function of the input–output model of (3.3)
can be formally obtained from the transfer operator by replacing the time operator
q by the complex variable z. Nevertheless, one should be careful since the domain of
these variables is different. However, in the linear case with constant parameters one
can use either one and their appropriate signification will result from the context.

Note also that the transfer operator G(q−1) can be defined even if the parameters
of the model (3.3) are time-varying, while the concept of pulse transfer function does
not simply exist in this case.

The order n of the system model6 (3.3), is the dimension of the minimal state
space representation associated to the input–output model (3.3) and in the case of
irreducible transfer function it is equal to

n = max(nA, nB + d), (3.20)

which corresponds also to the number of the poles of the irreducible transfer function
of the system.

The order of the system is immediately obtained by expressing the transfer oper-
ator (3.18) or the transfer function (3.19) in the forward operator q and respectively
the complex variable z. The passage from H(z−1) to H(z) is obtained multiplying
by zn:

G(z) = B̄(z)

Ā(z)
= zr−d B(z−1)

zr A(z−1)
(3.21)

Example

G(z−1) = z−3(b1z−1 + b2z−2)

1 + a1z−1

r = max(1, 5) = 5

G(z) = b1z + b2
z5 + a1z4

6The order of the system will be in general estimated from input/output data.
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3.2 Concluding Remarks

• Recursive (differences) equations are used to describe discrete-time dynamicmod-
els.

• The delay operator q−1 (q−1y(t) = y(t − 1)) is a simple tool to handle recursive
discrete-time equations.

• The input–output relation for a discrete-time model is conveniently described in
the time domain by the pulse transfer operator G(q−1): y(t) = G(q−1)u(t).

• The pulse transfer function of a discrete-time linear system is expressed as func-
tion of the complex variable z = esTs (Ts = sampling period). The pulse transfer
function can be derived from the pulse transfer operator G(q−1) by replacing q−1

with z−1.
• The asymptotic stability of a discrete-time model is ensured if, and only if, all
pulse transfer function poles (in z) lie inside the unit circle.

• The order of a pulse transfer function of the form

G(z−1) = z−d B(z−1)

A(z−1)
(3.22)

is n = max(nA, nB + d), where nA and nB are the orders of the polynomials A
and B, respectively, and d is the integer time delay in terms of sampling periods.

3.3 Notes and References

There are many excellent books on digital control systems. The books [3, 5, 6]
are probably the most suited for the topics of the present book. The book [7] pro-
videsmany discrete-timemodels obtained from the discretization of continuous-time
models for various physical systems.
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