
Chapter 13
Adaptive Attenuation of Multiple Sparse
Unknown and Time-Varying Narrow-Band
Disturbances

13.1 Introduction

In this chapter, the focus is on the strong attenuation of multiple sparsely located
unknown and time-varying disturbances. One assumes that the various tonal distur-
bances are distant to each other in the frequency domain by a distance in Hz at least
equal to 10 % of the frequency of the disturbance and that the frequency of these
disturbances vary over a wide frequency region.

The problem is to assure in this context a certain number of performance indices
such as global attenuation, disturbance attenuation at the frequency of the distur-
bances, a tolerated maximum amplification (water bed effect), a good adaptation
transient (see Sect. 12.3). The most difficult problem is to be sure that in all the con-
figurations the maximum amplification is below a specified value. There is first a
fundamental problem to solve: one has to be sure that in the known frequency case,
for any combination of disturbances the attenuation and the maximum amplifica-
tion specifications are achieved. The adaptive approach will only try to approach the
performances of a linear controller for the case of known disturbances. So before
discussing the appropriate adaptation schemes one has to consider the design meth-
ods to be used in order to achieve these constraints for the known frequencies case.
This will be discussed in Sect. 13.2.

13.2 The Linear Control Challenge

In this section, the linear control challenge will be presented for the case of rejection
of multiple narrow-band disturbances taking also into account the possible presence
of low damped complex zeros in the vicinity of the border of the operational zone.
Considering that in a linear context all the information is available, the objective is
to set up the best achievable performance for the adaptive case.
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Assuming that only one tonal vibration has to be cancelled in a frequency region
far from the presence of low damped complex zeros and that the models of the
plant and of the disturbance are known, the design of a linear regulator is relatively
straightforward, using the internal model principle (see Chaps. 7 and 12).

The problem becomes much more difficult if several tonal vibrations (sinusoidal
disturbances) have to be attenuated simultaneously since the water bed effect may
become significant without a careful shaping of the sensitivity function when using
the internal model principle. Furthermore, if the frequencies of the disturbance may
be close to those of some of very low damped complex zeros of the plant, the use
of the internal model principle should be used with care even in the case of a single
disturbance (see Sect. 12.5).

This section will examine the various aspects of the design of a linear controller
in the context of multiple tonal vibrations and the presence of low damped complex
zeros. It will review various linear controller strategies.

To be specific these design aspects will be illustrated in the context of the active
vibration control system using an inertial actuator, described in Sect. 2.2 and which
has been already used for the case of a single tonal disturbance.

In this system, the tonal vibrations are located in the range of frequencies between
50 and 95 Hz. The frequency characteristics of the secondary path are given in
Sect. 6.2.

Assume that a tonal vibration (or a narrow-band disturbance) p(t) is introduced
into the system affecting the output y(t). The effect of this disturbance is centred at
a specific frequency. As mentioned in Sect. 12.2.3, the IMP can be used to asymp-
totically reject the effects of a narrow-band disturbance at the system’s output if the
system has enough gain in this region.

It is important also to take into account the fact that the secondary path (the actuator
path) has no gain at very low frequencies and very low gain in high frequencies near
0.5 fs . Therefore, the control system has to be designed such that the gain of the
controller be very low (or zero) in these regions (preferably 0 at 0 Hz and 0.5 fs). Not
taking into account these constraints can lead to an undesirable stress on the actuator.

In order to assess how good the controller is, it is necessary to define some control
objectives that have to be fulfilled. For the remaining of this section, the narrow-band
disturbance is supposed to be known and composed of 3 sinusoidal signals with 55,
70 and 85 Hz frequencies. The control objective is to attenuate each component of
the disturbance by a minimum of 40 dB, while limiting the maximum amplification
at 9 dB within the frequency region of operation. Furthermore it will be required that
low values of the modulus of the input sensitivity function be achieved outside the
operation region.

The use of the IMP principle completed with the use of auxiliary real (aperiodic)
poles which have been used in Chap. 11 as a basic design for adaptive attenuation of
one unknown disturbance may not work satisfactory for the case of multiple unknown
disturbances even if it may provide good performance in some situations [1]. Even in
the case of a single tonal disturbance, if low damped complex zeros near the border
of the operation region are present, this simple design is not satisfactory. Auxiliary
low damped complex poles have to be added. See Chap. 12, Sect. 12.6.
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One can say in general, that the IMP is doing too much in terms of attenuation of
tonal disturbances which of course can generate in certain case unacceptable water
bed effects. In fact in practice one does not need a full rejection of the disturbance,
but just a certain level of attenuation.

Three linear control strategy for attenuation of multiple narrow-band disturbances
will be considered

1. Band-stop filters (BSF) centred at the frequencies of the disturbances
2. IMP combined with tuned notch filters
3. IMP with additional fixed resonant poles

The controller design will be done in the context of pole placement. The initial desired
closed-loop poles for the design of the central controller defined by the characteristic
polynomial P0 include all the stable poles of the secondary path model and the free
auxiliary poles are all set at 0.3. The fixed part of the central controller numerator
is chosen as HR(z−1) = (1 − z−1) · (1 + z−1) in order to open the loop at 0 Hz and
0.5 fs .

13.2.1 Attenuation of Multiple Narrow-Band Disturbances
Using Band-Stop Filters

The purpose of this method is to allow the possibility of choosing the desired atten-
uation and bandwidth of attenuation for each of the narrow-band component of the
disturbance. Choosing the level of attenuation and the bandwidth allows to preserve
acceptable characteristics of the sensitivity functions outside the attenuation bands
and this is very useful in the case of multiple narrow-band disturbances. This is the
main advantage with respect to classical internal model principle which in the case
of several narrow-band disturbances, as a consequence of complete cancellation of
the disturbances, may lead to unacceptable values of the modulus of the output sensi-
tivity function outside the attenuation regions. The controller design technique uses
the shaping of the output sensitivity function in order to impose the desired atten-
uation of narrow-band disturbances. This shaping techniques has been presented in
Sect. 7.2.

The process output can be written as1

y(t) = G(q−1) · u(t) + p(t), (13.1)

where

G(q−1) = q−d B(q−1)

A(q−1)
(13.2)

1The complex variable z−1 is used to characterize the system’s behaviour in the frequency domain
and the delay operator q−1 will be used for the time domain analysis.

http://dx.doi.org/10.1007/978-3-319-41450-8_7
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is called the secondary path of the system.
As specified in the introduction, the hypothesis of constant dynamic characteristics

of the AVC system is considered (similar to [2, 3]). The denominator of the secondary
path model is given by

A(q−1) = 1 + a1q
−1 + · · · + anAq

−nA , (13.3)

the numerator is given by

B(q−1) = b1q
−1 + · · · + bnBq

−nB = 1 + q−1B∗(q−1) (13.4)

and d is the integer delay (number of sampling periods).2

The control signal is given by

u(t) = −R(q−1) · y(t) − S∗(q−1) · u(t − 1), (13.5)

with

S(q−1) = 1 + q−1S∗(q−1) = 1 + s1q
−1 + · · · + snSq

−nS

= S′(q−1) · HS(q
−1), (13.6)

R(q−1) = r0 + r1q
−1 + · · · + rnRq

−nR = R′(q−1) · HR(q−1), (13.7)

where HS(q−1) and HR(q−1) represent fixed (imposed) parts in the controller and
S′(q−1) and R′(q−1) are computed.

The basic tool is a digital filter SBSFi (z
−1)/PBSFi (z

−1)with the numerator included
in the controller polynomial S and the denominator as a factor of the desired closed-
loop characteristic polynomial, which will assure the desired attenuation of a narrow-
band disturbance (index i ∈ {1, · · · , n}).

The BSFs have the following structure

SBSFi (z
−1)

PBSFi (z−1)
= 1 + β i

1z
−1 + β i

2z
−2

1 + αi
1z

−1 + αi
2z

−2
(13.8)

resulting from the discretization of a continuous filter (see also [4, 5])

Fi (s) = s2 + 2ζni ωi s + ω2
i

s2 + 2ζdi ωi s + ω2
i

(13.9)

using the bilinear transformation. This filter introduces an attenuation of

2As indicated earlier, it is assumed that a reliable model identification is achieved and therefore the
estimated model is assumed to be equal to the true model.
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Mi = −20 · log10

(
ζni

ζdi

)
(13.10)

at the frequency ωi . Positive values of Mi denote attenuations (ζni < ζdi ) and neg-
ative values denote amplifications (ζni > ζdi ). Details on the computation of the
corresponding digital BSF have been given in Chap. 7.3

Remark The design parameters for each BSF are the desired attenuation (Mi ), the
central frequency of the filter (ωi ) and the damping of the denominator (ζdi ). The
denominator damping is used to adjust the frequency bandwidth of the BSF. For very
small values of the frequency bandwidth the influence of the filters on frequencies
other than those defined by ωi is negligible. Therefore, the number of BSFs and
subsequently that of the narrow-band disturbances that can be compensated can be
large.

For n narrow-band disturbances, n BSFs will be used

HBSF (z−1) = SBSF (z−1)

PBSF (z−1)
=

∏n
i=1 SBSFi (z

−1)∏n
i=1 PBSFi (z−1)

(13.11)

As stated before, the objective is that of shaping the output sensitivity function.
S(z−1) and R(z−1) are obtained as solutions of the Bezout equation

P(z−1) = A(z−1)S(z−1) + z−d B(z−1)R(z−1), (13.12)

where

S(z−1) = HS(z
−1)S′(z−1), R(z−1) = HR1(z

−1)R′(z−1), (13.13)

and P(z−1) is given by

P(z−1) = P0(z
−1)PBSF (z−1). (13.14)

In the last equation, PBSF is the product of the denominators of all the BSFs,
(13.11), and P0 defines the initial imposed poles of the closed-loop system in the
absence of the disturbances (allowing also to satisfy robustness constraints). The
fixed part of the controller denominator HS is in turn factorized into

HS(z
−1) = SBSF (z−1)HS1(z

−1), (13.15)

where SBSF is the combined numerator of the BSFs, (13.11), and HS1 can be used
if necessary to satisfy other control specifications. HR1 is similar to HS1 allowing to
introduce fixed parts in the controller’s numerator if needed (like opening the loop
at certain frequencies). It is easy to see that the output sensitivity function becomes

3For frequencies bellow 0.17 fS ( fS is the sampling frequency) the design can be done with a very
good precision directly in discrete time [5].

http://dx.doi.org/10.1007/978-3-319-41450-8_7


260 13 Adaptive Attenuation of Multiple Sparse Unknown and Time-Varying …

Syp(z
−1) = A(z−1)S′(z−1)HS1(z

−1)

P0(z−1)

SBSF (z−1)

PBSF (z−1)
(13.16)

and the shaping effect of the BSFs upon the sensitivity functions is obvious. The
unknowns S′ and R′ are solutions of

P(z−1) = P0(z
−1)PBSF (z−1) = A(z−1)SBSF (z−1)HS1(z

−1)S′(z−1)+
+ z−d B(z−1)HR1(z

−1)R′(z−1). (13.17)

and can be computed by putting (13.17) into matrix form (see also [5]). The size of
the matrix equation that needs to be solved is given by

nBez = nA + nB + d + nHS1
+ nHR1

+ 2 · n − 1, (13.18)

where nA, nB and d are respectively the order of the plant’s model denominator,
numerator and delay (given in (13.3) and (13.4)), nHS1

and nHR1
are the orders of

HS1(z
−1) and HR1(z

−1) respectively andn is the number of narrow-band disturbances.
Equation (13.17) has an unique minimal degree solution for S′ and R′, if nP ≤ nBez ,
where nP is the order of the pre-specified characteristic polynomial P(q−1). Also,
it can be seen from (13.17) and (13.15) that the minimal orders of S′ and R′ will be:

nS′ = nB + d + nHR1
− 1, nR′ = nA + nHS1

+ 2 · n − 1.

In Fig. 13.1, one can see the improvement obtained using BSF with respect to the
case when IMP with real auxiliary poles is used. The dominant poles are the same
in both cases. The input sensitivity function is tuned before introducing the BSFs.

Fig. 13.1 Output sensitivity
function for various
controller designs: using
IMP with auxiliary real poles
(dotted line), using band-stop
filters (dashed line), and
using tuned ρ notch filters
(continuous line)

0 50 100 150 200
−60

−50

−40

−30

−20

−10

0

10

20

30

Frequency [Hz]

M
ag

ni
tu

de
 [

dB
]

Output Sensitivity Function for different structures

 

 

FIR ΔM=0.0442

BSF ΔM=0.4231

ρ−notch ΔM=0.4947



13.2 The Linear Control Challenge 261

13.2.2 IMP with Tuned Notch Filters

This approach is based on the idea of considering an optimal attenuation of the
disturbance taking into account both the zeros and poles of the disturbance model.
It is assumed that the model of the disturbance is a notch filter and the disturbance
is represented by

p(t) = Dp(ρq−1)

Dp(q−1)
e(t) (13.19)

where e(t) is a zero mean white Gaussian noise sequence and

Dp(z
−1) = 1 + αz−1 + z−2, (13.20)

is a polynomial with roots on the unit circle.4

In (13.20), α = −2 cos (2πω1Ts), ω1 is the frequency of the disturbance in Hz,
and Ts is the sampling time. Dp(ρz−1) is given by:

Dp(ρz
−1) = 1 + ραz−1 + ρ2z−2, (13.21)

with 0 < ρ < 1. The roots of Dp(ρz−1) are in the same radial line as those of Dp(z−1)

but inside of the unitary circle, and therefore stable [6].
This model is pertinent for representing narrow-band disturbances as shown in

Fig. 13.2, where the frequency characteristics of this model for various values of ρ

are shown.
Using the output sensitivity function, the output of the plant in the presence of

the disturbance can be expressed as

y(t) = AS′

P0

HS

Paux

Dp(ρq−1)

Dp(q−1)
e(t) (13.22)

or alternatively as

y(t) = AS′

P0
β(t) (13.23)

where

β(t) = HS

Paux

Dp(ρq−1)

Dp(q−1)
e(t) (13.24)

In order to minimize the effect of the disturbance upon y(t), one should minimize
the variance of β(t). One has two tuning devices HS and Paux . Minimization of the
variance of β(t) is equivalent of searching HS and Paux such that β(t) becomes a

4Its structure in a mirror symmetric form guarantees that the roots are always on the unit circle.
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white noise [5, 7]. The obvious choices are HS = Dp (which corresponds to the
IMP) and Paux = Dp(ρz−1). Of course this development can be generalized for the
case of multiple narrow-band disturbances. Figure 13.1 illustrates the effect of this
choice upon the output sensitivity function. As it can be seen, the results are similar
to those obtained with BSF.

13.2.3 IMP Design Using Auxiliary Low Damped Complex
Poles

The idea is to add a number of fixed auxiliary resonant poles which will act effectively
as ρ-filters for few frequencies and as an approximation of the ρ-filters at the other
frequencies. This means that a number of the real auxiliary poles used in the basic
IMP design will be replaced by a number of resonant complex poles. The basic ad-
hoc rule is that the number of these resonant poles is equal to the number of the low
damped complex zeros located near the border of the operation region plus n − 1 (n
is the number of tonal disturbances).

For the case of 3 tonal disturbances located in the operation region 50 to 95 Hz
taking also into account the presence of the low damped complex zeros, the locations
and the damping of these auxiliary resonant poles are summarized in Table 13.1. The
poles at 50 and 90 Hz are related to the presence in the neighbourhood of low damped
complex zeros. The poles at 60 and 80 Hz are related to the 3 tonal disturbances to
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Fig. 13.2 Magnitude plot frequency responses of a notch filter for various values of the
parameter ρ
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Table 13.1 Auxiliary low damped complex poles added to the closed-loop characteristic polyno-
mial

Closed-loop poles p1,2 p3,4 p5,6 p7,8

Frequency [Hz] 50 60 80 90

Damping 0.1 0.3 0.135 0.1

be attenuated. The effect of this design with respect to the basic design using real
auxiliary poles is illustrated in Fig. 13.3.

Fig. 13.3 Output sensitivity
function for IMP design with
real auxiliary poles and with
resonant auxiliary poles
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FIR−no resonant poles ΔM=0.0442

FIR−resonant poles ΔM=0.4309

13.3 Interlaced Adaptive Regulation Using Youla–Kučera
IIR Parametrization

The adaptive algorithm developed in Chap. 12 uses an FIR structure for the Q-filter.
In this section, a new algorithm is developed, using an IIR structure for the Q filter
in order to implement the linear control strategies using tuned notch filters (tuned
auxiliary resonant poles). The use of this strategy is mainly dedicated to the case of
multiple unknown tonal disturbances.

As indicated previously, since Dp(ρz−1) will define part of the desired closed-
loop poles, it is reasonable to consider an IIR Youla–Kučera filter of the form
BQ(z−1)/AQ(z−1) with AQ(z−1) = Dp(ρq−1) (which will automatically introduce
Dp(ρq−1) as part of the closed-loop poles). BQ will introduce the internal model of
the disturbance. In this context, the controller polynomials R and S are defined by

http://dx.doi.org/10.1007/978-3-319-41450-8_12
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R(z−1) = AQ(z−1)R0(z
−1) + HR0(z

−1)HS0(z
−1)A(z−1)BQ(z−1), (13.25)

S(z−1) = AQ(z−1)S0(z
−1) − HR0(z

−1)HS0(z
−1)z−d B(z−1)BQ(z−1), (13.26)

and the poles of the closed-loop are given by:

P(z−1) = AQ(z−1)P0(z
−1). (13.27)

R0(z−1), S0(z−1) are the numerator and denominator of the central controller

R0(z
−1) = HR0(z

−1)R′
0(z

−1), (13.28)

S0(z
−1) = HS0(z

−1)S′
0(z

−1), (13.29)

and the closed-loop poles defined by the central controller are the roots of

P0(z
−1) = A(z−1)S0(z

−1)HS0(z
−1) + q−d B(z−1)R0(z

−1)HR0(z
−1). (13.30)

It can be seen from (13.25) and (13.26) that the new controller polynomials
conserve the fixed parts of the central controller.

Using the expression of the output sensitivity function (AS/P) the output of the
system can be written as follows:

y(t) = A
[
AQS0 − HR0 HS0q

−d BBQ
]

P
p(t), (13.31)

y(t) =
[
AQS0 − HR0 HS0q

−d BBQ
]

P
w(t), (13.32)

where the closed-loop poles are defined by (13.27) and where w(t) is defined as:

w(t) = A(q−1)y(t) − q−d B(q−1)u(t) (13.33)

= A(q−1)p(t) (13.34)

Comparing (13.32) with (12.20) from Chap. 12, one can see that they are similar
except that S0 is replaced by AQS0 and P0 by AQ P0. Therefore if AQ is known, the
algorithm given in Chap. 12 for the estimation of the Q FIR filter can be used for the
estimation of BQ . In fact this will be done using an estimation of AQ . A block dia-
gram of the interlaced adaptive regulation using the Youla–Kučera parametrization
is shown in Fig. 13.4. The estimation of AQ is discussed next.

http://dx.doi.org/10.1007/978-3-319-41450-8_12
http://dx.doi.org/10.1007/978-3-319-41450-8_12
http://dx.doi.org/10.1007/978-3-319-41450-8_12
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Fig. 13.4 Interlaced adaptive regulation using an IIR YK controller parametrization

13.3.1 Estimation of A Q

Assuming that plant model = true plant in the frequency range, where the narrow-
band disturbances are introduced, it is possible to get an estimation of p(t), named
p̂(t), using the following expression

p̂(t) = 1

A(q−1)
w(t) (13.35)

wherew(t) was defined in (13.33). The main idea behind this algorithm is to consider
the signal p̂(t) as

p̂(t) =
n∑

i=1

ci sin (ωi t + βi ) + η(t), (13.36)

where {ci , ωi , βi } �= 0, n is the number of narrow-band disturbances and η is a
noise affecting the measurement. It can be verified that, after two steps of transient(
1 − 2 cos(2πωi Ts)q−1 + q−2

) · ci sin (ωi t + βi ) = 0 [8]. Then the objective is to
find the parameter {α}ni=1 that makes Dp(q−1) p̂(t) = 0.

The previous product can be equivalently written as Dp(q−1) p̂(t + 1) = 0 and
its expression is

x(t + 1) = Dp(q
−1) p̂(t + 1),

= p̂(t + 1) +
n−1∑
i=n

αi
[
p̂(t + 1 − i) + p̂(t + 1 − 2n + i)

] + · · ·

· · · + αn p̂(t + 1 − n) + p̂(t + 1 − 2n). (13.37)

where n is the number of narrow-band disturbances.
Defining the parameter vector as
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θDp = [α1, α2, . . . , αn]T , (13.38)

and the observation vector at time t as:

φDp (t) =
[
φ
Dp

1 (t), φ
Dp

2 (t), . . . , φ
Dp
n (t)

]T
, (13.39)

where

φ
Dp

j (t) = p̂(t + 1 − j) + p̂(t + 1 − 2n + j), j = 1, . . . , n − 1 (13.40)

φ
Dp
n (t) = p̂(t + 1 − n). (13.41)

Equation (13.37) can then be simply represented by

x(t + 1) = θT
Dp

φDp (t) + (
p̂(t + 1) + p̂(t + 1 − 2n)

)
. (13.42)

Assuming that an estimation of D̂p(q−1) is available at the instant t , the estimated
product is written as follows:

x̂(t + 1) = D̂p(q
−1) p̂(t + 1),

= p̂(t + 1) +
n−1∑
i=n

α̂i
[
p̂(t + 1 − i) + p̂(t + 1 − 2n + i)

] + · · ·

· · · + α̂n p̂(t + 1 − n) + p̂(t + 1 − 2n) (13.43)

= θ̂T
Dp

(t)φDp (t) + (
p̂(t + 1) + p̂(t + 1 − 2n)

)
(13.44)

where θ̂Dp (t) is the estimated parameter vector at time t . Then the a priori prediction
error is given by

ε◦
Dp

(t + 1) = x(t + 1) − x̂(t + 1) =
[
θT
Dp

− θ̂T
Dp

(t)
]

· φDp (t), (13.45)

and the a posteriori adaptation error using the estimation at t + 1

εDp (t + 1) =
[
θT
Dp

− θ̂T
Dp

(t + 1)
]

· φDp (t), (13.46)

Equation (13.46) has the standard form of an a posteriori adaptation error [9] which
allows to associate the standard parameter adaptation algorithm (PAA) introduced
in Chap. 4 (Eqs. (4.121)–(4.123)):

http://dx.doi.org/10.1007/978-3-319-41450-8_4
http://dx.doi.org/10.1007/978-3-319-41450-8_4
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θ̂Dp (t + 1) = θ̂Dp (t) + F2(t)φDp (t)ε
◦
Dp

(t + 1)

1 + φDp (t)T F2(t)φDp (t)
(13.47)

ε◦
Dp

(t + 1) = x(t + 1) − x̂(t + 1) (13.48)

x̂(t + 1) = θ̂T
Dp

(t)φDp (t) + (
p̂(t + 1) + p̂(t + 1 − 2n)

)
(13.49)

F2(t + 1)−1 = λ1(t)F2(t)
−1 − λ2(t)φDp (t)φDp (t)

T (13.50)

0 < λ1(t) ≤ 1; 0 ≤ λ2(t) < 2; F2(0) > 0

The PAA defined in (4.121)–(4.123) is used with φ(t) = φDp (t), θ̂ (t) = θ̂Dp (t) and
ε◦(t + 1) = ε◦

Dp
(t + 1). For implementation, since the objective is to make x(t +

1) → 0, the implementable a priori adaptation error is defined as follows:

ε◦
Dp

(t + 1) = 0 − D̂p(q
−1, t) p̂(t + 1)

= −θ̂T
Dp

(t)φDp (t) − (
p̂(t + 1) + p̂(t − 2n + 1)

)
. (13.51)

Additional filtering can be applied on p̂(t) to improve the signal-noise ratio. Since
a frequency range of interest was defined, a bandpass filter can be used on p̂(t). Once
an estimation of Dp is available, AQ = Dp(ρq−1) is immediately generated. Since
the estimated ÂQ will be used for the estimation of the parameters of BQ one needs
to show that: limt→∞ ÂQ(z−1) = AQ(z−1). This is shown in Appendix C.

13.3.2 Estimation of BQ(q−1)

Taking into account (13.12), (13.15), (13.16), and (13.17), it remains to compute
BQ(z−1) such that

S(z−1) = Dp(z
−1)HS0(z

−1)S′(z−1). (13.52)

Turning back to (13.26) one obtains

S0AQ = DpHS0 S
′ + z−d BHR0 HS0 BQ . (13.53)

and taking into consideration also (13.29) it results

S′
0AQ = DpS

′ + z−d BHR0 BQ . (13.54)

Once an estimation algorithm is developed for polynomial ÂQ(q−1), the next step
is to develop the estimation algorithm for B̂Q(q−1). Assuming that the estimation
ÂQ(t) of AQ(z−1) is available, one can incorporate this polynomial to the adaptation
algorithm defined in Sect. 12.2.2. Using (13.32) and (13.27) and assuming that an
estimation of B̂Q(q−1) is available at the instant t , the a priori error is defined as the

http://dx.doi.org/10.1007/978-3-319-41450-8_4
http://dx.doi.org/10.1007/978-3-319-41450-8_4
http://dx.doi.org/10.1007/978-3-319-41450-8_12
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output of the closed-loop system written as follows5

ε◦(t + 1) = S0 ÂQ(t) − q−d BHS0 HR0 B̂Q(t)

P0 ÂQ(t)
w(t + 1)

= S0

P0
w(t + 1) − q−d B∗HS0 HR0

P0

B̂Q(t)

ÂQ(t)
w(t) (13.55)

= w1(t + 1) − B̂Q(t)

ÂQ(t)
w f (t) (13.56)

where the notations6

w(t + 1) = A
Dp(ρ)

Dp
δ(t + 1) (13.57)

w1(t + 1) = S0

P0
w(t + 1) (13.58)

w f (t) = q−d B∗HS0 HR0

P0
w(t) (13.59)

have been introduced.
Substituting (13.53) in (13.55) one gets:

ε◦(t + 1) =HS0 DpS′

P0AQ
w(t + 1) + q−d B∗HS0 HR0

P0

BQ

AQ
w(t)−

− q−d B∗HS0 HR0

P0

B̂Q(t)

ÂQ(t)
w(t) (13.60)

=υ(t + 1) + q−d B∗HS0 HR0

P0

[
BQ

AQ
− B̂Q(t)

ÂQ(t)

]
w(t) (13.61)

where

υ(t + 1) = HS0 DpS′

P0AQ

ADp(ρ)

Dp
δ(t + 1) = HS0 S

′A
P0

δ(t + 1) (13.62)

tends asymptotically to zero since it is the output of an asymptotically stable filter
whose input is a Dirac pulse.

The equation for the a posteriori error takes the form7

5The argument (q−1) will be dropped in some of the following equations.
6For the development of the equation for the adaptation error one assumes that the estimated
parameters have constant values which allows to use the commutativity property of the various
operators.
7The details of the developments leading to this equation are given in the Appendix C.
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ε(t + 1) = 1

AQ

[
θT

1 − θ̂T
1 (t + 1)

]
φ1(t) + υ f (t + 1) + υ1(t + 1), (13.63)

where

υ f (t + 1) = 1

AQ
υ(t + 1) → 0, since AQ is a.s. (13.64)

υ1(t + 1) = 1

AQ

(
A∗
Q − Â∗

Q(t + 1)
) (

−û f
Q(t)

)
→ 0, (13.65)

θ1 =
[
bQ

0 , . . . , bQ
2n−1

]T
(13.66)

θ̂1(t + 1) =
[
b̂Q

0 (t + 1), . . . , b̂Q
2n−1(t + 1)

]T
(13.67)

φ1(t) = [
w f (t), . . . ,w f (t + 1 − 2n)

]T
(13.68)

w f (t) = q−d B∗HS1 HR1

P0
w(t) (13.69)

and n is the number of narrow-band disturbances. The convergence towards zero
for the signal υ1(t + 1) is assured by the fact that limt→∞ ÂQ(t, z−1) = AQ(z−1)

(see Appendix C). Since υ f (t + 1) and υ1(t + 1) tend towards zero, (13.63) has the
standard form of an adaptation error equation (see Chap. 4 and [9]), and the following
PAA is proposed:

θ̂1(t + 1) = θ̂1(t) + F1(t)Φ1(t)ν(t + 1) (13.70)

ν(t + 1) = ν◦(t + 1)

1 + ΦT
1 (t)F1(t)Φ1(t)

(13.71)

F1(t + 1)−1 = λ1(t)F1(t)
−1 − λ2(t)Φ1(t)Φ

T
1 (t) (13.72)

0 < λ1(t) ≤1; 0 ≤ λ2(t) < 2; F1(0) > 0 (13.73)

There are several possible choices for the regressor vector Φ1(t) and the adaptation
error ν(t + 1), because there is a strictly positive real condition for stability related
to the presence of the term 1

AQ
in (13.63). For the case where ν(t + 1) = ε(t + 1),

one has ν◦(t + 1) = ε◦(t + 1), where

ε◦(t + 1) = w1(t + 1) − θ̂T
1 (t)Φ1(t). (13.74)

For the case where ν(t + 1) = ÂQε(t + 1):

http://dx.doi.org/10.1007/978-3-319-41450-8_4
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ν◦(t + 1) = ε◦(t + 1) +
nAQ∑
i=1

âQ
i ε(t + 1 − i). (13.75)

These various choices result from the stability analysis given in Appendix C. They
are detailed below and summarized in Table 13.2.

• Φ1(t) = φ1(t). In this case, the prediction error ε(t + 1) is chosen as adaptation
error ν(t + 1) and the regressor vector Φ1(t) = φ1(t). Therefore, the stability
condition is: H ′ = 1

AQ
− λ2

2 (maxt λ2(t) ≤ λ2 < 2) should be strictly positive real
(SPR).

• ν(t + 1) = ÂQε(t + 1). The adaptation error is considered as the filtered predic-
tion error ε(t + 1) through a filter ÂQ . The regressor vector is Φ1(t) = φ1(t) and

the stability condition is modified to: H ′ = ÂQ

AQ
− λ2

2 (maxt λ2(t) ≤ λ2 < 2) should

be SPR where ÂQ is a fixed estimation of AQ .
• Φ1(t) = φ

f
1 (t). Instead of filtering the adaptation error, the observations can be

filtered to relax the stability condition.8 By filtering the observation vector φ1(t)

through 1
ÂQ

and using ν(t + 1) = ε(t + 1), the stability condition is: H ′ = ÂQ

AQ
−

λ2
2 (maxt λ2(t) ≤ λ2 < 2) should be SPR, where φ

f
1 (t) = 1

ÂQ
φ1(t) ( ÂQ is a fixed

estimation of AQ).
• Φ1(t) = φ

f
1 (t) = 1

ÂQ(t)
where ÂQ = ÂQ(t) is the current estimation of AQ . When

filtering through a current estimation ÂQ(t) the condition is similar to the previous
case except that it is only valid locally [9].

It is this last option which is used in [10] and in Sect. 13.5.
The following procedure is applied at each sampling time for adaptive operation:

1. Get the measured output y(t + 1) and the applied control u(t) to compute w(t +
1) using (13.33).

2. Obtain the filtered signal p̂(t + 1) from (13.35).

Table 13.2 Comparison of algorithms for the adaptation of the numerator parameters BQ(z−1)

Adaptation error Prediction error Regressor vector Positive real cond. Stability

ν(t + 1) ε(t + 1) Φ1(t) H ′(z−1)

ε(t + 1) Eq. (13.63) φ1(t)
1
AQ

− λ2
2 Global

ÂQε(t + 1) Eq. (13.63) φ1(t)
ÂQ
AQ

− λ2
2 Global

ε(t + 1) Eq. (13.63) φ
f

1 (t) ÂQ
AQ

− λ2
2 Global

ε(t + 1) Eq. (13.63) φ
f

1 (t) ÃQ (t)
AQ

− λ2
2 Local

8Neglecting the non-commutativity of the time-varying operators.
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3. Compute the implementable a priori adaptation error with (13.48).
4. Estimate D̂p(q−1) using the PAA and compute at each step ÂQ(q−1).
5. Compute w f (t) with (13.69).
6. Compute w1(t + 1) with (13.58).
7. Put the filtered signal w f

2 (t) in the observation vector, as in (13.68).
8. Compute the a priori adaptation error defined in (13.74).
9. Estimate the BQ polynomial using the parametric adaptation algorithm (13.70)–

(13.72).
10. Compute and apply the control (see Fig. 13.4):

S0u(t) = −R0y(t + 1) − HS0 HR0

(
B̂Q(t)w(t + 1) − Â∗

QûQ(t)
)

. (13.76)

13.4 Indirect Adaptive Regulation Using Band-Stop Filters

In this section, an indirect adaptive regulation scheme will be developed for imple-
menting the attenuation of multiple unknown narrow-band disturbances using band-
stop filters centred at the frequencies corresponding to spikes in the spectrum of
the disturbance. The principle of the linear design problem has been discussed in
Sect. 13.2.1.

The design of the BSF for narrow-band disturbance attenuation is further sim-
plified by considering a Youla–Kučera parametrization of the controller [2, 11–13].
By doing this, the dimension of the matrix equation that has to be solved is reduced
significantly and therefore the computation load will be much lower in the adaptive
case.

In order to implement this approach in the presence of unknown narrow-band
disturbances, one needs to estimate in real time the frequencies of the spikes contained
in the disturbance. System identification techniques can be used to estimate the
ARMA model of the disturbance [3, 14]. Unfortunately, to find the frequencies of
the spikes from the estimated model of the disturbance requires computation in real
time of the roots of an equation of order 2 · n, where n is the number of spikes.
Therefore, this approach is applicable in the case of one eventually two narrow-
band disturbances [1, 2]. What is needed is an algorithm which can directly estimate
the frequencies of the various spikes of the disturbance. Several methods have been
proposed [15]. The adaptive notch filter (ANF) is particularly interesting and has been
reviewed in a number of articles [6, 16–21]. In this book, the estimation approach
presented in [22, 23] will be used. Combining the frequency estimation procedure and
the control design procedure, an indirect adaptive regulation system for attenuation
of multiple unknown and/or time-varying narrow-band disturbances is obtained.

In the present context, the hypothesis of constant dynamic characteristics of the
AVC system is made (like in [3]). Furthermore, the corresponding control model is
supposed to be accurately identified from input/output data.



272 13 Adaptive Attenuation of Multiple Sparse Unknown and Time-Varying …

Fig. 13.5 Basic scheme for indirect adaptive regulation

13.4.1 Basic Scheme for Indirect Adaptive Regulation

The equation describing the system has been given in Sect. 13.2. The basic scheme for
indirect adaptive regulation is presented in Fig. 13.5. In the context of unknown and
time-varying disturbances, a disturbance observer followed by a disturbance model
estimation block have to be used in order to obtain information on the disturbance
characteristics needed to update the controller parameters.

With respect to Eq. (13.1), it is supposed that

p(t) = D(ρq−1)

D(q−1)
δ(t), ρ ∈ (0, 1) is a fixed constant, (13.77)

represents the effect of the disturbance on the measured output.9

Under the hypothesis that the plant model parameters are constant and that an
accurate identification experiment can be run, a reliable estimate p̂(t) of the distur-
bance signal can be obtained using the following disturbance observer

p̂(t + 1) = y(t + 1) − q−d B∗(q−1)

A(q−1)
u(t)

= 1

A(q−1)

(
A(q−1)y(t + 1) − q−d B∗(q−1)u(t)

)
(13.78)

A disturbance model estimation block can then be used to identify the frequencies
of the sines in the disturbance. With this information, the control parameters can
directly be updated using the procedure described in Sect. 13.2.1. To deal with time-
varying disturbances, the Bezout equation (13.17) has to be solved at each sampling
instant in order to adjust the output sensitivity function. Nevertheless, given the size
of this equation (see (13.18)), a significant part of the controller computation time
would be consumed to solve this equation. To reduce the complexity of this equation,

9The disturbance passes through a so called “primary path” which is not represented in Fig. 13.5.
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a solution based on the Youla–Kučera parametrization is described in the following
section.

13.4.2 Reducing the Computational Load of the Design
Using the Youla–Kučera Parametrization

The attenuation of narrow-band disturbances using band-stop filters (BSF) has been
presented in Sect. 13.2.1 in the context of linear controllers.

In an indirect adaptive regulation scheme, the Diophantine equation (13.17) has
to be solved either at each sampling time (adaptive operation) or each time when a
change in the narrow-band disturbances’ frequencies occurs (self-tuning operation).
The computational complexity of (13.17) is significant (in the perspective of its use
in adaptive regulation). In this section, we show how the computation load of the
design procedure can be reduced by the use of the Youla–Kučera parametrization.

As before, a multiple band-stop filter, (13.11), should be computed based on the
frequencies of the multiple narrow-band disturbance (the problem of frequencies
estimation will be discussed in Sect. 13.4.3).

Suppose that a nominal controller is available, as in (13.28) and (13.29), that
assures nominal performances for the closed-loop system in the absence of narrow-
band disturbances. This controller satisfies the Bezout equation

P0(z
−1) = A(z−1)S0(z

−1) + q−z B(z−1)R0(z
−1). (13.79)

Since PBSF (z−1) will define part of the desired closed-loop poles, it is reasonable

to consider an IIR Youla–Kučera filter of the form BQ(z−1)

PBSF (z−1)
(which will automatically

introduce PBSF (z−1) as part of the closed-loop poles). For this purpose, the controller
polynomials are factorized as

R(z−1) = R0(z
−1)PBSF (z−1) + A(z−1)HR0(z

−1)HS0(z
−1)BQ(z−1), (13.80)

S(z−1) = S0(z
−1)PBSF (z−1) − z−d B(z−1)HR0(z

−1)HS0(z
−1)BQ(z−1), (13.81)

where BQ(z−1) is an FIR filter that should be computed in order to satisfy

P(z−1) = A(z−1)S(z−1) + z−d B(z−1)R(z−1), (13.82)

for P(z−1) = P0(z−1)PBSF (z−1), and R0(z−1), S0(z−1) given by (13.28) and (13.29),
respectively. It can be seen from (13.80) and (13.81), using (13.28) and (13.29), that
the new controller polynomials conserve the fixed parts of the nominal controller.

Equation (13.18) gives the size of the matrix equation to be solved if the Youla–
Kučera parametrization is not used. Using the previously introduced YK parame-
trization, it will be shown here that a smaller size matrix equation can be found that
allows to compute the BQ(z−1) filter so that the same shaping be introduced on the
output sensitivity function (13.16). This occurs if the controller denominator S(z−1)
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in (13.81) is the same as the one given in (13.13), i.e.,

S(z−1) = SBSF (z−1)HS0(z
−1)S′(z−1), (13.83)

where HS(z−1) has been replaced by (13.15).
Replacing S(z−1) in the left term with its formula given in (13.81) and rearranging

the terms, one obtains

S0PBSF = SBSF HS0 S
′ + z−d BHR0 HS0 BQ . (13.84)

and taking into consideration also (13.29) it results

S′
0PBSF = SBSF S

′ + q−d BHR0 BQ, (13.85)

which is similar to (13.54) except that band-stop filters are used instead of notch
filters.

In the last equation, the left side of the equal sign is known and on its right side
only S′(z−1) and BQ(z−1) are unknown. This is also a Bezout equation which can
be solved by finding the solution to a matrix equation of dimension

nBezY K = nB + d + nHR0
+ 2 · n − 1. (13.86)

As it can be observed, the size of the new Bezout equation is reduced in comparison
to (13.18) by nA + nHS0

. For systems with large dimensions, this has a significant
influence on the computation time. Taking into account that the nominal controller
is an unique and minimal degree solution the Bezout equation (13.79), we find that
the left hand side of (13.85) is a polynomial of degree

nS′
0
+ 2 · n = 2 · n + nB + d + nHR0

− 1, (13.87)

which is equal to the quantity given in (13.86). Therefore, the solution of the sim-
plified Bezout equation (13.85) is unique and of minimal degree. Furthermore, the
order of the BQ FIR filter is equal to 2 · n.

Figure 13.6 summarizes the implementation of the Youla–Kučera parametrized
indirect adaptive controller.

13.4.3 Frequency Estimation Using Adaptive Notch Filters

In order to use the presented control strategy in the presence on unknown and/or
time-varying narrow-band disturbances, one needs an estimation in real time of the
spikes’ frequencies in the spectrum of the disturbance. Based on this estimation in
real time of the frequencies of the spikes, the band-stop filters will be designed in
real time.
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In the framework of narrow-band disturbance rejection, it is usually supposed
that the disturbances are in fact sinusoidal signals with variable frequencies. It is
assumed that the number of narrow-band disturbances is known (similar to [2, 3,
8]). A technique based on ANFs (adaptive notch filters) will be used to estimate the
frequencies of the sinusoidal signals in the disturbance (more details can be found
in [6, 23]).

The general form of an ANF is

Hf (z
−1) = A f (z−1)

A f (ρz−1)
, (13.88)

where the polynomial A f (z−1) is such that the zeros of the transfer function Hf (z−1)

lie on the unit circle. A necessary condition for a monic polynomial to satisfy this
property is that its coefficients have a mirror symmetric form

A f (z
−1) = 1 + a f

1 z
−1 + · · · + a f

n z
−n + · · · + a f

1 z
−2n+1 + z−2n. (13.89)

Another requirement is that the poles of the ANF should be on the same radial
lines as the zeros but slightly closer to the origin of the unit circle. Using filter
denominators of the general form A f (ρz−1) with ρ a positive real number smaller
but close to 1, the poles have the desired property and are in fact located on a circle
of radius ρ [6].

The estimation algorithm will be detailed next. It is assumed that the disturbance
signal (or a good estimation) is available.

A cascade construction of second-order ANF filters is considered. Their number is
given by the number of narrow-band signals, whose frequencies have to be estimated.
The main idea behind this algorithm is to consider the signal p̂(t) as having the form

Fig. 13.6 Youla–Kučera schema for indirect adaptive control
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p̂(t) =
n∑

i=1

ci sin(ωi · t + βi ) + η(t), (13.90)

where η(t) is a noise affecting the measurement and n is the number of narrow-band
signals with different frequencies.

The ANF cascade form will be given by (this is an equivalent representation of
Eqs. (13.88) and (13.89))

Hf (z
−1) =

n∏
i=1

Hi
f (z

−1) =
n∏

i=1

1 + a fi z−1 + z−2

1 + ρa fi z−1 + ρ2z−2
. (13.91)

Next, the estimation of one spike’s frequency is considered, assuming convergence
of the other n − 1, which can thus be filtered out of the estimated disturbance signal,
p̂(t), by applying

p̂ j (t) =
n∏

i=1
i �= j

1 + a fi z−1 + z−2

1 + ρa fi z−1 + ρ2z−2
p̂(t). (13.92)

The prediction error is obtained from

ε(t) = Hf (z
−1) p̂(t) (13.93)

and can be computed based on one of the p̂ j (t) to reduce the computation complexity.
Each cell can be adapted independently after prefiltering the signal by the others.
Following the Recursive Prediction Error (RPE) technique, the gradient is obtained as

ψ j (t) = −∂ε(t)

∂a f j
= (1 − ρ)(1 − ρz−2)

1 + ρa f j z−1 + ρ2z−2
p̂ j (t). (13.94)

The parameter adaptation algorithm can be summarized as

â f j (t) = â f j (t − 1) + α(t − 1) · ψ j (t) · ε(t) (13.95)

α(t) = α(t − 1)

λ + α(t − 1)ψ j (t)2
. (13.96)

where â f j are estimations of the true a f j , which are connected to the narrow-band
signals’ frequencies by ω f j = fs · arccos(− a f j

2 ), where fs is the sampling frequency.

13.4.3.1 Implementation of the Algorithm

The design parameters that need to be provided to the algorithm are the number
of narrow-band spikes in the disturbance (n), the desired attenuations and damping
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of the BSFs, either as unique values (Mi = M, ζdi = ζd , ∀i ∈ {1, . . . , n}) or as
individual values for each of the spikes (Mi and ζdi ), and the central controller (R0,
S0) together with its fixed parts (HR0 , HS0 ) and of course the estimation of the spikes’
frequencies. The control signal is computed by applying the following procedure at
each sampling time:

1. Get the measured output y(t + 1) and the applied control u(t) to compute the
estimated disturbance signal p̂(t + 1) as in (13.78).

2. Estimate the disturbances’ frequencies using adaptive notch filters, Eqs. (13.92)–
(13.96).

3. Calculate SBSF (z−1) and PBSF (z−1) as in (13.8)–(13.11).
4. Find Q(z−1) by solving the reduced order Bezout equation (13.85).
5. Compute and apply the control using (13.5) with R and S given respectively by

(13.80) and (13.81) (see also Fig. 13.6):

S0u(t) = −R0y(t + 1) − HS0 HR0

(
BQ(t)w(t + 1) − P∗

BSFuQ(t)
)
. (13.97)

13.4.4 Stability Analysis of the Indirect Adaptive Scheme

The stability analysis of this scheme can be found in [24].

13.5 Experimental Results: Attenuation of Three Tonal
Disturbances with Variable Frequencies

Samples of the experimental results obtained with the direct adaptive regulation
scheme (see Sect. 13.2.3 and [25]), with the interlaced adaptive regulation scheme
(see Sect. 13.3) and with the indirect adaptive regulation scheme (see Sect. 13.4) on
the test bench described in Chap. 2, Sect. 2.2 are given in this section. A step change
in the frequencies of three tonal disturbances is considered (with return to the initial
values of the frequencies). Figures 13.7, 13.8 and 13.9 show the time responses
of the residual force. Figures 13.10, 13.11 and 13.12 show the difference between
the PSD in open-loop and in closed-loop as well as the estimated output sensitivity
function. Figure 13.13 shows the evolution of the parameters of the FIR adaptive
Youla–Kučera filter used in the direct adaptive regulation scheme. Figures 13.14 and
13.15 show the evolution of the estimated parameters of Dp (used to compute AQ—
the denominator of the IIR Youla–Kučera filter) and of the numerator BQ of the IIR
Youla–Kučera filter used in the interlaced adaptive regulation scheme. Figure 13.16
shows the evolution of the estimated frequencies of the three tonal disturbances used
to compute the band-stop filters in the indirect adaptive regulation scheme.

http://dx.doi.org/10.1007/978-3-319-41450-8_2
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For this particular experiment, the interlaced adaptive regulation scheme offers
the best compromise disturbance attenuation/maximum amplification. Nevertheless,
a global evaluation requires to compare the experimental results on a number of
situations and this is done in the next section.

13.6 Experimental Results: Comparative Evaluation
of Adaptive Regulation Schemes for Attenuation
of Multiple Narrow-Band Disturbances

13.6.1 Introduction

Three schemes for adaptive attenuation of single and multiples sparsely located
unknown and time-varying narrow-band disturbances have been presented in
Chap. 12, Sect. 12.2.2 and in Sects. 13.3 and 13.4 of this chapter. They can be sum-
marized as follows:

(1) Direct adaptive regulation using FIR Youla–Kučera parametrization
(2) Interlaced adaptive regulation using IIR Youla–Kučera parametrization
(3) Indirect adaptive regulation using band-stop filters
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Fig. 13.7 Time response of the direct adaptive regulation scheme using a FIR Youla–Kučera filter
for a step change in frequencies (three tonal disturbances)
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Fig. 13.8 Time response of the interlaced adaptive regulation scheme using an IIR Youla–Kučera
filter for a step change in frequencies (three tonal disturbances)
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Fig. 13.9 Time response of the indirect adaptive regulation scheme using BSF filters for a step
change in frequencies (three tonal disturbances)
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Fig. 13.10 Difference between open-loop and closed-loop PSD of the residual force and the esti-
mated output sensitivity function for the direct adaptive regulation scheme

Fig. 13.11 Difference between open-loop and closed-loop PSD of the residual force and the esti-
mated output sensitivity function for the interlaced adaptive regulation scheme

The objective is to comparatively evaluate these three approaches in a relevant exper-
imental environment.

An international benchmark on adaptive regulation of sparse distributed unknown
and time-varying narrow-band disturbances has been organized in 2012–2013. The
summary of the results can be found in [26]. The various contributions can be found in
[25, 27–32]. Approaches 1 and 3 have been evaluated in this context. The approach 2,
which is posterior to the publication of the benchmark results has been also evaluated
in the same context. Detailed results can be found in [33]. Approaches 1 and 3
provided some of the best results for the fulfilment of the benchmark specifications
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Fig. 13.12 Difference between open-loop and closed-loop PSD of the residual force and the esti-
mated output sensitivity function for the indirect adaptive regulation scheme

Fig. 13.13 Evolution of the parameters of the FIR Youla–Kučera filter for a step change in fre-
quencies (direct adaptive regulation scheme)
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Fig. 13.14 Evolution of the estimated parameters of the DP polynomial (disturbance model) during
a step change of the disturbance frequencies (interlaced adaptive regulation scheme)

Fig. 13.15 Evolution of the parameters of the numerator of the IIR Youla–Kučera filter during a
step change of the disturbance frequencies (interlaced adaptive regulation scheme)
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Fig. 13.16 Evolution of the estimated frequencies of the disturbance during a step change of
disturbance frequencies (indirect adaptive regulation scheme)

(see [26]). Therefore a comparison of the second approach with the first and third
approach is relevant for assessing its potential.

In what follows a comparison of the three approaches will be made in the context
of the mentioned benchmark. The objective will be to assess their potential using
some of the global indicators used in benchmark evaluation.

In Chap. 12, Sect. 12.3, some of the basic performance indicators have been pre-
sented. In the benchmark evaluation process, several protocols allowing to test the
performance for various environmental conditions have been defined. Based on the
results obtained for the various protocols, global performance indicator have been
defined and they will be presented in the next section. This will allow later to present in
a compact form the comparison of the real-time performance of the three approaches
considered in Chap. 12 and this chapter. Further details can be found in [25, 28, 33].

The basic benchmark specification are summarized in Table 13.3 for the three
levels of difficulty (range of frequencies variations: 50 to 95 Hz):

• Level 1: Rejection of a single time-varying sinusoidal disturbance.
• Level 2: Rejection of two time-varying sinusoidal disturbances.
• Level 3: Rejection of three time-varying sinusoidal disturbances.

13.6.2 Global Evaluation Criteria

Evaluation of the performances will be done for both simulation and real-time results.
The simulation results will give us information upon the potential of the design
methods under the assumption: design model = true plant model. The real-time

http://dx.doi.org/10.1007/978-3-319-41450-8_12
http://dx.doi.org/10.1007/978-3-319-41450-8_12
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Table 13.3 Control specifications in the frequency domain

Control specifications Level 1 Level 2 Level 3

Transient duration ≤2 s ≤2 s ≤2 s

Global attenuation ≥30 dBa ≥30 dB ≥30 dB

Minimum disturbance attenuation ≥40 dB ≥40 dB ≥40 dB

Maximum amplification ≤6 dB ≤7 dB ≤9 dB
aFor level 1, the specification of 30 dB is for the range between 50 and 85 Hz, for 90 Hz is 28 dB
and for 95 Hz is 24 dB

results will tell us in addition what is the robustness of the design with respect to
plant model uncertainties and real noise.

Steady-State Performance (Tuning capabilities)

As mentioned earlier, these are the most important performances. Only if a good
tuning for the attenuation of the disturbance can be achieved, it makes sense to
examine the transient performance of a given scheme. For the steady-state perfor-
mance, which is evaluated only for the simple step change in frequencies, the variable
k, with k = 1, . . . , 3, will indicate the level of the benchmark. In several criteria a
mean of certain variables will be considered. The number of distinct experiments, M ,
is used to compute the mean. This number depends upon the level of the benchmark
(M = 10 if k = 1, M = 6 if k = 2, and M = 4 if k = 3).

The performances can be evaluated with respect to the benchmark specifications.
The benchmark specifications will be in the form: XXB, where XX will denote
the evaluated variable and B will indicate the benchmark specification. ΔXX will
represent the error with respect to the benchmark specification.

Global Attenuation—GA

The benchmark specification corresponds to GABk = 30 dB, for all the levels and
frequencies, except for 90 and 95 Hz at k = 1, for which GAB1 is 28 and 24 dB
respectively.

Error:

ΔGAi = GABk − GAi if GAi < GABk

ΔGAi = 0 if GAi ≥ GABk

with i = 1, . . . , M .
Global Attenuation Criterion:

JΔGAk = 1

M

M∑
j=1

ΔGAi . (13.98)
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Disturbance Attenuation—DA

The benchmark specification corresponds to DAB = 40 dB, for all the levels and
frequencies.

Error:

ΔDAi j = DAB − DAi j if DAi j < DAB

ΔDAi j = 0 if DAi j ≥ DAB

with i = 1, . . . , M and j = 1, . . . , jmax , where jmax = k.
Disturbance Attenuation Criterion

JΔDAk = 1

kM

M∑
i=1

k∑
j=1

ΔDAi j (13.99)

Maximum Amplification—MA

The benchmark specifications depend on the level, and are defined as

MABk = 6 dB, if k = 1

MABk = 7 dB, if k = 2

MABk = 9 dB, if k = 3

Error:

ΔMAi = MAi − MABk, if MAi > MABk

ΔMAi = 0, if MAi ≤ MABk

with i = 1, . . . , M .
Maximum Amplification Criterion

JΔMAk = 1

M

M∑
i=1

ΔMAi . (13.100)

Global Criterion of Steady-State Performance for One Level

JSSk = 1

3
[JΔGAk + JΔDAk + JΔMAk ]. (13.101)
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Benchmark Satisfaction Index for Steady-State Performance

TheBenchmarkSatisfaction Index is a performance index computed from theaverage
criteria JΔGAk , JΔDAk and JΔMAk . The Benchmark Satisfaction Index is 100 %, if
these quantities are “0” (full satisfaction of the benchmark specifications) and it is
0 % if the corresponding quantities are half of the specifications for GA, and DA
or twice the specifications for MA. The corresponding reference error quantities are
summarized below:

ΔGAindex = 15,

ΔDAindex = 20,

ΔMAindex,1 = 6, if k = 1,

ΔMAindex,2 = 7, if k = 2,

ΔMAindex,3 = 9, if k = 3.

The computation formulas are

GAindex,k =
(

ΔGAindex − JΔGAk

ΔGAindex

)
100 %

DAindex,k =
(

ΔDAindex − JΔDAk

ΔDAindex

)
100 %

MAindex,k =
(

ΔMAindex,k − JΔMAk

ΔMAindex,k

)
100 %.

Then the Benchmark Satisfaction Index (BSI ), is defined as

BSIk = GAindex,k + DAindex,k + MAindex,k

3
. (13.102)

The results for BSIk obtained both in simulation and real-time for each approach
and all the levels are summarized in Tables 13.4 and 13.5 respectively and represented
graphically in Fig. 13.17. The YK IIR scheme provides the best results in simulation
for all the levels but the indirect approach provides very close results. In real time
it is the YK IIR scheme which gives the best results for level 1 and the YK FIR
which gives the best results for levels 2 and 3. Nevertheless, one has to mention that
the results of the YK FIR scheme are highly dependent on the design of the central
controller.

The results obtained in simulation allows the characterization of the performance
of the proposed design under the assumption that design model = true plant model.
Therefore in terms of capabilities of a design method to meet the benchmark specifi-
cation the simulation results are fully relevant. It is also important to recall that Level
3 of the benchmark is the most important. The difference between the simulation
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Table 13.4 Benchmark satisfaction index for steady-state performance (simulation results)

Method Level 1 Level 2 Level 3

BSI1 (%) BSI2 (%) BSI3 (%)

Indirect 98.69 98.38 99.44

FIR 93.30 97.29 99.13

IIR 99.07 99.84 100

Table 13.5 Benchmark satisfaction index for steady-state performance (real-time results)

Method Level 1 Level 2 Level 3

BSI1 (%) BSI2 (%) BSI3 (%)

Indirect 81.11 88.51 90.64

FIR 80.87 89.56 97.56

IIR 89.37 87.38 96.39

Fig. 13.17 Benchmark Satisfaction Index (BSI ) for all levels for simulation and real-time results

results and real-time results, allows one to characterize the robustness in performance
with respect to uncertainties on the plant and noise models used for design.

To assess the performance loss passing from simulation to real-time results the
Normalized Performance Loss and its global associated index is used. For each level
one defines the Normalized Performance Loss as

N PLk =
(
BSIksim − BSIkRT

BSIksim

)
100 % (13.103)

and the global N PL is given by

N PL = 1

M

M∑
k=1

N PLk (13.104)
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Table 13.6 Normalized performance loss

Method N PL1 (%) N PL2 (%) NLP3 (%) N PL (%)

Indirect 17.81 10.03 8.85 12.23

FIR 13.32 7.95 1.58 7.62

IIR 9.79 12.48 3.61 8.63

Fig. 13.18 Normalized Performance Loss (N PL) for all levels (smaller = better)

where N = 3.
Table 13.6 gives the normalized performance loss for the three schemes.

Figure 13.18 summarizes in a bar graph these results. The YK IIR scheme assures a
minimum loss for level 1, while the YK FIR scheme assures the minimum loss for
level 2 and 3.

Global Evaluation of Transient Performance

For evaluation of the transient performance an indicator has been defined by
Eq. 12.46. From this indicator, a global criterion can be defined as follows

JΔTransk = 1

M

M∑
j=1

ΔTransi , (13.105)

where M = 10 if k = 1, M = 6 if k = 2, and M = 4 if k = 3.
Transient performance are summarized in Table 13.7. All the schemes assures in

most of the cases the 100 % of the satisfaction index for transient performance, which
means that the adaptation transient duration is less or equal to 2 s in most of the cases
(except the indirect scheme for level 2 in simulation).
Evaluation of the Complexity

For complexity evaluation, the measure of the Task Execution Time (TET) in the
xPC Target environment will be used. This is the time required to perform all the
calculations on the host target PC for each method. Such process has to be done on
each sample time. The more complex is the approach, the bigger is the TET. One can

http://dx.doi.org/10.1007/978-3-319-41450-8_12
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Table 13.7 Benchmark satisfaction index for transient performance (for simple step test)

Index BSITrans1 BSITrans2 BSITrans3

Method Sim (%) RT (%) Sim (%) RT (%) Sim (%) RT (%)

Indirect 100 99.17 83.33 100 100 100

FIR 100 96.45 100 95.74 100 100

IIR 100 99.20 100 100 92.74 95.23

argue that the TET depends also on the programming of the algorithm. Nevertheless,
this may change the TET by a factor of 2 to 4 but not by an order of magnitude.
The xPC Target MATLAB environment delivers an average of the TET (AT ET ).
It is however interesting to asses the TET specifically associated to the controller by
subtracting from the measured TET in closed-loop operation, the average TET in
open-loop operation.

The following criteria to compare the complexity between all the approaches are
defined.

ΔT ETSimple,k = AT ETSimple,k − AT ETOLSimple,k (13.106)

ΔT ETStep,k = AT ETStep,k − AT ETOLStep,k (13.107)

ΔT ETChirp,k = AT ETChirp,k − AT ETOLChirp,k (13.108)

where k = 1, . . . , 3. The symbols Simple, Step and Chirp10 are associated respec-
tively to Simple Step Test (application of the disturbance), Step Changes in Frequency
and Chirp Changes in Frequency. The global ΔT ETk for one level is defined as the
average of the above computed quantities:

ΔT ETk = 1

3

(
ΔT ETSimple,k + ΔT ETStep,k + ΔT ETChirp,k

)
(13.109)

where k = 1, . . . , 3. Table 13.8 and Fig. 13.19 summarize the results obtained for
the three schemes. All the values are in microseconds. Higher values indicate higher
complexity. The lowest values (lower complexity) are highlighted.

As expected, the YK FIR algorithm has the smallest complexity. YK IIR has a
higher complexity than the YK FIR (This is due to the incorporation of the estimation
of AQ(z−1)) but still significantly less complex than the indirect approach using BSF.

Tests with a different experimental protocol have been done. The results obtained
are coherent with the tests presented above. Details can be found in [10, 34].

10The chirp will be considered only for complexity evaluation, for other results concerning chirp
disturbance see [33, 34].
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Table 13.8 Task execution time

Method ΔTET

L1 L2 L3

Indirect 254.24 203.83 241.22

FIR 3.26 3.90 5.60

IIR 19.42 31.63 44.95

Fig. 13.19 The controller average task execution time (ΔT ET )

13.7 Concluding Remarks

It is difficult to decide what is the best scheme for adaptive attenuation of multiple
narrow-band disturbances. There are several criteria to be taken into account:

• If an individual attenuation level should be fixed for each spike, the indirect adap-
tive scheme using BSF is the most appropriate since it allows to achieve specific
attenuation for each spike.

• If the objective is to have a very simple design of the central controller, YK IIR
scheme and the indirect adaptive scheme have to be considered.

• If the objective is to have the simplest scheme requiring the minimum computation
time, clearly the YK FIR has to be chosen.

• If the objective is to make a compromise between the various requirements men-
tioned above, it is the YK IIR adaptive scheme which has to be chosen.

13.8 Notes and References

The reference [34] gives a thorough view of the various solutions for adaptive attenu-
ation of multiple narrow-band disturbances. The specific references are [25, 27–32]
to which the reference [10] has to be added.
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