
Chapter 10
Active Damping

10.1 Introduction

As indicated in the introduction of the book, Sect. 1.3, passive dampers despite that
they provide a good attenuation over a wide band of frequencies, they always have
a significant resonance peak at a certain frequency within the frequency range of
operation. To correct this situation an active vibration isolation (control) has to be
considered. The test bench described in Sect. 2.1, belongs to this category. Such a
system has a primary path through which the disturbances are attenuated in certain
frequency ranges and amplified around the resonance of the system. The secondary
path is expected to correct the behaviour of the primary path in the frequency region
where the primary path shows a significant resonance (amplification of the vibrations
in this zone) through the appropriate use of feedback control. The use of the feedback
should attenuate the effect of the resonance of the primary path without deteriorating
the attenuation provided by the primary path at other frequencies. This means that
the “water bed” effect due to the Bode integral should be carefully managed by
shaping the sensitivity functions. Recall also that active damping consists of damping
a resonance mode without changing its frequency.

The methodology of designing active damping systems will be illustrated by
considering the active suspension described in Sect. 2.1.

The first step of the design consists of defining the control specifications. Roughly,
the control objective is illustrated in Fig. 10.1 where the PSD (power spectral density)
of the residual force is represented (thin line). We would like to attenuate the reso-
nance but it is the meantime that the tolerated amplification at other frequencies with
respect to the open-loop characteristics should be very low.1 The desired template
for the PSD corresponds to the curve in thick grey line is shown in Fig. 10.1. The
final objective of the design will be to find the lowest complexity controller which
allows matching the performance specifications.

1As a consequence of the Bode integral, the level of attenuation imposed is related to the level
of tolerated amplification at other frequencies.
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Fig. 10.1 Template imposed on the spectral density of the residual force

Once the performance specifications are formulated, the methodology of design
is illustrated in Fig. 10.2. It comprises a number of steps:

• Open-loop identification of the secondary path (one needs a model of the secondary
path for controller design).

• Design of a robust controller allowing to match the performance specifications
(the design uses the model identified in open-loop operation).

• Implementation and test.
• Identification of the secondary path model in closed-loop operation (an improved

model is expected).
• Redesign (retuning) of the controller based on the model identified in closed-loop

operation.
• Implementation and validation of the new controller.
• Controller order reduction preserving the stability and performance of the system.
• Implementation and validation of the reduced order controller.

It may happen in practice that one stops after the test of the controller designed
on the basis of the model of the secondary path identified in open-loop operation;
however, once the implementation of the controller is done it is easy to do an identi-
fication in closed loop and the procedure can go further. The complexity controller
reduction may not be necessary in some cases if there are no constraints on the
computer power or on the cost of the control.

10.2 Performance Specifications

In active damping the desired performances are specified in the frequency domain.
A template for the expected power spectral density (PSD) of the residual force or
acceleration has to be defined. For the active suspension described in Sect. 2.1, the
desired template is shown in Fig. 10.1 and the details are given below:

http://dx.doi.org/10.1007/978-3-319-41450-8_2
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Fig. 10.2 Design methodology

• for frequencies below 20 Hz, maximum amplification with respect to the open
loop: 1 dB;

• at 20 Hz, 0 dB amplification;
• at 31.25 Hz (the resonance) an attenuation of at least 6.6 dB;
• at 39 Hz, maximum 0 dB amplification;
• between 39 and 150 Hz maximum 3 dB amplification with respect to the open-loop

PSD;
• between 150 and 220 Hz amplification/attenuation below −30 dB with respect to

the value of the open-loop PSD at the resonance; and
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• from 220 Hz above, maximum amplification of 1 dB with respect to the open-loop
PSD.

In addition, as for any feedback control systems, robust specifications should be
considered:

• modulus margin ≥ −6 dB;
• delay margin ≥ 1.25 ms (one sampling period);
• Sup < 10 dB, between 0 and 35 Hz; Sup < 0 dB, between 40 and 150 Hz; Sup <

−20 dB, between 150 and 220 Hz and < −30 dB above 220 Hz; and
• opening the loop at 0.5 fs .

The reduction of the magnitude of Sup is related to the robustness with respect to
additive uncertainties and the fact that the system has low gain in high frequencies
(robustness requires low level control action at the frequencies where the system has
no gain—see Sect. 7.2). Opening the loop at 0.5 fs will lower drastically the gain of
the controller at high frequencies close to 0.5 fs .

One of the steps in the design procedure is to transform the objectives shown in
Fig. 10.1 and detailed above in specifications for the design of the feedback system.
The active damping can be interpreted as an additional attenuation/amplification of
the disturbance (vibration) acting upon the system. In other terms the difference
between the PSD of the residual force in open-loop operation and the desired PSD
will give the desired attenuation and the tolerated amplification for the feedback loop
around the secondary path. The attenuation/amplification introduced by a feedback
system is characterized by the frequency domain behaviour of the output sensitivity
function Syp. Therefore the difference between the open-loop PSD of the residual
acceleration (force) and the desired PSD will generate a desired template for the
modulus of the output sensitivity function to be achieved. Figure 10.3 shows the

Fig. 10.3 Desired template for the output sensitivity function Syp (without the robustness con-
straints)

http://dx.doi.org/10.1007/978-3-319-41450-8_7
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Fig. 10.4 Desired template for the output sensitivity function Syp and adjusted template taking
into account the robustness constraints

open-loop PSD, the desired PSD when active damping operates and their difference
which constitutes a first template for the desired output sensitivity function.

Nevertheless, this template has to take into account also the robustness constraints
imposed in terms of modulus margin and delay margin. Modulus margin imposes a
maximum of 6 dB and this maximum decreases in high frequencies as a consequence
of the constraints on the delay margin. Figure 10.4 shows the desired template as well
as the adjusted one which takes into account the modulus and the delay margins.
Figure 10.5 shows the template for shaping the input sensitivity function resulting
from the specifications defined earlier (nominal template).

Fig. 10.5 Template for the input sensitivity function Sup
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10.3 Controller Design by Shaping the Sensitivity
Functions Using Convex Optimization

The convex optimization procedure for controller design has been presented in
Sect. 7.4. Since the objective is also to obtain a low complexity controller, a first
step which was considered in this approach was to use a reduced order secondary
path model taking into account that according to the control objective, the control
will not have to be effective in high frequencies. One of the most commonly used
and efficient methods for model reduction is balancing. Because in the case of the
active suspension we are interested in specific frequency intervals, the approach con-
sidered for the model reduction is the frequency-weighted balancing method which
is suitable when a certain frequency range is of interest. Given the nominal full order
model G and the input and output weighting matrices Wi and Wo, the objective is to
find a stable and minimum-phase lower order model Gr such that the weighted error

‖Wo(G − Gr )Wi‖∞ (10.1)

is as small as possible.
The identified model of the secondary path has been presented in Sect. 6.1.1.

A reduced order model with nA = 8, nB = 11, d = 0 has been obtained by
using the “balanced truncation” technique in which the low frequencies have been
appropriately weighted. The parameters of the reduced order model are given in
Table 10.1. The frequency characteristics of the nominal and reduced order models
are shown in Fig. 10.6.

Nevertheless, once the design is done on the reduced order model, the resulting
controller has to be tested on the full order model before implementation. After a

Table 10.1 Parameters of the reduced order model

Coeff. A Coeff. B

a0 1.0000 b0 0.0000

a1 −2.1350 b1 0.1650

a2 2.1584 b2 −1.0776

a3 −2.2888 b3 3.6137

a4 2.2041 b4 −8.1978

a5 −1.8433 b5 15.4346

a6 1.4035 b6 −19.4427

a7 −0.2795 b7 14.2604

a8 −0.2057 b8 −10.8390

a9 – b9 11.9027

a10 – b10 −7.2010

a11 – b11 1.3816

http://dx.doi.org/10.1007/978-3-319-41450-8_7
http://dx.doi.org/10.1007/978-3-319-41450-8_6
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Fig. 10.6 Bode diagram (amplitude and phase) of the open-loop nominal and reduced order models

trial it was found that the basic templates have to be modified in certain frequency
regions in order that the controller designed on the reduced order model matches the
original templates when used with the nominal full order model.

For initializing the optimization procedure for controller design, a pair of poles
at the resonance frequency f = 31.939 Hz with a damping ξ = 0.8, and a fixed
real pole corresponding to the lowest frequency pole of the system (located at the
intersection of the 5.73 Hz curve with the real axis) have been assigned. The region
of optimization for the poles has been considered to be a circle with a radius 0.99.
A fixed part in the controller HR = 1 + q−1 is introduced in order to open the loop
at 0.5 fs .

For convenience, the controller designed will be denoted OLBC (Open Loop
Based Controller—controller designed using the open-loop identified model). The
parameters of the resulting OLBC controller (nR = 27, nS = 30) are given in
Table 10.2.

In Fig. 10.7, the achieved sensitivity functions with the full nominal model are
shown. Clearly, the controller allows matching the specifications. The achieved mod-
ulus margin is −2.775 dB and the achieved delay margin is 4.1 Ts (Ts = 1.25 ms).

The performance on the real system is shown in Fig. 10.8. As it can be seen the
specifications are satisfied.

Nevertheless, the full design procedure will be illustrated since in certain cases:

• the results obtained with the controller designed on the basis of the open-loop
model may not necessarily be fully satisfactory; and

• the complexity of the controller has to be reduced.
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Table 10.2 Parameters of the controller based on the reduced order open-loop identified model
(OLBC)

Coeff. R Coeff. S Coeff. R Coeff. S

r0 0.0162 s0 1.0000 r16 0.0071 s16 −0.1070

r1 −0.0515 s1 −5.1406 r17 −0.0111 s17 0.1031

r2 0.0695 s2 11.9134 r18 −0.0068 s18 −0.0384

r3 −0.0255 s3 −15.9616 r19 0.0263 s19 0.1284

r4 −0.0666 s4 12.7194 r20 −0.0198 s20 −0.0601

r5 0.1315 s5 −4.5490 r21 0.0032 s21 −0.0939

r6 −0.1245 s6 −2.0666 r22 −0.0059 s22 0.0027

r7 0.0570 s7 3.1609 r23 0.0188 s23 0.1820

r8 0.0485 s8 0.7437 r24 −0.0180 s24 −0.1586

r9 −0.1405 s9 −6.0665 r25 0.0066 s25 0.0457

r10 0.1456 s10 8.5544 r26 0.0003 s26 −0.0534

r11 −0.0610 s11 −6.8795 r27 −0.0007 s27 0.1081

r12 −0.0242 s12 3.6997 r28 – s28 −0.0901

r13 0.0422 s13 −1.8094 r29 – s29 0.0345

r14 −0.0212 s14 1.0885 r30 – s30 −0.0049

r15 0.0051 s15 −0.4045 – – – –

Fig. 10.7 Achieved sensitivity functions (black) with the OLBC controller and the nominal model
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Fig. 10.8 Performance of the OLBC controller on the real system (PSD of the residual force)

10.4 Identification in Closed-Loop of the Active Suspension
Using the Controller Designed on the Model Identified
in Open-Loop

The methodology of identification in closed-loop operation has been presented in
Chap. 8. A model with nA = 14, nB = 16 and d = 0 will be identified (same orders
as for the model identified in open-loop operation).

One would like to identify a model which will minimize the error between the
true output sensitivity function and the estimated sensitivity function, taking also
into account that the plant model has a double differentiator. To achieve this, the
excitation has been added to the input of the filter R (see Chap. 8 for details). Within
this context, data acquisition was done with the same PRBS sequence as in open-loop
identification (generated by 9-bit shift register and a clock frequency of fs/4).

The best identified model in terms of statistical validation was the model identified
with X-CLOE using a time-varying forgetting factor with λ0 = λ1 = 0.95. The
parameters of this model are given in Table 10.3.

It is very important to assess if the model identified in closed loop is better than the
model identified in open-loop for describing the behaviour of the closed-loop system
using the OLBC controller. Figure 10.9 shows the identified poles of the closed loop
(using an RELS algorithm for the closed-loop system identification considered as an
input/output map from the excitation to the residual force) and the computed closed-
loop poles using the open-loop identified model (OLID-M) and the OLBC controller.
Figure 10.10 shows the same type of comparison but the computed closed-loop poles
are calculated using the model identified in closed loop (CLID-M). Visual comparison
shows clearly that the CLID-M model gives a better description of the real closed-
loop system using the OLBC controller (this is obvious in the low frequency range
which defines the main behaviour of the closed-loop system in terms of performance).

http://dx.doi.org/10.1007/978-3-319-41450-8_8
http://dx.doi.org/10.1007/978-3-319-41450-8_8
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Table 10.3 Parameters of the model identified in closed-loop

Coeff. A Coeff. B Coeff. A Coeff. B

a0 1.0000 b0 0.0000 a9 0.6201 b9 0.2716

a1 −0.3003 b1 −0.1556 a10 −0.1095 b10 1.8255

a2 0.3504 b2 0.1843 a11 0.1593 b11 1.1575

a3 −0.6740 b3 0.5518 a12 −0.1580 b12 1.3638

a4 −0.2478 b4 −1.4001 a13 −0.0957 b13 −0.8958

a5 −0.4929 b5 3.4935 a14 −0.2030 b14 1.6724

a6 −0.3217 b6 −0.3536 a15 – b15 −1.7691

a7 0.6157 b7 −2.7181 a16 – b16 −0.2240

a8 0.1459 b8 −3.0041 – – – –
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Fig. 10.9 Proximity poles validation of the full order open-loop identified model. Identified and
computed closed-loop poles

This is also confirmed by the comparison of the real-time results with the simulated
results obtained with the OLID-M model and the CLID-M model (see Fig. 10.11).
A small improvement is observed.

10.5 Redesign of the Controller Based on the Model
Identified in Closed Loop

Similar to the open-loop situation a reduced order model obtained by balanced trun-
cation will be used. This model has the following dimensions: nA = 8, nB = 11,
d = 0. The frequency characteristics of this reduced model and those of the full
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Fig. 10.10 Proximity poles validation of the full order closed-loop identified model. Identified and
computed closed-loop poles
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Fig. 10.11 Spectral density of the simulated and real-time closed-loop output (zoom)

order model identified in closed loop are shown in Fig. 10.12.2 It can be observed
that the reduced order model approximates very well the frequency characteristics
of the nominal model identified in closed loop in the low frequency range of interest.

Applying the same design procedure based on convex optimization but now
using the reduced order model obtained from the nominal model identified in closed
loop a new controller (CLBC—Closed-Loop Based Controller) is obtained whose

2The option of identifying in closed loop a reduced order model instead of a model of nominal
order followed by an order reduction using balanced truncation has provided less good results. For
details see [1].
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Fig. 10.12 Bode diagram (amplitude and phase) of the nominal model identified in closed-loop
operation and of the corresponding reduced order model

parameters are given in Table 10.4. The sensitivity functions with the nominal CLID-
M model are shown in Fig. 10.13. The robustness margins are: (1) Modulus Margin
= −3.702 dB; (2) Delay Margin = 1.834 TS .

Figure 10.14 shows a comparison of the real-time results obtained with the OLBC
controller and with the CLBC (controller based on the closed-loop identified model).
The results are very close indicating that already the open-loop identified model was
very good.

10.6 Controller Complexity Reduction

Once the CLBC controller is tested and the performance results are satisfactory (see
Sect. 10.5), one can pass to the last step of the design methodology presented in
Fig. 10.2 which is the reduction of the complexity of the controller.

The techniques for controller complexity reduction by identification in closed
loop of the reduced order controller described in Chap. 9 will be used.

One aspect which is very important when reducing the complexity of a con-
troller is that the controller reduction should be done such as to preserve as much as
possible the desirable closed-loop properties. Direct simplification of the controller
using standard techniques (poles–zeros cancellation within a certain radius, balanced
reduction) without taking into account the closed loop behaviour produces in general
unsatisfactory results [2, 3].

http://dx.doi.org/10.1007/978-3-319-41450-8_9
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Table 10.4 Parameters of the controller based on the model identified in closed-loop operation
(reduced order model) (CLBC)

Coeff. R Coeff. S Coeff. R Coeff. S

r0 0.0195 s0 1.0000 r16 −0.0488 s16 0.8567

r1 −0.0618 s1 −4.5610 r17 0.0446 s17 −0.6306

r2 0.1030 s2 9.4917 r18 −0.0495 s18 0.3005

r3 −0.1238 s3 −12.4447 r19 0.0437 s19 −0.1080

r4 0.1263 s4 12.6103 r20 −0.0255 s20 0.0162

r5 −0.1087 s5 −11.5883 r21 0.0078 s21 0.1348

r6 0.0581 s6 9.8694 r22 0.0055 s22 −0.2960

r7 0.0050 s7 −7.4299 r23 −0.0178 s23 0.3737

r8 −0.0389 s8 5.3112 r24 0.0254 s24 −0.3835

r9 0.0499 s9 −4.0129 r25 −0.0215 s25 0.3633

r10 −0.0648 s10 2.9544 r26 0.0102 s26 −0.3058

r11 0.0727 s11 −2.1480 r27 −0.0022 s27 0.2004

r12 −0.0602 s12 1.9636 r28 – s28 −0.0883

r13 0.0511 s13 −1.9125 r29 – s29 0.0218

r14 −0.0597 s14 1.4914 r30 – s30 −0.0019

r15 0.0616 s15 −1.0471 – – – –
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Fig. 10.13 Achieved sensitivity functions (black thin line) with the CLBC controller and the nom-
inal model identified in closed-loop operation

The orders of the nominal CLBC controller to be reduced are nR = 27, nS = 30,
and its coefficients have been presented in Table 10.4. The model which will be
used for the reduction of the controller is the nominal closed-loop identified model
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Fig. 10.14 Real-time performance of the OLBC and CLBC controllers (detail)

CLID-M (see Sect. 10.4). The parameters of the model have been given in Table 10.3
(see Sect. 10.4).

Since in active damping we are concerned with attenuation of the disturbances, the
main objective for controller reduction will be to obtain an output sensitivity function
for the reduced order controller as close as possible to the output sensitivity function
obtained with the nominal order controller. As indicated in Chap. 9 and [4], in order
to achieve this, the CLOM procedure has to be used. The reduction procedures have
been run with simulated data.

A variable forgetting factor with λ1(0) = 0.95 and λ0 = 0.9 (λ1(t) = λ0λ1(t −
1)+ 1 −λ0) has been used in the algorithm for the controller parameters estimation.
The external input was a PRBS generated by a 9-bit shift register with a p = 4
frequency divider (4096 samples). In addition a fixed part HR = 1 + q−1 has been
introduced in the reduced order controllers (R = HRR′) which preserves the opening
of the loop at 0.5 fs .

10.6.1 CLOM Algorithm with Simulated Data

Two reduced order controllers have been computed: CLBC-CLOM16 with the orders
nR = 14, nS = 16 and CLBC-CLOM5 with the orders nR = 4, nS = 5.

The frequency characteristics of the output and input sensitivity functions (Syp and
Sup) for the nominal controller CLBC and the two reduced order controllers CLBC-
CLOM16 and CLBC-CLOM5 are shown in Figs. 10.15 and 10.16, respectively.

Note that the reduced controller CLBC-CLOM16 corresponds to the complexity
of the pole placement controller with the fixed part HR , while controller CLBC-
CLOM5 has a lower complexity.

The values of the various ν-gap are summarized in Table 10.5 (the last two rows
give real-time results). It can be remarked that the Vinnicombe stability margins

http://dx.doi.org/10.1007/978-3-319-41450-8_9
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Fig. 10.16 Input sensitivity functions (controller order reduction with CLOM algorithm and sim-
ulated data)

b(Ki ,G) computed with the nominal model CLID-M for the various reduced order
controllers are close to the stability margin obtained with the nominal controller.

The last two rows of Table 10.5 give real-time results. Row 6 gives the ν-gap
between the input/output transfer function corresponding to the input sensitivity
function Sup of the true closed-loop system constituted by the nominal designed
controller with the real plant (obtained by system identification between the input r
and the output y) and the input/output transfer function of the simulated closed-loop

system ( ˆ̂Sup) constituted by the various controllers (including the nominal one and the
reduced ones obtained using simulated data) in feedback connection with the plant
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Table 10.5 Comparison of the nominal and reduced order controllers (controller reduction using
CLOM algorithm and simulated data)

Controller CLBC
nR = 27
nS = 30

CLBC-CLOM16
nR = 14
nS = 16

CLBC-CLOM5
nR = 4
nS = 5

δν(Kn, Ki ) 0 0.6577 0.6511

δν(Snup, S
i
up) 0 0.6577 0.6511

δν(Snyp, S
i
yp) 0 0.0386 0.1308

b(Ki ,G) 0.0303 0.0135 0.0223

δν(CL(Kn),CL(Ki )) 0.2610 0.2963 0.4275

Closed-loop error
variance

0.13582 0.14755 0.17405

model. This quantity is denoted by δν(CL(Kn),CL(Ki )). This is a good criterion
for the validation of the reduced order controllers in real time. It can be observed
that the CLBC-CLOM16 controller gives results which are very close to those of
the nominal CLBC controller. Row 7 gives the variance of the residual closed-loop
input error between the true system and the simulated one. The results are coherent
to those of row 6, showing that CLBC-CLOM16 gives performance very close to
those of the nominal controller.

10.6.2 Real-Time Performance Tests for Nominal
and Reduced Order Controllers

The spectral densities of the residual forces in open loop and in closed loop cor-
responding to the nominal controller CLBC and the reduced order ones obtained
with the CLOM method (CLBC-CLOM16 and CLBC-CLOM5) are presented in
Fig. 10.17.

It can be seen that the performance of reduced order controllers are very close
to that of the nominal controller designed using a reduced model of the closed-loop
identified model. Note also that the reduction in terms of number of parameters is sig-
nificant. Very close results have been obtained using the CLIM reduction procedure
(see [1, 5]).
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10.7 Design of the Controller by Shaping the Sensitivity
Function with Band-Stop Filters

The objective of this section is to provide an alternative design procedure for active
damping which does not require the use of the convex optimization procedure, but
uses only band-stop filters which are iteratively introduced in order to shape the
sensitivity functions. This method has been introduced in Sect. 7.2.9. The frequency
and damping of the poles of the open-loop identified model are given in Table 6.3.

All asymptotically stable poles will be included as initial desired closed-loop
poles. Only the pole located at −0.2177 which corresponds in fact to a pair of damped
oscillatory poles near 0.5 fs will not be included. All the poles remain unchanged
in terms of damping, except the complex poles located at 31.939 Hz for which the
damping imposed in closed loop will be ξ = 0.8 and the complex poles at 164.34 Hz
for which a damping of 0.167 will be chosen. These two damped poles will help to
satisfy the desired template on the output sensitivity function. 16 real auxiliary poles
are assigned at 0.15 (this will not augment the size of the resulting controller).3

Figure 10.18 (curve “Controller 1”) shows the resulting output sensitivity function
Syp. As it can be seen, it almost satisfies the robustness constraints on the modulus
margin and delay margin (it is inside the basic template for robustness at all fre-
quencies except around 55 Hz). Nevertheless, when compared to the specification
for the output sensitivity function in Fig. 10.19 (dotted line), it can be observed that
the desired disturbance attenuation is not satisfied. The input sensitivity function
satisfies the specified template, see Fig. 10.20.

3The design using BSF has been done with iReg software which provides a convenient interactive
environment.

http://dx.doi.org/10.1007/978-3-319-41450-8_7
http://dx.doi.org/10.1007/978-3-319-41450-8_6
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Fig. 10.18 Output sensitivity function for the Controller 1 (with modulus and delay margin tem-
plates)

Fig. 10.19 Output sensitivity function with the three initial controllers

To have zero gain on the input sensitivity function at 0.5 fs , one zero at −1 is
added to the fixed part of the controller numerator by including into HR the first
order polynomial (1 + q−1). One more characteristic pole at 0.15 is then added (this
will not increase the order of the controller but avoid to have a pole assigned to 0).
The result can be seen in Figs. 10.19 and 10.20, “Controller 2” curve. One can see
that the template is still violated in several frequency regions.

For shaping the output sensitivity function in the frequency region of the first
attenuation mode around 30 Hz three BSF have been added at 14, 24 and 38.7 Hz,
with attenuation of −2.5, −7 and −5.5 dB respectively. The resulting controller
sensitivity functions are shown in Figs. 10.19 and 10.20 (curve “Controller 3”). The
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Fig. 10.20 Input sensitivity function with the three initial controllers

Fig. 10.21 Output sensitivity function with the three initial controllers (zoom)

result in the region of the first attenuation mode around 30 Hz can be better evaluated
using Fig. 10.21, where a zoom between 10 and 50 Hz is shown. For all three BSF,
the denominator damping has been chosen equal to 0.5. It can be observed that
“Controller 3” satisfies the imposed template in the lower frequency region below
30 Hz.

The final design step is to improve the shape of the sensitivity functions at the
other frequencies. Two additional BSF have been added for shaping the output sen-
sitivity function and five for shaping the input sensitivity function. In addition, the
initial three BSF have been slightly modified as each newly added BSF has, how-
ever, a slight influence at neighbouring frequencies. Tables 10.6 and 10.7 summarize
the characteristics of the various BSF. A sensitivity functions comparison between
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Table 10.6 Band-stop filters for the output sensitivity function

Controller number Frequency (Hz) Attenuation (dB) Denominator damping

1 14 −9.1 0.95

2 23.5 −14.759 0.95

3 41.158 −5.2 0.5

4 69.45 −15.11 0.95

5 132.5 −14.759 0.95

Table 10.7 Band-stop filters for the input sensitivity function

Controller number Frequency (Hz) Attenuation (dB) Denominator damping

1 51.5 −16 0.95

2 70.74 −14.052 0.5

3 92.6 −15.1 0.95

4 115.76 −9.1 0.5

5 313.826 −2.733 0.95

Fig. 10.22 Output sensitivity function comparison between “Controller 3” and “Controller 4”

“Controller 3” and “Controller 4” is given in Figs. 10.22 (output sensitivity functions)
and 10.23 (input sensitivity functions).

Finally, Figs. 10.24 and 10.25 give a comparison of “Controller 4” and the con-
troller designed using convex optimization (see previous sections). A zoom between
10 and 50 Hz is shown in Fig. 10.26 for comparative evaluation of the obtained char-
acteristics around the first attenuation region. As it can be seen, both controllers
satisfy the template in the low frequency region while in the high frequency region
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Fig. 10.23 Input sensitivity function comparison between “Controller 3” and “Controller 4”

Fig. 10.24 Output sensitivity function comparison between the convex optimization controller and
“Controller 4” obtained using iREG

the controller designed by convex optimization slightly exceeds the imposed tem-
plate. Concerning their complexity, “Controller 4” designed using BSF filters has
71 parameters (nR = 34 and nS = 36) while the controller designed by convex
optimization has 58 parameters (nR = 27 and nS = 30).
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Fig. 10.25 Input sensitivity function comparison between the convex optimization controller and
“Controller 4” obtained using iREG

Fig. 10.26 Output sensitivity function comparison between the convex optimization controller and
“Controller 4” obtained using iREG (zoom)

10.8 Concluding Remarks

• The design of active damping systems consists of the following major steps:

– Definition of the control performance specifications in the frequency domain.
– Design of the controller ensuring the desired performance.
– Validation of the controller.

• Design of the controller for active damping include several steps:
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– Open-loop identification of the secondary path.
– Design of the controller based on the secondary path model identified in open-

loop operation.
– Implementation and validation of the controller.

• If the performance is not satisfactory, the following procedure has to be followed:

– Identification in closed-loop operation of a new model for the secondary path
and validation of the identified model.

– Redesign of the controller on the basis of the model identified in closed loop.
– Implementation and validation of the controller designed on the basis of the

model identified in closed-loop operation.

• The effective design of the controller requires the shaping of the sensitivity func-
tions.

• Shaping of the sensitivity functions can be achieved using convex optimization or
band-stop filters combined with poles placement.

• If constraints on the computational load exist, the final step in the design is the
reduction of the controller complexity with the objective of preserving the closed-
loop performance.

• The reduced order controller should be implemented and validated.

10.9 Notes and References

Active damping for disturbance attenuation and control of lightly damped structures
which has different objectives use, however, similar feedback techniques [6].

Suspension bridges and cable-stayed bridges require active damping to reduce
the effects of various phenomena. Active damping solutions have been proposed in
[7–14]. Active tendon control of cable-stayed bridges using hydraulic suspension is
considered in [11].

An important issue in active damping is the construction of physical systems
allowing to achieve active damping. Use of piezoelectric devices is a very efficient
approach for many applications. See [14] for a survey and [8] for a detailed modelling
of this type of devices. Applications of piezoelectric devices for active damping have
been reported for: (i) Large space structures [14], (ii) Wafer stepper in lithography
[15] and (iii) Active tendon control of cable structures in space [16, 17].

Other references related to active damping include [18–21].
A key issue in active damping is a careful shaping of the sensitivity functions.

Other techniques than those presented in this chapter can be used. H∞ where the
shaping of the sensitivity function is converted in a weighted frequency criterion
minimization can be considered [22, 23]. Linear-Quadratic Control with frequency
weighting can also be considered [24].
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