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Series Editors’ Foreword

The series Advances in Industrial Control aims to report and encourage technology
transfer in control engineering. The rapid development of control technology has an
impact on all areas of the control discipline. New theory, new controllers, actuators,
sensors, new industrial processes, computer methods, new applications, new design
philosophies…, new challenges. Much of this development work resides in
industrial reports, feasibility study papers and the reports of advanced collaborative
projects. The series offers an opportunity for researchers to present an extended
exposition of such new work in all aspects of industrial control for wider and rapid
dissemination.

It is easy to find examples in everyday life where one experiences the effects of
vibration and noise. In fact, there are so many applications where vibration control
and/or noise suppression is required that it is difficult to make some form of
classification. Virtually every application, domestic and industrial, involving a
motor, engine or turbine, for its drive system will have a problem with vibration
and/or noise and will invariably require mechanisms or techniques to suppress
them. Over a number of years this diversity of applications has been investigated
from a control system’s point of view by Prof. Ioan Landau and his team of
researchers and engineering consultants. The comprehensive results of this study
and research are presented in this Advances in Industrial Control monograph
Adaptive and Robust Active Vibration Control: Methodology and Tests by Ioan
Doré Landau, Tudor-Bogdan Airimitoaie, Abraham Castellanos-Silva and Aurelian
Constantinescu.

The advantage of a systems-engineering approach to any diverse set of similar
industrial problems, in a wide range of applications, is the emergence of a generic
study framework that rises above the specific applications. This also allows the
application of solution methods from the now well-developed and extensive tool-
box of control design methods. At a later stage, such generic solutions can then be
tailored for particular application studies.

Professor Landau and his team followed this approach with a focus on active
vibration control and active noise control, identifying and classifying along the way
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the type of system disturbances for which rejection is required. In many ways the
focus on the signal structure of the disturbance represents a way of classifying each
type of application. This in-depth understanding of the disturbances enables Prof.
Landau and his team to construct solutions from the robustness and adaptive control
design paradigms.

An important contribution reported in the monograph is the three physical
benchmark laboratory units at the GIPSA-LAB Grenoble. These benchmark
installations are described in the monograph and are used to test different aspects of
vibration control. The monograph also archives the models and data so that other
researchers in the field may use them for further study.

What can the reader expect from this excellent monograph? Professor Ioan Doré
Landau is an eminent control engineer who has had a long and fruitful career in the
control community, notably acting as the Research Director at the National Centre
for Scientific Research at Grenoble. His books, monographs and papers are known
for their clarity, and scholarship. He and his team of researchers have produced a
monograph that continues this trademark characteristic in the presentation of con-
trol concepts and results. The monograph is complete with laboratory experimental
results and the theory is supported by instructive appendices. It is an exemplar for
the Advances in Industrial Control monograph series.

Michael J. Grimble
Michael A. Johnson

Industrial Control Centre
University of Strathclyde
Glasgow, Scotland, UK
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Preface

Attenuation of vibration and noise constitutes a growing concern in today’s human
activities. For more than 45 years, it was realized that passive attenuation of
vibration and noise via dedicated absorbers has limits and the concepts of active
vibration and noise control have emerged. Active vibration and noise control are
strongly related to control methodology even if in the past the control community
was not the driving force in this field. Almost from the beginning, the uncertainties
and changes in the characteristics of the environment (vibrations, noise, system
dynamics) have prompted the idea of using an adaptive approach in active vibration
or noise control. Addressing some of these issues from a robustness point of view is
a much more recent tendency in the field. Practical experience has shown also the
limitations of using only physical models for designing active vibration or noise
control systems bringing to light the need of dynamic model identification directly
from input/output data.

The aim of this book is to approach the design of active vibration control
systems from the perspective of today’s control methodology. In that sense the first
objective is to formulate from the beginning the various design problems
encountered in active vibration control as control problems and search for the most
appropriate control tools to solve them. Experimental validation of the proposed
solutions on relevant test benches is another issue addressed in this book. To make
these techniques widely accepted, an appropriate presentation should be given,
eliminating theoretical developments unnecessary for the users (which can be found
elsewhere) and focusing on algorithms’ presentation and their use. Nevertheless, the
proposed solutions cannot be fully understood and creatively exploited without a
clear understanding of the basic concepts and methods and so these are given
in-depth coverage. The book is mainly based on the work done in a number of
Ph.D. theses prepared at Gipsa-lab (INPG/UJF/CNRS), Grenoble, France:

• A. Constantinescu “Robust and adaptive control of an active suspension” [1];
• M. Alma “Adaptive rejection of disturbances in active vibration control” [2];
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• T.B. Airimitoaie “Robust control and tuning of active vibration control systems”
[3]; and

• A. Castellanos-Silva “Feedback adaptive compensation for active vibration
control in the presence of plant parameter uncertainties” [4];

as well as on the results of an international experimental benchmark on adaptive
feedback vibration attenuation [5].1

All the methods and algorithms proposed in the book have been thoroughly
validated experimentally on three test benches (designed by Mathieu Noé from
Paulstra—Vibrachoc, Paris) and located at the Gipsa-lab (INPG/UJF/CNRS) in
Grenoble, France.

The idea of writing this book arose when I was asked to present a tutorial on
control tools for active vibration control at the 4ème Colloque francophone
“Analyse Vibratoire Expérimentale”, Blois, France, November 2014 (Chairman:
Roger Serra, INSA Centre Val de Loire). On that occasion, I listed the concepts,
methods and algorithms that have been used to provide solutions for active
damping, feedback and feedforward attenuation of vibration. All these concepts and
methods, which form the basis of the solutions proposed, are taught separately in
various control courses or can be found in various books, so it appeared reasonable
to try to bring them together and present them accessibly for those interested in
using modern control concepts in active vibration control. With this knowledge to
hand, the various solutions proposed for active vibration control can be easily
understood and used. The need for including experimental results in order to allow
readers to assess the potential of the various solutions is obvious.

Three major problems are addressed in the book:

• Active damping (for improving the performance of passive absorbers);
• Adaptive feedback attenuation of single and multiple tonal vibrations; and
• Feedforward and feedback attenuation of broad-band vibrations.

With few exceptions, the analytical details have been skipped and the reference
to the appropriate journal papers has been made. The focus is on enhancing
motivations, algorithms presentation and experimental evaluations.

Once I had a clear view of how this book should be, I solicited the collaboration
of Tudor-Bogdan Airimitoaie, Abraham Castellanos-Silva and Aurelian
Constantinescu in order to realize it.

Website

Complementary information and material for teaching (simulators, algorithms and
data files) can be found on the book website: http://www.landau-adaptivecontrol.
org/

1http://www.gipsa-lab.grenoble-inp.fr/*ioandore.landau/benchmark_adaptive_regulation

x Preface

http://www.landau-adaptivecontrol.org/
http://www.landau-adaptivecontrol.org/
http://www.gipsa-lab.grenoble-inp.fr/~ioandore.landau/benchmark_adaptive_regulation


Expected Audience

The book may be considered as the basis of a course for graduate students in
mechanical, mechatronic, industrial electronic, aerospace and naval engineering.

Part of the book may be used to illustrate the applicability of various graduate
control courses (system identification, adaptive control, robust control).

The book is of interest for practising engineers in the field of active vibration
control wishing to acquire new concepts and techniques well validated in practice.

The book is also of interest for the people concerned with active noise control,
since the techniques presented can, to a large extent, be used for active noise control
too. Researchers in the field of active vibration control may also find inspiring
material that opens paths toward new developments.

About the Content

The book is divided into six parts. The introductory part (Chaps. 1 and 2) presents
the problems addressed in the book and the test benches used for experimental
validation.

The second part is dedicated to the presentation of the control techniques used
effectively in active vibration control. Chapter 3 discusses the discrete-time model
representation used throughout the book. Chapter 4 is dedicated to the presentation
of the parameter adaptation algorithms that will be used throughout the book.
Chapter 5 gives a compact presentation of system identification techniques focusing
on the specific algorithms used in active vibration control. Chapter 6 illustrates the
use of these identification techniques for identifying the dynamic models of the
three test benches already presented in Chap. 2. Chapter 7 reviews basic methods
for the design of digital controllers that have been used in active vibration control.
Chapter 8 provides effective solutions for identification in closed-loop operation
allowing the improvement of the dynamic models identified in open-loop operation
or re-tuning of the controller. Chapter 9 addresses the problem of controller order
reduction because the result of the design is often a high-order controller; since on
the one hand the models of the system are of high dimension and on the other the
robustness constraints contribute to the increase of the order of the controller.

The third part is dedicated to the problem of active damping (Chap. 10). The
design aspects and the experimental evaluation are discussed in detail.

The fourth part is concerned with the robust and adaptive attenuation of vibra-
tions by feedback. Chapter 11 treats the problem of robust feedback attenuation of
narrow-band (tonal) disturbances subject to limited frequency variations. Chapter
12 introduces the basic algorithm for adaptive attenuation of narrow-band distur-
bances. Experimental evaluations on two test benches are presented. Performance
comparison of robust and adaptive solutions is provided. Chapter 13 is specifically
dedicated to the problem of attenuating multiple unknown and time-varying
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vibrations. Two algorithms specifically developed for this problem will be
presented and their performance and complexity will be compared with those of the
basic algorithm presented in Chap. 12.

In the fifth part of the book we consider feedforward compensation of distur-
bances, which has to be used when the bandwidth of disturbances (vibrations) is
such that the performance/robustness compromise cannot be conveniently satisfied
by feedback alone. Chapter 14 examines the linear design, which has to be done
from data (since the model of the disturbance is unknown and it should be identified
from data). Chapter 15 provides adaptive solutions for infinite impulse response
(IIR) feedforward compensation as well as experimental results illustrating the
performance of such systems in various situations. Chapter 16 provides adaptive
solutions for Youla–Kuc^era feedforward compensator configuration. Experimental
comparison between the two configurations concludes the chapter.

Part six of the book contains five appendices. Appendix A is dedicated to the
generalized stability margin and the Vinnicombe distance between two transfer
functions: two very useful concepts in system identification in closed-loop opera-
tion and controller reduction. Appendix B details the numerically safe implemen-
tation of parameter adaptation algorithms in real time. Appendix C details the
derivation of an adaptation algorithm used in Chap. 13 for rejection of narrow-band
disturbances. Appendix D details the derivation of explicit equations for the
residual force or acceleration in the context of adaptive feedforward compensation.
These equations allow the straightforward definition of the appropriate parameter
adaptation algorithm. Finally, Appendix E gives the details and experimental
evaluation of an integral plus proportional parameter adaptation algorithm
(IP-PAA adaptation), which adds a “proportional” component to the classical
“integral” parameter adaptation algorithms.

There are 271 references disseminated at the end of each chapter.

Pathways Through the Book

For a course on the subject, the Chaps. 1–9 have to be covered first followed, in no
particular order, by Parts III, IV or V.

For experts in digital, robust and adaptive control, Chaps. 3, 4, 5, 7, 8, and 9 can
be skipped and again Parts III, IV and V can be read in any order.

An image of the applicability of the results can be easily obtained by reading
Chap. 2 and the sections concerning experimental results in Chaps. 10–16.

Figure 1 gives a view of the interdependence of the various chapters.
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Fig. 1 Pathways through the book
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Introduction to Adaptive and Robust

Active Vibration Control



Chapter 1
Introduction to Adaptive and Robust Active
Vibration Control

1.1 Active Vibration Control: Why and How

Vibrations are present almost everywhere and their presence often causes problems
for the operation of the various systems. Vibrations are disturbances that affect a
system (see also [1, 2]). They have a variety of origins, some examples of which are:
geological disturbances, traffic, mechanical engines, motor operation, and electrical
drives.

High-precision measurements, high-precision drives (like memory disc drives,
Blu-ray, DVD and CD drives), photo and video cameras, and stabilized platforms
require solutions for keeping the effect of these disturbances at a very low level. In
transport systems (ground, water, or air) the vibrations can have a destructive effect
and they also affect the comfort of the passengers. Reduction of vibration effects is
mandatory in manufacturing systems and stabilized platforms in which the tolerances
imposed on their various tasks are of a similar magnitude to the effect of the vibration.

The use of passive vibration absorbers (fluid dampers, elastomers, and so on)
is a well-known solution but unfortunately not sufficient in many cases for assur-
ing the desired level of attenuation over the desired frequency range. Semi-active
(semi-passive) dampers, for which the properties of the absorbing material can be
changed allow an improvement of the expected performance in some cases; however,
when high-performance attenuation is needed an active control solution should be
considered.

From a mechanical point of view, one makes a distinction between active vibration
isolation and active vibration control (AVC). In active vibration isolation, an active
damper (suspension) is inserted between the source of vibration and the mass that has
to be isolated. In active vibration control a force, which will counteract the effect of
the incoming vibrations, is generated through an actuator driven from the available
measurements (force or acceleration) of disturbance. In short, the compensating force
should be of the same magnitude but in opposite phase.

An active hydraulic isolation system is presented in Fig. 1.1. The size of the main
chamber of the elastomer cone located between the source of vibrations and the

© Springer International Publishing Switzerland 2017
I.D. Landau et al., Adaptive and Robust Active Vibration Control,
Advances in Industrial Control, DOI 10.1007/978-3-319-41450-8_1
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Fig. 1.1 Active isolation system used to reduce the effect of vibrations on the chassis

chassis is modified by the effect of a piston controlled through a linear motor (which
develops a force). An AVC system is shown in Fig. 1.2. In this example, the objective
is to reduce the vibrations created by the motor at the level of the chassis. By means
of actuators, an opposite vibration force is introduced1 to the chassis with a shift
phase of 180◦.

Vibrations are usually measured by accelerometers or force sensors. Actuators
are typically active dampers, inertial motors (working on the same principle as loud-
speakers), piezoelectric actuators.

From a control point of view, active vibration control and active vibration isolation
are almost identical problems that can be solved using feedback control or feedfor-
ward disturbance compensation if information on the disturbance is available.

Another problem, related to active isolation, is the active damping. Despite the fact
that they provide good attenuation over a wide band of frequencies, passive dampers
have a significant resonant peak at a certain frequency in the range of operation.
Adding active damping by feedback will correct this feature. Figure 1.3 illustrates
this behaviour by showing the power spectral density (PSD) of the residual force
without and with active damping. One can see that the resonance effect around 30 Hz
has been attenuated with negligible deterioration of the damping performances at
other frequencies. Active damping consists of damping the corresponding vibration
mode without changing its frequency.2

In active vibration (isolation) control one distinguishes between two “paths”:

1In these two examples the actuators are driven by a feedback controller, but in other cases the
actuator can be driven by a feedforward compensator.
2Light mechanical structures are characterized by multiple low damped vibration modes. These
modes have to be damped since on the one hand they can become a source of vibration and on the
other environmental disturbances can lead to inadmissible movements of the structure.
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Fig. 1.2 Active vibration control used to reduce the effect of vibrations on the chassis

Fig. 1.3 Power spectral
density of the residual force
without and with active
damping on an active
suspension system
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• the “primary path” through which the disturbances propagate towards the system;
and

• the “secondary path” through which the compensation effect is applied.

Since from a control point of view there are no differences between active isolation
and active vibration control we will use the generic term “Active Vibration Control”
(AVC).

The principles of AVC and active noise control (ANC) are similar. Of course
the range of frequencies and the type of instrumentation involved are different but
the same control techniques can be used; however, the present book will focus on
adaptive and robust active vibration control and the applications will concern this
field.
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The books [3, 4] give a compact and clear presentation of the origin and evolution
of active vibration control techniques. It should be mentioned that these techniques
have often been invented by researchers in the areas of vibration isolation and signal
processing. The book [5] focuses on the dynamic modelling of active structures from
physics equations and develops continuous-time feedback strategies based on these
models.

The interest of the automatic control community in AVC is much more recent (it
started essentially in the 1990s). The objective of the present book is to look at the
problem of AVC from the perspective provided by automatic control methodology.
From this perspective, the vibrations that we would like to attenuate strongly (or
eliminate) are generically termed “disturbances”.

Two of the major objectives of automatic control are:

• attenuation (or total rejection) of disturbances by feedback and feedforward
actions; and

• damping of vibration modes.

These two problems are different. Adding damping is related to the assignment by
feedback of desired closed-loop poles while strong attenuation (or total rejection) of
disturbances are related to the introduction of the disturbance model in the controller
(the internal model principle).

In AVC and ANC, disturbances can be characterized by their frequency content
and their location in a specific region in the frequency domain. The disturbances can
be of narrow-band type (simple or multiple) or of broad-band type. Of course, a
combination of both is possible and, in certain cases, what we call broad-band may
be several finite-band disturbances over separated small regions in the frequency
domain; however, the distinction between these two types of disturbances is conve-
nient in order to examine the techniques used for their compensation.

Fundamentally, in active control a compensator system is introduced, which will
generate a “secondary” source. This compensator (acting through the “secondary
path”) will, when conveniently driven, interfere destructively with the disturbance
coming from the “original” (in general non-accessible) primary source through what
is called the “primary path”. In the control terminology the “secondary path” is
the plant to be controlled in order to reduce, as much as possible, the effect of the
disturbance on the controlled output, which in the case of AVC is the measured
residual acceleration or force. To achieve this, generically a feedback controller will
be used (see Fig. 1.4).

An important concept, which allows one to assess the disturbance attenuation
properties, damping of the vibration modes, stability of the feedback control loop,
and robustness, is the so-called “output sensitivity function” (the transfer function
between the disturbance and the measured output, i.e. between p(t) and y(t) in
Fig. 1.4). There are some fundamental issues when approaching the problem of atten-
uating the disturbances by feedback. The first is related to the properties of the famous
“Bode integral” on the modulus of the output sensitivity function expressed in dB,
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Fig. 1.4 Block diagram of active vibration compensation by feedback

which has value zero if the system is open-loop stable3 (i.e. the sum of the areas
above and under the 0 dB axis taken with their sign is zero). Since the objective is
to strongly attenuate (or even totally reject asymptotically) the disturbance, this may
require significant holes (low values) in the magnitude of the sensitivity function,
which in turn (even with a very careful design) may lead to an unacceptable “water
bed” effect, both in terms of performance (one amplifies at certain frequencies where
some disturbance can still be present) as well as in terms of robustness (the modulus
margin may become unacceptable4). Figure 1.5 illustrates the Bode Integral. As the
attenuation is augmented in a certain frequency range, the maximum of the modulus
of the output sensitivity function increases. Therefore there are inherent limitations
in using feedback for active vibration control.5

A fundamental result in feedback control, which is of great interest for the problem
of vibration attenuation, is the “internal model principle” (IMP), which stipulates that
the disturbance will be asymptotically cancelled if, and only if, the controller contains
the “model of the disturbance”.

This brings in view the concepts of “plant model” and “disturbance model”. In
order to design the feedback controller properly, knowledge of the “plant model” and
the “disturbance model” is necessary. The control methodology is a “model-based
design” known as MBC (model based control).

One should distinguish between a “knowledge plant model” and a “dynamic
plant model”. The “knowledge plant model” is obtained from the law of physics and
mechanics describing the operation of the compensator system. Unfortunately, these
models are often not precise enough, since on one hand their precision depends on
the perfect knowledge of some physical parameters (which is hard to get) and on
the other hand it is difficult to model all the elements constituting the compensator

3Both the controller and the plant to be controlled are stable.
4The modulus margin is the minimum distance between the open-loop transfer function hodograph
and the Nyquist point and is equal to the inverse of the maximum of the modulus of the sensitivity
function [6].
5For example, narrow-band disturbances can be rejected by feedback up to a certain number while
keeping an acceptable profile for the output sensitivity function (at least 3 or 4—see [7] and
Chap. 13). Sufficiently “narrow” finite-band disturbances can also be handled by feedback alone.

http://dx.doi.org/10.1007/978-3-319-41450-8_13
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Fig. 1.5 Modulus of the output sensitivity functions for various attenuations

system. For this reason one uses what is called the “control dynamic plant model”, i.e.
a kind of filter (parametric model) that describes the dynamical relationship between
the variations of the control input and the variations of the output of the system. This
kind of model, necessary for design, can be obtained directly from an experimental
test using the techniques of “System Identification” (this will be discussed in Chaps. 5
and 6).

In most AVC systems the characteristics of the compensator systems remain
almost unchanged during operation. This means that the associated dynamic con-
trol model remains almost unchanged and therefore the parameters of the identified
model are almost constant.

Nevertheless, for controller design we need the “model of the disturbance” in
addition. A common framework is the assumption that the disturbance is the result
of white noise or a Dirac impulse passed through the model of the disturbance. The
knowledge of this model together with the knowledge of the model of the secondary
path (compensator) allows the design of an appropriate control strategy. In practice,
in most of the cases the characteristics of these disturbances are unknown or time-
varying. While in some particular cases (with a limited range of variations in the
frequency of the vibrations) a robust design can be considered (see the example
given in Sect. 11.3 as well as [8–10]), in most situations, as a consequence of the
high level of attenuation required, an adaptive approach is necessary to obtain a good
tuning with respect to the disturbance characteristics (note that the adaptive loop can
be added on top of a robust controller—see Sect. 12.2).

When the limitations induced by the Bode integral do not allow the achievement
of the desired performances by feedback (in particular for the case of broad-band dis-
turbances), one has to consider adding a feedforward compensation, which requires
a “source” correlated with the disturbance to be attenuated.6

6The source is located upstream with respect to the location where the residual force (acceleration)
or noise is measured.

http://dx.doi.org/10.1007/978-3-319-41450-8_5
http://dx.doi.org/10.1007/978-3-319-41450-8_6
http://dx.doi.org/10.1007/978-3-319-41450-8_11
http://dx.doi.org/10.1007/978-3-319-41450-8_12
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In a number of applications of AVC and ANC, an image of the disturbances (a
correlated measurement) acting upon the system can be made available. This informa-
tion is very useful for attenuating the disturbances using a feedforward compensation
scheme; however, the feedforward compensator filter will depend not only upon the
dynamics of the compensator system (the plant) but also upon the characteristics of
the disturbances and of the primary path (the transfer function between the source
and the residual acceleration or force).

1.2 A Conceptual Feedback Framework

Figure 1.6 represents an active noise and vibration control (ANVC) system using
both feedforward and feedback compensators. The system has two inputs and two
outputs. The first input is the disturbance w(t), which is generated by the unknown
disturbance source s(t) passed through a filter with unknown characteristics. The
second input is the control signal, u(t). The first output is the measurement of the
residual acceleration (force, noise) e(t) (also called the performance variable) and
the second output is a signal correlated with the unknown disturbance, y1(t) in
Fig. 1.6. This correlation is a result of the physical characteristics of the system.

As shown in Fig. 1.6, the path that transmits the filtered disturbance, w(t), to the
residual acceleration is called the primary path. The control signal, on the other hand,
is transmitted to the residual acceleration through the secondary path. The residual
acceleration (the performance variable) is formed by addition between the output of
the primary path, denoted x(t), and the output of the secondary path, denoted z(t).

In general, ANVC systems also present a positive coupling path (also called the
reverse path) between the control signal u(t) and the measured signal y1(t), which
is shown in Fig. 1.6. This results in an internal positive feedback that can destabilize
the ANVC system if not taken into account. The objective is that of minimizing the
performance variable, e(t), and stabilizing the system, by computing an appropriate
control, u(t), based on the measurements e(t) and y1(t).

One can see that, in the control system architecture presented in Fig. 1.6, the
control signal u(t) is obtained by the subtraction of the feedback control, u2(t), from
the feedforward control, u1(t). The measurements obtained from the system can be
put into a vector form as y(t) = [y1(t), y2(t)]T = [y1(t), e(t)]T . As a consequence,
the controller also has a vector representation κ = [N , − K ]T , where N and K
denote, respectively, the feedforward and the feedback compensators.

With this notation, the equation relating the measurements to the control signal is
given by

u(t) = u1(t) − u2(t) = N · y1(t) − K · y2(t) = κT · y(t). (1.1)

The feedforward controller denomination attributed to N is motivated by the fact
that y1(t), called the correlated image of the disturbance, is measured upstream
of the performance variable (see the bench test described in Sect. 2.3). This also

http://dx.doi.org/10.1007/978-3-319-41450-8_2
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Fig. 1.6 Block diagram representation of the combined feedforward–feedback control problem

Fig. 1.7 Generalized ANVC system representation

assumes that it is physically possible to obtain such a measurement. The situations
where this is not possible constitute feedback control problems, while the others
are more generally referred in the literature as hybrid control. A standard feedback
representation in the form of a 2-inputs–2-outputs system as shown in Fig. 1.7 can
also be considered. This representation is very well known in robust and optimal
control (see also [11]).

The equations associated with the feedback system representation are

[
e(t)
y(t)

]
=

[
P11 P12

P21 P22

] [
w(t)
u(t)

]
=

⎡
⎣ D G

1 M
D G

⎤
⎦ [

w(t)
u(t)

]
, (1.2)

where D, G, and M correspond to the models of the primary, secondary, and reverse
paths. The control is given by (1.1).
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1.3 Active Damping

As indicated previously, active damping concerns augmentation of the damping of
some vibration modes characterizing a mechanical structure (the frequencies of these
modes are not changed). Nevertheless, damping of these low-frequency vibration
modes will influence the “output sensitivity function” as a consequence of the Bode
integral property. Adding strong damping at a resonance will induce a deterioration of
the attenuation performances in the nearby frequency region. In fact active damping
requires careful shaping of the output sensitivity function in order to bound the loss
of performance at other frequencies by distributing the “water bed” effect across a
wide frequency band (see Fig. 1.3).7 The design of active damping will be discussed
and illustrated in Chap. 10.

1.4 The Robust Regulation Paradigm

In the context of AVC (as well as for ANC) the primary sense of robustness is the
capacity of attenuating disturbances located in a given range of frequencies but whose
frequency characteristics are not exactly known. The characteristics (the model) of
the disturbances are generally unknown and may be time-varying. As a consequence,
their location in the frequency domain will change. It is not possible to design a robust
linear controller that introduces a strong attenuation over a wide frequency range (as
a consequence of the Bode integral). Therefore, a compromise is required between
the width of the frequency region where the disturbance may be located and the
attenuation that can be achieved. If one absolutely needs a strong attenuation, the
tolerated range of frequency variation will be small. Conversely, if there is great
uncertainty in the location of the disturbances in the frequency domain, then the
attenuation that can be achieved will be small.

The secondary sense of robustness is the capacity of the linear controller to handle
small uncertainties on the system model parameters in the vicinity of their nominal
values. The system parameter uncertainties will be handled by respecting constraints
on the modulus of the output and input sensitivity functions.8

The situations where a robust controller solution for AVC provides satisfactory
results in practice, depend upon the compromise between the level of attenuation
required and the range of frequency variations of the disturbances (see Chap. 11 for
applications of linear robust control design).

7The resulting controller may be of high order and this raises the problem of controller order
reduction, which will be discussed in Chap. 9.
8The input sensitivity function is the transfer function between the disturbance p(t) and the control
input u(t) (see Fig. 1.4).

http://dx.doi.org/10.1007/978-3-319-41450-8_10
http://dx.doi.org/10.1007/978-3-319-41450-8_11
http://dx.doi.org/10.1007/978-3-319-41450-8_9
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Fig. 1.8 Adaptive feedback attenuation of unknown disturbances

1.5 The Adaptive Regulation Paradigm

Since the characteristics (the models) of the disturbances are generally unknown
and may be time-varying over a wide frequency range, often a single robust linear
controller that achieves the desired attenuation cannot be designed. In such situations
adaptive feedback or feedforward compensation has to be used.

Figure 1.8 illustrates the adaptive attenuation of disturbances by feedback. In
addition to the classical feedback loop an adaptation loop tunes the parameters of
the controller in real time. In order to do so, it uses, as primary information, both the
residual acceleration (force), which is a performance variable, and the control input.

Figure 1.9 illustrates the adaptive rejection of unknown disturbances by feedfor-
ward compensation. A “well-located” transducer can provide a measurement highly
correlated with the unknown disturbance (a good image of the disturbance). This
information is applied to the control input of the secondary path through an adaptive
filter whose parameters are adapted so as to minimize the effect of the disturbance
on the output.

Adaptive feedforward vibration (or noise) compensation is currently used in AVC
and ANC when an image of the disturbance is available [12].

Nevertheless, at the end of the 1990s it was pointed out that in most of these
systems there is a physical “positive” feedback coupling between the compensator
system and the measurement of the image of the disturbance (vibration or noise)
[13–16] (see also Sect. 1.2).9 The inherent internal physical positive feedback may
cause instability of the AVC or ANC systems. As a consequence, the development
of adaptive algorithms for feedforward compensation should take into account the
internal positive feedback.

So at this point one can say that one has two types of disturbances:

9This will be illustrated on the experimental platform that will be presented in Sect. 2.3.

http://dx.doi.org/10.1007/978-3-319-41450-8_2
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Fig. 1.9 Adaptive feedforward compensation of unknown disturbances

• single or multiple narrow-band disturbances; and
• broad (finite)-band disturbances;

and two approaches for doing adaptive disturbance attenuation:

• the adaptive feedback approach (which only requires a measurement of the residual
force or acceleration); and

• the adaptive feedforward compensation (requiring an additional transducer for
getting a correlated measurement with the disturbance).

In addition, there are two possible modes of operation:

• self-tuning operation (in which the adaptation procedure starts either on demand
or when the performance is unsatisfactory and ends when the new controller is
estimated); and

• adaptive operation (in which the adaptation procedure is performed continuously
and the controller is updated at each sampling).

As indicated earlier, a common framework is the assumption that the disturbance
is the result of white noise or a Dirac impulse passed through the model of the dis-
turbance. Knowledge of this model allows the design of an appropriate controller.
In general, the structure for such a model of disturbance does not change and can be
assessed from data (using spectral analysis or order estimation techniques); however,
the parameters of the model are unknown and may be time-varying. Therefore adap-
tation has to deal with the change in the parameters of the model of the disturbance.

The classical adaptive control paradigm deals with the construction of a control
law when the parameters of the plant dynamic model are unknown and time-varying
[17]. Nevertheless, in the present context, the plant dynamic model is almost invariant
and it can be identified. The objective then is the rejection of disturbances charac-
terized by unknown and time-varying disturbance models. It seems reasonable to
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call this paradigm adaptive regulation. Classical adaptive control focuses on adap-
tation of the controller parameters with respect to plant model parameters while
adaptive regulation focuses on adaptation of the controller parameters with respect
to variations in the disturbance model parameters.

In adaptive regulation the plant model is assumed to be known (obtained, for
example by system identification). It is also assumed that the possible small variations
or uncertainties of the plant model can be handled by a robust control design.

Adaptive regulation covers both adaptive feedback compensation and adaptive
feedforward compensation since, on the one hand, adaptation has to deal with the
change in the characteristics of the disturbances and, on the other hand, adaptive
feedforward compensation is still a feedback structure as a consequence both of the
internal positive coupling and of the presence of the adaptation loop, which is driven
by the residual error.

The problem of adaptive regulation as defined above has been previously addressed
in a number of papers ([18–28]) among others. Landau [29] presents a survey of the
various techniques (up to 2010) used in adaptive feedback regulation as well as a
review of a number of applications.

An international benchmark on the attenuation of multiple and unknown time-
varying, narrow-band disturbances by feedback has been organized. The test bench
was the AVC system that will be presented in Sect. 2.2. The results are summarized
in [7] and allow the comparative evaluation of various designs.

1.6 Concluding Remarks

In order to reduce the impact of vibrations, one has several solutions related to the
demanded performance:

• Passive: use materials with vibration attenuation properties.
• Semi-active: change the attenuation properties of the materials used for attenuation.
• Active: use compensation force to counteract vibrations.
• Robust AVC: when the characteristics of the vibrations are almost known and their

domain of variation is small.
• Adaptive AVC: when the characteristics of vibrations are unknown and/or time-

varying over a significant frequency range and high attenuation is required.

Design of robust AVC requires the model of the disturbances (and their domain
of variation) as well as the models of the secondary path (for the feedback and
feedforward approach) and of the primary path (for the feedforward approach).

Design of adaptive active vibration control does not require either the model
of the disturbance or the model of the primary path.

http://dx.doi.org/10.1007/978-3-319-41450-8_2
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1.7 Notes and Reference

The books [3–5] offer complementary perspectives to AVC and provide many practi-
cal examples. In particular the modelling aspects starting from basic laws of physics
are enhanced.

Comparative evaluation of various techniques proposed is important. The Euro-
pean Journal of Control, no. 4, 2013 [7] is dedicated to a benchmark on adaptive
attenuation of unknown and time-varying multiple narrow-band disturbances. The
reference [30] should also be considered.

The references [29, 31–36] survey various aspects of AVC. Specific references
related to the various topics will be provided at the end of the corresponding chapters.

It is not the objective of this book to provide an exhaustive reference list presenting
applications of adaptive and robust AVC but a limited list of references covering
applications in a number of fields include [3, 4, 26, 29, 37–44].

The special issue of International Journal of AdaptiveControl and Signal Process-
ing on adaptive frequency estimation with applications [45] gives a view of some
recent research results in the field. This special issue includes [46–53].
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Chapter 2
The Test Benches

2.1 An Active Hydraulic Suspension System Using
Feedback Compensation

The structure of the active hydraulic suspension (active isolation configuration) is
presented in Fig. 2.1. Two photos of the system are presented in Fig. 2.2 (Courtesy of
Hutchinson Research Center, Vibrachoc and GIPSA-LAB, Grenoble.) It consists of
the active suspension, a load, a shaker and the components of the control scheme. The
mechanical construction of the load is such that the vibrations produced by the shaker,
fixed to the ground, are transmitted to the upper side of the active suspension. The
active suspension is based on a hydraulic system allowing to reduce the overpressure
at the frequencies of the vibration modes of the suspension. Its components are (see
Fig. 2.1):

• an elastomer cone (1) which marks the main chamber filled up with silicon oil;
• a secondary chamber (2) marked by a flexible membrane;
• a piston (3) attached to a motor (when the piston is fixed, the suspension is passive);
• an orifice (4) allowing the oil to pass between the two chambers; and
• a force sensor located between the support and the active suspension.

The size of the main chamber of the elastomer cone is modified by the effect of
the piston driven by a linear motor. The controller will act upon the piston (through a
power amplifier) in order to reduce the residual force. The equivalent control scheme
is shown in Fig. 2.3. The system input, u(t) is the position of the piston (see Fig. 2.1),
the output y(t) is the residual force measured by a force sensor. The transfer function
between the disturbance force, u p, and the residual force y(t) is called primary path.
In our case (for testing purposes), the primary force is generated by a shaker controlled
by a signal given by the computer. The transfer function between the input of the
system, u(t), and the residual force is called secondary path. The input of the system
being a position and the output a force, the secondary path transfer function has a
double differentiator behaviour. The sampling frequency used is fs = 800 Hz.

© Springer International Publishing Switzerland 2017
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Fig. 2.1 Active suspension system (scheme)

Fig. 2.2 Active suspension system (left). View of the experimental setting (right) (Courtesy of
Hutchinson Research Center, Vibrachoc and Gipsa-lab, Grenoble, France.)
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Fig. 2.3 Block diagram of active vibration control systems

The control objective is to strongly attenuate (cancel) the effect of unknown
narrow-band disturbances on the output of the system (the residual force).

The system has been considered as a “black box”. A system identification proce-
dure has been used in order to obtain the dynamic model of the system (called also
control model) to be used for control design. The identification procedure will be
described in Sect. 6.1.

The frequency characteristic of the identified primary path model (open-loop
identification), between the signal u p sent to the shaker in order to generate the
disturbance and the residual force y(t), is presented in Fig. 2.4. The first vibration
mode of the primary path model is near 32 Hz. The primary path model has been
only used for simulation purposes.

The frequency characteristic of the identified secondary path model (open-loop
operation) is presented also in Fig. 2.4. There exist several very low damped vibration
modes on the secondary path, the first one being at 31.8 Hz with a damping factor
0.07. The identified model of the secondary path has been used for the design of the
controller.

Fig. 2.4 Frequency
characteristics of the primary
and secondary paths
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Fig. 2.5 Active vibration control using an inertial actuator (scheme)

Fig. 2.6 The active vibration
control system using an
inertial actuator (photo)

2.2 An Active Vibration Control System Using Feedback
Compensation Through an Inertial Actuator

The structure of the system is presented in Fig. 2.5. A general view (photo) of the
system including the testing equipment is shown Fig. 2.6. It consists of a passive
damper, an inertial actuator,1 a chassis, a transducer for the residual force, a con-
troller, a power amplifier, a shaker and a load which also transmits the vibration from
the shaker to the chassis. The mechanical construction of the load is such that the
vibrations produced by the shaker, fixed to the ground, are transmitted to the upper

1Inertial actuators use a similar principle as loudspeakers (see [1]).
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Fig. 2.7 The active vibration control system using an inertial actuator—hardware configuration

side, on top of the passive damper. The inertial actuator will create vibrational forces
which can counteract the effect of vibrational disturbances.

The equivalent control scheme is shown in Fig. 2.3. The system input, u(t) is the
position of the mobile part (magnet) of the inertial actuator (see Fig. 2.5), the output
y(t) is the residual force measured by a force sensor. The transfer function between
the disturbance force u p, and the residual force y(t) is called primary path. In our
case (for testing purposes), the primary force is generated by a shaker driven by a
signal delivered by the computer. The plant transfer function between the input of
the inertial actuator, u(t), and the residual force is called secondary path.

The complete hardware configuration of the system is shown in Fig. 2.7. The
control objective is to cancel (or at least strongly attenuate) the effect of unknown
narrow-band disturbances on the output of the system (residual force), i.e., to attenu-
ate the vibrations transmitted from the machine to the chassis. The physical parame-
ters of the system are not available. The system has been considered as a black box
and the corresponding models for control have been identified from data. The details
of the identification procedure will be given in Sect. 6.2. The sampling frequency is
fs = 800 Hz.

Figure 2.8 gives the frequency characteristics of the identified models for the
primary and secondary paths.2 The system itself in the absence of the disturbances
features a number of low damped resonance modes and low damped complex zeros
(anti-resonance).

More details can be found at: http://www.gipsa-lab.grenoble-inp.fr/~ioandore.
landau/benchmark_adaptive_regulation/.

2The primary path model is used only for simulation purposes.

http://dx.doi.org/10.1007/978-3-319-41450-8_6
http://www.gipsa-lab.grenoble-inp.fr/~ioandore.landau/benchmark_adaptive_regulation/
http://www.gipsa-lab.grenoble-inp.fr/~ioandore.landau/benchmark_adaptive_regulation/
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Fig. 2.8 Frequency
response (magnitude) for the
primary and the secondary
path models
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2.3 An Active Distributed Flexible Mechanical Structure
with Feedforward–Feedback Compensation

Figure 2.9 shows a distributed flexible mechanical structure equipped for implement-
ing an AVC using feedforward and feedback compensation. Figure 2.10 shows the
details of the complete system including the AVC control scheme. The corresponding
control block diagram is shown in Fig. 2.11.

The mechanical structure consists of five metal plates connected by springs. The
uppermost and lowermost ones are rigidly jointed together by four screws. The mid-
dle three plates will be labeled for easier referencing M1, M2 and M3 (see Fig. 2.10).
M1 and M3 are equipped with inertial actuators. The one on M1 serves as disturbance
generator (inertial actuator I in Fig. 2.10), the one at the bottom serves for disturbance
compensation (inertial actuator II in Fig. 2.10). The correlated measurement with the
disturbance (image of the disturbance) is obtained from an accelerometer which is
positioned on plate M1. Another sensor of the same type is positioned on plate M3

Fig. 2.9 An active
distributed flexible
mechanical structure
equipped with sensors
and actuators for
feedforward–feedback
disturbance compensation
(photo)
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Fig. 2.10 An AVC system using feedforward and feedback compensation for the distributed flexible
mechanical structure (scheme)

(a)

(b)

Fig. 2.11 Feedforward–feedback AVC—the control scheme: a in open loop and b with adaptive
feedforward + fixed feedback compensator
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and serves for measuring the residual acceleration (see Fig. 2.10). The objective is
to minimize the residual acceleration measured on plate M3. This experimental set-
ting allows to experiment both adaptive feedforward compensation (with or without
additional feedback) as well as adaptive feedback disturbance compensation alone
(without using the additional measurement upstream).

The disturbance is the position of the mobile part of the inertial actuator (see
Figs. 2.9 and 2.10) located on top of the structure. The input to the compensator
system is the position of the mobile part of the inertial actuator located on the bottom
of the structure. When the compensator system is active, the actuator acts upon the
residual acceleration, but also upon the measurement of the image of the disturbance
through the reverse path (a positive feedback coupling). The measured quantity
ŷ1(t) will be the sum of the correlated disturbance measurement w(t) obtained in
the absence of the feedforward compensation (see Fig. 2.11a) and of the effect of
the actuator used for compensation (positive internal mechanical feedback). This
is illustrated in Fig. 2.12 by the spectral densities of ŷ1(t) in open-loop (w(t)) and
when feedforward compensation is active (the effect of the mechanical feedback is
significant).

As from the previous experimental settings, the system is considered as a black
box and the models for control design have been obtained by system identifica-
tion from input/output data. The details of the identification procedure are given
in Sect. 6.3. The sampling frequency is fs = 800 Hz. The frequency characteristics
of the identified models of the primary, secondary and reverse paths are shown in
Fig. 2.13.

This mechanical structure is representative for a number of situations encountered
in practice and will be used to illustrate the performance of the various algorithms
which will be presented in this book.

At this stage it is important to make the following remarks when the feedforward
filter is absent (open-loop operation):

• very reliable models for the secondary path and the “positive” feedback path can
be identified;

Fig. 2.12 Spectral densities
of the image of the
disturbance ŷ1(t) in open
loop and when feedforward
compensation scheme is
active (experimental)
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http://dx.doi.org/10.1007/978-3-319-41450-8_6
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Fig. 2.13 Frequency
response (magnitude) for the
primary, secondary and
reverse paths
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• an estimation of the primary path transfer function can be obtained using the
measured w(t) as input and e(t) as output (the compensator actuator being at
rest);

• the quality of the primary path identified model will depend on the frequency
characteristics of the signal w(t) coming from the environment;

• design of a fixed model-based stabilizing feedforward compensator requires the
knowledge of the reverse path model only;

• knowledge of the disturbance characteristics and of the primary, secondary and
reverse paths models is mandatory for the design of an optimal fixed model-based
feedforward compensator [2–4];

• adaptation algorithms do not use information neither upon the primary path
whose characteristics may be unknown nor upon the disturbance character-
istics which may be unknown and time-varying.

2.4 Concluding Remarks

• The test benches considered allow to evaluate different solutions for active vibra-
tion control and active damping.

• Their structure emphasizes the difficulties which may be encountered in practice.
• To obtain the complete dynamical models of these systems necessary for control

design, identification of discrete time models from input/output data has been used
(see Chap. 6).

http://dx.doi.org/10.1007/978-3-319-41450-8_6
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2.5 Notes and References

For further details on these test benches see [5–8]. All the data for simulating the
test bench presented in Sect. 2.2 is available at: http://www.gipsa-lab.grenoble-inp.
fr/~ioandore.landau/benchmark_adaptive_regulation.

The book website provides input/output data and models for all the three test
benches.

References

1. Landau ID, Alma M, Constantinescu A, Martinez JJ, Noë M (2011) Adaptive regulation - rejec-
tion of unknown multiple narrow band disturbances (a review on algorithms and applications).
Control Eng Pract 19(10):1168–1181. doi:10.1016/j.conengprac.2011.06.005

2. Alma M, Martinez J, Landau I, Buche G (2012) Design and tuning of reduced order H∞ feedfor-
ward compensators for active vibration control. IEEE Trans Control Syst Technol 20(2):554–561.
doi:10.1109/TCST.2011.2119485

3. Rotunno M, de Callafon R (2003) Design of model-based feedforward compensators for
vibration compensation in a flexible structure. Internal report, Department of Mechanical and
Aerospace Engineering. University of California, San Diego

4. Carmona J, Alvarado V (2000) Active noise control of a duct using robust control theory. IEEE
Trans Control Syst Technol 8(6):930–938

5. Landau I, Constantinescu A, Rey D (2005) Adaptive narrow band disturbance rejection applied
to an active suspension - an internal model principle approach. Automatica 41(4):563–574

6. Landau I, Constantinescu A, Loubat P, Rey D, Franco A (2001) A methodology for the design of
feedback active vibration control systems. In: European Control Conference (ECC), pp 1571–
1576

7. Landau ID, Silva AC, Airimitoaie TB, Buche G, Noé M (2013) Benchmark on adaptive reg-
ulation - rejection of unknown/time-varying multiple narrow band disturbances. Eur J Control
19(4):237–252. doi:10.1016/j.ejcon.2013.05.007

8. Landau I, Alma M, Airimitoaie T (2011) Adaptive feedforward compensation algorithms for
active vibration control with mechanical coupling. Automatica 47(10):2185–2196. doi:10.1016/
j.automatica.2011.08.015

http://www.gipsa-lab.grenoble-inp.fr/~ioandore.landau/benchmark_adaptive_regulation
http://www.gipsa-lab.grenoble-inp.fr/~ioandore.landau/benchmark_adaptive_regulation
http://dx.doi.org/10.1016/j.conengprac.2011.06.005
http://dx.doi.org/10.1109/TCST.2011.2119485
http://dx.doi.org/10.1016/j.ejcon.2013.05.007
http://dx.doi.org/10.1016/j.automatica.2011.08.015
http://dx.doi.org/10.1016/j.automatica.2011.08.015


Part II
Techniques for Active Vibration Control



Chapter 3
Active Vibration Control Systems—Model
Representation

3.1 System Description

3.1.1 Continuous-Time Versus Discrete-Time Dynamical
Models

Before discussing the system description aspects, one has to take in account that the
control law will be implemented on a digital computer. To do this there are two basic
options:

• Represent the system in continuous time, compute the control law in continuous
time and then discretize the continuous-time control law for implementation.

• Select the sampling frequency, represent the system in discrete time, compute the
control law in discrete time and implement it directly.

Since one deals with mechanical systems, differential equations can be written to
describe the dynamical behaviour of the various parts of the system allowing to build
a “dynamical model” to be used for the design of the active vibration control system
[1, 2].1 There are however several obstacles in using a continuous-time representation
of the system.

First of all, since the physical parameters are not precisely known, themodelwhich
can be obtained from the fundamental principles will not be very reliable. In addition
there are parts of the systems for which it is difficult to give a perfect representa-
tion and to associate the corresponding parameters. For a high performance control
design one needs an accurate dynamical model of the specific system to be controlled
and therefore one has to consider identifying dynamical models from experimental
input/output data, obtained by what is called an “identification protocol” (a “black
box model” will be obtained).

It turns out that identification techniques are more efficient and much easier to
implement if one considers the identification of discrete time dynamic models.

1Modern control design techniques use “model based control design”.

© Springer International Publishing Switzerland 2017
I.D. Landau et al., Adaptive and Robust Active Vibration Control,
Advances in Industrial Control, DOI 10.1007/978-3-319-41450-8_3
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It is also important to point out that using a continuous-time representation, the
objective of the discretization of the designed control law will be to copy as much
as possible the continuous-time control and this will require in general a very high
sampling frequency. Further analysis is required in order to be sure that the dis-
cretized control law guarantees the robustness and performance of the system (since
discretization introduces an approximation).

It turns out that if one considers the alternative situation, i.e., to discretize the input
and output of the system at a sampling frequency which is related to its band-pass,
one obtains through system identification a discrete-time dynamical model which
can be used to design a discrete-time control algorithm.

Using a discrete-time representation of the system will require a lower sampling
frequency2 (directly related to the higher frequencies to be controlled) and the control
algorithm to be implemented results directly from the design (no additional analysis
is necessary since the control algorithm has been designed at the sampling frequency
used).

Therefore because discrete time dynamical models allow:

• using a lower sampling frequency;
• using simpler and more efficient identification algorithms;
• getting directly the control algorithm to be implemented on a digital computer,

they will be used subsequently for representing active vibration control systems. The
design of the control algorithm will be based on identified discrete-time dynamical
models of the system.

3.1.2 Digital Control Systems

In this section, one reviews the basic requirements for the implementation of a dig-
ital control system. For a more detailed discussion of the various aspects see [3–6].
Figure3.1 represents the structure of a digital control system. In Fig. 3.1, the set3:
Digital to Analog Converter (D/A), Zero order hold (ZOH),4 Continuous-time plant,
Analog to Digital Converter (A/D) constitutes the discrete-time system to be con-
trolled by a digital controller implemented on the computer used for control.

3.1.2.1 Selection of the Sampling Frequency

A good rule for the selection of the sampling frequency is [3]:

2Numerous examples show that by using this approach, the sampling frequency can be reduced
with respect to the previous approach.
3Temporarily in this section t designates the continuous time and k the normalized sampling time
(k = time

Ts
). Starting from Sect. 3.1.3 the normalized discrete time will be denoted by t .

4ZOH keeps constant the signal delivered by the D/A converter between two sampling instants.
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Fig. 3.1 A digital control system

fs = (6 → 25) f CL
B , (3.1)

where

• fs = sampling frequency (in Hz);
• f CL

B = desired bandwidth of the closed-loop system (in Hz).

Of course, the desired closed-loop bandwidth is related to the bandwidth of the
system to be controlled. The formula (3.1) gives enough freedom for the selection
of the sampling frequency.

As a general rule, one tries to select the lower sampling frequency compatible
with the desired performances.

Except in very particular cases, all the discrete-time models will feature a frac-
tional delay. Fractional delays are reflected as zeros in the transfer function of the
discrete-time models (these zeros will be unstable if the fractional delay is larger that
half of the sampling period [3]). For continuous-time systems with a relative degree
higher or equal to 2, high frequency sampling will induce unstable zeros [5]. The
consequence of the presence of unstable zeros in the discrete-time models used for
control design is that control strategies based on cancelling the zeros cannot be used.

3.1.2.2 Anti-aliasing Filters

The theory of discrete-time systems [5, 6] indicates that the maximum frequency
( fmax) of a signal sent to the analog to digital converter should satisfy:

fmax < fs/2, (3.2)

where fs is the sampling frequency and fs/2 is called the Nyquist or Shannon
frequency.

Sending frequencies over fs/2 produces distortion of the recovered discrete-time
spectrum called aliasing. Therefore, anti-aliasing filters should always be introduced
in order to remove the undesirable components of the signal. Anti-aliasing filters are
constituted in general as several second order filters in cascade (Bessel, ITAE, But-
terworth type). They should introduce a consequent attenuation of the signal beyond
fs/2 but their bandwidth should be larger than the desired closed-loop bandwidth.
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Their design will also depend on the level of undesirable signals at frequencies
beyond fs/2.

The anti-aliasing filters introduce a high frequency dynamics which can in general
be approximated by an additional small time delay. Since one directly estimates a
discrete-time model from data, their effect is captured by the estimated model.

3.1.3 Discrete-Time System Models for Control

The discrete-time models will represent the behaviour of the controlled system from
the discrete-time control applied to the system through a D/A converter and a ZOH
to the output of the A/D converter which will discretize the measured output. Single-
input single-output time invariant systems will be considered. They will be described
by input–output discrete-time models of the form:

y(t) = −
nA∑
i=1

ai y(t − i) +
nB∑
i=1

biu(t − d − i), (3.3)

where t denotes the normalized sampling time (i.e., t = time
Ts

, Ts = sampling period),
u(t) is the input, y(t) is the output, d is the integer number of sampling periods
contained in the time delay of the systems, ai and bi are the parameters (coefficients)
of the models.

As such the output of the system at instant t is a weighted average of the past
output over an horizon of nA samples plus a weighted average of past inputs over an
horizon of nB samples (delayed by d samples).

This input–output model (3.3) can be more conveniently represented using a
coding in terms of forward or backward shift operators defined as:

qy(t) = y(t + 1); q−1y(t) = y(t − 1) (3.4)

Using the notations

1 +
nA∑
i=1

aiq
−i = A(q−1) = 1 + q−1A∗(q−1), (3.5)

where

A(q−1) = 1 + a1q
−1 + · · · + anAq

−nA (3.6)

A∗(q−1) = a1 + a2q
−1 + · · · + anAq

−nA+1 (3.7)
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and

nB∑
i=1

biq
−i = B(q−1) = q−1B∗(q−1), (3.8)

where

B(q−1) = b1q
−1 + b2q

−2 + · · · + bnBq
−nB (3.9)

B∗(q−1) = b1 + b2q
−1 + · · · + bnBq

−nB+1. (3.10)

Equation (3.3) can be rewritten as

A(q−1)y(t) = q−d B(q−1)u(t) = q−d−1B∗(q−1)u(t) (3.11)

or forward in time
A(q−1)y(t + d) = B(q−1)u(t) (3.12)

as well as

y(t + 1) = −A∗y(t) + q−d B∗u(t) = −A∗y(t) + B∗u(t − d). (3.13)

It can be observed that (3.13) can also be expressed as

y(t + 1) = θTφ(t), (3.14)

where θ defines the vector of parameters

θT = [a1, . . . anA , b1, . . . , bnB ] (3.15)

and φ(t) defines the vector of measurements (or the regressor)

φT (t) = [−y(t) · · · − y(t − nA + 1), u(t − d) · · · u(t − d − nB + 1)] (3.16)

The form of (3.14) will be used in order to estimate the parameters of a systemmodel
from input–output data. Filtering both left and right sides of (3.11) through a filter
1/A(q−1) one gets

y(t) = G(q−1)u(t), (3.17)

where

G(q−1) = q−d B(q−1)

A(q−1)
(3.18)

is termed the transfer operator.5

5In many cases, the argument q−1 will be dropped out, to simplify the notations.
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Computing the z-transform of (3.3), one gets the pulse transfer function charac-
terizing the input–output model of (3.3)

G(z−1) = z−d B(z−1)

A(z−1)
(3.19)

It can be observed that the transfer function of the input–output model of (3.3)
can be formally obtained from the transfer operator by replacing the time operator
q by the complex variable z. Nevertheless, one should be careful since the domain of
these variables is different. However, in the linear case with constant parameters one
can use either one and their appropriate signification will result from the context.

Note also that the transfer operator G(q−1) can be defined even if the parameters
of the model (3.3) are time-varying, while the concept of pulse transfer function does
not simply exist in this case.

The order n of the system model6 (3.3), is the dimension of the minimal state
space representation associated to the input–output model (3.3) and in the case of
irreducible transfer function it is equal to

n = max(nA, nB + d), (3.20)

which corresponds also to the number of the poles of the irreducible transfer function
of the system.

The order of the system is immediately obtained by expressing the transfer oper-
ator (3.18) or the transfer function (3.19) in the forward operator q and respectively
the complex variable z. The passage from H(z−1) to H(z) is obtained multiplying
by zn:

G(z) = B̄(z)

Ā(z)
= zr−d B(z−1)

zr A(z−1)
(3.21)

Example

G(z−1) = z−3(b1z−1 + b2z−2)

1 + a1z−1

r = max(1, 5) = 5

G(z) = b1z + b2
z5 + a1z4

6The order of the system will be in general estimated from input/output data.
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3.2 Concluding Remarks

• Recursive (differences) equations are used to describe discrete-time dynamicmod-
els.

• The delay operator q−1 (q−1y(t) = y(t − 1)) is a simple tool to handle recursive
discrete-time equations.

• The input–output relation for a discrete-time model is conveniently described in
the time domain by the pulse transfer operator G(q−1): y(t) = G(q−1)u(t).

• The pulse transfer function of a discrete-time linear system is expressed as func-
tion of the complex variable z = esTs (Ts = sampling period). The pulse transfer
function can be derived from the pulse transfer operator G(q−1) by replacing q−1

with z−1.
• The asymptotic stability of a discrete-time model is ensured if, and only if, all
pulse transfer function poles (in z) lie inside the unit circle.

• The order of a pulse transfer function of the form

G(z−1) = z−d B(z−1)

A(z−1)
(3.22)

is n = max(nA, nB + d), where nA and nB are the orders of the polynomials A
and B, respectively, and d is the integer time delay in terms of sampling periods.

3.3 Notes and References

There are many excellent books on digital control systems. The books [3, 5, 6]
are probably the most suited for the topics of the present book. The book [7] pro-
videsmany discrete-timemodels obtained from the discretization of continuous-time
models for various physical systems.
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Chapter 4
Parameter Adaptation Algorithms

4.1 Introduction

Parameter adaptation algorithms (PAA) will play a fundamental role in the imple-
mentation of the various adaptive active vibration control systems. They can be
introduced in various ways. We will consider two problems:

• Recursive parameter estimation in system identification.
• Parameter adaptation of the feedforward filter in adaptive feedforward vibration

compensation.

These two problems will allow to introduce two basic configurations: the series
parallel (equation error) parameter estimator and the parallel (output error) estimator.

The on-line parameter estimation principle for sampled models is illustrated in
Fig. 4.1.

A discrete time model with adjustable parameters is implemented on the com-
puter. The error ε(t) between the system output at instant t , y(t) and the output
predicted by the model ŷ(t) (called plant-model error or prediction error) is used by
the parameter adaptation algorithm, which, at each sampling instant, will modify the
model parameters in order to minimize this error (in the sense of a certain criterion).

The key element for implementing the on-line estimation of the plant model para-
meters is the Parameter Adaptation Algorithm (PAA) which drives the parameters
of the adjustable prediction model from the data acquired on the system at each
sampling instant. This algorithm has a recursive structure, i.e., the new value of the
estimated parameters is equal to the previous value plus a correcting term which will
depend on the most recent measurements.

In general a parameter vector is defined. Its components are the different para-
meters that should be estimated.

The recursive parameter adaptation algorithms have the following structure: New
estimated parameter vector = previous estimated parameter vector + correcting term.

© Springer International Publishing Switzerland 2017
I.D. Landau et al., Adaptive and Robust Active Vibration Control,
Advances in Industrial Control, DOI 10.1007/978-3-319-41450-8_4
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Fig. 4.1 Parameter estimation principle

The correcting term has in general the structure of a product: Adaptation gain ×
Measurement function × Prediction error function. The resulting structure is
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This structure corresponds to the so-called integral type adaptation algorithms (the
algorithm has memory and therefore maintains the estimated value of the parameters
when the correcting terms become null). The algorithm can be viewed as a discrete-
time integrator fed at each instant by the correcting term. The measurement function
vector is generally called the observation vector. The prediction error function is
generally called the adaptation error.

The adaptation gain plays an important role in the performance of the parameter
adaptation algorithm and it may be constant or time-varying.

4.2 Structure of the Adjustable Model

4.2.1 Case (a): Recursive Configuration for System
Identification—Equation Error

Consider the discrete-time model of a plant described by:

y(t + 1) = −a1y(t) + b1u(t) = θTφ(t) (4.1)
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where u(t) is the input, y(t) is the output, both measurable. The unknown parameters
a1 and b1 are the unknown parameters of the model. One defines the unknown
parameter vector θ :

θT = [a1, b1] (4.2)

and the measurement vector:

φT (t) = [−y(t), u(t)] (4.3)

The adjustable prediction model will be described in this case by:

ŷ◦(t + 1) = ŷ[(t + 1)|θ̂ (t)] = −â1(t)y(t) + b̂1(t)u(t) = θ̂T (t)φ(t) (4.4)

where ŷ◦(t + 1) is termed the a priori predicted output depending on the values of
the estimated parameters at instant t .

θ̂T (t) = [â1(t), b̂1(t)] (4.5)

is the estimated parameter vector at instant t .
As it will be shown later, it is very useful to consider also the a posteriori predicted

output computed on the basis of the new estimated parameter vector at t+1, θ̂ (t+1),
which will be available somewhere between t+1 and t+2. The a posteriori predicted
output will be given by:

ŷ(t + 1) = ŷ[(t + 1)|θ̂ (t + 1)] = −â1(t + 1)y(t) + b̂1(t + 1)u(t)

= θ̂T (t + 1)φ(t) (4.6)

One defines an a priori prediction error as:

ε◦(t + 1) = y(t + 1) − ŷ◦(t + 1) (4.7)

and an a posteriori prediction error as:

ε(t + 1) = y(t + 1) − ŷ(t + 1) (4.8)

The objective is to find a recursive parameter adaptation algorithm with memory
which will minimize a certain criterion. The structure of such an algorithm is:

θ̂ (t + 1) = θ̂ (t) + Δθ̂(t + 1) = θ̂ (t) + f [θ̂ (t), φ(t), ε◦(t + 1)] (4.9)

where the correcting term f [.] is a function of θ̂ (t), φ(t), ε◦(t + 1).
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Fig. 4.2 Adaptive feedforward disturbance compensation

4.2.2 Case (b): Adaptive Feedforward
Compensation—Output Error

Consider the basic scheme of adaptive feedforward disturbance compensation shown
in Fig. 4.2. Further assume that the secondary path has a transfer function G = 1 and
that there is no internal positive feedback, i.e., M = 0. Figure 4.3a represents this
simplified configuration and its equivalent representations are shown in Fig. 4.3b, c.
The equivalent representation shown in Fig. 4.3c is known as “output error” (N =
−D is unknown).

Assume that the equivalent primary path in Fig. 4.3c can be represented by the
simple model (considered also in the previous section, (4.1)):

y(t + 1) = −a1y(t) + b1u(t) = θT (t)φ(t) (4.10)

where:
θT = [a1, b1]; φT (t) = [−y(t), u(t)] (4.11)

Nevertheless, in this case, we do not have access to the output y(t) of the primary
path when the feedforward compensator acts. One has access only to the residual
error (residual acceleration or force) denoted here ε(t). So the predictor considered
in the previous section cannot be used. Therefore, since the objective is to drive the
residual error to zero, one can consider as an approximation of y(t) the output of the
predictor itself (which is measurable). The output error adjustable predictor (i.e.,
the feedforward compensator) is described by:

ŷ◦(t + 1) = −â1(t)ŷ(t) + b̂1(t)u(t) = θ̂T (t)ψ(t) (4.12)
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(a) (b)

(c)

Fig. 4.3 Equivalent representation of the adaptive feedforward compensation for the case G = 1
and M = 0 (a =⇒ b =⇒ c)

where ŷ◦(t + 1) is the a priori output of the predictor, and:

ŷ(t + 1) = −â1(t + 1)ŷ(t) + b̂1(t + 1)u(t) = θ̂T (t + 1)ψ(t) (4.13)

is the a posteriori output of the predictor. One defines the vectors

θ̂T (t) = [â1(t), b̂1(t)], ψT (t) = [−ŷ(t), u(t)] (4.14)

where θ̂T (t) is the vector of adjustable parameters and ψT (t) is the observation
vector. Since ŷ(t) should converge asymptotically to y(t), ŷ(t) is an approximation
of the output y(t) which will improve over time.

The a priori prediction error will have the expression:

ε◦(t + 1) = y(t + 1) − ŷ◦(t + 1) = θTφ(t) − θ̂T (t)ψ(t) (4.15)

and the a posteriori prediction error will be given by:

ε(t + 1) = y(t + 1) − ŷ(t + 1) = θTφ(t) − θ̂T (t + 1)ψ(t) (4.16)
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Fig. 4.4 Comparison
between two adjustable
predictor structures: a
Equation error (recursive
least squares predictor) and
b Output error

(b)

(a)

The difference between the two types of predictors is illustrated in Fig. 4.4. Equation
error predictors and output error predictors are also called series-parallel predictor
and parallel predictor, respectively, in relation with the configurations shown in
Fig. 4.4.

4.3 Basic Parameter Adaptation Algorithms

Several approaches can be considered for deriving parameter adaptation algorithms.
We will consider first for pedagogical reasons the gradient technique followed by
the least squares.

Nevertheless, it is the stability approach which will be used later for both synthesis
and analysis of PAA.

4.3.1 Basic Gradient Algorithm

The aim of the basic gradient parameter adaptation algorithm is to minimize a
quadratic criterion in terms of the a priori prediction error.

We will consider this approach first for the case of the equation error predictor
(Eqs. (4.1)–(4.9)).
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The objective is to find a recursive parameter adaptation algorithm with memory.
The structure of such an algorithm is:

θ̂ (t + 1) = θ̂ (t) + Δθ̂(t + 1) = θ̂ (t) + f [θ̂ (t), φ(t), ε◦(t + 1)] (4.17)

The correction term f [θ̂ (t), φ(t), ε◦(t+1)] must depend solely on the information
available at the instant (t + 1) when y(t + 1) is acquired (last measurement y(t + 1),
θ̂ (t), and a finite amount of information at times t , t − 1, t − 2, . . . , t − n). The
correction term must enable the following criterion to be minimized at each step:

min
θ̂ (t)

J (t + 1) = [ε◦(t + 1)]2 (4.18)

A solution can be provided by the gradient technique.
If the iso-criterion curves (J = constant) are represented in the plane of the para-

meters a1 and b1, concentric closed curves are obtained around the minimum value of
the criterion, which is reduced to the point (a1, b1) corresponding to the parameters
of the plant model. As the value of J = const increases, the iso-criterion curves
move further and further away from the minimum. This is illustrated in Fig. 4.5.

In order to minimize the value of the criterion, one moves in the opposite direc-
tion of the gradient to the corresponding iso-criterion curve. This will lead to a curve

Fig. 4.5 Principle of the
gradient method
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corresponding to J = const , of a lesser value, as is shown in Fig. 4.5. The corre-
sponding parametric adaptation algorithm will have the form:

θ̂ (t + 1) = θ̂ (t) − F
∂ J (t + 1)

∂θ̂(t)
(4.19)

where F = α I (α > 0) is the matrix adaptation gain (I—unitary diagonal matrix)
and ∂ J (t + 1)/∂θ̂(t) is the gradient of the criterion given in (4.18) with respect to
θ̂ (t). From (4.18) one obtains:

1

2

∂ J (t + 1)

∂θ̂(t)
= ∂ε◦(t + 1)

∂θ̂(t)
ε◦(t + 1) (4.20)

But:
ε◦(t + 1) = y(t + 1) − ŷ◦(t + 1) = y(t + 1) − θ̂T (t)φ(t) (4.21)

and
∂ε◦(t + 1)

∂θ̂(t)
= −φ(t) (4.22)

Introducing (4.22) in (4.20), the parameter adaptation algorithm of (4.19)
becomes:

θ̂ (t + 1) = θ̂ (t) + Fφ(t)ε◦(t + 1) (4.23)

where F is the matrix adaptation gain.
There are two main choices for the adaptation gain:

1. F = α I ; α > 0
2. F > 0 (positive definite matrix)1

The resulting algorithm has an integral structure. Therefore it has memory
(for ε0(t + 1) = 0, θ̂ (t + 1) = θ̂ (t)).

The geometrical interpretation of the PAA of (4.23) is given in Fig. 4.6 for the
two choices of the adaptation gain.

For F = α I , α > 0, the correction is done in the direction of the observation
vector (which in this case is the measurement vector) or within ±90◦ around this
direction when F > 0 (a positive definite matrix may cause a rotation of a vector for
less than 90◦).

The parameter adaptation algorithm given in (4.23) presents instability risks if
a large adaptation gain (respectively a large α) is used. This can be understood by
referring to Fig. 4.5. If the adaptation gain is large near the optimum, one can move

1A symmetric square matrix F is termed positive definite if xT Fx > 0, ∀ x > 0, x ∈ R
n . In

addition: (i) all the terms of the main diagonal are positive, (ii) the determinants of all the principal
minors are positive.
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Fig. 4.6 Geometrical
interpretation of the gradient
adaptation algorithm

away from this minimum instead of getting closer. A necessary condition for stability
(but not sufficient) is that for an adaptation gain F = α I , α should satisfy:

α <
1

φT (t)φ(t)
. (4.24)

See [1] for details.

4.3.2 Improved Gradient Algorithm

4.3.2.1 Equation Error Predictor

In order to assure the stability of the PAA for any value of the adaptation gain α (or
of the eigenvalues of the gain matrix F) in the case of the equation error predictor,
the same gradient approach is used but a different criterion is considered:

min
θ̂ (t+1)

J (t + 1) = [ε(t + 1)]2. (4.25)

The equation:
1

2

∂ J (t + 1)

∂θ̂(t + 1)
= ∂ε(t + 1)

∂θ̂(t + 1)
ε(t + 1) (4.26)

is then obtained. From (4.6) and (4.8) it results that:

ε(t + 1) = y(t + 1) − ŷ(t + 1) = y(t + 1) − θ̂T (t + 1)φ(t) (4.27)

and, respectively:
∂ε(t + 1)

∂θ̂(t + 1)
= −φ(t) (4.28)
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Introducing (4.28) in (4.26), the parameter adaptation algorithm of (4.19)
becomes:

θ̂ (t + 1) = θ̂ (t) + Fφ(t)ε(t + 1) (4.29)

This algorithm depends on ε(t + 1), which is a function of θ̂ (t + 1). For imple-
menting this algorithm, ε(t + 1) must be expressed as a function of ε◦(t + 1), i.e.,
ε(t + 1) = f [θ̂ (t), φ(t), ε◦(t + 1)].

Equation (4.27) can be rewritten as:

ε(t + 1) = y(t + 1) − θ̂T (t)φ(t) − [(θ̂(t + 1) − θ̂ (t)]Tφ(t) (4.30)

The first two terms of the right hand side correspond to ε◦(t+1), and from (4.29),
one obtains:

θ̂ (t + 1) − θ̂ (t) = Fφ(t)ε(t + 1) (4.31)

which enables to rewrite (4.30) as:

ε(t + 1) = ε◦(t + 1) − φT (t)Fφ(t)ε(t + 1) (4.32)

from which the desired relation between ε(t + 1) and ε◦(t + 1) is obtained:

ε(t + 1) = ε◦(t + 1)

1 + φT (t)Fφ(t)
(4.33)

and the algorithm of (4.29) becomes:

θ̂ (t + 1) = θ̂ (t) + Fφ(t)ε◦(t + 1)

1 + φT (t)Fφ(t)
(4.34)

which is a stable algorithm irrespective of the value of the gain matrix F (positive
definite). For a stability analysis see Sect. 4.4.

The division by 1+φT (t)Fφ(t) introduces a normalization with respect to F and
φ(t) which reduces the sensitivity of the algorithm with respect to F and φ(t).

4.3.2.2 Output Error Predictor

We will turn now towards the use of the improved gradient algorithm for the out-
put error predictor described by (4.12) and (4.13). To apply the improved gradient
approach to the output error predictor we will need first an expression of the a pos-
teriori prediction error featuring explicitly the difference between the unknown and
the estimated parameter vector.
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ε(t + 1) = y(t + 1) − ŷ(t + 1)

= −a1y(t) + b1u(t) − [−â1(t + 1)ŷ(t) + b̂1(t + 1)u(t)] ± a1 ŷ(t)

= −a1ε(t) − [a1 − â1(t + 1)]ŷ(t) + [b1 − b̂1(t + 1)]u(t)

= −a1ε(t) + [θ − θ̂ (t + 1)]Tψ(t) (4.35)

Passing the term −a1ε(t) on the left side one gets:

(1 + a1q
−1)ε(t + 1) = [θ − θ̂ (t + 1)]Tψ(t) (4.36)

Defining:
A(q−1) = 1 + a1q

−1 (4.37)

one gets:

ε(t + 1) = 1

A(q−1)
[θ − θ̂ (t + 1)]Tψ(t) (4.38)

The gradient for the improved gradient algorithm is given by (4.26)

1

2

∂ J (t + 1)

∂θ̂(t + 1)
= ∂ε(t + 1)

∂θ̂(t + 1)
ε(t + 1) (4.39)

and using (4.38) one gets

∂ε(t + 1)

∂θ̂(t + 1)
= − 1

A(q−1)
ψ(t) = −ψ f (t) (4.40)

Then the parameter adaptation algorithm becomes:

θ̂ (t + 1) = θ̂ (t) + Fψ f (t)ε(t + 1) (4.41)

The PAA (4.41) cannot be implemented as it is since A(q−1) is unknown. Several
approximations are currently used; however, the conditions assuring the asymptotic
stability of the resulting algorithm have to be established. The various approximations
are detailed below.

(1) Output Error Algorithm (OE)

In this algorithm one simply approximates (1/A(q−1))ψ(t) by ψ(t), i.e,

ψ f (t) = ψ(t) (4.42)

and one gets:
θ̂ (t + 1) = θ̂ (t) + Fψ(t)ε(t + 1) (4.43)



50 4 Parameter Adaptation Algorithms

(2) Output Error with Filtered Observations (FOLOE)

Define a filter L(q−1) and suppose that it is close to A(q−1). Neglecting the non-
commutativity of the time-varying operators, one can rewrite the equation of the a
posteriori prediction as:

ε(t + 1) = 1

A(q−1)
[θ − θ̂ (t + 1)]Tψ(t) (4.44)

= L(q−1)

A(q−1)
[θ − θ̂ (t + 1)]Tψ f (t) (4.45)

where:

ψ f (t) = 1

L(q−1)
ψ(t) (4.46)

and the gradient of the criterion becomes

∂ν(t + 1)

∂θ̂(t + 1)
= − L(q−1)

A(q−1)
ψ f (t) � −ψ f (t) (4.47)

which, taking into account the proximity of L and A, will be approximated by
−ψ f (t).

(3) Output Error with Adaptive Filtered Observations (AFOLOE)

Since during the evolution of the adaptation algorithms the estimations of Â(t, q−1)

will approach A(q−1), one replaces the fixed filter L by

L(t, q−1) = Â(t, q−1) (4.48)

For all these algorithms, the a posteriori prediction error is computed as:

ε(t + 1) = ε◦(t + 1)

1 + ψT
f (t)Fψ f (t)

(4.49)

(4) Output Error with Fixed Compensator (OEFC)

In this algorithm one defines an adaptation error as a filtered prediction error:

ν(t + 1) = D(q−1)ε(t + 1) (4.50)
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where:

D(q−1) = 1 +
nD∑
i=1

diq
−i (4.51)

is an asymptotically stable polynomial with nD ≤ nA (nA—degree of the polyno-
mial A) and we would like to minimize a criterion as in (4.25) but for ν(t + 1),
i.e.,

min
θ̂ (t+1)

J (t + 1) = [ν(t + 1)]2 (4.52)

In this case
∂ν(t + 1)

∂θ̂(t + 1)
= −D(q−1)

A(q−1)
ψ(t) = −ψ f (t) (4.53)

Provided that D(q−1) and A(q−1) are close2 one can use the following approxi-
mation:

ψ f (t) � ψ(t) (4.54)

and the PAA takes the form

θ̂ (t + 1) = θ̂ (t) + Fψ(t)ν(t + 1) (4.55)

To make the algorithm (4.55) implementable, one has to give a relation between the
a posteriori adaptation error given in (4.50) and the a priori adaptation error defined
as:

ν◦(t + 1) = ε◦(t + 1) +
nD∑
i=1

diε(t + 1 − i) (4.56)

Note that the a posteriori prediction errors ε(t), ε(t − 1), . . . are available at t + 1.
Subtracting (4.56) from (4.50), one gets:

ν(t + 1) − ν◦(t + 1) = ε(t + 1) − ε◦(t + 1)

= −
[
θ̂ (t + 1) − θ̂ (t)

]T
ψ(t) (4.57)

But, from (4.55), one obtains:

θ̂ (t + 1) − θ̂ (t) = Fψ(t)ν(t + 1) (4.58)

and (4.57) becomes:

ν(t + 1) + (Fψ(t)ν(t + 1))T ψ(t) = ν◦(t + 1) (4.59)

2As it will be shown in Sect. 4.4, this closeness is characterized in terms of the property that
D(z−1)/A(z−1) should be a strictly positive real transfer function.



52 4 Parameter Adaptation Algorithms

from which one obtains:

ν(t + 1) = ν◦(t + 1)

1 + ψT (t)Fψ(t)
(4.60)

4.3.3 Recursive Least Squares Algorithm

When using the Improved Gradient Algorithm, ε2(t + 1) is minimized at each step
or, to be more precise, one moves in the quickest decreasing direction of the criterion,
with a step depending on F . The minimization of ε2(t + 1) at each step does not
necessarily lead to the minimization of:

t∑
i=1

ε2(i + 1)

on a time horizon, as is illustrated in Fig. 4.7. In fact, in the vicinity of the optimum,
if the gain is not low enough, oscillations may occur around the minimum. On the
other hand, in order to obtain a satisfactory convergence speed at the beginning when
the optimum is far away, a high adaptation gain is preferable. In fact, the least squares
algorithm offers such a variation profile for the adaptation gain. The same equations
as in the gradient algorithm for the equation error configuration are considered for
the plant, the prediction model, and the prediction errors, namely Eqs. (4.1)–(4.8).

The aim is to find a recursive algorithm of the form of (4.9) which minimizes the
least squares criterion:

min
θ̂ (t)

J (t) =
t∑

i=1

[y(i) − θ̂T (t)φ(i − 1)]2 (4.61)

Fig. 4.7 Evolution of an
adaptation algorithm of the
gradient type
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The term θ̂ (t)Tφ(i − 1) corresponds to:

θ̂T (t)φ(i − 1) = −â1(t)y(i − 1) + b̂1(t)u(i − 1) = ŷ[i | θ̂ (t)] (4.62)

Therefore, this is the prediction of the output at instant i (i ≤ t) based on the
parameter estimate at instant t obtained using t measurements.

First, a parameter θ must be estimated at instant t such that it minimizes the sum
of the squares of the differences between the output of the plant and the output of the
prediction model on a horizon of t measurements. The value of θ̂ (t), which minimizes
the criterion (4.61), is obtained by seeking the value that cancels ∂ J (t)/∂θ̂(t):

∂ J (t)

∂θ̂(t)
= −2

t∑
i=1

[y(i) − θ̂T (t)φ(i − 1)]φ(i − 1) = 0 (4.63)

From (4.63), taking into account that:

[θ̂T (t)φ(i − 1)]φ(i − 1) = φ(i − 1)φT (i − 1)θ̂(t)

one obtains: [
t∑

i=1

φ(i − 1)φT (i − 1)

]
θ̂ (t) =

t∑
i=1

y(i)φ(i − 1)

and left multiplying by3:

[
t∑

i=1

φ(i − 1)φT (i − 1)

]−1

one obtains:

θ̂ (t) =
[

t∑
i=1

φ(i − 1)φT (i − 1)

]−1 t∑
i=1

y(i)φ(i − 1) = F(t)
t∑

i=1

y(i)φ(i − 1)

(4.64)
in which:

F(t)−1 =
t∑

i=1

φ(i − 1)φT (i − 1) (4.65)

3It is assumed that the matrix
∑t

i=1 φ(i−1)φT (i−1) is invertible. This corresponds to an excitation
condition.
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This estimation algorithm is not recursive. In order to obtain a recursive algorithm,
the estimation of θ̂ (t + 1) is considered:

θ̂ (t + 1) = F(t + 1)

t+1∑
i=1

y(i)φ(i − 1) (4.66)

F(t + 1)−1 =
t+1∑
i=1

φ(i − 1)φT (i − 1) = F(t)−1 + φ(t)φT (t) (4.67)

We can now express θ̂ (t + 1) as a function of θ̂ (t):

θ̂ (t + 1) = θ̂ (t) + Δθ̂(t + 1) (4.68)

From (4.66) one has:

θ̂ (t + 1) = F(t + 1)

[
t∑

i=1

y(i)φ(i − 1) + y(t + 1)φ(t)

]
(4.69)

Taking into account (4.64), (4.69) can be rewritten as:

θ̂ (t + 1) = F(t + 1)[F(t)−1θ̂ (t) + y(t + 1)φ(t)] (4.70)

From (4.67), after post-multiplying both sides by θ̂ (t), one gets:

F(t)−1θ̂ (t) = F(t + 1)−1θ̂ (t) − φ(t)φT (t)θ̂(t) (4.71)

and (4.70) becomes:

θ̂ (t + 1) = F(t + 1)
(
F(t + 1)−1θ̂ (t) + φ(t)[y(t + 1) − θ̂T (t)φ(t)]

)
(4.72)

Taking into account the expression of ε◦(t + 1) given by (4.21), the result is:

θ̂ (t + 1) = θ̂ (t) + F(t + 1)φ(t)ε◦(t + 1) (4.73)

The adaptation algorithm of (4.73) has a recursive form similar to the basic gradient
algorithm given in (4.23) except that the gain matrix F(t + 1) is now time-varying
since it depends on the measurements (it automatically corrects the gradient direction
and the step length). A recursive formula for F(t + 1) remains to be given from the
recursive formula F−1(t + 1) given in (4.67). This is obtained by using the matrix
inversion lemma.
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Matrix Inversion Lemma Let F be a (n × n) dimensional nonsingular matrix, R
a (m ×m) dimensional nonsingular matrix and H a (n ×m) dimensional matrix of
maximum rank, then the following identity holds:

(F−1 + HR−1HT )−1 = F − FH(R + HT FH)−1HT F (4.74)

Proof By direct multiplication one finds that:

[F − FH(R + HT FH)−1HT F][F−1 + HR−1HT ] = I

which ends the proof. �

For the case of (4.67), one chooses H = φ(t), R = 1 and one obtains from
Eqs. (4.67) and (4.74):

F(t + 1) = F(t) − F(t)φ(t)φT (t)F(t)

1 + φT (t)F(t)φ(t)
(4.75)

Putting together the different equations, a first formulation of the Recursive Least
Squares (RLS) parameter adaptation algorithm (PAA) is given next:

θ̂ (t + 1) =θ̂ (t) + F(t + 1)φ(t)ε◦(t + 1) (4.76)

F(t + 1) = F(t) − F(t)φ(t)φT (t)F(t)

1 + φT (t)F(t)φ(t)
(4.77)

ε◦(t + 1) = y(t + 1) − θ̂T (t)φ(t) (4.78)

In practice, the algorithm is started up at t = 0 by choosing:

F(0) = 1

δ
I = (GI )I ; 0 < δ � 1 (4.79)

An equivalent form of this algorithm is obtained by introducing the expression of
F(t + 1) given by (4.77) in (4.76), where:

θ̂ (t + 1) − θ̂ (t) =F(t + 1)φ(t)ε◦(t + 1) = F(t)φ(t)
ε◦(t + 1)

1 + φT (t)F(t)φ(t)
(4.80)

Nevertheless, from (4.7), (4.8) and (4.80), one obtains:

ε(t + 1) = y(t + 1) − θ̂T (t + 1)φ(t) = y(t + 1) − θ̂ (t)φ(t)

−[θ̂ (t + 1) − θ̂ (t)]Tφ(t) = ε◦(t + 1)

−φT (t)F(t)φ(t)
ε◦(t + 1)

1 + φT (t)F(t)φ(t)
= ε◦(t + 1)

1 + φT (t)F(t)φ(t)
(4.81)
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which expresses the relation between the a posteriori prediction error and the a priori
prediction error. Using this relation in (4.80), an equivalent form of the parameter
adaptation algorithm for the recursive least squares is obtained:

θ̂ (t + 1) = θ̂ (t) + F(t)φ(t)ε(t + 1) (4.82)

F(t + 1)−1 = F(t)−1 + φ(t)φT (t) (4.83)

F(t + 1) = F(t) − F(t)φ(t)φT (t)F(t)

1 + φT (t)F(t)φ(t)
(4.84)

ε(t + 1) = y(t + 1) − θ̂T (t)φ(t)

1 + φT (t)F(t)φ(t)
(4.85)

The recursive least squares algorithm is an algorithm with a decreasing adaptation
gain. This is clearly seen if the estimation of a single parameter is considered. In this
case, F(t) and φ(t) are scalars, and (4.84) becomes:

F(t + 1) = F(t)

1 + φ(t)2F(t)
≤ F(t); φ(t), F(t) ∈ R1

The same conclusion is obtained by observing that F(t + 1)−1 is the output of an
integrator which has as input φ(t)φT (t). Since φ(t)φT (t) ≥ 0, one concludes that if
φ(t)φT (t) > 0 in the average, then F(t)−1 will tend towards infinity, i.e., F(t) will
tend towards zero.

The recursive least squares algorithm in fact gives less and less weight to the
new prediction errors and thus to the new measurements. Consequently, this type
of variation of the adaptation gain is not suitable for the estimation of time-varying
parameters, and other variation profiles for the adaptation gain must therefore be
considered.

The least squares algorithm presented up to now for θ̂ (t) and φ(t) of dimension 2
may be generalized for any dimensions resulting from the description of discrete-time
systems of the form:

y(t) = q−d B(q−1)

A(q−1)
u(t) (4.86)

where:

A(q−1) = 1 + a1q
−1 + · · · + anAq

−nA (4.87)

B(q−1) = b1q
−1 + · · · + bnBq

−nB (4.88)

Equation (4.86) can be written in the form:

y(t + 1) = −
nA∑
i=1

ai y(t + 1 − i) +
nB∑
i=1

biu(t − d − i + 1) = θTφ(t) (4.89)
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in which:

θT = [a1, . . . , anA , b1, . . . , bnB ] (4.90)

φT (t) = [−y(t), . . . ,−y(t − nA + 1), u(t − d), . . . , u(t − d − nB + 1)] (4.91)

The a priori adjustable predictor is given in the general case by:

ŷ◦(t+1) = −
nA∑
i=1

âi (t)y(t+1− i)+
nB∑
i=1

b̂1(t)u(t−d− i+1) = θ̂T (t)φ(t) (4.92)

in which:
θ̂T (t) = [â1(t), . . . , ânA(t), b̂1(t), . . . , b̂nB (t)] (4.93)

and for the estimation of θ̂ (t), the algorithm given in (4.82) through (4.85) is used,
with the appropriate dimension for θ̂ (t), φ(t), and F(t).

4.3.4 Choice of the Adaptation Gain

The recursive formula for the inverse of the adaptation gain F (t + 1)−1 given by
(4.83) is generalized by introducing two weighting sequences λ1(t) and λ2(t), as
indicated below:

F(t + 1)−1 = λ1(t)F(t)−1 + λ2(t)φ(t)φT (t)

0 < λ1(t) ≤ 1 ; 0 ≤ λ2(t) < 2 ; F(0) > 0
(4.94)

Note that λ1(t) and λ2(t) in (4.94) have the opposite effect. λ1(t) < 1 tends to
increase the adaptation gain (the inverse of the gain decreases); λ2(t) > 0 tends to
decrease the adaptation gain (the inverse of the gain increases). For each choice of
sequences, λ1(t) and λ2(t) corresponds a variation profile of the adaptation gain and
an interpretation in terms of the error criterion, which is minimized by the PAA.
Equation (4.94) allows to interpret the inverse of the adaptation gain as the output of
a filter λ2/(1−λ1q−1) having as input φ(t)φT (t) and F(0)−1 as an initial condition.

Using the matrix inversion lemma given by (4.74), one obtains from (4.94):

F(t + 1) = 1

λ1(t)

[
F(t) − F(t)φ(t)φT (t)F(t)

λ1(t)
λ2(t)

+ φT (t)F(t)φ(t)

]
(4.95)

Next, a certain number of choices for λ1(t) and λ2(t) and their interpretations will
be given.
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A1. Decreasing (Vanishing) Gain (Basic RLS)

In this case:
λ1(t) = λ1 = 1; λ2(t) = 1 (4.96)

and F(t + 1)−1 is given by (4.83), which leads to a decreasing adaptation gain. The
minimized criterion is that of (4.61). This type of profile is suited to the estimation
of the parameters of stationary systems or for the self-tuning operation of adaptive
controllers or adaptive feedforward compensators.

A2. Constant Forgetting Factor

In this case:
λ1(t) = λ1; 0 < λ1 < 1; λ2(t) = λ2 = 1 (4.97)

The typical values for λ1 are:

λ1 = 0.95 to 0.99

The criterion to be minimized will be:

J (t) =
t∑

i=1

λ
(t−i)
1 [y(i) − θ̂T (t)φ(i − 1)]2 (4.98)

The effect of λ1(t) < 1 is to introduce increasingly weaker weighting on the old data
(i < t). This is why λ1 is known as the forgetting factor. The maximum weight is
given to the most recent error.

This type of profile is suited to the estimation of the parameters of slowly time-
varying systems.

Remark The use of a constant forgetting factor without the monitoring of the max-
imum value of F(t) causes problems if the {φ(t)φT (t)} sequence becomes null in
the average (steady state case) and the adaptation gain will tend towards infinity.
In this case:

F(t + i)−1 = (λ1)
i F(t)−1

and
F(t + i) = (λ1)

−i F(t).

For λ1 < 1, limi→∞(λ1)
−i = ∞ and F(t + i) will become asymptotically

unbounded.

A3. Variable Forgetting Factor

In this case:
λ2(t) = λ2 = 1 (4.99)



4.3 Basic Parameter Adaptation Algorithms 59

and the forgetting factor λ1(t) is given by:

λ1(t) = λ0λ1(t − 1) + 1 − λ0 ; 0 < λ0 < 1 (4.100)

the typical values being:

λ1(0) = 0.95 to 0.99 ; λ0 = 0.5 to 0.99

(λ1(t) can be interpreted as the output of a first order filter (1 − λ0) /
(
1 − λ0q−1

)
with a unitary steady state gain and an initial condition λ1(0)).

Relation (4.100) leads to a forgetting factor that asymptotically tends towards 1
(the adaptation gain tends towards a decreasing gain).

This type of profile is recommended for the model identification of stationary
systems, since it avoids a too rapid decrease of the adaptation gain, thus generally
resulting in an acceleration of the convergence (by maintaining a high gain at the
beginning when the estimates are at a great distance from the optimum).

A4. Constant Trace

In this case, λ1(t) and λ2(t) are automatically chosen at each step in order to ensure
a constant trace of the gain matrix (constant sum of the diagonal terms):

trF(t + 1) = trF(t) = trF(0) = nGI (4.101)

in which n is the number of parameters and GI the initial gain (typical values:
GI = 0.01 to 4), the matrix F(0) having the form:

F(0) =
⎡
⎢⎣
GI 0

. . .

0 GI

⎤
⎥⎦ (4.102)

Using this technique, at each step there is a movement in the optimal direction of
the RLS, but the gain is maintained approximately constant. The values of λ1(t) and
λ2(t) are determined from the equation:

trF(t + 1) = 1

λ1(t)
tr

[
F(t) − F(t)φ(t)φT (t)F(t)

α(t) + φT (t)F(t)φ(t)

]
(4.103)

fixing the ratio α(t) = λ1(t)/λ2(t) ((4.103) is obtained from (4.95)).
This type of profile is suited to the model identification of systems with time-

varying parameters and for adaptive control with non-vanishing adaptation.

A5. Decreasing Gain + Constant Trace

In this case, A1 is switched to A4 when:

trF(t) ≤ nG ; G = 0.01 to 4 (4.104)
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in which G is chosen in advance. This profile is suited to the model identification of
time variable systems and for adaptive control in the absence of initial information
on the parameters.

A6. Variable Forgetting Factor + Constant Trace

In this case A3 is switched to A4 when:

trF(t) ≤ nG (4.105)

The use is the same as for A5.

A7. Constant Gain (Improved Gradient Algorithm)

In this case:
λ1(t) = λ1 = 1 ; λ2(t) = λ2 = 0 (4.106)

and thus from (4.95), one obtains:

F(t + 1) = F(t) = F(0) (4.107)

The improved gradient adaptation algorithm given by (4.29) or (4.34) is then
obtained.

This type of adaptation gain results in performances that are in general inferior to
those provided by the A1, A2, A3, and A4 profiles, but it is simpler to implement.

Choice of the Initial Gain F(0)

The initial gain F(0) is usually chosen as a diagonal matrix of the form given by
(4.79) and, respectively, (4.102).

In the absence of initial information upon the parameters to be estimated (typical
value of initial estimates = 0), a high initial gain (GI ) is chosen.4 A typical value is
GI = 1000 (but higher values can be chosen). If an initial parameter estimation is
available (resulting for example from a previous identification), a low initial gain is
chosen. In general, in this case GI ≤ 0.1. In adaptive regulation schemes in general,
the initial trace of the adaptation gain (n×GI , n = number of parameters) is chosen
larger but of the same order of magnitude as the desired constant trace.

4.3.4.1 Parameter Adaptation Algorithms with Scalar Adaptation Gain

This concerns an extension of PAA with constant adaptation gain of the form F = α I
for α > 1 (see the improved gradient algorithm Sect. 4.3.2) for the cases where
α(t) = 1/β(t), i.e.,

F(t) = α(t)I = 1

β(t)
I (4.108)

4It can be shown that the size of the adaptation gain is related to the parameter error [1].
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Some PAA’s of this type are mentioned next:
(1) Improved Gradient

β(t) = const = 1/α > 0 =⇒ F(t) = F(0) = α I (4.109)

(2) Stochastic Approximation

β(t) = t =⇒ F(t) = 1

t
I (4.110)

This is the simplest PAA with time decreasing adaptation gain (very useful for the
analysis of PAA in the presence of stochastic disturbances).
(3) Controlled Adaptation Gain

β(t + 1) = λ1(t)β(t) + λ2(t)φ
T (t)φ(t)

β(0) > 0 ; 0 < λ1(t) ≤ 1 ; 0 ≤ λ2(t) < 2
(4.111)

The principal interest in using these algorithms is a simpler implementation than
those using a matrix adaptation gain updating. Their disadvantage is that their per-
formances are in general lower than those of the PAA using a matrix adaptation
gain.

4.3.5 An Example

The influence of the choice of the adaptation gain profile will be illustrated in the
applications considered in Chaps. 12, 13, 15 and 16. The subsequent example will
try just to illustrate the influence of the adaptation gain profile upon the estimation
of unknown but constant parameters in the presence of measurement noise (situation
encountered in system identification). The simulated system is of the form:

G(q−1) = q−1(b1q−1 + b2q−2)

1 + a1q−1 + a2q−2
(4.112)

The file T2.mat (available on the book website) contains 256 input/output data. The
output of the system is disturbed by a measurement noise. The parameters will be
estimated using an Equation Error Predictor combined with the Parameter Adaptation
Algorithm given in Eqs. (4.76)–(4.78) but using various profiles of the adaptation
gain generated with Eq. (4.94). It is known that using this predictor the estimation of
the parameters will be biased in the presence of noise (there will be an error) [2],5

5In Chap. 5, it will be shown how the predictor should be modified in order to obtain unbiased
estimated parameters.

http://dx.doi.org/10.1007/978-3-319-41450-8_12
http://dx.doi.org/10.1007/978-3-319-41450-8_13
http://dx.doi.org/10.1007/978-3-319-41450-8_15
http://dx.doi.org/10.1007/978-3-319-41450-8_16
http://dx.doi.org/10.1007/978-3-319-41450-8_5
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however the objective here is just to illustrate the influence of the adaptation gain
upon the evolution of the estimated parameters.

Figure 4.8 shows the evolution of the estimated parameters when using a decreas-
ing adaptation gain (A.1) which corresponds to the classical RLS algorithm. One
can see that despite the presence of measurement noise the parameters converge
toward constant values. The evolution of the trace of the adaptation gain is illustrated
in Fig. 4.9. One can also see in this figure the evolution of the trace of the adap-
tation gain when using a variable forgetting factor (A3). It keeps a slightly higher
gain transiently which will influence slightly the speed of evolution of the estimated
parameters.

Figure 4.10 shows the evolution of the estimated parameters when using a decreas-
ing adaptation gain + constant trace (A.5). Since the adaptation gain never goes
to zero the parameters will not converge toward a constant value in the presence of
noise but the capability of tracking parameters variation is assured. The evolution of
the trace of the adaptation gain in this case is also shown in Fig. 4.9.

Figure 4.11 shows the evolution of the estimated parameters when using adiagonal
constant adaptation gain matrix (A.7) which corresponds to the improved gradient
algorithm. One can see that the adaptation transient is longer than for the decreasing
adaptation gain + constant trace and of course the estimated parameters will not
converge toward a constant value.

4.4 Stability of Parameter Adaptation Algorithms

From the point of view of real-time identification and adaptive control, the parameter
adaptation algorithms are supposed to operate on a very large number of measure-
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ments (t → ∞). Therefore, it is necessary to examine the properties of parameter
adaptation algorithms as t → ∞. Specifically, one should study the conditions which
guarantee:

lim
t→∞ ε(t + 1) = 0. (4.113)

This corresponds to the study of the stability of parameter adaptation algorithms.
Conversely, other PAA can be derived starting from the stability condition.

Equivalent feedback representation of the full parameter estimation schemes is
extremely helpful on one hand for deriving stability conditions and on the other hand
for understanding the sense of the stability conditions.

4.4.1 Equivalent Feedback Representation of the Adaptive
Predictors

To illustrate this approach we will consider the output error algorithm. The basic
description of the adjustable output error predictor has been presented in Sect. 4.3,
Eqs. (4.35)–(4.41).

The objective is now to write an equation for the a posteriori prediction error as
a function of the parameter error. From (4.38) one obtains:

ε(t + 1) = − 1

A(q−1)

(
θ̂ (t + 1) − θ

)T
ψT (t) (4.114)

= 1

A(q−1)

(
−ψT (t)θ̃(t + 1)

)
(4.115)

where:
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θ̃ (t + 1) = θ̂ (t + 1) − θ (4.116)

This result remains valid even for higher order predictors where a1 is replaced by
A∗(q −1) = a1 +a2q−1 +· · ·+anAq

−nA . In other words, the a posteriori prediction
error is the output of a linear block characterized by a transfer function 1/A(z−1),
whose input is −ψT (t)θ̃(t + 1).

Once the equation for the a posteriori prediction error has been derived, the PAA
synthesis problem can be formulated as a stability problem:
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Fig. 4.12 Equivalent feedback system associated to the output error predictor

Find a PAA of the form:

θ̂ (t + 1) = θ̂ (t) + fθ [ψ(t), θ̂ (t), ε(t + 1)] (4.117)

ε(t + 1) = fε[ψ(t), θ̂ (t), ε◦(t + 1)] (4.118)

such that limt→∞ ε(t + 1) = 0 for all initial conditions ε(0), θ̂ (0) (or θ̃ (0)).
Note that the structure of (4.117) assures the memory of the PAA (integral form),

but other structures can be considered. The structure of (4.118) assures the causality
of the algorithm.

From (4.117) subtracting θ from both sides, one gets:

θ̃ (t + 1) = θ̃ (t) + fθ [ψ(t), θ̂ (t), ε(t + 1)] (4.119)

and multiplying both sides by ψT (t), yields:

ψT (t)θ̃(t + 1) = ψT (t)θ̃(t) + ψT (t) fθ [ψ(t), θ̂ (t), ε(t + 1)] (4.120)

Eqs. (4.115), (4.119), and (4.120) define an equivalent feedback system associated
to the output error predictor as shown in Fig. 4.12.

The stability of the output predictor estimator is directly related to the stability
of the equivalent nonlinear time-varying feedback system shown in Fig. 4.12. The
major complication in the analysis of the stability of this configuration comes from
the presence of a linear transfer function different from 1 (unity) on the feedforward
path. The same analysis in the case of an equation error predictor shows that the
feedforward block will have a transfer function equal to 1.

Therefore, both for taking into account various time-varying profiles for the adap-
tation gain and the possible presence of a transfer function in the feedforward path of
the equivalent system, it is necessary to take a stability approach both for synthesis
and analysis of the adaptation algorithms for various predictor configurations.
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4.4.2 A General Structure and Stability of PAA

Two elements are crucial for the analysis of the adaptive schemes:

• the structure of the parameter adaptation algorithm; and
• the structure of the equation governing the generation of the adaptation error.

One can consider as a general structure for the PAA (integral type):

θ̂ (t + 1) = θ̂ (t) + F(t)Φ(t)ν(t + 1) (4.121)

ν(t + 1) = ν◦(t + 1)

1 + ΦT (t)F(t)Φ(t)
(4.122)

F(t + 1)−1 = λ1(t)F(t)−1 + λ2(t)Φ(t)ΦT (t) (4.123)

0 < λ1(t) ≤ 1; 0 ≤ λ2(t) < 2

F(0) > 0;F−1(t) > αF−1(0) ; ∞ > α > 0

where θ̂ (t) is the adjustable parameter vector, F(t) is the adaptation gain, Φ(t) is the
regressor (observation) vector, ν◦(t + 1) is the a priori adaptation error and ν(t + 1)

is the a posteriori adaptation error (it is a function of the prediction error). The a
priori adaptation error ν◦(t + 1) depends only on the adjustable parameter vector
θ̂ (i) up to and including i = t . ν◦(t + 1) is in fact the prediction of ν(t + 1) based
on these θ̂ (i), i.e.:

ν◦(t + 1) = ν(t + 1|θ̂ (t), θ̂ (t − 1), . . .)

The adaptation gain matrix F(t) is computed recursively using the matrix inversion
lemma and (4.123) becomes:

F(t + 1) = 1

λ1(t)

[
F(t) − F(t)Φ(t)ΦT (t)F(t)

λ1(t)
λ2(t)

+ ΦT (t)F(t)Φ(t)

]
(4.124)

The real-time implementation of this algorithm requires to use a numerical robust
updating formula guaranteeing the positive definiteness of the matrix F(t). Such a
solution is provided by the U-D factorization of the matrix F(t). The details are
given in Appendix B.

Associated with the PAA of Eqs. (4.121)–(4.123), one considers the class of adap-
tive systems for which the a posteriori adaptation error satisfies an equation of the
form:

ν(t + 1) = H(q−1)
[
θ − θ̂ (t + 1)

]T
Φ(t) (4.125)

where:

H(q−1) = H1(q−1)

H2(q−1)
(4.126)
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with:

Hi (q
−1) = 1 + q−1H∗

j (q
−1) = 1 +

n j∑
i=1

h j
i q

−i ; j = 1, 2 (4.127)

and θ is a fixed value of the unknown parameter vector.
The relationship between a priori and a posteriori adaptation errors given in

(4.122), can be alternatively expressed using (4.121) as:

ν(t + 1) =
[
θ̂ (t) − θ̂ (t + 1)

]T
Φ(t) + ν◦(t + 1) (4.128)

From (4.125) and (4.126) one gets:

ν(t + 1) =
[
θ − θ̂ (t + 1)

]T
Φ(t) − H∗

2 (q−1)ν(t)+

+ H∗
1 (q−1)

[
θ − θ̂ (t)

]T
Φ(t − 1) (4.129)

Adding and subtracting the term θ̂T (t)Φ(t) in the right hand side of (4.129), one
gets:

ν(t + 1) =
[
θ̂ (t) − θ̂ (t + 1)

]T
Φ(t)

+
([

θ − θ̂ (t)
]T

Φ(t) + H∗
1 (q−1)

[
θ − θ̂ (t)

]T
Φ(t − 1) − H∗

2 (q−1)ν(t)

)

(4.130)

Comparing (4.128) and (4.130), one observes that:

ν◦(t + 1) =
[
θ − θ̂ (t)

]T
Φ(t) + H∗

1 (q−1)
[
θ − θ̂ (t)

]T
Φ(t − 1)

− H∗
2 (q−1)ν(t) (4.131)

and it can be clearly seen that ν◦(t + 1) depends upon θ̂ (i) for i ≤ t .
The PAA of Eqs. (4.121)–(4.123), together with (4.125), define an equivalent

feedback system with a linear time-invariant feedforward block and a time-varying
and/or nonlinear feedback block (see Fig. 4.13a). For constant adaptation gain (λ2 =
0), the feedback path in Fig. 4.13a is passive6; however, for time-varying adaptation
gain (λ2 > 0), one has to consider the equivalent feedback representation shown in
Fig. 4.13b, where the new equivalent feedback path is passive.

6A passive system is characterized by the fact that the sum of the input/output products over any
time horizon is larger than a finite negative constant.
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(a)

(b)

Fig. 4.13 Equivalent feedback system associated to the PAA with time-varying gain. a standard
representation, b transformed equivalent feedback system

Exploiting the input-output properties of the equivalent feedback and feedforward
block, one has the following general result (see [1] for the proof):

Theorem 4.1 Consider the parameter adaptation algorithm given by Eqs. (4.121)–
(4.123). Assume that the a posteriori adaptation error satisfies (4.125) where φ(t)
is a bounded or unbounded vector sequence, H(z−1) is a rational discrete transfer
function (ratio of monic polynomials) and θ is a constant vector. Then, if:

H ′(z−1) = H(z−1) − λ2

2
(4.132)

is strictly positive real (SPR), where

max
t

[λ2(t)] ≤ λ2 < 2, (4.133)

one has for any bounded ν(0), θ̂ (0):

1) lim
t1→∞

t1∑
t=0

ν2(t + 1) < C
(
ν(0), θ̂ (0)

)
; 0 < C < ∞ (4.134)

2) lim
t→∞ ν(t + 1) = 0 (4.135)
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3) lim
t→∞

[
θ − θ̂ (t + 1)

]T
Φ(t) = 0 (4.136)

4) lim
t→∞

[
θ̂ (t + 1) − θ̂ (t)

]T
F(t)−1

[
θ̂ (t + 1) − θ̂ (t)

]
= 0 (4.137)

4.4.2.1 Interpretation of the Results

1. A strictly positive real (SPR) transfer function is characterized by the following
basic properties (there are others [1]):

• It is asymptotically stable.
• The real part of the transfer function is positive at all frequencies.

The concept of SPR transfer functions is illustrated for continuous-time systems
in the upper part of the Fig. 4.14 and for the discrete-time systems in the lower
part of Fig. 4.14.

2. limt→∞ ν(t + 1) = 0 can be interpreted as the output of the equivalent linear
block which asymptotically tends to 0.

3. Since H(z−1) is SPR, it is asymptotically stable as well as its inverse. Therefore,
its input will also tend to zero which, taking into account the notations, leads to
(4.136).

4. Equation (4.137) indicates that the asymptotic variations of the adjustable para-
meters tend to zero if F(t) > 0.

5. For constant adaptation gain (λ1 = 1, λ2 = 0) condition (4.132) becomes:

H ′(z−1) = H(z−1) (4.138)

should be strictly positive real (SPR).
6. The explanation of the presence of the term −λ2/2 in (4.132) is related to the

loss of the passivity of the equivalent feedback path when using time-varying
adaptation gain. This requires to consider the transformed equivalent feedback
system shown in Fig. 4.13b.

Remark Note that limt→∞ ν(t + 1) = 0 does not imply limt→∞ ν◦ (t + 1) = 0
since:

ν(t + 1) = ν◦(t + 1)

1 + ΦT (t)F(t)Φ(t)
.

If Φ(t) is unbounded, then ν(t + 1) can be zero with ν◦(t + 1) �= 0. To conclude
that limt→∞ ν◦(t + 1) = 0, one should show that Φ(t) is bounded (assuming that
F(t) is bounded).
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Fig. 4.14 Strictly positive
real transfer functions

4.4.3 Output Error Algorithms—Stability Analysis

Applying this theorem to the output error configurations (with constant adaptation
gain) presented in Sect. 4.3.2.2, will lead to the following stability conditions.

Output Error

In this case ν(t+1) = ε(t+1), Φ(t) = ψ(t) and the discrete-time transfer function:

H(z−1) = 1

A(z−1)
(4.139)

should be SPR. This condition may be restrictive in certain situations. In order to
overcome this difficulty, one may consider filtering the a posteriori prediction error
before its use in the PAA or to filter the observation vector (see Sect. 4.3.2).

Output Error with Fixed Compensator

Using (4.115), ν(t + 1) can be expressed as:

ν(t + 1) = D(q−1)

A(q−1)
[θ − θ̂ (t + 1)]Tψ(t) (4.140)
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and Φ(t) = ψ(t). In this case:

H(z−1) = D(z−1)

A(z−1)
(4.141)

should be SPR.

Output Error with Filtered Observations

In this case ν(t + 1) = ε(t + 1) and Φ(t) = ψ f (t). The equation of the a posteriori
prediction error (neglecting the non-commutativity of time-varying operators) is
given in (4.38)

ε(t + 1) = 1

A(q−1)
[θ − θ̂ (t + 1)]Tψ(t) = L(q−1)

A(q−1)
[θ − θ̂ (t + 1)]Tψ f (t) (4.142)

and applying the Theorem 4.1 for stability of PAA one concludes that

H(z−1) = L(z−1)

A(z−1
(4.143)

should be SPR. An exact algorithm for the output error with filtered observations is
given in [1, Sect. 5.5.3].

4.4.3.1 A Swapping Result

The above developments on output error with filtered observations have used the
following relationship:

ν(t + 1) =H(q−1)
[
θ − θ̂ (t + 1)

]T
φ(t) =

[
θ − θ̂ (t + 1)

]T
φ f (t) + O (4.144)

where
φ f (t) = H(q−1)φ(t) (4.145)

and the error term O is assumed to be negligible. Exact algorithms can be devel-
oped [1] but they are not necessary in practice. Therefore systematically relationship
(4.144) will be used neglecting the error term (swapping error) in order to apply
Theorem 4.1 for the synthesis of stable adaptation algorithms.
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4.5 Parametric Convergence

4.5.1 The Problem

As will be shown, the convergence toward zero of the adaptation or prediction error
does not imply in every case that the estimated parameters will converge toward
the true parameters. The objective will be to determine under what conditions the
convergence of the adaptation (prediction) error will imply the convergence toward
the true parameters. We will make the hypothesis that such a value of parameter
vector exists.

In order to illustrate the influence of the excitation signal for the parametric con-
vergence, let us consider the discrete-time system model described by:

y(t + 1) = −a1y(t) + b1u(t) (4.146)

and consider an estimated model described by:

ŷ(t + 1) = −â1y(t) + b̂1u(t) (4.147)

in which ŷ(t + 1) is the output predicted by the estimation model with the constant
parameters â1, b̂1.

Now assume that u(t) = constant and that the parameters a1, b1, â1, b̂1 verify
the following relation:

b1

1 + a1
= b̂1

1 + â1
(4.148)

i.e., the steady state gains of the system and of the estimated model are equal even
if b̂1 �= b1 and â1 �= a1. Under the effect of the constant input u(t) = u, the plant
output will be given by:

y(t + 1) = y(t) = b1

1 + a1
u (4.149)

and the output of the estimated prediction model will be given by:

ŷ(t + 1) = ŷ(t) = b̂1

1 + â1
u (4.150)

Nevertheless, taking into account (4.148), it results that:

ε(t + 1) = y(t + 1) − ŷ(t + 1) = 0 (4.151)

for u(t) = constant ; â1 �= a1 ; b̂1 �= b1
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Fig. 4.15 Gain frequency
characteristics of two
systems with the same steady
state gain

ω

plant

model

G

It can thus be concluded from this example that the application of a constant input
does not allow to distinguish these two models, since they both have the same steady
state gain.

If the frequency characteristics of both systems are represented, they will super-
pose each other at zero frequency and the difference between them will appear for
frequencies other than zero since the poles of the two systems are different. Such a
situation is shown in Fig. 4.15.

Figure 4.15 indicates that in order to highlight the difference between the two
models (i.e., between the parameters) a signal u(t) = sin ωt (ω �= 0) must be
applied instead of signal u(t) = constant .

Let us analyze the phenomenon in more detail. From (4.146) and (4.147), one
obtains:

ε(t + 1) =y(t + 1) − ŷ(t + 1) = (a1 − â1)y(t) + (b1 − b̂1)u(t) = 0 (4.152)

From (4.146), y(t) can be expressed as a function of u(t) using the system transfer
operator:

y(t) = b1q−1

1 + a1q−1
u(t) (4.153)

Introducing the expression y(t) given by (4.153) in (4.152) and after multiplying
by (1 + a1q−1), one obtains:

ε(t + 1) =
[
(a1 − â1)b1q

−1 + (b1 − b̂1)(1 + a1q
−1)

]
u(t)

=
[
(b1 − b̂1) + q−1(b1â1 − a1b̂1)

]
u(t) = 0 (4.154)

We are concerned with finding the characteristics of u(t) so that (4.154) implies
zero parametric errors. Denoting:

b1 − b̂1 = α0 ; b1â1 − a1b̂1 = α1 (4.155)
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Equation (4.154) is thus written as:

(α0 + α1q
−1)u(t) = 0 (4.156)

which is a difference equation having a solution of the discretized exponential type.
Let us take:

u(t) = zt = esTs t (4.157)

where Ts is the sampling period. Equation (4.156) is then written:

(α0 + z−1α1)z
t = (zα0 + α1)z

t−1 = 0 (4.158)

and it will be verified for z, which is the solution of the characteristic equation:

zα0 + α1 = 0 (4.159)

One obtains:

z = −α1

α0
= eσTs (4.160)

σ = real ;
(

α1

α0
< 0

)

and the nonperiodic solution:
u(t) = eσTs t (4.161)

leads to the verification of (4.156) and (4.154) respectively without b̂1 = b1 and
â1 = a1. Indeed the signal u(t) = constant previously considered, corresponds to
σ = 0, i.e., −α1 = α0; however,

− α1 = α0 =⇒ b1 − b̂1 = a1b̂1 − b1â1 =⇒ b1

1 + a1
= b̂1

1 + â1
. (4.162)

In conclusion, if u(t) = constant , only the steady state gain of the system is correctly
estimated. In order to correctly estimate the system model parameters, u(t) must thus
be found such that ε(t) = 0 implies b̂1 = b1 and â1 = a1. This will be obtained if
u(t) is not a possible solution of (4.156).

Let
u(t) = e jωTs t or e− jωTs t (4.163)

For u(t) = e jωTs t , (4.156) becomes:

(
e jωTsα0 + α1

)
e jωTs (t−1) = 0 (4.164)
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Since α0 and α1 are real, e jωTs t cannot be a root of the characteristic equation (4.164)
and therefore ε(t + 1) = 0 will be obtained only if:

α0 = α1 = 0 =⇒ b̂1 = b1; â1 = a1 (4.165)

It was this type of input that was previously proposed (sin ωt = (e jωt − e− jωt )/2 j)
when the frequency characteristics of the two models were examined. A non zero
frequency sinusoid is thus required in order to identify two parameters. The signal
u(t) which in this case is a sinusoid, is a persistently exciting signal of order 2
(allowing to estimate 2 parameters).

This approach for determining the input u(t) allowing satisfactory model para-
meter identification may also be applied to systems of the general form

y(t) = −
nA∑
i=1

ai y(t − i) +
nB∑
i=1

biu(t − d − i) (4.166)

for which the total number of parameters to be identified is:

number of parameters = nA + nB .

In this case u(t) can be chosen as a sum of p-sinusoids of different frequencies:

u(t) = −
p∑

i=1

sin(ωi Tet) (4.167)

and the value p, allowing good parameter identification, is given by

{
p ≥ nA+nB

2 for nA + nB even

p ≥ nA+nB+1
2 for nA + nB odd

(4.168)

In other words, in order to identify a correct model it is necessary to apply a
frequency rich input. The standard solution in practice is provided by the use of
“pseudo-random binary sequences”. Pseudo-random binary sequences are sequences
of rectangular pulses, modulated in width, which approximate a discrete-time white
noise and thus have a spectral content rich in frequencies (see Sect. 5.2).

The above result will be used also for analysing the parameter convergence in
adaptive feedback control schemes used for attenuation of narrow-band disturbances
(see Chap. 12).

http://dx.doi.org/10.1007/978-3-319-41450-8_5
http://dx.doi.org/10.1007/978-3-319-41450-8_12
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4.6 The LMS Family of Parameter Adaptation Algorithms

The least mean squares (LMS) family of PAA has its origin in the paper of Widrow
and Hoff [3]. This algorithm corresponds to the “basic gradient algorithm” discussed
in Sect. 4.3.1 particularized for the case of an FIR structure (ai ≡ 0) and constant
diagonal adaptation gain matrix. Starting from this initial algorithm an impressive
number of developments and applications have been done by the signal processing
community concerned with adaptive filtering and by the community concerned with
active noise (vibration) control. Efforts to analyze the behaviour of the resulting algo-
rithms have been also done. These developments have been made ignoring till the mid
nineties (with some exceptions as for example [4]) the parameter adaptation algo-
rithms developed by the control community in the context of system identification
and adaptive control.

To make a bridge between the family of LMS algorithms and those developed by
the control community (presented in this book) one has to consider several aspects
which characterize a PAA:

• Structure of the estimated model.
• Type of adaptation error (a priori or a posteriori).
• Type of adaptation gain.
• Generation of the regressor vector.
• Properties of the algorithm (stability in deterministic context, convergence in a

stochastic context).

Most applications in adaptive filtering and adaptive feedforward noise/vibration
compensation are related to the “output error” structure considered in Sect. 4.3.2.2.
As long as an FIR structure is considered, there is no difference between an “output
error” configuration and an “equation error” configuration. The extension of the LMS
approach when an IIR structure is considered lead to an “output error” configuration.
This extension attributed to Feintuch (1976) [5] is called ULMS or RLMS [6] (the
standard LMS for FIR configurations being called XLMS); however, in the field of
adaptive parameter estimation an algorithm for an IIR output error configuration
designed form stability considerations (but which can be interpreted also from the
improved gradient point of view) has been already proposed in 1971 [7]. It uses the
concept of a posteriori adaptation error and constant adaptation gain while in [5]
the a priori adaptation error is used. For small adaptation gain the Feintuch ULMS
algorithm can be viewed as an approximation of the algorithm given in [7]. The
algorithm given in [7] has been extended for the case of time-varying adaptation
gain in [8] and compared with other algorithms in [9]. The asymptotic unbiasedness
in the mean has been shown in [10, 11]. Conditions for convergence with probability
1 have been established in [12].

The use of the a posteriori prediction (adaptation) error is crucial for the stability
of the adaptation algorithms. Once this option is considered, the stability analysis
becomes much easier and conditions upon the the strict real positivity of some transfer
functions in order to guarantee stability come in view.
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Concerning a further comparison between LMS type algorithms and those pre-
sented in this chapter one has to consider two cases:

• scalar constant adaptation gain; and
• matrix time-varying adaptation gain.

In other terms, in addition to the structure (which gives the name to an algorithm)
and the type of adaptation error used one has to specify what type of adaptation gain
is used. Both LMS type algorithms and those given in this chapter can be operated
with this two types of adaptation gain. In developing the output error algorithms in
this chapter, it was pointed from the beginning that “output error” can be used for
adaptive feedforward compensation for the case when the transfer function of the
secondary path (see Chap. 1) is equal to one (or very close), i.e.,G = 1 (or very close).
Nevertheless, in practice G �= 1 and this complicates the analysis of the algorithms
(in particular stability aspects). This problem is discussed in detail in Chap. 15. One
of the popular solutions adopted in the LMS family of algorithms is to filter the
regressor vector by G. This solution generated the FXLMS algorithm [13, 14] when
using an FIR structure and the FULMS algorithm when an IIR structure is considered
[15]. These corresponds in fact to particular cases of the family of algorithms which
will be proposed in Chap. 15 for adaptive feedforward compensation. The FXLMS
and FULMS have a serious drawback in terms of stability and convergence in the
presence of internal positive feedback [16, 17]. Experimental comparison of FULMS
with algorithms proposed in the book will be presented in Chap. 15. Comparison with
other related algorithms can also be found in Sect. 15.5.

4.7 Concluding Remarks

In this chapter we have presented discrete-time parameter adaptation algorithms
(PAA) and we have examined their properties.

We wish to emphasize the following basic ideas:

1. The PAA has in general the following recursive form (integral adaptation):

θ̂ (t + 1) = θ̂ (t) + F(t)φ(t)ν(t + 1)

where θ̂ (t) is the adjustable parameter vector. At each step the correcting term is
formed by the product of the adaptation error ν(t+1), the regressor (observation)
vector φ(t) and the adaptation gain matrix F(t). The adaptation error ν(t + 1)

is computed from the measurements up to and including t + 1 and the estimated
parameters up to t .

2. Several approaches can be used for the derivation of PAA among which we have
considered:

http://dx.doi.org/10.1007/978-3-319-41450-8_1
http://dx.doi.org/10.1007/978-3-319-41450-8_15
http://dx.doi.org/10.1007/978-3-319-41450-8_15
http://dx.doi.org/10.1007/978-3-319-41450-8_15
http://dx.doi.org/10.1007/978-3-319-41450-8_15
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• recursive minimization of a criterion in term of the adaptation error;
• transformation of an off-line parameter estimation into a recursive parameter

estimation; and
• stability considerations.

Nevertheless, since the resulting system is nonlinear, a stability analysis is manda-
tory.

3. An equivalent feedback system (EFR) can be associated with the PAA in the cases
where the adaptation error equation features the parameter error explicitly. The
use of the EFR simplifies drastically the stability analysis (or synthesis) via the
use of the properties of passive systems connected in feedback.

4. For general classes of adaptation error equations and PAA, stability conditions
for the resulting adaptive systems have been given.

5. A variety of choices for the time profile of the adaptation gain are possible. The
choice depends upon the specific application.

4.8 Notes and References

The chapter focused on PAA with an integral structure which is the most used in
practice. Other structure exists [1]. In particular the integral+proportional PAA is
interesting for active vibration control. Details are given in Appendix E.

The books [1, 18–22] give an extensive coverage of the discrete time PAA from
the stability point of view in a deterministic environment and from the convergence
point of view in a stochastic environment. The book [6] gives a presentation of the
PAA starting from the LMS algorithm. Development and analysis of LMS can be
found in [13, 14] (Filtered-X LMS), [15, 23] (Filtered-U LMS), [24] (full gradient
algorithm) [16, 25].
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Chapter 5
Identification of the Active Vibration
Control Systems—The Bases

5.1 Introduction

To design an active control one needs the dynamical model of the compensator
systems (from the control to be applied to the measurement of the residual acceler-
ation or force).1 Model identification from experimental data is a well established
methodology [1, 2]. Identification of dynamic systems is an experimental approach
for determining a dynamic model of a system. It includes four steps:

(1) Input–output data acquisition under an experimental protocol.
(2) Estimation of the model complexity (structure).
(3) Estimation of the model parameters.
(4) Validation of the identified model (structure of the model and values of the

parameters).

A complete identification operation must comprise the four stages indicated above.
System identification should be viewed as an iterative process as illustrated in Fig. 5.1
which has as objective to obtain a model which passes the model validation test and
then can be used safely for control design.

The typical input excitation sequence is a PRBS (pseudorandombinary sequence).
The type of model which will be identified is a discrete-time parametric model
allowing later to directly design a control algorithm straightforwardly implementable
on a computer. Model validation is the final key point. The estimation of the model
parameters is done in a noisy environment. It is important to emphasize that it does
not exist one single algorithm that can provide in all the cases a good model (i.e.,
which passes the model validation tests). Therefore, the appropriate algorithmwhich
allows to obtain a model which passes the validation tests has to be used.

1Linear feedback regulator design will require also the model of the disturbance. Linear feedfor-
ward compensator design will require in addition a model of the primary path. Design of adaptive
regulators or of feedforward compensators require only the model of the secondary path.

© Springer International Publishing Switzerland 2017
I.D. Landau et al., Adaptive and Robust Active Vibration Control,
Advances in Industrial Control, DOI 10.1007/978-3-319-41450-8_5
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Fig. 5.1 The identification
methodology I/0 Data Acquisition

 unde r an Experimental Protocol 

Model Complexity Estimation
(or Selection)

Choice of the Noise Model

Parameter Estimation

Model Validation

YesNo Control
Design

In what follows, we would like to summarize some of the basic facts in system
identification. For a detailed coverage of the subject, see [1, 3].

Figure5.2 shows the principle of parameter estimation of a discrete-time model.
An adjustable model of the discretized plant is built. Its parameters are driven by a
parameter adaptation algorithm such that the prediction error (the difference between
the true output and the predicted output by the model) is minimized in the sense of
a certain criterion.

Several assumptions are implicitly made when one uses this approach

• the order of the discrete-time model representing the system is known;
• in the absence of noise the adaptation algorithm will drive the prediction error
towards zero;

Fig. 5.2 Principle of model parameters estimation
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• in the presence of noise, the estimated parameters will be asymptotically unbiased2

(i.e., the noise does not influence asymptotically the precision of the parameter
estimation); and

• the input to the system (the testing signal) is such that null prediction error implies
null parameter errors (persistent excitation property).

The various steps indicated in Fig. 5.1 tries to assure that the parameter estimation
algorithm will provide the good parameter estimates.

5.2 Input–Output Data Acquisition and Preprocessing

5.2.1 Input–Output Data Acquisition Under
an Experimental Protocol

The experimental protocol should assure persistent excitation for the number of
parameters to be estimated. It can be shown (see Chap.4, Sect. 4.5 and [1]) that for
identifying 2nparameters, the excitation signal should contain at leastn + 1 sinusoids
of distinct frequencies. To go beyond this constraints one usually uses Pseudorandom
Binary Sequences (PRBS) since they contain a large number of sinusoidswith energy
equally distributed over the frequency domain. In addition themagnitude of the signal
is constant allowing and easy selection with respect to the magnitude constraints on
the plant input.

5.2.2 Pseudorandom Binary Sequences (PRBS)

Pseudorandom binary sequences are sequences of rectangular pulses, modulated in
width, that approximate a discrete-time white noise and thus have a spectral content
rich in frequencies. They owe their name pseudo random to the fact that they are
characterized by a sequence length within which the variations in pulse width vary
randomly, but that over a large time horizon, they are periodic, the period being
defined by the length of the sequence. In the practice of system identification, one
generally uses just one complete sequence and we should examine the properties of
such a sequence.

The PRBS are generated by means of shift registers with feedback (implemented
in hardware or software).3 The maximum length of a sequence is L = 2N − 1, where
N is the number of cells of the shift register.

2The parameter estimation error induced by the measurement noise is called “bias”.
3Routines for generating PRBS can be downloaded from the websites:
http://www.landau-adaptivecontrol.org and http://www.gipsa-lab.grenoble-inp.fr/~ioandore.
landau/identificationandcontrol/.

http://dx.doi.org/10.1007/978-3-319-41450-8_4
http://www.landau-adaptivecontrol.org
http://www.gipsa-lab.grenoble-inp.fr/~ioandore.landau/identificationandcontrol/
http://www.gipsa-lab.grenoble-inp.fr/~ioandore.landau/identificationandcontrol/
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Fig. 5.3 Generation of a
PRBS of length 25 − 1 = 31
sampling periods

B1   B2 B3 B4 B5

+

( summation modulo 2 )

Table 5.1 Generation of
maximum length PRBS

Number of cells
N

Sequence length
L = 2N − 1

Bits added
Bi and Bj

5 31 3 and 5

6 63 5 and 6

7 127 4 and 7

8 255 2, 3, 4 and 8

9 511 5 and 9

10 1023 7 and 10

Figure5.3 presents the generation of a PRBS of length 31 = 25 − 1 obtained by
means of a N = 5-cells shift register. Note that at least one of the N cells of the shift
register should have an initial logic value different from zero (one generally takes all
the initial values of the N cells equal to the logic value 1).

Table5.1 gives the structure enabling maximum length PRBS to be generated for
different numbers of cells. Note also a very important characteristic element of the
PRBS: the maximum duration of a PRBS impulse is equal to N (number of cells).
This property is to be considered when choosing a PRBS for system identification.4

In order to cover the entire frequency spectrumgenerated by a particular PRBS, the
length of a testmust be at least equal to the length of the sequence. In a large number of
cases, the duration of the test L is chosen equal to the length of the sequence. Through
the use of a frequency divider for the clock frequency of the PRBS, it is possible
to shape the energy distribution in the frequency domain. This is why, in a large
number of practical situations, a submultiple of the sampling frequency is chosen
as the clock frequency for the PRBS. Note that dividing the clock frequency of the
PRBS will reduce the frequency range corresponding to a constant spectral density
in the high frequencies while augmenting the spectral density in the low frequencies.
In general, this will not affect the quality of identification, either because in many
cases when this solution is considered, the plant to be identified has a low band pass
or because the effect or the reduction of the signal/noise ratio at high frequencies
can be compensated by the use of appropriate identification techniques; however, it
is recommended to choose p ≤ 4 where p is the frequency divider.

4Functions prbs.m and prbs.c available on the websites: http://www.landau-adaptivecontrol.org and
http://www.gipsa-lab.grenoble-inp.fr/ ioandore.landau/identificationandcontrol/ allow to generate
PRBS of various lengths and magnitudes.

http://www.landau-adaptivecontrol.org
http://www.gipsa-lab.grenoble-inp.fr/~ioandore.landau/identificationandcontrol/
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Fig. 5.4 Spectral density
of a PRBS sequence,
a N = 8, p = 1,
b N = 8, p = 2,
c N = 8, p = 3
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Figure5.4 shows the spectral density of PRBS sequences generated with N = 8
for p = 1, 2, 3. As one can see, the energy of the spectrum is reduced in the high
frequencies and augmented in the lower frequencies. Furthermore, for p = 3 a hole
occurs at fs/3.

Until now, we have been concerned only with the choice of the length and clock
frequencyof thePRBS; however, themagnitude of thePRBSmust also be considered.
Although the magnitude of the PRBS may be very low, it should lead to output
variations larger than the residual noise level. If the signal/noise ratio is too low,
the length of the test must be augmented in order to obtain a satisfactory parameter
estimation.

Note that in a large number of applications, the significant increase in the PRBS
level may be undesirable in view of the nonlinear character of the plants to be identi-
fied (we are concerned with the identification of a linear model around an operating
point).

5.2.3 Data Preprocessing

The first aspect is that one works with centred data (variations of the real data) so
that the first operation is the centering of the input/output data by subtracting their
mean value.

When identifying the compensator system in active vibration control systems, one
has to take into account the double differentiator behaviour. This means that a part
of the model is known and we should identify only the unknown part. To do this, the
input applied to the real system is filtered by a double discrete-time differentiator
filter

(1 − q−1)2 = 1 − 2q−1 + q−2 (5.1)
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This new input/output sequence is then centred and used together with the measured
output data for identifying the unknown part of the model. After the unknown part
of the model will be identified, the double differentiator should be included in the
final model (the two transfer operators will be multiplied).

5.3 Model Order Estimation from Data

It is extremely important to be able to estimate the order of the system from
input/output data since it is hard from physical reasoning to get a reliable estimation
of the order of the system. To introduce the problem of order estimation from data,
we will start with an example. Assume that the plant model can be described by:

y(t) = −a1y(t − 1) + b1u(t − 1) (5.2)

and that the data are noise free. The order of this model is n = nA = nB = 1.
Question: Is there any way to test from data if the order assumption is correct?

To do so, construct the following matrix:

⎡
⎢⎢⎢⎣

y(t)
... y(t − 1) u(t − 1)

y(t − 1)
... y(t − 2) u(t − 2)

y(t − 2)
... y(t − 3) u(t − 3)

⎤
⎥⎥⎥⎦ =

[
Y(t)

... R(1)

]
(5.3)

Clearly, if the order of the model given in Eq. (5.2) is correct, the vector Y(t) will
be a linear combination of the columns of R(1) (Y(t) = R(1)θ with θT = [−a1, b1])
and the rank of the matrix will be 2 (instead of 3). If the plant model is of order 2 or
higher, the matrix in (5.3) will be full rank. Of course, this procedure can be extended
for testing the order of a model by testing the rank of the matrix [Y(t),R(n̂)] where:

R(n̂) = [Y(t − 1),U(t − 1),Y(t − 2),U(t − 2) . . . Y(t − n̂),U(t − n̂)], (5.4)

YT (t) = [y(t), y(t − 1) . . .], UT (t) = [u(t), u(t − 1) . . .]. (5.5)

Unfortunately, as a consequence of the presence of noise, this procedure cannot
directly be applied in practice.

A more practical approach results from the observation that the rank test problem
can be approached by the searching of θ̂ which minimizes the following criterion for
an estimated value of the order n̂.

VLS(n̂,N) = min
θ̂

1

N
‖Y(t) − R(n̂)θ̂‖2 (5.6)
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whereN is the number of samples. But this criterion is nothing else than an equivalent
formulation of the least squares [4]. If the conditions for unbiased estimation using
least squares are fulfilled, (5.6) is an efficient way for assessing the order of themodel
since VLS(n̂) − VLS(n̂ + 1) → 0 when n̂ ≥ n.

In the meantime, the objective of the identification is to estimate lower order
models (parsimony principle) and therefore, it is reasonable to add in the criterion
(5.6) a term which penalizes the complexity of the model. Therefore, the penalized
criterion for order estimation will take the form:

JLS(n̂,N) = VLS(n̂,N) + S(n̂,N) (5.7)

where typically
S(n̂,N) = 2n̂X(N) (5.8)

and VLS represents the non penalized criterion. X(N) in (5.8) is a function that
decreases with N . For example, in the so called BICLS(n̂,N) criterion, X(N) = logN

N
(other choices are possible—see [3–5]) and the order n̂ is selected as the one which
minimizes JLS given by (5.7). Unfortunately, the results are unsatisfactory in practice
because in themajority of situations, the conditions for unbiasedparameter estimation
using least squares are not fulfilled.

In [5, 6], it is proposed to replace the matrix R(n̂) by an instrumental variable
matrix Z(n̂) whose elements will not be correlated with the measurement noise.
Such an instrumental matrix Z(n̂) can be obtained by replacing in the matrix R(n̂),
the columns Y(t − 1), Y(t − 2), Y(t − 3) by delayed version of U(t − L − i), i.e.,
where L > n:

Z(n̂) = [U(t − L − 1),U(t − 1),U(t − L − 2),U(t − 2) . . . ] (5.9)

and therefore, the following criterion is used for the order estimation:

JIV (n̂,N) = min
θ̂

1

N
‖Y(t) − Z(n̂)θ̂‖2 + 2n̂logN

N
(5.10)

and
n̂ = min

n̂
JIV (n̂). (5.11)

A typical curve of the evolution of the criterion (5.10) as a function of n̂ is shown in
Fig. 5.5.

It is shown in [5] that using this criterion a consistent estimate of the order n̂ is
obtained undermild noise conditions (i.e., limN→∞ Pr(n̂ = n) = 1wherePr denotes
the probability). Comparisons with other order estimation criteria are also provided
in this reference.
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Fig. 5.5 Evaluation of the
criterion for order estimation

Once an estimated order n̂ is selected, one can apply a similar procedure to estimate
n̂A, n̂ − d̂, n̂B + d̂, from which n̂A, n̂B and d̂ are obtained.5

5.4 Parameter Estimation Algorithms

The algorithms which will be used for parameter estimation will depend on the
assumptions made on the noise disturbing the measurements, assumptions which
have to be confirmed by the model validation.

It is important to emphasize that no one single plant + noise structure can describe
all the situations encountered in practice. Furthermore, there is no a unique parameter
estimation algorithm that may be used with all possible plant+ noise structures such
that the estimated parameters are always unbiased. The most typical structures for
plant + noise are shown in Fig. 5.6.

The various “plant + noise” models shown in Fig. 5.6 can be described by:

y(t) = q−dB(q−1)

A(q−1)
u(t) + η(t) (5.12)

For structure S1 one has:

η(t) = 1

A(q−1)
e(t) (5.13)

where e(t) is a discrete-time Gaussian white noise (zero mean and standard
deviation σ ).

For structure S2 one has:
η(t) = w(t) (5.14)

a centred noise of finite power and uncorrelated with the input u(t).

5Routines corresponding to this method in MATLAB (estorderiv.m) and Scilab (estorderiv.sci)
can be downloaded from the websites: http://www.landau-adaptivecontrol.org and
http://www.gipsa-lab.grenoble-inp.fr/ ioandore.landau/identificationandcontrol/.

http://www.landau-adaptivecontrol.org
http://www.gipsa-lab.grenoble-inp.fr/~ioandore.landau/identificationandcontrol/


5.4 Parameter Estimation Algorithms 89

(a) (b)

(d)(c)

Fig. 5.6 Structure of the “plant + noise” models. a S1: A(q−1)y(t) = q−dB(q−1)u(t) + e(t).
b S2: A(q−1)y(t) = q−dB(q−1)u(t) + A(q−1)w(t). c S3: A(q−1)y(t) = q−dB(q−1)u(t) +
C(q−1)e(t). d S4: A(q−1)y(t) = q−dB(q−1)u(t) + (1/C(q−1))e(t)

For structure S3 one has

η(t) = C(q−1)

A(q−1)
e(t) (5.15)

and for structure S4 one has:

η(t) = 1

C(q−1)A(q−1)
e(t) (5.16)

Based on the experience of the authors in identifying active vibration control sys-
tems, one can say that in most of the situations they are represented correctly by
ARMAX models (structure S3). Therefore, most likely, algorithms for estimating
parameters for ARMAX models will provide good results (should be confirmed by
model validation). The simplest and in general most efficient algorithms for identify-
ing active vibration control systems are the “recursive extended least squares” and the
“output error with extend predictor model”.6 Details on these two type of algorithms
will be given next. Nevertheless, there is no guarantee that ARMAX representation
is the good one for all possible configuration which can be encountered in practice.
Therefore one has to be prepared to use also other parameter estimation algorithms if
the validation of the identified models using the above mentioned algorithms fails.7

6Routines for these algorithms can be downloaded from the websites:
http://www.landau-adaptivecontrol.org and http://www.gipsa-lab.grenoble-inp.fr/~ioandore.
landau/identificationandcontrol/.
7The interactive stand alone software iReg (http://tudor-bogdan.airimitoaie.name/ireg.html) pro-
vides parameter estimations algorithms for all the mentioned “plant + noise” structures as well as

http://www.landau-adaptivecontrol.org
http://www.gipsa-lab.grenoble-inp.fr/~ioandore.landau/identificationandcontrol/
http://www.gipsa-lab.grenoble-inp.fr/~ioandore.landau/identificationandcontrol/
http://tudor-bogdan.airimitoaie.name/ireg.html


90 5 Identification of the Active Vibration Control Systems—The Bases

All the recursive parameter estimation algorithms use the same parameter adap-
tation algorithm:

θ̂ (t + 1) = θ̂ (t) + F(t)Φ(t)ν(t + 1) (5.17)

F(t + 1)−1 = λ1(t)F(t)−1 + λ2(t)Φ(t)ΦT (t) (5.18)

0 < λ1(t) ≤ 1; 0 ≤ λ2(t) < 2;F(0) > 0

F−1(t) > αF−1(0); 0 < α < ∞
ν(t + 1) = ν◦(t + 1)

1 + ΦT (t)F(t)Φ(t)
(5.19)

What changes from an identification algorithm to another is:

• the structure of the adjustable predictor;
• how the adaptation error is generated;
• how the regressor vector is generated;
• how the adaptation error is generated; and
• the size of the adjustable parameter vector (the number of parameters).

The various options for the selection of the time profile of the adaptation gain F(t)
in (5.19) have been discussed in Sect. 4.3.4. For system identification of a linear
time invariant models, a decreasing adaptation gain type algorithm will be used or
an algorithm with variable forgetting factor. We will present next the “recursive
extended least squares” and the “output error with extended predictor”.

5.4.1 Recursive Extended Least Squares (RELS)

This method has been developed in order to identify without bias plant + noise
models of the form (ARMAX model):

A(q−1)y(t) = q−dB(q−1)u(t) + C(q−1)e(t) (5.20)

The idea is to simultaneously identify the plant model and the noise model, in order
to obtain a prediction (adaptation) error which is asymptotically white.

The model generating the data can be expressed as:

y(t + 1) = −A∗(q−1)y(t) + B∗(q−1)u(t − d) + C∗(q−1)e(t) + e(t + 1)

= θTφ0(t) + e(t + 1) (5.21)

(Footnote 7 continued)
an automated identification procedure covering all the stages of system identification. It has been
extensively used for identification of active vibration control systems.

http://dx.doi.org/10.1007/978-3-319-41450-8_4
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where:

θT = [a1 . . . anA , b1 . . . bnB , c1 . . . cnC ] (5.22)

φT
0 (t) = [−y(t) · · · − y(t − nA + 1), u(t − d) . . . u(t − d − nB + 1),

e(t) . . . e(t − nc + 1)] (5.23)

Assume that the parameters are known and construct a predictor that will give a white
prediction error:

ŷ(t + 1) = −A∗(q−1)y(t) + B∗(q−1)u(t − d) + C∗(q−1)e(t) (5.24)

Furthermore, this predictor will minimize E{[y(t + 1) − ŷ(t + 1)]2} [1].
The prediction error, in the case of known parameters, is given by:

ε(t + 1) = y(t + 1) − ŷ(t + 1) = e(t + 1) (5.25)

This allows rewriting Eq. (5.24) in the form:

ŷ(t + 1) = −A∗(q−1)y(t) + B∗(q−1)u(t − d) + C∗(q−1)ε(t) (5.26)

Subtracting now (5.26) from (5.21), one gets:

ε(t + 1) = −C∗(q−1) [ε(t) − e(t)] + e(t) (5.27)

i.e.,
C(q−1) [ε(t + 1) − e(t + 1)] = 0 (5.28)

Since C(q−1) is an asymptotically stable polynomial, it results that ε(t + 1) will
become white asymptotically.

The adaptive version of this predictor is as follows. The a priori adjustable pre-
dictor will take the form:

ŷ◦(t + 1) = −Â∗(q−1, t)y(t) + B̂∗(q−1, t)u(t) + Ĉ∗(q−1, t)ε(t) = θ̂T (t)φ(t)
(5.29)

in which:

θ̂T = [â1(t) . . . ânA(t), b̂1(t) . . . b̂nA(t), ĉ1(t) . . . ĉnA(t)] (5.30)

φT (t) = [−y(t) · · · − y(t − nA + 1), u(t − d) . . . u(t − d − nB + 1),

ε(t) . . . ε(t − nc + 1)] (5.31)

The a posteriori adjustable predictor will be given by:

ŷ(t + 1) = θ̂T (t + 1)φ(t) (5.32)
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The a posteriori prediction error ε(t) which enters in the observation vector of the
predictor is given by

ε(t) = y(t) − ŷ(t) (5.33)

(where ŷ(t) is now the a posteriori output of the adjustable predictor) and the a priori
prediction error is given by:

ε◦(t + 1) = y(t + 1) − ŷ◦(t + 1) (5.34)

The a posteriori prediction equation is obtained subtracting (5.32) from (5.21) and
observing that (5.21) can be alternatively expressed as:

y(t + 1) = θTφ(t) − C∗(q−1)ε(t) + C(q−1)e(t) (5.35)

(by adding and subtracting the term ±C∗(q−1)ε(t)). One obtains:

ε(t + 1) = −C∗(q−1)ε(t) +
[
θ − θ̂ (t + 1)

]T
φ(t) + C(q−1)e(t) (5.36)

from which it results that:

ε(t + 1) = 1

C(q−1)

[
θ − θ̂ (t + 1)

]T
φ(t) + e(t) (5.37)

In the deterministic case C(q−1) = 1, e(t) ≡ 0 and it can be seen that (5.37) has the
appropriate format corresponding to Theorem4.1 given in Chap.4. One immediately
concludes, using the PAA given in (5.17) through (5.19), with Φ(t) = φ(t), ν(t) =
ε(t), and ν◦(t) = ε◦(t) that, in the deterministic case, global asymptotic stability is
assured without any positive real condition. In stochastic environment, either using
ODE or martingales, it can be shown [7] that the convergence is assured provided
that (sufficient condition):

H ′(z−1) = 1

C(z−1)
− λ2

2
(5.38)

is a strictly positive real transfer function for 2 > λ2 ≥ maxt λ2(t).

5.4.2 Output Error with Extended Prediction Model
(XOLOE)

This algorithm can be used for identification of plant + noisemodels of the ARMAX
form. It has been developed initiallywith the aim to remove the positive real condition
required by the output error algorithm. It turns out that theXOLOEcan be interpreted

http://dx.doi.org/10.1007/978-3-319-41450-8_4
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as a variant of the ELS. To see this, consider the a priori output of the adjustable
predictor for ELS (5.29), which can be rewritten as follows by adding and subtracting
the term ±Â∗(q−1, t)ŷ(t):

ŷ◦(t + 1) = −Â∗(q−1, t)ŷ(t) + B̂∗(q−1, t)u(t − d)

+
[
Ĉ∗(q−1, t)ε(t) − Â∗(q−1, t)[y(t) − ŷ(t)]

]
(5.39)

Defining:

Ĥ∗(q−1, t) = Ĉ∗(q−1, t) − Â∗(q−1, t) = ĥ1(t) + q−1ĥ2(t) + · · ·

with:
ĥi(t) = ĉi(t) − âi(t); i = 1, 2 . . .max(nA, nC)

Equation (5.39) can be rewritten as:

ŷ◦(t + 1) = −Â∗(q−1, t)ŷ(t) + B̂∗(q−1, t)u(t − d) + Ĥ∗(q−1, t)ε(t) (5.40)

= θ̂T (t)φ(t) (5.41)

where now:

θ̂T (t) =
[
â1(t) . . . ânA , b̂1(t) . . . b̂nB(t), ĥ1(t) . . . ĥnH (t)

]

φT (t) = [−ŷ(t), . . . ŷ(t − nA + 1), u(t − d) . . . u(t − d − nB + 1),

ε(t) . . . ε(t − nC + 1)]

Equation (5.40) corresponds to the adjustable predictor for the output error with
extended prediction model. One immediately concludes, using the PAA given in
(5.17)–(5.19),withΦ(t) = φ(t),ν(t) = ε(t), andν◦(t) = ε◦(t) (defined inEqs. (5.33)
and (5.34), respectively) that, in the deterministic case, global asymptotic stabil-
ity is assured without any positive real condition. In the stochastic context, one
has the (sufficient) convergence condition: H ′(z−1) = 1

C(z−1)
− λ2

2 should be SPR
(2 > λ2 ≥ maxt λ2(t)) similar to that for ELS.

Despite their similar asymptotic properties, there is a difference in the first nA
components of the vector φ(t). While the RELS algorithm uses the measurements
y(t), y(t − 1), . . . directly affected by the noise, the XOLOE algorithm uses the pre-
dicted a posteriori outputs ŷ(t), ŷ(t − 1)which depend upon the noise only indirectly
through the PAA. This explainswhy a better estimation is obtainedwithXOLOE than
with RELS over short or medium time horizons (it removes the bias more quickly).
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5.5 Validation of the Identified Models

The identification methods considered above (recursive extended least squares and
output error with extended predictor) belongs to the class of methods based on the
whitening of the residual errors, i.e., the identified ARMAX predictor is an optimal
predictor if the residual error is a white noise. If the residual prediction error is a
white noise sequence, in addition to obtaining unbiased parameter estimates, this
also means that the identified model gives the best prediction for the plant output in
the sense that it minimizes the variance of the prediction error. On the other hand,
since the residual error is white and a white noise is not correlated with any other
variable, then all the correlations between the input and the output of the plant are
represented by the identified model and what remains unmodelled does not depend
on the input.

The principle of the validation method is as follows:

• If the plant + noise structure chosen is correct, i.e., representative of reality.
• If an appropriate parameter estimation method for the structure chosen has been
used.

• If the orders of the polynomials A(q−1),B(q−1),C(q−1) and the value of d (delay)
have been correctly chosen (the plant model is in the model set).

Then the prediction error ε(t) asymptotically tends toward a white noise, which
implies:

lim
t→∞E{ε(t)ε(t − i)} = 0; i = 1, 2, 3 . . . ; −1,−2,−3 . . .

The validation method implements this principle.8 It is made up of several steps:

(1) Creation of an I/O file for the identified model (using the same input sequence
as for the system).

(2) Creation of a residual prediction error file for the identified model.
(3) Whiteness (uncorrelatedness) test on the residual prediction errors sequence.

5.5.1 Whiteness Test

Let {ε(t)} be the centred sequence of the residual prediction errors (centred:measured
value–mean value). One computes:

8Routines corresponding to this validation method in MATLAB and Scilab
can be downloaded from the websites: http://www.landau-adaptivecontrol.org and
http://www.gipsa-lab.grenoble-inp.fr/ ioandore.landau/identificationandcontrol/.

http://www.landau-adaptivecontrol.org
http://www.gipsa-lab.grenoble-inp.fr/~ioandore.landau/identificationandcontrol/
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R(0) = 1

N

N∑
t=1

ε2(t), RN(0) = R(0)

R(0)
= 1, (5.42)

R(i) = 1

N

N∑
t=1

ε(t)ε(t − i), RN(i) = R(i)

R(0)
, i = 1, 2, 3, . . . nA, . . . (5.43)

with imax ≥ nA (degree of polynomial A(q−1)), which are estimations of the (normal-
ized) autocorrelations.

If the residual prediction error sequence is perfectly white (theoretical situation),
and the number of samples is very large (N → ∞), then RN(0) = 1, RN(i) = 0,
i ≥ 1.9

In real situations, however, this is never the case (i.e., RN(i) �= 0; i ≥ 1), since on
the one hand, ε(t) contains residual structural errors (order errors, nonlinear effects,
non-Gaussian noises), and on the other hand, the number of samplesmay be relatively
small in some cases. Also, it should be kept in mind that one always seeks to identify
good simple models (with few parameters).

One considers as a practical validation criterion (extensively tested on applica-
tions):

RN(0) = 1; | RN(i) |≤ 2.17√
N

; i ≥ 1 (5.44)

where N is the number of samples.
This test has been defined taking into account the fact that for a white noise

sequence RN(i), i �= 0 has an asymptotically Gaussian (normal) distribution with
zero mean and standard deviation:

σ = 1√
N

The confidence interval considered in (5.44) corresponds to a 3% level of significance
of the hypothesis test for Gaussian distribution.

If RN(i) obeys the Gaussian distribution (0, 1/
√
N), there is only a probability of

1.5% that RN(i) is larger than 2.17/
√
N , or that RN(i) is smaller than −2.17/

√
N .

Therefore, if a computedvalueRN(i) falls outside the rangeof the confidence interval,
the hypothesis ε(t) and ε(t − i) are independent should be rejected, i.e., {ε(t)} is not
a white noise sequence.

The following remarks are important:

• If several identified models have the same complexity (number of parameters),
one chooses the model given by the methods that lead to the smallest |RN(i)|;

• A too good validation criterion indicates that model simplifications may be pos-
sible.

9Conversely, for Gaussian data, uncorrelation implies independence. In this case, RN(i) = 0, i ≥ 1
implies independence between ε(t), ε(t − 1) . . . , i.e., the sequence of residuals {ε(t)} is a Gaussian
white noise.
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• To a certain extent, taking into account the relative weight of various non-Gaussian
and modelling errors (which increases with the number of samples), the validation
criterion may be slightly tightened for small N and slightly relaxed for large N .
Therefore, for simplicity’s sake, one can consider as a basic practical numerical
value for the validation criterion value:

| RN(i) |≤ 0.15; i ≥ 1.

Note also that a complete model validation implies, after the validation using the
input/output sequence used for identification, a validation using a plant input/output
sequence other than the one used for identification.

5.6 Concluding Remarks

Basic elements for the identification of discrete-time models for dynamical systems
have been laid down in this chapter. The following facts have to be emphasized:

1. System identification includes four basic steps:

• input/output data acquisition under an experimental protocol;
• estimation or selection of the model complexity;
• estimation of the model parameters; and
• validation of the identified model (structure of the model and values of para-
meters).

This procedure has to be repeated (with appropriate changes at each step) if the
validation of the model fails.

2. Recursive or off-line parameter estimation algorithms can be used for identifica-
tion of the plant model parameters.

3. The various recursive parameter estimation algorithms use the same structure for
the PAA. They differ from each other in the following ways:

• structure of the adjustable predictor;
• nature of the components of the observation vector; and
• the way in which the adaptation error is generated.

4. The stochastic noises, which contaminate the measured output, may cause errors
in the parameter estimates (bias). For a specific type of noise, appropriate recur-
sive identification algorithms providing asymptotically unbiased estimates are
available.

5. A unique plant + noise model structure that describes all the situations encoun-
tered in practice does not exist, nor is there a unique identification method pro-
viding satisfactory parameter estimates (unbiased estimates) in all situations.
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5.7 Notes and References

Amore detailed discussion of the subject following the same pathway can be found in
[1]. The associatedwebsite: http://www.gipsa-lab.grenoble-inp.fr/~ioandore.landau/
identificationandcontrol/ provides MATLAB and scilab functions for system identi-
fication as well as simulated and real input/output data for training.

For a general coverage of system identification see [3, 4].
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Chapter 6
Identification of the Test Benches
in Open-Loop Operation

6.1 Identification of the Active Hydraulic Suspension
in Open-Loop Operation

The active suspension has been presented in Sect. 2.1. It will be used to enhance
damping properties of the passive damper in the frequency region 25–50 Hz. In
the same frequency region, active rejection of vibrations will be also considered.
Outside this region, the passive part offers good vibration isolation properties. For
active damping the specifications in the frequency domain will go up to 150 Hz.
Above this frequency, the system should operate almost in open-loop. The sampling
frequency is 800 Hz.

The block diagram for the primary and secondary path is shown in Fig. 6.1, where
u(t) will be the excitation of the secondary path and u p the excitation of the primary
path.

The linear time-invariant (LTI) discrete-time model of the secondary path used
for controller design has the form

G(z−1) = z−d B(z−1)

A(z−1)
(6.1)

where

A(z−1) = 1 + a1z
−1 + · · · + anA z

−nA , (6.2)

B(z−1) = b1z
−1 + · · · + bnB z

−nB , (6.3)

and d is the secondary path pure time delay in number of sampling periods.1

1The complex variable z−1 will be used to characterize the system’s behaviour in the frequency
domain and the delay operator q−1 will be used for the time domain analysis.
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Fig. 6.1 Block diagram of
the primary and secondary
path

The linear time-invariant (LTI) discrete-time model of the primary path has the
form

D(z−1) = q−dD BD(z−1)

AD(z−1)
(6.4)

The identification of the secondary and primary paths will be presented next. The
model of the secondary path will be used throughout the book for controller design
while the model of the primary path will be used for simulation only.

6.1.1 Identification of the Secondary Path

6.1.1.1 Data Acquisition

Since the main frequency range for control is between 25 and 50 Hz, a Pseudo
Random Binary Sequence (PRBS) with a clock frequency divider of 4 has been used
in order to enhance the energy of the input excitation in low frequencies. The risk of
missing some dynamics around 200 Hz is not important since the system will operate
almost in open-loop at frequencies over 150 Hz. The PRBS used has the following
characteristics

• magnitude = 0.2 V;
• number of cells: N = 9 (sequence length: L = 2N − 1 = 511);
• frequency divider: p = 4; and
• number of acquired samples: 2048.

Since the secondary path has a double differentiator behaviour (input: position, out-
put: force) as indicated in Sect. 5.2.3, this will be considered as a “known” part of
the system and the objective will be to identify the “unknown” part only. To do
this, the input sequence will be filtered by a double discrete-time differentiator (i.e.,
(1 − q−1)2) as shown in Fig. 6.2, i.e., B(q−1) = (1 − q−1)2 · B ′(q−1).

Once B ′ will be identified, the discrete-time double differentiator will be included
in the final complete model.

The input/output data file data_identActiveSusp_SecPath.mat is available on the
book website (the input is already filtered through a discrete-time double differen-
tiator).

http://dx.doi.org/10.1007/978-3-319-41450-8_5


6.1 Identification of the Active Hydraulic Suspension in Open-Loop Operation 101

Fig. 6.2 Including the double differentiator for identification of the secondary path

Fig. 6.3 Estimation of the system order n (active suspension)

6.1.1.2 Order Estimation

The algorithm described in Sect. 5.3, for order estimation and based on the use of
instrumental variables has been used.2 The non-penalized criterion VIV (dashed line)
and the complexity penalized criterion JIV (solid line) for the estimation of n (order
of the system) are shown in Fig. 6.3. As it can be seen the minimum of JIV is not
very sharp but however clear. n = 14 has been selected.

Proceeding further to the estimation of the orders of polynomials A, B ′ and delay
d, the values obtained are nA = 13, nB ′ = 11, d = 3. From Fig. 6.4 (zoom) it can
be seen that the criterion for the selection of nA gives extremely close results for
nA = 13 and nA = 14. It was found that nA = 14 gives better results in terms of
statistical model validation. For parameter estimation, since the complexity of the
designed controller will depend on nB + d, it was decided to take nB ′ = 14, d = 0
(the model with nB ′ = 11 and d = 3 gives very close results).

2See function estorderiv.m on the book website.

http://dx.doi.org/10.1007/978-3-319-41450-8_5
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Fig. 6.4 Estimation of the order of polynomial A (nA) (active suspension)

6.1.1.3 Parameter Estimation

Models with order nA = 13, nA = 14 and d = 0 have been identified. As indi-
cated in Sect. 5.4 extensive validation tests on this system as well as on other AVC
(see subsequent section) indicate that the ARMAX representation of the “plant +
noise” provides the best results. Various methods dedicated to parameter estima-
tion of ARMAX model have been used (Recursive extended least squares, Output
error with extended prediction model, Recursive maximum likelihood [1]). These
algorithms have been used with a variable forgetting factor

λ1(t) = λ0λ1(t − 1) + 1 − λ0; 0 < λ0 < 1, (6.5)

with λ1(0) = 0.97 and λ0 = 0.97. The various obtained models have been validated
and compared in terms of quality of validation.

6.1.1.4 Model Validation

Models with nA = 14, nB ′ = 14, d = 0 and with nA = 13, nB ′ = 14, d = 0
obtained with various parameter estimations have been compared using the white-
ness test. The best results have been obtained using estimated models with nA =
14, nB ′ = 14, d = 0 and estimating the parameters using Recursive Extended
Least Squares (RELS) or Output Error with Extended Prediction Model (XOLOE).
Both have been used with a variable forgetting factor. Figure 6.5 shows the validation
results for the RELS model and Fig. 6.6 shows the validation results for the XOLOE
model (WRN (i) corresponds to the normalized autocorrelations defined in Chap. 5,
Eq. (5.43)).

Table 6.1 summarizes the validation results.

http://dx.doi.org/10.1007/978-3-319-41450-8_5
http://dx.doi.org/10.1007/978-3-319-41450-8_5
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Fig. 6.5 Whiteness test for the RELS identified model (active suspension)
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Fig. 6.6 Whiteness test for the XOLOE identified model (active suspension)

The frequency characteristics of the two models are indistinguishable except at
very low frequencies. Finally the RELS model has been chosen since the RN(i) for
lower values of i are smaller than those of the XOLOE model. The parameters of the
model are given in Table 6.2 and they are stored in the file SecPath_activeSusp.mat
available on the book website. Table 6.3 gives the frequency and the damping of the
poles of the secondary path identified model (RELS).
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Table 6.1 Summary of the whiteness test validations (active suspension)

Algorithm Error energy Maximum RN(i) RN(i) over limit

RELS 0.0092 0.0647 (i = 11) 3

XOLOE 0.0090 0.0540 (i = 3) 2

Table 6.2 Parameters of the identified secondary path model (RELS) (active suspension)

Parameter Value Parameter Value Parameter Value Parameter Value

a0 1.0000 a9 0.5008 b0 0.0000 b9 −2.3676

a1 −0.0586 a10 0.2481 b1 0.0251 b10 2.3658

a2 0.4092 a11 −0.4152 b2 0.0647 b11 2.5058

a3 −0.9164 a12 −0.0154 b3 −0.1246 b12 2.8960

a4 −0.5737 a13 −0.3473 b4 −0.4606 b13 −0.5826

a5 −0.5834 a14 −0.0795 b5 2.7988 b14 0.1619

a6 −0.3110 b6 1.2316 b15 −2.5355

a7 0.6052 b7 −3.3935 b16 0.4735

a8 0.6965 b8 −3.0591

Table 6.3 Frequency and damping of the poles of the secondary path identified model (RELS)
(active suspension)

Poles Damping Frequency (Hz)

0.955993 + 0.000000i 1.000000 5.730231

0.950132 − 0.242697i 0.077941 31.939243

0.950132 + 0.242697i 0.077941 31.939243

0.265498 − 0.920456i 0.033259 164.335890

0.265498 + 0.920456i 0.033259 164.335890

0.162674 − 0.753066i 0.188593 176.071865

0.162674 + 0.753066i 0.188593 176.071865

−0.301786 − 0.925822i 0.014095 240.144314

−0.301786 + 0.925822i 0.014095 240.144314

−0.547208 − 0.798935i 0.014803 276.492803

−0.547208 + 0.798935i 0.014803 276.492803

−0.869136 − 0.255155i 0.034615 363.860597

−0.869136 + 0.255155i 0.034615 363.860597

−0.217701 + 0.000000i 0.436606 444.616040

Figure 6.7 gives the poles zero map of the RELS model of the secondary path.
The model of the secondary path is characterized by the presence of several very
low damped complex poles and unstable zeros. The frequency characteristics of the
secondary path is shown in Fig. 6.8.
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6.1.2 Identification of the Primary Path

The same identification methodology used for the secondary path has been used
for identifying the model of the primary path. The identification was done between
the excitation of the shaker u p and the residual acceleration in the absence of the
compensation action. The estimated orders are: nAp = 12, nBp = 9, dp = 3. The
excitation was a PRBS sequence generated with a shift register with N = 9 cells
and without frequency divider (p = 1). Like for the secondary path, the existence
of the double differentiator has been taken in account. The best model in terms
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Table 6.4 Parameters of the identified model of the primary path (active suspension)

Parameter Value Parameter Value Parameter Value Parameter Value

a0 1.0000 a7 0.7709 b0 0.0000 b7 0.1325

a1 −0.3862 a8 0.2417 b1 −0.1016 b8 0.0552

a2 −0.2391 a9 −0.0932 b2 −0.2085

a3 −0.6875 a10 −0.1747 b3 −0.1375

a4 −0.3052 a11 −0.4845 b4 −0.0393

a5 0.4003 a12 0.2735 b5 0.0985

a6 −0.1430 b6 0.1536

of validation has been obtained with RELS algorithm using adaptation gain with
variable forgetting factor (λ1(0) = λ0 = 0.97). The frequency characteristics of the
identified model for the primary path are shown in Fig. 6.8. The model of the primary
path shows a very strong resonance at 31.59 Hz which needs to be damped. There
also other very low damped complex zeros over 160 Hz. The parameters of the model
are given in Table 6.4 and they are available in the file PrimPath_activeSusp.mat to
be downloaded from the book website.

6.2 Identification of the AVC System Using Feedback
Compensation Through an Inertial Actuator

The AVC system using an inertial actuator has been described in Sect. 2.2. The block
diagram of the primary and secondary paths is the same as for the active suspension
and is given in Fig. 6.1, where u(t) will be the excitation of the secondary path and
u p the excitation of the primary path.

The identification of the primary and secondary paths in open-loop operation will
be presented. The open-loop identification procedure is done in the absence of the
controller and of the disturbance. The primary path is identified only for simulation
purposes. The sampling frequency is 800 Hz.

6.2.1 Identification of the Secondary Path

6.2.1.1 Data Acquisition

As persistent excitation signal a PRBS generated with a shift register having N = 10
cells and a frequency divider p = 2 is used. The magnitude used is: 0.085 V. The
input/output data file data_identSAAI_SecPath.mat is available on the book website.

http://dx.doi.org/10.1007/978-3-319-41450-8_2
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Fig. 6.9 Evaluation of the criterion for order estimation of the secondary path (global view) (inertial
actuator AVC)

Since both paths present a double differentiator behaviour, this “known” dynamics
do not need to be estimated in the open-loop identification procedure and the objective
is to identify the “unknown” part only. This procedure has been already used in the
previous Sect. 6.1 and is illustrated in Fig. 6.2. The model of the system without the
double differentiator will be identified and the double differentiator will be included
in the final complete model.

6.2.1.2 Order Estimation

The estimation of the order of the model for the secondary path is done using the
procedure described in Sect. 5.3. Assuming that the measurements are affected by
non-white noise, one uses for complexity estimation the estororderiv.m3 algorithm
which implements the estimation procedure using delayed instrumental variables.

Figure 6.9 shows the complexity estimation criterion for the order of the secondary
path model n = max {nA, nB + d}. The dashed line represents the VIV criterion as a
function of the order n̂ and the solid line represents the complexity penalized criterion
JIV . A zoom of the penalized criterion is shown in Fig. 6.10. It can be observed that
the penalized criterion is almost flat between 20 and 23, which suggests that any one
of these values will give a good result.

After validation of the estimated models of various orders obtained for various
n̂ between 20 and 23 and comparing also with the power spectral density (PSD) of
the output, it has been concluded that the best compromise between complexity and
quality of the model for the secondary path is given by order n̂ = 22.

3Available on the book website.

http://dx.doi.org/10.1007/978-3-319-41450-8_5
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Fig. 6.10 Evaluation of the criterion for order estimation of the secondary path (zoom) (inertial
actuator AVC)
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Fig. 6.11 Criterion for estimation of the order of the n − d (inertial actuator AVC)

Once the order of the system is estimated, the estimation of n − d, nB + d and
nA follows using the same type of criterion as for the estimation of the order of
the system. The estimated delay of the secondary path is obtained as d̂ = 0 from
Fig. 6.11, since the minimum value of the criterion is obtained for n − d = 22 (with
n = 22). From the estimation of nB +d in Fig. 6.12, and taking in account that d = 0
it results that the estimate of the order of the numerator is n̂B ′ = 19 (without the
double differentiator). Finally the plant denominator order is estimated from Fig. 6.13
as n̂ A = 18.
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Fig. 6.12 Criterion for estimation of the order of the order nB + d (inertial actuator AVC)
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Fig. 6.13 Criterion for estimation of the order of the order of nA (inertial actuator AVC)

6.2.1.3 Parameter Estimation

As for the active suspension, it was found that parameter estimation methods dedi-
cated to ARMAX “model + noise” structure give the best validation results. These
methods include Recursive Extended Least Squares (RELS), Output Error with
Extended Estimation Model (XOLOE) and Recursive Maximum Likelihood (RML)
[1]. These algorithms have been used with a decreasing adaptation gain.
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6.2.1.4 Model Validation

The normalized autocorrelations for the methods RELS, XOLOE and RML are
shown, respectively, in Figs. 6.14, 6.15 and 6.16 for the estimated models of the
secondary path (WRN (i)) corresponds to the normalized autocorrelations defined
in Chap. 5, Eq. (5.43). Table 6.5 gives the maximum normalized autocorrelation term
and the error variance for each of these methods. RELS algorithm gives the best
results for the identification of the secondary path.

The parameters of the secondary path are given in Table 6.6 and they can be
found in the file SecPath_SAAI.mat available on the book website. The frequency

Fig. 6.14 Whiteness test for
the RELS identified model of
the secondary path (inertial
actuator AVC)
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Fig. 6.15 Whiteness test for
the XOLOE identified model
of the secondary path
(inertial actuator AVC)
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Fig. 6.16 Whiteness test for
the RML identified model of
the secondary path (inertial
actuator AVC)
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http://dx.doi.org/10.1007/978-3-319-41450-8_5
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Table 6.5 Summary of the validation results for RELS, XOLOE and RML (inertial actuator
AVC)

Algorithm maxWRN (i) Error variance

RELS 0.059 9.7e-06

XOLOE 0.0642 1.0024e-05

RML 0.1367 7.9383e-06

Table 6.6 Identified parameters of the secondary path model (inertial actuator AVC)

Parameter Value Parameter Value Parameter Value Parameter Value

a0 1 a11 −0.6107 b0 0 b11 −0.0179

a1 −1.7074 a12 0.5858 b1 −0.0127 b12 0.0164

a2 1.2791 a13 −0.2963 b2 −0.0876 b13 −0.0425

a3 −0.8861 a14 0.5336 b3 0.0812 b14 0.0031

a4 1.2235 a15 −0.9736 b4 0.0157 b15 0.0089

a5 −1.1388 a16 0.7849 b5 0.0103 b16 0.0166

a6 0.6129 a17 −0.3860 b6 0.0380 b17 0.0717

a7 −0.7381 a18 0.1902 b7 −0.0580 b18 −0.0508

a8 1.0485 b8 −0.0064 b19 −0.0012

a9 −0.3791 b9 0.0195 b20 −0.0093

a10 0.2289 b10 0.0188 b21 −0.0139

Table 6.7 Poles of the open-loop secondary path identified model (inertial actuator AVC)

Poles Damping Frequency (Hz)

0.8982 ± 0.2008 0.3530 29.9221

0.9280 ± 0.3645 0.0079 47.6491

0.6642 ± 0.7203 0.0247 105.1909

0.5260 ± 0.8050 0.0395 126.4064

0.0623 ± 0.5832 0.3423 198.4441

−0.1229 ± 0.9689 0.0139 216.0790

−0.4533 ± 0.8394 0.0228 263.1134

−0.7524 ± 0.6297 0.0078 311.2826

−0.8965 ± 0.2856 0.0215 360.8163

and damping of the poles and zeros for the secondary path are given in Tables 6.7 and
6.8. The poles-zeros map of the secondary path is given in Fig. 6.17. The frequency
characteristic of the secondary path is shown in Fig. 6.18. There are several low
damped complex poles and zeros in the open-loop identified model. There are also
very close resonances and antiresonances. The operational zone is defined between
50 and 95 Hz.
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Table 6.8 Zeros of the open-loop secondary path identified model (inertial actuator AVC)

Zeros Damping Frequency (Hz)

1 0 0

1 0 0

0.9292 ± 0.3559 0.0135 46.5756

0.7097 ± 0.7037 0.0008 99.4567

0.2359 ± 0.9201 0.0389 168.1703

0.1054 ± 0.6063 0.3279 188.5135

−0.1100 ± 1.0087 −0.0087 213.8383

−0.4362 ± 0.8273 0.0325 261.9247

−0.8085 ± 0.5713 0.0040 321.6776

−0.9753 ± 0.1243 0.0056 383.8647

−0.4908 0.2209 410.1361

−7.7152 −0.5452 477.1543
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Fig. 6.17 Pole-zero map of the secondary path model without the double differentiator and the
zero at -7.71 (inertial actuator AVC)

6.2.2 Identification of the Primary Path

Similar analysis has been done also for the identified model of the primary path. The
orders of the primary path are: n̂ = 14, n̂ AD = 13, and n̂B ′

D
= 14 with a plant delay
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Fig. 6.18 Frequency characteristics of the primary and secondary paths (inertial actuator AVC)

of dD = 0. The parameters of the identified primary path model are given in file
PrimPath_SAAI.mat. The frequency characteristic of the primary path is shown in
Fig. 6.18.

6.3 Identification of the Active Distributed Flexible
Mechanical Structure Using Feedforward–Feedback
Compensation

The AVC system using feedforward–feedback compensation has been described in
Sect. 2.3. In this section, open-loop identification results for the secondary, positive
feedback coupling (reverse) and primary paths will be presented. Note also that,
although for adaptive control it is sufficient to estimate the secondary and reverse
paths, for simulation and model-based controller design it is also necessary to identify
the primary path.

The primary path is characterized by the asymptotically stable transfer function

D(z−1) = BD(z−1)

AD(z−1)
(6.6)

where

BD(z−1) = bD
1 z−1 + · · · + bD

nBD
z−nBD (6.7)

AD(z−1) = 1 + aD
1 z−1 + · · · + aD

nAD
z−nAD (6.8)

http://dx.doi.org/10.1007/978-3-319-41450-8_2
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The unmeasurable value of the output of the primary path (when the compensation
is active) is denoted x(t). The secondary path is characterized by the asymptotically
stable transfer function:

G(z−1) = BG(z−1)

AG(z−1)
(6.9)

where

BG(z−1) = bG1 z
−1 + · · · + bGnBG

z−nBG = z−1B∗
G(z−1) (6.10)

AG(z−1) = 1 + aG1 z−1 + · · · + aGnAG
z−nAG (6.11)

The positive feedback coupling (the reverse path) is characterized by the asymptoti-
cally stable transfer function

M(z−1) = BM(z−1)

AM(z−1)
(6.12)

where

BM(z−1) = bM
1 z−1 + · · · + bM

nBM
z−nBM = q−1B∗

M(q−1) (6.13)

AM(z−1) = 1 + aM
1 z−1 + · · · + aM

nAM
z−nAM (6.14)

The integer delay, if any, is included in the polynomials BX .
The methodology used for parametric system identification is similar to that pre-

sented in the previous sections. The sampling frequency is 800 Hz.
The identification of the primary, secondary and reverse paths has been done in

the absence of the compensator (see Fig. 2.11). For the secondary and reverse paths a
PRBS excitation signal with a shift register having N = 12 cells (without frequency
divider, p = 1) has been applied4 at the input of the inertial actuator II, where the
control signal û(t) is applied (see Figs. 2.9 and 2.10). For the primary path, a different
PRBS signal with N = 10 and frequency divider p = 4 has been applied at the input
of the inertial actuator I.

For the secondary path, G(q−1), the output is the residual acceleration measure-
ment, e◦(t) in Fig. 2.11b. The input/output data necessary for the identification is
given in file data_identif_G.mat and is available on the book website. Given that the
input is the position of the inertial actuator II and that the output is an acceleration,
it can be concluded that a double differentiator exists. As described also in Sects. 6.1
and 6.2, the a priori known properties of the system can be considered by filtering
the input u(t) through a filter that represents the a priori known dynamics. Then
the resulting signal u′′(t) will be used as input for the identification procedure. At
the end, the double differentiator will be included in the model.

4In previous publications [2, 3], models identified with N = 10 and p = 4 have been used. The
differences in the identified models frequency characteristics are negligible.

http://dx.doi.org/10.1007/978-3-319-41450-8_2
http://dx.doi.org/10.1007/978-3-319-41450-8_2
http://dx.doi.org/10.1007/978-3-319-41450-8_2
http://dx.doi.org/10.1007/978-3-319-41450-8_2
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The estimated orders of the model for the secondary path (without the double
differentiator) are nBG = 12, nAG = 14. The best results, in terms of valida-
tion, have been obtained with the Recursive Extended Least Square method using
decreasing adaptation gain. The result of the whiteness test validation is shown
in Fig. 6.19 (WRN (i) corresponds to the normalized autocorrelations defined in
Chap. 5, Eq. (5.43)). The parameters of the estimated model are given in Table 6.9
and are also given in the file SecPathModel.mat available from the book website.
The frequency characteristics of the secondary path are shown in Fig. 6.20, solid
line. It features several very low damped vibration modes and antiresonances, as can
be noticed from Tables 6.10 and 6.11, respectively. As a consequence of the double
differentiator behaviour, a double zero at z = 1 is also present.

For the reverse path, M(q−1), the output is the signal delivered by the primary
transducer (accelerometer) ŷ1(t). The input/output data necessary for identification is
given in file data_identif_M.mat and is available on the book website. Similarly to the
secondary path, the input to the reverse path is a position while the output is an accel-
eration. It is clear that a double differentiator is present. The model’s complexity has
been estimated to be nBM = 11, nAM = 13 (without the double differentiator). The
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Fig. 6.19 Whiteness test for the RELS identified secondary path model (AVC with feedforward)

Table 6.9 Parameters for the identified model of the secondary path (AVC with feedforward)

Parameter Value Parameter Value Parameter Value Parameter Value

a0 1 a8 0.0212 b0 0 b8 −0.7000

a1 −2.6416 a9 0.0761 b1 −0.1923 b9 0.7212

a2 3.4603 a10 1.0527 b2 0.2225 b10 0.0451

a3 −2.4405 a11 −1.3628 b3 0.4228 b11 −0.4273

a4 1.5221 a12 0.7597 b4 −0.9161 b12 −0.0306

a5 −1.8122 a13 −0.1076 b5 0.4604 b13 0.4383

a6 2.3666 a14 0.0462 b6 0.2332 b14 −0.2270

a7 −1.3779 b7 −0.0502

http://dx.doi.org/10.1007/978-3-319-41450-8_5
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Fig. 6.20 Frequency characteristics of the primary, secondary and reverse identified paths (AVC
with feedforward)

Table 6.10 Frequency and damping of the poles of the secondary path identified model (AVC with
feedforward)

Poles Damping Frequency (Hz)

0.9323 ± 0.3443 0.0176 45.0468

0.7850 ± 0.6099 0.0090 84.1065

0.6131 ± 0.7794 0.0093 115.1355

0.3128 ± 0.9443 0.0042 159.2716

0.0097 ± 0.2646 0.6547 258.4384

−0.5680 ± 0.8006 0.0085 278.5733

−0.7640 ± 0.3690 0.0609 343.3584

Table 6.11 Frequency and damping of the zeroes of the secondary path identified model (AVC
with feedforward)

Zeroes Damping Frequency (Hz)

1 0 0

1 0 0

0.9272 ± 0.3245 0.0528 42.9288

0.6624 ± 0.7295 0.0176 106.1476

0.3105 ± 0.9452 0.0040 159.5853

−0.6275 ± 0.7404 0.0131 289.5403

−0.7728 ± 0.3688 0.0574 343.8781

−1.8425 −0.1910 407.4983
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best results, in terms of validation, have been obtained with the Recursive Extended
Least Squaremethod with decreasing adaptation gain (see Fig. 6.21). The parameters
of the estimated model numerator and denominator are given in the file ReversePa-
thModel.mat available from the book website. The frequency characteristic of the
reverse path is shown in Fig. 6.20 (dotted line). There are several very low damped
vibration modes and antiresonances as can be seen in Tables 6.12 and 6.13. There are
also two zeros on the unit circle corresponding to the double differentiator behav-
iour. The gain of the reverse path is of the same order of magnitude as the gain of the
secondary path up to 150 Hz, indicating a strong positive feedback in this frequency
zone.

The primary path is identified between w(t) and e◦(t) in the absence of the com-
pensator (see Fig. 2.11). The signal w(t) is the result of the excitation s(t) (PRBS
designed with N = 10 bits shift register and frequency divider p = 4) passed through
the transfer function W (z−1).

The estimated orders of the primary path model are nBD = 20, nAD = 20. The
best results in terms of validation have been obtained using FOLOE algorithm with
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Fig. 6.21 Whiteness test for the RELS identified reverse path model (AVC with feedforward)

Table 6.12 Poles of the reverse path identified model (AVC with feedforward)

Poles Damping Frequency (Hz)

0.9287 ± 0.3361 0.0357 44.2370

0.7863 ± 0.6087 0.0086 83.8780

0.6139 ± 0.7784 0.0096 114.9852

0.3112 ± 0.9453 0.0039 159.5034

−0.6093 ± 0.7671 0.0092 285.4759

−0.3781 ± 0.3018 0.2822 327.5534

−0.8967 0.0347 400.2411

http://dx.doi.org/10.1007/978-3-319-41450-8_2
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Table 6.13 Zeroes of the reverse path identified model (AVC with feedforward)

Zeroes Damping Frequency (Hz)

1 0 0

1 0 0

0.3853 1.0000 121.4376

1.0198 ± 1.5544 −0.5307 148.7535

0.2883 ± 0.9522 0.0040 162.5682

−0.6527 ± 0.7248 0.0108 293.3561

−0.8467 0.0529 400.5609

−0.6375 0.1418 404.0855

−3.6729 −0.3826 432.9424
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Fig. 6.22 Power spectral density of the disturbance w(t) (AVC with feedforward)

variable forgetting factor with λ1(0) = λ0 = 0.95. The fixed filter used in FOLOE
(L = Â) has been obtained by running first the AFOLOE algorithm with the same
adaptation gain (see Sect. 4.3.2.2 in this book and also [1, 4] for more details on the
FOLOE and AFOLOE algorithms). The parameters of the identified primary path
model are given in file PrimPathModel.mat available from the book website. The
data file data_identif_D.mat used to obtain these parameters is also available on the
book website. The frequency characteristic is presented in Fig. 6.20 (dashed line).

The primary path model is used for simulations, detailed performance evaluation
and for the design of linear feedforward compensators (see Chap. 14). Note that
the primary path features a strong resonance at 106 Hz, exactly where the secondary
path has a pair of low damped complex zeros (almost no gain). Therefore, one cannot
expect a good attenuation around this frequency.

http://dx.doi.org/10.1007/978-3-319-41450-8_4
http://dx.doi.org/10.1007/978-3-319-41450-8_14


6.3 Identification of the Active Distributed Flexible Mechanical … 119

For identification purposes, it is also of interest to characterize the spectrum of
the disturbance w(t). Looking at the power spectral density of the signal w(t) in
Fig. 6.22, it can be observed that it has enough energy in the frequency band from
40 to 275 Hz. This corresponds to the frequency band where also the secondary path
has enough gain. As such, the identified model of the primary path will be relevant
and the compensation signal can effectively influence the residual acceleration.

6.4 Concluding Remarks

• The methodology discussed in Chap. 5 has been used successfully for identifying
the dynamical models of the test benches in open-loop operation.

• The criterion for order estimation has for all three test benches a relatively flat
minimum. This requires a comparative test of models of different orders around
the value corresponding to the minimum of the criterion.

• Based on the identification of several test benches one can say that dynamical
models for AVC can be relevantly represented in most of the cases by ARMAX
models.

• Among the various algorithms available for the ARMAX model structure, it was
found that RELS and XOLOE algorithms provide the best results for the specific
problems considered.

6.5 Notes and References

The book website provides input/output data and the models for all three test benches.
The models of the test benches have been used in [2, 5–7], as well as in other

papers. For the identification of another test bench see [8].
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Chapter 7
Digital Control Strategies for Active
Vibration Control—The Bases

7.1 The Digital Controller

The basic equation for the polynomial digital controller to be used in active vibration
control (subsequently called RS controller) is (see Fig. 7.1)

S(q−1)u(t) = −R(q−1)y(t) (7.1)

where u(t) is the plant input, y(t) is the measured plant output, and

S(q−1) = s0 + s1q
−1 + · · · + snSq

−nS = s0 + q−1S∗(q−1), (7.2)

R(q−1) = r0 + r1q
−1 + · · · + rnRq

−nR , (7.3)

are, respectively, the denominator and numerator of the controller

K (q−1) = R(q−1)

S(q−1)
. (7.4)

Equation (7.1) can also be written as

u(t) = 1

s0

[−S∗(q−1)u(t − 1) − R(q−1)y(t)
]

(7.5)

Note that for a number of control algorithms (like pole placement) s0 = 1 in (7.2).
Consider

G(q−1) = q−d B(q−1)

A(q−1)
(7.6)

as the pulse transfer operator of the cascade DAC + ZOH + continuous-time
system + ADC, then the transfer function of the open-loop system is written as

© Springer International Publishing Switzerland 2017
I.D. Landau et al., Adaptive and Robust Active Vibration Control,
Advances in Industrial Control, DOI 10.1007/978-3-319-41450-8_7

121



122 7 Digital Control Strategies for Active Vibration Control—The Bases

Fig. 7.1 Discrete feedback RS controller

HOL(z
−1) = K (z−1)G(z−1) = B(z−1)R(z−1)

A(z−1)S(z−1)
(7.7)

and the closed-loop transfer function between the reference signal r(t) and the output
y(t), using controller (7.4), has the expression

Syr (z
−1) = KG

1 + KG
= B(z−1)R(z−1)

A(z−1)S(z−1) + B(z−1)R(z−1)
= B(z−1)R(z−1)

P(z−1)
, (7.8)

where

P(z−1) = A(z−1)S(z−1) + z−d−1B�(z−1)R(z−1) (7.9)

= A(z−1)S(z−1) + z−d B(z−1)R(z−1) (7.10)

is the denominator of the closed-loop transfer function that defines the closed-loop
system poles. Syr is known also as the complementary sensitivity function.

In the presence of disturbances (see Fig. 7.2), there are other important transfer
functions to consider, relating the disturbance to the output and the input of the plant.

The transfer function between the disturbance p(t) and the output y(t) (output
sensitivity function) is given by

Syp(z
−1) = 1

1 + KG
= A(z−1)S(z−1)

P(z−1)
. (7.11)

The transfer function between the disturbance p(t) and the input of the plant u(t)
(input sensitivity function) is given by

Sup(z
−1) = − K

1 + KG
= − A(z−1)R(z−1)

P(z−1)
. (7.12)

Fig. 7.2 Discrete feedback RS controller with input/output disturbances and measurement noise
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Another important transfer function describes the influence on the output of a
disturbance υ(t) on the plant input. This sensitivity function (input disturbance-
output sensitivity function) is given by

Syυ(z−1) = G

1 + KG
= B(z−1)S(z−1)

P(z−1)
. (7.13)

The feedback system presented in Fig. 7.2 is asymptotically stable if and only if
all the four sensitivity functions Syr , Syp, Sup and Syυ are asymptotically stable.

As it will be shown soon, the perfect rejection of disturbances with known char-
acteristics or conversely opening of the loop for certain disturbances will require
the introduction of some fixed pre-specified polynomials in S and R. The general
structure of R and S will be of the form:

S(z−1) = S′(z−1)HS(z
−1) (7.14)

R(z−1) = R′(z−1)HR(z−1) (7.15)

where HS(z−1) and HR(z−1) are monic fixed polynomials, which are introduced in
the controller for achieving certain performances with respect to disturbances. Using
this parametrization, the closed-loop poles will be given by

P(z−1) = A(z−1)HS(z
−1)S′(z−1) + z−d−1B�(z−1)HR(z−1)R′(z−1) (7.16)

Note that HS(z−1) and HR(z−1) can be interpreted as an “augmentation” of the plant
model (for computation purposes).

The design of the RS controller can be done in the frequency domain using transfer
functions (operators).

7.2 Pole Placement

The pole placement strategy is applicable to plant models of the form of Eq. (7.6).
We will make the following hypothesis upon the plant model of Eq. (7.6):

(H1) No restrictions upon the orders of the polynomials A(z−1), B(z−1) and the
value of the delay d.

(H2) The orders nA, nB , the delay d and the coefficients of A(z−1) and B(z−1) are
known.

(H3) The zeros of B(z−1) can be inside or outside the unit circle.
(H4) A(z−1) and B(z−1) (or AHS and BHR) do not have any common factors.
(H5) The zeros of A(z−1) can be inside or outside the unit circle.

The control law is of the form (7.1) and the polynomials R(z−1) and S(z−1) have
the structure of Eqs. (7.14) and (7.15).
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The closed-loop behaviour is defined by

• the desired closed-loop poles;
• the choice of the fixed parts HR(z−1) and HS(z−1).

The desired closed-loop poles are chosen under the form as follows:

P(z−1) = PD(z−1) · PF (z−1) (7.17)

where PD(z−1) defines the dominant poles and PF (z−1) defines the auxiliary poles.
Often PD(z−1) is chosen to include all the stable poles of the plant in open-loop

with the option of eventually modifying the damping of the complex poles.
The role of PF (z−1) is on one hand to introduce a filtering effect at certain fre-

quencies and on the other hand to improve the robustness of the controller.
With the notations:

nA = deg A ; nB = deg B

nHS = deg HS ; nHR = deg HR

and under the hypotheses H1 to H5, (7.16) has a unique solution for S′ and R′, of
minimal degree for

nP = deg P(z−1) ≤ nA + nHS + nB + nHR + d − 1 (7.18)

nS′ = deg S′(z−1) = nB + nHR + d − 1 (7.19)

nR′ = deg R′(z−1) = nA + nHS − 1 (7.20)

with

S′(z−1) = 1 + s ′
1z

−1 + · · · + s ′
nS
z−nS (7.21)

R′(z−1) = r ′
0 + r ′

1z
−1 + · · · + r ′

nR
z−nR (7.22)

For a proof see [1, 2]. Various methods for solving this equation are available.1

7.2.1 Choice of HR and HS—Examples

Opening the Loop

In a number of applications, the measured signal may contain specific frequencies
which should not be attenuated by the regulator. In such cases the system should be
in open-loop at these frequencies.

1See functions bezoutd.m (MATLAB®) or bezoutd.sci (Scilab) on the book website.



7.2 Pole Placement 125

From (7.12) in the absence of the reference, the input to the plant is given by

u(t) = Sup(q
−1)p(t) = A(q−1)HR(q−1)R′(q−1)

P(q−1)
p(t) (7.23)

and therefore in order to make the input sensitivity function zero at a given frequency
f , one should introduce a pair of undamped zeros in HR(q−1), i.e.,:

HR(q−1) = (1 + βq−1 + q−2) (7.24)

where

β = −2 cos(ωTS) = −2 cos(2π
f

fS
)

In many cases it is desired that the controller does not react to signals of frequencies
close to 0.5 fS (where the gain of the system is in general very low). In such cases,
one uses

HR(q−1) = (1 + βq−1) (7.25)

where
0 < β ≤ 1

Note that (1 + βq−1)2 corresponds to a second order with a damped resonance
frequency equal to ωS/2 as follows:

ω0

√
1 − ζ 2 = ωS

2

and the corresponding damping ζ is related to β by

β = e
− ζ√

1−ζ2
π

For β = 1, the system will operate in open-loop at fS/2.
In active vibration control systems, the gain of the secondary path at 0 Hz is zero

(double differentiator behaviour). It is therefore not reasonable to send a control
signal at this frequency. The system should operate in open-loop at this frequency.
To achieve this, one uses

HR(q−1) = (1 − q−1) (7.26)

Perfect Rejection of an Harmonic Disturbance

The disturbance p(t) can be represented as the result of a Dirac function δ(t) passed
through a filter D(q−1) (called the model of the disturbance)

D(q−1)p(t) = δ(t) (7.27)
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In the case of an harmonic disturbance, the model is

(1 + αq−1 + q−2)p(t) = δ(t) (7.28)

with

α = −2 cos(ωTS) = −2 cos(2π
f

fS
) (7.29)

From (7.11) in the absence of a reference, one has

y(t) = A(q−1)HS(q−1)S′(q−1)

P(q−1)
p(t) (7.30)

The problem can be viewed as choosing HS(q−1) such that the gain of the transfer
function between p(t) and y(t) be zero at this frequency.

To achieve this one should choose

HS(q
−1) = (1 + αq−1 + q−2) (7.31)

In this case the expression of y(t) taking into account (7.28), (7.30) and (7.31)
becomes

y(t) = A(q−1)S′(q−1)

P(q−1)
δ(t) (7.32)

and it results that asymptotically y(t) tends to zero since P(q−1) is asymptotically
stable. This result is nothing else than the internal model principle which will be
stated next.

7.2.2 Internal Model Principle (IMP)

Suppose that p(t) is a deterministic disturbance, so it can be written as

p(t) = Np(q−1)

Dp(q−1)
· δ(t), (7.33)

where δ(t) is a Dirac impulse and Np(z−1), Dp(z−1) are coprime polynomials in z−1,
of degrees nNp and nDp , respectively (see also Fig. 7.1). In the case of stationary dis-
turbances, the roots of Dp(z−1) are on the unit circle. The energy of the disturbance
is essentially represented by Dp. The contribution of the terms of Np is weak asymp-
totically compared to the effect of Dp, so one can neglect the effect of Np for a
steady-state analysis of the effect of the disturbance upon the system.
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Internal Model Principle: The effect of the disturbance given in (7.33) upon the
output:

y(t) = A(q−1)S(q−1)

P(q−1)
· Np(q−1)

Dp(q−1)
· δ(t), (7.34)

where Dp(z−1) is a polynomial with roots on the unit circle and P(z−1) is an asymp-
totically stable polynomial, converges asymptotically towards zero if and only if the
polynomial S(z−1) in the RS controller has the following form:

S(z−1) = Dp(z
−1)S′(z−1). (7.35)

In other terms, the pre-specified part of S(z−1) should be chosen as HS(z−1) =
Dp(z−1) and the controller is computed using (7.16), where P , Dp, A, B, HR and d
are given.2

The IMC principle says that in order to completely reject a disturbance asymptoti-
cally (i.e., in steady state), the controller should include the model of the disturbance.

7.2.3 Youla–Kučera Parametrization

Using the Youla–Kučera parametrization (Q-parametrization) of all stable controllers
([3, 4]), the controller polynomials R(z−1) and S(z−1) get the following form:

R(z−1) = R0(z
−1) + A(z−1)Q(z−1) (7.36)

S(z−1) = S0(z
−1) − z−d B(z−1)Q(z−1) (7.37)

where (R0, S0) is the so-called central controller and Q is the YK or Q filter which
can be a FIR or an IIR filter. Figure 7.3 gives a representation of the Youla–Kučera
parametrization of the R–S controllers. The central controller (R0, S0) can be com-
puted by pole placement (but any other design technique can be used). Given the
plant model (A, B, d) and the desired closed-loop poles specified by the roots of
P(z−1) one has to solve

P(z−1) = A(z−1)S0(z
−1) + z−d B(z−1)R0(z

−1) . (7.38)

If Q(z−1) is considered to be a polynomial of the form (FIR filter):

Q(z−1) = q0 + q1z
−1 + · · · + qnQ z

−nQ . (7.39)

Equations (7.36) and (7.37) characterize the set of all stabilizable controllers assign-
ing the closed-loop poles as defined by P(z−1). It can be easily verified by simple
computation, that the poles of the closed-loop remain unchanged; however, the par-

2Of course it is assumed that Dp and BHR do not have common factors.



128 7 Digital Control Strategies for Active Vibration Control—The Bases

Fig. 7.3 The Youla–Kučera
parametrized RS digital
controller

ticular interest of the YK parametrization is the fact that the internal model of the
disturbance can be incorporated in the controller by an appropriate choice of the
filter Q. This filter should be such that the resulting polynomial S has the form
S = S′Dp, i.e.,:

S′(z−1)Dp(z
−1) = S0(z

−1) − z−d B(z−1)Q(z−1) , (7.40)

To compute Q(z−1) in order that the polynomial S(z−1) given by (7.37) incorporates
the internal model of the disturbance (7.33) one has to solve the following diophantine
equation:

S′(z−1)Dp(z
−1) + z−d B(z−1)Q(z−1) = S0(z

−1) , (7.41)

where Dp(z−1), d, B(z−1) and S0(z−1) are known and S′(z−1) and Q(z−1) are
unknown. Equation (7.41) has a unique solution for S′(z−1) et Q(z−1) with: nS0 ≤
nDp + nB + d − 1, nS′ = nB + d − 1, nQ = nDp − 1. One sees that the order nQ of
the polynomial Q depends upon the structure of the disturbance model.

Consider now the case of a Q filter as ratio of rational polynomials (IIR filter)
with an asymptotically stable denominator as follows:

Q(z−1) = BQ(z−1)

AQ(z−1)
(7.42)

The YK controller will have the structure:

R(z−1) = AQ(z−1)R0(z
−1) + A(z−1)BQ(z−1) (7.43)

S(z−1) = AQ(z−1)S0(z
−1) − z−d B(z−1)BQ(z−1) (7.44)

but in this case the poles of the closed-loop will be given by

P(z−1)QI I R = P(z−1)AQ(z−1) (7.45)

In the case of IIR Q filters, the poles of the denominator of Q will appear as additional
poles of the closed-loop. This parametrization will be discussed in detail in Sects. 7.4
and 12.2 together with the preservation of the pre-specified fixed part of the controller
HR and HS .

http://dx.doi.org/10.1007/978-3-319-41450-8_12
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7.2.4 Robustness Margins

The Nyquist plot of the open-loop transfer function allows one to assess the influence
of the modelling errors and to derive appropriate specifications for the controller
design in order to assure the robust stability of the closed-loop system for certain
classes of plant model uncertainties.

The open-loop transfer function corresponding to the use of an RS controller is:

HOL(z
−1) = z−d B(z−1)R(z−1)

A(z−1)S(z−1)
(7.46)

By making z = e jω, where ω is the normalized frequency (ω = ωTs = 2π f/ fs , fs
sampling frequency, Ts sampling period), the Nyquist plot of the open-loop transfer
function HOL(e− jω) can be drawn. In general, one considers for the normalized
frequency ω the domain between 0 and π (i.e., between 0 and 0.5 fs). Note that the
Nyquist plot between π and 2π is symmetric with respect to the real axis of the
Nyquist plot between 0 and π . An example of a Nyquist plot is given in Fig. 7.4.

The vector connecting a point of the Nyquist plot with the origin corresponds to
HOL(e− jω) for a certain normalized frequency. The point [−1, j0] on the diagram
of Fig. 7.4 corresponds to the critical point. From Fig. 7.4, it results that the vector
connecting the critical point with the Nyquist plot of HOL(e− jω) has the following
expression:

1 + HOL(z
−1) = A(z−1)S(z−1) + z−d B(z−1)R(z−1)

A(z−1)S(z−1)
= S−1

yp (z−1) (7.47)

This vector corresponds to the inverse of the output sensitivity function Syp(z−1)

given by Eq. (7.11) and the zeros of S−1
yp are the poles of the closed-loop system. In

order that the closed-loop system be asymptotically stable, it is necessary that all the
zeros of S−1

yp lie inside the unit circle.
The necessary and sufficient conditions in the frequency domain for the asymptotic

stability of the closed-loop system are given by the Nyquist criterion. For the case of

Fig. 7.4 The Nyquist plot
of a discrete-time transfer
function and the critical point

H
OL

(e-jω )S      = 1 +
H

OL
yp
-1

critical point

-1

Im H

Re H

ω = 0

ω = π

(e-jω )
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Fig. 7.5 Modulus, gain and
phase margins
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open-loop stable systems (in our case this corresponds to A(z−1) = 0 and S(z−1) =
0 =⇒ |z| < 1), the Nyquist criterion is expressed as:

Stability Criterion (Open-Loop Stable Systems)

The Nyquist plot of HOL(z−1) traversed in the sense of growing frequencies (from
ω = 0 to ω = π leaves the critical point [−1, j0] on the left.

Using pole placement, the Nyquist criterion will be satisfied for the nominal plant
model because R(z−1) and S(z−1) are computed using Eq. 7.10 for an asymptotically
stable polynomial P(z−1) defining the desired closed-loop poles (P(z−1) = 0 =⇒
|z| < 1). Of course, we are assuming at this stage that the resulting S(z−1) is also
stable.3

The minimal distance between the Nyquist plot of HOL(z−1) and the critical
point will define a stability margin. This minimal distance according to Eq. (7.47)
will depend upon the maximum of the modulus of the output sensitivity function.

This stability margin which we will call subsequently the modulus margin could
be linked to the uncertainties upon the plant model.

The following indicators serve for characterizing the distance between the Nyquist
plot of HOL(z−1) and the critical point [−1, j0] (see Fig. 7.5):

• modulus margin (ΔM)
• delay margin (Δτ )
• phase margin (Δφ)
• gain margin (ΔG)

3See [5] for the case of open-loop unstable systems.
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Below are the definitions of the modulus margin and delay margin which will be
used in the robust control design (for the definition of the gain and phase margin, see
any classical control text):

Modulus Margin (Δ M)

The modulus margin (ΔM) is defined as the radius of the circle centred in [−1, j0]
and tangent to the Nyquist plot of HOL(z−1).

From the definition of the vector connecting the critical point [−1, j0] with the
Nyquist plot of HOL(z−1) (see Eq. (7.47)), it results that

ΔM = |1 + HOL(e
− jω)|min = (|Syp(e− jω)|max)

−1 = (‖Syp‖∞)−1 (7.48)

As a consequence, the reduction (or minimization) of |Syp(e− jω)|max will imply the
increase (or maximization) of the modulus margin ΔM .

In other terms the modulus margin ΔM is equal to the inverse of the maximum
modulus of the output sensitivity function Syp(z−1) (i.e., the inverse of the H∞ norm
of Syp(z−1)). If the modulus of Syp(z−1) is expressed in dB, one has the following
relationship:

|Syp(e− jω)|max(dB) = (ΔM)−1(dB) = −ΔM(dB) (7.49)

The modulus margin is very important because

• It defines the maximum admissible value for the modulus of the output sensitivity
function.

• It gives a bound for the characteristics of the nonlinear and time-varying elements
tolerated in the closed-loop system (it corresponds to the circle criterion for the
stability of nonlinear systems) [6].

Delay Margin (Δτ )

For a certain frequency the phase lag introduced by a pure time delay τ is:

∠φ(ω) = ωτ

If the Nyquist plot crosses the unit circle only once, one can therefore convert the
phase margin in a delay margin, i.e., to compute the additional delay which will lead
to instability. It results that:

Δτ = Δφ

ωcr
(7.50)

where ωcr is the crossover frequency (where the Nyquist plot intersects the unit
circle) and Δφ is the phase margin. If the Nyquist plot intersects the unit circle at
several frequencies ωi

cr (see Fig. 7.5), characterized by the associated phase margins
Δφi , the phase margin is defined as:

Δφ = min
i

Δφi (7.51)
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and the delay margin is defined by

Δτ = min
i

Δφi

ωi
cr

(7.52)

Remark This situation appears systematically for systems with pure time delays or
with multiple vibration modes.

Typical values of the robustness margins for a robust controller design are

• Modulus margin: ΔM ≥ 0.5(−6 dB)[min : 0.4(−8 dB)]
• Delay margin: Δτ ≥ Ts[min : 0.75Ts]
where Ts is the sampling period.
Important remarks:

1. A modulus margin ΔM ≥ 0.5 implies that ΔG ≥ 2(6 dB) and Δφ > 29◦. The
converse is not generally true. Systems with satisfactory gain and phase margins
may have a very small modulus margin.

2. Phase margin can be misleading according to Eq. (7.50). A good phase margin
may lead to a very small tolerated additional delay if ωcr is high.

The modulus margin is an intrinsic measure of the stability margin and will be
subsequently used together with the delay margin for the design of robust controllers
(instead of the phase and gain margin).

7.2.5 Model Uncertainties and Robust Stability

Figure 7.6 illustrates the effect of uncertainties or of the variations of the parameters of
the nominal model on the Nyquist plots of the open-loop transfer function. In general
the Nyquist plot corresponding to the nominal model lies inside a tube corresponding
to the possible (or accepted) tolerances of parameter variations (or uncertainties) of
the plant model.

Fig. 7.6 Nyquist plot of
the nominal model and
perturbed model
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Im H
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H
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We will consider an open-loop transfer function H ′
OL(z

−1) which differs from the
nominal one. For simplicity one assumes that the nominal transfer function HOL (z−1)

as well as H ′
OL(z

−1) are both stable (the general assumption is that both have the
same number of unstable poles, see [7, 8]).

In order to assure the stability of the closed-loop system for an open loop transfer
function H ′

OL(z
−1) which differs from the nominal one HOL(z−1), the Nyquist plot

of H ′
OL(z

−1) should leave the critical point [−1, j0] on the left side when traversed in
the sense of the growing frequencies. Looking at Fig. 7.6 one can see that a sufficient
condition for this, is that at each frequency the distance between H ′

OL(z
−1) and

HOL(z−1) be less than the distance between the nominal open-loop transfer function
and the critical point. This is expressed by:

|H ′
OL(z

−1) − HOL(z
−1)| < |1 + HOL(z

−1)| = |S−1
yp (z−1)| =

∣∣∣∣ P(z−1)

A(z−1)S(z−1)

∣∣∣∣
(7.53)

In other terms, the curve |Syp(e− jω)|−1 in dB (which is obtained by symmetry from
|Syp(e− jω)|) will give at each frequency a sufficient condition for the modulus of the
tolerated discrepancy between the real open-loop transfer function and the nominal
open-loop transfer function in order to guarantee stability.

In general, this tolerance is high in low frequencies and is low at the frequency
(or frequencies) where |Syp(e− jω)| reaches its maximum (=ΔM−1). Therefore, low
modulus margin will imply small tolerance to parameter uncertainties in a specified
frequency region.

The relationship (7.53) expresses a robustness condition in terms of the variations
of the open-loop transfer function (controller + plant). It is interesting to express this
in terms of the variations of the plant model. One way to do this, is to observe that
(7.53) can be rewritten as:

∣∣∣∣ B
′(z−1)R(z−1)

A′(z−1)S(z−1)
− B(z−1)R(z−1)

A(z−1)S(z−1)

∣∣∣∣ =
∣∣∣∣ R(z−1)

S(z−1)

∣∣∣∣ ·
∣∣∣∣ B

′(z−1)

A′(z−1)
− B(z−1)

A(z−1)

∣∣∣∣
<

∣∣∣∣ P(z−1)

A(z−1)S(z−1)

∣∣∣∣ (7.54)

Multiplying both sides of Eq. (7.54) by | S(z−1)

R(z−1)
| one gets

∣∣∣∣ B
′(z−1)

A′(z−1)
− B(z−1)

A(z−1)

∣∣∣∣ ≤
∣∣∣∣ P(z−1)

A(z−1)R(z−1)
| = |S−1

up (z−1)

∣∣∣∣ (7.55)

The left hand side of Eq. (7.55) expresses in fact an additive uncertainty for the
nominal plant model. The inverse of the modulus of the input sensitivity function
will give a sufficient condition for the tolerated additive variations (or uncertainties)
of the nominal plant model in order to guarantee stability. Large values of the modulus
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Fig. 7.7 Templates on the
output sensitivity function
for the modulus margin
ΔM = 0.5 and the delay
margin Δτ = Ts
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of the input sensitivity function in certain frequency range will imply low tolerance
to uncertainties in this frequency range. It will also mean that at these frequencies
high activity of the input will result under the effect of disturbances.

7.2.6 Templates for the Sensitivity Functions

Robustness margins and performance specifications in the frequency domain trans-
lates easily in templates for the various sensitivity functions [2, 5]. Figure 7.7 gives
the basic template for Syp for assuring the modulus margin constraint (ΔM � 0.5)
and the delay margin (Δτ � Ts). The template on the delay margin is an approxi-
mation (for more details see [2]). Violation of the lower or upper template does not
necessarily imply violation of the delay margin (which any way can be effectively
computed).

To this template, performance specification in terms of imposed attenuation and
bound on the “waterbed” effect can be added (see the example in Sect. 7.3).

Templates on the modulus of the input sensitivity function Sup are also considered.
In particular it is expected that Sup is low outside the frequency band of operation
of the controller. Low values of the modulus of the input sensitivity functions imply
a good robustness with respect to additive model uncertainties. Figure 7.8 gives an
example of template on the input sensitivity function. More details can be found on
the example given in Sect. 7.3.

7.2.7 Properties of the Sensitivity Functions

7.2.7.1 Output Sensitivity Function

Using an RS controller, the output sensitivity function is given by:
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Fig. 7.8 An example of
desired template for the
input sensitivity function

Sup  dB

 upper template

size of the tolerated additive uncertainity Wa

0
0.5fs

Sup
-1

Syp(z
−1) = A(z−1)S(z−1)

A(z−1)S(z−1) + z−d B(z−1)R(z−1)
(7.56)

where

R(z−1) = HR(z−1)R′(z−1) (7.57)

S(z−1) = HS(z
−1)S′(z−1) (7.58)

and

A(z−1)S(z−1) + z−d B(z−1)R(z−1) = PD(z−1) · PF (z−1) = P(z−1) (7.59)

In Eqs. (7.57) and (7.58), HR(z−1) and HS(z−1) correspond to the pre-specified
parts of R(z−1) and S(z−1) respectively. S′(z−1) and R′(z−1) are the solutions of
Eq. (7.16) where P(z−1) represents the desired closed-loop poles in pole placement
control strategy. The polynomial P(z−1) is factorized in order to emphasize the
dominant poles defined by PD(z−1) and the auxiliary poles defined by PF (z−1).

Property 1

The modulus of the output sensitivity function at a certain frequency gives the ampli-
fication or the attenuation of the disturbance.

At the frequencies where |Syp(ω)| = 1(0 dB), there is no attenuation nor ampli-
fication of the disturbance (operation in open-loop). At the frequencies where
|Syp(ω)| < 1(0 dB), the disturbance is attenuated. At the frequencies where
|Syp(ω)| > 1(0 dB), the disturbance is amplified.

Property 2 (The Bode Integral)

The closed-loop being asymptotically stable, the integral of the logarithm of the
modulus of the output sensitivity function from 0 to 0.5 fS is equal to 0 for the case
of stable open-loop systems4:

4See [9] for a proof. In the case of unstable open-loop systems but stable in closed-loop, this integral
is positive.
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∫ 0.5 fS

0
log |Syp(e− j2π f/ fS)|d f = 0

In other terms, the sum of the areas between the curve of the modulus of the output
sensitivity function and the 0 dB axis taken with their sign is null. As a consequence,
the attenuation of disturbances in a certain frequency region implies necessarily
the amplification of disturbances in other frequency regions.

Property 3

The inverse of the maximum of the modulus of the sensitivity function corresponds
to the modulus margin ΔM .

ΔM = (|Syp(e− jω)|max)
−1 (7.60)

From the Properties 2 and 3, it results that the increase of the attenuation band or
of the attenuation in a certain frequency band will in general imply an increase of
|Syp(e− jω)|max and therefore a decrease of the modulus margin (and therefore less
robustness).

Figure 7.9 shows the output sensitivity function for a closed-loop system, cor-
responding to a plant model A(z−1) = 1 − 0.7z−1, B(z−1) = 0.3z−1, d = 2.
The controller has been designed using the pole placement. The desired closed-loop
poles correspond to the discretization of a second order system with natural fre-
quency ω0 = 0.1 fs rad/s and damping ζ = 0.8. The system being subject to a tonal
disturbance located at 0.15 fs or at 0.151 fS , a double internal model corresponding
to these frequencies has been introduced in the controller fixed part HS . In the first
case a damping ζ = 0.3 has been considered leading to an attenuation of 8 dB and in
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Fig. 7.9 Modulus of the output sensitivity functions for a double internal model with 0 and 0.3
damping
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the second case full rejection of the disturbances have been considered using internal
models with ζ = 0 leading to an attenuation over 60 dB.5

One can clearly see that the increase of attenuation in a certain frequency region
implies necessarily a stronger amplification of the disturbances outside the attenua-
tion band. This is a direct consequence of Property 2. A similar phenomenon occurs
if for a given attenuation the attenuation band is expanded.

7.2.8 Input Sensitivity Function

The input sensitivity function is extremely important in the design of the linear
controller. The modulus of the input sensitivity function should be low at high fre-
quencies in order to assure a good robustness of the system with respect to additive
unstructured uncertainties located in the high-frequency region.6

The expression of the input sensitivity function using a RS controller with R and
S given by (7.57) and (7.58) is

Sup(z
−1) = − A(z−1)HR(z−1)R′(z−1)

A(z−1)HS(z−1)S′(z−1) + q−d B(z−1)HR(z−1)R′(z−1)
(7.61)

Property 1

The effect of the output disturbances upon the input is cancelled (i.e., Sup = 0) at
the frequencies where

A(e− jω)HR(e− jω)R′(e− jω) = 0 (7.62)

At these frequencies Syp = 1 (open-loop operation). The pre-specified values assur-
ing Sup = 0 at certain frequencies are of the same form as those used to make
Syp = 1.

Figure 7.10 illustrates the effect upon Sup of a pre-specified HR(z−1) of the form:

HR(z−1) = 1 + αz−1 ; 0 < α ≤ 1

For α = 1, one has Sup = 0 at 0.5 fs . Using 0 < α < 1 allows to reduce more
or less the input sensitivity function around 0.5 fs .7 This structure of HR(z−1) is
systematically used for reducing the magnitude of the input sensitivity function in
the high-frequency region.

5The structure of the HS is Hs = (1 + α1q−1 + α2q−2)(1 + α′
1q

−1 + α′
2q

−2).
6This is indeed true even in adaptive control since the uncertainties in the high-frequency region
are not in general handled by the adaptive controller.
7The input sensitivity function correspond to the system considered previously which includes in
the controller an internal model with zero damping located at 0.15 fs .
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Fig. 7.10 Effect of HR(z−1) = 1+αz−1, 0 < α ≤ 1 upon the input sensitivity function for various
values of parameter α

Property 2

At the frequencies where:

A(e− jω)HS(e
− jω)S′(e− jω) = 0

which corresponds to perfect rejection of the output disturbances (Syp = 0 at these
frequencies), one has

∣∣Sup(e− jω)
∣∣ =

∣∣∣∣ A(e− jω)

B(e− jω)

∣∣∣∣ (7.63)

i.e., the modulus of the input sensitivity function is equal to the inverse of the gain
of the plant at this frequency.

This implies that perfect rejection of disturbances (or more generally attenuation
of disturbances) should be done only in the frequency regions, where the gain of
the system is large enough. If the gain is too low, |Syp| will be very large at these
frequencies. Therefore, the robustness with respect to additive plant model uncer-
tainties will be reduced, and the stress on the actuator will become important [10].
This also indicates that problems will occur if B has complex zeros close to the unit
circle (stable or unstable). At these frequencies, rejection of disturbances should be
avoided.
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7.2.9 Shaping the Sensitivity Functions for Active
Vibration Control

Two sensitivity functions are of particular interest in active vibration control:

• Output sensitivity function (the transfer function between the disturbance p(t) and
the output of the system y(t)):

Syp(z
−1) = A(z−1)S(z−1)

P(z−1)
(7.64)

• Input sensitivity function (the transfer function between the disturbance p(t) and
the input of the system u(t)):

Sup(z
−1) = − A(z−1)R(z−1)

P(z−1)
(7.65)

In active vibration control they have to be shaped for performance and robustness
purposes. The first tool for shaping the sensitivity functions, once the “performance”
choices have been done (damping of some complex poles, introduction of the internal
model of the disturbance, opening the loop at certain frequencies), is the introduction
of the auxiliary poles.

The introduction of auxiliary asymptotically stable real poles PF (z−1) will cause
in general a decrease of the modulus of the sensitivity function in the domain of
attenuation of 1/PF (z−1).

From Eqs. (7.56) and (7.59), one can see that the term 1/PD(z−1)PF (z−1) will
introduce a stronger attenuation in the frequency domain than the term 1/PD(z−1) if
the auxiliary poles PF (z−1) are real (aperiodic) and asymptotically stable; however,
since S′(z−1) depends upon the poles through Eq. (7.16), one cannot guarantee this
property for all the values of PF (z−1).

The auxiliary poles are generally chosen as high-frequency real poles under the
form:

PF (z−1) = (1 − p1z
−1)nF ; 0.05 ≤ p1 ≤ 0.5

where:
nF ≤ np − nD ; np = (deg P)max ; nD = deg PD

The effect of the introduction of the auxiliary poles is illustrated in Fig. 7.11, for
the same system considered previously with a controller including an internal model
with 0 damping at 0.05 fS . One observes that the introduction of 5 auxiliary real poles
located at 0.5 “squeezes” the modulus of the output sensitivity function around 0 dB
axis in the high-frequency range.

Note that in many applications the introduction of high-frequency auxiliary poles
allows to satisfy the requirements for robustness margins.
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Fig. 7.11 Effect of auxiliary poles on the output sensitivity function

Simultaneous introduction of a fixed part HSi and of a pair of auxiliary poles PFi
in the form

HSi (z
−1)

PFi (z−1)
= 1 + β1z−1 + β2z−2

1 + α1z−1 + α2z−2
(7.66)

resulting from the discretization of the continuous-time band-stop filter (BSF):

F(s) = s2 + 2ζnumω0s + ω2
0

s2 + 2ζdenω0s + ω2
0

(7.67)

using the bilinear transformation8

s = 2

Ts

1 − z−1

1 + z−1
(7.68)

introduces an attenuation (a “hole”) at the normalized discretized frequency

ωdisc = 2 arctan(
ω0Ts

2
) (7.69)

as a function of the ratio ζnum/ζden < 1. The attenuation at ωdisc is given by

Mt = 20 log(
ζnum

ζden
) ; (ζnum < ζden) (7.70)

8The bilinear transformation assures a better approximation of a continuous-time model by a
discrete-time model in the frequency domain than the replacement of differentiation by a difference,
i.e., s = (1 − z−1)Ts (see [6]).
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Fig. 7.12 Effects of a resonant filter HSi /PFi on the output sensitivity functions

The effect upon the frequency characteristics of Syp at frequencies f << fdisc and
f >> fdisc is negligible.

Figure 7.12 illustrates the effect of the simultaneous introduction of a fixed part
HS and a pair of poles in P , corresponding to the discretization of a resonant filter
of the form of (7.67). One observes its weak effect on the frequency characteristics
of Syp, far from the resonance frequency of the filter.

This pole-zero filter (band-stop filter) is essential for an accurate shaping of the
modulus of the sensitivity functions in the various frequency regions in order to
satisfy the constraints. It allows to reduce the interaction between the tuning in
different regions.

Design of the Band-Stop Filter HSi/PFi

The computation of the coefficients of HSi and PFi is done in the following way:

Specifications:

• Central normalized frequency fdisc (ωdisc = 2π fdisc)
• Desired attenuation at frequency fdisc : Mt (dB)
• Minimum accepted damping for auxiliary poles

PFi : (ζden)min ≥ 0.3

Step I: Design of the continuous-time filter

ω0 = 2

Ts
tan(

ωdisc

2
) 0 ≤ ωdisc ≤ π ζnum = 10Mt/20ζden
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Step II: Design of the discrete-time filter using the bilinear transformation (7.68).
Using (7.68) one gets

F(z−1) = az0 + az1z−1 + az2z−2

az0 + az1z−1 + az2z−2
= γ

1 + β1z−1 + β2z−2

1 + α1z−1 + α2z−2
(7.71)

which will be effectively implemented as9

F(z−1) = HS(z−1)

Pi (z−1)
= 1 + β1z−1 + β2z−2

1 + α1z−1 + α2z−2

where the coefficients are given by10

bz0 = 4

T 2
s

+ 4
ζnumω0

Ts
+ ω2

0 ; bz1 = 2ω2
0 − 8

T 2
s

bz2 = 4

T 2
s

− 4
ζnumω0

Ts
+ ω2

0 (7.72)

az0 = 4

T 2
s

+ 4
ζdenω0

Ts
+ ω2

0 ; az1 = 2ω2
0 − 8

T 2
s

az2 = 4

T 2
s

− 4
ζdenω0

Ts
+ ω2

0

γ = bz0
az0

β1 = bz1
bz0

; β2 = bz2
bz0

(7.73)

α1 = az1
az0

; α2 = az2
az0

Remark For frequencies below 0.17 fs the design can be done with a very good
precision directly in discrete-time. In this case, ω0 = ω0den = ω0num and the damping
of the discrete-time filters HSi and PFi is computed as a function of the attenuation
directly using Eq. (7.70).

Remark While HS is effectively implemented in the controller, PF is only used
indirectly. PF will be introduced in (7.17) and its effect will be reflected in the
coefficients of R and S obtained as solutions of Eq. (7.59).

If the S polynomial contains the internal model of a sinusoidal disturbance, i.e.,
S = S′Dp and Dp is a second-order polynomial with zero damping and a resonance
frequency ω, the modulus of the output sensitivity function will be zero at this

9The factor γ has no effect on the final result (coefficients of R and S). It is possible, however, to
implement the filter without normalizing the numerator coefficients.
10These filters can be computed using the functions filter22.sci (Scilab) and filter22.m (MATLAB®)
to be downloaded from the book website.
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frequency, which means total rejection of a sinusoidal disturbance. Without any
shaping of the sensitivity function, there will be a “waterbed effect” in the vicinity
of this frequency; however, if the objective is to introduce just a certain amount of
attenuation, we should consider introduction of the “band-stop” filters which have
zeros and poles. The numerator will be implemented in the “S” polynomial while
the poles will be added to the desired closed-loop poles. In this case the waterbed
effect will be less important.

For n narrow-band disturbances, n band-stop filters will be used

SBSF (z−1)

PBSF (z−1)
=

∏n
i=1 SBSFi (z

−1)∏n
i=1 PBSFi (z−1)

. (7.74)

A similar procedure can be used for shaping the input sensitivity function (HS in
Eq. (7.66) is replaced HR).

7.3 Real-Time Example: Narrow-Band Disturbance
Attenuation on the Active Vibration Control System
Using an Inertial Actuator

This section illustrates the methodology used for the attenuation of narrow-band
disturbances through an example. The active vibration control system with inertial
actuator described in Sect. 2.2 will be used as a test bench. An open-loop identification
for this system has been done in Sect. 6.2. The sampling frequency is fs = 800 Hz.

One sinusoidal disturbance at 70 Hz is applied to the system. The disturbance
is filtered by the primary path and its effects are measured by the residual force
transducer. The objective is to strongly attenuate the effect of this disturbance on
the residual force. The internal model principle together with the shaping of the
sensitivity functions will be used for the design of a linear robust controller.

The specifications are as follows:

• the controller should eliminate the disturbance at 70 Hz (at least 40 dB attenuation).
• the maximum allowed amplification of the output sensitivity function is 6 dB (i.e.,

the modulus margin will be ΔM � 0.5).
• a delay margin of at least one sampling period should be achieved.
• the gain of the controller has to be zero at 0 Hz (since the system has a double

differentiator behaviour).
• the gain of the controller should be zero at 0.5 fs where the system has low gain

and uncertainties exist.
• the effect of disturbances on the control input should be attenuated above 100 Hz

in order to improve robustness with respect to unmodelled dynamics (Sup(e jω) <

−40 dB, ∀ω ∈ [100, 400 Hz]).

The steps for the design of the linear controller are

http://dx.doi.org/10.1007/978-3-319-41450-8_2
http://dx.doi.org/10.1007/978-3-319-41450-8_6
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1. include all (stable) secondary path poles in the closed-loop characteristic poly-
nomial;

2. design the fixed part of the controller denominator in order to cancel the 70 Hz
disturbance (IMP)

HS(q
−1) = 1 + a1q

−1 + q−2, (7.75)

where a1 = −2 cos(2π f/ fS), f = 70 Hz. The modulus of the resulting out-
put sensitivity function is shown in Fig. 7.13 (curve IMP). As one can see the
maximum of the modulus of the output sensitivity function is larger than 6 dB;

3. open the loop at 0 Hz and at 400 Hz by setting the fixed part of the controller
numerator as

HR = (1 + q−1) · (1 − q−1) = 1 − q−2. (7.76)

The resulting output sensitivity function is shown also in Fig. 7.13 (curve IMP +
Hr). As it can be seen, it has an unacceptable value around 250 Hz (violation of
the delay margin constraint);

4. to improve robustness two complex conjugate poles have been added to the char-
acteristic polynomial, one at 65 Hz and the second at 75 Hz, both of them with
0.2 damping factor. The resulting output sensitivity function (curve IMP + Hr +
aux. poles) has the desired characteristics; however, as one can see in Fig. 7.14
(curve IMP + Hr + aux. poles), the modulus of the input sensitivity function is
higher than −40 dB between 100 and 400 Hz;
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Fig. 7.13 Output sensitivity functions for the various controllers (grey lines represent the templates
for modulus and delay margins)
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Fig. 7.15 Time response results for a 70 Hz disturbance in open-loop and in closed-loop

5. add band-stop filters (BSF) on the Sup sensitivity function: one at 160 Hz, the
other at 210 Hz, with −20 and −15 dB attenuation respectively. Both have 0.9
damping factor for the denominator. One can see that this has the desired effect
on the input sensitivity functions and no effects on the output sensitivity function.

The resulting modulus margin is 0.637 and the resulting delay margin is 2.012·Ts .
The final controller satisfies the desired specifications both in terms of performance
and robustness.
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Fig. 7.16 PSD of the
open-loop disturbance
(dashed line) and effective
attenuation (solid line) for
70 Hz in closed-loop
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Real-Time Results

Time domain results in open-loop (yOL(t)) and in closed-loop (yCL(t)) are shown in
Fig. 7.15. A frequency domain analysis has been done and is shown in Figs. 7.16 and
7.17. It can be seen that the controller achieves all the desired specifications. Under
the effect of the controller the residual force is almost at the level of the system’s
noise.

7.4 Pole Placement with Sensitivity Function Shaping
by Convex Optimisation

In [11] it was shown that the problem of shaping the sensitivity functions in the
context of pole placement can be formulated as a convex optimisation problem, and
routines for convex optimisation can be used (available in the toolbox OPTREG11).

11To be downloaded from the book website.
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We will present this method which will be used in the context of active damping. This
method takes first advantage of the Youla–Kučera parametrization. It is assumed that

• the fixed parts of the controller HR and HS have been defined (in order to achieve
certain performances);

• a “central” stabilizing controller is already designed;
• the templates for the output and input sensitivity functions have been defined (in

order to obtain the required robustness margins and performance specifications).

One considers the Youla–Kučera parmetrization for the controller as follows:

R = HR(R0 + AHSQ) (7.77)

S = HS(S0 − z−d BHRQ) (7.78)

where the fixed parts of the controller (HR , HS), and (A, B) are polynomials in z−1

(z−d B/A is the nominal model) and Q is a rational transfer function proper and
asymptotically stable.12

The central controller R0/S0 (Q = 0) can be obtained by solving the following
Bezout equation for R0 and S0:

AHSS0 + z−d BHRR0 = PD, (7.79)

where PD is an asymptotically stable polynomial defined by the designer and which
contains the desired dominant poles for the closed-loop system. Expressing Q as a
ratio of proper transfer functions in z−1 such as

Q(z−1) = BQ(z−1)

AQ(z−1)
(7.80)

one gets
R

S
= HR(R0AQ + AHSBQ)

HS(S0AQ − z−d BHRBQ)
. (7.81)

The poles of the closed-loop system will be given by

P = AS + z−d BR = PD AQ,

where the zeros of PD are the fixed poles of the closed-loop (defined by the central
controller) and the zeros of AQ are the additional poles which will be introduced
by the optimization procedure. The output and input sensitivity functions can be
written as:

Syp = AS

AS + z−d BR
= AHS

PD

(
S0 − BnomHR

BQ

AQ

)
; (7.82)

12This particular YK parametrization allows to preserve the fixed parts HR and HS in the resulting
controller given in Eq. (7.4).
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Sup = AHR

PD

(
R0 + AnomHS

BQ

AQ

)
. (7.83)

As shown in the above Eqs. (7.82) and (7.83), the sensitivity functions can obviously

be expressed in the form T1 + T2
β

α
.

Imposing a certain frequency-dependent limit W (template) on the modulus of the
sensitivity functions (attenuation band, modulus margin, delay margin, restrictions
on the input sensitivity function) leads then to a condition of the form

∣∣∣∣T1 arg z + T2 arg z
β ′ arg z

α′ arg z

∣∣∣∣ ≤ |W arg z| ∀|z| = 1 (7.84)

Condition (7.84) is equivalent to the condition

∥∥∥∥T̄1 + T̄2
β ′

α′

∥∥∥∥∞
< 1 (7.85)

Thus, Eq. (7.84) implies the existence of α and β such that by setting T̄1 = W−1T1

and T̄2 = W−1T2 one obtains

∣∣W−1T1α + W−1T2β
∣∣ ≤ Re {α} (7.86)

and this is obviously a convex condition on α and β. Details can be found in [11,
12].

For point-wise testing of the conditions a frequency gridding is carried out (e.g.
32 points between f = 0 and f = 0.5 fs).

For the optimization procedures the polynomials AQ et BQ will take the form
(Ritz method):

AQ(xa) = 1 +
N∑

k=1

xakαk ; (7.87)

BQ(xb) = xb0 +
N∑

k=1

xbkβk, (7.88)

where αk , βk are stable polynomials (affine in xak et xbk) and N is the order of the
parametrization (i.e., the number of points on the sensitivity functions where the
constraints have to be verified). The parameters to be optimized are xak et xbk .

For the discrete-time cases αk and βk can be chosen as

αk = βk =
(

z0 − z−1

1 − z0z−1

)k

,

where z0 is the time constant of the parametrization (which can be adjusted).
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Using the parametrization and the constraints indicated above an (RS) controller
with desired properties can be obtained by convex optimization. For more details on
the optimization procedure see [13, 14].

The MATLAB® toolbox Optreg provides the appropriate routines for specifying
the constraints and finding the optimal controller. The method will be used in Chap. 10
for active damping.

7.5 Concluding Remarks

• The design of polynomial RS controllers for active vibration control systems has
been discussed in this chapter.

• The design of the controller requires the knowledge of the plant model (the sec-
ondary path in active vibration control).

• Asymptotic rejection of tonal disturbances can be achieved using the Internal
Model Principle (it requires the knowledge of the frequency of the disturbance).

• The Youla–Kučera parametrization of the controller provides a separation between
disturbance compensation and feedback stabilization.

• Robustness is not an intrinsic property of a control strategy. It results from an
appropriate choice of some control objectives related to the sensitivity functions.

• Two sensitivity functions are of major interest: the output sensitivity function and
the input sensitivity function.

• Modulus margin and delay margin are basic robustness indicators.
• Shaping of the sensitivity functions is a key issue in active vibration control in

order to achieve desired performance and robustness objectives.
• Performance and robustness specifications translate in desired templates for the

sensitivity functions.
• Pole placement combined with tools for shaping the sensitivity functions is an

efficient approach for designing active vibration control systems.
• Shaping of the sensitivity functions can be conveniently achieved by the selection

of the auxiliary poles and the use of band-stop filters.
• Pole placement combined with convex optimization can provide almost an auto-

matic solution to the design problem, once the desired templates for the sensitivity
functions are defined.

7.6 Notes and References

The first issue in the design of AVC systems (assuming that the plant model is
known) is the translation of the performance and robustness specifications in desired
templates for the sensitivity functions. Then any design method which allows to
achieve the desired sensitivity functions can be used, such as Pole placement

http://dx.doi.org/10.1007/978-3-319-41450-8_10
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[1, 6, 7, 15], Linear Quadratic Control [6, 7, 15], H∞ control [8, 16], CRONE
control [17–19], Generalized Predictive Control [2, 20].

The shaping of the sensitivity function can be converted in a convex optimization
problem [12] and the use of this approach is detailed in [11, 13, 14].

The Bode integral constraint in the context of AVC is discussed in [21, 22].
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Chapter 8
Identification in Closed-Loop Operation

8.1 Introduction

There are two reasons for considering identification in closed-loop operation in the
context of active vibration control systems:

• obtaining improved system models for controller redesign; and
• retuning of the controller without opening the loop.

The objective of identification in closed-loop is to obtain a plant model describing
as precisely as possible the behaviour of the real closed-loop system for a given
controller. In other words, the objective of system identification in closed-loop is to
search for a plant model that in feedback with the controller operating on the true
plant will lead to a closed-loop transfer function (sensitivity function) that is as close
as possible to that of the real closed-loop system. If the performance of the closed-
loop system is not satisfactory, it is expected that this model identified in closed-loop
will allow the redesign of the controller in order to improve the performance of the
real-time control system.

It has been shown in [1, 2], as well as in many other references, that identification
in closed-loop, provided that appropriate identification algorithms are used, leads in
general to better models for controller design.

In order to understand the potential of the identification in closed-loop as well as
the difficulties which can be encountered, let us consider the case of the plant model
identification in closed-loop where the external excitation is added to the controller
output (see Fig. 8.1a). Figure 8.1b shows an equivalent scheme that emphasizes the
transfer function between the external excitation ru and the plant input u, as well as
the effect of the measurement noise upon the plant input. Assume that the external
excitation is a PRBS that has almost constant frequency spectrum from 0 to 0.5fs.

One observes that the effective plant input corresponds to the external excita-
tion filtered by the output sensitivity function Syp (see Sect. 7.1), whose magnitude
has a maximum in the frequency regions close to the critical point [−1, j0] (see
Sect. 7.2.4). Therefore the frequency spectrum of the effective input applied to the
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Fig. 8.1 Identification in
closed-loop: a excitation
added to the control output,
b equivalent representation

(a)

(b)

plant will be enhanced in these frequency regions. As a consequence, the quality
of the identified model in these critical regions for stability and performance will
be improved. Unfortunately, in the meantime, the feedback introduces a correlation
between the measurement noise and the plant input. This leads to an important bias on
the estimated parameters if one would like to identify the plant model with open-loop
techniques.

Therefore, for a good identification in closed-loop operation one needs identifica-
tion methods that take advantage of the “improved” characteristics of the effective
excitation signal applied to the plant input but which are not affected by the noise
in the context of feedback. An efficient solution for this problem is provided by the
“closed-loop output error” method (CLOE) that will be presented next.

8.2 Closed-Loop Output Error Identification Methods

The Principle

The principle of closed-loop output error identification algorithms is illustrated in
Fig. 8.2. The upper part represents the true closed-loop system and the lower part
represents an adjustable predictor of the closed-loop. This closed-loop predictor uses
a controller identical to the one used on the real-time system.

The prediction error between the output of the real-time closed-loop system and
the closed-loop predictor (closed-loop output error) is a measure of the difference
between the true plant model and the estimated one. This error can be used to adapt
the estimated plant model such that the closed-loop prediction error is minimized
(in the sense of a certain criterion). In other words, the objective of the identification
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(a)

(b)

Fig. 8.2 Closed-loop output error identification method. a Excitation superposed to control output.
b Excitation superposed to the reference

in closed-loop is to find the best plant model which minimizes the prediction error
between the measured output of the true closed-loop system and the predicted closed-
loop output. The use of these methods requires the knowledge of the controller.

As it can be seen from Fig. 8.2, the minimization of the closed-loop prediction
error will minimize the difference between real and estimated sensitivity functions.
For the case of the excitation added to the controller output, the difference between

Syυ = q−dBS

AS + q−dBR
(8.1)

and

Ŝyυ = q−dB̂S

ÂS + q−dB̂R
(8.2)
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will be minimized, where Â and B̂ are the estimates of the A and B polynomials.1

For the case of the excitation added to the reference, with T = R, the difference
between

Syr = q−dBR

AS + q−dBR
(8.3)

and

Ŝyr = q−dB̂R

ÂS + q−dB̂R
(8.4)

will be minimized. Since |Syr − Ŝyr | = |Syp − Ŝyp|, the difference between the true
and the estimated output sensitivity function will also be minimized.

In the context of active vibration control, we will be in general interested to get a
model which allows a better estimation of the output sensitivity function. Therefore,
often, the configuration of Fig. 8.2b will be used with T = R.2

The Algorithms

G(q−1) = q−dB(q−1)

A(q−1)
, (8.5)

where

B(q−1) = b1q
−1 + · · · + bnBq

−nB = q−1B∗(q−1) (8.6)

A(q−1) = 1 + a1q
−1 + · · · + anAq

−nA = 1 + q−1A∗(q−1) (8.7)

The plant is operated in closed-loop with an RST digital controller (without lack
of generality). The output of the plant operating in closed-loop is given by (see
Fig. 8.2a):

y(t + 1) = −A∗y(t) + B∗u(t − d) + Aη(t + 1) = θTϕ(t) + Aη(t + 1), (8.8)

where u(t) is the plant input, y(t) is the plant output, η(t) is the output noise and:

θT = [a1 . . . , anA , b1 . . . , bnB ] (8.9)

ϕT (t) = [−y(t) . . . ,−y(t − nA + 1), u(t − d) . . . , u(t − nB + 1 − d)] (8.10)

u(t) = −R

S
y(t) + ru, (8.11)

where ru is the external excitation added to the output of the controller (ru is equal
to T

S r if the external excitation is applied on the reference as in Fig. 8.2b).

1In this case, Syυ corresponds to the transfer function between ru(t) and y(t).
2This is equivalent to sending the excitation to the input of the filter R in Fig. 8.2b.
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For a fixed value of the estimated parameters, the predictor of the closed-loop (the
design system) can be expressed as:

ŷ(t + 1) = −Â∗ŷ(t) + B̂∗û(t − d) = θ̂Tφ(t), (8.12)

where

θ̂T = [â1 . . . , ânA , b̂1 . . . , b̂nB ] (8.13)

φT (t) = [−ŷ(t) . . . ,−ŷ(t − nA + 1), û(t − d) . . . , û(t − nB + 1 − d)] (8.14)

û(t) = −R

S
ŷ(t) + ru (8.15)

The closed-loop prediction (output) error is defined as:

εCL(t + 1) = y(t + 1) − ŷ(t + 1) (8.16)

It clearly results from Fig. 8.2a that for constant values of the estimated parameters,
the predictor regressor vector φ(t) depends only upon the external excitation. There-
fore under the assumption that the external excitation (r or ru) and the stochastic noise
η are independent, φ(t) and η(t) are not correlated (as well as φ(t) and εCL(t + 1)),
the scheme has the structure of an output error prediction.

If known fixed parts should be included in the estimated plant model, the equation
of the predictor for the closed-loop has to be modified in order to preserve the
input/output behaviour. See for details Sect. 8.2.4 and [3].

For all the methods, the parameter adaptation algorithm (PAA) has the general
form

Θ̂(t + 1) = Θ̂(t) + F(t)Φ(t)ν(t + 1) (8.17)

F(t + 1)−1 = λ1(t)F(t)−1 + λ2(t)Φ(t)ΦT (t) (8.18)

0 < λ1(t) ≤ 1 ; 0 ≤ λ2(t) < 2 ;

F(0) > 0 ; F(t)−1 > αF−1(0) ; 0 < α < ∞ (8.19)

F(t + 1) = 1

λ1(t)

[
F(t) − F(t)Φ(t)ΦT (t)F(t)

λ1(t)
λ2(t)

+ ΦT (t)F(t)Φ(t)

]
(8.20)

ν(t + 1) = ν◦(t + 1)

1 + ΦT (t)F(t)Φ(t)
, (8.21)

where ν◦(t+1) = f1(Θ̂(t), Θ̂(t−1), . . . , y(t+1), ν(t), ν(t−1), . . .) is the a priori
adaptation error, ν(t + 1) = f2(Θ̂(t + 1), Θ̂(t), . . . , y(t + 1), ν(t), ν(t − 1), . . .) is
the a posteriori adaptation error and Φ(t) is the observation vector.

For each recursive identification algorithm Θ , Φ, and ν◦(t+ 1) will have specific
expressions. Note that the sequences λ1(t) and λ2(t) allow to define the time profile
of the adaptation gain F(t). For convergence analysis in the stochastic environment,
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it is assumed that a PAA with decreasing adaptation gain is used (i.e., λ1(t) ≡ 1,
λ2(t) = λ2 > 0).

The fundamental differences with respect to the open-loop output error identi-
fication algorithm come from the structure of the adjustable predictor and of the
observation vector.

8.2.1 The Closed-Loop Output Error Algorithm

Replacing now the fixed predictor of the closed-loop given in (8.12) by an adjustable
predictor, one gets:

• a priori predicted output:

ŷ◦(t + 1) = ŷ(t + 1|θ̂ (t)) = θ̂T (t)φ(t); (8.22)

• a posteriori predicted output:

ŷ(t + 1) = ŷ(t + 1|θ̂ (t + 1)) = θ̂T (t + 1)φ(t); (8.23)

• a priori prediction error as:

ε◦
CL(t + 1) = y(t + 1) − ŷ◦(t + 1); (8.24)

• a posteriori prediction error as:

εCL(t + 1) = y(t + 1) − ŷ(t + 1). (8.25)

The equation for the a posteriori prediction error becomes in the deterministic envi-
ronment (no noise, see [4] for details):

εCL(t + 1) = S

P
[θ − θ̂ (t + 1)]Tφ(t) (8.26)

The rules given in Chap. 4 suggest a PAA with:

Θ̂(t) = θ̂ (t)

Φ(t) = φ(t)

ν◦(t + 1) = ε◦
CL(t + 1)

This is termed theClosed-LoopOutput Error (CLOE) algorithm [1, 2, 4]. It can be
shown (see [2, 4] that in both deterministic and stochastic environment the sufficient
condition for stability and unbiased asymptotic convergence is:

http://dx.doi.org/10.1007/978-3-319-41450-8_4
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H ′(z−1) = S(z−1)

P(z−1)
− λ2

2
(8.27)

should be strictly positive real (where maxt λ2(t) ≤ λ2 < 2).
To relax this condition, the following two solutions have been proposed.

8.2.2 Filtered and Adaptive Filtered Closed-Loop Output
Error Algorithms (F-CLOE, AF-CLOE)

Equation (8.26) for θ̂ = constant can also be rewritten as:

εCL(t + 1) = S

P
· P̂
S

[θ − θ̂] S
P̂

φ(t) = P̂

P
[θ − θ̂ ]φf (t), (8.28)

where

φf (t) = S

P̂
φ(t) (8.29)

P̂ = ÂS + q−dB̂R (8.30)

In Eq. (8.30), P̂ is an estimation of the true closed-loop poles based on an initial
estimation of the plant model (for example using an open-loop experiment). This
formulation leads to the Filtered Closed-Loop Output Error (F-CLOE) algorithm [2]
which uses the same adjustable predictor as CLOE (see Eqs. (8.22) and (8.23)) and
the PAA with:

Θ̂(t) = θ̂ (t)

Φ(t) = φf (t)

ν◦(t + 1) = ε◦
CL(t + 1)

It can be shown that by neglecting the non-commutativity of time-varying operators
(an exact algorithm can however be derived), under the sufficient condition that:

H ′(z−1) = P̂(z−1)

P(z−1)
− λ2

2
(8.31)

is strictly positive real, both asymptotic stabilities in deterministic environment and
asymptotic unbiasedness in a stochastic environment are assured [2].

One can further relax the condition of Eq. (8.31) by filtering φ(t) through a time-
varying filter S/P̂(t), where P̂(t) corresponds to the current estimate of the closed-
loop given by: P̂(t) = Â(t)S+q−dB̂(t)R, where Â(t) and B̂(t) are the current estimates
of the A and B polynomials (the AF-CLOE algorithm).
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8.2.3 Extended Closed-Loop Output Error Algorithm
(X-CLOE)

For the case where the noise model is η(t + 1) = C
A e(t + 1), where e(t + 1) is a

zero mean gaussian white noise and C(q−1) = 1 + q−1C∗(q−1) is an asymptotically
stable polynomial, an extended output error prediction model can be defined:

ŷ(t + 1) = −Â∗ŷ(t) + B̂∗û(t − d) + Ĥ∗ εCL(t)

S

= θ̂Tφ(t) + Ĥ∗ εCL(t)

S
= θ̂T

e φe(t) (8.32)

Equation (8.8) for the plant output becomes in this case:

y(t + 1) = θTφ(t) + H∗ εCL(t)

S
− C∗εCL(t) + Ce(t + 1) (8.33)

= θT
e φe(t) − C∗εCL(t) + Ce(t + 1), (8.34)

where

H∗ = h1 + h2q
−1 + · · · + hnH q

−nH+1 = C∗S − A∗S − q−dB∗R, (8.35)

H = 1 + q−1H∗ = 1 + CS − P, (8.36)

θT
e = [θT , h1, . . . , hnH ], (8.37)

θ̂T
e = [θ̂T , ĥ1, . . . , ĥnH ], (8.38)

φT
e (t) = [φT (t), εCLf (t), . . . , εCLf (t − nH + 1)], (8.39)

εCLf (t) = 1

S
εCL(t). (8.40)

Subtracting (8.32) from (8.34), one obtains the following expression for the
closed-loop prediction error (for details see [5]):

εCL(t + 1) = 1

C
[θe − θ̂e]Tφe(t) + e(t + 1). (8.41)

Equation (8.41) clearly shows that for θ̂e = θe the closed-loop prediction error
tends asymptotically towards e(t + 1).

Replacing the fixed predictor (8.32) with an adjustable one, a recursive identifi-
cation algorithm (X-CLOE) can be obtained by using a PAA with:

Θ̂(t) = θ̂e(t)

Φ(t) = φe(t)

ν◦(t + 1) = ε◦
CL(t + 1) = y(t + 1) − θ̂T

e (t)φe(t)
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Fig. 8.3 Taking into account the double differentiator behaviour for identification in closed-loop

The analysis in the deterministic case (C = 1, e = 0) using the theorem given in
Chap. 4 shows that global asymptotic stability is assured without any positive real
condition (since the a posteriori closed-loop prediction error equation in this case is
εCL = [θe − θ̂e(t + 1)]Tφe(t)).

Asymptotic unbiased estimates in a stochastic environment can be obtained under
the sufficient condition [2, 5] that:

H ′(z−1) = 1

C(z−1)
− λ2

2
(8.42)

is strictly positive real (where maxt λ2(t) ≤ λ2 < 2).

8.2.4 Taking into Account Known Fixed Parts in the Model

In the context of active vibration control systems, like for identification in open-loop
operation, it is wise to take into account that the secondary path has a known double
differentiator behaviour. This will require a modification of the controller used in
the closed-loop predictor. To take into account the double differentiator behaviour
when external excitation is superposed to the input of the controller (at the input of
the filter R) one should modify the CLOE configuration as shown in Fig. 8.3.3

3The external excitation effect is equivalently obtained by filtering the signal through R and adding
it to the output of the filter R in the upper part of the Fig. 8.3. Using algorithms from the CLID
toolbox, both T and R should be modified according to the Fig. 8.3.

http://dx.doi.org/10.1007/978-3-319-41450-8_4


162 8 Identification in Closed-Loop Operation

8.2.5 Properties of the Estimated Model

It is very important to asses the properties of the estimated model in the frequency
domain. This will allow to know in what frequency region the approximation of the
true plant will be best (it is expected that this should be particularly true in the critical
regions for design). Nevertheless, the properties of the estimated models will depend
on the point where the external excitation is applied. There are several options.
When the excitation is superposed to the output of the controller (like in Fig. 8.2a),
the properties of the estimated model in the frequency domain (bias distribution)
result from ([2]):

θ̂∗ = arg min
θ̂∈D

∫ π

−π

|Syp|2[|G − Ĝ|2|Ŝyp|2φru(ω) + φη(ω)]dω, (8.43)

where φru(ω) and φη(ω) are the power spectral densities of the excitation and the
measurement noise, respectively. This expression shows that

• The estimation of the plant model parameters is unbiased when G is in the model
set4;

• The bias distribution is not affected by the spectrum of the noise (which is the case
when using the (filtered) open-loop identification methods [2]);

• The approximation of the true model is not only weighted by the sensitivity func-
tion but is further weighted by the estimated output sensitivity function; and

• Quality of the estimated model is enhanced in the critical region for design.5

By contrast the bias distribution in the frequency domain for the open-loop output
error is given by:

θ̂∗ = arg min
θ̂∈D

∫ π

−π

[|G − Ĝ|2|φru(ω) + φη(ω)]dω (8.44)

As one can see, the basic difference is that in open-loop identification using output
error algorithm one has an equal weight for all the frequencies. The comparison
between (8.43) and (8.44), explains why identification in closed-loop may provide
better models for design.

When the external excitation signal is superposed to the input of the controller,
with T = R, the asymptotic bias distribution is given by:

θ̂∗ = arg min
θ̂∈D

∫ π

−π

|Syp|2[|G − Ĝ|2|Ŝup|2φru(ω) + φη(ω)]dω, (8.45)

4Both true plant model and estimated plant model have the same orders.
5Recall that the maximum of the output sensitivity function corresponds to the minimum distance
with respect to the Nyquist point.
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where Ŝup = −ÂR/P̂ is the estimated input sensitivity function.
For more details see [2, 6].

8.2.6 Validation of Models Identified in Closed-Loop
Operation

As in open-loop identification, it is the model validation that will tell us on one hand
if the identified model is acceptable and on the other hand it will allow us to select
the best model among the models provided by various identification methods.

The objective of the model validation in closed-loop operation is to find what
plant model combined with the current controller provides the best prediction of the
behaviour of the closed-loop system. The results of model validation in closed-loop
will depend upon the controller used.

Four validation procedures can be defined:

1. Statistical validation tests on the closed-loop output error (uncorrelation test
between εCL(t + 1) and ŷ(t)).

2. Closeness of the computed and identified poles of the closed-loop system.
3. Closeness of the computed and identified sensitivity functions of the closed-loop

system.
4. Time response validation (comparison of time responses of the real closed-loop

system and of the closed-loop predictor).

Statistical Validation

The statistical validation follows the same principles as for open-loop model iden-
tification; however, in this case one considers the residual prediction error between
the output of the plant operating in closed-loop and the output of the closed-loop
predictor. An uncorrelation test will be used.

Using the schemes shown in Fig. 8.2b (or Fig. 8.3), where the predictor is given by
Eq. (8.12) through (8.15), one computes with the identified values of the parameters:

• The cross correlations between the residual closed-loop output error εCL(t + 1)

and the predicted output ŷ(t));
• The covariance of the residual closed-loop output error.

This type of test is motivated on one hand by the fact that uncorrelation between
the predicted output and the residual closed-loop prediction error leads to unbiased
parameter estimates and on the other hand this uncorrelation implies the uncorrelation
between the closed-loop output error and the external excitation. This means that the
residual prediction error does not contain any information which depends upon the
external excitation and therefore all the correlations between the external excitation
and the output of the closed-loop system are captured by the closed-loop predictor.
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One computes:

Rε(0) = 1

N

N∑
t=1

ε2
CL(t) (8.46)

Rŷ(0) = 1

N

N∑
t=1

ŷ2(t) (8.47)

Rεŷ(i) = 1

N

N∑
t=1

εCL(t)ŷ(t − i) i = 1, 2, . . . , nA (8.48)

RNεŷ(i) = Rεŷ(i)

[Rŷ(0) · Rε(0)]1/2
(8.49)

As a confidence test, one can use the criterion

|RN(i)| ≤ 2.17√
N

, (8.50)

where N is the number of data (see also Sect. 5.5), as well as the practical criterion
|RN(i)| ≤ 0.15.

In many practical situations, one either has a previous plant model identified in
open-loop or several identification algorithms are used on the data collected in closed-
loop. Then a comparative validation has to be done and useful comparison indicators
are provided by Rε(0) and max |RNεŷ| for each model (however other comparison
criteria can be considered).

Pole Closeness Validation

If the model identified in closed-loop in feedback with the controller used during
identification allows constructing a good predictor for the real system, this implies
that the poles of the closed-loop system and of the closed-loop predictor are close
(assuming that a persistent excitation has been applied for identification). As a conse-
quence, the closeness of the closed-loop predictor poles (which can be computed) and
those of the real closed-loop system (which can be identified by an open-loop type
identification between the external excitation and the output) will give an indication
of the quality of the identified model.

The closeness of the two sets of poles can be judged by a visual examination of
the poles chart but a quantification of the closeness can be done (see next).

Sensitivity Functions Closeness Validation

From the same arguments as above it results that if the identified model is good,
the sensitivity functions of the closed-loop predictor (which can be computed) are
close to the sensitivity functions of the real system (which can be identified by an
open-loop type identification between the external excitation and the output).

http://dx.doi.org/10.1007/978-3-319-41450-8_5
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To some extent the closeness of the sensitivity functions can be assessed by visual
inspection. Moreover it is possible to quantify rigorously the distance between two
transfer functions by computing the Vinnicombe distance (see Appendix A).

Extensive simulations and a large number of experimental results have shown
that the statistical tests and the poles or sensitivity functions closeness give coherent
results and allow a clear comparison between several models ([1]).

Time Domain Validation

For the validation in the time domain, the time responses of the closed-loop sys-
tem and of the closed-loop predictor are compared. Unfortunately in practice it is
in general not easy to compare accurately several models using this technique. In
fact a good validation by poles or sensitivity functions closeness will imply a good
superposition of the time domain responses while the reciprocal is not always true.

8.3 A Real-Time Example: Identification in Closed-Loop
and Controller Redesign for the Active Control System
Using an Inertial Actuator

A first controller for this system has been designed in Sect. 7.3 using a plant model
identified in open-loop and it has been tested in real time. The objective in this section
is to illustrate the procedure for identification in closed-loop operation. For carrying
the identification in closed-loop operation the controller designed on the basis of the
open-loop identified model will be used. The identification experiment is done in the
absence of the narrow-band output disturbance.

In this example the objective of the identification in closed-loop will be to heavily
weight the differences between the estimated model and the true model in the fre-
quency regions close to the Nyquist point. This is achieved by adding the excitation
signal to the control signal (see Sect. 8.2.5).

To take into account the double differentiator behaviour of the secondary path
model, the solution indicated in Fig. 8.3 has been used, i.e., the double differentiator
has been added to the polynomials T(q−1) = S(q−1) and R(q−1).

Before running the identification algorithms, the input and output signals have
been centred. The orders of the model used for identification in closed-loop operation
are the same as those of the model identified in open-loop (nB = 23 and nA = 22).
The final order for the secondary path numerator after adding the known fixed part
will be nB = 25.

A parameter adaptation algorithm with decreasing gain has been used for all the
identification methods. The best results in terms of validation have been obtained
using the X-CLOE method. The uncorrelation validation test result for the closed-
loop identification is shown in Fig. 8.4. It can be seen that the model is valid. The
loss function is 7.7 × 10−5 an it is very small compared to the measured output.

http://dx.doi.org/10.1007/978-3-319-41450-8_7
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Fig. 8.4 Uncorrelation test
for the model identified in
closed-loop operation with
XCLOE
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A comparison with an open-loop identification of the closed-loop has also been
accomplished to validate the model. The open-loop model does not pass the uncor-
relation test on the closed-loop data; the loss function for the open-loop identified
model on the closed-loop data is 1.3×10−3 (much higher than for the model identified
in closed-loop). One can conclude already that the model identified in closed-loop
operation is better than the model identified in open-loop operation. A Bode mag-
nitude comparison between the open-loop identified model from Sect. 6.2 and the
closed-loop identified model in the presence of the controller designed in Sect. 7.3
is shown in Fig. 8.5. It can be observed that the two models are very close in the
frequency region of interest (50–95 Hz). Note that the differences between the two
transfer functions appear in the frequency region over 150 Hz, where the magnitude
of the input sensitivity function is very low (see Fig. 7.14) and therefore there will
be a little impact on performances.

Further comparison between the two models requires an estimation of the closed-
loop transfer function. The closed-loop between excitation and measurement has

http://dx.doi.org/10.1007/978-3-319-41450-8_6
http://dx.doi.org/10.1007/978-3-319-41450-8_7
http://dx.doi.org/10.1007/978-3-319-41450-8_7
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Fig. 8.6 Closed-loop poles closeness comparison using the model identified in closed-loop oper-
ation (a) and the open-loop identified model (b)

been identified as an input/output model using XOLOE method. The identified model
of the closed-loop passed the whiteness test (i.e., it is a valid model). This allows to
compare the identified closed-loop poles with the calculated closed-loop poles using
the two models identified in open and in closed-loop operation. The pole closeness
between the poles of the identified closed-loop model and the poles computed with
the open-loop identified model and with the model identified in closed-loop are
shown in Fig. 8.6. The model identified in closed-loop gives a slightly better result.

Using the same specifications and controller design steps as described in Sect. 7.3,
a new controller has been obtained on the basis of the model identified in closed-loop
operation. The controller has been tested using the same procedure as before. Time
domain results in open-loop and in closed-loop are shown in Fig. 8.7. Frequency

0 5 10 15 20 25 30
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

Time [sec]

R
es

id
ua

l f
or

ce

System Output Comparison

y
OL

(t)

y
CL

(t)

Fig. 8.7 The response results for a 70 Hz disturbance in open-loop and in closed-loop with the
redesigned controller

http://dx.doi.org/10.1007/978-3-319-41450-8_7
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Fig. 8.8 PSD of the residual
force in open-loop (dashed
line) and closed-loop (solid
line) for 70 Hz disturbance
using the redesigned
controller
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Fig. 8.9 Effective residual
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the difference between the
open-loop PSD and the
closed-loop PSD using the
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domain analysis has also been done and the results are shown in Figs. 8.8 and 8.9.
It can be seen that the controller effectively reduces the disturbance and the residual
force is at the level of the system’s noise. These figures have to be compared with
Figs. 7.15, 7.16, and 7.17.

The global attenuation of the newly designed controller is 49 dB, while for the
first controller it was 48.4 dB. As for the first controller, the maximum amplification
does not exceed the 6 dB limit (dashed line in Figs. 7.17 and 8.9). The disturbance
attenuation is of 62.4 dB for the new controller and 63 dB for the initial one. The
differences are negligible taking also into account that they were obtained on the
basis of a single trial (one realization of a stochastic process).6 One can conclude
that in this particularvadjust case, already the quality of the model identified in open-

6It was not possible to conduct a sufficiently large number of measurements for this example.

http://dx.doi.org/10.1007/978-3-319-41450-8_7
http://dx.doi.org/10.1007/978-3-319-41450-8_7
http://dx.doi.org/10.1007/978-3-319-41450-8_7
http://dx.doi.org/10.1007/978-3-319-41450-8_7
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loop was sufficient to get a good controller. Therefore, the initial controller based
on the open-loop identified model will be used in Sect. 9.4 to design a reduced order
controller.

8.4 Concluding Remarks

• Plant model identification in closed-loop operation provides efficient tools either
for improving open-loop identified models or for redesign and retuning of existing
controllers.

• The objective of identification in closed-loop operation is to obtain, for a given
controller, a plant model allowing the best description of the behaviour of the
closed-loop system.

• Identification in closed-loop is based on the use of an adaptive predictor for the
closed-loop which is re-parameterized in terms of the plant model to be identified.

• The estimated parameters minimize asymptotically a criterion in terms of the
closed-loop prediction error.

• As for the case of identification in open-loop, there is no single algorithm which
gives the best results in all the situations.

• Comparative validation of the identified models is crucial for the selection of the
best identified model.

• In addition to the statistical validation test, the pole closeness between the true
closed-loop poles (obtained through identification of the closed-loop) and the
computed ones, based on the identified model is a very useful validation tool.

8.5 Notes and References

Plant model identification in closed-loop operation has been considered for a long
time as a very difficult problem. See [7] for a survey.

It is the work done on the topics of “Identification for Control” and “Iterative
Identification and Controller Re-design” which contributed to put the problem of
identification in closed-loop operation in an appropriate context. See [8–13] for
details.

The original reference for the closed-loop output error is [4]. Further details and
comparative evaluations can be found in [1, 2, 6, 14].

http://dx.doi.org/10.1007/978-3-319-41450-8_9
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Chapter 9
Reduction of the Controller Complexity

9.1 Introduction

The complexity (order of the polynomials R and S) of the controllers designed on
the basis of identified models depends upon

• the complexity of the identified model;
• the performance specifications; and
• the robustness constraints.

The controller will have a minimum complexity equal to that of the plant model but
as a consequence of performance specifications and robustness constraints, this com-
plexity increases (often up to the double of the size of the model, in terms of number
of parameters, and in certain cases even more). In many applications, the necessity
of reducing the controller complexity results from constraints on the computational
resources in real time (reduction of the number of additions and multiplications).

Therefore one should ask the question: can we obtain a simpler controller with
almost the same performance and robustness properties as the nominal one (design
based on the plant model)?

Consider the system shown in Fig. 9.1 where the plant model transfer function is
given by

G(z−1) = z−d B(z−1)

A(z−1)
(9.1)

and the nominal controller is given by:

K (z−1) = R(z−1)

S(z−1)
(9.2)

© Springer International Publishing Switzerland 2017
I.D. Landau et al., Adaptive and Robust Active Vibration Control,
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Fig. 9.1 The true closed-loop system

where:

R(z−1) = r0 + r1z
−1 + · · · + rnR z

−nR (9.3)

S(z−1) = 1 + s1z
−1 + · · · + snS z

−nS = 1 + z−1S∗(z−1) (9.4)

Different sensitivity functions have been defined in Sect. 7.1 for the system given
in Fig. 9.1.

The system given in Fig. 9.1 will be denoted the “true closed-loop system”.
Throughout this chapter, feedback systems which will use either an estimation of
G (denoted Ĝ) or a reduced order estimation of K (denoted K̂ ) will be considered.
The corresponding sensitivity functions will be denoted as follows:

• Sxy—Sensitivity function of the true closed-loop system (K , G).
• Ŝxy—Sensitivity function of the nominal simulated closed-loop system (nominal

controller K + estimated plant model Ĝ).

• ˆ̂Sxy—Sensitivity function of the simulated closed-loop system using a reduced
order controller (reduced order controller K̂ + estimated plant model Ĝ).

Similar notations are used for P(z−1), P̂(z−1) when using K and Ĝ, ˆ̂P(z−1) when
using K̂ and Ĝ.

The specific objective will be to reduce the orders nR and nS of controller poly-
nomials R and S.

The basic rule for developing procedures for controller complexity reduction
is to search for controllers of reduced orders which preserve the properties of the
closed-loop as much as possible. A direct simplification of the controller transfer
function by traditional techniques (cancellation of poles and zeros which are close,
approximations in the frequency domain, balanced truncation, etc.) without taking
into account the properties of the closed-loop leads in general to unsatisfactory results
(see [1, 2]).

Two approaches can be considered for the controller complexity reduction

1. Indirect Approach

This approach is implemented in three steps

a. Reduction of the complexity of the model used for design, trying to preserve the
essential characteristics of the model in the critical frequency regions for design.

http://dx.doi.org/10.1007/978-3-319-41450-8_7
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b. Design of the controller on the basis of the reduced model.
c. Test of the resulting controller on the nominal model.

2. Direct Approach

Search for a reduced order approximation of the nominal controller which preserves
the properties of the closed-loop.

The indirect approach has a number of drawbacks

• Does not guarantee the complexity of the resulting controller (since the robustness
specifications will be more severe when using reduced order models).

• The errors resulting from model reduction will propagate in the design of the
controller.

The direct approach seems the most appropriate for the reduction of the controller
complexity since the approximation is done in the last stage of the design and the
resulting performance can be easily evaluated. A combination of the two approaches
is also possible (see Chap. 10), i.e., the resulting controller obtained by the indirect
approach, after it has been tested on the nominal plant model is further reduced
through the direct approach.

9.2 Criteria for Direct Controller Reduction

Two criteria can be considered for direct reduction of the controller complexity

• Closed-loop input matching (CLIM). In this case, one would like that the control
generated in closed-loop by the reduced order controller be as close as possible to
the control generated in closed-loop by the nominal controller.

• Closed-loop output matching (CLOM). In this case, one would like that the closed-
loop output obtained with the reduced order controller be as close as possible to
the closed-loop output obtained with the nominal controller.

These two criteria are illustrated in Fig. 9.2, where the nominal controller is
denoted by K and is given in (9.2) and the reduced controller is denoted by K̂
and is given by

K̂ (z−1) = R̂(z−1)

Ŝ(z−1)
(9.5)

where:

R̂(z−1) = r0 + r1z
−1 + · · · + rnR z

−nR (9.6)

Ŝ(z−1) = 1 + s1z
−1 + · · · + snS z

−nS = 1 + z−1 Ŝ∗(z−1) (9.7)

The closed-loop input matching is equivalent to minimizing the following norm:

http://dx.doi.org/10.1007/978-3-319-41450-8_10
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(a) (b)

Fig. 9.2 Criteria for controller complexity reduction. a Input matching. b Output matching

‖Ŝup − ˆ̂Sup‖ =
∥∥∥∥∥

K

1 + K Ĝ
− K̂

1 + K̂ Ĝ

∥∥∥∥∥ (9.8)

where Ŝup is the input sensitivity function of the nominal simulated closed-loop

and ˆ̂Sup is the input sensitivity function when using the reduced order controller.
Therefore the optimal reduced order controller will be given by

K̂ ∗ = arg min
K̂

‖Ŝup − ˆ̂Sup‖ = arg min
K̂

‖Ŝyp(K − K̂ )
ˆ̂Syp‖ (9.9)

As it can be seen, the difference between the two controllers is heavily weighted
by the output sensitivity function. The maximum of its modulus corresponds to the
critical region for design. Therefore, the reduced order controller will very well
approximate the nominal controller in this critical frequency region for design.

If we now consider preservation of performance in tracking using the closed-loop
output matching, the reduced order controller should minimize the following norm:

‖Ŝyr − ˆ̂Syr‖ =
∥∥∥∥∥

K Ĝ

1 + K Ĝ
− K̂ Ĝ

1 + K̂ Ĝ

∥∥∥∥∥ (9.10)

To preserve the performance for output disturbance rejection, the reduced order
controller should minimize

‖Ŝyp − ˆ̂Syp‖ =
∥∥∥∥ 1

1 + K Ĝ
− 1

1 + K̂ Ĝ

∥∥∥∥ (9.11)

Fortunately, these two norms are equal and the reduced order controller can be
obtained using the following expression:

K̂ ∗ = arg min
K̂

‖Ŝyp − ˆ̂Syp‖ = arg min
K̂

‖Ŝyp(K − K̂ )
ˆ̂Syv‖ (9.12)
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Fig. 9.3 Estimation of
reduced order controllers by
the closed-loop input
matching (CLIM) method.
Use of simulated data

Equations (9.9) and (9.12) show that a weighted norm of K − K̂ should be mini-
mized.

For closed-loop input matching (Fig. 9.2a) one tries to find a reduced order con-
troller which will minimize the difference between the input sensitivity function of
the nominal simulated system and the input sensitivity function of the simulated sys-
tem using a reduced order controller. This is equivalent to the search for a reduced
controller which minimizes the error between the two loops (in the sense of a certain
criterion) for a white noise type excitation (like PRBS).

For the tracking of the nominal output (Fig. 9.2b) the principle remains the same,
except that in this case one tries to minimize the difference between the nominal
complementary sensitivity function (7.8) and the reduced order complementary sen-
sitivity function computed with K̂ and Ĝ.

It can be seen immediately that in both cases the problem of finding a reduced
order controller can be formulated as an identification in closed-loop (see Chap. 8)
where the plant model is replaced by the reduced order controller to be estimated
and the controller is replaced by the available estimated model of the plant (dual
problem).

The reduction procedures and the validation techniques for reduced order con-
trollers to be presented next are available in the MATLAB® toolbox REDUC® [3]
(to be downloaded from the book website) or in the stand alone software iReg which
includes a module for controller complexity reduction.1

9.3 Estimation of Reduced Order Controllers
by Identification in Closed-Loop

9.3.1 Closed-Loop Input Matching (CLIM)

The principle of closed-loop input matching approach is illustrated in Fig. 9.3.

1See the website: http://tudor-bogdan.airimitoaie.name/ireg.html.

http://dx.doi.org/10.1007/978-3-319-41450-8_7
http://dx.doi.org/10.1007/978-3-319-41450-8_8
http://tudor-bogdan.airimitoaie.name/ireg.html
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The upper part represents the simulated nominal closed-loop system. It is made
up of the nominal controller (K ) and the best identified plant model (Ĝ). This model
should assure the best closeness behaviour of the true closed-loop system and the
nominal simulated one. Identification of this plant model in closed-loop can be con-
sidered if the nominal controller can be implemented.

The lower part is made up of the estimated reduced order controller (K̂ ) in feed-
back connection with the plant model (Ĝ) used in the nominal simulated system.
The parameter adaptation algorithm (PAA) will try to find the best reduced order
controller which will minimize the closed-loop input error. The closed-loop input
error is the difference between the plant input generated by the nominal simulated
closed-loop system and the plant input generated by the simulated closed-loop using
the reduced order controller.

The output of the nominal controller is given by

u(t + 1) = −S∗(q−1)u(t) + R(q−1)c(t + 1) = θTψ(t) (9.13)

where

c(t + 1) = r(t + 1) − y(t + 1) (9.14)

y(t + 1) = − Â∗y(t) + B̂∗u(t − d) (9.15)

ψT (t) = [−u(t), . . . ,−u(t − nS + 1), c(t + 1), . . . , c(t − nR + 1)] (9.16)

θT = [s1, . . . , snS , r0, . . . , rnR ] (9.17)

To implement and analyze the algorithm, we need respectively the a priori (based
on θ̂ (t)) and the a posteriori (based on θ̂ (t + 1)) predicted outputs of the estimated
reduced order controller (of orders nŜ and nR̂) which are given by (see the lower part
of Fig. 9.3).

a priori:

û◦(t + 1) = û(t + 1|θ̂ (t)) = −Ŝ∗(t, q−1) û(t) + R̂(t, q−1) ĉ(t + 1)

= θ̂T (t)φ(t) (9.18)

a posteriori:
û(t + 1) = θ̂T (t + 1) φ(t) (9.19)

where

θ̂T (t) = [ŝ1(t), . . . , ŝnŜ
(t), r̂0(t), . . . , r̂n R̂

(t)] (9.20)

φT (t) = [−û(t), . . . ,−û(t − nŜ + 1), ĉ(t + 1), . . . , ĉ(t − nR̂ + 1)] (9.21)

ĉ(t + 1) = r(t + 1) − ŷ(t + 1) = r(t + 1) + Â∗ ŷ(t) − B̂∗û(t − d) (9.22)

The closed-loop input error is given by
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a priori:
ε◦
CL(t + 1) = u(t + 1) − û◦(t + 1) (9.23)

a posteriori:
εCL(t + 1) = u(t + 1) − û(t + 1) (9.24)

The equation governing the a posteriori prediction error becomes (see [4, 5] for
details)

εCL(t + 1) = Â

P
[θ − θ̂ (t + 1)]Tφ(t) (9.25)

and the parameter adaptation algorithm will be given by

θ̂ (t + 1) = θ̂ (t) + F(t)Φ(t)εCL(t + 1) (9.26)

F−1(t + 1) = λ1(t)F
−1(t) + λ2(t)Φ(t)ΦT (t) (9.27)

0 < λ1(t) ≤ 1; 0 ≤ λ2(t) < 2; F(0) > 0

εCL(t + 1) = ε◦
CL(t + 1)

1 + ΦT (t)F(t)Φ(t)
= u(t + 1) − û◦(t + 1)

1 + ΦT (t)F(t)Φ(t)
(9.28)

As we can see from (9.28), the a posteriori closed-loop input error εCL(t +1) can be
expressed in terms of the a priori (measurable) closed-loop input error ε◦

CL(t + 1).
Therefore, the right-hand side of (9.26) will depend only on measurable quantities
at t + 1.

Specific algorithms will be obtained by an appropriate choice of the observation
vector Φ(t) as follows:

• CLIM: Φ(t) = φ(t)

• F-CLIM: Φ(t) = Â(q−1)

P̂(q−1)
φ(t)

where
P̂(q−1) = Â(q−1)S(q−1) + q−d B̂(q−1)R(q−1). (9.29)

The introduction of the filtering of φ is motivated by the elimination of a positive
realness sufficient condition for stability and convergence which, in the case of the
CLIM algorithm, depends on Â/P̂ . A detailed analysis of the properties of these
algorithms can be found in [5].

The properties of the estimated controller in the frequency domain results from
the following expression (bias distribution) [5]:

θ̂∗ = arg min
θ̂∈D

∫ π

−π

|Ŝyp|2
[
|K − K̂ |2| ˆ̂Syp|2φr (ω) + φη(ω)

]
dω (9.30)

where φr (ω) is the excitation spectrum and φη(ω) is the measurement noise spectrum
(it does not have effect upon the minimization of |K − K̂ |).
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Estimation of reduced order controllers is also possible using real-time data (if
the prototype of the nominal controller can be implemented on the real system) [5].

9.3.2 Closed-Loop Output Matching (CLOM)

The principle of this method is illustrated in Fig. 9.4. Despite that, the point where
the external excitation is applied and the output variable is different with respect to
Fig. 9.2b, the transfer function between r(t) and u(t) in Fig. 9.4 is the same as the
transfer function between r(t) and y(t) in Fig. 9.2b. This means that in the absence
of disturbances (it is the case in simulation) u(t) generated by the upper part of the
scheme given in Fig. 9.4 is equal to y(t) generated in Fig. 9.2b. This allows one to
use for closed-loop output matching the CLIM (or F-CLIM) algorithm. For effective
implementation of the algorithm, the only changes occur in Eqs. (9.13) and (9.18),
where c(t) is replaced by:

x(t) = Ĝ(r(t) − u(t)) (9.31)

and ĉ(t) is replaced by:
x̂(t) = Ĝ(r(t) − û(t)) (9.32)

One should note that the order of the blocks in the upper part of Fig. 9.4 can be
interchanged (like the upper part of Fig. 9.2b) without affecting the operation of the
algorithm.

9.3.3 Taking into Account the Fixed Parts of the Nominal
Controller

It is often required that the reduced order controller contains some of the fixed
filters incorporated in the nominal controller (for example, model of the disturbance,
opening of the loop at 0.5 fS or at other frequency). In order to do this, one first

Fig. 9.4 Estimation of
reduced order controllers by
the closed-loop output
matching (CLOM) method.
Use of simulated data
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factorizes the nominal controller under the form K = KFK ′, where KF represents
all the fixed parts that one would like to be also incorporated in the reduced order
controller. The reduced order controller is factorized as K̂ = KF K̂ ′.

One replaces in the CLIM algorithm the input ĉ of the controller K̂ by the input
to the controller K̂ ′, denoted ĉ′, where ĉ′ is given by

ĉ′(t) = KF (q−1)ĉ(t) (9.33)

and in Φ(t), ĉ(t) is replaced by ĉ′(t). In the CLOM algorithm, one replaces x̂ by x̂ ′
given by

x̂ ′(t) = KF (q−1)Ĝ(q−1)(r(t) − û(t)). (9.34)

9.3.3.1 Validation of Reduced Order Controllers

Once a reduced order controller has been estimated, it should be validated before
considering its implementation on the real system.

It is assumed that the nominal controller stabilizes the nominal plant model (used
for controller reduction). One implicitly assumes that the model uncertainties have
been taken into account in the design of the nominal controller. The reduced order
controller should satisfy the following conditions:

• It stabilizes the nominal plant model.
• The reduced sensitivity functions (computed with the reduced order controller)

are close to the nominal sensitivity functions in the critical frequency regions for
performance and robustness. In particular, the output and input sensitivity functions
should be examined.

• The generalized stability margin (see Appendix A) of the system using the reduced
order controller should be close to the generalized stability margin of the nominal
closed-loop. This condition is expressed as

|b(K , Ĝ) − b(K̂ Ĝ)| < ε; ε > 0 (9.35)

where b(K , Ĝ) and b(K̂ Ĝ) are the generalized stability margins corresponding
to the nominal controller and to the reduced order controller respectively and
ε is a small positive number. The closeness of the two stability margins allows
maintaining the robustness properties of the initial design.

The proximity of the nominal and reduced sensitivity functions can be judged by
visual examination of their frequency characteristics. There is however the possibility
to make a numerical evaluation of this proximity by computing the Vinnicombe
distance (ν gap) between these transfer functions (see Appendix A). The Vinnicombe
distance allows with one number (between 0 and 1), to make a first evaluation of the
proximity of the reduced and nominal sensitivity functions.
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9.4 Real-Time Example: Reduction of Controller
Complexity

In Sect. 7.3, a controller based on the open-loop identified model has been designed
for the active vibration control system using an inertial actuator (see Sect. 2.2) and
tested experimentally. It was shown in Sect. 8.3 that the controller designed on the
basis of the model identified in open-loop provides similar performance to that of
the controller designed on the basis of the model identified in closed-loop. Therefore
in this section, the reduction of the complexity of the controller designed on the
basis of the model identified in open-loop (which achieves the specifications) will
be considered.

The criterion given in Eq. (9.8) will be considered, which corresponds to CLIM
with external excitation added to the input of the controller. The model of the plant
identified in closed-loop operation has been used. The excitation used was a PRBS
with the following characteristics: N = 11 (number of cells) and p = 2 (clock fre-
quency divider). The fixed parts of the controller have been preserved (internal model
of the disturbance, opening the loop at 0.5 fS and at 0 Hz).

Table 9.1 presents a summary of the controller order reduction results for various
values of nR and nS . The first column represents the controller number (the con-
troller with number 00 represents the initial nominal controller). The orders of the
reduced controllers are indicated in columns nR and nS . The next column gives the
Vinnicombe gap (Vg) between the initial controller and the reduced order controller.
Similarly, the Vinnicombe gaps for the input and output sensitivity functions are also
given in columns 5 and 6, respectively. A Vg of 0 indicates perfect matching while
a Vg of 1 indicates very important differences between the two transfer functions.
The generalized stability margin (see Appendix A) is given in column 7. For robust-
ness reasons, it should be close to the value obtained for the nominal controller.
The maximum of the output sensitivity function and the frequency in Hz for which
it is obtained are given in columns 8 and 9, respectively. Finally, the stability of
the closed-loop is indicated in the last column (1 represents a stable closed-loop,
0—unstable).

Only the first 12 reduced order controllers are shown in the table.2 For experi-
mental evaluation, controller 11 has been considered (nR = 19, nS = 22).

The output and input sensitivity functions obtained with the nominal and reduced
order controllers are shown in Figs. 9.5 and 9.6, respectively. As it can be observed,
the differences are very small within the frequency region of interest (except for the
input sensitivity function at the 50 Hz—but this does not affect nor the robustness nor
the performance). In Fig. 9.7 the transfer functions of the two controllers are shown.

It is important to remind that the comparison of the Bode characteristics of the
two controllers does not guarantees that the reduced order controller stabilizes the
system or that it assures good performances. It is the comparison of the sensitivity
functions and the stability test which gives the right answers.

2These results have been obtained using the software iREG. Similar results are obtained with the
compcon.m function from the toolbox REDUC.

http://dx.doi.org/10.1007/978-3-319-41450-8_7
http://dx.doi.org/10.1007/978-3-319-41450-8_2
http://dx.doi.org/10.1007/978-3-319-41450-8_8
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Table 9.1 Summary of the controller order reduction results
No. nR nS Vg( RS ) Vg(Sup ) Vg(Syp ) St-margin max(Syp ) [fmax] stable

00 29 32 0 0 0 0.3297 3.92 [60.0147] 1

01 29 32 0 0 0 0.3297 3.92 [60.0147] 1

02 28 31 0.001 0.003 0 0.3297 3.92 [60.0147] 1

03 27 30 0.0101 0.0284 0.0031 0.3296 3.8742 [60.0147] 1

04 26 29 0.0095 0.0282 0.0035 0.3306 3.8958 [60.0147] 1

05 25 28 0.0096 0.0327 0.004 0.3286 3.8958 [60.0147] 1

06 24 27 0.0103 1 0.0017 0.3263 3.9329 [60.0147] 1

07 23 26 0.0154 0.0498 0.0041 0.3213 3.9459 [60.0147] 1

08 22 25 0.0153 0.0545 0.0048 0.3232 3.9548 [60.0147] 1

09 21 24 0.0159 0.0514 0.0045 0.3232 3.9406 [60.0147] 1

10 20 23 0.0253 0.0972 0.0109 0.3268 3.9676 [60.0147] 1

11 19 22 0.0604 0.2645 0.0328 0.3089 3.9345 [59.3959] 1

12 18 21 1 1 1 0 3.7477 [59.3959] 0
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Fig. 9.5 Output sensitivity functions for initial and reduced order controllers

Finally, the controller has been tested in real time in the presence of a 70 Hz
sinusoidal disturbance. Time domain results in open and in closed-loop operation
are shown in Fig. 9.8. The difference between the two power spectral densities for
open-loop and closed-loop is shown in Fig. 9.9.3

For the reduced order controller, the following results have been obtained: (1)
the global attenuation is 48.2 dB (instead of 48.4 dB for the nominal controller), the

3Figures 9.8 and 9.9 should be compared with Figs. 7.15 and 7.17.

http://dx.doi.org/10.1007/978-3-319-41450-8_7
http://dx.doi.org/10.1007/978-3-319-41450-8_7
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Fig. 9.6 Input sensitivity functions for initial and reduced order controllers
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Fig. 9.7 Controller transfer function comparison between initial and reduced order controller

disturbance attenuation is 56.4 dB (instead of 62.4 dB but still much more than the
required attenuation) and the maximum amplification is 7.5 dB (instead of maxi-
mum 6 dB specified). A small reduction in performance with respect to the initial
nonreduced controller is observed but the number of parameters has been reduced
from 62 to 44. These results presented above have been obtained using a single
trial.
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9.5 Concluding Remarks

• The objective of controller reduction is to find a controller of reduced complexity
such that the characteristics of the closed-loop using the reduced order controller
are as close as possible to the characteristics of the closed-loop using the nominal
controller.

• Two specific objectives have been considered

– closed-loop input matching (CLIM); and
– closed-loop output matching (CLOM).

• The CLOM (CLIM) objective corresponds to the estimation of a reduced order
controller such that the error between the output (the control input) of the closed-
loop using the reduced order controller and the output (the control input) of the
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closed-loop using the nominal controller be minimized in the sense of a certain
criterion.

• Controller reduction can be viewed as a dual problem with respect to plant model
identification in closed-loop (similar algorithms will be used).

• The reduced order controllers should be validated before their effective use.
• Techniques for validation of the reduced order controllers have been provided in

this chapter.

9.6 Notes and References

The problem of controller reduction is clearly presented in [1, 2]. See also [6].
The basic references for the algorithms discussed in this chapter (analysis and

evaluation) are [5, 7, 8]. A unified view of identification in closed-loop and controller
reduction can be found in [8].
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Active Damping



Chapter 10
Active Damping

10.1 Introduction

As indicated in the introduction of the book, Sect. 1.3, passive dampers despite that
they provide a good attenuation over a wide band of frequencies, they always have
a significant resonance peak at a certain frequency within the frequency range of
operation. To correct this situation an active vibration isolation (control) has to be
considered. The test bench described in Sect. 2.1, belongs to this category. Such a
system has a primary path through which the disturbances are attenuated in certain
frequency ranges and amplified around the resonance of the system. The secondary
path is expected to correct the behaviour of the primary path in the frequency region
where the primary path shows a significant resonance (amplification of the vibrations
in this zone) through the appropriate use of feedback control. The use of the feedback
should attenuate the effect of the resonance of the primary path without deteriorating
the attenuation provided by the primary path at other frequencies. This means that
the “water bed” effect due to the Bode integral should be carefully managed by
shaping the sensitivity functions. Recall also that active damping consists of damping
a resonance mode without changing its frequency.

The methodology of designing active damping systems will be illustrated by
considering the active suspension described in Sect. 2.1.

The first step of the design consists of defining the control specifications. Roughly,
the control objective is illustrated in Fig. 10.1 where the PSD (power spectral density)
of the residual force is represented (thin line). We would like to attenuate the reso-
nance but it is the meantime that the tolerated amplification at other frequencies with
respect to the open-loop characteristics should be very low.1 The desired template
for the PSD corresponds to the curve in thick grey line is shown in Fig. 10.1. The
final objective of the design will be to find the lowest complexity controller which
allows matching the performance specifications.

1As a consequence of the Bode integral, the level of attenuation imposed is related to the level
of tolerated amplification at other frequencies.

© Springer International Publishing Switzerland 2017
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Fig. 10.1 Template imposed on the spectral density of the residual force

Once the performance specifications are formulated, the methodology of design
is illustrated in Fig. 10.2. It comprises a number of steps:

• Open-loop identification of the secondary path (one needs a model of the secondary
path for controller design).

• Design of a robust controller allowing to match the performance specifications
(the design uses the model identified in open-loop operation).

• Implementation and test.
• Identification of the secondary path model in closed-loop operation (an improved

model is expected).
• Redesign (retuning) of the controller based on the model identified in closed-loop

operation.
• Implementation and validation of the new controller.
• Controller order reduction preserving the stability and performance of the system.
• Implementation and validation of the reduced order controller.

It may happen in practice that one stops after the test of the controller designed
on the basis of the model of the secondary path identified in open-loop operation;
however, once the implementation of the controller is done it is easy to do an identi-
fication in closed loop and the procedure can go further. The complexity controller
reduction may not be necessary in some cases if there are no constraints on the
computer power or on the cost of the control.

10.2 Performance Specifications

In active damping the desired performances are specified in the frequency domain.
A template for the expected power spectral density (PSD) of the residual force or
acceleration has to be defined. For the active suspension described in Sect. 2.1, the
desired template is shown in Fig. 10.1 and the details are given below:

http://dx.doi.org/10.1007/978-3-319-41450-8_2
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Fig. 10.2 Design methodology

• for frequencies below 20 Hz, maximum amplification with respect to the open
loop: 1 dB;

• at 20 Hz, 0 dB amplification;
• at 31.25 Hz (the resonance) an attenuation of at least 6.6 dB;
• at 39 Hz, maximum 0 dB amplification;
• between 39 and 150 Hz maximum 3 dB amplification with respect to the open-loop

PSD;
• between 150 and 220 Hz amplification/attenuation below −30 dB with respect to

the value of the open-loop PSD at the resonance; and
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• from 220 Hz above, maximum amplification of 1 dB with respect to the open-loop
PSD.

In addition, as for any feedback control systems, robust specifications should be
considered:

• modulus margin ≥ −6 dB;
• delay margin ≥ 1.25 ms (one sampling period);
• Sup < 10 dB, between 0 and 35 Hz; Sup < 0 dB, between 40 and 150 Hz; Sup <

−20 dB, between 150 and 220 Hz and < −30 dB above 220 Hz; and
• opening the loop at 0.5 fs .

The reduction of the magnitude of Sup is related to the robustness with respect to
additive uncertainties and the fact that the system has low gain in high frequencies
(robustness requires low level control action at the frequencies where the system has
no gain—see Sect. 7.2). Opening the loop at 0.5 fs will lower drastically the gain of
the controller at high frequencies close to 0.5 fs .

One of the steps in the design procedure is to transform the objectives shown in
Fig. 10.1 and detailed above in specifications for the design of the feedback system.
The active damping can be interpreted as an additional attenuation/amplification of
the disturbance (vibration) acting upon the system. In other terms the difference
between the PSD of the residual force in open-loop operation and the desired PSD
will give the desired attenuation and the tolerated amplification for the feedback loop
around the secondary path. The attenuation/amplification introduced by a feedback
system is characterized by the frequency domain behaviour of the output sensitivity
function Syp. Therefore the difference between the open-loop PSD of the residual
acceleration (force) and the desired PSD will generate a desired template for the
modulus of the output sensitivity function to be achieved. Figure 10.3 shows the

Fig. 10.3 Desired template for the output sensitivity function Syp (without the robustness con-
straints)

http://dx.doi.org/10.1007/978-3-319-41450-8_7
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Fig. 10.4 Desired template for the output sensitivity function Syp and adjusted template taking
into account the robustness constraints

open-loop PSD, the desired PSD when active damping operates and their difference
which constitutes a first template for the desired output sensitivity function.

Nevertheless, this template has to take into account also the robustness constraints
imposed in terms of modulus margin and delay margin. Modulus margin imposes a
maximum of 6 dB and this maximum decreases in high frequencies as a consequence
of the constraints on the delay margin. Figure 10.4 shows the desired template as well
as the adjusted one which takes into account the modulus and the delay margins.
Figure 10.5 shows the template for shaping the input sensitivity function resulting
from the specifications defined earlier (nominal template).

Fig. 10.5 Template for the input sensitivity function Sup
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10.3 Controller Design by Shaping the Sensitivity
Functions Using Convex Optimization

The convex optimization procedure for controller design has been presented in
Sect. 7.4. Since the objective is also to obtain a low complexity controller, a first
step which was considered in this approach was to use a reduced order secondary
path model taking into account that according to the control objective, the control
will not have to be effective in high frequencies. One of the most commonly used
and efficient methods for model reduction is balancing. Because in the case of the
active suspension we are interested in specific frequency intervals, the approach con-
sidered for the model reduction is the frequency-weighted balancing method which
is suitable when a certain frequency range is of interest. Given the nominal full order
model G and the input and output weighting matrices Wi and Wo, the objective is to
find a stable and minimum-phase lower order model Gr such that the weighted error

‖Wo(G − Gr )Wi‖∞ (10.1)

is as small as possible.
The identified model of the secondary path has been presented in Sect. 6.1.1.

A reduced order model with nA = 8, nB = 11, d = 0 has been obtained by
using the “balanced truncation” technique in which the low frequencies have been
appropriately weighted. The parameters of the reduced order model are given in
Table 10.1. The frequency characteristics of the nominal and reduced order models
are shown in Fig. 10.6.

Nevertheless, once the design is done on the reduced order model, the resulting
controller has to be tested on the full order model before implementation. After a

Table 10.1 Parameters of the reduced order model

Coeff. A Coeff. B

a0 1.0000 b0 0.0000

a1 −2.1350 b1 0.1650

a2 2.1584 b2 −1.0776

a3 −2.2888 b3 3.6137

a4 2.2041 b4 −8.1978

a5 −1.8433 b5 15.4346

a6 1.4035 b6 −19.4427

a7 −0.2795 b7 14.2604

a8 −0.2057 b8 −10.8390

a9 – b9 11.9027

a10 – b10 −7.2010

a11 – b11 1.3816

http://dx.doi.org/10.1007/978-3-319-41450-8_7
http://dx.doi.org/10.1007/978-3-319-41450-8_6
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Fig. 10.6 Bode diagram (amplitude and phase) of the open-loop nominal and reduced order models

trial it was found that the basic templates have to be modified in certain frequency
regions in order that the controller designed on the reduced order model matches the
original templates when used with the nominal full order model.

For initializing the optimization procedure for controller design, a pair of poles
at the resonance frequency f = 31.939 Hz with a damping ξ = 0.8, and a fixed
real pole corresponding to the lowest frequency pole of the system (located at the
intersection of the 5.73 Hz curve with the real axis) have been assigned. The region
of optimization for the poles has been considered to be a circle with a radius 0.99.
A fixed part in the controller HR = 1 + q−1 is introduced in order to open the loop
at 0.5 fs .

For convenience, the controller designed will be denoted OLBC (Open Loop
Based Controller—controller designed using the open-loop identified model). The
parameters of the resulting OLBC controller (nR = 27, nS = 30) are given in
Table 10.2.

In Fig. 10.7, the achieved sensitivity functions with the full nominal model are
shown. Clearly, the controller allows matching the specifications. The achieved mod-
ulus margin is −2.775 dB and the achieved delay margin is 4.1 Ts (Ts = 1.25 ms).

The performance on the real system is shown in Fig. 10.8. As it can be seen the
specifications are satisfied.

Nevertheless, the full design procedure will be illustrated since in certain cases:

• the results obtained with the controller designed on the basis of the open-loop
model may not necessarily be fully satisfactory; and

• the complexity of the controller has to be reduced.
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Table 10.2 Parameters of the controller based on the reduced order open-loop identified model
(OLBC)

Coeff. R Coeff. S Coeff. R Coeff. S

r0 0.0162 s0 1.0000 r16 0.0071 s16 −0.1070

r1 −0.0515 s1 −5.1406 r17 −0.0111 s17 0.1031

r2 0.0695 s2 11.9134 r18 −0.0068 s18 −0.0384

r3 −0.0255 s3 −15.9616 r19 0.0263 s19 0.1284

r4 −0.0666 s4 12.7194 r20 −0.0198 s20 −0.0601

r5 0.1315 s5 −4.5490 r21 0.0032 s21 −0.0939

r6 −0.1245 s6 −2.0666 r22 −0.0059 s22 0.0027

r7 0.0570 s7 3.1609 r23 0.0188 s23 0.1820

r8 0.0485 s8 0.7437 r24 −0.0180 s24 −0.1586

r9 −0.1405 s9 −6.0665 r25 0.0066 s25 0.0457

r10 0.1456 s10 8.5544 r26 0.0003 s26 −0.0534

r11 −0.0610 s11 −6.8795 r27 −0.0007 s27 0.1081

r12 −0.0242 s12 3.6997 r28 – s28 −0.0901

r13 0.0422 s13 −1.8094 r29 – s29 0.0345

r14 −0.0212 s14 1.0885 r30 – s30 −0.0049

r15 0.0051 s15 −0.4045 – – – –

Fig. 10.7 Achieved sensitivity functions (black) with the OLBC controller and the nominal model
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Fig. 10.8 Performance of the OLBC controller on the real system (PSD of the residual force)

10.4 Identification in Closed-Loop of the Active Suspension
Using the Controller Designed on the Model Identified
in Open-Loop

The methodology of identification in closed-loop operation has been presented in
Chap. 8. A model with nA = 14, nB = 16 and d = 0 will be identified (same orders
as for the model identified in open-loop operation).

One would like to identify a model which will minimize the error between the
true output sensitivity function and the estimated sensitivity function, taking also
into account that the plant model has a double differentiator. To achieve this, the
excitation has been added to the input of the filter R (see Chap. 8 for details). Within
this context, data acquisition was done with the same PRBS sequence as in open-loop
identification (generated by 9-bit shift register and a clock frequency of fs/4).

The best identified model in terms of statistical validation was the model identified
with X-CLOE using a time-varying forgetting factor with λ0 = λ1 = 0.95. The
parameters of this model are given in Table 10.3.

It is very important to assess if the model identified in closed loop is better than the
model identified in open-loop for describing the behaviour of the closed-loop system
using the OLBC controller. Figure 10.9 shows the identified poles of the closed loop
(using an RELS algorithm for the closed-loop system identification considered as an
input/output map from the excitation to the residual force) and the computed closed-
loop poles using the open-loop identified model (OLID-M) and the OLBC controller.
Figure 10.10 shows the same type of comparison but the computed closed-loop poles
are calculated using the model identified in closed loop (CLID-M). Visual comparison
shows clearly that the CLID-M model gives a better description of the real closed-
loop system using the OLBC controller (this is obvious in the low frequency range
which defines the main behaviour of the closed-loop system in terms of performance).

http://dx.doi.org/10.1007/978-3-319-41450-8_8
http://dx.doi.org/10.1007/978-3-319-41450-8_8
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Table 10.3 Parameters of the model identified in closed-loop

Coeff. A Coeff. B Coeff. A Coeff. B

a0 1.0000 b0 0.0000 a9 0.6201 b9 0.2716

a1 −0.3003 b1 −0.1556 a10 −0.1095 b10 1.8255

a2 0.3504 b2 0.1843 a11 0.1593 b11 1.1575

a3 −0.6740 b3 0.5518 a12 −0.1580 b12 1.3638

a4 −0.2478 b4 −1.4001 a13 −0.0957 b13 −0.8958

a5 −0.4929 b5 3.4935 a14 −0.2030 b14 1.6724

a6 −0.3217 b6 −0.3536 a15 – b15 −1.7691

a7 0.6157 b7 −2.7181 a16 – b16 −0.2240

a8 0.1459 b8 −3.0041 – – – –
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Fig. 10.9 Proximity poles validation of the full order open-loop identified model. Identified and
computed closed-loop poles

This is also confirmed by the comparison of the real-time results with the simulated
results obtained with the OLID-M model and the CLID-M model (see Fig. 10.11).
A small improvement is observed.

10.5 Redesign of the Controller Based on the Model
Identified in Closed Loop

Similar to the open-loop situation a reduced order model obtained by balanced trun-
cation will be used. This model has the following dimensions: nA = 8, nB = 11,
d = 0. The frequency characteristics of this reduced model and those of the full
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Fig. 10.11 Spectral density of the simulated and real-time closed-loop output (zoom)

order model identified in closed loop are shown in Fig. 10.12.2 It can be observed
that the reduced order model approximates very well the frequency characteristics
of the nominal model identified in closed loop in the low frequency range of interest.

Applying the same design procedure based on convex optimization but now
using the reduced order model obtained from the nominal model identified in closed
loop a new controller (CLBC—Closed-Loop Based Controller) is obtained whose

2The option of identifying in closed loop a reduced order model instead of a model of nominal
order followed by an order reduction using balanced truncation has provided less good results. For
details see [1].
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Fig. 10.12 Bode diagram (amplitude and phase) of the nominal model identified in closed-loop
operation and of the corresponding reduced order model

parameters are given in Table 10.4. The sensitivity functions with the nominal CLID-
M model are shown in Fig. 10.13. The robustness margins are: (1) Modulus Margin
= −3.702 dB; (2) Delay Margin = 1.834 TS .

Figure 10.14 shows a comparison of the real-time results obtained with the OLBC
controller and with the CLBC (controller based on the closed-loop identified model).
The results are very close indicating that already the open-loop identified model was
very good.

10.6 Controller Complexity Reduction

Once the CLBC controller is tested and the performance results are satisfactory (see
Sect. 10.5), one can pass to the last step of the design methodology presented in
Fig. 10.2 which is the reduction of the complexity of the controller.

The techniques for controller complexity reduction by identification in closed
loop of the reduced order controller described in Chap. 9 will be used.

One aspect which is very important when reducing the complexity of a con-
troller is that the controller reduction should be done such as to preserve as much as
possible the desirable closed-loop properties. Direct simplification of the controller
using standard techniques (poles–zeros cancellation within a certain radius, balanced
reduction) without taking into account the closed loop behaviour produces in general
unsatisfactory results [2, 3].

http://dx.doi.org/10.1007/978-3-319-41450-8_9
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Table 10.4 Parameters of the controller based on the model identified in closed-loop operation
(reduced order model) (CLBC)

Coeff. R Coeff. S Coeff. R Coeff. S

r0 0.0195 s0 1.0000 r16 −0.0488 s16 0.8567

r1 −0.0618 s1 −4.5610 r17 0.0446 s17 −0.6306

r2 0.1030 s2 9.4917 r18 −0.0495 s18 0.3005

r3 −0.1238 s3 −12.4447 r19 0.0437 s19 −0.1080

r4 0.1263 s4 12.6103 r20 −0.0255 s20 0.0162

r5 −0.1087 s5 −11.5883 r21 0.0078 s21 0.1348

r6 0.0581 s6 9.8694 r22 0.0055 s22 −0.2960

r7 0.0050 s7 −7.4299 r23 −0.0178 s23 0.3737

r8 −0.0389 s8 5.3112 r24 0.0254 s24 −0.3835

r9 0.0499 s9 −4.0129 r25 −0.0215 s25 0.3633

r10 −0.0648 s10 2.9544 r26 0.0102 s26 −0.3058

r11 0.0727 s11 −2.1480 r27 −0.0022 s27 0.2004

r12 −0.0602 s12 1.9636 r28 – s28 −0.0883

r13 0.0511 s13 −1.9125 r29 – s29 0.0218

r14 −0.0597 s14 1.4914 r30 – s30 −0.0019

r15 0.0616 s15 −1.0471 – – – –
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Fig. 10.13 Achieved sensitivity functions (black thin line) with the CLBC controller and the nom-
inal model identified in closed-loop operation

The orders of the nominal CLBC controller to be reduced are nR = 27, nS = 30,
and its coefficients have been presented in Table 10.4. The model which will be
used for the reduction of the controller is the nominal closed-loop identified model
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Fig. 10.14 Real-time performance of the OLBC and CLBC controllers (detail)

CLID-M (see Sect. 10.4). The parameters of the model have been given in Table 10.3
(see Sect. 10.4).

Since in active damping we are concerned with attenuation of the disturbances, the
main objective for controller reduction will be to obtain an output sensitivity function
for the reduced order controller as close as possible to the output sensitivity function
obtained with the nominal order controller. As indicated in Chap. 9 and [4], in order
to achieve this, the CLOM procedure has to be used. The reduction procedures have
been run with simulated data.

A variable forgetting factor with λ1(0) = 0.95 and λ0 = 0.9 (λ1(t) = λ0λ1(t −
1)+ 1 −λ0) has been used in the algorithm for the controller parameters estimation.
The external input was a PRBS generated by a 9-bit shift register with a p = 4
frequency divider (4096 samples). In addition a fixed part HR = 1 + q−1 has been
introduced in the reduced order controllers (R = HRR′) which preserves the opening
of the loop at 0.5 fs .

10.6.1 CLOM Algorithm with Simulated Data

Two reduced order controllers have been computed: CLBC-CLOM16 with the orders
nR = 14, nS = 16 and CLBC-CLOM5 with the orders nR = 4, nS = 5.

The frequency characteristics of the output and input sensitivity functions (Syp and
Sup) for the nominal controller CLBC and the two reduced order controllers CLBC-
CLOM16 and CLBC-CLOM5 are shown in Figs. 10.15 and 10.16, respectively.

Note that the reduced controller CLBC-CLOM16 corresponds to the complexity
of the pole placement controller with the fixed part HR , while controller CLBC-
CLOM5 has a lower complexity.

The values of the various ν-gap are summarized in Table 10.5 (the last two rows
give real-time results). It can be remarked that the Vinnicombe stability margins

http://dx.doi.org/10.1007/978-3-319-41450-8_9
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Fig. 10.16 Input sensitivity functions (controller order reduction with CLOM algorithm and sim-
ulated data)

b(Ki ,G) computed with the nominal model CLID-M for the various reduced order
controllers are close to the stability margin obtained with the nominal controller.

The last two rows of Table 10.5 give real-time results. Row 6 gives the ν-gap
between the input/output transfer function corresponding to the input sensitivity
function Sup of the true closed-loop system constituted by the nominal designed
controller with the real plant (obtained by system identification between the input r
and the output y) and the input/output transfer function of the simulated closed-loop

system ( ˆ̂Sup) constituted by the various controllers (including the nominal one and the
reduced ones obtained using simulated data) in feedback connection with the plant
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Table 10.5 Comparison of the nominal and reduced order controllers (controller reduction using
CLOM algorithm and simulated data)

Controller CLBC
nR = 27
nS = 30

CLBC-CLOM16
nR = 14
nS = 16

CLBC-CLOM5
nR = 4
nS = 5

δν(Kn, Ki ) 0 0.6577 0.6511

δν(Snup, S
i
up) 0 0.6577 0.6511

δν(Snyp, S
i
yp) 0 0.0386 0.1308

b(Ki ,G) 0.0303 0.0135 0.0223

δν(CL(Kn),CL(Ki )) 0.2610 0.2963 0.4275

Closed-loop error
variance

0.13582 0.14755 0.17405

model. This quantity is denoted by δν(CL(Kn),CL(Ki )). This is a good criterion
for the validation of the reduced order controllers in real time. It can be observed
that the CLBC-CLOM16 controller gives results which are very close to those of
the nominal CLBC controller. Row 7 gives the variance of the residual closed-loop
input error between the true system and the simulated one. The results are coherent
to those of row 6, showing that CLBC-CLOM16 gives performance very close to
those of the nominal controller.

10.6.2 Real-Time Performance Tests for Nominal
and Reduced Order Controllers

The spectral densities of the residual forces in open loop and in closed loop cor-
responding to the nominal controller CLBC and the reduced order ones obtained
with the CLOM method (CLBC-CLOM16 and CLBC-CLOM5) are presented in
Fig. 10.17.

It can be seen that the performance of reduced order controllers are very close
to that of the nominal controller designed using a reduced model of the closed-loop
identified model. Note also that the reduction in terms of number of parameters is sig-
nificant. Very close results have been obtained using the CLIM reduction procedure
(see [1, 5]).
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Fig. 10.17 Spectral density of the residual forces in open and closed loop for the nominal and
reduced order controllers (CLOM)

10.7 Design of the Controller by Shaping the Sensitivity
Function with Band-Stop Filters

The objective of this section is to provide an alternative design procedure for active
damping which does not require the use of the convex optimization procedure, but
uses only band-stop filters which are iteratively introduced in order to shape the
sensitivity functions. This method has been introduced in Sect. 7.2.9. The frequency
and damping of the poles of the open-loop identified model are given in Table 6.3.

All asymptotically stable poles will be included as initial desired closed-loop
poles. Only the pole located at −0.2177 which corresponds in fact to a pair of damped
oscillatory poles near 0.5 fs will not be included. All the poles remain unchanged
in terms of damping, except the complex poles located at 31.939 Hz for which the
damping imposed in closed loop will be ξ = 0.8 and the complex poles at 164.34 Hz
for which a damping of 0.167 will be chosen. These two damped poles will help to
satisfy the desired template on the output sensitivity function. 16 real auxiliary poles
are assigned at 0.15 (this will not augment the size of the resulting controller).3

Figure 10.18 (curve “Controller 1”) shows the resulting output sensitivity function
Syp. As it can be seen, it almost satisfies the robustness constraints on the modulus
margin and delay margin (it is inside the basic template for robustness at all fre-
quencies except around 55 Hz). Nevertheless, when compared to the specification
for the output sensitivity function in Fig. 10.19 (dotted line), it can be observed that
the desired disturbance attenuation is not satisfied. The input sensitivity function
satisfies the specified template, see Fig. 10.20.

3The design using BSF has been done with iReg software which provides a convenient interactive
environment.

http://dx.doi.org/10.1007/978-3-319-41450-8_7
http://dx.doi.org/10.1007/978-3-319-41450-8_6
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Fig. 10.18 Output sensitivity function for the Controller 1 (with modulus and delay margin tem-
plates)

Fig. 10.19 Output sensitivity function with the three initial controllers

To have zero gain on the input sensitivity function at 0.5 fs , one zero at −1 is
added to the fixed part of the controller numerator by including into HR the first
order polynomial (1 + q−1). One more characteristic pole at 0.15 is then added (this
will not increase the order of the controller but avoid to have a pole assigned to 0).
The result can be seen in Figs. 10.19 and 10.20, “Controller 2” curve. One can see
that the template is still violated in several frequency regions.

For shaping the output sensitivity function in the frequency region of the first
attenuation mode around 30 Hz three BSF have been added at 14, 24 and 38.7 Hz,
with attenuation of −2.5, −7 and −5.5 dB respectively. The resulting controller
sensitivity functions are shown in Figs. 10.19 and 10.20 (curve “Controller 3”). The
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Fig. 10.20 Input sensitivity function with the three initial controllers

Fig. 10.21 Output sensitivity function with the three initial controllers (zoom)

result in the region of the first attenuation mode around 30 Hz can be better evaluated
using Fig. 10.21, where a zoom between 10 and 50 Hz is shown. For all three BSF,
the denominator damping has been chosen equal to 0.5. It can be observed that
“Controller 3” satisfies the imposed template in the lower frequency region below
30 Hz.

The final design step is to improve the shape of the sensitivity functions at the
other frequencies. Two additional BSF have been added for shaping the output sen-
sitivity function and five for shaping the input sensitivity function. In addition, the
initial three BSF have been slightly modified as each newly added BSF has, how-
ever, a slight influence at neighbouring frequencies. Tables 10.6 and 10.7 summarize
the characteristics of the various BSF. A sensitivity functions comparison between
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Table 10.6 Band-stop filters for the output sensitivity function

Controller number Frequency (Hz) Attenuation (dB) Denominator damping

1 14 −9.1 0.95

2 23.5 −14.759 0.95

3 41.158 −5.2 0.5

4 69.45 −15.11 0.95

5 132.5 −14.759 0.95

Table 10.7 Band-stop filters for the input sensitivity function

Controller number Frequency (Hz) Attenuation (dB) Denominator damping

1 51.5 −16 0.95

2 70.74 −14.052 0.5

3 92.6 −15.1 0.95

4 115.76 −9.1 0.5

5 313.826 −2.733 0.95

Fig. 10.22 Output sensitivity function comparison between “Controller 3” and “Controller 4”

“Controller 3” and “Controller 4” is given in Figs. 10.22 (output sensitivity functions)
and 10.23 (input sensitivity functions).

Finally, Figs. 10.24 and 10.25 give a comparison of “Controller 4” and the con-
troller designed using convex optimization (see previous sections). A zoom between
10 and 50 Hz is shown in Fig. 10.26 for comparative evaluation of the obtained char-
acteristics around the first attenuation region. As it can be seen, both controllers
satisfy the template in the low frequency region while in the high frequency region
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Fig. 10.23 Input sensitivity function comparison between “Controller 3” and “Controller 4”

Fig. 10.24 Output sensitivity function comparison between the convex optimization controller and
“Controller 4” obtained using iREG

the controller designed by convex optimization slightly exceeds the imposed tem-
plate. Concerning their complexity, “Controller 4” designed using BSF filters has
71 parameters (nR = 34 and nS = 36) while the controller designed by convex
optimization has 58 parameters (nR = 27 and nS = 30).
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Fig. 10.25 Input sensitivity function comparison between the convex optimization controller and
“Controller 4” obtained using iREG

Fig. 10.26 Output sensitivity function comparison between the convex optimization controller and
“Controller 4” obtained using iREG (zoom)

10.8 Concluding Remarks

• The design of active damping systems consists of the following major steps:

– Definition of the control performance specifications in the frequency domain.
– Design of the controller ensuring the desired performance.
– Validation of the controller.

• Design of the controller for active damping include several steps:
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– Open-loop identification of the secondary path.
– Design of the controller based on the secondary path model identified in open-

loop operation.
– Implementation and validation of the controller.

• If the performance is not satisfactory, the following procedure has to be followed:

– Identification in closed-loop operation of a new model for the secondary path
and validation of the identified model.

– Redesign of the controller on the basis of the model identified in closed loop.
– Implementation and validation of the controller designed on the basis of the

model identified in closed-loop operation.

• The effective design of the controller requires the shaping of the sensitivity func-
tions.

• Shaping of the sensitivity functions can be achieved using convex optimization or
band-stop filters combined with poles placement.

• If constraints on the computational load exist, the final step in the design is the
reduction of the controller complexity with the objective of preserving the closed-
loop performance.

• The reduced order controller should be implemented and validated.

10.9 Notes and References

Active damping for disturbance attenuation and control of lightly damped structures
which has different objectives use, however, similar feedback techniques [6].

Suspension bridges and cable-stayed bridges require active damping to reduce
the effects of various phenomena. Active damping solutions have been proposed in
[7–14]. Active tendon control of cable-stayed bridges using hydraulic suspension is
considered in [11].

An important issue in active damping is the construction of physical systems
allowing to achieve active damping. Use of piezoelectric devices is a very efficient
approach for many applications. See [14] for a survey and [8] for a detailed modelling
of this type of devices. Applications of piezoelectric devices for active damping have
been reported for: (i) Large space structures [14], (ii) Wafer stepper in lithography
[15] and (iii) Active tendon control of cable structures in space [16, 17].

Other references related to active damping include [18–21].
A key issue in active damping is a careful shaping of the sensitivity functions.

Other techniques than those presented in this chapter can be used. H∞ where the
shaping of the sensitivity function is converted in a weighted frequency criterion
minimization can be considered [22, 23]. Linear-Quadratic Control with frequency
weighting can also be considered [24].
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Chapter 11
Robust Controller Design for Feedback
Attenuation of Narrow-Band Disturbances

11.1 Introduction

To illustrate the design of a robust controller for active vibration control system, we
will consider the case of multiple unknown and time-varying sinusoidal disturbances
located within two distinct relatively small frequency ranges. To be specific, two
situations will be considered

(1) The case of two time-varying tonal disturbances, located in two distinct fre-
quency regions.

(2) The case of four simultaneous tonal disturbances, located two by two in two
distinct frequency regions. In this context, a very important problem is to be able
to counteract the very low frequency oscillation which is generated when the
two frequencies are very close (vibrational interference). This phenomenon is
considered for example in [1]. It also occurs often on ships with two thrusters
which cannot be perfectly synchronized. A typical image of the phenomenon is
shown in Fig. 11.1.

Since these disturbances are located within two relatively small frequency ranges,
it is possible to consider a linear control design which will shape the output sensi-
tivity function in such a way that a sufficient attenuation is introduced in these two
frequency regions but avoiding significant amplification at other frequencies (both
for performance and robustness reason). This problem in the context of active noise
control has been considered in [2] and the shaping of the output sensitivity function
has been achieved using the convex optimization procedure introduced in [3].1 An
H∞ approach can also eventually be used but it will require a quite complicated
procedure for defining the appropriate weighting functions.

In this chapter, it will be shown that the technique of shaping the sensitivity
functions using band-stop (notch) filters (see [4] and also Chap. 7) can be efficiently

1See also Sect. 7.4.
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Fig. 11.1 Vibrational interference of two sinusoidal disturbances

used to design controllers for robustly attenuating single or multiple narrow-band
disturbances varying within a relatively small frequency range.

Experimental validation of the design on the active vibration control system using
an inertial actuator will conclude the chapter.

11.2 System Description

The linear time invariant (LTI) discrete time model of the secondary path, used for
controller design is

G(z−1) = z−dB(z−1)

A(z−1)
= z−d−1B∗(z−1)

A(z−1)
, (11.1)

where

A(z−1) = 1 + a1z
−1 + · · · + anAz

−nA , (11.2)

B(z−1) = b1z
−1 + · · · + bnBz

−nB = z−1B∗, (11.3)

B∗ = b1 + · · · + bnBz
−nB+1, (11.4)

and d is the plant pure time delay in number of sampling periods.2 To illustrate the
methodology, the active vibration control system using an inertial actuator described
in Sect. 2.2, will be used. The identification of the secondary path model has been
done in Sect. 6.2. The parameters of the identified model of the secondary path are
given in Table 6.2 (d = 0).

2The complex variable z−1 will be used to characterize the system’s behaviour in the frequency
domain and the delay operator q−1 will be used for the time domain analysis.

http://dx.doi.org/10.1007/978-3-319-41450-8_2
http://dx.doi.org/10.1007/978-3-319-41450-8_6
http://dx.doi.org/10.1007/978-3-319-41450-8_6
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Fig. 11.2 Feedback regulation scheme for rejection of disturbances

The output of the plant y(t) and the input u(t) may be written as (see Fig. 11.2)

y(t) = q−dB(q−1)

A(q−1)
· u(t) + p(t), (11.5)

S0(q
−1) · u(t) = −R0(q

−1) · y(t). (11.6)

In (11.5),p(t) is the effect of the disturbances on the measured output3 andR0(z−1),
S0(z−1) are polynomials in z−1 having the following expressions4

S0 = 1 + s0
1z

−1 + · · · + s0
nS z

−nS = S′
0 · HS0 , (11.7)

R0 = r0
0 + r0

1z
−1 + · · · + r0

nRz
−nR = R′

0 · HR0 , (11.8)

where HS0(z
−1) and HR0(z

−1) represent pre-specified parts of the controller (used
for example to incorporate the internal model of a disturbance or to open the loop at
certain frequencies). S′

0(z
−1) and R′

0(z
−1) are the results of the Bezout equation

P0 = (
A · HS0

) · S′
0 + (

z−dB · HR0

) · R′
0. (11.9)

In the last equation,P0(z−1) represents the characteristic polynomial, which specifies
the desired closed-loop poles of the system.

The transfer functions between the disturbance p(t) and the output of the system
y(t) and the control input u(t), denoted respectively output sensitivity function and
input sensitivity function, are given by

Syp(z
−1) = A(z−1)S0(z−1)

P0(z−1)
(11.10)

and

Sup(z
−1) = −A(z−1)R0(z−1)

P0(z−1)
, (11.11)

3The disturbance passes through a so-called primary path and p(t) is its output.
4The argument (z−1) will be omitted in some of the following equations to make them more compact.
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It is important to remark that one should only reject disturbances located in fre-
quency regions where the plant model has enough gain. This can be seen by looking
at Eq. (11.10) and noticing that perfect rejection at a certain frequency, ω0, is obtained
iff Syp(e−jω0) = 0. On the other hand, from (11.9) and (11.11) one can see that, at ω0

Sup(e
−jω0) = − AR0

0 + e−djω0BR0
= − A

e−djω0B
= 1

G(e−jω0)
. (11.12)

Equation (11.12) corresponds to the inverse of the gain of the system to be controlled
at the frequency ω0. If the gain of the controlled system is too low, |Sup| will be
large at these frequencies. Therefore, the robustness versus additive plant model
uncertainties will be reduced and the stress on the actuator will become important
(see Sect. 7.2.5 and [4]). The implication of Eq. (11.12) is that cancellation (or in
general an important attenuation) of disturbances on the output should be done only
in frequency regions where the system gain is large enough. Equation (11.12) also
implies that serious problems will occur if B(z−1) has complex zeros close to the
unit circle (stable or unstable zeros) at frequencies where an important attenuation
of disturbances is required. It is mandatory to avoid attenuation of disturbances at
these frequencies.

11.3 Robust Control Design

In this section, the design of a linear robust digital controller for disturbance attenu-
ation is presented.

Before presenting the objectives for robustness and regulation, a few notions about
feedback disturbance attenuation should be reminded. In the case of a feedback con-
trolled system, the Bode integral constraint leads to a waterbed effect on the output
sensitivity function (transfer function from disturbance p(t) to output y(t) in closed-
loop, see Sects. 7.1 and 11.2). In other words, forcing the magnitude of the output
sensitivity function at certain frequencies below 0 dB (in order to attenuate distur-
bances) has an inverse effect on neighbouring frequencies, where an amplification
will be observed. Recalling from Sect. 7.2.4 that the minimal distance between the
Nyquist plot of the open-loop transfer function and the critical point −1 + 0i (also
calledmodulus margin) corresponds to the inverse of the maximum of the output sen-
sitivity function, it can be concluded that “too much” attenuation at some frequencies
can have a bad effect on the robust stability of the closed-loop system.

To summarize, the attenuation surfaces should be equal to the amplification sur-
faces with the constraint that the maximum amplification be less or equal to 8 dB in
order to assure a convenient modulus margin. This has to be verified on the oper-
ational frequency range. Outside this zone, the output sensitivity function is close
to 0 dB since the input sensitivity function is forced to be very low (no gain in the
controller) for robustness reasons and actuator solicitations.

http://dx.doi.org/10.1007/978-3-319-41450-8_7
http://dx.doi.org/10.1007/978-3-319-41450-8_7
http://dx.doi.org/10.1007/978-3-319-41450-8_7
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Taking into consideration the secondary path frequency response in Fig. 6.18 and
the fact that disturbances can only be attenuated where the system has enough gain
(see Sect. 11.2), it has been concluded that only disturbances within the 50–95 Hz
frequency band (operational frequency range) can be attenuated.

For the design of the linear robust digital controller, the following specifications
are considered

• up to 4 sine disturbances are supposed to affect the output of the system (known
structure of the disturbance model);

• their frequencies are not known exactly but they are varying within ±2.5 Hz around
60 and 80 Hz;

• the controller should attenuate the disturbances by a minimum of 14 dB;
• the maximum allowed amplification of the output sensitivity function is 8 dB;
• the effect of disturbances on the control input should be attenuated above 100 Hz

in order to improve robustness with respect to unmodeled dynamics and nonlinear
phenomena (Sup(e−jω) < −20 dB, ∀ω ∈ [100, 400 Hz]);

• the gain of the controller has to be zero at zero frequency (since the system has a
double differentiation behaviour); and

• the gain of the controller should be zero at 0.5fs where the system has low gain
and uncertainties exist.

It is shown in [4, Property 7, Sect. 3.6.1] and in Sect. 7.2.9 that very accurate
shaping of the output or the input sensitivity function can be obtained by the use of
band-stop filters (BSF). These are IIR notch filters obtained from the discretization
of a continuous-time filter of the form

F(s) = s2 + 2ζnumω0s + ω2
0

s2 + 2ζdenω0s + ω2
0

(11.13)

using the bilinear transform s = 2
Ts

1−z−1

1+z−1 . The use of BSFs introduces an attenuation

M = 20 log

(
ζnum

ζden

)
(11.14)

at the normalized discretized frequency

ωd = 2 · arctan

(
ω0TS

2

)
. (11.15)

Design details can be found in Sect. 7.2.9.
Depending on whether the filter is designed for shaping the output or the input

sensitivity function, the numerator of the discretized filter is included in the fixed
part of the controller denominator HS0 or numerator HR0 , respectively. The filter

http://dx.doi.org/10.1007/978-3-319-41450-8_6
http://dx.doi.org/10.1007/978-3-319-41450-8_7
http://dx.doi.org/10.1007/978-3-319-41450-8_7
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Table 11.1 Band-stop filters for output and input sensitivity functions

Frequency (Hz) Amplification (dB) Damping

Syp 57.5 −17 0.1

59.8 −25 0.5

62 −15 0.1

77.5 −13 0.05

79.8 −20 0.2

82 −12 0.05

Sup 155 −16 0.5

denominator is always included in the closed-loop characteristic polynomial. As
such, the filter denominator influences the design of the controller indirectly since
S′

0 and R′
0 are solutions of the Bezout equation (11.9). They will be used for a fine

shaping of both the output and input sensitivity functions.
The steps for the design of the linear controller are5:

1. Include all (stable) secondary path poles in the closed-loop characteristic poly-
nomial.

2. Open the loop at 0 Hz and at 400 Hz by setting the fixed part of the controller
numerator

HR = (1 + q−1) · (1 − q−1). (11.16)

3. 3 BSFs on Syp have been used around each of the frequencies where attenuation is
desired in order to assure the desired attenuation within ±2.5 Hz (see Table 11.1
for specifications).

4. 1 BSF has been used on Sup to reduce its magnitude above 100 Hz (see Table 11.1
for specifications).

5. To improve robustness, 2 complex conjugate poles have been added to the char-
acteristic polynomial, one at 55 Hz and the second at 95 Hz, both of them with
0.1 damping factor.

The output and input sensitivity functions with this linear controller can be ana-
lyzed in Figs. 11.3 and 11.4, respectively. In Fig. 11.3, it can be observed that the
attenuation of 14 dB and the maximum amplification of 8 dB on Syp are achieved.
This is a trade off between performance and robustness. The specification of −20 dB
attenuation on Sup above 100 Hz is satisfied.

5The software iREG has been used for the design of this robust digital controller but the same results
can be obtained using functions written in MATLAB/Scilab languages (see http://www.gipsa-lab.
grenoble-inp.fr/~ioandore.landau/identificationandcontrol/).

http://www.gipsa-lab.grenoble-inp.fr/~ioandore.landau/identificationandcontrol/
http://www.gipsa-lab.grenoble-inp.fr/~ioandore.landau/identificationandcontrol/
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Fig. 11.3 Output sensitivity function with the linear controller (upper figure) and zoom in the
50–90 Hz frequency interval (lower figure)
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Fig. 11.4 Input sensitivity function with the linear controller

11.4 Experimental Results

The performance of the robust design will be illustrated on the test bench presented in
Sect. 2.2. Comparison with the results obtained with an adaptive attenuation scheme
will be given in Sect. 12.4.

http://dx.doi.org/10.1007/978-3-319-41450-8_2
http://dx.doi.org/10.1007/978-3-319-41450-8_12
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11.4.1 Two Time-Varying Tonal Disturbances

The results in this subsection are obtained by considering 2 sinusoidal disturbances
with time-varying frequencies on the system output. The time variations of the
frequencies are obtained by using 2 independent pseudorandom binary sequences
(PRBS). The 2 sinusoidal disturbances vary around 60 and 80 Hz, respectively,
remaining inside the ±2.5 Hz frequency intervals for which the robust linear con-
troller introduces 14 dB of attenuation. Figure 11.5 shows the evolution of the fre-
quencies and the corresponding PRBS generators.

Note that all subsequent experiments start at 10 s. This period has been introduced
in order to give enough time to activate the electronic boards for real-time experi-
mentation. Also, the system operates in open-loop for 5 s (from 10 to 15 s). Finally,
5 s before the end of the experiments, the system is switched back to open-loop and
the system input and the disturbances are removed.

To avoid large transients when switching on the controllers, a bumpless transfer
scheme from open to closed-loop has been used (see also [4, Chap. 8]).

In Fig. 11.6, time domain experimental results are shown for the open-loop and
the closed-loop with the linear controller. The system operates in open-loop without
disturbance during the last 5 s, from 35 to 40 s, so that the residual forces can be
compared to the system noise.
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Fig. 11.5 Pseudorandom binary sequences (left figures) and evolution of the frequencies of the
sinusoidal disturbances (right figures)
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Fig. 11.6 Residual force in closed-loop with linear controller. The experiment is started in open-
loop for 5 s. Range of frequency variations: ±2.5 Hz

The global attenuation is computed over the last 3 s of each closed-loop experi-
mentation. For the robust linear controller the global attenuation is 25.70 dB.
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Fig. 11.7 Residual force in open-loop (upper plot) and in closed-loop with the linear controller
(lower plot). The loop is closed at t = 15 s
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Fig. 11.8 Power spectral densities of the open-loop and the robust linear controller. Full frequency
range in the upper plot, zoom between 50 and 100 Hz in the lower plot

11.4.2 Attenuation of Vibrational Interference

This subsection deals with the attenuation of vibrational interference (two-mode
sinusoidal vibrations) on the active vibration control systems using an inertial actu-
ator. It can be shown (see also [1]) that when two sinusoidal disturbances are close
enough, a flapping phenomena appears due to the periodic cancellation of the two
neighbouring sinusoidal disturbances (vibration interference). This phenomena is
shown in Fig. 11.1 where 2 pairs of neighbouring sinusoidal disturbances are intro-
duced, one pair around 60 Hz (at 59.9 and 60.1 Hz) and the second around 80 Hz (at
79.9 and 80.1 Hz). The same robust linear controller as described earlier can be used
as its attenuation frequency band is large enough to accommodate the neighbouring
disturbances.

Time domain results are shown in Fig. 11.7. The global attenuation for the robust
linear controller is 27.50 dB.

The power spectral density (PSD) estimate for the robust linear controller is given
in Fig. 11.8. The effective attenuation introduced by the controller action can be seen
in Fig. 11.9. It can be observed that the attenuation introduced by the robust linear
controller in the desired frequency zone is equal to 14 dB which is coherent with the
design done in Sect. 11.3.
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Fig. 11.9 Power spectral densities difference between the closed-loop with the linear controller
and the open-loop

11.5 Concluding Remarks

• When the frequencies of single and multiple tonal disturbances vary within limited
frequency regions, a robust linear controller design can be considered.

• The level of achievable attenuation depends upon the width of the uncertainty
region in the frequency domain (as a consequence of the Bode integral).

• Shaping of the sensitivity functions is necessary in order to avoid unacceptable
disturbance amplification in the neighbourhood of the attenuation zones and in
order to assure acceptable values for the modulus margin and the delay margin.

• Pole placement combined with the use of band-stop filters (BSF) allow an efficient
shaping of the sensitivity functions.

11.6 Notes and References

Other approaches to the design of robust linear controllers in the context of active
vibration control are mentioned hereafter: H∞ control in [5], H∞ control with phase
and gain policies [6], quantitative robust linear parameter varying (LPV) control
[7]. Classical H∞ and LQR controllers are compared in [8] taking into account the
amount of power and energy consumed by the control device. LQR, improved H∞
designs, and μ synthesis are evaluated in [9] for active vibration control of a flexible
beam. Other approaches encountered in AVC systems design include also: repetitive
control [10, 11] and synchrophasing in [12].

The technology for the implementation of the AVC in mechanical structures has
evolved towards using inertial (electro-dynamic) actuators [13]. In many applications
involving collocated actuators and sensors, piezoelectric materials are used (see [14]
and various applications reported in [1, 15, 16]).
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Chapter 12
Direct Adaptive Feedback Attenuation
of Narrow-Band Disturbances

12.1 Introduction

One of the basic problems in active vibration control and active noise control is the
strong attenuation of single or multiple unknown and time-varying narrow-band dis-
turbances1 without measuring them. In this context, an adaptive feedback approach,
termed as adaptive regulation is now generally used. In contrast with the feedforward
compensation approach [1–4], the feedback approach, does not require an additional
measurement highly correlated with the disturbance. This is a significant advan-
tage. Feedback approaches avoid also the possible destabilizing positive feedback
coupling between the compensator system and the measurement of the disturbance
which occurs often in feedforward compensation schemes (see [5] and Sect. 1.5) and
require less parameters to adapt.

A common assumption is that the disturbance is white noise or a Dirac impulse
passed through a filter which characterizes the model of the disturbance.2 To be more
specific, the disturbances considered can be defined as “finite band disturbances.”
This includes single or multiple narrow-band disturbances or sinusoidal signals. For
the purpose of this chapter, the disturbances are considered to be unknown and time-
varying, in other words, their model has time-varying coefficients. This motivates the
use of an adaptive regulation approach since the objective is to attenuate unknown
disturbances without measuring them.

A popular methodology for this regulation problem in the case when the model of
the disturbance is known, is to design a controller that incorporates the model of the
disturbance (internal model principle—IMP). This technique has been introduced
in Sect. 7.2.2 and has its roots described in the paper [6]. Additional references
for the present context are [7–9]. The main problem, using the IMP principle, is
that complete rejection of the disturbances is attempted (asymptotically) and this

1Called tonal disturbances.
2Throughout the chapter, it is assumed that the number of narrow-band disturbances is known (it
can be estimated from data if necessary) but not their frequency characteristics.
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may have a strong influence upon the sensitivity functions outside the frequency
band in which attenuation is achieved. As long as rejection of a single narrow-band
disturbance is considered [7, 9], the influence upon the output sensitivity functions
does in general not pose problems. Nevertheless, if low damped complex zeros are
located near the disturbance frequency, even in a single narrow-band disturbance
context, the influence over Syp(z−1) represents a major challenge [10].

The IMP principle will be combined with a Youla–Kučera parametrization of the
controller (see Sect. 7.2.3) which will allow to develop a direct adaptive regulation
strategy. The parameters of the (Q) Youla–Kučera filter will be directly adapted in
order to cancel the effect of the disturbance.

When multiple narrow-band disturbances are considered, the use of the (IMP)
approach requires a very careful design of the central linear controller in order to avoid
unacceptable water-bed effects (unwanted amplification on the output sensitivity
function at certain frequencies). The problem of adaptive attenuation of multiple
unknown narrow-band disturbance distributed over a large frequency range will be
discussed in Chap. 13.

12.2 Direct Adaptive Feedback Attenuation of Unknown
and Time-Varying Narrow-Band Disturbances

12.2.1 Introduction

The objective is to reject asymptotically or strongly attenuate single or multiple
narrow-band disturbances which have unknown or time-varying spikes in the fre-
quency domain. To asymptotically reject the disturbance, the internal model prin-
ciple (IMP) has to be applied. As a consequence, the controller should include a
model of the disturbance. Since the disturbances are unknown, two approaches can
be considered

• Indirect adaptive regulation (one has to identify the model of the disturbance and
recompute the controller which will include the estimated model of the distur-
bance).

• Direct adaptive regulation (the controller parameters will be directly adapted).

An important issue is the tuning of the controller as a function of the model of
the disturbance but without affecting the stability of the closed-loop. It turns out that
Youla–Kučera parametrization provides the good parametrization of the controller
for decoupling the stability of the closed-loop from the attenuation problem. It also
provides a disturbance observer. A rapprochement with the DOB control method
[11, 12] can be established.

Indirect adaptive regulation solutions can be also build, however they are much
more complex [7, 13] and their use should be justified (specific performance require-
ments). This approach will be discussed in Sect. 13.4.

http://dx.doi.org/10.1007/978-3-319-41450-8_7
http://dx.doi.org/10.1007/978-3-319-41450-8_13
http://dx.doi.org/10.1007/978-3-319-41450-8_13
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Fig. 12.1 Direct adaptive regulation scheme for rejection of unknown disturbances

Figure 12.1 gives the block diagram of the direct adaptive regulation scheme for
attenuation of unknown narrow-band disturbances. q−dB/A defines the model of the
secondary path (called also plant), Q̂ represents the so-called YK filter. R0 and S0

represents, which is called, the central controller. The output of the plant y(t) and the
input u(t) in the absence of the Youla–Kučera filters,3 may be written as (consider
Fig. 12.1 without the filter Q̂)

y(t) = q−dB(q−1)

A(q−1)
· u(t) + p(t), (12.1)

S0(q
−1) · u(t) = −R0(q

−1) · y(t). (12.2)

In (12.1), p(t) is the effect of the disturbances on the measured output4 and R0(z−1),
S0(z−1) are polynomials in z−1 having the following expressions5

S0 = 1 + s0
1z−1 + · · · + s0

nS0
z−nS0 = S′

0(z
−1) · HS0(z

−1), (12.3)

R0 = r0
0 + r0

1 z−1 + · · · + r0
nR0

z−nR0 = R′
0(z

−1) · HR0(z
−1), (12.4)

where HS0(q
−1) and HR0(q

−1) represent prespecified parts of the controller (used for
example to incorporate the internal model of a disturbance or to open the loop at
certain frequencies) and S′

0(q
−1) and R′

0(q
−1) are computed using Pole Placement

(see Chap. 7). The characteristic polynomial, which specifies the desired closed-loop
poles of the system is given by (see also [14])6

P0(z
−1) = A(z−1)S0(z

−1) + z−dB(z−1)R0(z
−1), (12.5)

3The Youla–Kučera parametrization has been presented in Chap. 7.
4The disturbance passes through a so called primary path which is not represented in this figure,
and p(t) is its output.
5The argument (z−1) will be omitted in some of the following equations to make them more compact.
6It is assumed that a reliable model identification is achieved and therefore the estimated model is
assumed to be equal to the true model.

http://dx.doi.org/10.1007/978-3-319-41450-8_7
http://dx.doi.org/10.1007/978-3-319-41450-8_7
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Introducing the expressions of S0 and R0 given in Eqs. (12.3) and (12.4), R′
0 and S′

0
are solutions of

P0(z
−1) = A(z−1)S′

0(z
−1)HS0(q

−1) + z−dB(z−1)R′
0(z

−1)HR0(q
−1), (12.6)

In what follows the Youla–Kučera parametrization [15, 16] is used. Nevertheless,
the Youla–Kučera parametrization is not unique. It depends on the right coprime
factorization selected G = ND−1. Four factorizations are mostly used [17]

N = G; D = I. (12.7)

N = z−m; D = Pm with G ≈ z−mP−1
m . (12.8)

N = q−dB; D = A with G = q−d B

A
. (12.9)

N = q−dBF; D = AF with G = q−d B

A
; F = FN

FD
, (12.10)

with F and F−1 asymptotically stable. More details can be found in [17]. Subse-
quently the parametrization (12.9) will be used.

Selecting a FIR structure for the Q filter associated to the Youla–Kučera parame-
trization, the controller’s polynomials become

R = R0 + AQHS0 HR0 , (12.11)

S = S0 − z−dBQHS0 HR0 , (12.12)

where R0 and S0 define the central controller which verifies the desired specifications
in the absence of the disturbance. The characteristic polynomial of the closed-loop is
still given by (12.6) (can be verified by simple calculations). The output sensitivity
function (the transfer function between the disturbance p(t) and the output of the
system y(t)) is

Syp(z
−1) = A(z−1)S(z−1)

P0(z−1)
(12.13)

and the input sensitivity function (the transfer function between the disturbance p(t)
and the control input u(t)) is

Sup(z
−1) = −A(z−1)R(z−1)

P0(z−1)
, (12.14)

A key aspect of this methodology is the use of the internal model principle (IMP)
which has been discussed in Chap. 7, Sect. 7.2.2. It is supposed that p(t) is a deter-
ministic disturbance given by

http://dx.doi.org/10.1007/978-3-319-41450-8_7
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p(t) = Np(q−1)

Dp(q−1)
· δ(t), (12.15)

where δ(t) is a Dirac impulse and Np, Dp are coprime polynomials of degrees nNp

and nDp , respectively.7 In the case of stationary narrow-band disturbances, the roots
of Dp(z−1) are on the unit circle.

Applying the internal model principle (IMP), the prespecified part of S(z−1)

should incorporate the denominator of the model of the disturbance Dp, i.e.,

HS(z
−1) = Dp(z

−1)HS0(z
−1).

The controller is computed solving

P = ADpHS0 S′ + z−dBHR0 R′, (12.16)

where P, Dp, A, B, HR0 , HS0 and d are given.8 In the context of the Youla–Kučera
controller parametrization using a FIR Q filter,

Q(z−1) = q0 + q1z−1 + · · · + qnQ z−nQ . (12.17)

application of the internal model principle leads to the problem of finding Q such
that

S = S′
0HS0 − z−dBQHS0 HR0 = DpHS0 S′ (12.18)

So in order to compute the corresponding Q-polynomial one has to solve the dio-
phantine equation

S′Dp + z−dBHR0 Q = S′
0, (12.19)

where Dp, d, B, S′
0, and HR0 are known and S′ and Q are unknown. Equation (12.19)

has a unique solution for S′ and Q with: nS′
0
≤ nDp + nB + d + nHR0

− 1, nS′ = nB +
d + nHR0

− 1, nQ = nDp − 1. One sees that the order nQ of the polynomial Q depends
upon the structure of the disturbance model and not upon the structure of the plant
model.

The use of the Youla–Kučera parametrization, with Q given in (12.17), is inter-
esting in this case because it allows to maintain the closed-loop poles as given by
the central controller but at the same time it introduces the parameters of the internal
model into the controller.

7Throughout the book, nX denotes the degree of the polynomial X .
8Of course, it is assumed that Dp and B do not have common factors.
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12.2.2 Direct Adaptive Regulation Using Youla–Kučera
Parametrization

The objective is to find an estimation algorithm which will directly estimate the
parameters of the internal model in the controller in the presence of an unknown dis-
turbance (but of known structure) without modifying the closed-loop poles. Clearly,
the Q-parametrization is a potential option since modifications of the Q-polynomial
will not affect the closed-loop poles. In order to build an estimation algorithm it is
necessary to define an error equation which will reflect the difference between the
optimal Q-polynomial and its current value. Note also that in the time domain, the
internal model principle can be interpreted as finding Q such that asymptotically
y(t) becomes zero [16]. Using the Q-parametrization, the output of the system in the
presence of a disturbance can be expressed as

y(t) =A[S0 − q−dBHS0 HR0 Q]
P

· Np

Dp
· δ(t) = S0 − q−dBHS0 HR0 Q

P
· w(t), (12.20)

where w(t) is given by (see also Fig. 12.1)

w(t) = ANp

Dp
· δ(t) = A · y(t) − q−dB · u(t). (12.21)

Taking into consideration that the adaptation of Q is done in order to obtain an
output y(t) which tends asymptotically to zero, one can define ε0(t + 1) as the value
of y(t + 1) obtained with Q̂(t, q−1) (the estimate of Q at time t, written also Q̂(t))

ε◦(t + 1) = S0

P
· w(t + 1) − Q̂(t)

q−dB∗HS0 HR0

P
· w(t). (12.22)

Similarly, the a posteriori error becomes (using Q̂(t + 1)) as9

ε(t + 1) = S0

P
· w(t + 1) − Q̂(t + 1)

q−dB∗HS0 HR0

P
· w(t). (12.23)

Replacing S0 from the last equation by its expression given in (12.3) and using
(12.19) for S′

0, one obtains

ε(t + 1) = [Q − Q̂(t + 1)] · q−dB∗HS0 HR0

P
· w(t) + η(t + 1), (12.24)

9In adaptive control and estimation the predicted output at t + 1 can be computed either on the
basis of the previous parameter estimates (a priori, time t) or on the basis of the current parameter
estimates (a posteriori, time t + 1).
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where

η(t) = S′DpHS0

P
· w(t) = S′HS0 ANp

P
· δ(t) (12.25)

is a signal which tends asymptotically towards zero since P is an asymptotically
stable polynomial.

Define the estimated polynomial Q̂(t, q−1) = q̂0(t) + q̂1(t)q−1 + · · · + q̂nQ(t)

q−nQ and the associated estimated parameter vector θ̂ (t) = [q̂0(t) q̂1(t) . . . q̂nQ(t)]T .
Define the fixed parameter vector corresponding to the optimal value of the polyno-
mial Q as: θ = [q0 q1 . . . qnQ ]T .

Denote

w2(t) = q−dB∗HS0 HR0

P
· w(t) (12.26)

and define the following observation vector

φT (t) = [w2(t) w2(t − 1) . . . w2(t − nQ)]. (12.27)

Equation (12.24) becomes

ε(t + 1) = [θT − θ̂T (t + 1)] · φ(t) + v(t + 1). (12.28)

One can remark that ε(t + 1) corresponds to an a posteriori adaptation error [18] and
therefore the basic adaptation algorithm given in Chap. 4 can be used. From (12.22),
one obtains the a priori adaptation error

ε◦(t + 1) = w1(t + 1) − θ̂T (t)φ(t), (12.29)

with

w1(t + 1) = S0(q−1)

P(q−1)
· w(t + 1), (12.30)

w(t + 1) = A(q−1) · y(t + 1) − q−dB∗(q−1) · u(t), (12.31)

where B(q−1)u(t + 1) = B∗(q−1)u(t).
The a posteriori adaptation error is obtained from (12.23)

ε(t + 1) = w1(t + 1) − θ̂T (t + 1)φ(t). (12.32)

For the estimation of the parameters of Q̂(t, q−1) the following PAA (I-PAA) is
used [18]

θ̂ (t + 1) = θ̂ (t) + F(t)φ(t)ε(t + 1), (12.33)

ε(t + 1) = ε◦(t + 1)

1 + φT (t)F(t)φ(t)
, (12.34)

http://dx.doi.org/10.1007/978-3-319-41450-8_4
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ε◦(t + 1) = w1(t + 1) − θ̂T (t)φ(t), (12.35)

F(t + 1) = 1

λ1(t)

[
F(t) − F(t)φ(t)φT (t)F(t)

λ1(t)
λ2(t)

+ φT (t)F(t)φ(t)

]
, (12.36)

1 ≥ λ1(t) > 0, 0 ≤ λ2(t) < 2, (12.37)

where λ1(t), λ2(t) allow to obtain various profiles for the evolution of the adaptation
gain F(t) (for details see Sect. 4.3.1 and [14, 18]). Two modes of operation are
considered

• Adaptive operation (the adaptation is performed continuously and the controller
is updated at each sampling). In this case the adaptation gain never goes to zero;
and

• Self-tuning operation (the adaptation procedure starts either on demand or when the
performance is unsatisfactory). In this case the adaptation gain goes asymptotically
towards 0.

Stability of the resulting scheme is a consequence of the results given in Chap. 4,
Sect. 4.4.2. Considering (12.28) and neglecting the signal ν(t + 1), which goes to
0 anyway, one concludes using Theorem 4.1 that ε(t + 1) goes to zero without any
positive real condition to be satisfied. Furthermore, if the number of sinusoidal distur-
bances is n it can be shown that there is also parameter convergence if nQ = 2n − 1.
For a detailed stability proof under the hypothesis model = plant see [7, 18].

The following procedure is applied at each sampling time for adaptive operation:

1. Get the measured output y(t + 1) and the applied control u(t) to compute w(t + 1)

using (12.31).
2. Compute w1(t + 1) and w2(t) using (12.30) and (12.26) with P given by (7.38).
3. Estimate the Q-polynomial using the parameter adaptation algorithm (12.33)–

(12.36).
4. Compute and apply the control (see Fig. 12.1):

S0(q
−1)u(t + 1) = − R0(q

−1)y(t + 1)

− HS0(q
−1)HR0(q

−1)Q̂(t + 1, q−1)w(t + 1) (12.38)

The explicit expression for the control u(t) is given by

u(t) = −R0(q
−1)y(t) − S∗

0(q
−1)u(t − 1) − HS0(q

−1)HR0(q
−1)Q̂(t, q−1)w(t),

(12.39)

12.2.3 Robustness Considerations

To avoid unacceptable high values of the modulus of the output sensitivity function
when internal model principle is used, a robust design for the central controller should

http://dx.doi.org/10.1007/978-3-319-41450-8_4
http://dx.doi.org/10.1007/978-3-319-41450-8_4
http://dx.doi.org/10.1007/978-3-319-41450-8_4
http://dx.doi.org/10.1007/978-3-319-41450-8_7
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be considered assuming that the model of the disturbance and its domain of variation
in the frequency domain are known. The objective is that for all situations, acceptable
modulus margin (|Syp(e−jω)|−1

max) and delay margin are obtained.
Furthermore, at the frequencies where perfect rejection of the disturbance is

achieved one has Syp(e
−jω) = 0 and

∣∣Sup(e
−jω)

∣∣ =
∣∣∣∣A(e−jω)

B(e−jω)

∣∣∣∣ . (12.40)

Equation (12.40) corresponds to the inverse of the gain of the system to be con-
trolled. The implication of Eq. (12.40) is that cancellation (or in general an important
attenuation) of disturbances on the output should be done only in frequency regions
where the system gain is large enough. If the gain of the controlled system is too
low, |Sup| will be large at these frequencies. Therefore, the robustness versus additive
plant model uncertainties will be reduced and the stress on the actuator will become
important [13].

Equation (12.40) also implies that serious problems will occur if B(z−1) has com-
plex zeros close to the unit circle (stable or unstable zeros) at frequencies where an
important attenuation of disturbances is required. It is mandatory to avoid attenua-
tion of disturbances at these frequencies and special attention should be given to the
behaviour of the controller in the regions of attenuation close to these low damped
complex zeros [9, 10].

12.3 Performance Evaluation Indicators
for Narrow-Band Disturbance Attenuation

Before presenting the experimental results obtained it is important to clearly define
the performance indices for narrow-band disturbance attenuation and the correspond-
ing measurement methods.

Tuning Capabilities

Tuning capabilities concern evaluation of the performance in steady state operation
after application of the disturbance once the adaptation transient settles. The corre-
sponding indicators are evaluated in the presence of narrow-band disturbances with
constant frequency. Three indicators are considered

1. Global attenuation (GA): measured in dB and defined by

GA = 20 log10
N2Yol

N2Ycl
, (12.41)

where N2Yol and N2Ycl correspond to the square of the truncated 2-norm of the
measured residual force in open-loop and in closed-loop, respectively, evaluated
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Fig. 12.2 Definitions of the time intervals for global attenuation (GA) and transient evaluation. The
intervals of computation (tapp + 2, tapp + 5, trem − 3, trem) are displayed. (tapp—time of applica-
tion of the disturbance, trem—time of removal of the disturbance)

during the last part of the experiment before the disturbance is removed (between
trem − 3s and trem in Fig. 12.2 which illustrates the procedure).
The truncated 2-norm has the following expression

N2T =
m∑

i=1

y(i)2, (12.42)

where y(i) is a sample of the discrete time signal (residual force or acceleration).
This quantity indicates the energy contained in the measured signal.

2. Disturbance attenuation (DA): measured in dB. It is defined as the difference
between the estimated Power Spectral Density (PSD) of the residual force in
closed-loop and in open-loop at the frequency of the disturbance as shown in
Fig. 12.3 for the case of two tonal disturbances. Its expression is

DA = min (PSDcl − PSDol) , (12.43)

3. Maximum amplification (MA): measured in dB, it is defined as the maximum
value of the difference between the estimated PSD of the residual force in closed-
loop and open-loop. It is defined by

MA = max (PSDcl − PSDol) . (12.44)

Note that the inverse of the maximum amplifications gives the modulus margin.
Through these three measurements, it is possible to assess the performance of the

controller in terms of disturbance attenuation (global and disturbance attenuations)
and to analyse the robustness (maximum amplification and modulus margin).
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Fig. 12.3 Definition of disturbance attenuation (DA) and Maximum amplification (MA)

Transient Performance:

The transient performance is evaluated for a constant frequency step change.

• Transient time evaluation: It is required that the transient duration, when a distur-
bance is applied, be smaller than a certain value (in what follows one considers
a desired transient duration of 2 s). A performance index is established for 100 %
of fulfilment (transient duration equal or less than 2 s).10 This means that 2 s after
the application of a disturbance the square of the truncated 2-norm of the residual
force (acceleration) has to be equal to or smaller than 1.21 of the steady-state
value of the square of the truncated 2-norm of the residual force. The square of the
truncated 2-norm is evaluated over an interval of 3 s both for transient and steady
state. Taking into account the instant of application of the disturbance tapp and the
instant when the disturbance is removed trem, the square of the truncated 2-norm
is denoted as N2T(v : w) where v and w define the interval of computation. If
the square of the truncated 2-norm of the residual force (acceleration) is equal or
higher than 2.42 of the square of the truncated 2-norm of the residual force then
the value of the index is 0 %. One defines

α = N2T
(
tapp + 2 : tapp + 5

)
N2T (trem − 3 : trem)

= N2T
(
tapp + 2 : tapp + 5

)
N2YCL

(12.45)

10Of course the value of 2 s can be changed, but the principle of measurement remains the same.
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and the transient duration index ΔTrans is given by

ΔTrans = 100 % if α ≤ 1.21 (12.46a)

ΔTrans = 2.42 − α

1.21
100 % if α > 1.21 (12.46b)

ΔTrans = 0 % if α ≥ 2.42 (12.46c)

12.4 Experimental Results: Adaptive Versus Robust

The experimental results presented in this section are related to the experimental
results presented in Chap. 11 and obtained with a robust controller on the active
vibration control system using an inertial actuator for the case of multiple narrow-
band disturbances located in a limited region of the frequency domain.

12.4.1 Central Controller for Youla–Kučera Parametrization

The design of the central controller used in the Youla–Kučera parametrization is
similar to the design of the robust linear controller described in Chap. 11 with the
exception that the BSFs on Syp have not been used and the resulting free auxiliary
roots to be assigned have been moved from 0 to 0.2. Remark that the order of the
characteristic polynomial is given by nP = nA + nB + nHS + nHR + d − 1 which in
this case gives 22 + 25 + 0 + 4 + 0 − 1 = 50. Given the roots already specified (28
as can be concluded from the design of the robust controller excepting roots given
by BSFs for Syp), it follows that 22 roots can be selected. These 22 auxiliary poles
at 0.2 have the effect of reducing the magnitude of Sup above 100 Hz. They were not
used in the robust linear design.

12.4.2 Two Single-Mode Vibration Control

The results in this subsection are obtained by considering two sinusoidal distur-
bances with time-varying frequencies located in two distinct regions of the frequency
domain. The time variations of the frequencies are obtained by using two indepen-
dent pseudo random binary sequences (PRBS). The two sinusoidal disturbances vary
around 60 and 80 Hz, respectively, remaining inside the ±2.5 Hz (like for the robust
control design discussed in Chap. 11) or ±5 Hz frequency intervals. See Fig. 11.5 in
Chap. 11.

http://dx.doi.org/10.1007/978-3-319-41450-8_11
http://dx.doi.org/10.1007/978-3-319-41450-8_11
http://dx.doi.org/10.1007/978-3-319-41450-8_11
http://dx.doi.org/10.1007/978-3-319-41450-8_11
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Fig. 12.4 Residual force in closed-loop with linear robust controller (upper plot) and with adaptive
controller (lower plot). The experiments are started in open-loop for 5 s and the disturbances are
removed at t = 35 s. Range of frequency variation: ±2.5 Hz

Note that all subsequent experiments (like for the robust controller case) start
at 10 s. This period has been introduced in order to give enough time to activate
the electronic boards for real-time experimentation. Also, the system operates in
open-loop for 5 s (from 10 to 15 s). Finally, 5 s before the end of the experiments,
the system is switched back to open-loop and the system input and the disturbances
are removed (between 35 and 40 s). To avoid large transients when switching on the
controllers, a bumpless transfer scheme from open to closed-loop has been used like
in the experiments with the robust controller (see also [14, Chap. 8]).

In Fig. 12.4, time domain experimental results are shown for the open-loop, the
closed-loop with the robust linear controller and for the closed-loop with the adaptive
controller. As it can be observed, for the adaptive regulator, the residual force is almost
the same level as the system noise.

For adaptive regulation, the I-PAA is used. The matrix F(0) is chosen diagonal
with 0.2 being the value of each diagonal element (trace = 0.8). A constant trace
adaptation algorithm is used with constant trace of 0.8 (see Sect. 4.3.4 for further
details on the choice of the adaptation gain). The order of the Q-polynomial has been
chosen equal to 3 (4 adapted parameters). The evolution of the parameters of the
Q-polynomial can be viewed in Fig. 12.5. As it can be observed, the vector of the
estimated Q-parameters, θ̂ is initialized at zero. Once the loop is closed, the adaptive
algorithm starts to adjust the parameters in order to reduce the residual force. It can
be seen that the parameters of the Youla–Kučera filter evolve continuously during
the experiments in order to adjust to the changing frequencies of the disturbances.

http://dx.doi.org/10.1007/978-3-319-41450-8_4
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Fig. 12.5 Evolution of the Q-parameters

Fig. 12.6 Residual force in closed-loop with linear robust controller (upper plot) and with adap-
tive controller (lower plot). The experiments are started in open-loop for 5 s. Range of frequency
variation: ±5 Hz

The global attenuation is computed over the last 3 s for each closed-loop experi-
mentation. For the robust linear controller the global attenuation is 25.70 dB, while
in the adaptive case it is 39.68 dB. A small additional improvement can be obtained
by using the “Integral + Proportional” parameter adaptation algorithm (IP-PAA)
described in Appendix E.

Finally, experimental results for frequencies variations of ±5 Hz intervals around
60 and 80 Hz are shown in Fig. 12.6. As expected the results provided by the robust
linear controller are not good (we are outside of the domain considered for design).
The last 5 s without disturbance are also plotted as reference.
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Clearly on one hand the use of the adaptive regulator allows to improve the
performance of the robust controller even if the domain of variations of the frequency
of the disturbances is the one used for design and on the other hand it allows to
expand the domain of variations of the frequencies of the disturbances for which the
attenuation performances are assured.

12.4.3 Vibrational Interference

This subsection deals with the adaptive attenuation of two vibrational interferences
located in two distinct frequency regions. This phenomenon is shown in Fig. 11.1,
Chap. 11, where 2 pairs of neighbouring sinusoidal disturbances are introduced, one
pair around 60 Hz (at 59.9 and 60.1 Hz) and the second around 80 Hz (at 79.9 and
80.1 Hz). The results obtained with the adaptive approach will be compared with
those obtained with the robust linear controller designed in Chap. 11.

For adaptive regulation, the I-PAA has been used with an initial diagonal adap-
tation gain matrix F(0) = α · I , with α = 0.2 and I the identity matrix (initial trace
of 0.8), and a decreasing gain followed by constant trace adaptation. The constant
trace is chosen equal to 0.02. The number of parameters for the Q-polynomial is
also equal to 4 (order equal to 3). Augmenting the order of the polynomial Q to 7 (8
parameters—two for each sinusoidal disturbance) does not improve the performance
(probably because the frequencies of the pair of sines are too close). Time domain

Fig. 12.7 Residual force in closed-loop with linear controller (upper plot) and with adaptive con-
troller (lower plot). The loop is closed at t = 15 s

http://dx.doi.org/10.1007/978-3-319-41450-8_11
http://dx.doi.org/10.1007/978-3-319-41450-8_11
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Fig. 12.8 Evolution of the Q-parameters

Fig. 12.9 Power spectral densities of the open-loop, robust linear controller, and adaptive regulator.
Full frequency range in the upper plot, zoom between 50 and 100 Hz in the lower plot

results are shown in Figs. 12.7 and 12.8. The global attenuation for the robust linear
controller is 27.50 dB and for the adaptive controller is 45.59 dB.

Power spectral densities (PSD) estimates of the two control schemes are given
in Fig. 12.9. It can be observed that the attenuation introduced by the robust linear
controller in the desired frequency zone is equal to 14 dB which is coherent with
the design done in Sect. 11.3. The adaptive regulator assures a better attenuation of

http://dx.doi.org/10.1007/978-3-319-41450-8_11
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Fig. 12.10 Residual force with step frequency changes (+5 Hz) in closed-loop with linear controller
(upper plot) and with adaptive controller (lower plot). In both cases, the system is in open-loop
until t = 15 s

disturbances and also does not amplify at other frequencies more than the linear
controller.

Adaptation capabilities are tested and the results are compared to the linear robust
controller in Fig. 12.10. In this figure, all four sinusoidal disturbances are modified at
35 s by adding 5 Hz to their frequencies. As such the new disturbance frequencies are
centred around 65 Hz (64.9 and 65.1 Hz) and 85 Hz (84.9 and 85.1 Hz). As expected
the linear robust controller fails to provide an acceptable attenuation. The adaptation
transient is about 1.5 s.

12.5 Adaptive Attenuation of an Unknown Narrow-Band
Disturbance on the Active Hydraulic Suspension

The narrow-band disturbance rejection procedure using the direct adaptive control
scheme proposed in Sect. 12.2.2 is illustrated in real time for the case of the control
of an active hydraulic suspension (presented in Sect. 2.1). In this application the dis-
turbance will be a single time-varying sinusoidal disturbance, so one should consider
nDp = 2 and nQ = nDp − 1 = 1.

The identification procedures for the active suspension have been discussed in
Sect. 6.1 (identification in open-loop operation). The frequency characteristics of the
identified primary path and secondary path models model (open-loop identification)
are shown in Fig. 6.8. The first vibration mode of the primary path model is near
32 Hz. The model of the secondary path has the following complexity: nA = 14,

http://dx.doi.org/10.1007/978-3-319-41450-8_2
http://dx.doi.org/10.1007/978-3-319-41450-8_6
http://dx.doi.org/10.1007/978-3-319-41450-8_6
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nB = 16, d = 0. The secondary path has several low damped vibration modes. The
first one is at 31.8 Hz with a damping factor 0.07.

The central controller (without the internal model of the disturbance) has been
designed using the pole placement method and the secondary path identified model.
A pair of dominant poles has been fixed at the frequency of the first vibration mode
(31.8 Hz), with a damping ξ = 0.8, and the other poles of the model have been
considered as auxiliary desired closed-loop poles. In addition a prespecified part
HR = 1 + q−1 (R = HRR′) which assures the opening of the loop at 0.5fs has been
introduced and 10 auxiliary poles at 0.7 have been added to the desired closed-loop
poles. The resulting nominal controller has the following complexity: nR = 14, nS =
16 and it satisfies the imposed robustness constraints on the sensitivity functions.11

Only the results in adaptive operation will be presented. For results in self-tuning
operations see [7]. In adaptive operation the PAA works permanently (once the loop
is closed) and the controller is recomputed at each sampling. The adaptation gain in
this case never goes to zero.

In order to evaluate the performances in real-time, time-varying frequency sinu-
soidal disturbances between 25 and 47 Hz have been used (the first vibration mode
of the primary path is near 32 Hz). Two protocols have been considered:

• Step changes of the frequency of the disturbance
• Continuously time-varying frequency of the disturbance (chirp)

Step Changes of the Frequency of the Disturbance
Start up: the system is started in open-loop. After 5 s (4000 samples) a sinusoidal
disturbance of 32 Hz is applied on the shaker and simultaneously the loop is closed.
After the start up ends, every 15 s (8000 samples) sinusoidal disturbances of different
frequency are applied (step change in frequency value). The sequence is as follows:
32, 25, 32, 47, 32 Hz.

The measured residual force obtained in direct adaptive operation is presented
in Fig. 12.11. The I-PAA given in Eqs. (12.33) through (12.36) has been used. An
adaptation gain with variable forgetting factor combined with a constant trace [18]
has been used in order to be able to track automatically the changes of the disturbance
characteristics. The low level threshold of the trace has been fixed to 3 × 10−9.

The spectral densities of the measured residual forces obtained in adaptive oper-
ation in open and closed-loop for the three different frequencies considered (25, 32,
47 Hz) are presented in Fig. 12.12 for the direct adaptation method.

One observes the appearance of two harmonics of the first vibration mode of
the primary path on the spectral density in open-loop when the frequency of the
disturbance corresponds to the first resonance mode of the system (32 Hz). They
appear in open-loop because of the nonlinearities of the system at large signals (there
is an important amplification of the disturbance at the resonance frequency of the
system in). The harmonics do not appear in closed-loop operation. The attenuations

11Any design method allowing to satisfy these constraints can be used.
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Fig. 12.11 Time domain results with the direct adaptation method (trace = 3 × 10−9)
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Fig. 12.12 Spectral densities of the residual force in open and closed-loop in direct adaptive
operation)

Table 12.1 Real-time
performance of the direct
adaptive method

Method Direct adaptation

Disturbance frequency (Hz) 25 32 47

Disturbance attenuation (dB) 56.18 65.43 53.97

obtained are larger than 50 dB for the 3 different frequencies considered. The values
of the attenuations are summarized in Table 12.1.12

The duration of the adaptation transients is less than 0.25 s [7].

Attenuation of Sinusoidal Disturbances with Continuously Time-Varying Frequency

12For results obtained with an indirect adaptive control scheme see [7].
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Fig. 12.13 Real-time results obtained with the direct adaptive method and a chirp disturbance:
open-loop (upper plot), closed-loop (lower plot)

Consider now that the frequency of the sinusoidal disturbance varies continuously
and let’s use a chirp disturbance signal (linear swept-frequency signal) between 25
and 47 Hz.

The tests have been done as follows: Start up in closed-loop at t = 0 with the
central controller. Once the loop is closed, the adaptation algorithm works perma-
nently and the controller is updated (direct approach) at each sampling instant. After
5 s a sinusoidal disturbance of 25 Hz (constant frequency) is applied on the shaker.
From 10 to 15 s a chirp between 25 and 47 Hz is applied. After 15 s a 47 Hz (constant
frequency) sinusoidal disturbance is applied and the tests are stopped after 18 s. The
time domain results obtained in open and in closed-loop (direct adaptive control)
are presented in Fig. 12.13. One can remark that the performances obtained are very
good.

12.6 Adaptive Attenuation of an Unknown Narrow-Band
Disturbance on the Active Vibration Control System
Using an Inertial Actuator

The narrow-band disturbance rejection procedure using the direct adaptive control
scheme proposed in Sect. 12.2.2 is illustrated in real time on an active vibration
control system using an inertial actuator. The case of one tonal disturbance will be
considered.13

13The case of multiple unknown narrow-band disturbances will be discussed in Chap. 13.

http://dx.doi.org/10.1007/978-3-319-41450-8_13
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The system has been presented in Sect. 2.2 and the identification procedure has
been described in Sect. 6.2. The frequency characteristics of the identified model of
the secondary path has been shown in Fig. 6.18. As discussed in Sect. 12.2.3 attenua-
tion of the disturbances can be done only in the frequency regions where the system
has enough gain. In particular this system will be able to attenuate disturbances
located between 50 and 95 Hz. Note that the borders of the frequency region consid-
ered are very close to some complex low damped zeros (no gain at these frequencies)
so this has to be taken in account when designing the central controller (the input
sensitivity function should be low at these frequencies).

12.6.1 Design of the Central Controller

A key issue is the design of the central controller. It should assure that in the presence
of disturbances with known frequency, using the internal model principle, the speci-
fications are satisfied for all the possible frequencies of the disturbance. Specifically
one should obtain a disturbance attenuation (DA) of 40 dB, a global attenuation (GA)
of 30 dB and a maximum amplification (MA) with respect to open-loop operation of
less than 6 dB (for more details see Table 13.2 and Sect. 13.2). The performance of
the central controller in this context gives the best achievable performance. Adding
the adaptation capabilities will only allow to approach this performance when the
frequencies of the disturbances are unknown and time-varying.

The region of operation is between 50 and 95 Hz. As it can be seen from the
zoom of the frequency characteristics of the secondary path shown are in Fig. 12.14,
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Fig. 12.14 Zoom of the magnitude of the frequency response of the secondary path between 40
and 105 Hz

http://dx.doi.org/10.1007/978-3-319-41450-8_2
http://dx.doi.org/10.1007/978-3-319-41450-8_6
http://dx.doi.org/10.1007/978-3-319-41450-8_6
http://dx.doi.org/10.1007/978-3-319-41450-8_13
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the borders of the region of operation are quite close to low damped complex zeros
located at 47.36 and 101.92 Hz.
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Fig. 12.15 Output sensitivity function with (solid line) and without (dashed line) auxiliary resonant
poles at 50 and 95 Hz and with an internal model tuned for 50 Hz

All the poles of the system have been included as desired closed-loop poles (they
are all stable), but to reduce the effect of the IMP on the borders two auxiliary low
damped auxiliary poles have been introduced at 50 and 90 Hz, with damping 0.0629
and 0.0157 respectively. Figure 12.15 shows the effect of these auxiliary poles on the
shape of the output sensitivity function.
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Fig. 12.16 Input sensitivity function with (solid line) and without (dashed line) BSF filters
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Another objective was to reduce significantly the modulus of the input sensitivity
function outside the region of operation (to improve robustness and reduce noise
amplification). This has been achieved by shaping the input sensitivity function using
band-stop filters (see Sect. 7.2.9 for details). Three band-stop filters located between
110 and 170 Hz have been used. Their effect upon the input sensitivity function is
shown in Fig. 12.16.

12.6.2 Real-Time Results

I-PAA algorithm given in Eqs. (12.33)–(12.36) has been used with decreasing adap-
tation gain and constant trace. The initial trace of the matrix adaptation gain has been
fixed at 2000 (2 parameters to adapt) and the desired constant trace at 2. Figure 12.17
shows the time results obtained for a simple step test (i.e., application of a 75 Hz
disturbance) and for step changes in the frequency of the disturbance (the sequence
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Fig. 12.17 Time response comparison between open-loop and adaptive closed-loop operation (up
step disturbance application, middle step frequency changes, bottom chirp disturbance)
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Fig. 12.18 Power spectral density comparison between open-loop (dashed line) and adaptive
closed-loop (solid line) for a 75 Hz disturbance
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Fig. 12.19 Attenuation using adaptive closed-loop regulation for a 75 Hz disturbance

was: 60, 70, 60, 50, 60 Hz). Lower part of the figure shows the behaviour in the
presence of a chirp disturbance varying between 50 and 95 Hz and from 95 to 50 Hz
disturbance.

Figure 12.18 shows the PSD of the residual force in open-loop (dashed line) and
in closed-loop (solid line) for a disturbance located at 75 Hz. Figure 12.19 shows the
resulting attenuation/amplification using adaptive feedback regulation (the difference
between the PSD in open-loop and the PSD with adaptive feedback regulation).
Similar results are obtained for the other frequencies.

Table 12.2 gives a summary of the results obtained with the adaptive scheme for
various frequencies of the disturbance. Column 1 gives the global attenuation (GA).
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Table 12.2 Experimental results—simple step test (GA—global attenuation, DA—disturbance
attenuation, MA—maximum amplification)

One single tonal disturbance

Frequency (Hz) GA (dB) DA (dB) MA (dB@Hz)

50 34.60 38.49 9.83@65.63

55 34.54 50.45 9.48@118.75

60 33.34 49.49 8.23@79.69

65 32.78 50.04 9.65@90.63

70 30.54 47.90 9.01@89.06

75 29.53 45.54 8.90@50.00

80 30.28 48.72 8.49@95.31

85 28.47 45.94 10.66@57.81

90 28.02 42.65 8.24@73.44

95 24.63 34.55 9.06@82.81

Column 2 gives the attenuation of the tonal disturbance (DA) and Column 3 gives
the maximum amplification in closed-loop with respect to the open-loop operation
and the frequency at which it occurs. Except the border of the domain of operation, the
attenuation of the unknown tonal disturbance is more than 40 dB and the maximum
amplification is below 10.66 dB for all frequencies.

12.7 Other Experimental Results

Experimental results obtained on the active flexible structure described in Sect. 2.3
for single and multiple unknown narrow-band disturbances can be found in [13,
19]. Results on a different active vibration control using an inertial actuator can be
found in [13]. The use of this type of algorithm for adaptive suppression of main
periodic disturbances in Blu-ray disc drives servomechanisms is presented in [13,
20]. The same type of algorithm has been used for a different type of disturbance
(an exponential) in the context of fed-batch reactor [21, 22]. This approach has been
used also for active noise control [23, 24].

12.8 Concluding Remarks

• The use of the internal model principle allows to provide solutions for suppressing
the effect of tonal disturbances upon the output, provided that, either the model of
the disturbance can be estimated or the internal model of the disturbance can be
directly estimated in the controller.

http://dx.doi.org/10.1007/978-3-319-41450-8_2
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• The use of the Youla–Kučera parametrization allows to build direct adaptive reg-
ulation schemes (one directly adapt the parameters of the Youla–Kučera filter
included in the controller).

• The number of parameters to adapt depend upon the number of tonal disturbances
to attenuate and not upon the complexity of the model of the system.

• The performance of the direct adaptive regulation using Youla–Kučera parame-
trization is better than those of the robust linear controller solutions in terms of
performance and expansion of the domain of operation.

12.9 Notes and References

The problem discussed in this chapter belongs to the case of adaptive regulation,
i.e., known plant and unknown disturbance model. The problem of known plant and
unknown disturbance model has been addressed in a number of papers [7, 21, 23–29]
among others. The following approaches considered for solving this problem may
be mentioned

1. Use of the internal model principle [6–8, 16, 21–24, 28–30].
2. Use of an observer for the disturbance [26, 27, 31, 32].
3. Use of the “phase-locked” loop structure considered in communication systems

[25, 33].

The use of the Youla–Kučera parametrization for the problem of disturbance
rejection takes its roots from an idea of Tsypkin [34] who expressed the IMP in the
time domain using the sensitivity functions and the Youla–Kučera parametrization.

An important issue which was addressed is to try to take in account the possible
variation of the plant model by over parametrization of the Youla–Kučera filter. This
has been considered in [21]. The Ref. [35] provides a stability proof in this context.

Over parametrization of the Youla–Kučera filter has been also considered in [36,
37] for improving the robustness of the central controller. A comparative evaluation
of this approach and the design of the central controller using pole placement in the
presence of low damped complex zeros can be found in [38] where also a combination
of the two approaches is considered. Note that over parametrization leads to the
increase of the computation load.

Applications of the approach presented in this chapter are reported in [12, 13, 22,
24, 39–44] using related structures and adaptation algorithms.

Extension to the multivariable case is considered in [45]. Solution for the contin-
uous time formulation is provided in [46]. The rejection of sinusoidal disturbances
in chaotic planar oscillators is discussed in [47].

The case of unknown plant model and known disturbance model is considered in
[48, 49] among other references. The case of unknown plant and disturbance models
is considered in [50].
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Chapter 13
Adaptive Attenuation of Multiple Sparse
Unknown and Time-Varying Narrow-Band
Disturbances

13.1 Introduction

In this chapter, the focus is on the strong attenuation of multiple sparsely located
unknown and time-varying disturbances. One assumes that the various tonal distur-
bances are distant to each other in the frequency domain by a distance in Hz at least
equal to 10 % of the frequency of the disturbance and that the frequency of these
disturbances vary over a wide frequency region.

The problem is to assure in this context a certain number of performance indices
such as global attenuation, disturbance attenuation at the frequency of the distur-
bances, a tolerated maximum amplification (water bed effect), a good adaptation
transient (see Sect. 12.3). The most difficult problem is to be sure that in all the con-
figurations the maximum amplification is below a specified value. There is first a
fundamental problem to solve: one has to be sure that in the known frequency case,
for any combination of disturbances the attenuation and the maximum amplifica-
tion specifications are achieved. The adaptive approach will only try to approach the
performances of a linear controller for the case of known disturbances. So before
discussing the appropriate adaptation schemes one has to consider the design meth-
ods to be used in order to achieve these constraints for the known frequencies case.
This will be discussed in Sect. 13.2.

13.2 The Linear Control Challenge

In this section, the linear control challenge will be presented for the case of rejection
of multiple narrow-band disturbances taking also into account the possible presence
of low damped complex zeros in the vicinity of the border of the operational zone.
Considering that in a linear context all the information is available, the objective is
to set up the best achievable performance for the adaptive case.
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Assuming that only one tonal vibration has to be cancelled in a frequency region
far from the presence of low damped complex zeros and that the models of the
plant and of the disturbance are known, the design of a linear regulator is relatively
straightforward, using the internal model principle (see Chaps. 7 and 12).

The problem becomes much more difficult if several tonal vibrations (sinusoidal
disturbances) have to be attenuated simultaneously since the water bed effect may
become significant without a careful shaping of the sensitivity function when using
the internal model principle. Furthermore, if the frequencies of the disturbance may
be close to those of some of very low damped complex zeros of the plant, the use
of the internal model principle should be used with care even in the case of a single
disturbance (see Sect. 12.5).

This section will examine the various aspects of the design of a linear controller
in the context of multiple tonal vibrations and the presence of low damped complex
zeros. It will review various linear controller strategies.

To be specific these design aspects will be illustrated in the context of the active
vibration control system using an inertial actuator, described in Sect. 2.2 and which
has been already used for the case of a single tonal disturbance.

In this system, the tonal vibrations are located in the range of frequencies between
50 and 95 Hz. The frequency characteristics of the secondary path are given in
Sect. 6.2.

Assume that a tonal vibration (or a narrow-band disturbance) p(t) is introduced
into the system affecting the output y(t). The effect of this disturbance is centred at
a specific frequency. As mentioned in Sect. 12.2.3, the IMP can be used to asymp-
totically reject the effects of a narrow-band disturbance at the system’s output if the
system has enough gain in this region.

It is important also to take into account the fact that the secondary path (the actuator
path) has no gain at very low frequencies and very low gain in high frequencies near
0.5 fs . Therefore, the control system has to be designed such that the gain of the
controller be very low (or zero) in these regions (preferably 0 at 0 Hz and 0.5 fs). Not
taking into account these constraints can lead to an undesirable stress on the actuator.

In order to assess how good the controller is, it is necessary to define some control
objectives that have to be fulfilled. For the remaining of this section, the narrow-band
disturbance is supposed to be known and composed of 3 sinusoidal signals with 55,
70 and 85 Hz frequencies. The control objective is to attenuate each component of
the disturbance by a minimum of 40 dB, while limiting the maximum amplification
at 9 dB within the frequency region of operation. Furthermore it will be required that
low values of the modulus of the input sensitivity function be achieved outside the
operation region.

The use of the IMP principle completed with the use of auxiliary real (aperiodic)
poles which have been used in Chap. 11 as a basic design for adaptive attenuation of
one unknown disturbance may not work satisfactory for the case of multiple unknown
disturbances even if it may provide good performance in some situations [1]. Even in
the case of a single tonal disturbance, if low damped complex zeros near the border
of the operation region are present, this simple design is not satisfactory. Auxiliary
low damped complex poles have to be added. See Chap. 12, Sect. 12.6.

http://dx.doi.org/10.1007/978-3-319-41450-8_7
http://dx.doi.org/10.1007/978-3-319-41450-8_12
http://dx.doi.org/10.1007/978-3-319-41450-8_12
http://dx.doi.org/10.1007/978-3-319-41450-8_2
http://dx.doi.org/10.1007/978-3-319-41450-8_6
http://dx.doi.org/10.1007/978-3-319-41450-8_12
http://dx.doi.org/10.1007/978-3-319-41450-8_11
http://dx.doi.org/10.1007/978-3-319-41450-8_12
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One can say in general, that the IMP is doing too much in terms of attenuation of
tonal disturbances which of course can generate in certain case unacceptable water
bed effects. In fact in practice one does not need a full rejection of the disturbance,
but just a certain level of attenuation.

Three linear control strategy for attenuation of multiple narrow-band disturbances
will be considered

1. Band-stop filters (BSF) centred at the frequencies of the disturbances
2. IMP combined with tuned notch filters
3. IMP with additional fixed resonant poles

The controller design will be done in the context of pole placement. The initial desired
closed-loop poles for the design of the central controller defined by the characteristic
polynomial P0 include all the stable poles of the secondary path model and the free
auxiliary poles are all set at 0.3. The fixed part of the central controller numerator
is chosen as HR(z−1) = (1 − z−1) · (1 + z−1) in order to open the loop at 0 Hz and
0.5 fs .

13.2.1 Attenuation of Multiple Narrow-Band Disturbances
Using Band-Stop Filters

The purpose of this method is to allow the possibility of choosing the desired atten-
uation and bandwidth of attenuation for each of the narrow-band component of the
disturbance. Choosing the level of attenuation and the bandwidth allows to preserve
acceptable characteristics of the sensitivity functions outside the attenuation bands
and this is very useful in the case of multiple narrow-band disturbances. This is the
main advantage with respect to classical internal model principle which in the case
of several narrow-band disturbances, as a consequence of complete cancellation of
the disturbances, may lead to unacceptable values of the modulus of the output sensi-
tivity function outside the attenuation regions. The controller design technique uses
the shaping of the output sensitivity function in order to impose the desired atten-
uation of narrow-band disturbances. This shaping techniques has been presented in
Sect. 7.2.

The process output can be written as1

y(t) = G(q−1) · u(t) + p(t), (13.1)

where

G(q−1) = q−d B(q−1)

A(q−1)
(13.2)

1The complex variable z−1 is used to characterize the system’s behaviour in the frequency domain
and the delay operator q−1 will be used for the time domain analysis.

http://dx.doi.org/10.1007/978-3-319-41450-8_7


258 13 Adaptive Attenuation of Multiple Sparse Unknown and Time-Varying …

is called the secondary path of the system.
As specified in the introduction, the hypothesis of constant dynamic characteristics

of the AVC system is considered (similar to [2, 3]). The denominator of the secondary
path model is given by

A(q−1) = 1 + a1q
−1 + · · · + anAq

−nA , (13.3)

the numerator is given by

B(q−1) = b1q
−1 + · · · + bnBq

−nB = 1 + q−1B∗(q−1) (13.4)

and d is the integer delay (number of sampling periods).2

The control signal is given by

u(t) = −R(q−1) · y(t) − S∗(q−1) · u(t − 1), (13.5)

with

S(q−1) = 1 + q−1S∗(q−1) = 1 + s1q
−1 + · · · + snSq

−nS

= S′(q−1) · HS(q
−1), (13.6)

R(q−1) = r0 + r1q
−1 + · · · + rnRq

−nR = R′(q−1) · HR(q−1), (13.7)

where HS(q−1) and HR(q−1) represent fixed (imposed) parts in the controller and
S′(q−1) and R′(q−1) are computed.

The basic tool is a digital filter SBSFi (z
−1)/PBSFi (z

−1)with the numerator included
in the controller polynomial S and the denominator as a factor of the desired closed-
loop characteristic polynomial, which will assure the desired attenuation of a narrow-
band disturbance (index i ∈ {1, · · · , n}).

The BSFs have the following structure

SBSFi (z
−1)

PBSFi (z−1)
= 1 + β i

1z
−1 + β i

2z
−2

1 + αi
1z

−1 + αi
2z

−2
(13.8)

resulting from the discretization of a continuous filter (see also [4, 5])

Fi (s) = s2 + 2ζni ωi s + ω2
i

s2 + 2ζdi ωi s + ω2
i

(13.9)

using the bilinear transformation. This filter introduces an attenuation of

2As indicated earlier, it is assumed that a reliable model identification is achieved and therefore the
estimated model is assumed to be equal to the true model.
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Mi = −20 · log10

(
ζni

ζdi

)
(13.10)

at the frequency ωi . Positive values of Mi denote attenuations (ζni < ζdi ) and neg-
ative values denote amplifications (ζni > ζdi ). Details on the computation of the
corresponding digital BSF have been given in Chap. 7.3

Remark The design parameters for each BSF are the desired attenuation (Mi ), the
central frequency of the filter (ωi ) and the damping of the denominator (ζdi ). The
denominator damping is used to adjust the frequency bandwidth of the BSF. For very
small values of the frequency bandwidth the influence of the filters on frequencies
other than those defined by ωi is negligible. Therefore, the number of BSFs and
subsequently that of the narrow-band disturbances that can be compensated can be
large.

For n narrow-band disturbances, n BSFs will be used

HBSF (z−1) = SBSF (z−1)

PBSF (z−1)
=

∏n
i=1 SBSFi (z

−1)∏n
i=1 PBSFi (z−1)

(13.11)

As stated before, the objective is that of shaping the output sensitivity function.
S(z−1) and R(z−1) are obtained as solutions of the Bezout equation

P(z−1) = A(z−1)S(z−1) + z−d B(z−1)R(z−1), (13.12)

where

S(z−1) = HS(z
−1)S′(z−1), R(z−1) = HR1(z

−1)R′(z−1), (13.13)

and P(z−1) is given by

P(z−1) = P0(z
−1)PBSF (z−1). (13.14)

In the last equation, PBSF is the product of the denominators of all the BSFs,
(13.11), and P0 defines the initial imposed poles of the closed-loop system in the
absence of the disturbances (allowing also to satisfy robustness constraints). The
fixed part of the controller denominator HS is in turn factorized into

HS(z
−1) = SBSF (z−1)HS1(z

−1), (13.15)

where SBSF is the combined numerator of the BSFs, (13.11), and HS1 can be used
if necessary to satisfy other control specifications. HR1 is similar to HS1 allowing to
introduce fixed parts in the controller’s numerator if needed (like opening the loop
at certain frequencies). It is easy to see that the output sensitivity function becomes

3For frequencies bellow 0.17 fS ( fS is the sampling frequency) the design can be done with a very
good precision directly in discrete time [5].

http://dx.doi.org/10.1007/978-3-319-41450-8_7
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Syp(z
−1) = A(z−1)S′(z−1)HS1(z

−1)

P0(z−1)

SBSF (z−1)

PBSF (z−1)
(13.16)

and the shaping effect of the BSFs upon the sensitivity functions is obvious. The
unknowns S′ and R′ are solutions of

P(z−1) = P0(z
−1)PBSF (z−1) = A(z−1)SBSF (z−1)HS1(z

−1)S′(z−1)+
+ z−d B(z−1)HR1(z

−1)R′(z−1). (13.17)

and can be computed by putting (13.17) into matrix form (see also [5]). The size of
the matrix equation that needs to be solved is given by

nBez = nA + nB + d + nHS1
+ nHR1

+ 2 · n − 1, (13.18)

where nA, nB and d are respectively the order of the plant’s model denominator,
numerator and delay (given in (13.3) and (13.4)), nHS1

and nHR1
are the orders of

HS1(z
−1) and HR1(z

−1) respectively andn is the number of narrow-band disturbances.
Equation (13.17) has an unique minimal degree solution for S′ and R′, if nP ≤ nBez ,
where nP is the order of the pre-specified characteristic polynomial P(q−1). Also,
it can be seen from (13.17) and (13.15) that the minimal orders of S′ and R′ will be:

nS′ = nB + d + nHR1
− 1, nR′ = nA + nHS1

+ 2 · n − 1.

In Fig. 13.1, one can see the improvement obtained using BSF with respect to the
case when IMP with real auxiliary poles is used. The dominant poles are the same
in both cases. The input sensitivity function is tuned before introducing the BSFs.

Fig. 13.1 Output sensitivity
function for various
controller designs: using
IMP with auxiliary real poles
(dotted line), using band-stop
filters (dashed line), and
using tuned ρ notch filters
(continuous line)
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13.2.2 IMP with Tuned Notch Filters

This approach is based on the idea of considering an optimal attenuation of the
disturbance taking into account both the zeros and poles of the disturbance model.
It is assumed that the model of the disturbance is a notch filter and the disturbance
is represented by

p(t) = Dp(ρq−1)

Dp(q−1)
e(t) (13.19)

where e(t) is a zero mean white Gaussian noise sequence and

Dp(z
−1) = 1 + αz−1 + z−2, (13.20)

is a polynomial with roots on the unit circle.4

In (13.20), α = −2 cos (2πω1Ts), ω1 is the frequency of the disturbance in Hz,
and Ts is the sampling time. Dp(ρz−1) is given by:

Dp(ρz
−1) = 1 + ραz−1 + ρ2z−2, (13.21)

with 0 < ρ < 1. The roots of Dp(ρz−1) are in the same radial line as those of Dp(z−1)

but inside of the unitary circle, and therefore stable [6].
This model is pertinent for representing narrow-band disturbances as shown in

Fig. 13.2, where the frequency characteristics of this model for various values of ρ

are shown.
Using the output sensitivity function, the output of the plant in the presence of

the disturbance can be expressed as

y(t) = AS′

P0

HS

Paux

Dp(ρq−1)

Dp(q−1)
e(t) (13.22)

or alternatively as

y(t) = AS′

P0
β(t) (13.23)

where

β(t) = HS

Paux

Dp(ρq−1)

Dp(q−1)
e(t) (13.24)

In order to minimize the effect of the disturbance upon y(t), one should minimize
the variance of β(t). One has two tuning devices HS and Paux . Minimization of the
variance of β(t) is equivalent of searching HS and Paux such that β(t) becomes a

4Its structure in a mirror symmetric form guarantees that the roots are always on the unit circle.
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white noise [5, 7]. The obvious choices are HS = Dp (which corresponds to the
IMP) and Paux = Dp(ρz−1). Of course this development can be generalized for the
case of multiple narrow-band disturbances. Figure 13.1 illustrates the effect of this
choice upon the output sensitivity function. As it can be seen, the results are similar
to those obtained with BSF.

13.2.3 IMP Design Using Auxiliary Low Damped Complex
Poles

The idea is to add a number of fixed auxiliary resonant poles which will act effectively
as ρ-filters for few frequencies and as an approximation of the ρ-filters at the other
frequencies. This means that a number of the real auxiliary poles used in the basic
IMP design will be replaced by a number of resonant complex poles. The basic ad-
hoc rule is that the number of these resonant poles is equal to the number of the low
damped complex zeros located near the border of the operation region plus n − 1 (n
is the number of tonal disturbances).

For the case of 3 tonal disturbances located in the operation region 50 to 95 Hz
taking also into account the presence of the low damped complex zeros, the locations
and the damping of these auxiliary resonant poles are summarized in Table 13.1. The
poles at 50 and 90 Hz are related to the presence in the neighbourhood of low damped
complex zeros. The poles at 60 and 80 Hz are related to the 3 tonal disturbances to
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Fig. 13.2 Magnitude plot frequency responses of a notch filter for various values of the
parameter ρ
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Table 13.1 Auxiliary low damped complex poles added to the closed-loop characteristic polyno-
mial

Closed-loop poles p1,2 p3,4 p5,6 p7,8

Frequency [Hz] 50 60 80 90

Damping 0.1 0.3 0.135 0.1

be attenuated. The effect of this design with respect to the basic design using real
auxiliary poles is illustrated in Fig. 13.3.

Fig. 13.3 Output sensitivity
function for IMP design with
real auxiliary poles and with
resonant auxiliary poles
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FIR−no resonant poles ΔM=0.0442

FIR−resonant poles ΔM=0.4309

13.3 Interlaced Adaptive Regulation Using Youla–Kučera
IIR Parametrization

The adaptive algorithm developed in Chap. 12 uses an FIR structure for the Q-filter.
In this section, a new algorithm is developed, using an IIR structure for the Q filter
in order to implement the linear control strategies using tuned notch filters (tuned
auxiliary resonant poles). The use of this strategy is mainly dedicated to the case of
multiple unknown tonal disturbances.

As indicated previously, since Dp(ρz−1) will define part of the desired closed-
loop poles, it is reasonable to consider an IIR Youla–Kučera filter of the form
BQ(z−1)/AQ(z−1) with AQ(z−1) = Dp(ρq−1) (which will automatically introduce
Dp(ρq−1) as part of the closed-loop poles). BQ will introduce the internal model of
the disturbance. In this context, the controller polynomials R and S are defined by

http://dx.doi.org/10.1007/978-3-319-41450-8_12
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R(z−1) = AQ(z−1)R0(z
−1) + HR0(z

−1)HS0(z
−1)A(z−1)BQ(z−1), (13.25)

S(z−1) = AQ(z−1)S0(z
−1) − HR0(z

−1)HS0(z
−1)z−d B(z−1)BQ(z−1), (13.26)

and the poles of the closed-loop are given by:

P(z−1) = AQ(z−1)P0(z
−1). (13.27)

R0(z−1), S0(z−1) are the numerator and denominator of the central controller

R0(z
−1) = HR0(z

−1)R′
0(z

−1), (13.28)

S0(z
−1) = HS0(z

−1)S′
0(z

−1), (13.29)

and the closed-loop poles defined by the central controller are the roots of

P0(z
−1) = A(z−1)S0(z

−1)HS0(z
−1) + q−d B(z−1)R0(z

−1)HR0(z
−1). (13.30)

It can be seen from (13.25) and (13.26) that the new controller polynomials
conserve the fixed parts of the central controller.

Using the expression of the output sensitivity function (AS/P) the output of the
system can be written as follows:

y(t) = A
[
AQS0 − HR0 HS0q

−d BBQ
]

P
p(t), (13.31)

y(t) =
[
AQS0 − HR0 HS0q

−d BBQ
]

P
w(t), (13.32)

where the closed-loop poles are defined by (13.27) and where w(t) is defined as:

w(t) = A(q−1)y(t) − q−d B(q−1)u(t) (13.33)

= A(q−1)p(t) (13.34)

Comparing (13.32) with (12.20) from Chap. 12, one can see that they are similar
except that S0 is replaced by AQS0 and P0 by AQ P0. Therefore if AQ is known, the
algorithm given in Chap. 12 for the estimation of the Q FIR filter can be used for the
estimation of BQ . In fact this will be done using an estimation of AQ . A block dia-
gram of the interlaced adaptive regulation using the Youla–Kučera parametrization
is shown in Fig. 13.4. The estimation of AQ is discussed next.

http://dx.doi.org/10.1007/978-3-319-41450-8_12
http://dx.doi.org/10.1007/978-3-319-41450-8_12
http://dx.doi.org/10.1007/978-3-319-41450-8_12
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Fig. 13.4 Interlaced adaptive regulation using an IIR YK controller parametrization

13.3.1 Estimation of A Q

Assuming that plant model = true plant in the frequency range, where the narrow-
band disturbances are introduced, it is possible to get an estimation of p(t), named
p̂(t), using the following expression

p̂(t) = 1

A(q−1)
w(t) (13.35)

wherew(t) was defined in (13.33). The main idea behind this algorithm is to consider
the signal p̂(t) as

p̂(t) =
n∑

i=1

ci sin (ωi t + βi ) + η(t), (13.36)

where {ci , ωi , βi } �= 0, n is the number of narrow-band disturbances and η is a
noise affecting the measurement. It can be verified that, after two steps of transient(
1 − 2 cos(2πωi Ts)q−1 + q−2

) · ci sin (ωi t + βi ) = 0 [8]. Then the objective is to
find the parameter {α}ni=1 that makes Dp(q−1) p̂(t) = 0.

The previous product can be equivalently written as Dp(q−1) p̂(t + 1) = 0 and
its expression is

x(t + 1) = Dp(q
−1) p̂(t + 1),

= p̂(t + 1) +
n−1∑
i=n

αi
[
p̂(t + 1 − i) + p̂(t + 1 − 2n + i)

] + · · ·

· · · + αn p̂(t + 1 − n) + p̂(t + 1 − 2n). (13.37)

where n is the number of narrow-band disturbances.
Defining the parameter vector as
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θDp = [α1, α2, . . . , αn]T , (13.38)

and the observation vector at time t as:

φDp (t) =
[
φ
Dp

1 (t), φ
Dp

2 (t), . . . , φ
Dp
n (t)

]T
, (13.39)

where

φ
Dp

j (t) = p̂(t + 1 − j) + p̂(t + 1 − 2n + j), j = 1, . . . , n − 1 (13.40)

φ
Dp
n (t) = p̂(t + 1 − n). (13.41)

Equation (13.37) can then be simply represented by

x(t + 1) = θT
Dp

φDp (t) + (
p̂(t + 1) + p̂(t + 1 − 2n)

)
. (13.42)

Assuming that an estimation of D̂p(q−1) is available at the instant t , the estimated
product is written as follows:

x̂(t + 1) = D̂p(q
−1) p̂(t + 1),

= p̂(t + 1) +
n−1∑
i=n

α̂i
[
p̂(t + 1 − i) + p̂(t + 1 − 2n + i)

] + · · ·

· · · + α̂n p̂(t + 1 − n) + p̂(t + 1 − 2n) (13.43)

= θ̂T
Dp

(t)φDp (t) + (
p̂(t + 1) + p̂(t + 1 − 2n)

)
(13.44)

where θ̂Dp (t) is the estimated parameter vector at time t . Then the a priori prediction
error is given by

ε◦
Dp

(t + 1) = x(t + 1) − x̂(t + 1) =
[
θT
Dp

− θ̂T
Dp

(t)
]

· φDp (t), (13.45)

and the a posteriori adaptation error using the estimation at t + 1

εDp (t + 1) =
[
θT
Dp

− θ̂T
Dp

(t + 1)
]

· φDp (t), (13.46)

Equation (13.46) has the standard form of an a posteriori adaptation error [9] which
allows to associate the standard parameter adaptation algorithm (PAA) introduced
in Chap. 4 (Eqs. (4.121)–(4.123)):

http://dx.doi.org/10.1007/978-3-319-41450-8_4
http://dx.doi.org/10.1007/978-3-319-41450-8_4
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θ̂Dp (t + 1) = θ̂Dp (t) + F2(t)φDp (t)ε
◦
Dp

(t + 1)

1 + φDp (t)T F2(t)φDp (t)
(13.47)

ε◦
Dp

(t + 1) = x(t + 1) − x̂(t + 1) (13.48)

x̂(t + 1) = θ̂T
Dp

(t)φDp (t) + (
p̂(t + 1) + p̂(t + 1 − 2n)

)
(13.49)

F2(t + 1)−1 = λ1(t)F2(t)
−1 − λ2(t)φDp (t)φDp (t)

T (13.50)

0 < λ1(t) ≤ 1; 0 ≤ λ2(t) < 2; F2(0) > 0

The PAA defined in (4.121)–(4.123) is used with φ(t) = φDp (t), θ̂ (t) = θ̂Dp (t) and
ε◦(t + 1) = ε◦

Dp
(t + 1). For implementation, since the objective is to make x(t +

1) → 0, the implementable a priori adaptation error is defined as follows:

ε◦
Dp

(t + 1) = 0 − D̂p(q
−1, t) p̂(t + 1)

= −θ̂T
Dp

(t)φDp (t) − (
p̂(t + 1) + p̂(t − 2n + 1)

)
. (13.51)

Additional filtering can be applied on p̂(t) to improve the signal-noise ratio. Since
a frequency range of interest was defined, a bandpass filter can be used on p̂(t). Once
an estimation of Dp is available, AQ = Dp(ρq−1) is immediately generated. Since
the estimated ÂQ will be used for the estimation of the parameters of BQ one needs
to show that: limt→∞ ÂQ(z−1) = AQ(z−1). This is shown in Appendix C.

13.3.2 Estimation of BQ(q−1)

Taking into account (13.12), (13.15), (13.16), and (13.17), it remains to compute
BQ(z−1) such that

S(z−1) = Dp(z
−1)HS0(z

−1)S′(z−1). (13.52)

Turning back to (13.26) one obtains

S0AQ = DpHS0 S
′ + z−d BHR0 HS0 BQ . (13.53)

and taking into consideration also (13.29) it results

S′
0AQ = DpS

′ + z−d BHR0 BQ . (13.54)

Once an estimation algorithm is developed for polynomial ÂQ(q−1), the next step
is to develop the estimation algorithm for B̂Q(q−1). Assuming that the estimation
ÂQ(t) of AQ(z−1) is available, one can incorporate this polynomial to the adaptation
algorithm defined in Sect. 12.2.2. Using (13.32) and (13.27) and assuming that an
estimation of B̂Q(q−1) is available at the instant t , the a priori error is defined as the

http://dx.doi.org/10.1007/978-3-319-41450-8_4
http://dx.doi.org/10.1007/978-3-319-41450-8_4
http://dx.doi.org/10.1007/978-3-319-41450-8_12
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output of the closed-loop system written as follows5

ε◦(t + 1) = S0 ÂQ(t) − q−d BHS0 HR0 B̂Q(t)

P0 ÂQ(t)
w(t + 1)

= S0

P0
w(t + 1) − q−d B∗HS0 HR0

P0

B̂Q(t)

ÂQ(t)
w(t) (13.55)

= w1(t + 1) − B̂Q(t)

ÂQ(t)
w f (t) (13.56)

where the notations6

w(t + 1) = A
Dp(ρ)

Dp
δ(t + 1) (13.57)

w1(t + 1) = S0

P0
w(t + 1) (13.58)

w f (t) = q−d B∗HS0 HR0

P0
w(t) (13.59)

have been introduced.
Substituting (13.53) in (13.55) one gets:

ε◦(t + 1) =HS0 DpS′

P0AQ
w(t + 1) + q−d B∗HS0 HR0

P0

BQ

AQ
w(t)−

− q−d B∗HS0 HR0

P0

B̂Q(t)

ÂQ(t)
w(t) (13.60)

=υ(t + 1) + q−d B∗HS0 HR0

P0

[
BQ

AQ
− B̂Q(t)

ÂQ(t)

]
w(t) (13.61)

where

υ(t + 1) = HS0 DpS′

P0AQ

ADp(ρ)

Dp
δ(t + 1) = HS0 S

′A
P0

δ(t + 1) (13.62)

tends asymptotically to zero since it is the output of an asymptotically stable filter
whose input is a Dirac pulse.

The equation for the a posteriori error takes the form7

5The argument (q−1) will be dropped in some of the following equations.
6For the development of the equation for the adaptation error one assumes that the estimated
parameters have constant values which allows to use the commutativity property of the various
operators.
7The details of the developments leading to this equation are given in the Appendix C.
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ε(t + 1) = 1

AQ

[
θT

1 − θ̂T
1 (t + 1)

]
φ1(t) + υ f (t + 1) + υ1(t + 1), (13.63)

where

υ f (t + 1) = 1

AQ
υ(t + 1) → 0, since AQ is a.s. (13.64)

υ1(t + 1) = 1

AQ

(
A∗
Q − Â∗

Q(t + 1)
) (

−û f
Q(t)

)
→ 0, (13.65)

θ1 =
[
bQ

0 , . . . , bQ
2n−1

]T
(13.66)

θ̂1(t + 1) =
[
b̂Q

0 (t + 1), . . . , b̂Q
2n−1(t + 1)

]T
(13.67)

φ1(t) = [
w f (t), . . . ,w f (t + 1 − 2n)

]T
(13.68)

w f (t) = q−d B∗HS1 HR1

P0
w(t) (13.69)

and n is the number of narrow-band disturbances. The convergence towards zero
for the signal υ1(t + 1) is assured by the fact that limt→∞ ÂQ(t, z−1) = AQ(z−1)

(see Appendix C). Since υ f (t + 1) and υ1(t + 1) tend towards zero, (13.63) has the
standard form of an adaptation error equation (see Chap. 4 and [9]), and the following
PAA is proposed:

θ̂1(t + 1) = θ̂1(t) + F1(t)Φ1(t)ν(t + 1) (13.70)

ν(t + 1) = ν◦(t + 1)

1 + ΦT
1 (t)F1(t)Φ1(t)

(13.71)

F1(t + 1)−1 = λ1(t)F1(t)
−1 − λ2(t)Φ1(t)Φ

T
1 (t) (13.72)

0 < λ1(t) ≤1; 0 ≤ λ2(t) < 2; F1(0) > 0 (13.73)

There are several possible choices for the regressor vector Φ1(t) and the adaptation
error ν(t + 1), because there is a strictly positive real condition for stability related
to the presence of the term 1

AQ
in (13.63). For the case where ν(t + 1) = ε(t + 1),

one has ν◦(t + 1) = ε◦(t + 1), where

ε◦(t + 1) = w1(t + 1) − θ̂T
1 (t)Φ1(t). (13.74)

For the case where ν(t + 1) = ÂQε(t + 1):

http://dx.doi.org/10.1007/978-3-319-41450-8_4
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ν◦(t + 1) = ε◦(t + 1) +
nAQ∑
i=1

âQ
i ε(t + 1 − i). (13.75)

These various choices result from the stability analysis given in Appendix C. They
are detailed below and summarized in Table 13.2.

• Φ1(t) = φ1(t). In this case, the prediction error ε(t + 1) is chosen as adaptation
error ν(t + 1) and the regressor vector Φ1(t) = φ1(t). Therefore, the stability
condition is: H ′ = 1

AQ
− λ2

2 (maxt λ2(t) ≤ λ2 < 2) should be strictly positive real
(SPR).

• ν(t + 1) = ÂQε(t + 1). The adaptation error is considered as the filtered predic-
tion error ε(t + 1) through a filter ÂQ . The regressor vector is Φ1(t) = φ1(t) and

the stability condition is modified to: H ′ = ÂQ

AQ
− λ2

2 (maxt λ2(t) ≤ λ2 < 2) should

be SPR where ÂQ is a fixed estimation of AQ .
• Φ1(t) = φ

f
1 (t). Instead of filtering the adaptation error, the observations can be

filtered to relax the stability condition.8 By filtering the observation vector φ1(t)

through 1
ÂQ

and using ν(t + 1) = ε(t + 1), the stability condition is: H ′ = ÂQ

AQ
−

λ2
2 (maxt λ2(t) ≤ λ2 < 2) should be SPR, where φ

f
1 (t) = 1

ÂQ
φ1(t) ( ÂQ is a fixed

estimation of AQ).
• Φ1(t) = φ

f
1 (t) = 1

ÂQ(t)
where ÂQ = ÂQ(t) is the current estimation of AQ . When

filtering through a current estimation ÂQ(t) the condition is similar to the previous
case except that it is only valid locally [9].

It is this last option which is used in [10] and in Sect. 13.5.
The following procedure is applied at each sampling time for adaptive operation:

1. Get the measured output y(t + 1) and the applied control u(t) to compute w(t +
1) using (13.33).

2. Obtain the filtered signal p̂(t + 1) from (13.35).

Table 13.2 Comparison of algorithms for the adaptation of the numerator parameters BQ(z−1)

Adaptation error Prediction error Regressor vector Positive real cond. Stability

ν(t + 1) ε(t + 1) Φ1(t) H ′(z−1)

ε(t + 1) Eq. (13.63) φ1(t)
1
AQ

− λ2
2 Global

ÂQε(t + 1) Eq. (13.63) φ1(t)
ÂQ
AQ

− λ2
2 Global

ε(t + 1) Eq. (13.63) φ
f

1 (t) ÂQ
AQ

− λ2
2 Global

ε(t + 1) Eq. (13.63) φ
f

1 (t) ÃQ (t)
AQ

− λ2
2 Local

8Neglecting the non-commutativity of the time-varying operators.



13.3 Interlaced Adaptive Regulation Using Youla–Kučera IIR Parametrization 271

3. Compute the implementable a priori adaptation error with (13.48).
4. Estimate D̂p(q−1) using the PAA and compute at each step ÂQ(q−1).
5. Compute w f (t) with (13.69).
6. Compute w1(t + 1) with (13.58).
7. Put the filtered signal w f

2 (t) in the observation vector, as in (13.68).
8. Compute the a priori adaptation error defined in (13.74).
9. Estimate the BQ polynomial using the parametric adaptation algorithm (13.70)–

(13.72).
10. Compute and apply the control (see Fig. 13.4):

S0u(t) = −R0y(t + 1) − HS0 HR0

(
B̂Q(t)w(t + 1) − Â∗

QûQ(t)
)

. (13.76)

13.4 Indirect Adaptive Regulation Using Band-Stop Filters

In this section, an indirect adaptive regulation scheme will be developed for imple-
menting the attenuation of multiple unknown narrow-band disturbances using band-
stop filters centred at the frequencies corresponding to spikes in the spectrum of
the disturbance. The principle of the linear design problem has been discussed in
Sect. 13.2.1.

The design of the BSF for narrow-band disturbance attenuation is further sim-
plified by considering a Youla–Kučera parametrization of the controller [2, 11–13].
By doing this, the dimension of the matrix equation that has to be solved is reduced
significantly and therefore the computation load will be much lower in the adaptive
case.

In order to implement this approach in the presence of unknown narrow-band
disturbances, one needs to estimate in real time the frequencies of the spikes contained
in the disturbance. System identification techniques can be used to estimate the
ARMA model of the disturbance [3, 14]. Unfortunately, to find the frequencies of
the spikes from the estimated model of the disturbance requires computation in real
time of the roots of an equation of order 2 · n, where n is the number of spikes.
Therefore, this approach is applicable in the case of one eventually two narrow-
band disturbances [1, 2]. What is needed is an algorithm which can directly estimate
the frequencies of the various spikes of the disturbance. Several methods have been
proposed [15]. The adaptive notch filter (ANF) is particularly interesting and has been
reviewed in a number of articles [6, 16–21]. In this book, the estimation approach
presented in [22, 23] will be used. Combining the frequency estimation procedure and
the control design procedure, an indirect adaptive regulation system for attenuation
of multiple unknown and/or time-varying narrow-band disturbances is obtained.

In the present context, the hypothesis of constant dynamic characteristics of the
AVC system is made (like in [3]). Furthermore, the corresponding control model is
supposed to be accurately identified from input/output data.
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Fig. 13.5 Basic scheme for indirect adaptive regulation

13.4.1 Basic Scheme for Indirect Adaptive Regulation

The equation describing the system has been given in Sect. 13.2. The basic scheme for
indirect adaptive regulation is presented in Fig. 13.5. In the context of unknown and
time-varying disturbances, a disturbance observer followed by a disturbance model
estimation block have to be used in order to obtain information on the disturbance
characteristics needed to update the controller parameters.

With respect to Eq. (13.1), it is supposed that

p(t) = D(ρq−1)

D(q−1)
δ(t), ρ ∈ (0, 1) is a fixed constant, (13.77)

represents the effect of the disturbance on the measured output.9

Under the hypothesis that the plant model parameters are constant and that an
accurate identification experiment can be run, a reliable estimate p̂(t) of the distur-
bance signal can be obtained using the following disturbance observer

p̂(t + 1) = y(t + 1) − q−d B∗(q−1)

A(q−1)
u(t)

= 1

A(q−1)

(
A(q−1)y(t + 1) − q−d B∗(q−1)u(t)

)
(13.78)

A disturbance model estimation block can then be used to identify the frequencies
of the sines in the disturbance. With this information, the control parameters can
directly be updated using the procedure described in Sect. 13.2.1. To deal with time-
varying disturbances, the Bezout equation (13.17) has to be solved at each sampling
instant in order to adjust the output sensitivity function. Nevertheless, given the size
of this equation (see (13.18)), a significant part of the controller computation time
would be consumed to solve this equation. To reduce the complexity of this equation,

9The disturbance passes through a so called “primary path” which is not represented in Fig. 13.5.
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a solution based on the Youla–Kučera parametrization is described in the following
section.

13.4.2 Reducing the Computational Load of the Design
Using the Youla–Kučera Parametrization

The attenuation of narrow-band disturbances using band-stop filters (BSF) has been
presented in Sect. 13.2.1 in the context of linear controllers.

In an indirect adaptive regulation scheme, the Diophantine equation (13.17) has
to be solved either at each sampling time (adaptive operation) or each time when a
change in the narrow-band disturbances’ frequencies occurs (self-tuning operation).
The computational complexity of (13.17) is significant (in the perspective of its use
in adaptive regulation). In this section, we show how the computation load of the
design procedure can be reduced by the use of the Youla–Kučera parametrization.

As before, a multiple band-stop filter, (13.11), should be computed based on the
frequencies of the multiple narrow-band disturbance (the problem of frequencies
estimation will be discussed in Sect. 13.4.3).

Suppose that a nominal controller is available, as in (13.28) and (13.29), that
assures nominal performances for the closed-loop system in the absence of narrow-
band disturbances. This controller satisfies the Bezout equation

P0(z
−1) = A(z−1)S0(z

−1) + q−z B(z−1)R0(z
−1). (13.79)

Since PBSF (z−1) will define part of the desired closed-loop poles, it is reasonable

to consider an IIR Youla–Kučera filter of the form BQ(z−1)

PBSF (z−1)
(which will automatically

introduce PBSF (z−1) as part of the closed-loop poles). For this purpose, the controller
polynomials are factorized as

R(z−1) = R0(z
−1)PBSF (z−1) + A(z−1)HR0(z

−1)HS0(z
−1)BQ(z−1), (13.80)

S(z−1) = S0(z
−1)PBSF (z−1) − z−d B(z−1)HR0(z

−1)HS0(z
−1)BQ(z−1), (13.81)

where BQ(z−1) is an FIR filter that should be computed in order to satisfy

P(z−1) = A(z−1)S(z−1) + z−d B(z−1)R(z−1), (13.82)

for P(z−1) = P0(z−1)PBSF (z−1), and R0(z−1), S0(z−1) given by (13.28) and (13.29),
respectively. It can be seen from (13.80) and (13.81), using (13.28) and (13.29), that
the new controller polynomials conserve the fixed parts of the nominal controller.

Equation (13.18) gives the size of the matrix equation to be solved if the Youla–
Kučera parametrization is not used. Using the previously introduced YK parame-
trization, it will be shown here that a smaller size matrix equation can be found that
allows to compute the BQ(z−1) filter so that the same shaping be introduced on the
output sensitivity function (13.16). This occurs if the controller denominator S(z−1)
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in (13.81) is the same as the one given in (13.13), i.e.,

S(z−1) = SBSF (z−1)HS0(z
−1)S′(z−1), (13.83)

where HS(z−1) has been replaced by (13.15).
Replacing S(z−1) in the left term with its formula given in (13.81) and rearranging

the terms, one obtains

S0PBSF = SBSF HS0 S
′ + z−d BHR0 HS0 BQ . (13.84)

and taking into consideration also (13.29) it results

S′
0PBSF = SBSF S

′ + q−d BHR0 BQ, (13.85)

which is similar to (13.54) except that band-stop filters are used instead of notch
filters.

In the last equation, the left side of the equal sign is known and on its right side
only S′(z−1) and BQ(z−1) are unknown. This is also a Bezout equation which can
be solved by finding the solution to a matrix equation of dimension

nBezY K = nB + d + nHR0
+ 2 · n − 1. (13.86)

As it can be observed, the size of the new Bezout equation is reduced in comparison
to (13.18) by nA + nHS0

. For systems with large dimensions, this has a significant
influence on the computation time. Taking into account that the nominal controller
is an unique and minimal degree solution the Bezout equation (13.79), we find that
the left hand side of (13.85) is a polynomial of degree

nS′
0
+ 2 · n = 2 · n + nB + d + nHR0

− 1, (13.87)

which is equal to the quantity given in (13.86). Therefore, the solution of the sim-
plified Bezout equation (13.85) is unique and of minimal degree. Furthermore, the
order of the BQ FIR filter is equal to 2 · n.

Figure 13.6 summarizes the implementation of the Youla–Kučera parametrized
indirect adaptive controller.

13.4.3 Frequency Estimation Using Adaptive Notch Filters

In order to use the presented control strategy in the presence on unknown and/or
time-varying narrow-band disturbances, one needs an estimation in real time of the
spikes’ frequencies in the spectrum of the disturbance. Based on this estimation in
real time of the frequencies of the spikes, the band-stop filters will be designed in
real time.
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In the framework of narrow-band disturbance rejection, it is usually supposed
that the disturbances are in fact sinusoidal signals with variable frequencies. It is
assumed that the number of narrow-band disturbances is known (similar to [2, 3,
8]). A technique based on ANFs (adaptive notch filters) will be used to estimate the
frequencies of the sinusoidal signals in the disturbance (more details can be found
in [6, 23]).

The general form of an ANF is

Hf (z
−1) = A f (z−1)

A f (ρz−1)
, (13.88)

where the polynomial A f (z−1) is such that the zeros of the transfer function Hf (z−1)

lie on the unit circle. A necessary condition for a monic polynomial to satisfy this
property is that its coefficients have a mirror symmetric form

A f (z
−1) = 1 + a f

1 z
−1 + · · · + a f

n z
−n + · · · + a f

1 z
−2n+1 + z−2n. (13.89)

Another requirement is that the poles of the ANF should be on the same radial
lines as the zeros but slightly closer to the origin of the unit circle. Using filter
denominators of the general form A f (ρz−1) with ρ a positive real number smaller
but close to 1, the poles have the desired property and are in fact located on a circle
of radius ρ [6].

The estimation algorithm will be detailed next. It is assumed that the disturbance
signal (or a good estimation) is available.

A cascade construction of second-order ANF filters is considered. Their number is
given by the number of narrow-band signals, whose frequencies have to be estimated.
The main idea behind this algorithm is to consider the signal p̂(t) as having the form

Fig. 13.6 Youla–Kučera schema for indirect adaptive control
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p̂(t) =
n∑

i=1

ci sin(ωi · t + βi ) + η(t), (13.90)

where η(t) is a noise affecting the measurement and n is the number of narrow-band
signals with different frequencies.

The ANF cascade form will be given by (this is an equivalent representation of
Eqs. (13.88) and (13.89))

Hf (z
−1) =

n∏
i=1

Hi
f (z

−1) =
n∏

i=1

1 + a fi z−1 + z−2

1 + ρa fi z−1 + ρ2z−2
. (13.91)

Next, the estimation of one spike’s frequency is considered, assuming convergence
of the other n − 1, which can thus be filtered out of the estimated disturbance signal,
p̂(t), by applying

p̂ j (t) =
n∏

i=1
i �= j

1 + a fi z−1 + z−2

1 + ρa fi z−1 + ρ2z−2
p̂(t). (13.92)

The prediction error is obtained from

ε(t) = Hf (z
−1) p̂(t) (13.93)

and can be computed based on one of the p̂ j (t) to reduce the computation complexity.
Each cell can be adapted independently after prefiltering the signal by the others.
Following the Recursive Prediction Error (RPE) technique, the gradient is obtained as

ψ j (t) = −∂ε(t)

∂a f j
= (1 − ρ)(1 − ρz−2)

1 + ρa f j z−1 + ρ2z−2
p̂ j (t). (13.94)

The parameter adaptation algorithm can be summarized as

â f j (t) = â f j (t − 1) + α(t − 1) · ψ j (t) · ε(t) (13.95)

α(t) = α(t − 1)

λ + α(t − 1)ψ j (t)2
. (13.96)

where â f j are estimations of the true a f j , which are connected to the narrow-band
signals’ frequencies by ω f j = fs · arccos(− a f j

2 ), where fs is the sampling frequency.

13.4.3.1 Implementation of the Algorithm

The design parameters that need to be provided to the algorithm are the number
of narrow-band spikes in the disturbance (n), the desired attenuations and damping
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of the BSFs, either as unique values (Mi = M, ζdi = ζd , ∀i ∈ {1, . . . , n}) or as
individual values for each of the spikes (Mi and ζdi ), and the central controller (R0,
S0) together with its fixed parts (HR0 , HS0 ) and of course the estimation of the spikes’
frequencies. The control signal is computed by applying the following procedure at
each sampling time:

1. Get the measured output y(t + 1) and the applied control u(t) to compute the
estimated disturbance signal p̂(t + 1) as in (13.78).

2. Estimate the disturbances’ frequencies using adaptive notch filters, Eqs. (13.92)–
(13.96).

3. Calculate SBSF (z−1) and PBSF (z−1) as in (13.8)–(13.11).
4. Find Q(z−1) by solving the reduced order Bezout equation (13.85).
5. Compute and apply the control using (13.5) with R and S given respectively by

(13.80) and (13.81) (see also Fig. 13.6):

S0u(t) = −R0y(t + 1) − HS0 HR0

(
BQ(t)w(t + 1) − P∗

BSFuQ(t)
)
. (13.97)

13.4.4 Stability Analysis of the Indirect Adaptive Scheme

The stability analysis of this scheme can be found in [24].

13.5 Experimental Results: Attenuation of Three Tonal
Disturbances with Variable Frequencies

Samples of the experimental results obtained with the direct adaptive regulation
scheme (see Sect. 13.2.3 and [25]), with the interlaced adaptive regulation scheme
(see Sect. 13.3) and with the indirect adaptive regulation scheme (see Sect. 13.4) on
the test bench described in Chap. 2, Sect. 2.2 are given in this section. A step change
in the frequencies of three tonal disturbances is considered (with return to the initial
values of the frequencies). Figures 13.7, 13.8 and 13.9 show the time responses
of the residual force. Figures 13.10, 13.11 and 13.12 show the difference between
the PSD in open-loop and in closed-loop as well as the estimated output sensitivity
function. Figure 13.13 shows the evolution of the parameters of the FIR adaptive
Youla–Kučera filter used in the direct adaptive regulation scheme. Figures 13.14 and
13.15 show the evolution of the estimated parameters of Dp (used to compute AQ—
the denominator of the IIR Youla–Kučera filter) and of the numerator BQ of the IIR
Youla–Kučera filter used in the interlaced adaptive regulation scheme. Figure 13.16
shows the evolution of the estimated frequencies of the three tonal disturbances used
to compute the band-stop filters in the indirect adaptive regulation scheme.

http://dx.doi.org/10.1007/978-3-319-41450-8_2
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For this particular experiment, the interlaced adaptive regulation scheme offers
the best compromise disturbance attenuation/maximum amplification. Nevertheless,
a global evaluation requires to compare the experimental results on a number of
situations and this is done in the next section.

13.6 Experimental Results: Comparative Evaluation
of Adaptive Regulation Schemes for Attenuation
of Multiple Narrow-Band Disturbances

13.6.1 Introduction

Three schemes for adaptive attenuation of single and multiples sparsely located
unknown and time-varying narrow-band disturbances have been presented in
Chap. 12, Sect. 12.2.2 and in Sects. 13.3 and 13.4 of this chapter. They can be sum-
marized as follows:

(1) Direct adaptive regulation using FIR Youla–Kučera parametrization
(2) Interlaced adaptive regulation using IIR Youla–Kučera parametrization
(3) Indirect adaptive regulation using band-stop filters
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Fig. 13.7 Time response of the direct adaptive regulation scheme using a FIR Youla–Kučera filter
for a step change in frequencies (three tonal disturbances)

http://dx.doi.org/10.1007/978-3-319-41450-8_12
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Fig. 13.8 Time response of the interlaced adaptive regulation scheme using an IIR Youla–Kučera
filter for a step change in frequencies (three tonal disturbances)
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Fig. 13.9 Time response of the indirect adaptive regulation scheme using BSF filters for a step
change in frequencies (three tonal disturbances)
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Fig. 13.10 Difference between open-loop and closed-loop PSD of the residual force and the esti-
mated output sensitivity function for the direct adaptive regulation scheme

Fig. 13.11 Difference between open-loop and closed-loop PSD of the residual force and the esti-
mated output sensitivity function for the interlaced adaptive regulation scheme

The objective is to comparatively evaluate these three approaches in a relevant exper-
imental environment.

An international benchmark on adaptive regulation of sparse distributed unknown
and time-varying narrow-band disturbances has been organized in 2012–2013. The
summary of the results can be found in [26]. The various contributions can be found in
[25, 27–32]. Approaches 1 and 3 have been evaluated in this context. The approach 2,
which is posterior to the publication of the benchmark results has been also evaluated
in the same context. Detailed results can be found in [33]. Approaches 1 and 3
provided some of the best results for the fulfilment of the benchmark specifications
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Fig. 13.12 Difference between open-loop and closed-loop PSD of the residual force and the esti-
mated output sensitivity function for the indirect adaptive regulation scheme

Fig. 13.13 Evolution of the parameters of the FIR Youla–Kučera filter for a step change in fre-
quencies (direct adaptive regulation scheme)
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Fig. 13.14 Evolution of the estimated parameters of the DP polynomial (disturbance model) during
a step change of the disturbance frequencies (interlaced adaptive regulation scheme)

Fig. 13.15 Evolution of the parameters of the numerator of the IIR Youla–Kučera filter during a
step change of the disturbance frequencies (interlaced adaptive regulation scheme)
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Fig. 13.16 Evolution of the estimated frequencies of the disturbance during a step change of
disturbance frequencies (indirect adaptive regulation scheme)

(see [26]). Therefore a comparison of the second approach with the first and third
approach is relevant for assessing its potential.

In what follows a comparison of the three approaches will be made in the context
of the mentioned benchmark. The objective will be to assess their potential using
some of the global indicators used in benchmark evaluation.

In Chap. 12, Sect. 12.3, some of the basic performance indicators have been pre-
sented. In the benchmark evaluation process, several protocols allowing to test the
performance for various environmental conditions have been defined. Based on the
results obtained for the various protocols, global performance indicator have been
defined and they will be presented in the next section. This will allow later to present in
a compact form the comparison of the real-time performance of the three approaches
considered in Chap. 12 and this chapter. Further details can be found in [25, 28, 33].

The basic benchmark specification are summarized in Table 13.3 for the three
levels of difficulty (range of frequencies variations: 50 to 95 Hz):

• Level 1: Rejection of a single time-varying sinusoidal disturbance.
• Level 2: Rejection of two time-varying sinusoidal disturbances.
• Level 3: Rejection of three time-varying sinusoidal disturbances.

13.6.2 Global Evaluation Criteria

Evaluation of the performances will be done for both simulation and real-time results.
The simulation results will give us information upon the potential of the design
methods under the assumption: design model = true plant model. The real-time

http://dx.doi.org/10.1007/978-3-319-41450-8_12
http://dx.doi.org/10.1007/978-3-319-41450-8_12
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Table 13.3 Control specifications in the frequency domain

Control specifications Level 1 Level 2 Level 3

Transient duration ≤2 s ≤2 s ≤2 s

Global attenuation ≥30 dBa ≥30 dB ≥30 dB

Minimum disturbance attenuation ≥40 dB ≥40 dB ≥40 dB

Maximum amplification ≤6 dB ≤7 dB ≤9 dB
aFor level 1, the specification of 30 dB is for the range between 50 and 85 Hz, for 90 Hz is 28 dB
and for 95 Hz is 24 dB

results will tell us in addition what is the robustness of the design with respect to
plant model uncertainties and real noise.

Steady-State Performance (Tuning capabilities)

As mentioned earlier, these are the most important performances. Only if a good
tuning for the attenuation of the disturbance can be achieved, it makes sense to
examine the transient performance of a given scheme. For the steady-state perfor-
mance, which is evaluated only for the simple step change in frequencies, the variable
k, with k = 1, . . . , 3, will indicate the level of the benchmark. In several criteria a
mean of certain variables will be considered. The number of distinct experiments, M ,
is used to compute the mean. This number depends upon the level of the benchmark
(M = 10 if k = 1, M = 6 if k = 2, and M = 4 if k = 3).

The performances can be evaluated with respect to the benchmark specifications.
The benchmark specifications will be in the form: XXB, where XX will denote
the evaluated variable and B will indicate the benchmark specification. ΔXX will
represent the error with respect to the benchmark specification.

Global Attenuation—GA

The benchmark specification corresponds to GABk = 30 dB, for all the levels and
frequencies, except for 90 and 95 Hz at k = 1, for which GAB1 is 28 and 24 dB
respectively.

Error:

ΔGAi = GABk − GAi if GAi < GABk

ΔGAi = 0 if GAi ≥ GABk

with i = 1, . . . , M .
Global Attenuation Criterion:

JΔGAk = 1

M

M∑
j=1

ΔGAi . (13.98)
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Disturbance Attenuation—DA

The benchmark specification corresponds to DAB = 40 dB, for all the levels and
frequencies.

Error:

ΔDAi j = DAB − DAi j if DAi j < DAB

ΔDAi j = 0 if DAi j ≥ DAB

with i = 1, . . . , M and j = 1, . . . , jmax , where jmax = k.
Disturbance Attenuation Criterion

JΔDAk = 1

kM

M∑
i=1

k∑
j=1

ΔDAi j (13.99)

Maximum Amplification—MA

The benchmark specifications depend on the level, and are defined as

MABk = 6 dB, if k = 1

MABk = 7 dB, if k = 2

MABk = 9 dB, if k = 3

Error:

ΔMAi = MAi − MABk, if MAi > MABk

ΔMAi = 0, if MAi ≤ MABk

with i = 1, . . . , M .
Maximum Amplification Criterion

JΔMAk = 1

M

M∑
i=1

ΔMAi . (13.100)

Global Criterion of Steady-State Performance for One Level

JSSk = 1

3
[JΔGAk + JΔDAk + JΔMAk ]. (13.101)



286 13 Adaptive Attenuation of Multiple Sparse Unknown and Time-Varying …

Benchmark Satisfaction Index for Steady-State Performance

TheBenchmarkSatisfaction Index is a performance index computed from theaverage
criteria JΔGAk , JΔDAk and JΔMAk . The Benchmark Satisfaction Index is 100 %, if
these quantities are “0” (full satisfaction of the benchmark specifications) and it is
0 % if the corresponding quantities are half of the specifications for GA, and DA
or twice the specifications for MA. The corresponding reference error quantities are
summarized below:

ΔGAindex = 15,

ΔDAindex = 20,

ΔMAindex,1 = 6, if k = 1,

ΔMAindex,2 = 7, if k = 2,

ΔMAindex,3 = 9, if k = 3.

The computation formulas are

GAindex,k =
(

ΔGAindex − JΔGAk

ΔGAindex

)
100 %

DAindex,k =
(

ΔDAindex − JΔDAk

ΔDAindex

)
100 %

MAindex,k =
(

ΔMAindex,k − JΔMAk

ΔMAindex,k

)
100 %.

Then the Benchmark Satisfaction Index (BSI ), is defined as

BSIk = GAindex,k + DAindex,k + MAindex,k

3
. (13.102)

The results for BSIk obtained both in simulation and real-time for each approach
and all the levels are summarized in Tables 13.4 and 13.5 respectively and represented
graphically in Fig. 13.17. The YK IIR scheme provides the best results in simulation
for all the levels but the indirect approach provides very close results. In real time
it is the YK IIR scheme which gives the best results for level 1 and the YK FIR
which gives the best results for levels 2 and 3. Nevertheless, one has to mention that
the results of the YK FIR scheme are highly dependent on the design of the central
controller.

The results obtained in simulation allows the characterization of the performance
of the proposed design under the assumption that design model = true plant model.
Therefore in terms of capabilities of a design method to meet the benchmark specifi-
cation the simulation results are fully relevant. It is also important to recall that Level
3 of the benchmark is the most important. The difference between the simulation
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Table 13.4 Benchmark satisfaction index for steady-state performance (simulation results)

Method Level 1 Level 2 Level 3

BSI1 (%) BSI2 (%) BSI3 (%)

Indirect 98.69 98.38 99.44

FIR 93.30 97.29 99.13

IIR 99.07 99.84 100

Table 13.5 Benchmark satisfaction index for steady-state performance (real-time results)

Method Level 1 Level 2 Level 3

BSI1 (%) BSI2 (%) BSI3 (%)

Indirect 81.11 88.51 90.64

FIR 80.87 89.56 97.56

IIR 89.37 87.38 96.39

Fig. 13.17 Benchmark Satisfaction Index (BSI ) for all levels for simulation and real-time results

results and real-time results, allows one to characterize the robustness in performance
with respect to uncertainties on the plant and noise models used for design.

To assess the performance loss passing from simulation to real-time results the
Normalized Performance Loss and its global associated index is used. For each level
one defines the Normalized Performance Loss as

N PLk =
(
BSIksim − BSIkRT

BSIksim

)
100 % (13.103)

and the global N PL is given by

N PL = 1

M

M∑
k=1

N PLk (13.104)
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Table 13.6 Normalized performance loss

Method N PL1 (%) N PL2 (%) NLP3 (%) N PL (%)

Indirect 17.81 10.03 8.85 12.23

FIR 13.32 7.95 1.58 7.62

IIR 9.79 12.48 3.61 8.63

Fig. 13.18 Normalized Performance Loss (N PL) for all levels (smaller = better)

where N = 3.
Table 13.6 gives the normalized performance loss for the three schemes.

Figure 13.18 summarizes in a bar graph these results. The YK IIR scheme assures a
minimum loss for level 1, while the YK FIR scheme assures the minimum loss for
level 2 and 3.

Global Evaluation of Transient Performance

For evaluation of the transient performance an indicator has been defined by
Eq. 12.46. From this indicator, a global criterion can be defined as follows

JΔTransk = 1

M

M∑
j=1

ΔTransi , (13.105)

where M = 10 if k = 1, M = 6 if k = 2, and M = 4 if k = 3.
Transient performance are summarized in Table 13.7. All the schemes assures in

most of the cases the 100 % of the satisfaction index for transient performance, which
means that the adaptation transient duration is less or equal to 2 s in most of the cases
(except the indirect scheme for level 2 in simulation).
Evaluation of the Complexity

For complexity evaluation, the measure of the Task Execution Time (TET) in the
xPC Target environment will be used. This is the time required to perform all the
calculations on the host target PC for each method. Such process has to be done on
each sample time. The more complex is the approach, the bigger is the TET. One can

http://dx.doi.org/10.1007/978-3-319-41450-8_12
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Table 13.7 Benchmark satisfaction index for transient performance (for simple step test)

Index BSITrans1 BSITrans2 BSITrans3

Method Sim (%) RT (%) Sim (%) RT (%) Sim (%) RT (%)

Indirect 100 99.17 83.33 100 100 100

FIR 100 96.45 100 95.74 100 100

IIR 100 99.20 100 100 92.74 95.23

argue that the TET depends also on the programming of the algorithm. Nevertheless,
this may change the TET by a factor of 2 to 4 but not by an order of magnitude.
The xPC Target MATLAB environment delivers an average of the TET (AT ET ).
It is however interesting to asses the TET specifically associated to the controller by
subtracting from the measured TET in closed-loop operation, the average TET in
open-loop operation.

The following criteria to compare the complexity between all the approaches are
defined.

ΔT ETSimple,k = AT ETSimple,k − AT ETOLSimple,k (13.106)

ΔT ETStep,k = AT ETStep,k − AT ETOLStep,k (13.107)

ΔT ETChirp,k = AT ETChirp,k − AT ETOLChirp,k (13.108)

where k = 1, . . . , 3. The symbols Simple, Step and Chirp10 are associated respec-
tively to Simple Step Test (application of the disturbance), Step Changes in Frequency
and Chirp Changes in Frequency. The global ΔT ETk for one level is defined as the
average of the above computed quantities:

ΔT ETk = 1

3

(
ΔT ETSimple,k + ΔT ETStep,k + ΔT ETChirp,k

)
(13.109)

where k = 1, . . . , 3. Table 13.8 and Fig. 13.19 summarize the results obtained for
the three schemes. All the values are in microseconds. Higher values indicate higher
complexity. The lowest values (lower complexity) are highlighted.

As expected, the YK FIR algorithm has the smallest complexity. YK IIR has a
higher complexity than the YK FIR (This is due to the incorporation of the estimation
of AQ(z−1)) but still significantly less complex than the indirect approach using BSF.

Tests with a different experimental protocol have been done. The results obtained
are coherent with the tests presented above. Details can be found in [10, 34].

10The chirp will be considered only for complexity evaluation, for other results concerning chirp
disturbance see [33, 34].
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Table 13.8 Task execution time

Method ΔTET

L1 L2 L3

Indirect 254.24 203.83 241.22

FIR 3.26 3.90 5.60

IIR 19.42 31.63 44.95

Fig. 13.19 The controller average task execution time (ΔT ET )

13.7 Concluding Remarks

It is difficult to decide what is the best scheme for adaptive attenuation of multiple
narrow-band disturbances. There are several criteria to be taken into account:

• If an individual attenuation level should be fixed for each spike, the indirect adap-
tive scheme using BSF is the most appropriate since it allows to achieve specific
attenuation for each spike.

• If the objective is to have a very simple design of the central controller, YK IIR
scheme and the indirect adaptive scheme have to be considered.

• If the objective is to have the simplest scheme requiring the minimum computation
time, clearly the YK FIR has to be chosen.

• If the objective is to make a compromise between the various requirements men-
tioned above, it is the YK IIR adaptive scheme which has to be chosen.

13.8 Notes and References

The reference [34] gives a thorough view of the various solutions for adaptive attenu-
ation of multiple narrow-band disturbances. The specific references are [25, 27–32]
to which the reference [10] has to be added.
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Part V
Feedforward-Feedback Attenuation

of Broad-Band Disturbances



Chapter 14
Design of Linear Feedforward Compensation
of Broad-band Disturbances from Data

14.1 Introduction

Feedforward compensation of disturbances comes in view when the “waterbed”
effect in feedback control cannot allow to assure the desired performance. This occurs
systematically if the disturbance has a broad-band character and the attenuation
imposed is too important. The use of the feedforward compensation requires the use
of an additional transducer which is expected to provide a reliable information upon
the disturbance (w(t) in Fig. 14.1).

If such transducer is available in a specific application, feedforward compensa-
tion of broad-band disturbances can be implemented. It is important to remind (as
indicated in Chap. 1) that feedforward compensation induces an internal coupling
(positive) between the control of the secondary path (the compensator system) and
the measurement of the disturbance. See the test bench described in Sect. 2.3.

The design of a linear compensator can be viewed (see Fig. 14.1) as finding a linear
compensator such that the lower part of Fig. 14.1 has the same transfer function as
the primary path but with the reverse sign. With the notation of the figure, we are
looking to find N (the compensator) such that:

D = − N

(1 − NM)
G. (14.1)

This is a pure algebraic problem and requires the assumption:
(Perfect matching condition) There exists a filter N(z−1) of finite dimension such

that1:

D = − N

(1 − NM)
G (14.2)

1In many cases, the argument q−1 or z−1 will be dropped out.
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Fig. 14.1 A linear feedforward compensation scheme

and the characteristic polynomial of the “internal” feedback loop:

P(z−1) = AM(z−1)S(z−1) − BM(z−1)R(z−1) (14.3)

is a Hurwitz polynomial.
This hypothesis means also thatD can be equivalently represented by (14.2) where

N is unknown. In practice, one can consider however a less strong requirement, i.e.,
a good fit of the two transfer functions in the frequency region where the disturbance
is significant. This problem can be formulated as an H2 or an H∞ problem.

Assuming that the control design problem is formulated as a perfect matching
objective or as the minimization of a H2 or H∞ criterion, in order to compute N
one need the models of the primary path, secondary path and reverse path. So one
has to solve first the identification problem. The techniques for identification of such
systems have been described in Chap. 5 and illustrated in Chap. 6 by the identification
of the test bench described in Sect. 2.3.

Assuming that these models are available and knowing the power spectral dis-
tribution of the disturbance w(t) (by analyzing the data captured by the additional
transducer), the computation of the compensatorN can be transformed in a frequency
weighted error minimization since one would like to have a good fit between the two
transfer functions in the frequency zone where the disturbance is located.

Therefore, if one has reliable identified models for the primary path, secondary
path reverse path and the power spectral density of the disturbance, one can formulate
this problem as an H2 or an H∞ problem.

Basically for an H∞ approach one considers

• disturbance-output sensitivity function:

Sew =
(
D + G ·

(
N

1 − NM

))
(14.4)

http://dx.doi.org/10.1007/978-3-319-41450-8_5
http://dx.doi.org/10.1007/978-3-319-41450-8_6
http://dx.doi.org/10.1007/978-3-319-41450-8_2
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• disturbance-input sensitivity function:

Suw =
(

N

1 − NM

)
(14.5)

• noise-input sensitivity function:

Suη =
(

N

1 − NM

)
(14.6)

The H∞ control problem is to find a stabilizing feedforward compensatorN which
minimizes a scalar γ [1] such that:

∥∥∥∥∥∥
⎛
⎝W1 · Sνe

W2 · Sue
W3 · Suη

⎞
⎠

∥∥∥∥∥∥∞
< γ (14.7)

where W1, W2 and W3 are corresponding weighting functions (which can be in-
terpreted as analytic inverses of templates for the sensitivity functions). A similar
formulation can be given for the H2 control problem (see [2]).

The H∞ approach has been applied on the test bench described in Chap. 2, see
[3]. For an H2 approach see [2] where the case of active suppression of vibrations in
flexible structures has been considered.

Another approach can be considered by using an Youla–Kučera parametrization
of the compensator N with a central stabilizing controller (R0 and S0) and a Q IIR
filter as indicated in Fig. 14.2. In this case, using convex optimization one can try to
find Q such that the difference between the transfer function of the primary path and
the one of the compensated system be minimized in a frequency region of interest

Fig. 14.2 Linear feedforward compensation scheme using Youla–Kučera parametrization of the
feedforward compensator

http://dx.doi.org/10.1007/978-3-319-41450-8_2
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where the spectrum of the disturbance is significant (of course H2 and H∞ can also
be used in this configuration as well as the convex optimization procedure).

It is important to point out that in order to design a linear controller using a fre-
quency weighted minimization one needs not only the models of the system but
also the model of the disturbance. To get information about the disturbance and the
system’s models, it is required to have access to the system. In other terms, data acqui-
sition under a protocol is mandatory for designing a linear feedforward compensator
(in order to identify the models and the characteristics of the disturbance).

14.2 Indirect Approach for the Design of the Feedforward
Compensator from Data

Assume that the secondary and the reverse path models have been already identified
using the procedure described in Sect. 6.3. In order to design the feedforward com-
pensator, one needs in addition to identify the model of the primary path (D). The
primary path model has to be identified with the available input signal w(t) which
comes from the system (generated by the disturbance) and measuring the residual
force or acceleration which in the absence of the compensator system is denoted x(t)
(it is the output of the primary path in the absence of the compensator system—see
Fig. 14.1). The quality of the primary path identified model depends upon the rich-
ness of the disturbance signal w(t). In fact the identified model will be relevant only
in the frequency regions where w(t) has enough energy.

To summarize:

1. one collects the input/output data (w(t) and x(t));
2. one identifies the primary path model from these data; and
3. one proceeds to the design of the linear feedforward compensator based on the

primary, secondary and reverse path models and the PSD of w(t) (the image of
the disturbance).

The third step is equivalent of finding N̂ in order to minimize e(t) in the sense of a
certain criterion for the given w(t). This approach will be termed “indirect” since it
requires several intermediate steps in order to design the feedforward compensator
from data. As it will be shown in the next section, it is possible to formulate the
estimation of N̂ as the estimation of a reduced order controller.

14.3 Direct Approach for the Design of the Feedforward
Compensator from Data

The interesting point is that the design of the linear compensator can be viewed as
the estimation of a reduced order controller (see Chap. 9). Given, a set of relevant

http://dx.doi.org/10.1007/978-3-319-41450-8_6
http://dx.doi.org/10.1007/978-3-319-41450-8_9
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data collected on the upstream transducer (w(t)) and on the residual accelerometer
or force transducer (x(t)) (in the absence of the compensator system), the problem
can be formulated as estimating a reduced order filter N which minimizes the error
between the measured acceleration (or force) and the predicted acceleration (force)
given by the predictor of the compensation path.

In Fig. 14.3, if G = 1, this becomes an estimation of a reduced order controller in
closed-loop operation which can be done using the techniques of Chap. 9 (Closed-
Loop Input Matching). In the general case (G �= 1) the problem can be reformulated
as in Fig. 14.4 where one takes advantage of the hypothesis of perfect matching and
of the linearity in steady state which allows to revert the order of the various blocks
without changing the global transfer function.

Figure 14.5 makes further connections with the “controller estimation in closed-
loop” techniques. What is added in fact is the filtering of the input through G and the
filtering of the prediction error through V (allowing to further shape the frequencies
characteristics of the estimated filter).

Fig. 14.3 Adaptive
feedforward compensation
scheme

Fig. 14.4 Equivalent
formulation of the estimation
of the linear compensator as
an estimation of the
controller in closed-loop
operation

http://dx.doi.org/10.1007/978-3-319-41450-8_9
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Fig. 14.5 Rapprochement
between the estimation of the
linear feedforward
compensator and the
techniques for reduced order
controller estimation in
closed-loop operation

The optimal feedforward compensator (unknown and of high order) is defined by:

N(q−1) = R(q−1)

S(q−1)
(14.8)

where:

R(q−1) = r0 + r1q
−1 + · · · + rnRq

−nR (14.9)

S(q−1) = 1 + s1q
−1 + · · · + snSq

−nS = 1 + q−1S∗(q−1) (14.10)

and
θT = [s1, . . . snS , r0, r1, . . . rnR ] = [θT

S , θT
R ] (14.11)

is the vector of parameters of the optimal filter N assuring perfect matching.
The reduced order estimation of the optimal feedforward filter is defined by

N̂(q−1) = R̂(q−1)

Ŝ(q−1)
(14.12)

where:

R̂(q−1) = r̂0 + r̂1q
−1 + · · · + r̂nRq

−nR (14.13)

Ŝ(q−1) = 1 + ŝ1q
−1 + · · · + ŝnS q

−nS = 1 + q−1Ŝ∗(q−1) (14.14)

and
θ̂T = [ŝ1, . . . ŝnS , r̂0, r̂1, . . . r̂nR ] = [θ̂T

S , θ̂T
R ] (14.15)

is the vector of constant estimated parameters of N̂ .
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The input–output relationships for the estimated feedforward filter are given by:

û(t + 1) = − Ŝ∗(q−1)û(t) + R̂(q−1)ŷ(t + 1) = θ̂Tφ(t) = [θ̂T
S , θ̂T

R ]
[

φû(t)
φŷ(t)

]

(14.16)

where

φT (t) = [−û(t), . . . − û(t − nS + 1), ŷ(t + 1), . . . ŷ(t − nR + 1)]
= [φT

û (t), φT
ŷ (t)] (14.17)

Going back to the system in Fig. 14.5, one has

ν(t + 1) = V (q−1)
AM(q−1)

P(q−1)
[θ − θ̂ ]Tφ(t) (14.18)

where P is the characteristic polynomial of the “positive” feedback loop.2 Consid-
ering the model of the reverse path

M(q−1) = BM(q−1)

AM(q−1)
(14.19)

P is given by
P(q−1) = AM(q−1)S(q−1) − BM(q−1)R(q−1). (14.20)

The identification of N̂ can be viewed as an L2 minimization problem which has a
relevant interpretation in the frequency domain.

Using Parseval’s relation, the asymptotic bias distribution of the estimated para-
meters in the frequency domain can be obtained starting from the expression of ν(t)
by taking into account that the algorithm minimizes (almost) a criterion of the form

lim
N→∞

1

N

N∑
t=1

ν2(t).

This allows to reformulate the asymptotic behaviour of the estimated compensator
(using the formulas given in Sect. 9.3.1) as shown next. Taking into account that the
external excitation is filtered by G, and that the prediction error filtered by V , the
estimated N̂ (characterized by the parameter vector θ̂ given in (14.15)) will have
the following asymptotic behaviour in the frequency domain (taking into account a
perfect matching condition Eq. (14.1), see also Chap. 15):

2The term AM/P comes from the expression of the prediction error, similar to that obtained in
Sect. 8.2.1, for the CLOE configuration or in Sect. 9.3, for the CLIM algorithm, with the obvious
change in notation (S is replaced by AM ).

http://dx.doi.org/10.1007/978-3-319-41450-8_9
http://dx.doi.org/10.1007/978-3-319-41450-8_15
http://dx.doi.org/10.1007/978-3-319-41450-8_8
http://dx.doi.org/10.1007/978-3-319-41450-8_9
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θ̂∗ = arg min
θ̂

∫ π

−π

[
|SNM |2|N − N̂ |2|SN̂M |2|G|2|V |2φw(ω)

+|V |2φη(ω)
]

dω

(14.21)

where φw and φη are the spectral densities of the disturbance w(t) and of the mea-
surement noise and SNM and SN̂M are the output sensitivity functions of the internal
closed-loop for N and N̂ , respectively:

SNM = 1

1 − NM
, (14.22)

SN̂M = 1

1 − N̂M
. (14.23)

From (14.21), one concludes that a good approximation of N will be obtained in
the frequency region where φw is significant and where G and V have a high gain
(usually G should have high gain in the frequency region where φw is significant
in order to counteract the effect of w(t)). The choice of V will clearly influence
the estimated N̂ . The quality of the estimated N̂ will be affected also by the output
sensitivity functions of the internal closed-loop N − M.

One can also consider to use the adaptive algorithms which will be developed
later on for the adaptation of N using the basic configurations indicated in Chap. 1
but in a self-tuning regime, i.e., the adaptation gain will tend asymptotically to zero.
Both methods will be demonstrated in the next section.

The use of algorithms for estimation in closed-loop of the controller as indicated
previously or the use of adaptive feedforward algorithms in a self-tuning regime is
a one step design procedure since the intermediate step of identifying the primary
path which is needed for design using H∞, H2 or convex optimization disappears. It
is in fact another way of exploiting the available data.

14.4 Direct Estimation of the Feedforward Compensator
and Real-Time Tests

In this section, it is shown how a linear feedforward controller for the AVC system
described in Sect. 2.3 can be directly obtained from the data collected in the absence
of the compensator system. The resulting compensator will be tested in real time on
the test bench.

First, the use of closed-loop input matching algorithms (see Sect. 9.3) for esti-
mating a reduced order feedforward compensator is demonstrated. As explained in
Chap. 9, this problem is similar to the one of closed-loop model identification. Then
self-tuning operation of an adaptive simulated feedforward compensation scheme in
self-tuning operation will be used to obtain the feedforward compensator.

http://dx.doi.org/10.1007/978-3-319-41450-8_1
http://dx.doi.org/10.1007/978-3-319-41450-8_2
http://dx.doi.org/10.1007/978-3-319-41450-8_9
http://dx.doi.org/10.1007/978-3-319-41450-8_9
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Fig. 14.6 Equivalent formulation for estimation of the feedforward compensator in closed-loop
operation

While both approaches use the same data, the operation mode is different. The
algorithms for identification in closed-loop take into account the fact that all data are
available. The simulated adaptive feedforward compensation schemes in self-tuning
regime operates like in real time, i.e., the algorithms ignore the availability of the
data over the entire time horizon.

It is supposed that models for the secondary and the reverse paths are available.
Section 6.3 gives details on how these models can be obtained. Measured data on
the real system for w(t) and x(t) will be used instead of the identified model of the
primary path. These data have been obtained using as excitation to the system a
PRBS with shift register of length N = 16 and frequency divider p = 1. Around 82 s
of real-time data have been obtained.3

Let us begin with the identification of the feedforward compensator using closed-
loop input matching algorithms (see Sect. 9.3). The basic scheme is shown in
Fig. 14.6, where the excitation signal is obtained by filtering the measured w(t)
through the estimated model of the secondary path

wf (t) = B̂G

ÂG

w(t). (14.24)

Let us note that with respect to the closed-loop input matching algorithm given
in Eqs. (9.26)–(9.28), one has the following changes in notations: ĉ(t) becomes ŷf (t)
and û(t) becomes ûf (t).

The closed-loop input error is defined as the difference between the available
measurement x(t) and ûf (t) generated by the closed-loop predictor using N̂ . Two
algorithms are considered. The first one, corresponds to the basic closed-loop con-
troller identification algorithm with the objective to achieve closed-loop input match-

3See file 24-Sep-2015_19h0_data_BO_prim_82s_prim on the book website.

http://dx.doi.org/10.1007/978-3-319-41450-8_6
http://dx.doi.org/10.1007/978-3-319-41450-8_9
http://dx.doi.org/10.1007/978-3-319-41450-8_9
http://dx.doi.org/10.1007/978-3-319-41450-8_9
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Fig. 14.7 Power spectral density estimates for closed-loop identified feedforward compensator
with 20 parameters

Fig. 14.8 Estimation of the
feedforward compensator
using a simulated adaptive
feedforward compensation
scheme in self-tuning regime

ing (CLIM) and uses directly as regressor vector φ(t) given in (14.17). The second
one, corresponds to the filtered version of the same algorithm, F-CLIM as given
in Sect. 9.3, where φ(t) is filtered through ÂM/P̂. Real-time results obtained with
the estimated compensators with nR = 9 and nS = 10 (20 parameters) are given
in Fig. 14.7. One obtains an attenuation of −13.5 dB for the CLIM algorithm and
−14.4 dB for the F-CLIM algorithm.

Based on the discussion in Sect. 14.3, for the self-tuning operation, two schemes
are considered. In the first one, Fig. 14.8, the secondary path is considered at its
true position downstream from the feedforward compensator. M̂(q−1) and Ĝ(q−1)

in Fig. 14.8 represent the identified models for the reverse and secondary paths,
respectively. w(t) and x(t) are real time measured signals in the absence of the
controller (open-loop).

The second scheme is represented in Fig. 14.9. The main difference is that the
model of the secondary path (without the inherent one step delay) B̂∗

G/ÂG is intro-
duced upstream from the feedforward compensator N̂ and the one sampling period

http://dx.doi.org/10.1007/978-3-319-41450-8_9
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Fig. 14.9 A modified
simulated feedforward
compensation scheme in
self-tuning regime for
estimation of the
feedforward compensator

delay of the secondary path is left at its usual position between feedforward compen-
sator and measured residual acceleration (or force). The corresponding algorithms
are similar to the ones obtained based on controller order reduction (see Fig. 14.6),
with the exception of the one sampling period delay which appears between the
feedforward compensator and the measurement of the residual acceleration.

The following PAA, derived from the algorithms which will be presented in
Chap. 15, has been used for estimating the parameters of the feedforward compen-
sator using a simulated adaptive feedforward compensation scheme:

θ̂ (t + 1) = θ̂ (t) + FI(t)Φ(t)ν(t + 1) (14.25a)

ν(t + 1) = ν0(t + 1)

1 + ΦT (t)FI(t)Φ(t)
(14.25b)

FI(t + 1) =FI(t) − FI(t)Φ(t)ΦT (t)FI(t)

1 + ΦT (t)FI(t)Φ(t)
, FI(0) > 0 (14.25c)

where

θ̂T (t) = [
ŝ1(t), . . . ŝnS (t), r̂0(t) . . . r̂nR(t)

] =
[
θ̂T
S (t), θ̂T

R (t)
]

(14.26)

is the vector of estimated parameters of N̂ . This algorithm is characterized by a
decreasing adaptation gain which allows to obtain asymptotically a fixed value of
the estimated parameters.

One defines φ(t) as the observation vector given by

φT (t) = [−û(t), . . . − û(t − nS + 1), ŷ(t + 1), . . . ŷ(t − nR + 1)
]

=
[
φT
û (t), φT

ŷ (t)
]
, (14.27)

http://dx.doi.org/10.1007/978-3-319-41450-8_15
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for the scheme presented in Fig. 14.8 and by

φT (t) = [−ûf (t), . . . − ûf (t − nS + 1), ŷf (t + 1), . . . ŷf (t − nR + 1)
]

=
[
φT
ûf

(t), φT
ŷf
(t)

]
, (14.28)

for the one in Fig. 14.9.
Φ(t) is obtained by filtering φ(t) in order to satisfy a certain stability condition,

which will be detailed in Chap. 15. Two types of filtering can be considered. The first
type, labelled FUPLR (for Filtered-U Pseudo Linear Regression), uses only filtering
by the estimated model of the secondary path. For the scheme in Fig. 14.8 this is
achieved by filtering φ(t) through L(q−1) = Ĝ(q−1), while for the scheme given in
Fig. 14.9 the filtering is done through4 L(q−1) = z−1. The stability condition is that

AMG

PĜ
− 1

2
(14.29)

should be SPR for the scheme given in Fig. 14.8 and

AM

P
− 1

2
(14.30)

should be SPR for the scheme given in Fig. 14.9.
Feedforward compensators with orders nR = 9, nS = 10 (20 parameters) have

been estimated. Experimental results are shown in Figs. 14.10 and 14.11 (black con-
tinuous lines). The global attenuation results are similar, −13.6 dB using the scheme
given in Fig. 14.8 and −13.32 dB using the configuration given in Fig. 14.9.

The second type, labelled FUSBA (Filtered-U Stability Based Algorithm) corre-
sponds to a filter chosen in order to satisfy a certain positive real condition (resulting

from a stability analysis). In order to achieve this, one filters φ(t) by L(q−1) = ÂMĜ
P̂

,

for the scheme given in Fig. 14.8, and by L(q−1) = z−1ÂM

P̂
, for the scheme given in

Fig. 14.9 (see also Chaps. 9 and 15), where ÂM is the denominator of the estimated
reverse path model and P̂ is the estimated characteristic polynomial of the internal
positive feedback loop given by P̂ = ÂMS − B̂MR. In this case, the conditions of
(14.29) and (14.30) become

AMGP̂

PÂMĜ
− 1

2
(14.31)

should be SPR for the scheme given in Fig. 14.8 and

AMP̂

PÂM

− 1

2
(14.32)

4Note that the FUPLR filtering considered for the scheme in Fig. 14.8 is an exact algorithm for the
configuration given in Fig. 14.4 which is equivalent to the configuration in Fig. 14.9.

http://dx.doi.org/10.1007/978-3-319-41450-8_15
http://dx.doi.org/10.1007/978-3-319-41450-8_9
http://dx.doi.org/10.1007/978-3-319-41450-8_15
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Fig. 14.10 Power spectral density estimates for closed-loop identified feedforward controller using
the scheme given in Fig. 14.8 (G downstream)
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Fig. 14.11 Power spectral density estimates for closed-loop identified feedforward controller using
the scheme given in Fig. 14.9 (G upstream)

should be SPR for the scheme given in Fig. 14.9. These conditions are much easier
to satisfy if the estimated models of the system are good. Experimental results given
in Figs. 14.10 and 14.11 (dashed lines) for the FUSBA algorithms show an improved
performance. The global attenuation obtained is of −14.46 dB for the scheme given
in Fig. 14.8 and −15.08 dB for the configuration given in Fig. 14.9. The results are
very close to those obtained using CLIM algorithm for estimation of reduced order
controllers (see Fig. 14.7).

From the above experimental results, it is clear that the stability-based algorithm
FUSBA is more efficient than the FUPLR algorithm; however, an initial run with
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FUPLR is necessary before using FUSBA in order to estimate the filter used in
FUSBA.

Although the best compensator have been obtained with the simulated adaptive
feedforward compensation scheme in self-tuning regime (Fig. 14.9), they are very
close to the results obtained with the estimation in closed-loop of the reduced order
controllers (Fig. 14.7). So both schemes can be used for direct estimation of a linear
feedforward compensator from data collected in the absence of the feedforward
compensation.

Note also that in [3] a reduced order H∞ feedforward compensator with 40 para-
meters (instead of 20 parameters in this chapter) designed on the basis on an identified
primary path model (indirect approach) was shown to provide a global attenuation
of 14.7 dB, when operating with real data on the same system.

14.5 Concluding Remark

• The classical approach to the design of the feedforward compensator requires
the knowledge of the model of the primary path and of the disturbance model in
addition to the models of the secondary path and of the reverse path.

• Identification of a reliable model for the primary path rely on the frequency content
of the available disturbance measurement.

• The indirect approach for designing the feedforward compensator includes:

– Identification of the primary path.
– Design of the feedforward compensator based on the knowledge of the primary,

secondary and reverse path models and the PSD of the disturbance.

• The design of the linear feedforward compensator can be viewed as a special type
of estimation in closed-loop of a reduced order controller, and therefore, one can
directly obtain a feedforward compensator from collected data (measurement of
the disturbance and of the residual acceleration or force).

• The major advantage of using a direct feedforward compensator identification
approach for designing a linear compensator is that it short cuts the problem of
identifying a reliable model for the primary path (quality of the model will depend
on the frequency characteristics of the disturbance) and the problem of defining
the appropriate weighting functions for design.

14.6 Notes and References

Linear feedforward designs based on LQG/H2 methods are proposed in [2, 4–7].
Robust linear feedforward compensator based on H∞ theory is presented in [3, 4, 8–
14]. Mixed H2/H∞ techniques are used in [15, 16] and minimax LQG solutions in [11,
17, 18]. In [19], also a cautious Wiener filter is developed (see also [20]). Note that
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classical LQG/H2 does not provide guaranteed robustness margins, while the classical
H∞ method is a worst-case design approach that does not necessarily provide good
performance. The solutions mentioned previously present various mixed designs
that try to efficiently combine the advantages of each method. Note that all these
approaches assume the availability of the model of the primary path and of the
disturbance in addition to the models of the secondary path and of the reverse path.

In [14] an interesting application of AVC to load reduction on the blades of a
smart rotor using H∞ feedback and fixed structure feedforward control is proposed.
Note also the use of both feedback and feedforward controllers. Other examples of
mixed controllers can be found in: [21–27]. An application to smart rotors vibration
attenuation can be found in [28, 29].
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Chapter 15
Adaptive Feedforward Compensation
of Disturbances

15.1 Introduction

In a number of application areas an image (a correlated measurement) of the distur-
bances acting upon the system can be made available. This information is very useful
in active vibration control (AVC) and active noise control (ANC) for attenuating the
disturbances using a feedforward compensation scheme (when the use of feedback
is limited as a consequence of the Bode integral). Nevertheless, the feedforward
compensator will depend not only upon the dynamics of the plant but also upon
the characteristics of the disturbances. Since the characteristics (the model) of the
disturbances are generally unknown and may be time-varying, adaptive feedforward
compensation has to be considered. As indicated in Chap. 1, this solution has been
proposed many years ago. Probably, the first references are [1–3].

Adaptive feedforward broad-band vibration (or noise) compensation is currently
used in ANC and AVC when an image of the disturbance is available [4–9]. Nev-
ertheless, at the end of the nineties it was pointed out that in most of these systems
there is a physical “positive” feedback coupling between the compensator system
and the measurement of the image of the disturbance (vibration or noise) [6, 7, 9,
10]. This is a very important issue and in Chap. 2 it has been shown on the considered
test bench (Fig. 2.12) that effectively this internal positive feedback is significant and
therefore cannot be ignored.

The corresponding block diagrams in open-loop operation and with the com-
pensator system are shown in Fig. 15.1. The signal w(t) is the image of the distur-
bance measured when the compensator system is not used (open-loop). The signal
ŷ(t) denotes the effective output provided by the measurement device when the
compensator system is active and which will serve as input to the adaptive feed-
forward compensator N̂ . The output of this filter denoted by û(t) is applied to the
actuator through an amplifier. The transfer function G (the secondary path) char-
acterizes the dynamics from the output of the filter N̂ to the residual acceleration
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(a)

(b)

Fig. 15.1 Feedforward AVC: in open-loop (a) and with adaptive feedforward compensator (b)

measurement (amplifier + actuator + dynamics of the mechanical system). Subse-
quently, we will call the transfer function between w(t) and the measurement of the
residual acceleration (force) as the “primary path”.

The coupling between the output of the feedforward compensator and the mea-
surement ŷ(t) through the compensator actuator is denoted by M . As indicated in
Fig. 15.1, this coupling is a “positive” feedback. The positive feedback may destabi-
lize the system.1 The system is no longer a pure feedforward compensator.

In many cases, this unwanted coupling raises problems in practice and makes
the analysis of adaptive (estimation) algorithms more difficult. The problem is to
estimate and adapt the parameters of the feedforward compensator in the presence
of this internal positive feedback.

There is also another reason why one should go towards using an adaptive
approach. The linear design requires the availability of a reliable model for the
primary path (if H∞, H2, or other model-based design techniques are used). Never-
theless, the signal w(t) which is an upward measure of the disturbance does not nec-
essarily have the appropriate PSD for correctly identifying the model of the primary

1Different solutions for reducing the effect of this internal positive feedback are reviewed in [8, 9].
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path over a large frequency range. In other terms, the model which will be used
for design will depend upon the characteristics of w(t). Therefore, changes in the
characteristics of the disturbance will affect also the model of the primary path used
for design.2

It is important to make the following remarks, when the feedforward compensator
is absent (open-loop operation):

1. One can identify very reliable models for the secondary path and the “positive”
feedback path by applying appropriate excitation on the actuator (for example, a
PRBS).

2. One can get an estimation of the primary path transfer function from the spectral
densities of w(t) and e◦(t) when the compensator system is at rest (in this case
e◦(t) = x(t)), but the quality of this model depends upon the spectral character-
istics of w(t).

It is also important to note that the estimation of the feedforward compensator in
Fig. 15.1, as indicated in Chap. 14, can be interpreted as an identification-in-closed-
loop operation or as an estimation in closed-loop of a (reduced-order) controller [11].
Therefore, to a certain extent, the methods given in Chaps. 8 and 9 as well as Chap. 14
are an inspiration source for solving this problem in real time.

The objective in this chapter, is to develop recursive algorithms for online esti-
mation and adaptation of the parameters of the feedforward compensator N (which
will be denoted as N̂ ) for broad-band disturbances w(t) (or s(t)) with unknown
and variable spectral characteristics and in the presence of possible variations of the
primary path model (D). The resulting algorithms, while minimizing the residual
error (acceleration or force in AVC, noise in ANC), should assure the stability of
the internal positive feedback loop created by the mechanical or acoustical coupling.
Like for adaptive regulation (see Chap. 12) the adaptive operation and the self-tuning
operation of the system should be considered.

In Sect. 15.2, the system representation and the feedforward filter structure will
be given. The algorithms for adaptive feedforward compensation will be developed
in Sect. 15.3 and analyzed in Sect. 15.4. Section 15.5 will present real-time results
obtained on an AVC system. A modified adaptive algorithm using residual error
filtering is presented in Sect. 15.6. Finally, in Sect. 15.7, algorithms for adaptive
feedforward compensation in the presence of a fixed feedback controller are presented
and experimental results are given in Sect. 15.8. The results of this chapter are also
applicable to ANC systems.

2Design of adaptive AVC does not require either the model of the disturbance or the model of the
primary path.

http://dx.doi.org/10.1007/978-3-319-41450-8_14
http://dx.doi.org/10.1007/978-3-319-41450-8_8
http://dx.doi.org/10.1007/978-3-319-41450-8_9
http://dx.doi.org/10.1007/978-3-319-41450-8_14
http://dx.doi.org/10.1007/978-3-319-41450-8_12
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15.2 Basic Equations and Notations

The objective is to estimate (and to adapt) the parameters of the feedforward com-
pensator N (q−1) such that the measured residual error (acceleration or force in AVC,
noise in ANC) be minimized in the sense of a certain criterion. The description of
the various blocks will be made with respect to Fig. 15.1 (see also Sect. 6.3).

The primary path is characterized by the asymptotically stable transfer operator3:

D(q−1) = BD(q−1)

AD(q−1)
(15.1)

where4

BD(q−1) = bD
1 q

−1 + · · · + bD
nBD

q−nBD (15.2)

AD(q−1) = 1 + aD
1 q−1 + · · · + aD

nAD
q−nAD (15.3)

The unmeasurable value of the output of the primary path (when the compensation is
active) is denoted as x(t). The secondary path is characterized by the asymptotically
stable transfer operator:

G(q−1) = BG(q−1)

AG(q−1)
(15.4)

where

BG(q−1) = bG1 q
−1 + · · · + bGnBG

q−nBG = q−1B∗
G(q−1) (15.5)

AG(q−1) = 1 + aG1 q
−1 + · · · + aGnAG

q−nAG (15.6)

The positive feedback coupling is characterized by the asymptotically stable transfer
operator:

M(q−1) = BM(q−1)

AM(q−1)
(15.7)

where

BM(q−1) = bM
1 q−1 + · · · + bM

nBM
q−nBM = q−1B∗

M(q−1) (15.8)

AM(q−1) = 1 + aM
1 q−1 + · · · + aM

nAM
q−nAM (15.9)

3The complex variable z−1 will be used for characterizing the system’s behaviour in the frequency
domain and the delay operator q−1 will be used for describing the system’s behaviour in the time
domain.
4The following notation for polynomials is used: A(q−1) = a0+∑nA

i=1 aiq
−i = a0 + q−1A∗(q−1).

http://dx.doi.org/10.1007/978-3-319-41450-8_6
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Both BG and BM have a one-step discretization delay. The identified models of the
secondary path and of the positive feedback coupling will be denoted as Ĝ and M̂ ,
respectively.

The optimal feedforward filter (unknown) is defined by

N (q−1) = R(q−1)

S(q−1)
(15.10)

where

R(q−1) = r0 + r1q
−1 + · · · + rnRq

−nR (15.11)

S(q−1) = 1 + S1q
−1 + · · · + SnSq

−nS = 1 + q−1S∗(q−1) (15.12)

The estimated compensator is denoted by N̂ (q−1) or N̂ (θ̂ , q−1) when it is a linear
filter with constant coefficients or N̂ (t, q−1) during estimation (adaptation) of its
parameters.

The input of the feedforward compensator is denoted by ŷ(t) and it corresponds to
the sum of the measurement provided by the primary transducer (force or acceleration
transducer in AVC or a microphone in ANC) and of the output of the positive feedback
path. In the absence of the compensation loop (open-loop operation) ŷ(t) = w(t).
The a posteriori output of the feedforward compensator (which is the control signal
applied to the secondary path) is denoted by û(t + 1) = û(t + 1|θ̂ (t + 1)). The
input–output relationship for the estimated feedforward compensator is given by the
equation of the a priori output:

û◦(t + 1) = û(t + 1|θ̂ (t)) = −Ŝ∗(t, q−1)û(t) + R̂(t, q−1)ŷ(t + 1)

= θ̂T (t)φ(t) = [θ̂T
S (t), θ̂T

R (t)]
[

φû(t)
φŷ(t)

]
(15.13)

where

θ̂T (t) = [ŝ1(t), . . . ŝnS (t), r̂0(t), . . . r̂nR (t)] = [θ̂T
S (t), θ̂T

R (t)] (15.14)

φT (t) = [−û(t),−û(t − nS + 1), ŷ(t + 1), . . . ŷ(t − nR + 1)]
= [φT

û (t), φT
ŷ (t)] (15.15)

and û(t), û(t − 1) . . ., are the a posteriori outputs of the feedforward compensator
generated by

û(t + 1) = û(t + 1|θ̂ (t + 1)) = θ̂T (t + 1)φ(t) (15.16)

while ŷ(t + 1), ŷ(t), . . . are the measurements provided by the primary transducer.5

5 ŷ(t + 1) is available before adaptation of parameters starts at t + 1.
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The a priori output of the secondary path will be denoted as ẑ◦(t + 1).

ẑ◦(t + 1) = ẑ(t + 1|θ̂ (t)) = B∗
G(q−1)

AG(q−1)
û(t) (15.17)

The a posteriori unmeasurable value of the output of the secondary path is denoted
by

ẑ(t + 1) = ẑ(t + 1|θ̂ (t + 1)) (15.18)

The measured primary signal (called also reference) satisfies the following equation:

ŷ(t + 1) = w(t + 1) + B∗
M(q−1)

AM(q−1)
û(t). (15.19)

The measured residual error satisfies the following equation:

e◦(t + 1) = x(t + 1) + ẑ◦(t + 1). (15.20)

The a priori adaptation error is defined as

ν◦(t + 1) = −e◦(t + 1) = −x(t + 1) − ẑ◦(t + 1). (15.21)

The a posteriori adaptation (residual) error (which is computed) will be given by

ν(t + 1) = ν(t + 1|θ̂ (t + 1)) = −x(t + 1) − ẑ(t + 1). (15.22)

When using an estimated filter N̂ with constant parameters: û◦(t) = û(t), ẑ◦(t) =
ẑ(t) and ν◦(t) = ν(t).

15.3 Development of the Algorithms

The algorithms for adaptive feedforward compensation will be developed under the
following hypotheses:

(H1) The signal w(t) is bounded, i.e.,

|w(t)| ≤ α ∀t (0 ≤ α ≤ ∞) (15.23)

or

lim
N→∞

N∑
t=1

w2(t) ≤ Nε2 + Kr (15.24)

0 ≤ ε2 < ∞ 0 < Kr < ∞
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(which is equivalently to say that s(t) is bounded and W (q−1) in Fig. 15.1 is
asymptotically stable).

(H2) (Perfect matching condition) There exists a filter N (q−1) of finite dimension
such that6:

N

(1 − NM)
G = −D (15.25)

and the characteristic polynomial of the “internal” feedback loop:

P(z−1) = AM(z−1)S(z−1) − BM(z−1)R(z−1) (15.26)

is a Hurwitz polynomial.
(H3) The effect of the measurement noise upon the measured residual error is

neglected (deterministic context).

Once the algorithms will be developed under these hypotheses, H2 and H3 can
be removed and the algorithms can be analyzed in this modified context [12].

The key point in the development of the algorithms is to establish a relation
between the errors on the estimation of the parameters of the feedforward compen-
sator and the adaptation error (the measured residual acceleration or force with minus
sign). Under hypotheses H1, H2 and H3, for the system described by Eqs. (15.1) and
(15.22) using a feedforward compensator N̂ with constant parameters, one has

ν(t + 1) = AM(q−1)G(q−1)

P(q−1)
[θ − θ̂ ]Tφ(t) (15.27)

where
θT = [s1, . . . snS , r0, r1, . . . rnR ] = [θT

S , θT
R ] (15.28)

is the vector of parameters of the optimal filter N assuring perfect matching,

θ̂T = [ŝ1, . . . ŝnS , r̂0, . . . r̂nR ] = [θ̂T
S , θ̂T

R ] (15.29)

is the vector of constant estimated parameters of N̂ ,

φT (t) = [−û(t), . . . − û(t − nS + 1), ŷ(t + 1), . . . ŷ(t − nR + 1)]
= [φT

û (t), φT
ŷ (t)] (15.30)

and ŷ(t + 1) is given by

ŷ(t + 1) = w(t + 1) + B∗
M(q−1)

AM(q−1)
û(t) (15.31)

The derivation of the expression (15.27) is given in Appendix D.1.

6In many cases, the argument q−1 or z−1 will be dropped out.
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When θ̂ will be replaced with a time-varying estimation, (15.27) will take the
form of the basic Eq. (4.125) shown in Chap. 4 and the basic adaptation algorithm
given in Eqs. (4.121)–(4.123) can be used; however, a positive real (sufficient) con-
dition will be imposed on AMG/P to assure stability. Therefore, filtering has to be
introduced. One considers filtering the vector φ(t) through an asymptotically stable
filter L(q−1) = BL/AL . Equation (15.27) for θ̂ = constant becomes

ν(t + 1) = AM(q−1)G(q−1)

P(q−1)L(q−1)
[θ − θ̂ ]Tφ f (t) (15.32)

with
φ f (t) = L(q−1)φ(t) (15.33)

Equation (15.32) will be used to develop the adaptation algorithms neglecting the
non-commutativity of the operators when θ̂ is time-varying (however, an exact
algorithm can be derived in such cases—following the methodology given in [13,
Sect. 5.5.3]).

Replacing the fixed estimated parameters by the current estimated parameters,
(15.32) becomes the equation of the a posteriori adaptation error ν(t + 1) (which is
computed):

ν(t + 1) = AM(q−1)G(q−1)

P(q−1)L(q−1)
[θ − θ̂ (t + 1)]Tφ f (t) (15.34)

Equation (15.34) has the standard form for an a posteriori adaptation error given in
Sect. 4.3, which immediately suggests to use the following PAA:

θ̂ (t + 1) = θ̂ (t) + F(t)Φ(t)ν(t + 1); (15.35)

ν(t + 1) = ν◦(t + 1)

1 + ΦT (t)F(t)Φ(t)
; (15.36)

F(t + 1) = 1

λ1(t)

[
F(t) − F(t)Φ(t)ΦT (t)F(t)

λ1(t)
λ2(t)

+ ΦT (t)F(t)Φ(t)

]
(15.37)

1 ≥ λ1(t) > 0; 0 ≤ λ2(t) < 2; F(0) > 0 (15.38)

Φ(t) = φ f (t) (15.39)

where λ1(t) and λ2(t) allow to obtain various profiles for the adaptation gain F(t)
(see Sects. 4.3.4 and 15.5) in order to operate in adaptive regime (the trace of the
adaptation gain matrix has a strictly positive inferior minimum value) or in self-
tuning regime (decreasing gain adaptation, the trace of the adaptation gain matrix
goes to zero).

Three choices for the filter L will be considered, leading to three different algo-
rithms:

http://dx.doi.org/10.1007/978-3-319-41450-8_4
http://dx.doi.org/10.1007/978-3-319-41450-8_4
http://dx.doi.org/10.1007/978-3-319-41450-8_4
http://dx.doi.org/10.1007/978-3-319-41450-8_4
http://dx.doi.org/10.1007/978-3-319-41450-8_4
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Algorithm I: L = G
Algorithm II (FUPLR): L = Ĝ
Algorithm III (FUSBA):

L = ÂM

P̂
Ĝ (15.40)

where
P̂ = ÂM Ŝ − B̂M R̂ (15.41)

is an estimation of the characteristic polynomial of the internal feedback loop com-
puted on the basis of available estimates of the parameters of the filter N̂ .7

Algorithm I is a “theoretical” algorithm since in practice the true model G is not
available.8 So FUPLR can be viewed as an approximation of Algorithm I. FUSBA
can be used after a short initialization horizon using FUPLR.

The following procedure is applied at each sampling time for adaptive operation:

1. Get the measured image of the disturbance ŷ(t + 1) and the measured residual
error e◦(t + 1).

2. Compute φ(t) and φ f (t) using (15.30) and (15.33).
3. Estimate the parameter vector θ̂ (t +1) using the parametric adaptation algorithm

(15.35)–(15.39).
4. Compute the control (using (15.16)) and apply it:

û(t + 1) = −Ŝ∗(t + 1, q−1)û(t) + R̂(t + 1, q−1)ŷ(t + 1). (15.42)

15.4 Analysis of the Algorithms

A detailed analysis of the algorithm can be found in [12]. In what follows, we will
recall the main properties and their implications.

15.4.1 The Perfect Matching Case

Stability of the algorithms

For Algorithms I, II and III, the equation for the a posteriori adaptation error has the
form:

ν(t + 1) = H(q−1)[θ − θ̂ (t + 1)]TΦ(t) (15.43)

7In the field of adaptive feedforward compensation names are associated to various adaptation
algorithms. Algorithm II uses the same filtering of the regressor as FULMS algorithm but with a
matrix adaptation gain which lead to a structure called “pseudolinear regression” [14]. So Algorithm
II can be termed FUPLR. Algorithm III is obtained from a stability point of view and it can be termed
FUSBA (stability based algorithm).
8See Appendix D, Sect. D.2 for further details.
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where

H(q−1) = AM(q−1)G(q−1)

P(q−1)L(q−1)
, Φ = φ f . (15.44)

Neglecting the non-commutativity of time-varying operators, one can straightfor-
wardly use Theorem 4.1. Therefore, the sufficient stability condition for any initial
conditions θ̂ (0), ν◦(0), F(0) is that

H ′(z−1) = H(z−1) − λ2

2
, max

t
[λ2(t)] ≤ λ2 < 2 (15.45)

is a strictly positive real (SPR) transfer function.
It is interesting to remark that for Algorithm III (FUSBA) taking into account

(15.40), the stability condition is that

AM

ÂM

P̂

P

G

Ĝ
− λ2

2
(15.46)

should be an SPR transfer function.

Remark 1 This condition can be rewritten for λ2 = 1 as ( [14]):

∣∣∣∣∣∣
(
AM

ÂM

· P̂
P

· G
Ĝ

)−1

− 1

∣∣∣∣∣∣ < 1 (15.47)

for all ω. This roughly means that it always holds provided that the estimates of AM ,
P and G are close to the true values (i.e., H(e− jω) in this case are close to a unit
transfer function).

Remark 2 For constant adaptation gain λ2(t) ≡ 0, the strict positive realness on
H ′(z−1) implies at all the frequencies

−90◦ < ∠ AM(e− jω)G(e− jω)

P0(e− jω)
− ∠ ÂM(e− jω)Ĝ(e− jω)

P̂0(e− jω)
< 90◦.

Therefore, the interpretation of the SPR stability condition on the transfer function
H ′ is that the angle between the direction of adaptation and the direction of the
inverse of the true gradient (not computable) should be less than 90◦. For time-
varying adaptation gains the condition is sharper since in this case Re{H(e− jω)}
should be larger than λ2

2 at all frequencies.

Remark 3 The poles of the internal positive closed-loop will be asymptotically inside
the unit circle if the SPR condition is satisfied; however, transiently they may be
outside the unit circle. It is possible to force these poles to remain inside of the unit
circle during transient using adaptive algorithms with projection (see [13]); however,
the SPR condition remains the same.

http://dx.doi.org/10.1007/978-3-319-41450-8_4
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Effect of the Measurement Noise

There are two sources of measurement noise, one acting on the primary transducer
which gives an image of the disturbance and the second acting on the measurement
of the residual error (force, acceleration).

For the primary transducer, the effect of the measurement noise is negligible since
the signal-to-noise ratio is very high. The situation is different for the residual error
where the effect of the noise cannot be neglected. The analysis carried on in [12]
using the averaging method ([13]) allows to conclude that under the same positive
real condition that for deterministic stability, using a decreasing adaptation gain
(self-tuning regime) one has

Prob{ lim
t→∞ θ̂ (t) ∈ DC} = 1,

where
DC = {θ̂ : ΦT (t, θ̂ )(θ − θ̂ ) = 0}.

If, furthermore,
ΦT (t, θ̂ )(θ − θ̂ ) = 0

has a unique solution (richness condition), the condition that H ′(z−1) be strictly
positive real implies that

Prob{ lim
t→∞ θ̂ (t) = θ} = 1.

15.4.2 The Case of Non-perfect Matching

If N̂ (t, q−1) does not have the appropriate dimension there is no chance to satisfy
the perfect matching condition. Two questions are of interest in this case:

1. What are the additional hypotheses assuring the stability of the adaptation algo-
rithm in this situation?

2. What are the approximation properties in the frequency domain for the reduced-
order compensator estimated asymptotically by the adaptation algorithm?

Boundedness of the Residual Error

It has been shown in [12] that the residual error will remain bounded provided that

1. There exists a reduced-order filter N̂ characterized by the unknown polynomials
Ŝ (of order nŜ) and R̂ (of order nR̂), for which the closed-loop formed by N̂ and
M is asymptotically stable, i.e., AM Ŝ − BM R̂ is a Hurwitz polynomial.
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2. The output of the optimal filter satisfying the matching condition can be expressed
as

û(t + 1) = −Ŝ∗(q−1)û(t) + R̂(q−1)ŷ(t + 1) + υ(t + 1) (15.48)

where υ(t + 1) is a norm bounded signal.

The first hypothesis simply says that the internal positive feedback loop can be
stabilized by a feedforward compensator of the size used.

Equation (15.48) can be interpreted as a decomposition of the optimal filter into
two parallel blocks, one is the reduced order filter and the other block with output υ(t)
corresponds to the neglected dynamics (input additive uncertainty). The boundedness
of υ(t) requires that the neglected dynamics in the feedforward compensator be
stable.

Bias Distribution

The distribution of the matching error in the frequency domain (generically called
“bias”) is an important information upon the expected performances in the case of
non-perfect matching. Using Parseval’s relation, the asymptotic bias distribution of
the matching error can be obtained starting from the expression of ν(t) by taking
into account that the algorithm minimizes (almost) a criterion of the form9

lim
N→∞

1

N

N∑
t=1

ν2(t).

For details see [13].
The bias distribution (for Algorithm III) will be given by

θ̂∗ = arg min
θ̂

∫ π

−π

⎡
⎣

∣∣∣∣∣D(e− jω) − N̂ (e− jω)G(e− jω)

1 − N̂ (e− jω)M(e− jω)

∣∣∣∣∣
2

φw(ω)

+φη(ω)
]

dω, (15.49)

where φw and φη are the spectral densities of the disturbance w(t) and of the mea-
surement noise, respectively. Taking into account (15.25), one obtains

θ̂∗ = arg min
θ̂

∫ π

−π

[
|SNM |2|N − N̂ |2|SN̂M |2|G|2φw(ω) + φη(ω)

]
dω, (15.50)

where SNM and SN̂M are the output sensitivity functions of the internal closed-loop
for N and, respectively, N̂ :

SNM = 1

1 − NM
; SN̂M = 1

1 − N̂ M
.

9The results are valid for the asymptotic behaviour obtained when using a decreasing adaptation
gain.
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From (15.49) and (15.50), one concludes that a good approximation of N will be
obtained in the frequency region where φw is significant and where G has a high gain
(usually G should have high gain in the frequency region where φw is significant
in order to counteract the effect of w(t)); however, the quality of the estimated N̂
will be affected also by the output sensitivity functions of the internal closed-loop
N −M . With a decreasing adaptation gain, the measurement noise will not influence
the asymptotic estimate of N .

15.4.3 Relaxing the Positive Real Condition

Averaging Approach

For the FUPLR algorithm, it is possible to relax the strictly positive real (SPR)
condition taking into account that

1. The disturbance (input to the system) is a broad-band signal.10

2. Most of the adaptation algorithms work with a low adaptation gain.

Under these two assumptions, the behaviour of the algorithm can be well described
by the “averaging theory” developed in [14, 15] (see also [13, Sect. 4.2]). When
using the averaging approach, the basic assumption of a slow adaptation holds for
small adaptation gains (constant and scalar in [15] with λ2(t) = 0, λ1(t) = 1;
asymptotically decreasing matrix gain in [14] with lim

t→∞ λ1(t) = 1, λ2(t) = λ2 > 0).

In the context of averaging, the basic condition for stability is that

lim
N→∞

1

N

N∑
t=1

Φ(t)H ′(q−1)ΦT (t) = 1

2

∫ π

−π

Φ(e jω)[H ′(e jω)

+ H ′(e− jω)]ΦT (e− jω)dω > 0 (15.51)

be a positive definite matrix (Φ(e jω) is the Fourier transform of the regressor vector
Φ(t)).

One can view (15.51) as the weighted energy of the observation vector Φ. Of
course the SPR sufficient condition upon H ′(z−1) (see 15.45) allows to satisfy this;
however, in the averaging context it is only needed that (15.51) be true. This allows
that H ′ be non-positive real in a limited frequency band. Expression (15.51) can be
rewritten as follows:

10The fact that the disturbance is a broad-band signal will imply that one has persistence of excitation.
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∫ π

−π

Φ(e jω)[H ′ + H ′∗]ΦT (e− jω)dω =
r∑

i=1

∫ αi+Δi

αi

Φ(e jω)[H ′ + H ′∗]ΦT (e− jω)dω −
p∑

j=1

∫ β j+Δ j

β j

Φ(e jω)[H̄ ′ + H̄ ′∗]ΦT (e− jω)dω > 0 (15.52)

where H ′ is strictly positive real in the frequency intervals [αi , αi + Δi ] and H̄ ′ =
−H ′ is positive real in the frequencies intervals [β j , β j + Δ j ] (H ′∗ denotes the
complex conjugate of H ′). The conclusion is that H ′ does not need to be SPR. It is
enough that the “positive” weighted energy exceeds the “negative” weighted energy.
This explains why the algorithm FUPLR using low adaptation gains will work in
practice in most of the cases even if the performance will be affected (particularly in
the frequency regions where the SPR condition is violated). It is however important
to remark that if the disturbance is a single sinusoid (which violates the hypothesis
of broad-band disturbance) located in the frequency region where H ′ is not SPR, the
algorithm may diverge (see [14, 15]).

Without doubt, the best approach for relaxing the SPR conditions, is to use algo-
rithm FUSBA (see (15.40)) instead of FUPLR. This is motivated by (15.46) and
(15.47). As it will be shown in the next section, this algorithm gives the best results
both in simulations and in real-time experiments.

Use of “Integral + Proportional” Parameter Adaptation Algorithm

This approach is discussed in Appendix E.

15.5 Adaptive Attenuation of Broad-band
Disturbances—Experimental Results

The active distributed flexible structure presented in Sect. 2.3, will be considered for
experimental validation of the algorithms proposed. The structure of the system is
described in Fig. 2.10. For a view of the system, see Fig. 2.9.

The incoming disturbance is the position of the mobile part of the inertial actuator
on top of the structure (see Fig. 2.10).11 The residual acceleration e(t) and the input
to the feedforward compensator ŷ(t) are measured by accelerometers. The control
input is the position of the mobile part of the inertial actuator located on the bottom
of the structure.

11The inertial actuator is driven by an external source.

http://dx.doi.org/10.1007/978-3-319-41450-8_2
http://dx.doi.org/10.1007/978-3-319-41450-8_2
http://dx.doi.org/10.1007/978-3-319-41450-8_2
http://dx.doi.org/10.1007/978-3-319-41450-8_2
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15.5.1 Broad-band Disturbance Rejection Using Matrix
Adaptation Gain

The performance of the system for rejecting broad-band disturbances will be illus-
trated using the adaptive feedforward compensation scheme. The adaptive filter struc-
ture for most of the experiments has been nR = 9, nS = 10 (total of 20 parameters)
and this complexity does not allow to verify the “perfect matching condition” (not
enough parameters). The influence of the number of parameters upon the perfor-
mance of the system has been also investigated (up to 40 parameters).

A PRBS excitation on the global primary path will be considered as the distur-
bance. The corresponding spectral densities of w(t) in open-loop and of ŷ(t) when
feedforward compensation is active are shown in Fig. 15.2. The effect of the mechan-
ical feedback coupling is significant.

Two modes of operation can be considered, depending on the particular choices
taken in (15.39):

• For adaptive operation, Algorithms II and III have been used with decreasing
adaptation gain (λ1(t) = 1, λ2(t) = 1) combined with a constant trace adaptation
gain. When the trace of the adaptation matrix is below a given value, the constant
trace gain updating modifies the values of λ1(t) and λ2(t) so that the trace of F is
kept constant. The corresponding formula is

tr F(t + 1) = 1

λ1(t)
tr

[
F(t) − F(t)Φ(t)Φ(t)T F(t)

α + Φ(t)T F(t)Φ(t)

]
= tr F(t) (15.53)

This assures the evolution of the PAA in the optimal direction but the adaptation
step size does not go to zero, therefore maintaining adaptation capabilities for
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Fig. 15.2 Spectral densities of the image of the disturbance in open-loop w(t) and with the
feedforward compensation scheme ŷ(t) (experimental)
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Fig. 15.3 Real-time results obtained with Algorithm II (FUPLR) using matrix adaptation gain

possible changes in disturbance or variations of the primary path model. For details,
see [13, 16].

• In self-tuning operation, a decreasing adaptation gain F(t) is used and the adapta-
tion step size goes to zero. Then, if a degradation of the performance is observed, as
a consequence of a change of the disturbance characteristics, the PAA is restarted.

The parametric adaptation algorithms have been implemented using the UD fac-
torization [13] (see Appendix B).12 The experiments have been carried out by first
applying the disturbance and then starting the adaptive feedforward compensation
after 50 s. Time domain results obtained in open-loop and with adaptive feedforward
compensation using Algorithms II (FUPLR) and III (FUBSA) on the AVC system
are shown in Figs. 15.3 and 15.4, respectively. The filter for the Algorithm III has
been computed based on the parameter estimates obtained with Algorithm II at t =
3600 s (almost same results are obtained if the initialization horizon is of the order
of 200 s). The initial trace of the matrix adaptation gain for 20 parameters was 10
and the constant trace has been fixed at 0.2.

As it can be seen, the transient duration for Algorithm II (FUPLR) is approximately
75 s, while for Algorithm III (FUBSA) is approximately 12 s.

Time domain comparison between Algorithms II and III can be found in Table 15.1,
where the two algorithms are compared in terms of closed-loop variances and global
attenuation. Also the open-loop variance is given as reference value. It can be seen
that the performance of Algorithm III (FUSBA) is better than performance of Algo-
rithm II (FUPLR).

Figure 15.5 shows the time evolution of the trace of the adaptation gain matrix. As
it can be seen after 2.5 s the trace of the matrix gain remains constant assuring the real-
time adaptation capabilities. Figure 15.6 shows the power spectral densities of the
residual acceleration measured on the AVC in open-loop (without compensator) and
using adaptive feedforward compensation (the measurements are made between 175

12An array implementation as in [17] can be also considered.
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Fig. 15.4 Real-time results obtained with Algorithm III (FUSBA) using matrix adaptation gain

Table 15.1 Performance of Algorithms II (FUPLR) and III (FUSBA)

Open-loop var. Closed-loop var. Global att. (dB)

Algo. II (FUPLR) 0.0354 0.0058 15.68

Algo. III (FUSBA) 0.0354 0.0054 16.23

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
x 10

4

0

1

2

3

4
Trace de F

Time [sec]

tr
 (

F)

Trace of Algo. III with matrix adaptation gain, decreasing
gain and constant trace=0.2 (initial trace is 10)

Fig. 15.5 Evolution of the trace of the matrix adaptation gain for Algorithm III (experimental)

and 200 s—the adaptation transient is finished well before 175 s). The corresponding
global attenuations are also given. Algorithm III (FUSBA) performs slightly better
than Algorithm II (FUPLR).

The H∞ design ([18]) provides less good performance than Algorithm II (FUPLR)
and III (FUSBA) with matrix adaptation gain (Fig. 15.6) despite that it has a double
number of parameters (40 instead of 20). In addition, the H∞ compensator does not
have adaptation capabilities as it will be shown in Sect. 15.5.1.1.

To better understand the differences between Algorithm II (FUPLR) and Algo-
rithm III (FUSBA), in Fig. 15.7 the Bode diagram of the estimated AM/P transfer
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Fig. 15.7 Bode diagram of the estimated transfer function AM/P

function is shown. Assuming that Ĝ = G, using Algorithm II with constant adap-
tation gain, AM

P should be SPR. It can be seen that AM/P it is not strictly positive
real (phase outside of the interval [−90, + 90] degrees) in the frequency intervals
[42, 48], [55, 72], and [110, 115] Hz (while for the Algorithm III with constant
adaptation gain the estimated transfer function which should be SPR is equal to 1).

The influence of the number of parameters upon the performance of the system
is summarized in Table 15.2 for the case of Algorithm III. The global attenuation is
slightly improved when the number of parameters of the compensator is augmented
over 20 (the PSD are almost the same).
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Table 15.2 Influence of the
number of parameters upon
the global attenuation

Number of
parameters

20 32 40

Global
attenuation
(dB)

16.23 16.49 16.89

15.5.1.1 Testing Adaptation Capabilities When Disturbance
Characteristics Change

Adaptation capabilities with respect to the characteristic of the disturbance is a key
issue. This has been tested by adding a sinusoidal disturbance at 1500 s (adaptation
Algorithm III (FUSBA) with constant trace set at 1). Figure 15.8 shows the time
domain results in the case when the adaptation is stopped prior to the application
of the additional sinusoidal disturbance (upper diagram) and when the adaptation is
active (lower diagram). The duration of the transient is approximately 25 s.

Figure 15.9 shows the evolution of the parameters when the sinusoidal disturbance
is applied. The power spectral densities when adaptation is stopped prior to the
application of the sinusoidal disturbance, when adaptation is active, and when the H∞
compensator (not designed for this supplementary disturbance) is used are shown
in Fig. 15.10. One can remark a strong attenuation of the sinusoidal disturbance
(larger than 35 dB) without affecting other frequencies when the adaptation is active
(similar results are obtained with Algorithm II). The H∞ compensator [18] does
a very little attenuation of the sinusoidal disturbance (2.6 dB). It does not have
“adaptation capabilities”. The linear compensators considered in Chap. 14 will not
be able to cope with the new disturbance. Other results can be found in [13].

15.5.2 Broad-band Disturbance Rejection Using Scalar
Adaptation Gain

Table 15.3 gives a summary of the proposed algorithms with matrix adaption gain
(column 1) and with scalar adaptation gain (column 2). Column 3 gives the algorithms
of Jacobson–Johnson [6] and column 4 gives the FULMS algorithm [19].

The algorithm of Jacobson–Johnson (column 3) was unstable even for very low
adaptation gain. The explanation is clear. It does not use filtering at least by Ĝ and
since G is not positive real (in particular, in the frequency zone where most of the
energy of the disturbance is concentrated) the instability is not surprising.

To make a fair comparison of the algorithms given in columns 2 and 4 of
Table 15.3, the same adaptation gain has been used. Since the FULMS is very sen-
sitive to the value of the adaptation gain (becomes easily unstable and the transients
are very bad) a value of 0.001 has been chosen for the scalar adaptation gain (for a
higher value FULMS is unstable).

http://dx.doi.org/10.1007/978-3-319-41450-8_14
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Fig. 15.8 Real-time results for rejection of an additional sinusoidal disturbance. Upper diagram
adaptation stopped prior application of the disturbance. Lower diagram adaptation is active
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Fig. 15.9 Evolution of the compensator parameters when a sinusoidal disturbance is added using
the FUSBA algorithm (experimental)
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The FULMS algorithm and the Algorithm II from column 2 use the same filtering
of the regressor. The difference comes from the fact that the FULMS uses the a
priori adaptation error while the Algorithm II of column 2 uses the a posteriori
value of the adaptation error. The difference between these two algorithms can be
also interpreted in terms of adaptation gains. The FULMS uses an unnormalized
adaptation gain γ while Algorithm II, column 2, uses a normalized13 adaptation gain
γ /(1 + γΦT (t)Φ(t)).

Figure 15.11 shows the adaptation transient for the FULMS algorithm. The max-
imum value is unacceptable in practice (one cannot tolerate an overshoot over 50 %
of the uncompensated residual acceleration). Figure 15.12 shows the adaptation tran-
sient for the scalar version of the Algorithm III. It is surprisingly good. Almost same
transient behaviour is obtained with the scalar version of Algorithm II. Figures 15.13
and 15.14 show the evolution of the parameters for the FULMS algorithm and the
scalar version of Algorithm III, respectively. One can see jumps in the evolution of
the parameters for the FULMS algorithms and instabilities occur on a long run. For
the Algorithm III evolution of the parameters is smooth and no instabilities occur in
a long run (12 h).

The performances in the frequency domain are summarized in Fig. 15.15 where
the power spectral densities and the global attenuation provided by the algorithms
with scalar adaptation gain are shown.

13The scalar adaptation gain algorithms presented in this book can be denoted as NFULMS (nor-
malized FULMS) for Algorithm II and SFUSBA (scalar FUSBA) for Algorithm III.
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Ĝ

=
S
P
R



15.5 Adaptive Attenuation of Broad-band Disturbances—Experimental Results 333

0 40 80 120 160 200
−2.2
−1.8
−1.4

−1
−0.6
−0.2

0.2
0.6

1
1.4
1.8
2.2

Adaptation transient for FULMS 
(adaptation starts at t=50s)

Time [sec]

R
es

id
ua

l a
cc

el
er

at
io

n 
[V

]

Fig. 15.11 Real-time results obtained with FULMS algorithm
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Fig. 15.12 Real-time results obtained with Algorithm III using scalar adaptation gain

15.5.2.1 Testing Adaptation Capabilities When Disturbance
Characteristics Change

Adaptation capabilities with respect to the characteristic of the disturbance have been
tested by adding a sinusoidal disturbance like for the case of matrix adaptation gain.
The FULMS has been destabilized by the application of the sinusoidal disturbance.
Figure 15.16 shows the PSD of the residual acceleration when the adaptation is
stopped before the sinusoidal disturbance is applied and when the adaptation is
active. The performance of the adaptation Algorithm III with scalar gain is less good
than in the case of matrix adaptation gain (see Fig. 15.10). The sinusoidal disturbance
is attenuated in the scalar case by 20 dB while the attenuation is over 35 dB with
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Fig. 15.13 Evolution of the feedforward compensator parameters (experimental)—Algorithm
FULMS
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Fig. 15.14 Evolution of the feedforward compensator parameters (experimental)—Algorithm III
using scalar adaptation gain
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Fig. 15.15 Power spectral densities of the residual acceleration in open-loop and with adaptive
feedforward compensation using scalar adaptation gain (Disturbance = PRBS)
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Fig. 15.16 Power spectral densities of the residual acceleration using scalar adaptation gain when
a sinusoidal disturbance is added (Disturbance = PRBS + sinusoid) (experimental)

a matrix adaptation gain. In addition the performance is degraded in the frequency
region 170–270 Hz which does not occur when using a matrix adaptation gain.



336 15 Adaptive Feedforward Compensation of Disturbances

15.6 Adaptive Feedforward Compensation with Filtering
of the Residual Error

Another solution to fulfil the strictly positive real condition (popular in adaptive
control [13]) is to introduce a filter on the residual error in order to generate the
adaptation error. Some of the references considering the use of the filter on the
adaptation error are [17, 20–23]. As it will be shown, the filtering of the residual
error will affect its power spectral density. There are a number of situations where
shaping the residual error in the frequency domain is very useful.

Recall from Sect. 15.2 that the measured residual acceleration (or force) satisfies
the following equation:

e◦(t + 1) = x(t + 1) + ẑ◦(t + 1). (15.54)

Then the filtered a priori adaptation error is defined as

ν◦(t + 1) = ν(t + 1|θ̂ (t))

= ε◦(t + 1) +
n1∑
i=1

υB
i ε(t + 1 − i) −

n2∑
i=1

υ A
i ν◦(t + 1 − i), (15.55)

where
ε◦(t + 1) = −e◦(t + 1) = −x(t + 1) − ẑ◦(t + 1) (15.56)

and
ε(t + 1) = −e(t + 1) = −x(t + 1) − ẑ(t + 1) (15.57)

are also called, respectively, the a priori and the a posteriori unfiltered adaptation
errors.

The coefficients υX
i , X ∈ {B, A}, are the coefficients of an IIR filter, with all

poles and zeros inside the unit circle, acting on the adaptation error

V (q−1) = BV (q−1)

AV (q−1)
, (15.58)

where

XV (q−1) = 1 + q−1X∗
V (q−1) = 1 +

n j∑
i=1

υX
i q

−i , X ∈ {B, A}. (15.59)

The filtered a posteriori unmeasurable (but computable) adaptation error is
given by
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ν(t + 1) = ν(t + 1|θ̂ (t + 1)) (15.60)

= ε(t + 1) +
n1∑
i=1

υB
i ε(t + 1 − i) −

n2∑
i=1

υ A
i ν(t + 1 − i), (15.61)

with ε(t + 1) given in (15.57).
The PAA given in Eqs. (15.35) through (15.39) is transformed as follows14

θ̂ (t + 1) = θ̂ (t) + F(t)Φ(t)ν(t + 1); (15.62)

ε(t + 1) = ε◦(t + 1)

1 + ΦT (t)F(t)Φ(t)
; (15.63)

ν(t + 1) = ε(t + 1) +
n1∑
i=1

υB
i ε(t + 1 − i) −

n2∑
i=1

υ A
i ν(t + 1 − i), (15.64)

F(t + 1) = 1

λ1(t)

[
F(t) − F(t)Φ(t)ΦT (t)F(t)

λ1(t)
λ2(t)

+ ΦT (t)F(t)Φ(t)

]
(15.65)

1 ≥ λ1(t) > 0; 0 ≤ λ2(t) < 2; F(0) > 0 (15.66)

Φ(t) = φ f (t) = Lφ(t) (15.67)

Equation (15.27) becomes

ν(t + 1) = AM(q−1)G(q−1)V (q−1)

P(q−1)L(q−1)
[θ − θ̂]Tφ f (t) (15.68)

For the stability of the system, the selection of L and V should be done such that
AM (q−1)G(q−1)V (q−1)

P(q−1)L(q−1)
be SPR (for λ2 = 0). Nevertheless, in practice one uses Algo-

rithms II (FUPLR) or III (FUSBA) and V is added mainly for shaping the PSD of
the residual error in the frequency domain. The new algorithms are termed FUePLR
and FUeSBA, respectively, to denote the filtering of the residual error in addition to
the filtering of the observation vector.

Using FUSBA presented in Sect. 15.3 with the prediction error filtered by V (q−1),
the estimated N̂ feedforward compensator will minimize the following criterion in
the frequency domain (taking into account (15.25)):

θ̂∗ = arg min
θ̂

∫ π

−π

[|SNM |2|N− N̂ |2|SN̂M |2|G|2|V |2φw(ω)+|V |2φη(ω)]dω (15.69)

where φw and φη are the spectral densities of the disturbance w(t) and of the mea-
surement noise and SNM and SN̂M are the output sensitivity functions of the internal
closed-loop for N and respectively, N̂ : SNM = 1

1−NM , SN̂M = 1
1−N̂ M

.

14This algorithm can be termed FUeSBA since both the input and the error are filtered.
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Comparison of (15.69) with (15.50) allows to conclude that V will further shape
the power spectral density of the residual error.

A number of experimental tests have been done to compare the adaptation capa-
bility of the algorithms with residual error filtering in addition to observation vector
filtering. As broad-band disturbance, a PRBS generated by a 15-bit register and fil-
tered through a Butterworth band-pass filter between 20 and 380 Hz has been used.
A sinusoidal signal has been added at 250 Hz.

The residual error filter has been chosen as V (q−1) = 1 − 0.9q−1. Using an
adaptive feedforward compensator with 20 parameters (nR = 9, nS = 10) the global
attenuation achieved is 15.8 dB with FUPLR algorithm and 16.24 dB with FUePLR
algorithm.

15.7 Adaptive Feedforward + Fixed Feedback
Compensation of Broad-band Disturbances

As already mentioned throughout the book, feedforward compensation has to be
considered when the performance/robustness compromise cannot be achieved by
feedback only. Nevertheless, nothing prevents the use of (adaptive) feedforward
compensation on top of a feedback controller. Defining jointly the control objective
of the feedback controller and feedforward compensation is a problem-dependent
issue. One can assign to the feedback controller an active damping task and the feed-
forward compensation will enhance the performances. Alternatively, one can design
a stabilizing controller which attenuates certain type of disturbances under robustness
constraints and the performance of the system will be enhanced by the feedforward
compensation. The combination of feedback and feedforward compensation is often
termed “hybrid” compensation.

Figure 15.17 gives the block diagram of such a system. The transfer operators
characterizing the primary path (D), the secondary path (G) and the reverse path
(M) have been defined in Sect. 15.2, Eqs. (15.1), (15.4) and (15.7), as well as the
optimal feedforward compensator N and the estimated feedforward compensator N̂ .
The vector of the estimated feedforward parameters has been defined in (15.29).

The fixed feedback RS controller K , computed on the basis of the model Ĝ which
stabilizes the system and attenuates disturbances on the output e(t), is characterized
by the asymptotically stable transfer function

K (q−1) = BK (q−1)

AK (q−1)
, (15.70)

where
BK (q−1) = bK0 + bK1 q−1 + · · · + bKnBK

q−nBK , (15.71)

AK (q−1) = 1 + aK
1 q−1 + · · · + aK

nAK
q−nAK . (15.72)
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(b)

(a)

Fig. 15.17 Feedforward–feedback AVC—the control scheme: a in open-loop and b with adaptive
feedforward + fixed feedback compensator

The input of the feedforward compensator (called also reference) is denoted by ŷ1(t).
The output of the feedforward compensator is denoted by û1(t+1) = û1(t+1|θ̂ (t+
1)) (a posteriori output). The measured input applied to the feedforward compensator
can be written as

ŷ1(t + 1) = w(t + 1) + B∗
M(q−1)

AM(q−1)
û(t), (15.73)

where
û = û1(t) − u2(t), (15.74)

û1(t) and u2(t) are the outputs given by the adaptive feedforward and the fixed feed-
back compensators, respectively. û is the effective input sent to the control actuator.

The a priori output of the estimated feedforward compensator is given by

û◦
1(t + 1) = û1(t + 1|θ̂ (t)) = −Ŝ∗(t, q−1)û1(t) + R̂(t, q−1)ŷ1(t + 1)

= θ̂T (t)φ(t) =
[
θ̂T
S (t), θ̂T

R (t)
] [

φû1(t)
φŷ1(t)

]
(15.75)
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where θ̂ (t) has been given in (15.29) and

φT (t) = [−û1(t), . . . − û1(t − nS + 1), ŷ1(t + 1), . . . ŷ1(t − nR + 1)]
= [φT

û1
(t), φT

ŷ1
(t)] (15.76)

The input to the feedback (fixed) compensator is given by the performance
variable, therefore y2(t) = e(t). Its output will be u2(t) = K (q−1)y2(t). The
unmeasurable value of the output of the primary path (when the compensation is
active) is denoted as x(t). The a priori output of the secondary path is denoted as
ẑ◦(t + 1) = ẑ(t + 1|θ̂ (t)) while its input is û(t). One has

ẑ◦(t + 1) = B∗
G(q−1)

AG(q−1)
û(t) = B∗

G(q−1)

AG(q−1)
û(t |θ̂ (t)). (15.77)

The measured residual acceleration (or force) satisfies the following equation:

e◦(t + 1) = x(t + 1) + ẑ◦(t + 1). (15.78)

The a priori and a posteriori adaptation errors are defined as

ν◦(t + 1) = ν(t + 1|θ̂ (t)) = −e◦(t + 1) (15.79)

and

ν(t + 1) = ν(t + 1|θ̂ (t + 1)) = −e(t + 1) = −x(t + 1) − ẑ(t + 1) (15.80)

where the a posteriori value of the output of the secondary path ẑ(t + 1) (dummy
variable) is given by

ẑ(t + 1) = ẑ(t + 1|θ̂ (t + 1)) = B∗
G(q−1)

AG(q−1)
û(t |θ̂ (t + 1)). (15.81)

For compensators with constant parameters ν◦(t) = ν(t), e◦(t) = e(t), ẑ◦(t) = ẑ(t),
û◦(t) = û(t).

15.7.1 Development of the Algorithms

The algorithms for adaptive feedforward compensation in the presence of feed-
back controller will be developed under the same hypotheses as in Sect. 15.3 except
hypothesis H2 which is replaced by [24]:

(H2′) (Perfect matching condition) There exists a filter N (q−1) of finite dimension
such that
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N (z−1)

1 − N (z−1)M(z−1)
G(z−1) = −D(z−1) (15.82)

and the characteristic polynomials

• of the “internal” positive coupling loop

P(z−1) = AM(z−1)S(z−1) − BM(z−1)R(z−1), (15.83)

• of the closed-loop (G-K)

Pcl(z
−1) = AG(z−1)AK (z−1) + BG(z−1)BK (z−1) (15.84)

• and of the coupled feedforward–feedback loop

Pf b− f f = AMS[AG AK + BGBK ] − BM RAK AG (15.85)

are Hurwitz polynomials.
Like for the previous feedforward compensation configurations, the key point

in the development of the algorithm is to establish a relation between the error in
the estimation of the parameters of the feedforward compensator and the measured
residual acceleration or force. Under the hypotheses H1, H3 and the new hypothesis
H2′, for the system described in Sect. 15.2 using a feedforward compensator N̂ with
constant parameters and a feedback controller K , the equation of the adaptation error
(the measured residual acceleration or force with minus sign) for constant estimated
parameters is given by [24]:

ν(t + 1) = AM AG AKG

Pf b− f f
[θ − θ̂ ]Tφ(t) (15.86)

where
θT = [s1, . . . snS , r0, r1, . . . rnR ] = [θT

S , θT
R ] (15.87)

is the vector of parameters of the optimal filter N assuring perfect matching,

θ̂T = [ŝ1, . . . ŝnS , r̂0, . . . r̂nR ] = [θ̂T
S , θ̂T

R ] (15.88)

is the vector of constant estimated parameters of N̂ ,

φT (t) = [−û1(t), . . . − û1(t − nS + 1), ŷ1(t + 1), . . . ŷ1(t − nR + 1)]
= [φT

û1
(t), φT

ŷ1
(t)] (15.89)

and ŷ1(t + 1) is given by (15.73).
The derivation of the expression (15.86) is given in Appendix D.
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Of course this expression can be particularized for the case without internal pos-
itive coupling (BM = 0 and AM = 1) and for the case of the absence of feedback
(K = 0). Details are given in [24].

Filtering the vector φ(t) through an asymptotically stable filter L(q−1) = BL
AL

,

Eq. (15.86) for θ̂ = constant becomes

ν(t + 1) = AM AG AKG

Pf b− f f L
[θ − θ̂ ]Tφ f (t) (15.90)

φ f (t) = L(q−1)φ(t). (15.91)

Equation (15.90) has been used to develop the adaptation algorithms neglecting
the non-commutativity of the operators when θ̂ is time-varying (however, an exact
algorithm can be derived in such cases—see [13]).

Replacing the fixed estimated parameters by the current estimated parameters,
Eq. (15.90) becomes the equation of the a posteriori residual (adaptation) error ν(t+
1) (which is computed):

ν(t + 1|θ̂ (t + 1)) = AM AG AK

Pf b− f f L
G[θ − θ̂ (t + 1)]Tφ f (t). (15.92)

Equation (15.92) has the standard form for an a posteriori adaptation error ([13]),
which immediately suggests to use the same parametric adaptation algorithm given
in equations (15.35) through (15.39). The stability of the algorithm has been analyzed
in [24] and the main results are recalled next.

15.7.2 Analysis of the Algorithms

Stability of the Algorithms

The equation for the a posteriori adaptation error has the form

ν(t + 1) = H(q−1)[θ − θ̂ (t + 1)]TΦ(t) (15.93)

where

H(q−1) = AM AG AK

Pf b− f f L
G, Φ = φ f . (15.94)

Neglecting the non-commutativity of time-varying operators, one can straightfor-
wardly use Theorem 4.1. Therefore, the sufficient stability condition for any initial
conditions θ̂ (0), ν◦(0), F(0) is that

H ′(z−1) = H(z−1) − λ2

2
, max

t
[λ2(t)] ≤ λ2 < 2 (15.95)

http://dx.doi.org/10.1007/978-3-319-41450-8_4
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Table 15.4 Global attenuations for various configurations

Feedback only Feedforward
only (H∞)

Adaptive
feedforward
only

Feedforward
(H∞)
feedback

Feedback and
adaptive
feedforward

Att. (dB) –14.40 –14.70 –16.23 –18.42 –20.53

be an SPR transfer function.
Various choices can be considered for the filter L(q−1) in order to satisfy the

positive real condition (see [12, 24]). It is important to remark that the positive
real condition is strongly influenced by the presence of the feedback controller and
its design. The best performances are in general obtained by taking L(q−1) as an
estimation of AM AG AK

Pf b− f f
G (see (15.94)).

Relaxation of the positive real condition by averaging arguments is discussed in
[12] (same procedure and conclusions as in Sect. 15.4) and by adding proportional
adaptation in [25]. Filtering of the residual error can also be considered for satisfying
the positive real condition, but this will modify the criterion which is minimized [21,
25].

Analysis of the algorithms when hypotheses H2′ and H3 are violated can be found
in [12]. The conclusions of this analysis are similar those given in Sect. 15.4.

15.8 Adaptive Feedforward + Fixed Feedback Attenuation
of Broad-band Disturbances—Experimental Results

A summary of various results obtained on the system described in Sect. 2.3 will be
presented next. The adaptive feedforward compensator structure for all the experi-
ments has been nR = 9, nS = 10 (total of 20 parameters) and this complexity does
not allow to verify the “perfect matching condition” (which requires more than 40
parameters). A feedback RS controller has been also introduced to test the potential
improvement in performance.

Table 15.4 summarizes the global attenuation results for various configurations.
Clearly, the hybrid adaptive feedforward—fixed feedback scheme brings a significant
improvement in performance with respect to adaptive feedforward compensation
alone. This can be seen on the power spectral densities shown in Fig. 15.18.15 A
pseudorandom binary sequence (PRBS) excitation on the global primary path has
been considered as the disturbance.

It is important to point out that the design of a linear feedforward + feedback
requires not only the perfect knowledge of the disturbance characteristics but also
of the model of the primary path, while an adaptive approach does not require
these informations. To illustrate the adaptation capabilities of the algorithms pre-
sented, a sinusoidal disturbance of 150 Hz has been added to the PRBS disturbance.

15For the adaptive schemes, the PSD is evaluated after the adaptation transient has settled.

http://dx.doi.org/10.1007/978-3-319-41450-8_2
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Fig. 15.18 Power spectral densities of the residual acceleration for various control configurations
(Disturbance = PRBS)
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Fig. 15.19 Power spectral densities when an additional sinusoidal disturbance is added (Distur-
bance = PRBS + sinusoid)

Figure 15.19 shows the power spectral densities in open-loop, when using an adaptive
feedforward compensation algorithm and when the H∞ feedforward compensator
which is not designed for this additional disturbance is used. One can remark that
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the hybrid adaptive feedforward–feedback scheme introduces a strong attenuation
of the sinusoidal disturbance (larger than 30 dB) without affecting other frequencies
(compare with Fig. 15.18) while the model-based H∞ feedforward compensator +
feedback controller has not been able to attenuate the sinusoidal disturbance.

15.9 Concluding Remarks

• If a measurement correlated with the disturbance is available, an adaptive feedfor-
ward compensation scheme can be built.

• This approach is currently used for active vibration control and active noise control
when broad-band disturbances should be attenuated.

• It is important to emphasize the existence of an inherent positive feedback coupling
between the actuator and the measure of the image of the disturbance which has a
strong impact on the stability of the adaptive feedforward compensation system.

• Stable adaptation algorithms preserving the stability of the inner positive feedback
loop has been developed.

• To assure the stability of the adaptive feedforward compensation schemes, the
regressor vector should be appropriately filtered.

• Parameter adaptation algorithms with matrix adaptation gain and scalar adaptation
gain can be used.

• Adaptive feedforward compensation can be used on top a feedback loop.

15.10 Notes and References

The first attempts in the literature of adaptive feedforward active vibration and noise
compensation have been done neglecting the positive feedback coupling. Most of
the initial work was centred around the use of the Least Mean Squares (LMS)
gradient search algorithm introduced in [26, 27] (see also Chap. 4). Applications of
LMS-type algorithm in active control can be found in [28–33]. Further references
include [34–36].

A powerful approach for stability analysis of adaptive feedforward compensation
algorithms is the hyperstability theory [37–40] which prompted out the importance
of the strict positive realness of some transfer functions in order to assure stability. The
initial framework for studying adaptive systems using hyperstability was established
in [41–43] and a complete theoretical analysis can be found in [13]. Application of
this approach in the context of adaptive feedforward compensation is considered in
[12, 17, 44, 45]. Related problems are discussed in [20, 46–48].

Improved numerical efficiency for adaptation algorithms is discussed in [17, 21]
(limited to the case without positive feedback coupling). FIR adaptive feedforward
compensators using orthonormal basis functions are discussed in [49, 50].

http://dx.doi.org/10.1007/978-3-319-41450-8_4
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In [51], a mixed adaptive feedback with GPC feedforward controller using online
identification of the system is applied to acoustic noise control, structural vibration
control and optical jitter control.

There has been also an important development in materials used for AVC sys-
tems. Among them, piezoelectric sensors and actuator are widely used for structural
vibration cancellation (see book [52] and some of the applications in [53–57]).

Numerous applications of AVC concern hard disk drives or DVD/CDD [31, 58].
Also force tracking with feedforward motion estimation for beating heart surgery is
presented in [59].

Various AVC problems in passenger vehicles are discussed in [60–62]. In the
field of aerial vehicles some interesting applications are [63, 64]. Vibration control
on flexible structures is discussed in [65, 66]. Multichannel adaptive algorithms have
extensively been used in adaptive optics applications [67, 68].
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Chapter 16
Youla–Kučera Parametrized Adaptive
Feedforward Compensators

16.1 Introduction

Since most of the adaptive feedforward vibration (or noise) compensation systems
feature an internal “positive feedback” coupling between the compensator system
and the correlated disturbance measurement which serves as reference, one may think
building a stabilizing controller for this internal loop to which an additional filter will
be added with the objective to enhance the disturbance attenuation capabilities while
preserving the stabilization properties of the controller.

In order to achieve this, instead of a standard IIR feedforward compensator, one
can use an Youla–Kučera parametrization of the adaptive feedforward compensator.
The central compensator will assure the stability of the internal positive feedback
loop and its performance are enhanced in real-time by the direct adaptation of the
parameters of the Youla–Kučera Q-filter.

A block diagram of such adaptive feedforward compensator is shown in Fig. 16.1.
FIR and IIR Q-filters can be used. Details of the specific algorithms can be found in
[1, 2]. Comparisons between IIR, FIR YK and IIR YK adaptive feedforward have
been done. The main conclusions are:

• For the same level of performance IIR YK requires the lower number of adjustable
parameters.

• IIR YK and FIR YK allow easily the incorporation of an initial stabilizing con-
troller of any dimension while for IIR feedforward compensator this is more dif-
ficult.

These facts justify the use of this approach for adaptive feedforward compensation
in the presence of an internal positive feedback.

© Springer International Publishing Switzerland 2017
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Fig. 16.1 Adaptive feedforward disturbance compensation using Youla–Kučera parametrization

16.2 Basic Equations and Notations

The block diagrams associated with an AVC system when an IIR (Infinite Impulse
Response) Youla–Kučera compensator is active is shown in Fig. 16.1. The transfer
operators of the various paths of the AVC system have been given in Sect. 15.2.

The optimal IIR feedforward compensator which will minimize the residual accel-
eration can be written, using the Youla–Kučera parametrization, as

N (q−1) = R(q−1)

S(q−1)
= AQ(q−1)R0(q−1) − BQ(q−1)AM(q−1)

AQ(q−1)S0(q−1) − BQ(q−1)BM(q−1)
(16.1)

where the optimal polynomial Q(q−1) has an IIR structure

Q(q−1) = BQ(q−1)

AQ(q−1)
=

bQ
0 + bQ

1 q
−1 + · · · + bQ

nBQ
q−nBQ

1 + aQ
1 q−1 + · · · + aQ

nAQ
q−nAQ

(16.2)

and R0(q−1), S0(q−1) = 1 + q−1S∗
0 (q−1) are the polynomials of the central (stabi-

lizing) filter and AM(q−1), BM(q−1) are given in (15.7).
The estimated QIIR filter is denoted by Q̂(q−1) or Q̂(θ̂ , q−1) when it is a linear

filter with constant coefficients or Q̂(t, q−1) during estimation (adaptation). The
vector of parameters of the optimal QIIR filter assuring perfect matching will be
denoted by

θT = [bQ
0 , . . . , bQ

nBQ
, aQ

1 , . . . , aQ
nAQ

] = [θT
BQ

, θT
AQ

]. (16.3)
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The vector of parameters for the estimated Q̂IIR filter

Q̂(q−1) = B̂Q(q−1)

ÂQ(q−1)
=

b̂Q
0 + b̂Q

1 q
−1 + · · · + b̂Q

nBQ
q−nBQ

1 + âQ
1 q−1 + · · · + âQ

nAQ
q−nAQ

(16.4)

is denoted by

θ̂T = [b̂Q
0 , . . . , b̂Q

nBQ
, âQ

1 , . . . , âQ
nAQ

] = [θ̂T
BQ

, θ̂T
AQ

]. (16.5)

The input of the feedforward compensator (called also reference) is denoted by
ŷ(t). In the absence of the compensation loop (open-loop operation) ŷ(t) = w(t). In
the presence of the compensation this signal is the sum of w(t and of the output of
the reverse path M . The output of the feedforward compensator (which is the control
signal applied to the secondary path) is denoted by û(t + 1) = û(t + 1/θ̂(t + 1)) (a
posteriori output).1

The a priori output of the estimated feedforward compensator using an YKIIR
parametrization for the case of time-varying parameter estimates is given by (using
(16.1))

û◦(t + 1) = û(t + 1/θ̂(t)) = −Ŝ∗(t, q−1)û(t) + R̂(t, q−1)ŷ(t + 1)

= −( ÂQ(t, q−1)S0)
∗û(t) + ÂQ(t, q−1)R0 ŷ(t + 1)

+ B̂Q(t, q−1)
(
B∗
Mû(t) − AM ŷ(t + 1)

)
, (16.6)

The a posteriori output is given by:

û(t + 1) = −( ÂQ(t + 1, q−1)S0)
∗û(t) + ÂQ(t + 1, q−1)R0 ŷ(t + 1)

+ B̂Q(t + 1, q−1)
(
B∗
Mû(t) − AM ŷ(t + 1)

)
. (16.7)

It should be observed that Eqs. (16.1), (16.2), (16.6) and (16.7) can be eas-
ily particularized for the case of a FIR Youla–Kučera parametrization by taking
ÂQ(t, q−1) ≡ 1.

The measured input of the feedforward compensator can also be written as

ŷ(t + 1) = w(t + 1) + B∗
M(q−1)

AM(q−1)
û(t). (16.8)

The unmeasurable value of the output of the primary path (when the compensation
is active) is denoted x(t). The a priori output of the secondary path will be denoted
ẑ◦(t + 1) = ẑ(t + 1|θ̂ (t)) while its input is û(t). One has

1In adaptive control and estimation the predicted output at t + 1 can be computed either on the basis
of the previous parameter estimates (a priori) or on the basis of the current parameter estimates (a
posteriori).
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ẑ◦(t + 1) = B∗
G(q−1)

AG(q−1)
û(t) = B∗

G(q−1)

AG(q−1)
û(t |θ̂ (t)), (16.9)

where θ̂ (t) is the vector of estimated parameters given in (16.5). The measured
residual acceleration (or force) satisfies the following equation

e◦(t + 1) = x(t + 1) + ẑ◦(t + 1). (16.10)

The a priori adaptation error is defined as

ν◦(t + 1) = ν(t + 1|θ̂ (t)) = −e◦(t + 1) = −x(t + 1) − ẑ◦(t + 1). (16.11)

The a posteriori unmeasurable (but computable) adaptation error is given by

ν(t + 1) = ν(t + 1|θ̂ (t + 1)) = −e(t + 1) = −x(t + 1) − ẑ(t + 1). (16.12)

where the a posteriori value of the output of the secondary path ẑ(t + 1) (dummy
variable) is given by

ẑ(t + 1) = ẑ(t + 1|θ̂ (t + 1)) = B∗
G(q−1)

AG(q−1)
û(t |θ̂ (t + 1)). (16.13)

For compensators with constant parameters ν◦(t) = ν(t), e◦(t) = e(t), ẑ◦(t) = ẑ(t),
û◦(t) = û(t).

The objective is to develop stable recursive algorithms for adaptation of the para-
meters of the Q filter such that the measured residual error (acceleration or force in
AVC, noise in ANC) be minimized in the sense of a certain criterion. This has to be
done for broad-band disturbances w(t) (or s(t)) with unknown and variable spectral
characteristics and an unknown primary path model.

16.3 Development of the Algorithms

The algorithm for adaptive feedforward YKIIR compensators will be developed
under the same hypotheses as in Sect. 15.3 except H2 which is modified as:

(H2′′) (Perfect matching condition) There exists a value of the Q parameters such
that2

G · AM(R0AQ − AM BQ)

AQ(AMS0 − BM R0)
= −D (16.14)

2The parenthesis (q−1) or (z−1) will be omitted in some of the following equations to make them
more compact.
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and there exists a central feedforward compensator N0 (R0, S0) which sta-
bilizes the inner positive feedback loop formed by N0 and M and the charac-
teristic polynomial of the closed-loop

P0(z
−1) = AM(z−1)S0(z

−1) − BM(z−1)R0(z
−1) (16.15)

is a Hurwitz polynomial.

Like for the standard IIR feedforward compensator, the algorithm will be devel-
oped under these hypotheses. Afterwards, hypotheses H2′′ and H3 can be removed
and the algorithm can be analyzed in this modified context.

A first step in the development of the algorithms is to establish for a fixed estimated
compensator a relation between the error on the Q-parameters (with respect to the
optimal values) and the adaptation error ν.

Under the hypotheses H1 and H3 from Chap. 15 for the system described by
Eqs. (15.1)–(15.9) and the new hypothesis H2′′ for the system described by (16.1) to
(16.13) using an estimated IIR Youla–Kučera parameterized feedforward compen-
sator with constant parameters one has:

ν(t + 1|θ̂ ) = AM(q−1)G(q−1)

AQ(q−1)P0(q−1)
[θ − θ̂ ]Tφ(t), (16.16)

with φ(t) given by:

φT (t) = [α(t + 1), α(t), . . . , α(t − nBQ + 1),

− β(t),−β(t − 1), . . . ,−β(t − nAQ )]. (16.17)

where:

α(t + 1) = BMû(t + 1) − AM ŷ(t + 1) = B∗
Mû(t) − AM ŷ(t + 1) (16.18a)

β(t) = S0û(t) − R0 ŷ(t). (16.18b)

The derivation of expression (16.16) is given in Appendix D.
Throughout the remainder of this section and the next one, unless stated differently,

the Youla–Kučera parametrization having a QIIR filter will be discussed. It should
be observed that, in most of the cases, results for QFIR polynomials can be obtained
by imposing AQ(q−1) = 1 and ÂQ(q−1) = 1.

As it will be shown later on (like for the IIR feedforward compensator), it is
convenient for assuring the stability of the system to filter the observation vector
φ(t). Filtering the vector φ(t) through an asymptotically stable filter L(q−1) = BL

AL
,

Eq. (16.16) for θ̂ = constant becomes

ν(t + 1|θ̂ ) = AM(q−1)G(q−1)

AQ(q−1)P0(q−1)L(q−1)
[θ − θ̂]Tφ f (t) (16.19)

http://dx.doi.org/10.1007/978-3-319-41450-8_15
http://dx.doi.org/10.1007/978-3-319-41450-8_15
http://dx.doi.org/10.1007/978-3-319-41450-8_15
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with

φ f (t) = L(q−1)φ(t) = [α f (t + 1), . . . , α f (t − nBQ + 1),

β f (t), β f (t − 1), . . . , β f (t − nAQ )] (16.20)

where α f (t + 1) = L(q−1)α(t + 1) and β f (t) = L(q−1)β(t).
Equation (16.19) will be used to develop the adaptation algorithms. When the

parameters of Q̂ evolve over time and neglecting the non-commutativity of the time-
varying operators (16.19) transforms into3

ν(t + 1|θ̂ (t + 1)) = AM(q−1)G(q−1)

AQ(q−1)P0(q−1)L(q−1)
[θ − θ̂ (t + 1)]Tφ f (t). (16.21)

Equation (16.21) has the standard form for an a posteriori adaptation error given
in Chap. 3 [3], which immediately suggests to use the following PAA:

θ̂ (t + 1) = θ̂ (t) + F(t)Φ(t)ν(t + 1); (16.22)

ν(t + 1) = ν◦(t + 1)

1 + ΦT (t)F(t)Φ(t)
; (16.23)

F(t + 1) = 1

λ1(t)

[
F(t) − F(t)Φ(t)ΦT (t)F(t)

λ1(t)
λ2(t)

+ ΦT (t)F(t)Φ(t)

]
(16.24)

1 ≥ λ1(t) > 0; 0 ≤ λ2(t) < 2; F(0) > 0 (16.25)

Φ(t) = φ f (t), (16.26)

where λ1(t) and λ2(t) allow to obtain various profiles for the adaptation gain F(t)
(see Sect. 4.3.4) in order to operate in adaptive regime (the trace of the adaptation
gain matrix has a strictly positive inferior minimum value) or self-tuning regime
(decreasing gain adaptation, the trace of the adaptation gain matrix goes asymptot-
ically to zero). By taking λ2(t) ≡ 0 and λ1(t) ≡ 1, one gets a constant adaptation
gain matrix and choosing F = γ I , γ > 0 one gets a scalar adaptation gain.

Several choices for the filter L will be considered, leading to different algorithms4:

Algorithm I: L = G
Algorithm IIa (FUPLR): L = Ĝ

Algorithm IIb: L = ÂM

P̂0
Ĝ with

P̂0 = ÂM S0 − B̂M R0 (16.27)

3Nevertheless, exact algorithms can be developed taking into account the non-commutativity of the
time-varying operators—see [3].
4One cannot use in practice Algorithm I as the true model of the secondary path is not known.
Instead one can use Algorithm II with an estimation of the secondary path model.

http://dx.doi.org/10.1007/978-3-319-41450-8_4
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Algorithm III (FUSBA):

L = ÂM

P̂
Ĝ (16.28)

with
P̂ = ÂQ( ÂM S0 − B̂M R0) = ÂQ P̂0, (16.29)

where ÂQ is an estimation of the denominator of the ideal QIIR filter computed on
the basis of available estimates of the parameters of the filter Q̂. For the Algorithm
III several options for updating ÂQ can be considered:

• Run Algorithm IIa or IIb for a certain time to get an estimate of ÂQ

• Run a simulation (using the identified models)
• Update ÂQ at each sampling instant or from time to time using Algorithm III (after

a short initialization horizon using Algorithm IIa or IIb)

When using a YKFIR structure ÂQ ≡ 1 and the implementation of Algorithm III
is much simpler since P̂ = P̂0 is constant and known once the central controller is
designed.

The following procedure is applied at each sampling time for adaptive or self-
tuning operation:

1. Get the measured image of the disturbance ŷ(t + 1), the measured residual error
e◦(t + 1) and compute ν◦(t + 1) = −e◦(t + 1).

2. Compute φ(t) and φ f (t) using (16.17) and (16.20).
3. Estimate the parameter vector θ̂ (t + 1) using the parametric adaptation algorithm

(16.22) through (16.26).
4. Compute (using (16.7)) and apply the control:

û(t + 1) = −( ÂQ(t + 1, q−1)S0)
∗û(t) + ÂQ(t + 1, q−1)R0 ŷ(t + 1)

+ B̂Q(t + 1, q−1)
(
B∗
Mû(t) − AM ŷ(t + 1)

)
. (16.30)

16.4 Analysis of the Algorithms

16.4.1 The Perfect Matching Case

Stability of the Algorithms

For Algorithms I, IIa, IIb and III, the equation for the a posteriori adaptation error
has the form:

ν(t + 1) = H(q−1)[θ − θ̂ (t + 1)]TΦ(t), (16.31)
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where

H(q−1) = AM(q−1)G(q−1)

AQ(q−1)P0(q−1)L(q−1)
, Φ = φ f . (16.32)

Equation (16.31) has the standard form considered in Chap. 4 and therefore neglecting
the non-commutativity of time-varying operators, one can conclude that the system
is asymptotically stable for all initial conditions θ̂ (0), ν◦(0), F(0), provided that

H ′(z−1) = H(z−1) − λ2

2
, max

t
[λ2(t)] ≤ λ2 < 2 (16.33)

is a SPR transfer function.
This result can be particularized for the case of FIR Youla–Kučera adaptive com-

pensators by taking in account that in this case AQ = 1 in (16.32).

Remark 1 Using Algorithm III and taking into account (16.28), the stability condi-
tion for λ2 = 1 can be transformed into [4, 5]:

∣∣∣∣∣∣
(
AM

ÂM

· ÂQ

AQ
· P̂0

P0
· G
Ĝ

)−1

− 1

∣∣∣∣∣∣ < 1 (16.34)

for all ω. This roughly means that it always holds provided that the estimates of AM ,
AQ , P0, and G are close to the true values (i.e., H(e− jω) in this case is close to a
unit transfer function).

Effect of the Measurement Noise

The situation is similar to that encountered for the standard IIR adaptive feedforward
compensator and the results are similar. The parameters of the estimated feedforward
compensator will converge to the same value as for the case without noise.

16.4.2 The Case of Non-perfect Matching

If Q̂(t, q−1) does not have the appropriate dimension there is no chance to satisfy
the perfect matching condition. Two questions are of interest in this case:

1. The boundedness of the residual error.
2. The bias distribution in the frequency domain.

for the first point the answer is the same as for the IIR adaptive feedforward com-
pensator (see Chap. 15), i.e., that the residual error will be bounded under similar
conditions given in Sect. 15.4.2.

http://dx.doi.org/10.1007/978-3-319-41450-8_4
http://dx.doi.org/10.1007/978-3-319-41450-8_15
http://dx.doi.org/10.1007/978-3-319-41450-8_15
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Bias Distribution

Following the same pathway as in Sect. 15.4.2 and using (16.14), the bias distribution
(for Algorithm III) will be given by

θ̂∗ = arg min
θ̂

∫ π

−π

⎡
⎣

∣∣∣∣∣D(e− jω) + N̂ (e− jω)G(e− jω)

1 − N̂ (e− jω)M(e− jω)

∣∣∣∣∣
2

φw(ω) + φη(ω)

⎤
⎦ dω

(16.35)

where φw and φη are the spectral densities of the disturbance w(t) and of the mea-
surement noise. Taking into account Eq. (16.14), one obtains

θ̂∗ = arg min
θ̂

∫ π

−π

⎡
⎣

∣∣∣∣GA2
M

P0

∣∣∣∣
2
∣∣∣∣∣
BQ

AQ
− B̂Q

ÂQ

∣∣∣∣∣
2

φw(ω) + φη(ω)

⎤
⎦ dω. (16.36)

From (16.36) one concludes that a good approximation of the Q filter will be
obtained in the frequency region where φw is significant and where G has a high gain
(usually G should have high gain in the frequency region where φw is significant in
order to counteract the effect of w(t)). Nevertheless, the quality of the estimated Q̂

filter will be affected also by the transfer function GA2
M

P0
.

16.4.3 Relaxing the Positive Real Condition

Like for the IIR adaptive feedforward compensator the strictly positive real condition
for stability (and convergence) can be relaxed if relatively small adaptation gains
are used (slow adaptation). The algorithms will work in general provided that the
weighted energy associated to the observation vector is in average positive, which
allows in fact that the SPR condition be violated in some limited frequency regions.
See analysis given in Sect. 15.4.3.

It was observed that despite satisfaction of condition (15.52) which will assure the
stability of the system, attenuation is not very good in the frequency regions where
the positive real condition (16.33) is violated.

Without doubt, the best approach for relaxing the SPR conditions is to use Algo-
rithm III (given in (16.28)) instead of Algorithm IIa or IIb. This is motivated by
(16.34). As it will be shown experimentally, this algorithm gives the best results.

16.4.4 Summary of the Algorithms

Table 16.1 summarizes the structure of the algorithms and the stability and conver-
gence conditions for the algorithms presented in Chap. 15 and this chapter with matrix

http://dx.doi.org/10.1007/978-3-319-41450-8_15
http://dx.doi.org/10.1007/978-3-319-41450-8_15
http://dx.doi.org/10.1007/978-3-319-41450-8_15
http://dx.doi.org/10.1007/978-3-319-41450-8_15
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â
Q 1

,
..

.]
[b̂Q 0

,
..

.]
[−
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and scalar adaptation gain for IIR Youla–Kučera feedforward compensators, for FIR
Youla–Kučera feedforward compensators and for IIR adaptive feedforward compen-
sators. The original references for these algorithms are [2, 6, 7]. These algorithms
take also into account the internal positive feedback.

It was not possible to give in Table 16.1 all the options for the adaptation gain.
Nevertheless, basic characteristics for adaptive operation (non-vanishing adaptation
gain) and self-tuning operation (vanishing adaptation gain) have been provided.5

The parametric adaptation algorithms can be implemented using the UD factor-
ization (see Appendix B) [3].6

16.5 Experimental Results

The same active distributed flexible mechanical structure as in Chap. 15 has been
used for experimental validation. Identification of the system has been detailed in
Chap. 6.

16.5.1 The Central Controllers and Comparison Objectives

Two central controllers have been used to test IIRYK adaptive feedforward compen-
sators. The first (PP) has been designed using a pole placement method tuned for the
case of positive feedback systems. Its main objective is to stabilize the internal posi-
tive feedback loop. The end result was a controller of orders nR0 = 15 and nS0 = 17.
The second (H∞) is a reduced order H∞ controller with nR0 = 19 and nS0 = 20 from
[9].7 For the design of the H∞ controller, the knowledge of the primary path and of
the PSD of the disturbance is mandatory (which is not necessary for the design of
PP controller).

The H∞ controller assures a global attenuation of 14.70 dB while the PP controller
achieves only 4.61 dB.

16.5.2 Broad-band Disturbance Rejection Using Matrix
Adaptation Gain

Broad-band disturbance rejection capabilities using the two Youla–Kučera parame-
terizations with IIR and FIR filters described in column 2 and 3 of Table 16.1 are

5Convergence analysis in a stochastic environment can be applied only for vanishing adaptation
gains.
6An array implementation as in [8] can be also considered.
7The orders of the initial H∞ controller were: nRH∞ = 70 and nSH∞ = 70.

http://dx.doi.org/10.1007/978-3-319-41450-8_15
http://dx.doi.org/10.1007/978-3-319-41450-8_6


362 16 Youla–Kučera Parametrized Adaptive Feedforward Compensators

evaluated in this subsection. A comparison with the algorithm given in column 4
is made (see also [7]). For most of the experiments, the complexity of the IIRYK
filter was nBQ = 3 and nAQ = 8, therefore having 12 parameters in the adaptation
algorithm according to Eq. (16.2). For the FIRYK parametrization, an adaptive filter
of order nBQ = 31 and nAQ = 0 (32 parameters) has been used. These values do not
allow to verify the “perfect matching condition”.

Two modes of operation can be considered: adaptive operation and self-tuning
operation.

For reason of space only the experimental results in adaptive operation will be
presented. Algorithms IIa and III have been used with decreasing adaptation gain
(λ1(t) = 1, λ2(t) = 1) combined with a constant trace adaptation gain. For IIRYK
the adaptation has been done starting with an initial gain of 0.02 (initial trace =
initial gain × number of adjustable parameters, thus 0.24) and using a constant trace
of 0.02. For FIRYK an initial gain of 0.05 (initial trace 0.05 × 32 = 1.6) and constant
trace 0.1 have been used.

The experiments have been carried out by first applying the disturbance and then
starting the adaptive feedforward compensation after 50 s. If not otherwise specified,
the results which will be presented have been obtained with the H∞ central controller.
In the case of the IIRYK parametrization using Algorithm III, the filtering of the
regressor is done adaptively. The last stable estimation of AQ(q−1) is used in (16.29).

Time domain results using IIRYK with Algorithms IIa and III are shown in
Figs. 16.2 and 16.3 respectively. It can be seen that Algorithm III provides better
performance than Algorithm IIa and this can be explained by a better approximation
of the positive real condition (see discussion in Sect. 16.4.3). Figure 16.4 shows the
evolution of the residual acceleration with the FIRYK adaptive compensator using
Algorithm III [6].

The power spectral density of the residual acceleration (after adaptation transient
is finished) for the considered algorithms are given in Fig. 16.5. The final attenuation
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Fig. 16.2 Real-time residual acceleration obtained with the IIR Youla–Kučera parametrization
(nBQ = 3, nAQ = 8) using Algorithm IIa with matrix adaptation gain and the H∞ central controller
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Fig. 16.3 Real-time residual acceleration obtained with the IIR Youla–Kučera parametrization
(nBQ = 3, nAQ = 8) using Algorithm III with matrix adaptation gain and the H∞ central controller
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Fig. 16.4 Real-time results obtained with the FIR Youla–Kučera parametrization (nQ = 31) using
Algorithm III with matrix adaptation gain and the H∞ central controller
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Table 16.2 Influence of the number of the parameters upon the global attenuation

Total no. param. 0 8 16 32 40

IIR (dB) – 16.49 16.89

FIRYK/H∞ (dB) 14.70 15.40 15.60 16.52 16.03

FIRYK/PP (dB) 4.61 14.69 15.89 15.7 15.33

IIRYK/H∞ (dB) 14.70 16.53 16.47

IIRYK/PP (dB) 4.61 15.53 16.21

provided by IIRYK using Algorithm III (16.21 dB) is better than that provided
by IIRYK using Algorithm IIa (13.37 dB) and slightly better than that provided by
using FIRYK with Algorithm III (16.17 dB) which uses significantly more adjustable
parameters (32 instead of 12). Nevertheless, the adaptation transient is slightly more
rapid for FIRYK.

An evaluation of the influence of the number of parameters upon the global atten-
uation for each algorithm is shown in Table 16.2. Each line gives global attenuation
results for a certain algorithm (IIR/FIRYK/IIRYK). The central controller is also
specified for the case of Youla–Kučera parametrized filters. The values for global
attenuation are given in dB. The column headers give the number of coefficients.

One can say that a reduction of the number of adjustable parameters by a factor of
(at least) 2 is obtained in the case of IIRYK/H∞ with respect to FIRYK/H∞ and IIR
adaptive feedforward compensators for approximately the same level of performance
(compare IIRYK/H∞ with 8 parameters with the FIRYK/H∞ with 16 parameters and
the IIRYK/H∞ with 16 parameters with the FIRYK/H∞ with 32 parameters and with
the IIR with 32 parameters). It can be noticed that the IIRYK/H∞ is less sensitive than
FIRYK/H∞ with respect to the performances of the model-based central controller.

To verify the adaptive capabilities of the two parameterizations (FIRYK and
IIRYK) with respect to changes in the characteristics of the disturbance, a narrow-
band disturbance has been added after 1400 s of experimentation. This has been
realized by using a sinusoidal signal of 150 Hz. Power spectral density estimates
are shown in Fig. 16.6 for the IIRYK parametrization and in Fig. 16.7 for the FIRYK
parametrization. Better results are obtained with the IIRYK parametrization and they
are comparable with those obtained for IIR adaptive feedforward compensators (see
Chap. 15, Fig. 15.10).

16.5.3 Broad-band Disturbance Rejection Using Scalar
Adaptation Gain

The scalar adaptation gain algorithms given in Table 16.1, columns 5 and 6 have also
been tested on the AVC system.

http://dx.doi.org/10.1007/978-3-319-41450-8_15
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Fig. 16.6 Power spectral densities of the residual acceleration when an additional sinusoidal dis-
turbance is added (Disturbance = PRBS + sinusoid) and the IIRYK parametrization is used
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Fig. 16.7 Power spectral densities of the residual acceleration when an additional sinusoidal dis-
turbance is added (Disturbance = PRBS + sinusoid) and the FIRYK parametrization is used

In the adaptation regime, a constant adaptation gain of 0.001 has been used
for both parameterizations, as in [7] (see also Table 16.1). This corresponds to a
constant trace of 0.012 for the IIRYK and 0.032 for the FIRYK (taking into account
the number of adapted parameters). Figure 16.8 shows the adaptation transient for
the scalar version of the IIRYK parametrization using Algorithm III. Surprisingly,
the performances are close to those obtained with a matrix adaptation gain (a similar
observation has been made in [7, Fig. 14]). Figure 16.9 shows the adaptation transient
for the FIRYK parametrization using a scalar adaptation gain. It can be seen that the
transient performances are slightly better for the IIRYK.
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Fig. 16.8 Real-time residual acceleration obtained with the IIR Youla–Kučera parametrization
(nBQ = 3, nAQ = 8) using Algorithm III with scalar adaptation gain and the H∞ central controller
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Fig. 16.9 Real-time residual acceleration obtained with the FIR Youla–Kučera parametrization
(nQ = 31) using Algorithm III with scalar adaptation gain and the H∞ central controller

In terms of global attenuation, an IIRYK feedforward compensator with 12 para-
meters (nBQ = 3, nAQ = 8) gives a global attenuation of 16.45 dB and a FIRYK
feedforward compensator with 32 parameters (nQ = 31) achieves a global attenua-
tion of 15.92 dB. This significant reduction in the number of adjustable parameters
for the same level of performance when using IIRYK feedforward compensators,
holds also if one compare IIRYK feedforward compensators with IIR feedforward
compensators (with scalar adaptation gain). See Chap. 15 and [2, 7].

16.6 Comparison of the Algorithms

The Number of Adjustable Parameters

The main advantage of the IIRYK adaptive feedforward compensators compared
with FIRYK adaptive compensators is that they require a significantly lower number

http://dx.doi.org/10.1007/978-3-319-41450-8_15
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of adjustable parameters for a given level of performance (a reduction by a factor of
2 in the application presented). This is without doubt a major practical advantage in
terms of implementation complexity. A slight reduction of the number of adjustable
parameters is also obtained with respect to IIR adaptive feedforward compensators.

The Poles of the Internal Positive Closed-Loop

For IIR adaptive feedforward compensators provided that the SPR condition for
stability is satisfied, the poles of the internal “positive” loop will be asymptotically
stable but they can be very close to the unit circle. For FIRYK, the poles of the
internal positive feedback loop are assigned by the central stabilizing controller and
they remain unchanged under the effect of adaptation. For IIRYK, part of the poles of
the internal positive feedback loop are assigned by the central stabilizing controller
but there are additional poles corresponding to ÂQ . These poles will be asymptotically
inside the unit circle if the positive real condition for stability is satisfied but they
can be very close to the unit circle (at least theoretically). Nevertheless, if one likes
to impose that these poles lie inside a circle of a certain radius, this can be easily
achieved by using parameter adaptation algorithms with “projections” [3, 10].

Implementation of the Filter for Algorithm III

For IIRYK adaptive compensators, one has to run first Algorithm IIa or IIb over a
short-time horizon in order to get an estimate of ÂQ for implementing the appropriate
filter. A similar procedure has to be used also for IIR adaptive compensators (see
Chap. 15 and [7]). For the IIRYK structure, the filter can be continuously improved
by updating at each step the estimation of ÂQ in the filter. Such a procedure is
more difficult to apply to the IIR structure since the estimated closed-loop poles
have to be computed at each step based on current estimates of the feedforward
compensator’s parameters and the knowledge of the reverse path M(q−1). For FIRYK
this initialization procedure is not necessary since the poles of the internal positive
feedback loop remain unchanged under the effect of adaptation and a good estimation
is provided by the knowledge of the central stabilizing compensator and of the model
of the reverse path.

Initial Model-Based Design Compensator

Since the system as well as the initial characteristics of the disturbance can be identi-
fied, a model-based design of an initial feedforward compensator can be done. For a
FIRYK or an IIRYK adaptive feedforward compensator, any model-based designed
compensator can be used as the central controller (no matter what is its dimension).
Its performances will be enhanced by the adaptation of the Q-parameters. Never-
theless, for IIR adaptive feedforward compensators the initial model-based designed
compensator should have the same structure (number of parameters) as the adaptive
structure.

http://dx.doi.org/10.1007/978-3-319-41450-8_15
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Influence of the Initial Stabilizing Controller

The performances of IIRYK adaptive compensator are less sensitive than those of
FIRYK adaptive compensator with respect to the performances of the initial model-
based stabilizing controller.

16.7 Concluding Remarks

• Use of the Youla–Kučera parametrization for adaptive feedforward compensation
in the presence of the internal positive feedback is justified by the separation of
the stabilization of the internal positive feedback loop from the optimization of
the feedforward compensator parameters.

• IIR or FIR Youla–Kučera structures can be used for the feedforward compensator.
• IIR Youla–Kučera compensator structure leads to the minimal number of adjustable

parameters with respect to FIR Youla–Kučera feedforward compensator and IIR
feedforward compensator.

• Youla–Kučera structure for the feedforward compensator allows to use a central
controller of any order independently of the number of adjustable parameters.

16.8 Notes and References

The basis of the Youla–Kučera parametrization is discussed in [11]. Linear feed-
forward compensators using Youla–Kučera parametrization are presented in [12].
Youla–Kučera based adaptive feedforward compensator using orthonormal basis
functions is considered in [13]. The orthonormal basis functions are presented in [14].
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Appendix A
Generalized Stability Margin
and Normalized Distance Between
Two Transfer Functions

A.1 Generalized Stability Margin

In Sect. 7.2.4, the modulus margin has been introduced. It corresponds to the mini-
mum distance between the Nyquist plot of the open-loop transfer function and the
critical point [−1, j0]. The modulus margin has the expression

ΔM =
(∣∣Syp (

e− jω
)∣∣

max
ω

)−1

= ‖Syp
(
e− jω

) ‖−1
∞ , ∀ 0 ≤ ω ≤ π fs (A.1)

Stability of the closed-loop system requires that all the sensitivity functions be
asymptotically stable. Furthermore it was shown in Sect. 7.2.5 that the uncertainties
tolerated on the plant model depend upon the sensitivity functions. More specifically,
the admissible uncertainties will be smaller as the maximum of the modulus of the
various sensitivity functions grows.

One can ask if it is not possible to give a global characterization of the stability
margin of a closed-loop system and its robustness, taking simultaneously into account
all the four sensitivity functions. This problem can be viewed as the generalization
of the modulus margin.

Denoting the controller by

K = R(z−1)

S(z−1)
(A.2)

and the transfer function of the plant model by

G = z−d B(z−1)

A(z−1)
(A.3)

one defines for the closed-loop system (K ,G) the matrix of sensitivity functions
(z = e jω)

T ( jω) =
∣∣∣∣ Syr (e− jω) Syv(e− jω)

−Sup(e− jω) Syp(e− jω)

∣∣∣∣ (A.4)

© Springer International Publishing Switzerland 2017
I.D. Landau et al., Adaptive and Robust Active Vibration Control,
Advances in Industrial Control, DOI 10.1007/978-3-319-41450-8

371

http://dx.doi.org/10.1007/978-3-319-41450-8_7
http://dx.doi.org/10.1007/978-3-319-41450-8_7


372 Appendix A: Generalized Stability Margin and Normalized …

where Syr , Syυ , Sup, and Syp represent

• the complementary sensitivity function

Syr (z
−1) = KG

1 + KG
= z−d B(z−1)R(z−1)

P(z−1)
,

• the output sensitivity function with respect to an input disturbance

Syυ(z−1) = G

1 + KG
= z−d B(z−1)S(z−1)

P(z−1)
;

• the output sensitivity function

Syp(z
−1) = 1

1 + KG
= A(z−1)S(z−1)

P(z−1)
;

• the input sensitivity function

Sup(z
−1) = − K

1 + KG
= − A(z−1)R(z−1)

P(z−1)
;

where
P(z−1) = A(z−1)S(z−1) + z−d B(z−1)R(z−1). (A.5)

defines the poles of the closed-loop.
Similarly to the modulus margin, one defines the generalized stability margin as

b(K ,G) =

⎧⎪⎨
⎪⎩

(∣∣T (e− jω)
∣∣
max

ω

)−1

= ‖T (e− jω)‖−1∞ if (K ,G) is stable

0 if (K ,G) is unstable
(A.6)

where:

∣∣T (e− jω)
∣∣
max

ω

= ∣∣σ̄ (e− jω)
∣∣
max

ω

= ‖T (e− jω)‖∞, ∀ ω ∈ [0, π fs] (A.7)

In Eq. (A.7), σ̄ (e− jω) is the largest singular value of T (e− jω) computed using singular
value decomposition [1, 2].

The generalized stability margin can be computed with the function smarg.m from
the toolbox REDUC® [3].1

As the value of b(K ,G) decreases, the closed-loop system will be close to insta-
bility and it will be less robust with respect to the variations (or uncertainties) of the
plant nominal transfer function.

1To be downloaded from the book website.
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A.2 Normalized Distance Between Two Transfer Functions

Consider a transfer function G. Let denotes the number of unstable zeros by nzi and
the number of unstable poles by npi . The number of encirclements of the origin of
the complex plane is given by

wno(G) = nzi (G) − npi (G) (A.8)

(positive value = counter clockwise encirclements; negative value = clockwise encir-
clements). It is possible to compare two transfer functions G1 and G2 only if they
satisfy the following property:

wno(1 + G∗
2G1) + npi (G1) − npi (G2) − np1(G2) = 0 (A.9)

where G∗
2 is the complex conjugate of G2 and np1(G2) is the number of poles of G2

located on the unit circle.2

The normalized distance between two transfer functions satisfying the property
of Eq. A.9 is called the Vinnicombe distance or ν-gap [4].

Let define the normalized difference between two transfer functions G1(e− jω)

and G2(e− jω) as

Ψ
(
G1(e

− jω),G2(e
− jω)

) = G1(e− jω) − G2(e− jω)(
1 + ∣∣G1(e− jω)

∣∣2
) 1

2
(

1 + ∣∣G2(e− jω)
∣∣2

) 1
2

(A.10)

The normalized distance (Vinnicombe distance) is defined by

δν(G1,G2) = |Ψ (G1,G2)|max
ω

= ‖Ψ (G1,G2) ‖∞,∀ ω ∈ [0, π fs] (A.11)

One observes immediately from the structure of Ψ that

0 ≤ δν(G1,G2) < 1. (A.12)

If the condition of Eq. A.9 is not satisfied, by definition

δν(G1,G2) = 1. (A.13)

The Vinnicombe distance can be computed with the function vgap.m from the
toolbox REDUC® [3].3

2The condition of Eq. A.9 is less restrictive than the condition used in Sect. 7.2.5 where two transfer
functions with the same number of unstable poles and with the same number of encirclements of
the origin have been considered.
3To be downloaded from the book website.
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A.3 Robust Stability Condition

Using the generalized stability margin and the Vinnicombe distance between two
transfer functions, one can express a robust stability condition (sufficient condition)
for a controller K designed on the basis of the nominal model G1 as follows. Con-
troller K which stabilizes model G1 will also stabilize model G2 if

δν(G1,G2) ≤ b(K ,G1). (A.14)

This condition can be replaced by a less restrictive condition, but which should
be verified at all frequencies4:

|Ψ (G1,G2)| ≤ ∣∣T (e− jω)
∣∣−1

, ∀ ω ∈ [0, π fs] . (A.15)

A.4 Notes and References

The original reference for Vinnicombe distance (ν-gap) and generalized stability
margin is [4]. For a good pedagogical presentation, but with extensive use of the H∞
norm, see [1, 2].

These concepts have been very useful for validation of reduced order controllers
(see Chap. 9) and of the models identified in closed-loop operation (see Chap. 8).
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Appendix B
Implementation of the Adaptation Gain
Updating—The U-D Factorization

The adaptation gain equation is sensitive to round-off errors. This problem is compre-
hensively discussed in [1] where a U-D factorization has been developed to ensure the
numerical robustness of the PAA. To this end, the adaptation gain matrix is rewritten
as follows

F(t) = U (t)D(t)UT (t) (B.1)

where U (t) is an upper triangular matrix with all diagonal elements equal to 1 and
D(t) is a diagonal matrix. This allows the adaptation gain matrix to remain positive
definite so that the rounding errors do not affect the solution significantly.

Let

G(t) = D(t)V (t) (B.2)

V (t) = UT (t)φ f (t) (B.3)

β(t) = 1 + V T (t)G(t) (B.4)

δ(t) = λ1(t)

λ2(t)
+ V T (t)G(t) (B.5)

Define:

Γ (t) = U (t)G(t)

β(t)
= F(t)φ f (t)

1 + φT
f (t)F(t)φ f (t)

(B.6)

The U-D factorization algorithm of the parameter adaptation gain is given below.
Initialize U(0) and D(0) at time t = 0, this provides the initial value of the adapta-

tion gain matrix F(0) = U (0)D(0)UT (0). At time t + 1, determine the adaptation
gain Γ (t) while updating D(t + 1) and U (t + 1) by performing the steps 1–6.

1. Compute V (t) = UT (t)φ f (t), G(t) = D(t)V (t), β0 = 1 and δ0 = λ1(t)
λ2(t)

2. For j = 1 to np (number of parameters) go through the steps 3–5
3. Compute
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I.D. Landau et al., Adaptive and Robust Active Vibration Control,
Advances in Industrial Control, DOI 10.1007/978-3-319-41450-8

375



376 Appendix B: Implementation of the Adaptation Gain …

β j (t) = β j−1(t) + Vj (t)G j (t)

δ j (t) = δ j−1(t) + Vj (t)G j (t)

Dj j (t + 1) = δ j−1(t)

δ j (t)λ1(t)
Dj j (t)

Γ j (t) = G j (t)

Mj (t) = − Vj (t)

δ j−1(t)

4. If j = 1 then go to step 6 else for i = 1 to j − 1 go through step 5
5. Compute

Ui j (t + 1) = Ui j (t) + Γi (t)Mj (t)

Γi (t) = Γi (t) +Ui j (t)Γ j (t)

6. For i = 1 to np do

Γi (t) = 1

βnp (t)
Γi (t)

A lower bound on the adaptation gain is simply obtained by maintaining the values
of the elements of the diagonal matrix D(t) above some specified threshold d0 as
follows:

di (t) =
{
d0 or di (t − 1) if di (t) ≤ d0

di (t) otherwise

}
(B.7)

Notice that the implementation of such an algorithm is indeed simple to legitimate
its use.5

Reference
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Appendix C
Interlaced Adaptive Regulation: Equations
Development and Stability Analysis

C.1 Equations Development

From Eq. (13.61), rewritten here, the development of the equations in order to obtain
Eq. (13.63) is shown next.

The a priori error is given by

ε◦(t + 1) = υ(t + 1) + q−d B∗HS0 HR0

P0

[
BQ

AQ
− B̂Q(t)

ÂQ(t)

]
w(t) (C.1)

For constant B̂Q(t) and ÂQ(t) or neglecting the non-commutativity of time-varying
operators, (C.1) can be written6

ε◦(t + 1) = υ(t + 1) + q−d BHS0 HR0

P0

[
BQ

AQ
− B̂Q(t)

ÂQ(t)

]
w(t + 1), (C.2)

observing that

uQ(t + 1) = BQ

AQ
w(t + 1) (C.3)

= BQw(t + 1) − A∗
QuQ(t) (C.4)

= BQw(t + 1) − A∗
QûQ(t) − A∗

Q

(
uQ(t) − ûQ(t)

)
(C.5)

6Taking advantage of the notation B = q−1B∗ one can conveniently use the relation Bw(t + 1) =
B∗w(t).
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and also
ûQ(t + 1) = B̂Q(t)w(t + 1) − ÂQ(t)ûQ(t), (C.6)

then (C.1) becomes

ε◦(t + 1) = υ(t + 1) + q−d BHS0 HR0

P0
[
(
BQ − B̂Q(t)

)
w(t + 1)−

−
(
A∗
Q − Â∗

Q(t)
)
ûQ(t) − A∗

Q

(
uQ(t) − ûQ(t)

)]. (C.7)

One can then define the a posteriori error as:

ε(t + 1) = υ(t + 1) + q−d BHS0 HR0

P0
[
(
BQ − B̂Q(t + 1)

)
w(t + 1)−

−
(
A∗
Q − Â∗

Q(t + 1)
)
ûQ(t) − A∗

Q

(
uQ(t) − ûQ(t)

)]. (C.8)

It is necessary to find an expression relating the difference uQ(t) − ûQ(t) to the
a posteriori error ε(t + 1). The measured output of the system, y(t), is given by

y(t) = ŷ1(t) + p(t), (C.9)

where ŷ1(t) is the process output with the adaptive YKIIR compensator and p(t) is
the effect of the disturbance. Under the assumption that the ideal YKIIR compensator
BQ(q−1)

AQ(q−1)
completely cancels out the disturbance p(t), Eq. (C.9) becomes

y(t) = ŷ1(t) − y1(t), (C.10)

where y1(t) = −p(t) is the process output with the ideal YKIIR compensator BQ

AQ
.

One can define

ŷ1(t) = −q−d B

A

1

S0

[
R0y(t) + HS0 HR0 ûQ(t)

]
(C.11)

as the plant output with the estimated YKIIR compensator and

y1(t) = −q−d B

A

1

S0

[
0 + HS0 HR0uQ(t)

]
(C.12)

as the plant output with the ideal YKIIR compensator (y(t) is zero in this case).
Introducing these equations in (C.10), one obtains

y(t) = −q−d B

A

R0

S0
y(t) + q−d B

A

HS0 HR0

S0

(
uQ(t) − ûQ(t)

)
(C.13)
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[
1 + q−d B

A

R0

S0

]
y(t) = q−d BHS0 HR0

AS0

(
uQ(t) − ûQ(t)

)
. (C.14)

Therefore, since P0 = AS0 + q−d BR0, one gets

ε(t) = y(t) = q−d BHS0 HR0

P0
(uQ(t) − ûQ(t)) (C.15)

noting that ε(t) = y(t) if B̂Q(t) and Â∗
Q(t) are used. One introduces also the notation

û f
Q(t) = q−d BHS0 HR0

P0
ûQ(t). (C.16)

Turning back to (13.61) and using (C.15) and (C.16) as well as (13.59) one obtains:

ε◦(t + 1) = υ(t + 1) +
(
BQ − B̂Q(t)

)
w f (t)−

−
(
A∗
Q − Â∗

Q(t)
)
û f
Q(t) − A∗

Qε(t). (C.17)

The a posteriori error equation becomes

ε(t + 1) = υ(t + 1) +
(
BQ − B̂Q(t + 1)

)
w f (t)−

−
(
A∗
Q − Â∗

Q(t + 1)
)
û f
Q(t) − A∗

Qε(t). (C.18)

The above equation can be rewritten as

ε(t + 1) = 1

AQ

[
θT

1 − θ̂T
1 (t + 1)

]
φ1(t) + υ f (t + 1) + υ1(t + 1), (C.19)

where υ f (t + 1) and υ1(t + 1) = −
(
A∗
Q − Â∗

Q(t + 1)
)
û f
Q(t) are vanishing signals

because υ f (t + 1) is the output of an asymptotically stable filter whose input is a
Dirac pulse and Â∗

Q(t + 1) → A∗
Q as shown next.

C.2 Stability Analysis of Interlaced Scheme (Sketch)

C.2.1 Estimation of ÂQ

Taking into account the structure of the Eq. (13.46) and the results of Chap. 4 and
[1], one can immediately conclude that

http://dx.doi.org/10.1007/978-3-319-41450-8_13
http://dx.doi.org/10.1007/978-3-319-41450-8_13
http://dx.doi.org/10.1007/978-3-319-41450-8_13
http://dx.doi.org/10.1007/978-3-319-41450-8_4
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lim
t→∞ εDp (t) = 0. (C.20)

and
lim
t→∞ θ̃T

Dp
(t + 1)φDp (t) = 0. (C.21)

where θ̃T
Dp

(t + 1) = θ̂T
Dp

(t + 1) − θT
Dp

.

From (C.21) one gets:

θ̃T
Dp

(t)φDp (t − 1) =
n−1∑
i=1

(
p̂(t − i) + p̂(t − 2n + i)

)
α̃i (t) + p̂(t − n)α̃n(t)

=
(

n−1∑
i=1

(
z−i + z−2n+i

)
α̃i (t) + z−nα̃n(t)

)
p̂(t)

→ 0 as t → ∞ (C.22)

where {α̃i }n1 = {
α̂i (t) − αi

}n
1.

Based on the assumption that p̂(t) has n independent frequency components, the
FrequencyRichnessCondition for ParameterConvergence holds. Therefore, the only
solution to the above equation is limt→∞ α̃i (t) = 0, i.e., the parameters converge to
their true values.

Since AQ(z−1) = Dp(ρz−1), then ÂQ(z−1) = D̂p(ρz−1), one concludes that:

lim
t→∞ ÂQ(z−1) = AQ(z−1) (C.23)

C.2.2 Estimation of BQ(z−1)

In all the cases the equation for the a posteriori adaptation error takes the form

ν(t + 1) = H(q−1)[θ1 − θ̂1(t + 1)]Φ1(t) (C.24)

which allows to use straightforwardly for stability analysis the results of Chap. 4,
Sect. 4.4.2 and [1].

For each choice of a the regressor and of the adaptation error a different positive
real condition has to be satisfied for assuring asymptotic stability. The various options
and the stability conditions are summarized in Table 13.2.
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Appendix D
Error Equations for Adaptive Feedforward
Compensation

D.1 Derivation of Eq. (15.27)—Chap. 15

Under Assumption H2 (perfect matching condition), the output of the primary path
can be expressed as:

x(t + 1) = −z(t + 1) = −G(q−1)u(t + 1) (D.1)

where u(t + 1) is a dummy variable given by:

u(t + 1) = − S∗(q−1)u(t) + R(q−1)y(t + 1) = θTϕ(t) = [θT
S , θT

R ]
[

ϕy(t)
ϕu(t)

]

(D.2)

where

ϕT (t) = [−u(t), . . . − u(t − nS + 1), y(t + 1), . . . y(t − nR + 1)]
= [ϕT

u (t), ϕT
y (t)] (D.3)

and y(t + 1) is given by

y(t + 1) = w(t + 1) + B∗
M(q−1)

AM(q−1)
u(t) (D.4)

This is illustrated in Fig. D.1.
For a fixed value of the parameter vector θ̂ characterizing the estimated filter

N̂ (q−1) of same dimension as the optimal filter N (q−1), the output of the secondary
path can be expressed by (in this case ẑ(t) = ẑ◦(t) and û(t) = û◦(t)):

ẑ(t) = G(q−1)û(t) (D.5)
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Fig. D.1 Equivalent representation of the system under the perfect matching hypothesis

where
û(t + 1) = θ̂Tφ(t). (D.6)

The key observation is that the dummy variable u(t + 1) can be expressed as:

u(t + 1) = θTφ(t) + θT [ϕ(t) − φ(t)]
= θTφ(t) + θT

S [ϕu − φû] + θT
R [ϕy − φŷ] (D.7)

Define the dummy error (for a fixed vector θ̂ )

ε(t + 1) = u(t + 1) − û(t + 1) (D.8)

and the adaptation error

ν(t + 1) = −e(t + 1) = z(t) − ẑ(t) = G(q−1)ε(t + 1) (D.9)

It results from (D.7) that:

u(t + 1) = θTφ(t) − S∗(q−1)ε(t) + R(q−1)[y(t + 1) − ŷ(t + 1)] (D.10)

But taking into account the expressions of y(t) and ŷ(t) given by (D.4) and (15.19),
respectively, one gets:

u(t + 1) = θTφ(t) −
(
S∗(q−1) − R(q−1)B∗

M(q−1)

AM(q−1)

)
ε(t) (D.11)

and therefore:

ε(t + 1) = [θ − θ̂ ]Tφ(t) −
(
S∗(q−1) − R(q−1)B∗

M(q−1)

AM(q−1)

)
ε(t) (D.12)

http://dx.doi.org/10.1007/978-3-319-41450-8_15
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This gives:
AMS − BM R

AM
ε(t + 1) = [θ − θ̂ ]Tφ(t) (D.13)

which can be rewritten as:

ε(t + 1) = AM(q−1)

P(q−1)
[θ − θ̂]Tφ(t) (D.14)

Taking now into account (D.9) one gets (15.27).

D.2 Adaptation Errors for Algorithm II—Chap. 15

For Algorithm II, the equation for the a posteriori error (15.34) becomes

ν(t + 1) = AMG

PĜ
[θ − θ̂ (t + 1)]Tφ f (t) (D.15)

= AM B∗
G ÂG

P B̂∗
G AG

[θ − θ̂ (t + 1)]Tφ f (t) (D.16)

= bG1
b̂G1

AM
(
B∗
G/bG1

)
ÂG

P
(
B̂∗
G/b̂G1

)
AG

[θ − θ̂ (t + 1)]Tφ f (t) (D.17)

One can now apply the result given in Chap. 4, Eqs. (4.125)–(4.131), with monic
polynomials

H1 = AM
(
B∗
G/bG1

)
ÂG, H2 = P

(
B̂∗
G/b̂G1

)
AG, (D.18)

to obtain

ν(t + 1) = bG1
b̂G1

[
θ − θ̂ (t + 1)

]T
φ f (t) + H∗

1 (q−1)
[
θ − θ̂ (t)

]T
φ f (t − 1)

− H∗
2 (q−1)ν(t).

(D.19)

and respectively

ν◦(t + 1) = bG1
b̂G1

[
θ − θ̂ (t)

]T
φ f (t) + H∗

1 (q−1)
[
θ − θ̂ (t)

]T
φ f (t − 1)

− H∗
2 (q−1)ν(t). (D.20)
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Therefore Eq. (15.36) will be exact if bG1 = b̂G1 . This implies in practice that bG1 and
b̂G1 should have the same sign and one needs to assume that their values are very
close (which means that a good identification of G has been done). Same situation
occurs for Algorithm III since one uses Ĝ instead of G.

D.3 Derivation of Eq. (15.86)—Chap. 15

For a fixed value of the parameter vector θ̂ characterizing the estimated filter N̂ (q−1)

of same dimension as the optimal filter N (q−1), the output of the secondary path can
be expressed by (in this case ẑ(t) = ẑ◦(t), û(t) = û◦(t) and e(t) = e◦(t)):

ẑ(t) = Gû(t) (D.21)

with

û(t) = û1(t) − BK

AK
e(t) = û1(t) + BK

AK
ν(t), (D.22)

where
û1(t + 1) = θ̂Tφ(t). (D.23)

The key observation is that using [1, Eqs. (63)–(67)], the dummy variable u(t + 1)

can be expressed as:

u(t + 1) = θTφ(t) − S∗[u(t) − û1(t)] + R[y1(t + 1) − ŷ1(t + 1)]. (D.24)

Define the dummy error (for a fixed vector θ̂ )

ε(t + 1) = u(t + 1) − û1(t + 1) − KGε(t + 1) (D.25)

and the adaptation error becomes:

ν(t + 1) = −e(t + 1) = −x(t + 1) − ẑ(t + 1) = Gε(t + 1). (D.26)

Taking into account the (D.22) and (D.26), u(t + 1) becomes:

u(t + 1) = θTφ(t) − S∗[u(t) − û(t) + BK BG

AK AG
ε(t)]

+ R[y1(t + 1) − ŷ1(t + 1)].
(D.27)

It results from (D.27) by taking into account the expressions of u1(t) and û1(t)
given by (67) of [1] and (15.31) that:

http://dx.doi.org/10.1007/978-3-319-41450-8_15
http://dx.doi.org/10.1007/978-3-319-41450-8_15
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u(t + 1) = θTφ(t) −
[
S∗(1 + BK BG

AK AG
) − R(q−1)B∗

M

AM

]
ε(t). (D.28)

Using Eqs. (D.22) and (D.25), one gets (after passing all terms in ε on the left
hand side):

ε(t + 1) = AM AG AK

Pf b− f f
[θ − θ̂ ]Tφ(t). (D.29)

Taking now into account Eq. (D.26) one obtains Eq. (15.86).

D.4 Derivation of Eq. (16.16)—Chap. 16

Using hypothesis H2′′ (Sect. 16.3), one can construct an equivalent closed-loop sys-
tem for the primary path as in Fig. D.2.

Considering a Q(q−1) filter as in (16.2), the polynomial S(q−1) given in (16.1)
can be rewritten as

S(q−1) = 1 + q−1S∗ = 1 + q−1((AQS0)
∗ − BQB

∗
M). (D.30)

Under hypothesis H2′′ (perfect matching condition), the output of the primary
path can be expressed as

x(t) = −z(t) = −G(q−1)u(t) (D.31)

Fig. D.2 Equivalent system representation

http://dx.doi.org/10.1007/978-3-319-41450-8_15
http://dx.doi.org/10.1007/978-3-319-41450-8_16
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and the input to the Youla–Kučera compensator as

y(t + 1) = w(t + 1) + BM

AM
u(t + 1) (D.32)

where u(t) is a dummy variable given by

u(t + 1) = − S∗u(t) + Ry(t + 1)

= − ((AQS0)
∗ − BQB

∗
M)u(t) + (AQR0 − BQ AM)y(t + 1)

= − (AQS0)
∗u(t) + AQR0y(t + 1) + BQ

(
B∗
Mu(t) − AM y(t + 1)

)
.

(D.33)

Similarly, the output of the adaptive feedforward filter (for a fixed Q̂) is given by

û(t + 1) = − ( ÂQ S0)
∗û(t) + ÂQ R0 ŷ(t + 1) + B̂Q

(
B∗
Mû(t) − AM ŷ(t + 1)

)
.

(D.34)

The output of the secondary path is

ẑ(t) = G(q−1)û(t). (D.35)

Define the dummy error (for a fixed estimated set of parameters)

ε(t) = −u(t) + û(t) (D.36)

and the adaptation error

ν(t) = −e(t) = −(−z(t) + ẑ(t)) = −G(q−1)ε(t)). (D.37)

Equation (D.33) can be rewritten as

u(t + 1) = − (AQS0)
∗û(t) + AQR0 ŷ(t + 1)

+ BQ(B∗
Mû(t) − AM ŷ(t + 1)) − (AQS0)

∗(u(t) − û(t))

+ AQR0(y(t + 1) − ŷ(t + 1))

+ BQ[B∗
M(u(t) − û(t)) − AM(y(t + 1) − ŷ(t + 1))]. (D.38)

Taking into consideration Eqs. (16.8), (D.32)

BQ[B∗
M(u(t) − û(t)) − AM(y(t + 1)−ŷ(t + 1))] =

= BQ

[
B∗
Mε(t) − AM

B∗
M

AM
ε(t)

]
= 0

(D.39)

http://dx.doi.org/10.1007/978-3-319-41450-8_16
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and subtracting (D.34) from (D.38) one obtains

ε(t + 1) = − ((−AQ + ÂQ)S0)
∗û(t) + (−AQ + ÂQ)R0 ŷ(t + 1)

+ (−BQ + B̂Q)[B∗
Mû(t) − AM ŷ(t + 1)]
− (AQS0)

∗ε(t) + AQR0
B∗
M

AM
ε(t).

(D.40)

Passing the terms in ε(t) on the left hand side, one gets:

[
1 + q−1

(
AM(AQS0)

∗ − AQR0B∗
M

AM

)]
ε(t + 1) = AQ P0

AM
ε(t + 1)

= (−A∗
Q + Â∗

Q)[−S0û(t) + R0 ŷ(t)]
+ (−BQ + B̂Q)[BMû(t + 1) − AM ŷ(t + 1)]

(D.41)

Using Eqs. (D.37) and (16.18) one gets Eq. (16.16).
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Appendix E
“Integral + Proportional” Parameter
Adaptation Algorithm

“Integral + Proportional” parameter adaptation algorithms (IP-PAA) [1–3] should
be considered in the context of AVC for two reasons:

• It allows to remove or to relax the positive real conditions for stability.
• It may accelerate the adaptation transients.

E.1 The Algorithms

The equations for the development of the Integral + proportional adaptation for
adaptive feedforward compensation are identical to those given in Chap. 15 up to Eq.
(15.35).

The specificity of the IP-PAA is that the estimated parameter vector θ̂ (t) is at each
instant the sum of two components

θ̂ (t) = θ̂I (t) + θ̂P(t), (E.1)

where θ̂I (t) is the integral component generated through the type of algorithm intro-
duced in Chap. 4 (these algorithms have memory) and a proportional component
θ̂P(t) generated by an adaptation algorithm without memory.

The following IP-PAA is proposed:

θ̂I (t + 1) = θ̂I (t) + ξ(t)FI (t)Φ(t)ν(t + 1), (E.2a)

θ̂P(t + 1) = FP(t)Φ(t)ν(t + 1), (E.2b)

ν(t + 1) = ν◦(t + 1)

1 + ΦT (t)(ξ(t)FI (t) + FP(t))Φ(t)
, (E.2c)
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FI (t + 1) = 1

λ1(t)

[
FI (t) − FI (t)Φ(t)ΦT (t)FI (t)

λ1(t)
λ2(t)

+ ΦT (t)FI (t)Φ(t)

]
, (E.2d)

FP(t) = α(t)FI (t); α(t) > −0.5, (E.2e)

F(t) = ξ(t)FI (t) + FP(t), (E.2f)

ξ(t) = 1 + λ2(t)

λ1(t)
ΦT (t)FP(t)Φ(t), (E.2g)

θ̂ (t + 1) = θ̂I (t + 1) + θ̂P(t + 1), (E.2h)

0 < λ1(t) ≤ 1, 0 ≤ λ2(t) < 2, FI (0) > 0, (E.2i)

Φ(t) = φ f (t), (E.2j)

where ν(t + 1) is the (filtered) adaptation error, λ1(t) and λ2(t) allow to obtain
various profiles for the matrix adaptation gain FI (t) (see Sect. 4.3.4 and [1] for
more details). For α(t) ≡ 0, one obtains the algorithm with integral adaptation gain
introduced in Sect. 4.3.3 (see also [4]). A detailed stability analysis can be found in
[2].

The sufficient positive real conditions given in Chap. 15 for the integral type
adaptation can be relaxed when using integral + proportional adaptation.

E.2 Relaxing the Positive Real Condition

One has the following result [2]:

Theorem E.1 The adaptive system described by Eqs. (15.34), 15.44) and (E.2) for
λ2(t) ≡ 0 and λ1(t) ≡ 1 is asymptotically stable provided that:

(T1) It exists a gain K such that H
1+K H is SPR,

(T2) The adaptation gains FI and FP(t) and the observation vector Φ(t) satisfy

t1∑
t=0

[
ΦT (t − 1)

(
1

2
FI + FP(t − 1)

)
Φ(t − 1) − K

]
ν2(t) ≥ 0 (E.3)

for all t1 ≥ 0 or

ΦT (t)

(
1

2
FI + FP(t)

)
Φ(t) > K > 0, (E.4)

for all t ≥ 0.

The proof is given in [2]. The condition T1 is the consequence of the following
result [2]:
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Given the discrete transfer function

H(z−1) = B(z−1)

A(z−1)
= b0 + b1z−1 + · · · + bnB z

−nB

1 + a1z−1 + · · · + anA z−nA
, (E.5)

under the hypotheses:

(H1) H(z−1) has all its zeros inside the unit circle,
(H2) b0 = 0,

there exists a positive scalar gain K such that H
1+K H is SPR.

It is interesting to note that condition (E.3) implies that the regressor vector has
the property

t1∑
t=0

[
ΦT (t − 1)Φ(t − 1)

]
> ε > 0, (E.6)

which means that the trace of the covariance matrix of the regressor vector is pos-
itive, i.e., that the energy of the signal is greater than zero. The magnitude of the
proportional gain will depend on how far the transfer function is from a SPR transfer
function (level of K ) and what is the energy of the regressor (which depends upon
the disturbance).

E.3 Experimental Results

The AVC system considered in Chap. 15, has been used to carry on the experiment
(see also Sect. 2.3). The adaptive feedforward compensator structure for the experi-
ments has been nR = 3, nS = 4. A PRBS excitation on the global primary path will
be considered as the disturbance. For the adaptive operation, algorithm FUPLR has
been used with scalar adaptation gain (λ1(t) = 1, λ2(t) = 0). A variable α(t) in the
IP-PAA has been chosen, starting with an initial value of 200 and linearly decreasing
to 100 (over a horizon of 25 s). Time domain results obtained on the AVC system
are shown in Fig. E.1. The advantage of using an IP-PAA is an overall improvement
of the transient behaviour despite that the SPR condition on

H(q−1) = AMG

PĜ

is not satisfied (the SPR condition is not satisfied around 83 Hz and around 116 Hz
as shown in Fig. E.2). The improvement of performance can be explained by the
relaxation of the SPR condition when using IP adaptation.

Figure E.3 shows the comparison between “Integral” and “Integral + Propor-
tional” adaptation over an horizon of 1500 s (Fig. E.1 is a zoom of Fig. E.3 covering
only the first 30 s after the introduction of the adaptive feedforward compensator).
One can see that the various “spikes” which are obtained when using “Integral”

http://dx.doi.org/10.1007/978-3-319-41450-8_15
http://dx.doi.org/10.1007/978-3-319-41450-8_2
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Fig. E.1 Real time results obtained with algorithm FUPLR using “Integral” scalar adaptation gain
(left) and “Integral + Proportional” scalar adaptation gain (right)
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Fig. E.2 Phase of estimated H(z−1) for FUPLR

adaptation and certainly caused by the violation of the SPR condition at some fre-
quencies, are strongly attenuated when using “Integral + Proportional” adaptation.
The attenuation obtained for the IP adaptation over the last 10 s shown in Fig. E.3 is
of 13.45 dB, while for the I adaptation one has 12.99 dB. It is clear that IP adaptation
gives better results even on a long run. For other experimental results see [5].
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Fig. E.3 Real time results obtained with FUPLR using “Integral” scalar adaptation gain (left) and
“Integral + Proportional” scalar adaptation gain (right) over 1500 s
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