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Werner Müller

Abstract This paper is a survey article on the limiting behavior of the discrete
spectrum of the right regular representation in L2.�nG/ for a lattice � in a
semisimple Lie group G. We discuss various aspects of the Weyl law, the limit
multiplicity problem, and the analytic torsion.
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1 Introduction

Let G be a connected linear semisimple Lie group of noncompact type with a fixed
choice of a Haar measure. Let ….G/ denote the set of all equivalence classes of
irreducible unitary representations of G, equipped with the Fell topology [Di]. We
fix a Haar measure on G. Let � � G be a lattice in G, i.e., a discrete subgroup such
that vol.�nG/ < 1. Let R� be the right regular representation of G on L2.�nG/.
Let L2

disc.�nG/ be the span of all irreducible subrepresentations of R� and denote
by R�;disc the restriction of R� to L2

disc.�nG/. Then R�;disc decomposes discretely as

R�;disc Š OM
�2….G/

m�.�/�; (1)

where

m�.�/ D dim HomG.�; R�/ D dim HomG.�; R�;disc/

is the multiplicity with which � occurs in R� . The multiplicities are known to
be finite under a weak reduction-theoretic assumption on .G; �/ [OW], which
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is satisfied if G has no compact factors or if � is arithmetic. The study of the
multiplicities m�.�/ is one of the main concerns in the theory of automorphic forms.
Apart from special cases like discrete series representations, one cannot hope in
general to describe the multiplicity function on ….G/ explicitly. A more feasible
and interesting problem is the study of the asymptotic behavior of the multiplicities
with respect to the growth of various parameters such as the level of congruence
subgroups or the infinitesimal character of � . This is closely related to the study of
families of automorphic forms (see [SST]).

The first problem in this context is the Weyl law. Let K be a maximal compact
subgroup of G. Fix an irreducible representation � of K. Let ….GI �/ be the
subspace of all � 2 ….G/ such that Œ�jK W �� > 0. Especially, if � is the trivial
representation, then ….GI �/ is the spherical dual …sph.G/. Given � 2 ….G/,
denote by �� D �.�/ the Casimir eigenvalue of � . For � � 0 let the counting
function be defined by

N�
�.�/ D

X

�2….GI�/
j�� j��

m�.�/: (2)

Then the problem is to determine the behavior of the counting function as � ! 1.
Another basic problem is the limit multiplicity problem, which is the study

of the asymptotic behavior of the multiplicities if vol.�nG/ ! 1. For G D
GLn.R/ this corresponds to the study of harmonic families of cuspidal automorphic
representations of GLn.A/, A being the ring of adeles (see [SST]). More precisely,
for a given lattice � define the discrete spectral measure �� on ….G/, associated
with � , by

�� D 1

vol.�nG/

X

�2….G/

m�.�/ı� ; (3)

where ı� is the Dirac measure at � . Then the limit multiplicity problem is concerned
with the study of the asymptotic behavior of �� as vol.�nG/ ! 1. For appropriate
sequences of lattices .�n/ one expects that the measures ��n converge to the
Plancherel measure �pl on ….G/.

There are closely related problems in topology and spectral theory. One of them
concerns Betti numbers. Let K be a maximal compact subgroup of G and put eX D
G=K. Let � be a uniform lattice in G and let .�n/ be a tower of normal subgroups
of � . Put X D �neX and Xn D �nneX, n 2 N. Then Xn ! X is a sequence of finite
normal coverings of X. For any topological space Y let bk.Y/ denote the k-th Betti
number of Y . Then

lim
n!1

bk.Xn/

vol.Xn/
D b.2/

k .X/; (4)
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where b.2/
k .X/ is the k-th L2-Betti number of X. This was proved by Lück [Lu1] in

the more general context of CW-complexes. In the case of locally symmetric spaces,
it follows from the results about limit multiplicities. Again, it was extended by Abert
et al. [AB1] to much more general sequences of uniform lattices.

A more sophisticated spectral invariant is the Ray-Singer analytic torsion TX.	/

(see [RS]). It depends on a finite dimensional representation 	 of � and is defined in
terms of the spectra of the Laplace operators 
p.	/ on p-forms with coefficients
in the flat bundle associated with 	. Of particular interest are representations
of � which arise as the restriction of a representation of G. For appropriate
representations, called strongly acyclic, Bergeron and Venkatesh [BV] studied the
asymptotic behavior of log TXn.	/ as n ! 1. One of their main results is

lim
n!1

log TXn.	/

vol.Xn/
D log T.2/

X .	/; (5)

where T.2/
X .	/ is the L2-torsion [Lo, MV]. Using the equality of analytic torsion and

Reidemeister torsion [Ch, Mu1], (5) implies results about the growth of the torsion
subgroup in the integer homology of arithmetic groups. Let G be a semisimple
algebraic group over Q, G D G.R/ and � � G.Q/ a co-compact, arithmetic
subgroup. As shown in [BV], there are strongly acyclic representations 	 of G
on a finite dimensional vector space V such that V contains a �-invariant lattice
M. Let M be the local system of free Z-modules over X, attached to M. Then the
cohomology H�.X;M/ of X with coefficients in M is a finite abelian group. Denote
by jH�.X;M/j its order. Assume that d D dim.X/ is odd. Then by [BV] one has

lim
n!1

dX

pD1

.�1/pC d�1
2

log jHp.Xn;M/j
Œ�W �n�

D cM;G vol.X/;

where cM;G is a constant that depends only on G and M. Moreover, if ı.G/ WD
rank G � rank K D 1, then cM;G > 0. It is conjectured that the limit

lim
n!1

log jHj.Xn;M/j
Œ�W �n�

(6)

always exists and is equal to zero, unless ı.G/ D 1 and j D .d � 1/=2. In the
latter case it is equal to cM;G times vol.X/. The conjecture is known to be true for
G D SL2.C/.

An important problem is to extend these results to the non-compact case.
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2 The Arthur Trace Formula

The trace formula is one of the main technical tools to study the kind of spectral
problems mentioned in the introduction. For R-rank one groups the Selberg trace
formula is available [Wa1]. In the higher rank case the Selberg trace formula is
replaced by the Arthur trace formula.

In this section we recall Arthur’s trace formula, and in particular the refinement
of the spectral expansion obtained in [FLM1].

2.1 Notation

We will mostly use the notation of [FLM1]. Let G be a reductive group defined
over Q and let A be the ring of adeles of Q. We fix a maximal compact subgroup
K D Q

v Kv D K1 � Kfin of G.A/ D G.R/ � G.Afin/.
Let g and k denote the Lie algebras of G.R/ and K1, respectively. Let � be the

Cartan involution of G.R/ with respect to K1. It induces a Cartan decomposition
g D p ˚ k. We fix an invariant bi-linear form B on g which is positive definite on
p and negative definite on k. This choice defines a Casimir operator � on G.R/,
and we denote the Casimir eigenvalue of any � 2 ….G.R// by �� . Similarly, we
obtain a Casimir operator �K

1

on K1 and write �� for the Casimir eigenvalue of
a representation � 2 ….K1/ (cf. [BG, § 2.3]). The form B induces a Euclidean
scalar product .X; Y/ D �B.X; �.Y// on g and all its subspaces. For � 2 ….K1/

we define k�k as in [CD, § 2.2].
We fix a maximal Q-split torus S0 of G and let M0 be its centralizer, which is

a minimal Levi subgroup defined over Q. We assume that the maximal compact
subgroup K � G.A/ is admissible with respect to M0 [Ar5, § 1]. Denote by A0 the
identity component of S0.R/, which is viewed as a subgroup of S0.A/. We write
L for the (finite) set of Levi subgroups containing M0, i.e., the set of centralizers
of subtori of S0. Let W0 D NG.Q/.S0/=M0 be the Weyl group of .G; S0/, where
NG.Q/.H/ is the normalizer of H in G.Q/. For any s 2 W0 we choose a representative
ws 2 G.Q/. Note that W0 acts on L by sM D wsMw�1

s .
Let now M 2 L. We write SM for the split part of the identity component of

the center of M. Set AM D A0 \ SM.R/ and W.M/ D NG.Q/.M/=M, which can
be identified with a subgroup of W0. Denote by a�

M the R-vector space spanned by
the lattice X�.M/ of Q-rational characters of M and let a�

M;C D a�
M ˝R C be its

complexification. We write aM for the dual space of a�
M , which is spanned by the

co-characters of SM . Let

HM W M.A/ ! aM
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be the homomorphism given by

eh;HM.m/i D j.m/jA D
Y

v

j.mv/jv (7)

for any  2 X�.M/ and denote by M.A/1 � M.A/ the kernel of HM . Let L.M/ be
the set of Levi subgroups containing M and P.M/ the set of parabolic subgroups
of G with Levi part M. We also write F.M/ D FG.M/ D `

L2L.M/ P.L/ for
the (finite) set of parabolic subgroups of G containing M. Note that W.M/ acts on
P.M/ and F.M/ by sP D wsPw�1

s . Denote by †M the set of reduced roots of SM on
the Lie algebra of G. For any ˛ 2 †M we denote by ˛_ 2 aM the corresponding co-
root. Let L2

disc.AMM.Q/nM.A// be the discrete part of L2.AMM.Q/nM.A//, i.e., the
closure of the sum of all irreducible subrepresentations of the regular representation
of M.A/. We denote by …disc.M.A// the countable set of equivalence classes of
irreducible unitary representations of M.A/ which occur in the decomposition of
L2

disc.AMM.Q/nM.A// into irreducible representations.
For any L 2 L.M/ we identify a�

L with a subspace of a�
M . We denote by aL

M the
annihilator of a�

L in aM . We set

L1.M/ D fL 2 L.M/ W dim aL
M D 1g

and

F1.M/ D
[

L2L1.M/

P.L/:

Note that the restriction of the scalar product .�; �/ on g defined above gives aM0 the
structure of a Euclidean space. In particular, this fixes Haar measures on the spaces
aL

M and their duals .aL
M/�. We follow Arthur in the corresponding normalization of

Haar measures on the groups M.A/ [Ar1, § 1].

2.2 Intertwining Operators

The main ingredient of the spectral side of the Arthur trace formula are logarithmic
derivatives of intertwining operators. We shall now describe the structure of the
intertwining operators.

Let P 2 P.M/. We write aP D aM . Let UP be the unipotent radical of P and MP
the unique L 2 L.M/ (in fact the unique L 2 L.M0/) such that P 2 P.L/. Denote
by †P � a�

P the set of reduced roots of SM on the Lie algebra uP of UP. Let 
P be
the subset of simple roots of P, which is a basis for .aG

P /�. Write a�
P;C for the closure

of the Weyl chamber of P, i.e.

a�
P;C D f� 2 a�

M W ˝
�; ˛_˛ � 0 for all ˛ 2 †Pg D f� 2 a�

M W ˝
�; ˛_˛ � 0 for all ˛ 2 
Pg:
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Denote by ıP the modulus function of P.A/. Let NA2.P/ be the Hilbert space
completion of

f� 2 C1.M.Q/UP.A/nG.A// W ı
� 1

2

P �.�x/ 2 L2
disc.AMM.Q/nM.A//; 8x 2 G.A/g

with respect to the inner product

.�1; �2/ D
Z

AMM.Q/UP.A/nG.A/

�1.g/�2.g/ dg:

Let ˛ 2 †M . We say that two parabolic subgroups P; Q 2 P.M/ are adjacent along
˛, and write Pj˛Q, if †P \ �†Q D f˛g. Alternatively, P and Q are adjacent if the
closure PQ of PQ belongs to F1.M/. Any R 2 F1.M/ is of the form PQ for a
unique unordered pair fP; Qg of parabolic subgroups in P.M/, namely P and Q are
maximal parabolic subgroups of R, and Pj˛Q with ˛_ 2 †_

P \ aR
M . Switching the

order of P and Q changes ˛ to �˛.
For any P 2 P.M/ let HPW G.A/ ! aP be the extension of the map HM , which

is defined by (7), to a left UP.A/-and right K-invariant map. Denote by A2.P/ the
dense subspace of NA2.P/ consisting of its K- and Z.gC/-finite vectors, where Z.gC/

is the center of the universal enveloping algebra of gC WD g ˝ C. That is, A2.P/ is

the space of automorphic forms � on UP.A/M.F/nG.A/ such that ı
� 1

2

P �.�k/ is a
square-integrable automorphic form on AMM.F/nM.A/ for all k 2 K. Let 	.P; �/,
� 2 a�

M;C, be the induced representation of G.A/ on NA2.P/ given by

.	.P; �; y/�/.x/ D �.xy/eh�;HP.xy/�HP.x/i:

It is isomorphic to IndG.A/

P.A/

�
L2

disc.AMM.Q/nM.A// ˝ eh�;HM.�/i�.
For P; Q 2 P.M/ let

MQjP.�/ W A2.P/ ! A2.Q/; � 2 a�
M;C;

be the standard intertwining operator [Ar3, § 1], which is the meromorphic
continuation in � of the integral

ŒMQjP.�/��.x/ D
Z

UQ.A/\UP.A/nUQ.A/
�.nx/eh�;HP.nx/�HQ.x/i dn; � 2 A2.P/; x 2 G.A/:

These operators satisfy the following properties.

(1) MPjP.�/ � Id for all P 2 P.M/ and � 2 a�
M;C.

(2) For any P; Q; R 2 P.M/ we have MRjP.�/ D MRjQ.�/ ı MQjP.�/ for all � 2
a�

M;C. In particular, MQjP.�/�1 D MPjQ.�/.

(3) MQjP.�/� D MPjQ.��/ for any P; Q 2 P.M/ and � 2 a�
M;C. In particular,

MQjP.�/ is unitary for � 2 ia�
M .

(4) If Pj˛Q, then MQjP.�/ depends only on h�; ˛_i.
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Given � 2 …disc.M.A//, let A2
�.P/ be the space of all � 2 A2.P/ for which the

function x 2 M.A/ 7! ı
� 1

2

P �.xg/, g 2 G.A/, belongs to the �-isotypic subspace
L2.AMM.Q/nM.A//. For any P 2 P.M/ we have a canonical isomorphism of
G.Af / � .gC; K1/-modules

jP W Hom.�; L2.AMM.Q/nM.A/// ˝ IndG.A/

P.A/ .�/ ! A2
�.P/:

If we fix a unitary structure on � and endow Hom.�; L2.AMM.Q/nM.A/// with
the inner product .A; B/ D B�A (which is a scalar operator on the space of �), the
isomorphism jP becomes an isometry.

Suppose that Pj˛Q. The operator MQjP.�; s/ WD MQjP.s$/jA2
� .P/, where $ 2 a�

M
is such that h$; ˛_i D 1, admits a normalization by a global factor n˛.�; s/ which
is a meromorphic function in s. We may write

MQjP.�; s/ ı jP D n˛.�; s/ � jQ ı .Id ˝RQjP.�; s// (8)

where RQjP.�; s/ D ˝vRQjP.�v; s/ is the product of the locally defined
normalized intertwining operators and � D ˝v�v [Ar3, § 6], (cf. [Mu6,
(2.17)]). In many cases, the normalizing factors can be expressed in terms of
automorphic L-functions [Sha1, Sha2]. For example, let G D GL.n/. Then
the global normalizing factors n˛ can be expressed in terms of Rankin-Selberg
L-functions. The properties of these functions are collected and analyzed in
[Mu4, Mu5, § 4,5]. Write M ' Qr

iD1 GL.ni/, where the root ˛ is trivial onQ
i�3 GL.ni/, and let � ' ˝�i with representations �i 2 …disc.GL.ni;A//. Let

L.s; �1 � Q�2/ be the completed Rankin-Selberg L-function associated with �1 and
�2. It satisfies the functional equation

L.s; �1 � Q�2/ D �.
1

2
; �1 � Q�2/N.�1 � Q�2/

1
2 �sL.1 � s; Q�1 � �2/ (9)

where j�. 1
2
; �1 � Q�2/j D 1 and N.�1 � Q�2/ 2 N is the conductor. Then we have

n˛.�; s/ D L.s; �1 � Q�2/

�. 1
2
; �1 � Q�2/N.�1 � Q�2/

1
2 �sL.s C 1; �1 � Q�2/

: (10)

2.3 The Trace Formula

Arthur’s trace formula gives two alternative expressions for a distribution J on
G.A/1. Note that this distribution depends on the choice of M0 and K. For h 2
C1

c .G.A/1/, Arthur defines J.h/ as the value at the point T D T0 specified in [Ar5,
Lemma 1.1] of a polynomial JT.h/ on aM0 of degree at most d0 D dim aG

M0
. Here,

the polynomial JT.h/ depends in addition on the choice of a parabolic subgroup
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P0 2 P.M0/. Consider the equivalence relation on G.Q/ defined by � � � 0
whenever the semisimple parts of � and � 0 are G.Q/-conjugate. Let O be the set
of the resulting equivalence classes (which are in bijection with conjugacy classes
of semisimple elements). The coarse geometric expansion [Ar1] is

JT.h/ D
X

o2O
JT
o .h/; (11)

where the summands JT
o .h/ are again polynomials in T of degree at most d0.

Write Jo.h/ D JT0
o .h/, which depends only on M0 and K. Then Jo.h/ D 0 if the

support of h is disjoint from all conjugacy classes of G.A/ intersecting o (cf. [Ar6,
Theorem 8.1]). By [ibid., Lemma 9.1] (together with the descent formula of [Ar5,
§ 2]), for each compact set � � G.A/1 there exists a finite subset O.�/ � O
such that for h supported in � only the terms with o 2 O.�/ contribute to (11). In
particular, the sum is always finite. The geometric side of the trace formula is then
defined to be the distribution

Jgeo.h/ D
X

o2O
Jo.h/; h 2 C1

c .G.A/1/: (12)

When o consists of the unipotent elements of G.Q/, we write JT
unip.h/ for JT

o .h/.
We now turn to the spectral side. Let L 	 M be Levi subgroups in L, P 2 P.M/,

and let m D dim aG
L be the co-rank of L in G. Denote by BP;L the set of m-tuples

ˇ D .ˇ_
1 ; : : : ; ˇ_

m / of elements of †_
P whose projections to aL form a basis for aG

L .
For any ˇ D .ˇ_

1 ; : : : ; ˇ_
m / 2 BP;L let vol.ˇ/ be the co-volume in aG

L of the lattice
spanned by ˇ and let

„L.ˇ/ D f.Q1; : : : ; Qm/ 2 F1.M/m W ˇ_
i 2 aQi

M ; i D 1; : : : ; mg
D f.P1P0

1; : : : ; PmP0
m/ W Pijˇi P0

i; i D 1; : : : ; mg:

For any smooth function f on a�
M and � 2 a�

M denote by D�f the directional
derivative of f along � 2 a�

M . For a pair P1j˛P2 of adjacent parabolic subgroups in
P.M/ write

ıP1jP2
.�/ D MP2jP1

.�/D$ MP1jP2
.�/ W A2.P2/ ! A2.P2/;

where $ 2 a�
M is such that h$; ˛_i D 1. 1 Equivalently, writing MP1jP2

.�/ D
ˆ.h�; ˛_i/ for a meromorphic function ˆ of a single complex variable, we have

ıP1jP2
.�/ D ˆ.

˝
�; ˛_˛

/�1ˆ0.
˝
�; ˛_˛

/:

1Note that this definition differs slightly from the definition of ıP1jP2 in [FL1].
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For any m-tuple X D .Q1; : : : ; Qm/ 2 „L.ˇ/ with Qi D PiP0
i, Pijˇi P0

i, denote by

X .P; �/ the expression

vol.ˇ/

mŠ
MP0

1jP.�/�1ıP1jP0

1
.�/MP0

1jP0

2
.�/ � � � ıPm�1jP0

m�1
.�/MP0

m�1jP0

m
.�/ıPmjP0

m
.�/MP0

mjP.�/:

In [FLM1, pp. 179–180] we define a (purely combinatorial) map XL W BP;L !
F1.M/m with the property that XL.ˇ/ 2 „L.ˇ/ for all ˇ 2 BP;L. 2

For any s 2 W.M/ let Ls be the smallest Levi subgroup in L.M/ containing ws.
We recall that aLs D fH 2 aM j sH D Hg. Set

�s D jdet.s � 1/
a

Ls
M

j�1:

For P 2 F.M0/ and s 2 W.MP/ let M.P; s/ W A2.P/ ! A2.P/ be as in [Ar3,
p. 1309]. M.P; s/ is a unitary operator which commutes with the operators 	.P; �; h/

for � 2 ia�
Ls

. Now we can state the refined spectral expansion.

Theorem 2.1 ([FLM1]). For any h 2 C1
c .G.A/1/ the spectral side of Arthur’s

trace formula is given by

Jspec.h/ WD
X

ŒM�

Jspec;M.h/; (13)

ŒM� ranging over the conjugacy classes of Levi subgroups of G (represented by
members of L), where

Jspec;M.h/ D 1

jW.M/j
X

s2W.M/

�s

X

ˇ2BP;Ls

Z

i.aG
Ls

/�

tr.
XLs .ˇ/.P; �/M.P; s/	.P; �; h// d�

(14)

with P 2 P.M/ arbitrary. The operators are of trace class and the integrals are
absolutely convergent.

Note that the term corresponding to M D G is Jspec;G.h/ D tr Rdisc.h/. Next assume
that M is the Levi subgroup of a maximal parabolic subgroup P. Furthermore, let
L D M. Let NP be the opposite parabolic subgroup to P. Then up to a constant, the
contribution to the spectral side is given by

X

�2…disc.M.A/1/

Z

ia�

tr

�
M NPjP.�; �/�1 d

dz
M NPjP.�; �/M.P; s/	.P; �; �; h/

�
d�:

2The map XL depends in fact on the additional choice of a vector � 2 .a�

M/m which does not lie in
an explicit finite set of hyperplanes. For our purposes, the precise definition of XL is immaterial.
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The trace formula is the statement that the spectral side equals the geometric side,
i.e., the following equality holds:

Jspec.h/ D Jgeo.h/; h 2 C1
c .G.A/1/: (15)

3 The Weyl Law

The Weyl law is concerned with the study of the asymptotic behavior of the counting
function (2) as � ! 1. This is the first problem which needs to be solved in order to
be able to pursue a deeper study of the cuspidal automorphic spectrum. For example,
the study of statistical properties of the automorphic spectrum requires first of all to
know that the spectrum is infinite and has the right asymptotic properties. This, in
particular, concerns the study of families of automorphic forms (see [SST]).

The investigation of the asymptotic behavior of the counting function (2) is
closely related to the study of the counting function of the eigenvalues of the Laplace
operator on a compact Riemannian manifold. We briefly recall the Weyl law in this
case. Let M be a smooth, compact Riemannian manifold of dimension n with smooth
boundary @M (which may be empty). Let


 D � div ı grad D d�d

be the Laplace-Beltrami operator associated with the metric g of M. We consider
the Dirichlet eigenvalue problem


� D ��; �
ˇ̌
@M D 0: (16)

As is well known, (16) has a discrete set of solutions

0 
 �0 
 �2 
 � � � ! 1

whose only accumulation point is at infinity and each eigenvalue occurs with finite
multiplicity. The corresponding eigenfunctions �i can be chosen such that f�igi2N0

is an orthonormal basis of L2.M/. For � � 0 let

N.�/ D #
˚
jW �j 
 �

�

be the counting function, where eigenvalues are counted with multiplicities. Let
�.s/ be the Gamma function. Then the Weyl law states

N.�/ D vol.M/

.4�/n=2�
�

n
2

C 1
��n=2 C o.�n=2/; � ! 1: (17)
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This was first proved by Weyl [We] for a bounded domain � � R
3. Written in a

slightly different form it is known in physics as the Rayleigh-Jeans law. Garding
[Ga] proved Weyl’s law for a general elliptic operator on a domain in R

n. For a
closed Riemannian manifold (17) was proved by Minakshisundaram and Pleijel
[MP]. Formula (17) does not say much about the finer structure of the distribution
of the eigenvalues. A basic problem is the estimation of the remainder term

R.�/ WD N.�/ � vol.M/

.4�/n=2�
�

n
2

C 1
��n=2: (18)

For a closed Riemannian manifold, Avakumović [Av] established the Weyl law with
the following optimal estimation of the remainder term

R.�/ D O.�.n�1/=2/: (19)

This result was extended to more general and higher order operators by Hörmander
[Ho].

The connection with the estimation of the counting function (2) is established
as follows. Let eX D G=K. It can be equipped with a G-invariant metric which
is unique up to scaling. Let X D �neX. Assume that � is torsion free. Then X is
a complete Riemannian manifold of finite volume. Let � 2 bK and let eE� ! eX
be the homogeneous vector bundle associated with � , which is equipped with the
invariant Hermitian metric induced by � . Let E� D �neE� be the corresponding
locally homogeneous vector bundle over X. Let C1.X; E� / be the space of smooth
sections of E� . There is a canonical isomorphism

C1.X; E� / Š .C1.�nG/ ˝ V� /
K (20)

(see [Mia, p. 4]). Let r� be the connection in E� induced by the canonical
connection in eE� . Let 
� D .r� /�r� be the Bochner-Laplace operator, acting in
C1.X; E� /. It is an elliptic, second order, formally self-adjoint differential operator
of Laplace type, i.e., its principal symbol is given by k�k2

x IdE�;x . Let � 2 Z.gC/ be
the Casimir element and R�.�/ the Casimir operator acting in C1.�nG/. With
respect to the isomorphism (20) the Bochner-Laplace operator is related to the
Casimir operator R�.�/ by


� D �R�.�/ C �� Id; (21)

where �� is the Casimir eigenvalue of � . Assume that X is compact. Then 
� has
a pure discrete spectrum consisting of a sequence of eigenvalues 0 
 �1 
 �2 

� � � ! 1 of finite multiplicities. Let

N�.�I �/ D #fjW �j 
 �g
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be the counting function of the eigenvalues, where eigenvalues are counted with
their multiplicity. Using (20) and (21), it follows that the counting function (2) has
the same asymptotic behavior as N�.�I �/. A generalization of (17) is the following
Weyl law

N�.�I �/ D dim.�/ vol.�nG=K/

.4�/d=2�.d=2 C 1/
�d=2 C o.�d=2/; � ! 1; (22)

where d D dim.X/. To prove (22) one can use the heat equation method [BGV, Gi].
It starts with the observation that the heat operator e�t
� is an integral operator with
a smooth kernel K� .t; x; y/. Since the underlying manifold is compact, it follows
that the heat operator is a trace class operator and one has the following elementary
“trace formula”

1X

jD1

e�t�j D Tr
�
e�t
�

� D
Z

X
tr K� .t; x; x/ dx: (23)

(see [BGV, Proposition 2.32]). The construction of an approximation of the heat
kernel gives rise to an asymptotic expansion of the form

Z

X
tr K� .t; x; x/ dx � t�d=2

1X

jD0

ajt
j (24)

as t ! 0C. Moreover a0 D dim.�/ vol.X/=.4�/d=2 (see [BGV, Theorem 2.30], [Gi,
Chap. 1, § 1.7]). Combined with (23), it follows that

1X

jD1

e�t�j D dim.�/ vol.�nG=K/

.4�/d=2
t�d=2 C O.t�d=2C1/ (25)

as t ! 0C. Applying Karamata’s theorem [BGV, Theorem 2.42], we obtain the
Weyl law (22). The heat equation method does not lead to any nontrivial estimation
of the remainder term. The method of Avakumović [Av] and Hörmander [Ho]
is based on the study of the wave equation (see [DG]). For a locally symmetric
manifold this means to use the Selberg trace formula. So far estimations of the
remainder term are only known if � is the trivial representation, i.e., for the case of
the Laplace operator on functions.

For a locally symmetric space X D �neX, eX D G=K, there is not only the Laplace
operator, but the whole algebra of G-invariant differential operators D.eX/ on eX,
which one needs to consider. The structure of D.eX/ can be described as follows. Let
G D NAK be the Iwasawa decomposition of G, W the Weyl group of .G; A/, and a
be the Lie algebra of A. Let S.aC/ be the symmetric algebra of the complexification
aC D a ˝ C of a and let S.aC/W be the subspace of Weyl group invariants in
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S.aC/. Then by a theorem of Harish-Chandra [He, Chap. X, Theorem 6.15] there is
a canonical isomorphism

�WD.eX/ Š S.aC/W : (26)

This shows that D.eX/ is commutative. The minimal number of generators equals
the rank of eX which is dim a [He, Chap. X, § 6.3]. Let � 2 a�

C. Then by (26), �

determines an character

�WD.eX/ ! C

and � D �0 if and only if � and �0 are in the same W-orbit. Since S.aC/ is integral
over S.aC/W [He, Chap. X, Lemma 6.9], each character of D.eX/ is of the form �

for some � 2 a�
C. Thus the characters of D.eX/ are parametrized by a�

C=W.
Each D 2 D.eX/ descends to a differential operator

DW C1.�neX/ ! C1.�neX/:

Assume that �neX is compact. Let E � C1.�neX/ be an eigenspace of the Laplace
operator. Then E is a finite-dimensional vector space which is invariant under D 2
D.eX/. For each D 2 D.eX/, the formal adjoint D� of D also belongs to D.eX/. Thus
we get a representation

	WD.eX/ ! End.E/

by commuting normal operators. Therefore, E decomposes into the direct sum of
joint eigenspaces of D.eX/. Given � 2 a�

C=W, let

E.�/ D f' 2 C1.�neX/W D' D �.D/'; D 2 D.eX/g:

Let m.�/ D dim E.�/. Then the spectrum ƒ.�/ of �neX is defined to be

ƒ.�/ D f� 2 a�
C=WW m.�/ > 0g;

and we get an orthogonal direct sum decomposition

L2.�neX/ D
M

�2ƒ.�/

E.�/: (27)

If we pick a fundamental domain for W, we may regard ƒ.�/ as a subset of a�
C.

If rank.eX/ > 1, then ƒ.�/ is multidimensional. In this setting, a generalization of
the Weyl law has been established by Duistermaat et al. [DKV]. To describe the
result, we need to introduce some notations. Let ˇ.i�/, � 2 a�, be the Plancherel
density. Let

ƒtemp.�/ D ƒ.�/ \ ia�; ƒcomp.�/ D ƒ.�/ n ƒtemp.�/
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be the tempered and complementary spectrum, respectively. Given an open bounded
subset � of a� and t > 0, let

t� WD ft�W � 2 �g: (28)

One of the main results of [DKV] is the following asymptotic formula for the
distribution of the tempered spectrum [DKV, Theorem 8.8]

X

�2ƒtemp.�/\.it�/

m.�/ D vol.�neX/

jWj
Z

it�
ˇ.�/ d� C O.td�1/; t ! 1: (29)

Note that the leading term is of order O.td/. The growth of the complementary
spectrum is of lower order. Let Bt.0/ � a�

C be the ball of radius t > 0 around 0.
There exists C > 0 such that for all t � 1

X

�2ƒcomp.�/\Bt.0/

m.�/ 
 Ctd�2 (30)

[DKV, Theorem 8.3]. The main tool to prove (29) and (30) is the Selberg trace
formula.

The estimations (29) and (30) contain more information about the distribution
of ƒ.�/ then just the Weyl law. Indeed, the eigenvalue of 
 corresponding to � 2
ƒtemp.�/ equals k � k2 C k 	 k2. So if we choose � in (29) to be the unit ball,
then (29) together with (30) reduces to Weyl’s law for �neX.

We note that (29) and (30) can also be rephrased in terms of representation theory.
Let R� be the right regular representation of G in L2.�nG/ defined by

.R�.g1/f /.g2/ D f .g2g1/; f 2 L2.�nG/; g1; g2 2 G:

Let ….G/ denote the set equivalence classes of unitary irreducible representations
of G. Since �nG is compact, R� decomposes into the direct sum of irreducible
unitary representations of G (see [GGP, § 2.3]). Given � 2 ….G/, let m.�/ be the
multiplicity with which � occurs in R� . Let H� denote the Hilbert space in which
� acts. Then

L2.�nG/ Š
M

�2….G/

m.�/H� :

Now observe that L2.�neX/ D L2.�nG/K . Let HK
� denote the subspace of K-fixed

vectors in H� . Then

L2.�neX/ Š
M

�2….G/

m.�/HK
� :
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Note that dimHK
� 
 1. Let …sph.G/ � ….G/ be the subset of all � with HK

� 6D f0g.
This is the spherical dual. Given � 2 …sph.G/, let �� be the infinitesimal character
of � . If � 2 …sph.G/, then �� 2 a�

C=W. Moreover � 2 …sph.G/ is tempered, if � is
unitarily induced from the minimal parabolic subgroup P D NAM. In this case we
have �� 2 ia�=W. So (29) can be rewritten as

X

�2…sph.G/
�� 2it�

m.�/ D vol.�nG/

jWj
Z

it�
ˇ.�/ d� C O.tn�1/; t ! 1: (31)

If � is not co-compact, then 
� has a nonempty continuous spectrum which
consists of a half-line Œc; 1/ for some c � 0. This makes it much more difficult
to study the discrete spectrum of this operator, because almost all eigenvalues, if
they exist, will be embedded into the continuous spectrum. It is well known from
mathematical physics that embedded eigenvalues are unstable under perturbations.
One of the basic tools to study the cuspidal automorphic spectrum is the trace
formula.

3.1 Rank One

In the non-compact case, a general Weyl law was first derived by Selberg for a
hyperbolic surface X D �nH of finite area, where H D SL.2;R/= SO.2/ is the
upper half-plane. We briefly recall the method which is based on the trace formula.
It illustrates the basic idea which is also used in the higher rank case.

Let 
 D d�d be the Laplace operator with respect to the hyperbolic metric.
Then 
, regarded as operator in L2.X/ with domain C1.X/, is essentially self-
adjoint. The spectrum of 
 is the union of a pure point spectrum and the absolutely
continuous spectrum. The pure point spectrum consists of a sequence of eigenvalues

0 D �0 < �1 
 �2 
 � � �

of finite multiplicities. If X is non-compact then, in general, we only know that �0

exists. We slightly change the definition of the counting function by

N�.�/ WD #fjW
q

�j 
 �g:

The new terms in the trace formula, which are due to the non-compactness of
�nH arise from the parabolic conjugacy classes in � and the Eisenstein series.
Let us recall the definition of Eisenstein series. Let a1; : : : ; am 2 R [ f1g be
representatives of the �-conjugacy classes of parabolic fixed points of � . The ai’s
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are called cusps. For each ai let �ai be the stabilizer of ai in � . Choose �i 2 SL.2;R/

such that

�i.1/ D ai; ��1
i �ai�i D

��
1 n
0 1

�
W n 2 Z

�
:

Then the Eisenstein series Ei.z; s/ associated with the cusp ai is defined as

Ei.z; s/ D
X

�2�ai n�

Im.��1
i �z/s; Re.s/ > 1: (32)

The series converges absolutely and uniformly on compact subsets of the half-plane
Re.s/ > 1 and it satisfies the following properties.

(1) Ei.�z; s/ D Ei.z; s/ for all � 2 � .
(2) As a function of s, Ei.z; s/ admits a meromorphic continuation to C which is

regular on the line Re.s/ D 1=2.
(3) Ei.z; s/ is a smooth function of z and satisfies 
zEi.z; s/ D s.1 � s/Ei.z; s/:

The contribution of the Eisenstein series to the Selberg trace formula is given by
their zeroth Fourier coefficients of the Fourier expansion in the cusps. The zeroth
Fourier coefficient of the Eisenstein series Ek.z; s/ at the cusp al is given by

Z 1

0

Ek.�l.x C iy/; s/ dx D ıkly
s C Ckl.s/y

1�s;

where ıkl is Kronecker’s delta function and Ckl.s/ is a meromorphic function of
s 2 C. Put

C.s/ WD .Ckl.s//
m
k;lD1 :

This is the so-called scattering matrix. Let g 2 C1
c .R/ and let h D Og be the Fourier

transform of g. Let �.s/ WD det C.s/. Denote by f�g the hyperbolic �-conjugacy
classes. For every hyperbolic element � , denote by �0 the primitive hyperbolic
element such that � D � k

0 for some k 2 N. Every nontrivial hyperbolic conjugacy
class f�g corresponds to a unique closed geodesic c� . Let l.�/ denote its length.
Write the eigenvalues as

�j D 1

4
C r2

j ; rj 2 Œ0; 1/ [ i.0; 1=2�:
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Then the trace formula is the following identity

X

j

h.rj/ � 1

4�

Z 1

�1
h.r/

�0

�
.1=2 C ir/ dr C 1

4
�.1=2/h.0/

D Area.�nH/

4�

Z

R

h.r/r tanh.�r/ dr C
X

f�g

l.�0/

2 sinh
	

l.�/

2


g.l.�//

� m

2�

Z 1

�1
h.r/

� 0

�
.1 C ir/dr C m

4
h.0/ � m ln 2 g.0/ (33)

(see [Se1, (9.31)]). The left-hand side is the spectral side, which contains all terms
associated with the spectrum and the right-hand side is the geometric side. The
trace formula holds for every discrete subgroup � � SL.2;R/ with co-finite area.
In analogy to the counting function of the eigenvalues we introduce the winding
number

M�.�/ D � 1

4�

Z �

��

�0

�
.1=2 C ir/ dr; (34)

which measures the continuous spectrum. Using the cut-off Laplacian of Lax-
Phillips [CV] one can deduce the following elementary bounds

N�.�/ � �2; M�.�/ � �2; � � 1: (35)

These bounds imply that the trace formula (33) holds for a larger class of functions.
In particular, it can be applied to the heat kernel kt. Its spherical Fourier transform
equals ht.r/ D e�t.1=4Cr2/, t > 0. If we insert ht into the trace formula, we get the
following asymptotic expansion as t ! 0.

X

j

e�t�j � 1

4�

Z

R

e�t.1=4Cr2/ �0

�
.1=2 C ir/ dr

D Area.�nH/

4� t
C a log tp

t
C bp

t
C O.1/

(36)

for certain constants a; b 2 R. Using [Se1, (8.8), (8.9)] it follows that the winding
number M�.�/ is monotonically increasing for � � 0. Therefore we can apply a
Tauberian theorem to (36) and we get the following Weyl law, established by Selberg
[Se1]. As � ! 1 we have

N�.�/ C M�.�/ � Area.�nH/

4�
�2: (37)
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In general, we cannot estimate separately the counting function and the winding
number. For congruence subgroups, however, the entries of the scattering matrix can
be expressed in terms of well-known analytic functions. For �.N/ the determinant
of the scattering matrix �.s/ has been computed by Huxley [Hu]. It has the form

�.s/ D .�1/lA1�2s

�
�.1 � s/

�.s/

�k Y



L.2 � 2s; N/

L.2s; /
; (38)

where k; l 2 Z, A > 0, the product runs over Dirichlet characters  to some modulus
dividing N and L.s; / is the Dirichlet L-function with character . Especially for
�.1/ we have

�.s/ D p
�

�.s � 1=2/�.2s � 1/

�.s/�.2s/
; (39)

where �.s/ denotes the Riemann zeta function.
Using Stirling’s approximation formula to estimate the logarithmic derivative

of the Gamma function and standard estimations for the logarithmic derivative of
Dirichlet L-functions on the line Re.s/ D 1 [Pr, Chap. V, Theorem 7.1], we get

�0

�
.1=2 C ir/ D O.log.4 C jrj//; jrj ! 1: (40)

This implies that

M�.N/.�/ � � log �: (41)

Together with (37) we obtain Weyl’s law for the point spectrum of the Laplacian on
X.N/ D �.N/nH:

N�.N/.�/ � Area.X.N//

4�
�2; � ! 1; (42)

which is due to Selberg [Se1, p. 668]. A similar formula holds for other congruence
groups such as �0.N/. In particular, (42) implies that for congruence groups there
exist infinitely many linearly independent Maass cusp forms.

By a more sophisticated use of the Selberg trace formula one can estimate the
remainder term (see [Mu7]). For congruence subgroups one gets

Theorem 3.1. For every N 2 N we have

N�.N/.�/ D Area.X.N//

4�
�2 C O.� log �/ (43)

as � ! 1.
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A finite area hyperbolic surface for which the Weyl law holds is called by Sarnak
essentially cuspidal. Now it is strongly believed that essential cuspidality is limited
to special arithmetic surfaces. This is based on work by Phillips and Sarnak
who studied the behavior of the discrete spectrum when � is deformed in the
corresponding Teichmüller space. We refer to [Sa1] for a detailed discussion of
their method. This led Phillips and Sarnak to the following conjectures.

Conjecture 1. (1) The generic � in a given Teichmüller space of finite area
hyperbolic surfaces is not essentially cuspidal.

(2) Except for the Teichmüller space of the once punctured torus, the generic � has
only a finite number of discrete eigenvalues.

Reznikov [Rez] has extended the method described above to deal with arithmetic
quotients of rank one globally symmetric spaces. He has shown that for congruence
quotients the determinant of the scattering matrix can be expressed as a ratio of
automorphic L-functions. Using the properties of the L-functions, it follows that the
determinant of the scattering matrix is a meromorphic function of order one. As
above, this implies the following theorem.

Theorem 3.2 ([Rez]). Any congruence subgroup of the unit group of a rational
quadratic form in the group of motions of the hyperbolic space is essentially
cuspidal.

A similar result holds for congruence quotients of the complex hyperbolic space.

3.2 Higher Rank

We turn now to the general case. We assume that G D G.R/, where G is a connected
semisimple algebraic group over Q. Let X D �neX D �nG=K and E� ! X be
as above. Let 
� W C1.X; E� / ! C1.X; E� / be the Bochner-Laplace operator. As
operator in L2.X; E� / it is essentially self-adjoint. Let L2

disc.X; E� / be the subspace
of L2.X; E� / which is the closure of the span of all L2-eigensections of 
� . Recall
that a cusp form for � is a smooth K-finite function �W �nG ! C which is a joint
eigenfunction of the center of the universal enveloping algebra Z.gC/ and which
satisfies

Z

�\NPnNP

�.nx/ dn D 0

for all unipotent radicals NP of proper parabolic subgroups P of G, which are of the
form P D P.R/ for a rational parabolic subgroup P of G. Put

L2
cus.X; E� / WD .L2

cus.�nG/ ˝ V� /K :
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Then L2
cus.X; E� / is contained in L2

disc.X; E� /. The orthogonal complement
L2

res.X; E� / of L2
cus.X; E� / in L2

disc.X; E� / is called the residual subspace. By
Langland’s theory of Eisenstein series it follows that L2

res.X; E� / is spanned by
iterated residues of cuspidal Eisenstein series (see [La2]). By definition we have an
orthogonal decomposition

L2
disc.X; E� / D L2

cus.X; E� / ˚ L2
res.X; E� /:

Let Ndisc
� .�I �/, Ncus

� .�I �/, and Nres
� .�I �/ be the counting function of the eigen-

values with eigensections belonging to the corresponding subspace. The following
results about the growth of the counting functions hold for any lattice � in a real
semisimple Lie group. Let d D dim X. Donnelly [Do] has proved the following
bound for the cuspidal spectrum

lim sup
�!1

Ncus
� .�; �/

�d=2

 dim.�/ vol.X/

.4�/d=2�
�

d
2

C 1
� : (44)

For the full discrete spectrum, we have at least an upper bound for the growth of the
counting function. The main result of [Mu2] states that

Ndisc
� .�; �/ � .1 C �2d/: (45)

This result implies that invariant integral operators are of trace class on the discrete
subspace which is the starting point for the trace formula. The proof of (45) relies
on the description of the residual subspace in terms of iterated residues of Eisenstein
series.

Let Ncus
� .�/ be the counting function with respect to the trivial representation of

K, i.e., the counting function of the cuspidal spectrum of the Laplacian on functions.
Then Sarnak [Sa2] conjectured that if rank.G=K/ > 1, Weyl’s law holds for Ncus

� .�/,
which means that equality holds in (44). Furthermore, one expects that the growth
of the residual spectrum is of lower order than the cuspidal spectrum.

In the meantime Sarnak’s conjecture has been verified in quite a number of cases.
A. Reznikov proved it for congruence groups in a group G of real rank one, Miller
[Mi] proved it for G D SL.3/ and � D SL.3;Z/, the author [Mu5] established it
for G D SL.n/ and a congruence subgroup � . The most general result is due to
Lindenstrauss and Venkatesh [LV] who proved the following theorem.

Theorem 3.3. Let G be a split adjoint semi-simple group over Q and let � � G.Q/

be a congruence subgroup. Let d D dim S. Then

Ncus
� .�/ � vol.�neX/

.4�/d=2�
�

d
2

C 1
��d=2; � ! 1: (46)

The method used by Lindenstrauss and Venkatesh is based on the construction of
convolution operators with pure cuspidal image. It avoids the delicate estimates of
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the contributions of the Eisenstein series to the trace formula. This proves existence
of many cusp forms for these groups.

For an arbitrary K-type, we have the following theorem proved in [Mu3].

Theorem 3.4. Let n � 2 and eX D SL.n;R/= SO.n/. Let d D dimeX D n.nC1/=2�
1. For every principal congruence subgroup � of SL.n;Z/ and every irreducible
unitary representation � of SO.n/ such that � jZ� D Id, we have

Ncus
� .�; �/ � dim.�/ vol.�neX/

.4�/d=2�.d=2 C 1/
�d=2 (47)

as � ! 1.

The residual spectrum for SL.n/ has been described by Moeglin and Waldspurger
[MW]. Combined with (44) it follows that for G D SL.n/ we have

Nres
�.N/.�; �/ � �d=2�1; (48)

where d D dim SL.n;R/= SO.n/ and �.N/ � SL.n;Z/ is the principal congruence
subgroup of level N.

The proof of Theorem 3.4 uses the Arthur trace formula combined with the heat
equation method similar to the proof of (42). The application of the Arthur trace
formula requires the adelic reformulation of the problem.

We briefly describe the method. For all details we refer to [Mu5]. For simplicity
we consider only the trivial K1-type, i.e., we consider the counting function
Ncus

� .�/. By (48) we can replace the counting function Ncus
� .�/ by Ndisc

� .�/. Let
G D GL.n/ be regarded as an algebraic group over Q. Denote by AG the
split component of the center of G and let AG.R/0 be the component of 1 in
AG.R/. Let …disc.G.A/; �0/ be the set of all irreducible subrepresentations of the
regular representation of G.A/ in L2.G.Q/AG.R/0nG.A//. Given a representation
� 2 …disc.G.A/; �0/, let m.�/ denote the multiplicity with which � occurs in
L2.G.Q/AG.R/0nG.A//. For any irreducible representation � D �1 ˝ �f of
G.A/, let H�

1

and H�f denote the Hilbert space of the representation �1 and

�f , respectively. Let Kf be an open compact subgroup of G.Af /. Denote by HKf
�f the

subspace of Kf -invariant vectors in H�f and by HK
1

�
1

the subspace of K1-invariant
vectors in H�

1

. Given � 2 ….G.A/; �0/, denote by ��
1

the Casimir eigenvalue
of the restriction of �1 to G.R/1. Assume that �1 ¤ Kf . Then (47) for the trivial
K1-type follows by Karamata’s theorem [BGV, Theorem 2.42] from the existence
of an asymptotic expansion of the form

X

�2…disc.G.A/;�0/

m.�/et��
1 dim

�
HKf

�f

�
dim

�
HK

1

�
1

/ � vol.G.Q/nG.A/1=Kf /

.4�/d=2
t�d=2

(49)

as t ! C0.
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To establish (49) we apply the Arthur trace formula as follows. We choose a
certain family of test functions Q�1

t 2 C1
c .G.A/1/, depending on t > 0, which at the

infinite place are given by the heat kernel ht 2 C1.G.R/1/ of the Laplacian e
 on eX,
multiplied by a certain cutoff function 't, and which at the finite places is given by
the normalized characteristic function of an open compact subgroup Kf of G.Af /.
Then by the non-invariant trace formula [Ar1] we have the equality

Jspec. Q�1
t / D Jgeo. Q�1

t /; t > 0:

Then we study asymptotic behavior of the spectral and the geometric side as t ! 0.
To deal with the geometric side, we use the fine o-expansion [Ar6]

Jgeo.f / D
X

M2L

X

�2.M.QS//M;S

aM.S; �/JM.�; f /; (50)

which expresses the distribution Jgeo.f / in terms of weighted orbital integrals
JM.�; f /. Here M runs over the set of Levi subgroups L containing the Levi
component M0 of the standard minimal parabolic subgroup P0, S is a finite set of
places of Q, and .M.QS//M;S is a certain set of equivalence classes in M.QS/. This
reduces our problem to the investigation of weighted orbital integrals. The key result
is that

lim
t!0

td=2JM. Q�1
t ; �/ D 0;

unless M D G and � D 1. This follows from the description of the local weighted
orbital integrals by [Ar4, Corollary 6.2]. The contributions to (50) of the terms
where M D G and � D 1 are easy to determine. Using the behavior of the heat
kernel ht.1/ as t ! 0, it follows that

Jgeo. Q�1
t / � vol.G.Q/nG.A/1=Kf /

.4�/d=2
t�d=2 (51)

as t ! 0. To deal with the spectral side we use Theorem 2.1. This theorem
allows us to replace Q�1

t by a similar function �1
t 2 C1.G.A/1/ which is given

as the product of the heat kernel ht at infinity and the normalized characteristic
function of Kf . The term in Jspec.�

1
t / corresponding to M D G is Jspec;G.�1

t / D
tr Rdisc.�

1
t /, which is equal to the left-hand side of (49). If M is a proper Levi

subgroup of G, then Jspec;M.�1
t / is given by (14), which is a finite sum of integrals.

The main ingredient of the integrals are logarithmic derivatives of intertwining
operators and the estimation of these integrals is reduced to the estimation of the
logarithmic derivatives. Using (8) this problem is reduced to the estimation of
the logarithmic derivatives of the normalizing factors and the local intertwining
operators. In the case of G D GL.n/, the normalizing factors are expressed
in terms of Ranking-Selberg L-functions (10). Using the analytic properties of
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Rankin-Selberg L-functions, it follows that there exist C > 0 and T > 1 such that
for � D �1 ˝ �2, �i 2 …disc.GL.ni;A//, we have

Z TC1

T

ˇ̌
ˇ̌n0̨ .�; i�/

n˛.�; i�/

ˇ̌
ˇ̌ d� 
 C log.T C �.�1 � Q�2//; (52)

where �.�1 � Q�2/ D N.�1 � Q�2/.2 C c.�1 � Q�2/, N.�1 � Q�2/ is the conductor
occurring in the functional equation (9) and c.�1 � Q�2/ is the analytic conductor
defined in [Mu5, (4.21)]. For the proof of (52) see [Mu5, Proposition 5.1]. In the
case of SL.2;R/ we have the pointwise estimate (40). If we integrate it, we get
the analogue of (52) which would suffice to derive the Weyl law for the principal
congruence subgroups of SL.2;Z/.

Finally we have to deal with normalized intertwining operators

RQjP.�; s/ D ˝vRQjP.�v; s/:

Since the open compact subgroup Kfin of G.Afin/ is fixed, there are only finitely
many places v for which we have to consider RQjP.�v; s/. The main ingredient for
the estimation of the logarithmic derivative of RQjP.�v; s/, which is uniform in �v ,
is a weak version of the Ramanujan conjecture (see [MS, Proposition 0.2]).

Combining these estimations, it follows that for every proper Levi subgroup M
of G we have

Jspec;M.�1
t / D O.t�.d�1/=2/ (53)

as t ! C0. This proves (49).
The next problem is to estimate the remainder term in the Weyl law. For G D

SL.n/ this problem has been studied by E. Lapid and the author in [LM]. Actually,
we consider not only the cuspidal spectrum of the Laplacian, but also the cuspidal
spectrum of the whole algebra of SL.n;R/-invariant differential operators D.eX/ on
eX D SL.n;R/= SO.n/.

As D.eX/ preserves the space of cusp forms, we can proceed as in the compact
case and decompose L2

cus.�neX/ into joint eigenspaces of D.eX/. Recall that by (26)
the characters of D.eX/ are parametrized by a�

C=W. Given � 2 a�
C=W, denote by �

the corresponding character of D.eX/ and let

Ecus.�/ D ˚
' 2 L2

cus.�neX/W D' D �.D/'
�

be the associated joint eigenspace. Each eigenspace is finite-dimensional. Let
m.�/ D dim Ecus.�/. Define the cuspidal spectrum ƒcus.�/ to be

ƒcus.�/ D f� 2 a�
C=WW m.�/ > 0g:
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Then as in (27) we have an orthogonal direct sum decomposition

L2
cus.�neX/ D

M

�2ƒcus.�/

Ecus.�/:

Let ˇ.�/ be the Plancherel measure on ia�. Then in [LM] we established the
following extension of main results of [DKV] to congruence quotients of eX D
SL.n;R/= SO.n/.

Theorem 3.5. Let d D dimeX. Let � � a� be a bounded domain with piecewise
smooth boundary. Then for N � 3 we have

X

�2ƒcus.�.N//
�2it�

m.�/ D vol.�.N/neX/

jWj
Z

it�
ˇ.�/ d� C O

�
td�1.log t/max.n;3/

�
; (54)

as t ! 1, and

X

�2ƒcus.�.N//
�2Bt.0/nia�

m.�/ D O
�
td�2

�
; t ! 1: (55)

If we apply (54) and (55) to the unit ball in a�, we get the following corollary.

Corollary 3.6. Let eX D SL.n;R/= SO.n/ and d D dimeX. Let �.N/ be the
principal congruence subgroup of SL.n;Z/ of level N. Then for N � 3 we have

Ncus
�.N/.�/ D vol.�.N/neX/

.4�/d=2�
�

d
2

C 1
��d=2 C O

�
�.d�1/=2.log �/max.n;3/

�
; � ! 1:

The condition N � 3 in Theorem 3.5 is imposed for technical reasons. It
guarantees that the principal congruence subgroup �.N/ is neat in the sense of
Borel, and in particular, has no torsion. This simplifies the analysis by eliminating
the contributions of the non-unipotent conjugacy classes in the trace formula. In fact,
in the recent paper [MT], Matz and Templier have eliminated the assumption N � 3

at the expense of the remainder term which is only O.td�1=2/ (see [MT, (1.1)]).
Moreover, [MT, Remark 1.9] contains a discussion of a possible improvement of
the estimation of the remainder term.

Note that ƒcus.�.N// \ ia� is the cuspidal tempered spherical spectrum. The
Ramanujan conjecture [Sa3] for GL.n/ at the Archimedean place states that

ƒcus.�.N// � ia�

so that (55) is empty, if the Ramanujan conjecture is true. However, the Ramanujan
conjecture is far from being proved. Moreover, it is known to be false for other
groups G and (55) is what one can expect in general.
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The method to prove Theorem 3.5 is an extension of the method of [DKV]. The
Selberg trace formula, which is one of the basic tools in [DKV], is replaced by the
non-invariant Arthur trace formula. Again, one of the main issues in the proof is the
estimation of the logarithmic derivatives of the intertwining operators occurring on
the spectral side of the trace formula.

3.3 Upper and Lower Bounds

In some cases it suffices to have upper or lower bounds for the counting function.
For example, Donnelly’s result (44) implies that there exists a constant C > 0 such
that

Ncus
� .�I �/ 
 C.1 C �d=2/; � � 0: (56)

For the full discrete spectrum we have the bound (45). However, the exponent is
not the optimal one. For some applications it is necessary to have such a bound
which is uniform in � . For the cuspidal spectrum this problem has been studied
by Deitmar and Hoffmann [DH]. To state the result, we have to introduce some
notations. Let �n.N/ be the principal congruence subgroup of GL.n;Z/ of level N.
Let G be a connected reductive linear algebraic group over Q. Let �W G ! GL.n/

be a faithful Q-rational representation. A family T of subgroups of G.Q/ is called a
family of bounded depth in G.Q/ if there exists D 2 N which satisfies the following
property: For every � 2 T there exists N 2 N such that �n.N/ \ �.G.Q// is a
subgroup of �.�/ of index at most D. Then the result of Deitmar and Hoffmann
[DH, Corollary 18] is the following theorem.

Theorem 3.7. Let �0 � G.Q/ be an arithmetic subgroup. Let T be a family
subgroups of �0 which is of bounded depth in G.Q/. There exists C > 0 such that
for all � 2 T and all � � 0 we have

Ncus
� .�I �/ 
 CŒ�0W ��.1 C �/d=2: (57)

Conjecture 2. The estimation (57) holds for Ndisc
� .�I �/.

Given the description of the residual spectrum for GL.n/ by [MW], it seems possible
to establish this conjecture for GL.n/.

As for lower bounds there is the weak Weyl law established in [LM]. For � 2 bK
let

c� .�/ D dim.�/ vol.�neX/

.4�/d=2�.d=2 C 1/

be the constant in Weyl’s law, where d D dim.eX/. Let G be a semisimple algebraic
group defined over Q and let � � G.Q/ be a congruence subgroup defined by an
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open compact subgroup Kfin D Q
p Kp of G.Afin/. Let S be a finite set of primes. We

will say that � is deep enough with respect to S, if for every prime p 2 S, Kp is a
subgroup of some minimal parahoric subgroup of G.Qp/. Then the main result of
[LM] is the following theorem.

Theorem 3.8. Let G be an almost simple connected and simply connected semisim-
ple algebraic group defined over Q such that G.R/ is noncompact. Let S be a finite
set of primes containing at least two primes. Then for every congruence subgroup
� � G.Q/ there exists a nonnegative constant cS.�/ 
 1 such that for every � 2 bK
with � jZ� D Id we have

c� .�/cS.�/ 
 lim inf
�!1

Ncus
� .�; �/

�d=2
:

Moreover cS.�/ > 0 if � is deep enough with respect to S.

3.4 Self-Dual Automorphic Representations

So far, we considered only the family of all cusp forms of GL.n;A/. A nontrivial
subfamily is formed by the family of self-dual automorphic representations. They
arise as functorial lifts of automorphic representations of classical groups. Functo-
riality from quasisplit classical groups to general linear groups has been established
by Cogdell et al. [CKP] for generic automorphic representations and then by Arthur
[Ar8] for all representations. In his thesis, V. Kala has studied the counting function
of self-dual cuspidal automorphic representations of GL.n;A/. For N 2 N with
prime decomposition N D Q

p pr.p/ let

Kp.N/ WD ˚
k 2 GL.n;Zp/W k � 1 mod pr.p/

Zp
�

Let K.N/ be the principal congruence subgroup defined by

K.N/ WD O.n/ �
Y

p

Kp.N/:

Let

NK.N/
sd .�/ WD

X

�.…/��

…Še…

dim …K.N/;

where the sum ranges over all self-dual cuspidal automorphic representations …

of GL.n;A/ with Casimir eigenvalues 
 �. Then the main result of [Ka] is the
following theorem.
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Theorem 3.9. Let n D 2m C " with " D 0; 1. Put d D m2 C m. For all N 2 N there
exist constants C1; C2 > 0 such that for � � 0 one has

C1�d=2 
 NK.N/
sd .�/ 
 C2�d=2:

By Corollary 3.6, the counting function of all cuspidal representations, counted
similarly, is asymptotic to C�d=2, where d D .n2 C n � 2/=2. Hence for n > 2, the
density of self-dual cusp forms is zero.

The main idea of the proof of Theorem 3.9 is to consider the descent � of each
self-dual cuspidal automorphic representation … of GL.n;A/ to one of the quasisplit
classical groups G.A/ and to use results towards the Weyl law on G.A/. The number
d D m2 C m is related to the dimension of the corresponding symmetric space
G.R/=K1 (see [Ka, p. 17]). The key problem of the proof is to relate the Casimir
eigenvalue and the existence of K.N/-fixed vectors for … and � .

In a special case Kala’s method leads to an exact asymptotic formula. Let n D 2m
and d D m2 C m. Let K D O.n/ � Q

p Kp with Kp D GL.n;Zp/. Then there exists
C > 0 such that

NK
sd.�/ D C�d=2 C o.�d=2/ (58)

(see [Ka, Corollary 6.2.2]). One may conjecture that this is true in general.

3.5 Weyl’s Law for Hecke Operators

An important extension of the Weyl law is the study of the asymptotic distribution
of infinitesimal characters of cuspidal automorphic representations weighted by the
eigenvalues of Hecke operators acting on cusp forms of GL.n/. For details we refer
to the recent papers by Matz [Ma1], Matz and Templier [MT] and the survey article
of Matz in these proceedings.

4 The Limit Multiplicity Problem

The limit multiplicity problem is another basic problem which is concerned with the
asymptotic behavior of automorphic spectra.

In this section we summarize some of the known results about the limit
multiplicity problem. Let G be a semisimple Lie group, � � G a lattice in G, and
�� the measure (3) on ….G/. To begin with we recall some facts concerning the
Plancherel measure �pl on ….G/. First of all, the support of �pl is the tempered
dual ….G/temp, consisting of the equivalence classes of the irreducible unitary
tempered representations. Up to a closed subset of Plancherel measure zero, the
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topological space ….G/temp is homeomorphic to a countable union of Euclidean
spaces of bounded dimensions. Under this homeomorphism the Plancherel density
is given by a continuous function. We call the relatively quasi-compact subsets of
….G/ bounded. We note that ��.A/ < 1 for bounded sets A � ….G/ under the
reduction-theoretic assumptions on .G; �/ mentioned above (see [BG]). A bounded
subset A of ….G/temp is called a Jordan measurable subset, if �pl.@A/ D 0, where
@A D NA � int.A/ is the boundary of A in ….G/temp. Furthermore, a Riemann
integrable function on ….G/temp is a bounded, compactly supported function which
is continuous almost everywhere with respect to the Plancherel measure.

Let .�n/n2N be a sequence of Borel measures on ….G/. We say that the sequence
.�n/n2N has the limit multiplicity property (property (LM)), if the following two
conditions are satisfied.

(1) For every Jordan measurable set A � ….G/temp we have

�n.A/ ! �pl.A/; as n ! 1:

(2) For every bounded subset A � ….G/ n ….G/temp we have

�n.A/ ! 0; as n ! 1:

We note that condition (1) can be restated as

(1a) For every Riemann integrable function f on ….G/temp one has

lim
n!1 �n.f / D �pl.f /:

Now let .�n/n2N be a sequence of lattices in G. The sequence .�n/n2N is said to
have the limit multiplicity property (LM), if the sequence of measures .��n/n2N has
property (LM).

The limit multiplicity problem can be formulated as follows: under which
conditions does the sequence of measures ��n satisfy property (LM)?

The limit multiplicity problem has been studied to a great extent in the case of
uniform lattices. In this case, R� decomposes discretely. It started with the work of
DeGeorge and Wallach [DW1, DW2], who considered towers of normal subgroups,
i.e., descending sequences of normal subgroups of finite index of a given uniform
lattice with trivial intersection. For such sequences they dealt with the case of
discrete series representations and the tempered spectrum, if the split rank of G is
1. Subsequently, Delorme [De] solved the limit multiplicity problem affirmatively
for normal towers of cocompact lattices. Recently, there has been great progress in
proving limit multiplicity for much more general sequences of uniform lattices by
Abert et al. [AB1, AB2]. In particular, families of non-commensurable lattices were
considered for the first time. The basic idea is the notion of Benjamini–Schramm
convergence (BS-convergence), which originally was introduced for sequences of
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finite graphs of bounded degree and has been adopted by Abert et al. to sequences
of Riemannian manifolds. For a Riemannian manifold M and R > 0 let

M<R D fx 2 MW injradM.x/ < Rg:
Let .�n/ be a sequence of lattices in G. Then the orbifolds Mn D �nnX are said to
BS-converge to X, if for every R > 0 one has

lim
n!C1

vol..Mn/<R/

vol.Mn/
D 0: (59)

To find examples of sequences .�n/ which satisfy this condition, consider a
cocompact arithmetic lattice �0 � G. By [AB1, Theorem 5.2] there exist constants
c; � > 0 such that for any congruence subgroup � � �0 and any R > 1 one has

vol..�nX/<R/ 
 ecR vol.�nX/1��: (60)

Thus any sequence .�n/ of congruences subgroups of �0 such that vol.�nnG/ ! 1
as n ! 1 satisfies (59).

A family of lattices in G is called to be uniformly discrete, if there exists a
neighborhood of the identity in G that intersects trivially all of their conjugates.
For torsion-free lattices �n this is equivalent to the condition that there is a uniform
lower bound of the injectivity radii of the manifolds �nnX. In particular, any family
of normal subgroups .�n/ of a fixed uniform lattice � is uniformly discrete. Now
the following theorem is one of the main results of [AB1, Theorem 1.2].

Theorem 4.1 ([AB1]). Let .�n/ be a uniformly discrete sequence of lattices in G
such that the orbifolds �nnX BS-converge to X. Then the sequence .�n/ has the (LM)
property.

It follows from the discussions above that any sequence of congruence subgroups
.�n/ of a given cocompact arithmetic lattice �0 of G satisfies the assumptions of the
theorem.

A special case of the limit multiplicity property is the case of a singleton A D
f�g. Let ….G/d � ….G/ be the discrete series and d.�/ the formal degree of � 2
….G/d. If .�n/ is a sequence of lattices in G which satisfies the (LM) property, then
it follows that

lim
n!1

m�n.�/

vol.�nnG/
D

(
d.�/; � 2 ….G/d;

0; else:
(61)

It was first proved by DeGeorge and Wallach [DW1] that (61) holds for any tower
of normal subgroups of a given uniform lattice of G.

An important problem is to extend these results to the non-cocompact case.
Then the spectrum contains a continuous part and much less is known. The limit
multiplicity problem has been solved for normal towers of arithmetic lattices and
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discrete series L-packets of representations (with regular parameters) by Rohlfs and
Speh [RoS]. Then Savin [Sav] solved the limit multiplicity problem for the discrete
series and normal towers of congruence subgroups.

In [FLM2] we dealt with the general case. Let F be a number field and denote by
OF its ring of integers. For the non-compact lattice SL.n;OF/ � SL.n; F ˝ R/ we
have the following result.

Theorem 4.2. Let F be a number field. Then the collection of principal congruence
subgroups .�N/ of SL.n;OF/ has the limit multiplicity property.

In [FL2], T. Finis and E. Lapid extended this result to the collection of all
congruence subgroups of SL.n;OF/, not containing non-trivial central elements.
In [FLM2], we also discussed the case of a general reductive group.

4.1 The Density Principle and the Trace Formula

A standard approach to the limit multiplicity problem is to use integration against
test functions on G and the trace formula. Let K be a maximal compact subgroup
of G. Denote by C1

c;fin.G/ the space of smooth, compactly supported bi-K-finite

functions on G. Given f 2 C1
c;fin.G/, define Of .�/ for � 2 ….G/ by Of .�/ WD tr �.f /.

The function � 2 ….G/ 7! Of .�/ on ….G/ is the “Fourier transform” of f . Let � be
a Borel measure on ….G/. Then �.Of / is defined (of course, it might be divergent). In
particular, we have the two Borel measures �pl and �� defined on ….G/. For these
measures we have �pl.Of / D f .1/ and

��.Of / D 1

vol.�nG/
tr R�;disc.f /: (62)

By [Mu2], R�;disc.f / is a trace class operator. Thus the right-hand side is well
defined. Furthermore, by the Plancherel theorem we have �pl.Of / D f .1/. The
density principle of Sauvageot [Sau], which is a refinement of the work of Delorme,
can be stated as follows.

Theorem 4.3. Let .�n/n2N be a sequence of Borel measures on ….G/ and assume
that for all f 2 C1

c;fin.G/ we have

�n.Of / ! �pl.Of / D f .1/; as n ! 1: (63)

Then .�n/n2N satisfies (LM).

Now let .�n/n2N be a sequence of lattices in G. Then by Theorem 4.3 it follows
that .�n/n2N satisfies (LM), if

��n.Of / ! f .1/; n ! 1; (64)
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for all f 2 C1
c;fin.G/. A standard approach to verify (64) is to use the trace formula.

In the case of co-compact lattices this is rather simple. Let � be a cocompact lattice
in G. In this the Selberg trace formula we obtain

vol.�nG/��.Of / D tr R�.f / D
X

f�g2C.�/

vol.�� nG� /

Z

G� nG
f .x�1�x/ dx;

where C.�/ denotes the �-conjugacy classes of � , and G� (resp. �� ) denotes the
centralizer of � in G (resp. �). Let �1 � � be a finite index subgroup. For � 2 � let

c�1.�/ D jfı 2 �1n�W ı�ı�1 2 �1gj: (65)

In [Co], Corwin shows that the elements on the right-hand side of the trace formula
for �1 can be grouped together in a way to give

��1.Of / D 1

vol.�nG/

X

f�g2C.�/

vol.�� nG� /
c�1.�/

Œ�W �1�

Z

G� nG
f .x�1�x/ dx: (66)

For a central element � we obviously have c�1.�/ D Œ�W �1�. Assume that the center
of � is trivial. Let .�n/n2N be a sequence of finite index subgroups of � . Then we
have

��n.Of / D f .1/ C 1

vol.�nG/

X

f�g2C.�/nf1g
vol.�� nG� /

c�n.�/

Œ�W �n�

Z

G� nG
f .x�1�x/ dx:

(67)

By dominated convergence, it follows that in order to establish (63) for the sequence
.�n/n2N, it suffices to show that for every � 2 � , � ¤ 1, we have

c�n.�/

Œ�W �n�
! 0; as n ! 1: (68)

Now note that if �1 is a normal subgroup of � , then c�1.�/=Œ�W �1� is the
characteristic function of �1. Thus for normal towers of finite index subgroups of �

the condition (68) holds trivially. This implies Delorme’s result.
If � is not co-compact, the Selberg trace formula is only available in the rank one

case. We have to switch to the adelic framework so that we can use the Arthur trace
formula.

Thus let now G be an arbitrary reductive group defined over Q. Let A D R�Afin
be the locally compact adele ring of Q. For every place v of Q (i.e., v D 1 or v D p
a prime) let j � jv be the normalized absolute value of Q. As usual, G.R/1 denotes
the intersection of the kernels of the homomorphisms jjW G.R/ ! R

C, where 
runs over the Q-rational characters of G. Similarly we define the normal subgroup
G.A/1 of G.A/. Every � 2 ….G.A/1/ can be written as � D �1 ˝ �fin, where
�1 2 ….G.R/1/ and �fin 2 ….G.Afin//. Fix a Haar measure on G.A/. For any
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open compact subgroup Kf of G.Afin/, let �K D �G
K be the measure on ….G.R/1/

defined by

�K D 1

vol.G.Q/nG.A/1=K/

X

�2….G.R/1/

HomG.R/1 .�; L2.G.Q/nG.A/1=K//ı�

D vol.K/

vol.G.Q/nG.A/1/

X

�2….G.A/1/

dim HomG.A/1 .�; L2.G.Q/nG.A/1// dim.�fin/Kı�
1

:

(69)
We say that a sequence .Kn/n2N of open compact subgroups of G.Afin/ has the limit
multiplicity property, if �Kn ! �pl, n ! 1, in the sense that

(1) For every Jordan measurable subset A � ….G.R/1//temp we have �Kn.A/ !
�pl.A/ as n ! 1, and

(2) For every bounded subset A � ….G.R/1/n….G.R/1//temp, we have �Kn.A/ !
0 as n ! 1.

Again we can rephrase the first condition by saying that for any Riemann integrable
function f on ….G.R/1/temp we have

�Kn.f / ! �pl.f /; as n ! 1: (70)

Note that when G satisfies the strong approximation property (which is the case if
G is semisimple, simply connected, and without any Q-simple factor H for which
H.R/ is compact) and K is an open compact subgroup of G.Afin/, then we have

G.Q/nG.A/=K Š �KnG.R/;

where �K D G.Q/ \ K is a lattice in the connected semisimple Lie group G.R/.
Now for f 2 C1

c;fin.G.R/1/ we have

�K.Of / D 1

vol.G.Q/nG.A/1/
tr Rdisc.f ˝ 1K/ (71)

and

�pl.Of / D f .1/: (72)

Sauvageot’s density principle [Sau] can now be reformulated as follows.

Theorem 4.4. Let .Kn/n2N be a sequence of open compact subgroups of G.Afin/.
Suppose that for every f 2 C1

c;fin.G.R/1/ we have

�Kn.Of / ! f .1/; n ! 1: (73)

Then .Kn/n2N has the limit multiplicity property.
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To try to verify (73), it is natural to use Arthur’s (non-invariant) trace formula, which
is an equality

Jspec.h/ D Jgeo.h/; h 2 C1
c .G.A/1/;

of two distribution on G.A/1 [Ar1, Ar2, Ar3]. The distribution Jspec is expressed
in terms of spectral data and Jgeo in terms of geometric data. The main terms on
the geometric side are the elliptic orbital integrals. In particular, the contribution
vol.G.Q/nG.A/1/h.1/ of the identity element occurs on the geometric side. The
main term on the spectral side is tr Rdisc.h/. By (71) it follows that (73) can be
broken down into the following two statements. For every f 2 C1

c;fin.G.R/1/ we
have

Jspec.f ˝ 1Kn/ � tr Rdisc.f ˝ 1Kn/ ! 0; n ! 1; (74)

and

Jgeo.f ˝ 1Kn/ ! vol.G.Q/nG.A/1/f .1/; n ! 1: (75)

We call (74) the spectral—and (75) the geometric limit property.

4.2 Bounds on Co-rank One Intertwining Operators

In this section we formulate two conditions on the behavior of the intertwining
operators MQjP which imply the spectral limit property for a given G. They also
imply Weyl’s law for the group G. We call these properties (TWN) (tempered
winding number) and (BD) (bounded degree). The first property is global and
second local. The first property is connected with analytic problems in the theory of
automorphic L-functions.

We will use the notation A � B to mean that there exists a constant c
(independent of the parameters under consideration) such that A 
 cB. If c depends
on some parameters (say F) and not on others, then we will write A �F B.

Fix a faithful Q-rational representation 	 W G ! GL.V/ and a Z-lattice ƒ in
the representation space V such that the stabilizer of Oƒ D OZ ˝ ƒ � Afin ˝ V in
G.Afin/ is the group Kfin. (Since the maximal compact subgroups of GL.Afin ˝ V/

are precisely the stabilizers of lattices, it is easy to see that such a lattice exists.) For
any N 2 N let

K.N/ D fg 2 G.Afin/ W 	.g/v � v .mod N Oƒ/; v 2 Oƒg (76)

be the principal congruence subgroup of level N, an open normal subgroup of Kfin.
The groups K.N/ form a neighborhood basis of the identity element in G.Afin/. For
an open subgroup K of Kfin let the level of K be the smallest integer N such that
K.N/ � K. Analogously, define level.Kv/ for open subgroups Kv � Kv .
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As in [Mu6], for any � 2 ….M.R// we define ƒ� D p
�2

� C �2
� , where �

is a lowest K1-type of IndG.R/

P.R/ .�/ and �� and �� are the Casimir eigenvalues of
� and � , respectively. Note that this is well defined, because �� is independent
of � . Roughly speaking, ƒ� measures the size of � . For M 2 L, ˛ 2 †M and
� 2 …disc.M.A// let n˛.�; s/ be the global normalizing factor defined by (8).

Definition 4.5. We say that the group G satisfies the property (TWN) (tempered
winding number) if for any M 2 L, M ¤ G, and any finite subset F � ….KM;1/

there exists an integer k > 1 such that for any ˛ 2 †M and any � > 0 we have

Z

iR

ˇ̌
ˇ̌n0̨ .�; s/

n˛.�; s/

ˇ̌
ˇ̌ .1 C jsj/�k ds �F ;� .1 C ƒ�

1

/k level.KM/� (77)

for all open compact subgroups KM of KM;fin and all � D �1 ˝�fin 2 …disc.M.A//

such that �1 contains a KM;1-type in the set F and �
KM
fin ¤ 0.

Since the normalizing factors n˛.�; s/ arise from co-rank one situations, the
property (TWN) is hereditary for Levi subgroups.

Remark 4.6. If we fix an open compact subgroup KM , then the corresponding bound

Z

iR

ˇ̌
ˇ̌n0̨ .�; s/

n˛.�; s/

ˇ̌
ˇ̌ .1 C jsj/�k ds �KM .1 C ƒ�

1

/k

is the content of [Mu6, Theorem 5.3]. So, the point of (TWN) lies in the dependence
of the bound on KM .

Remark 4.7. In fact, we expect that

Z TC1

T

ˇ̌
ˇ̌n0̨ .�; it/

n˛.�; it/

ˇ̌
ˇ̌ dt � 1 C log.1 C T/ C log.1 C ƒ�

1

/ C log level.KM/ (78)

for all T 2 R and � 2 …disc.M.A//KM . This would give the following strengthening
of (TWN):

Z

iR

ˇ̌
ˇ̌n0̨ .�; s/

n˛.�; s/

ˇ̌
ˇ̌ .1 C jsj/�2 ds � 1 C log.1 C ƒ�

1

/ C log level.KM/

for any � 2 …disc.M.A//KM .

Remark 4.8. If G0 is simply connected, then by [Lub, Lemma 1.6] (cf. also [FLM2,
Proposition 1]) we can replace level.KM/ by vol.KM/�1 in the definition of (TWN)
(as well as in (78)).

For GL.n/ the normalizing factors are expressed in terms of Rankin-Selberg L
functions (see (10)). The known properties of Rankin-Selberg L-functions lead to
the estimation (52), which implies the desired estimation. By [FLM2, Lemma 5.4],
the case of SL.n/ can be reduced to GL.n/. In this way we get (see [FLM2]).
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Theorem 4.9. The estimate (78) holds for G D GL.n/ or SL.n/ with an implied
constant depending only on n. In particular, the groups GL.n/ and SL.n/ satisfy the
property (TWN).

Remark 4.10. For general groups G the normalizing factors are given, at least
up to local factors, by quotients of automorphic L-functions associated with the
irreducible constituents of the adjoint action of the L-group LM of M on the
unipotent radical of the corresponding parabolic subgroup of LG [La1]. To argue
as above, we would need to know that these L-functions have finitely many poles
and satisfy a functional equation with the associated conductor bounded by an
arbitrary power of level.KM/ for automorphic representations � 2 …disc.M.A//KM .
Unfortunately, finiteness of poles and the expected functional equation are not
known in general. It is possible that for classical groups these properties are within
reach.

Now we come to the second condition, which is a condition on the local
intertwining operators. Recall that for a finite prime p, the matrix coefficients of the
local normalized intertwining operators RQjP.�p; s/Kp are rational functions of ps.
Moreover, their denominators can be controlled in terms of �p, and the degrees of
these denominators are bounded in terms of G only. For any Levi subgroup M 2 L
let GM be the closed subgroup of G generated by the unipotent radicals UP, where
P 2 P.M/. It is a connected semisimple normal subgroup of G.

Definition 4.11. We say that G satisfies (BD) (bounded degree) if there exists a
constant c (depending only on G and 	), such that for any M 2 L, M ¤ G,
and adjacent parabolic groups P; Q 2 P.M/, any prime p, any open subgroup
Kp � Kp and any smooth irreducible representation �p of M.Qp/, the degrees of the
numerators of the linear operators RQjP.�p; s/Kp are bounded by c logp levelGM .KP/

if Kp is hyperspecial, and by c.1 C logp levelGM.Kp//, otherwise.

Property (BD) has been studied in [FLM3]. By [FLM3, Theorem 1, Proposi-
tion 6] we have the following theorem.

Theorem 4.12. The groups GL.n/ and SL.n/ satisfy (BD).

The property (BD) has the following consequence.

Proposition 4.13. Suppose that G satisfies (BD). Let M 2 L and let P; Q 2 P.M/

be adjacent parabolic subgroups. Then for all � 2 …disc.M.A//, for all open
subgroups K � Kfin and all � 2 ….K1/ we have

Z

iR

����RQjP.�; s/�1 d

ds
RQjP.�; s/

ˇ̌
ˇ
IG
P .�/�;K

���� .1 C jsj2/�1 ds

� 1 C log.k�k C level.KI GC
M//: (79)

The proof of the proposition follows from a generalization of Bernstein’s inequal-
ity [BE]. Suppose that G satisfies (TWN) and (BD). Combining (77) and (79) we
get an appropriate estimate for the corresponding integral involving the logarithmic
derivative of the intertwining operators.
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4.3 Application to the Limit Multiplicity Problem

The limit multiplicity property is a consequence of properties (TWN) and (BD).
The proof proceeds by induction over the Levi subgroups of G. The property that is
suitable for the induction procedure is not the spectral limit property, but a property
that we call polynomial boundedness (PB). This is a weaker version of the statement
of Conjecture 2.

We write D for the set of all conjugacy classes of pairs .M; ı/ consisting of a
Levi subgroup M of G.R/1 and a discrete series representation ı of M1, where M D
AM � M1 and AM is the largest central subgroup of M isomorphic to a power of R>0.
For any ı 2 D let ….G.R/1/ı be the set of all irreducible unitary representations
which arise by the Langlands quotient construction from the irreducible constituents
of IL

M.ı/ for Levi subgroups L 	 M. Here, IL
M denotes (unitary) induction from an

arbitrary parabolic subgroup of L with Levi subgroup M to L.

Definition 4.14. Let M be a set of Borel measures on ….G.R/1/. We call M
polynomially bounded (PB), if for all ı 2 D there exist Nı > 0 such that

�
�f� 2 ….G.R/1/ıW j�� j 
 Rg� �ı .1 C R/Nı

for all � 2 M and R > 0.

Now consider the measures �K defined by (69). Let M 2 L and denote by
KM.N/ the congruence subgroups of M.Afin/, defined by (76). Denote by �M

KM.N/ the
measure defined by (71) with M in place of G. Then the key result is the following
lemma.

Lemma 4.15. Suppose that G satisfies (TWN) and (BD). Then for each M 2 L, the
collection of measures f�M

KM.N/g, N 2 N, is polynomially bounded.

This has the consequence that if G satisfies (TWN) and (BD), then for every M ¤ G
and f 2 C1

c;fin.G.R/1/ we have

Jspec;M.f ˝ 1K.N// ! 0

as N ! 1. Thus by Theorem 2.1 it follows that if G satisfies (TWN) and (BD),
then for every f 2 C1

c;fin.G.R/1/ we have

Jspec.f ˝ 1K.N// � tr Rdisc.f ˝ 1K.N// ! 0

for n ! 1. Thus the spectral limit property is satisfied in this case. By
Theorems 4.9 and 4.12, the groups GL.n/ and SL.n/ satisfy (TWN) and (BD) and
therefore, the spectral limit property holds for GL.n/ and SL.n/.

To deal with the geometric limit property we use the coarse geometric expansion

JT.h/ D
X

o2O
JT
o .h/; h 2 C1

c .G.A/1/; (80)
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(see (11) for the notation). Write Jo.f / D JT0
o .f /, which depends only on M0

and K. Let JT
unip be the contribution of the unipotent elements of G.Q/ to the

trace formula (11), which is a polynomial in T 2 aM0 of degree at most
d0 D dim aG

M0
[Ar7]. It can be split into the contributions of the finitely many

G. NQ/-conjugacy classes of unipotent elements of G.Q/. It is well known [[Ar7,
Corollary 4.4]] that the contribution of the unit element is simply the constant
polynomial vol.G.Q/nG.A/1/h.1/. Write

JT
unip �f1g.h/ D JT

unip.h/ � vol.G.Q/nG.A/1/h.1/; h 2 C1
c .G.A/1/:

Define the distributions Junip and Junip �f1g as JT0

unip and JT0

unip �f1g, respectively. Since
the groups K.N/ form a neighborhood basis of the identity element in G.sAfin/, it
is easy to see that for a given h 2 C1

c .G.A/1/, for all but finitely many N one has

J.h ˝ 1K.N// D Junip.h ˝ 1K.N//: (81)

For any compact subset � � G.R/1 we write C1
� .G.R/1/ for the Fréchet space

of all smooth functions on G.R/1 supported in � equipped with the seminorms
supx2�j.Xh/.x/j, where X ranges over the left-invariant differential operators on
G.R/. The key result is the following proposition.

Proposition 4.16. For any compact subset � � G.R/1 there exists a seminorm
jj � jj on C1

� .G.R/1/ such that

jJunip �f1g.h ˝ 1K.N//j 
 .1 C log.N//

N
khk

for all h 2 C1
� .G.R/1/ and all N 2 N.

The proof of Proposition 4.16 consists of a slight extension of Arthur’s arguments in
[Ar7]. Combining (81) and Proposition 4.16 the geometric limit property follows.
This completes the proof of Theorem 4.2 for F D Q. The case of a general F is
proved similarly. For details see [FLM2].

5 Analytic Torsion and Torsion in the Cohomology
of Arithmetic Groups

The theorem of DeGeorge and Wallach on limit multiplicities for discrete series
[DW1] implies the statement (4) on the approximation of L2-Betti numbers by
normalized Betti numbers of finite covers [AB2]. For towers of normal subgroups
of finite index, Lück [Lu1] proved this in the more general context of finite CW
complexes. This is part of his study of the approximation of L2-invariants by
their classical counterparts [Lu2]. A more sophisticated spectral invariant is the
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analytic torsion introduced by Ray and Singer [RS]. The study of the corresponding
approximation problem has interesting applications to the torsion in the cohomology
of arithmetic groups.

5.1 Analytic Torsion and L2-Torsion

Let X be a compact Riemannian manifold of dimension n and let 	W �1.X/ ! GL.V/

a finite dimensional representation of its fundamental group. Let E	 ! X be the
flat vector bundle associated with 	. Choose a Hermitian fiber metric in E	. Let

p.	/ be the Laplace operator on E	-valued p-forms with respect to the metrics on
X and in E	. It is an elliptic differential operator, which is formally self-adjoint and
non-negative. Since X is compact, 
p.	/ has a pure discrete spectrum consisting of
sequence of eigenvalues 0 
 �0 
 �1 
 � � � ! 1 of finite multiplicity. Let

�p.sI 	/ WD
X

�j>0

��s
j (82)

be the zeta function of 
p.	/. The series converges absolutely and uniformly on
compact subsets of the half-plane Re.s/ > n=2 and admits a meromorphic extension
to s 2 C, which is holomorphic at s D 0 [Shu]. Then the Ray-Singer analytic torsion
TX.	/ 2 R

C is defined by

TX.	/ WD exp

0

@1

2

nX

pD1

.�1/pp
d

ds
�p.sI 	/

ˇ̌
sD0

1

A : (83)

It depends on the metrics on X and E	. However, if dim.X/ is odd and 	 acyclic,
which means that H�.X; E	/ D 0, then TX.	/ is independent of the metrics [Mu3].
The analytic torsion has a topological counterpart. This is the Reidemeister torsion
T top

X .	/ (usually it is denoted by �X.	/), which is defined in terms of a smooth
triangulation of X [RS, Mu1]. It is known that for unimodular representations 	

(meaning that j det 	.�/j D 1 for all � 2 �1.X/) one has the equality

TX.	/ D T top
X .	/ (84)

[Ch, Mu1]. In the general case of a non-unimodular representation the equality does
not hold, but the defect can be described [BZ].

Let Xi ! X, i 2 N, be sequence of finite coverings of X. Let inj.Xj/ denote the
injectivity radius of Xj and assume that inj.Xj/ ! 1 as j ! 1. Then the question
is: Does

log TXj.	/

vol.Xj/
(85)
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converge as j ! 1 and if so, what is the limit? For a tower of normal coverings
and the trivial representation 	0 a conjecture of Lück [Lu2, Conjecture 7.4] states
that the sequence (85) converges and the limit is the L2-torsion, first introduced by
Lott [Lo] and Mathei [MV]. The L2-torsion is defined as follows. Recall that the
zeta function �p.s/ can be expressed in terms of the heat operator

�p.s/ D 1

�.s/

Z 1

0

.Tr
�
e�t
p

� � bp/ts�1 dt;

where bp is the p-th Betti number and Re.s/ > n=2. Let e�te
p be the heat operator of
the Laplace operator e
p on p-forms on the universal covering eX of X. Let eKp.t; x; y/

be the kernel of e�te
p . Note that eKp.t; x; y/ is a homomorphism of ƒpT�
y .X/ to

ƒpT�
x .X/. Let F � eX be a fundamental domain for the action of � WD �1.X/ on

eX. Then the �-trace of e�te
p.	/ is defined as

Tr�

	
e�te
p



WD

Z

F
tr eKp.t; x; x/ dx: (86)

The L2-Betti number b.2/
p is defined as

b.2/
p WD lim

t!1 Tr�

	
e�te
p



:

In order to be able to define the Mellin transform of the �-trace one needs to know
the asymptotic behavior of Tr�.e�te
p/ as t ! 0 and t ! 1. Using a parametrix for
the heat kernel which is pulled back from a parametrix on X, one can show that for
t ! 0, Tr�.e�te
p/ has an asymptotic expansion similar to the compact case [Lo].
For the large time behavior we need to introduce the Novikov-Shubin invariants

Q̨p D sup
n
ˇp 2 Œ0; 1/W Tr�

	
e�te
p



� b.2/

p D O.t�ˇp=2/ as t ! 1
o

(87)

Assume that Q̨p > 0 for all p D 1; : : : ; n. Then the L2- torsion T.2/
X 2 R

C can be
defined by

log T.2/
X D 1

2

nX

pD1

.�1/pp

�
d

ds

�
1

�.s/

Z 1

0

Tr�

�
e�te
0

p

�
ts�1 dt

�ˇ̌
ˇ̌
sD0

C
Z 1

1

t�1 Tr�

	
e�te
0

p



dt


; (88)

where e
0
p denotes the restriction of e
p to the orthogonal complement of ker e
p and

the first integral is defined near s D 0 by analytic continuation. This definition can
be generalized to all finite dimensional representations 	 of � , if the corresponding
Novikov-Shubin invariants are all positive. Then the L2-torsion T.2/

X .	/ is defined as
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in (88). If there exists c > 0 such that the spectrum of 
p.	/ is bounded from below
by c, then the integral

Z 1

0

Tr�

	
e�te
p.	/



ts�1 dt

converges for Re.s/ > n=2 and admits a meromorphic continuation to C which is
holomorphic at s D 0. Thus, if there is a positive lower bound of the spectrum of all

p.	/, p D 1; : : : ; n, then T.2/

X .	/ can be defined in the usual way by

log T.2/
X .	/ D 1

2

nX

pD1

.�1/pp
d

ds

�
1

�.s/

Z 1

0

Tr�

	
e�te
p.	/



ts�1 dt

� ˇ̌
ˇ̌
sD0

:

Let � D �1.X; x0/ and let .�i/i2N0 be a tower of normal subgroups of finite index of
� D �0. Let Xi D �ineX, i 2 N0, be the corresponding covering of X. Let TX and T.2/

X
denote the analytic torsion and L2-torsion with respect to the trivial representation.
Lück [Lu2, Conjecture 7.4] has made the following conjecture.

Conjecture 3. For every closed Riemannian manifold X the L2-torsion T.2/
X exists

and for a sequence of coverings .Xi ! X/i2N as above one has

lim
i!1

log TXi

Œ�W �i�
D log T.2/

X :

One is tempted to make this conjecture for any finite dimensional representation 	.

5.2 Compact Locally Symmetric Spaces

Now we turn to the locally symmetric case. Let X D �neX, where eX D G=K is a
Riemannian symmetric space of non-positive curvature and � � G is a discrete,
torsion free, cocompact subgroup. Let � be an irreducible finite dimensional
complex representation of G. Let E� ! X be the flat vector bundle associated
with the representation � j� of � . By [MM], E� can be equipped with a canonical
Hermitian fiber metric, called admissible, which is unique up to scaling. Let 
p.�/

be the Laplace operator on p-forms with values in E� , with respect to the choice of
any admissible fiber metric in E� . Let TX.�/ be the corresponding analytic torsion.
Let e
p.�/ be the Laplace operator on eE� -valued p-forms on eX. Let eE� ! eX be
the homogeneous vector bundle defined by � jK . By [MM] there is a canonical
isomorphism

E� Š �neE�
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and the metric on E� is induced by the homogeneous metric on eE� . Thus

C1.eX;eE� / Š .C1.G/ ˝ V� /K : (89)

Let R be the right regular representation of G in C1.G/ and let R.�/ be the
operator in .C1.G/ ˝ V� /K induced by the Casimir element. Then with respect
to the isomorphism (89) we have

e
p.�/ D �R.�/ C �� Id

(see [MM]). This implies that the heat operator e�te
p.�/ is a convolution operator
given by a kernel

Hp;�
t W G ! End.ƒpp� ˝ V� /:

Let hp;�
t 2 C1.G/ be defined by hp;�

t .g/ D tr Hp;�
t .g/, g 2 G. Then it follows

from (86) that

Tr�

	
e�te
p.�/



D vol.X/hp;�

t .1/: (90)

Now one can use the Plancherel theorem to compute hp;�
t .1/ and determine its

asymptotic behavior as t ! 0 and t ! 1. For the trivial representation this was
carried out in [Ol] and for strongly acyclic � in [BV]. So let e
p.�/0 be the restriction
of e
p.�/ to the orthogonal complement of the kernel of e
p.�/. Now let

Q̨p.X; �/ WD sup
n
ˇp 2 Œ0; 1/W Tr�

	
e�te
p.�/0



D O.t�ˇp=2/ as t ! 1

o
; (91)

p D 0; : : : ; n, be the twisted Novikov-Shubin invariants. Assume that Q̨p.X; �/ > 0,

p D 0; : : : ; n. Then the L2-torsion T.2/
X .�/ is defined. By [Ol, Theorem 1.1] this

is the case for the trivial representation. Furthermore, if � is strongly acyclic, then
Q̨p.X; �/ D 1 for all p. Using the definition of the L2-torsion, it follows that

log T.2/
X .�/ D vol.X/t.2/

eX .�/; (92)

where t.2/

eX .�/ is a constant that depends only on eX and � .

Now let .�j/ be sequence of torsion free cocompact lattices in G. Let Xj D �jneX
and assume that inj.Xj/ ! 1 if j ! 1. A representation � W G ! GL.V/ is called
strongly acyclic, if there is c > 0 such that the spectrum of 
Xj;p.�/ is contained in
Œc; 1/ for all j 2 N and p D 0; : : : ; n.

Now let G be a connected semisimple algebraic Q-group. Let G D G.R/. Then
it is proved in [BV] that strongly acyclic representations exist. For such repre-
sentations Bergeron and Venkatesh [BV, Theorem 4.5] established the following
theorem.
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Theorem 5.1. Let � W G ! GL.V/ be strongly acyclic. Then

lim
j!1

log.TXj.�//

vol.Xj/
D t.2/

X .�/; (93)

where Xj D �jneX and inj.Xj/ ! 1 as j ! 1.

The number t.2/
X .�/ can be computed using the Plancherel theorem. Let ı.G/ D

rank.G/ � rank.K/ be the fundamental rank or “deficiency” of G. By [BV,
Proposition 5.2] one has

Proposition 5.2. If ı.G/ ¤ 1, then t.2/
X .�/ D 0. For ı.G/ D 1 one has

.�1/
dimeX�1

2 t.2/
X .�/ > 0:

We note that the simple Lie groups G with ı.G/ D 1 are SL3.R/ and SO.p; q/ with
pq odd, especially G D SO0.2m C 1; 1/ is a group with fundamental rank 1.

Next we briefly recall the main steps of the proof of Theorem 5.1. To indicate
the dependence of the heat operator and other quantities on the covering Xj, we use
the subscript Xj. The uniform spectral gap at 0 implies that there exist constants
C; c > 0 such that for all p D 0; : : : ; n, j 2 N and t � 1 one has

Tr
	

e�t
Xj ;p.�/




 Ce�tc vol.Xj/ (94)

(see [BV]). This is the key result that makes the method to work. Let

KXj.t; �/ WD 1

2

nX

pD1

.�1/pp Tr
	

e�t
Xj ;p.�/



: (95)

Using (94) it follows that the analytic torsion can be defined by

log TXj.�/ D d

ds

�
1

�.s/

Z 1

0

KXj.t; �/ts�1 dt

� ˇ̌
ˇ̌
sD0

: (96)

Let T > 0. Then we can split the integral and rewrite the right-hand side as

log TXj.�/ D d

ds

�
1

�.s/

Z T

0

KXj.t; �/ts�1 dt

� ˇ̌
ˇ̌
sD0

C
Z 1

T
KXj.t; �/t�1 dt:

By (94) there exist C; c > 0 such that

1

vol.Xj/

ˇ̌
ˇ̌
Z 1

T
KXj.t; �/t�1 dt

ˇ̌
ˇ̌ 
 Ce�cT (97)
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for all j 2 N0 and T > 1. To deal with the first term one can use the Selberg trace
formula. Put

k�
t WD 1

2

nX

pD1

.�1/pphp;�
t :

Then the Selberg trace formula gives

KXj.t; �/ D vol.Xj/k
�
t .1/ C HXj.k

�
t /;

where HXj.k
�
t / is the contribution of the hyperbolic conjugacy classes. Using (90)

and the definition of k�
t , it follows that

d

ds

�
1

�.s/

Z T

0

k�
t .1/ts�1 dt

� ˇ̌
ˇ̌
sD0

D t.2/

eX .�/ C O
�
e�cT

�

as T ! 1. Regrouping the terms of the hyperbolic contribution HXj.k
�
t / as in (67) it

follows that the corresponding integral divided by vol.Xj/ converges to 0 as j ! 1.
This proves the theorem.

One expects Theorem 5.1 to be true in general. However, if there is no spectral
gap at zero, one cannot argue as above. The key problem is to control the
small eigenvalues as j ! 1. Sufficient conditions on the behavior of the small
eigenvalues are discussed in [Lu2] and in the 3-dimensional case also in [BSV].

In view of the potential applications to the cohomology of arithmetic groups,
discussed in the next section, it is very desirable to extend Theorem 5.1 to the
non-compact case. The first problem one faces is that the corresponding Laplace
operators have a nonempty continuous spectrum and therefore, the heat operators
are not trace class and the analytic torsion cannot be defined as above. This problem
has been studied by Raimbault [Ra1] for hyperbolic 3-manifolds and in [MP2] for
hyperbolic manifolds of any dimension.

So let G D SO0.n; 1/, K D SO.n/ and eX D G=K. Equipped with a
suitably normalized G-invariant metric, eX becomes isometric to the n-dimensional
hyperbolic space H

n. Let � � G be a torsion free lattice. Then X D �neX is
an oriented n-dimensional hyperbolic manifold of finite volume. As above, let
� W G ! GL.V/ be a finite dimensional complex representation of G. The first step
is to define a regularized trace of the heat operators e�t
p.�/. To this end one uses
an appropriate height function to truncate X at sufficient high level Y > Y0 to get
a compact manifold X.Y/ � X with boundary @X.Y/, which consists of a disjoint
union of n � 1-dimensional tori. Let Kp;� .t; x; y/ be the kernel of the heat operator
e�t
p.�/. Using the spectral resolution of 
p.�/, it follows that there exist ˛.t/ 2 R

such that
R

X.Y/
tr Kp;� .t; x; x/ dx � ˛.t/ log Y has a limit as Y ! 1. Then we define

the regularized trace as

Trreg
�
e�t
p.�/

� WD lim
Y!1

�Z

X.Y/

tr Kp;� .t; x; x/ dx � ˛.t/ log Y

�
: (98)
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We note that the regularized trace is not uniquely defined. It depends on the choice
of truncation parameters on the manifold X. However, if X0 D �0nHn is given
and if truncation parameters on X0 are fixed, then every finite covering X of X0 is
canonically equipped with truncation parameters, namely one simply pulls back the
height function on X0 to a height function on X via the covering map.

Let � be the Cartan involution of G with respect to K D SO.n/. Let �� D � ı � .
If � 6Š �� , it can be shown that Trreg

�
e�t
p.�/

�
is exponentially decreasing as t !

1 and admits an asymptotic expansion as t ! 0. Therefore, the regularized zeta
function �reg;p.sI �/ of 
p.�/ can be defined as in the compact case by

�reg;p.sI �/ WD 1

�.s/

Z 1

0

Trreg
�
e�t
p.�/

�
ts�1 dt: (99)

The integral converges absolutely and uniformly on compact subsets of the half-
plane Re.s/ > n=2 and admits a meromorphic extension to the whole complex
plane, which is holomorphic at s D 0. So in analogy with the compact case, the
regularized analytic torsion TX.�/ 2 R

C can be defined by the same formula (83).
In even dimension the analytic torsion is rather trivial. Therefore, we assume that

n D 2m C 1. Furthermore, for technical reasons we assume that every lattice � � G
satisfies the following condition: For every �-cuspidal parabolic subgroup P of G
one has

� \ P D � \ NP; (100)

where NP denotes the unipotent radical of P. Let �0 be a fixed lattice in G and let
X0 D �0neX. Let �j, j 2 N, be a sequence of finite index torsion free subgroups of �0.
This sequence is called to be cusp uniform, if the tori which arise as cross sections
of the cusps of the manifolds XJ WD �jneX satisfy some uniformity condition (see
[MP2, Definition 8.2]).

The following theorem and its corollaries are established in [MP2]. One of the
main results of [MP2] is the following theorem which may be regarded as an analog
of Theorem 5.1 for oriented finite volume hyperbolic manifolds.

Theorem 5.3. Let �0 be a lattice in G and let �i, i 2 N, be a sequence of finite-
index normal subgroups which is cusp uniform and such that each �i, i � 1, is
torsion-free and satisfies (100). If limi!1Œ�0 W �i� D 1 and if each �0 2 �0 � f1g
only belongs to finitely many �i, then for each � with � ¤ �� one has

lim
i!1

log TXi.�/

Œ� W �i�
D t.2/

Hn .�/ vol.X0/: (101)

In particular, if under the same assumptions �i is a tower of normal subgroups, i.e.
�iC1 � �i for each i and \i�i D f1g, then (101) holds.
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For hyperbolic 3-manifolds, Theorem 5.3 was proved by Raimbault [Ra1] under
additional assumptions on the intertwining operators. We emphasize that the above
theorem holds without any additional assumptions.

Now we specialize to arithmetic groups. First consider �0 WD SO0.n; 1/.Z/.
Then �0 is a lattice in SO0.n; 1/. For q 2 N let �.q/ be the principal congruence
subgroup of �0 of level q. Using a result of Deitmar and Hoffmann [DH], it
follows that the family of principal congruence subgroups �.q/ is cusp uniform
[MP2, Lemma 10.1]. Thus Theorem 5.3 implies the following corollary (see [MP2,
Corollary 1.3]).

Corollary 5.4. For any finite dimensional irreducible representation � of SO0.n; 1/

with � 6Š �� the principal congruence subgroups �.q/, q � 3, of �0 WD
SO0.n; 1/.Z/ satisfy

lim
q!1

log TXq.�/

Œ�W �.q/�
D t.2/

Hn .�/ vol.X0/;

where Xq WD �.q/nHn and X0 WD �0nHn.

We recall that by Proposition 5.2 we have .�1/
n�1

2 t.2/

Hn .�/ > 0.
Next we consider the 3-dimensional case. We note that every lattice � �

SO0.3; 1/ can be lifted to a lattice � 0 � Spin.3; 1/. Moreover, recall that there is
a natural isomorphism Spin.3; 1/ Š SL2.C/. If 	 is the standard representation of
SL2.C/ on C

2, then the finite dimensional irreducible representations of SL2.C/

are given by Symp 	 ˝ Symq N	, p; q 2 N, where Symk denotes the k-th symmetric
power and N	 denotes the complex conjugate representation to 	. One has .Symp 	 ˝
Symq N	/� D Symq 	 ˝ Symp N	. For D 2 N square free let OD be the ring of integers
of the imaginary quadratic field Q.

p�D/ and let �.D/ WD SL2.OD/. Then �.D/

is a lattice in SL2.C/. If a is a non-zero ideal in OD, let �.a/ be the associated
principal congruence subgroup of level a. Then Theorem 5.1 implies the following
corollary (see [MP2, Corollary 1.4]).

Corollary 5.5. Let D 2 N be square free. Let ai be a sequence of non-zero ideals
in OD such that each N.ai/ is sufficiently large and such that limi!1 N.ai/ D 1.
Put XD WD �.D/nH3 and Xi WD �.ai/nH3. Let � D Symp 	 ˝ Symq N	 with p ¤ q.
Then one has

lim
i!1

log TXi.�/

Œ�.D/W �.ai/�
D t.2/

H3 .�/ vol.XD/:
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5.3 Applications to the Cohomology of Arithmetic Groups:
The Cocompact Case

Theorem 5.1 has interesting consequences for the cohomology of arithmetic groups.
Let � � G be a discrete, torsion free, cocompact subgroup. Let � W G ! GL.V/ be
a finite dimensional real representation and let E ! X be the associated vector
bundle. Choose a fiber metric h in E. Assume that there exist a �-invariant lattice
M � V . Let M be the associated local system of free Z-modules over X. Then we
have E D M ˝ R. Let H�.X;M/ be the cohomology of X with coefficients in M.
Each Hq.X;M/ is a finitely generated Z-module. Let Hq.X;M/tors be the torsion
subgroup and

Hq.XIM/free D Hq.X;M/=Hq.X;M/tors:

We identify Hq.X;M/free with a subgroup of Hq.X; E/. Let h�; �iq be the inner
product in Hq.X; E/ induced by the L2-metric on Hq.X; E/. Let e1; : : : ; erq be a
basis of Hq.X;M/free and let Gq be the Gram matrix with entries hek; eli. Put

Rq.�; h/ D
q

j det Gqj; q D 0; : : : ; n:

Define the “regulator” R.�; h/ by

R.�; h/ D
nY

qD0

Rq.�; h/.�1/q
: (102)

Recall that the Reidemeister torsion T top
X .�; h/ depends on the metric h through

the choice of an orthonormal basis in the cohomology H�.X; E/, where the inner
product in H�.X; E� / is defined as above. The key result relating Reidemeister
torsion and cohomology is the following proposition.

Proposition 5.6. Let � be a unimodular representation of � on a finite-dimensional
R-vector space V. Let M � V be a �-invariant lattice and let M be the associated
local system of finitely generated free Z-modules on X. Let h be a fiber metric in the
flat vector bundle E D M ˝ R. Then we have

T top
X .�; h/ D R.�; h/ �

nY

qD0

jHq.X;M/torsj.�1/qC1

: (103)

Especially, if � j� is acyclic, i.e., if H�.X; E/ D 0, then T top
X .�; h/ is independent of

h and we denote it by T top
X .�/. Moreover, R.�; h/ D 1. Then H�.X;M/ is a torsion

group and one has

T top
X .�/ D

nY

qD0

jHq.X;M/j.�1/qC1

:
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Representations � of G which admit a �-invariant lattice arise in the following
arithmetic situation. Let G be a semisimple algebraic group defined over Q and
let G D G.R/. Let � � G.Q/ be an arithmetic subgroup. Let V0 be a Q-vector
space and let 	W G ! GL.V0/ be a rational representation. Then there exists a lattice
M � V0 which is invariant under � and V0 D M ˝Z Q. Let V D V0 ˝Q R and let
� W G ! GL.V/ be the representation induced by 	. Then M � V is a �-invariant
lattice.

Assume that � � G.Q/ is cocompact in G (equivalently assume that G is
anisotropic). Then it is proved in [BV] that strongly acyclic arithmetic �-modules
M exist. Assume that ı.G/ D 1. Let M be a strongly acyclic arithmetic �-module.
Then by (84), Theorem 5.1 and Proposition 5.2 it follows that there exists a constant
C > 0, which depends on G and M, such that

lim
j!1

nX

kD0

.�1/kC dim.eX/�1
2

log jHk.Xj;M/j
Œ�W �j�

D C vol.�neX/ (104)

(see [BV, (1.4.2)]). This implies the following theorem of Bergeron and Venkatesh
[BV, Theorem 1.4].

Theorem 5.7. Suppose that ı.eX/ D 1. Then strongly acyclic arithmetic �-modules
exist. For any such module M,

lim inf
j

X

k�a.mod 2/

log jHk.Xj;M/j
Œ�W �j�

� C vol.�neX/;

where a D .dim.eX/ � 1/=2 and C > 0 depends only on G and M.

In Theorem 5.7, one cannot in general isolate the degree which produces torsion. A
conjecture of Bergeron and Venkatesh [BV, Conjecture 1.3] claims the following.

Conjecture 4. The limit

lim
j!1

log jHk.Xj;M/torsj
Œ�W �j�

exists for each k and is zero unless ı.G/ D 1 and k D dim.eX/�1

2
. In that case, it

is always positive and equal to a positive constant CG;M, which can be explicitly
described, times vol.�neX/.

An example, for which this conjecture can be verified is G D SL.2;C/.
If the representation � of G is not acyclic, various difficulties occur. First of all,

the spectrum of the Laplace operators has no positive lower bound which causes
the problem with the small eigenvalues discussed above in the context of analytic
torsion. Secondly the regulator R.�; h/ is in general nontrivial. It turns out to be
rather difficult to control the growth of the regulator. Of particular interest is the case
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of the trivial representation, i.e., the integer homology Hk.Xj;Z/. The 3-dimensional
case has been studied in [BSV]. In this paper the authors discuss conditions which
imply that the results of [BV] on strongly acyclic local systems can be extended to
the case of the trivial local system. There are conditions on the cohomology and the
spectrum of the Laplace operator on 1-Forms. The conditions on the spectrum are
as follows. Let .�i/i2N be a sequence of cocompact congruence subgroups of a fixed
arithmetic subgroup � � SL.2;C/. Let Xi D �inH3 and put Vi WD vol.Xi/. Let �

.i/
j

j 2 N, be the eigenvalues of the Laplace operator on 1-forms of Xi. Assume:

(1) For every " > 0 there exists c > 0 such that

lim sup
i!1

1

Vi

X

0<�
.i/
j �c

j log �
.i/
j j 
 ":

(2) b1.Xi;Q/ D o. Vi
log Vi

/.

Let TXi be the analytic torsion with respect to the trivial local system. As shown in
[BSV], conditions (1) and (2) imply that

log TXi

Vi
�! t.2/

H3 D � 1

6�
; i ! 1:

Unfortunately, it seems to be difficult to verify (1) and (2). The other problem is
to estimate the growth of the regulator (see [BSV]). We note that condition (1) is
equivalent to the following condition (10).

(10) Let d�1 be the spectral measure of e
1. For every c > 0 one has

1

Vi

X

0<�
.i/
j �c

log �
.i/
j �!

Z c

0

log � d�1.�/; i ! 1:

There is a certain similarity with the limit multiplicity problem.
Finally we note that there is related work by Calegari and Venkatesh [CaV] who

use analytic torsion to compare torsion in the cohomology of different arithmetic
subgroups of SL.2;C/ and establish a numerical form of a Jacquet-Langlands
correspondence in the torsion case.

5.4 The Finite Volume Case

Many important arithmetic groups are not cocompact. So it is desirable to extend
the results of the previous section to the finite volume case. In order to achieve this
one has to deal with the following problems.
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(1) Define an appropriate regularized version T reg
X .	/ of the analytic torsion for

a finite volume locally symmetric space X D �neX and establish the analog
of (93). So let �j � � be a sequence of subgroups of finite index and
Xj WD �jneX, j 2 N. Assume that vol.Vj/ ! 1. Under appropriate additional
assumptions on the sequence .�j/j2N one has to show that

lim
j!1

log T reg
Xj

.	/

vol.Xj/
D t.2/

eX .	/:

(2) Show that T reg
X .	/ has a topological counterpart T top

X .	/, possibly the Reide-
meister torsion of an intersection complex.

(3) If E	 is arithmetic, i.e., if there is a local system of finite rank free Z-modules
M over X such that E	 D M ˝ R, establish an analog of (103).

(4) Estimate the growth of the regulator.

For hyperbolic manifolds (1) has been proved in [Ra1] in the 3-dimensional case
and in [MP1] and [MP2] in general. It would be very interesting to extend these
results to the higher rank case. SL.3;R/ seems to be doable.

Raimbault [Ra2] has studied (2) in the 3-dimensional case and established a kind
of asymptotic equality of analytic and Reidemeister torsion, which is sufficient for
the present purpose. Of course, the goal is to prove an exact equality. For hyperbolic
manifolds there is some recent progress [AR]. Unfortunately, this paper does not
cover the relevant flat bundles. The method requires that the flat bundle can be
extended to the boundary at infinity. This is not the case for the flat bundles which
arise from representations of G by restriction to � . Pfaff [Pf] has established a gluing
formula for the regularized analytic torsion of a hyperbolic manifold, which reduces
the problem to the case of a cusp.

(4) has been studied by Raimbault [Ra2] for 3-dimensional hyperbolic manifolds.
It turns out to be very difficult. The real cohomology never vanishes. There is
always the part of the cohomology coming from the boundary. This is the Eisenstein
cohomology introduced by Harder [Ha]. These cohomology classes are represented
by Eisenstein classes, which are rational cohomology classes. The problem is to
estimate the denominators of the Eisenstein classes which seems to be a hard
problem.

References

[AB1] M. Abert, N. Bergeron, I. Biringer, T. Gelander, N. Nikolov, J. Raimbault, I. Samet, On the
growth of Betti numbers of locally symmetric spaces. C. R. Math. Acad. Sci. Paris 349(15–16),
831–835 (2011)

[AB2] M. Abert, N. Bergeron, I. Biringer, T. Gelander, N. Nikolov, J. Raimbault, I. Samet, On the
Growth of L2-Invariants for Sequences of Lattices in Lie Groups (2012). arXiv:1210.2961

[AR] P. Albin, F. Rochon, D. Sher, Analytic Torsion and R-Torsion of Witt Representations on
Manifolds with Cusps (2014). arXiv:1504.02418



526 W. Müller

[Ar1] J. Arthur, A trace formula for reductive groups. I. Terms associated to classes in G.Q/. Duke
Math. J. 45(4), 911–952 (1978)

[Ar2] J. Arthur, On a family of distributions obtained from Eisenstein series. I. Application of the
Paley-Wiener theorem. Am. J. Math., 104(6), 1243–1288 (1982)

[Ar3] J. Arthur, On a family of distributions obtained from Eisenstein series. II. Explicit formulas.
Am. J. Math., 104(6), 1289–1336 (1982)

[Ar4] J. Arthur, The local behavior of weighted orbital integrals. Duke Math. J. 56 (1988), 223–293
[Ar5] J. Arthur, The trace formula in invariant form. Ann. of Math. (2), 114(1), 1–74 (1981)
[Ar6] J. Arthur, On a family of distributions obtained from orbits. Can. J. Math. 38(1), 179–214

(1986)
[Ar7] J. Arthur, A measure on the unipotent variety. Can. J. Math. 37(6), 1237–1274 (1985)
[Ar8] J. Arthur, The Endoscopic Classification of Representations Orthogonal and Symplectic

Groups. American Mathematical Society Colloquium Publications, vol. 61. (American Math-
ematical Society, Providence, RI, 2013)
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