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Preface

The Simons symposium on families of automorphic forms and the trace formula
took place in Puerto Rico from January 26th through February 1st of 2014. It
was an opportunity to study families of automorphic representations of higher-rank
groups with the goal of paving the way for future developments. We explored the
trace formula, spectra of locally symmetric spaces, p-adic families, and other recent
techniques from harmonic analysis and representation theory. Experts of different
specialties discussed these topics together.

There were 23 participants. Background material has circulated in advance
of the symposium, with the idea of focusing during the symposium on recent
developments and conjectures toward the frontier of current knowledge. In addition
to regular talks, open discussion sessions were scheduled daily for 1 h to promote in-
depth exchanges. A different moderator was assigned to each session. The respective
themes were: counting cohomological forms, p-adic trace formulas, Hecke fields,
slopes of modular forms, and orbital integrals. The goal of each session was to
isolate key difficulties and assess the feasibility of diverse approaches.

We hope that the activities of the symposium and the resulting 13 articles of this
proceedings volume will be inspiring to participants and researchers in the field.
Each article has been thoroughly refereed. Some articles contain original results
that have not appeared before, some articles are a synthesis of current knowledge
and future directions, and others are survey articles.

The symposium was made possible by the endeavor of the Simons Foundation
which we would like to thank again for its generous support. We thank Yuri
Tschinkel and Meghan Fazzi for their constant assistance in the organization. We
thank the authors for contributing articles to these proceedings and also wish to
thank the anonymous referees. Finally we thank Springer-Verlag for their help in
publishing these proceedings.

v
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Introduction

The symposium explored analytic, p-adic, and geometric perspectives on families of
automorphic forms and the trace formula. An emphasis was on promoting the study
of families on higher-rank groups, which was timely in view of recent spectacular
developments in the Langlands program.

The Arthur–Selberg trace formula is one of the most important and fundamental
tools in the theory of automorphic forms. Besides its indispensable role in reci-
procity and functoriality, the trace formula is used to count automorphic forms and
to globalize local representations to global automorphic forms, which has numerous
applications. It continues to motivate a wide range of techniques in representation
theory, in differential and algebraic geometry, and in analysis.

It has been a fruitful idea to study families when solving difficult problems,
even if the problem concerns a single object. In the context of number theory,
one can study an object, whether it is a variety, a representation, or an L-function,
by deforming it in families. In deforming automorphic forms, harmonic families
arise such as Dirichlet characters, holomorphic modular forms, Maass forms, Siegel
modular forms, and automorphic representations with prescribed local components.
The trace formula is essential in conceptualizing harmonic families and establishing
their structural properties, such as the Sato–Tate equidistribution which generalizes
the Weyl law, and limit multiplicities.

The study of families has taken a new turn in the last two decades with the advent
of the Katz–Sarnak heuristics. For this and in other numerous applications of fam-
ilies to sieving, arithmetic statistics, zero-density estimates, L-values, diophantine
equations, equidistribution of arithmetic cycles, the trace formula is again a key tool.
Already in its most primitive version for GL.1/ as the Poisson summation formula,
it enters the theory of the distribution of prime numbers. This proceedings volume
contributes to sharpening our knowledge of families and the trace formula with the
expectation that it will drive new applications.

The trace formula is essential in the local Langlands correspondence and
functoriality, starting from the work of Jacquet–Langlands and culminating in
the work of Arthur on classical groups. For other applications, such as the ones
mentioned above and many others, it is essential to allow a large class of test
functions in order to get the most spectral information out of the trace formula.
To this end, a number of deep problems in analysis need to be solved. On the
spectral side, one has to deal with logarithmic derivatives of intertwining operators,
which are the main ingredients of the terms associated to the Eisenstein series. On
the geometric side, the singularities of orbital integrals play an important role, in
addition to the volume terms which carry much of the arithmetic.

Toward the long-term goals of the subject, it is important to develop systematic
ways to work with the local and global trace formulas, orbital integrals, trace
characters, Plancherel measures, and other techniques from harmonic analysis and
geometry. These themes have been developed separately over the years, and are now
coming together.
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As a quick guide for the reader, we give below a brief overview of each article
in this volume and group them into the following four broad categories: geometric
side, local representation theory, harmonic families, and p-adic families.

The geometric side of the trace formula has a rich arithmetic, algebraic, and
combinatorial structure which has been studied for several decades. Arthur’s
fine expansion in weighted orbital integrals has opened the way to stabilization,
endoscopic classification, and the fundamental lemma, which all have been achieved
recently. Many more questions are now under investigation such as uniform
expansions for test functions of non-compact support, a description of the global
constants which are weighted generalizations of Tamagawa numbers, relations with
the local trace formula, and analogues for function fields.

The article by Werner Hoffmann presents an approach to partition the geometric
side according to a new equivalence relation which is finer than geometric con-
jugacy. The terms are then expressed in terms of certain prehomogeneous zeta
functions. Supported by evidence coming from low-rank groups, several conjectures
are stated with a view toward future developments.

The article by Jasmin Matz constructs a zeta function associated to the adjoint
action of GL.n/ on its Lie algebra. This zeta function is related to the Arthur–Selberg
trace formula applied to certain non-compactly supported test functions. For n D 2
it coincides with Shintani’s zeta function, and for n D 3 it is used to obtain results
toward an asymptotic formula for the sum of residues of Dedekind zeta functions of
families of real cubic fields.

Global orbital integrals factor as a product of local orbital integrals, thus gener-
ating interesting problems over local fields, Archimedean and non-Archimedean, of
zero and positive characteristics. The solution of these problems involves a variety of
techniques at the crossroad of harmonic analysis, algebraic geometry, and geometric
representation theory.

The article by Jim Arthur develops a theory of germ expansions for weighted
orbital integrals for real groups, thereby extending the pioneering work of Harish-
Chandra in the unweighted case. These results will be useful for future investiga-
tions of invariant distributions and weighted orbital integrals, objects that are crucial
in understanding the trace formula.

Motivic integration has its roots in quantifier elimination, resolution of singulari-
ties, and analytic continuation of Igusa integrals. It can be used to prove the transfer
principle for the fundamental lemma, asserting that the matching of orbital integrals
over a local field of equal characteristic is equivalent to the one over a local field
of mixed characteristic. The article by Raf Cluckers, Julia Gordon, and Immanuel
Halupczok concerns a related problem of uniform bounds for orbital integrals on
p-adic groups as one varies the prime p, the conjugacy class, and the test function.
One motivation comes from establishing the Sato–Tate equidistribution for families.

The spectral side of the trace formula consists of characters and weighted char-
acters, which may be studied by local methods, and also terms of genuinely global
nature, most notably the multiplicity of automorphic representations. Thanks to the
works by Arthur, Moeglin-Waldspurger and others, we have the stabilization of the
(twisted) trace formula, opening the doors for the full endoscopic classification
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of automorphic representations. Such a classification has been accomplished for
quasi-split classical groups and anticipated for more groups in the near future. As a
consequence, we have a deeper understanding of characters of reductive groups over
local fields by relating characters of two different groups via endoscopic identities.
In a different direction, the trace formula has been an indispensable tool in the study
of asymptotic behavior of spectral invariants as exemplified by the Weyl law, the
limit multiplicity problem, and more generally the Sato–Tate equidistribution for
families. This allows another useful perspective on characters of reductive groups
over local fields, e.g., by studying quantitative aspects of discrete series and formal
degrees.

Tasho Kaletha surveys the new theory of local and global rigid inner forms,
which seems indispensable in stating and proving a precise version of the Langlands
correspondence and functoriality for reductive groups which are not quasi-split.
The data for rigid inner forms are natural in that they determine a canonical
normalization of transfer factors as well as the coefficients in the endoscopic
character identities. The main advantage of Kaletha’s approach over the previous
ones is that every inner form over a local or global field admits at least one
rigidification as a rigid inner form.

The article by Julee Kim, Sug Woo Shin, and Nicolas Templier studies an
asymptotic behavior of supercuspidal characters of p-adic groups. The idea is
that one can get a somewhat explicit control of the characters of supercuspidal
representations constructed by Yu (which exhaust all supercuspidal representations
if p is large by Kim’s theorem). The main conjecture and its partial confirmation in
the paper are motivated by an asymptotic study of the trace formula and analogy
with Harish-Chandra theory of characters for real groups.

The Weyl law, the limit multiplicity problem and Sato-Tate equidistribution
are some of the basic questions one can ask about the asymptotic distribution of
automorphic forms. Originally, the Weyl law is concerned with the counting of
eigenvalues of the Laplace operator on a compact Riemannian manifold. In the
context of automorphic forms, it means that for a given reductive group we consider
a family of cusp forms with fixed level and count them with respect to the analytic
conductor. The goal is the same as above, namely, to establish an asymptotic formula
for the number of cusp forms with fixed level and analytic contuctor bounded by a
given number. Since in general, the underlying locally symmetric spaces are non-
compact, it is much more subtle to establish the Weyl law in this setting. For GL.2/
this problem was first approached by Selberg using his trace formula. In the higher-
rank case, the Selberg trace formula is replaced by the Arthur trace formula.

The limit multiplicity problem is concerned with the limiting behavior of the
discrete spectrum associated to congruence subgroups of a reductive group. For
a given congruence subgroup of a reductive group G, one counts automorphic
representations in the discrete spectrum whose Archimedean component belongs
to a fixed bounded subset of the unitary dual of G.R/. The normalized counting
function is a measure on the unitary dual, and the problem is to show that it
approximates the Plancherel measure if the level of the congruence subgroup
converges to infinity. This is known to be true for congruence subgroups of GL.n/.
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The first aim of the article by Peter Sarnak, Sug Woo Shin, and Nicolas Templier
is to give a working definition for a family of automorphic representations. The
definition given includes all known families. It distinguishes between harmonic
families which can be approached by the trace formula and geometric families
which arise from diophantine equations. One of the main issues is to put forth
the basic structural properties of families. The implication is that one can define
various invariants, notably the Frobenius–Schur indicator, moments of the Sato–Tate
measure, a Sato–Tate group of the family, and the symmetry type. Altogether this
refines the Katz–Sarnak heuristics and provides a framework for studying families
and their numerous applications to sieving, equidistribution, L-functions, and other
problems in number theory.

The article by Steven J. Miller et al. is a survey on results and works in progress
on low-lying zeros of families of L-functions attached to geometric families of
elliptic curves. The emphasis is on extended supports in the Katz–Sarnak heuristics
and on lower-order terms and biases. The article begins with a detailed treatment of
Dirichlet characters, which serves as an introduction to the techniques and general
issues for a reader wishing to enter the subject.

The article by Werner Müller discusses the Weyl law and recent joint work
with Finis and Lapid on limit multiplicities. Currently, both the geometric and
the spectral sides can only be dealt with for the groups GL.n/ and SL.n/. Further
research about the related problems is in progress. In the final section, the growth
of analytic torsion is discussed. Analytic torsion is a sophisticated spectral invariant
of an arithmetic group, whose growth with respect to the level aspect is related to
the limit multiplicity problem and has consequences for the growth of torsion in the
cohomology of arithmetic groups.

In her article on Hecke eigenvalues, Jasmin Matz discusses work concerning the
asymptotic distribution of eigenvalues of Hecke operators on cusp forms for GL.n/.
Matz–Templier established the Sato–Tate equidistribution of Hecke eigenvalues for
families of Hecke–Maass cusp forms on SL.n;R/=SO.n/. This has consequences
for average estimates toward the Ramanujan conjecture and the distribution of
low-lying zeros of each of the principal, symmetric square and exterior square L-
functions. The Arthur–Selberg trace formula is used in the same way as in the case
of the Weyl law.

A particular aspect of the limit multiplicity problem is the study of the growth
of Betti numbers of congruence quotients of symmetric spaces if the level of the
congruence subgroups tends to infinity. In his article, Simon Marshall establishes
asymptotic upper bounds for the L2-Betti numbers of the locally symmetric
spaces associated to a quasi-split unitary group of degree 4, which improve the
standard bounds. The main tool is the endoscopic classification of automorphic
representations of quasi-split unitary groups by Mok.

Eigenvarieties and p-adic families of automorphic forms arose from the study
of mod p and p-adic congruences of modular forms. They are the p-adic analogues
of the harmonic families of automorphic forms in the context of the trace formula,
but the p-adic version admits rigorous algebraic and geometric definitions and have
been more thoroughly studied as such. Many analytic questions about families
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of automorphic forms can also be asked in the p-adic context. For instance the
distribution of Hecke eigenvalues can be studied p-adically, and one could study
families of p-adic L-functions instead of the usual L-functions. This could lead to
novel and strong methods, especially if combined with the analytic approach.

Hida presents his results on the growth of Hecke fields in Hida families of Hilbert
modular forms with motivation from Iwasawa theory. Hida’s main theorem is that
an irreducible component of the ordinary Hecke algebra is a CM-component, i.e.,
its associated Galois representation is dihedral, if and only if the Hecke field for that
component has bounded degree over the p1-power cyclotomic extension over Q in
some precise sense.

Buzzard and Gee introduce conjectures by Gouvêa, Gouvêa–Mazur, and Buzzard
on the slopes of modular forms, namely, the p-adic valuations of the Up-eigenvalues,
for varying weights and fixed tame level. Despite computational evidence, the con-
jectures are largely open to date. The article points out a purely local phenomenon
in the reduction of crystalline Galois representations motivated by the conjectures
and proposes to make progress toward Buzzard’s conjectures via modularity lifting
theorems.

Bonn, Germany Werner Müller
Berkeley, CA, USA Sug Woo Shin
Ithaca, NY, USA Nicolas Templier
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Germ Expansions for Real Groups

James Arthur

Abstract We shall introduce an archimedean analogue of the theory of p-adic
Shalika germs. These are the objects for p-adic groups that govern the singularities
of invariant orbital integrals. More generally, we shall formulate an archimedean
theory of germs for weighted orbital integrals. In the process we shall be led to
some interesting questions on a general class of asymptotic expansions. Weighted
orbital integrals are the parabolic terms on the geometric side of the trace formula.
An understanding of their singularities is important for the comparison of trace
formulas. It might also play a role in the deeper spectral analysis of a single trace
formula.

Mathematics Subject Classification (2010). Primary 22E55, 11F66; Secondary
22E50

1 Introduction

Suppose that G is a connected reductive group over a local field F of characteristic 0.
The study of harmonic analysis on G.F/ leads directly to interesting functions with
complicated singularities. If the field F is p-adic, there is an important qualitative
description of the behaviour of these functions near a singular point. It is given
by the Shalika germ expansion, and more generally, its noninvariant analogue. The
purpose of this paper is to establish similar expansions in the archimedean case
F D R.

The functions in question are the invariant orbital integrals and their weighted
generalizations. They are defined by integrating test functions f 2 C1c

�
G.F/

�
over

strongly regular conjugacy classes in G.F/. We recall that � 2 G.F/ is strongly
regular if its centralizer G� in G is a torus, and that the set Greg of strongly regular

J. Arthur (�)
Department of Mathematics, University of Toronto, 40 St. George Street, Toronto,
ON, Canada, M5S 2E4
e-mail: arthur@math.utoronto.ca

© Springer International Publishing Switzerland 2016
W. Müller et al. (eds.), Families of Automorphic Forms and the Trace Formula,
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2 J. Arthur

elements is open and dense in G. If � 2 Greg.F/ approaches a singular point c,
the corresponding orbital integrals blow up. It is important to study the resulting
behaviour in terms of both � and f .

The invariant orbital integral

fG.�/ D jD.�/j1=2
Z

G� .F/nG.F/
f .x�1�x/dx; � 2 Greg.F/;

is attached to the invariant measure dx on the conjugacy class of � . Invariant orbital
integrals were introduced by Harish-Chandra. They play a critical role in his study
of harmonic analysis on G.F/. The weighted orbital integral

JM.�; f / D jD.�/j1=2
Z

G� .F/nG.F/
f .x�1�x/vM.x/dx; � 2 M.F/ \Greg.F/;

is defined by a noninvariant measure vM.x/dx on the class of � . The factor vM.x/ is
the volume of a certain convex hull, which depends on both x and a Levi subgroup
M of G. Weighted orbital integrals have an indirect bearing on harmonic analysis,
but they are most significant in their role as terms in the general trace formula. In the
special case that M D G, the definitions reduce to vG.x/ D 1 and JG.�; f / D fG.�/.
Weighted orbital integrals therefore include invariant orbital integrals.

Suppose that c is an arbitrary semisimple element in G.F/. In Sect. 2, we shall
introduce a vector space Dc.G/ of distributions on G.F/. Let Uc.G/ be the union
of the set of conjugacy classes �c.G/ in G.F/ whose semisimple part equals the
conjugacy class of c. Then Dc.G/ is defined to be the space of distributions that
are invariant under conjugation by G.F/ and are supported on Uc.G/. If F is p-adic,
Dc.G/ is finite dimensional. It has a basis composed of singular invariant orbital
integrals

f �! fG.�/; � 2 �c.G/;

taken over the classes in �c.G/. However if F D R, the space Dc.G/ is infinite
dimensional. It contains normal derivatives of orbital integrals, as well as more
general distributions associated with harmonic differential operators. In Sect. 2
(which like the rest of the paper pertains to the case F D R), we shall describe
a suitable basis Rc.G/ of Dc.G/.

For p-adic F, the invariant orbital integral has a decomposition

fG.�/ D
X

�2�c.G/

�_.�/fG.�/; f 2 C1c
�
G.F/

�
; .1/p

into a finite linear combination of functions parametrized by conjugacy classes. This
is the original expansion of Shalika. It holds for strongly regular points � that are
close to c, in a sense that depends on f . The terms

�_.�/ D gG
G.�; �/; � 2 �c.G/;
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are known as Shalika germs, since they are often treated as germs of functions
of � around c. One can in fact also treat them as functions, since they have a
homogeneity property that allows them to be defined on a fixed neighbourhood of
c. The role of the Shalika germ expansion is to free the singularities of fG.�/ from
their dependence on f .

In Sect. 3, we introduce an analogue of the Shalika germ expansion for the
archimedean case F D R. The situation is now slightly more complicated. The sum
in .1/p over the finite set �c.G/ has instead to be taken over the infinite set Rc.G/.
Moreover, in place of an actual identity, we obtain only an asymptotic formula

fG.�/ �
X

�2Rc.G/

�_.�/fG.�/; f 2 C1c .G/: .1/R

As in the p-adic case, however the terms

�_.�/ D gG
G.�; �/; � 2 Rc.G/;

can be treated as functions of � , by virtue of a natural homogeneity property.
The proof of .1/R is not difficult, and is probably implicit in several sources. We
shall derive it from standard results of Harish-Chandra and the characterization by
Bouaziz [B2] of invariant orbital integrals.

Suppose now that M is a Levi subgroup of G, and that c is an arbitrary semisimple
element in M.F/. It is important to understand something of the behaviour of the
general weighted orbital integral JM.�; f /, for points � near c. For example, in the
comparison of trace formulas, one can sometimes establish identities among terms
parametrized by strongly regular points � . One would like to extend such identities
to the more general terms parametrized by singular elements �.

In the p-adic case, there is again a finite expansion1

JM.�; f / D
X

L2L.M/

X

�2�c.L/

gL
M.�; �/JL.�; f /; f 2 C1c

�
G.F/

�
: .2/p

The right-hand side is now a double sum, in which L ranges over the finite set L.M/
of Levi subgroups containing M. The terms

gL
M.�; �/; L 2 L.M/; � 2 �c.L/;

in the expansion are defined as germs of functions of � in M.F/ \ Greg.F/ near c.
The coefficients

JL.�; f /; L 2 L.M/; � 2 �c.L/;

1I thank Waldspurger for pointing this version of the expansion out to me. My original formulation
[A3, Proposition 9.1] was less elegant.
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are singular weighted orbital integrals. These objects were defined in [A3, (6.5)], for
F real as well as p-adic, by constructing a suitable measure on the G.F/-conjugacy
class of the singular element �. The role of .2/p is again to isolate the singularities
of JM.�; f / from their dependence on f .

The goal of this paper is to establish an analogue of .2/p in the archimedean case
F D R. We shall state the results in Sect. 6, in the form of two theorems. The main
assertion is that there is an infinite asymptotic expansion

JM.�; f / �
X

L2L.M/

X

�2Rc.L/

gL
M.�; �/JL.�; f /; f 2 C1c

�
G.R/

�
: .2/R

The double sum here is essentially parallel to .2/p, but its summands are consider-
ably more complicated. The terms

gL
M.�; �/; L 2 L.M/; � 2 Rc.L/; (3)

are “formal germs”, in that they belong to completions of spaces of germs of
functions. They determine asymptotic series, analogous (if more complicated) to
the Taylor series of a smooth, nonanalytic function. The coefficients

JL.�; f /; L 2 L.M/; � 2 Rc.L/; (4)

have to be defined for all singular invariant distributions �, rather than just the
singular orbital integrals spanned by �c.L/. The definitions of [A3] are therefore not
good enough. We shall instead construct the distributions JL.�; f / and the formal
germs gL

M.�; �/ together, in the course of proving the two theorems. We refer the
reader to the statement of Theorem 6.1 for a detailed list of properties of these
objects.

As preparation for the theorems, we review the properties of general weighted
orbital integrals in Sect. 4, with emphasis on the bounds they satisfy as � approaches
a singular point. These bounds provide motivation for the spaces of functions we
introduce at the end of the section. Section 5 is one of the more complicated parts
of the paper. However, the difficulties are largely formal (with apologies for the
pun), for it is here that we introduce the spaces of formal germs that contain the
coefficients on the right-hand side of .2/R. These are obtained from the spaces in
Sect. 4 by a process of localization (which yields germs), followed by completion
(which yields formal power series). The constructions are made more abstract,
perhaps, by the need to account for the original singularities of the weighted orbital
integrals on the left-hand side of .2/R. In any case, the various topological vector
spaces are represented by a commutative diagram later in the section, which might
be useful to the reader. At the end of Sect. 5 we introduce some simpler spaces,
which act as a bridge between the invariant orbital integrals in .1/R and the weighted
orbital integrals in .2/R. The link is summarized in the sequence of inclusions (33).
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The proof of Theorems 6.1 and 6.1� will occupy Sects. 7 through 10. The
argument is by induction. We draw some preliminary inferences from our induction
hypothesis in Sect. 7. However, our main inspiration is to be taken from the
obvious source, the work of Harish-Chandra, specifically his ingenious use of
differential equations to estimate invariant orbital integrals. One such technique
is the foundation in Sect. 4 of some initial estimates for weighted orbital integrals
around c. These estimates in turn serve as motivation for the general spaces of formal
germs we introduce in Sect. 5. A second technique of Harish-Chandra will be the
basis of our main estimate. We shall apply the technique in Sect. 8 to the differential
equations satisfied by the asymptotic series on the right-hand side of .2/R, or rather,
the difference between JM.�; f / and that part of the asymptotic series that can be
defined by our induction hypothesis. The resulting estimate will be used in Sect. 9
to establish two propositions. These propositions are really the heart of the matter.
They will allow us to construct the remaining part of the asymptotic series in Sect. 10
and to show that it has the required properties.

In Sect. 11, we shall apply our theorems to invariant distributions. We are speak-
ing here of the invariant analogues of weighted orbital integrals, the distributions

IM.�; f /; � 2 M.R/\ Greg.R/;

that occur in the invariant trace formula. We shall derive an asymptotic expansion

IM.�; f / �
X

L2L.M/

X

�2Rc.L/

gL
M.�; �/IL.�; f /; f 2 C1c

�
G.R/

�
; (5)

for these objects that is parallel to .2/R.
We shall conclude the paper in Sect. 12 with some supplementary comments on

the new distributions. In particular, we shall show that the invariant distributions

IL.�; f /; L 2 L.M/; � 2 Rc.L/; (6)

in (5), as well as their noninvariant counterparts (4), satisfy a natural descent
condition.

The distributions (6) are important objects in their own right. As we have noted,
they should satisfy local transfer relations of the kind encountered in the theory of
endoscopy. However, their definition is quite indirect. It relies on the construction
of noninvariant distributions (4), which as we have noted is a consequence of our
main theorems. Neither set of distributions is entirely determined by the given
conditions. We shall frame this lack of uniqueness in terms of a choice of some
element in a finite dimensional affine vector space. One can make the choice in
either the noninvariant context (Proposition 9.3), or equivalently, the setting of
the invariant distributions (as explained at the end of Sect. 11). When it comes to
comparing invariant distributions (6) on different groups, it would of course be
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important to make the required choices in a compatible way. The question is related
to the remarkable interpretation by Hoffmann [Ho] of the underlying differential
equations, and the stabilization [A8] of these equations.

This paper is a revision of a preprint that was posted in 2004. My original interest
was primarily in the endoscopic comparisons needed for the stabilization of the
global trace formula. This problem has now been treated differently by Waldspurger
[W], in his work on the stabilization of the more general twisted trace formula.
He introduces a subset of the distributions we consider here, which are simpler to
construct, but which still include all of the terms needed for the global stabilization.
He is then able to establish the required endoscopic relations by a more direct
approach. The endoscopic properties of the full set (6) would still be of interest,
I think even in their own right. As for other global applications, the stable trace
formula and another form of local transfer are at the heart of Beyond Endoscopy, the
proposal of Langlands for studying the general principle of functoriality. However,
it is too early to speculate whether this has any implications for singular (weighted)
orbital integrals.

2 Singular Invariant Distributions

Let G be a connected reductive group over the real field R. If c is a semisimple
element in G.R/, we write Gc;C for the centralizer of c in G, and Gc D .Gc;C/0 for
the connected component of 1 in Gc;C. Both Gc;C and Gc are reductive algebraic
groups over R. Recall that c is said to be strongly G-regular if Gc;C D T is a
maximal torus in G. We shall frequently denote such elements by the symbol � ,
reserving c for more general semisimple elements. We write �ss.G/ D �ss

�
G.R/

�

and �reg.G/ D �reg
�
G.R/

�
for the set of conjugacy classes in G.R/ that are,

respectively, semisimple and strongly G-regular.
We follow the usual practice of representing the Lie algebra of a group by a

corresponding lowercase Gothic letter. For example, if c belongs to �ss.G/,

gc D fX 2 g W Ad.c/X D Xg
denotes the Lie algebra of Gc. (We frequently do not distinguish between a
conjugacy class and some fixed representative of the class.) Suppose that � 2
�reg.G/. Then T D G� is a maximal torus of G over R, with Lie algebra t D g� , and
we write

D.�/ D DG.�/ D det
�
1 �Ad.�/

�
g=t

for the Weyl discriminant of G. If � is contained in Gc, we can of course also form
the Weyl discriminant

Dc.�/ D DGc.�/ D det
�
1� Ad.�/

�
gc=t
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of Gc. The function Dc will play an important role in formulating the general germ
expansions of this paper.

Suppose that f is a function in the Schwartz space C.G/ D C
�
G.R/

�
on G.R/

[H3], and that � belongs to �reg.G/. The invariant orbital integral of f at � is defined
by the absolutely convergent integral

fG.�/ D JG.�; f / D jD.�/j1=2
Z

G� .R/nG.R/
f .x�1�x/dx:

One can regard fG.�/ as a function of f , in which case it is a tempered distribution.
One can also regard fG.�/ is a function of � , in which case it represents a transform
from C.G/ to a space of functions on either �reg.G/ or

Treg.R/ D G� .R/ \Greg.R/:

(Recall that Greg.R/ denotes the open dense subset of strongly G-regular elements
in G.R/.) We shall generally take the second point of view. In the next section, we
shall establish an asymptotic expansion for fG.�/, as � approaches a fixed singular
point.

Let c 2 �ss.G/ be a fixed semisimple conjugacy class. Keeping in mind that c also
denotes a fixed element within the given class, we write Uc.G/ for the union of those
conjugacy classes in G.R/ whose semisimple Jordan component equals c. Then
Uc.G/ is a closed subset of G.R/ on which G.R/ acts by conjugation. We define
Dc.G/ to be the vector space of G.R/-invariant distributions that are supported on
Uc.G/. In this section, we shall introduce a suitable basis of Dc.G/.

Elements in Dc.G/ are easy to construct. Let Tc.G/ be a fixed set of representa-
tives of the Gc;C.R/-orbits of maximal tori on Gc over R, or equivalently, a fixed set
of representatives of the G.R/-orbits of maximal tori in G over R that contain c. We
shall write Sc.G/ for the set of triplets

� D .T; �;X/;

where T belongs to Tc.G/, � belongs to the set �0;c
�
Treg.R/

�
of connected

components of Treg.R/ whose closure contains c, and X is an invariant differential
operator on T.R/. (By an invariant differential operator on T.R/, we of course mean
a linear differential operator that is invariant under translation by T.R/.) Let � be a
triplet in Sc.G/. A deep theorem of Harish-Chandra [H2, H3] asserts that the orbital
integral

fG.�/; f 2 C.G/; � 2 �;

extends to a continuous linear map from C.G/ to the space of smooth functions on
the closure of�. It follows from this that the limit

fG.�/ D lim
�!c

.XfG/.�/; � 2 �; f 2 C.G/;
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exists, and is continuous in f . If f is compactly supported and vanishes on a
neighbourhood of Uc.G/, fG.�/ equals 0. The linear form f ! fG.�/ therefore
belongs to Dc.G/.

Bouaziz has shown that, conversely, the distributions f ! fG.�/ span Dc.G/.
To describe the result in more detail, we need to attach some familiar data to the
tori T in Tc.G/. Given T, we write WR.G;T/ for the subgroup of elements in
the Weyl group W.G;T/ of .G;T/ that are defined over R, and W

�
G.R/;T.R/

�

for the subgroup of elements in WR.G;T/ induced from G.R/. We also write
WR;c.G;T/ and Wc

�
G.R/;T.R/

�
for the subgroups of elements in WR.G;T/ and

W
�
G.R/;T.R/

�
, respectively, that map the element c 2 T.R/ to itself. We then

form the imaginary root sign character

"c;I.w/ D .�1/b; b D jw.†Cc;I/\†Cc;Ij; w 2 WR;c.G;T/;

on WR;c.G;T/, where †Cc;I denotes the set of positive imaginary roots on .Gc;T/
relative to any chamber. This allows us to define the subspace

S
�
t.C/

�c;I D ˚u 2 S
�
t.C/

� W wu D "c;I.w/u; w 2 Wc
�
G.R/;T.R/

�

of elements in the symmetric algebra on t.C/ that transform under Wc
�
G.R/;T.R/

�

according to the character "c;I . There is a canonical isomorphism u ! @.u/ from

S
�
t.C/

�c;I
onto the space of "c;I-equivariant differential operators on T.R/.

For each T 2 Tc.G/, we choose a connected component�T 2 �0;c
�
Treg.R/

�
. For

any u 2 S
�
T.C/

�c;I
and w 2 WR;c.G;T/, the triplet

�w;u D
�
T;w�T ; @.u/

�

lies in Sc.G/. We obtain a linear transformation

� W
M

T2Tc.G/

S
�
t.C/

�c;I �! Dc.G/ (7)

by mapping u to the distribution

�u W f �!
X

w2WR;c.G;T/

"c;I.w/fG.�w;u/; f 2 C.G/;

in Dc.G/. For each T, we choose a basis B
�
t.C/

�c;I
of S

�
t.C/

�c;I
, whose elements

we take to be homogeneous. We then form the subset

Rc.G/ D
˚
�u W T 2 Tc.G/; u 2 B

�
t.C/

�c;I�

of Dc.G/.
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Lemma 2.1. The map (7) is an isomorphism, and Rc.G/ is a basis of Dc.G/. In
particular, Dc.G/ consists of tempered distributions.

Proof. Since Rc.G/ is the image under the linear transformation (7) of a basis, it
would be enough to establish the assertion that (7) is an isomorphism. We could
equally well deal with the mapping

�0 W
M

T2Tc.G/

S
�
t.C/

�c;I �! Dc.G/ (70)

that sends an element u 2 S
�
t.C/

�c;I
to the distribution

�0u W f �! fG.�1;u/ D fG
�
T; �T ; @.u/

�
; f 2 C.G/:

For it is an easy consequence of Harish-Chandra’s jump conditions for orbital
integrals that there is an isomorphism of the domain of (7) to itself whose
composition with (7) equals (70). It would be enough to show that (70) is an
isomorphism.

That the mapping (70) is an isomorphism is implicit in the papers [B1] and [B2] of
Bouaziz. In the special case that c D 1, the corresponding result for the Lie algebra
g.R/ was proved explicitly [B1, Proposition 6.1.1]. The assertion for G.R/, again in
the special case that c D 1, follows immediately from properties of the exponential
map. A standard argument of descent then reduces the general assertion for G.R/ to
the special case, applied to the group Gc.R/. ut

If � D �
T; �T ; @.u/

�
belongs to Rc.G/, we set deg.�/ equal to the degree of the

homogeneous element u 2 S
�
t.C/

�
. Observe that for any nonnegative integer n, the

subset

Rc;n.G/ D f� 2 Rc.G/ W deg.�/ � ng
of Rc.G/ is finite. This set is in turn a disjoint union of subsets

Rc;.k/.G/ D f� 2 Rc.G/ W deg.�/ D kg; 0 � k � n:

The sets Rc;.k/.G/ will be used in the next section to construct formal germ
expansions of invariant orbital integrals.

Let Z.G/ be the centre of the universal enveloping algebra of g.C/. For any torus
T 2 Tc.G/, we write

hT W Z.G/ �! S
�
t.C/

�W.G;T/

for the Harish-Chandra isomorphism from Z.G/ onto the space of W.G;T/-
invariant elements in S

�
t.C/

�
. We then define an action � ! z� of Z.G/ on Dc.G/

by setting

z� D �T; �T ; @
�
hT.z/u

��
; z 2 Z.G/;
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for any � D �
T; �T ; @.u/

�
in the basis Rc.G/. It follows immediately from Harish-

Chandra’s differential equations

.zf /G.�/ D @
�
hT.z/

�
fG.�/; f 2 C.G/; � 2 Treg.R/; (8)

for invariant orbital integrals that

fG.z�/ D .zf /G.�/: (9)

There is no special reason to assume that Rc.G/ is stable under the action of Z.G/.
However, we do agree to identify any function � on Rc.G/ with its linear extension
to Dc.G/, in order that the values

�.z�/; z 2 Z.G/; � 2 Rc.G/;

be defined. Moreover, for any z 2 Z.G/, we write Oz for the transpose of the linear
operator � ! z� on Dc.G/, relative to the basis Rc.G/. In other words,

X

�2Rc.G/

�.�/ .Oz�/ D
X

�2Rc.G/

�.z�/ .�/; (10)

for any functions � and  of finite support on Rc.G/.
We note for future reference that as a Z.G/-module, Dc.G/ is free. To exhibit a

free basis, we write Dc;harm.G/ for the finite dimensional subspace ofDc.G/ spanned
by triplets

�
T; �; @.u/

�
in Sc.G/ for which u belongs to the subspace Sharm

�
t.C/

�
of

harmonic elements in S
�
t.C/

�
. (Recall that u is harmonic if as a polynomial on

t.C/�, @.u�/u D 0 for every element u� 2 S
�
t.C/�

�W.G;T/
with zero constant term.)

It can be shown that

S
�
t.C/

�c;I D Sharm
�
t.C/

�c;I ˝ S
�
t.C/

�W.G;T/
;

where

Sharm
�
t.C/

�c;I D Sharm
�
t.C/

�\ S
�
t.C/

�c;I
:

Any linear basis of Dc;harm.G/ is therefore a free basis of Dc.G/ as a Z.G/-module.
The remarks above are of course simple consequences of the isomorphism (7).

Another implication of (7) is the existence of a canonical grading on the vector
space Dc.G/. The grading is compatible with the natural filtration on Dc.G/ that is
inherited from the underlying filtration on the space

I.G/ D ˚fG.�/ W f 2 C.G/
�
:

We shall be a bit more precise about this, in order to review how subsets of Rc.G/
are related to Levi subgroups.
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By a Levi subgroup M of G, we mean an R-rational Levi component of a
parabolic subgroup of G over R. For any such M, we write AM for the R-split
component of the centre of M. Then AM.R/

0 is a connected abelian Lie group, whose
Lie algebra can be identified with the real vector space

aM D Hom
�
X.M/R;R

�
:

We write

W.M/ D WG.M/ D NormG.M/=M

for the Weyl group of .G;AM/. We shall follow a standard convention of writing
L.M/ D LG.M/ for the finite set of Levi subgroups of G that contain M, and L0.M/
for the complement of fGg in L.M/. Similarly, F.M/ D FG.M/ stands for the finite
set of parabolic subgroups

P D MPNP; MP 2 L.M/;

of G over R that contain M, while

P.M/ D PG.M/ D ˚P 2 F.M/ W MP D M
�

stands for the subset of parabolic subgroups in F.M/ with Levi component M.
Again, F0.M/ denotes the complement of fGg in F.M/.

Suppose that M is a Levi subgroup of G. We write �G-reg.M/ for the set of classes
in �reg.M/ that are strongly G-regular. There is a canonical map from �G-reg.M/ to
�reg.G/ on whose fibres the group W.M/ acts. The dual restriction map of functions
is a linear transformation �G ! �M from I.G/ to I.M/. We define FM .I.G// to be
the space of functions �G in I.G/ such that �L D 0 for every Levi subgroup L of G
that does not contain a conjugate of M. If M D G, FM .I.G// is the space Icusp.G/
of cuspidal functions in I.G/. This space is nonzero if and only if G has maximal
torus T over R that is elliptic, in the sense that T.R/=AG.R/ is compact. Letting M
vary, we obtain an order reversing filtration on I.G/ over the partially ordered set
of G-conjugacy classes of Levi subgroups. The graded vector space attached to the
filtration has M-component equal to the quotient

GM
�
I.G/

� D FM
�
I.G/

�
=
X

L©M

FL
�
I.G/

�
:

The map �G ! �M is then an isomorphism from GM
�
I.G/

�
onto the space

Icusp.M/W.M/ of W.M/-invariant cuspidal functions in I.M/. (See [A6]. The
definition of FM

�
I.G/

�
was unfortunately stated incorrectly on p. 508 of that paper,

as was the definition of the corresponding stable space on p. 510.)
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Since the distributions in Dc.G/ factor through the projection f ! fG of C.G/
onto I.G/, they may be identified with linear forms on I.G/. The decreasing
filtration on I.G/ therefore provides an increasing filtration onDc.G/. To be precise,
FM
�
Dc.G/

�
is defined to be the subspace of distributions in Dc.G/ that annihilate

any of the spaces FL
�
I.G/

�
with L © M. The M-component

GM
�
Dc.G/

� D FM
�
Dc.G/

�
=
X

L¨M

FL
�
Dc.G/

�

of the corresponding graded vector space can of course be zero. It is nonzero if and
only if M.R/ contains some representative of c, and Mc contains a maximal torus
T over R that is elliptic in M. The correspondence M ! T in fact determines a
bijection between the set of nonzero graded components of the filtration of Dc.G/
and the set Tc.G/. Moreover, the mapping (7) yields an isomorphism between the
associated graded component S

�
t.C/

�c;I
and GM

�
Dc.G/

�
. We therefore obtain an

isomorphism

Dc.G/
��!

M

fMg
GM
�
Dc.G/

�
; (11)

where fMg D fMg=G ranges over conjugacy classes of Levi subgroups of G. The
construction does depend on the choice of chambers �T that went into the original
definition (7), but only up to a sign on each summand in (11).

The isomorphism (11) gives the grading of Dc.G/. We should point out that there
is also a natural grading on the original space I.G/. For the elements fG in I.G/ can
be regarded as functions on the set…temp.G/ of irreducible tempered representations
of G.R/, rather than the set �reg.G/. The space of functions on…temp.G/ so obtained
has been characterized [A5], and has a natural grading that is compatible with the
filtration above. (See [A6, §4] for the related p-adic case.) However, this grading on
I.G/ is not compatible with (11).

We shall say that an element in Dc.G/ is elliptic if it corresponds under the
isomorphism (11) to an element in the space GG

�
Dc.G/

�
. We write Dc;ell.G/ for

the subspace of elliptic elements in Dc.G/, and we write

Rc;ell.G/ D Rc.G/\Dc;ell.G/

for the associated basis of Dc;ell.G/. For any Levi subgroup M of G, we shall also
write Dc;ell.M;G/ for the subspace of distributions in Dc;ell.M/ that are invariant
under the action of the finite group W.M/. (We can assume that M.R/ contains a
representative c of the given conjugacy class, since the space is otherwise zero.)
The set

Rc;ell.M;G/ D Rc.G/\ GM
�
Dc.G/

�
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can then be identified with a basis of Dc;ell.M;G/. The grading (11) gives a
decomposition

Rc.G/ D
a

fMg
Rc;ell.M;G/

of the basis of Dc.G/.
Suppose, finally, that 	 is an R-isomorphism from G to another reductive group

G1 D 	G over R. Then c1 D 	c is a class in �ss.G1/. For any f 2 C.G/, the function

.	 f /.x1/ D f .	�1x1/; x1 2 G1.R/;

belongs to C.G1/. The map that sends any � 2 Dc.G/ to the distribution 	� defined
by

.	 f /G.	�/ D fG.�/ (12)

is an isomorphism from Dc.G/ onto Dc1 .G1/. It of course maps the basis Rc.G/ of
Dc.G/ to the basis Rc1.G1/ D 	Rc.G/ of Dc1 .G1/.

3 Invariant Germ Expansions

Let c be a fixed element in �ss.G/ as in Sect. 2. We are going to introduce an
asymptotic approximation of the invariant orbital integral fG.�/, for elements �
near c. This will be a foundation for the more elaborate asymptotic expansions of
weighted orbital integrals that are the main goal of the paper.

Suppose that V is an open, G.R/-invariant neighbourhood of c in G.R/. We write

I.V/ D ˚fG W Vreg�!C; f 2 C.G/
�

for the space of functions on

Vreg D V \ Greg.R/

that are restrictions of functions in I.G/. If � D .T; �;X/ belongs to the set Sc.G/
defined in Sect. 2, the intersection

V� D Vreg \�

is an open neighbourhood of c in the connected component � of Treg.R/. The
functions � in I.V/ are smooth on V�, and have the property that the seminorms

k�k� D sup
�2V�

j.X�/.�/j (13)
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are finite. These seminorms make I.V/ into a topological vector space. To deal with
neighbourhoods that vary, it will be convenient to work with the algebraic direct
limit

Ic.G/ D lim�!
V

I.V/

relative to the restriction maps

I.V1/�!I.V2/; V1 � V2:

The elements in Ic.G/ are germs of G.R/-invariant, smooth functions on invariant
neighbourhoods of c in Greg.R/. (We will ignore the topology on Ic.G/ inherited
from the spaces I.V/, since it is not Hausdorff.)

As is customary in working with germs of functions, we shall generally not
distinguish in the notation between an element in Ic.G/ and a function in I.V/ that
represents it. The open neighbourhood V of c is of course not uniquely determined
by the original germ. The convention is useful only in describing phenomena that do
not depend on the choice of V . It does make sense, for example, for the linear forms
� in Dc.G/. By Lemma 2.1, � factors through the map f ! fG. It can be evaluated
at a function in any of the spaces I.V/, and the value taken depends only on the
image of the functions in Ic.G/. In other words, the notation �.�/ is independent of
whether we treat � as a germ in Ic.G/ or a function in I.V/.

For a given V , Bouaziz characterizes the image of the space C1c .V/ under the
mapping f ! fG. He proves that the image is the space of G.R/-invariant, smooth
functions on Vreg that satisfy the conditions I1.G/-I4.G/ on pp. 579–580 of [B2,
§3]. Assume that the open invariant neighbourhood V of c is sufficiently small. The
conditions can then be formulated in terms of triplets .T; �;X/ in Sc.G/. Condition
I1.G/ is simply the finiteness of the seminorm (13). Condition I2.G/ asserts that the
singularities of � in T.R/ \ V that do not come from noncompact imaginary roots
are removable. Condition I3.G/ is Harish-Chandra’s relation for the jump of X�.�/
across any wall of V� defined by a noncompact imaginary root. Condition I4.G/
asserts that the closure in T.R/ \ V of the support of � is compact. The theorem of
Bouaziz leads directly to a characterization of our space Ic.G/.

Lemma 3.1. Ic.G/ is the space of germs of invariant, smooth functions � 2
C1.Vreg/ that for any .T; �;X/ 2 Sc.G/ satisfy the conditions I1.G/ � I3.G/ in
[B2, §3].

Proof. Suppose that � belongs to Ic.G/. Then � has a representative in I.V/, for
some open invariant neighbourhood V of c. We can therefore identify � with the
restriction to Vreg of an orbital integral fG of some function f 2 C.G/. It follows
from the analytic results of Harish-Chandra that fG satisfies the three conditions.
(See [H3, Lemma 26] and [H4, Theorem 9.1].)

Conversely, suppose that for some small V , � is an invariant function in C1.Vreg/

that satisfies the three conditions. In order to accommodate the fourth condition, we
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modify the support of �. Let  1 2 C1
�
G.R/

�
be a smooth, G.R/-invariant function

whose support is contained in V , and which equals 1 on some open, invariant
neighbourhood V1 � V of c. For example, we can choose a positive, homogeneous,
Gc;C.R/-invariant polynomial qc on gc.R/ whose zero set equals cU1.Gc/, as in
the construction on p. 166 of [B1], together with a function ˛1 2 C1c .R/ that
is supported on a small neighbourhood of 0, and equals 1 on an even smaller
neighbourhood of 0. The function

 1.x/ D ˛1
�
qc.log �/

�
;

defined for any

x D y�1c�y; y 2 G.R/; � 2 Gc.R/;

has the required property. Given  1, we set

�1.x/ D  1.x/�.x/; x 2 G.R/:

The function �1 then satisfies the support condition I4.G/ of [B2]. It is not hard
to see that �1 inherits the other three conditions I1.G/ � I3.G/ of [B2] from the
corresponding conditions on �. It follows from the characterization [B2, Théorème
3.2] that �1 D fG, for some function f 2 C1c .V/. Since C1c .V/ is contained in C.G/,
and since � takes the same values on V1;reg as the function �1 D fG, the germ of �
coincides with the germ of fG. In other words, the germ of � lies in the image of
C.G/. It therefore belongs to Ic.G/. ut

In order to describe the asymptotic series of this paper, it will be convenient to
fix a “norm” function that is defined on any small G.R/-invariant neighbourhood V
of c in G.R/. We assume that V is small enough that

(i) any element in V is G.R/-conjugate to an element in T.R/, for some torus
T 2 Tc.G/,

(ii) for any T 2 Tc.G/ and any w in the complement of Wc
�
G.R/;T.R/

�
in

W
�
G.R/;T.R/

�
, the intersection

w
�
V \ T.R/

� \ �V \ T.R/
�

is empty, and
(iii) for any T 2 Tc.G/, the mapping

��!`c.�/ D log.�c�1/ (14)

is a diffeomorphism from
�
V \ T.R/

�
to an open neighbourhood of zero in

t.R/.
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We can of course regard the mapping � ! `c.�/ as a coordinate system around
the point c in T.R/. Let us assume that the Cartan subalgebras ft.R/ W T 2 Tc.G/g
are all stable under a fixed Cartan involution 	c of gc.R/. We choose a Gc;C.R/-
invariant bilinear form B on gc such that the quadratic form

kXk2 D �B
�
X; 	c.X/

�
; X 2 gc.R/;

is positive definite on gc.R/. The function

� �! k`c.�/k;

defined a priori for � in any of the sets V \ T.R/, T 2 Tc.G/, then extends to a
G.R/-invariant function on V . It will be used to describe the estimates implicit in
our asymptotic series.

We have noted that the elements in Dc.G/ can be identified with linear forms on
the space Ic.G/. Let us write Ic;n.G/ for the annihilator in Ic.G/ of the finite subset
Rc;n.G/ of our basis Rc.G/ of Dc.G/. It is obvious that

Ic;n.G/ D lim�!
V

Ic;n.V/;

where Ic;n.V/ is the subspace of I.V/ annihilated by Rc;n.G/. We can think of
Ic;n.G/ as the subspace of functions in Ic.G/ that vanish of order at least .n C 1/
at c. For later use, we also set Cc;n.G/ equal to the subspace of C.G/ annihilated by
Rc;n.G/. It is clear that the map f ! fG takes Cc;n.G/ surjectively to Ic;n.G/.

Suppose that � is an element in Ic.G/. We can take the Taylor series around c,
relative to the coordinates `c.�/, of each of the functions

�.�/; � ıV�; T 2 Tc.G/; � 2 �0;c
�
Treg.R/

�
;

that represent �. For any nonnegative integer k, let �.k/ be the term in the Taylor
series of total degree k. Then �.k/ can be regarded as an invariant, smooth function
in C1.Vreg/. We claim that it belongs to Ic.G/.

Lemma 3.1 asserts that �.k/ belongs to Ic.G/ if and only if it satisfies the
conditions I1.G/ � I3.G/ of [B2, §3]. Condition I1.G/ is trivial. Conditions I2.G/
and I3.G/ are similar, since they both concern the jumps of � about walls in V�,
for triplets .T; �;X/ 2 Sc.G/. We shall check only I3.G/. Suppose that ˇ is a
noncompact imaginary root of .Gc;T/ that defines a wall of� D �C. Let�� be the
complementary component in Treg.R/ that shares this wall. By means of the Cayley
transform associated with ˇ, one obtains a second triplet .Tˇ;�ˇ;Xˇ/ 2 Sc.G/ for
which�ˇ also shares the given wall of �. Condition I3.G/ for � asserts that

.X��C
/.�/� .X���

/.�/ D d.ˇ/.Xˇ��ˇ/.�/; (15)
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for � on the given wall of �. Here, ���
represents the restriction of � to V��

,
a smooth function that extends to the closure of V��

, while d.ˇ/ is independent
of �. If X is a homogeneous invariant differential operator on T�.R/ of degree d,
and � is homogeneous of degree k (in the coordinates `c.�/), then .X���

/.�/ is
homogeneous of degree k � d if k � d, and vanishes if k < d. The relation (15) for
� then implies the corresponding relation

.X�.k/�C
/.�/ � .X�.k/��

/.�/ D d.ˇ/.Xˇ�
.k/
�ˇ
/.�/

for the homogeneous components �.k/ of �. This is the condition I3.G/ for �.k/. The
claim follows.

We set

I.k/c .G/ D ˚� 2 Ic.G/ W �.k/ D �
�
;

for any nonnegative integer k. Suppose that n is another nonnegative integer. Then
I.k/c .G/ is contained in Ic;n.G/ if k > n, and intersects Ic;n.G/ only at 0 if k � n. It
follows from what we have just proved that the quotient

In
c .G/ D Ic.G/=Ic;n.G/

has a natural grading

In
c .G/ Š

M

0�k�n

I.k/c .G/:

But Ic;n.G/ is the subspace of Ic.G/ annihilated by the finite subset

Rc;n.G/ D
a

0�k�n

Rc;.k/.G/

of Rc.G/. It follows that Rc;n.G/ is a basis of the dual space of In
c .G/, and that

Rc;.k/.G/ is a basis of the dual space of I.k/c .G/.
Let

˚
�_ W � 2 Rc;.k/.G/

�

be the basis of I.k/c .G/ that is dual to Rc;.k/.G/. If T 2 Tc.G/ and� 2 �0;c
�
Treg.R/

�
,

the restriction to V� of any function �_ in this set is a homogeneous polynomial

� �! �_.�/; � 2 V�;

of degree k (in the coordinates `c.�/). In particular, �_ has a canonical extension
to the set of regular points in any invariant neighbourhood in V of c on which the
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coordinate functions (14) are defined. Thus, unlike a general element in Ic.G/, �_
really can be treated as a function, as well as a germ of functions.

The union over k of our bases of I.k/c .G/ is a family of functions

�_.�/; � 2 Vreg; � 2 Rc.G/;

with properties that are dual to those of Rc.G/. For example, the dual of the action (9)
of Z.G/ on Dc.G/ is a differential equation

.Oz�/_ D h.z/�_; (16)

for any z 2 Z.G/ and � 2 Rc.G/. Here Oz represents the transpose action (10) of
Z.G/, and h.z/ is the G.R/-invariant differential operator on Vreg obtained from
the various Harish-Chandra maps z ! hT.z/. The dual of (12) is the symmetry
condition

	�_ D .	�/_; (17)

for any isomorphism 	 : G! 	G over R, and any � 2 Rc.G/.
The main reason for defining the functions f�_g is that they represent germs of

invariant orbital integrals. It is clear that

�.k/.�/ D
X

�2Rc;.k/.G/

�_.�/�.�/; k � 0;

for any function � 2 Ic.G/. Suppose that f belongs to C.G/. The Taylor polynomial
of degree n attached to the function fG.�/ on Vreg (taken relative to the coordinates
`c.�/) is then equal to the function

f n
G.�/ D

X

0�k�n

f .k/G .�/ D
X

�2Rc;n.G/

�_.�/fG.�/: (18)

It follows from Taylor’s theorem that there is a constant Cn for each n such that

jfG.�/� f n
G.�/j � Cnk`c.�/knC1;

for any � 2 Vreg. Otherwise said, fG.�/ has an asymptotic expansion

X

�2Rc.G/

�_.�/fG.�/;

in the sense that fG.�/ differs from the partial sum f n
G.�/ by a function in the class

O.k`c.�/knC1/.
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The main points of Sects. 2 and 3 may be summarized as follows. There are
invariant distributions

f �! fG.�/; � 2 Rc.G/;

supported on Uc.G/, and homogeneous germs

� �! �_.�/; � 2 Rc.G/;

in Ic.G/, which transform according to (9) and (16) under the action of Z.G/,
satisfy the symmetry conditions (12) and (17), and provide an asymptotic expansion

fG.�/ �
X

�2Rc.G/

�_.�/fG.�/; � 2 Vreg; (19)

around c for the invariant orbital integral fG.�/.
It is useful to have a formulation of (19) that is uniform in f .

Proposition 3.2. For any n � �1, the mapping

f �! fG.�/ � f n
G.�/; f 2 C.G/;

is a continuous linear transformation from C.G/ to the space Ic;n.V/.

Proof. We have interpreted f n
G.�/ as the Taylor polynomial of degree n for the

function fG.�/. Since Ic;n.V/ can be regarded as a closed subspace of functions in
I.V/ that vanish of order at least .nC1/ at c, the difference fG.�/� f n

G.�/ belongs to
Ic;n.V/. The continuity assertion of the lemma follows from the integral formula for
the remainder in Taylor’s theorem [D, (8.14.3)], and the continuity of the mapping
f ! fG. ut
Remarks. 1. Proposition 3.2 could of course be formulated as a concrete estimate.

Given n � �1, we simplify the notation by writing

.n;X/ D �nC 1 � deg.X/
�
C D maxf.nC 1 � deg X/; 0g; (20)

for any differential operator X. The proposition asserts that for any � D .T; �;X/
in Sc.G/, there is a continuous seminorm 
n

� on C.G/ such that

ˇ̌
X
�
fG.�/ � f n

G.�/
�ˇ̌ � 
n

� .f /k`c.�/k.n;X/;

for any � 2 V� and f 2 C.G/.
2. Invariant orbital integrals can be regarded as distributions that are dual to

irreducible characters. In this sense, the asymptotic expansion (19) is dual to
the character expansions introduced by Barbasch and Vogan near the beginning
of [BV].
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Our goal is to extend these results for invariant orbital integrals to weighted
orbital integrals. As background for this, we observe that much of the discussion
of Sects. 2 and 3 for G applies to the relative setting of a pair .M;G/, for a fixed
Levi subgroup M of G. In this context, we take c to be a fixed class in �ss.M/. Then
c represents a W.M/-orbit in �ss.M/ (or equivalently, the intersection of M with a
class in �ss.G/), which we also denote by c. With this understanding, we take V to
be a small open neighbourhood of c in M.R/ that is invariant under the normalizer

W.M/M.R/ D NormG.R/
�
M.R/

�

of M.R/ in G.R/.
Given V , we can of course form the invariant Schwartz space I.V/ for M. If f

belongs to C.G/, the relative (invariant) orbital integral fM around c is the restriction
of fG to the subset

VG-reg D V \ Greg.R/

of Greg.R/. It is easy to see that f ! fM is a continuous linear mapping from C.G/
into the closed subspace

I.V;G/ D I.V/W.M/

of W.M/-invariant functions in I.V/. (We identify functions in I.V;G/ with their
restrictions to VG-reg.) Other objects defined earlier have obvious relative analogues.
For example, Sc.M;G/ denotes the set of triplets .T; �;X/, where T belongs
to the set Tc.M/ (defined for M as in Sect. 2), � is a connected component in
TG-reg.R/ (rather than TM-reg.R/) whose closure contains c, and X is an invariant
differential operator on T.R/ (as before). The elements in Sc.M;G/ yield continuous
seminorms (13) that determine the topology on I.V;G/. We can also define the
direct limits

Ic.M;G/ D lim�!
V

I.V;G/

and

Ic;n.V;G/ D lim�!
V

Ic;n.V;G/;

where Ic;n.V;G/ denotes the subspace of I.V;G/ annihilated by the finite subset
Rc;n.M/ of the basis Rc.M/. We shall use these relative objects in Sect. 5, when we
introduce spaces that are relevant to weighted orbital integrals.

We note that there is also a relative analogue of the space of harmonic
distributions introduced in Sect. 2. We define the subspace Dc;G-harm.M/ of
G-harmonic distributions in Dc.M/ be the space spanned by those triplets
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�
T; �; @.u/

�
in Sc.M;G/ such that the element u 2 S

�
t.C/

�
is harmonic relative to

G. Any linear basis of Dc;G-harm.M/ is a free basis of Dc.M/, relative to the natural
Z.G/-module structure on Dc.M/. In our construction of certain distributions later
in the paper, the elements in Dc;G-harm.M/ will be the primitive objects to deal with.

4 Weighted Orbital Integrals

We now fix a maximal compact subgroup K of G.R/. We also fix a Levi subgroup M
of G such that aM is orthogonal to the Lie algebra of K (with respect to the Killing
form on g.R/). There is then a natural smooth function

vM.x/ D lim
�!0

0

@
X

P2P.M/
e��.HP.x//	P.�/

�1
1

A

on M.R/nG.R/=K, defined as the volume of a certain convex hull. This function
provides a noninvariant measure on the G.R/-conjugacy class of any strongly
G-regular point in M.R/, relative to which any Schwartz function f 2 C.G/ is
integrable. The resulting integral

JM.�; f / D JG
M.�; f / D jD.�/j1=2

Z

G� .R/nG.R/
f .x�1�x/vM.x/dx

is a smooth, M.R/-invariant function of � in the set

MG-reg.R/ D M.R/ \Greg.R/:

(See [A1, Lemma 8.1] and [A2, §6–7].) We recall a few of its basic properties.
For any � , the linear form f ! JM.�; f / is a tempered distribution. In contrast to

the earlier special case

JG.�; f / D fG.�/

of M D G, however, it is not invariant. Let

f y W x �! f .yxy�1/; x 2 G.R/;

be the conjugate of f by a fixed element y 2 G.R/. The weighted orbital integral of
f y can then be expanded as

JM.�; f
y/ D

X

Q2F.M/
J

MQ
M .�; fQ;y/; (21)
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in the notation of [A2, Lemma 8.2]. The summand with Q D G is equal to JM.�; f /.
The expansion can therefore be written as an identity

JM.�; f
y � f / D

X

Q2F0.M/

J
MQ
M .�; fQ;y/

that represents the obstruction to the distribution being invariant.
Weighted orbital integrals satisfy a generalization of the differential equa-

tions (8). If z belongs to Z.G/, the weighted orbital integral of zf has an expansion

JM.�; zf / D
X

L2L.M/
@L

M.�; zL/JL.�; f /: (22)

Here z ! zL denotes the canonical injective homomorphism from Z.G/ to Z.L/,
while @L

M.�; zL/ is an M.R/-invariant differential operator on M.R/ \ Lreg.R/ that
depends only on L. If T is a maximal torus in Tc.M/, @L

M.�; zL/ restricts to an
algebraic differential operator on the algebraic variety TL-reg. Moreover, @L

M.�; zL/

is invariant under the finite group WL.M/ of outer automorphisms of M. We
can therefore regard @L

M.�; zL/ as a WL.M/M.R/-invariant, algebraic differential
operator on the algebraic variety MG-reg. In the case that L D M, @M

M.�; zM/ reduces
to the invariant differential operator @

�
h.z/

�
on M.R/ obtained from the Harish-

Chandra isomorphism. The differential equation (22) can therefore be written as an
identity

JM.�; zf / � @�h.z/�JM.�; f / D
X

L¤M

@L
M.�; zL/JL.�; f /

that is easier to compare with the simpler equations (8). (See [A1, Lemma 8.5] and
[A3, §11–12].)

Suppose that 	 : G ! 	G is an isomorphism over R, as in Sect. 2. We can then
take weighted orbital integrals on .	G/.R/ with respect to 	K and 	M. They satisfy
the relation

J	M.	�; 	 f / D JM.�; f / (23)

[A7, Lemma 3.3]. In particular, suppose that 	 D Int.w/, for a representative w 2 K
of some element in the Weyl group W.M/. In this case, JM.�; 	 f / equals JM.�; f /,
and 	M D M, from which it follows that

JM.w�w�1; f / D JM.�; f /:

Therefore JM.�; f / is actually a W.M/M.R/-invariant function of � .
At this point, we fix a class c 2 �ss.M/ and an open W.M/M.R/-invariant

neighbourhood V of c in M.R/, as at the end of Sect. 3. We can assume that V
is small. In particular, we assume that the intersection of V with any maximal torus
in M.R/ is relatively compact.
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We propose to study JM.�; f / as a function of � in VG-reg. The behaviour of this
function near the boundary is more complicated in general than it is in the invariant
case M D G. In particular, if .T; �;X/ lies in the set Sc.M;G/ introduced at the end
of Sect. 3, the restriction of JM.�; f / to the region

V� D V \�

does not extend smoothly to the boundary of V�. The function satisfies only the
weaker estimate of the following lemma.

Lemma 4.1. For every triplet � D .T; �;X/ in Sc.M;G/, there is a positive real
number a such that the supremum


�.f / D sup
�2V�

�jXJM.�; f /jjDc.�/ja
�
; f 2 C.G/;

is a continuous seminorm on C.G/. In the case that X D 1, we can take a to be any
positive number.

Proof. This lemma is essentially the same as Lemma 13.2 of [A3]. The proof is
based on an important technique of Harish-Chandra for estimating invariant orbital
integrals [H1, Lemma 48]. We shall recall a part of the argument, in order to
persuade ourselves that it remains valid under the minor changes here (where, for
example, C.G/ replaces C1c

�
G.R/

�
, and Dc.�/ takes the place of D.�/), referring

the reader to [A3] and [H1] for the remaining part.
We fix the first two components T 2 Tc.M/ and � 2 �0;c

�
TG-reg.R/

�
of a

triplet � . We require an estimate for every invariant differential operator X that can
form a third component of � . As in Harish-Chandra’s treatment of invariant orbital
integrals, one studies the general problem in three steps.

The first step is to deal with the identity operator X D 1. In this case, the required
estimate is a consequence of Lemma 7.2 of [A1]. The lemma cited leads to a bound

jJM.�; f /j � 
.f /
�
1C L.�/

�p
; � 2 V�;

in which 
 is a continuous seminorm on C.G/. The function L.�/ is defined at the
bottom of p. 245 of [A1] as a supremum of functions

ˇ̌
log

�j1� ˛.�/j�ˇ̌; � 2 V�;

attached to roots ˛ of .G;T/. Since V is assumed to be small, the function attached
to ˛ is bounded on V� unless ˛ is a root of .Gc;T/. It follows that for any a1 > 0,
we can choose a constant C1 such that

�
1C L.�/

�p � C1jDc.�/j�a1 ; � 2 V�:



24 J. Arthur

Lemma 7.2 of [A1] therefore implies that

f �! sup
�2V�

�jJM.�; f /jjDc.�/ja1
�
; f 2 C.G/; (24)

is a continuous seminorm on C.G/. The required estimate is thus valid in the case
X D 1, for any positive exponent a D a1.

The next step concerns the case that X is the image under the Harish-Chandra
map of a biinvariant differential operator. That is,

X D @�hT.z/
�
; z 2 Z.G/:

In this case, the differential equation (22) yields an identity

XJM.�; f / D @
�
hT.z/

�
JM.�; f /

D JM.�; zf / �
X

L©M

@L
M.�; zL/JL.�; f / (25)

for the function we are trying to estimate. We have noted that for each L, @L
M.�; zL/

is an algebraic differential operator on TG-reg. In other words, the coefficients of
@L

M.�; zL/ are rational functions on T whose poles lie along singular hypersurfaces
of T. Since V is small, any singular hypersurface of T that meets the closure of V�
is defined by a root of .Gc;T/. It follows that for each L, there is a positive integer
kL such that the differential operator

Dc.�/
kL@L

M.�; zL/

has coefficients that are bounded on V�. We can assume inductively that Lemma 4.1
is valid if M is replaced by any L © M. The estimate of the lemma clearly extends
to differential operators with bounded coefficients. We can therefore choose aL > 0

for each such L so that

f �! sup
�2V�

�jDc.�/
kL@L

M.�; zL/JL.�; f /jjDc.�/jaL
�

is a continuous seminorm on C.G/. We set a equal to the largest of the numbers
kL C aL. The functional

f �!
X

L©M

sup
�2V�

�j@L
M.�; zL/JL.�; f /jjDc.�/ja

�

is then a continuous seminorm on C.G/. According to the case (24) we have already
established,

f �! sup
�2V�

�jJM.�; zf /jjDc.�/ja
�
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is also a continuous seminorm on C.G/. Applying these estimates to the differential
equation for XJM.�; f / above, we conclude that

f �! sup
�2V�

�jXJM.�; f /jjDc.�/ja
�
; f 2 C.G/; (26)

is a continuous seminorm on C.G/. We have established the lemma for X of the form
@
�
hT.z/

�
.

The last step is to treat a general invariant differential operator X on T.R/. This
is the main step, and the part of the argument that is based on [H1, Lemma 48].
In the proof of [A3, Lemma 13.2], we explained how to apply Harish-Chandra’s
technique to the weighted orbitals we are dealing with here. Used in this way, the
technique reduces the required estimate for X to the case (26) obtained above. It
thus establishes the assertion of the lemma for any X, and hence for any triplet � in
Sc.M;G/. We refer the reader to [A3] and [H1] for the detailed discussion of this
step. ut

With Lemma 4.1 as motivation, we now introduce some new spaces of functions.
We first attach some spaces to any maximal torus T in M over R that contains c.
Given T, let� 2 �0;c

�
TG-reg.R/

�
be a connected component whose closure contains

c. Then V� D V \� is an open neighbourhood of c in �. If a is a nonnegative real
number, we write Fa

c .V�;G/ for the Banach space of continuous functions �� on
V� such that the norm

k��k D sup
�2V�

�j��.�/jjDc.�/ja
�

is finite. More generally, if n is an integer with n � �1, and `c.�/ is the weight
function (14), we define Fa

c;n.V�;G/ to be the Banach space of continuous functions
�� on V� such that the norm

k��kn D sup
�2V�

�j��.�/jjDc.�/jak`c.�/k�.nC1/
�

is finite. The first space Fa
c .V�;G/ is of course the special case that n D �1.

It consists of functions with specified growth near the boundary. In the second
space Fa

c;n.V�;G/, n will vary, and will ultimately index terms in our asymptotic
expansions around c.

Lemma 4.1 suggests that we introduce a space of smooth functions on the
W.M/M.R/-invariant set VG-reg whose derivatives also have specified growth near
the boundary. This entails choosing a function to measure the growth. By a weight
function, we shall mean an assignment

˛ W X �! ˛.X/
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of a nonnegative real number ˛.X/ to each invariant differential operator X on a
maximal torus T of M. We assume that

˛.X/ D ˛.deg X/;

for an increasing function ˛ on the set of nonnegative integers. The weight function
is then defined independently of T.

Suppose that ˛ is a weight function, and that V is as above, an open W.M/M.R/-
invariant neighbourhood of c in M.R/. If � is a function on VG-reg, and � D
.T; �;X/ is a triplet in the set Sc.M;G/ introduced in Sect. 3, we shall write ��
for the restriction of � to V�. We define F˛

c .V;G/ to be the space of smooth,
W.M/M.R/-invariant functions � on VG-reg such that for every � D .T; �;X/ in

Sc.M;G/, and every " > 0, the derivative X�� belongs to the space F˛.X/C"c .V�;G/.
More generally, suppose n � �1 is a given integer. We define F˛

c;n.V;G/ to be the
subspace of functions � in F˛

c .V;G/ such that for any � D .T; �;X/ and ", X��
belongs to the space

F˛.X/C"c;n;X .V�;G/ D F˛.X/C"c;.n;X/ .V�;G/:

We recall here that

.n;X/ D max
˚�

nC 1 � deg.X/
�
; 0
�
:

The seminorms

k�k�;";n D kX��kn

make F˛
c;n.V;G/ into a Fréchet space. The original space F˛

c .V;G/ is again the
special case that n D �1. It is the Fréchet space of smooth, W.M/M.R/-invariant
functions � on VG-reg such that for every � D .T; �;X/ and ", the seminorm

k�k�;" D sup
x2V�

�j.X�/.�/jjDc.�/j˛.X/C"
�

is finite.
Lemma 4.1 is an assertion about the mapping that sends f 2 C.G/ to the function

JM.�; f / of � 2 VG-reg. It can be reformulated as follows.

Corollary 4.2. There is a weight function ˛, with ˛.1/ D 0, such that the mapping

f �! JM.�; f /; f 2 C.G/;

is a continuous linear transformation from C.G/ to F˛
c .V;G/.

There are some obvious operations that can be performed on the spaces
F˛

c;n.V;G/. Suppose that ˛1 is second weight function, and that n1 � �1 is a second
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integer. The multiplication of functions then provides a continuous bilinear map

F˛
c;n.V;G/ � F˛1

c;n1 .V;G/ �! F˛C˛1
c;nCn1C1.V;G/;

where ˛ C ˛1 is the weight function defined by

.˛ C ˛1/.dC/ D max
dCd1DdC

�
˛.d/C ˛1.d1/

�
; dC � 0:

In particular, suppose that q is a W.G;T/-invariant rational function on a maximal
torus T in M that is regular on TG-reg. Then q extends to a W.M/M.R/-invariant
function on VG-reg that lies in F˛q

c .V;G/, for some weight function ˛q. The multi-

plication map � ! q� therefore sends F˛
c;n.V;G/ continuously to F˛C˛q

c;n .V;G/. A
similar observation applies to any (translation) invariant differential operator X on
T that is also invariant under the action of W.G;T/. For X extends to a W.M/M.R/-
invariant differential operator on VG-reg, and if X˛ is the weight function X0 !
˛.XX0/, the map � ! X� sends F˛

c;n.V;G/ continuously to FX˛
c;n;X.V;G/. More

generally, suppose that @.�/ is an algebraic differential operator on TG-reg that is
invariant under W.G;T/. Then @.�/ extends to a W.M/M.R/-invariant differential
operator on MG-reg. One sees easily that there is a weight function @˛ such that
� ! @� is a continuous mapping from F˛

c;n.V;G/ to F@˛
c;n;@.V;G/.

5 Spaces of Formal Germs

We fix a Levi subgroup M of G, and a class c 2 �ss.M/, as before. We again take V
to be a small, open, W.M/M.R/-invariant neighbourhood of c in M.R/. In the last
section, we introduced some spaces

F˛
c;n.V;G/; n � 1;

of functions on VG-reg. In this section, we shall examine the behaviour of these
spaces under operations of localization and completion.

The most basic of these spaces F˛
c .V;G/ D F˛

c;�1.V;G/ is a generalization of
the relative invariant Schwartz space

I.V;G/ D I.V/W.M/

defined near the end of Sect. 3. It is an easy consequence of Lemma 3.1 that for each
˛, there is a continuous injection

I.V;G/ ,! F˛
c .V;G/
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defined also near the end of Sect. 3. As in the special case of I.V;G/ from Sect. 3,
we can localize the spaces F˛

c .V;G/ at c. We form the algebraic direct limit

G˛c .M;G/ D lim�!
V

F˛
c .V;G/; (27)

relative to the restriction maps

F˛
c .V1;G/ �! F˛

c .V2;G/; V1 � V2:

We shall call G˛c .M;G/ the space of ˛-germs for .M;G/ at c. The elements
of this space are germs of smooth, W.M/M.R/-invariant functions on invariant
neighbourhoods of c in MG-reg.R/, with ˛-bounded growth near the boundary. The
space has a decreasing filtration by the subspaces

G˛c;n.M;G/ D lim�!
V

F˛
c;n.V;G/; n � �1:

Asymptotic series are best formulated in terms of the completion of G˛c .M;G/.
For any ˛, and any n � 0, the quotient

G˛;nc .M;G/ D G˛c .M;G/=G˛c;n.M;G/

is a vector space that is generally infinite dimensional. We call it the space of .˛; n/-
jets for .M;G/ at c. The completion of G˛c .M;G/ is then defined as the projective
limit

bG˛c .M;G/ D lim �
n

G˛;nc .M;G/: (28)

This space is obviously also isomorphic to a projective limit of quotients

bG˛;nc .M;G/ D bG˛c .M;G/=bG
˛

c;n.M;G/;

where bG
˛

c;n.M;G/ is the kernel of the projection of bG
˛

c .M;G/ onto G˛;nc .M;G/. We

call bG
˛

c .M;G/ the space of formal ˛-germs for .M;G/ at c. The final step is to
remove the dependence on ˛. We do so by forming the direct limit

bGc.M;G/ D lim�!
˛

bG
˛

c .M;G/; (29)

relative to the natural partial order on the set of weight functions. The operations
of multiplication and differentiation from the end of the last section clearly extend
to this universal space of formal germs. In particular, any W.M/M.R/-invariant,
algebraic differential operator @.�/ on MG-reg has a linear action g ! @g on
bGc.M;G/.
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As an example, consider the case that G D M D T is a torus. The function
Dc.�/ is then equal to 1, and the various spaces are independent of ˛. For each ˛,
Gc.T/ D G˛c .M;G/ is the space of germs of smooth functions on T.R/ at c, while
Gc;n.T/ D G˛c;n.M;G/ is the subspace of germs of functions that vanish at c of order
at least .n C 1/. The quotient Gn

c .T/ D G˛;nc .M;G/ is the usual space of n-jets on

T.R/ at c, while bGc.T/ D bG˛c .M;G/ is the space of formal Taylor series (in the
coordinates `c.�/) at c.

If G is arbitrary, but c is G-regular, the group T D Gc is a torus. In this case, the
function Dc.�/ is again trivial. The various spaces reduce to the ones above for T,
or rather, the subspaces of the ones above consisting of elements invariant under the
finite group Mc;C.R/=Mc.R/. We are of course mainly interested in the case that c is
not G-regular. Then Dc.�/ has zeros, and the spaces are more complicated. On the
other hand, we can make use of the function Dc in this case to simplify the notation
slightly. For example, given ˛ and � D .T; �;X/, we can choose a positive number
a such that for any n � 0, � ! X�� is a continuous linear map from F˛

c;n.V;G/ to
Fa

c;n.V�;G/ (rather than Fa
c;n;X.V�;G/). A similar result applies if X is replaced by

an algebraic differential operator on TG-reg.R/.

Lemma 5.1. For any V, ˛ and n, the map

F˛
c .V;G/ �! G˛;nc .M;G/

is surjective. In other words, any element gn in G˛;nc .M;G/ has a representative
gn.�/ in F˛

c .V;G/.

Proof. Suppose that gn belongs to G˛;nc .M;G/. By definition, gn has a representative
gn
0.�/ in F˛

c .V0;G/, for some W.M/M.R/-invariant neighbourhood V0 of c in M.R/
with V0 � V . Let  0 be a smooth, compactly supported, W.M/M.R/-invariant
function on V0 that equals 1 on some neighbourhood of c. The product

gn.�/ D  0.�/gn
0.�/

then extends by 0 to a function on V that lies in F˛
c .V;G/. On the other hand, both

gn.�/ and gn
0.�/ represent the same germ in Gc.M;G/. They both therefore have the

same image gn in G˛;nc .M;G/. The function gn.�/ is the required representative. ut
Lemma 5.2. For any weight function ˛, the canonical map from bG

˛

c .M;G/ to
bGc.M;G/ is injective.

Proof. It is enough to show that if ˛0 is a weight function with ˛0 � ˛, the map

frombG˛c .M;G/ tobG˛
0

c .M;G/ is injective. Suppose that g is an element inbG˛c .M;G/
that maps to 0 in bG

˛0

c .M;G/. To show that g D 0, it would be enough to establish
that for any n � 0, the image gn of g in G˛;nc .M;G/ equals 0.

Fix n, and let gn.�/ be a representative of gn in the space of functions F˛
c .V;G/

attached to some V . We have to show that gn.�/ lies in F˛
c;n.V;G/. In other words,
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we must show that for any � D .T; �;X/ in Sc.M;G/, and any " > 0, the derivative
.Xgn

�/.�/ lies in F˛.X/C"c;n;X .V�;G/. This condition is of course independent of the
choice of representative gn. Given � , we are free to assume that gn.�/ represents
the image gm of g in G˛;mc .V;G/, for some large integer m > nC deg X. Since gm

maps to zero in G˛0 ;m
c .M;G/, gn.�/ lies in F˛0

c;m.V;G/. In other words, .Xgn
�/.�/

lies in F˛
0.X/C"0

c;n0 .V�;G/, for the large integer n0 D m � deg.X/ and for any "0 >
0. But .Xgn

�/.�/ also lies in F˛.X/C"
0

c .V�;G/. We shall apply these two conditions
successively to two subsets of V�.

Given " > 0, we choose "0 > 0 with "0 < ". We then write ı D " � "0, a D
˛.X/C ", and a0 D ˛0.X/C "0. The two conditions amount to two inequalities

j.Xgn
�/.�/j � C0jDc.�/j�a0k`c.�/kn0

; � 2 V�;

and

j.Xgn
�/.�/j � CıjDc.�/j�.˛.X/C"0/ D CıjDc.�/j�ajDc.�/jı; � 2 V�;

for fixed constants C0 and Cı . We can assume that a0 > a, since there would
otherwise be nothing to prove. (The functions jDc.�/j and k`c.�/k are of course
bounded on V�.) We apply the first inequality to the points � in the subset

V
�
ı; .n;X/

� D ˚� 2 V� W k`c.�/k.n;X/ � jDc.�/jı
�

of V�, and the second inequality to each � in the complementary subset. We thereby
deduce that if n0 is sufficiently large, there is a constant C such that

j.Xg�/.�/j � CjDc.�/j�ak`c.�/k.n;X/;

for any point � in V�. In other words, j.Xg�/.�/j belongs to the space
F˛.X/C"c;n;X .V�;G/. It follows that the vector gn in G˛;nc .M;G/ vanishes. Since n was

arbitrary, the original element g in bG˛c .M;G/ vanishes. The map from bG˛c .M;G/ to

bG
˛0

c .M;G/ is therefore injective. ut
The lemma asserts thatbGc.M;G/ is the union over all weight functions ˛ of the

spaces bG˛c .M;G/. Suppose that we are given a formal germ g 2 Gc.M;G/, and
a positive integer n. We shall write gn D g˛;n for the image of g in the quotient
G˛;nc .M;G/, for some fixed ˛ such that G˛c .M;G/ contains g. The choice of ˛ will
generally be immaterial to the operations we perform on gn, so its omission from the
notation is quite harmless. If �.�/ is a function in one of the spaces F˛

c .V;G/, we
shall sometimes denote the image of �.�/ inbGc.M;G/ simply by �. This being the
case, �n then stands for an element in G˛;nc .M;G/. This element is of course equal
to the projection of the original function �.�/ onto G˛;nc .M;G/.
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We shall need to refer to two different topologies on bGc.M;G/. The first comes
from the discrete topology on each of the quotients G˛;nc .M;G/. The corresponding
projective limit topology over n, followed by the direct limit topology over ˛, yields
what we call the adic topology onbGc.M;G/. This is the usual topology assigned to a
completion. A sequence .gk/ converges in the adic topology if there is an ˛ such that
each gk is contained inbG˛c .M;G/, and if for any n, the image gn

k of gk in G˛;nc .M;G/
is independent of k, for all k sufficiently large.

To describe the second topology, we recall that the quotient spaces G˛;nc .M;G/
are generally infinite dimensional. As an abstract vector space over C, however,
each G˛;nc .M;G/ can be regarded as a direct limit of finite dimensional spaces. The
standard topologies on these finite dimensional spaces therefore induce a direct limit
topology on each G˛;nc .M;G/. The corresponding projective limit topology over
n, followed by the direct limit topology over ˛, yields what we call the complex
topology onbGc.M;G/. This is the appropriate topology for describing the continuity
properties of maps from some space into bGc.M;G/. A sequence .gk/ converges in
the complex topology ofbGc.M;G/ if there is an ˛ such that each gk is contained in
bG
˛

c .M;G/, and if for each n, the sequence gn
k is contained in a finite dimensional

subspace of G˛;nc .M;G/, and converges in the standard topology of that space.
Unless otherwise stated, any limit in bGc.M;G/ will be understood to be in the adic
topology, while any assertion of continuity for abGc.M;G/-valued function will refer
to the complex topology.

Suppose that g lies in bGc.M;G/. We have agreed to write gn for the image of g
in the quotient G˛;nc .M;G/ of G˛c .M;G/. Here n is any nonnegative integer, and ˛

is a fixed weight function such that g lies in bG˛c .M;G/. We shall also write gn.�/

for an ˛-germ of functions in G˛c .M;G/ that represents gn, or as in Lemma 5.1, a
function in F˛

c .V;G/ that represents the ˛-germ. The function gn.�/ is of course
not uniquely determined by g. To see that this does not really matter, we recall that
under the previous convention, gn also denotes the image of gn.�/ in bGc.M;G/.
We are therefore allowing gn to stand for two objects: an element in G˛;nc .M;G/
that is uniquely determined by g (once ˛ is chosen), and some representative of this
element inbG

˛

c .M;G/ that is not uniquely determined, and that in particular, need not
map to g. With this second interpretation, however, the elements gn can be chosen
so that

g D lim
n!1.g

n/;

in the adic topology.
These remarks can be phrased in terms of asymptotic series. Suppose that gk.�/

is a sequence of functions in F˛
c .V;G/ such that the corresponding elements gk 2

bGc.M;G/ converge to zero (in the adic topology). In other words, for any n all but
finitely many of the functions gk.�/ lie in the space F˛

c;n.V;G/. We shall denote the
associated asymptotic series by

g.�/ �
X

k

gk.�/; (30)
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where g is the element inbGc.M;G/ such that

g D
X

k

gk (31)

(in the adic topology). Conversely, any formal germ can be represented in this way.
For if g belongs tobGc.M;G/, the difference

g.n/.�/ D gn.�/ � gn�1.�/; n � 0; g�1.�/ D 0;

stands for a function in a space F˛
c;n�1.V;G/. Therefore

g D
1X

nD0
g.n/;

so we can represent g by the asymptotic series

g.x/ �
1X

nD0
g.n/.x/:

We can use the notation (30) also to denote a convergent sum of asymptotic series.
In this more general usage, the terms in (30) stand for asymptotic series gk.�/ and
g.�/, which in turn represent elements gk and g inbGc.M;G/ that satisfy (31).

The objects we have introduced might be easier to keep track of if we view them
within the following commutative diagram of topological vector spaces:

0 −−−−→ F a
c,n(VΩ, G) −−−−→ F a

c (VΩ, G)
�
⏐
⏐

�
⏐
⏐

0 −−−−→ Fα
c,n(V,G) −−−−→ Fα

c (V,G)
⏐
⏐
�

⏐
⏐
�

0 −−−−→ Gα
c,n(M,G) −−−−→ Gα

c (M,G) −−−−→ Gα,n
c (M,G) −−−−→ 0

⏐
⏐
�

⏐
⏐
�

⏐
⏐
��

0 −−−−→ Ĝα
c,n(M,G) −−−−→ Ĝα

c (M,G) −−−−→ Ĝα,n
c (M,G) −−−−→ 0

⏐
⏐
�

Ĝc(M,G)
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As always, M is a Levi subgroup of G and c 2 �ss.M/ is a semisimple conjugacy
class in M.R/, while V� D V \ � is as in Sect. 4, ˛ is weight function, n � �1,
and in the top row, a is a real number with a > ˛.n/ (where n D �1 in the space
on the right). The rows consist of exact sequences, and their constituents become
more complex as we go down the columns. More precisely, the top row consists of
Banach spaces, the second row consists of Fréchet spaces, the third row consists of
LF-spaces (direct limits of Fréchet spaces), while the fourth row consists of ILF-
spaces (inverse limits of LF-spaces). The final space bGc.M;G/ is a supplementary
direct limit.

The diagram may also give us a better sense of the notational conventions above.
Once again, g is a formal germ in the spacebGc.M;G/ at the bottom, which we then

identify with an element in (the injective image of) the spacebG
˛

c .M;G/ immediately
above it, for some chosen weight ˛. Its image in the quotient

bG
˛;n

c .M;G/ Š G˛;nc .M;G/

immediately to the right is what we are denoting by gn. Finally, gn.�/ stands either
for a germ in G˛c .M;G/ or a function in F˛

c .V;G/, taken from the two spaces in the
middle column, that maps to gn. This notation, as well as the spaces in the diagram
themselves, might seem a bit overblown. However, we shall see that it provides
an elegant way to formulate the central formula of this paper, the asymptotic
expansion (43) of Theorem 6.1.

As a link between the (relative) invariant Schwartz space and the general spaces
above, we consider a space Fbd

c .V;G/ of bounded functions. For any integer
n � �1, let Fbd

c;n.V;G/ be the space of smooth, W.M/M.R/-invariant functions
� on VG-reg such that for each � D .T; �;X/ in Sc.M;G/, the derivative X��
belongs to the space F0c;n.V;G/. If ˛ is any weight function, Fbd

c;n.V;G/ is contained
in F˛

c;n.V;G/. In fact in the basic case of n D �1, the space

Fbd
c .V;G/ D Fbd

c;�1.V;G/

is just the subspace of functions in F˛
c .V;G/ whose derivatives are all bounded. As

above, we form the localizations

Gbd
c;n.M;G/ D lim�!

V

Fbd
c;n.V;G/;

the quotients

Gbd;n
c .M;G/ D Gbd

c .M;G/=Gbd
c;n.M;G/ D Gbd

c;�1.M;G/=Gbd
c;n.M;G/

and the completion

bG
bd

c .M;G/ D lim �
n

Gbd;n
c .M;G/:
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Lemma 5.3. Suppose that ˛ is a weight function with ˛.1/ D 0. Then for any
nonnegative integer n, the canonical mapping

Gbd;n
c .M;G/ �! G˛;nc .M;G/

is injective.

Proof. By Lemma 5.1, there is a canonical isomorphism

G˛;nc .M;G/ Š F˛
c .V;G/=F˛

c;n.V;G/:

On the other hand, any element in Gbd;n
c .M;G/ can be identified with a family

˚
�n
� W T 2 Tc.M/; � 2 �0;c

�
TG-reg.R/

��

of Taylor polynomials of degree n (in the coordinates `c.�/). This is because the�-
component of any function in Fbd

c .V;G/ extends to a smooth function on the closure
of V�. In particular, each element in Gbd;n

c .M;G/ has a canonical representative
in Fbd

c .V;G/, which of course also lies in F˛
c .V;G/. With this interpretation, we

consider a function � in the intersection

Gbd;n
c .M;G/ \ F˛

c;n.V;G/:

We have only to show that � vanishes.
Suppose that T 2 Tc.M/ and � 2 �0;c

�
TG-reg.R/

�
. As an element in F˛

c;n.V;G/,
�� satisfies a bound

sup
�2V�

�j��.�/jjDc.�/j"k`c.�/k�.nC1/
�
<1;

for any " > 0. As an element in Gbd;n
c .M;G/, �� D �n

� is a polynomial (in the
coordinates `c.�/) of degree less than .n C 1/. Taking " to be close to zero, we
see that no such polynomial can satisfy the bound unless it vanishes. It follows that
�� D 0. We conclude that the function � vanishes, and hence, that the original map
is injective. ut
Corollary 5.4. For any weight function ˛, the canonical mapping

bGbd

c .M;G/ �!bG˛c .M;G/

is injective.
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Proof. Given ˛, we choose a weight function ˛0 � ˛ with ˛0.1/ D 0. The lemma

implies that bG
bd

c .M;G/ maps injectively into bG
˛0

c .M;G/, while Lemma 5.2 tells us

thatbG˛0c .M;G/ maps injectively intobG˛c .M;G/. The corollary follows. ut
Remark. It is not hard to show that if the weight function ˛ is bounded, the injection

of Corollary 5.4 is actually an isomorphism. The completionbG
bd

c .M;G/ is therefore
included among the general spaces defined earlier.

The (relative) invariant Schwartz space I.V;G/ is the closed subspace of func-
tions in Fbd

c .V;G/ that satisfy the Harish-Chandra jump conditions. Its localization
Ic.M;G/ is therefore a subspace of Gbd

c .M;G/. Recall that for any n, Ic;n.M;G/ is
the subspace of Ic.M;G/ annihilated by the finite set of distributions Rc;n.M/. It
follows easily from the discussion of Sect. 3 that

Ic;n.M;G/ D Ic.M;G/ \ Gbd
c;n.M;G/:

The quotient

In
c .M;G/ D Ic.M;G/=Ic;n.M;G/

of Ic.M;G/ therefore injects into the quotient Gbd;n
c .M;G/ of Gbd

c .M;G/. This in
turn implies that the completion

bIc.M;G/ D lim �
n

In
c .M;G/ (32)

injects intobGbd

c .M;G/. We thus have embeddings

bIc.M;G/ � bGbd

c .M;G/ � bG
˛

c .M;G/ � bGc.M;G/ (33)

for any weight function ˛
As a subspace ofbGc.M;G/, the completionbIc.M;G/ is particularly suited to the

conventions above. If g belongs to bIc.M;G/ and n � 0, we take gn.�/ to be the
canonical representative of gn in Ic.M;G/ that is spanned by the finite set f�_.�/ W
� 2 Rc;n.M/g. This means that g.n/.�/ is the canonical element in Ic;n�1.M;G/ that
is spanned by the set f�_.�/ W � 2 Rc;.n/.M/g. The formal germ g can therefore be
represented by a canonical, adically convergent series

g D
X

�2Rc.M/

g.�/�_;

or if one prefers, a canonical asymptotic expansion

g.�/ �
X

�2Rc.M/

g.�/�_.�/;
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for uniquely determined coefficients g.�/ in C. In particular, suppose that g equals
fM , for a Schwartz function f 2 C.G/. The relative invariant orbital integral fM.�/
then has an asymptotic expansion

fM.�/ �
X

�2Rc.M/

fM.�/�
_.�/:

We end this section by remarking that the W.M/-invariance we have built into the
definitions is not essential. Its purpose is only to reflect the corresponding property
for weighted orbital integrals. We shall sometimes encounter formal germs for
which the property is absent (notably as individual terms in a finite sum that is
W.M/-invariant). There is no general need for extra notation. However, one case of
special interest arises when M1 is a Levi subgroup of M, and c is the image of a class
c1 in �ss.M1/. Under these conditions, we let bGc1.M1 j M;G/ denote the space of
formal germs for .M1;G/ at c1, defined as above, but with W.M1/ replaced by the
stabilizer W.M1 j M/ of M in W.M1/. There is then a canonical restriction mapping

g �! gM1 ; g 2 bGc.M;G/;

frombGc.M;G/ tobGc1 .M1 j M;G/.

6 Statement of the General Germ Expansions

In Sect. 3, we introduced asymptotic expansions for the invariant orbital integrals
JG.�; f / D fG.�/. Our goal is now to establish formal germ expansions for the more
general weighted orbital integrals JM.�; f /. We shall state the general expansions in
this section. The proof of the expansions will then take up much of the remaining
part of the paper.

Recall that the weighted orbital integrals depend on a choice of maximal compact
subgroup K � G.R/, as well as the Levi subgroup M. The formal germ expansions
will of course also depend on a fixed element c 2 �ss.M/. The theorem we are
about to state asserts the existence of two families of objects attached to the 4-tuple
.G;K;M; c/, which depend also on bases

Rc.L/ � Dc.L/; L 2 L.M/;

chosen as in Lemma 2.1.
The first family is a collection of tempered distributions

f �! JL.�; f /; L 2 L.M/; � 2 Rc.L/; (34)

on G.R/, which reduce to the invariant distributions

JG.�; f / D fG.�/; � 2 Rc.G/;
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when L D G, and in general are supported on the closed, G.R/-invariant subset
Uc.G/ of G.R/. The second family is a collection of formal germs

gL
M.�/; L 2 L.M/; � 2 Rc.L/; (35)

inbGc.M;L/, which reduce to the homogeneous germs

gM
M.�/ D �_; � 2 Rc.M/;

when L D M, and in general have the convergence property

lim
deg.�/!1

�
gL

M.�/
� D 0: (36)

This implies that the series

gL
M

�
JL;c.f /

� D
X

�2Rc.L/

gL
M.�/JL.�; f /

converges in (the adic topology of) bGc.M;L/, for any f 2 C.G/. The continuity of
the linear forms (34) also implies that the mapping

f �! gL
M

�
JL;c.f /

�

from C.G/ to bGc.M;L/ is continuous (in the complex topology of gGc.M;L/.) The
objects will also have a functorial property, which can be formulated as an assertion
that for any L and f ,

gL
M

�
JL;c.f /

�
is independent of the choice of basis Rc.L/: (37)

The two families of objects will have other properties, which are parallel to those
of weighted orbital integrals. If y lies in G.R/, the distributions (34) are to satisfy

JL.�; f
y/ D

X

Q2F.L/
J

MQ
L .�; fQ;y/; f 2 C.G/: (38)

If z belongs to Z.G/, we require that

JL.�; zf / D JL.zL�; f / (39)

and

gL
M.OzL�/ D

X

S2LL.M/

@S
M.zS/g

L
S.�/M: (40)



38 J. Arthur

Finally, suppose that 	 : G ! 	G is an isomorphism over R. The two families of
objects are then required to satisfy the symmetry conditions

J	L.	�; 	 f / D JL.�; f / (41)

and

g	L
	M.	�/ D 	gL

M.�/; (42)

relative to the basis R	c.	L/ D 	Rc.L/ of D	c.	L/.
Given objects (34) and (35), consider the sum

gM;c.f / D
X

L2L.M/
gL

M

�
JL;c.f /

�
:

Then gM;c is, a priori, a continuous map from C.G/ to a space of formal germs that
lack the property of symmetry by W.M/. However, suppose that 	 D Int.w/, for a
representative w 2 K of some element in the Weyl group W.M/. Then

	gM;c.f / D
X

L

X

�

	gL
M.�/ 	 JL.�; f /

D
X

L

X

�

g	L
	M.	�/J	L.	�; 	 f /;

by (41) and (42). Since 	M equals M and J	L.	�; 	 f / equals J	L.	�; f /, we obtain

	gM;c.f / D
X

L

X

�

g	L
M .	�/J	L.	�; f /

D
X

L

X

�

gL
M.�/JL.�; f / D gM;c.f /;

from the condition (37). It follows that gM;c.f / is symmetric under W.M/, and
therefore that gM;c.f / lies in the space bGc.M;G/. In other words, gM;c can be
regarded as a continuous linear map from C.G/ tobGc.M;G/.

Theorem 6.1. There are distributions (34) and formal germs (35) such that the
conditions (36)–(42) hold, and such that for any f 2 C.G/, the weighted orbital
integral JM.f / has a formal germ expansion given by the sum

X

L2L.M/
gL

M

�
JL;c.f /

� D
X

L2L.M/

X

�2Rc.L/

gL
M.�/JL.�; f /: (43)
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Theorem 6.1 asserts that the sum (43) represents the same element in bGc.M;G/
as JM.f /. In other words, the weighted orbital integral has an asymptotic expansion

JM.�; f / �
X

L

X

�

gL
M.�; �/JL.�; f /:

This is the archimedean analogue of the germ expansion for weighted orbital
integrals on a p-adic group [A3, A8]. We should note that the formal germs gL

M.�/

are more complicated in general than in the special case of L D M D G treated
in Sect. 3. For example, if M D G, the formal germs can be identified with
homogeneous functions gG

G.�; �/ D �_.�/. In the general case, each gL
M.�; �/ does

have to be treated as an asymptotic series.
The functorial condition (37) seems entirely natural in the light of the main

assertion of Theorem 6.1. We observe that (37) amounts to a requirement that the
individual objects (34) and (35) be functorial in �. More precisely, suppose that for
each L, R0c.L/ D f�0g is a second basis of Dc.L/. The condition (37) is equivalent to
the transformation formulas

JL.�
0; f / D

X

�

aL.�
0; �/JL.�; f / (44)

and

gL
M.�
0/ D

X

�

a_L .�0; �/gL
M.�/; (45)

where AL D faL.�
0; �/g is the transformation matrix for the bases f�0g and f�g, and

A_L D fa_L .�0; �/g D tA�1L is the transformation matrix for the dual bases f.�0/_g
and f�_g. In the special case that M D G, these formulas are consequences of the
constructions in Sects. 2 and 3 (as is (37)). In general, they follow inductively from
this special case and the condition (37) (with L taken to be either M or G). The
two formulas tell us that for any L, the two families of objects are functorial in the
following sense. The distributions (34) are given by a mapping f ! JL;c.f / from
C.G/ to the dual space Dc.L/0 such that

JL.�; f / D h�; JL;c.f /i; � 2 Rc.L/:

The formal germs (35) are given by an element gL
M in the (adic) tensor product

bGc.M;L/˝Dc.L/ such that

hgL
M; �

_i D gL
M.�/; � 2 Rc.L/:

The distribution in (37) can thus be expressed simply as a pairing

gL
M

�
JL;c.f /

� D hgL
M; JL;c.f /i:



40 J. Arthur

However, we shall retain the basis dependent notation (34) and (35), in deference to
the traditional formulation of p-adic germ expansions.

The formal germ expansion for JM.f / is the main result of the paper. We shall
actually need a quantitative form of the expansion, which applies to partial sums in
the asymptotic series, and is slightly stronger than the assertion of Theorem 6.1.

It follows from (36) and the definition of the adic topology onbGc.M;L/ that there
is a weight function ˛ such that gL

M.�/ belongs to bG˛c .M;L/, for all L and �. Given
such an ˛, and any n � 0, our conventions dictate that we write gL;n

M .�/ for the

projection of gL
M.�/ onto the quotient G˛;nc .M;L/ of bG

˛

c .M;L/, and gL;n
M .�; �/ for a

representative of gL;n
M .�/ in F˛

c .V;L/. We assume that gL;n
M .�; �/ D 0, if gL;n

M .�/ D 0.
The sum

Jn
M.�; f / D

X

L

X

�

gL;n.�; �/JL.�; f / (46)

can then be taken over a finite set. Our second theorem will include a slightly sharper
form of the symmetry condition (42), namely that the functions gL;n

M .�; �/ can be
chosen so that

g	L;n
	M .	�; 	�/ D gL;n

M .�; �/; (42�)

for 	 as in (42). This condition, combined with the remarks prior to the statement
of Theorem 6.1, tells us that (46) is invariant under the action of W.M/ on � . The
function Jn

M.�; f / therefore belongs to F˛
c .V;G/. It is uniquely determined up to a

finite sum
X

i

�i.�/Ji.f /; (47)

for tempered distributions Ji.f / and functions �i.�/ in F˛
c;n.V;G/.

According to Corollary 4.2, we can choose ˛ so that the weighted orbital integral
JM.�; f / also belongs to F˛

c .V;G/.

Theorem 6.1�. We can choose the weight function ˛ above so that ˛.1/ equals 0
and the symmetry condition 42� is valid, and so that for any n, the mapping

f �! JM.�; f / � Jn
M.�; f /; f 2 C.G/;

is a continuous linear transformation from C.G/ to the space F˛
c;n.V;G/.

Remarks. 1. The statement of Theorem 6.1� is well posed, even though the map-
ping is determined only up to a finite sum (47). For (47) represents a continuous
linear mapping from C.G/ to F˛

c;n.V;G/. In other words, the difference

Kn
M.�; f / D JM.�; f /� Jn

M.�; f /

is defined up to a function that satisfies the condition of the theorem.
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2. In concrete terms, Theorem 6.1� asserts the existence of a continuous seminorm

˛�;";n on C.G/, for each � D .T; �;X/ in Sc.M;G/, each " > 0, and each n � 0,
such that

jXKn
M.�; f /j � 
˛�;";n.f /jDc.�/j�.˛.X/C"/k`c.�/k.n;X/;

for every � 2 V� and f 2 C.G/. This can be regarded as the analogue of
Taylor’s formula with remainder. The germ expansion of Theorem 6.1 is of
course analogous to the asymptotic series provided by Taylor’s theorem. In
particular, Theorem 6.1� implies the germ expansion of Theorem 6.1.

We are going to prove Theorems 6.1 and 6.1� together. The argument will be
inductive. We fix the 4-tuple of objects .G;K;M; c/, and assume inductively that
the two theorems have been established for any other 4-tuple .G1;K1;M1; c1/, with

dim.AM1=AG1/ < dim.AM=AG/:

In particular, we assume that the distributions JL.	; f / have been defined for any
L © M, that the formal germs gL

M.	/ have been defined for any L ¨ G, and
that both sets of objects satisfy conditions of the theorems. Our task will be to
construct distributions JM.	; f / and formal germs gG

M.	/ that also satisfy the required
conditions.

We shall begin the proof in the next section. In what remains of this section,
let us consider the question of how closely the conditions of Theorem 6.1 come to
determining the distributions and formal germs uniquely. Assume that we have been
able to complete the induction argument by constructing the remaining distributions
JM.	; f / and formal germs gG

M.	/. To what degree are these objects determined by the
distributions and formal germs for lower rank whose existence we have postulated?

Suppose for a moment that � 2 Rc.M/ is fixed. Let �JM.�; f / be an arbitrary
distribution on G.R/ that is supported on Uc.G/, and satisfies (38) (with L D M).
That is, we suppose that

�JM.�; f
y/ D �JM.�; f /C

X

Q2F0.M/

J
MQ
M .�; fQ;y/;

for any y 2 G.R/. Applying (38) to JM.�; f /, we deduce that the difference

f �! �JM.�; f /� JM.�; f /

is an invariant tempered distribution that is supported on Uc.G/. It follows that

�JM.�; f / D JM.�; f /C
X

�G2Rc.G/

c.�; �G/fG.�G/; (48)

for complex coefficients fc.�; �G/g that vanish for almost all �G.
Suppose now that �JM.	; f / and �gG

M.	/ are arbitrary families of objects that satisfy
the relevant conditions of Theorem 6.1. For each � 2 Rc.M/, the distributions
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�JM.�; f / and JM.�; f / then satisfy an identity (48), for complex coefficients

c.�M; �G/; �M 2 Rc.M/; �G 2 Rc.G/; (49)

that for any �M , have finite support in �G. The terms with L ¤ M, G in the formal
germ expansion (43) are assumed to have been chosen. It follows that the difference

gG
M

�
JG;c.f /

� � �gG
M

�
JG;c.f /

� D
X

�G2Rc.G/

�
gG

M.�G/� �gG
M.�G/

�
fG.�G/

equals

gM
M

� �JM;c.f /
� � gM

M

�
JM;c.f /

� D
X

�M2Rc.M/

�_M
� �JM.�M; f / � JM.�M; f /

�

D
X

�G2Rc.G/

0

@
X

�M2Rc.M/

�_Mc.�M; �G/

1

A fG.�G/:

Comparing the coefficients of fG.�G/, we find that

�gG
M.�/ D gG

M.�/�
X

�M2Rc.M/

�_Mc.�M; �/; (50)

for any � 2 Rc.G/. The general objects �JM.	; f / and �gG
M.	/ could thus differ

from the original ones, but only in a way that is quite transparent. Moreover, the
coefficients (49) are governed by the conditions of Theorem 6.1. If z belongs to
Z.G/, they satisfy the equation

c.�M; Oz�G/ D c.zM�M; �G/: (51)

They also satisfy the symmetry condition

c.	�M; 	�G/ D c.�M; �G/; (52)

for any isomorphism 	 : G ! 	G over R. Finally, they satisfy the transformation
formula

c.�0M; �0G/ D
X

�M

X

�G

aM.�
0
M; �M/c.�M; �G/a

_
G.�
0
G; �G/ (53)

for change of bases, with matrices faM.�
0
M; �M/g and fa_G.�0G; �G/g as in (44)

and (45).
Conversely, suppose that �JM.	; f / and �gG

M.	/ are defined in terms of JM.	; f / and
gG

M.	/ by (48) and (50), for coefficients (49) that satisfy (51)–(53). It is then easy to
see that �JM.	; f / and �gG

M.	/ satisfy the conditions of Theorems 6.1 and 6.1�. We
obtain
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Proposition 6.2. Assume that Theorems 6.1 and 6.1� are valid for distributions
JL.	; f / and formal germs gL

M.	/. Let �JL.	; f / and �gL
M.	/ be secondary families

of such objects for which �JL.	; f / D JL.	; f / if L ¤ M, and �gL
M.	/ D gL

M.	/
if L ¤ G. Then Theorems 6.1 and 6.1� are valid for �JL.	; f / and �gL

M.	/ if
and only if the relations (48) and (50) hold, for coefficients (49) that satisfy the
conditions (51)–(53).

7 Some Consequences of the Induction Hypotheses

We shall establish Theorems 6.1 and 6.1� over the next four sections. In these
sections, G, K, M and c will remain fixed. We are assuming inductively that the
assertions of the theorems are valid for any .G1;K1;M1; c1/, with

dim.AM1=AG1/ < dim.AM=AG/:

In this section, we shall see what can be deduced directly from this induction
assumption.

Let L be a Levi subgroup of G in L.M/ that is distinct from both M and G. The
terms in the series

gL
M

�
JL;c.f /

� D
X

�2Rc.L/

gL
M.�/JL.�; f /; f 2 C.G/;

are then defined, according to our induction assumption. The series converges to
a formal germ in bGc.M;L/ that is independent of the basis Rc.L/, as we see by
applying (36), (44) and (45) inductively to L. Moreover, the mapping

f �! gL
M

�
JL;c.f /

�
; f 2 C.G/;

is a continuous linear transformation from C.G/ to bGc.M;L/. We begin by describ-
ing three simple properties of this mapping.

Suppose that y 2 G.R/. We can then consider the value

gL
M

�
JL;c.f

y/
� D

X

�2Rc.L/

gL
M.�/JL.�; f

y/

of the mapping at the y-conjugate of f . Since

dim.AL=AG/ < dim.AM=AG/;

we can apply the formula (38) inductively to JL.�; f y/. We obtain
X

�2Rc.L/

gL
M.�/JL.�; f

y/ D
X

�2Rc.L/

X

Q2F.L/
gL

M.�/J
MQ
L .�; fQ;y/

D
X

Q

 
X

�

gL
M.�/J

MQ
L .�; fQ;y/

!

:
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It follows that

gL
M

�
JL;c.f

y/
� D

X

Q2F.L/
gL

M

�
J

MQ
L;c .fQ;y/

�
; f 2 C.G/: (54)

Suppose that z 2 Z.G/. Consider the value

gL
M

�
JL;c.zf /

� D
X

�2Rc.L/

gL
M.�/JL.�; zf /

of the mapping at the z-transform of f . Since

dim.AL=AG/ < dim.AM=AG/;

we can apply the formula (39) to JL.�; zf /. We obtain

X

�2Rc.L/

gL
M.�/JL.�; zf / D

X

�

gL
M.�/JL.zL�; f /

D
X

�2Rc.L/

gL
M.OzL�/JL.�; f /;

by the definition of the transpose OzL. Since

dim.AM=AL/ < dim.AM=AG/;

we can apply the formula (40) inductively to gL
M.OzL�/. We obtain

X

�2Rc.L/

gL
M.OzL�/JL.�; f / D

X

�

X

S2LL.M/

�
@S

M.zS/g
L
S.�/M

�
JL.�; f /

D
X

S

@S
M.zS/

 
X

�

gL
S.�/MJL.�; f /

!

:

It follows that

gL
M

�
JL;c.zf /

� D
X

S2LL.M/

@S
M.zS/g

L
S

�
JL;c.f /

�
M
; f 2 C.G/: (55)

Finally, suppose that 	 : G ! 	G is an isomorphism over R. Consider the
composition

	gL
M

�
JL;c.f /

� D
X

�2Rc.L/

	gL
M.�/ 	 JL.�; f /



Germ Expansions 45

of the mapping with 	 . Since

dim.AL=AG/ < dim.AM=AG/;

we can apply (41) to JL.�; f /. Since

dim.AM=AL/ < dim.AM=AG/;

we can apply (42) to gL
M.�/. It follows that

g	L
	M

�
J	L;	c.	 f /

� D 	gL
M

�
JL;c.f /

�
: (56)

The main assertion of Theorem 6.1 is that the difference

KM.f / D JM.f / �
X

L2L.M/
gL

M

�
JL;c.f /

�
;

regarded as an element in bGc.M;G/, vanishes. We are not yet in a position to
investigate this question, since we have not defined the terms in the series with
L D M and L D G. We consider instead the partial difference

eKM.f / D JM.f /�
X

fL2L.M/W L¤M;Gg
gL

M

�
JL;c.f /

�
; f 2 C.G/; (57)

regarded again as an element inbGc.M;G/.

Lemma 7.1. Suppose that f 2 C.G/ and y 2 G.R/. Then

eKM.f
y/�eKM.f / D

X

Q2F0.M/

gM
M

�
J

MQ
M;c.fQ;y/

�
: (58)

Proof. The left-hand side of (58) equals

�
JM.f

y/ � JM.f /
� �

X

L¤M;G

�
gL

M

�
JL;c.f

y/
� � gL

M

�
JL;c.f /

��
:

We apply (21) to the term on the left, and (54) to each of the summands on the right.
The expression becomes

X

Q2F0.M/

J
MQ
M .fQ;y/�

X

L¤M

X

Q2F0.L/

gL
M

�
J

MQ
L;c .fQ;y/

�
:

We take the second sum over Q outside the sum over L. The new outer sum is then
over Q 2 F0.M/, while the new inner sum is over Levi subgroups L 2 LMQ.M/ with
L ¤ M. Since Q ¤ G, the formal germ gM

M

�
J

MQ
M;c.fQ;y/

�
is defined, according to the
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induction assumption. We can therefore take the new inner sum over all elements
L 2 LMQ.M/, provided that we then subtract the term corresponding to L D M. The
left-hand side of (58) thus equals the sum of

X

Q2F0.M/

0

@J
MQ
M .fQ;y/�

X

L2LMQ .M/

gL
M

�
J

MQ
L;c .fQ;y/

�
1

A

and
X

Q2F0.M/

gM
M

�
J

MQ
M;c.fQ;y/

�
:

The first of these expressions reduces to a sum,

X

Q2F0.M/

K
MQ
M .fQ;y/;

whose terms vanish by our induction assumption. The second expression is just the
right-hand side of (58). The formula (58) follows. ut

In stating the next lemma, we write fG;c for the function

JG;c.f / W � �! JG.�; f / D fG.�/; � 2 Rc.G/;

to remind ourselves that it is invariant in f .

Lemma 7.2. Suppose that f 2 C.G/ and z 2 Z.G/. Then

eKM.zf / � @�h.z/�eKM.f / D
X

fL2L.M/W L¤Mg
@L

M.zL/g
G
L .fG;c/M: (59)

Proof. The left-hand side of (59) equals

�
JM.zf / � @�h.z/�JM.f /

� �
X

L¤M;G

�
gL

M

�
JL;c.zf /

� � @�h.z/�gL
M

�
JL;c.f /

��
:

We apply (22) to the term on the left, and (55) to each of the summands on the right.
The expression becomes

X

S

@S
M.zS/JS.f / �

X

L;S

@S
M.zS/g

L
S

�
JL;c.f /

�
M;

where the first sum is over Levi subgroups S 2 L.M/ with S ¤ M, and the second
sum is over groups L and S in L.M/ with

M ¨ S � L ¨ G:
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This second sum can obviously be represented as an iterated sum over elements
S 2 L.M/ with S ¤ M, and elements L 2 L.S/ with L ¤ G. Since S ¤ M, the
formal germ gL

S

�
JL;c.f /

�
M

is defined, according to the induction assumption. We can
therefore sum L over all elements in L.S/, provided that we then subtract the term
corresponding to L D G. The left-hand side of (59) thus equals the sum of

X

fS2L.M/W S¤Mg
@S

M.zS/

0

@JS.f /�
X

L2L.S/
gL

M

�
JL;c.f /

�
M

1

A

and

X

fS2L.M/W S¤Mg
@S

M.zS/g
G
S

�
JG;c.f /

�
M
:

The first of these expressions reduces to a sum,

X

S¤M

@S
M.zS/KS.f /M;

whose terms vanish by our induction assumption. The second expression equals

X

fL2L.M/W L¤Mg
@L

M.zL/g
G
L .fG;c/M;

the right-hand side of (59). The formula (59) follows. ut
Lemmas 7.1 and 7.2 can be interpreted as identities

eKM.�; f
y/ �eKM.�; f / D

X

Q2F0.M/

gM
M

�
�; J

MQ
M;c.fQ;y/

�
; f 2 C.G/;

and

eKM.�; zf / � @�h.z/�eKM.�; f / D
X

L¤M

@L
M.�; zL/g

G
L .�; fG;c/; f 2 C.G/;

of asymptotic series. What do these identities imply about the partial sums in the
series? The question is not difficult, but in the case of Lemma 7.2 at least, it will
require a precise answer.

As in the preamble to Theorem 6.1�, we can choose a weight function ˛ such that
for each L ¤ G and � 2 Rc.L/, gL

M.�/ belongs to bG
˛

c .M;L/. By applying the first
assertion of Theorem 6.1� inductively to .L;K \ L;M; c/ (in place of .G;K;M; c/),
we see that ˛ may be chosen so that ˛.1/ equals zero. By Corollary 4.2, we can also
assume that ˛ is such that f ! JM.�; f / is a continuous linear transformation from
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C.G/ to F˛
c .V;G/. Having chosen ˛, we set

eJ
n
M.�; f / D

X

L¤M;G

X

�2Rc.L/

gL;n
M .�; �/JL.�; f /; (60)

for any n � 0. The sums in this expression can be taken over finite sets,
while the functions gL;n

M .�; �/ can be assumed inductively to satisfy the symmetry
condition (42�). The function

eK
n
M.�; f / D JM.�; f / �eJn

M.�; f /; f 2 C.G/; (61)

is then invariant under the action of W.M/ on � , and is uniquely determined up to a
continuous linear mapping from C.G/ to F˛

c;n.V;G/.
The following analogue of Corollary 4.2 is an immediate consequence of these

remarks.

Lemma 7.3. There is a weight function ˛ with ˛.1/ D 0, such that for any n, the
mapping

f �! eKn
M.�; f /; f 2 C.G/;

defines a continuous linear transformation from C.G/ to F˛
c .V;G/.

We shall now state our sharper form of Lemma 7.2. We assume for simplicity that
c is not G-regular, or in other words, that the function Dc is nontrivial. The identity
in Lemma 7.2 concerns an element z 2 Z.G/. In order to estimate the terms in this
identity, we fix a triplet � D .T; �;X/ in Sc.M;G/. For any n � 0, we then write
kn

z;� .�; f / for the function

X
�eK

n
M.�; zf / � @�hT.z/

�eK
n
M.�; f /

� �
X

L¤M

@L
M.�; zL/g

G;n
L .�; fG;c/

of � 2 V�.

Lemma 7.4. Given z and � , we can choose a positive number a with the property
that for any n � 0, the functional

�a;n
z;� .f / D sup

�2V�

�jkn
z;� .�; f /jjDc.�/jak`c.�/k�.nC1/

�
; f 2 C.G/;

is a continuous seminorm on C.G/.

Proof. The assertion is a quantitative reformulation of Lemma 7.2 that takes into
account its dependence on f . The proof is in principle the same. However, we do
require a few preliminary comments to allow us to interpret the earlier argument.

There is of course some ambiguity in the definition of kn
z;� .�; f /. The definition

is given in terms of the restrictions to V� of the functions eKn
M.�; zf /, eKn

M.�; f / and
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gG;n
L .�; fG;c/ in F˛

c .V;G/. For a given n, these functions are each defined only up to
a continuous linear map from C.G/ to F˛

c;n.V;G/. It is actually the images of the
three functions under three linear transformations

� �! X��;

� �! X@
�
hT.z/

�
��;

and

� �! X@L
M.�; zL/��; � 2 F˛

c .V;G/; L ¤ M;

that occur in the definition of kn
z;� .�; f /. Each transformation is given by a linear

partial differential operator on TG-reg.R/ whose coefficients are at worst algebraic.
Since Dc ¤ 1, the notation of Sect. 5 simplifies slightly. Recalling the remark
preceding the statement of Lemma 5.1, we see that there is a positive number a0 with
the property that for any a � a0, and any n, each of the three linear transformations
maps F˛

c;n.V;G/ continuously to Fa
c;n.V;G/. It follows that kn

z;� .�; f / is determined
up to a continuous linear mapping from C.G/ to Fa

c;n.V;G/. In other words, kn
z;� .�; f /

is well-defined up to a function that satisfies the condition of the lemma. This means
that it would suffice to establish the lemma with any particular choice for each of
the three functions.

The main ingredient in the proof of Lemma 7.2 was the formula (55), which we
can regard as an identity

gL
M

�
�; JL;c.zf /

� D
X

S2LL.M/

@S
M.�; zS/g

L
S

�
�; JL;c.f /

�

of asymptotic series. To prove the lemma at hand, we need a corresponding identity
of partial sums. For each S, we choose a weight functionˇ such that the formal germ

gL
S

�
JL;c.f /

�
lies inbGˇc .S;L/. For any positive integer m, gL;m

S

�
�; JL;c.f /

�
then denotes

a representative in Fˇ
c .V;L/ of the corresponding m-jet. After a moment’s thought,

it is clear that we can assign an integer m > n to every n such that

gL;n
M

�
�; JL;c.zf /

� D
X

S2LL.M/

@S
M.�; zS/g

L;m
S

�
�; JL;c.f /

�
:

The left-hand side here stands for some particular representative of gL;n
M

�
JL;c.zf /

�

in F˛
c .V;L/, rather than the general one. Its sum over Levi subgroups L ¤ M, G

yields a particular choice for the function eKn
M.�; f / that occurs in the definition of

kn
z;� .�; f /. As we have noted, this is good enough for the proof of the lemma.

Armed with the last formula, we have now only to copy the proof of Lemma 7.2.
A review of the earlier argument leads us directly to a formula

kn
z;� .�; f / D

X

S¤M

X@S
M.�; zS/K

m
S .�; f /; � 2 V�:
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We are free to apply Theorem 6.1� inductively to the summand Km
S .�; f /, since S ¤

M. We thereby observe that f ! Km
S .�; f / is a continuous linear transformation from

C.G/ to Fˇ
c;m.V;G/. Since Dc ¤ 1, we know from the discussion in Sect. 5 that there

is an a � a0 such that for any n, and any m � n, the linear transformation

� �! X@S
M.�; zS/��; � 2 Fˇ

c;m.V;G/;

maps Fˇ
c;m.V;G/ continuously to Fa

c;n.V�;G/. It follows that for any n, the map

f �! kn
z;� .�; f /; f 2 C.G/;

is a continuous linear transformation from C.G/ to Fa
c;n.V�;G/. The assertion of the

lemma then follows from the definition of Fa
c;n.V�;G/. ut

Recall that for any nonnegative integer N, Cc;N.G/ denotes the subspace of C.G/
annihilated by Rc;N.G/. This subspace is of finite codimension in C.G/, and is
independent of the choice of basis Rc.G/.

Lemma 7.5. For any n � 0, we can choose an integer N so that if f belongs to
Cc;N.G/, the function kn

z;� .�; f / simplifies to

kn
z;� .�; f / D X

�
eK

n
M.�; zf / � @�hT.z/

�
eK

n
M.�; f /

�
; � 2 V�:

Proof. We have to show that the summands

gG;n
L .�; fG;c/ D

X

�2Rc.G/

gG;n
L .�; �/fG.�/; L ¤ M;

in the original definition of kn
z;� .�; f / vanish for the given f . Applying (36)

inductively (with .G;M/ replaced by .G;L/), we see that the .˛; n/-jet gG
L .�/

vanishes for all but finitely many �. We can therefore choose N so that for each
L, the function gG;n

L .�; �/ vanishes for any � in the complement of Rc;N.G/ in Rc.G/.
The lemma follows. ut

Finally, we note that eKM.f / transforms in the obvious way under any isomor-
phism 	 : G ! 	G over R. If we apply (23) and (56) to the definition (57), we see
immediately that

eK	M.	 f / D 	eKM.f /; f 2 C.G/: (62)

Moreover, for any n � 0, the function (61) satisfies the symmetry condition

eKn
	M.	�; 	 f / D eKn

M.�; f /; � 2 VG-reg; f 2 C.G/: (63)

This follows from our induction assumption that the relevant terms in (60)
satisfy (42�).
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8 An Estimate

We have been looking at some of the more obvious implications of our induction
hypothesis. We are now ready to begin a construction that will eventually yield the
remaining objects gG

M.�/ and JM.�; f /. We shall carry out the process in the next
section. The purpose of this section is to establish a key estimate for the mapping
eKM , which will be an essential part of the construction. The estimate is based on
an important technique [H1] that Harish-Chandra developed from the differential
equations (8).

Recall that eKM is a continuous linear transformation from C.G/ to bGc.M;G/.
We choose a weight function ˛ as in Lemma 7.3. For any n � 0, f ! eK

n
M.f /

and f ! eK
n
M.�; f / then represent continuous linear mappings from C.G/ onto the

respective spaces G˛;nc .M;G/ and F˛
c .V;G/. To focus the discussion, let us write

 n
M for the restriction of eK

n
M to some given subspace Cc;N.G/ of C.G/. Then

f �!  n
M.�; f / D eKn

M.�; f /; f 2 Cc;N.G/;

is a continuous linear mapping from Cc;N.G/ to F˛
c .V;G/. For all intents and

purposes, we shall take N to be any integer that is large relative to n, and that
in particular has the property of Lemma 7.5. This will lead us to an estimate for
 n

M.�; f / that is stronger than the bound implied by the definition of F˛
c .V;G/.

To simplify the statement of the estimate, we may as well rule out the trivial
case that c is G-regular, as we did in Lemma 7.4. In other words, we assume that
dim.Gc=T/ > 0, for any maximal torus T 2 Tc.M/. We fix T, together with a
connected component� 2 �0;c

�
TG-reg.R/

�
. Consider the open subset

V�.a; n/ D
˚
� 2 V� W jDc.�/j�ak`c.�/kn < 1

�

of TG-reg.R/, defined for any a > 0 and any nonnegative integer n. Our interest will
be confined to the case that the closure of V�.a; n/ contains c. This condition will
obviously be met if n is large relative to a, or more precisely, if n is greater than the
integer

aC D a dim.Gc=T/:

According to our definitions, any function in the space F˛
c;n.V;G/ will be bounded

on V�.a; n/, for any a > ˛.1/. (We assume of course that the invariant function
`c.�/ is bounded on V .) The function  n

M.�; f / above lies a priori only in the larger
space F˛

c .V;G/. However, the next lemma asserts that for N large, the restriction of
 n

M.�; f / to V�.a; n/ is also bounded.
More generally, we shall consider the derivative X n

M.�; f /, for any (translation)
invariant differential operator X on T.R/. Given X, we assume that a is greater than
the positive number

˛C.X/ D ˛.X/C deg.X/ dim.Gc=T/�1:
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Then if n > aC, as above, and " > 0 is small, n will be greater than deg.X/, and

jDc.�/j�.˛.X/C"/k`c.�/k.n;X/ D jDc.�/j�.˛.X/C"/k`c.�/knC1�deg X

� CjDc.�/j�ak`c.�/knC1; � 2 Vreg;

for some constant C. It follows that the X-transform of any function in F˛
c;n.V;G/ is

bounded by a constant multiple of k`c.�/k on V�.a; n/, and is therefore absolutely
bounded on V�.a; n/. We are going to show that for N large, the function X n

M.�; f /
is also bounded on V�.a; n/.

Lemma 8.1. Given the triplet � D .T; �;X/, we can choose a positive integer
a > ˛C.X/ with the property that for any n > aC, and for N large relative to n, the
function

f �! sup
�2V�.a;n/

jX n
M.�; f /j; f 2 Cc;N.G/;

is a continuous seminorm on Cc;N.G/.

Proof. We should first check that the statement of the lemma is well posed, even
though the function n

M.�; f / is not uniquely determined. As in the remark preceding
the statement of Theorem 6.1�, we observe that n

M.�; f / is defined only up to a finite
sum

X

i

�i.�/Ji.f /; f 2 Cc;N.G/;

for tempered distributions Ji.f / and functions �i.�/ in F˛
c;n.V;G/. From the

discussion above, we see that the function
X

i

�
X�i.�/

�
Ji.f /

is bounded on V�.a; n/, and in fact, can be bounded by a continuous seminorm in f .
In other words, X n

M.�; f / is well defined up to a function that satisfies the condition
of the lemma. The condition therefore makes sense for X n

M.�; f /.
Let u1 D 1; u2; : : : ; uq be a basis of the G-harmonic elements in S

�
t.C/

�
. Any

element in S
�
t.C/

�
can then be written uniquely in the form

X

j

ujhT.zj/; zj 2 Z.G/:

For any n � 0, f 2 Cc;N.G/, and � 2 V�, we write

 n
i .�; f / D  n

M;i.�; f / D @.ui/ 
n
M.�; f /; 1 � i � q:

Our aim is to estimate the functions

@.u/ n
i .�; f /; u 2 S

�
t.C/

�
; 1 � i � q: (64)

The assertion of the lemma will then follow from the case i D 1 and X D @.u/.
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Consider a fixed element u 2 S
�
t.C/

�
. For any i, we can write

uui D
qX

jD1
hT.zij/uj;

for operators zij D zu;ij in Z.G/. This allows us to write (64) as the sum of
X

j

 n
j .�; zijf /

with

X

j

@.uj/
�
@
�
hT.zij/

�
 n

M.�; f / �  n
M.�; zijf /

�
: (65)

We shall estimate the two expressions separately.
The first step is to apply Lemma 7.4 to the summands in (65). For any given n,

we choose N to be large enough that the summands have the property of Lemma 7.5.
In other words, the expression (65) is equal to a sum of functions

�
X

j

kn
zij;�j

.�; f /; �j D
�
T; �; @.uj/

�
; f 2 Cc;N.G/;

defined as in the preamble to Lemma 7.4. Applying Lemma 7.4 to each summand,
we obtain a positive number a with the property that for any n, and for each i and j,
the functional

�a;n
zij;�j

.f / D sup
�2V�

�jkn
zij;�j

.�; f /jjDc.�/jak`c.�/k�.nC1/
�

is a continuous seminorm on Cc;N.G/. Given a, we write �a;n
u .f / for the supremum

over 1 � i � q and � in V�.a; n/ of the absolute value of (65). It then follows from
the definition of V�.a; n/ that

�a;n
u .f / � C0 sup

i

�X

j

�n
zij;�j

.f /
�
; f 2 Cc;N.G/;

where

C0 D sup
�2V�.a;n/

k`c.�/k:

We conclude that �a;n
u is a continuous seminorm on Cc;N.G/. The exponent a depends

on the elements zij 2 Z.G/, and these depend in turn on the original elements u. It
will be best to express this dependence in terms of an arbitrary positive integer d.
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For any such d, we can choose an exponent a D ad so that for any u 2 S
�
t.C/

�
with

deg.u/ � d, the functional �a;n
u .f / is a continuous seminorm on Cc;N.G/.

The next step is to combine the estimate we have obtained for (65) with the
estimate for the functions

 n
j .�; zijf / D @.uj/eK

n
M.�; zijf /

provided by Lemma 7.3. It is a consequence of this lemma that there is an integer b
such that for any n, i, and j, the mapping

f �!  n
j .�; zijf /; f 2 Cc;N.G/;

is a continuous linear transformation from Cc;N.G/ to Fb
c .V�;G/. (Here, N can be

any nonnegative integer.) In other words, each functional

sup
�2V�

�jDc.�/jbj n
j .�; zijf /j

�
; f 2 Cc;N.G/;

is a continuous seminorm on Cc;N.G/. We can now handle both expressions in
the original decomposition of (64). Our conclusion is that there is a continuous
seminorm 
n

u on Cc;N.G/ such that

j@.u/ n
i .�; f /j � jDc.�/j�b
n

u.f /C �a;n
u .f /; f 2 Cc;N.G/;

for every � in V�.a; n/. In particular,

j@.u/ n
i .�; f /j � 
a;n

u .f /jD.�/j�b; � 2 V�.a; n/; f 2 Cc;N.G/;

where


a;n
u .f / D 
n

u.f /C
�

sup
�2V�.a;n/

jDc.�/jb
�
�a;n

u .f /

is a continuous seminorm on Cc;N.G/. We need be concerned only with the index
i D 1. We shall write

 n
u .�; f / D @.u/ n

M.�; f / D @.u/ n
1 .�; f /;

in this case. The last estimate is then

j n
u .�; f /j � 
a;n

u .f /jDc.�/j�b; � 2 V�.a; n/; f 2 Cc;N.G/;

for any element u 2 S
�
t.C/

�
with deg.u/ � d. Our task is to establish a stronger

estimate, in which b D 0. We emphasize that in the estimate we have already
obtained, b is independent of u, and therefore also of d and a D ad. It is
this circumstance that allows an application of the technique of Harish-Chandra
from [H1].
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For any ı > 0, set

V�;ı.a; n/ D
˚
� 2 V�.a; n/ W k`c.�/k < ı

�
:

If � belongs to the complement of V�;ı.a; n/ in V�.a; n/, we have

jDc.�/ja > k`c.�/kn � ın:

It follows that the function jDc.�/jb is bounded away from 0 on the complement of
V�;ı.a; n/ in V�.a; n/. We have therefore only to show that for some ı, the function

sup
�2V�;ı.a;n/

�j n
u .�; f /j

�
; f 2 Cc;N.G/; (66)

is a continuous seminorm on Cc;N.G/.
Given a and n, we simply choose any ı > 0 that is sufficiently small. We then

assign a vector H 2 t.R/ to each point � in V�;ı.a; n/ in such a way that the line
segments

 t D � exp tH; � 2 V�;ı.a; n/; 0 � t � 1; (67)

are all contained in V�.a; n/, and the end points �1 D � exp H all lie in the com-
plement of V�;ı.a; n/ in V�.a; n/. We can in fact arrange that the correspondence
� ! H has finite image in t.R/. We can also assume that the points (67) satisfy an
inequality

jDc.�t/j�1 � C1t
� dim.Gc=T/; 0 < t � 1;

where C1 is a constant that is independent of the starting point � in V�;ı.a; n/.
Setting p equal to the product of dim.Gc=T/ with the integer b, and absorbing the
constant Cb

1 in the seminorm 
a;n
u .f / above, we obtain an estimate

j n
u .�t; f /j � 
a;n

u .f /t�p; f 2 Cc;N.G/;

for each of the points �t in (67), and any u 2 S
�
t.C/

�
with deg.u/ � d.

The last step is to apply the argument from [H1, Lemma 49]. Observe that

d

dt
 n

u .�t; f / D @.H/ n
u .�t; f / D  n

Hu.�t; f /:

Therefore
ˇ
ˇ̌
ˇ

d

dt
 n

u .�t; f /

ˇ
ˇ̌
ˇ � 
a;n

Hu.f /t
�p;
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for any �t as in (67), and any u 2 S
�
t.C/

�
with det.u/ � d � 1. Combining this

estimate with the fundamental theorem of calculus, we obtain

j n
u .�t; f /j �

ˇ
ˇ̌
ˇ

Z 1

t

� d

ds
 n

u .�s; f /
�

ds

ˇ
ˇ̌
ˇC j n

u .�1; f /j

�
Z 1

t



a;n
Hu.f /s

�pdsC 
a;n
u .f /

�
� 1

p � 1
�

a;n

Hu.f /.t
�pC1 � 1/C 
a;n

u .f /:

It follows that there is a continuous seminorm 

a;n
u;1 on Cc;N.G/ such that

j n
u .�t; f /j � 
a;n

u;1.f /t
�pC1;

for any �t as in (67), and any u 2 S
�
t.C/

�
with deg.u/ � d � 1. Following the

proof of [H1, Lemma 49], we repeat this operation p times. We obtain a continuous
seminorm 
a;n

u;p on Cc;N.G/ such that

j n
u .�t; f /j � 
a;n

u;p.f /j log tj;
for any �t as in (67), and any u 2 S

�
t.C/

�
with deg.u/ � d � p. Repeating the

operation one last time, and using the fact that log t is integrable over Œ0; 1, we
conclude that there is a continuous seminorm �a;n

u D 
a;n
u;pC1 on Cc;N.G/ such that

j n
u .�t; f /j � �a;n

u .f /; f 2 Cc;N.G/;

for all �t as in (67), and any u 2 S
�
t.C/

�
with deg.u/ � d � .pC 1/. Setting t D 0,

we see that the supremum (66) is bounded by �a;n
u .f /, and is therefore a continuous

seminorm on Cc;N.G/.
We have now finished. Indeed, for the given differential operator X D @.u/,

we set

d D deg.u/C b dim.Gc=T/C 1 D deg.u/C pC 1;

where b is the absolute exponent above. We then take a to be the associated number
ad. Given a, together with a positive integer n, we choose ı > 0 as above. The
functional (66) is then a continuous seminorm on Cc;N.G/. As we have seen, this
yields a proof of the lemma. ut
Corollary 8.2. Given the triplet � D .T; �;X/, we can choose a positive number
a > ˛C.X/ with the property that for any n > aC, and for N large relative to n, the
limit

�M.�; f / D lim
�!c

X n
M.�; f /; � 2 V�.a; n/; f 2 Cc;N.G/; (68)

exists, and is continuous in f .
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Proof. Once again, the statement is well posed, even though  n
M.�; f / is defined

only up to a function

X

i

�i.�/Ji.f /

in F˛
c;n.V;G/. For it follows from the preamble to Lemma 8.1 that the X-transform

of any function in F˛
c;n.V;G/ can be written as a product of `c.�/ with a function

that is bounded on V�.a; n/. In particular, X n
M.�; f / is well defined up to a function

on V�.a; n/ whose limit at c vanishes.
Given � , and thus X, we choose a so that the assertion of the lemma holds for all

the differential operators

@.H/X; H 2 t.C/:

The first derivatives

@.H/X n
M.�; f /; � 2 V�.a; n/; f 2 Cc;N.G/;

of the function X n
M.�; f / are then all bounded on V�.a; n/ by a fixed, continuous

seminorm in f . It follows that the function � ! X n
M.�; f / extends continuously

to the closure of V�.a; n/ in a way that is also continuous in f . The limit �M.�; f /
therefore exists, and is continuous in f . ut
Remarks. 1. As the notation suggests, the limit �M.�; f / is independent of n. For if

m > n,  m
M.�; f / differs from  n

M.�; f / by a function of � that lies in F˛
c;n.V;G/.

As we noted at the beginning of the proof of the corollary, the X-transform of any
such function converges to 0 as � approaches c in V�.a; n/. Of course n must be
large relative to deg.X/, and N has in turn to be large relative to n. The point is
that for any � D .T; �;X/, and for N sufficiently large relative to deg.X/, the
limit

�M.�; f /; f 2 Cc;N.G/;

can be defined in terms of any appropriately chosen n.
2. Lemma 8.1 and Corollary 8.2 were stated under the assumption that

dim.Gc=T/ > 0. The excluded case that dim.Gc=T/ D 0 is trivial. For in
this case, the function  n

M.�; f / on V� extends to a smooth function in an open
neighbourhood of c. The lemma and corollary then hold for any n.

9 The Mapping Q�M

We fix a weight function ˛ satisfying the conditions of Lemma 7.3, as we did in the
last section. Then ˛.1/ equals zero, and the continuous mapping

eKM W C.G/ �!bGc.M;G/
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takes values in the subspacebG
˛

c .M;G/ ofbGc.M;G/. Recall that the spacebIc.M;G/

introduced in Sect. 5 is contained in bG˛c .M;G/. The goal of this section is to
construct a continuous linear mapping

Q�M W C.G/ �!bIc.M;G/

that approximateseKM .
The main step will be the next proposition, which applies to the restrictions

 n
M D eKn

M W Cc;N.G/ �! G˛;nc .M;G/

treated in the last section.

Proposition 9.1. Suppose that n � 0, and that N is large relative to n. Then there
is a uniquely determined continuous linear transformation

�n
M W Cc;N.G/ �! In

c .M;G/;

such that for any f 2 Cc;N.G/, the image of �n
M.f / in G˛;nc .M;G/ equals n

M.f /. More
precisely, the mapping

f �!  n
M.�; f / � �n

M.�; f /; f 2 Cc;N.G/; (69)

is a continuous linear transformation from Cc;N.G/ to the space F˛
c;n.V;G/.

Proof. Recall that Ic.M;G/ is contained in the space Gbd
c .M;G/ of bounded germs.

The first step is to construct �n
M as a mapping from Cc;N.G/ to the quotient

Gbd;n
c .M;G/ of Gbd

c .M;G/. As we observed in the proof of Lemma 5.3, any element
in Gbd;n

c .M;G/ can be identified with a family

�n D ˚�n
� W T 2 Tc.M/; � 2 �0;c

�
TG-reg.R/

��

of Taylor polynomials of degree n (in the coordinates `c.�/) on the neighbourhoods
V�. In particular, Gbd;n

c .M;G/ is finite dimensional. The subspace In
c .M;G/ consists

of those families that satisfy Harish-Chandra’s jump conditions (15).
Suppose that f belongs to Cc;N.G/, for some N that is large relative to n. We

define �n
M.f / as a family of Taylor polynomials of degree n by means of the limits

�M.�; f / provided by Corollary 8.2. More precisely, we define

�n
M;�.�; f /; T 2 Tc.M/; � 2 �0;c

�
TG-reg.R/

�
; � 2 V�;

to be the polynomial of degree n such that

lim
�!c

�
X�n

M;�.�; f /
� D �M.�; f /; � 2 V�; (70)
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where X ranges over the invariant differential operators on T.R/ of degree less than
or equal to n, and where � D .T; �;X/. If .T; �/ is replaced by a pair .T 0; �0/
that is W.M/M.R/-conjugate to .T; �/, the corresponding polynomial �n

M;�0.�
0; f /

is W.M/M.R/-conjugate to �n
M;�.�; f /. This follows from Corollary 8.2 and the

analogous property for the .˛; n/-jet  n
M.�; f /. Therefore �n

M.f / is a well defined
element in Gbd;n

c .M;G/. Moreover, Corollary 8.2 tells us that each limit (70) is
continuous in f . It follows that f ! �n

M.f / is a continuous linear map from Cc;N.G/
to the finite dimensional space Gbd;n

c .M;G/.
The main step will be to establish the continuity of the mapping (69), defined for

some weight ˛ that satisfies the conditions of Lemma 7.3. This amounts to showing
that for any triplet � D .T; �;X/ in Sc.M;G/, and any " > 0, there is a continuous
seminorm 
.f / on Cc;N.G/ such that

ˇ
ˇX
�
 n

M.�; f / � �n
M.�; f /

�ˇˇ � 
.f /jDc.�/j�.˛.X/C"/k`c.�/k.n;X/; (71)

for � 2 V�. Observe that if deg jXj > n, (71) reduces to an inequality

jXeKn
M.�; f /j � 
.f /jDc.�/j�.˛.X/C"/;

since X�n
M.�; f / D 0 and .n;X/ D 0. We know from Lemma 7.3 that such

an inequality actually holds for any f in the full Schwartz space C.G/. We may
therefore assume that deg.X/ � n. We shall derive (71) in this case from four
other inequalities, in which 
1.f /, 
2.f /, 
3.f /, and 
4.f / denote four continuous
seminorms on Cc;N.G/.

We have first to combine Taylor’s formula with Lemma 8.1. This lemma actually
applies only to the case that dim.Gc=T/ > 0. However, if dim.Gc=T/ D 0, Dc.�/

equals 1, and the weight function ˛ plays no role. In this case, the estimate (71) is
a direct application of Taylor’s formula, which we can leave to the reader. We shall
therefore assume that dim.Gc=T/ > 0.

We have fixed data n, � D .T; �;X/ and ", with deg.X/ � n, for which we
are trying to establish (71). For later use, we also fix a positive number "0, with
"0 < ". At this point, we have removed from circulation the symbols X and n in
terms of which Lemma 8.1 was stated, so our application of the lemma will be to a
pair of objects denoted instead by Y and m. We allow Y to range over the invariant
differential operators on T.R/ with deg.Y/ � nC 1. If

a D an > sup
Y

�
˛C.Y/

� D ˛.nC 1/C .nC 1/ dim.Gc=T/�1;

as in Lemma 8.1, we choose m with

m > aCn D an dim.Gc=T/:

The lemma applies to functions f 2 Cc;N.G/, for N large relative to m (which is the
same as being large relative to n, if m is fixed in terms of n). In combination with the
fundamental theorem of calculus, it tells us that  m

M.�; f / extends to a function on an
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open neighbourhood of the closure of V�.an;m/ that is continuously differentiable
of order .nC 1/. The derivatives of this function at � D c are the limits treated in
Corollary 8.2. They are independent of m, and can be identified with the coefficients
of the polynomial �n

M.�; f / on V�. We can therefore regard �n
M.�; f / as the Taylor

polynomial of degree n at � D c (relative to the coordinates `c.�/) of the function
 m

M.�; f / on V�.an;m/. Now if � belongs to V�.an;m/, the set

�t.�/ D c exp
�
t`c.�/

�
; 0 < t < 1;

is contained in V�.an;m/, and may be regarded as the line segment joining c with
� . Applying the bound of Lemma 8.1 to the remainder term (of order .n C 1/) in
Taylor’s theorem, we obtain an estimate

ˇ̌
X. m

M.�; f / � �n
M.�; f /

�ˇ̌ � 
1.f /k`c.�/k.n;X/;

for any � in V�.an;m/. We are assuming that m > n and that ˛ satisfies the
conditions of Lemma 7.3. The projection of m

M.f / onto G˛;nc .M;G/ therefore exists,
and is equal to  n

M.f /. The definitions then yield a second estimate

ˇ
ˇX. m

M.�; f / �  n
M.�; f /

�k � 
2.f /jDc.�/j�.˛.X/C"/k`c.�/k.n;X/;

that is valid for any � in V�. Combining the two estimates, we see that

ˇ
ˇX
�
 n

M.�; f / � �n
M.�; f /

�ˇˇ � 
3.f /jDc.�/j�.˛.X/C"/k`c.�/k.n;X/; (72)

for any � in V�.an;m/.
The functions  n

M.�; f / and �n
M.�; f / in (72) both belong to the space F˛

c .V;G/.
Applying the estimate that defines this space to each of the functions, we obtain a
bound

ˇ
ˇX
�
 n

M.�; f /� �n
M.�; f /

�ˇˇ � 
4.f /jDc.�/j�.˛.X/C"0/;

that holds for every � in V�. Suppose that � lies in the complement of V�.an;m/ in
V�. Then

jDc.�/j � k`c.�/km0

;

for the exponent m0 D ma�1n . Setting ı D " � "0 > 0, we write

jDc.�/j�.˛.X/C"0/ D jDc.�/j�.˛.X/C"/jDc.�/jı � jDc.�/j�.˛.X/C"/k`c.�/kım0

:

We are free to choose m to be as large as we like. In particular, we can assume that

ım0 � .n;X/;
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and therefore that

jDc.�/j�.˛.X/C"0/ � C0jDc.�/j�.˛.X/C"/k`c.�/k.n;X/;
for some constant C0. Absorbing C0 in the seminorm 
4.f /, we conclude that

ˇ̌
X
�
 n

M.�; f / � �n
M.�; f /

�ˇ̌ � 
4.f /jDc.�/j�.˛.X/C"/k`c.�/k.n;X/; (73)

for any � in the complement of V�.an;m/ in V�.
The estimates (72) and (73) account for all the points � in V�. Together, they

yield an estimate of the required form (71), in which we can take


.f / D 
3.f /C 
4.f /:
We have established the required assertion that for N large relative to n,

f �!  n
M.�; f / � �n

M.�; f /; f 2 Cc;N.G/;

is a continuous linear transformation from Cc;N.G/ to F˛
c;n.V;G/. From this, it

follows from the definitions that the image of �n
M.f / in G˛;nc .M;G/ equals  n

M.f /.
In particular,  n

M.f / lies in the subspace Gbd;n
c .M;G/ of Gn

c .M;G/.
The space In

c .M;G/ is in general a proper subspace of Gbd;n
c .M;G/, by virtue of

the extra constraints imposed by the jump conditions (15). The last step is to show
that for suitable N, �n

M takes Cc;N.G/ to the smaller space In
c .M;G/. This will be an

application of Lemma 7.1.
Let � be a linear form on the finite dimensional space Gbd;n

c .M;G/ that vanishes
on the subspace In

c .M;G/. The mapping

J� W f �! �
�
�n

M.f /
� D �� n

M.f /
�
; f 2 Cc;N.G/;

is continuous, and is therefore the restriction to Cc;N.G/ of a tempered distribution.
Suppose that

f D hy � h; h 2 C.G/; y 2 G.R/:

Then

J�.f / D �
�
 n

M.h
y � h/

�

D ��eKn
M.h

y/ �eKn
M.h/

�

D
X

Q2F0.M/

�
�
gM;n

M

�
J

MQ
M;c.hQ;y/

��
;

by Lemma 7.1. The sum of the n-jets

gM;n
M

�
J

MQ
M;c.hQ;y/

�
; Q 2 F0.M/;
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lies in the subspace In
c .M;G/ on which � vanishes. The distribution J� thus

annihilates any function of the form hy � h, and is therefore invariant. On the other
hand, if f0 2 C.G/ is compactly supported, and vanishes on a neighbourhood of
the closed invariant subset Uc.G/ of G.R/, one sees easily from the definitions
that eKn

M.f0/ equals 0. It follows that the distribution J� is supported on Uc.G/.
We have established that J� belongs to the space Dc.G/, and is therefore a finite
linear combination of distributions in the basis Rc.G/. Increasing N if necessary, we
can consequently assume that for each �, J� annihilates the space Cc;N.G/. In other
words,  n

M takes any function f 2 Cc;N.G/ to the subspace In
c .M;G/ of Gbd;n

c .M;G/.
Since  n

M.f / equals �n
M.f /, the image of �n

M is also contained in In
c .M;G/.

We have now proved that for N large relative to n, f ! �n
M.f / is a continuous

linear mapping from Cc;N.G/ to In
c .M;G/. We have also shown that the image

of �n
M.f / in G˛;nc .M;G/ equals  n

M.f /. But Lemma 5.3 implies that the mapping
of In

c .M;G/ into G˛;nc .M;G/ is injective. We conclude that �n
M.f / is uniquely

determined. With this last observation, the proof of the proposition is complete. ut
The germs �n

M.f / share some properties with the .˛; n/-jets eK
n
M.f / from which

they were constructed. For example, suppose that m � n, and that N is large relative
to m. Then if f belongs to Cc;N.G/, both �n

M.f / and �m
M.f / are defined. But  n

M.f / D
eK

n
M.f / is the projection of  m

M.f / D eKm
M.f / onto G˛;nc .M;G/. It follows that �n

M.f / is
the projection of �m

M.f / onto In
M.M;G/.

We can reformulate this property in terms of the dual pairing between Dc.M/ and
bIc.M/. Recall thatbIc.M;G/ is the subspace of W.M/-invariant elements inbIc.M/.
The pairing

h�; �i; � 2 Dc.M/; � 2bIc.M;G/; (74)

therefore identifies bIc.M;G/ with the dual Dc.M/�W.M/ of the space Dc.M/W.M/ of
W.M/-covariants of Dc.M/. If � belongs to the finite dimensional subspace

Dc;n.M/ D f� 2 Dc.M/ W deg.�/ � ng
of Dc.M/ spanned by Rc;n.M/, the value

h�; �ni D h�; �i

depends only on the image �n of � in In
c .M;G/. With this notation, we set

h�; �M.f /i D h�; �n
M.f /i; � 2 Dc.M/; f 2 Cc;N.G/; (75)

for any n � deg.�/ and for N large relative to n. In view of the projection property
above, the pairing (75) is independent of the choice of n. It is defined for any N that
is large relative to deg.�/.

Another property that �n
M.f / inherits is the differential equation (59) satisfied by

eKM.f /. We shall state it in terms of the pairing (75).
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Lemma 9.2. Suppose that z 2 Z.G/ and � 2 Dc.M/, and that N is large relative
to deg.�/C deg.z/. Then

h�; �M.zf /i D hzM�; �M.f /i; (76)

for any f 2 Cc;N.G/.

Proof. The assertion is a reformulation of Lemma 7.2 in terms of the objects �n
M.f /.

Its proof, like that of Lemmas 7.4 and 7.5, is quite straightforward. We can afford to
be brief.

We choose positive integers n1 � deg.�/ and n � n1 C deg.z/, and we assume
that N is large relative to n. If f belongs to Cc;N.G/, zf belongs to the space Cc;N1 .G/,
where N1 D N � deg.z/ is large relative to n1. We can therefore take the pairing

h�; �M.zf /i D h�; �n1
M .zf /i:

We can also form the pairing

hzM�; �M.f /i D hzM�; �
n
M.f /i;

which can be written as

˝
�; @

�
h.z/

�
�n

M.f /
˛ D ˝�; �@�h.z/��n

M.f /
�n1 ˛

;

since the action of zM on Dc.M/ is dual to the action of @
�
h.z/

�
on bIc.M;G/. We

have to show that the difference

h�; �M.zf /i � hzM�; �M.f /i D
˝
�; �

n1
M .zf /� �@�h.z/��n

M.f /
�n1 ˛

vanishes.
Combining Lemma 7.2 with the various definitions, we see that

�
n1
M .zf / � �@�h.z/��n

M.f /
�n1

D n1
M .zf / � �@�h.z/� n

M.f /
�n1

D�eKn1
M .zf / � @�h.z/�eKn

M.f /
�n1

D�eKM.zf / � @�h.z/�eKM.f /
�n1

D
X

L¤M

�
@L

M.zL/g
G
L .fG;c/M

�n1

D
X

L¤M

�
@L

M.zL/g
G;n
L .fG;c/M

�n1
:
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We apply (36) inductively to the formal germs

gG;n
L .fG;c/M D

X

�2Rc.G/

gG;n
L .�/MfG.�/; L ¤ M;

as in the proof of Lemma 7.5. Since N is large relative to n, we conclude that these
objects all vanish. Equation (76) follows. ut

Finally, it is clear that �n
M.f / inherits the symmetry property (62), relative to an

isomorphism 	 : G ! 	G over R. If N is large relative to a given � 2 Dc.M/, we
obtain

h	�; �	M.	 f /i D h�; �M.f /i; (77)

for any f 2 Cc;N.G/. This property will be of special interest in the case that 	
belongs to the group Aut.G;K;M; c/ of automorphisms of the 4-tuple .G;K;M; c/.

We shall now construct Q�M as an extension of the family of mappings f�n
Mg.

Proposition 9.3. There is a continuous linear mapping

Q�M W C.G/ ! bIc.M;G/ (78)

that satisfies the restriction condition

h�; Q�M.f /i D h�; �M.f /i; f 2 Cc;N.G/; (79)

for any � 2 Dc.M/ and N large relative to deg.�/, the differential equation

h�; Q�M.zf /i D hzM�; Q�M.f /i; z 2 Z.G/; f 2 C.G/; (80)

for any � 2 Dc.M/, and the symmetry condition

h	�; Q�M.	 f /i D h�; Q�M.f /i; f 2 C.G/; (81)

for any � 2 Dc.M/ and 	 2 Aut.G;K;M; c/.

Proof. Let

Dc;1.M/ D Dc;G-harm.M/

be the space of G-harmonic elements in Dc.M/. This is a finite dimensional
subspace of Dc.M/, which is invariant under the action of W.M/ and, more
generally, the group Aut.G;K;M; c/. (Here we are regarding c as a W.M/-orbit
in �ss.M/.) Choose a positive integer N1 that is large enough that the pairing (75)
is defined for every � in Dc;1.M/ and f in Cc;N1 .G/. We thereby obtain a continuous
linear map

�M;1 W Cc;N1.G/ �! Dc;1.M/
�;
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which by (77) is fixed under the action of the group Aut.G;K;M; c/. Let

Q�M;1 W C.G/ �! Dc;1.M/
� (82)

be any linear extension of this mapping to C.G/ that remains fixed under the
action of Aut.G;K;M; c/. Since Cc;N1 .G/ is of finite codimension in C.G/, Q�M;1

is automatically continuous. With this mapping, we obtain a pairing h�; Q�M;1.f /i,
for elements � 2 Dc;1.M/ and functions f 2 C.G/, that satisfies (79) and (81).

The extension of the pairing to all elements � 2 Dc.M/ is completely determined
by the differential equations (80). According to standard properties of harmonic
polynomials, the map

z˝ � �! zM�; z 2 Z.G/; � 2 Dc;1.M/;

is a linear isomorphism from Z.G/˝Dc;1.M/ onto Dc.M/. Any element in Dc.M/
is therefore a finite linear combination of elements

� D z1;M�1; z1 2 Z.G/; �1 2 Dc;1.M/:

For any � of this form, we define

h�; Q�M.f /i D h�1; Q�M;1.z1f /i; f 2 C.G/:

Since z1;M is W.M/-invariant, the values taken by this pairing at a given f determine
a linear form on the quotient Dc.M/W.M/ of Dc.M/. The pairing therefore defines a
continuous mapping (78) that satisfies the differential equation (80). The restriction
condition (79) follows from (80), the associated differential equation (76) for
h�; �M.f /i, and the special case of � 2 Dc;1.M/ that was built into the definition. The
symmetry condition (81) follows from the compatibility of Aut.G;K;M; c/ with the
action of Z.G/, and again the special case of � 2 Dc;1.M/. Our construction is
complete. ut
Remarks. 1. The three properties of Q�M can of course be stated without recourse

to the pairing (74). The restriction condition (79) can be formulated as the
commutativity of the diagram

Cc,N (G)
χn
M−−−−→ In

c (M,G)
⏐
⏐
�

�
⏐
⏐

C(G)
χ̃M−−−−→ Îc(M,G),
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for any n � 0 and N large relative to n. The differential equation (80) has a dual
version

Q�M.zf / D @�h.z/� Q�M.f /; z 2 Z.G/; f 2 C.G/;

that is similar to (8). The symmetry condition (81) is essentially just the equation

	
� Q�M.f /

� D Q�M.	 f /; 	 2 Aut.G;K;M; c/; f 2 C.G/:

2. The mapping Q�M is completely determined up to translation by an
Aut.G;K;M; c/-fixed linear transformation

C W C.G/=Cc;N1.G/ �! Dc;G-harm.M/
�: (83)

The space of such linear transformations is of course finite dimensional.

10 Completion of the Proof

We shall now complete the proof of Theorems 6.1 and 6.1�. We have to construct
distributions (34) with L D M, and formal germs (35) with L D G, that satisfy the
conditions (36)–(42). The key to the construction is the mapping

Q�M W C.G/ �!bIc.M;G/

of Proposition 9.3.
The distributions (34) are in fact built into Q�M . If � belongs to Rc.M/, we simply

set

JM.�; f / D h�; Q�M.f /i; f 2 C.G/: (84)

Since Q�M is continuous, the linear forms

f �! JM.�; f /; � 2 Rc.M/;

are tempered distributions. We must check that they are supported on Uc.G/.
Suppose that f0 is a function in C.G/ that is compactly supported, and vanishes on

a neighbourhood of Uc.G/. As we noted near the end of the proof of Proposition 9.1,
the definitions imply that the .˛; n/-jet

eKn
M.f0/ D Jn

M.f0/�
X

L¤M;G

X

�L2Rc.L/

gL;n
M .�L/JL.�L; f0/
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vanishes for n � 0. Indeed, the weighted orbital integral JM.�; f0/ vanishes for
� near Uc.G/, while our induction hypothesis includes the assumption that the
distributions JL.�L; f / are supported on Uc.G/. Given � 2 Rc.M/, we choose any
n � deg.�/. Then

JM.�; f0/ D h�; Q�M.f0/i D h�; �M.f0/i
D h�; �n

M.f0/i D h�;  n
M.f0/i

D h�;eKn
M.f0/i D 0;

by (79), (75) and Proposition 9.1. The distribution JM.�; f / is therefore supported
on Uc.G/.

We have now constructed the distributions (34), in the remaining case that L D
M. The required conditions (37)–(39) (with L D M) amount to properties of Q�M

we have already established. The functorial condition (37) concerns the (adically)
convergent series

gM
M

�
JM;c.f /

� D
X

�2Rc.M/

�_JM.�; f /:

Observe that

�
�
gM

M

�
JM;c.f /

�� D JM.�; f / D h�; Q�M.f /i;

for any � 2 Rc.M/. It follows that

gM
M

�
JM;c.f /

� D Q�M.f /; f 2 C.G/: (85)

Since Q�M.f / was constructed without recourse to the basis Rc.M/, the same is true
of gM

M

�
JM;c.f /

�
.

To check the variance condition (38), we note that for f 2 C.G/ and y 2 G.R/,
the function f y� f belongs to each of the spaces Cc;N.G/. Given � 2 Rc.M/, we may
therefore write

JM.�; f
y � f / D h�; Q�M.f

y � f /i D h�; �M.f
y � f /i

D h�;  M.f
y � f /i D h�;eKM.f

y � f /i
D

X

Q2F0.M/

�
�
gM

M

�
J

MQ
M;c.fQ;y/

��

D
X

Q2F0.M/

J
MQ
M .�; fQ;y/;

by Lemma 7.1. The formula (38) follows.



68 J. Arthur

The differential equation (39) is even simpler. If z 2 Z.G/ and � 2 Rc.M/, we
use (80) to write

JM.�; zf / D h�; Q�M.zf /i
D hzM�; Q�M.f /i D JM.zM�; f /:

This is the required equation.
To deal with the other assertions of the two theorems, we set

K0M.f / D eKM.f /� Q�M.f / D eKM.f /� gM
M

�
JM;c.f /

�
:

Then f ! K0M.f / is a continuous linear transformation from C.G/ to bGc.M;G/,
which can be expanded in the form

K0M.f / D JM.f /�
X

L2L0.M/

X

�2Rc.L/

gL
M.�/JL.�; f /:

Suppose that ˛ is as before, a weight function that satisfies the conditions of
Lemma 7.3. Then K0M.f / lies in the subspace bG

˛

c .M;G/ of bGc.M;G/. For any n,
K0M.f / projects to the .˛; n/-jet

K0;nM .f / D eKn
M.f / � Q�n

M.f /

in G˛;nc .M;G/, which in turn comes with a representative

K0;nM .�; f / D eKn
M.�; f / � Q�n

M.�; f /

D JM.�; f / �
X

L2L0.M/

X

�2Rc.L/

gL;n
M .�; �/JL.�; f /

in F˛
c .V;G/. We shall use the mappings K0;nM to construct the remaining germs (35).

The argument at this point is quite similar to that of the p-adic case [A3, §9].
Since we are considering the case L D G of (35), we take � to be an element in

the basis Rc.G/. If N is a large positive integer, let f N
� denote a function in C.G/ with

the property that for any �1 in the subset Rc;N.G/ of Rc.G/, the condition

f N
�;G.�1/ D

�
1; if �1 D �;
0; if �1 ¤ �; (86)

holds. Suppose that n � 0. Taking N to be large relative to n, we define

gG;n
M .�/ D K0;nM .f

N
� /: (87)
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Then gG;n
M .�/ is an element in G˛;nc .M;G/. Suppose that N0 is another integer, with

N0 � N, and that f N0

� is a corresponding function (86). The difference

f N;N0

� D f N
� � f N0

�

then lies in Cc;N.G/. From Propositions 9.1 and 9.3, we see that

K0;nM .f
N
� /� K0;nM .f

N0

� / D K0;nM .f
N;N0

� /

D eKn
M.f

N;N0

� /� Q�n
M.f

N;N0

� /

D  n
M.f

N;N0

� /� �n
M.f

N;N0

� / D 0:
It follows that the .˛; n/-jet gG;n

M .�/ depends only on � and n. It is independent of
both N and the choice of function f N

� .
Suppose that m � n, and that N is large relative to m. Then

gG;m
M .�/ D K0;mM .f N

� /

is an element in G˛;mc .M;G/. Since the image of K0;mM .f N
� / in G˛;nc .M;G/ equals

K0;nM .f
N
� /, by definition, the image of gG;m

M .�/ in G˛;nc .M;G/ equals gG;n
M .�/. We

conclude that the inverse limit

gG
M.�/ D lim �

n

gG;n
M .�/

exists, and defines an element in bG
˛

c .M;G/. This completes our construction of the
formal germs (35), in the remaining case that L D G. As we agreed in Sect. 5, we
can represent them by asymptotic series

gG
M.�; �/ D

1X

nD0
gG;.n/

M .�; �/;

where

gG;.n/
M .�; �/ D gG;n

M .�; �/� gG;n�1
M .�; �/;

and

gG;n
M .�; �/ D K0;nM .�; f

N
� / D eKn

M.�; f
N
� / � Q�n

M.�; f
N
� /: (88)

Suppose that N is large relative to n, and that � lies in the complement of Rc;N.G/
in Rc.G/. Taking f N

� D 0 in this case, we deduce that

gG;n
M .�/ D K0;nM .f

N
� / D 0:
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In other words, gG;n
M .�/ vanishes whenever deg.�/ is large relative to n. This is the

property (36). It implies that for any f 2 C.G/, the series

gG
M.fG;c/ D gG

M

�
JG;c.f /

� D
X

�2Rc.G/

gG
M.�/fG;c.�/

converges in (the adic topology of)bGc.M;G/.
Before we establish other properties of the formal germs gG

M.�/, let us first prove
the main assertion of Theorem 6.1�. Having defined the series gG

M.fG;c/, we set

KM.f / D K0M.f /� gG
M.fG;c/

D JM.f / �
X

L2L.M/

X

�2Rc.L/

gL
M.�/JL.�; f /:

Then f ! KM.f / is a continuous linear mapping from C.G/ tobGc.M;G/. For any n,
KM.f / projects to the element

Kn
M.f / D K0;nM .f / � gG;n

M .fG;c/

in G˛;nc .M;G/, which in turn comes with a representative

Kn
M.�; f / D K0;nM .�; f / � gG;n

M .�; fG;c/

D K0;nM .�; f / �
X

�2Rc.G/

gG;n
M .�; �/fG.�/

in F˛
c .V;G/. We can also write

Kn
M.�; f / D JM.�; f / �

X

L2L.M/

X

�2Rc.L/

gL;n
M .�; �/JL.�; f /

D JM.�; f / � Jn
M.�; f /;

in the notation (46). By construction, f ! Kn
M.�; f / is a continuous linear mapping

from C.G/ to F˛
c .V;G/. Theorem 6.1� asserts that the mapping actually sends C.G/

continuously to the space F˛
c;n.V;G/.

Given n, we once again choose N to be large. It is a consequence of (36) that the
sum in the first formula for Kn

M.�; f / may be taken over the finite subset Rc;N.G/ of
Rc.G/. It follows that

Kn
M.�; f / D K0;nM .�; f / �

X

�2Rc;N .G/

gG;n
M .�; �/fG.�/

D K0;nM .�; f / �
X

�2Rc;N .G/

K0;nM .�; f
N
� /fG.�/:
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The mapping

f �! K0;nM .�; f / D eKn
M.�; f /� Q�n

M.�; f /

from C.G/ to F˛
c .V;G/ is of course linear. Consequently,

Kn
M.�; f / D K0;nM .�; f

c;N/;

where

f c;N D f �
X

�2Rc;N .G/

fG.�/f
N
� :

Observe that the mapping

f �! f c;N ; f 2 C.G/; (89)

is a continuous linear operator on C.G/ that takes values in the subspace Cc;N.G/ of
C.G/. In particular, the function

Kn
M.�; f / D eKn

M.�; f
c;N/� Q�n

M.�; f
c;N/

equals

 n
M.�; f

c;N/� �n
M.�; f

c;N/;

by the restriction condition (79). Composing (89) with the mapping (69) of
Proposition 9.1, we conclude that

f �! Kn
M.�; f /; f 2 C.G/;

is a continuous linear mapping from C.G/ to F˛
c;n.V;G/. This is the main assertion

of Theorem 6.1�.
We have finished our inductive construction of the objects (34) and (35). We have

also established the continuity assertion of Theorem 6.1�. As we noted in Sect. 6,
this implies the assertion of Theorem 6.1 that the weighted orbital integral JM.f /
represents the same element inbGc.M;G/ as the formal germ (43). We have therefore
an identity

gG
M

�
JG;c.f /

� D JM.f / �
X

L2L0.M/
gL

M

�
JL;c.f /

�
(90)

of formal germs, which holds for any function f 2 C.G/. According to our induction
assumption, the summands in (90) with L ¤ M are independent of the choice of
bases Rc.L/. The same is true of the summand with L D M, as we observed earlier
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in this section. Since the other term on the right-hand side of (90) is just the weighted
orbital integral JM.f /, the left-hand side of (90) is also independent of any choice of
bases. We have thus established the functorial condition (37) in the remaining case
that L D G.

We can also use (90) to prove the differential equation (40). Suppose that z 2
Z.G/. In Sect. 7, we established the identity (55) as a consequence of the two sets
of Eqs. (39) and (40). Since we now have these equations for any L ¤ G, we can
assume that (55) also holds for any L ¤ G. It follows that

X

L2L0.M/
gL

M

�
JL;c.zf /

�

D
X

L2L0.M/

X

S2LL.M/

@S
M.zS/g

L
S

�
JL;c.f /

�
M

D
X

S2L.M/

X

L2L0.S/
@S

M.zS/g
L
S

�
JL;c.f /

�
M
:

We combine this with (90) (f being replaced by zf ), and the differential equation (22)
for JM.zf /. We obtain

gG
M

�
JG;c.zf /

�

D
X

S2L.M/
@S

M.zS/
�

JS.f /�
X

L2L0.S/
gL

S

�
JL;c.f /

��

M

D
X

S2L.M/
@S

M.zS/g
G
S

�
JG;c.f /

�
M

D
X

�2Rc.G/

� X

S2L.M/
@S

M.zS/g
G
S .�/M

�
fG.�/:

But

gG
M

�
JG;c.zf /

� D
X

�2Rc.G/

gG
M.�/.zf /G.�/ D

X

�2Rc.G/

gG
M.Oz�/fG.�/:

Comparing the coefficients of fG.�/ in the two expressions, we see that

gG
M.Oz�/ D

X

S2L.M/
@S

M.zS/g
G
S .�/M; � 2 Rc.G/:

This is Eq. (40) in the remaining case that L D G.
It remains only to check the symmetry conditions (41), (42) and (42�). Given an

isomorphism 	 : G! 	G over R, we need to prescribe the mapping

Q�	M W C.	G/ �!bI	G.	M; 	G/
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of Proposition 9.3 for the 4-tuple .G1;K1;M1; c1/ D .	G; 	K; 	M; 	c/ in terms of
the chosen mapping Q�M for .G;K;M; c/. We do so in the obvious way, by setting

Q�	M.	 f / D 	 Q�M.f /; f 2 C.G/:

This mapping depends of course on .G1;K1;M1; c1/, but by the symmetry condi-
tion (81) for G, it is independent of the choice of 	 . The conditions (79)–(81) for
	G follow from (77) and the corresponding conditions for G. Having defined the
mapping Q�	M , we then need only appeal to the earlier discussion of this section. If
� belongs to Rc.M/, we obtain

J	M.	�; 	 f / D h	�; Q�	M.	 f /i
D h	�; 	 Q�M.f /i D JM.�; f /;

from (84). This is the condition (41) in the remaining case that L D M. For n � 0,
we also obtain

g	G;n
	M .	�; 	�/ D eKn

	M.	�; f
N
	�/� Q�n

M.	�; f
N
	�/

D eKn
	M.	�; 	 f N

� /� Q�n
M.	�; 	 f N

� /

D eKn
M.�; f

N
� /� Q�n

M.�; f
N
� /

D gG;n
M .�; �/;

from (88), (63) and the definition of Q�	M.	 f / above. This is condition (42�) in the
remaining case that L D G. Finally, we observe that

g	G
	M.	�/ D lim �

n

g	G;n
	M .	�/

D lim �
n

	gG;n
M .�/ D 	gG

M.�/:

This is the third symmetry condition (42), in the remaining case L D G.
We have now established the last of the conditions of Theorems 6.1 and 6.1�.

This brings us to the end of the induction argument begun in Sect. 7, and completes
the proof of the two theorems.

We observed in Sect. 6 that the objects we have now constructed are not unique.
The definitions of this section do depend canonically on the mapping Q�M of
Proposition 9.3, which is in turn determined by the mapping Q�M;1 in (82). But
Q�M;1 is uniquely determined only up to translation by the Aut.G;K;M; c/-fixed
linear transformation C in (83). The coefficients c.�M; �G/ in (49), which were used
in Proposition 6.2 to describe the lack of uniqueness, are of course related to C.
Suppose that the basis Rc.M/ is chosen so that the subset

Rc;G-harm.M/ D Rc.M/ \Dc;G-harm.M/



74 J. Arthur

is a basis of Dc;G-harm.M/. It then follows that

c.�M; �G/ D h tC�M ; �Gi; �M 2 Rc;G-harm.M/; �G 2 Rc;N1.G/:

For general �M and �G, the coefficient c.�M; �G/ is determined from this special case
by the relation (51).

11 Invariant Distributions IM.�; f/

Weighted orbital integrals have the obvious drawback of not being invariant. Their
dependence on the maximal compact subgroup K is also not entirely agreeable.
However, there is a natural way to construct a parallel family of distributions with
better properties. We shall show that these distributions satisfy the same formal germ
expansions as the weighted orbital integrals.

As we recalled in Sect. 2, elements in I.G/ can be regarded as functions

fG W � �! fG.�/ D tr
�
�.f /

�
; f 2 C.G/; � 2 …temp.G/;

on …temp.G/ (the set of irreducible tempered representations of G.R/), rather
than �reg.G/ (the set of strongly regular conjugacy classes in G.R/). The two
interpretations are related by the formula

fG.�/ D
Z

�reg.G/
fG.�/jD.�/j 12 ‚�.�/d�; f 2 C.G/; � 2 �reg.G/;

where‚� is the character of� , and d� is a measure on �reg.G/ provided by the Weyl
integration formula. We have also noted that any invariant, tempered distribution I
on G.R/ factors through the space I.G/. In other words, there is a continuous linear
formbI on I.G/ such that

I.f / DbI.fG/; f 2 C.G/:

This can be proved either by analysing elements in I.G/ directly as functions on
�reg.G/ [B2] or by using the characterization [A5] of elements in I.G/ as functions
on …temp.G/.

We fix a Levi subgroup M � G and a maximal compact subgroup K � G.R/,
as in Sect. 4. For each Levi subgroup L 2 L.M/, one can define a continuous linear
transformation

�L D �G
L W C.G/ �! I.L/

in terms of objects that are dual to weighted orbital integrals. If f belongs to C.G/,
the value of �L.f / at � 2 …temp.L/ is the weighted character

�L.f ; �/ D tr
�
ML.�;P/IP.�; f /

�
; P 2 P.L/;
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defined on p. 38 of [A7]. In particular, IP.�/ is the usual induced representation of
G.R/, while

ML.�;P/ D lim
�!0

0

@
X

Q2P.L/
MQ.�; �;P/	Q.�/

�1
1

A

is the operator built out of Plancherel densities and unnormalized intertwining
operators between induced representations, as on p. 37 of [A7]. Weighted characters
behave in many ways like weighted orbital integrals. In particular, �L.f / depends on
K, and transforms under conjugation of f by y 2 G.R/ by a formula

�L.f
y/ D

X

Q2F.L/
�

MQ
L .fQ;y/ (91)

that is similar to (21).
The role of the mappings �L is to make weighted orbital integrals invariant. One

defines invariant linear forms

IM.�; f / D IG
M.�; f /; � 2 MG-reg.R/; f 2 C.G/;

on C.G/ inductively by setting

JM.�; f / D
X

L2L.M/
bI

L

M

�
�; �L.f /

�
:

In other words,

IM.�; f / D JM.�; f / �
X

L2L0.M/
bI

L

M

�
�; �L.f /

�
:

This yields a family of tempered distributions, which are parallel to weighted orbital
integrals, but which are invariant and independent of K. (See, for example, [A7, §3].)
We would like to show that they satisfy the formal germ expansions of Theorems 6.1
and 6.1�.

We fix the conjugacy class c 2 �ss.M/, as before. We must first attach
invariant linear forms to the noninvariant distributions JM.�; f / in (34). Following
the prescription above, we define invariant distributions

IM.�; f / D IG
M.�; f /; � 2 Rc.M/; f 2 C.G/;

inductively by setting

JM.�; f / D
X

L2L.M/
bI

L

M

�
�; �L.f /

�
:
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In other words,

IM.�; f / D JM.�; f /�
X

L2L0.M/
bI

L

M

�
�; �L.f /

�
:

The invariance of IM.�; f / follows inductively in the usual way from (21) and (91).
As a general rule, the application of harmonic analysis improves one property only
at the expense of another. In the case at hand, the price to pay for making JM.�; f /
invariant is that the new distribution IM.�; f / is no longer supported on Uc.G/.

We have in any case replaced the family (34) with a family

f �! IL.�; f /; L 2 L.M/; � 2 Rc.L/; (92)

of invariant tempered distributions. These new objects do have many properties in
common with the original ones. They satisfy the differential equation

IL.�; zf / D IL.zL�; f /; (93)

for each z 2 Z.G/. They also satisfy the symmetry condition

I	L.	�; 	 f / D IL.�; f /; (94)

for any isomorphism 	 : G ! 	G over R. In addition, the distributions satisfy the
transformation formula

IL.�
0; f / D

X

�

aL.�
0; �/IL.�; f /; (95)

for f�0g and AL D faL.�
0; �/g as in (5.4.1). We leave the reader to check that these

properties are direct consequences of the corresponding properties in Sect. 6.
It follows from (36) that the series

gL
M

�
IL;c.f /

� D
X

�2Rc.L/

gL
M.�/IL.�; f /

converges in (the adic topology of)bGc.M;L/. The continuity of the linear forms (92)
implies, moreover, that the mapping

f �! gL
M

�
IL;c.f /

�

from C.G/ tobGc.M;L/ is continuous (in the complex topology ofbGc.M;L/). Finally,
(45) and (95) yield the functorial property that for any L and f ,

gL
M

�
JL;c.f /

�
is independent of the choice of basis Rc.L/: (96)
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The distributions (92) play the role of coefficients in a formal germ expansion of
the function IM.�; f /. Following Sect. 6, we set

In
M.�; f / D

X

L

X

�

gL;n
M .�; �/IL.�; f /; (97)

for any n � 0, and for fixed representatives gL;n
M .�; �/ of gL;n

M .�/ in F˛
c .M;L/ as

in (46). We then obtain the following corollary of Theorems 6.1 and 6.1�.

Corollary 11.1. We can choose the weight function ˛ so that ˛.1/ equals zero, and
so that for any n, the mapping

f �! IM.�; f / � In
M.�; f /; f 2 C.G/;

is a continuous linear mapping from C.G/ to the space F˛
c;n.V;G/. In particular,

IM.f / has a formal germ expansion given by the sum

X

L2L.M/
gL

M

�
IL;c.f /

� D
X

L2L.M/

X

�2Rc.L/

gL
M.�/IL.�; f /: (98)

Proof. The second assertion follows immediately from the first, in the same way
that the corresponding assertion of Theorem 6.1 follows from Theorem 6.1�. To
establish the first assertion, we write

IM.�; f / � In
M.�; f /

as the difference between

JM.�; f / � Jn
M.�; f /

and

X

L2L0.M/

�
bI

L

M

�
�; �L.f /

� �bIL;n

M

�
�; �L.f /

��
:

The assertion then follows inductively from Theorem 6.1�. ut
Corollary 11.1 tells us that the sum (98) represents the same element inbGc.M;G/

as IM.f /. In other words, the invariant distributions attached to weighted orbital
integrals satisfy asymptotic expansions

IM.�; f / �
X

L

X

�

gL
M.�; �/IL.�; f /:
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The invariant distributions IM.�; f / ultimately depend on our choice of the
mapping Q�M . It is interesting to note that this mapping has an invariant formulation,
which leads to posteriori to a more direct construction of the distributions. To see
this, we first set

IeKM.f / D IM.f / �
X

fL2L.M/W L¤M;Gg
gL

M

�
IL;c.f /

�
; f 2 C.G/: (99)

Let ˛ be a fixed weight function that satisfies the conditions of Lemma 7.3. Then
f ! IeKM.f / is a continuous linear transformation from C.G/ tobG

˛

c .M;G/.

Lemma 11.2. Suppose that f belongs to C.G/. Then

eKM.f / � IeKM.f / D gM
M

�
JM;c.f /

� � gM
M

�
IM;c.f /

�
: (100)

Proof. The proof is similar to that of Lemmas 7.1 and 7.2, so we shall be brief. The
left-hand side of (100) equals

X

L1

bI
L1
M

�
�L1 .f /

� �
X

L;L1

gL
M

�bI
L1
L;c

�
�L1 .f /

��
;

where the first sum is over Levi subgroups L1 2 L0.M/, and the second sum is over
pairs L;L1 2 L.M/ with

M ¨ L � L1 ¨ G:

Taking the second sum over L1 outside the sum over L, we obtain an expression

X

L12L0.M/

0

@
�
bI

L1
M

�
�L1 .f /

� �
X

L2LL1 .M/

gL
M

�
bI

L1
L;c

�
�L1 .f /

��C gM
M

�
bI

L1
M;c

�
�L1 .f /

��
1

A:

By Corollary 11.1, the formal germ

bIKL1
M

�
�L1 .f /

� DbIL1
M

�
�L1 .f /

� �
X

L2LL1 .M/

gL
M

�
bI

L1
L;c

�
�L1 .f /

��

vanishes for any L1. The left-hand side of (100) therefore equals

X

L12L0.M/
gM

M

�
bI

L1
M;c

�
�L1 .f /

��
:

By definition, this in turn equals the right-hand side of the required formula (100).
ut
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The lemma implies that the mapping

f �! IeKM.f / �eKM.f /; f 2 C.G/;

takes values in the subspace bIc.M;G/ of bG
˛

c .M;G/. We shall use this property to
give invariant versions of the constructions of Sect. 9. For any n � 0, and N large
relative to n, we can write I n

M for the restriction of IeK
n
M to the subspace Cc;N.G/ of

C.G/. If f is a function in Cc;N.G/, the .˛; n/-jet

I n
M.f / D  n

M.f / �
�eKn

M.f /� IeKn
M.f /

�

then belongs to the image of In
c .M;G/ in G˛;nc .M;G/. This yields the invariant

analogue of Proposition 9.1. In particular, there is a uniquely determined, continuous
linear mapping

I�n
M W Cc;N.G/ �! In

c .M;G/

such that for any f 2 Cc;N.G/, the image of I�n
M.f / in G˛;nc .M;G/ equals I n

M.f /.
Following (75), we set

h�; I�M.f /i D h�; I�n
M.f /i; � 2 Dc.M/; f 2 Cc;N.G/;

for any n � deg.�/ and N large relative to n. Then

h�; I�M.f /i D h�; �M.f /i � h�;eKM.f /� IeKM.f /i:

Given the mapping Q�M of Proposition 9.3, we set

I Q�M.f / D Q�M.f / �
�
eKM.f /� IeKM.f /

�
; f 2 C.G/: (101)

Then I Q�M is a continuous linear mapping from C.G/ to bIc.M;G/ that satisfies
the invariant analogue of the restriction property (79). Moreover, it follows easily
from the lemma that I Q�M also satisfies the analogues of (80) and (81). Conversely,
suppose that I Q�M is any continuous mapping from C.G/ to bIc.M;G/ that satisfies
the invariant analogues of (79)–(81). Then the mapping Q�M.f / defined by (101)
satisfies the hypotheses of Proposition 9.3. Thus, instead of choosing the extension
Q�M of mappings f�n

Mg, as in Proposition 9.3, we could equally well choose an
extension I Q�M of invariant mappings fI�n

Mg. To see the relationship of the latter
with our invariant distributions, we take any element � 2 Rc.M/, and write

IM.�; f / � JM.�; f /

D ˝
�; gM

M

�
IM;c.f /

�˛ � ˝�; gM
M

�
JM;c.f /

�˛

D ˝
�; IeKM.f / �eKM.f /

˛

D ˝
�; I Q�M.f /

˛ � ˝�; Q�M.f /
˛
;
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by Lemma 11.2 and the definition (101). It follows from the definition (84) that

IM.�; f / D h�; I Q�M.f /
˛
; f 2 C.G/: (102)

The invariant distributions can therefore be defined directly in terms of the
mapping I Q�M .

12 Supplementary Properties

There are further constraints that one could impose on the mapping Q�M of
Proposition 9.3 (or equivalently, the invariant mapping (101)). Any new constraint
makes the construction more rigid. It puts extra conditions on the families of
coefficients (49) and linear transformations (83), either of which describes the lack
of uniqueness of the construction. A suitable choice of Q�M will also endow our
distributions and formal germs with new properties.

The most important property is that of parabolic descent. Suppose that M1 is a
Levi subgroup of M, chosen so that aM1 is orthogonal to the Lie algebra of K. Any
element �1 in M1;G-reg.R/ obviously maps to an element � D �M

1 in MG-reg.R/. The
associated weighted orbital integral satisfies the descent formula

JM.�; f / D
X

G12L.M1/

dG
M1
.M;G1/J

G1
M1
.�1; fQ1 /; (103)

in the notation of [A4, Corollary 8.2]. The coefficient dG
M1
.M;G1/ is defined on

p. 356 of [A4], while the section

G1 �! Q1 D QG1 ; G1 2 L.M1/; QG1 2 P.G1/;

is defined on p. 357 of [A4]. We would like to establish similar formulas for our
singular distributions and our formal germs.

Suppose that c is the image in �ss.M/ of a class c1 2 �ss.M1/. If L belongs to
L.M/, and L1 lies in the associated set LL.M1/, we shall denote the image of c1 in
�ss.L1/ by c1 as well. For any such L and L1, there is a canonical induction mapping
�1 ! �L

1 from Dc1 .L1/ to Dc.L/ such that

hL.�
L
1 / D hL1 .�1/; �1 2 Dc1 .L1/; h 2 C.L/:

Since we can view JL.	; f / as a linear form on Dc.L/, the tempered distribution

JL.�
L
1 ; f /; f 2 C.G/;
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is defined for any �1. We also write � ! �L1 for the adjoint restriction mapping
from Dc.L/ to Dc1 .L1/, relative to the bases Rc.L/ and Rc1 .L1/. In other words,

X

�2Rc.L/

�1.�L1 /�.�/ D
X

�12Rc1 .L1/

�1.�1/�.�
L
1/;

for any linear functions �1 and � on Dc1 .L1/ and Dc.L/, respectively, for which
the sums converge. (The restriction mapping comes from a canonical linear
transformationbIc.L/!bIc1 .L1/ between the dual spaces of Dc.L/ and Dc1 .L1/. Its
basis dependent formulation as a mapping from Dc.L/ to Dc1 .L1/ is necessitated by
our notation for the formal germs gL

M.�/.) We recall that as an element inbGc.M;L/,
gL

M.�/ can be mapped to the formal germ gL
M.�/M1 inbGc1 .M1 j M;L/.

Proposition 12.1. We can choose the mapping Q�M of Proposition 9.3 so that for
any M1 and c1, the distributions (34) satisfy the descent formula

JL.�
L
1 ; f / D

X

G12L.L1/
dG

L1
.L;G1/J

G1
L1
.�1; fQ1 /; L1 2 LL.M1/; (104)

�1 2 Rc1 .L1/;

while the formal germs (35) satisfy the descent formula

gL
M.�/M1 D

X

L12LL.M1/

dL
M1
.M;L1/g

L1
M1
.�L1 /; � 2 Rc.L/: (105)

Proof. We have to establish the two formulas for any L 2 L.M/. We can assume
inductively that for each M1 and c1, (104) holds for L ¤ M, and (105) holds for
L ¤ G. In particular, both formulas hold for any L in the complement eL.M/ of
fG;Mg in L.M/. We shall use this property to establish a descent formula for the
formal germ

eKM.f /M1 D JM.f /M1 �
X

L2eL.M/
gL

M

�
JL;c.f /

�
M1
:

The original identity (103) leads immediately to a descent formula

JM.f /M1 D
X

G12L.M1/

dG
M1
.M;G1/J

G1
M1
.fQ1 /

for the first term in the last expression for eKM.f /M1 . We apply (104) and (105)
inductively to the summands in the second term

X

L2eL.M/
gL

M

�
JL;c.f /

�
M1
: (106)
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We obtain

gL
M

�
JL;c.f /

�
M1

D
X

�2Rc.L/

gL
M.�/M1JL.�; f /

D
X

L12LL.M1/

dL
M1
.M;L1/

X

�2Rc.L/

gL1
M1
.�L1 /JL.�; f /

D
X

L12LL.M1/

dL
M1
.M;L1/

X

�12Rc1 .L1/

gL1
M1
.�1/JL.�

L
1 ; f /

D
X

L12LL.M1/

X

G12L.L1/
dL

M1
.M;L1/d

G
L1 .L;G1/

� X

�12Rc1 .L1/

gL1
M1
.�1/J

G1
L1
.�1; fQ1 /

�
:

Therefore (106) equals the sum over L 2 eL.M/ of the expression

X

L12LL.M1/

X

G12L.L1/

�
dL

M1
.M;L1/d

G
L1 .L;G1/

�
gL1

M1

�
JG1

L1;c1
.fQ1 /

�
: (107)

We can of course sum L over the larger set L.M/, provided that we subtract the
values of (107) taken when L D M and L D G. If L D M, dL

M1
.M;L1/ vanishes

unless L1 D M1, in which case dL
M1
.M;L1/ D 1. The value of (107) in this case is

X

G12L.M1/

dG
M1
.M;G1/g

M1

M1

�
JG1

M1;c1
.fQ1 /

�
: (108)

If L D G, dG
L1
.L;G1/ vanishes unless G1 D L1, in which case dG

L1
.L;G1/ D 1. The

value of (107) in this case is

X

G12L.M1/

dG
M1
.M;G1/g

G1
M1

�
JG1

G1;c1
.fQ1 /

�
: (109)

Thus (106) equals the sum over L 2 L.M/ of (107) minus the sum of (108)
and (109). The only part of (107) that depends on L is the product of coefficients
in the brackets. We shall therefore take the sum over L inside the two sums over L1
and G1, which at the same time, we interchange. Then G1, L1 and L will be summed
over L.M1/, LG1 .M1/, and L.L1/, respectively. The resulting interior sum

X

L2L.L1/
dL

M1
.M;L1/d

G
L1 .L;G1/

simplifies. According to [A4, (7.11)], this sum is just equal to dG
M1
.M;G1/, and

in particular, is independent of L1. We can therefore write (106) as the difference
between the expression
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X

G12L.M1/

dG
M1
.M;G1/

X

L12LG1 .M1/

gL1
M1

�
JG1

L1;c1
.fQ1 /

�

and the sum of (108) and (109). But (108) is equal to contribution to the last
expression of L1 D M1, while (109) equals the contribution of L1 D G1. We
conclude that (106) equals

X

G12L.M1/

dG
M1
.M;G1/

X

L12eLG1 .M1/

gL1
M1

�
JG1

L1;c1
.fQ1 /

�
:

We have established that eKM.f /M1 equals

X

G12L.M1/

dG
M1
.M;G1/

�
JG1

M1
.fQ1 / �

X

L12eLG1 .M1/

gL1
M1

�
JG1

L1;c1
.fQ1 /

��
:

Since the expression in the brackets equals eK
G1
M1
.fQ1 /, we obtain a descent formula

eKM.f /M1 D
X

G12L.M1/

dG
M1
.M;G1/eK

G1
M1
.fQ1 /: (110)

Suppose that n � 0, and that N is large relative to n. The mapping �n
M of

Proposition 9.1 then satisfies

�n
M.f /M1 D  n

M.f /M1 D eKn
M.f /M1

D
X

G12L.M1/

dG
M1
.M;G1/eK

G1;n
M1

.fQ1 /

D
X

G12L.M1/

dG
M1
.M;G1/ 

G1;n
M1

.fQ1 /

D
X

G12L.M1/

dG
M1
.M;G1/�

G1;n
M1

.fQ1 /;

for any f 2 Cc;N.G/. This implies that

h�; �M.f /i D
X

G12L.M1/

dG
M1
.M;G1/h�1; �G1

M1
.fQ1 /i; f 2 Cc;N.G/;

for any induced element � D �M
1 with �1 2 Dc1 .M1/, and for N large relative to �1.

We are now in a position to choose the mapping

Q�M W C.G/ �!bIc.M;G/
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of Proposition 9.3. More precisely, we shall specify that part of the mapping that
is determined by its proper restrictions Q�M.f /M1 . We do so by making the inductive
definition

h�; Q�M.f /i D
X

G12L.M1/

dG
M1
.M;G1/h�1; Q�G1

M1
.fQ1 /i; f 2 C.G/; (111)

for any properly induced element

� D �M
1 ; �1 2 Dc1.M1/; M1 ¨ M;

in Dc.M/. The right-hand side of this expression is easily seen to depend only on � ,
as opposed to the inducing data .M1; �1/. In fact, using the grading (11) of Dc.M/,
we can choose .M1; �1/ so that �1 belongs to Dc1;ell.M1/. The condition (79) of
Proposition 9.3 follows from the formula above for h�; �M.f /i. The conditions (80)
and (81) follow inductively from the corresponding conditions for the terms
h�1; Q�G1

M1
.fQ1i. The formula (111) thus gives a valid definition of the linear form

Q�M.f / on the subspace Dc;par.M/ spanned by elements in Dc.M/ that are properly
induced. For elements � in the complementary subspace Dc;ell.M/, we remain
free to define h�; Q�M.f /i in any way that satisfies the conditions (80)–(81) of
Proposition 9.3.

Having chosen Q�M.f /, we have only to apply the appropriate definitions. The
first descent formula (104), in the remaining case that L D M, follows as directly
from (111) and (84). Notice that (104) implies a similar formula

gM
M

�
JG

M;c.f /
�

M1
D

X

G12L.M1/

dG
M1
.M;G1/g

M1
M1

�
JG1

M1;c1
.fQ1 /

�

for the formal germ gM
M

�
JG

M;c.f /
�
. Notice also that

KM.f /M1 D
X

G12L.M1/

dG
M1
.M;G1/K

G1
M1
.fQ1 /;

since both sides vanish by Theorem 6.1. Combining these two observations
with (110), we see that

gG
M.fG;c/M1 D

X

G12L.M1/

dG
M1
.M;G1/g

G1
M1
.fQ1;c1 /:

Now as a linear form in f , each side of this last formula is a linear combination of
distributions fG.�/ in the basis Rc.M/. We can therefore compare the coefficients of
fG.�/. The resulting identity is the second descent formula (105), in the remaining
case that L D G. This completes the proof of the proposition. ut
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Corollary 12.2. Suppose that the mapping Q�M is chosen as in the proposition. Then
for any M1 and c1, the invariant distributions (92) satisfy the descent formula

IL.�
L
1 ; f / D

X

G12L.L1/
dG

L1 .L;G1/bI
G1
L1 .�1; fG1 /; L1 2 LL.M1/;

�1 2 Rc1 .L1/: (112)

Proof. We can assume inductively that (112) holds for any L 2 L.M/ with L ¤ M,
so it will be enough to treat the case that L D M. This frees the symbol L for use in
the definition

IM.�
L
1 ; f / D JM.�

L
1 ; f / �

X

L2L0.M/
bI

L

M

�
�L
1 ; �L.f /

�

from Sect. 11. We apply (104) to the first term JM.�
L
1 ; f /. To treat the remaining

summandsbI
L

M

�
�L
1 ; �L.f /

�
, we combine an inductive application of (112) to IL

M.�
L
1 /

with the descent formula

�L.f /L1 D
X

G12L.L1/
dG

L1
.L;G1/�

G1
L1
.fQ1 /; L1 2 LL.M1/;

established as, for example, in [A2, (7.8)]. We can then establish (112) (in the case
L D M) by following the same argument that yielded the descent formula (110) in
the proof of the proposition. (See also the proof of [A4, Theorem 8.1].) ut

For the conditions of Proposition 12.1 and its corollary to hold, it is necessary
and sufficient that the mapping Q�M D Q�G

M satisfy its own descent formula. That is,

Q�M.f /M1 D
X

G12L.M1/

dG
M1
.M;G1/ Q�G1

M1
.fQ1 /

for each M1 and c1. This in turn is equivalent to asking that the corresponding
invariant mapping I Q�M D I Q�G

M satisfy the descent formula

I Q�M.f /M1 D
X

G12L.M1/

dG
M1
.M;G1/bI Q�G1

M1
.fG1 /;

again for each M1 and c1. Recall that Q�M.f / can be identified with a W.M/-fixed
linear form on Dc.M/. Its value at any element in Dc.M/ is determined by the
descent condition and the differential equation (80), once we have defined Q�M.f /
as a linear form on the subspace

Dc;ell;G-harm.M/ D Dc;ell.M/ \Dc;G-harm.M/:
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The mapping Q�M is then uniquely determined up to an Aut.G;K;M; c/-fixed linear
transformation

C W C.G/=Cc;N.G/ �! Dc;ell;G-harm.M/
�:

There is another kind of descent property we could impose on our distributions
and formal germs. This is geometric descent with respect to c, the aim of which
would be to reduce the general study to the case of c D 1. One would try to find
formulas that relate the objects attached to .G;M; c/ with corresponding objects for
.Gc;Mc; 1/. This process has been carried out for p-adic groups. Geometric descent
formulas for distributions were given in Theorem 8.5 of [A3] and its corollaries,
while the descent formula for p-adic germs was in [A3, Proposition 10.2]. These
formulas have important applications to the stable formula. In the archimedean case,
however, geometric descent does not seem to play a role in the trace formula. Since
it would entail a modification of our construction in the case of c ¤ 1, we shall not
pursue the matter here.

Finally, it is possible to build the singular weighted orbital integrals of [A3] into
the constructions of this paper. Suppose that �c is a conjugacy class in M.R/ that
is contained in Uc.M/, and has been equipped with M.R/-invariant measure. The
associated invariant integral gives a distribution

h �! hM.�c/; h 2 C.M/;

in Dc.M/. We write Dc;orb.M/ for the subspace of Dc.M/ spanned by such
distributions. Any element in Dc;orb.M/ is known to be a finite linear combination
of distributions h ! hM.�/, for triplets � D �

T; �; @.u/
�

in Sc.M/ such that
u is Mc-harmonic. Since W.Mc;T/ is contained in W.G;T/, any Mc-harmonic
element is automatically G-harmonic. The space Dc;orb.M/ is therefore contained
in Dc;G-harm.M/. The point is that one can define a canonical distribution JM.�; f /,
for any � in Dc;orb.M/ [A3, (6.5)]. This distribution is supported on Uc.G/, and
satisfies the analogue

JM.�; f
y/ D

X

Q2F.M/
J

MQ
M .�; fQ;y/; f 2 C1c .G/; y 2 G.R/;

of (38). It follows from (48) that JM.�; f / can be chosen to represent an element
in the family (34) (and in particular, is a tempered distribution). Otherwise said,
the constructions of [A3] provide a canonical definition for a part of the operator
Q�M of Proposition 9.3. They determine the restriction of each linear form Q�M.f /
to the subspace Dc;orb.M/ of Dc.M/. The conditions of Proposition 9.3 and
[A3, (6.5)] therefore reduce the choice of Q�M to that of an Aut.G;K;M; c/-fixed
linear transformation that fits into a diagram

Cc;N1 .G/ ,! C.G/
e�M�! Dc;G-harm.M/

� �!! Dc;orb.M/
�;
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in which the composition of any two arrows is predetermined. The mapping Q�M is
thus uniquely determined up to an Aut.G;K;M; c/-fixed linear transformation

C W C.G/=Cc;N1.G/ �!
�
Dc;G-harm.M/=Dc;orb.M/

��
:

However, the last refinement of our construction is not compatible with that
of Proposition 12.1. This is because an induced distribution � D �M

1 in Dc.M/
may be orbital without the inducing distribution �1 being so. The conditions of
Proposition 12.1 and of [A5] are thus to be regarded as two separate constraints. We
are free to impose either one of them on the general construction of Proposition 9.3,
but not both together. The decision of which one to choose in any given setting
would depend of course upon the context.
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Study, and an NSERC Operating Grant.

List of Symbols

This is a partial list of symbols that occur in the paper, arranged according to the
order in which they first appear. I hope that the logic of the order (such as it is)
might be of some help to a reader in keeping track of their meaning. There are some
overlapping symbols, due primarily to the notational conventions described prior to
the commutative diagram in Sect. 5.

Section 2

Gc;C 6
Gc 6
�ss.G/ 6
�reg.G/ 6
gc 6
D.�/ 6
Dc.�/ 7
fG.�/ 7
Treg.R/ 7
Greg.R/ 7
Uc.G/ 7
Dc.G/ 7
Tc.G/ 7
Sc.G/ 7
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fG.�/ 8
WR.G;T/ 8
W.G;T/ 8

S
�
t.C/

�c;I
8

Rc.G/ 8
deg.�/ 9

Rc;n.G/ 9
Rc;.k/.G/ 9
Z.G/ 9
hT 9
Oz 10
Dc;harm.G/ 10
Sharm

�
t.C/

�
10

I.G/ 10
L.M/ 11
F.M/ 11
FM.I.G// 11
Icusp.G/ 11
GM
�
I.G/

�
11

…temp.G/ 12
Dc;ell.G/ 12
Rc;ell.G/ 12
Dc;ell.M;G/ 12
Rc;ell.M;G/ 13

Section 3

I.V/ 13
V� 13
Ic.G/ 14
`c.�/ 15
Ic;n.G/ 16
Cc;n.G/ 16
�.k/ 16
I.k/c .G/ 17
In

c .G/ 17
�_ 17
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I.V;G/ 20
Sc.M;G/ 20
Ic.M;G/ 20
Ic;n.V;G/ 20
Dc;G-harm.M/ 20

Section 4

JM.�; f / 21
MG-reg.R/ 21
fQ;y 22
@L

M.�; zL/ 22

�.f / 23
L.�/ 23
Fa

c .V�;G/ 25
Fa

c;n.V�;G/ 25

F˛
c .V;G/ 26

F˛
c;n.V;G/ 26

@˛ 27

Section 5

G˛c .M;G/ 28
G˛c;n.M;G/ 28

G˛;nc .M;G/ D bG˛;nc .M;G/ 28
bGc.M;G/ 28
gn.�/ 31
Fbd

c .V;G/ 33
Fbd

c;n.V;G/ 33
Gbd

c;n.M;G/ 33
Gbd;n

c .M;G/ 33
bGbd

c .M;G/ 34
In

c .M;G/ 35
bIc.M;G/ 35
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Section 6

JL.�; f / 36
gL

M.�/ 37
gL

M

�
JL;c.f /

�
37

JM.f / 39
Jn

M.�; f / 40
Kn

M.�; f / 40

Section 7

KM.f / 45
eKM.f / 45
fG;c 46
JG;c.f / 46
eJ

n
M.�; f / 48
eKn

M.�; f / 48
kn

z;� .�; f / 48

Section 8

 n
M.�; f / 51
�M.�; f / 56

Section 9

�n
M 58
�M.f / 62
Q�M 64
Q�M.f / 64
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Section 10

K0M.f / 68

Section 11

�L 74
�L.f ; �/ 75
IM.�; f / 75
IM.�; f / 75
gL

M

�
IL;c.f /

�
76
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Slopes of Modular Forms

Kevin Buzzard and Toby Gee

Abstract We survey the progress (or lack thereof!) that has been made on some
questions about the p-adic slopes of modular forms that were raised by the first
author in Buzzard (Astérisque 298:1–15, 2005), discuss strategies for making
further progress, and examine other related questions.

1 Introduction

1.1 Overview

The question of the distribution of the local components of automorphic representa-
tions at finite places has received a great deal of attention.

In the case of fixing an automorphic representation and varying the finite place,
we now have the recently proved Sato–Tate conjecture for elliptic curves over totally
real fields [HSBT10, CHT08, Tay08]. More recently, there has been much progress
on questions where the automorphic representation varies, but the finite place is
fixed; see [Shi12], and the references discussed in its introduction, for a detailed
history of the question. Still more recently, there has been the fascinating work
of Shin and Templier [ST12] on hybrid problems, where both the finite place and
the automorphic representation are allowed to vary, but we will have nothing to say
about this here.

In this survey we will consider some other variants of this basic question,
including p-adic ones. Just as in the classical setting, there are really several
questions here, which will have different answers depending on what is varying: for
example, if one fixes a weight 2 modular form corresponding to a non-CM elliptic
curve, then it is ordinary for a density one set of primes; however, if one fixes a
prime and a level and considers eigenforms of all weights, then almost none of them
are ordinary (the dimension of the ordinary part remains bounded by Hida theory as
the weight gets bigger).
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We will for the most part limit ourselves to the case of classical modular
forms for several reasons. The questions we consider are already interesting
(and largely completely open) in this case, and in addition, there appear to be
interesting phenomena that we do not expect to generalise in any obvious way (see
Remark 4.1.9 below.) However, it seems worth recording a natural question (from
the point of view of the p-adic Langlands program) about the distribution of local
parameters as the tame level varies; for concreteness, we phrase the question for
GLn over a CM field, but the same question could be asked in greater generality in
an obvious fashion.

Fix a CM field F, and consider regular algebraic essentially conjugate self-dual
cuspidal automorphic representations � of GLn =F. Fix an isomorphism between
Qp and C, and a place vjp of F. Assume that �v is unramified (one could instead
consider �v lying on a particular Bernstein component). To such a � is associated a
Galois representation �� W Gal .F=F/ ! GLn.Qp/, and �� jGal .Fv=Fv/ is crystalline,
with Hodge–Tate weights determined by �1. (See the introduction to [CH13] for
this result, and a discussion of the history of its proof. Thanks to the work of Harris
et al. [HLTT13] and Varma [Var14], the result is now known without the assumption
of essentially conjugate self-duality; but the cuspidal automorphic representations
of a fixed regular algebraic infinite type which are not essentially conjugate self-
dual are expected to be rather sparse, and in particular precise asymptotics for the
number of such representations as the level varies are unknown, and it therefore
seems unwise to speculate about equidistribution questions for them. Note that in
the essentially conjugate self-dual case, these automorphic representations arise
via endoscopy from automorphic representations on unitary groups which are
discrete series at infinity, and can thus be counted by the trace formula.) If we
now run over � 0 of the same infinity type, which have � 0v unramified, and which
furthermore have �� 0 Š �� (the bar denoting reduction to GLn.Fp/), then the
local representations �� 0 jGal .Fv=Fv/ naturally give rise to points of the corresponding
(framed) deformation ring for crystalline lifts of �� jGal .Fv=Fv/ of the given Hodge–
Tate weights. The existence of level-raising congruences mean that one can often
prove that this (multi)set is infinite (and it is expected to always be infinite), and one
could ask whether some form of equidistribution of the �� 0 jGal .Fv=Fv/ holds in the
rigid-analytic generic fibre of the crystalline deformation ring.

Unfortunately, this appears to be a very hard problem. Indeed, we do not in
general even know that every irreducible component of the generic fibre of the local
deformation space contains even a single �� 0 jGal .Fv=Fv/; it is certainly expected that
this holds, and a positive solution would yield a huge improvement on the existing
automorphy lifting theorems (cf. the introduction to [CEGC13]). Automorphy
lifting theorems can sometimes be used to show that if an irreducible component
contains an automorphic point, then it contains a Zariski-dense set of automorphic
points, but they do not appear to be able to say anything about p-adic density, or
about possible equidistribution.

More generally, one could allow the weight (and, if one wishes, the level
at p) to vary (as well as, or instead of, allowing the level to vary) and ask
about equidistribution in the generic fibre of the full deformation ring, with no
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p-adic Hodge theoretic conditions imposed. The points arising will necessarily
lie on the sublocus of crystalline (or more generally, if the level at p varies,
potentially semistable) representations, but as these are expected to be Zariski dense
(indeed, this is known in most cases by the results of Chenevier [Che13] and
Nakamura [Nak14]), it seems reasonable to conjecture that the points will also be
Zariski dense.

One could also consider the case of a place v − p, where very similar
questions could be asked (except that there are no longer any p-adic Hodge-
theoretic conditions), and we are similarly ignorant (although the automorphy lifting
machinery can often be used to show that each irreducible component contains an
automorphic point, using the Khare–Wintenberger method [KW09, Theorem 3.3]
and Taylor’s Ihara-avoidance result [Tay08]; see [Gee11, §5]).

In the case of modular forms (over Q) one can make all of this rather more
concrete, due to a pleasing low-dimensional coincidence: an irreducible two-
dimensional crystalline representation of Gal .Qp=Qp/ is almost always completely
determined by its Hodge–Tate weights and the trace of the crystalline Frobenius
(because there is almost always a unique weakly admissible filtration on the
associated filtered �-module—see Sect. 4.1 below). This means that if we work
with modular forms of weight k and level prime to p, the local p-adic Galois
representation is almost always determined by the Hecke eigenvalue ap (modulo
the issue of semisimplicity in the ordinary case), and the question above reduces to
the question of studying the p-adic behaviour of ap. Such questions were studied
computationally (and independently) by Gouvêa and one of us (KB), for the most
part in level 1, when the era of computation of modular forms was in its infancy.
Gouvêa noticed (see the questions in §2 of [Gou01]) that in weight k, the p-adic
valuation vp.ap/ of ap (normalised so that vp.p/ D 1) was almost always at
most .k � 1/=.p C 1/, an observation which at the time did not appear to be
predicted by any conjectures. Gouvêa and Buzzard also noticed that vp.ap/ was
almost always an integer, an observation which even now is not particularly well
understood. Furthermore, in level 1, the primes p for which there existed forms with
vp.ap/ > .k�1/=.pC1/ seemed to coincide with the primes for which there existed
forms with vp.ap/ 62 Z. These led Buzzard in §1 of [Buz05] to formulate the notion
of an SL2.Z/-irregular prime, a prime for which there exists a level 1 non-ordinary
eigenform of weight at most p C 1. Indeed one might even wonder whether the
following are equivalent:

• p is SL2.Z/-irregular;
• There exists a level 1 eigenform with vp.ap/ 62 Z;
• There exists a level 1 eigenform of weight k with vp.ap/ > .k � 1/=.pC 1/.

One can check whether a given prime p is SL2.Z/-regular or not in finite time
(one just needs to compute the determinant of the action of Tp on level 1 modular
forms of weight k for each k � p C 1 and check if it is always a p-adic unit; in
fact, one only has to check cusp forms of weights 4 � k � .p C 3/=2 because
of known results about 	-cyles); one can also verify with machine computations
that the second or third conditions hold by exhibiting an explicit eigenform with
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the property in question. The authors do not know how to verify with machine
computations that the second or third conditions fail; equivalently, how to prove
for a given p either that all Tp-eigenvalues ap of all level 1 forms of all weights
have integral p-adic valuations, or that they all satisfy vp.ap/ � .k � 1/=.pC 1/. In
particular it is still logically possible that for every prime number there will be some
level 1 eigenforms satisfying vp.ap/ 62 Z or vp.ap/ > .k � 1/=.p C 1/. However
this seems very unlikely—for example p D 2 is an SL2.Z/-regular prime, and the
first author has computed vp.ap/ for p D 2 and for all k � 2048 and has found no
examples where v2.a2/ 62 Z or v2.a2/ > .k � 1/=3. Gouvea also made substantial
calculations for all other p < 100 which add further weight to the idea that the
conditions are equivalent.

There are precisely two SL2.Z/-irregular primes less than 100, namely 59 and 79,
and it does not appear to be known whether there are infinitely many SL2.Z/-regular
primes or whether there are infinitely many SL2.Z/-irregular primes. (However,
Frank Calegari has given https://galoisrepresentations.wordpress.com/2015/03/03/
review-of-buzzard-gee/ an argument which shows that under standard conjectures
about the existence of prime values of polynomials with rational coefficients, then
there are infinitely many SL2.Z/-irregular primes.) Note that for p D 59 and p D 79
eigenforms with vp.ap/ 62 Z and vp.ap/ > .k � 1/=.pC 1/ do exist, but any given
eigenform will typically satisfy at most one of these conditions, and we do not even
know how to show that the second and third conditions are equivalent.

Buzzard conjectured that for an SL2.Z/-regular prime, vp.ap/ was integral for all
level 1 eigenforms, and even conjectured an algorithm to compute these valuations
in all weights. Similar conjectures were made at more general levels N > 1 prime
to p, and indeed Buzzard formulated the notion of a �0.N/-regular prime—for p > 2
this is a prime p − N such that all eigenforms of level �0.N/ and weight at most pC1
are ordinary, although here one has to be a little more careful when p D 2 (and
even for p > 2 some care needs to be taken when generalising this notion to �1.N/
because allowing odd weights complicates the picture somewhat; see Remark 4.1.5.)

These observations of Buzzard and Gouvêa can be thought of as saying
something about the behaviour of the Coleman–Mazur eigencurve near the centre
of weight space. Results of Buzzard and Kilford [BK05], Roe [Roe14], Wan et
al. [WXZ14], and Liu et al. [LWX14] indicate that there is even more structure near
the boundary of weight space; this structure translates into concrete assertions about
vp.ap/ when ap is the Up-eigenvalue of a newform of level �1.Npr/ and character
of conductor Mpr for some M j N coprime to p. We make precise conjectures
in Sect. 4.2. On the other hand, perhaps these results are intimately related to the
p-adic Hodge-theoretic coincidence alluded to above—that in this low-dimensional
situation there is usually only one (up to isomorphism) weakly admissible filtration
on the Weil–Deligne representation in question. In particular such structure might
not be so easily found in a general unitary group eigenvariety.

Having formulated these conjectures, in Sect. 5 we discuss a potential approach
to them via modularity lifting theorems.

https://galoisrepresentations.wordpress.com/2015/03/03/review-of-buzzard-gee/
https://galoisrepresentations.wordpress.com/2015/03/03/review-of-buzzard-gee/
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2 Limiting Distributions of Eigenvalues

In this section we briefly review some conjectures and questions about the limiting
distributions of eigenvalues of Hecke operators in the p-adic context. These
questions will not be the main focus of our discussions, but as they are perhaps
the most natural analogues of the questions considered in [ST12], it seems worth
recording them.

2.1 ` D p: Conjectures of Gouvêa

The reference for this section is the paper [Gou01]. Fix a prime p, an integer N � 1
coprime to p, and consider the operator Up on the spaces of classical modular forms
Sk.�0.Np// for varying weights k � 2. The characteristic polynomial of Up has
integer coefficients so it makes sense to consider the slopes of the eigenvalues—by
definition, these are the p-adic valuations of the eigenvalues considered as elements
of Qp. The eigenvalues themselves fall into two categories. The ones corresponding
to eigenforms which are new at p (corresponding to Steinberg representations) have
Up-eigenvalues˙p.k�2/=2, and thus slope .k � 2/=2. The other eigenvalues come in
pairs, each pair being associated with an eigenvalue of Tp on Sk.�0.N//, and if the
Tp-eigenvalue is ap (considered as an element of Qp), then the corresponding two
p-oldforms have eigenvalues given by the roots of x2 � apx C pk�1; so the slopes
˛; ˇ 2 Œ0; k� 1 satisfy ˛Cˇ D k� 1. Note that minf˛; ˇg D minfvp.ap/;

k�1
2
g by

the theory of the Newton polygon, and in particular if vp.ap/ <
k�1
2

then vp.ap/ can
be read off from ˛ and ˇ.

https://galoisrepresentations.wordpress.com/2015/03/03/review-of-buzzard-gee/
https://galoisrepresentations.wordpress.com/2015/03/03/review-of-buzzard-gee/
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Now consider the (multi-)set of slopes of p-oldforms, normalised by dividing by
k�1 to lie in the range Œ0; 1. More precisely we could consider the measure (a finite
sum of point measures, normalised to have total mass 1) attached to this multiset in
weight k. Let k tend to1 and consider how these measures vary. Is there a limiting
measure?

Conjecture 2.1.1. (Gouvêa) The slopes converge to the measure which is uniform
on Œ0; 1

pC1  [ Œ p
pC1 ; 1 and 0 elsewhere.

This is supported by the computational evidence, which is particularly convincing
in the �0.N/-regular case. This conjecture implies that if ap runs through the
eigenvalues of Tp on Sk.�0.N// then we “usually” have v.ap/ � .k � 1/=.pC 1/.
This appears to be the case, although the reasons why are not well understood.
If p > 2 is �0.N/-regular however, the (purely local—see below) main result of
[BLZ04] shows that v.ap/ � b.k � 2/=.p � 1/c. One might hope that the main
result of [BLZ04] could be strengthened to show that in fact v.ap/ � k�1

pC1 ; it seems
likely that the required local statement is true, but Berger tells us that the proof
in [BLZ04] does not seem to extend to this more general range. (This problem is
carefully examined in Mathieu Vienney’s unpublished PhD thesis.)

2.2 ` ¤ p

In the previous subsection we talked about the distribution of ap, the eigenvalues
of Tp on Sk.�0.N//, considered as elements of Qp. The Ramanujan bounds and the
Sato–Tate conjecture give us information about the eigenvalues of Tp as elements
of the complex numbers. What about the behaviour of the ap as elements of Ql

for ` 6D p prime? We have very little idea what to expect. In this short section we
merely present a sample of some computational results concerning the even weaker
question of the distribution of the reductions of the ap as elements of Fl. In contrast
to the previous section we here vary N and keep k D 2 fixed. More precisely, we
fix distinct ` and p, and then loop over N � 1 coprime to `p and compute the
eigenvalues ap of Tp acting on S2.�0.N/IFl/. On the next page is a sample of the
results with p D 5 and ` D 3, looping over the first 5,533,155 newforms. The first
numbers in the second column of this table are not decreasing, which is perhaps not
what one might initially guess; Frank Calegari observed that this could perhaps be
explained by observing that if you choose a random element of a finite field Fq then
the field it generates over Fp might be strictly smaller than Fq, and the heuristics are
perhaps complicated by this.
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Size of F3Œa5 Number

31 80;656

32 38;738

33 35;880

34 32;968

35 35;330

36 33;372

37 34;601

38 33;896

39 35;262

310 33;600

3 The Gouvêa–Mazur Conjecture/Buzzard’s Conjectures

Coleman theory (see Theorem D of [Col97]) tells us that for a fixed prime p and
tame level N, there is a function M.n/ such that if k1; k2 > n C 1 and k1 
 k2
.mod pM.n/.p � 1//, then the sequences of slopes (with multiplicities) of classical
modular forms of level Np and weights k1; k2 agree up to slope n. A more geometric
way to think about this theorem is that given a point on the eigencurve of slope ˛ �
n, there is a small neighbourhood of that point in the eigencurve, which maps in a
finite manner down to a disc in weight space of some explicit radius p�M.n/ and such
that all the points in the neighbourhood have slope ˛. Gouvêa and Mazur [GM92]
conjectured that we could take M.n/ D n; for n D 0, this is a theorem of Hida (his
ordinary families are finite over entire components of weight space). Wan [Wan98]
deduced from Coleman’s results that M.n/ could be taken to be quadratic (with
the implicit constants depending on both p and N; as far as we know, it is still an
open problem to obtain a quadratic bound independent of either p or N). However,
Buzzard and Calegari [BC04] found an explicit counterexample to the conjecture
that M.n/ D n always works.

On the other hand, Buzzard [Buz05] accumulated a lot of numerical evidence that
whenever p is �0.N/-regular, many (but not all) families of eigenforms seemed to
have slopes which were locally equal to n on discs of size p�L.n/ with L.n/ seemingly
linear in log.n/—a much stronger bound than the Gouvêa–Mazur conjectures. For
example, if p D 2, N D 1, then the classical slopes at weight k D 2d (the largest of
which is approximately k=3) seem to be an initial segment of the classical slopes at
weight 2dC1. For example, the 2-adic slopes in level 1 and weight 128 D 27 are

3; 7; 13; 15; 17; 25; 29; 31; 33; 37
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and the Gouvêa–Mazur conjectures would predict that the slopes which were at
most 7 should show up in weight 256 D 28. However in weight 256 the slopes are

3; 7; 13; 15; 17; 25; 29; 31; 33; 37; 47; 49; 51; : : :

and more generally the slopes at weight equal to a power of 2 all seem to be initial
segments of the infinite slope sequence on overconvergent 2-adic forms of weight 0,
a sequence explicitly computed in Corollary 1 of [BC05]. In particular, if one were
to restrict to p D 2, N D 1 and k a power of 2, then M.n/ can be conjecturally taken
to be the base 2 logarithm of 3n. Note also that the counterexamples at level �0.N/
to the Gouvêa–Mazur conjecture in [BC04] were all �0.N/-irregular. It may well be
the case that the Gouvêa–Mazur conjectures are true at level �0.N/ if one restricts
to �0.N/-regular primes—indeed the numerical examples above initially seem to
lend credence to the hope that something an order of magnitude stronger than the
Gouvêa–Mazur conjectures might be true in the �0.N/-regular case. However life
is not quite so easy—numerical evidence seems to indicate that near to a newform
for �0.Np/ on the eigencurve, the behaviour of slopes seems to be broadly speaking
behaving in the same sort of way as predicted by the Gouvêa–Mazur conjectures.
For example, again with p D 2 and N D 1, computer calculations give that the
slopes in weight 38C 28 are

5; 8; 16; 18; 18; 20; 29; 32; 37; 40; 45; 50; 50; 56; 61; 64; 70; : : :

whereas in weight 38C 29 they are

5; 8; 17; 18; 18; 19; 29; 32; 37; 40; 45; 50; 50; 56; 61; 64; 70; : : : :

Again one sees evidence of something far stronger than the Gouvêa–Mazur
conjecture going on (the Gouvêa–Mazur conjecture only predicts equality of slopes
which are at most 8); however, there seems to be a family which has slope 16 in
weight 38C 28 and slope 17 in weight 38C 29. This family could well be passing
through a classical newform of level �0.2/ in weight 38, and newforms in weight 38
have slope .38 � 2/=2 D 18, so one sees that for just this one family M.n/ is
behaving much more like something linear in n.

Staying in the �0.N/-regular case, Buzzard found a lot of evidence for a far more
precise conjecture than the Gouvêa–Mazur conjecture—one that gives a complete
description of the slopes in the �0.N/-regular case, in terms of a recursive algorithm,
which is purely combinatorial in nature and uses nothing about modular forms at
all.1 Then (see [Buz05, §3] for a more detailed discussion) the algorithm can for the
most part be deduced from various heuristic assumptions about families of p-adic

1A preprint “Slopes of modular forms and the ghost conjecture” by John Bergdall and Robert
Pollack gives a much more natural conjectural algorithm for the slopes, the output of which
presumably coincides with Buzzard’s algorithm.
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modular forms, for example the very strong “logarithmic” form of the Gouvêa–
Mazur conjecture mentioned above, plus some heuristics about behaviour of slopes
near newforms that seem hard to justify. Unfortunately, essentially nothing is known
about these conjectures, even in the simplest case N D 1 and p D 2, where the
slopes are all conjectured to be integers but even this is not known.

In fact it does not even seem to be known that the original form of the Gouvêa–
Mazur conjecture (in the �0.N/-regular case) is a consequence of Buzzard’s
conjectures; see [Buz05, Question 4.11]. It would also be of interest to examine
Buzzard’s original data to try to formulate a precise conjecture about the best
possible value of M.n/ in the �0.N/-regular case. The following are combinatorial
questions, and are presumably accessible.

Question 3.1. Say p is �0.N/-regular.

(1) Does the Gouvêa–Mazur conjecture for .p;N/, or perhaps something even
stronger, follow from Buzzard’s conjectures?

(2) Does Conjecture 2.1.1 follow from Buzzard’s conjectures?

One immediate consequence of Buzzard’s conjectures is that in the �0.N/-
regular case, all of the slopes should be integers. This can definitely fail in the
�0.N/-irregular case (and is a source of counterexamples to the Gouvêa–Mazur
conjecture), and we suspect that understanding this phenomenon could be helpful
in proving the full conjectures (see the discussion in Sect. 5 below). In Sect. 4.1 we
will explain a purely local conjecture that would imply this integrality.

Note that Lisa Clay’s PhD thesis also studies this problem and makes the
observation that the combinatorial recipes seem to remain valid when restricting to
the subset of eigenforms with a fixed mod p Galois representation which is reducible
locally at p.

4 Local Questions

4.1 The Centre of Weight Space

In this section we discuss some purely local conjectures and questions about
p-adic Galois representations that are motivated by the conjectures of Sect. 3. We
briefly recall the relevant local Galois representations and their relationship to
the global picture, referring the reader to the introduction to [BG09] for further
details. If k � 2 and ap 2 Qp with v.ap/ > 0, then there is a two-dimensional
crystalline representation Vk;ap with Hodge–Tate weights 0; k� 1, with the property
that the crystalline Frobenius of the corresponding weakly admissible module has
characteristic polynomial X2 � apX C pk�1. Furthermore, if a2p ¤ 4pk�1, then
Vk;ap is uniquely determined up to isomorphism. This is easily checked by directly
computing the possible Hodge filtrations on the weakly admissible module; see
for example, [BB10, Proposition 2.4.5]. This is a low-dimensional coincidence
however—a certain parameter space of flags is connected of dimension zero in this
situation.
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The relevance of this representation to the questions of Sect. 3 is that if f 2
Sk.�0.N/;Qp/ is an eigenform with a2p ¤ 4pk�1 (which is expected to always hold;
in the case N D 1 it holds by Theorem 1 of [Gou01], and the paper [CE98] proves
that it holds for general N if k D 2, and for general k;N if one assumes the Tate
conjecture) then �f jGal .Qp=Qp/

Š Vk;ap .
As explained in [Buz05, §1], p > 2 is �0.N/-regular if and only if �f jGal .Qp=Qp/

is
reducible for every f 2 Sk.�0.N// (and every k � 2). This suggests that the problem
of determining when Vk;ap (the reduction of Vk;ap modulo p) is reducible could be
relevant to the conjectures of Sect. 3. To this end, we have the following conjecture.

Conjecture 4.1.1. If p is odd, k is even and v.ap/ … Z then Vk;ap is irreducible.

Remark 4.1.2. Any modular form of level �0.N/ necessarily has even weight, and
this conjecture would therefore imply for p > 2 that in the �0.N/-regular case, all
slopes are integral, as Buzzard’s conjectures predict (see Sect. 3 above).

Remark 4.1.3. This conjecture is arguably “folklore” but seems to originate in
emails between Breuil, Buzzard, and Emerton in 2005.

Remark 4.1.4. The conjecture is of course false without the assumption that v.ap/ …
Z; indeed, if v.ap/ D 0, then we are in the ordinary case, and Vk;ap is reducible (and
so Vk;ap is certainly reducible).

Remark 4.1.5. If k is allowed to be odd, then the conjecture would be false—for
global reasons! There are p-newforms of level �1.N/ \ �0.p/ and odd weight k0,
which automatically have slope .k0�2/=2 … Z, and in computational examples these
forms give rise to both reducible and irreducible local mod p representations. The
corresponding local p-adic Galois representations are now semistable rather than
crystalline, and depend on an additional parameter, the L-invariant; the reduction of
the Galois representation depends on this L-invariant in a complicated fashion, see,
for example, the calculations of Breuil and Mézard [BM02]. Considering oldforms
which are sufficiently p-adically close to such newforms (and these will exist by the
theory of the eigencurve) produces examples of Vk;ap with v.ap/ D .k0 � 2/=2 and
Vk;ap reducible. If k and k0 are close in weight space, then k will also be odd.

The main result of Buzzard and Gee [BG13] determines, for odd p, exactly for
which ap with 0 < v.ap/ < 1 the representation Vk;ap is irreducible; it is necessary
that k 
 3 .mod p � 1/, that k � 2p C 1, and that v.ap/ D 1=2, and there are
examples for all k satisfying these conditions.

Remark 4.1.6. If p D 2, then the conjecture is also false for the trivial reason
that if k 
 4 mod 6 then Vk;0 is reducible and hence Vk;a is reducible for
v.a/ sufficiently large (whether or not it is integral) by the main result of Berger
et al. [BLZ04]. In particular, the conjecture does not offer a local explanation for
the global phenomenon that thousands of slopes of cusp forms have been computed
for N D 1 and p D 2, and not a single non-integral one has been found (and the
conjectures of [Buz05] predict that the slopes will all be integral).
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Remark 4.1.7. Conjecture 4.1.1 is known if v.ap/ 2 .0; 1/, which is the main result
of Buzzard and Gee [BG09]. It is also known if v.ap/ > b.k � 2/=.p � 1/c, by the
main result of Berger et al. [BLZ04]. In the case that k � .p2 C 1/=2, it is expected
to follow from work in progress of Yamashita and Yasuda.

The result of Berger et al. [BLZ04] is proved by constructing an explicit family
of .�; �/-modules which are p-adically close to the representation Vk;0. Since Vk;0

is induced from a Lubin–Tate character, it has irreducible reduction if k is not
congruent to 1modulo pC1, and in particular has irreducible reduction when p > 2
and k is even, which implies the result.

In contrast, the papers [BG09, BG13] use the p-adic local Langlands corre-
spondence for GL2.Qp/ to compute Vk;ap more or less explicitly. Despite the
simplicity of the calculations of Buzzard and Gee [BG09], which had originally
made us optimistic about the prospects of proving Conjecture 4.1.1 in general,
it seems that when v.ap/ > 1 the calculations involved in computing Vk;ap are
very complicated, and without having some additional structural insight we are
pessimistic that Conjecture 4.1.1 can be directly proved by this method.

In the light of the previous remark, we feel that it is unlikely that Conjecture 4.1.1
will be proved without some gaining some further understanding of why it should
be true. We therefore regard the following question as important.

Question 4.1.8. Are there any local or global reasons that we should expect
Conjecture 4.1.1 to hold, other than the computational evidence of the second author
discussed in [Buz05]?

Remark 4.1.9. It seems unlikely that any analogue of Conjecture 4.1.1 will hold in
a more general setting (i.e., for higher-dimensional representations of Gal .Qp=Qp/,
or for representations of Gal .Qp=F/ of dimension> 1, where F=Qp is a non-trivial
extension). The reason for this is that there is no analogue of the fact that Vk;ap

is completely determined by k and ap; in these more general settings, additional
parameters are needed to describe the p-adic Hodge filtration, and it is highly likely
that the reduction mod p of the crystalline Galois representations will depend on
these parameters. (Indeed, as remarked above, this already happens for semistable
2-dimensional representations of Gal .Qp=Qp/.)

For this reason we are sceptical that there is any simple generalisation of the
conjectures of Sect. 3, except to the case of Hilbert modular forms over a totally
real field in which p splits completely. For example, Table 5 in [Loe08] and the
comments below it show that non-integral slopes appear essentially immediately
when one computes with U.3/.

4.2 The Boundary of Weight Space

Perhaps surprisingly, near the boundary of weight space, the combinatorics of the
eigencurve seem to become simpler. For example, if N D 1 and p D 2, one
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can compare Corollary 1 of [BC05] (saying that in weight 0 all overconvergent
slopes are determined by a complicated combinatorial formula) with Theorem B
of [BK05] (saying that at the boundary of weight space the slopes form an arithmetic
progression).

Now let f be a newform of weight k � 2 and level �1.Npr/, with r � 2, and
with character whose p-part � has conductor pr. For simplicity, fix an isomorphism
C D Qp. Say f has Up-eigenvalue ˛. One checks that the associated smooth
admissible representation of GL2.Qp/ attached to f must be principal series
associated with two characters of Q

�
p , one unramified (and sending p to ˛) and

the other of conductor pr. Now say �f is the p-adic Galois representation attached
to f .

By local-global compatibility (the main theorem of [Sai97]), and the local Lang-
lands correspondence, the F-semisimplified Weil–Deligne representation associated
with �f at p will be the direct sum of two characters, one unramified and the
other of conductor pr. Moreover, the p-adic Hodge-theoretic coincidence still holds:
there is at most one possible weakly admissible filtration on this Weil–Deligne
representation with jumps at 0 and k � 1, by Proposition 2.4.5 of [BB10] (or by
a direct calculation).

The resulting weakly admissible module depends only on k, ˛, and �, and so we
may call its associated Galois representation Vk;˛;�; the local–global assertion is then
that this representation is the restriction of �f to the absolute Galois group of Qp. Let
Vk;˛;� denote the semisimplification of the mod p reduction of Vk;˛;�. We propose a
conjecture which would go some way towards explaining the results of Buzzard and
Kilford [BK05], Roe [Roe14], Kilford [Kil08], and Kilford and McMurdy [KM12].
We write v� for the p-adic valuation v on Qp normalised so that the image of v� on
Qp.�/

� is Z (so for p > 2 we have v�.p/ D 1=.p� 1/pr�2.)

Conjecture 4.2.1. If v�.˛/ 62 Z, then Vk;˛;� is irreducible.

This is a local assertion so does not follow directly from the results in the global
papers cited above. The four papers above prove that v�.˛/ 2 Z if ˛ is an eigenvalue
of Up on a space of modular forms of level 2r, 3r, 52, and 72, respectively; note that
in all these cases, all the local mod p Galois representations which show up are
reducible locally at p, for global reasons. In fact, slightly more is true in the special
case p D 2 and r D 2: in this case Qp.�/ D Q2 so the conjecture predicts that if
v.˛/ 62 Z then Vk;˛;� is irreducible; yet in [BK05] it is proved that eigenforms of
odd weight, level 4, and character of conductor 4, all have slopes in 2Z.

It is furthermore expected that in the global setting the sequence of slopes is
a finite union of arithmetic progressions; see [WXZ14, Conjecture 1.1]. Indeed, a
version of this statement (sufficiently close to the boundary of weight space, in the
setting of the eigenvariety for a definite quaternion algebra with p > 2) is proved by
Liu et al. in [LWX14].
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5 A Strategy to Prove Buzzard’s Conjectures

The following strategy for attacking the conjectures of Sect. 3 was explained by the
second author to the first author in 2005, and was the motivation for the research
reported on in the papers [BG09, BG13] (which we had originally hoped would
result in a proof of Conjecture 4.1.1).

Assume that p > 2, and fix a continuous odd, irreducible (and thus modular, by
Serre’s conjecture), representation � W Gal .Q=Q/! GL2.Fp/. Assume further that
� satisfies the usual Taylor–Wiles condition that �jGal .Q=Q.�p//

is irreducible.

Let Rloc
k .�/ be the (reduced and p-torsion free) universal framed deformation ring

for lifts of �jGal .Qp=Qp/
which are crystalline with Hodge–Tate weights 0; k � 1.

This connects to the global setting via the following consequence of the results of
Kisin [Kis09].

Proposition 5.1. Maintain the assumptions and notation of the previous two
paragraphs, so that p > 2, and � W Gal .Q=Q/ ! GL2.Fp/ is a continuous, odd,
irreducible representation with �jGal .Q=Q.�p//

irreducible.
Let N be an integer not divisible by p such that � is modular of level �1.N/. If

p D 3, assume further that �jGal .Qp=Qp/
is not a twist of the direct sum of the mod

p cyclotomic character and the trivial character. Fix an irreducible component of
Spec Rloc

k .�/Œ1=p. Then there is a newform f 2 Sk.�1.N/;Qp/ such that �f Š �,
and �f jGal .Qp=Qp/

corresponds to a point of Spec Rloc
k .�/Œ1=p lying on our chosen

component.

Proof. This follows almost immediately from the results of Kisin [Kis09], exactly as
in the proof of [Cal12, Proposition 3.7]. (Note that the condition that f is a newform
of level �1.N/ can be expressed in terms of the conductor of �f , and thus in terms
of the components of the local deformation rings at primes dividing N.)

More precisely, this argument immediately gives the result in the case that
�f jGal .Qp=Qp/

is not a twist of an extension of the trivial representation by the
mod p cyclotomic character. However, this assumption on �f jGal .Qp=Qp/

is needed
only in the proof of [Kis09, Corollary 2.2.17], where this assumption guarantees
that the Breuil–Mézard conjecture holds for �f jGal .Qp=Qp/

(indeed, the Breuil–
Mézard conjecture is proved under this assumption in [Kis09]). The Breuil–Mézard
conjecture is now known for p > 2, except in the case that p D 3 and �jGal .Qp=Qp/

is
a twist of the direct sum of the mod p cyclotomic character and the trivial character,
so the result follows. (The case that p � 3 and �jGal .Qp=Qp/

is a twist of a non-
split extension of the trivial character by the mod p cyclotomic character is treated
in [Paš15], and the case that p > 3 and �jGal .Qp=Qp/

is a twist of the direct sum of
the mod p cyclotomic character and the trivial character is proved in [HT13].) ut
Suppose that �jGal .Qp=Qp/

is reducible, and that Conjecture 4.1.1 holds. Consider ap

as a rigid-analytic function on Spec Rloc
k .�/Œ1=p; since v.ap/ 2 Z by assumption,
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we see that v.ap/ is in fact constant on connected (equivalently, irreducible)
components of Spec Rloc

k .�/Œ1=p.

Corollary 5.2. Maintain the assumptions of Proposition 5.1, and assume further
that �jGal .Qp=Qp/

is reducible. Assume Conjecture 4.1.1. Then the set of slopes

(without multiplicities) of Tp on newforms f 2 Sk.�1.N/;Qp/ with �f Š � is
determined purely by k and �jGal .Qp=Qp/

; more precisely, it is the set of slopes of (the
crystalline Frobenius of the Galois representations corresponding to) components
of Spec Rloc

k .�/Œ1=p.

Proof. This is immediate from Proposition 5.1 (and the discussion in the preceding
paragraph). ut
Remark 5.3. The conclusion of Corollary 5.2 seems unlikely to hold if � is allowed
to be (globally) reducible; for example, if p D 2, it is known that the slopes of all
cusp forms for SL2.Z/ are at least 3, but there are local crystalline representations of
slope 1 (for example, the local 2-adic representation attached to the unique weight 6
level 3 cuspidal eigenform). We do not know if there is any reasonable “local to
global principle” when � is reducible.

It would be very interesting to be able to have some control on the multiplicities
with which slopes occur in Sk.�1.N/;Qp/ (for example, to show that these multi-
plicities agree for two weights which are sufficiently p-adically close, as predicted
by the Gouvêa–Mazur conjecture), but it is not clear to us how such results could be
extracted from the modularity lifting machinery. If all the irreducible components
of Rloc

k .�/ were regular, it would presumably be possible to use the argument of
Diamond [Dia97] to relate the multiplicities of the same slope in different weights,
but we do not expect this to hold in any generality.

Not withstanding this difficulty, one could still hope to prove the conjectures of
[Buz05] up to multiplicity. If Conjecture 4.1.1 were known, the main obstruction
to doing this would be obtaining a strong local constancy result for slopes as k
varies p-adically. More precisely, we would like to prove the following purely local
conjecture for some function M.n/ as in Sect. 3 above.

Conjecture 5.4. Let Nr W Gal .Qp=Qp/ ! GL2.Fp/ be reducible. If n � 0 is an
integer, and k; k0 � nC1 have k 
 k0 .mod .p�1/pM.n//, then there is a crystalline
lift of Nr with Hodge–Tate weights 0; k � 1 and slope n if and only if there is a
crystalline lift of Nr with Hodge–Tate weights 0; k0 � 1 and slope n.

It might well be possible to prove a weak result in the direction of Conjecture 5.4
by the methods of Berger [Ber12] (more precisely, to prove the conjecture with a
much worse bound on M.n/ than would be needed for interesting applications to the
conjectures of [Buz05], but without any assumption on the reducibility of Nr).

Corollary 5.2 (which shows, granting as always Conjecture 4.1.1, that the set
of slopes which occur globally is the same as the set of slopes that occur locally)
shows that it would be enough to prove the global version of this statement, and it
is possible that the methods of Wan [Wan98] could allow one to deduce a local
constancy result where the dependence on n in “sufficiently close” is quadratic
in n. (Note that while it is not immediately clear how to adapt the methods
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of Wan [Wan98] to allow � to be fixed, it seems plausible that the methods
used to prove [WXZ14, Theorem D] will be able to do this.) Note again that
the computations of Buzzard and Calegari [BC04] (which in particular disprove
the original Gouvêa–Mazur conjecture) mean that we cannot expect to deduce
Conjecture 5.4 (for an optimal function M.n/ of the kind suggested by Buzzard’s
conjectures) from any global result that does not use the hypothesis that �jGal .Qp=Qp/

is reducible.
However, it seems plausible to us that a weak local constancy result of this kind,

also valid in the case that �jGal .Qp=Qp/
is irreducible, could be bootstrapped to give

the required strong constancy, provided that Conjecture 4.1.1 is proved. The idea is
as follows: under the assumption of Conjecture 4.1.1, v.ap/ is constrained to be an
integer when �jGal .Qp=Qp/

is reducible. If one could prove a result (with no hypothesis
on the reducibility of �jGal .Qp=Qp/

) saying that if k; k0 are sufficiently close in weight
space, then the small slopes of crystalline lifts of �jGal .Qp=Qp/

of Hodge–Tate weights
0; k�1 and 0; k0�1 are also close, then the fact that the slopes are constrained to be
integers could then be used to deduce that the slopes are equal (because two integers
which differ by less than 1 must be equal.)
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Transfer Principles for Bounds of Motivic
Exponential Functions

Raf Cluckers, Julia Gordon, and Immanuel Halupczok

Abstract We study transfer principles for upper bounds of motivic exponential
functions and for linear combinations of such functions, directly generalizing the
transfer principles from Cluckers and Loeser (Ann Math 171:1011–1065, 2010) and
Shin and Templier (Invent Math, 2015, Appendix B). These functions come from
rather general oscillatory integrals on local fields, and can be used to describe, e.g.,
Fourier transforms of orbital integrals. One of our techniques consists in reducing
to simpler functions where the oscillation only comes from the residue field.
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1 Introduction

After recalling concrete motivic exponential functions and their stability under
taking integral transformations, we study transfer principles for bounds of motivic
exponential functions and their linear combinations. In this context, transfer means
switching between local fields with isomorphic residue field (in particular between
positive and mixed characteristic). By the word concrete (in the first sentence),
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we mean that we work uniformly in all local fields of large enough residue field
characteristic, as opposed to genuinely motivic as done in [CLe]; this setting is
perfectly suited for transfer principles, which are, indeed, about local fields.

Our results relate to previously known transfer principles (from [CLe, CGH],
and [ShTe, Appendix B]) as follows. The principle given by Theorem 3.1 below,
which allows to transfer bounds on motivic exponential functions, generalizes both
the transfer principle of [CLe, Proposition 9.2.1], where, one can say, the upper
bound was identically zero, and the transfer principle of [ShTe, Theorem B.7],
where the case without oscillation is treated. A generalization to C exp (instead of C )
of Theorem B.6 of [ShTe] (which contains a statement about uniformity across all
completions of a given number field rather than a transfer principle) is left to future
work in [CGH5], since it requires different, and deeper, proof techniques.

The results in this paper are independent of the transfer principles of [CGH] about
e.g., loci of integrability, and in fact, our proofs are closer to the ones of [CLe], and
can avoid the heavier machinery from [CGH].

After Theorem 3.1, we give some further generalizations which treat C-linear
combinations of motivic exponential functions, uniformly in the complex scalars.
Specifically, we obtain transfer principles for linear (in-)dependence and for upper
bounds of linear combinations of motivic exponential functions (or rather, their
specializations for any local field F with large residue field characteristic), see
Theorem 3.2, Proposition 3.3 and Corollary 3.4.

A key proof technique that we share with [CLe] consists in reducing from general
motivic exponential functions to simpler functions where the oscillation only comes
from additive characters on the residue field. We recall these classes of functions
with their respective oscillatory behavior in Sect. 2.

Let us finally mention that the transfer principles of [CLe] have been applied in
[CHL] and [YGo, Appendix] to obtain the Fundamental Lemma of the Langlands
program in characteristic zero (see also [Nad]), and the ones of [CGH] have been
used in [CGH2] to show local integrability of Harish-Chandra characters in large
positive characteristic. The results of this paper may apply to a wide class of p-adic
integrals, e.g. orbital integrals and their Fourier transforms. We will leave the study
of such applications to future work.

2 Motivic Exponential Functions

In a nutshell, motivic functions are a natural class of functions from (subsets of)
valued fields to C, built from functions on the valued fields that are definable in
the Denef-Pas language; the class is closed under integration. Motivic exponential
functions are a bigger such class, incorporating additive characters of the valued
field. These functions were introduced in [CLe], and the strongest form of stability
under integration for these functions was proved in [CGH]. (Constructible functions
without oscillation and on a fixed p-adic field were introduced earlier by Denef
in [Den1].) We start with recalling three classes of functions, C , C e, and C exp,
which have, so to speak, increasing oscillatory richness, and each one is stable under
integration, see Theorem 2.8.
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2.1 Motivic Functions

We recall some terminology of [CLo] and [CLe], with the same focus as in [CGH3]
(namely uniform in the local field, as opposed to an approach with Grothendieck
rings).

Fix a ring of integers� of a number field, as base ring.

Definition 2.1. Let Loc� be the collection of all triples .F; �;$/, where F is a non-
Archimedean local field which allows at least one ring homomorphism from � to
F, the map � W � ! F is such a ring homomorphism, and $ is a uniformizer for
the valuation ring of F. Here, by a non-Archimedean local field we mean a finite
extension of Qp or Fp..t// for any prime p.

Given an integer M, let Loc�;M be the collection of .F; �;$/ in Loc� such that
the residue field of F has characteristic at least M.

For a non-Archimedean local field F, write OF for its valuation ring with
maximal ideal MF and residue field kF with qF elements.

We will use the Denef-Pas language with coefficients from �ŒŒt for our fixed
ring of integers�. We denote this language by L�.

Definition 2.2. The language L� has three sorts, VF for the valued field, RF for
the residue field, and a sort for the value group which we simply call Z, since we
will only consider structures where it is actually equal to Z. On VF, one has the ring
language and coefficients from the ring �ŒŒt. On RF, one has the ring language.
On Z, one has the Presburger language, namely the language of ordered abelian
groups together with constant symbols 0, 1, and symbols
n for each n > 0 for the
congruence relation modulo n. Finally, one has the symbols ord for the valuation
map from the valued field minus 0 to Z, and ac for an angular component map from
the valued field to the residue field.

It was an important insight of Denef that one has elimination of valued field
quantifiers for first order formulas in this language L�, and this was worked out by
his student Pas in [Pas]. Indeed, quantifier elimination is a first step to understanding
the geometry of the definable sets and functions. Another geometrical key result
and insight by Denef [Den2, Pas, CLo] is the so-called cell decomposition, which is
behind Proposition 4.4.

The language L� is interpreted in any .F; �;$/ in Loc� in the obvious way,
where t is interpreted as $ and where ac is defined by

ac.u$`/ D Nu and ac.0/ D 0
for any u 2 O�F and ` 2 Z, Nu being reduction modulo MF. We will abuse notation
by notationally identifying F and .F; �;$/ 2 Loc�.

Any L�-formula ' gives a subset '.F/ of Fn � km
F � Z

r for F 2 Loc� for some
n;m; r only depending on ', by taking the F-rational points on ' in the sense of
model theory (see Sect. 2.1 of [CGH3] for more explanation). This leads us to the
following handy definition.
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Definition 2.3. A collection X D .XF/F2Loc�;M of subsets XF � Fn � km
F � Z

r

for some M; n;m; r is called a definable set if there is an L�-formula ' such that
XF D '.F/ for each F in Loc�;M (see Remark 2.5).

By Definition 2.3, a “definable set” is actually a collection of sets indexed by
F 2 Loc�;M; such practice is often used in model theory and also in algebraic
geometry. A particularly simple definable set is .Fn � km

F � Z
r/F , for which we use

the simplified notation VFn�RFm�Zr . We apply the typical set-theoretical notation
to definable sets X;Y, e.g., X � Y (if XF � YF for each F 2 Loc�;M for some M),
X � Y, and so on, which may increase M if necessary.

Definition 2.4. For definable sets X and Y, a collection f D .fF/F of functions
fF W XF ! YF for F 2 Loc�;M for some M is called a definable function and
denoted by f W X ! Y if the collection of graphs of the fF is a definable set.

Remark 2.5. For a definable set X as in Definition 2.3, we are usually only interested
in .XF/F2Loc�;M for M sufficiently big, and thus, we often allow ourselves to replace
M by a larger number if necessary, without saying so explicitly; also the uniform
objects defined below in Definitions 2.6, 2.7, and so on, are only interesting for
M sufficiently large. In model theoretic terms, we are using the theory of all non-
archimedean local fields, together with, for each M > 0, an axiom stating that the
residue characteristic is at least M. Note, however, that a more general theory of
uniform integration which works uniformly in all local fields of mixed characteristic
(but not in local fields of small positive characteristic) is under development in
[CHa] and will generalize [CLb].

For motivic functions, definable functions are the building blocks, as follows.

Definition 2.6. Let X D .XF/F2Loc�;M be a definable set. A collection H D .HF/F
of functions HF W XF ! R is called a motivic function on X if there exist integers N,
N0, and N00, nonzero integers ai`, definable functions ˛i W X ! Z and ˇij W X ! Z,
and definable sets Yi � X � RFri such that for all F 2 Loc�;M and all x 2 XF

HF.x/ D
NX

iD1
#Yi;F;x 	 q˛iF.x/

F 	
0

@
N0Y

jD1
ˇijF.x/

1

A 	
0

@
N00Y

`D1

1

1 � qai`
F

1

A ;

where Yi;F;x is the finite set fy 2 kri
F j .x; y/ 2 Yi;Fg.

We write C .X/ to denote the ring of motivic functions on X.

The precise form of this definition is motivated by the property that motivic
functions behave well under integration (see Theorem 2.8).
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2.2 Motivic Exponential Functions

For any local field F, let DF be the set of the additive characters  on F that are
trivial on the maximal ideal MF of OF , nontrivial on OF , and such that, for x 2 OF ,
one has

 .x/ D e.TrkF=Fp.Nx// (1)

with Nx the reduction of x modulo MF and where qF is an integer power of the
prime number p, and where e W Fp ! C sends a 2 f0; : : : ; p � 1g to exp. 2� ia

p / for
some fixed complex square root i of �1. Expressions involving additive characters
of p-adic fields often give rise to exponential sums, and this explains the term
“exponential” in the definition below.

Definition 2.7. Let X D .XF/F2Loc�;M be a definable set. A collection H D
.HF; /F; of functions HF; W XF ! C for F 2 Loc�;M and  2 DF is called
a motivic exponential function on X if there exist integers N > 0 and ri � 0, motivic
functions Hi D .HiF/F on X, definable sets Yi � X � RFri and definable functions
gi W Yi ! VF and ei W Yi ! RF for i D 1; : : : ;N, such that for all F 2 Loc�;M , all
 2 DF and all x 2 XF

HF; .x/ D
NX

iD1
HiF.x/

0

@
X

y2Yi;F;x

 
�
giF.x; y/CeiF.x; y/

�
1

A ; (2)

where  .aC v/ for a 2 F and v 2 kF , by abuse of notation, is defined as  .aC u/,
with u any unit in OF such that Nu D v, which is well defined by (1). We write
C exp.X/ to denote the ring of motivic exponential functions on X. Define the subring
C e.X/ of C exp.X/ consisting of those functions H as in (2) such that all giF are
identically vanishing. Note that for H 2 C e.X/, HF; does not depend on  2 DF

because of (1), so we will just write HF instead.

Compared to Definition 2.6, the counting operation # has been replaced by taking
exponential sums, which makes the motivic exponential functions a richer class than
the motivic functions. Indeed, note that the sum as above gives just #.YiF/x in the
case that giF D 0 and eiF D 0.

2.3 Integration

To integrate a motivic function f on a definable set X, we need a uniformly given
family of measures on each XF. For X D VF, we put the Haar measure on XF D F
so that OF has measure 1; on kF and on Z, we use the counting measure and for
X � VFn �RFm �Zr we use the measure on XF induced by the product measure on
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Fn�km
F �Zr . To obtain other motivic measures on definable sets X, one can also use

measures associated with “definable volume forms,” see Sect. 2.5 of [CGH3], [CLo,
Sect. 8], and Sect. 12 of [CLb].

Maybe the most important aspect of these motivic functions is that they have
nice and natural properties related to integration, see, e.g., the following theorem
about stability, which generalizes Theorem 9.1.4 of [CLe] (see also Theorem 4.1.1
of [CLe]).

Theorem 2.8 ([CGH, Theorem 4.3.1]). Let f be in C .X � Y/, resp. in C e.X � Y/
or in C exp.X � Y/, for some definable sets X and Y, with Y equipped with a motivic
measure 
Y . Then there exist a function I in C .X/, resp. in C e.X/ or C exp.X/ and
an integer M > 0 such that for each F 2 Loc�;M, each 2 DF and for each x 2 XF

one has

IF.x/ D
Z

y2YF

fF.x; y/ d
YF ; resp. IF; .x/ D
Z

y2YF

fF; .x; y/ d
YF ;

whenever the function YF ! C W y 7! fF.x; y/, resp. y 7! fF; .x; y/, is in L1.

Proof. The cases C and C exp are treated in [CGH, Theorems 4.3.1 and 4.4.3]. The
proof for C exp in [CGH] goes through also for C e. (A more direct and simpler
proof for C e can also be given, by reducing to the case for C using residual
parameterizations as in Definition 4.5.1 of [CGH].) ut

3 Transfer Principles for Bounds and Linear Combinations

In this section, we state the main results of this article.
The following statement allows one to transfer bounds which are known for local

fields of characteristic zero to local fields of positive characteristic, and vice versa.

Theorem 3.1 (Transfer Principle for Bounds). Let X be a definable set, let H be
in C exp.X/, and let G be in C e.X/. Then there exist M and N such that, for any
F 2 Loc�;M, the following holds. If

jHF; .x/jC � jGF.x/jC for all . ; x/ 2 DF � XF (3)

then, for any local field F0 with the same residue field as F, one has

jHF0; .x/jC � N 	 jGF0.x/jC for all . ; x/ 2 DF0 � XF0 : (4)

Moreover, one can take N D 1 if H lies in C e.X/.

As mentioned in the introduction, the case where G D 0 is [CLe, Proposition
9.2.1], and the case that both H and G lie in C .X/ is [ShTe, Theorem B.7].

We also show the following strengthening of Theorem 3.1, for linear
combinations.
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Theorem 3.2 (Transfer Principle for Bounds of Linear Combinations). Let X
be a definable set, let Hi be in C exp.X/ for i D 1 : : : ; `, and let G be in C e.X/. Then
there exist M and N such that, for any F 2 Loc�;M, the following holds for any
c D .ci/i in C

`. If

j
X̀

iD1
ciHi;F; .x/jC � jGF.x/jC for all . ; x/ 2 DF � XF (5)

then, for any local field F0 with the same residue field as F, one has

j
X̀

iD1
ciHi;F0; .x/jC � N 	 jGF0.x/jC for all . ; x/ 2 DF0 � XF0 : (6)

Moreover, one can take N D 1 if the Hi lie in C e.X/.

The key improvement of Theorem 3.2 (compared to Theorem 3.1) is that the
choice of M and N works uniformly in c.

Although in our proofs, the integer N of Theorems 3.1 and 3.2 appears naturally,
it is not unconceivable that one can take N close to 1 even when H does not lie in
C e.X/.

The following proposition was motivated by the application to the transfer of
linear (in-)dependence of Shalika germs in [GoHa]. The first part of the propo-
sition gives a transfer principle for linear (in-)dependence of motivic exponential
functions, which is deduced quite directly from transfer of identical vanishing of
motivic functions (the G D 0 case of Theorem 3.1). The second part describes
how the coefficients in a linear relation can depend on the local field, the additive
character, and parameters; see below for more explanation.

Proposition 3.3 (Transfer Principle for Linear Dependence). Let X and Y be
definable sets and let Hi be in C exp.X � Y/ for i D 1 : : : ; `.
(1) There exists M such that, for any F;F0 2 Loc�;M with kF Š kF0 , the following

holds:
If for each  2 DF and each y 2 YF the functions Hi;F; .	; y/ W XF ! C

for i D 1; : : : ; ` are linearly dependent, then, also for each  2 DF0 and each
y 2 YF0 , the functions Hi;F0; .	; y/ are linearly dependent.

(2) Let moreover G be in C exp.X � Y/. Then there exists a definable set W and
functions Ci and D in C exp.W � Y/ such that the following holds for M
sufficiently big. For every F 2 Loc�;M, for every  2 DF, and for every y 2 YF,
if the functions Hi;F; .	; y/ (on XF) are linearly independent and

GF; .	; y/ D
X̀

iD1
ciHi;F; .	; y/
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for some ci 2 C, then DF; .	; y/ is not identically zero on WF, and for all
w 2 WF

DF; .w; y/ci D Ci;F; .w; y/:

The second part of the proposition, essentially, states that the coefficients ci are
ratios of motivic exponential functions. However, our proof needs an additional
parameter w to write the ci as ratios: both, Ci and D depend on w and only their
quotient is independent of w, for w with DF; .w; y/ nonzero. Note that despite this
complication, the proposition permits to apply transfer principles to the constants ci.
(One of course does not need w if there is a definable function hWY ! W such that
DF; ı hF is nowhere zero.)

Proposition 3.3 naturally applies also in case that the Hi and G are in C exp.Z/ for
some definable subset Z of X�Y, instead of in C exp.X�Y/. Indeed, one can extend
the Hi by zero outside Z and apply the proposition to these extensions.

Finally, we note the following corollary of Theorem 3.2, showing that the
complex coefficients of a linear relation between motivic exponential functions stay
the same (regardless of their motivic interpretation as in Proposition 3.3 above) in
situations where these coefficients are independent of the additive character. This
independence is a strong assumption, but note that it in particular applies to arbitrary
linear relations of motivic (non-exponential) functions.

Corollary 3.4 (Transfer Principle for Coefficients of Linear Relations). Let X
be a definable set and let Hi be in C exp.X/ for i D 1 : : : ; `. Then there exists M such
that, for any F 2 Loc�;M, the following holds for any c D .ci/i in C

`.
If

X̀

iD1
ciHi;F; D 0 on XF for all  2 DF,

then, for any F0 2 Loc�;M with kF Š kF0 , one also has

X̀

iD1
ciHi;F0; 0 D 0 on XF0 for all  0 2 DF0 .

Proof. Just apply Theorem 3.2 with G D 0. ut

4 Proofs of the Transfer Principles

Before proving Theorem 3.1, we give a proposition relating the square of the
complex modulus of a motivic exponential function to the complex modulus of a
function where the oscillation only comes from the residue field.
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Proposition 4.1. Let H be in C exp.X/ for some definable set X. Then there exist QH
in C e.X/ and integers M and N such that for all F 2 Loc�;M the following hold for
all x 2 XF.

(1) There is  1 in DF (depending on x) such that

1

N
j QHF.x/jC � jHF; 1.x/j2C:

(2) For all  in DF, one has

jHF; .x/j2C � j QHF.x/jC:

The proof of Proposition 4.1 uses an elementary result from Fourier analysis,
which we now recall.

Lemma 4.2. Consider a finite abelian group G with dual group OG and with jGj
elements. For any function f W G! C one has

1

jGj k
Ofksup � kfksup � k Of ksup

where k 	 ksup is the supremum norm and Of the Fourier transform of f , namely

Of .'/ D
X

x2G

f .x/'.x/ for ' 2 OG:

Proof. Clearly one has

kfksup � kfk2 �
p
jGjkfksup;

and similarly for Of , where k 	 k2 is the L2-norm, namely kfk2 D
qP

g2G jf .g/j2C. By

Plancherel identity one has

p
jGjkfk2 D kOf k2:

The lemma follows. ut
Corollary 4.3. Consider a finite abelian group G with dual group OG. Consider a
function

f W OG! C W ' 7!
sX

jD1
cj'.yj/
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for some complex numbers cj and some distinct yj 2 G. Then there exists '0 2 OG
with

sup
1�j�s

jcjjC � jf .'0/jC:

Note that Corollary 4.3 generalizes Lemma 9.2.3 of [CLe], a basic ingredient for
proving the transfer principle [CLe, Proposition 9.2.1].

We will use the simple fact that for n complex numbers ai, one has

nX

iD1
jaij2C � .

nX

iD1
jaijC/2 � n 	

nX

iD1
jaij2C: (7)

Proof of Proposition 4.1. Recall that we allow ourselves to increase M whenever
necessary without further mentioning. By “for every F” we shall always mean for
F 2 Loc�;M .

Consider a general H in C exp.X/ and write it as in (2):

HF; .x/ D
X

i

HiF.x/
� X

y2Yi;F;x

 
�
giF.x; y/C eiF.x; y/

��
: (8)

We will start by grouping the summands of the sum over y according to the value
of giF.x; y/ modulo OF. This is done as follows. For each x 2 XF , the union of the
images AF;x WD S

i giF.Yi;F;x/ is finite. Therefore, the cardinality #AF;x is bounded
by some N0 > 0 (independently of x and F), and by cell decomposition (in the form
of Theorem 7.2.1 of [CLo]), there exists a definable set X0 � X � RFt (for some
t � 0) and a definable function g0 W X0 ! VF inducing a bijection X0F;x ! AF;x for
every F and x (where X0F;x is the fiber of X0F over x 2 XF). This allows us to write H
as

HF; .x/ D
X

x02X0
F;x

 .g0F.x0//H0F.x0/: (9)

for a suitable H0 2 C e.X0/; indeed, we can take H0 such that

H0F.x0/ D
X

i

HiF.�.x
0//

X

y2Yi;F;x

giF.x;y/Dg0
F.x

0/

�.x0/Dx

 
�
eiF.x; y/

�
;

where �WX0 ! X is the projection and with notation as in (2) concerning  .�/ for
� 2 kF, which does not depend on  since it is fixed by (1).

This construction ensures that for x0; x00 2 X0F;x with x0 ¤ x00, we have g0F.x0/ ¤
g0F.x00/. We can even achieve that for such x0; x00 we have

ord.g0F.x0/ � g0F.x00// < 0; (10)
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by modifying giF and eiF in (8) in such a way that g0F.x0/ ¤ g0F.x00/ already
implies (10). To this end, replace giF.x; y/ by the arithmetic mean of the (finite)
set AF;x\ .giF.x; y/COF/ and change eiF , using the additivity of  , to make up for
this modification.

Let G0 be a function in C e.X0/ such that for all F,

G0F D jH0Fj2C: (11)

Such G0 exists by multiplying (uniformly in F) H0F with its complex conjugate which
is constructed by replacing the arguments (appearing in H0) of the additive character
on the residue field by their additive inverses, similarly to the proof of Lemma 4.5.9
of [CGH]. Now define QH such that

QHF.x/ D N0 	
X

x0; �F.x0/Dx

G0F.x0/ (12)

for each F and each x 2 XF , and let N be N02. We claim that QH and N are as desired.
Firstly, QH lies in C e.X/ by Theorem 2.8. From (7), (9), and (11) it follows that

jHF; .x/j2C � j QHF.x/jC for all . ; x/ in DF � XF.

We now show that for each x 2 XF there is  1 in DF such that

1

N
j QHF.x/jC � jHF; 1.x/j2C: (13)

Fix F and x 2 XF. From Corollary 4.3, applied to a large enough finite subgroup G
of F=OF so that G contains g0F.x0/ mod OF for all x0 with �.x0/ D x, one finds  1
in DF such that

sup
x0; �F.x0/Dx

jH0F.x0/jC � jHF; 1.x/jC:

Hence, from (7) again,

X

x0 ; �F.x0/Dx

jH0F.x0/j2C � N0jHF; 1.x/j2C;

and thus

1

N
QHF.x/ D N0

N

X

x0; �F.x0/Dx

jH0F.x0/j2C �
N02

N
jHF; 1.x/j2C D jHF; 1.x/j2C:

This shows (13). ut
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We will also use the following generalization of Proposition B.8 of the appendix
B of [ShTe]. Intuitively, it says that functions in C e.S/ (for arbitrary definable S)
only depend on value group and residue field information.

Proposition 4.4. Let H be in C e.S�B/ for some definable sets S and B. Then there
exist a definable function f W S � B ! RFm � Z

r � B for some m � 0 and r � 0,
which makes a commutative diagram with both projections to B, and a function G
in C e.RFm � Z

r � B/ such that, for some M and all F in Loc�;M, the function HF

equals the function GF ı fF, and such that GF vanishes outside the range of fF.

Proof. The proof is similar to the one for Proposition B.8 in Appendix B of [ShTe].
Let us write S � VFn �RFa �Zb for some integers n; a and b. It is enough to prove
the lemma when n D 1 by a finite recursion argument. The case n D 1 follows from
the Cell Decomposition Theorem 7.2.1 from [CLo]. Indeed, this result can be used
to push the domains of all appearing definable functions in the build-up of H into a
set of the form RFm�Zr, forcing them to have only residue field variables and value
group variables. ut
Proof of Theorem 3.1. By Proposition 4.1 it is enough to consider the case that H
lies in C e.X/ and to show that one can take N D 1 in this case. Suppose that X is
a definable subset of VFn � RFm � Z

r . In the case that n D 0, the proof goes as
follows. By quantifier elimination, any finite set of formulas needed to describe H
and G can be taken to be without valued field quantifiers. It follows that

HF1 D HF2 and GF1 D GF2 (14)

for F1 and F2 in Loc�;M with kF1 Š kF2 and M large enough, and up to identifying
kF1 with kF2 . This implies the case n D 0 with N D 1.

Now assume n > 0. By Proposition 4.4, there is a definable function

f W X ! RFm0 � Z
r0

(15)

for some m0, r0, and QH 2 C e.RFm0 � Z
r0

/ and QG 2 C e.RFm0 � Z
r0

/, such that
H D QH ı f and G D QG ı f and such that QH and QG vanish outside the range of f . We
finish the case of H in C e.X/ by applying the case n D 0 to QH and QG. ut

In order to prove Theorem 3.2, we will need the corresponding strengthening of
Proposition 4.1, which goes as follows.

Proposition 4.5. Let Hi be in C exp.X/ for some definable set X and for i D 1; : : : ; `
for some ` > 0. Then there exist integers M and N, and functions QHi;s in C e.X/ for
i; s D 1; : : : ; `, such that for all F 2 Loc�;M the following conditions hold for all
x 2 XF and all c D .ci/i in C

`.

(1) There is  1 in DF (depending on x and c) such that

1

N
j
X̀

i;sD1
ci Ncs QHi;s;F.x/jC � j

X

i

ciHi;F; 1.x/j2C:
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(2) For all  in DF, one has

ˇ
ˇ
ˇ
ˇ
ˇ

X

i

ciHi;F; .x/

ˇ
ˇ
ˇ
ˇ
ˇ

2

C

�
ˇ
ˇ
ˇ
ˇ
ˇ

X̀

i;sD1
ci Ncs QHi;s;F.x/

ˇ
ˇ
ˇ
ˇ
ˇ
C

:

Proof. We start by applying the construction from the beginning of the proof of
Proposition 4.1 to each of our functions Hi;F; , i.e., we write each of them in the
form

Hi;F; .x/ D
X

x02X0
F;x

 .g0F.x0//H0i;F.x0/; (16)

where X0 � X � RFt has finite fibers X0F;x which are bounded uniformly in x 2 XF

and in F, H0i lies in C e.X0/, g0 W X0 ! VF is definable, and such that

ord.g0F.x0/� g0F.x00// < 0 (17)

for any x0; x00 2 X0F;x with x0 ¤ x00.
We can do this in such a way that neither X0 nor g0 depends on i. Indeed, first do

the construction for each Hi;F; separately, yielding sets X0i and functions g0i. Then
let X0 WD PSi X0i be the disjoint union, set g0F.x0/ WD g0i;F.x0/ if x0 2 X0i and extend
H0i;F.x0/ from X0i to X0 by 0. Finally, note that the same construction as in the proof
of Proposition 4.1 allows us to assume that (17) holds on the whole of X0.

Let G0i;s be functions in C e.X0/ such that

X̀

i;sD1
ciNcsG

0
i;s;F.x

0/ D j
X̀

iD1
ciH
0
i;F.x

0/j2
C
: (18)

(for all F and all x0 2 X0F). Such G0i;s exist by a similar argument to the one explained
for G0 in the proof of Proposition 4.1. Now use Theorem 2.8 for each i to define QHi;s

in 2 C e.X/ satisfying

QHi;s;F.x/ D N0 	
X

x02X0
F;x

G0i;s;F.x0/; (19)

where N0 2 N is some constant which we will fix later.
We claim that for a suitable choice of N0, the functions QHi;s are as desired. Indeed,

we have the following, where the relations “�1” and “�2” are explained below.

ˇ̌
ˇ
ˇ
ˇ

X

i

ciHi;F; .x/

ˇ̌
ˇ
ˇ
ˇ

2

C

(16)D
ˇ̌
ˇ
ˇ
ˇ
ˇ

X

x02X0
F;x

 .g0F.x0//
X

i

ciH
0
i;F.x

0/

ˇ̌
ˇ
ˇ
ˇ
ˇ

2

C
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�1
ˇ̌
ˇ
ˇ
ˇ
ˇ

X

x02X0
F;x

ˇ
ˇ
ˇ
ˇ
X

i

ciH
0
i;F.x

0/
ˇ
ˇ
ˇ
ˇ

ˇ̌
ˇ
ˇ
ˇ
ˇ

2

C

�2
X

x02X0
F;x

ˇ̌
ˇ
ˇ
X

i

ciH
0
i;F.x

0/
ˇ̌
ˇ
ˇ

2

C

(18)
(19)D 1

N0

ˇ
ˇ
ˇ
ˇ
X̀

i;sD1
ci Ncs QHi;s;I;F.x/

ˇ
ˇ
ˇ
ˇ
C

The meaning of the symbol “�2” is the following. For the left-hand side L and the
right-hand side R of “�2”, there is a constant c such that L � cR and R � cL by the
simple fact (7) and since the sets X0F;x are finite sets which are bounded uniformly in
x 2 XF and F. At “�1”, we have “�”, which already implies (2) of the proposition
for a suitable choice of N0, and we obtain an estimate in the other direction in the
same way as in the proof of Proposition 4.1: By Corollary 4.3, and using (17), for
each F and each x, there exists a  1 2 DF such that

ˇ
ˇ̌
ˇ
ˇ
ˇ

X

x02X0
F;x

 1.g
0
F.x
0//
X

i

ciH
0
i;F.x

0/

ˇ
ˇ̌
ˇ
ˇ
ˇ
C

� sup
x02X0

F;x

ˇ̌
ˇ
ˇ
X

i

ciH
0
i;F.x

0/
ˇ̌
ˇ
ˇI

now use once more that the cardinality of X0F;x is uniformly bounded to replace the
supremum over x0 by the sum, and to obtain (1) of the Proposition. ut
Proof of Theorem 3.2. By Proposition 4.5 it is enough to consider the case that the
Hi lie in C e.X/ and to show that one can take N D 1 in this case. But this case is
proved as the proof for the corresponding case of Theorem 3.1. ut

It remains to prove Proposition 3.3. We do this by reducing to the transfer
principle of [CLe, Proposition 9.2.1]. The main ingredient for this reduction is the
following classical result, which shows that a finite collection of functions being
linearly dependent is equivalent to some other function that can be constructed from
this collection being constantly zero.

Lemma 4.6. Let fi be complex-valued functions on some set A for i D 1; : : : ; n.
Then there exists nonzero c D .ci/

n
iD1 in C

n such that the function
Pn

iD1 cifi is
identically vanishing on A if and only if the determinant of the matrix

.fi.zj//i;j

is identically vanishing on An, where the zj are distinct variables, running over A
for j D 1; : : : ; n.
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Proof. The implication “)” is easy, so let us assume that the given determinant is
identically vanishing on An. Choose as many points z1; : : : ; zr in A as possible such
that the rows

.f1.z1/; : : : ; fn.z1//

:::

.f1.zr/; : : : ; fn.zr//

are linearly independent. By the assumption on the determinant D, we have r < n,
hence there exists a linear dependence between the columns, i.e., there are complex
numbers a1; : : : ; an, not all zero, such that

a1f1.zj/C 	 	 	 C anfn.zj/ D 0 (20)

for every j � r.
Now we claim that this implies

X
aifi D 0 on A; (21)

with ai as in (20). To verify this, choose any other point z in A. By the choice of
z1; : : : ; zr , the row

.f1.z/; : : : ; fn.z//

can be written as a linear combination of the rows

.f1.zj/; : : : ; fn.zj//:

This implies that (20) also holds for

.f1.z/; : : : ; fn.z//;

but this implies (21). ut
Proof of Proposition 3.3. (1) Consider the function D in C exp.X`�Y/ given by

DF; .x1; : : : ; x`; y/ D det..Hi;F; .xj; y//ij/:

For each F,  and y, by Lemma 4.6, DF; .	; y/ is identically zero on X`F iff the
Hi;F; .	; y/ for i D 1; : : : ; ` are linearly dependent. Thus the statement we want
to transfer is that DF; is identically zero on X`F � YF for all  . This follows
from [CLe, Proposition 9.2.1] (which is the case of Theorem 3.1 with G D 0).
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(2) Set W WD X` and define D in C exp.W � Y/ as in (1).
Consider F,  , w D .x1; : : : ; x`/, y such that d WD DF; .w; y/ ¤ 0. Then

there exist unique c1; : : : ; c` 2 C such that

GF; .xj; y/ D
X

i

ciHi;F; .xj; y/ for 1 � j � `: (22)

By Cramer’s rule, the products ci 	 d are polynomials in GF; .xj; y/ and
Hi;F; .xj; y/, so there exist functions Ci in C exp.W � Y/ such that ci D
Ci;F; .w; y/=DF; .w; y/. These Ci (and this D) are as required: As noted in the
proof of (1), if F,  and y are such that the Hi;F; .	; y/ are linearly independent,
then there exists a w 2 WF such that DF; .w; y/ ¤ 0, and if GF; .	; y/ is a linear
combination of the Hi;F; .	; y/, then for such a w, the coefficients ci from (22)
are the desired ones. ut
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Growth of Hecke Fields Along a p-Adic Analytic
Family of Modular Forms

Haruzo Hida

Abstract Fix a nearly ordinary non-CM p-adic analytic family of Hilbert modular
Hecke eigenforms (over a totally real field F). We prove existence of a density one
set„ of primes of the field F such that the degree of the field overQ.
p1/ generated
by the Hecke eigenvalue of the Hecke operator T.l/ grows indefinitely over the
family for each prime l in the set „.

2010 Mathematics Subject Classification. Primary 11E25, 11F41, 11F80;
Secondary 11F27, 11F33, 11E16

We generalize in this paper all the principal results obtained in [H14] for the one
variable cyclotomic p-ordinary Hecke algebra to the full nearly p-ordinary Hecke
algebra of fixed central character. This algebra is finite flat over the m variable
Iwasawa algebra for the degree m totally real base field F. The restriction coming
from fixing a central character is essentially harmless as we can bring one central
character to another by character twists (up to finite order character of bounded
order).

Take the field Q of all numbers in C algebraic over Q. Fix a prime p and a field

embedding Q
ip
,! Qp � Cp. Fix a totally real number field F (of degree m over Q)

inside Q with integer ring O (as the base field for Hilbert modular forms). We use the
symbol O exclusively for the integer ring of F, and for a general number field L, we
write OL for the integer ring of L. We choose and fix an O-ideal n prime to p (as the
level of modular form). We define an algebraic group G (resp. TL) by ResO=ZGL.2/
(resp. ResOL=ZGm); so, G.R/ D GL2.R˝Z O/ and TL.R/ D .R˝Z OL/

�. We write
T�F Š T2F for the diagonal torus of G; so, writing T� for the diagonal torus of
GL.2/=O, T�F D ResO=ZT�.

Let S�.n; �IC/ denote the space of weight � adelic Hilbert cusp forms
f W G.Q/nG.A/ ! C of level n with character � modulo n, where n is a non-
zero ideal of O. Here the weight � D .�1; �2/ is the Hodge weight of the rank 2 pure
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motive M.f/ with coefficient in the Hecke field Q.f/ associated with any Hecke
eigenform f 2 S�.n; �IC/ (see [BR93]). Though M.f/ is possibly defined over a
quadratic extension F0 of F (depending on f), the Hodge weight is well defined
over F independent of the infinity places over a given place of F. For each field
embedding � W F ,! Q, taking an extension Q� of � to F0, M.f/ ˝F0;�1ıQ� C has
Hodge weights .�1;� ; �2;� / and .�2;� ; �1;� /, and the motivic weight Œ� WD �1;�C�2;�
is independent of � . We normalize the weight imposing an inequality �1;� � �2;� .
This normalization is the one in [HMI, (SA1–3)]. Writing I (resp. Ip) for the set
of all field embeddings into Q (resp. p-adic places) of F, we identify �j withP

�2I �j;�� 2 ZŒI. Sometimes we identify Ip and I regarding Ip as a set of p-adic
places induced by ip ı � for � 2 I. Often we use I to denote

P
� � 2 ZŒI. If the

Hodge weight is given by � D .0; kI/ for an integer k � 1, traditionally, the integer
kC 1 is called the weight [of the cusp forms in S�.n; �IC/] at all � , but we use here
the Hodge weight �.

The “Neben character” � we use is again not a traditional one (but the one
introduced in [HMI]). It is a set of three characters � D .�1; �2; �C/, where
�C W F�

A
=F� ! C

� is the central character of the automorphic representation �f

of G.A/ generated by any Hecke eigenform 0 ¤ f 2 S�.n; �IC/. The character �C
has infinity type I � �1 � �2, and therefore its finite part has values in Q

�
. The finite

order characters �j are Q-valued continuous characters of OO� D lim �0<N2Z.O=NO/�

with �1�2 D �Cj OO� . These characters �j (j D 1; 2) factor through .O=N/� for an
integral ideal N. The two given data f�1; �2g are purely local and may not extend to
Hecke characters of the idele class group F�

A
=F�. Put �� WD �1��12 , and we assume

that �� factors through .O=n/�; so, the conductor of �� is a factor of n andN (which
could be a proper factor of n). Then for the level group

U D U0.n/ D fu D
�

a b
c d

� 2 G.bZ/ with c 2 On D nbOg;

we have f.gu/ D �.u/f.g/ for all g 2 G.A/ and u 2 U, where

�.u/ D �2.det.u//��.an/ D �1.det.u//.��/�1.dn/

for the projection dn of d to
Q

ljn Fl. The characters �j for j D 1; 2 factor through
.O=nj/

� for some multiple nj of n but we do not insist on n D nj. As long as the local
component �l of �f at a prime ljnjjN is principal of the form �.˛; ˇ/ or Steinberg
of the form �.˛; ˇ/, we choose the data so that f�1; �2g D f˛jO�

l
; ˇjO�

l
g (see [H89,

Sect. 2]). In other words, for a suitable choice of .�1; �2/, we have a unique minimal
form fı 2 S�.nı; �IC/ in �f with minimal level nıjn. This minimal level nı of �f

is a factor of the conductor of �f but could be a proper factor of it. These minimal
forms are p-adically interpolated (the interpolation property is not always true for
new forms). A detailed description of cusp forms in S�.n; �IC/ will be recalled in
Sect. 1.9 from [HMI].
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Throughout the paper, n denotes an O-ideal prime to p, and we work with cusp
forms of (minimal) level nprCIp (r D P

p2Ip
rpp 2 ZŒIp with rp � 0 and prCIp D

Q
pjp prpC1, symbolically). Extend �j to a character of the finite adele group .F.1/

A
/�

(trivial outside the level nj and trivial at a choice of uniformizer$l at each prime l),
and extend the character � of U to the semi-group

�0.n/ D
n�

a b
c d

� 2 G.A.1// \M2.bO/
ˇ
ˇdbOC On D bO; c 2 On

o

by �
�

a b
c d

� D �1.ad � bc/.��/�1.dn/. The Hecke operator T.y/ of the double
coset U

�
y 0
0 1

�
U D F

ı ıU is defined by fjT.y/.g/ D P
ı �.ı/

�1f.gı/ [see (14)].
For a Hecke eigenform f, the eigenvalue a.y; f/ of T.y/ depends only on the ideal
y D ybO\F [see (19)]; so, for each prime l of F, we write a.l; f/ for a.$l; f/ and put
T.l/ WD T.$l/, choosing a prime element$l of the l-adic completion Ol. Therefore
the yth Fourier coefficient c.y; f/ of f is �1.y/a.y; f/ for each Hecke eigenform f
normalized so that c.1; f/ D 1, and the Fourier coefficient depends on y (if �1 ¤ 1)
not just on the ideal y. For ljnp, we often write U.l/ for T.l/. For a Hecke eigenform
f 2 S�.nprCIp ; �IC/ .p − n/ and a subfield H of Q, the Hecke field H.f/ inside C is
generated over H by the eigenvalues a.l; f/ of f for the Hecke operators T.l/ for all
prime ideals l and the values of � over finite ideles. If H � Q, then H.f/ is a finite
extension of H sitting inside Q.

Let W be a sufficiently large discrete valuation ring flat over Zp. Let � Š Z
m
p

(m D ŒF W Q) be the maximal torsion-free quotient of O�p for Op D O ˝Z Zp.
We use this symbol � exclusively for the base totally real field F. Later in
Sect. 1.12, for a CM quadratic extension M=F, we write �M for the maximal
p-profinite torsion free quotient of the anti-cyclotomic quotient of the ray class
group ClM.p1/ D lim �n

ClM.pn/ of M modulo p1 (i.e., the projective limit of the ray
class group ClM.pn/ modulo pn). Here the anti-cyclotomic quotient is the maximal
quotient on which the generator c of Gal.M=F/ acts by �1. Note that we have a
natural inclusion: � ! �M but it could have finite cokernel. We fix once and for
all a splitting of the projection: O�p � � and decompose O�p D � �� for a finite
group�.

We fix a Zp-basis f�jgjD1;:::;m � � so that � D Q
j �

Zp

j and identify the Iwasawa
algebra ƒ D ƒW WD WŒŒ�  with the power series ring WŒŒT (T D fTjgjD1;:::;m)
by � 3 �j 7! tj WD .1 C Tj/ 2 ƒ. We have WŒŒT D lim �n

WŒt; t�1=.tpn � 1/,
where t D .tj/j, t�1 D .t�1j /j and .tpn � 1/ is the ideal .tpn

1 � 1; : : : ; tpn

m � 1/ in

WŒŒT. In this way, we identify the formal spectrum Spf.ƒ/ with bGm ˝Zp �
� for

�� D HomZp.� ;Zp/, as tj giving the character of �� corresponding tj.��i / D ıij

for the dual basis f��j gj of f�jgj. Here bGm ˝Zp �
� sends a local p-profinite ring R

to the p-profinite group .1CmR/˝Zp �
� as a group functor (for the maximal ideal

mR of R).
A p-adic nearly ordinary analytic family of eigenforms F D ffPjP 2

Spec.I/.Cp/g is indexed by points of Spec.I/.Cp/, where Spec.I/ is an irreducible
component of the spectrum of the big nearly ordinary Hecke algebra h and is a



132 H. Hida

torsion-free domain of finite rank over ƒ (in this sense, we call Spec.I/ a finite
torsion-free covering of Spec.ƒ/). For each P 2 Spec.I/.Cp/, fP is a p-adic Hecke
eigenform of slope 0 and level np1 for a fixed prime to p-level n. The family
is called analytic because P 7! a.y; fP/ is a p-adic analytic function on the rigid
analytic space associated with the formal spectrum Spf.I/ in the sense of Berthelot
(cf. [dJ95, Sect. 7], see also [dJ98]). We call P 2 Spec.I/.Qp/ arithmetic of weight
� D �.P/ 2 ZŒI2 with character � D .�1; �2; �C/ if �2;� � �1;� � 1 for all
� 2 I (we write this condition as �2 � �1 � I), �2j� has values in 
p1.Qp/ and
P.tj � ��12 .�j/�

�2
j / D 0 for all j (regarding P as a W-algebra homomorphism

P W I ! Qp). Here � k D Q
�2I �.�/

k� for � 2 Op and k D P
�2I k�� ,

and k � I means k� � 1 for all � 2 I. If P is arithmetic, fP is a classical
p-stabilized Hecke eigenform (not just a p-adic modular form). In order to make
the introduction succinct, we put off, to Sect. 1.9, recalling the theory of analytic
families of eigenforms including the definition and necessary properties of CM
families. We only remark that each universal nearly ordinary family comes from an
irreducible component Spec.I/ of the spectrum Spec.h/ of the big nearly ordinary
Hecke algebra h, and we assume now that Spec.I/ is one of such irreducible
components.

In this paper, we prove the following theorem.

Theorem. Let Spec.I/ be an irreducible (reduced) component of Spec.h/ and
K D Q.
p1/. Then I is a non-CM component if there exists a prime l of F and
an infinite set A of arithmetic points in Spec.I/ of a fixed weight � with �2 � �1 � I
such that

lim sup
P2A

ŒK.a.l; fP// W K D1:

Indeed, if I is a CM component, the degree ŒK.fP/ W K is bounded independently of
arithmetic P. Conversely, if I is a non-CM component, there exists a set of primes„
of F with Dirichlet density one such that for any infinite set A of arithmetic points
in Spec.I/ of a fixed weight � with �2 � �1 � I, we have

lim sup
P2A

ŒK.a.l; fP// W K D1 for each l 2 „.

In particular, for any bound B > 0, the set of arithmetic primes P of given weight �
in Spec.I/.Qp/ with ŒK.fP/ W K < B is finite for a non-CM component I.

The first assertion and the boundedness of ŒK.fP/ W K (for a CM component
I) independently of arithmetic P follow from the construction of CM families in
Sects. 1.12 and 1.13 (see [H11, Corollary 4.2] for the argument for F D Q which
holds without modification for general F). We prove in this paper a slightly stronger
statement than the converse in the theorem. The formulation of Theorem 3.1 is a
bit different from the above theorem asserting that boundedness of ŒK.a.l; fP// W K
.P 2 A) over l 2 † implies that I is a CM component as long as † has positive
upper density.
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We could have written the assertion of the theorem as limP2AŒK.a.l; fP// W K D1
for the “limit” with respect to the filter of A given by the complement of all finite
subsets of A instead of lim supP2AŒK.a.l; fP// W K D 1. Hereafter we use this
filter and use limP2A instead of lim supP2A. In [H11] (and [H13]), we proved a
similar result for KŒa.p; fP/ for pjp. Here the point is to study the same phenomena
for a.l; fP/ for l outside np. Indeed, we proved in [H14] the above fact replacing the
nearly ordinary Hecke algebra by the smaller cyclotomic ordinary Hecke algebra
of one variable. The many variable rigidity lemma (see Lemma 4.1) enabled us
to extend our result in [H14] to the many variable setting here. We expect that,
assuming �2 � �1 � I,

lim
P2AŒK.a.l; fP// W K D 1 for any single l − np if I is a non CM component

as in the case of pjp (see Conjecture 3.5). As in [H11], the proof of the above
theorem is based on the elementary finiteness of Weil l-numbers of given weight in
any extension of Q.
p1/ of bounded degree up to multiplication by roots of unity
and rigidity lemmas (in Sect. 4) asserting that a geometrically connected formal
subscheme in a formal split torus stable under the (central) action t 7! tz of z in
an open subgroup of Z�p is a formal subtorus. Another key tool is the determination
by Rajan [Rj98] of compatible systems by trace of Frobeniai for primes of positive
density (up to character twists).

Infinite growth of the absolute degree of Hecke fields (under different assump-
tions) was proven in [Se97] for growing level N, and Serre’s analytic method is now
generalized to (almost) an optimal form to automorphic representations of classical
groups by Shin and Templier [ST13]). Our proof is purely algebraic, and the degree
we study is over the infinite cyclotomic field QŒ
p1  (while the above papers use
non-elementary analytic trace formulas and Plancherel measures in representation
theory). Our result applies to any thin infinite set A of slope 0 non-CM cusp forms,
while in [Se97] and [ST13], they studied the set of all automorphic representations
of given infinity type (and given central character), growing the level. Note here
the Zariski closure of A could be a transcendental formal subscheme of bGm ˝ ��
relative to the rational structure coming from TF and could have the smallest positive
dimension 1, while dimbGm ˝ �� D m D ŒF W Q. Another distinction from earlier
works is that we are now able to prove that the entire I has CM if the degrees
ŒK.fP/ W K are bounded only over arithmetic points P of a possibly very small
closed subscheme in Spf.I/.

To state transcendence results of Hecke operators, let L=F be a finite field
extension inside Cp with integer ring OL, and look into the torus TL D ResOL=ZGm.
Write Z.p/ D Q \ Zp and OL;.p/ D OL ˝Z Z.p/ � L�. Consider an algebraic
homomorphism � 2 Homgp scheme.TL;TF/. We regard � W TL.Zp/ D O�L;p D
.OL ˝Z Zp/

� ! TF.Qp/ � TF.Zp/ D O�p . Project �.TL.Zp// \ TF.Zp/ � O�p
to the maximal torsion free quotient � of O�p . As an example of Qp-rational � (so,
�.OL;.p// � TF.Zp/ D O�p ), we have the norm character NL=Q or, if L is a CM field
with a p-adic CM typeˆ (in the sense of [HT93]), � W .L˝Q Qp/

� ! Q
�
p given by
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�.�/ D Q
'2ˆ �' . Define an integral domain R D R� to be the subalgebra of ƒZp

generated overZ.p/ by the projected image G of �.TL.Z.p///\O�p in � . Note that for
any � 2 R� and any arithmetic point P, P.�/ D �P is in Lgal.
N ; 
p1/ for the Galois
closure Lgal of L=Q and for a sufficiently large 0 < N 2 Z for which 
N receives
all the values of characters of � (e.g., N D j�j). The field Lgal.
N ; 
p1/ is a finite
extension of Q.
p1/. For an integral domain A, write Q.A/ for the quotient field
of A. By definition, R� is isomorphic to the group algebra Z.p/ŒG of the torsion-
free group G. Unless G D f1g, the quotient field Q.R�/ has infinite transcendental
degree over Q.

If the family (associated with I) contains a theta series of weight � with �2��1 �
I of the norm form of a quadratic extension M=F , M is a CM field, and all forms
indexed by Spec.I/ have CM by the same CM field M (see Sects. 1.12 and 1.13).
In particular, the ring generated over Z.p/ by a.l/ for primes l of F in any CM
component is a finite extension of R� taking L D M for � given by a CM type
of M; so, the Hecke field has bounded degree over Q.
p1/ for any CM component.
Fix an algebraic closure Q of the quotient field Q D Q.ƒZp/ ofƒZp . We regard I as
a subring of Q. As a corollary of Theorem 3.1, we prove

Corollary I. Let the notation be as above; in particular, Spec.I/ is an irreducible
(reduced) component of Spec.h/. We regard I � Q asƒ-algebras and R� � ƒ � Q.
Take a set † of prime ideals of F prime to pn. Suppose that † has positive upper
density. If Q.R�/Œa.l/ � Q for all l 2 † is a finite extension of Q.R�/ for the
quotient field Q.R�/ of R� , then I is a component having complex multiplication by
a CM quadratic extension M=F.

An obvious consequence of the above corollary is

Corollary II. Let the notation be as in the above theorem. If I is a non-CM
component, for a density one subset „ of primes of F, the subring Q.R�/Œa.l/ of Q
for all l 2 „ has transcendental degree 1 over Q.R�/.

We could have made a conjecture on a mod p version of the above corollary as
was done in [H14, Sect. 0], but we do not have an explicit application (as discussed
in [H14]) to the Iwasawa 
-invariant of the generalized version; so, we do not
formulate formally the obvious conjecture. We denote by a Gothic letter an ideal
of a number field (in particular, any lowercase Gothic letter denotes an ideal of F).
The corresponding Roman letter denotes the residual characteristic if a Gothic letter
is used for a prime ideal. Adding superscript “.1/”, we indicate finite adeles; so,
for example, .F.1/

A
/� D fx 2 F�

A
jx1 D 1g. Similarly, A.p1/ is made of adeles

without p and1-components.
The author would like to thank the referees for their careful reading.
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1 Hilbert Modular Forms

We recall the arithmetic theory of Hilbert modular forms limiting ourselves to what
we need later. The purpose of giving fair detail of the moduli theoretic interpretation
of Hilbert modular forms here is twofold: (1) to make this article essentially self-
contained and (2) because most account of this theory was written before the
publication of the paper of Deligne–Pappas [DP94] and because there seems no
detailed account available explaining that the correction to the original treatment in
[Rp78] does not affect much the theory of p-adic modular forms.

Though most results in this section are used implicitly in the rest of the paper,
the author also thought that it would be good to give a summary of the theory as
this conference participants are very diverse and some of the people are quite far
from the author’s area of research. The reader who is familiar with the theory can
go directly to Sect. 1.13 where a characterization of CM components is given (which
is essential to the sequel). We keep the notation used in the introduction.

1.1 Abelian Varieties with Real Multiplication

Put O� D fx 2 FjTr.xO/ � Zg (which is the different inverse d�1). Recall the level
ideal n, and fix a fractional ideal c of F prime to pn. We write A for a fixed base
commutative algebra with identity, in which the absolute norm N.c/ and the prime-
to-p part of N.n/ are invertible. To include the case where p ramifies in the base
field F, we use the moduli problem of Deligne–Pappas in [DP94] to define Hilbert
modular varieties. As explained in [Z14, Sects. 2 and 3], if p is unramified in F,
the resulting p-integral model of the Hilbert modular Shimura variety is canonically
isomorphic to the one defined by Rapoport [Rp78] and Kottwitz [Ko92] (see also
[PAF, Chap. 4]). Writing cC for the monoid of totally positive elements in c, giving
data .c; cC/ is equivalent to fix a strict ideal class of c. The Hilbert modular variety
M DM.cI n/ of level n classifies triples .X; ƒ; i/=S formed by

• An abelian scheme � W X ! S of relative dimension m D ŒF W Q over an
A-scheme S (for the fixed algebra A) with an embedding: O ,! End.X=S/;

• An O-linear polarization Xt WD Pic0X=S

ƒ�!� X ˝ c inducing an isomorphism

.c; cC/ Š .HomSym
S .X=S;Xt

=S/;P.X;Xt
=S//, where HomSym

S .X=S;Xt
=S/ is

the O-module of symmetric O-linear homomorphisms and P.X;Xt
=S/ �

HomSym
S .X=S;Xt

=S/ is the positive cone made up of O-linear polarizations;
• A closed O-linear immersion i D in W .Gm˝Z O�/Œn ,! X for the group .Gm˝Z

O�/Œn of n-torsion points of the multiplicative O-module scheme Gm ˝Z O�.

By ƒ, we identify the O-module HomSym
S .X=S;Xt

=S/ of symmetric O-linear homo-
morphisms inside HomS.X=S;Xt

=S/ with c. Then we require that the (multiplicative)
monoid of symmetric O-linear isogenies induced locally by ample invertible sheaves
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be identified with the set of totally positive elements cC � c. The quasi-projective
scheme M D M.cI n/=A is the coarse moduli scheme of the following functor }
from the category of A-schemes into the category SETS:

}.S/ D �.X; ƒ; i/=S
	
;

where Œ  D f g= Š is the set of isomorphism classes of the objects inside the
brackets, and we say .X; ƒ; i/ Š .X0; ƒ0; i0/ if we have an O-linear isomorphism
� W X=S ! X0=S such that ƒ0 D � ı ƒ ı � t and i0� ı � D i�., � ı i D i0/. The
scheme M is a fine moduli scheme if n is sufficiently deep (see [DP94]).

1.2 Geometric Hilbert Modular Forms

In the definition of the functor } in Sect. 1.1, we could impose local OS ˝Z O-
freeness of the OS˝Z O-module ��.�X=S/ as was done by Rapoport in [Rp78]. We
consider an open subfunctor}R of } which is defined by imposing local freeness of
��.�X=S/ over OS˝Z O. Over ZŒ 1DF

 for the discriminant DF of F, the two functors

}R and } coincide (see [DP94]). We write MR.cI n/ for the open subscheme of
M.cI n/ representing }R. For ! with ��.�X=S/ D .OS ˝Z O/!, we consider the
functor classifying quadruples .X; ƒ; i; !/:

Q.S/ D �.X; ƒ; i; !/=S
	
:

We let a 2 TF.S/ D H0.S; .OS˝ZO/�/ act onQ.S/ by .X; ƒ; i; !/ 7! .X; ƒ; i; a!/.
By this action, Q is a TF-torsor over the open subfunctor }R of }; so, Q is
representable by an A-scheme M D M.cI n/ affine over MR D MR.cI n/=A. For
each weight k 2 X�.TF/ D Homgp-sch.TF;Gm/, if F ¤ Q, the k�1-eigenspace of
H0.M=A;OM=A/ is the space of modular forms of weight k integral over a ring
A. We write Gk.c; nIA/ for this space of A-integral modular forms, which is an
A-module of finite type. Thus f 2 Gk.c; nIA/ is a functorial rule (i.e., a natural
transformation f W Q ! Ga) assigning a value in B to each isomorphism class of
.X; ƒ; i; !/=B (defined over an A-algebra B) satisfying the following four conditions:

(G0) the value f at every cusp is finite (see below for its precise meaning);
(G1) f .X; ƒ; i; !/ 2 B if .X; ƒ; i; !/ is defined over B;
(G2) f ..X; ƒ; i; !/˝B B0/ D �.f .X; ƒ; i; !// for each morphism � W B=A ! B0=A;

(G3) f .X; ƒ; i; a!/ D k.a/�1f .X; ƒ; i; !/ for a 2 TF.B/.

Strictly speaking, the condition (G0) is only necessary when F D Q by the Koecher
principle (see below at the end of this subsection for more details). By abusing the
language, we consider f to be a function of isomorphism classes of test objects
.X; ƒ; i; !/=B hereafter. The sheaf of k�1-eigenspace OMŒk�1 under the action of
TF is an invertible sheaf on MR

=A. We write this sheaf as !k (imposing (G0) when
F D Q). Then we have

Gk.c; nIA/ Š H0.MR.cI n/=A; !
k
=A/ canonically,
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as long as MR.cI n/ is a fine moduli space. Writing X WD .X;�; i;!/ for the
universal abelian scheme over MR, s D f .X/!k gives rise to the section of !k.
Conversely, for any section s 2 H0.MR.cI n/; !k/, taking the unique morphism
� W Spec.B/ ! MR such that ��X D X for X WD .X; ƒ; i; !/=B, we can define
f 2 Gk by ��s D f .X/!k.

We suppose that the fractional ideal c is prime to np, and take two ideals a
and b prime to np such that ab�1 D c. To .a; b/, we attach the Tate AVRM
Tatea;b.q/ defined over the completed group ring Z..ab// made of formal series
f .q/ D P

���1 a.�/q� (a.�/ 2 Z). Here � runs over all elements in ab, and there
exists a positive integer n (dependent on f ) such that a.�/ D 0 if �.�/ < �n for
some � 2 I. We write AŒŒ.ab/�0 for the subring of AŒŒab made of formal series f
with a.�/ D 0 for all � with �.�/ < 0 for at least one embedding � W F ,! R.
Actually, we skipped a step of introducing the toroidal compactification of MR

and M (done in [Rp78] and [DP94]), and the universal abelian scheme over the
moduli scheme degenerates to Tatea;b.q/ over the spectrum of (completed) stalk at
the cusp corresponding to .a; b/. The toroidal compactification of the scheme MR

=A
is proper normal by Deligne and Pappas [DP94] and hence by Zariski’s connected
theorem, it is geometrically connected. Since MR is open dense in each fiber of M
(as shown by Deligne and Pappas [DP94]), it is geometrically connected. Therefore
the q-expansion principle holds for H0.MR.cI n/; !k/. We refer details of these facts
to [K78, Chap. I], [C90, DT04, Di03, DP94] [HT93, Sect. 1] and [PAF, Sect. 4.1.4].
The scheme Tatea;b.q/ can be extended to a semi-abelian scheme over ZŒŒ.ab/�0
adding the fiber Gm ˝ a� over the augmentation ideal A. Since a is prime to p,
ap D Op. Thus if A is a Zp-algebra, we have the identity: A˝Z a� D A˝Zp a

�
p D

A˝Zp O�p D A˝Z O�, and we have a canonical isomorphism:

Lie.Tatea;b.q/ mod A/ D Lie.Gm ˝ a�/ Š A˝Z a� D A˝Z O�:

By duality, we have �Tatea;b.q/=AŒŒ.ab/�0 Š AŒŒ.ab/�0: Indeed we have a canon-
ical generator !can of �Tatea;b.q/ induced by dt

t ˝ 1 on Gm ˝ a�. Since a is
prime to n, we have a canonical inclusion .Gm ˝ O�/Œn D .Gm ˝ a�/Œn
into Gm ˝ a�, which induces a canonical closed immersion ican W .Gm ˝
O�/Œn ,! Tatea;b.q/. As described in [K78, (1.1.14)] and [HT93, p. 204],
Tatea;b.q/ has a canonical c-polarizationƒcan. Thus we can evaluate f 2 Gk.c; nIA/
at .Tatea;b.q/;ƒcan; ican; !can/. The value f .q/ D fa;b.q/ actually falls in AŒŒ.ab/�0
(if F ¤ Q : Koecher principle) and is called the q-expansion at the cusp .a; b/.
Finiteness at cusps in the condition (G0) can be stated as

(G00) fa;b.q/ 2 AŒŒ.ab/�0 for all .a; b/.
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1.3 p-Adic Hilbert Modular Forms of Level np1

Suppose that A D lim �n
A=pnA (such a ring is called a p-adic ring) and that n is prime

to p. We consider a functor into sets

b}.A/ D �.X; ƒ; ip; in/=S
	

defined over the category of p-adic A-algebras B D lim �n
B=pnB. An important point

is that we consider an embedding of ind-group schemes ip W 
p1 ˝Zp O�p ,! XŒp1
(in place of a differential!), which inducesbGm˝O�p Š bX for the formal completion
bX along the identity section of the characteristic p-fiber of the abelian scheme X over
A.

We call an AVRM X over a characteristic p ring A p-ordinary if the Barsotti–Tate
group XŒp1 is ordinary; in other words, its (Frobenius) Newton polygon has only
two slopes 0 and 1. In the moduli space M.cI n/=Fp

, locally under Zariski topology,
the p-ordinary locus is an open subscheme of M.cI n/. Indeed, the locus is obtained
by inverting the Hasse invariant (over M.cI n/=Fp

). So, the p-ordinary locus inside

MR.cI n/ is open in MR.cI n/. In the same way as was done by Deligne–Ribet and
Katz for the level p1-structure, we can prove that this functor is representable by the
formal completion bMR.cI n/ of MR.cI n/ along the p-ordinary locus of the modulo
p fiber (e.g., [PAF, Sect. 4.1.9]).

Take a character k 2 ZŒI. A p-adic modular form f=A over a p-adic ring
A is a function (strictly speaking, a functorial rule) of isomorphism classes of
.X; ƒ; ip; in/=B (in W Gm ˝Z O�Œn ,! X) satisfying the following three conditions:

(P1) f .X; ƒ; ip; in/ 2 B if .X; ƒ; ip; in/ is defined over B;
(P2) f ..X; ƒ; ip; in/ ˝B B0/ D �.f .X; ƒ; ip; in// for each continuous A-algebra

homomorphism � W B! B0;
(P3) fa;b.q/ 2 AŒŒ.ab/�0 for all .a; b/ prime to np.

We write V.c; np1IA/ for the space of p-adic modular forms satisfying (P1-3). By
definition, this space V.c; np1IA/ is a p-adically complete A-algebra.

The q-expansion principle is valid both for classical modular forms and p-adic
modular forms f :

(q-exp) The q-expansion: f 7! fa;b.q/ 2 AŒŒ.ab/�0 determines f uniquely.

This follows from the irreducibility of the level p1 Igusa tower, which was proven
in [DR80] (see also [PAF, Sect. 4.2.4] for another argument).

Fix a generator d of O�p . Since bGm ˝ O� has a canonical invariant differential
dt
t ˝d, we have !p D ip;�. dt

t ˝d/ on X=B [under the notation of (P1–3)]. This allows
us to regard f 2 Gk.c; nIA/ as a p-adic modular form by

f .X; ƒ; ip; in/ WD f .X; ƒ; in; !p/:

By (q-exp), this gives an injection of Gk.c; nIA/ into V.c; np1IA/ preserving
q-expansions.
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1.4 Complex Analytic Hilbert Modular Forms

Over C, the category of test objects .X; ƒ; i; !/ is equivalent to the category of
triples .L; ƒ; i/ made of the following data (by the theory of theta functions): L
is an O-lattice in O ˝Z C D C

I , an alternating pairing ƒ W L ^O L Š c� and
i W n�=O� ,! FL=L. The alternating formƒ is supposed to be positive in the sense
thatƒ.u; v/= Im.uvc/ is totally positive definite. The differential! can be recovered
by � W X.C/ D C

I=L so that ! D ��du where u D .u�/�2I is the variable on C
I .

Conversely

LX D
�Z

�

! 2 O˝Z C

ˇ
ˇ
ˇ� 2 H1.X.C/;Z/




is a lattice in C
I , and the polarizationƒ W Xt Š X ˝ c induces LX ^ LX Š c�.

Using this equivalence, we can relate our geometric definition of Hilbert modular
forms with the classical analytic definition. Define Z by the product of I copies of
the upper half complex plane H. We regard Z � F ˝Q C D C

I . For each z 2 Z, we
define

Lz D 2�
p�1.bzCa�/; ƒz.2�

p�1.azCb/; 2�
p�1.czCd// D �.ad�bc/ 2 c�

with iz W n�=O� ! C
I=Lz given by iz.a mod O�/ D .2�p�1a mod Lz/.

Consider the following congruence subgroup �11 .nI a; b/ given by
n�

a b
c d

� 2 SL2.F/
ˇ
ˇ
ˇa; d 2 O; b 2 .ab/�; c 2 nabd and d � 1 2 n

o
:

Write �11 .cI n/ D �11 .nIO; c�1/. We let g D .g�/ 2 SL2.F ˝Q R/ D SL2.R/I act
on Z by linear fractional transformation of g� on each component z� . It is easy to
verify

.Lz; ƒz; iz/ Š .Lw; ƒw; iw/ ” w D �.z/ for � 2 �11 .nI a; b/.

The set of pairs .a; b/with ab�1 D c is in bijection with the set of cusps (unramified
over1) of �11 .nI a; b/. Two cusps are equivalent if they transform to each other by
an element in �11 .nI a; b/. The standard choice of the cusp is .O; c�1/, which we call
the infinity cusp of M.cI n/. For each ideal t, .t; tc�1/ gives another cusp. The two
cusps .t; tc�1/ and .s; sc�1/ are equivalent under �11 .cI n/ if t D ˛s for an element
˛ 2 F� with ˛ 
 1 mod n in F�n . We have

M.cI n/.C/ Š �11 .cI n/nZ; canonically:

Recall G WD ResO=ZGL.2/. Take the following open compact subgroup of
G.A.1//:

U1
1.n/ D

n�
a b
c d

� 2 G.bZ/
ˇ
ˇc 2 nbO and a 
 d 
 1 mod nbO

o
;



140 H. Hida

and put K D K1
1.n/ D

�
d 0
0 1

��1
U1
1.n/

�
d 0
0 1

�
for an idele d with dbO Dbd and dd D 1.

Here for an idele and an O-ideal a ¤ 0, we write xa for the projection of x to
Q

lja F�l
and x.a/ D xx�1a . Then taking an idele c with cbO Dbc and cc D 1, we see that

�11 .cI n/ �
��

c 0
0 1

�
K
�

c 0
0 1

��1 \ G.Q/C
�

for G.Q/C made up of all elements in G.Q/ with totally positive determinant.
Choosing a complete representative set fcg � F�

A
for the strict ray class group

ClCF .n/ modulo n, we find by the approximation theorem that

G.A/ D
G

c2ClCF .n/

G.Q/
�

c 0
0 1

�
K 	 G.R/C

for the identity connected component G.R/C of the Lie group G.R/. This shows

G.Q/nG.A/=KCi Š G.Q/CnG.A/C=KCi Š
G

c2ClCF .n/

M.cI n/.C/; (1)

where G.A/C D G.A.1//G.R/C and Ci is the stabilizer of i D .p�1; : : : ;p�1/ 2
Z in G.R/C. By (1), a ClCF .n/-tuple .fc/c with fc 2 Gk.c; nIC/ can be viewed as a
single automorphic form defined on G.A/.

Recall the identification X�.TF/ with ZŒI so that k.x/ D Q
� �.x/

k� for k DP
� k�� 2 ZŒI. Regarding f 2 Gk.c; nIC/ as a function of z 2 Z by f .z/ D

f .Lz; ƒz; iz/, it satisfies the following automorphic property:

f .�.z// D f .z/
Y

�

.c� z� C d�/k� for all � D � a b
c d

� 2 �11 .cI n/. (2)

The holomorphy of f follows from the functoriality (G2). The function f has the
Fourier expansion

f .z/ D
X

�2.ab/�0

a.�/eF.�z/

at the cusp corresponding to .a; b/. Here eF.�z/ D exp.2�
p�1P� �

� z� /. This
Fourier expansion gives the q-expansion fa;b.q/ substituting q� for eF.�z/.

1.5 �0-Level Structure and Hecke Operators

We now assume that the base algebra A is a W-algebra. Choose a prime q of F. We
are going to define Hecke operators U.qn/ and T.1; qn/ assuming for simplicity that
q − pn, though we may extend the definition to arbitrary q (see [PAF, Sect. 4.1.10]).
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Then XŒqr is an étale group scheme over B if X is an abelian scheme over an A-
algebra B. We call a subgroup C � X cyclic of order qr if C Š O=qr over an étale
faithfully flat extension of B.

We can think of quintuples .X; ƒ; i;C; !/=S adding an additional information
C of a cyclic subgroup scheme C � X cyclic of order qr. We define the space
of classical modular forms Gk.c; n; �0.q

r/IA/ (resp. the space V.c; np1; �0.qr/IA/
of p-adic modular forms) of prime-to-p level .n; �0.qr// by (G0-3) [resp. (P1-
3)] replacing test objects .X; ƒ; i; !/ [resp. .X; ƒ; in; ip/] by .X; ƒ; i;C; !/ [resp.
.X; ƒ; in;C; ip/].

Our Hecke operators are defined on the space of prime-to-p level .n; �0.qr//.
The operator U.qn/ is defined only when r > 0 and T.1; qn/ is defined only when
r D 0. For a cyclic subgroup C0 of X=B of order qn, we can define the quotient
abelian scheme X=C0 with projection � W X ! X=C0. The polarization ƒ and the
differential ! induce a polarization ��ƒ and a differential .��/�1! on X=C0. If
C0 \ C D f0g (in this case, we call that C0 and C are disjoint), �.C/ gives rise to
the level �0.qr/-structure on X=C0. Then we define U.q/-operators acting on f 2
V.cqnI np1; �0.qr/IA/ by

f jU.qn/.X; ƒ;C; in;C; ip/ D 1

N.qn/

X

C0

f .X=C0; ��ƒ;� ı in; �.C/; � ı ip/ (3)

where C0 runs over all cyclic subgroups of order qn disjoint from C. Since ��ƒ D
� ı ƒ ı � t is a cqn-polarization, the modular form f has to be defined for abelian
varieties with cqn-polarization.

As for T.1; qn/, since q − n, forgetting the �0.qn/-structure, we define T.1; qn/

acting on f 2 V.cqnI np1IA/ by

f jT.1; qn/.X; ƒ; in; ip/ D 1

N.qn/

X

C0

f .X=C0; ��ƒ;�ıin; �ıip/ if f 2 V.A/, (4)

where C0 runs over all cyclic subgroups of order qn. We check that f jU.qn/ [resp.
T.1; qn/ belongs to V.cqnI np1; �0.qr/IA/ [resp. V.cqnI np1IA/], and compatible
with the natural inclusion Gk.c; n; �0.q

r/IA/ ,! V.cqnI np1; �0.qr/IA/ [resp.
Gk.c; nIA/ ,! V.cqnI np1IA/] defined at the end of Sect. 1.3; so, these Hecke
operators preserve classicality. We have

U.qn/ D U.q/n:

1.6 Hilbert Modular Shimura Varieties

We extend the level structure i limited to n-torsion points to far bigger structure
�.p/ including all prime-to-p torsion points. Let Z.p/ D Q \ Zp (the localization
of Z at .p/). Triples .X; ƒ; �.p//=S for Z.p/-schemes S are classified by an integral
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model Sh.p/=Z.p/ (cf. [Ko92]) of the Shimura variety Sh=Q associated with the algebraic
Z.p/-group G (in the sense of Deligne [D71, 4.22] interpreting Shimura’s original
definition in [Sh70] as a moduli of abelian schemes up to isogenies). Here the
classification is up to prime-to-p isogenies, and ƒ is an equivalence class of
polarizations up to multiplication by totally positive elements in F prime to p.

To give a description of the functor represented by Sh.p/, we introduce some more
notations. We consider the fiber category A.p/

F over schemes defined by

(Object) abelian schemes X with real multiplication by O;
(Morphism) HomA.p/

F
.X;Y/ D Hom.X;Y/˝Z Z.p/.

Isomorphisms in this category are isogenies with degree prime to p (called “prime-
to-p isogenies”), and hence the degree of polarizationƒ is supposed to be also prime
to p. Two polarizations are equivalent if ƒ D cƒ0 D ƒ0 ı i.c/ for a totally positive
c prime to p. We fix an O-lattice L � V D F2 with O-hermitian alternating pairing
h	; 	i inducing a self-duality on Lp D L˝Z Zp.

For an open-compact subgroup K of G.A.1// maximal at p (i.e., K D G.Zp/ �
K.p/), we consider the following functor from Z.p/-schemes into SETS:

}
.p/
K .S/ D

h
.X; ƒ; �.p//=S with (det)

i
: (5)

Here �.p/ W L ˝Z A
.p1/ Š V.p/.X/ D T.X/ ˝Z A

.p1/ is an equivalence class
of �.p/ modulo multiplication �.p/ 7! �.p/ ı k by k 2 K.p/ for the Tate module
T.X/ D lim �n

XŒn (in the sheafified sense that �.p/ 
 .�0/.p/ mod K étale-locally),

and aƒ 2 ƒ induces the self-duality on Lp. As long as K.p/ is sufficiently small, }.p/K
is representable over any Z.p/-algebra A (cf. [Ko92, DP94] and [Z14, Sect. 3]) by a
scheme ShK=A D Sh=K, which is smooth over Spec.Z.p// if p is unramified in F=Q
and singular if pjDF but is smooth outside a closed subscheme of codimension 2 in
the p-fiber Sh.p/�Z.p/ Fp by the result of [DP94]. We let g 2 G.A.p1// act on Sh.p/=Z.p/
by

x D .X; ƒ; �/ 7! g.x/ D .X; ƒ; � ı g/;

which gives a right action of G.A/ on Sh.p/ through the projection G.A/ �
G.A.p1//.

By the universality, we have a morphism M.cI n/! Sh.p/=b�11.cI n/ for the open

compact subgroup: b�11.cI n/ D
�

c 0
0 1

�
K1
1.n/

�
c 0
0 1

��1 D �
cd�1 0
0 1

�
U1
1.n/

�
cd�1 0
0 1

��1

maximal at p. The image of M.cI n/ gives a geometrically irreducible component
of Sh.p/=b�11.cI n/. If n is sufficiently deep, we can identify M.cI n/ with its image
in Sh.p/=b�11.cI n/. By the action on the polarization ƒ 7! ˛ƒ for a suitable totally
positive ˛ 2 F, we can bring M.cI n/ into M.˛cI n/; so, the image of lim �n

M.cI n/
in Sh.p/ only depends on the strict ideal class of c in lim �nWnC.p/DO

ClCF .n/.
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1.7 Level Structure with “Neben” Character

In order to make a good link between classical modular forms and adelic automor-
phic forms (which we will describe in the following subsection), we would like to
introduce “Neben” characters. We fix an integral ideal n0 � O. We think of the
following level structure on an AVRM X:

i W .Gm ˝ O�/Œn0 ,! XŒn0 and i0 W XŒn0 � O=n0; (6)

where the sequence

1! .Gm ˝ O�/Œn0 i�! XŒn0 i0�! O=n0 ! 0 (7)

is exact and is required to induce a canonical duality between .Gm ˝ O�/Œn0 and
O=n0 under the polarization ƒ. Here, if n0 D .N/ for an integer N > 0, a canonical
duality pairing

h	; 	i W .Gm ˝ O�/ŒN �O=N ! 
N

is given by h� ˝ ˛;m˝ ˇi D �mTr.˛ˇ/ for .˛; ˇ/ 2 O� �O and .�;m/ 2 
N � Z=N
identifying .Gm ˝ O�/ŒN D 
N ˝ O� and O=N D .Z=NZ/ ˝Z O. In general,
taking an integer 0 < N 2 n0, the canonical pairing between .Gm ˝ O�/Œn0 and
O=n0 is induced by the one for .N/ via the canonical inclusion .Gm ˝ O�/Œn0 ,!
.Gm ˝ O�/ŒN and the quotient map O=.N/ � O=n0.

We fix two characters �1 W .O=n0/� ! A� and �2 W .O=n0/� ! A�, and we insist
for f 2 Gk.c; nIA/ on the version of (G0-3) for quintuples .X; ƒ; i 	 a; d 	 i0; !/ and
the equivariancy:

f .X; ƒ; i 	 d; a 	 i0; !/ D �1.d/�2.a/f .X; ƒ; i; i0; !/ for a; d 2 .O=n/�. (Neben)

Here the order �1.d/�2.a/ is correct as the diagonal matrix
�

d 0
0 a

�
in T�.O=n0/ �

GL2.O=n0/ acts on the quotient O=n0 by a and the submodule .Gm ˝ O�/Œn0 by
d. The ordering of �1; �2 is normalized with respect to the Galois representation
local at p of f (when f is a p-ordinary Hecke eigenform so that �1 as a Galois
character corresponds to the quotient character of the local Galois representation;
see (Ram) in Sect. 1.11). Here ƒ is the polarization class modulo equivalence
relation given by multiplication by totally positive numbers in F prime to p. We
write Gk.c; �0.n/; �IA/ (� D .�1; �2/) for the A-module of geometric modular forms
satisfying these conditions.
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1.8 Adelic Hilbert Modular Forms

Let us interpret what we have said so far in automorphic language and give a
definition of the adelic Hilbert modular forms and their Hecke algebra of level n
(cf. [H96, Sects. 2.2–4] and [PAF, Sects. 4.2.8–4.2.12]).

We consider the following open compact subgroup of G.A.1//:

U0.n/ D
n�

a b
c d

� 2 G.bZ/
ˇ
ˇc 
 0 mod nbO

o
;

U1
1.n/ D

n�
a b
c d

� 2 U0.n/
ˇ
ˇa 
 d 
 1 mod nbO

o
; (8)

where bO D O˝Z
bZ andbZ D Q` Z`. Then we introduce the following semi-group

�0.n/ D
n�

a b
c d

� 2 G.A.1// \M2.bO/
ˇ
ˇc 
 0 mod nbO; dn 2 O�n

o
; (9)

where dn is the projection of d 2 bO to On WD Qqjn Oq for prime ideals q. Recall the
maximal diagonal torus T� of GL.2/=O. Putting

D0 D
n
diagŒa; d D � a 0

0 d

� 2 T�.FA.1/ /\M2.bO/
ˇ
ˇdn D 1

o
; (10)

we have (e.g., [MFG, 3.1.6] and [PAF, Sect. 5.1])

�0.n/ D U0.n/D0U0.n/: (11)

In this section, the group U is assumed to be a subgroup of U0.np˛/ with U �
U1
1.np˛/ for some 0 < ˛ � 1. Formal finite linear combinations

P
ı cıUıU

of double cosets of U in �0.np˛/ form a ring R.U; �0.np˛// under convolution
product (see [IAT, Chap. 3] or [MFG, Sect. 3.1.6]). Recall the prime element $q

of Oq for each prime q fixed in the introduction. The algebra is commutative and
is isomorphic to the polynomial ring over the group algebra ZŒU0.np˛/=U with
variables fT.q/;T.q; q/gq. Here T.q/ (resp. T.q; q/ for primes q − np˛) corresponds
to the double coset U

�
$q 0

0 1

�
U (resp. U0$qU). The group element u 2 U0.np˛/=U

in the group algebra ZŒU0.np˛/=U corresponds to the double coset UuU (cf. [H95,
Sect. 2]).

As in the introduction, we extend �j to a character of .F.1/
A
/� � bO� �Qq$

Z

q

trivial on the factor
Q

q$
Z

q , and denote the extended character by the same symbol
�j. In [HMI, (ex0–3)], �2 is extended as above, but the extension of �1 taken there

is to keep the identity �C D �1�2 over .F.1/
A
/�. The present extension is more

convenient in this paper.
The double coset ring R.U; �0.np˛// naturally acts on the space of modular

forms on U. We now recall the action (which is a slight simplification of the action
of ŒUxU given in [HMI, (2.3.14)]). Recall the diagonal torus T� of GL.2/=O; so,
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T� D G
2
m=O. Since T�.O=n0/ is canonically a quotient of U0.n

0/ for an ideal n0, a

character � W T�.O=n0/ ! C
� can be considered as a character of U0.n

0/. If �j is
defined modulo nj, we can take n0 to be any multiple of n1\n2. Writing �

��
a 0
0 d

�� D
�1.a/�2.d/, if �� D �1��12 factors through .O=n/� for for an ideal njn0, then we can
extend the character � of U0.n

0/ to �0.n/ by putting �.ı/ D �1.det.ı//.��/�1.dn/

for ı D �
a b
c d

� 2 �0.n/ (as before). In this sense, we hereafter assume that � is
defined modulo n and regard � as a character of the group U0.n/ and the semi-group
�0.n/. Recall that �C W F�

A
! C

� is a Hecke character trivial on F� with infinity
type .1� Œ�/I (for an integer Œ�) such that �C.z/ D �1.z/�2.z/ for z 2 bO�.

Recall the set I of all embeddings of F into Q and T�F for ResO=ZT� (the diagonal
torus of G). Then the group of geometric characters X�.T�F / is isomorphic to ZŒI2

so that .m; n/ 2 ZŒI2 send diagŒx; y 2 T�F to xmyn D Q
�2I.�.x/

m� �.y/n� /. Taking
� D .�1; �2/ 2 ZŒI2, we assume Œ�I D �1 C �2, and we associate with � a factor
of automorphy:

J�.g; �/ D det.g1/�1�I j.g1; �/�2��1CI for g 2 G.A/ and � 2 Z. (12)

We define S�.U; �IC/ for an open subgroup U � U0.n/ by the space of functions
f W G.A/ ! C satisfying the following three conditions (e.g., [HMI, (SA1–3)] and
[PAF, Sect. 4.3.1]):

(S1) f.˛xuz/ D �.u/�C.z/f.x/J�.u; i/�1 for ˛ 2 G.Q/, u 2 U 	 Ci and z 2 Z.A/.
(S2) Choose u 2 G.R/ with u.i/ D � for � 2 Z, and put fx.�/ D f.xu/J�.u; i/ for

each x 2 G.A.1// (which only depends on �). Then fx is a holomorphic function
on Z for all x.

(S3) fx.�/ for each x is rapidly decreasing as �� !1 (� D � C i�) for all � 2 I
uniformly.

If we replace the expression “rapidly decreasing” in (S3) by “slowly increasing,” we
get the definition of the space G�.U; �IC/. It is easy to check (e.g., [HMI, (2.3.5)]
that the function fx in (S2) satisfies

f .�.�// D ��1.x�1�x/f .�/J�.�; �/ for all � 2 �x.U/, (13)

where�x.U/ D xUx�1G.R/C\G.Q/. Also by (S3), fx is rapidly decreasing towards
all cusps of �x; so, it is a cusp form. If we restrict f as above to SL2.FA/, the
determinant factor det.g/�1�I in the factor J�.g; �/ disappears, and the automorphy
factor becomes only dependent on k D �2 � �1C I 2 ZŒI; so, the classical modular
form in Gk has single digit weight k 2 ZŒI. Via (1), we have an embedding of
S�.U0.n

0/; �IC/ into Gk.�0.n
0/; �IC/ D L

Œc2ClCF
Gk.c; �0.n

0/; �IC/ (c running

over a complete representative set prime to n0 for the strict ideal class group ClCF )
bringing f into .fc/Œc for fc D fx [as in (S3)] with x D �

cd�1 0
0 1

�
(for d 2 F�

A
with

dbO Dbd). The cusp form fc is determined by the restriction of f to x	SL2.FA/. Though
in (13), ��1 shows up, the Neben character of the direct factor Gk.c; �0.n

0/; �IC/ is
given by �, since in (Neben), the order of .a; d/ is reversed to have �1.d/�2.a/. If we
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vary the weight � keeping k D �2 � �1 C I, the image of S� in Gk.�0.n
0/; �IC/

transforms accordingly. By this identification, the Hecke operator T.q/ for non-
principal q makes sense as an operator acting on a single space G�.U; �IC/, and
its action depends on the choice of �.

It is known that G� D 0 unless �1C�2 D Œ�1C�2I for Œ�1C�2 2 Z, because I�
.�1C �2/ is the infinity type of the central character of automorphic representations
generated by G� . We write simply Œ� for Œ�1 C �2 2 Z assuming G� ¤ 0. The
SL.2/-weight of the central character of an irreducible automorphic representation
� generated by f 2 G�.U; �IC/ is given by k (which specifies the infinity type of
�1 as a discrete series representation of SL2.FR/).

In the introduction, we have extended �j to .F.1/
A
/� and � to �0.n/ (as long as

�� is defined modulo n), and we have �.ı/ D �1.det.ı//.��/�1.dn/ for ı D � a b
c d

� 2
�0.n/. Let U be the unipotent algebraic subgroup of GL.2/=O defined by U.A/ D˚�

1 a
0 1

� ˇˇa 2 A
�
: Note here that U.bO/ � Ker.�/; so, �.tu/ D �.t/ if t 2 D0 and u 2

U.bO/. For each UyU 2 R.U; �0.np˛//, we decompose UyU D F
t2D0;u2U.bO/ utU

for finitely many u and t (see [IAT, Chap. 3] or [MFG, Sect. 3.1.6]) and define

fjŒUyU.x/ D
X

t;u

�.t/�1f.xut/: (14)

We check that this operator preserves the spaces of automorphic forms: G�.n; �IC/
and S�.n; �IC/, and depends only on UyU not the choice of y as long as y 2 D0.
However it depends on the choice of $q as the character � (extended to �0.n/)
depends on $q. This action for y with yn D 1 is independent of the choice of the
extension of � to T�.FA/. When yn ¤ 1, we may assume that yn 2 D0 � T�.FA/,
and in this case, t can be chosen so that tn D yn (so tn is independent of single right
cosets in the double coset). If we extend � to T�.F.1/

A
/ by choosing another prime

element$ 0q and write the extension as �0, then we have

�.tn/ŒUyU D �0.tn/ŒUyU0;

where the operator on the right-hand side is defined with respect to �0. Thus the sole
difference is the root of unity �.tn/=�0.tn/ 2 Im.�jT�.O=n0//. Since it depends on the
choice of$q, we make the choice once and for all, and write T.q/ for

�
U
�
$q 0

0 1

�
U
	

(if q − n), which coincides with T.1; q/ in (4) if q − n0. By linearity, these actions of
double cosets extend to the ring action of the double coset ring R.U; �0.np˛//.

To introduce rationality of modular forms, we recall Fourier expansion of adelic
modular forms (cf. [HMI, Proposition 2.26]). Recall the embedding �1 W Q ,! C,
and identify Q with the image of �1. Recall also the differential idele d 2 F�

A
with

d.d/ D 1 and dbO D dbO. Each member f of S�.U; �IC/ has its Fourier expansion:

f
� y x
0 1

� D jyjA
X

0	�2F

c.�yd; f/.�y1/��1eF.i�y1/eF.�x/; (15)



Growth of Hecke Fields Along a p-Adic Family 147

where eF W FA=F! C
� is the additive character with eF.x1/ D exp.2�i

P
�2I x� /

for x1 D .x� /� 2 R
I D F ˝Q R. Here y 7! c.y; f/ is a function defined on y 2 F�

A

only depending on its finite part y.1/. The function c.y; f/ is supported by the set
.bO � F1/\ F�

A
of integral ideles.

Let FŒ� be the field fixed by f� 2 Gal.Q=F/j�� D �g, over which the character
� 2 X�.T�F / is rational. Write OŒ� for the integer ring of FŒ�. We also define
OŒ�; � for the integer ring of the field FŒ�; � generated by the values of � over FŒ�.
For any FŒ�; �-algebra A inside C, we define

S�.U; �IA/ D
˚
f 2 S�.U; �IC/

ˇ
ˇc.y; f/ 2 A as long as y is integral

�
: (16)

As we have seen, we can interpret S�.U; �IA/ as the space of A-rational global
sections of a line bundle of a variety defined over A; so, by the flat base-change
theorem (e.g., [GME, Lemma 1.10.2]),

S�.n; �IA/˝A C D S�.n; �IC/: (17)

The Hecke operators preserve A-rational modular forms (cf. (23) below). We define
the Hecke algebra h�.U; �IA/ � EndA.S�.U; �IA// by the A-subalgebra generated
by the Hecke operators of R.U; �0.np˛//. Thus for any Qp-algebras A, we may
consistently define

S�.U; �IA/ D S�.U; �IQ/˝Q;�p
A: (18)

By linearity, y 7! c.y; f/ extends to a function on F�
A
� S�.U; �IA/ with values in A.

For u 2 bO�, we know from [HMI, Proposition 2.26]

c.yu; f/ D �1.u/c.y; f/: (19)

If f is a normalized Hecke eigenform, its eigenvalue a.y; f/ of T.y/ is given by
�1.y/�1c.y; f/ which depends only on the ideal y WD ybO \ F by the above formula
as claimed in the introduction. We define the q-expansion coefficients (at p) of f 2
S�.U; �IA/ by

cp.y; f/ D y��1p c.y; f/: (20)

The formal q-expansion of an A-rational f has values in the space of functions on
F�
A.1/ with values in the formal monoid algebra AŒŒq� �2FC

of the multiplicative
semi-group FC made up of totally positive elements, which is given by

f.y/ D N .y/�1
X

��0
cp.�yd; f/q� ; (21)

where N W F�
A
=F� ! Q

�
p is the character given by N .y/ D y�I

p jy.1/j�1A .
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We now define for any p-adically complete OŒ�; �-algebra A in Cp

S�.U; �IA/ D
˚
f 2 S�.U; �ICp/

ˇ
ˇcp.y; f/ 2 A for integral y

�
: (22)

As we have already seen, these spaces have geometric meaning as the space of
A-integral global sections of a line bundle defined over A of the Hilbert modular
variety of level U, and the q-expansion above for a fixed y D y.1/ gives rise to
the geometric q-expansion at the infinity cusp of the classical modular form fx for
x D � y 0

0 1

�
(see [H91, (1.5)] and [PAF, (4.63)]).

We have chosen a complete representative set fcigiD1;:::;h in finite ideles for the
strict idele class group F�nF�

A
=bO�F�1C, where h is the strict class number of F.

Let ci D ciO. Write ti D
�

cid�1 0
0 1

�
and consider fi D fti as defined in (S2). The

collection .fi/iD1;:::;h determines f , because of the approximation theorem. Then
f.cid�1/ gives the q-expansion of fi at the Tate abelian variety with ci-polarization
Tatec�1

i ;O.q/ (ci D ciO). By (q-exp), the q-expansion f.y/ determines f uniquely.
We write T.y/ for the Hecke operator acting on S�.U; �IA/ corresponding to the

double coset U
�

y 0
0 1

�
U for an integral idele y. We renormalize T.y/ to have a p-

integral operator T.y/: T.y/ D y��1p T.y/. Since this only affects T.y/ with yp ¤ 1,
T.q/ D T.$q/ D T.q/ if q − p. However depending on weight, we can have
T.p/ ¤ T.p/ for primes pjp. The renormalization is optimal to have the stability
of the A-integral spaces under Hecke operators. We define hqi D N.q/T.q; q/ with
T.q; q/ D ŒU$qU for q − n0p˛ (n0 D n1 \ n2), which is equal to the central action
of a prime element$q of Oq times N.q/ D j$qj�1A . We have the following formula
of the action of T.q/ (e.g., [HMI, (2.3.21)] or [PAF, Sect. 4.2.10]):

cp.y; fjT.q// D
(

cp.y$q; f/C cp.y$�1q ; fjhqi/ if q − np

cp.y$q; f/ otherwise,
(23)

where the level n of U is the ideal maximal under the condition: U1
1.n/ � U �

U0.n/. Thus T.$q/ D .$q/
��1
p U.q/ when q is a factor of the level of U (even when

qjp; see [PAF, (4.65–66)]). Writing the level of U as np˛, we assume

either pjnp˛ or Œ� � 0, (24)

since T.q/ and hqi preserve the space S�.U; �IA/ under this condition (see [PAF,
Theorem 4.28]). We define the Hecke algebra h�.U; �IA/ [resp. h�.n; �CIA/]
with coefficients in A by the A-subalgebra of the A-linear endomorphism algebra
EndA.S�.U; �IA// [resp. EndA.S�.n; �CIA//] generated by the action of the finite
group U0.np˛/=U, T.q/ and hqi for all q.
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1.9 Hecke Algebras

We have canonical projections:

R.U1
1.np˛;�0.np˛// � R.U; �0.np˛// � R.U0.npˇ/;�0.npˇ//

for all ˛ � ˇ taking canonical generators to the corresponding ones, which are
compatible with inclusions

S�.U0.npˇ/; �IA/ ,! S�.U; �IA/ ,! S�.U
1
1.np˛/; �IA/:

We decompose O�p D ��� as in the introduction and hence G D ����.O=n0/�.
We fix � and �C and the initial � D .�1; �2; �C/. We suppose that �j (j D 1; 2)
factors through G=� D � � .O=n0/� for n0 prime to p. We write n for a factor
of n0 such that �� is defined modulo npr0CIp for pr0CIp D Q

pjp pr0;pC1 for a multi-
index r0 D .r0;p/p with p running over prime factors of p. Then we get a projective
system of Hecke algebras fh�.U; �IA/gU (U running through open subgroups of
U0.npr0C1/ containing U1

1.np1/), whose projective limit (when �2 � �1 � I) gives
rise to the universal Hecke algebra h.n; �IA/ for a complete p-adic algebra A. We
have a continuous character T W bO� ! h.n; �IA/ given by u 7! T.u/ where
fjT.u/.x/ D �1.u/�1f

�
x
�

u 0
0 1

��
for u 2 bO� (here T.u/ is the Hecke operator T.y/

taking y D u as the double coset U
�

u 0
0 1

�
U is equal to the single coset U

�
u 0
0 1

�
).

This character T factors through � D G=.� � .O=n0/�/ and induces a canonical
algebra structure of h.n; �IA/ over AŒŒ� .

Let W be a sufficiently large complete discrete valuation ring inside Qp (as
before). Define WŒ� � Qp by the W-subalgebra generated by the values of � (over
the finite adeles). It has canonical generators T.y/ overƒ D WŒŒ� . Here note that
the operator hqi acts via multiplication by N.q/�C.q/ for the fixed central character
�C, where N.q/ D jO=qj.

The (nearly) p-ordinary projector e D limn T.p/nŠ gives an idempotent of the
Hecke algebras h�.U; �IW/, h�.np˛; �CIW/ and h.n; �CIW/. By adding superscript
“n.ord,” we indicate the algebra direct summand of the corresponding Hecke algebra
cut out by e; e.g., hn.ord

� .np˛; �CIW/ D e.h�.np˛; �CIW//. We simply write h for
hn.ord D hn.ord.n; �CIW/. The algebra hn.ord is by definition the universal nearly p-
ordinary Hecke algebra overƒ of level np1 with “Neben character” �. This algebra
hn.ord.n; �IW/ is exactly the one h. C;  0/ employed in [HT93, p. 240] (note that
in [HT93] we assumed �1 � �2 reversing our normalization here).

The algebra hn.ord.n; �IW/ is a torsion-freeƒ-algebra of finite rank. Take a point
P 2 Spf.ƒ/.Qp/. If P is arithmetic, �P D P�.P/�1 is a character of � . By abusing
a symbol, we write �P for the character .�P;1; �P;2; �C/ given by �P;j on � and �j

on � � .O=n0/�. Writing the conductor of ��P jO�
p

as pf .P/, we define r.P/ � 0 by

pr.P/CIp D pf .P/ \ p. Here r.P/ is an element of ZŒIp; so, r.P/ D P
pjp r.P/pp

indexed by prime factors pjp, and we write Ip for f1gpjp. Therefore r.P/ C Ip DP
p.r.P/p C 1/p. As long as P is arithmetic, we have a canonical specialization

morphism:
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hn.ord.n; �CIW/˝ƒ;P WŒ�P � hn.ord
�.P/ .npr.P/CIp; �CIWŒ�P/;

which is an isogeny and is an isomorphism if hn.ord.n; �CIW/ is ƒ-free [PAF,
Sect. 4.2.11] (note in [PAF] the order of �j is reversed so that �1 > �2). The
specialization morphism takes the generators T.y/ to T.y/.

1.10 Analytic Families of Hecke Eigenforms

In summary, for a fixed � and �C, we have the algebra h D hn.ord.n; �CIW/
characterized by the following two properties:

(C1) h is torsion-free of finite rank overƒ equipped with T.l/ D T.$l/;T.y/ 2 h
for all primes l prime to p and y 2 Op \ F�p ,

(C2) if �2 � �1 � I and P is an arithmetic point of Spec.ƒ/.Qp/, we have a sur-
jective W-algebra homomorphism: h˝ƒ;P WŒ�P/! hn.ord

�.P/ .npr.P/CIp; �CIWŒ�P/

with finite kernel, sending T.l/˝ 1 to T.l/ (and T.y/˝ 1 to T.y/).

Actually, if p � 5 and p − j�j, in (C1), quite plausibly, h would be free overƒ (not
just torsion-free), and we would have an isomorphism in (C2) (this fact holds true
under unramifiedness of p � 5 in F=Q; see [PAF, Corollary 4.31]), but we do not
need this stronger fact.

By fixing an isomorphism � Š Z
m
p with m D ŒFp W Qp, we have identified

ƒ D ƒW with WŒŒT1; : : : ;Tm for fti D 1C TigiD1;:::;m corresponding to a Zp-basis
f�igiD1;:::;m of � . Regard �2 as a character of O�p whose value at � 2 O�p is

��2 D
Y

�2I

�.�/�2;� :

We may write an arithmetic prime P as a primeƒ-ideal

P D .ti � �2.�i/
�1��2i /ƒWŒ� \ƒW :

When �2 D kI for an integer k, � 7! ��2 is given by � 7! N.�/k for the norm
map N D NFp=Qp on O�p . For a point P 2 Spec.ƒ/.Qp/ killing .ti � ��1i �

�2
i / for

�i 2 
p1.W/, we make explicit the character �P. First we define a character �P;2;� W
O�p ! 
p1.W/ factoring through � D O�p =� by �P;2;� .�i/ D �i for all i. Then for

the fixed �C, we put �P;1;� D .�Cj�/��1P;2;� . With the fixed data �.�/1 WD �1j.O=n0/���
and �.�/2 WD �2j.O=n0/���, we put �P;j D �j;P;��

.�/
j . In this way, we form �P D

.�P;1; �P;2; �
C/.

Let Spec.I/ be a reduced irreducible component Spec.I/ � Spec.h/. Since h
is torsion-free of finite rank over ƒ, Spec.I/ is a finite torsion-free covering of
Spec.ƒ/. Write a.y/ and a.l/ for the image of T.y/ and T.l/ in I (so, a.$p/ is
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the image of T.$p/). We also write a.y/ for the image of T.y/; so, a.y/ D y��1p a.y/.

If P 2 Spec.I/.Qp/ induces an arithmetic point P0 of Spec.ƒ/, we call it again an
arithmetic point of Spec.I/, and put �j.P/ D �j.P0/. If P is arithmetic, by (C2), we
have a Hecke eigenform fP 2 S�.P/.U0.npr.P/CIp/; �PIQp/ such that its eigenvalue
for T.l/ and T.y/ is given by aP.l/ WD P.a.l//; aP.y/ WD P.a.y// 2 Qp for all l
and y 2 F�p . Thus I gives rise to a family F D FI D ffPjarithmetic P 2 Spec.I/g
of classical Hecke eigenforms. We call this family a p-adic analytic family of p-
slope 0 (with coefficients in I) associated with an irreducible component Spec.I/ �
Spec.h/. There is a sub-family corresponding to any closed integral subscheme
Spec.J/ � Spec.I/ as long as Spec.J/ has densely populated arithmetic points.
Abusing our language slightly, for any covering � W Spec.eI/ � Spec.I/, we will
consider the pulled back family FeI D ffP D f�.P/jarithmetic P 2 Spec.eI/g. The
choice ofeI is often the normalization of I or the integral closure of I in a finite
extension of the quotient field of I.

Identify Spec.I/.Qp/ with HomW-alg.I;Qp/ so that each element a 2 I gives rise
to a “function” a W Spec.I/.Qp/! Qp whose value at .P W I! Qp/ 2 Spec.I/.Qp/

is aP WD P.a/ 2 Qp. Then a is an analytic function of the rigid analytic space
associated with Spf.I/. We call such a family p-slope 0 because jaP.$p/jp D 1 for
the p-adic absolute value j 	 jp of Qp for all pjp (it is also called a p-ordinary family).

1.11 Modular Galois Representations

Each (reduced) irreducible component Spec.I/ of the Hecke spectrum Spec.h/ has
a 2-dimensional semi-simple (actually absolutely irreducible) continuous represen-
tation �I of Gal.Q=F/ with coefficients in the quotient field of I (see [H86a] and
[H89]). The representation �I restricted to the p-decomposition group Dp (for each
prime factor pjp) is reducible (see [HMI, Sect. 2.3.8]). Define the p-adic avatar
b�C W .F.1/A

/�=F� ! Q
�
p byb�C.y/ D �C.y/yI��1��2

p (note here y1 D 1 as F.1/
A

is
made of finite adales in FA). We write �ss

I
for its semi-simplification over Dp. As is

well known now (e.g., [HMI, Sect. 2.3.8]), �I is unramified outside np and satisfies

Tr.�I.Frobl// D a.l/ for all prime l − pn. (Gal)

By (Gal) and Chebotarev density, Tr.�I/ has values in I; so, for any integral
closed subscheme Spec.J/ � Spec.I/ with projection � W I ! J, � ı Tr.�I/ W
Gal.Q=F/ ! J gives rise to a pseudo-representation of Wiles (e.g., [MFG,
Sect. 2.2]). Then by a theorem of Wiles, we can make a unique 2-dimensional semi-
simple continuous representation �J W Gal.Q=F/! GL2.Q.J// unramified outside
np with Tr.�J.Frobl// D �.a.l// for all primes l − np, where Q.J/ is the quotient
field of J. If Spec.J/ is one point P 2 Spec.I/.Qp/, we write �P for �J. This is
the Galois representation associated with the Hecke eigenform fP (given in [H89]).
As for p-ramification, the restriction of �I to the decomposition group at a prime
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pjp is reducible. Taking � 2 Gal.Qp=Fp/ whose restriction to the maximal abelian
extension of Fp is the Artin symbol Œu;Fp, we have by Hida [H89]

�P.�/ �
�
�2;P.u/u��2 �

0 �1;P.u/u��1

�
for u 2 O�p and �P.�/ �

� � �
0 aP.u/

�
for u 2 Op � f0g.

(Ram)

Thus Œu;Fp 7! �1;P.u/u��1 is the quotient character at p (and in this way, �j (j D
1; 2) are ordered).

1.12 CM Theta Series

Following the description in [H06, Sect. 6.2], we construct CM theta series with
p-slope 0 and describe the CM component which gives rise to such theta series
(the construction was first made in [HT93]). We first recall a cusp form f on G.A/
with complex multiplication by a CM field M top down without much proof. By
computing its classical Fourier expansion, we can confirm that f is a cusp form. Let
M=F be a CM field with integer ring OM and choose a CM type †:

IM D Homfield.M;Q/ D † t†c

for complex conjugation c. To assure the p-slope 0 condition, we need to assume
that the CM type † is p-ordinary, that is, the set †p of p-adic places induced by
�p ı� for � 2 † is disjoint from†pc (its conjugate by the generator c of Gal.M=F/).
The existence of such a p-ordinary CM type implies that each prime factor pjp of
F split in M=F. Thus the set IM;p of p-adic places of M is given by †p t†c

p. Write
p D PPc in OM for two primes P ¤ Pc such that P 2 †p is induced by �p ı � on
M for � 2 †. For each k 2 ZŒI and X D †; IM , we write kX DP�2X k� jF� .

We choose �2 � �1 � I with �1 C �2 D Œ�I for an integer Œ�. We then choose a
Hecke ideal character � of conductor CPe (C prime to p) such that

�..˛// D ˛c�1†C�2† for ˛ 2 M� with ˛ 
 1 mod CPeOM;CPe in
Y

ljCPe

Ml,

wherePe DQP2†p
Pe.P/Pce.Pc/ for e DPP2†p

.e.P/PCe.Pc/Pc/ and OM;a DQ
lja OMl for an integral ideal a of OM .
We now recall a very old idea of Weil (and history) to lift the ideal character �

to an “idele” Hecke character: Q� W M�
A
=M� ! C

� following to Weil (who invented
this identification of two types of Hecke characters in [W55] as a part of the theory
of complex multiplication of abelian varieties, established by himself together with
Shimura and Taniyama in the Tokyo–Nikko symposium in 1955). For the moment,
we write Q� for the lifted idele character following [W55], but once it is defined,
we just write simply � for the idele and the ideal characters removing the tilde “˜",
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following the more recent tradition. We write .M.CPe1/
A

/� WD fx 2 M�
A
jx1 D

xl D 1g for all primes ljCPe. For an idele x 2 .M.CPe1/
A

/� whose CPe1-
component is trivial, we require Q�.x/ WD �.xOM/, where xOM D M \ xbOM inside
.M.1/

A
/� D fx 2 M�

A
jx1 D 1g (which is a fractional ideal prime to CPe). At the

infinity component M�1 D .M ˝A R/� DQ�2†C
�, for x1 D .x�/�2† requiring

Q�.x1/ D x��2†�c�1†1 WD
Y

�2†
x��2;��c�2;�c
� ;

we get a continuous character Q� W .M.CPe1/
A

/� � M�1 ! C
�. We consider

M�.M.CPe1/
A

/�M�1 � M�
A

which is a dense subgroup of M�
A

, and in particular,

we have M�
A
D U.CPe/.M.CPe1/

A
/�M�1, where U.a/ D bO�M \ 1 C abOM for an

OM-ideal a. We can extend Q� to the entire idele group M�
A

so that Q�.M�/ D 1. To
verify this point, we only need to show Q�.˛/ D 1 for ˛ 2 M� \U.CPe/M�1 inside
M�

A
. Since the CPe component of ˛ 2 M�

A
is in U.CPe/, we check ˛CPe 
 1

mod CPe, and hence, writing .˛/ D xOM for x D ˛.CP
e1/ 2 .M.CPe1/

A
/� (the

projection of ˛ 2 M�
A

to .M.CPe1/
A

/�), we have Q�.x˛1/ D �..˛//˛��2†�c�1† D 1.

By continuity, this extension Q� of � to the dense subgroup M�.M.CPe1/
A

/�M�1
extends uniquely to the entire idele group M�

A
which is trivial on M�U.CPe/.

Hereafter, we just use the symbol � for Q� (as identifying the ideal character � with
the corresponding idele character Q�).

If we need to indicate that C is the prime-to-p conductor of �, we write C.�/ for
C. We also decompose C D Q

L Le.L/ for prime ideals L of M. We extend � to a

p-adic idele character b� W M�
A
=M�M�1 ! Q

�
p so that b�.a/ D �.aO/a��2†�c�1†

p .

By class field theory, for the topological closure M�M�1 in M�
A

, M�
A
=M�M�1 is

canonically isomorphic to the Galois group of the maximal abelian extension of
M; so, this is the first occurrence in the history (again due to Weil [W55]) of the
correspondence between an automorphic representation � D Q� of GL1.MA/ and the
Galois representationb�. Pulling back to Gal.F=M/, we may regardb� as a character
of Gal.F=M/. Any character ' of Gal.F=M/ of the formb� as above is called “of
weight �”. For a prime ideal L of M outside p, we write �L for the restriction ofb�
to M�L; so, �L.x/ D b�.x/ D �.x/ for x 2 M�L. For a prime ideal Pjp of M, we put

�P.x/ D b�.x/x�2†Cc�1† D �.x/ for x 2 M�P. In particular, for the prime Pjp with

P 2 †p, we have �P.x/ D b�.x/x�2†p for x 2 M�P, and �Pc.x/ D b�.x/xc�1†p for
x 2 M�Pc . Then �L for all prime ideals L (including those above p) is a continuous

character of M�L with values in Q whose restriction to theL-adic completion O�M;L of

OM is of finite order. By the condition �1 ¤ �2,b� cannot be of the formb� D �ıNM=F

for an idele character � W F�
A
=F�F�1C ! Q

�
p .

We define a function .F.1/
A
/� 3 y 7! c.y; 	.�// supported by integral ideles by

c.y; 	.�// D
X

x2.M.1/
A

/�;xxcDy

�.x/ if y is integral, (25)
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where x runs over elements in M�
A
=.bO.CPe/

M /� satisfying the following four condi-
tions: (0) x1 D 1, (1) xOM is an integral ideal of M, (2) NM=F.x/ D y and (3)
xQ D 1 for prime factors Q of the conductor CPe. The q-expansion determined
by the coefficients c.y; 	.�// gives a unique element 	.�/ 2 S�.n	 ; �0�IQ/ ([HT93,
Theorem 6.1] and [HMI, Theorem 2.72]), where n	 D NM=F.CP

e/d.M=F/ for the
discriminant d.M=F/ of M=F and �0� is a suitable “Neben” character. We have

(C) The central character ��C of the automorphic representation �.�/ generated

by 	.�/ is given by the product: x 7! �.x/jxjA
�

M=F
x

�
for x 2 F�

A
and the

quadratic character
�

M=F
�

of the CM quadratic extension M=F.

Recall here that � W M�
A
! C

� is trivial on M� as �1.x1/ D x��2†�c�1†1 , and
hence ��C

is a continuous character of the idele class group F�
A
=F�.

We describe the Neben character �� D .��;1; ��;2; ��C/ of the minimal form f.�/
in the automorphic representation �.�/. For that, we choose a decomposition C D
FFcI so that FFc is a product of split primes and I for the product of inert or ramified
primes, FC Fc D OM and F � Fc

c, where F could be strictly smaller than Fc
c. If we

need to make the dependence on � of these symbols explicit, we write F.�/ D F,
Fc.�/ D Fc and I.�/ D I. We put f D F \ F and i D I \ F. Define ��.a/ D
�.ac�1/ (with ac�1 D aca�1), and write its conductor as C.��/. Decompose as
above C.��/ D F.��/Fc.��/I.��/ so that we have the following divisibility of
radicals

p
F.��/jpF.�/ and

p
Fc.��/j

p
Fc.�/. Let TM D ResOM=OGm. The l-

component ��;j;l (j D 1; 2) of the character ��;j is given as follows:

(hk1) For ljf, we identify TM.Ol/ D O�M;L � O�M;Lc with this order for the prime
ideal Lj.lOM\F/ and define ��;1;l���;2;l by the restriction of �L��Lc to TM.Ol/.

(hk2) For P 2 †p, we identify TM.Op/ D O�MP
�O�MPc and define ��;1;p� ��;2;p

by the restriction of �P � �Pc to TM.Op/.
(hk3) For lj.I.�/ \ O/d.M=F/ but l − .I.��/ \ O/, we can choose a character
�l W F�l ! C

� such that �L D �l ı NML=Fl . Then we define ��;1;l.a/ D�
ML=Fl

a

�
�l.a/ and ��;2;l.d/ D �l.d/, where L is the prime factor of l in M and

�
ML=Fl

d

�
is the character of ML=Fl.

(hk4) For lj.I.��/\O/, ��;1;l D ��C;ljO�
l

and ��;2;l D 1 for the central character
��C given in (C).

We now give an explicit description of the automorphic representation �.�/. In
Cases (hk1–3), taking a prime Ljl in M, we have

�p.�/ Š

8
ˆ̂
<

ˆ̂
:

�.�L; �Lc/ in Case (hk1),

�.�P; �Pc/ in Case (hk2),

�.
�

ML=Fl

�
�l; �l/ in Case (hk3).

(26)
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In Case (hk4), �l.�/ is the super-cuspidal representation giving rise to
IndFl

Ml
b�jGal.Fl=Ml/

.
To describe of f.�/, we split n	 into a product of co-prime ideals nnc and ncusp so

that nnc is made up of primes in Cases (hk1–3). For ljnnc, writing �l.�/ D �.�l; �0l/
for characters �l; �0l W F�l ! C

�, we write Cl for the conductor of ��1l �0l. Define the
minimal level of �.�/ by

n.�/ D ncusp

Y

ljnnc

Cl;

where l runs over primes satisfying one of the three conditions (hk1–3). Put

„ D fLjL � F
Y

P2†p

P;L � n.�/g

for primes L of M. Then the minimal form f.�/ has the following q-expansion
coefficient:

cp.y; f.�// D
(P

xxcDy;x„D1b�.x/ if y is integral,

0 otherwise,
(27)

where x runs over .bOM \ M�
A.1/ =.O

.„/
M /� with xL D 1 for L 2 „. See [H06,

Sect. 6.2] for more details of this construction (though in [H06], the order of .�1; �2/
is interchanged so that �1 > �2).

1.13 CM Components

We fix a Hecke character � of type � as in the previous subsection, and we continue
to use the symbols defined above. We may regard the Galois character b� as a
character of ClM.Cp1/.

We consider the ray class group ClM.C.��/p1/ modulo C.��/p1. Since
��.ac/ D .��/�1.a/, we have C.��/ D C.��/c. Thus Gal.M=F/ D hci acts natu-
rally on ClM.C.��/p1/. We define the anticyclotomic quotient of ClM.C.��/p1/
by

Cl�M.C.��/p1/ WD ClM.C.�
�/p1/=ClM.C.�

�/p1/1Cc:

We have canonical identities:

O�
M;p D O�

M;P �O�
M;Pc D O�

p � O�
p and O�

M;p WD .OM ˝Z Zp/
� D O�

M;†p
� O�

M;†c
p
D O�

p � O�
p
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on which c acts by interchanging the components. Here OM;X D Q
P2X OM;P

for X D † and †c. The natural inclusion O�M;p=O�M ,! Cl.C.��/p1/ induces
an inclusion � ,! Cl�M.C.��/p1/. Decompose Cl�M.C.��/p1/ D �M � �M

with the maximal finite subgroup �M so that �M � � . Then � is an open
subgroup in �M . In particular, WŒŒ�M is a regular domain finite flat over ƒW .
Thus we call P 2 Spec.WŒŒ�M/.Qp/ arithmetic if P is above an arithmetic point
of Spec.ƒW/.Qp/. Regard the tautological character

� W ClM.Cp1/
projection�����! �M ,! WŒ�M

�

as a Galois character � W Gal.M=M/! WŒ�M
�.

The composite �P D P ı � for an arithmetic point P 2 Spec.WŒŒ�M/

is of the form b'P for a Hecke character 'P with p-type �0P;2†p C �0P;1†c
p for

�0P D .�0P;1; �0P;2/ 2 ZŒIp
2 satisfying �2 C �0P;2 � .�1 C �0P;1/ � Ip. Assume that

b� has values in W� (enlarging W if necessary). We then consider the productb�� W
Gal.M=M/! WŒŒ�M

� and �WŒŒ�M  WD IndF
M
b�� W Gal.M=M/! GL2.WŒŒ�M/.

Define IM � WŒŒ�M by the ƒW -subalgebra generated by Tr.�WŒŒ�M /. Then we
have the localization identity IM;P D WŒŒ�MP for any arithmetic point P (this
follows from the irreducibility of �P D P ı �WŒŒ�M  D IndF

M
b��P; e.g., [H86b,

Theorem 4.3]).
Let h D hn.ord.n.�/; ��CIW/, which is a torsion-free finiteƒW -algebra. We have

a surjective projection �� W h ! IM sending T.l/ to Tr.�WŒŒ� .Frobl// for primes l
outside n.�/. Thus Spec.IM/ is an irreducible component of Spec.h/. In particular,
�IM D �WŒŒ�M . In the same manner as in [HMI, Proposition 3.78], we prove the
following fact:

Proposition 1.1. Let the notation be as above. Then for the reduced part hred of
h and each arithmetic point P 2 Spec.ƒW/.Qp/, Spec.hred

P / is finite étale over
Spec.ƒP/. In particular, no irreducible components cross each other at a point
above an arithmetic point of Spec.ƒW/.

A component I is called a CM component if there exists a nontrivial character
� W Gal.Q=F/ ! I

� such that �I Š �I ˝ �. We also say that I has complex
multiplication if I is a CM component. In this case, we call the corresponding family
F a CM family (or we say F has complex multiplication). It is known essentially by
deformation theory of Galois characters (cf. [H11, Sect. 4]) that any CM component
is given by Spec.IM/ as above for a specific choice of �.

If F is a CM family associated with I with �I Š �I ˝ �, then � is a quadratic
character of Gal.Q=F/ which cuts out a CM quadratic extension M=F, i.e., � D�

M=F
�

. WriteeI for the integral closure of ƒW inside the quotient field of I. The

following three conditions are known to be equivalent:

(CM1) F has CM and �I Š �I ˝
�

M=F
�

(, �I Š IndF
M ‰ for a character

‰ WDb�� W Gal.Q=M/! Q.I/� for the quotient field Q.I/ of I);
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(CM2) For all arithmetic P of Spec.I/.Qp/, fP is a binary theta series of the norm
form of M=F;

(CM3) For some arithmetic P of Spec.I/.Qp/, fP is a binary theta series of the
norm form of M=F.

Since the characteristic polynomial of �I.�/ has coefficients in I, its eigenvalues fall
ineI; so, the character ‰ has values ineI� (see [H86b, Corollary 4.2]). Then, (CM1)
is equivalent to �I Š IndF

M ‰ for a character ‰ W Gal.Q=M/ ! eI� unramified
outside Np (e.g., [MFG, Lemma 2.15]). Then by (Gal) and (Ram), ‰P D P ı ‰ W
Gal.Q=M/ ! Q

�
p for an arithmetic P 2 Spec.eI/.Qp/ is a locally algebraic p-adic

character, which is the p-adic avatar of a Hecke character �P W M�
A
=M� ! C

� of
type A0 of the quadratic extension M=F . Then by the characterization (Gal) of �I, fP is
the theta series f.�/, where a runs over all integral ideals of M. By �2.P/��1.P/ � I
(and (Gal)), M has to be a CM field in which p is split (as the existence of Hecke
characters of infinity type corresponding to such �.P/ forces that M=F is a CM
quadratic extension). This shows (CM1))(CM2))(CM3). If (CM2) is satisfied,
we have an identity Tr.�I.Frobl// D a.l/ D �.l/a.l/ D Tr.�I ˝ �.Frobl// with

� D
�

M=F
�

for all primes l outside a finite set of primes (including prime factors

of n.�/p). By Chebotarev density, we have Tr.�I/ D Tr.�I˝ �/, and we get (CM1)
from (CM2) as �I is semi-simple. If a component Spec.I/ contains an arithmetic
point P with theta series fP of M=F as above, either I is a CM component or
otherwise P is in the intersection in Spec.h/ of a component Spec.I/ not having CM
by M and another component having CM by M (as all families with CM by M are
made up of theta series of M by the construction of CM components as above). The
latter case cannot happen as two distinct components never cross at an arithmetic
point in Spec.h/ (i.e., the reduced part of the localization hP is étale over ƒP for
any arithmetic point P 2 Spec.ƒ/.Qp/; see Proposition 1.1). Thus (CM3) implies
(CM2). We call a binary theta series of the norm form of a CM quadratic extension
of F a CM theta series.

Remark 1.2. If Spec.J/ is an integral closed subscheme of Spec.I/, we write the
associated Galois representation as �J. By abuse of language, we say J has CM by

M if �J Š �J ˝
�

M=F
�

. Thus (CM3) is equivalent to having �P with CM for some

arithmetic point P. More generally, if we find some arithmetic point P in Spec.J/
and �P has CM, J and I have CM.

2 Weil Numbers

Since Q sits inside C, it has “the” complex conjugation c. For a prime l, a Weil
l-number ˛ 2 Q of integer weight k � 0 is defined by the following two
properties:

(1) ˛ is an algebraic integer;
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(2) j˛� j D lk=2 for all � 2 Gal.Q=F/ for the complex archimedean absolute
value j 	 j.

Note that Q.˛/ is in a CM field finite over Q (e.g., [Ho68, Proposition 4]), and the
Weil l-number is realized as the Frobenius eigenvalue of a CM abelian variety over
a finite field of characteristic l. We call two nonzero numbers a; b 2 Q equivalent
(written as a � b) if a=b is a root of unity. We say that Weil numbers ˛ and ˇ are
p-equivalent if ˛=ˇ 2 
p1.Q/. Here is an improvement of [H11, Corollary 2.5]
proved as [H14, Corollary 2.2]:

Proposition 2.1. Let d be a positive integer. Let Kd be the set of all finite extensions
of K D QŒ
p1  of degree d inside Q. If l ¤ p, there are only finitely many Weil

l-numbers of a given weight in the set-theoretic union
S

L2Kd
L� .in Q

�
/ up to p-

equivalence.

Let L=F be a finite field extension inside Cp with integer ring OL as in the
introduction. Recall TL D ResOL=ZGm (in the sense of [NMD, Sect. 7.6, Theorem 4])
and a morphism � 2 Homgp scheme.TL;TF/ in the introduction. Define an integral
domain R D R� by the subalgebra of ƒ generated over Z.p/ by the image G of
�.O�L;.p// \ TF.Zp/ projected down to � . If � ¤ 1, �.O�L;.p// \ TF.Zp/ contains

G0 WD f�N j� 2 Z
�
.p/g for some 0 < N 2 Z. Replacing N by its suitable multiple,

G0 is a free Z-module of infinite rank. Since R� Š Z.p/ŒG (the group algebra of
G), R� contains a polynomial ring over Z.p/ (isomorphic to Z.p/ŒG0) with infinitely
many variables, and Q.R�/ has infinite transcendental degree over Q (if � ¤ 1). For
any arithmetic point P and � 2 R� , the value �P 2 Cp falls in LgalŒ
N ; 
p1  for the
Galois closure Lgal of L=Q and N D j�j. For example, if F D Q and L D Q with
the identity � W Gm Š Gm, taking �1 D 1Cp for p D 4 if p D 2 and p D p if p > 2,
we have G D ftlogp.�/= logp.�1/j� 2 Z.p/g; so, P.tlogp.�/= logp.�1// D ��2!.��2 /�1� for
P D .t � ���21 /, where ! is the Teichmüller character (N D p � 1 for F D Q and
odd p). Note that ��2 has values in Lgal instead of L. Recall the algebraic closure Q
(we fixed) of the quotient field Q ofƒ.

Proposition 2.2. Let I be a finite normal extension of ƒ inside Q and regard R D
R� � ƒ as a subalgebra of I. Let A � I be an R-subalgebra of finite type whose
quotient field Q.A/ is a finite extension of the quotient field Q.R/ of R. Regarding an
arithmetic point P 2 Spec.I/ as an algebra homomorphism P W I ! Qp, write AP

(resp. RP) for the composite of the image P.A/ [resp. P.R/] with Q.
p1/ inside Qp.
Then there exists a closed subscheme E of codimension at least 1 of Spec.I/ such
that there are finitely many Weil l-numbers of a given weight in

S
P 62E AP � Q up to

p-power roots of unity, where P runs over all arithmetic points of Spec.I/ outside E.

Proof. We may assume that A D RŒa (i.e., A is generated over R by a single element
a). The generator a 2 A satisfies an equation f .x/ D a0xnCa1xn�1C	 	 	Can 2 RŒx
with a0 ¤ 0. Then the zero locus E of a0 is a closed formal subscheme of
codimension at least 1. Since arithmetic points are Zariski dense in Spec.I/, we
have a plenty of arithmetic points outside E (i.e., the set arithmetic points outside
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E is infinite). Thus as long as P.a0/ ¤ 0, we have ŒAP W RP � n. Since
RP � LgalŒ
N ; 
p1 , we have ŒRP W Q.
p1/ � B for a constant B independent
of arithmetic P outside E. Thus ŒAP W Q.
p1/ is bounded independently by
d WD nB for all arithmetic P 62 E. Then we can apply Proposition 2.1 and get
the desired result. ut

3 Theorems and Conjectures

Hereafter,

(W) we fix � 2 ZŒI2 with �2 � �1 � I.

Though the weight � is fixed, the character �P is a variable (so, we have densely
populated arithmetic points P 2 Spec.I/ with �.P/ D �). Let f 2 S�.nprCIp ; �IW/
be a Hecke eigenform with fjT.y/ D a.y; f/f for all y. We normalize f so that
c.1; f/ D 1. For a prime l − p, we write fjT.l/ D .˛l C ˇl/f and ˛lˇl D �.l/lfl if
l − nprC1 (˛l; ˇl 2 Q), where fl is the degree of the field O=l over the prime field Fl.
If ljn, we put ˇl D 0 and define ˛l 2 Q by fjU.l/ D ˛lf. Then the Hecke polynomial
Hl.X/ D .1� ˛lX/.1� ˇlX/ gives the Euler l-factor of L.s; f/ DPn a.n; f/N.n/�s

after replacing X by jO=lj�s D N.l/�s and inverting the resulted factor. Here n runs
over all integral ideals of F.

Let F D ffPgP2Spec.I/.Cp/ be a p-adic analytic family of p-ordinary Hecke eigen
cusp forms of p-slope 0. The function P 7! a.y; fP/ is a function on Spec.I/ in
the structure sheaf I; so, it is a formal (and analytic) function of P. We write
˛l;P; ˇl;P for ˛l; ˇl for fP. We write ˛p;P for a.p; fP/ D a.$p; fP/. In particular,
the field FŒ�Œ
Np1 Œ˛p;P (for the field FŒ� of rationality of � defined in Sect. 1.8)
is independent of the choice of $p (as long as $p is chosen in F). By a result
of Blasius [B02] (and by an earlier work of Brylinski–Labesse), writing j�1j WD
max� .j�1;� j/, N.l/j�1j˛l;P is a Weil l-number of weight .Œ�C 2j�1j/fl for fl given by
jO=lj D lfl . Thus ˛l;P is a generalized Weil number in the sense of [H13, Sect. 2].

We state the horizontal theorem in a form different from the theorem in the
introduction:

Theorem 3.1. Let K D Q.
p1/. Suppose that there exist a subset † of primes of
F with positive upper density outside np and an infinite set Al � Spec.I/.Qp/ of
arithmetic points P of the fixed weight � as in (W) such that ŒK.˛l;P/ W K � Bl for
all P 2 Al with a bound Bl for each l 2 † (possibly dependent on l). If the Zariski
closure Al in Spec.I/ contains an irreducible subscheme Spec.J/ of dimension
r � 1 independent of l 2 † with Zariski-dense Al \ Spec.J/ in Spec.J/, then I

has complex multiplication.

In the above theorem, � is independent of l but Bl and Al can be dependent on l.
By replacing Al by a suitable infinite subset of Al \ Spec.J/, we may assume that
Al is irreducible with dimension r independent of l. By extending W if necessary,
we may assume that Spec.J/ is geometrically irreducible. From the proof of this
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theorem given in Sect. 6, it will be clear that we can ease the assumption of the
theorem so that � is also dependent on l.

Let R� be as in Proposition 2.2 for a number field L. Then we have the following
result which implies Corollary I in the introduction:

Corollary 3.2. Let the notation be as in Proposition 2.2 and in the above theorem.
Let † be a set of primes of F with positive upper density. Let Spec.I/ be a reduced
irreducible component of Spec.h/, and assume that I is a finite extension ofƒ inside
Q. If there exists a pair .L; �/ of a finite extension L=F and a homomorphism � 2
Homgpscheme.TL;TF/ such that the ring R�Œa.l/ generated over R� by a.l/ inside
Q has quotient field Q.R�Œa.l// finite over the quotient field Q.R�/ for all l 2 †,
then I has complex multiplication.

Proof. Applying Proposition 2.2 to Al D R�Œa.l/, we take Al to be the set of the
arithmetic points outside the closed subscheme El for R�Œa.l/ in Proposition 2.2.
Then the Zariski closure of Al is the entire Spec.I/ as El has codimension at least
1. Thus the assumption of the theorem is satisfied for Al for all l 2 †. Therefore,
the above theorem tells us that I has CM. ut

This corollary implies

Corollary 3.3. Suppose that I is a non-CM component. Let .L; �/ be a pair of finite
extension of F and � 2 Homgpscheme.TL;TF/. Then, for a density one set of primes
„ of F outside pn, the ring R�Œa.l/ � Q for each l 2 „ generated over R� � Q by
a.l/ inside Q has quotient field of transcendental degree one over Q.R�/ in Q.

Proof. Let „ be the set of primes l of F made up of l with a.l/ transcendental over
Q.R�/ (as a.l/ 62 W: non-constancy). Let † be the complement of „ outside pn. If
† has positive upper density, by Corollary 3.2, I has complex multiplication by a
subfield of L, a contradiction. Thus† has upper density 0, and hence„ has density
1. ut

By Theorem 3.1, we get the following corollary:

Corollary 3.4. Let A be an infinite set of arithmetic points of Spec.I/ of fixed
weight �. Then there exists a subset † of primes of F with upper positive density
such that ŒK.a.l; fP// W K for l 2 † is bounded over A if and only if fP is a CM
theta series for an arithmetic P with k.P/ � I.

By the argument given after [H11, Conjecture 3.4], one can show ŒK.a.l; fP// W K
is bounded independently of arithmetic points P 2 Spec.I/ if fP0 is square-integrable
at a prime l − p (so, ljn) for one arithmetic P0. Further, if a prime l is a factor of n
(so l − p) and fP (or more precisely the automorphic representation generated by fP)
is Steinberg (resp. super-cuspidal) at l for an arithmetic point P, then all members
of F are Steinberg (resp. super-cuspidal) at l (see the remark after Conjecture 3.4 in
[H11]). Take a prime l − n of O with ˛l;P ¤ 0 for some P (so, l can be equal to p).
If l − np, replacing I by a finite extension, we assume that det.T � �I.Frobl// D 0

has roots in I. Since ˛l;P ¤ 0 for some P (and hence ˛l;P is a p-adic unit), fP is not
super-cuspidal at l for any arithmetic P.



Growth of Hecke Fields Along a p-Adic Family 161

Conjecture 3.5. Let the notation be as in Corollary 3.4. Let A be an infinite subset
of arithmetic points in Spec.I/ of fixed weight �. Then limP2AŒK.a.l; fP// W K <1
for a single prime l of F if and only if either I has complex multiplication or the
automorphic representation generated by fP is square integrable at l − p for a single
P 2 A.

4 Rigidity Lemmas

We study formal subschemes of bG WD bGn
m stable under the action of t 7! tz for all z

in an open subgroup U of Z�p . The following lemma and its corollary were proven
in [H13]. For the reader’s convenience (and to make the paper self-contained), we
recall the statements and their proof.

Lemma 4.1. Let X D Spf.X / be a closed formal subscheme of bG D bGn
m=W flat

geometrically irreducible over W (i.e., X \Qp D W). Suppose there exists an open

subgroup U of Z�p such that X is stable under the action bG 3 t 7! tu 2 bG for all
u 2 U. If there exists a subset� � X.Cp/\
n

p1 .Cp/ Zariski dense in X, then ��1X
is a formal subtorus for some � 2 �.

Proof. Let Xsh be the scheme associated with X given by Spec.X /. Define Xs

to be the singular locus of Xsh D Spec.X / over W, and put Xı D Xsh n Xs.
The scheme Xs is actually a closed formal subscheme of X. To see this, we note,
by the structure theorem of complete noetherian rings, that X is finite over a
power series ring WŒŒX1; : : : ;Xd � X for d WD dimW X (cf. [CRT, Sect. 29]).
The sheaf of continuous differentials �X =Spf.WŒŒX1;:::;Xd / with respect to the formal
Zariski topology of X is a torsion X -module, and Xs is the support of the sheaf of
�X =Spf.WŒŒX1;:::;Xd / (which is a closed formal subscheme of X). The regular locus of
Xı is open dense in the generic fiber Xsh

=K WD Xsh �W K of Xsh (for the field K of

fractions of W). Then �ı WD Xı \� is Zariski dense in Xsh
=K .

In this proof, by making scalar extension, we always assume that W is sufficiently
large so that for � 2 � we focus on, we have � 2 bG.W/ and that we have a plenty
of elements of infinite order in X.W/ and in Xı.K/\ X.W/, which we simply write
as Xı.W/ WD Xı.K/\ X.W/.

Note that the stabilizer U� of � 2 � in U is an open subgroup of U. Indeed, if the
order of � is equal to pa, then U� D U\ .1C pa

Zp/. Thus making a variable change
t 7! t��1 (which commutes with the action of U�), we may assume that the identity
1 of bG is in �ı.

Let bGan, Xan, and Xs
an be the rigid analytic spaces associated with bG, X, and

Xs (in Berthelot’s sense in [dJ95, Sect. 7]). We put Xıan D Xan n Xs
an, which is an

open rigid analytic subspace of Xan. Then we apply the logarithm log W bGan.Cp/!
C

n
p D Lie.bGan

=Cp
/ sending .tj/j 2 bGan.Cp/ (the p-adic open unit ball centered at

1 D .1; 1; : : : ; 1/) to .logp.tj//j/ 2 C
n
p for the p-adic Iwasawa logarithm map logp W
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C
�
p ! Cp. Then for each smooth point x 2 Xı.W/, taking a small analytic open

neighborhood Vx of x (isomorphic to an open ball in Wd for d D dimW X) in Xı.W/,
we may assume that Vx D Gx \ Xı.W/ for an n-dimensional open ball Gx in bG.W/
centered at x 2 bG.W/. Since �ı ¤ ;, log.Xı.W// contains the origin 0 2 C

n
p. Take

� 2 �ı. Write T� for the Tangent space at � of X. Then T� Š Wd for d D dimW X.
The space T� ˝W Cp is canonically isomorphic to the tangent space T0 of log.V�/
at 0.

If dimW X D 1, there exists an infinite order element t1 2 X.W/. We may (and
will) assume that U D .1 C pb

Zp/ for 0 < b 2 Z. Then X is the (formal) Zariski

closure tU
1 of

tU
1 D ft1Cpbz

1 jz 2 Zpg D t1ftpbz
1 jz 2 Zpg;

which is a coset of a formal subgroup Z. The group Z is the Zariski closure of

ftpbz
1 jz 2 Zpg; in other words, regarding tu

1 as a W-algebra homomorphism tu
1 W X !

Cp, we have t1Z D Spf.Z/ for Z D X=
T

u2U Ker.tu
1/. Since tU

1 is an infinite set,
we have dimW Z > 0. From geometric irreducibility and dimW X D 1, we conclude
X D t1Z and Z Š bGm. Since X contains roots of unity � 2 � � 
n

p1.W/, we
confirm that X D �Z for � 2 �\
n

pb0 for b0 � 0. This finishes the proof in the case

where dimW X D 1.
We prepare some result (still assuming d D 1) for an induction argument on d

in the general case. Replacing t1 by tpb

1 for b as above if necessary, we have the
translation Zp 3 s 7! �ts

1 2 Z of the one parameter subgroup Zp 3 s 7! ts
1. Thus

we have log.t1/ D dts1
ds jsD0 2 T� , which is sent by “log W bG ! C

n
p” to log.t1/ 2 T0.

This implies that log.t1/ 2 T0 and hence log.t1/ 2 T� for any � 2 �ı (under the
identification of the tangent space at any x 2 bG with Lie.bG/). Therefore T�’s over
� 2 �ı can be identified canonically. This is natural as Z is a formal torus, and the
tangent bundle on Z is constant, giving Lie.Z/.

Suppose now that d D dimW X > 1. Consider the Zariski closure Y of tU for
an infinite order element t 2 V� (for � 2 �ı). Since U permutes finitely many
geometrically irreducible components, each component of Y is stable under an open
subgroup of U. Therefore Y D S � 0T�0 is a union of formal subtori T�0 of dimension
� 1, where � 0 runs over a finite set inside 
n

p1.Cp/ \ X.Cp/. Since dimW Y D 1,
we can pick T�0 of dimension 1 which we denote simply by T . Then T contains tu

for some u 2 U. Applying the argument in the case of dimW X D 1 to T , we find
u log.t/ D log.tu/ 2 T� ; so, log.t/ 2 T� for any � 2 �ı and t 2 V� . Summarizing
our argument, we have found

(T) The Zariski closure of tU in X for an element t 2 V� of infinite order contains
a coset �T of one dimensional subtorus T , �pb D 1 and tpb 2 T for some b > 0;

(D) Under the notation as above, we have log.t/ 2 T� .

Moreover, the image V� of V� in bG=T is isomorphic to .d � 1/-dimensional open
ball. If d > 1, therefore, we can find t0 2 V� of infinite order. Pulling back t0 to
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t0 2 V� , we find log.t/; log.t0/ 2 T� , and log.t/ and log.t0/ are linearly independent
in T� . Inductively arguing this way, we find infinite order elements t1; : : : ; td in V�
such that log.ti/ span over the quotient field K D Q.W/ of W the tangent space
T�=K D T� ˝W K ,! T0 (for any � 2 �ı). We identify T1=K � T0 with T�=K � T0.
Thus the tangent bundle over Xı=K is constant as it is constant over the Zariski dense
subset �ı. Therefore Xı is something close to an open dense subscheme of a coset
of a formal subgroup. We pin-down this fact that Xı is a coset of a formal scheme.

Take tj 2 V� as above (j D 1; 2; : : : ; d) which give rise to a basis f@j D log.tj/gj of
the tangent space of T�=K D T1=K. Note that tu

j 2 X and u@j D log.tu
j / D u log.tj/ 2

T1=K for u 2 U. The embedding log W V� ,! T1 � Lie.bG=W/ is surjective onto a
open neighborhood of 0 2 T1 (by extending scalars if necessary). For t 2 V� , as
t! �, log.t/! 0. Thus by replacing t1; : : : ; td inside V� with elements in V� closer
to �, we may assume that log.ti/˙ log.tj/ for all i ¤ j belong to log.V�/.

So, for each pair i ¤ j, we can find ti˙j 2 V� such that log.tit˙1j / D log.ti/ ˙
log.tj/ D log.ti˙j/. The element log.ti˙j/ is uniquely determined in log.bGan.Cp// Š
bGan.Cp/=


n
p1.Cp/. Thus we conclude � 0i˙jtit

˙1
j D ti˙j for some � 0i˙j 2 
n

pN for

sufficiently large N. Replacing X by its image under the p-power isogeny bG 3 t 7!
tpN 2 bG and ti by tpN

i , we may assume that tit˙1j D ti˙j all in X. Since tU
i � X, by

(T), for a sufficiently large b 2 Z, we find a one dimensional subtorusbHi containing

tpb

i such that �ibHi � X with some �i 2 
n
pb for all i. Thus again replacing X by the

image of the p-power isogeny bG 3 t 7! tpb 2 bG, we may assume that the subgroup
bH (Zariski) topologically generated by t1; : : : ; td is contained in X. Since flog.ti/gi
is linearly independent, we conclude dimW bH � d D dimW X, and hence X must
be the formal subgroup bH of bG. Since X is geometrically irreducible, bH D X is a
formal subtorus. Pulling it back by the p-power isogenies we have used, we conclude
X D �bH for the original X and � 2 
n

pbN .W/. Since � is Zariski dense in X, we may
assume that � 2 �. This finishes the proof. ut
Corollary 4.2. Let W be a complete discrete valuation ring in Cp. Write WŒŒT D
WŒŒT1; : : : ;Tn for the tuple of variables T D .T1; : : : ;Tn/. Let

bG WD bGn
m D Spf.1WŒt1; t

�1
1 : : : ; tn; t

�1
n /;

and identify1WŒt1; t�11 : : : ; tn; t�1n  with WŒŒT for tj D 1C Tj. Let ˆ.T1; : : : ;Tn/ 2
WŒŒT. Suppose that there is a Zariski dense subset � � 
n

p1.Cp/ in bG.Cp/ such
that ˆ.� � 1/ 2 
p1.Cp/ for all � 2 �. Then there exists �0 2 
p1.W/ and z D
.zj/j 2 Z

n
p with zj 2 Zp such that ��10 ˆ.t/ D Qj.tj/

zj , where .1C T/x DP1jD0
�x

j

�
Tj

with x 2 Zp.

Proof. Pick � D .�j/ 2 �. Making variable change T 7! ��1.T C 1/ � 1 (i.e.,
Tj 7! ��1j .TjC 1/� 1 for each j) replacing W by its finite extension if necessary, we
may replace� by ��1� 3 1; so, rewriting ��1� as �, we may assume that 1 2 �.
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Then ˆ.0/ D �0 2 
p1 . Thus again replacing ˆ by ��10 ˆ, we may assume that
ˆ.0/ D 1.

For � 2 Gal.K.
p1/=K/ with the quotient field K of W, ˆ.�� � 1/ D ˆ.� �
1/� . Writing �.�/ D ˆ.� � 1/, the above identity means �.��/ D �.�/� . Identify
Gal.K.
p1/=K/with an open subgroup U of Z�p . This is possible as W is a discrete
valuation ring, while WŒ
p1  is not. Writing �u 2 Gal.K.
p1/=K/ for the element
corresponding to u 2 U, we find that

ˆ ı u.� � 1/ D ˆ.�u � 1/ D ˆ.��u � 1/ D ˆ.� � 1/�u D u ıˆ.� � 1/:

We find that uı� D �ıu is valid on the Zariski dense subset� of Spec.WŒŒT/; so,
� as a scheme morphism of bG D bGn

m into bGm commutes with the action of u 2 U.
Note that u 2 Z

�
p acts on bGm as a group automorphism induced by a W-bialgebra

automorphism of WŒŒT sending t D .1 C T/ 7! tu D .1 C T/u D Q
j.1 C Tj/

u.

Take the morphism of formal schemes � 2 HomSCH=W .
bGn

m;
bGm/, which sends 1 to

1. Put bG WD bGn
m � bGm=W . We consider the graph �� of � which is an irreducible

formal subscheme �� � bGn
m � bGm smooth over W. Writing the variable on bG as

.T;T 0/, �� is the geometrically irreducible closed formal subscheme containing the
identity 1 2 bG defined by the principal ideal .t0 � �.t//. Since � ı u D u ı � for all
u in an open subgroup U of Z�p (where U acts on the source bGn

m and on the target
bGm by t 7! tu), �� is stable under the diagonal action of U on bG and is finite flat

overbGn
m (the left factor of bG). Then, applying Lemma 4.1 to �� , we find that �� is a

subtorus of rank n surjecting down to the last factor bGm. Since any subtorus of rank
n in bG whose projection to the last factor is defined by the equation t0 D .1C T/z,
t0 D ˆ.T/, we have the power series identity ˆ.T/ D t0 D .1 C T/z in WŒŒT
identifying �� D Spf.WŒŒT/. ut

5 Frobenius Eigenvalue Formula

Recall the fixed weight � with �2� �1 � I. We assume the following conditions and
notations:

(J1) Let Spec.J/ be a closed reduced geometrically irreducible subscheme of
Spec.I/ flat over Spec.W/ of relative dimension r with Zariski dense set A of
arithmetic points of the fixed weight �.

(J2) We identify Spf.ƒ/ for ƒ D WŒŒ�  with bGm ˝Zp �
� for �� WD

HomZp.� ;Zp/ naturally.

Then for any direct Zp-summand � � � , bGm ˝Zp �
� is a closed formal torus of

bGm ˝Zp �
�. We insert here a lemma (essentially) proven in [H13, Lemma 5.1].

Lemma 5.1. Let the notation and the assumption be as in (J1–2). Then, after
making extension of scalars to a sufficiently large complete discrete valuation ring
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W � Cp, we can find a Zp-direct summand � of � with rank dimW Spf.J/ and an
arithmetic point P0 2 A\Spec.J/.W/ such that we have the following commutative
diagram:

Spf.J/ �����! P0 	 .bGm ˝Zp �
�/

\
?
?
y

?
?
y\

Spf.I/ �����! bGm ˝Zp �
� D Spf.ƒ/;

which becomes Cartesian after localizing at each arithmetic point of Spf.J/, and
Spf.J/ gives a geometrically irreducible component of Spf.I/ �Spf.ƒ/ P0 	 .bGm ˝Zp

��/. Here P0 	 .bGm ˝Zp �
�/ is the image of the multiplication by the point P0 2

bGm ˝Zp �
� inside bGm ˝Zp �

�.

In [H13, Lemma 5.1], it was claimed the diagram is Cartesian, which is wrong
(as the fiber product could have several components). The correct statement is as
above. This correction does not affect the results obtained in [H13].

Proof. Let � W Spec.J/ ! Spec.ƒ/ be the projection. Then the smallest reduced
closed subscheme Z � Spec.ƒ/ containing the topological image of � contains an
infinitely many arithmetic points of weight �. Since J is a domain with geometrically
irreducible Spec.J/, Z is geometrically irreducible. Take a basis f�1; : : : ; �mg of � ,

and writebG WD bGm˝Zp�
� as Spf.3WŒtj; t�1j jD1;:::;m/ for the variable tj corresponding

to the dual basis f��j gj of ��. Let P1 2 Z be an arithmetic point of weight �
under P 2 Spec.J/.W/ (after replacing W by its finite extension, we can find
a W-point P). Then by the variable change t 7! P�11 	 t (which can be written
as tj 7! �j�

��2
j tj for suitable �j 2 
p1.W/), the image of arithmetic points of

Spec.J/ of weight � in Z are contained in 
m
p1.Qp/. Since Z is defined over W,

� WD Z.Cp/ \ 
m
p1.Cp/ is stable under Gal.KŒ
p1 =K/ for the quotient field

K of W. Identify Gal.KŒ
p1 =K/ with a closed subgroup U of Z
�
p by the p-

adic cyclotomic character. Since W is a discrete valuation ring, U has to be also
open in Z

�
p . Since u 2 U acts on � by � 7! �u, Z is stable under the central

action bG 3 t 7! tu 2 bG. Then by Lemma 4.1, we may assume, after making
further variable change t 7! ��1t for � 2 
m

p1.W/ (again replacing W by a finite

extension if necessary), that Z is a formal subtorus; i.e., Z D bGm ˝Zp �
� for a

direct summand � of � . Since J is an integral extension of the normal domain
ƒ WD WŒŒ�, by Matsumura [CRT, Theorems 9.4 and 15.2–3], we conclude
dimW J D dimW Z D rankZp � . Then putting P0 D P1 	 �, we get the commutative
diagram. Thus we have a natural closed immersion Spf.J/ ,! Spf.I/ �Spf.ƒW / P0 	
.bGm˝Zp �

�/ � Spf.I/ by the universality of the fiber product. Since I is an integral
extension of the normal domain ƒ, by Matsumura [CRT, Theorem 15.1], we have
dimW Spf.I/ �Spf.ƒW / P0 	 .bGm ˝Zp �

�/ D rankZp � D dimW J. Thus Spec.J/ is an

irreducible component of Spf.I/ �Spf.ƒW / P0 	 .bGm ˝Zp �
�/.
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We can see that Spec.J/ is an irreducible component of the fiber product in
a more concrete way. At each arithmetic point P 2 Spf.I/, the localized ring
extension IP=ƒP is an étale extension (cf. [HMI, Proposition 3.78]). The morphism
Spec.J/ ! Z is dominant of equal dimension; so, it is generically étale. Thus
�Spf.J/=Z is a torsion J-module. Hence the étale locus of Spec.J/ét over Z is equal to
the complement of the support of�Spf.J/=Z . In particular, Spec.J/ét is an open dense
subscheme of Spec.J/. Since arithmetic points are dense in Spec.J/, we can find an
arithmetic point P 2 Spec.J/ét. Then we have the commutative diagram localized
at P:

By our choice of P, all horizontal morphisms in the above diagram are smooth
(and all members of the diagram are integral domains). Thus the above diagram is
Cartesian. In particular, Spf.J/ is a geometrically irreducible component of the fiber
of Spf.I/ over P0 	 .bGm ˝Zp �

�/. ut
Take � as in Lemma 5.1 given for J, and write ƒ D WŒŒ�. Fix a basis

�1; : : : ; �r 2 � and identify ƒ with WŒŒT.T D .Ti/iD1;:::;r) by �i $ ti D 1 C Ti.
Let Q be the quotient field of ƒ and fix its algebraic closure Q. We embed J into Q.
We introduce one more notation:

(J3) If ljp, let Al be the image a.$l/ in J, and if l − np, fix a root Al in Q of
det.T��J.Frobl// D 0. Replacing J by a finite extension, we assume that Al 2 J.

If the prime l is clearly understood in the context, we simply write A for Al. Recall
the notation AP D P.A/. Take and fix pnth root t1=pn

i of ti in Q (i D 1; 2; : : : ; r) and
consider

WŒ
pn ŒŒTŒt1=pn
 WD WŒ
pn ŒŒT1; : : : ;TrŒt

1=pn

1 ; : : : ; t1=pn

r  � Q

which is independent of the choice of t1=pn
. Take a basis f� D �1; : : : ; �mg of

� over Zp (containing f�1; : : : ; �rg). We write tj for the variable of bGm ˝Zp �
�

corresponding to the dual basis of f�jgj of ��. We recall another result from [H13,
Proposition 5.2] and its proof (to make the paper self-contained and also by the
request of one of the referees):

Proposition 5.2 (Frobenius Eigenvalue Formula). Let the notation and the
assumption be as in (J1–3), and fix a prime ideal l prime to n as in (J3). Write
K WD QŒ
p1  and LP D K.AP/ for each arithmetic point P with �.P/ D �. Suppose

(BTl) LP=K is a finite extension of degree bounded (independently of P 2 A) by
a bound Bl > 0 dependent on l.
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Then, after making extension of scalars to a sufficiently large W, we have

A D Al 2 WŒ
pn ŒŒT1; : : : ;TrŒt
1=pn

1 ; : : : ; t1=pn

r  \ J

in Q for 0 � n 2 Z, and there exists s D .si/ 2 Q
r
p and a constant c 2 W� such that

A.T/ D cts D c
Q

i tsi
i (ti D 1C Ti).

To simplify the notation, for k D r or m, we often write .����2 t�1/ for the ideal
in WŒŒT1; : : : ;Tk generated by a tuple .�j�

��2
j tj � 1/ for j D 1; 2; : : : ; k (where

� D .�j/ is also a tuple in 
k
p1.Qp/). The value of k should be clear in the context.

Proof. Since A is Zariski dense in Spec.J/, for any Gal.KŒ
p1 =K/ for the field
K of fractions of W, Ast WD S

�2Gal.KŒ
p1 =K/A� is Zariski dense in Spec.J/ and
stable under Gal.KŒ
p1 =K/. We replace A by Ast. Let Z D Spec.ƒ=a/ for a WD
Ker.ƒ ! J/ be the image of Spec.J/ in Spec.ƒ/, and identify A with its image
in Z. By Proposition 2.1 (and by a remark just above Theorem 3.1), we have only a
finite number of generalized Weil l-numbers ˛ of weight Œ�fl with bounded l-power
denominator (i.e., lB˛ is a Weil number of weight .Œ� C 2B/fl for some B > 0) inS

P2A LP up to multiplication by p-power roots of unity. Here we can take B D j�1j.
Hence, replacing A by a subset, we may assume that AP for all P 2 A hits one ˛ of
such generalized Weil l-numbers of weight Œ�fl, up to p-power roots of unity, since
the automorphic representation generated by fP is not Steinberg because l − n.

Let P0 be as in Lemma 5.1 for this A. By making a variable change t 7! P0 	 t, we
may assume that P0 D .tj � 1/jD1;:::;m, and A sits above 
r

p1.K/, where we regard


r
p1 D 
p1 ˝Zp �

� as a subgroup of bGm ˝Zp �
� (for � Š Z

r
p as in Lemma 5.1)

isomorphic to Spf.WŒŒ�/ D Spf.1WŒt1; t�11 ; : : : ; tr; t�1r / D Spf.WŒŒT1 : : : ;Tr/

with tj D 1C Tj.
After the variable change t 7! P0 	 t ., Tj 7! Yj/ described above, suppose for

the moment J Š bGm ˝Zp �
� (i.e., P0 goes to the identity of bGm ˝Zp �

� with J D
WŒŒY1 : : : ;Yr D ƒ (writing yj for the variable corresponding to tj and yj D 1C Yj

and hence A 2 ƒ). Choosing �1; : : : ; �r to be a generator of � for r D rankZp � ,
we may assume that the projection ƒ ! J has kernel .trC1 � 1; : : : ; tm � 1/. In
down to earth terms, for Al D A.T/ in (J3), the variable change t 7! P0 	 t is the
variable change Tj 7! Yj D �j�

��2
j .1C Tj/� 1 with Y D .Y1; : : : ;Ym/, and we have

A.Y/jYD0 D A.T/jTjD�j�
�2
j �1. Let

ˆ1.Y/ WD ˛�1A.Y/ D ˛�1A.���2.1C T/ � 1/ 2 WŒŒY

and L be the composite of LP for P running throughA. By this variable change,A is
brought into a Zariski dense subset�1 of
r

p1.Qp/ � bGr
m D bGm˝Zp�

� made up of
� such thatˆ1.��1/ is a root of unity in L. It is easy to see (e.g., [H11, Lemma 2.6])
that the group of roots of unity of L contains 
p1.K/ as a subgroup of finite index,
and we find a subset � � �1 Zariski dense in bGm ˝Zp �

� D Spec.J/ and a root of
unity �1 such that fˆ1.� � 1/j� 2 �g � �1
p1.K/. Then ˆ D ��11 ˆ1 satisfies the



168 H. Hida

assumption of Corollary 4.2, and for a root of unity �, we have A.Y/ D �˛.1C Y/s

for s 2 Z
r
p, and A.T/ D �˛.���2 .1C T//s. Thus A.T/ D c.1C T/s for a non-zero

p-adic unit c D �˛���2s 2 W� as desired.
More generally, we now assume that A 2 WŒŒTŒt1=pn

 (so, J is an extension of
WŒŒT1 : : : ;Tr and A 2 J \WŒŒT1 : : : ;TrŒt

1=pn

1 ; : : : ; t1=pn

r ). Since

Spf.WŒŒTŒt1=pn
/ Š bGr

m
t 7!tp

n

���! bGr
m D Spf.WŒŒT/;

by applying the same argument as above to WŒŒTŒt1=pn
, we get A.T/ D c.1 C

T/s=pn
for s 2 Z

r
p and a constant c ¤ 0.

We thus need to show A 2 WŒ
pn ŒŒTŒt1=pn
 for sufficient large n, and then

the result follows from the above argument. Again we make the variable change
T 7! Y we have already done. Replacing A by ˛�1A for a suitable Weil l-number
˛ of weight k (up to 
p1.Qp/), we may assume that there exists a Zariski dense
set A0 � Spec.J/.Qp/ such that P \ ƒ D .1 C Y � �P/ for �P 2 
r

p1.Qp/ and

AP 2 
p1.Qp/ for all P 2 A0. By another variable change .1 C Y/ 7! �.1 C Y/
for a suitable � 2 
r

p1.Qp/, we may further assume that we have P0 2 A0 with

�P0 D 1 and AP0 D 1 (i.e., choosing ˛ well in ˛ 	 
p1.Qp/). We now write J
0

for the subalgebra of J topologically generated by A over ƒ D WŒŒY. Then we
have J

0 WD ƒŒA � J. Since J is geometrically irreducible, the base ring W is
integrally closed in J

0. Since A is a unit in J, we may embed the irreducible formal

scheme Spf.J0/ into bGr
m �bGm D Spf.8WŒy; y�1; t0; t0�1/ by the surjective W-algebra

homomorphism � W8WŒy; y�1; t0; t0�1 � J
0 sending .y; t0/ to .1 C Y;A/. Write

Z � bGr
m � bGm for the reduced image of Spf.J0/. Thus we are identifying ƒ with

3WŒy; y�1 by y $ 1C Y. Then P0 2 Z is the identity element of .bGr
m � bGm/.Qp/.

Since A is integral over ƒ, it is a root of a monic polynomial ˆ.t0/ D ˆ.y; t0/ D
t0d C a1.y/t0d�1 C 	 	 	 C ad.y/ 2 ƒŒt0 irreducible over the quotient field Q of ƒ,
and we have J

0 Š ƒŒt0=.ˆ.y; t0//. Thus J is free of rank, say d, over ƒ; so, � W
Z ! bGr

m D Spf.ƒ/ is a finite flat morphism of degree d. We let � 2 Gal.Qp=Qp/

act on ƒ by
P1

nD0 anYn 7!P1
nD0 a�n Yn and on ƒŒt0 by

P
j Aj.Y/t0 j 7!P

j A�j .Y/t
0j

for Aj.Y/ 2 ƒ. Note that ˆ.�P;AP/ D 0 for P 2 A0. Since AP 2 
p1.Qp/,

A�P D A�.�/P for the p-adic cyclotomic character � W Gal.Qp=Qp/! Z
�
p . Since W is

a discrete valuation ring, for its quotient field F, the image of � on Gal.Qp=F/ is an

open subgroup U of Z�p . Thus we have ˆ�.��.�/P ;A�.�/P / D ˆ.�P;AP/
� D 0 for all

� 2 Gal.Qp=Qp/ and if � 2 Gal.Qp=F/, ˆ� D ˆ. Thus we get

ˆ.�
�.�/
P ;A�.�/P / D ˆ.�P;AP/

� D 0 for all P 2 A0.

For s 2 Z
�
p , consider the integral closed formal subscheme Zs � bGr

m � bGm defined
by ˆ.ys; t0s/ D 0. If s 2 U, we have A0 � Z \ Zs. Since Z and Zs are finite flat
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overƒ and A0 is Zariski dense, we conclude Z D Zs. Thus Z � bGr
m � bGm is stable

under the diagonal action .y; t0/ 7! .ys; t0s/ for s 2 U. By Lemma 4.1, Z is a formal
multiplicative group and is a formal subtorus of bGr

m � bGm, because 1 D P0 2 Z.
The projection � W Z ! Spf.ƒ/ D bGr

m is finite flat of degree d. So � W Z ! bGr
m

is an isogeny. Thus we conclude Ker.�/ Š Qr
jD1 
pmj and hence d D pm for m D

P
j mj � 0. This implies J0 D ƒŒA � WŒ
pn ŒŒYŒ.1 C Y/p

�n
 D WŒ
pn ŒŒTŒtp�n



for n D max.mjjj/, as desired. ut

6 Proof of Theorem 3.1

Let the notation be as in the previous section; so, K WD QŒ
p1 . Put Ll;P D
K.˛l;P/. Suppose that there exist a set † of primes of positive upper density as
in Theorem 3.1. By the assumption of the theorem, we have an infinite set Al of
arithmetic points of a fixed weight � with �2 � �1 � I of Spec.I/ (independent of
l 2 †) such that

(B) if l 2 †, Ll;P=K is a finite extension of bounded degree independent of P 2
Al.

Let Al be the Zariski closure of Al in Spec.I/. As remarked after stating Theo-
rem 3.1, we may assume that Al is geometrically irreducible of dimension r � 1

independent of l. Thus (J1) is satisfied for .Al;Spec.J/ WD Al/ for all l 2 †.
Since we want to find a CM quadratic extension M=F in which p splits such that

the component I has complex multiplication by M, by absurdity, we assume that I
is a non-CM component and try to get a contradiction.

By (B) and Proposition 5.2 applied to l 2 †, for Al in (J3), we have

Al.t/ D cl

rY

iD1
t
si;l
i for sl D .si;l/ 2 Q

r
p and cl 2 W�. (28)

As proved in Proposition 5.2, we have Al 2 WŒ
pn ŒŒT1; : : : ;TrŒt
p�n

1 �1; : : : ; tp�n

r �
1. Since rankƒ J � rankƒ ƒŒAl with Al 2 J \ WŒ
pn ŒŒT1; : : : ;TrŒt

p�n

1 �
1; : : : ; tp�n

r �1, the integer n is also bounded independent of l. Thus by the variable
change ti 7! tpn

i , we may assume that Al 2 WŒŒT1; : : : ;Tr for all l 2 † (and
hence si 2 Zp). Up until this point, we only used the existence of Al whose
weight �l depends on l to conclude the above explicit form (28) of Al. Since
Al in (28) is independent of weight �l, we may now take any weight � (with
�2 � �1 � I) discarding the original choice �l dependent on l (as remarked after
stating Theorem 3.1 that � is allowed to be dependent on l). Once � is chosen, we
can take A to be all the arithmetic points of weight � of Spec.J/ (so, we may assume
that A D Al is also independent of l). We use the symbols introduced in the proof
of Proposition 5.2. We now vary l 2 †.
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Pick a p-power root of unity � ¤ 1 of order 1 < a D pe and consider
� WD .�; �; : : : ; �/ 2 
r

p1 , and write ˛f ;l D ˛l D Al.�
�2�1/ for ��2�1 WD

.�
�2�1
1 ; : : : ; ��2�1r / and ˛g;l D ˇl D Al.��

�2�1/ for ���2�1 WD .���2�11 ; : : : ; ���2�1r /.
They are generalized Weil l-numbers of weight Œ�fl. Write f D fP for

P D .t � ��2�1/ WD .t1 � ��2�11 ; : : : ; tr � ��2�1r /

and g for the cusp form fP0 for P0 D .t����2�1/. Consider the compatible system of
Galois representation associated with f and g. Pick a prime Q of Q.f ; g/ D Q.f /.g/
(with residual characteristic q sufficiently large) split overQ. Write �f ;Q (resp. �g;Q)
for the Q-adic member of the system associated with f (resp. g). Thus �‹;Q has
values in GL2.Zq/. Since proper compact subgroups of SL2.Zq/ are either finite,
open in a normalizer of a torus, open in a Borel subgroup or open in a unipotent
subgroup, the non-CM property of f and g tells us that Im.�‹;Q/ contains an open
subgroup of SL2.Zq/ (e.g., [Di05, Sect. 0.1] or [CG14, Corollary 4.4]).

For a continuous representation � W Gal.Q=F/ ! GL2.R/ (for R D Qq or any
other topological ring), let �sym˝j denote the jth symmetric tensor representation
into GLjC1.R/. Suppose that f [and hence g by the equivalence of (CM2–3)] does
not have complex multiplication. Then by openness of Im.�‹;Q/ in GL2.Zq/, �

sym˝j
‹;Q

is absolutely irreducible for all j � 0, and also the Zariski closure of Im.�sym˝j
‹;Q /

is connected isomorphic to a quotient of GL.2/ by a finite subgroup in the center.
Since ˇl D �l˛l for a root of unity �l DQr

iD1 �si;l (for si 2 Qp as in Proposition 5.2),
we have ˇa

l D ˛a
l [for a p-power a with �si;la D 1 (j D 1; 2; : : : ; r)]. Thus

Tr.�a
f ;Q.Frobl// D Tr.�a

g;Q.Frobl// for all prime l 2 † prime to pn, where
Tr.�a

‹;Q/.g/ is just the trace of ath matrix power �a
‹;Q.g/. Since the continuous

functions Tr.�a
f ;Q/ and Tr.�a

g;Q/ match on e† WD fFrobljl 2 †g, we find that

Tr.�a
f ;Q/ D Tr.�a

g;Q/ on the closure of e†. Since we have

Tr.�a/ D Tr.�sym˝a/ � Tr.�sym˝.a�2/ ˝ det.�//;

we get over e†,

Tr.�sym˝a
f ;Q /�Tr.�sym˝.a�2/

f ;Q ˝det.�f ;Q// D Tr.�sym˝a
g;Q /�Tr.�sym˝.a�2/

g;Q ˝det.�g;Q//:

which implies

Tr.�sym˝a
f ;Q ˚ .�sym˝.a�2/

g;Q ˝ det.�g;Q/// D Tr.�sym˝a
g;Q ˚ .�sym˝.a�2/

f ;Q ˝ det.�f ;Q///

over e†. Since † has positive upper Dirichlet density, by Rajan [Rj98, Theorem 2],
there exists an open subgroup Gal.Q=K/ of Gal.Q=F/ such that as representations
of Gal.Q=K/

�
sym˝a
f ;Q ˚ .�sym˝.a�2/

g;Q ˝ det.�g;Q// Š �sym˝a
g;Q ˚ .�sym˝.a�2/

f ;Q ˝ det.�f ;Q//:
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Since Im.�‹;Q/ contains open subgroup of SL2.Zq/, �
sym˝j
‹;Q restricted to Gal.Q=K/

is absolutely irreducible for all j � 0. Therefore, as representations of Gal.Q=K/,
we conclude �sym˝a

f ;Q Š �
sym˝a
g;Q from the difference of the dimensions of absolutely

irreducible factors in the left and right-hand side. By Calegari and Gee [CG14,
Corollary 4.4 and Theorem 7.1], each member of �sym˝a

f and �sym˝a
g is absolutely

irreducible over Gal.Q=K/. Thus the ath symmetric tensor product of the two
compatible systems �f and �g are isomorphic to each other over Gal.Q=K/. Again
by Rajan [Rj98, Theorem 2], as compatible systems of Galois representations of the
entire group Gal.Q=F/, we find �sym˝a

f Š �sym˝a
g ˝ � for a finite order character

� W Gal.Q=F/! Q
�

. In particular, we get the identity of their P-adic members

�
sym˝a
f ;P Š �sym˝a

g;P ˝ �:

Note that Fp WD F˝Q Qp Š Qpjp Fp for the p-adic completion Fp of F at prime
factors p of p. Pick a prime pjp of F. Then p D fx 2 O W jip.�.x//jp < 1g for an
embedding � W F ,! Q. Then ip ı � embeds Fp into Qp continuously. Write Ip for
the set of all continuous embeddings of Fp into Qp (including ip ı �). By (Ram), we

can write the restriction �‹;PjGal.Qp=Fp/
in an upper triangular form

�
�‹;p �
0 ı‹;p

�
(up to

isomorphisms) with

ı‹;p.Œu;Fp/ D u��1 and �‹;p.Œu;Fp/ D u��2 for u 2 O�p sufficiently close to 1.
(29)

Here uk D Q
ipı�2Ip

�.u/k� for k D P
�2I k� (as the component of u in F�p0 at

p0 ¤ p for other primes p0jp is trivial in F�p ). This property distinguishes ı‹;p
from �‹;p. Regard ı‹;p and �‹;p as characters of F�p by local class field theory, and
put ı‹..up/p/ D Q

p ı‹;p.up/ and �‹..up/p/ D Q
p �‹;p.up/ for .up/p 2 Qp F�p as

characters of F�p D
Q

p F�p (in order to regard these characters as those of F�p not of
the single F�p ). Then more precisely than (29), we have from our choice of f and g

�f .�i/ D ���2i ; �g.�i/ D ����2i ; ıf .�i/ D ���1i and ıg.�i/ D ��1���1i (30)

as �P0.�i/ D � and �P.�i/ D 1 for all i. Since � � O�p � F�p , and hence we may

consider ı‹.�i/ and �‹.�i/. Then we have from �
sym˝a
f ;P Š �sym˝a

g;P ˝ �

f�j
f ı

a�j
f jj D 0; : : : ; ag D f�j

gı
a�j
g �jj D 0; : : : ; ag:

Therefore we conclude from �2��1 � I and (29) that �j
f ı

a�j
f D �j

gı
a�j
g �. This means

�
��2j��1.a�j/
i D �j

f ı
a�j
f .�i/ D �j

gı
a�j
g �.�i/ D ���2j��1.a�j/

i �2j�a�.�i/:
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Therefore we get �.�i/ D �a�2j which has to be independent of j, a contradiction, as
we can choose the p-power order of � as large as we want. Thus f and hence g must
have complex multiplication by the same CM quadratic extension M=F by (CM1–3),
and hence I is a CM component. ut
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The Trace Formula and Prehomogeneous Vector
Spaces

Werner Hoffmann

Abstract We describe an approach to express the geometric side of the Arthur–
Selberg trace formula in terms of zeta integrals attached to prehomogeneous vector
spaces. This will provide explicit formulas for weighted orbital integrals and for the
coefficients by which they are multiplied in the trace formula. We implement this
programme for the principal unipotent conjugacy class. The method relies on certain
convergence results and uses the notions of induced conjugacy classes and canonical
parabolic subgroups. So far, it works for certain types of conjugacy classes, which
covers all classes appearing in classical groups of absolute rank up to two.

MSC: Primary 11F72; Secondary 11S90, 11M41

1 Introduction

The trace formula is an equality between two expansions of a certain distribution
on an adelic group. The spectral side of the formula encodes valuable information
about automorphic representations of the group. Although the geometric side is
regarded to be the source of information, it is far from explicit. It is a sum of
so-called weighted orbital integrals, each multiplied with a coefficient that carries
global arithmetic information. So far, those coefficients have only been evaluated
in some special cases. Arthur remarked on p. 112 of [A-int] that “it would be very
interesting to understand them better in other examples, although this does not seem
to be necessary for presently conceived applications of the trace formula”. In the
meantime, as reflected in the present proceedings, further applications have emerged
which revive the interest in more detailed information on those coefficients and the
weight factors of weighted orbital integrals.

The problem stems from the fact that the trace distribution is defined by
an integral that does not converge without regularisation. The most successful
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method to accomplish this is Arthur’s truncation [A-trI]. However, it does not
yield useful formulas for the contributions from non-semisimple conjugacy classes
to the geometric side. In the original rank-one trace formula (e.g., [A-rk1]), they
were regularised by damping factors, which led to an expression containing zeta
integrals. Shintani [Sh] observed that such integrals would also appear in the
dimension formula for Siegel modular forms, which can be regarded as a special
case of the trace formula, if one were able to prove convergence. The same method
was applied by Flicker [Fl] to the group GL3, but for groups of higher rank, the
difficulties piled up. Arthur bypassed them by a clever invariance argument, which
worked for unipotent conjugacy classes, and by reducing the general case to the
unipotent one [A-mix]. The price to pay was that most coefficients and weight
factors remained undetermined.

We take up the original approach and remove some of the obstacles on the way
to express the regularised terms on the geometric side by zeta integrals. In many
cases, these integrals are supported on prehomogeneous vector spaces which appear
as subquotients of canonical parabolic subgroups of unipotent elements. Moreover,
just as induced representations play an important role on the spectral side, we
systematically apply the notion of induced conjugacy classes on the geometric side.
So far, this approach has been successful for certain types of conjugacy classes,
which suffice for a complete treatment of classical groups of absolute rank up to 2.
The details, including the necessary estimates, can be found in a joint paper [HoWa]
with Wakatsuki.

Over several years of work on this project, something like a general formula
was gradually emerging, changing shape as more and more conjugacy classes with
new features were covered. Incomplete as the results may be, they should perhaps be
made available to a wider audience now together with an indication of the remaining
difficulties.

Let us describe the setting in more detail. We consider a connected reductive
linear algebraic group G defined over a number field F. The group G.A/ of points
with coordinates in the ring A of adeles of F acts by right translations on the
homogeneous space G.F/nG.A/, which carries an invariant measure coming from
a Haar measure on G.A/ and the counting measure on G.F/. The resulting unitary
representation RG of G.A/ on the Hilbert space L2.G.F/nG.A// can be integrated to
a representation of the Banach algebra L1.G.A//, and for an element f of the latter,
RG.f / is an integral operator with kernel

KG.x; y/ D
X

�2G.F/

f .x�1�y/:

If G is F-anisotropic, then G.F/nG.A/ is compact, so the integral

J.f / D
Z

G.F/nG.A/
KG.x; x/ dx
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converges for smooth compactly supported functions f and defines a distribution J
on G.A/. Now we have the geometric expansion

J.f / D
X

Œ�

Z

G� .F/nG.A/
f .x�1�x/ dx;

where G� is the centraliser of � , and the spectral expansion

tr RG.f / D
X

�

aG.�/ tr�.f /;

where aG.�/ is the multiplicity of the irreducible representation � of G.A/ in
L2.G.F/nG.A//. The Selberg trace formula in this case is the identity

tr RG.f / D J.f /:

If the centre of G.A/ is non-compact, then RG.f / has no discrete spectrum, hence
its trace is not defined. Either one has to fix a central character or one has to replace
the group by its largest closed normal subgroup G.A/1 with compact centre. If G
has proper parabolic subgroups P defined over F, both sides of the formula will
still diverge. One has to take into account the analogous unitary representations
RP of G.A/1 on the spaces L2.N.A/P.F/nG.A/1/, where the letter N will always
denote the unipotent radical of the group P in the current context. By choosing a
Levi component M of P, one can view RP as the representation induced from the
representation RM, after the latter has been inflated to a representation of P.A/ by
composing it with the projection P.A/! M.A/. The kernel function for RP.f / with
f 2 C1c .G.A/1/ is

KP.x; y/ D
X

�2P.F/=N.F/

Z

N.A/
f .x�1�ny/ dn;

where we normalise the Haar measure on the group N.A/ in such a way that
N.F/nN.A/ has measure 1. This can be written as a single integral over P.F/N.A/,
whose integrand is compactly supported locally uniformly in x and y. The trace
distribution is defined as

JT.f / D
Z

G.F/nG.A/1
X

P

KP.x; x/ O�T
P .x/ dx;

where P runs over all parabolic F-subgroups including G itself. The functions O�T
P

are, up to sign, certain characteristic functions on G.A/ depending on a truncation
parameter T and on the choice of a maximal compact subgroup K of G.A/. We
will recall their definition in Sect. 3.1 below, noting for the moment that O�T

G.x/ D 1.
Their alternating signs are responsible for cancellations that make the integrand
rapidly decreasing and allowed Arthur to prove absolute convergence [A-trI].
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Actually, his argument was more subtle and led to a geometric expansion
of JT.f /, later called the coarse geometric expansion. It represents an intermediate
stage on the way to the fine geometric expansion [A-mix]. The latter depends on the
choice of a finite set S of valuations of F including the Archimedean ones and has
the shape

JT.f / D
X

ŒM

X

Œ�M;S

aM.S; �/JT
M.�; f /:

Here f is a smooth compactly supported function on G.FS/
1 suitably extended

to G.A/1, where FS is the product of completions Fv of F with respect to v 2 S. The
summation runs over the conjugacy classes of Levi F-subgroups M of G and, for
each such class, over the classes of elements � with respect to the finest equivalence
relation with the following properties. Elements with M.F/-conjugate semisimple
components are equivalent, and elements with the same semisimple component
� and M� .FS/-conjugate unipotent components are also equivalent. The weighted
orbital integral JT

M.�; f / is an integral with respect to a certain non-invariant measure
that is undetermined in general. It is supported on the FS-valued points of the
conjugacy class of G induced from that of � in M. The coefficients aM.S; �/ do
not depend on the ambient group G. They have been determined for semisimple
elements [A-mix], for M of F-rank one [Ho-rk1], for M D GL3 [Fl, Ma] and, with
the methods presented here, for the symplectic group of rank two [HoWa].

2 Prerequisites

In this section we collect some results in order to avoid interruptions of the
arguments to follow. Unless stated otherwise, all affine varieties and linear algebraic
groups that appear are assumed to be connected and defined over a given field F.
When we speak of orbits in a G-variety V defined over F, we mean geometric orbits
defined over F, i.e., minimal invariant F-subvarieties O such that O.F/ is non-empty.
This applies, in particular, to conjugacy classes. By Proposition 12.1.2 of [Sp], every
element of V.F/ belongs to an orbit, and an orbit remains a single orbit under base
change to an extension field.

2.1 Induction of Conjugacy Classes

The following well-known result has been proved by Lusztig and Spaltenstein [LS]
for unipotent conjugacy classes, and its extension to general conjugacy classes can
be found in [Ho-ind].
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Theorem 1. Let P be a parabolic subgroup of a reductive group G with unipotent
radical N and C a conjugacy class in a Levi component M of P. Then there is a
unique dense P-conjugacy class C0 in CN and a unique conjugacy class QC in G
such that QC \ P D C0.

We will write QC D IndG
P C and C0 D InflP

M C. The map IndG
P is called induction

of conjugacy classes from M to G via P, and the map InflP
M will be called inflation of

conjugacy classes from M to P. The Levi components of P are naturally isomorphic
to P=N and will be called Levi subgroups of G. We denote by Pinfl the set of all
elements � 2 P for which the range of the endomorphism Ad � � id of the Lie
algebra of P contains the Lie algebra of N.

Theorem 2. (i) If M is a Levi component of two parabolic subgroups P and Q
of G, then IndG

P C D IndG
Q C, whence this set can be denoted by IndG

M C.

(ii) If M � M0 are Levi subgroups of G, then IndG
M C D IndG

M0 IndM0

M C.
(iii) The union of all the sets C0.F/ with C0 D InflP

M C for conjugacy classes C in
M over F equals Pinfl.F/.

(iv) Given � 2 G.F/, the set P infl
� of parabolic subgroups P such that � 2 Pinfl is a

finite algebraic subset of the flag variety defined over F.

The first two assertions have been proved in [LS], the other ones in [Ho-ind].

2.2 Prehomogeneous Varieties

Let G be a linear algebraic group. A prehomogeneous G-variety is an irreducible
G-variety V possessing a dense G-orbit O. The “generic” stabilisers G� (which may
be non-connected) of elements � 2 O are then conjugate in G. A nonzero rational
function p on V is relatively G-invariant if there exists a character � of G such that,
for all g 2 G and x 2 V ,

p.gx/ D �.g/p.x/:

A prehomogeneous G-variety V is called special if every relative invariant (defined
over any extension field of F) is constant. This is the case if and only if the restriction
homomorphism from the group X.G/ of algebraic characters of G to X.G�/ is an
isomorphism.

Theorem 3. Let P be a parabolic subgroup of the reductive group G with unipotent
radical N and let N0 � N00 be normal unipotent subgroups of P.

(i) For any � 2 Pinfl, the affine space �N00=N0 is prehomogeneous under the
action of the trivial connected component P�N00 of the stabiliser of �N00 in P by
conjugation.

(ii) If C0 is the P-conjugacy class of � , then the generic orbit is the projection of
C0 \ �N00, viz. .C0 \ �N00/N0=N0.
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(iii) The prehomogeneous variety �N=N0 is special if and only if �N=N00 and
�N00=N0 are special.

This follows from Proposition 5 of [Ho-ind]. Note that the action on the affine
spaces in question is not always given by affine transformations.

A prehomogeneous G-variety is called a prehomogeneous vector space if it is a
vector space and the action of G is linear. A prehomogeneous vector space is called
regular if the dual space V� is prehomogeneous for the contragredient action and
the map dp=p W O! V� is a dominant morphism for some relative invariant p. The
notion of F-regularity is defined in the obvious way.

Prehomogeneous vector spaces that are regular over a number field F have been
intensively studied because they give rise to zeta integrals

Z.'; s1; : : : ; sn/ D
Z

G.A/=G.F/
j�1.g/js1 	 	 	 j�n.g/jsn

X

�2O.F/

'.g�/ dg;

where ' is a Schwartz–Bruhat function on V.A/ and the characters �i correspond
to relative invariants pi which extend to regular functions on V and form a basis
of the group of all relative invariants defined over F. Here we preclude that
the connected generic stabilisers G� have nontrivial F-rational characters, as the
integral is otherwise divergent. (We will encounter prehomogeneous vector spaces,
of incomplete type in the terminology of [Yu], where this happens and one has to
truncate the integrand.) A typical result of the classical theory is the following.

Theorem 4. Suppose in addition that G is F-anisotropic modulo centre. Let V DLn
iD1 Vi be the splitting obtained by diagonalisation of the largest F-split torus in

the centre of G and choose pi depending only on the ith component.

(i) The zeta integral converges absolutely when Re si > ri for all i, where
ri D dim Vi= deg pi, and extends to a meromorphic function on C

n. Its only
singularities are at most simple poles along the hyperplanes si D ri and si D 0.

(ii) For each splitting of the index set f1; : : : ; ng into a disjoint union I0 [ I00 and
the corresponding splitting V D V 0 ˚ V 00, we have

lim
s0!r0

Z.'; s0; s00/
Y

i2I0

.si � ri/ D Z00.' 00; s00/;

where Z00 is the zeta integral over

fg 2 G.A/
ˇ
ˇ j�i.g/j D 18 i 2 I0g=G.F/

of the function

' 00.x00/ D
Z

V0

'.x0; x00/ dx0:
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(iii) For each splitting as above, we have the functional equation

Z.'; s0; s00/ D Z.F 0'; r0 � s0; s00/;

where F 0 denotes the partial Fourier transform with respect to V 0.

The convergence for large Re si has been proved in a rather general situation
by Saito [Sai]. The present situation is much easier, since G.A/1=G.F/ is compact
and the centre acts by componentwise multiplication. The proof of the remaining
assertions goes hand in hand and proceeds as in [Sa].

If we fix a finite set S of places of F containing the archimedean ones, and a
lattice in V.AS/ with respect to the maximal compact subring of A

S, then every
Schwartz–Bruhat function ' on V.FS/ can be canonically extended to V.A/. For
such functions, one obtains a decomposition

Z.'; s/ D
X

Œ�S

�.�; s/
Z

G.FS/=G� .FS/

j�1.g/js1 	 	 	 j�n.g/jsn'.g�/ dg

over the finitely many G.FS/-orbits Œ�S in O.FS/, where the zeta functions �.�; s/
encode valuable arithmetic information (see [Ki] for the case F D Q, S D f1g).
We will not go into details here but rather describe a similar procedure for conjugacy
classes in Sect. 5.1.

2.3 Canonical Parabolic Subgroups

From now on, we assume that G is reductive and F has characteristic zero. Then we
have mutually inverse F-morphisms log and exp between the unipotent subvariety
of the group G and the nilpotent subvariety of its Lie algebra g. By the Jacobson–
Morozov theorem, for every nilpotent element X 2 g, there is a homomorphism
sl2 ! g such that X is the image of

�
0 1
0 0

�
. Let H be the image of

�
1 0
0 �1

�
and set

gn D fZ 2 g j ŒH;Z D nZg, so that X 2 g2. We consider the subalgebras

q D
M

n�0
gn; u D

M

n>0

gn; u0 D
M

n>1

gn; u00 D
M

n>2

gn

and the subgroups

Q D NormG q; U D exp u; U0 D expu0; U00 D expu00:

It is well known that q is a parabolic subalgebra with ideals u, u0 and u00, where
ŒX; q D u0 and ŒX; u D u00, and that Q is a parabolic subgroup of G with
unipotent radical U and normal subgroups U0 and U00. By results of Kostant (see
Theorem 3.4.10 of [CG] or Sect. 11.1 of [Bou]), those subalgebras and hence the
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corresponding subgroups are independent of the choice of the homomorphism
sl2 ! g used in the definition. Moreover, L D CentG H is a Levi component
of Q. One calls q the canonical parabolic subalgebra of X. If exp X is the unipotent
component in the Jordan decomposition of an element � 2 G, we call Q the
canonical parabolic subgroup of � . Moreover, we denote by Qcan the set of elements
of G whose canonical parabolic is Q.

Theorem 5. (i) If � 2 G.F/, then Q, U, U0 and U00 are defined over F. We can
choose H 2 g.F/, and then L is defined over F.

(ii) The vector space u0=u00 with the adjoint action of L Š Q=U is a regular
prehomogeneous vector space. In the situation of (i) it is F-regular.

(iii) If Q is the canonical parabolic and C the conjugacy class of an element � , then
C\Qcan is the conjugacy class of � in Q. If � is unipotent, then this set is open
and dense in U0 and invariant under translations by elements of U00.

If � is F-rational, so is its unipotent component exp X, and hence X 2 g.F/. The
Jacobson–Morozov theorem (see Sect. 11.2 of [Bou]) provides a homomorphism
sl2.F/ ! g.F/ and a subalgebra q.F/. Thus Q and L are defined over F. It is well
known that so are the unipotent radical U and its upper central series. Assertion (ii)
is proved in the reference, too, even though it can be considered folklore. Theorem 2
of that paper also contains a version of the last statement for mixed elements, but
that seems to be less useful for our purposes.

Conjecture 0. If � is a unipotent element of Pinfl for a parabolic subgroup P of G,
then U � P.

This will be needed in Lemma 7. I thank the referee for pointing out that the proof
presented in a previous version of this paper was incorrect. Conjecture 1 below has
already been cited and cannot be renumbered.

2.4 Mean Values

A mean value formula has been proved by Siegel for the action of SLn.R/ on R
n

(n > 1), generalised by Weil [We] to the adelic setting and by Ono [Ono] to the
following general case.

Theorem 6. If O is a special G-homogeneous variety over a number field F with
trivial groups �1.O.C//, �2.O.C// and X.G/, then

Z

G.A/=G.F/

X

�2O.F/

h.g�/ dg D
Z

G.A/O.F/
h.x/ dx

for h 2 C1c .G.A/O.F// and a suitable normalisation of invariant measures.
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Actually, Ono imposed the additional assumption that ŒG.A/� \ O.F/ W G.F/
be independent of � 2 O.F/, but this is automatically satisfied by Proposition 2.3
of [MoWa]. Moreover, he used the term “special” only under the assumption that
the group X.G/ is trivial. With our wider definition, the theorem is still valid if
we replace G by its derived subgroup G0, because the map G0=G0� ! G=G� is an
isomorphism.

If O is the generic orbit in a special prehomogeneous affine space V , then the
first two homotopy groups are automatically trivial. In fact, the complement of O is
a subvariety W of codimension greater than one by Lemma 7 of [Ho-ind]. For any
Lipschitz map � W Si ! O.C/, the map  W W.C/ � Si � R ! V.C/ given by
 .w; s; t/ D twC .1� t/�.s/ has range of Hausdorff dimension at most dimR W C
iC1. For i � 2, this is less than dimR V.C/, so we can choose x 2 V.C/ not in those
ranges and get a null-homotopy �t.s/ D txC .1 � t/�.s/ in O.C/.

We need a slightly different version of the above theorem.

Theorem 7. If V is a torsor under a unipotent group N and the group G with
trivial X.G/ acts on the pair .N;V/ by automorphisms, so that V is a special
prehomogeneous G-space with generic orbit O and the orbit map G! O has local
sections, then

Z

G.A/=G.F/

X

�2O.F/

h.g�/ dg D
Z

G.A/=G.F/

Z

V.A/
h.gx/ dx dg

for h 2 C1c .V.A//, provided we normalise the measure on V.A/ so that V.A/=N.F/
has measure 1.

Proof. Since the orbit map g 7! gv for v 2 O.F/ has local sections, which are
defined over F according to our standing assumption, it maps G.F/ onto O.F/
and G.A/ onto O.A/. In particular, Ono’s additional condition is trivially satisfied.
Indeed, the complement W of O is an algebraic subset, hence a null set for the
N.A/-invariant measure on V.A/. That measure is also G.A/-invariant, hence its
restriction to O.A/ coincides with the measure in Ono’s theorem, in which we
may replace the domain of integration on the right-hand side by V.A/. We may
also replace the integrand h.x/ by h.g1x/, where g1 2 G.A/ is arbitrary, and then
integrate the right-hand side over g1, as the measure of G.F/nG.A/ is finite due to
X.G/ D f1g. This proves the claim up to the normalisation of measures and the
extension to C1c .V.A//.

There is an alternative, though less elegant, proof, which provides these facts.
One reduces the assertion to the case of abelian N using a central series of a general
unipotent group N and Proposition 5 of [Ho-ind]. In the abelian case one proceeds
as in [We]. ut

In the situation of Theorem 3, �N=N0 is an N=N0-torsor, on which P�N acts by
automorphisms. In order to apply Theorem 7, we need the following hypothesis
about a parabolic subgroup P of a reductive group G with unipotent radical N and a
conjugacy class C in P=N:
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Hypothesis 1. There is a normal unipotent subgroup NC of P such that, for � 2
C0 D InflP C,

(i) the prehomogeneous affine space �N=NC is special under P�N and the generic
orbit map has local sections,

(ii) all elements of �NC \ C0 have the same canonical parabolic.

We call this a hypothesis rather than a conjecture because if it is not generally
true, we may at least treat those conjugacy classes to which it applies. In fact, it has
been checked for all classical groups up to rank 3.

As the notation suggests, there should be a canonical choice for NC. By Lemma 8
of [Ho-ind], there is a largest normal unipotent subgroup of P with property (ii),
and under Hypothesis 1 it will then also have property (i) in view of Theorem 3. In
general, however, it seems not to be the correct choice for our purposes. We certainly
assume, as we may, that .�N��1/�C��1 D �NC��1 for all � 2 G.F/.

2.5 .G;Q/-Families

In Sect. 6, we will need an analogue of the notion of .G;M/-families (see Sect. 17
of [A-int]) in which the Levi subgroup M is replaced by a parabolic subgroup Q.
First we recall the pertinent notation.

For every connected linear algebraic group P defined over F, we denote by aP

the real vector space of all homomorphisms from the group X.P/F of F-rational
characters of P to the group R. If P D MN is a Levi decomposition and A the largest
split torus in the centre of M, then the natural homomorphisms aA ! aM ! aP

are isomorphisms, and the set �P of fundamental roots of A in n can be regarded as
a subset of the dual space a�P independent of the choice of A. Moreover, if Q � P
are parabolic subgroups of a reductive group G, we obtain natural maps aP � aQ,
which induce a splitting aQ D aP

Q ˚ aP. The coroots L̨ are originally only defined
for roots ˛ of a maximal split torus, hence for the elements of �Q, when Q is a
minimal parabolic, but if ˇ D ˛jaP is nonzero, we may define Ľ as the projection of
L̨ to aP. These coroots form a basis of aG

P , and we denote the dual basis of .aP=aG/
�

by O�P, whose elements $ are called fundamental weights. The basis dual to �P,
whose elements are called fundamental coroots, is in bijection with �P and hence
with O�P. Following [A-int], the fundamental coroot corresponding to $ 2 O�P will
be denoted by L$ .

The characteristic functions of the chamber aCP D fH 2 aP j ˛.H/ > 0 8˛ 2
�Pg and the dual cone CaP D fH 2 aP j $.H/ > 0 8$ 2 O�Pg are denoted by �P

and O�P, respectively. Their Fourier transforms

O	P.��/�1 D
Z

.aG
P /

C

eh�;Hi dH; 	P.��/�1 D
Z

C.aG
P /

eh�;Hi dH
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(mind the swap of the accent) are defined for complex-valued linear functions �
on aP with positive real part on the support. An easy computation yields

O	P.�/ D O�P

Y

$2 O�P

h�; L$i; 	P.�/ D �P

Y

˛2�P

h�; L̨ i;

where the constants O�P and �P depend on the Haar measure on aG
P .

The parabolic subgroups R of a Levi component M of P are in bijection with the
parabolic subgroups Q of P via R 7! RN, Q 7! M \ Q. Prompted by the equality
aM

R D aP
Q, one indexes the objects associated with the pair .M;R/ in place of .G;Q/

by the pair .P;Q/ of parabolics of G, like�P
Q, etc. The superscript G may sometimes

be omitted, e. g. in �G
P .

For parabolics P � P0 containing Q, we denote the restriction of a linear function
� on aQ to the subspace aP0

P by �P0

P , where the upper index G and the lower index Q
may be omitted. The relative versions of the above Fourier transforms are extended
to all � by setting

O	P0

P .�/ D O	P0

P .�P/; 	P0

P .�/ D 	P0

P .�P/;

and similar remarks apply to the functions �P0

P and O�P0

P . We assume that the measures
on all the spaces aP0

P are normalised in a compatible way.
With notational matters out of the way, we now define a .G;Q/-family to be

a family of holomorphic functions cP.�/ indexed by the parabolic subgroups P
containing Q and defined for Re� in a neighbourhood of zero in .aQ/

�
C

such that,
for any two parabolics P � P0 containing Q,

�P0

P D 0 ) cP.�/ D cP0.�/:

This condition does not get weaker if we require it only for P, P0 with dim aP0

P D 1.
We say that the .G;Q/-family is frugal (resp. cofrugal) if cP.�/ D cQ.�P/ (resp.
cP.�/ D cG.�

P/) for all P, where �P (resp. �P) is extended to aQ so that it
vanishes on aP

Q (resp. on aP). Every holomorphic function cQ on aQ (resp. cG on aG
Q)

determines a frugal (resp. cofrugal) .G;Q/-family.

Lemma 1. For each .G;Q/-family of functions cP, the meromorphic function

c0Q.�/ D
X

P
Q

�P
QcP.�/ O	P

Q.�/
�1	P.�/

�1;

where �P
Q D .�1/dimaP

Q , is holomorphic for Re � in a neighbourhood of zero.

The special case for frugal families is Lemma 6.1 of [A-inv] (with the roles of P
and Q interchanged). As in that source, we could also prove a version for smooth
functions defined for purely imaginary � only, although it does not seem to have
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applications. One may compute the value c0Q.0/ by setting � D z�0 for any fixed
�0 not on any singular hyperplane and applying l’Hospital’s rule to the resulting
function of z 2 C, reduced to a common denominator.

Proof. For each fundamental root ˛ 2 �Q, we denote the corresponding fun-
damental weight by $˛ . Let P be a parabolic subgroup containing Q. For each
˛ 2 �Q n�P

Q, the projection of L̨ along aP
Q onto aG

P is a fundamental coroot L̨P, and
for each ˛ 2 �P

Q, the projection of L$˛ along aG
P onto aP

Q is a fundamental coweight
L$P
˛ . All the fundamental coroots of aG

P in P and fundamental coweights of aP
Q in

Q=N arise in this way.
We fix a fundamental root ˇ 2 �Q and denote by Q0 the parabolic with �Q0

Q D
fˇg. Then there is a unique bijection P 7! P0 from fP � Q j P 6� Q0g onto fP � Q0g
such that �P0

Q D �P
Q [ fˇg. The elements ĽP and L$P0

ˇ as well as the differences

L̨P � L̨P0 for every ˛ 2 �Q n�P0

Q and L$P
˛ � L$P0

˛ for every ˛ 2 �P
Q lie in the one-

dimensional subspace aP0

P . Together with the defining property of the .G;Q/-family
this implies that the difference of

cP.�/
Y

˛2�P
Q

�. L$P0

˛ /
Y

˛2�Qn�P0

Q

�. L̨P0/

and

cP0.�/
Y

˛2�P
Q

�. L$P
˛ /

Y

˛2�Qn�P0

Q

�. L̨P/

vanishes on the hyperplane defined by �j
aP0

P
D 0 and is therefore a multiple of the

proportional linear forms �. ĽP/ and �. L$P0

ˇ /. Dividing by

O	P
Q.�/	P.�/ 	 O	P0

Q .�/	P0.�/;

and remembering its compatible normalisation, we see that

cP.�/ O	P
Q.�/	P.�/� cP0.�/ O	P0

Q .�/	P0.�/

is singular at most for those � which vanish on some one-dimensional subspace aR0

R

with �R0

Q n�R
Q D f˛g for some ˛ ¤ ˇ. Multiplying by �P

Q and summing over P, we
see that the same is true of c0Q.�/. Since ˇ was arbitrary, we are done. ut
Lemma 2. Let X 2 aG

Q.

(i) If cP D eh�;XPi, then c0Q.�/ is the Fourier transform of the function

� 0Q.H;X/ D
X

P
Q

�P�
P
Q.H/ O�P.H � X/:



The Trace Formula and Prehomogeneous Vector Spaces 187

(ii) If cP D eh�;XPi, then c0Q.�/ is the Fourier transform of the function

� 00Q.H;X/ D
X

P
Q

�P�
P
Q.H � X/ O�P.H/:

(iii) For H outside a finite union of hyperplanes, we have

� 00Q.H;X/ D �G
Q�
0
Q.X �H;X/:

Proof. Assertion (i) is Lemma 2.2 of [A-inv], and the proof of assertion (ii) is
analogous. The substitution of X�H for H has on the Fourier transform the effect of
substituting �� for � and multiplying by eh�;Xi. Since O	P

Q.�/	P.�/ is homogeneous
of degree dim aG

Q and X D XP C XP, the two sides of the asserted equality are
characteristic functions of polyhedra with equal Fourier transforms. ut

Given a .G;Q/-family and a parabolic P � Q, we obtain a .G;P/-family by
restricting the functions cP0 with P0 � P to the subspace aP, and we obtain an
.M;M \ Q/-family, where M is a Levi component of P, by setting

cP
M\P0.�/ D cP0.�/:

Checking the condition for such families is straightforward.

Lemma 3. (i) For frugal .G;Q/-families, the definition of c0Q is equivalent to the
identity

cQ.�/	Q.�/
�1 D

X

P
Q

c0P.�P/	
P
Q.�/

�1:

(ii) For cofrugal .G;Q/-families, the definition of c0Q is equivalent to the identity

cG.�/ O	Q.�/
�1 D

X

P
Q

�P
Q.c

P/0M\Q.�/
O	P.�/

�1:

Note that both identities in (ii) can be read as recursive definitions by isolating the
term with P D Q or P D G, resp. See Eq. (17.9) in [A-int] and Eq. (6.2) in [A-inv]
for the frugal case.

Proof. For each of the four required implications, one starts with the right-hand side
of the equation to be proved and plugs in the hypothesis. Then one interchanges
summations and uses the fact that the expressions

X

P
Q

�P
O	P
Q.�/

�1	P.�/
�1;

X

P
Q

�P	
P
Q.�/

�1 O	P.�/
�1
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are 1 for Q D G and 0 otherwise, which follows from Eqs. (8.10) and (8.11)
of [A-int]. ut
The elementwise product of two .G;Q/-families is again a .G;Q/-family.

Lemma 4. Given two .G;Q/-families of functions cP and dP, of which the former
family is cofrugal or the latter family is frugal, we have the splitting formula

.cd/0Q.�/ D
X

P
Q

.cP/0M\Q.�/d
0
P.�P/:

Proof. The proof for frugal d is analogous to the case of .G;L/-families. Using the
relative version of the first identity of Lemma 3(ii) with P0 in place of Q, we get

.cd/0Q.�/ D
X

P0
Q

�P0

Q cP0.�/ O	P0

Q .�/
�1 X

P
P0

d0P.�P/	
P
P0.�/

�1

D
X

P
Q

d0P.�P/
X

P0WQ�P0�P

�P0

Q cP0.�/ O	P0

Q .�/
�1	P

P0.�/
�1:

Similarly, using the second identity of Lemma 3(ii) with M0 in place of G, we get

.cd/0Q.�/ D
X

P0
Q

�P0

Q dP0.�/	P0.�/�1
X

PWQ�P�P0

�P
Q.c

P/0M\Q.�/
O	P0

P .�/
�1

D
X

P
Q

.cP/0M\Q.�/
X

P0
P

�P0

P dP0.�/ O	P0

P .�/
�1	P0.�/�1:

Now it remains to apply the definitions of .cP/0Q and d0P, resp. ut

3 The Geometric Side of the Trace Formula

3.1 Truncation

Before introducing a new sort of geometric expansion, let us supply the details
omitted in the introduction. We fix a number field F and denote the product of its
archimedean completions by F1. For any linear algebraic group G, tacitly assumed
to be connected and defined over F, the group of continuous homomorphisms from
G.A/ to the additive group R has the structure of a real vector space. We denote
its dual space by aG and define a continuous homomorphism HG W G.A/ ! aG by
�.g/ D h�;HG.g/i for all � 2 a�G. The kernel of HG is then the group G.A/1. From
now on, the letter G will be reserved for a reductive group.

In order to save space, the set V.F/ of F-rational points of any affine F-variety V
will henceforth simply be denoted by V and the set of its adelic points by the
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corresponding boldface letter V. As an exception, the letter K will denote a maximal
compact subgroup of our adelic group G such that G.F1/K is open and G D PK
for every parabolic subgroup P. One extends the map HP W P! aP to G by setting
HP.pk/ D HP.p/ for p 2 P and k 2 K, not indicating the dependence on the choice
of K in the notation.

A truncation parameter T for the pair .G;K/ is a family of elements TP 2 aP

indexed by the parabolic subgroups such that the modified maps HT
P .x/ D HP.x/ �

TP satisfy HT
�P��1.�x/ D HT

P .x/ for all � 2 G and such that HT
P0.x/ is the projection

of HT
P.x/ for arbitrary parabolics P � P0. Thereby we have eliminated the need for

standard parabolic subgroups. The set of truncation parameters has the structure
of an affine space such that the evaluation at any minimal parabolic P0 is an
isomorphism onto aP0 .

For any maximal parabolic P0, let ��T
P0 be the characteristic function of

fx 2 G j HT
P0.x/ 2 aCP0g;

where aCP0 denotes the positive chamber in aP0 . For general P, set

�T
P .x/ D

Y

P0
P
max.

�T
P0.x/:

Thereby the usual sign factors �P D .�1/dimaG
P in the integrand of JT.f / have been

incorporated into these cut-off functions. We mention that the integral converges for
all values of T (see [Ho-est]) and depends polynomially on T (see [A-inv]).

3.2 Expansion in Terms of Geometric Conjugacy Classes

In the distribution JT.f /, one cannot isolate the contribution of a group-theoretic
conjugacy class in G.F/ because the representatives of a coset �N appearing in KP

belong to various conjugacy classes. In the coarse geometric expansion (see [A-trI]),
conjugacy has therefore been replaced by a coarser equivalence relation for which
all elements in such cosets are equivalent. The finest such relation turns out to be
just conjugacy of semisimple components. The fine geometric expansion is based
on an intermediate refinement that depends on a choice of a finite set of places of F,
but it is still not fully explicit. We propose to use geometric conjugacy for a start,
deferring the finer expansions to the later step of stabilisation. It is the induction of
conjugacy classes that makes this work.

Let P be a parabolic subgroup of G with unipotent radical N. Recall that induction
as defined in Theorem 1 is actually a map from the set of conjugacy classes in P=N
to conjugacy classes in G that does not depend on the choice of a Levi component.
We define the contribution of a geometric conjugacy class C in G to the kernel
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function KP as

KP;C.x; y/ D
X

D�P=N
IndG

P DDC

X

�2D

Z

N
f .x�1�ny/ dn;

where we denote conjugacy classes in P=N by D, the letter C being reserved for
conjugacy classes in G. We stick to tradition and avoid the awkward expression
�N 2 D under the summation sign. Alternatively, we can write

KP;C.x; y/ D
X

�2.C\P/N=N

Z

N
f .x�1�ny/ dn:

The convergence of KP implies that of its subsum KP;C, and it is obvious that

KP D
X

C

KP;C:

The contribution of the class C to the trace distribution is defined formally as

JT
C.f / D

Z

GnG1

X

P

KP;C.x; x/�
T
P .x/ dx;

but its convergence and the validity of the expansion

JT.f / D
X

C

JT
C.f /

depends on the following condition.

Conjecture 1. For f 2 C1c .G.A/1/, we have

X

C

Z

GnG1

ˇ
ˇ
ˇ
ˇ
ˇ

X

P

KP;C.x; x/�
T
P .x/

ˇ
ˇ
ˇ
ˇ
ˇ
dx <1:

This statement would also make sense for function fields F. It is a version of the
convergence theorem of [A-trI]. Its analogue for Lie algebras over number fields
has recently been proved by Chaudouard [Cha], and his methods should carry over
to the group case. The merit of this result will depend on our ability to find a useful
alternative description of the distributions JT

C.f /. We will see that on the way to this
goal even more subtle convergence results are needed. Conjecture 1 has meanwhile
been proved in [FL].
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4 Rearranging the Geometric Side

4.1 Replacing Integrals by Sums

In the term of KP;C corresponding to a conjugacy class D in P=N, the integral over
N can be split into an integral over N=ND and an integral over ND in the notation
of Hypothesis 1. We want to replace the first of these integrals by a sum. This is
analogous to Theorem 8.1 in [A-trI].

Note that D defines a P-conjugacy class D0 D InflP D and, conversely, each
P-conjugacy class D0 in C \ P determines a conjugacy class D D D0N=N in P=N.
We define the modified kernel function

QKP;C.x; y/ D
X

D�P=N
IndG

P DDC

X

�2D0ND=ND

Z

ND
f .x�1�n0x/ dn0

and, formally, the modified distribution

QJT
C.f / D

Z

GnG1

QKP;C.x; y/�
T
P .x/ dx:

Hypothesis 2. (i) The analogue of Conjecture 1 is true for QJT
C.f /.

(ii) For all parabolic subgroups P and conjugacy classes D � P=N, we have

Z

PnG1

X

ı2D

ˇ
ˇ
ˇ̌
ˇ

X

�2.C\ıN/ND=ND

Z

ND
f .x�1�n0x/ dn0

�
Z

N
f .x�1ınx/ dn

ˇ̌
ˇ
ˇ
ˇ
O�T
P .x/ dx <1:

This hypothesis is automatic for groups of F-rank one, as ND D N in that case, and
has been checked for classical groups of absolute rank 2 in [HoWa].

Lemma 5. Under Conjecture 1 and Hypotheses 1 and 2, we have

JT
C.f / D QJT

C.f /:

Proof. Granting Hypothesis 1, Theorem 7 yields the vanishing of

Z

P0
ıNnP0

ıN

0

@
X

�2.C\ıN/ND=ND

h.p�11 �p1/ �
Z

N=ND
h.p�11 ın00p1/ dn00

1

A dp1
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for all ı 2 D and h 2 C1c .ıN=ND/, where P0ıN denotes the derived group of PıN .
We plug in

h.v/ D �T
P .y/

Z

ND
f .y�1p�12 vnp2y/ dn

with p2 2 P1 and y 2 G1, and substitute p1n D n0p1 in the integral over ND.
Observing that the domain of integration over p1 can be written as PnPP0ıN , we
integrate over p2 2 PP0ıNnP1. Then we sum over ı 2 D and take the combined
integral over p D p1p2 2 PnP1 outside the sum. Combining the summation over �
with that over ı into one summation and combining the integral over n00 with that
over n0 into one integral, we obtain

�T
P .y/

Z

PnP1

 
X

�2.C\DN/ND=ND

Z

ND
f .y�1p�1�n0py/ dn0

�
X

ı2D

Z

N
f .y�1p�1ınpy/ dn

!

dp D 0:

Then we integrate over y 2 P1nG1 and combine this integral with that over p,
observing that �T

P .y/ D �T
P .py/, to get

Z

PnG1

 
X

�2D0ND=ND

Z

ND
f .x�1�n0x/ dn0

�
X

ı2D

Z

N
f .x�1ınx/ dn

!

�T
P .x/ dx D 0:

All of these operations are justified under Hypothesis 2(i).
We sum this expression over the finitely many standard parabolics P and

respective classes D. Then we split the integral into an integral over GnG1 and a
sum over PnG and interchange the latter integral with the former sum. The latter
sum can be replaced by a sum over all parabolic subgroups conjugate to P, because
the relevant objects attached to different parabolics (the unipotent radical N, the set
of conjugacy classes D in P=N with IndP D D C and the subgroups ND) correspond
to each other under conjugation. Finally, we split the integral into the difference of
JT

C.f / and QJT
C.f /, which is justified by Conjecture 1 and Hypothesis 2(ii). ut
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4.2 Ordering Terms According to Canonical Parabolics

We continue rewriting our formula for JT
C.f /. The basic idea for the next step is that

a sum over all elements of G can be written as a sum over all parabolic subgroups
Q of partial sums over those elements whose canonical parabolic is Q. This applies
to KG.x; x/, but JT

C.f / contains in addition terms with P ¤ G, which are indexed
by cosets �N rather than elements. This is why the previous transformation was
necessary.

Lemma 6. Let Q be the canonical parabolic of some element of C. Under
Hypotheses 1, 2(i) and 3 (the latter to be stated in the course of the proof), we have

QJT
C.f / D

Z

QnG1

X

N0�Q

X

P

X

�2.C\Qcan/N0=N0

NŒ� DN0

�2Pinfl

Z

N0

f .x�1�n0x/ dn0 �T
P .x/ dx:

Here the representative � is chosen in C\Qcan, and NŒ� is a notation for ND, where
D is the conjugacy class of �N in P=N. If C is unipotent, the condition N0 � Q can
be sharpened to N0 � U0.

Recall that the sets Qcan and U0 were introduced in connection with Theo-
rem 5(iii).

The summation over subgroups N0 may look weird. Of course, we need only
consider subgroups which appear as ND in Hypothesis 1. For unipotent conjugacy
classes D it is often the case that ND is the unipotent radical of a parabolic
subgroup PD, namely the smallest parabolic which contains P and whose unipotent
radical is contained in U0. In this case, the sum over N0 can be written as a sum over
parabolics P0 containing Q.

Proof. Let us fix a conjugacy class C. The definition of QJT
C.f / involves, for each P, a

sum over conjugacy classes D in P=N. We get the same result if we take the partial
sum over those D for which ND equals a given group N0 and add up those partial
sums for all possible subgroups N0 of G.

For each P, N0 and D, we are now facing a sum over cosets �N0 2 .C\P/N0=N0.
By the property (ii) of ND according to Hypothesis 1, the elements of �N0 \C have
the same canonical parabolic. Thus, we may similarly take the partial sum over
those cosets for which that canonical parabolic equals a given group Q and add up
the partial sums for all possible parabolics Q in G. As a result, we see that QJT

C.f /
equals

Z

GnG1

X

P

X

N0

X

D�P=N
NDDN0

X

Q

X

�2D0N0=N0

�N0\C�Qcan

Z

N0

f .x�1�n0x/ dn0 �T
P .x/ dx:
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We want to move the summations over Q and N0 leftmost. This is permitted under
the following

Hypothesis 3. The integral

Z

GnG1

X

Q

X

N0

ˇ̌
ˇ
ˇ
ˇ
ˇ̌
ˇ

X

P

X

D�P=N
NDDN0

X

�2D0N0=N0

�N0\C�Qcan

Z

N0

f .x�1�n0x/ dn0 �T
P .x/

ˇ̌
ˇ
ˇ
ˇ
ˇ̌
ˇ

dx

is convergent.

When P is fixed, D runs over a finite set, hence the order of the two inner
summations is irrelevant. They can be written as a single sum over all pairs .D; �N0/
satisfying the conditions

(i) ND D N0,
(ii) � 2 D0N0=N0, where D0 D C \ DN,

(iii) �N0 \ C � Qcan.

Since the set �N0 \C is dense in �N0, quotients of its elements form a dense subset
of N0. Therefore, condition (iii) can only be satisfied if N0 � Q. If C is unipotent,
then Q \ C � U0 by Theorem 5(iii), and we must even have N0 � U0.

Condition (iii) also implies that

(iii0) � 2 .C \ Qcan/N0=N0.

Condition (ii) shows that the representative � of �N0 can be chosen in D0, hence

(ii0) � 2 Pinfl,

and that D is uniquely determined by P and �N0. If we denote ND by NŒ�,
condition (i) can be rewritten as

(i0) NŒ� D N0.

Conversely, suppose that we are given a coset �N0 satisfying conditions (i0), (iii0)
and (ii0), the latter for a choice of � in C\Qcan. Let D be the conjugacy class of the
image of � in P=N. Then condition (i) is satisfied, and hence N0 � P. Therefore D
is independent of the choice of the representative � . Condition (ii0) shows in view
of Proposition 2(iii) that � lies in D0 D InflP D, and in view of � 2 C we have
D0 D C \ DN. Thus condition (ii) is satisfied. In hindsight we see that any other
representative with the same properties lies in the P-orbit D0, hence it also satisfies
condition (ii0). Since N0 � Q, we have �N0 � Q, and condition (iii) follows by
Theorem 5(iii).

The equivalence of the two sets of conditions shows that QJT
C.f / equals

Z

GnG1

X

Q

X

N0�Q

X

P

X

�2.C\Qcan/N0=N0

NŒ� DN0

�2Pinfl

Z

N0

f .x�1�n0x/ dn0 �T
P .x/ dx:
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If Q is the canonical parabolic of some element of C, we can obtain those of the
other ones by conjugating with elements of QnG. Thus, rather than summing over
all parabolics Q, we may fix one of them, replace x by ıx, and insert a summation
over ı 2 QnG. Combining that summation with the exterior integral, we obtain our
result. ut

If we are allowed to interchange the summations over P and �N0, then QJT
C.f /

becomes
Z

QnG1

X

N0�Q

X

�2.C\Qcan/N0=N0

X

P2P infl
�

NŒ� DN0

Z

N0

f .x�1�n0x/ dn0 �T
P .x/ dx:

The set P infl
� was introduced in Theorem 2(iv). According to our notational

conventions in this section, P infl
� actually stands for P infl

� .F/. The integral over N0 is
independent of P and can be extracted from the sum over P.

Corollary 1. If only finitely many parabolic subgroups P occur in the formula of
Lemma 6, then

QJT
C.f / D

Z

QnG1

X

N0�Q

X

�2.C\Qcan/N0=N0

Z

N0

f .x�1�n0x/ dn0 �T
�N0.x/ dx;

where

�T
�N0.x/ D

X

P2P infl
�

NŒ� DN0

�T
P .x/:

There is apparently no uniform argument justifying such an interchange of summa-
tions in general. Below, we will describe approaches to this problem and solutions
in partial cases.

4.3 Truncation Classes

We have sticked to geometric conjugacy classes so far because they afford a clean
notion of induction. However, we are forced to split them up as evidence shows
that various elements of the same class may behave differently in our formulas.
For a moment, let us distinguish notationally between varieties and their sets of
F-rational points again. While the sets P infl

� for various elements � in the same
geometric conjugacy class C are in bijection with each other under conjugation, the
sets P infl

� .F/ for � 2 C.F/ may be different if the elements are not G.F/-conjugate.
This may happen even for unipotent classes.
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For the lack of a better idea, we call elements �1, �2 of G.F/ truncation
equivalent if they belong to the same geometric conjugacy class and if every
inner automorphism mapping �1 to �2 will map P infl

�1
.F/ onto P infl

�2
.F/. This is an

equivalence relation, because conjugate F-rational parabolics are G.F/-conjugate.
The equivalence classes for this relation will be called truncation classes.

It follows from the definition that an element of Pinfl.F/ will also belong to
P0 infl.F/ for any parabolic P0 containing P. Thus, if P 2 P infl

� .F/, then P0 2 P infl
� .F/.

The inclusion relation among the sets P infl
� .F/ therefore defines a partial order on

the finite set of truncation classes O in a given geometric conjugacy class C.F/.
In order to split up JT

C.f / into contributions of truncation classes, we have to do
so for the kernel functions KP;C . Thus, to every F-rational coset �N meeting C, we
have to assign a truncation class. Evidence suggests that we should pick the minimal
truncation class O meeting �N.F/. Its uniqueness will have to be proved.

We expect that this definition produces the correct grouping of terms so that all of
the previous discussion applies to the resulting distributions JT

O.f /. In Lemma 6, we
have to replace Pinfl.F/ by the subset Pmin infl.F/ of elements whose truncation class
is minimal among those meeting P. In the corollary, we have to replace P infl

� .F/ by
the subset Pmin infl

� .F/ of those parabolics P for which � 2 Pmin infl.F/.

5 Relation to Zeta Integrals

5.1 Damping Factors

A classical artifice to make the full integral-sum in Lemma 6 (or its analogue for a
truncation class O) absolutely convergent, primarily in the case of unipotent orbits,
is to insert a damping factor e�h�;HQ.x/i into the integrand of QJT

O.f /, where � is a
complex-valued linear function on aQ, to obtain a distribution JT

O.f ; �/. This idea
goes back to Selberg and has been applied in [A-rk1, Ho-rk1, HoWa] and other
papers. It works in the following situation.

Hypothesis 4. Let O be a truncation class. Then the integral-sum

JT
O.f ; �/ D

Z

QnG1

e�h�;HQ.x/i X

N0�Q

X

�2.O\Qcan/N0=N0

Z

N0

f .x�1�n0x/ dn0 �T
�N0.x/ dx

is absolutely convergent for Re� in a neighbourhood of zero. If a group N0 occur-
ring here is the unipotent radical of parabolic subgroup P0, then its contribution
JT

O;P0.f ; �/ is absolutely convergent for Re� in a certain positive chamber and has
a meromorphic continuation to a domain including the point � D 0.
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Assume that all subgroups N0 occurring in JT
O.f ; �/ are unipotent radicals of

parabolics P0, so that the sum over N0 is finite. If we choose �0 such that C�0 is
not contained in the singular set of any of these Dirichlet series, then the value of
the regular function JT

O.f ; �/ at � D 0 is

JT
O.f / D

X

P0
Q

f.p.
zD0

JT
O;P0.f ; z�0/;

where f.p. denotes the finite part in the Laurent expansion.
Although the above distribution depends on the choice of Q, this information has

not been indicated in the notation since it is encoded in � being a linear function
on aQ. If we want to avoid a preference, we have to consider a family � of linear
functions �.Q/ on all the spaces aQ which is coherent in the sense that �.ı�1Qı/ D
�.Q/ ı Ad ı for all ı 2 G.F/. Denoting the canonical parabolic subgroup of an
element � 2 O by Q.�/, we get in the special case P0 D G

JT;T0

O;G .f ; �/ D
Z

GnG1

X

�2O

e�h�.Q.�//;H
T0

Q.�/.x/if .x�1�x/ �T
� .x/ dx:

Here T 0 is a partial truncation parameter in the sense that it has only components
indexed by parabolics in one conjugacy class. We recover the previous distribution
by setting T 0Q D 0 for the chosen parabolic Q.

In order to explain how the Hypothesis gives rise to weighted orbital integrals,
we need some preparation. One fixes a finite set S of places of F including all
archimedean ones and decomposes the ring of adeles as a direct product A D FSA

S

and the group as G.A/ D G.FS/G.AS/. Then every function f 2 C1c .G.FS//

can be extended to G.A/ by multiplying it with the characteristic function of
KS D K \ G.AS/. The group G.FS/

1 acts from the right on G.F/nG.A/1=KS with
finitely many orbits, and the stabiliser of the orbit with representative g 2 G.AS/1 is
the S-arithmetic subgroup

�g D fıS j ı 2 G.F/; ıS 2 gKSg�1g;

where ıS and ıS are the images of ı in G.FS/ and G.AS/, resp. Its subset

Og D f�S j � 2 O; �S 2 gKSg�1g

is invariant under conjugacy. Let us restrict to the case P0 D G for simplicity. If we
substitute x D gy with y 2 G.FS/, then the integrand vanishes unless �S 2 gKSg�1,
and the distribution JT;T0

O;G .f ; �/ becomes

X

g

Z

�gnG.FS/1

X

�2Og

e�h�.Q.�//;H
T0.g/
Q.�/ .y/if .y�1�y/ �T.g/

� .y/ dy;
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where T.g/P D TP � HP.g/, because HP.gy/ D HP.g/ C HP.y/. Ordering the
elements according to canonical parabolics, we obtain the S-arithmetic version of
the original formula

JT;T0

O;G .f ; �/ D
X

g

X

ŒQ�g

Z

�g\Q.F/nG.FS/1
e�h�.Q/;H

T0.g/
Q .y/i

X

�2Og\Qcan

f .y�1�y/ �T.g/
� .y/ dy:

Here we split the inner sum into subsums over �g \ Q.F/-conjugacy classes in
Og\Qcan.F/, written as sums over �g\Q� .F/n�g\Q.F/, which can be combined
with the integral once the summation over the classes has been moved outside:

JT;T0

O;G .f ; �/ D
X

g

X

ŒQ�g

X

ŒOg\Qcan�g\Q

vol.�g \Q� .F/nQ� .FS/
1/

Z

Q� .FS/1nG.FS/1
e�h�.Q/;H

T0.g/
Q .y/if .y�1�y/ �T.g/

� .y/ dy:

If � D q�1�0q with q 2 Q.FS/, then the substitution qy D z transforms the integral
into its analogue for �0 times exph�.Q/;HQ.q/i. The set C.FS/ consists of finitely
many G.FS/

1-conjugacy classes, and each of them intersects C.FS/ \Qcan.FS/ in a
Q.FS/-conjugacy class. Choosing representatives �0 2 Qcan.FS/, we can write

JT;T0

O;G .f ; �/ D
X

g

X

ŒQ�g

X

Œ�0S

�G.g;Q; �0; �/

Z

Q�0 .FS/1nG.FS/1
e�h�.Q/;H

T0.g/
Q .y/if .y�1�0y/ �T.g/

�0
.y/ dy;

where �G.g;Q; �0; �/ is a certain Dirichlet series in the variable �. Since the
parabolics Q are conjugate, suitable substitutions reduce the integrals to multiples
of

JT
G.�; f ; �/ D

Z

Q� .FS/1nG.FS/1
e�h�;HQ.y/if .y�1�y/ �T

� .y/ dy

for a fixed Q, where we have set T 0Q D 0, and we get

JT
O;G.f ; �/ D

X

Œ�S

�G.S; �; �/J
T
G.�; f ; �/:

We do not indicate the dependence of the weighted orbital integral on S as this
information is encoded in the argument f . Similarly one can show that, if N0 is the
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unipotent radical of P0 � Q,

JT
O;P0.f ; �/ D

X

Œ�N0 S

�P0.S; �; �/JT
P0.�N0; f ; �/;

where Œ�N0S are the Q.FS/-conjugacy classes in .C.FS/\Qcan.FS//N0 .FS/=N0.FS/,

JT
P0.�N0; f ; �/ D

Z

Q�N0
.FS/1nG.FS/1

e�h�;HQ.x/i

Z

N0.FS/

f .x�1�n0x/ dn0 �T
�N0 .x/ dx

with the notation Q�N0

for the stabiliser of �N0 in Q, and where �P0.S; �; �/ are
certain Dirichlet series. They depend only on the coset �N0.FS/, but we prefer to
write them as functions of � for reasons that become clear at the end of Sect. 6.

If these zeta functions can be meromorphically continued, one obtains a formula
with explicit weight factors, because the Laurent expansion of a product can be
expressed by those of its factors. In Sect. 6 we will carry this out for the principal
unipotent conjugacy class.

One has to regroup the result in terms of conjugacy classes of Levi subgroups M
and to relate the resulting explicit weighted orbital integrals to Arthur’s distributions
JM.�; f / if one wishes to compute the coefficients aM.S; �/ in the fine geometric
expansion [A-mix]. So far, this has only been done in special cases (like in [HoWa])
by an ad-hoc computation.

5.2 Reduction to Vector Spaces

Let O be a truncation class in a unipotent conjugacy class C and Q the canonical
parabolic of one of its elements. We perform a further transformation of JT

O.f ; �/
which is in a way contrary to that in Lemma 5, because this time we are replacing
sums by integrals.

The group Q=U, which can be identified with any Levi subgroup L of Q defined
over F, acts on the group V D U0=U00 by conjugation. This action is linear if we
endow U0 and U00 with the structure of vector spaces defined over F using the
exponential maps. By Theorem 5(ii), V is an F-regular prehomogeneous vector
space, and the generic orbit is C\U0=U00. For each parabolic subgroup P0 � Q, we
have the vector subspace VP0 D N0U00=U00 and quotient space VP0 D V=VP0 , both
prehomogeneous by Theorem 3(i).

Now we switch back to the simplified notation for adelic and rational points of
varieties introduced in Sect. 3.1. For each L-invariant subquotient W of U, we denote
by ıW the modular character for the action of L on W by inner automorphisms. It
can be interpreted as an element of a�L , so that ıW.l/ D ehıW ;HL.l/i. We have to be
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cautious since the tradition of the adelic trace formula imposes upon us the right
action by inverses of inner automorphisms.

Hypothesis 5. In the situation of Hypothesis 4, for a unipotent truncation class O
and every Schwartz–Bruhat function ' on V, the integral-sum

ZT
O.'; �/ D

Z

LnL\G1

e�h�CıU=U00 ;HL.l/i X

N0�Q

X

�2.O\U0/N0=U00N0

Z

N0U00=U00

'.l�1�n0l/ dn0 �T
�N0.l/ dl;

is absolutely convergent for Re� in a neighbourhood of the closure of .a�Q/C.
If a group N0 occurring here is the unipotent radical of a parabolic subgroup P0,

then for every Schwartz–Bruhat function  on VP0

, the truncated zeta integral

ZT
O;P0. ; �/ D

Z

LnL\G1

e�h�CıU=N0U00 ;HL.l/i

X

�2.O\U0/N0=U00N0

 .l�1�l/ �T
�N0.l/ dl;

is absolutely convergent for Re� 2 .a�Q/C and extends meromorphically to a
neighbourhood of the closure of that domain.

Let us look at the special case P0 D G. As in Theorem 4, such integrals usually
converge when the parameter in the exponent is � C ıV with Re � positive on the
chamber aCQ . Our parameter shift differs by ıU=U0 , and if this point is contained in
the domain of convergence, no terms with P0 ¤ G are needed for regularisation.

Due to the restriction to G1, the usual convergence condition takes the form
X.L�/F D X.G/F or, equivalently, AL� D AG, where AG denotes the largest F-split
torus in the centre of G. It may be violated, but the truncation function �T

� should
save the convergence.

Lemma 7. Under Hypotheses 4 and 5 and Conjecture 0, we have

JT
O.f ; �/ D ZT

O.fV ; �/; JT
O;P0.f ; �/ D ZT

O;P0.f P0

V ; �/;

where

fV.v/ D
Z

K

Z

U00

f .k�1vu00k/ du00 dk

is a smooth compactly supported function on V and, for each Schwartz–Bruhat
function ' on V,
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'P0

.v/ D
Z

VP0

'.vv0/ dv0

is a Schwartz–Bruhat functions on VP0

.

Proof. For each � 2 O \ U0, the map U�nU ! �U00 given by ı 7! ı�1�ı is
an isomorphism due to the representation theory of sl2. An isomorphism between
affine F-varieties induces a bijection between their sets of F-rational points, and the
set of F-rational points of U0=U00 is U0.F/=U00.F/. Since O \ U.F/ is normalised
by U.F/, all elements of a U00.F/-coset in U0.F/ belong to the same truncation class.
Writing again U for U.F/ etc., we get for finitely supported functions g on U0 and
h on �U00

X

�2O\U0

g.�/ D
X

�2O\U0=U00

X

�2U00

g.��/;
X

�2U00

h.��/ D
X

ı2U�nU
h.ı�1�ı/:

This argument also works if we replace U0 by U0=N0 and U00 by its image U00N0=N0
in that quotient. It shows that, for g on V ,

X

�2.O\U0/N0=N0

g.�/ D
X

�2.O\U0/N0=U00N0

X

ı2U�N0nU
g.ı�1�ı/:

As a by-product, we see that the sum in the Lemma is well defined. These identities
have adelic versions, too, of which we only need

Z

U00N0=N0

h.�u0/ du0 D
Z

U�N0nU
h.u�1�u/ du

for continuous compactly supported functions h on �U00N0=N0.
By definition, JT

O.f ; �/ is given by the expression

Z

QnG1

e�h�;HQ.x/i X

N0�Q

X

�2.O\U0/N0=N0

Z

N0

f .x�1�n0x/ dn0 �T
�N0.x/ dx:

Upon applying the identity we have just proved, the inner sum becomes

X

�2.O\U0/N0=U00N0

X

ı2U�N0nU

Z

N0

f .x�1ı�1�ın0x/ dn0 �T
ı�1�ıN0.x/:

Note that

�T
ı�1�ıN0.x/ D �T

�N0.ıx/:
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Substituting ın0 D nı, decomposing the exterior integral according to G D ULK
and combining the integral over UnU with the sum over U�N0nU, we get

JT
O.f ; �/ D

Z

K

Z

LnL\G1

e�h�;HL.l/i X

N0�Q

X

�2.O\U0/N0=U00N0

Z

U�N0nU

Z

N0

f .k�1l�1u�1�nulk/ dn�T
�N0.ul/ du ıU.l

�1/ dl dk:

We split the integral over U�N0nU into integrals over U�N0nU and U�N0nU�N0 . The
latter one drops out, since the integral over N0 as a function of u and the function
�T
�N0 are left-invariant under U�N0 , and with the usual normalisation, the measure of

U�N0nU�N0 equals 1.
Granting Conjecture 0, HP is left U-invariant for all P 2 P infl

� , hence so is �T
�N0

and can be extracted from the integral over u. Substituting nu D un0, applying the
adelic version of the above identity to

h.�u0/ D
Z

N0

f .k�1l�1�u0n0lk/ dn0

and combining the integrals over u0 and n0, we obtain

JT
O.f ; �/ D

Z

K

Z

LnL\G1

e�h�;HL.l/iıU.l
�1/

X

N0�Q

X

�2.O\U0/N0=U00N0

Z

U00N0

f .k�1l�1�nlk/ dn�T
�N0.l/ dl dk:

It remains to move the integral over K under the sum, to split the integral over U00N0
into integrals over n0 2 N0U00=U00 and u00 2 U00 and to substitute u00l D lu0, which
produces a factor ıU00.l/. If we treat only the contribution from a fixed group P0, we
may substitute n0l D lv0 in the integral over VP0 D N0U00=U00, which produces a
factor ıN0U00=U00.l/ and allows us to express everything in terms of  D 'P0

. ut

6 The Principal Unipotent Contribution

6.1 Reduction to the Trivial Parabolic

A final formula can be obtained for the contribution of the principal unipotent
conjugacy class in G, which we denote by Gprin. Let � be an element. Its canonical
parabolic Q is then a minimal parabolic, for which we choose a Levi component L.
By Theorem 5, Gprin \ Qcan is a dense Q-conjugacy class in U D U0. The set
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P infl
� consists of all parabolics P containing Q. For each of them, Gprin \ P is

dense in MprinN, where N is the unipotent radical of P and M the Levi component
containing L. By Theorem 3, �N is prehomogeneous under the action of Q�N � P�N

with generic orbit contained in the Q-conjugacy class of � , hence in Qcan. Therefore
we can take NMprin D N, and one could even show that this is the only choice
satisfying Hypothesis 1.

Thus, the definition given in Hypothesis 4 simplifies to

JT
Gprin;P.f ; �/ D

Z

QnG1

e�h�;HQ.x/i

X

�2.Gprin\Q/N=N

Z

N
f .x�1�n0x/ dn0 O�T

P .x/ dx;

which depends only on the restriction of � to aG
Q. These distributions for various P

can be expressed in terms of the one with P D G (which does not depend on the
truncation parameter), in which the ambient group G is replaced by M (indicated by
a superscript M).

Lemma 8. If Hypothesis 4 applies to principal unipotent orbits, then

JT
Gprin;P.f ; �/ D �PJM

Mprin ;M.f
P; �P/	T

P .�/
�1;

where

f P.m/ D
Z

K

Z

N
f .k�1mnk/ dn dk

is a compactly supported smooth function on M1 and, in the notation of Sect. 2.5,
	T

P .�/ D eh�;TPi	P.�/.

Proof. The natural map Mprin \ Q ! .Gprin \ Q/N=N is a bijection, and with the
usual integration formula for the decomposition G D NMK, the above expression
can be written as

Z

K

Z

M\QnM\G1

Z

NnN
e�h�;HM\Q.m/i

X

�2Mprin\Q

Z

N
f .k�1m�1n�1�n0nmk/ dn0 O�T

P .m/ dn ıN.m/
�1dm dk;

where the integral over NnN drops out. Now we substitute n0m D mn, thereby
cancelling the factor ıN.m/, and split the integral over M\QnM\G1 into integrals
over M1nM \ G1 Š aG

M D aG
P and M \ QnM1. Since the elements � 2 M act

trivially on aG
M , we get
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Z

K

Z

M\QnM1

e�h�;HM\Q.m/i X

�2Mprin\Q

Z

N
f .k�1m�1�mnk/ dn dm dk

�P

Z

aG
P

e�h�;Hi O�P.H � TP/ dH;

where we have used that O�T
P .x/ D �P O�P.HT

P .x//. ut

6.2 Singularities of Zeta Integrals

Under Hypotheses 4 and 5, Lemma 7 shows that the distributions on both sides of
the equality

JT
Gprin.f ; �/ D

X

P
Q

JT
Gprin;P.f

P; �/

as well as in Lemma 8 can be expressed in terms of zeta integrals. Since the
two possible interpretations of f P

V coincide, there will be parallel formulas for zeta
integrals. We prove them unconditionally.

Lemma 9. For every Schwartz–Bruhat function ' on V and � 2 .a�Q/C, we have

ZT
Gprin.'; �/ D

X

P
Q

ZT
Gprin;P.'

P; �/;

ZT
Gprin;P.'; �/ D �PZM

Mprin;M.'
P; �P/	T

P .�/
�1:

These functions are defined by convergent integral-sums for Re� 2 .a�Q/C and
extend meromorphically to all � with Re� in a neighbourhood of zero. The function
ZT

Gprin.'; �/ is holomorphic there.

Proof. The space V is the direct sum of the prehomogeneous vector spaces VP

corresponding to the minimal parabolics P properly containing Q. For each such P,
the space VP is the isomorphic image, under the exponential map, of a root space
for a fundamental root ˛ of the maximal split torus in L, and we get a bijection
between the set of F-irreducible summands of V and the set �Q. The group L is
F-anisotropic modulo centre, and its basic characters corresponding to the relative
invariants of V , when restricted to the maximal split torus in the centre of L, are
nothing but the elements of �Q. This prompts us to write � as a linear combination
of those fundamental roots with certain coefficients s˛ . These coefficients are then
the values of � on the elements of the dual basis, viz. the fundamental coweights L$ .
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The distribution ZGprin;G.'; �/ is a zeta integral without truncation on the preho-
mogeneous vector space V . By Theorem 4, it converges absolutely if hRe�; L$i > 0
for all $ 2 O�Q and extends meromorphically to the whole space. Its singularities
for Re� in some neighbourhood of zero are at most simple poles along the
hyperplanes where h�; L$i D 0 for some $ 2 O�Q, and the multiple residue at
any point �0 in that neighbourhood is described as follows. If P is the smallest
parabolic containing Q such that �0 vanishes on aG

P (i.e., the singular hyperplanes
containing �0 are indexed by O�P), then

lim
�!�0

ZGprin;G.'; �/
O	P.�/ D ZM

Mprin ;M.'
P; �0/:

An argument as in the proof of Lemma 8 shows the second asserted identity, which
provides the convergence and meromorphic continuation of its left-hand side. The
manipulations at the end of the proof of Lemma 7 are now valid unconditionally,
thus proving the first identity for � in the domain of convergence and hence for the
meromorphically continued functions.

The theory of .G;Q/-families cannot be applied to meromorphic functions. One
may remove the singularities of the zeta integral at � D 0 either by multiplying
with linear functions or by subtracting the principal part. The first method leads to
the modified distribution

QZGprin;G.'; �/ D ZGprin;G.'; �/
O	Q.�/

and its analogues for Levi subgroups. Since the elements of the dual basis of�P
Q are

the projections of the L$ with $ 2 O�Q n O�P onto aP
Q, it follows that

lim
�!�0

QZGprin;G.'; �/ D QZM
Mprin ;M.'

P; �0/:

This shows that the functions cP.�/ D e�h�;TPi QZM
Mprin;M

.'P; �P/ make up a .G;Q/-
family, which is a product of a frugal and a cofrugal one. We can rewrite our formula
for the principal unipotent contribution tautologically as

ZT
Gprin.'; �/ D

X

P
Q

�P QZM
Mprin ;M.'

P; �P/ O	P
Q.�/

�1	T
P .�/

�1:

Now the regularity of the right-hand side for Re� in a neighbourhood of zero
follows from Lemma 1. ut

Let us discuss the second method of removing singularities that was mentioned
in the proof. Note that the principal part of a meromorphic function on a complex
space is not invariantly defined. Thus, we exploit the L-invariant splitting V D VP˚
VR of our prehomogeneous vector space valid for each pair of parabolics P and R
containing Q for which�Q is the disjoint union of�P

Q and�R
Q. Although the image

of L in Aut.V/ need not split accordingly, that of its centre does, leading to the
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decomposition aG
Q D aG

P ˚ aG
R . Since R is determined by P and Q, we denote �R

by �P=Q, which may serve as an argument for ZM
Mprin;M

, because both aG
R and aP

Q are
canonically isomorphic to aQ=aP. (This approach is dual to the one applied in the
proof of Lemma 6.1 in [A-inv].) We define the second modified distribution as

QZGprin.'; �/ D
X

P
Q

�PZM
Mprin;M.'

P; �P=Q/ O	P.�/
�1

(without the additional subscript G), which is also holomorphic for Re� a neigh-
bourhood of zero, because the poles along each singular hyperplane cancel. We have
a version of this distribution for the Levi component M0 of every parabolic P0 � Q
in the role of G, and by induction we can easily prove the converse relation

ZGprin;G.'; �/ D
X

P0
Q

QZM0

M0prin.'
P0

; �P0=Q/ O	P0.�/�1:

Plugging its relative version into the formula for ZT
Gprin;P

.'; �/ and summing over P,
we obtain after a change of summation a second formula

ZT
Gprin.'; �/ D

X

P0
Q

X

P
P0

�P QZM0

M0prin.'
P0

; .�P/M\P0=M\Q/ O	P
P0.�/

�1	T
P .�/

�1:

The functions cP.�P0/ D e�h�;TPi QZM0

M0prin.'
P0

; .�P/M\P0=M\Q/ for fixed P0 and �P0

constitute a .G;P0/-family, hence the inner sum is holomorphic in �P0 by Lemma 1.
It is actually holomorphic in �, because the family depends holomorphically on �P0

in the obvious sense. For P0 D G, it reduces to QZGprin.'; �/, while the contribution
of P0 D Q converges to

ZL
Lprin.'

Q/

Z

aG
Q

� 0Q.H;TQ/ dH

as �! 0 by Lemma 2.2 of [A-inv].

6.3 Explicit Weight Factors

Now let f 2 C1c .G.FS/
1/ for a finite set S of places. As in Sect. 5.1, we have the

expansion

JT
Gprin;P.f ; �/ D

X

Œ� 0NS

�P.S; �
0; �/JT

P .�
0N; f ; �/
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for any P � Q, where Œ� 0NS runs through the Q.FS/-conjugacy classes
in .Gprin.FS/ \ Q.FS//N.FS/=N.FS/. Here �P.S; � 0; �/ is a certain zeta function
associated with the prehomogeneous vector space VP, and the weighted orbital
integral JT

P .�
0N; f ; �/ is given by

Z

Q� 0N .FS/1nG.FS/1
e�h�;HQ.x/i

Z

N.FS/

f .x�1� 0nx/ dn O�T
P .x/ dx:

As in the proof of Lemma 8, we see that

JT
P .�
0N; f ; �/ D �PJM

M .�
0N; f P; �P/	T

P .�/
�1;

where the superscript M indicates the analogue of the distribution for M in place
of G. The latter is holomorphic, hence the zeta function is responsible for the
remaining singularities of the product. We remove them by setting

Q�P.S; �
0; �/ D �P.S; �

0; �/ O	P
Q.�/:

The preimage in G.FS/
prin\Q.FS/ of a Q.FS/-orbit Œ� 0NS consists of several Q.FS/-

orbits. Using the isomorphism N�nN � N� ! �N as in the proof of Lemma 7, we
get

JM
M .�

0N; f P; �P/ D
X

Œ�S WŒ�NSDŒ� 0NS

JP.�; f ; �/;

where the functions

JP.�; f ; �/ D
Z

G� .FS/1nG.FS/1
e�h�;H

P
Q.x/if .x�1�x/ dx

form a cofrugal .G;Q/-family because the weight factors do. In total, we obtain

JT
Gprin;P.f ; �/ D �P

X

Œ�S

Q�P.S; �; �/JP.�; f ; �/ O	P
Q.�/

�1	T
P .�/

�1:

By Lemmas 8 and 7, we have

X

Œ�S

Q�P.S; �; �/JP.�; f ; �/ D QZM
Mprin ;M.f

P
V ; �

P/:

We have seen in the proof of Lemma 9 that the zeta integrals with removed
singularities on the right-hand side form a cofrugal .G;Q/-family, and we deduce
the same property for the functions Q�P.S; �; �/ with fixed S and � by choosing f
supported in the G.FS/-conjugacy class of � .
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Summing the above formulas for JT
Gprin;P

.f ; �/ over P � Q and applying Lemma 4

with dP.�/ D e�h�;TPiJP.�; f ; �/, we obtain

JT
Gprin.f / D �Q

X

Œ�S

X

P
Q

. Q�P
Q/
0.S; �; 0/JT

P.�; f /;

where . Q�P
Q/
0.S; �; �/ is as in Lemma 1 and

JT
P .�; f / D

Z

G� .FS/1nG.FS/1
f .x�1�x/wT

P.x/ dx

with the weight factor

wT
P.x/ D lim

�!0
X

P0
P

�P0

P e�h�;HP0

P .x/CTP0 i O	P0

P .�/
�1	P0.�/�1:

Applying Lemma 4 again, we get

wT
P.x/ D

X

P0
P

�P0

P v
P0

P .H
P0

P .x//vP0.TP0/

in terms of the relative versions of the function

vQ.X/ D
Z

aG
Q

� 0Q.H;X/ dH D �Q

Z

aG
Q

� 00Q.H;X/ dH;

where the equality of the integrals follows from Lemma 2(iii). Since vQ.X/ D
�QvQ.�X/, we can also write

wT
P.x/ D

X

P0
P

vP0

P .�HP0

P .x//vP0.TP0/ D vP.TP �HP.x//;

where the last equality follows with Lemma 4.
There is an alternative formula. The .M;Q \ M/-family giving rise to

. Q�P
Q/
0.S; �; �/ depends only on �N.FS/, so we can write

JT
Gprin.f / D �Q

X

P
Q

X

Œ� 0NS

. Q�P
Q/
0.S; � 0; 0/JT

P.�
0N; f /;

where JT
P .�
0N; f / is the sum of the JT

P .�; f / over all Œ�S with Œ�NS D Œ� 0NS.
Recombining the integrals, we get

JT
P .�
0N; f / D �P

Z

L� 0N .FS/nL.FS/

f P.l�1� 0l/vP.H
T
P.l// dl:
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7 Examples

We are going to illustrate the constructions of this paper by some examples,
restricting ourselves to subregular unipotent conjugacy classes in low-dimensional
split classical groups. Such a group G is up to isogeny either the group GL.V/, where
V is an F-vector space, or the subgroup stabilising a symmetric bilinear form b or a
symplectic form ! on V . Parabolic subgroups are stabilisers of flags V0 � 	 	 	 � Vr

in V , which have to be self-dual in the orthogonal and symplectic cases, i.e.,
V?i D Vr�i for each i. To every conjugacy class of unipotent elements � D exp X or,
equivalently, to every adjoint orbit of nilpotent elements X, one associates a partition
of the natural number dim V (cf. Sect. 5.1 of [CG]). We avoid the orthogonal
case, in which both assignments are not quite bijective. Although in the notation
fV0; : : : ;Vrg for a flag one ought include V0 D f0g and Vr D V , we will list only
nonzero proper subspaces for brevity, so that G, considered as its own parabolic
subgroup, appears as the stabiliser of the empty flag.

For each representative � , we will present the canonical flag determining the
canonical parabolic Q of � , the corresponding prehomogeneous vector space defined
in Theorem 5 and applied in Sect. 5.2, its basic relative invariants as in Theorem 4
and the split torus AL� =AG, as mentioned after Hypothesis 5, by means of its faithful
action on a subquotient of a suitable flag. We will also describe the poset P infl

� .F/
defined in Theorem 2(iv) and applied in Corollary 1. If applicable, we will indicate
the splitting of C.F/ into truncation classes defined in Sect. 4.3 and the refined
set Pmin infl

� .F/. For each parabolic P D MN in this set, we will give the group
NŒ� defined in Hypothesis 1, whose present notation was introduced in Lemma 6.

7.1 General Linear Group of Rank 2

Here G.F/ D GL.V/ with dim V D 3, and the subregular unipotent class
corresponds to the partition Œ2; 1. The canonical flag of a representative � D exp X
is fV�;VCg, where

V� D Im X; VC D Ker X;

and X defines an isomorphism V=VC ! V�. The Hasse diagram of these
subspaces is shown in Fig. 1. The corresponding prehomogeneous vector space
is Hom.V=VC;V�/ with any nonzero linear function as basic relative invariant,
and AL� =AG acts on VC=V� by homotheties. The Hasse diagram of the parabolic
subgroups P in P infl

� .F/, or rather their corresponding flags, is shown in Fig. 2.
For each such P with unipotent radical N, the related group N0 D NŒ� is the

unipotent radical of a parabolic P0. Here and below, we encode the assignment P 7!
P0 in the Hasse diagram by an arrow between the corresponding flags. If no arrow
starts at a flag, this means that we have P0 D P for the corresponding parabolic.
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Fig. 1 Subspaces determined
by �

V

V+

V−

{0}

Fig. 2 Inflating parabolics ∅

{V−} V+}{

7.2 Symplectic Group of Rank 2

Here G.F/ D Sp.V; !/ with dim V D 4, and the subregular unipotent class
corresponds to the partition Œ2; 2. The canonical flag of a representative � D exp X
is fV0g, where

V0 D Ker X D Im X:

The element X induces an isomorphism V=V0! V0 and defines symmetric bilinear
forms bC on V=V0 and b� on V0 by

bC.u; v/ D !.u;Xv/ D b�.Xu;Xv/:

If bC or, equivalently, b� splits over F into a product of two linear forms, then
there are isotropic lines UC=V0, WC=V0 for bC and U�, W� for b�. In this case X
determines four additional F-subspaces with the properties

XUC D U?C D U�; XWC D W?C D W�:

The Hasse diagram of these subspaces is shown in Fig. 3 with the parts shaded that
are only present in the split case. The corresponding prehomogeneous vector space
is the space Quad.V=V0/ of quadratic forms on V=V0 with the discriminant as basic
relative invariant. The torus AL� =AG acts as the split special orthogonal group on
V=V0 Š V0 if b˙ is split, while it is trivial otherwise.

The class C.F/ splits into two truncation classes O and O0 containing the
elements for which the forms b˙ are anisotropic resp. split. The Hasse diagram
of Pmin infl

� .F/ for � in O resp. O0 is shown in Figs. 4 resp. 5 with the same encoding
of the assignment P 7! P0 as above.
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Fig. 3 Subspaces determined
by �

V

U+ W+

V0

U− W−

{0}

Fig. 4 Inflating parabolics
for which O is minimal

∅

{V0 }

Fig. 5 Inflating parabolics
for which O0 is minimal

∅

{U− , U+} {W− ,W+}

In this case, Lemma 7 is true unconditionally, see [HoWa] for details. The
sum ZT

C.'; �/ D ZT
O.'; �/ C ZT

O0.'; �/ of zeta integrals was called “adjusted zeta
function” in [Yu].

7.3 General Linear Group of Rank 3

Here G.F/ D GL.V/ with dim V D 4, and the subregular unipotent class
corresponds to the partition Œ3; 1. The canonical flag of a representative � D exp X
is fV�;VCg, where

V� D Ker X \ Im X D Im X2;

VC D Ker X C Im X D Ker X2:

The corresponding prehomogeneous vector space is

Hom.V=VC;VC=V�/ � Hom.VC=V�;V�/;

and the value of the basic relative invariant on � D .�1; �2/ in this space is the
composition �2 ı �1 2 Hom.V=VC;V�/. The torus AL� =AG acts by homotheties
on Ker �2 stabilising Im �1. Figure 3 shows the Hasse diagram of the pertinent
subspaces together with Ker X and Im X, whose stabilisers also belong to the
set P infl

� .F/ (Fig. 6).
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Fig. 6 Subspaces determined
by �

V

V+

Ker X Im X

V−

0

Fig. 7 Inflating parabolics ∅

{ImX} {V−} {V+} {Ker X}

{V− , Im X } {V− , V+} {KerX, V+}

The Hasse diagram of the latter poset appears in Fig. 7 with the same encoding
of the assignment P 7! P0 as above. There is no minimal parabolic contained in
all its members, hence working with standard parabolic subgroups is inadequate.
The stabilisers of Ker X and Im X are the first examples where the prehomogeneous
affine space �N=N0 is special under P�N , although the tangent prehomogeneous
vector space n=n0 is not. The zeta integral ZT

C;G.'; �/ in this case has not yet been
meromorphically continued. It is the first example in which the truncation function
�T
� in Hypothesis 5 really depends on �.

7.4 Symplectic Group of Rank 3

Here G.F/ D Sp.V; !/ with dim V D 6, and the subregular unipotent class
corresponds to the partition Œ4; 2. The canonical flag of a representative � D exp X
is fV�;V0;VCg, where

VC D Ker X3 D Ker X2 C Im X;

V0 D Ker X2 \ Im X D Ker X C Im X2;

V� D Ker X \ Im X2 D Im X3:

The element X induces isomorphisms

X W VC=V0! V0=V�; X2 W V=VC ! V�

and defines symmetric bilinear forms bC on VC=V0, b� on V0=V� by

bC.u; v/ D !.u;Xv/ D b�.Xu;Xv/:
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The nonisotropic lines Im X=V0 for bC and Ker X=V� for b� will also play a role,
whence we have included Ker X and Im X in the Hasse diagram of subspaces shown
in Fig. 8. If bC or, equivalently, b� splits over F into a product of two linear forms,
then there are isotropic lines UC=V0, WC=V0 for bC and U�=V�, W�=V� for b�.
In this case X determines four additional F-subspaces, which are shaded in the
diagram, with the properties

XUC D U?C D U�; XWC D W?C D W�:

In any case, Hom.V=VC;VC=V0/�Quad.VC=V0/ is the associated prehomogeneous
vector space. One basic relative invariant is the discriminant of the quadratic form,
the other one is given by composition and takes values in Quad.V=VC/. The torus
AL� =AG is trivial for all �.

The class C.F/ splits into two truncation classes O and O0 containing the
elements for which the forms b˙ are anisotropic resp. split. The Hasse diagram
of Pmin infl

� .F/ for � in O resp. O0 is shown in Figs. 9 resp. 10.
The class O0 is the first example of a truncation class for whose elements � the

group N0 D NŒ� cannot be chosen as the unipotent radical of a parabolic, hence
cannot be encoded by arrows in the diagram. If N is the unipotent radical of the
stabiliser of .U�;UC/, we may set

n0 D fZ 2 n j ZV � U�; ZUC D 0g;

Fig. 8 Subspaces determined
by �

V

V+

U+ Im X W+

V0

U− KerX W−

V−

0

Fig. 9 Inflating parabolics
for which O is minimal

∅

{KerX, ImX} {

{

V0}

}

{V− , V+}

{Ker X, V0 , ImX V− , V 0 , V+}
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∅

{U−, U+} {V−, V+}

}

{W−,W+}

{V− , U− , U+ , V+ }{V− ,W− ,W+ , V+

Fig. 10 Inflating parabolics for which O0 is minimal

whereas if N is the stabiliser of .V�;U�;UC;VC/, we may set

n0 D fZ 2 n j ZUC � V�; ZVC � U�g

and similarly with the letter U replaced by W. There are infinitely many N0 for a
fixed canonical parabolic, which suggests that one should search for another type of
canonical subgroup attached to � .
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The Local Langlands Conjectures
for Non-quasi-split Groups

Tasho Kaletha

Abstract We present different statements of the local Langlands conjectures for
non-quasi-split groups that currently exist in the literature and provide an overview
of their historic development. Afterwards, we formulate the conjectural multiplicity
formula for discrete automorphic representations of non-quasi-split groups.

1 Motivation and Review of the Quasi-Split Case

1.1 The Basic Form of the Local Langlands Conjecture

Let F be a local field of characteristic zero (see Sect. 1.6 for a brief discussion of
this assumption) and let G be a connected reductive algebraic group defined over
F. A basic problem in representation theory is to classify the irreducible admissible
representations of the topological group G.F/. The Langlands classification reduces
this problem to that of classifying the tempered irreducible admissible representa-
tions of G.F/, whose set of equivalence classes will be denoted by…temp.G/. In this
paper, we will focus exclusively on tempered representations.

The local Langlands conjecture, as outlined, for example, in [Bor79], proposes
a partition of this set indexed by arithmetic objects that are closely related to
representations of the absolute Galois group � of F. More precisely, let WF be the
Weil group of F. Then

LF D
(

WF; F archimedean

WF � SU2.R/; F non-archimedean

is the local Langlands group of F, a variant of the Weil–Deligne group suggested
in [LanC, p. 209] and [Kot84, p. 647]. Let bG be the connected complex Langlands
dual group of G, as defined, for example, in [Bor79, §2] or [Kot84, §1], and let
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LG D bG Ì WF be the Weil-form of the L-group of G. Let ˆtemp.G/ be the set
of bG-conjugacy classes of tempered admissible L-homomorphisms LF ! LG. We
recall from [Lan83, IV.2], see also [Bor79, §8], that an L-homomorphism is a
homomorphism � W LF ! LG that commutes with the projections to WF of its
source and target. It is called admissible if it is continuous and sends elements of
WF to semi-simple elements of LG. It is called tempered if its image projects to a
bounded subset of bG.

The basic form of the local Langlands conjecture is the following.

Conjecture A. 1. There exists a map

LL W …temp.G/! ˆtemp.G/; (1)

with finite fibers…�.G/ D LL�1.�/.
2. The fiber…�.G/ is empty if and only if � is not relevant, i.e. its image is contained

in a parabolic subgroup of LG that is not relevant for G.
3. If � 2 ˆtemp.G/ is unramified, then each � 2 …�.G/ is K� -spherical for some

hyperspecial maximal compact subgroup K� and for every such K there is exactly
one K-spherical � 2 …�.G/. The correspondence …�.G/ $ � is given by the
Satake isomorphism.

4. If one element of…�.G/ belongs to the essential discrete series, then all elements
of …�.G/ do, and this is the case if and only if the image of � is not contained in
a proper parabolic subgroup of LG (or equivalently in a proper Levi subgroup of
LG).

5. If � 2 ˆtemp.G/ is the image of �M 2 ˆtemp.M/ for a proper Levi subgroup M �
G, then…�.G/ consists of the irreducible constituents of the representations that
are parabolically induced from elements of …�M.M/.

There are further expected properties, some of which are listed in [Bor79, §10] and
are a bit technical to describe here. This basic form of the local Langlands conjecture
has the advantage of being relatively easy to state. It is, however, insufficient for
most applications. What is needed is the ability to address individual representations
of G.F/, rather than finite sets of representations. Ideally this would lead to a
bijection between the set …temp.G/ and a refinement of the set ˆtemp.G/. Moreover,
one needs a link between the classification of representations of reductive groups
over local fields and the classification of automorphic representations of reductive
groups over number fields. Both of these are provided by the refined local Langlands
conjecture.
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1.2 The Refined Local Langlands Conjecture for Quasi-Split
Groups 1

Formulating the necessary refinement of the local Langlands conjecture is a non-
trivial task. We will begin with the case when G is quasi-split, in which a statement
has been known for some time.

Given � 2 ˆtemp.G/, we consider the complex algebraic group S� D
Cent.�.LF/;bG/. The arguments of [Kot84, §10] show that Sı� is a reductive group.

Let NS� D S�=Z.bG/� . The first refinement of the basic local Langlands conjecture
can now be stated as follows.

Conjecture B. There exists an injective map

� W …� ! Irr.�0.NS�//; (2)

which is bijective if F is p-adic.

We have denoted here by Irr the set of equivalence classes of irreducible representa-
tions of the finite group�0.NS�/. Various forms of this refinement appear in the works
of Langlands and Shelstad, see, for example, [SheC], as well as Lusztig [Lus83].

A further refinement rests on a conjecture of Shahidi stated in [Sha90, §9]. To
describe it, recall that a Whittaker datum for G is a G.F/-conjugacy class of pairs
.B;  /, where B is a Borel subgroup of G defined over F with unipotent radical U,
and  is a non-degenerate character U.F/! C

�, i.e. a character whose restriction
to each simple relative root subgroup of U is non-trivial. When G is adjoint, it has a
unique Whittaker datum. In general, there can be more than one Whittaker datum,
but there are always only finitely many. Given a Whittaker datum w D .B;  /, an
admissible representation � is called w-generic if HomU.F/.�;  / ¤ 0. A strong
form of Shahidi’s conjecture is the following.

Conjecture C. Each set …�.G/ contains a unique w-generic constituent.

This allows us to assume, as we shall do from now on, that � maps the unique w-
generic constituent of …�.G/ to the trivial representation of �0.NS�/. It is then more
apt to write �w instead of just �. We shall soon introduce another refinement, which
will specify �w uniquely. One can then ask the question: How does �w depend on w.
This dependence can be quantified precisely [KalGe, §4], but we will not go into
this here. We will next state a further refinement that ties the sets …�.G/ into the
stabilization of the Arthur–Selberg trace formula. It also has the effect of ensuring
that the map �w is unique (provided it exists).
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1.3 Endoscopic Transfer of Functions

Before we can state the next refinement of the local Langlands conjecture we
must review the notion of endoscopic transfer of functions, and for this we must
review the notion of endoscopic data and transfer factors. The notion of endoscopic
data was initially introduced in [LS87] and later generalized to the twisted case in
[KS99]. We will present the point of view of [KS99], but specialized to the ordinary,
i.e. non-twisted, case.

Definition 1. 1. An endoscopic datum is a tuple e D .Ge;Ge; se; �e/, where Ge is
a quasi-split connected reductive group defined over F, Ge is a split extension
of bGe by WF (but without a chosen splitting), se 2 OG is a semi-simple element,
and �e W Ge ! LG is an L-homomorphism that restricts to an isomorphism of
complex reductive groups OGe ! Cent.se; OG/ı and satisfies the following: There
exists s0 2 Z. OG/se such that for all h 2 Ge, s0�e.h/ D �e.h/s0.

2. An isomorphism between endoscopic data e1 and e2 is an element g 2 bG
satisfying g�e1.Ge1/g�1 D �e2 .Ge2/ and gse1g�1 2 Z.bG/ 	 se2 .

3. A z-pair for e is a pair z D .Ge
1; �

e
1/, where Ge

1 is an extension of Ge by an
induced1 torus with the property that Ge

1;der is simply connected, and �e1 W Ge !
LGe

1 is an injective L-homomorphism that restricts to the homomorphism bGe !
bGe
1 dual to the given projection Ge

1 ! Ge.

We emphasize here that the crucial properties of a z-pair are that the representation
theory of Ge.F/ and Ge

1.F/ is very closely related, and that the map �e1 exists. The
latter is a consequence of the simply-connectedness of the derived subgroup of Ge

1.
There are two processes that produce endoscopic data [She83, §4.2], one

appearing in the stabilization of the geometric side of the trace formula, and one in
the stabilization of the spectral side (or, said differently, in the spectral interpretation
of the stable trace formula). These processes naturally produce the extension Ge.
This extension is, however, not always isomorphic to the L-group of Ge. The purpose
of the z-pair is to circumvent this technical difficulty. It is shown in [KS99, §2.2] that
z-pairs always exist.

In some cases the extension Ge is isomorphic to LGe and the z-pair becomes
superfluous. For example, this is the case when Gder is simply connected [Lan79,
Proposition 1]. Further examples are the symplecic and special orthogonal groups.
It is then more convenient to work with a hybrid notion that combines an endoscopic
datum and a z-pair. Moreover, we can replace in the above definition se by s0
without changing the isomorphism class of the endoscopic datum. This leads to
the following definition.

Definition 2. An extended endoscopic triple is a triple e D .Ge; se; L�e/, where
Ge is a quasi-split connected reductive group defined over F, se 2 bG is a

1We remind the reader that an induced torus is a product of tori of the form ResE=FGm for finite
extensions E=F.
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semi-simple element, and L�e W LGe ! LG is an L-homomorphism that restricts
to an isomorphism of complex reductive groups bGe ! Cent.se;bG/ı and satisfies
sL�e.h/ D eL�e.h/se.

The relationship between Definitions 1 and 2 is the following: If .Ge; se; L�e/ is
an extended endoscopic triple, then .Ge; LGe; se; L�ejbGe/ is an endoscopic datum.
Moreover, even though Ge will generally not have a simply connected derived
group, one can take .Ge; id/ as a z-pair for itself.

In this paper we will work with the notion of an extended endoscopic triple. This
will allow us to avoid some routine technical discussions. The more general case of
an endoscopic datum and a z-pair doesn’t bring any substantial changes but comes
at the cost of burdening the exposition. Thus we now assume given an extended
endoscopic triple e for G, as well as a Whittaker datum w for G. Associated with
these data there is a transfer factor, i.e. a function

�Œw; e W Ge
sr.F/ �Gsr.F/! C;

where the subscript “sr” means semi-simple and strongly regular (those are the
elements whose centralizer is a maximal torus). A variant of the factor � was
defined in [LS87], then renormalized in [KS99], and slightly modified in [KS12]
to make it compatible with a corrected version of the twisted transfer factor. We will
review the construction, taking these developments into account. For the readers
familiar with these references we note that the factor we are about to describe is
the factor denoted by �0� in [KS12, (5.5.2)], in the case of ordinary endoscopy. In
particular, it does not correspond to the relative factor � defined in [LS87]. The
difference between the two lies in the inversion of the endoscopic element s. We
work with this modified factor in order to avoid having to use inverses later when
dealing with inner forms.

We first recall the notion of an admissible isomorphism between a maximal torus
Se of Ge and a maximal torus S of G. Let .T;B/ be a Borel pair of G defined over
F and let .bT;bB/ be a �-stable Borel pair of bG. Part of the datum of the dual group
is an identification X�.T/ D X�.bT/. The same is true for Ge and we fix a Borel pair
.Te;Be/ of Ge defined over F and a �-stable Borel pair .bTe;bBe/ of bGe. The notion
of isomorphism of endoscopic data allows us to assume that ��1.bT;bB/ D .bTe;bBe/.
Then � induces an isomorphism X�.bTe/! X�.bT/, and this leads to an isomorphism
Te ! T. An isomorphism Se!S is called admissible, if it is the composition of the
following kinds of isomorphisms:

• Ad.h/ W Se! Te for h 2 Ge.
• Ad.g/ W S! T for g 2 G.
• The isomorphism Te ! T.

Let � 2 Ge
sr.F/. Let Se � Ge be the centralizer of � , which is a maximal torus of

Ge. Let ı 2 Gsr.F/ and let S � G be its centralizer. The elements � and ı are called
related if there exists an admissible isomorphism Se ! S mapping � to ı. If such
an isomorphism exists, it is unique, and will be called '�;ı.
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Next, we recall the relationship between pinnings and Whittaker data from
[KS99, §5.3]. Extend the Borel pair .T;B/ to an F-pinning .T;B; fX˛g/. Here ˛
runs over the set � of absolute roots of T in G that are simple relative to B
and X˛ is a non-zero root vector for ˛. Each X˛ determines a homomorphism
�˛ W Ga ! U by the rule d�˛.1/ D X˛. Combining all homomorphisms x˛
we obtain an isomorphism

Q
˛ Ga ! U=ŒU;U. Composing the inverse of this

isomorphism with the summation map
Q
˛ Ga ! Ga we obtain a homomorphism

U ! Ga that is defined over F and hence leads to a homomorphism U.F/ ! F.
Composing the latter with an additive character F W F ! C

� we obtain a character
 W U.F/ ! C

� which is generic by construction. Thus .B;  / is a Whittaker
datum. Since all Whittaker data arise from this construction, we may assume that
our choices of pinning and  F were made in such a way that .B;  / represents w.

We can now review the construction of the transfer factor�Œw; e. If � and ı are
not related, we set �Œw; e.�; ı/ D 0. Otherwise, it is the product of terms

�L.V;  F/�
�1
I �II�III2�IV ;

which we will explain now. Note that the term �III1 of [LS87] is missing, as it is
being subsumed by �I in the quasi-split case. The letter V stands for the degree 0
virtual Galois representation X�.T/ ˝ C � X�.Te/ ˝ C. The term �L.V;  / is the
local L-factor normalized according to [Tat, §3.6]. The term �IV is the quotient

jdet.Ad.ı/ � 1jLie.G/=Lie.S//j 12
jdet.Ad.�/ � 1jLie.Ge/=Lie.Se//j 12

:

To describe the other terms, we need additional auxiliary data. We fix a set of a-data
[LS87, §2.2] for the set R.S;G/ of absolute roots of S in G, which is a function

R.S;G/! F
�
; ˛ 7! a˛

satisfying a�� D �.a�/ for � 2 � and a�� D �a�. We also fix a set of �-data
[LS87, §2.5] for R.S;G/. To recall what this means, let �˛ D Stab.˛; �/ and �˙˛ D
Stab.f˛;�˛g; �/ for ˛ 2 R.S;G/. Let F˛ and F˙˛ be the fixed fields of �˛ and
�˙˛, respectively. Then F˛=F˙˛ is an extension of degree 1 or 2. A set of �-data is
a set of characters �˛ W F�̨ ! C

� for each ˛ 2 R.S;G/, satisfying the conditions
��˛ D �˛ ı ��1, ��˛ D ��1˛ , and if ŒF˛ W F˙˛ D 2, then �˛jF�

˙˛
is non-trivial but

trivial on the subgroup of norms from F�̨.
With these choices, we have

�II D
Y

˛

�˛

�
˛.ı/ � 1

a˛

�
;

where the product is taken over the set ŒR.S;G/ X '�;�1�;ı .R.Se;Ge//=� .
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The term�I involves the so-called splitting invariant [LS87, §2.3] of S. Let g 2 G
be such that gTg�1 D S. Write�.T;G/ for the absolute Weyl group. For each � 2 �
there exists !.�/ 2 �.T;G/ such that for all t 2 T

!.�/�.t/ D g�1�.gtg�1/g:

Let !.�/ D s˛1 : : : s˛k be a reduced expression and let ni be the image of


0 1

�1 0
�

under the homomorphism SL2 ! G attached to the simple root vector X˛i . Then
n.�/ D n1 : : : nk is independent of the choice of reduced expression. The splitting
invariant of S is the class � 2 H1.�; Ssc/ of the 1-cocycle

� 7!
Y

˛_.a˛/g.n.�/Œg�1�.g/�1/g�1:

The product runs over the subset f˛ > 0; ��1˛ < 0g of R.S;G/, with positivity
being taken with respect to the Borel subgroup gBg�1. The term �I is defined as

h�; sei

where the pairing h�;�i is the canonical pairing between H1.�; Ssc/ and
�0.ŒbS=Z.bG/� / induced by Tate–Nakayama duality. Here we interpret se as an
element of ŒZ.bGe/=Z.bG/� , embed the latter intobSe=Z.bG/, and use the admissible
isomorphism '�;ı to transport it tobS=Z.bG/.

We turn to the term �III2 . The construction in [LS87, §2.6] associates with the
fixed �-data a bG-conjugacy class of L-embeddings �G W LS! LG. This construction
is rather technical and we will not review it here. Via the admissible isomorphism
'�;ı, the �-data can be transferred to Se and provides a bGe-conjugacy class of L-
embeddings �e W LSe ! LGe. The admissible isomorphism '�;ı provides dually an
L-isomorphism L'�;ı W LS! LSe. The composition � 0 D L�ı�eıL'�;ı is then another
bG-conjugacy class of L-embeddings LS! LG. Via conjugation bybG we can arrange
that �G and � 0 coincide onbS. Then we have � 0 D a 	 �G for some a 2 Z1.WF;bS/. The
term �III2 is then given by

ha; ıi

where h�;�i is the pairing given by Langlands duality for tori.
We have completed the review of the construction of the transfer factor �Œw; e.

We now recall the notion of matching functions from [KS99, §5.5].

Definition 3. Two functions fw;e 2 C1c .Ge.F// and f 2 C1c .G.F// are called
matching (or �Œw; e-matching, if we want to emphasize the transfer factor) if for
all � 2 Ge

sr.F/ we have

SO�.f
w;e/ D

X

ı

�Œw; e.�; ı/Oı.f /;

where ı runs over the set of conjugacy classes in Gsr.F/.



224 T. Kaletha

We remark that the stable orbital integrals at regular (but possibly not strongly
regular) semi-simple elements can be expressed in terms of the stable orbital
integrals at strongly regular semi-simple elements by continuity, but one has to be
careful with the summation index, see [LS87, §4.3]. The stable orbital integrals at
singular elements can be related to the stable orbital integrals at regular elements,
see [Kot88, §3].

One of the central pillars of the theory of endoscopy is the following theorem.

Theorem 4. For each function f 2 C1c .G.F// there exists a matching function
fw;e 2 C1c .Ge.F//.

In the case of archimedean F this theorem was proved by Shelstad in [She81] and
[She82] in the setting of Schwartz-functions and extends to the setting of smooth
compactly supported functions by the results of Bouaziz [Bou]. In the case of non-
archimedean F the proof of this theorem involves the work of many authors, in
particular Waldspurger [Wal97, Wal06], and Ngo [Ngo10].

1.4 The Refined Local Langlands Conjecture for Quasi-Split
Groups 2

With the endoscopic transfer of functions at hand we can state the final refinement
of the local Langlands conjecture in the setting of quasi-split groups.

Recall that Conjecture B asserted the existence of a map �w W …�.G/ !
Irr.�0.NS�//. We can write this map as a pairing

h�;�i W …� � �0.NS�/! C; .�; s/ 7! tr.�w.�/.s//:

When F is p-adic, so that the map �w is expected to be bijective, we may allow
ourselves to call this pairing “perfect”. Since �0.NS�/ may be non-abelian the word
“perfect” is to be interpreted with care, but its definition is simply the one that
is equivalent to saying that the map �w, which can be recovered from h�;�i, is
bijective. Using this pairing we can form, for any � 2 ˆtemp.G/ and s 2 S� the
virtual character

‚s
� D

X

�2…�.G/

h�; si‚�; (3)

where ‚� is the Harish-Chandra character of the admissible representation � . Let
now e D .Ge; se; L�e/ be an extended endoscopic triple and �e 2 ˆtemp.Ge/. Put
� D L�e ı �e. It is then automatic that se 2 S� .

Conjecture D. For any pair of matching functions fw;e and f we have the equality

‚1
�e.f

w;e/ D ‚se
� .f /:

Note that this statement implies that the distribution‚1
� is stable.
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This is the last refinement of the local Langlands conjecture for quasi-split
groups. Notice that the linear independence of the distributions ‚� , together with
the disjointness of the packets …�.G/, implies that the map �w of (2) is unique,
provided it exists and satisfies Conjectures B and D. On the other hand, these
conjectures do not characterize the assignment � 7! …� . The most obvious case
is that of those � for which …� is a singleton set. For them the content of the
refined conjecture is that the constituent of …� is generic with respect to each
Whittaker datum and its character is a stable distribution. In the case of quasi-split
symplectic and special orthogonal groups, Arthur [Art13] shows that the addition
of a supplementary conjecture—twisted endoscopic transfer to GLn—is sufficient
to uniquely characterize the correspondence � 7! …� . For general groups such a
unique characterization is sill not known.

From now on we will group these four conjectures under the name “refined local
Langlands conjecture.” In the archimedean case, this conjecture is known by the
work of Shelstad. Many statements were derived in [She81, She82], but with an
implicit set of transfer factors instead of the explicitly constructed ones that we
have reviewed in the previous section, as those were only developed in [LS87].
The papers [SheT1, SheT2, SheT3] recast the theory using the canonical factors
of [LS87] and provide many additional and stronger statements. In particular, the
refined local Langlands conjecture is completely known for quasi-split real groups.
We note here that Shelstad’s work is not limited to the case of quasi-split groups.
This will be discussed soon.

In the non-archimedean case, much less is known. On the one hand, there are
general results for special kinds of groups. The case of GLn (in which most of
the refinements discussed here do not come to bear) is known by the work of
Harris–Taylor [HT01] and Henniart [Hen00]. The book [Art13] proves the refined
local Langlands conjecture for quasi-split symplectic and odd special orthogonal
groups, and a slightly weaker version of it for even special orthogonal groups.
Arthur’s strategy has been reiterated in [Mok] to cover the case of quasi-split unitary
groups. In these cases, the uniqueness of the generic constituent in Conjecture C
is not proved. This uniqueness follows from the works of Moeglin–Waldspurger,
Waldspurger, and Beuzart–Plessis, on the Gan–Gross–Prasad conjecture. A short
proof can be found in [At15]. On the other hand, there are results about special kinds
of representations for general classes of groups. The papers [DR09, KalEC] cover
the case of regular depth-zero supercuspidal representations of unramified p-adic
groups, while the papers [RY14, KalEp] cover the case of epipelagic representations
of tamely ramified groups. Earlier work of Kazhdan–Lusztig [KL87] and Lusztig
[Lus95] proves a variant of this conjecture for unipotent representations of split
simple adjoint groups, where the representations are not assumed to be tempered
and the character identities are not studied.

1.5 Global Motivation for the Refinement

We now take F to be a number field, and G to be a connected reductive group,
defined and quasi-split over F. We fix a Borel subgroup TU D B � G and generic
character  W U.F/ nU.AF/! C

�.
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We have the stabilization [ArtS1, (0.4)] of the geometric side of the trace formula

IG
geom.f / D

X
�.G;Ge/SGe

.f e/:

Here the sum runs over isomorphism classes of global elliptic extended endoscopic
triples e D .Ge; se; L�e/, SGe

is the so-called stable trace formula for Ge, and f e D
.f ev / is a function on Ge.A/ such that f ev matches fv . We note that global extended
endoscopic triples are defined in the same way as in the local case in Definition 2,
with only one difference: The condition on �e is that there exists a 2 Z1.WF;Z.bG//
whose class is everywhere locally trivial, so that se�e.h/ D z.Nh/�e.h/se for all h 2
Ge, where Nh 2 WF is the projection of h. One checks that �e provides a �-equivariant
injection Z.bG/ ! Z.bGe/. The triple e is called elliptic if this injection restricts to a
bijection Z.bG/�;ı ! Z.bGe/�;ı.

The trace formula is an identity of the form

IG
spec.f / D IG

geom.f /;

where the right-hand side is [ArtS1, (0.1)] and the left hand side is [ArtS, (0.2)].
The stabilization of the geometric side has as a formal consequence a stabilization
of the spectral side. This allows us to write

IG
disc.f / D

X
�.G;Ge/SGe

disc.f
e/:

Here IG
disc is the essential part of IG

spec, see [ArtS, (3.5)] or [ArtI, (4.3)]. It contains
not only the trace of discrete automorphic representations of G.A/, but also some
contributions coming from Eisenstein series. This is the part of the trace formula
one would like to understand in order to study automorphic representations, and the
stabilization identity is meant to shed some light on it.

However, it is a-priori unclear what the spectral content of SGe

disc.f
e/ is. The key

to understanding this content lies in the refined local Langlands correspondence.
Namely, just like the central ingredients of IG

disc.f / are the characters of discrete
automorphic representations, the central ingredients of SGe

disc.f
e/ are the stable

characters of discrete automorphic L-packets. This is the content of Arthur’s “stable
multiplicity formula,” as stated, for example, in [Art13, Theorem 4.1.2]. However,
unlike the case of stable orbital integrals, which are defined unconditionally and
in an elementary way, stable characters can only be defined once the refined local
Langlands correspondence, or at least Conjectures A and B have been established.
Granting these, they are the global analogs of the characters ‚1

� of Eq. (3) and can
be constructed out of these once a suitable notion of global parameters has been
introduced, as was done, for example, in [Art13]. A global discrete parameter �
provides local parameters �v W LFv ! LG and the associated stable character is then
the product of the characters ‚1

�v
over all v. Moreover, to have a chance at proving

the stable multiplicity formula, Conjecture D must also be established.
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Another crucial ingredient in the interpretation of the spectral side of the stable
trace formula is the multiplicity formula for discrete automorphic representations.
Given a global discrete parameter � one obtains from the local parameters �v W
LFv!LG the packets …�v . One also obtains a group NS� with maps NS� ! NS�v . For
each � D ˝0v�v with �v 2 …�v one considers the formula

m.�; �/ D j�0.NS�/j�1
X

x2�0.NS�/

Y

v

h�v; xi:

It is then conjectured that the integer m.�; �/ is the �-contribution of � to the
discrete spectrum of G, and that the multiplicity of � in the discrete spectrum is
equal to the sum of m.�; �/ over all (equivalence classes of) global parameters �.
We will discuss this formula in more detail in Sect. 5, where we will extend it to the
case of non-quasi-split groups.

In all of these formulas, the existence of the map �w W …�v ! Irr .�0.NS�v //, and
hence of the pairing h�;�i, is crucial. There are further formulas which one can
obtain, for example the inversion of endoscopic transfer, which allows one to obtain
the characters of tempered representations from the stable characters of tempered
L-packets. We refer the reader to [SheT3] for a statement of this in the archimedean
case, and to [KalGe] for a sample application.

1.6 Remarks on the Characteristic of F

We have assumed throughout this section that F has characteristic zero. While it
is believed that most of this material carries over in some form for fields (local
or global as appropriate) of positive characteristic, most of the literature assumes
that F has characteristic zero. For example, the work [LS87, LS90, KS99] is
written with this assumption. The later work [KS12] is written for arbitrary local
fields, which suggests that the definition of transfer factors should work in positive
characteristic. However, the descent theory of [LS90] is not worked out in this
setting. The fundamental lemma is proved in [Ngo10] in positive characteristic
and then transfered to characteristic zero in [Wal09]. But the proof of the transfer
theorem (Theorem 4) is only done in characteristic zero [Wal97]. Turning to
the global situation, the theory of the trace formula, even before stabilization,
for general reductive groups over global fields of positive characteristic is not
developed. Thus, while most definitions, results, and conjectures, presented here are
expected to hold (either in the same form or with some modifications) in positive
characteristic, little factual information is actually present.
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2 Non-quasi-split Groups: Problems and Approaches

We return now to the case of a local field F of characteristic zero and let G be a
connected reductive group defined over F, but not necessarily quasi-split. We would
like to formulate a refined local Langlands correspondence for G and to have global
applications for it similar to the ones outlined in the last section. We are then met
with the following problems

• There is no Whittaker datum, hence no canonical normalization of the transfer
factor �.�;�/.

The transfer factor �.�;�/ is still defined in [LS87, KS99], but only up to a
complex scalar. This has the effect that the notion of matching functions is also
only defined up to a scalar. The trouble with this is that Conjecture D can no longer
be stated in the precise form given above, and this makes the spectral interpretation
of the stable trace formula problematic. Even worse, Arthur notices in [Art06, (3.1)]
the following.

• Even the non-canonical normalizations of �.�; ı/ are not invariant under auto-
morphisms of endoscopic data.

This is a problem, because in the stabilization identity we are summing over
isomorphism classes of endoscopic groups. The problem can be overcome, but it
does indicate that something is not quite right.

• There is no good map � W …� ! Irr.�0.NS�//.
The standard example for this comes from the work of Labesse and Langlands
[LL79]. We follow here Shelstad’s report [SheC]. Let F be p-adic and G the unique
inner form of SL2, so that G.Qp/ is the group of elements of reduced norm 1 in the
unique quaternion algebra over F. We construct a parameter by taking a quadratic
extension E=F and a character 	 W E� ! C

� for which 	�1 	 .	 ı �/ is non-trivial
and of order 2, where � 2 �E=F is the non-trivial element. Let �ı 2 WE=F be a lift
of � . Then

�.e/ D

	.e/ 0

0 	.�.e//

�
; e 2 E�; �.�ı/ D


0 1

1 0

�
:

is a homomorphism WE=F ! PGL2.C/. One checks that

NS� D S� D
�
1 0

0 1

�
;

�1 0
0 1

�
;


0 1

1 0

�
;


0 1

�1 0
�

Š Z=2Z˚ Z=2Z:

The packet…�.SL2.F// has exactly four elements. However, the packet…�.G/ has
only one element � . Moreover, no character of � of S� can be paired with this �
so that the endoscopic character identities hold. In fact, in order to have the desired
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character identities, one must attach to � the function on NS� given by

f .s/ D
(
2; s D 1
0; s ¤ 1 ; (4)

which is obviously not a character.
This last problem is most severe. Without the pairing between �0.NS�/ and …� ,

we cannot state the global multiplicity formula and we cannot hope for a spectral
interpretation of the stable trace formula.

2.1 Shelstad’s Work on Real Groups

Despite these problems, we have a very good understanding of the case of real
groups thanks to the work of Langlands and Shelstad. Langlands has constructed
in [Lan97] the map (1) and has shown that Conjecture A holds. Shelstad has shown
[She82, SheT2, SheT3] that once an arbitrary choice of the transfer factor �.�;�/
has been fixed, and further choices specific to real groups have been made, there
exists an embedding � W …�.G/ ! Irr.�0.NS�//, thus verifying Conjecture B, and
has moreover shown that the corresponding pairing makes the endoscopic character
identities of Conjecture D true. Even more, Shelstad has shown that if one combines
the maps � for multiple groups G, namely those that comprise a so-called K-group,
then one obtains a bijection between the disjoint union of the corresponding L-
packets and the set Irr.�0.NS�//. For the notion of K-group we refer the reader to
[Art99, §1] and [SheT3, §4], and we note here only that it is unrelated to the Adams–
Barbasch–Vogan notion of strong real forms that we will encounter below.

It may be worth pointing out here that the group �0.NS�/ is always an elementary
2-group in the archimedean case, so that Irr.�0.NS�// is in fact the Pontryagin dual
group of that elementary 2-group. This work uses the results of Harish-Chandra and
Knapp–Zuckerman on the classification of discrete series, and more generally of
tempered representations, of real semi-simple groups.

2.2 Arthur’s Mediating Functions

Turning now to p-adic fields, the example of the inner form of SL2 shows that
we cannot expect to have a result in the p-adic case that is similar to that of
Shelstad in the real case, because the virtual characters needed in the formulation
of Conjecture D for general groups cannot be obtained from characters of �0.NS�/.
In his monograph [ArtU], Arthur proposes to replace the pairing h�;�i by a
combination of two objects. The first object is called the “spectral transfer factor,”
and denoted by�.�e; �/. Here again we assume to be given an extended endoscopic
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triple e for G. We moreover assume fixed some arbitrary normalization of the
transfer factor �, which we now qualify as “geometric,” in order to distinguish it
from the new “spectral” transfer factor. The spectral transfer factor takes as variables
tempered parameters �e for Ge, as well as tempered representations � of G.F/. The
role of the spectral transfer factor is to make the identity

‚1
�e.f

e/ D
X

�

�.�e; �/‚�.f /

true, whenever f e and f are matching with respect to the fixed normalization of
the geometric transfer factor. Thus in particular the spectral factor depends on the
geometric factor. Moreover, the isomorphisms of endoscopic data have to disturb
the spectral factor in the same way that they disturb the geometric factor.

The second object is called the “mediating function,” and denoted by �.�; s/.
The role of the mediating function is to make the product h�; si D �.�; s/	�.�e; �/

independent of the choice of geometric factor �, invariant under isomorphisms of
endoscopic data, and a class function on the group �0.NS�/.

In the later paper [Art06], Arthur modifies this proposition to involve not the
group NS� , but rather its preimage Ssc

� in the simply connected cover of bG, and
demands that h�; si is not just a class function, but in fact a character of an
irreducible representation of �0.Ssc

� /. This is supported by the observation that
the function (4) is indeed the character of the unique 2-dimensional irreducible
representation of the quaternion group, which is the group Ssc

� in the case of the inner
forms of SL2. Besides this observation, the introduction of the group Ssc

� has its roots
in Kottwitz’s theorem [Kot86, Theorem 1.2] that relates the Galois cohomology set
H1.�;G/ to the Pontryagin dual of the finite abelian group �0.Z.bG/�/.

Let us be more precise. It is known that there exists a connected reductive group
G�, defined and quasi-split over F, together with an isomorphism � W G� ! G
defined over F and having the property that for all � 2 �F the automorphism
��1�.�/ of G� is inner. It is furthermore known that G� is uniquely determined
by G. Then G is called an inner form of G� and � W G� ! G is called an
inner twist. The inner twist provides an identification of the dual groups of G� and
G. The function � 7! ��1�.�/ is an element of Z1.�;G�ad/. Kottwitz’s theorem
interprets this element as a character Œ� W Z.bG�sc/

� ! C
�. Arthur suggests that

one choose an arbitrary extension „ W Z.bG�sc/ ! C
� of this character. Then, for

every � 2 ˆtemp.G�/, the L-packet …�.G/ should be in (non-canonical) bijection
with the set Irr.�0.Ssc

� /;„/ of irreducible representations of the finite group �0.Ssc
� /

that transform under the image of Z.bG�sc/ by the character „. For � 2 …�.G/,
the character of the representation of �0.Ssc

� / corresponding to � via this bijection
should be the class function h�;�i. For each choice of geometric transfer factor �,
we should have the expression h�;�i D �.�;�/ 	�.�e; �/ as above.

This conjecture is stated uniformly for archimedean and non-archimedean local
fields. In the archimedean case, this conjecture has been settled by Shelstad
in [SheT2, SheT3], using deep information about the representation theory and
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harmonic analysis of real reductive groups. In the non-archimedean case, the
conjecture is open. The main challenges that impede its resolution are that the
conjectural objects �.�e; �/ and �.�; s/ make the extension of the refined local
Langlands conjecture to non-quasi-split groups less precise and harder to state, and
this leads to a weaker grip on them by the trace formula.

2.3 Vogan’s Pure Inner Forms

The work of Adams-Barbasch-Vogan [ABV92], introduces the following funda-
mental idea: When trying to describe L-packets, one should treat all reductive groups
in a given inner class together. That is, instead of trying to describe the L-packets
of G alone, one should fix the quasi-split inner form G� of G and then describe the
L-packets of all inner forms of G� (of which G is one) at the same time. Here is
a nice numerical example that underscores this idea: For a fixed positive integer n,
the real groups U.p; q/ with p C q D n constitute an inner class. For any discrete
Langlands parameter � one has jS� j D 2n and jNS� j D 2n�1. On the other hand, one
has j…�.U.p; q//j D

�pCq
q

�
. Thus

j tpCqDn …�.U.p; q//j D jS�j:

Notice, however, that U.p; q/ and U.q; p/ are the same inner form of the quasi-split
unitary group G� (and are isomorphic as groups), but in order for the above equation
to work out, we must treat them separately. This is not just a numerical quirk. It hints
at a fundamental technical difficulty that will be of crucial importance.

In order to describe this difficulty more precisely, we need to recall a bit of Galois
cohomology. The set of isomorphism classes of groups G which are inner forms of
G� is in bijection with the image of H1.�F;G�ad/ in H1.�F;Aut.G�//. However, this
is a badly behaved set. Indeed, we can treat GLn as an inner form of itself either
via the identity map or via the isomorphism g 7! g�t. Those two identifications
clearly have different effects on representations. Thus, if we want to parameterize
representations, we should treat these cases separately. This leads to considering not
just the groups G which are inner forms of G�, up to isomorphism, but rather inner
twists � W G� ! G, up to isomorphism. Here, an isomorphism from �1 W G� ! G1 to
�2 W G� ! G2 is an isomorphism f W G1 ! G2 defined over F for which ��12 ı f ı �1
is an inner automorphism of G�. According to this definition, f D id is not an
isomorphism between the two inner twists id W GLn!GLn and .�/�t W GLn!GLn.
In fact, we have achieved a rigidification of the problem, which means that we have
cut down the automorphism group from Aut.G/.F/ to Aut.�/, where Aut.�/ works
out to be the subgroup of Aut.G/ given by Gad.F/. However, as Vogan points out in
[Vog93, §2], this rigidification is not enough. Indeed, we run into problems already

with a group as simple as G� D SL2=R. Let 	 D Ad


1

�1
�

. Then the map f D id W



232 T. Kaletha

G�!G� is an isomorphism between the inner twists id W G�!G� and 	 W G�!G�.
However, 	 swaps the constituents of discrete series L-packets (this can be computed
explicitly in this example using K-types; it is, however, a general feature that the
action of Gad.F/ on G.F/ preserves each tempered L-packet…� , as one can see from
the stability of ‚1

� and the linear independence of characters). This is a problem
because we would like an isomorphism between inner twists to be compatible with
the parameterization of L-packets.

This leads Vogan to introduce in [Vog93] the notion of a pure inner twist (in fact,
Vogan calls it “pure rational form”), which is a pair .�; z/ with � W G� ! G inner
twist and z 2 Z1.�;G�/ having the property ��1�.�/ D Ad.z.�//. An isomorphism
from .�1; z1/ to .�2; z2/ is now a pair .f ; ı/ with f W G1 ! G2 an isomorphism over
F, ı 2 G� and satisfying the identities ��12 f �1 D Ad.ı/ and z1.�/ D ı�1z2.�/�.ı/.
One can now check that Aut..�; z// D G.F/, thus an automorphism of .�; z/ fixes
each isomorphism class of representations and each rational conjugacy class of
elements. We now finally have a shot of trying to parameterize the disjoint union
of L-packets …�..�; z//, where .�; z/ runs over the set of isomorphism classes of
pure inner twists of a given quasi-split group G�, and where …�..�; z// is the L-
packet on the group G that is the target of the pure inner twist .�; z/ W G� ! G.
According to Vogan’s formulation of the local Langlands correspondence [Vog93,
Conjectures 4.3 and 4.15], there should exist a bijection

�w W t.�;z/…�..�; z//! Irr.�0.S�//:

Note that we are not using NS� D S�=Z.bG/� here. In terms of the example with
unitary groups, one checks that U.p; q/ and U.q; p/, despite being the same group,
are not isomorphic pure inner twists of the quasi-split unitary group G�. In fact,
the set of isomorphism classes of pure inner twists of G� is in bijection with
H1.�F;G�/. In the case of unitary groups, this set is precisely the set of pairs .p; q/
of non-negative integers such that pC q D n.

Note furthermore that now, both in the real and in the p-adic case, the map �w is
expected to be a bijection. Thus this generalization of Conjecture B makes it more
uniform than its version for quasi-split groups. Moreover, it is still normalized to
send the unique w-generic representation in…�..id; 1// to the trivial representation
of �0.S�/, i.e. it is compatible with Conjecture C.

The bijection �w is expected to fit in the following commutative diagram
⊔

(ξ,z)
Πφ((ξ, z)) (

(5)

π0(Sφ))

H1(Γ, G) π0(Z(Ĝ)Γ)∗

The bottom map is Kottwitz’s map [Kot86, Theorem 1.2]. The left map sends any
constituent of …�..�; z// to the class of z. The right map assigns to an irreducible
representation of �0.S�/ the character by which the group �0.Z.bG/�/ acts. When F
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is p-adic, the bottom map is a bijection. This means that the set…�..�; z//, which is
an L-packet on the pure inner form G of G� that is the target of the pure inner twist
.�; z/ W G� ! G, is in bijection with the corresponding fiber of the right map. When
F is real, one can obtain a similar statement by considering K-groups.

We have thus seen that Conjectures B and C generalize beautifully to pure inner
twists. It was an observation of Kottwitz that Conjecture D also does. The first step
is to construct a natural normalization of the geometric transfer factor for a pure
inner twist .�; z/ W G� ! G and an extended endoscopic triple e, which we shall
call �Œw; e; z. This was carried out in [KalEC, §2] and we will review it here. Let
� 2 Ge

sr.F/ and ı 2 Gsr.F/ be related. Using a theorem of Steinberg one can show
that there exists g 2 G� such that ı D �.gı�g�1/ with ı� 2 G�.F/. By definition,
� and ı� are also related, so the value �Œw; e.�; ı�/ is non-zero. Moreover, � 7!
g�1z.�/�.g/ is a 1-cocycle of � in S D Cent.ı;G/whose class we call invŒz.ı�; ı/.
We then set

�Œw; e; z.�; ı/ D �Œw; e.�; ı�/ 	 hinvŒz.ı�; ı/; sei; (6)

where se is transported tobS via the maps Z.bGe/� !bSe !bS, with Se D Cent.�;Ge/

and the second map coming from the admissible isomorphism ��;ı . One then has
to check that the function�Œw; e; z is indeed a geometric transfer factor and this is
done in [KalEC, Proposition 2.2.2]. With the transfer factor and the bijection �w in
place, we can now state Conjecture D exactly as it was stated in the case of quasi-
split groups. We will give the statement of the new versions of Conjectures B, C,
and D, together as a new conjecture.

Conjecture E. Let G� be a quasi-split connected reductive group defined over F
and let w be a Whittaker datum for G�. Let � 2 ˆtemp.G�/. For each pure inner
twist .�; z/ W G� ! G let …�..�; z// denote the L-packet …�.G/ of Conjecture A.
Then there exists a bijection �w making Diagram 5 commutative and sending the
unique w-generic constituent of …�..id; 1// to the trivial representation of �0.S�/.
Moreover, if e is an extended endoscopic triple for G� and if f e 2 C1c .Ge.F// and
f 2 C1c .G.F// are �Œw; e; z-matching functions, then

‚1
�e.f

e/ D e.G/
X

�2…�..�;z//

h�; sei‚�.f /

provided �e 2 ˆtemp.Ge/ is such that � D L�e ı �e.

Here e.G/ 2 f˙1g is the so-called Kottwitz sign of G, defined in [Kot83]. Note that
the set…�..�; z// does not depend on z (but we still need to include z in the notation
for counting purposes, because the same � can be equipped with multiple z). The
bijection �w, however, does depend on z. We shall specify how later.

This conjecture is very close to the formulation of the local Langlands conjecture
given by Vogan in [Vog93], apart from the fact that Vogan does not discuss
endoscopic transfer. In the real case, it can be shown using Shelstad’s work that
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this conjecture is true. We refer the reader to [KalR, §5.6] for details. In the p-
adic case, its validity has been checked in [DR09, KalEC] for regular depth-zero
supercuspidal L-packets. It has also been checked in [KalEp] for the L-packets
consisting of epipelagic representations [RY14]. In fact, the latter work is valid
in the broader framework of isocrystals with additional structure, which will be
discussed next.

The relationship between the statements of Conjectures B and D given here and
those suggested by Arthur in [ArtU] is straightforward. One has to replace Ssc

� with
S� and demand �.�Œw; e; z; se/ D 1. This specifies the function �.�; se/ uniquely
and Arthur’s formulation of the conjectures follows from the one given here.

It thus appears that pure inner twists provide a resolution to all problems
obstructing a formulation of the refined local Langlands conjecture for general
reductive groups. Unfortunately, this is not quite true. The theory is perfect for
inner twists whose isomorphism class, which is an element of H1.�F;G�ad/, is in
the image of the natural map H1.�F;G�/! H1.�F;G�ad/. However, since this map
is in general not surjective, not every group G can be described as the target of a
pure inner twist .�; z/ W G� ! G of a quasi-split group G�. Basic examples are
provided by the groups of units of central simple algebras. These are inner forms of
the quasi-split group G� D GLn. However, the generalized Hilbert 90 theorem states
that H1.�;G�/ D f1g. Thus no non-trivial inner form of G� can be made pure. There
are also other examples, involving inner forms of symplectic and special orthogonal
groups.

2.4 Work of Adams, Barbasch, and Vogan

The fact that pure inner forms are not sufficient to describe the refined local
Langlands conjecture for all connected reductive groups begs the question of
whether there exists a notion that is more general than pure inner forms yet still
has the necessary structure as to allow a version of Conjecture E to be stated. In the
archimedean case, such a notion is presented by Adams et al. in [ABV92]. It is the
notion of a “strong rational form.” The set of equivalence classes of strong rational
forms contains the set of equivalence classes of pure inner forms. At the same time
it is large enough to encompass all inner forms. Moreover, in [ABV92] a bijection

� W tx…�.x//! Irralg.�0. QS�//

is constructed, where QS� is the preimage of S� in the universal covering ofbG. When
bG is semi-simple, this covering is just bGsc, but when bG is a torus, this covering is
affine space. In general, it is a mix of these two cases.

Thus, the book [ABV92] contains a proof of suitable generalizations of Con-
jectures B and C. It does not discuss the character identities stated as Conjecture D.
The main focus of [ABV92] is in fact the study of how non-tempered representations
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interface with the conjectures of Langlands and Arthur. This is a fascinating topic
that is well beyond the scope of our review.

2.5 Kottwitz’s Work on Isocrystals with Additional Structure

The notion of “strong rational forms” introduced by Adams et al. resolved in the
archimedean case the problem that pure inner forms are not sufficient to allow a
statement of Conjecture E that encompasses all connected reductive groups. It thus
became desirable to find an analogous notion in the non-archimedean case. This
was formally formulated as a problem in [Vog93, §9], where Vogan lists the desired
properties that this conjectural notion should have. The solution in the archimedean
case did not suggest in any way whether a solution in the non-archimedean case
exists and where it might be found, as the construction of strong rational forms
in [ABV92] made crucial use of the fact that Gal.C=R/ has only one non-trivial
element.

Led by his and Langlands’ work on Shimura varieties, Kottwitz introduced in
[Kot85, Kot97] the set B.G/ of equivalence classes of isocrystals with G-structure,
for any connected reductive group G defined over a non-archimedean local field.
The notion of an isocrystal plays a central role in the classification of p-divisible
groups. Let F be a p-adic field and Fu its maximal unramified extension, and L
its completion. An isocrystal is a finite-dimensional L-vector space V equipped
with a Frobenius-semi-linear bijection. According to Kottwitz, an isocrystal with
G-structure is a ˝-functor from the category of finite-dimensional representations
of the algebraic group G to the category of isocrystals. This can be given a
cohomological description. Indeed, the set of isomorphism classes of n-dimensional
isocrystals can be identified with H1.WF;GLn. NL//, and the set of isomorphism
classes of isocrystals with G-structure can be identified with H1.WF;G. NL//.

Manin has shown that the category of isocrystals is semi-simple and the simple
objects are classified by the set Q of rational numbers. The rational number
corresponding to a given simple object is called its slope. A general isocrystal is thus
given by a string of rational numbers, called its slope decomposition. The objects
of constant slope, i.e. the isotypic objects, are called basic isocrystals. Kottwitz
generalizes this notion to the case of isocrystals with G-structure. The set B.F/bas of
equivalence classes of basic isocrystals with additional structure is a subset of B.G/.

Kottwitz shows that there exists a functorial injection H1.�;G/ ! B.G/bas. He
furthermore shows that each element b 2 B.G/bas leads to an inner form Gb of G.
More precisely, one needs to take b to be a representative of the equivalence class
given by an element of B.G/bas, and then one obtains an inner twist � W G!Gb. We
will call the pair .�; b/ an extended pure inner twist, for a lack of a better name.

The bijection H1.�;G/! �0.Z.bG/�/� used in Diagram 5 extends to a bijection
B.G/bas ! X�.Z.bG/�/. This allows one to conjecture the existence of a diagram
similar to 5, but with B.G/bas in place of H1.�;G/. In order to be able to state
an analog of Conjecture E, the last missing ingredient is the normalization of the
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transfer factor. This has been established in [KalI, §2]. We will not review the
construction here, as it is quite analogous to the one reviewed in the section on
pure inner forms. The analog of Conjecture E in the context of isocrystals is then
the following conjecture made by Kottwitz.

Conjecture F. Let G� be a quasi-split connected reductive group defined over F,
w a fixed Whittaker datum for G�, and � 2 ˆtemp.G�/. Let S\� D S�=ŒS� \ ŒbGder

ı.
For each extended pure inner twist .�; b/ W G� ! G let …�..�; b// denote the L-
packet …�.G/ provided by Conjecture A. Then there exists a commutative diagram

⊔
(ξ,b)

Πφ((ξ, b)) (

(7)

S�
φ)

B(G∗) X∗(Z(Ĝ)Γ)

in which the top arrow is bijective. We have used Irr to denote the set of irreducible
algebraic representation of the disconnected reductive group S\� . The image of the

unique w-generic constituent of …�..id; 1// is the trivial representation of S\� .
Given an extended pure inner twist .�; b/ W G� ! G and an extended endoscopic

triple e for G�, for any �Œw; e; b-matching functions f e 2 C1c .Ge.F// and f 2
C1c .G.F// the equality

‚1
�e.f

e/ D e.G/
X

�2…�..�;b//

h�; sei‚�.f /

holds, where �e 2 ˆtemp.Ge/ is such that � D L�e ı �e.

A version of this conjecture was stated in [Rap95, §5], and later in [KalI,
§2.4]. A verification of this conjecture was given in [KalI] for regular depth-zero
supercuspidal parameters, and in [KalEp] for epipelagic parameters. Moreover,
while we have only considered non-archimedean fields so far, the conjecture also
makes sense for archimedean fields thanks to Kottwitz’s recent construction [Kot]
of B.G/ for all local and global fields.

Given this conjecture, there is the following obvious question: How much bigger
is B.G�/bas than H1.�;G�/? Is it enough to treat all reductive groups?

The answer is the following: When Z.G�/ is connected, Kottwitz has shown
that the natural map B.G�/bas ! H1.�;G�ad/ is surjective. In other words, every
inner form can be enriched with the datum of an extended pure inner twist. For
such groups G�, Conjecture F provides a framework to treat all their inner forms.
Important examples of such groups G� are the group GL.N/, whose inner forms are
the multiplicative groups of central simple algebras of degree N; the unitary groups
UE=F.N/ associated with quadratic extensions E=F; as well as the similitude groups
GUE=F.N/, GSpN , and GON .
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At the other end of the spectrum are the semi-simple groups. For them, the
natural injection H1.�;G�/ ! B.G�/bas is surjective. Thus the set B.G�/bas does
not provide any additional inner forms beyond the pure ones, and Conjecture F is
the same as Conjecture E. In particular, no inner forms of SL.N/ and Sp.N/ can be
reached by either conjecture.

3 The Canonical Galois Gerbe and Its Cohomology

In [LR87], Langlands and Rapoport introduced the notion of a “Galois gerbe.” Their
motivation is the study of the points on the special fiber of a Shimura variety. In
[Kot97], Kottwitz observed that the set B.G/ can be described using the cohomology
of certain Galois gerbes. This led to the idea that it might be possible to overcome
the limitations of the set B.G/ discussed in the previous section by using different
Galois gerbes.

In this section, we are going to describe the construction of a canonical Galois
gerbe over a local field of characteristic zero and discuss its properties. We will see
in the next section how this gerbe leads to a generalization of Conjecture E that
encompasses all connected reductive groups.

3.1 The Canonical Galois Gerbe

Langlands and Rapoport define [LR87, §2] a Galois gerbe to be an extension of
groups

1! u! W ! � ! 1

where u is the set of F-points of an affine algebraic group and � is the absolute
Galois group of F. Given such a gerbe, one can let it act on G�.F/ through its map
to � and consider the cohomology group H1.W;G�/.

From now on, let F be a local field of characteristic zero. A simple example of a
Galois gerbe can be obtained as follows. The relative Weil group of a finite Galois
extension E=F is an extension of topological groups

1! E� ! WE=F ! �E=F ! 1:

Pulling back along the natural surjection �F ! �E=F and then pushing out along the
natural injection E� ! NF� provides a Galois gerbe

1! Gm ! EE=F ! �F ! 1:
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These are called Dieudonne gerbes in [LR87, §2] and are the ones that Kottwitz uses
in [Kot97, §8] to provide an alternative description of the set B.G�/. More precisely,
Kottwitz shows that if T is an algebraic torus defined over F and split over E, then
there is a natural isomorphism

H1
alg.EE=F;T/! B.T/;

where H1
alg is the subgroup of H1 consisting of the classes of those 1-cocycles whose

restriction to Gm is a homomorphism Gm ! T of algebraic groups.
One could hope that using more sophisticated Galois gerbes might lead to a

cohomology theory that allows an analog of Conjecture E to be stated that applies
to all reductive algebraic groups. For this to work, the gerbe needs to have the
following properties.

1. It should be naturally associated with any local field F of characteristic zero, so
as to provide a uniform statement of the conjecture.

2. In order to have a well-defined cohomology group H1.W;G�/, the gerbe W
needs to be rigid, i.e. have no unnecessary automorphisms. This amounts to the
requirement H1.�; u/ D 1.

3. In order to be able to capture all reductive groups, the gerbe W has to have
the property that H1.W;G�/ comes equipped with a natural map H1.W;G�/ !
H1.�;G�ad/ which is surjective.

4. In order to be useful for endoscopy, there needs to exist a TateNakayama type
isomorphism identifying H1.W;G�/ with an object definable in terms of bG�.

There is of course no a priori reason or even a hint that a Galois gerbe satisfying
these conditions should exist. In fact, some experimentation reveals that conditions
2 and 3 seem to pull in opposite directions.

However, it turns out that if one slightly enlarges the scope of consideration, a
suitable gerbe does exist. Namely, one has to give up the requirement that u is an
affine algebraic group and rather allow it to be a profinite algebraic group, whose
NF-points will then carry the natural profinite topology. The pro-finite group u that
we are going to consider is the following.

u D lim �
n;E=F

.ResE=F 
n/=
n:

This is a profinite algebraic group that encodes in a certain way the arithmetic of F.
One can show the following [KalR, Theorem 3.1].

Proposition 5. We have the canonical identification

H2.�; u/ D
(
bZ; F is non-arch.

Z=2Z; F D R

; H1.�; u/ D 1:
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Here the continuous cohomology groups are taken with respect to the natural
topology on u.F/ coming from the inverse limit.

Thus there exists a canonical isomorphism class of extensions of � by u, and
each extension in this isomorphism class has as its group of automorphisms only
the inner automorphisms coming from u. This means that if we take W to be any
extension in the canonical isomorphism class and consider the set H1.W;G/, this
set will be independent of the choice of W.

However, it turns out that this is not quite the right object to consider. For
example, it does not come equipped with a map to H1.�;Gad/when G is a connected
reductive group. The following slight modification is better suited for our purposes:
Define A to be the category of injections Z ! G, where G is an affine algebraic
group and Z is a finite central subgroup. For an object ŒZ ! G 2 A, let
H1.u ! W;Z ! G/ be the subset of H1.W;G/ consisting of those classes whose
restriction to u takes image in Z. This provides a functor A ! Sets and there is
an obvious natural transformation H1.u ! W;Z ! G/ ! H1.�;G=Z/ between
functors A ! Sets. Furthermore, when G is reductive, we have the obvious map
H1.�;G=Z/! H1.�;Gad/.

3.2 Properties of H1.u ! W;Z ! G/

The basic properties of the functor H1.u ! W;Z ! G/ are summarized in the
following commutative diagram [KalR, (3.6)]

1 H1(Γ, Z) H1(u → W, Z → Z) (u, Z)Γ

1 H1(Γ, G) H1(u → W, Z → G)

a

(u, Z)Γ

b

∗

H1(Γ, G) H1(Γ, G/Z) H2(Γ, Z) ∗

H1(Γ, G/Z(G)) 1 1

where  is to be taken as H2.�;G/ if G is abelian and disregarded otherwise.
The three rows are exact, and so is the outer arc (after identifying the two copies
of Hom.u;Z/� ). The middle column is exact, and the map b is surjective. The
middle exact sequence is an inflation-restriction-type sequence. By itself it already
gives some information about the set H1.u ! W;Z ! G/. First, it shows that
H1.u! W;Z!G/ contains as a subset H1.�;G/, thus it faithfully captures the set
of equivalence classes of pure inner forms. Second, it tells us that H1.u!W;Z!G/
fibers over Hom.u;Z/� . One easily sees that the latter is finite, which implies

• H1.u! W;Z ! G/ is finite.
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Using the basic twisting argument in group cohomology, one sees that the fibers of
this fibration are of the form H1.�;G�/, where G� runs over suitable inner forms of
G. In particular, we obtain the disjoint union decomposition

• H1.u! W;Z ! G/ DFH1.�;G�/:

This allows one to effectively compute H1.u! W;Z ! G/ using the standard tools
of Galois cohomology. One can moreover ask, what is the meaning of Hom.u;Z/� .
This question is answered by the map b. When Z is split (that is, when X�.Z/
has trivial �-action), the map b in the above diagram is bijective. Thus, in a
slightly vague sense, the group u represents the functor Z 7! H2.�;Z/ restricted
to the category of split finite multiplicative algebraic groups (the group u is itself
of course not finite). Note that any continuous homomorphism u ! Z factors
through a finite quotient of u and is automatically algebraic, so we can write
Hom.u;Z/� D HomF.u;Z/. On the larger category of general finite multiplicative
algebraic groups, one sees easily that the functor Z 7! H2.�;Z/ is not representable,
even in the above more vague sense, as it is not left exact. Nonetheless, the map b
is surjective, so we can think of u as coming close to representing that functor. In
other words, H1.u ! W;Z ! G/ interpolates between H1.�;G/ and H2.�;Z/.
Moreover, the surjectivity of b leads to the surjectivity of a. When G is reductive
and Z is large enough, the map H1.�;G=Z/ ! H1.�;Gad/ is also surjective. For
example, this is true as soon as Z D Z.Gder/. For some purposes it is thus sufficient
to fix Z D Z.Gder/. In general, the flexibility afforded by allowing Z to vary is quite
useful. For example, fixing Z would not provide a functorial assignment, and this
would make basic operations like parabolic descent unnecessarily complicated.

3.3 Tate–Nakayama-Type Isomorphism

We have thus seen that the Galois gerbe W satisfies the first three of the four
required properties listed in Sect. 3.1. The fourth property—the Tate–Nakayama-
type isomorphism, is the most crucial. Luckily, the gerbe W satisfies that property
too.

To give the precise statement, we let R � A be the subcategory consisting of
those ŒZ ! G for which G is connected and reductive. We have the functor

R! Sets; ŒZ ! G 7! H1.u! W;Z ! G/:

We now define a second functor. Given ŒZ ! G 2 R, let NG D G=Z. The isogeny

G ! NG provides an isogeny of Langlands dual groups bNG ! bG. Let Z.bNG/C denote

the preimage in bNG of Z.bG/� . Then �0.Z.bNG/C/ is a finite abelian group and one
checks easily that

R! Sets; ŒZ ! G 7! Hom.�0.Z.bNG/C/;C�/
is a functor.
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The following theorem, proved in [KalR, §4], contains the precise statement how
the gerbe W satisfies the expected property 4 of Sect. 3.1.

Theorem 6. • There is a unique morphism between the two above functors that
extends the Tate–Nakayama isomorphism between the restrictions of these func-
tors to the subcategory consisting of objects Œ1 ! T, where T is an algebraic

torus, and that lifts a certain natural morphism Hom.�0.Z.
bNG/C/;C�/ !

HomF.u;Z/.
• The morphism is an isomorphism between the restrictions of the above functors

to the subcategory consisting of objects ŒZ ! T, where T is an algebraic torus.
• The morphism is an isomorphism between the above functors when F is non-

archimedean.
• The kernel and cokernel of the morphism can be explicitly described when F is

archimedean.
• The morphism restricts to Kottwitz’s map on the subcategory of objects Œ1! G.

The fact that the morphism is not an isomorphism when F is archimedean is
not surprising. If it were, it would endow each set H1.u ! W;Z ! G/, and
in particular each set H1.�;G/, with the structure of a finite abelian group in a
functorial way. However, it is generally not possible to endow H1.�;G/with a group
structure in such a way that natural maps, like H1.�;G/ ! H1.�;Gad/, are group
homomorphisms.

When F is p-adic, this theorem does endow the set H1.u ! W;Z ! G/ with
the structure of a finite abelian group in a functorial way. It furthermore gives
a simple way to effectively compute the set H1.u ! W;Z ! G/. The most
important consequences of the theorem for us will, however, be to the theory of
endoscopy. More precisely, the theorem will allow us to construct a normalization
of the geometric transfer factor and to state a conjecture analogous to Conjecture E
that encompasses all connected reductive groups.

4 Local Rigid Inner Forms and Endoscopy

In this section we are going to see how the Galois gerbe W constructed in the
previous section leads to a generalization of Conjecture E that encompasses all
connected reductive groups. Just like Conjecture E, its statement will be uniform
for all local fields of characteristic zero.

We begin with a few simple definitions, essentially modeling those for pure
inner forms. Let F be a local field of characteristic zero and let G� be a quasi-split
connected reductive group defined over F.

Definition 7. 1. A rigid inner twist .�; z/ W G� ! G is a pair consisting of an inner
twist � W G� ! G and an element z 2 Z1.u ! W;Z ! G�/, for some finite
central Z � G�, such that ��1�.�/ D Ad.Nz.�//, where Nz 2 Z1.�;G�ad/ is the
image of z.
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2. Given two rigid inner twists .�i; zi/ W G� ! Gi, i D 1; 2, an isomorphism .f ; ı/ W
.�1; z1/ ! .�2; z2/ of rigid inner twists is a pair consisting of an isomorphism
f W G1 ! G2 defined over F and an element ı 2 G�, satisfying the identities
��12 f �1 D Ad.ı/ and z1.w/ D ı�1z2.w/�w.ı/.

Here �w is the image of w 2 W in � , and Nz is the image of z 2 Z1.u! W;Z ! G/
in Z1.�;G=Z/. It is again straightforward to check that Aut.�; z/ D G.F/.

4.1 Refined Endoscopic Data and Canonical Transfer Factors

The fact that the Tate–Nakayama-type isomorphism pairs the cohomology set

H1.u ! W;Z ! G/ not with elements of bG, but rather of bNG, leads to the
necessity to modify the notion of endoscopic data. The notion of an endoscopic
datum was reviewed in Sect. 1.3. Let e D .Ge;Ge; se; �e/. A refinement of e is a
tuple Pe D .Ge;Ge; sPe; �e/. The only difference is the element sPe, which should be

an element of bNG that lifts se. This refinement also suggests a modification of the
notion of an isomorphism. Namely, an isomorphism between Pe1 and Pe2 is now an
element g 2 bG that satisfies two conditions. The first is g�e1 .Ge1/g�1 D �e2.Ge2/,
which is the same as before. To describe the second, let Hi D Gei . We use the
canonical embedding Z.G/ ! Z.Hi/ to form NHi D Hi=Z. Then Ad.g/ provides

an isomorphism cNH1 ! cNH2, which induces an isomorphism �0.Z.
cNH1/
C/ !

�0.Z.
cNH2/
C/. The element sPei provides an element NsPei 2 �0.Z.bNHi/

C/ and we require
that Ad.g/NsPe1 D NsPe2 .

One checks that every endoscopic datum can be refined, and there are only
finitely many isomorphism classes of refined endosocpic data that lead to isomor-
phic unrefined endoscopic data. This allows one to refine sums over isomorphism
classes of endoscopic data by sums over isomorphism classes of refined endoscopic
data.

One can analogously define the notion of a refined extended endoscopic triple,
but we leave this to the reader.

The notion of a refined endoscopic data can be used, together with Theorem 6, to
obtain a canonical normalization of the geometric transfer factor. The construction
of the factor is essentially the same as the one for pure inner twists given by Eq. (6).
Given a rigid inner twist .�; z/ W G� ! G and a refined extended endoscopic triple
Pe, let � 2 Ge.F/ and ı 2 G.F/ be semi-simple strongly regular related elements,
and let ı� 2 G�.F/ and g 2 G� be as in Eq. (6). Then g�1 	 z.w/ 	�w.g/ is an element
of Z1.u! W;Z ! S/, whose class we call invŒz.ı�; ı/, and we set

�Œw; Pe; z.�; ı/ D �Œw; e.�; ı�/ 	 hinvŒz.ı�; ı/; sPei; (8)

where now the pairing is between H1.u! W;Z ! S/ and �0.ŒbNSC/ and is given by
the Tate–Nakayama-type isomorphism of Theorem 6.
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One can then prove [KalR, §5.3] the following.

Theorem 8. The function �Œw; Pe; z is indeed a transfer factor. Moreover, it is
invariant under all automorphisms of Pe.

We see that the notion of refined endoscopic data and their isomorphisms resolves
the problem of non-invariance of transfer factors under isomorphism noted by
Arthur in [Art06].

4.2 Conjectural Structure of Tempered L-Packets

We are now ready to state the refined local Langlands conjecture for general
connected reductive groups. Again we take G� to be a quasi-split connected
reductive group defined over F and we fix a Whittaker datum w for it. We fix a
finite central subgroup Z � G� and set as before NG� D G�=Z. Let � 2 ˆtemp.G�/.
We are of course interested in the L-packet for � on non-quasi-split groups G that
occur as inner forms of G�. Recall S� D Cent.�;bG�/. Set

SC� D S� �bG�

cNG�;

which is simply the preimage of S� under the isogeny cNG� ! bG�.

Conjecture G. For each rigid inner twist .�; z/ W G� ! G with z 2
Z1.u ! W;Z ! G�/ let …�..�; z// denote the L-packet …�.G/ whose
existence is asserted by Conjecture A. Then there exists a commutative diagram

⊔
(ξ,z)

Πφ((ξ, z)) (π0(

(9)

S+
φ ))

H1(u → W, Z → G∗) π0(Z(̂̄G∗)+)∗

in which the top arrow is bijective. The image of the unique w-generic constituent
of …�..id; 1// is the trivial representation of �0.S

C
� /.

Given a rigid inner twist .�; z/ W G� ! G and a refined endoscopic triple Pe for
G�, for any �Œw; Pe; z-matching functions f Pe 2 C1c .Ge.F// and f 2 C1c .G.F// the
equality

‚1
�e.f

Pe/ D e.G/
X

�2…�..�;z//

h�; sPei‚�.f /

holds, where �e 2 ˆtemp.Ge/ is such that � D L�eı�e, and h�;�i D tr.�w.�/.�//.
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If we are interested in a particular fixed non-quasi-split group G, then we endow
it with the datum of a rigid inner twist .�; z/ W G� ! G and consider the fiber
over the class of z of the diagram. On the left, this fiber is the L-packet on G
(or rather, the K-group of G when F is archimedean), and on the right, this fiber

consists of those irreducible representations which transform under �0.Z.cNG�/C/ by
the character determined by z.

Note that when G� is split and semi-simple, the group SC� coincides with the
group Ssc

� suggested by Arthur in [Art06]. However, when G is a general connected

reductive group, in particular a torus, then SC� is quite different, and in fact more
closely related to the group used in [ABV92].

We emphasize also that the group �0.S
C
� / is in general more complicated than

the groups �0.NS�/ or �0.S�/. Indeed, in the archimedean case the latter two groups
are elementary 2-groups, while the former need not be a 2-group. It is still abelian,
however. In the non-archimedean case it is known that the latter two groups may
be non-abelian, but the former is non-abelian much more often. Indeed, already in
the case of SL2 the octonian group occurs as the group �0.S

C
� / for the parameter

discussed in Sect. 2.
We have formulated the endoscopic character identities in Conjecture G only for

refined extended endoscopic triples. For a formulation in the slightly more general
context of refined endoscopic data and z-pairs, we refer the reader to [KalR, §5.4].

4.3 Results for Real Groups

So far we have not addressed the question of how the rigid inner forms we have
defined, when specialized to the case F D R, compare to the strong rational forms
defined in [ABV92]. A-priori the two constructions are very different and in fact
the construction of rigid inner twists was initially motivated by non-archimedean
examples. Nonetheless, we have the following result [KalR, §5.2].

Theorem 9. There is an equivalence between the category of rigid inner twists of
a real reductive group and the category of strong rational forms of that group.

We will not discuss here the precise definition of these categories and refer the reader
to [KalR, §5.2] for their straightforward definition.

Another natural question to ask is: What can be said about Conjecture G when
F D R? As we discussed in Sect. 2.1, the structure of tempered L-packets and their
endoscopic character identities are very well understood for real groups by the work
of Shelstad. A careful study of her arguments leads to the following result [KalR,
§5.6].

Theorem 10. Conjecture G holds when F D R.

It is easy and instructive to explicitly compute the extension 1 ! u ! W !
� ! 1 in the case of F D R. In that case, u.C/ D u.R/ is the trivial �-modulebZ
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and the class of this extension can be represented by the 2-cocycle � determined by
�.�; �/ D 1, where � 2 � is the non-trivial element. Recalling that the Weil group
of R is an extension 1 ! C

� ! WC=R ! � ! 1 whose class can be represented
by the 2-cocycle c determined by c.�; �/ D �1, we see that it can be recovered as
the pushout of W along the mapbZ! bZ=2bZ Š f˙1g � C

�.
This computation shows that the extension 1 ! u ! W ! � ! 1 is very

closely related to the Weil group WC=R. While for any finite Galois extension E=F
of p-adic fields the relative Weil group WE=F has a similar structure as WC=R, the
absolute Weil group WF=F is not an extension of the absolute Galois group � , but
rather a dense subgroup of it. One can thus think of the extension 1 ! u ! W !
� ! 1 as a closer analog for p-adic fields of the absolute Weil group of R.

4.4 Dependence on the Choice of z

In Conjecture G we defined …�..�; z// to be the L-packet …�.G/, where .�; z/ W
G� ! G is a rigid inner twist with z 2 Z1.u ! W;Z ! G�/. It is clear from
this definition that the set …�..�; z// does not depend on z. What does depend on
z is the representation of �0.S

C
� / that �w assigns to � 2 …�..�; z//, and hence the

value h�; sPei that enters the endoscopic character identity. This dependence can be
quantified precisely.

Let � W G� ! G be an inner twist and let z1; z2 2 Z1.u ! W;Z ! G�/ be two
elements such that .�; z1/ and .�; z2/ are rigid inner twists. According to Definition 7
and the diagram in Sect. 3.2 we have z2 D xz1 with x 2 Z1.u ! W;Z ! Z/ D
Z1.W;Z/.

LetbZ denote the kernel of the isogeny cNG� ! bG�. It is shown in [KalRI, §6] that
the finite abelian groups H1.W;Z/ and Z1.�;bZ/ are in canonical duality. Moreover,
this duality is compatible with the duality between H1.u ! W;Z ! T/ and

�0.Œ
bNTC/ of Theorem 6.

Consider the map

.�d/ W SC� ! Z1.�;bZ/; s 7! �.w�/s
�1�.w� /�1s;

where w� 2 LF is any lift of � 2 � . The result is independent of the lift because
the finiteness of bZ implies Z1.LF;bZ/ D Z1.�;bZ/. One can show that .�d/ is a

group homomorphism. Moreover, since ŒSC� ı � Cent.�;cNG�/, we see that .�d/

factors through �0.SC� /. One can then show [KalRI, Lemma 6.2] that if � 2 …�.G/

and if h�; sPei1 and h�; sPei2 are the values of tr.�w.�/.sPe// obtained by considering
� as an element of …�..�; z1// and …�..�; z2// respectively, then the validity of
Conjecture G implies

h�; sPei2 D hŒx; .�d/sPeih�; sPei1:
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4.5 Comparison with Isocrystals

Even though Conjecture F cannot be stated for arbitrary connected reductive groups,
as we discussed at the end of Sect. 2.5, it is still a very important part of the theory,
due to the geometric significance of Kottwitz’s theory of isocrystals with additional
structure. For example, Conjecture F is the basis of Kottwitz’s conjecture [Rap95,
Conjecture 5.1] on the realization of the local Langlands correspondence in the
cohomology of Rapoport–Zink spaces. Moreover, Fargues and Fontaine [FFC] have
recently proved that G-bundles on the Fargues–Fontaine curve are parameterized
by the set B.G/. Based on that, Fargues [Far] has outlined a geometric approach
that would hopefully lead to a proof of Conjecture F. It it therefore desirable
to understand the relationship between Conjectures F and G. This relationship is
examined in [KalRI].

The simplest qualitative statement that can be made is the following: The
validity of Conjecture F for all connected reductive groups with connected center
is equivalent to the validity of Conjecture G for all connected reductive groups.

Let us now be more specific. Let G be a connected reductive group. Define

H1.u! W;Z.G/! G/ D lim�!H1.u! W;Z ! G/

where Z runs over the finite subgroups of Z.G/ defined over F. Then there exists a
canonical map [KalRI, (3.14)]

B.G/bas ! H1.u! W;Z.G/! G/: (10)

One can give an explicit formula for the dual of this map. For this, we need some
preparation. Let Zn � Z.G/ be the preimage in Z.G/ of the group of n-torsion points
of the torus Z.G/=Z.Gder/. The Zn form an exhaustive tower of finite subgroups of
Z.G/ and we can use this tower to form the above limit. Set Gn D G=Zn. Then
Gn D Gad � Z.Gn/ and Z.Gn/ D Z.G1/=Z.G1/Œn, where Z.G1/ D Z.G/=Z.Gder/.
Dually we have bGn D bGsc � bCn, where bCn is the torus dual to Z.Gn/. Since Z.G1/

is the maximal torus quotient of G, its dual bC1 is the maximal normal torus of
bG, i.e. Z.bG/ı. It will be convenient to represent bCn as bC1 D Z.bG/ı, and then the
natural quotient mapbCm ! bCn for njm becomes the m=n-power mapbC1 ! bC1. Set
bC1 D lim �bCn.

Consider the group Z.bGsc/�bC1. Elements of it are of the form .a; .bn/n/, where
a 2 Z.bGsc/ and bn 2 bC1 is a sequence satisfying .bm/

m=n D bn for all njm. We have
the obvious map

Z.bGsc/ �bC1 ! Z.bG/; .a; .bn// 7! ader 	 b1;

where ader is the image in Z.bGder/ of a. Let .Z.bGsc/ � bC1/C be the subgroup
consisting of those elements whose image in Z.bG/ is �-fixed. One can show that
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the duality pairing of Theorem 6 is compatible with the limit and becomes a pairing
[KalRI, (3.12)]

�0..Z.bGsc/ �bC1/C/ � H1.u! W;Z.G/! G/! C
�:

Now consider the map

.Z.bGsc/ �bC1/C ! Z.bG/; .a; .bn// 7! ader 	 b1
NE=F.bŒEWF/

; (11)

where E=F is any finite Galois extension so that �E acts trivially on Z.bG/. The
choice of E=F doesn’t matter and one can show that the above map factors through
�0..Z.bGsc/ �bC1/C/ and is the map dual to (10), see [KalRI, Proposition 3.3].

We now turn to the comparison of Conjectures F and G. Assume first that G� is
a quasi-split connected reductive group with connected center. Let � W G� ! G be
an inner twist. There exists a representative b of an element of B.G�/bas such that
.�; b/ is an extended pure inner twist. Via the map (10) (which also works on the
level of cocycles) we obtain from b an element z 2 Z1.u ! W;Z.G�/ ! G�/ so
that .�; z/ is a rigid inner twist. Then one can show [KalRI, §4] that Conjecture F for
.�; b/ is equivalent to Conjecture G for .�; z/. Not only that, but one can explicitly
relate the internal parameterization of the L-packets…�..�; b// and…�..�; z//. This
is realized by an explicit bijection

Irr.S\�; b/! Irr.�0.SC� /; z/;

where Irr.S\�; b/ is the subset of those irreducible algebraic representations of S\�
which transform under Z.bG/ via the character determined by b, and Irr.�0.S

C
� /; z/

is defined analogously. This bijection is given as the pull-back of representations
under a group homomorphism

�0.S
C
� /! S\�

that can be defined as follows. We may take as the finite central subgroup Z �
G� one of the groups Zn defined above. Moreover, we can take it so that n is a
multiple of the degree k D ŒE W F of some finite Galois extension E=F as above.
Then SC� � bGn D bGsc � bCn and we define the above map to send .a; bn/ 2 SC� to

Œader 	 bn
nNE=F.b

� n
k

n /. In other words, we use the same formula as for (11).
We have thus compared Conjectures F and G for a fixed quasi-split group G� with

connected center. In order to obtain the above qualitative statement, we must now
reduce the proof of Conjecture G to the case of groups with connected center. This
is possible [KalRI, §5] and involves a construction, called a z-embedding, which
embeds the connected reductive group G� into another connected reductive group
QG� whose center is connected and whose endoscopy is comparable. One can then

show that Conjecture G for G� is equivalent to Conjecture G for QG�, see [KalRI,
§5.2].
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4.6 Relationship with Arthur’s Formulation

The formulation of the refined local Langlands conjecture due to Arthur, that we
briefly discussed in Sect. 2.2, is quite different from Conjecture G. For example, the
group Ssc

� that Arthur proposes is in general different from �0.S
C
� /. Nonetheless,

it turns out [KalGR, §4.6] that Conjecture G implies a strong form of Arthur’s
formulation. Let G� be a quasi-split connected reductive group and let � W G� ! G
be an inner twist. From � one obtains the 1-cocycle � ! ��1�.�/, an element of
Z1.�;G�ad/. According to Kottwitz’s theorem the class of this element provides a
character Œ� W Z.bG�sc/

� ! C
�. Arthur suggests that one should choose an arbitrary

extension „ W Z.bG�sc/ ! C
�. Then, for any � 2 ˆtemp.G�/ there should be a

non-canonical bijection between Irr.Ssc
� ;„/ and the L-packet …�.G/.

In order to relate Conjecture G to Arthur’s formulation, it is not enough to choose
z 2 Z1.u ! W;Z ! G/ so that .�; z/ becomes a rigid inner twist. Rather, we
consider the inner twist � W G�sc ! Gsc on the level of simply connected covers
induced by � and fix an element zsc 2 Z1.u ! W;Z.G�sc/ ! G�sc/ so that .�; zsc/ W
G�sc ! Gsc becomes a rigid inner twist. According to the duality of Theorem 6,
the class of Œzsc provides a character Z.bG�sc/ ! C

� that extends the character Œ� W
Z.bG�sc/

� ! C
�. Thus, we see that from our current point of view the choice of

extension „ of the character Œ� corresponds to the choice of zsc lifting the cocycle
� 7! ��1�.�/. In fact, when F is p-adic the class of Œzsc and the extension „
determine each other. When F is real, however, the class Œzsc is the primary object,
because it determines„, but is not determined by it.

The real strength of the new point of view comes from the fact that zsc provides
not just the character „, but at the same time a normalization of the Langlands–
Shelstad transfer factor�, namely�Œw; Pe; z, where z 2 Z1.u! W;Z.G�der/! G�/
is the image of zsc. In this way it specifies the mediating function �.�;�/ and the
spectral transfer factor �.�e; �/. Namely, �.�Œw; Pe; z; sPe/ D 1 and �.�e; �/ D
h�; sPei.

Let us now show that the internal parameterization of the L-packet …�.G/
given by Conjecture G implies the parameterization expected by Arthur. Let NG� D
G�=Z.G�der/ D G�ad � Z.G�/=Z.G�der/. Then dually cNG� D bG�sc � Z.bG�/ı. We have

Z.cNG�/ D Z.bG�sc/ � Z.bG�/ı and the subgroup Z.cNG�/C can be described as the set
of pairs .a; z/ such that ader 	 z 2 Z.bG�/ is �-fixed, where ader 2 Z.bG�/ is the

image of a. Similarly, the subgroup SC� � cNG� can be described as the set of pairs

.a; z/ 2 bG�sc � Z.bG�/ı with the property that ader 	 z 2 S� , where ader 2 bG� is the
image of a. One checks that the map

SC� ˚Z.bNG�/C
Z.bG�sc/! Ssc

� ; ..a; z/; x/ 7! ax
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is an isomorphism of groups. If � 2 Irr.�0.S
C
� /; Œz/, then the representation � ˝

Œzsc of SC� � Z.bG�sc/ descends to the quotient SC� ˚Z.bNG�/C
Z.bG�sc/ and via the above

isomorphism becomes a representation of Ssc
� . This gives a bijection

Irr.�0.S
C
� /; Œz/! Irr.�0.Ssc

� /;„/: (12)

5 The Automorphic Multiplicity Formula

In Sect. 1.5 we discussed that the internal structure of L-packets is a central
ingredient in the multiplicity formula for discrete automorphic representations of
quasi-split connected reductive groups defined over number fields. In this section we
shall formulate the multiplicity formula for general (i.e., not necessarily quasi-split)
connected reductive groups, using the conjectural internal structure of tempered
L-packets given by Conjecture G. Since we are only considering tempered L-
packets locally, the multiplicity formula will be limited to the everywhere tempered
automorphic representations. This restriction is just cosmetic—one can incorporate
non-tempered automorphic representations by replacing local L-packets with local
Arthur packets in the same way as is done in the quasi-split case.

When one attempts to use the local results of the previous sections to study auto-
morphic representations, one realizes that the local cohomological constructions are
by themselves not sufficient. They need to be supplemented by a parallel global
cohomological construction that ensures that the local cohomological data at the
different places of the global field behave coherently. We shall thus begin this section
with a short overview of the necessary results. We will then state the multiplicity
formula, beginning first with the case of groups that satisfy the Hasse principle, for
which the notation simplifies and the key constructions become more transparent,
and treating the general case afterwards.

5.1 The Global Gerbe and Its Cohomology

Let F be a number field, F a fixed algebraic closure, and � D Gal.F=F/. For each
place v of F let Fv denote the completion, Fv a fixed algebraic closure, and �v D
Gal.Fv=Fv/. Fixing an embedding F ! Fv over F (which we think of as a place Pv
of F over v) provides a closed embedding �v ! � , whose image we call � Pv .

It is shown in [KalGR] that there exists a set of places PV of F lifting the places
of F, a pro-finite algebraic group P (depending on PV), and an extension

1! P! E ! � ! 1
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with the following properties. For an affine algebraic group G and a finite central
subgroup Z � G, both defined over F, let H1.P ! E ;Z ! G/ � H1.E ;G/ be
defined analogously to the local set H1.u! W;Z ! G/ of Sect. 3.1. In fact, let us
denote the local set now by H1.uv ! Ev;Z ! G/ to emphasize the local field Fv .
Then for each v 2 V there is a localization map

locv W H1.P! E ;Z ! G/! H1.uv ! Ev;Z ! G/: (13)

This map is functorial in Z ! G. Moreover, it is already well defined on the level of
1-cocycles, up to coboundaries of �v valued in Z, that is there is a well-defined map

locv W Z1.P! E ;Z ! G/! Z1.uv ! Ev;Z ! G/=B1.�v;Z/; (14)

that induces (13).
Let now G be connected and reductive. For a fixed x 2 H1.P! E ;Z ! G/, the

class locv.x/ is trivial for almost all v. Thus we have the total localization map

H1.P! E ;Z ! G/!
a

v

H1.uv ! Ev;Z ! G/; (15)

where we have used the coproduct sign to denote the subset of the product consisting
of tuples almost all of whose entries are trivial. One can show that the kernel of this
map coincides with the kernel of the usual total localization map

H1.�;G/!
a

v

H1.�v;G/:

One can also characterize the image of the total localization map (15). This is based

on the duality between H1.uv ! Ev;Z ! G/ and �0.Z.bNG/Cv / from Theorem 6,
as well as an analogous global duality [KalGR, §3.7]. Recall that NG D G=Z and

that Z.bNG/Cv is the subgroup of Z.bNG/ consisting of those elements whose image in

Z.bG/ is �v-fixed. In the same way we define Z.bNG/C, where we now demand that

the image in Z.bG/ is �-fixed. The obvious inclusions Z.bNG/C ! Z.bNG/Cv lead on the
level of characters to the summation map

M

v

�0.Z.
bNG/Cv /� ! �0.Z.

bNG/C/�:

Then the image of (15) is the kernel of the composition

a

v

H1.uv ! Ev;Z ! G/!
M

v

�0.Z.
bNG/Cv /� ! �0.Z.

bNG/C/�: (16)

Finally, we remark that when Z is sufficiently large (for example, when it contains
Z.Gder/) then the natural map H1.P! E ;Z ! G/! H1.�;Gad/ is surjective.
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5.2 Global Parameters

It is conjectured [Kot84, §12] that there exists a topological group LF , called the
Langlands group of the global field F, which is an extension of the Weil group WF by
a compact group, such that the irreducible complex n-dimensional representations of
LF parameterize the cuspidal automorphic representations of GLn=F. For each place
v of F there should exist an embedding LFv ! LF , well defined up to conjugation in
LF . We shall admit the existence of this group in order to have a clean formulation
of global parameters. In the case of classical groups the use of LF can be avoided
using Arthur’s formal parameters, see [Art13, §1.4].

Let G� be a quasi-split connected reductive group defined over F and let � W
G� ! G be an inner twist. A discrete generic global parameter is a continuous
semi-simple L-homomorphism � W LF ! LG� with bounded projection to bG�,
whose image is not contained in a proper parabolic subgroup of LG�. Given such �
and a place v of F, let �v be the restriction of � to LFv , a tempered (but usually not
discrete) local parameter. Define the adelic L-packet…�.G; �/ as

…�.G; �/ D f� D ˝0v�v j�v 2 …�v.G/; �v is unramified for a.a. vg
where the local L-packet …�v.G/ is the one from Conjecture A. Note that we are
using � to identifybG� with bG.

The question we want to answer in the following sections is this: Which
elements � 2 …�.G; �/ are discrete automorphic representations and what is their
multiplicity in the discrete spectrum? More precisely, let � W Z.G/.A/ ! C

�
denote the central character of � . The locally compact topological group G.A/ is
unimodular. We endow G.A/ with a Haar measure and the discrete group G.F/
with the counting measure and obtain a G.A/-invariant measure on the quotient
space G.F/nG.A/. Denote by L2�.G.F/nG.A// the space of those square-integrable
functions on the quotient G.F/nG.A/ that satisfy f .zg/ D �.z/f .g/ for z 2 Z.G/.A/.
The question we want to answer is this: What is the multiplicity of � as a closed
subrepresentation of this space?

The answer to this question will be given in terms of objects that depend on G, �,
and � . However, the construction of these objects will use the global cohomology
set H1.P! E ;Z ! G�/. In preparation for this, we define a global rigid inner twist
.�; z/ W G� ! G to consist of an inner twist � W G� ! G and z 2 Z1.P ! E ;Z !
G�/, where Z � G� is a finite central subgroup defined over F, so that the image of
z in Z1.�;G�ad/ equals zad.�/ D ��1�.�/.

5.3 Groups That Satisfy the Hasse Principle

Let G be a connected reductive group defined over F. Recall that G is said to satisfy
the Hasse principle if the total localization map

H1.�;G/!
a

v

H1.�v;G/
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is injective. This is always true if G is semi-simple and either simply connected or
adjoint, see [PR94, Theorems 6.6, 6.22]. Other groups that are known to satisfy the
Hasse principle are unitary groups and special orthogonal groups. It was shown
by Kottwitz [Kot84, §4] that G satisfies the Hasse principle if and only if the
restriction map

H1.�;Z.bG//!
M

v

H1.�v;Z.bG//

is injective.
We assume now that G satisfies the Hasse principle. Let G� be the unique quasi-

split inner form of G and let � W G� ! G be an inner twist. Let zad.�/ 2 Z1.�;G�ad/

be given by zad.�/ D ��1�.�/. Fix z 2 Z1.P ! E ;Z.G�der/ ! G�/ lifting zad. For
every place v let zv 2 Z1.uv ! Ev;Z.G�der/ ! G�/ be the localization of z, well
defined up to B1.�v;Z.G�der//. Then .�; zv/ W G� ! G is a (local) rigid inner twist.

Let � W LF ! LG� be a discrete generic global parameter. For such �, the
centralizer S� D Cent.�;bG�/ is finite modulo Z.bG�/� . For any place v of F we
have the tempered local parameter �v D �jLFv

and S� � S�v . Let � 2 …�.G; �/
and let � be its central character. We interpret �v as an element of …�v..�v; zv//
and obtain from Conjecture G the class function h�v;�i on �0.S

C
�v
/. Let SC� be

the preimage in cNG� of S� and let h�;�i be the product over all places v of the
pull-back to �0.SC� / of h�v;�i. It is a consequence [KalGR, Proposition 4.2] of the
description (16) of the image of (15) that this class function descends to the quotient

�0.NS�/ WD �0.SC� =Z.cNG�/C/ D �0.S�=Z.bG�/�/ and is moreover independent of the

choice of z. It is the character of a finite-dimensional representation of �0.NS�/.
Conjecture H. The natural number

X

�

j�0.NS�/j�1
X

x2�0.NS�/
h�; xi;

where � runs over the bG-conjugacy classes of discrete generic global parameters
satisfying �v 2 …�v.G/, is the multiplicity of � in L2�.G.F/ n G.A//.

This conjecture is essentially the one from [Kot84, §12]. The only addition here is
that we have explicitly realized the global pairing h�;�i as a product of normalized
local pairings h�v;�i with the help of the local and global Galois gerbes, and we
have built in the simplifications implied by the Hasse principle.

In order to apply the stable trace formula to the study of this conjecture one
needs to have a coherent local normalization of the geometric transfer factors. Let
e D .Ge; se; L�e/ be a global elliptic extended endoscopic triple. Due to the validity
of the Hasse principle for G we may and will assume that se 2 Z.bGe/� . To this triple,
Kottwitz and Shelstad associate [KS99, §7.3] a canonical adelic transfer factor

�A W Ge
sr.A/ � Gsr.A/! C:
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Note, however, that the original definition needs a correction, as explained in
[KS12]. We assume henceforth that�A is the corrected global factor corresponding
to the local factors�0 of [KS12, §5.4].

Choose a lift sPe 2 cNGe of se. For each place v of F, Pev D .Ge; sPe; L�e/ is a
refined local extended endoscopic triple and we have the normalized transfer factor
�Œw; Pev; �v; zv.
Theorem 11 ([KalGR, Proposition 4.1]). For ı 2 Gsr.A/ and � 2 Ge

sr.A/ one has

�A.�; ı/ D
Y

v

�Œw; Pev; �v; zv.�v; ıv/:

5.4 General Groups

We shall now explain how to modify Conjecture H and Theorem 11 in the case when
G does not satisfy the Hasse principle. In order to handle this case, it is not enough
to choose z 2 Z1.P! E ;Z.G�der/! G�/ lifting zad. Instead, we consider the inner
twist � W G�sc ! Gsc on the level of the simply connected covers of the derived
subgroups. Let zsc 2 Z1.P ! E ;Z.G�sc/ ! G�sc/ lift zad. Let zsc;v 2 Z1.uv !
Ev;Z.G�sc/! G�sc/ denote the localization of zsc, well defined up to B1.�v;Z.G�sc//.
Let zv 2 Z1.uv ! Ev;Z.G�der/! G�/ be the image of zsc;v .

Let � W LF ! LG� be a discrete generic global parameter. The group
NS� D S�=Z.bG�/� that we used when G satisfied the Hasse principle is now
not adequate any more. The reason is that two global parameters �1 and �2 are
considered equivalent not only when they are bG�-conjugate, but when there exists
a 2 Z1.LF;Z.bG�// whose class is everywhere locally trivial, and g 2 bG�, so that
�2.x/ D a.x/ 	 g�1�1.x/g, see [Kot84, §10]. Then the group of self-equivalences
S� of a global parameter � is defined to consist of those g 2 bG� for which
x 7! g�1�.x/g�.x/�1 takes values in Z.bG�/ (then it is a 1-cocycle for formal
reasons) and its class is everywhere locally trivial. This group contains not just
Z.bG�/� , but all of Z.bG�/, and we set NS� D S�=Z.bG�/.

As before we have for each � 2 …�.G; �/ the local representation �v as an
element of …�v..�v; zv// and hence the class function h�v;�i on �0.S

C
�v
/. We want

to produce from these class functions a class function on �0.NS�/. Let x 2 NS� .
Choose a lift xsc 2 bG�sc and let xder be its image in bG�der. For each place v there
exists yv 2 Z.bG�/ so that xderyv 2 S�v . Write yv D y0vy00v with y0v 2 Z.bG�der/

and y00v 2 Z.bG�/ı and choose a lift Py0v 2 Z.bG�sc/. Since NG� D G�=Z.G�der/

we have cNG� D bG�sc � Z.bG�/ı. Then .xscPy0v; y00v / 2 SC�v . The reason we had to
choose zsc is that now the class Œzsc;v 2 H1.uv ! Ev;Z.G�sc/ ! G�sc/ becomes
a character of Z.bG�sc/, which we can evaluate on Py0v . It can be shown [KalGR,
Proposition 4.2] that the product h�; xi D Q

v hŒzsc;v ; Py0vi�1h�v; .xscPy0v; y00v /i is a
class function on �0.NS�/ that is independent of the choices of zsc, xsc, Py0v , and y00v ,
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and is the character of a finite-dimensional representation. We note here that each
individual factor hŒzsc;v; Py0vi�1h�v; .xscPy0v; y00v /i, as a function of xsc, is the character
of an irreducible representation of the finite group �0.Ssc

�v
/ discussed in Sect. 4.6. In

fact, it is precisely the character of �0.Ssc
�v
/ that is the image of the character h�v;�i

under the map (12).

Conjecture I. The natural number

X

�

j�0.NS�/j�1
X

x2�0.NS�/
h�; xi;

where � runs over the equivalence classes of discrete generic global parameters
satisfying �v 2 …�v.G/, is the multiplicity of � in L2�.G.F/ n G.A//.

A similar procedure is necessary in order to decompose the canonical adelic
transfer factor �A into a product of normalized local transfer factors. Let e D
.Ge; se; L�e/ be a global elliptic extended endoscopic triple. Choose a lift ssc 2 bG�sc

of the image of se in bG�ad, and let sder 2 bG�der be the image of ssc. For each place
v there is yv 2 Z.bG�/ so that sderyv 2 Z.bGe/�v . Here we have identified bGe as a
subgroup of bG� via L�e. Write yv D y0vy00v with y0v 2 Z.bG�der/ and y00v 2 Z.bG�/ı and

choose a lift Py0v 2 Z.bG�sc/. Then .sscPy0v; y00v/ 2 Z.cNGe/Cv , so Pev D .bGe; .sscPy0v; y00v /; L�e/

is a refined local extended endoscopic triple.

Theorem 12 ([KalGR, Proposition 4.1]). For ı 2 Gsr.A/ and � 2 Ge
sr.A/ one has

�A.�; ı/ D
Y

v

hŒzsc;v; Py0vi�1�Œw; Pev; �v; zv.�v; ıv/:

5.5 Known Cases

There are a few cases in which Conjecture H has been established. In [KMSW] this
conjecture is verified for pure inner forms of unitary groups. In [Taib] this conjecture
has been verified in the following setting. One considers non-quasi-split symplectic
and orthogonal groups G for which there exists a finite set S of real places such that
at v 2 S the real group G.Fv/ has discrete series, and for v … S the local group G�Fv
is quasi-split. For those groups, Taïbi studies the subspace L2disc.G.F/nG.A//S�alg.reg.

of discrete automorphic representations whose infinitesimal character at each place
v 2 S is regular algebraic and shows that Conjecture H is valid for this subspace.
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Asymptotics and Local Constancy of Characters
of p-adic Groups

Ju-Lee Kim, Sug Woo Shin, and Nicolas Templier

Abstract In this paper we study quantitative aspects of trace characters ‚� of
reductive p-adic groups when the representation � varies. Our approach is based
on the local constancy of characters and we survey some other related results. We
formulate a conjecture on the behavior of ‚� relative to the formal degree of � ,
which we are able to prove in the case where � is a tame supercuspidal. The proof
builds on J.-K. Yu’s construction and the structure of Moy–Prasad subgroups.

1 Introduction

For an admissible representation � of a p-adic reductive group G, its trace character
distribution is defined by

h‚�; f i D tr�.f /; f 2 Cc.G/:

Harish-Chandra showed that it is represented by a locally integrable function on
G still denoted by ‚� , which moreover is locally constant on the open subset of
regular elements.

Our goal in this paper is to initiate a quantitative theory of trace characters ‚�

when the representation � varies. One motivation is towards a better understanding
of the spectral side of the trace formula where one would like to control the global
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behavior of characters [KST]. Another motivation comes from the Weyl character
formula. For a finite dimensional representation � of a compact Lie group and a
regular element � ,

D.�/
1
2 jtr �.�/j � jWj;

where W is the Weyl group and D.�/ is the Weyl discriminant which appears in the
denominator of the character formula. More generally the Harish-Chandra formula
for characters of discrete series yields similar estimates for real reductive groups,
see Sect. 5.2 below.

If � is a square-integrable representation of G, we denote by deg.�/ its formal
degree. Let � be a fixed regular semisimple element. The central conjecture we
would like to propose in this paper (Conjecture 4.1) is essentially that ‚�.�/

deg.�/
converges to zero as deg.�/ grows.

It is nowadays possible to study such a question thanks to recent progress in
constructing supercuspidal representations and computing their trace characters, see
notably [ADSS11, AS09] and the references there.

The main result of this paper (Theorems 4.2 and 4.18, with the latter improved as
in Sect. 4.6 below) verifies our conjecture for the tame supercuspidal representations
� constructed by J.-K. Yu for topologically unipotent elements � when the residual
characteristic of the base field is large enough (in an effective manner). In such a
setup we establish that for some constants A; � > 0 depending on the group G,

D.�/Aj‚�.�/j
deg.�/1��

(1)

is bounded both as a function of � topologically unipotent and as � varies over the
set of irreducible supercuspidal representations of G.

Yu’s construction gives tame supercuspidal representations � D c-indG
J � as

compactly induced from an explicit open compact-modulo-center subgroup J given
in terms of a sequence of tamely ramified twisted Levi subgroups (whose definition
is recalled in Sect. 2.3 below). The main theorem of Yu [Yu01] is that the induction
is irreducible, and therefore is supercuspidal. This may be summarized by the
inclusions,

IrrYu.G/ � Irrc-ind.G/ � Irrsc.G/;

where Irrsc.G/ consists of all irreducible supercuspidal representations (up to
isomorphism), and the first two subsets are given by Yu’s construction and by
compact induction from open compact-modulo-center subgroups, respectively. The
formal degree deg.�/ is proportional to dim.�/=vol.J/. Moreover the first-named
author [Kim07] has shown that if the residue characteristic is large enough, then Yu’s
construction exhausts all supercuspidals, i.e. the above inclusions are equalities.
This means that our result (1) is true for all supercuspidal representations in
that case.
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One important ingredient in proving our main result is using the local constancy
of characters. For a given regular semisimple element � , if ‚� is constant on �K
for a (small) open compact subgroup K of G, then

‚�.�/ D 1

vol.K/
h‚�; 1�Ki D trace.�.�/jVK

� / (2)

where 1�K is the characteristic function of �K. The results of Adler and Korman
[AK07] and Meyer and Solleveld [MS12] determine the size of K, which depends
on the (Moy–Prasad) depth of � and the singular depth of � (see Definition 3.3
below). For our main result, as we vary � such that the formal degree of �
increases (equivalently, the depth of � increases), we choose K appropriately to
be able to approximate the size of ‚�.�/. Write Gx for the parahoric subgroup of
G associated with x. The fact that � D c-indG

J �, via Mackey’s formula, allows us
to bound j‚�.�/j= deg.�/ in terms of the number of fixed points of � (which may
be assumed to lie in Gx) acting on .Gx \ gJg�1/nGx by right translation for various
g 2 G. To bound the cardinality of the fixed points we prove quite a few numerical
inequalities as Yu’s data vary by a systematic study of Moy–Prasad subgroups in
Yu’s construction.

The celebrated regularity theorem of Harish-Chandra [HC70] says that
D.�/

1
2 ‚�.�/ is locally bounded as a function of � and similarly for any G-invariant

admissible distribution. It implies that ‚� is given by a locally integrable function
on G and moreover there is a germ expansion [HC99] when � approaches a non-
regular element. In comparison our result concerning (1) is much less precise but at
the same time we also allow � to vary.

The local constancy (2) is used similarly in [KL13a, KL13b] to compute the
characters of unipotent representations at very regular elements. In such situation
the depth of � is sufficiently larger than the singular depth of � , and the size of
K is determined by the depth of � . Another application of the local constancy of
trace characters is [MS12] which considers trace characters of representations � in
positive characteristic different from p. Among other results they show that the trace
character‚� exists as a function essentially as a consequence of the formula (2).

1.1 Notation and Conventions

Let p be a prime. Let k be a finite extension of Qp. Denote by q the cardinality of
the residue field of k. For any tamely ramified finite extension E of k, let � denote
the valuation on E which coincides with the valuation of Qp when restricted. Let OE

and pE be the ring of integers in E and the prime ideal of OE respectively. We fix an
additive character�k of k, with conductor pk.

Let G be a connected reductive group over k, whose Lie algebra is denoted g. Let
rG be the difference between the absolute rank of G (the dimension of any maximal
torus in G) and the dimension of the center ZG of G. Write G and g for G.k/ and
g.k/, respectively. The linear dual of g is denoted by g�. Denote the set of regular
semisimple elements in G by Greg.
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Throughout the paper, by a unipotent subgroup, we mean the unipotent subgroup
given by the unipotent radical of a parabolic subgroup.

For a subset S of a group H and an element g 2 H, we write Sg or g�1
S for g�1Sg.

Similarly if g; h 2 H, we write hg or g�1
h for g�1hg. If S is a subgroup of H and � is

a representation of S, denote by �g or g�1
� the representation of Sg D g�1

S given by
�g.s/ D g�1

�.s/ D �.gsg�1/, s 2 S.

2 Minimal K-types and Yu’s Construction of Supercuspidal
Representations

In this section we review the construction of supercuspidal representations of a
p-adic reductive group from the so-called generic data due to Jiu-Kang Yu and
recall a result by the first author that his construction exhausts all supercuspidal
representations provided the residue characteristic of the base field is sufficiently
large. The construction yields a supercuspidal representation concretely as a
compactly induced representation, and this will be an important input in the next
section.

2.1 Moy–Prasad Filtrations

For a tamely ramified extension E of k, denote by B.G;E/ (resp. Bred.G/) be the
extended (resp. reduced) building of G over E. When E D k, we write B.G/ (resp.
Bred.G/) for B.G; k/ (resp. Bred.G; k/) for simplicity. If T is a maximal E-split k-
torus, let A.T;G;E/ denote the apartment associated with T in B.G;E/. When
E D k, write A.T/ for the same apartment. It is known that for any tamely ramified
Galois extension E0 of E, A.T;G;E/ can be identified with the set of all Gal.E0=E/-
fixed points in A.T;G;E0/. Likewise, B.G;E/ can be embedded into B.G;E0/ and
its image is equal to the set of the Galois fixed points in B.G;E0/ [Rou77, Pra01].

For .x; r/ 2 B.G;E/ � R, there is a filtration lattice g.E/x;r and a subgroup
G.E/x;r if r � 0 defined by Moy and Prasad [MP94]. We assume that the valuation
is normalized such that for a tamely ramified Galois extension E0 of E and x 2
B.G;E/ � B.G;E0/, we have

g.E/x;r D g.E0/x;r \ g.E/:

If r > 0, we also have

G.E/x;r D G.E0/x;r \G.E/:
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For simplicity, we put gx;r WD g.k/x;r and Gx;r WD G.k/x;r, etc. We will also use the
following notation. Let r 2 R and x 2 B.G/:

1. gx;rC WD [s>rgx;s, and if r � 0, Gx;rC WD [s>rGx;s;
2. g�x;r WD

˚
� 2 g� j �.gx;.�r/C/ � pk

�
;

3. gr WD [y2B.G/gy;r and grC WD [s>rgs;
4. Gr WD [y2B.G/Gy;r and GrC WD [s>rGs for r � 0.
5. For any facet F � B.G/, let GF WD Gx;0 for some x 2 F. Let ŒF be the

image of F in Bred.G/. Then, let GŒF denote the stabilizer of ŒF in G. Note
that GF � GŒF. Similarly, GŒx is the stabilizer of Œx 2 Bred.G/ in G. However,
Gx will denote Gx;0, the parahoric subgroup associated with x.

2.2 Unrefined Minimal K-types and Good Cosets

For simplicity, as in [MP94], we assume that there is a natural isomorphism � W
Gx;r=Gx;rC �! gx;r=gx;rC when r > 0. By Yu [Yu01, (2.4)], such an isomorphism
exists whenever G splits over a tamely ramified extension of k (see also [Adl98,
§1.6]).

Definition 2.1. An unrefined minimal K-type (or minimal K-type) is a pair .Gx;%; �/,
where x 2 B.G/, % is a nonnegative real number, � is a representation of Gx;% trivial
on Gx;%C and

(i) if % D 0, � is an irreducible cuspidal representation of Gx=Gx;0C inflated to Gx,
(ii) if % > 0, then � is a nondegenerate character of Gx;%=Gx;%C .

The % in the above definition is called the depth of the minimal K-type .Gx;%; �/.
Recall that a coset XCg�

x;.�%/C in g� is nondegenerate if XCg�
x;.�%/C does not contain

any nilpotent element. If a character � of Gx;% is represented by X C g�
x;.�%/C , i.e.

�.g/ D �k.X0.�.g// with X0 2 X C g�
x;.�%/C , a character � of Gx;% is nondegenerate

if X C g�
x;.�%/C is nondegenerate.

Definition 2.2. Two minimal K-types .Gx;%; �/ and .Gx0;%0 ; �0/ are said to be
associates if they have the same depth % D %0, and

(i) if % D 0, there exists g 2 G such that Gx \ Ggx0 surjects onto both Gx=Gx;0C

and Ggx0=Ggx0;0C , and � is isomorphic to g�0,
(ii) if % > 0, the G-orbit of the coset which realizes � intersects the coset which

realizes �0.

We also recall the definition of good cosets. In Sect. 3, we will prove some facts
concerning good K-types. The following is a minor modification of the definition in
[AK00] (see also [KM03, §2.4]).



264 J.-L. Kim et al.

Definition 2.3. (i) Let T � G be a maximal k-torus which splits over a tamely
ramified extension E of k. Letˆ.T;E/ be the set of E-roots of T. Then, X 2 t is
a good element of depth r if X 2 trntrC and for any ˛ 2 ˆ.T;E/, �.d˛.X// D r
or1.

(ii) Let r < 0 and x 2 B.G/. A coset S in gx;r=gx;rC is good if there is a good
element X 2 g of depth r such that S D X C gx;rC and x 2 B.CG.X/; k/.

(iii) A minimal K-type .Gx;%; �/ with % > 0 is good if the associated dual coset is
good.

2.3 Generic G-datum

Yu’s construction of supercuspidal representations starts with a generic G-datum,
which consists of five components. Recall G0 � G is a tamely ramified twisted Levi
subgroup if G0.E/ is a Levi subgroup of G.E/ for a tamely ramified extension E of
k.

Definition 2.4. A generic G-datum is a quintuple† D . EG; x; Er; E�; �/ satisfying the
following:

D1: EG D .G0 ¨ G1 ¨ 	 	 	 ¨ Gd D G/ is a tamely ramified twisted Levi sequence
such that ZG0=ZG is anisotropic.

D2: x 2 B.G0; k/.
D3: Er D .r0; r1; 	 	 	 ; rd�1; rd/ is a sequence of positive real numbers with 0 <

r0 < 	 	 	 < rd�2 < rd�1 � rd if d > 0, and 0 � r0 if d D 0.
D4: E� D .�0; 	 	 	 ; �d/ is a sequence of quasi-characters, where �i is a generic

quasi-character of Gi (see [Yu01, §9] for the definition of generic quasi-
characters); �i is trivial on Gi

x;rC
i

, but non-trivial on Gi
x;ri

for 0 � i � d � 1.

If rd�1 < rd, then �d is trivial on Gd
x;rC

d

and nontrivial on Gd
x;rd

, and otherwise if

rd�1 D rd, then �d D 1.
D5: � is an irreducible representation of G0

Œx, the stabilizer in G0 of the image Œx

of x in the reduced building of G0, such that �jG0
x;0C is isotrivial and c-IndG0

G0Œx
� is

irreducible and supercuspidal.

Remark 2.5. (i) By (6.6) and (6.8) of [MP96], D5 is equivalent to the condition
that G0

x is a maximal parahoric subgroup in G0 and �jG0
x induces a cuspidal

representation of G0
x=G0

x;0C .
(ii) Recall from [Yu01] that there is a canonical sequence of embeddings

B.G0; k/ ,! B.G1; k/ ,! 	 	 	 ,! B.Gd; k/. Hence, x can be regarded as a
point of each B.Gi; k/.

(iii) There is a finite number of pairs . EG; x/ up to G-conjugacy, which arise in a
generic G-datum: By §1.2 in [KY11], there are finitely many choices for EG up
to G-conjugacy. In particular, there are finitely many choices for G0, and for
each G0 the number of vertices in B.G0/ is finite up to G0-conjugacy.
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2.4 Construction of J†

Let † D . EG; x; Er; E�; �/ be a generic G-datum. Set si WD ri=2 for each i. Associated
with EG; x and Er, we define the following open compact subgroups.

1. K0 WD G0
Œx ; K0C WD G0

x;0C .

2. Ki WD G0
ŒxG

1
x;s0 	 	 	Gi

x;si�1
; KiC WD G0

x;0C G1

x;sC
0

	 	 	Gi
x;sC

i�1

for 1 � i � d.

3. Ji WD .Gi�1;Gi/.k/x;.ri�1;si�1/ ; JiC WD .Gi�1;Gi/.k/
x;.ri�1;s

C
i�1/

in the notation

of Yu [Yu01, §1].

For i > 0, Ji is a normal subgroup of Ki and we have Ki�1Ji D Ki (semi-direct
product). Similarly JiC is a normal subgroup of KiC and Ki�1C JiC D KiC. Finally let
J† WD Kd and JC WD KdC, and also s† WD sd�1 and r† WD rd�1. When there is no
confusion, we will drop the subscript † and simply write J; r; s, etc.

2.5 Construction of �†

One can define the character O�i of K0Gi
xG

x;sC
i

extending �i of K0Gi
x � Gi. For

0 � i < d, there exists by the Stone–von Neumann theorem a representation Q�i of
Ki Ë JiC1 such that Q�ijJiC1 is O�ijJiC1

C -isotypical and Q�ijKiC is isotrivial.
Let inf.�i/ denote the inflation of �ijKi to Ki Ë JiC1. Then inf.�i/ ˝ Q�i factors

through a map

Ki Ë JiC1 �! KiJiC1 D KiC1:

Let �i denote the corresponding representation of KiC1. Then it can be extended
trivially to Kd, and we denote the extended representation again by �i (in fact �i

could be further extended to the semi-direct product KiC1Gx;siC1
� Kd by making

it trivial on Gx;siC1
). Similarly we extend � from G0

Œx to a representation of Kd and
denote this extended representation again by �. Define a representation � and �† of
Kd as follows:

� WD �0 ˝ 	 	 	 ˝ �d�1 ˝ .�djKd/;

�† WD �˝ �: (3)

Note that � is defined only from . EG; x; Er; E�/ independently of �.

Remark 2.6. One may construct �i as follows: set Ji
1 WD Gi

x;0C Gx;si and Ji
2 WD

Gi
x;0C Gx;sC

i
. Write also O�i for the restriction of O�i to Ji

2. Then, one can extend O�i
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to Ji
1 via Heisenberg representation and to Gi

ŒyGx;si by Weil representation upon
fixing a special isomorphism (see [Yu01] for details):

Ji
2 ! Ji

1 ! Gi
ŒyGx;si

O�i � O�i
! O�i
:

Note that we have inclusions J† D Kd � Gi
ŒxGx;sC

i
� GŒx, and we have �i '

! O�i
jKd.

Theorem 2.7 (Yu). �† D c-IndG
J†�† is irreducible and thus supercuspidal.

Remark 2.8. Let † be a generic G-datum. If G is semisimple, comparing Moy–
Prasad minimal K-types and Yu’s constructions, we observe the following:

(i) The depth of �† is given r† D rd D rd�1. (Even if G is not semisimple, the
depth is rd, cf. [Yu01, Remark 3.6], but it may not equal rd�1.)

(ii) .Gx;rd�1 ; �d�1/ is a good minimal K-type of �† in the sense of Kim and
Murnaghan [KM03].

2.6 Supercuspidal Representations Via Compact Induction

Denote by Irr.G/ the set of (isomorphism classes of) irreducible smooth representa-
tions of G. Fix a Haar measure on G. Write Irr2.G/ (resp. Irrsc.G/) for the subset of
square-integrable (resp. supercuspidal) members. For each � 2 Irr2.G/ let deg.�/
denote the formal degree of � . For each � 2 Irr.G/, ‚� is the Harish-Chandra
character, which is in L1loc.G/ and locally constant on Greg.

Define IrrYu.G/ to be the subset of Irrsc.G/ consisting of all supercuspidal
representations which are constructed by Yu, namely of the form �† as above.
Write Irrc-ind.G/ for the set of � 2 Irrsc.G/ which are compactly induced, meaning
that there exist an open compact-mod-center subgroup J � G and an irreducible
admissible representation � of J such that � ' c-indG

J .�/. We have that

IrrYu.G/ � Irrc-ind.G/ � Irrsc.G/:

The first inclusion is a consequence of Yu’s theorem (Theorem 2.7) and generally
strict. A folklore conjecture asserts that the second inclusion is always an equality.
It has been verified through the theory of types for GLn and SLn by Bushnell–
Kutzko, for inner forms of GLn by Broussous and Sécherre–Stevens, and for p-adic
classical groups by Stevens when p ¤ 2 [BK93, BK94, Bro98, SS08, Ste08]. In
general, according to the main result of Kim [Kim07], there exists a lower bound p0
depending only on the absolute ramification index of k and the absolute root datum
of G, such that both inclusions are equalities if p � p0. Precisely this is true for
every prime p such that the hypotheses (Hk), (HB), (HGT), and (HN ) of [Kim07,
§3.4] are satisfied.
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2.7 Hypotheses

The above hypotheses will be assumed in a variety of our results in the next two
sections. We will clearly state when the hypotheses are needed. As they are too
lengthy to copy here, the reader interested in the details is referred to [Kim07, §3.4].
For our purpose it suffices to recall the nature of those hypotheses: (Hk) is about
the existence of filtration preserving exponential map, (HB) is to identify g and
its linear dual g�, (HGT) is about the abundance of good elements, and (HN ) is
regarding nilpotent orbits.

2.8 Formal Degree

Recall that deg.�/ denotes the formal degree of � .

Lemma 2.9. Let † be a generic G-datum. Then

(i) deg.�†/ D dim.�†/=volG=ZG.J†=ZG/.

(ii) 1
volG=ZG .J†=ZG/

� deg.�†/ � qdim.g/

volG=ZG .J†=ZG/
:

Proof. Assertion (i) is easily deduced from the defining equality for deg.�†/:

deg.�†/
Z

G=ZG

‚�†.g/‚�†.g/dg D dim �†;

cf. [BH96, Theorem A.14].
(ii) Let � and � be as in (3). One sees from the construction of supercuspidal

representations that dim.�/ � ŒG0
x W G0

x;0C , and the dimension formula for finite
Heisenberg representations yields

dim.�i/ D ŒJiC1 W JiC1
C 

1
2 D Œ.gi; giC1/x;.ri;si/ W .gi; giC1/

x;.ri;s
C
i /

1
2

� ŒgiC1.Fq/ W gi.Fq//
1
2 ;

dim.�/ D
d�1Y

iDi

dim.�i/ � Œg.Fq/ W g0.Fq//
1
2

Hence,

1 � dim.�†/ D dim.�/ dim.�/ � ŒG0
x W G0

x;0C Œg.Fq/ W g0.Fq//
1
2 � qdim.g/

ut
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There is no exact formula yet known for the formal degree deg.�†/ of tame
supercuspidals, or equivalently for volG=ZG.J†=ZG/ and dim.�†/, which is also
an indication of the difficulty in computing the trace character ‚�†.�/ in this
generality since deg.�†/ appears as the first term in the local character expansion.
In this direction a well-known conjecture of Hiraga–Ichino–Ikeda [HII08] expresses
deg.�†/ in terms of the Langlands parameter conjecturally attached to �†.

For our purpose it is sufficient to know that 1
r†

logq volG=ZG.J†=ZG/ is bounded
above and below as † varies by constants depending only on G, which follows
from Lemma 2.9. Below we shall use similarly that 1

r†
logq volG=ZG.Ls†/ is bounded

above and below, where Ls† WD Gd�1
Œx Gs† . Note that J† � Ls† .

3 Preliminary Lemmas on Moy–Prasad Subgroups

In this subsection, we prove technical lemmas that we need to prove the main
theorem. We keep the notation from the previous section.

3.1 Lemmas on �† and �

Recall from [KM03] that when (HB) and (HGT) are valid, any irreducible smooth
representation .�;V� / contains a good minimal K-type. The following lemma
analyzes other possible minimal K-types occurring in .�;V� /.

Lemma 3.1. Suppose (HB) and (HGT) are valid. Let .V� ; �/ be an irreducible
smooth representation of G of positive depth %. Let .�;Gx;%/ be a good minimal
K-type of � represented by X C gx;.�%/C where X 2 gx;.�%/ is a good element of
depth .�%/. Let G0 be the connected component of the centralizer of X in G.

(1) Fix an embedding B.G0/ ,! B.G/ (such an embedding can be chosen by
[Lan00, Theorem 2.2.1]) and let C0x be a facet of maximal dimension in B.G0/
containing x in its closure C

0
x. There exists a facet of maximal dimension Cx in

B.G/ such that x 2 Cx \ C
0
x and C0x \ Cx is of maximal dimension in B.G0/.

(2) Let y 2 B.G/ and suppose that V
Gy;%C

� ¤ 0. As a representation of Gy;%, V
Gy;%C

�

is a sum of characters �0’s which are represented by h.X C �0/ C gy;.�%/C �
gy;.�%/ for some �0 2 g0

.�%/C and h 2 GŒySx for some compact mod center set

Sx. Moreover, one can choose Sx in a way depending only on x;G0.

Remark 3.2. Note that x 2 B.G0/ by [KM03, Theorem 2.3.1].

Proof. (1) Let V WD [CC where the union runs over the set of facets of maximal
dimension C � B.G/ with x 2 C. Let Vı be the interior of V . Then, x 2 Vı and
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Vı is open in B.G/, hence, C0x \ Vı ¤ ; and is open in B.G0/. Therefore, at
least one of C \ C0x with x 2 C contains an open set in B.G0/. Set Cx to be one
of such facets.

(2) Since the action of Gy;% on V
Gy;%C

� factors through the finite abelian quotient

Gy;%=Gy;%C , we see that V
Gy;%C

� decomposes as a direct sum of characters of

Gy;%. Let �0 be a Gy;% subrepresentation of V
Gy;%C

� . Then, .�0;Gy;%/ is also a
minimal K-type of � . Let X0Cgy;.�%/C � gy;.�%/ be the dual cosets representing
�0. Then, .X C gx;.�%/C/ \ G.X0 C gy;.�%/C/ ¤ ;. Since .X C gx;.�%/C/ D
Gx;0C .X C g0

x;.�%/C/, there are � 2 g0
x;.�%/C and g 2 G such that X C � 2

g�1
.X0 C gy;.�%/C/ � gg�1y;�%. By [KM03, Lemma 2.3.3], g�1y 2 B.G0/.

To choose Sx, let A.T/ be an apartment in B.G/ such that Cx [ C0x � A.T/. For
each alcove C � A.T/ with C\C

0
x ¤ ;, choose wC 2 NG.T/ such that C D wCCx.

Now, set

Sx WD fı 	 w�1C j C is an alcove in B.G/ with C \ C
0
x ¤ ;; ı 2 GŒCxg:

We claim that there is g0 2 G0 such that gg0 2 GŒySx. Let g0 2 G0 such that

.gg0/�1y 2 C
0
x. Then, there is g00�1 2 Sx such that g00y D .gg0/�1y. Hence,

gg0g00 2 GŒy and gg0 2 GŒySx. Then one can take h D gg0 and �0 D g0�1�g0
since h.XC �0/ 
 g.g

0

XC �/ 
 g.XC �/ 
 X0 .mod gy;.�%/C/. By construction Sx

depends only on x and G0. ut
Definition 3.3. Let � 2 Greg. Let T� be the unique maximal torus containing � ,
and ˆ WD ˆ.T� / the set of absolute roots of T� . Let ˆC WD ˆC.T� / be the set of
positive roots.

(i) Define the singular depth sd˛.�/ of � in the direction of ˛ 2 ˆ as

sd˛.�/ WD �.˛.�/ � 1/:

and the singular depth sd.�/ of � as

sd.�/ WD max
˛2ˆ sd˛.�/:

When � is not regular, see [AK07, §4] for definition. In [MS12, §4.2], sd.�/ is
defined as max˛2ˆC sd˛.�/. When � is compact, both definitions coincide.

(ii) Recall that the height of ˛ 2 ˆC.T� / is defined inductively as follows:

• ht.˛/ D 1 if ˛ 2 ˆC is simple;
• ht.˛ C ˇ/ D ht.˛/C ht.ˇ/ if ˛; ˇ; ˛ C ˇ 2 ˆC.

Define the height hG ofˆ as max˛2ˆC ht.˛/. Note that the height ofˆ depends
only on G.
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Lemma 3.4. Suppose � 2 Greg \ T�0 splits over a tamely ramified extension.
Suppose z 2 A.T� /, and g� 2 Gz for g 2 G. Then, gT�

hC
�

� Gz, where h� WD
hG 	 sd.�/.

Proof. This is a reformulation of Meyer and Solleveld [MS12, Lemma 4.3]. More

precisely, g� 2 Gz is equivalent to z 2 B.G/g� , hence z 2 B.G/
g.�T

hC
�
/

by loc. cit. ,
which in turn implies that g.�T

hC
�
/ � Gz and uT

hC
�
� Gz. ut

Lemma 3.5. Suppose � 2 Greg \ G0 splits over a tamely ramified extension E.
Let T� � G0 ¨ G1 ¨ 	 	 	 ¨ Gd D G be an E-twisted tamely ramified Levi
sequence, z 2 A.T� ;E/ � B.G0;E/ and ai 2 R with 0 � a1 � 	 	 	 � ad. Set
KE D G0.E/zG1.E/z;a1G

2.E/z;a2 	 	 	Gd.E/z;ad . Suppose g 2 G such that g� 2 KE.
Then, we have gT� .E/AC � KE where A D h� C ad and h� is as in Lemma 3.4.

Proof. Without loss of generality, we may assume E D k. Let O 2 A.T� / defined
by ˛.O/ D 0 for all ˛ 2 ˆ. For ˛ 2 ˆ, let U˛ be the root subgroup associated
with ˛. We fix the pinning x˛ W k ! U˛ . Define U˛;r to be the image fu 2 k j
�.u/ � rg under the isomorphism x˛ W k ! U˛ . Let C � A.T� / be the facet of
maximal dimension with O 2 C. One may assume that z 2 C (by conjugation by
an element of NG.T� / if necessary). Then, GC is an Iwahori subgroup and we have
the Bruhat decomposition G D GCNG.T� /GC, cf. [Tit79, 3.3.1]. Let w 2 NG.T� /
with g 2 GCwGC . Let Aw D f˛ 2 ˆ.T� / j Uw˛ \ GC ¨ w.U˛ \ GC/g. Write
Uw DQ˛2Aw

U˛. Note that Uw may not necessarily be a group. We prove the lemma
through steps (1)–(8) below.

(1) Let w 2 NG.T� /. Then, there is a Borel subgroup B containing wUww�1.

Proof. Each chamber D containing O in its closure defines an open cone CD in
A.T� / and we have A.T� / D [O2DCD is the union is over the chambers D with
O 2 D. Recall that each CD defines a Borel subgroup BD. If CD contains wC,
one can take B D BD. ut

For D as in (1), let ˆCD be the set of positive T� -roots associated with CD and
write htD D ht

ˆ
C
D

for simplicity.

(2) Write BD D T�U and let U be the opposite unipotent subgroup. Then, gw�1 D
t 	 u 	 u for t 2 T�0 , u 2 GC \U and u 2 U.

Proof. We have that GC has an Iwahori decomposition with respect to B:
GC D .GC \ T� /.GC \ U/.GC \ U/. Then, the above follows from gw�1 2
GCwGCw�1 � GCwUww�1 � .GC\T� /.GC\U/.GC\U/U � .GC\T� /.GC\
U/U. ut

(3) Since t 2 T�0 � KE, we may assume without loss of generality that t D 1 or
gw�1 D uu .

(4) We have u 2 GxCsd.�/htD \U.
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Proof. Observe that w� 2 KE and sd.w�/ D sd.�/. Observe also that u.w�/ 2
GC � Gz since u 2 Gz and KE � Gz. Since u.w�/ 2 GC � Gz we can
apply [MS12, Proposition 4.2] to deduce that u 2 GzCsd.�/htD \ U. ut

(5) For � 0 2 T�
AC , we have (i) .u; w.�� 0// 
 .u; w�/ .mod GzCsd.�/htD;AC \U/, and

(ii) .u; w.�� 0// 
 .u; w�/ .mod Gz;ad \ U/.

Proof. For � 0 2 T�
AC � GzCsd.�/htD;AC , the commutators .u; w.�� 0// and .u; w�/

are in GzCsd.�/htD\U and also in the same coset mod GzCsd.�/htD;AC \U. Hence,
(i) follows.

The assertion (ii) follows from (i). Indeed, we note that

GzCsd.�/htD;AC \ U D
Y

˛2ˆC
D

U˛;�˛.z/�sd.�/htD.˛/CAC

is contained in
Q

˛2ˆC
D

U˛;�˛.z/CsC which is itself contained in Gz;s \ U. ut

(6) For any � 0 2 T�
AC , we have w�u�1w��1 
 .w.�� 0//u�1.w.�� 0//�1 .mod Gz;ad/.

(7) For any � 0 2 T�
AC , we have g�g�1w��1 
 g.�� 0/g�1w.�� 0/�1 .mod Gz;ad/

Proof. Write g�g�1w��1 D u.u; w�/w�u�1w��1 and

g.�� 0/g�1w.�� 0/�1 D u.u; w.�� 0//w.�� 0/u�1w.�� 0/�1:

Then, (7) follows from (5) and (6). ut
(8) gT�

AC � KE .

Proof. Note that w�; w.�� 0/ 2 KE . Hence, g�g�1 
 g.�� 0/g�1 .mod KE/ by
(6). Since g�g�1 2 KE, we have gT�

ACg�1 � KE . ut
The proof of Lemma 3.5 is now complete. ut

Lemma 3.6. In the same situation as in Lemma 3.5, suppose in addition that hG D
1. Then, we have gT� .E/sd.�/C � KE.

Proof. Since hG D 1, we have d D 0 or d D 1. If d D 0, the assertion is precisely
Lemma 3.4. We assume d D 1 from now. Then, KE D T�0 Gz;a1 .

As before, we may assume E D k. The assertions (1)–(8) below refer to those
in the above proof of Lemma 3.5. Following the proof of Lemma 3.5, write ˆD D
f˙˛g. Let gw�1 D uu for u 2 U˛ and u 2 U�˛ as in (3). Under the isomorphism
via x˛ W k ! U˛, we will use the same notation for u and x�1˛ .u/. Then, we can
write x˛.u/ D u. Similarly, x�˛.u/ D u. Let ˛_ W k� ! T� be the coroot of ˛. It is
enough to prove that g.�� 0/g�1 w.�� 0/�1 2 KE for any � 0 2 T�

sd.�/C
.

We have .u; w.�� 0// D x˛..1 � ˛. w.�� 0///u/ and .u; w.�� 0// D x�˛..1 �
˛. w.�� 0/�1//u/. For simplicity, write u� 0 D .1 � ˛. w.�� 0///u D x˛.u� 0/ and
u� 0 D .1 � ˛. w.�� 0/�1//u D x�˛.u� 0/. Since x˛.u� 0/ 2 U˛ \ Gz by (4) and
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Lemma 3.4 and x�˛.u/ 2 U�˛ \ Gz, we have

�.u� 0/ � �˛.z/; �.u/ � ˛.z/:
Similarly as in (7), we calculate g.�� 0/g�1 w.�� 0/�1, but, now explicitly using the
Chevalley basis. Then,

g.�� 0/g�1w.�� 0/�1 D u.u; w.�� 0//w.�� 0/u�1w.�� 0/�1

D x�˛.u/x˛.u� 0/x�˛.�u/x�˛.u/Ad.w.�� 0//.x�˛.�u//

D x˛.u� 0.1C uu� 0/�1/˛_..1C uu� 0/�1/x�˛.�u2u� 0.1C uu� 0/�1/x�˛.u� 0/

When � 0 D 1, we have

g�g�1w��1 D x˛.u1.1C uu1/
�1/˛_..1C uu1/

�1/x�˛.�u2u1.1C uu1/
�1/x�˛.u1/:

Since g�g�1w��1 2 KE, we have �.1Cuu�1/ D 0 and �.u1/ D �.u1.1Cuu1/�1/ �
�˛.z/ C a1. Combining this with �.u/ � ˛.z/, we have �.u2u1.1 C uu1/�1/ �
˛.z/C a1. Note that

(i) �.1C uu� 0/ D �.1C uu1/ and �.u1/ D �.u� 0/;
(ii) �.u2u1.1C uu1/�1/ D �.u2u� 0.1C uu� 0/�1/ � ˛.z/C a1;

(iii) �.u1/ D �.u� 0/ � ˛.z/C a1: The last inequality follows from x�˛.u1/ 2 KE .

From (i)–(iii), we have g.�� 0/g�1w.�� 0/�1 2 KE and conclude that gT�
sd.�/C

� KE.
ut

Proposition 3.7. Recall the subgroup J† from Sect. 2.4. Let � 2 Greg, g 2 G, and
suppose that � 2 H†;g WD gJ† \Gx. Let

A�;† WD
8
<

:

hG 	 sd.�/C sd�1 if hG > 1;

sd.�/ if hG D 1:
Then, we have

(i) T�
AC
�;†

� H†;g,

(ii) ]
�
.T� \ Gx/H†;g

ı
H†;g

� � qrG.A�;†C1/.

Proof. For simplicity of notation, we write A for A�;†.

(i) By Lemma 3.4, T�
AC � Gx. Since T�

AC D T� .E/AC \ G0C � gKE \ G0C from
Lemmas 3.5 and 3.6, we have T�

AC � gJ† \ G0C . Hence, T�
AC � H†;g.

(ii) Note that Gx \ T� � T�0 . Then, we have

]
�
.T� \ Gx/H†;g/

ı
H†;g

� � ]
�

T�0
ı

T�
AC

�
� qrG.AC1/:

ut
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3.2 Inverse Image Under Conjugation

In this subsection we prove a lemma to control the volume change of an open
compact subgroup under the conjugation map as we will need the result in
Proposition 4.15 below. For regular semisimple elements g 2 G and X 2 g,
denote by gg and gX the centralizer of g and X in g, respectively. Define the Weyl
discriminant as

D.g/ WD j det.Ad.g/jg=gg/j; D.X/ WD j det.ad.X/jg=gX/j:

Recall that the rank of G, to be denoted rG, is the dimension of (any) maximal torus
in G. Define  .rG/ to be the maximal d 2 Z�0 such that �.d/ � rG, where �
is the Euler phi-function. Put N.G/ WD max. .rG/; dim G/. Under the assumption
that p > N.G/C 1, recall from [Wal08, Appendix B, Proposition B] that there is a
homeomorphism

exp W g0C

�! G0C :

Under the hypothesis (Hk) this exp map is filtration preserving, in particular, it
preserves the ratio of volumes.

Lemma 3.8. Suppose p > N.G/ C 1 and (Hk) is valid. Let x 2 B.G/. Let � 2
Gx \ G0C and suppose that � is regular semisimple (so that D.�/ ¤ 0). Consider
the conjugation map  � W G ! G given by ı 7! ı�ı�1. For each open compact
subgroup H � Gx containing � , we have

volG=Z. 
�1
� .H/\Gx/

volG=Z.H/
� ] ..Gx \ T� /H=H/ 	 D.�/�1 	 ] �H=.H \Gx;0C/

�
:

Proof. It suffices to prove that the left-hand side is bounded by ] .Gx \ T� =H \ T� /	
D.�/�1 under the additional assumption that H � Gx\G0C . Indeed, in general, one
only needs to also count the contribution on H=.H \ Gx;0C/, which is bounded by
its cardinality.

Put Y WD exp�1.�/ and h WD exp�1.H/ � gx \ g0C . Note that h is an Ok-
lattice in g since H is an open compact subgroup. Write CY W g ! g for the map
X 7! ŒX;Y, whose restriction to g0C is going to be denoted by CY;0C . Define C� W
G0C ! G0C��1 by ı 7! ı�ı�1��1, which is the composition of  � with the right
multiplication by ��1. Since � 2 H we have C�1� .H/ D  �1� .H/ � G0C . Via the
exponential map, C� W  �1� .H/\Gx ! H corresponds to

CY;0C W exp�1.C�1� .H/\ Gx/ D C�1
Y;0C .h \ gx/! h:
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Since the exponential map preserves the ratio of volumes,

volG=Z. 
�1
� .H/\ Gx/

volG=Z.H/
D

volg=z.C�1Y;0C .h/ \ gx/

volg=z.h/
� volg=z.C�1Y .h/ \ gx//

volg=z.h/

D ŒC�1Y .h/\ gx W h:

We will be done if we show that ŒC�1Y .h/ \ gx W h � D.Y/�1ŒgY \ gx W gY \ h.
Write pr for the projection map gx ! gx=.gx \ gY/. Consider the commutative
diagram

Denote by the preimage of pr.h/ in pr.C�1Y .h/ (resp. C�1Y .h/ \ gx) by L2 and L1.
Then L2 and L1 are Ok-lattices in g=gY and g, respectively, where Ok is the ring of
integers in k. So we have

ŒC�1Y .h/\ gx W h � ŒL1 W h D ŒgY \ gx W gY \ hŒL2 W pr.h/:

Since CY D ad.Y/ as k-linear isomorphisms on g=gY , we see that ŒL2 W pr.h/ D
D.Y/�1, completing the proof. ut

Combining Proposition 3.7 and Lemma 3.8, we have the following:

Corollary 3.9. We keep the situation and notation from Proposition 3.7. Then, we
have

volG=Z. 
�1
� .H†;g/ \Gx/

volG=Z.H†;g/
� D.�/�1qdim.G/CrG.A�;†C1/

3.3 Intersection of Ls with a Maximal Unipotent Subgroup

For later use, we study the intersections of Ls with unipotent subgroups in this
subsection. Consider a tamely ramified twisted Levi sequence .G0;G/. Let T (resp.
T0) be a maximally k-split maximal torus of G (resp. G0) such that T0s � Ts where
Ts and T0s are the k-split components of T and T0, respectively. Set M WD ZıG.Ts/

(resp. M0 WD ZıG.T 0s/), a minimal Levi subgroup of G containing T (resp. T 0). Note
that M � M0. Fix a parabolic subgroup MN of G (resp. M0N0), where N (resp. N0) is
the unipotent subgroup such that N0 � N.
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Lemma 3.10. We keep the notation from above. Let x 2 A.T 0/.

(i) For any a; a0 2 R with a > a0 > 0,

Œ.Gx;a0 \ N0/ W ..G0x;a0Gx;a/\ N0/2 � qdimk.N/ŒGx;a0 W .G0x;a0 Gx;a/:

(ii)

Œ.Gx \ N0/ W ..G0xGx;0C/\ N0/2 � qdimk.N/ŒGx W .G0x0;0Gx;0C/:

(iii)

Œ.Gx \ N0/ W ..G0xGx;a/ \ N0/2 � q2 dimk.N/ŒGx W .G0xGx;a/:

Proof. (i) Both J WD Gx;a0 and J 0 WD .G0x;a0 Gx;a/ are decomposable with respect

to M0 and N0, that is, J D .J \N
0
/ 	.J \M0/ 	.J \N0/, etc. Write YX WD Y\X

for any X;Y � G. Then, ŒJ W J 0 D ŒJN
0 W J 0

N
0  	 ŒJM0 W J 0M0  	 ŒJN0 W J 0N0  and

we have

ŒJ W J 0 D ŒJM0 W J 0M0 ŒJN0 W J 0N0 ŒJN
0 W J 0

N
0  � ŒJN0 W J 0N0 ŒJN

0 W J 0
N

0 

� 1

qdimk.N0/
ŒJN0 W J 0N0 

2 � 1

qdimk.N/
ŒJN0 W J 0N0 

2:

(ii) This follows from

ŒGx W G0xGxC � Œ.Gx/N0 Gx;0C W .G0xGxC/N0 Gx;0C  	 Œ.Gx/N0 Gx;0C W .G0xGxC/N0 Gx;0C 

D Œ.Gx/N0 Gx;0C W .G0xGxC/N0 Gx;0C  	 Œ.Gx/N
0 W .G0xGxC/N0 

� 1

qdimk.N/
Œ.Gx/N0 W .G0xGx;0C /N0 2:

(iii) We have

ŒGx W .G0xGx;a/ D ŒGx W .G0xGx;0C/Œ.G0xGx;0C/ W .G0xGx;a/

D ŒGx W .G0xGx;0C/ŒGx;0C W .G0x;0C Gx;a/:

Combining (i) and (ii), we have

ŒGx W .G0xGx;a/ � 1

q2 dimk.N/
Œ.Gx/N0 W .G0xGx;0C/N0 2Œ.Gx;0C/N0 W .G0

x;0C Gx;a/N0 2

D 1

q2 dimk.N/
Œ.Gx/N0 W .G0xGx;a/N0 2:

ut
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4 Asymptotic Behavior of Supercuspidal Characters

4.1 Main Theorem

Conjecture 4.1. Consider the set of � in Irrsc.G/ such that the central character of
� is unitary. For each fixed � 2 Greg,

‚�.�/

deg.�/
! 0 as deg.�/!1I

namely for each � > 0 there exists d� > 0 such that j‚�.�/=deg.�/j < � whenever
deg.�/ > d�.

Our main theorem in the qualitative form is a partial confirmation of the
conjecture under the hypotheses discussed in Sect. 2.7 and above Lemma 3.8.

Theorem 4.2. Suppose that (Hk), (HB), and (HGT) are valid. Then, Conjecture 4.1
holds true if � and � are restricted to the sets G0C and IrrYu.G/, respectively.

The proof is postponed to Sect. 4.5 below. Actually we will establish a rather
explicit upper bound on j‚�.�/=deg.�/j, which will lead to a quantitative strength-
ening of the above theorem. See Theorem 4.18 below.

The central character should be unitary in the conjecture; it would be a problem if
each � is twisted by arbitrary (non-unitary) unramified characters of G. However the
assumption plays no role in the theorem since every unramified character is trivial
on G0C .

We are cautious to restrict the conjecture to supercuspidal representations as
our result does not extend beyond the supercuspidal case. However it is natural
to ask whether the conjecture is still true for discrete series representations. As a
small piece of psychological evidence we verify the analogue of Conjecture 4.1 for
discrete series of real groups on elliptic regular elements in Sect. 5.2 below.

4.2 Reductions

Let � be as in Theorem 4.2 associated with a generic G-datum †. In proving
Theorem 4.2, we may assume that each � (and hence †) is associated with a fixed
orbit of . EG; x/ since there are only a finite number of . EG; x/ up to conjugacy. Let T�

denote the unique maximal torus containing � , and pick any y 2 A.T� / D B.T� /.
We may assume the following without loss of generality.

1. �d D 1: since ‚�d˝�.�/ D �d.�/‚�.�/ and deg.�/ D deg.�d ˝ �/, it is
enough to verify the theorem only for the generic G-data such that �d D 1.
Note that the depth of � is given by rd�1 if �d D 1.
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2. r† D rd�1 � 1: Lemma 2.9 implies that deg.�/ ! 1 is equivalent to
volG=Z.J†/! 0 as i!1, which is in turn equivalent to r† !1. Hence, we
may assume r† � 1 without loss of generality.

3. x 2 Cy where Cy is a facet of maximal dimension in B.G/ containing y in
its closure: this is due to that the G-orbit of x in B.G/ intersects with Cy

nontrivially.

The following is a consequence of (3):

3.0 � 2 Gx since � 2 T�
0C � Gy;0C � Gx. Moreover, Gy;r � Gx for any r > 0 and

Gy;rC � Gx;.rC1/C � G
x;rC

ı
. where rı WD drC 1e 2 Z.

4.3 Mackey’s Theorem for Compact Induction

Besides the local constancy of characters, we are going to need the classical
Mackey’s theorem in the context of compactly induced representations.

Lemma 4.3. Let J � G be an open compact mod center subgroup and H � G a
closed subgroup. Let .J; �/ and .H; �/ be smooth representations such that dim � <
1. Then

HomG.c-indG
J �; IndG

H�/ '
M

g2HnG=J

HomJ\Hg.�; �g/:

In fact it is a canonical isomorphism. A natural map will be constructed in the
proof below.

Proof. Since the details are in [Kut77], where a more general result is proved,
we content ourselves with outlining the argument. Let S.�; �/ denote the space of
functions s W G! EndC.�; �/ such that s.hgj/ D �.h/s.g/�.j/ for all h 2 H, g 2 G,
and j 2 J. For each g 2 HnG=J define Sx.�; �/ to be the subspace of s 2 S.�; �/
such that Supps � HxJ. Clearly S.�; �/ D ˚g2HnG=JSg.�; �/. For each v 2 � we
associate fv 2 S.�; �/ such that fv.j/ D �.j/v if j 2 J and fv.j/ D 0 if j … J. We
define a map

HomG.c-indG
J �; IndG

H�/! S.�; �/; � 7! s�

such that s�.g/ sends v 2 � to .�.fv//.g/. We also have a map

Sg.�; �/! HomJ\Hg.�; �g/; s 7! s.g/:

(It is readily checked that s.g/ 2 HomJ\Hg.�; �g/.) It is routine to check that the two
displayed maps are isomorphisms. ut

The following corollary was observed in [Nev13, Lemma 4.1].
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Corollary 4.4. In the setup of Lemma 4.3, further assume that c-indG
J � is admissi-

ble and that H is an open compact subgroup. Then

�
c-indG

J �
� jH '

M

g2JnG=H

c-indH
H\Jg�

g:

Proof. Let .H; �/ be an admissible representation. Then by Frobenius reciprocity
and the preceding lemma,

HomH.c-indG
J �; �/ ' HomG.c-indG

J �; IndG
H�/ '

M

g2HnG=J

HomJ\Hg.�; �g/:

Further, through conjugation by g and Frobenius reciprocity, the summand is
isomorphic to

HomJg�1\H.�
g�1

; �/ ' HomH

�
c-indH

Jg�1\H
�g�1

; �
�
:

The proof is finished by replacing g by g�1 in the sum and applying Yoneda’s
lemma. ut

4.4 Main Estimates

This subsection establishes the main estimates towards of the proof of Theorem 4.2.
Let † be a generic G-datum associated with � . That is, � ' �†. In this entire
subsection we keep conditions (1), (2), and (3) of Sect. 4.2.

Lemma 2.9 implies that deg.�/!1 is equivalent to volG=Z.J†/! 0, which is
in turn equivalent to r† !1. Henceforth we will often drop the subscript † when
the context is clear.

Lemma 4.5. Let†, � , and � be as above. For simplicity, we write r for r†. Suppose

sd.�/ � r

2
:

Then we have

‚�.�/ D Tr
�
�.�/

ˇ
ˇ̌V

Gy;rC

�

�
: (4)

for any y 2 A.T� / D B.T�/. Here V
Gy;rC

� is the space of Gy;rC -invariants in V� .

Remark 4.6. Recall by Sect. 4.2(2), the depth of �† is r D r†. Note that � 2 GŒy.
Hence, � normalizes Gy;rC , and the right-hand side of the formula in (4) is well
defined.
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Proof. Given a subset X � G, let chX denote the characteristic function of X. By
Adler and Korman [AK07, Corollary 12.9] (see also [MS12]) ‚� is constant on

�Gy;rC � Gy;0C
�
�T�

rC

�
.1 Thus we have

‚�.�/ D 1
volG.Gy;rC /

R
G‚�.g/ch�Gy;rC

dg

D 1
volG.Gy;rC /

Tr.�.ch�Gy;rC
// D Tr

�
�.�/�

�
chG

y;rC

volG.Gy;rC /

��

D Tr
�
�.�/jVGy;rC

�

�
:

The last equality follows from the fact that �

�
chG

y;rC

volG.Gy;rC /

�
is the projection of V�

onto V
Gy;rC

� . ut
Our aim is to prove Proposition 4.15 below using Lemma 4.5. Recall y 2 A.T� /

is fixed. If V
Gy;rC

� D 0, we have ‚�.�/ D 0. Hence, from now on, we assume that

V
Gy;rC

� ¤ 0 without loss of generality. In the following series of lemmas, we first

describe the space V
Gy;rC

� . The following result is originally due to Jacquet [Jac71].

Lemma 4.7. Let J be an open compact mod center subgroup of G and � an
irreducible representation of J such that � D c-indG

J � is irreducible (thus
supercuspidal). Then, for any nontrivial unipotent subgroup N of G, we have
VN\J
� D 0.

Proof. Applying Frobenius reciprocity and Lemma 4.3 with H D N,

0 D HomN.�; 1N/ D HomG.c-indG
J �; IndG

N1N/ ' ˚g2NnG=JHomJ\Ng.�; 1Ng/:

ut
Let J WD J† and � WD �†. We deduce from Corollary 4.4 that

ResGx c-indG
J � '

M

g2GxnG=J

IndGx
Gx\ gJ

g�: (5)

Definition and Remark 4.8. (1) Define

X 0† WD
n
g 2 G j G

g�1x;rC
ı
\ N � Gx \ N for some unipotent subgroup N ¤ f1g

o

1Since � is regular, the summation in [AK07, Corollary 12.9] runs over no nilpotent elements other
than 0. So the corollary tells us that ‚�.�

0/ is equal to a constant c0 for all � 0 in the G-conjugacy
orbit of � C T

�
a for a > max.2sd.�/; �.�//, where �.�/ denotes the depth of � , which is r. For

y 2 A.T� /, we have Gy;a contained in the G-orbit of � C Ta. In our case max.2sd.�/; �.�// D r,
thus ‚� is indeed constant on �Gy;rC .
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and

X† WD G � X 0†:

We observe that

(a) Gx \ N D GŒx \ N � J \ N for any unipotent subgroup N, and
(b) X 0†, X† are left and right GŒx-invariant.

(2) Suppose r is sufficiently large so that Gy;rC � Gx. Set

X ı† WD
�

g 2 G

ˇ
ˇ
ˇ
ˇ
�

IndGx
Gx\ gJ

g�
�Gy;rC ¤ 0



:

In this case, from Lemma 4.5 and the above definition it is clear that

‚�.�/ D
X

g2GxnX ı
†=J

Tr

�
�.�/

ˇ
ˇ
ˇ
ˇ
�

IndGx
Gx\ gJ

g�
�Gy;rC

�
: (6)

Note that X ı† is right J-invariant, and also left Gx-invariant.

Lemma 4.9. If g 2 X 0†, then the space IndGx
Gx\ gJ

g� has no nonzero Gy;rC -invariant
vector. That is, X ı† \ X 0† D ;, or equivalently X ı† � X†.

Proof. Recall that Gy;r � Gx (see Sect. 4.2) and hence Gy;rC � Gx. Another
application of Mackey’s formula yields

ResGy;rC
IndGx

Gx\ gJ
g� '

M

h2Gy;rCnGx=Gx\ gJ

Ind
Gy;rC

Gy;rC\ hgJ
hg�:

(This is derived from the formula in representation theory of finite groups since
ŒGx W Gx\ gJg�1 and dim � are finite. We do not need Corollary 4.4.) By Frobenius
reciprocity and conjugation by hg, we obtain

HomGy;rC

�
1; Ind

Gy;rC

Gy;rC\ hgJ
hg�

�
' HomGy;rC\ hgJ

�
1; hg�

� ' HomGg�1h�1y;rC\J.1; �/:

Since Gy;rC � G
x;rC

ı
and h 2 Gx, we have Gh�1y;rC � G

h�1x;rC
ı
D G

x;rC
ı

and
thus Gg�1h�1y;rC � G

g�1x;rC
ı

. It suffices to verify that the last Hom space is zero. If

g 2 X 0†, then G
g�1x;rC

ı
\ N � J \ N for some N and thus Gg�1h�1y;rC \ J � J \ N.

This and Lemma 4.7 imply that the Hom space indeed vanishes. ut
For simplicity, we will write X ı, X , and X 0 forX ı†, X†, and X 0† when the context

is clear. For the purpose of our character computation, it is natural to estimate the
cardinality of GxnX ı†=J in view of (6). Instead we bound the size of GxnX†=J,
which is larger by the preceding lemma but easier to control. To this end we begin
by setting up some notation for the Cartan and Iwahori decompositions.
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Notation 4.10. Let T0 � G0 and T � G be maximal and maximally k-split tori
such that x 2 A.T0; k/ � A.T/ WD A.T;G; k/ � B.G/. Let C be a facet of maximal
dimension in A.T/ with x 2 C. Let � be the set of simple T-roots associated with
C, and N� the maximal unipotent subgroup with simple roots �. Let GC � Gx

be the Iwahori subgroup fixing C so that G D GCNG.T/GC and Gz be a special
maximal parahoric subgroup with z 2 C such that GC � Gz. Note that elements in
W WD NG.T/=CG.T/ can be lifted to elements in Gz. Let T� WD ft 2 T j tUt�1 �
U for any open subgroup U in N�g so that we have a Cartan decomposition G D
GzT�Gz.

Lemma 4.11. Let T�.rı/ WD ft 2 T� j 1 � j˛.t�1/j � qrıC2; ˛ 2 �g. Then

X ı � X � GzT
�.rı/Gz (7)

Proof. The first inclusion is from Lemma 4.9. For the second inclusion, for v 2
B.G/ and a 2 R�0, let

X 0.v; a/ D ˚g 2 G j Gg�1v;aC\N � Gv\N for some unipotent subgroup N ¤ f1g�

X .v; a/ D G � X 0.v; a/:

It is enough to show that

.G � GzT
�.rı/Gz/ � X 0.z; rı C 1/ � X 0.x; rı/ D X 0: (8)

For the second inclusion in (8), let g 2 X 0.z; rı C 1/. Since x; z 2 C and
Gg�1z;.rıC1/C \ N � Gz \ N, we have G

g�1x;rC
ı
� Gg�1z;.rıC1/C � Gg�1z;.rıC1/C \

N � Gz \ N � Gx \ N. Hence, g 2 X 0.x; rı/.
For the first inclusion in (8), let g D g1t0g2 2 G � GzT�.rı/Gz with gi 2 Gz and

t0 2 T � T�.rı/. Then, there is ˛ 2 � such that j˛.t0�1/j > qrıC2. Let N˛ be the
maximal unipotent subgroup associated with ˛. Then,

Gt0�1z;.rıC1/C \ N˛ � Gz \ N˛:

Since we have Gg�1z;.rıC1/C D Gg�1
2 t0�1z;.rıC1/C D g�1

2 Gt0�1z;.rıC1/C and Gg2z D
Gz, we have

Gg�1z;.rıC1/C \ g�1
2 N˛ � Gz \ g�1

2 N˛; thus Gt0�1z;.rıC1/C \ N˛ � Gz \ N˛:

We conclude that g 2 X 0.z; rı C 1/. ut
To give another description of X ı, we define compact mod center sets Sx;y � Sx;y

as follows:

Sx;y WD GŒySxGy;0C ; Sx;y WD GxSx;yGx:
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In particular the quotient .ZGGx/nSx;y is finite. Recall that Sx is the set constructed
in the proof of Lemma 3.1.

Lemma 4.12. Suppose (HB) and (HGT) are valid. Then, for any double coset
GxgJ � X ı, we have

GxgGx \ Sx;y Gd�1Gx;0C ¤ ;:

Proof. Since Gy;r � Gx by Sect. 4.2, Mackey’s formula gives us, as in the proof of
Lemma 4.9, that

ResGy;r IndGx
Gx\ gJ

g� '
M

`2Gy;rnGx=Gx\ gJ

Ind
Gy;r

Gy;r\ `gJ
`g�;

Since g 2 X ı there is ` 2 Gx such that
�

Ind
Gy;r

Gy;r\ `gJ
`g�
�Gy;rC ¤ 0. By

replacing g with `�1g if necessary, we may assume
�

Ind
Gy;r

Gy;r\ gJ
g�
�Gy;rC ¤ 0. Let

X 2 zgd�1 be a good element representing �d�1. Let .Gy;r; �/ be a minimal K-

type appearing in .Ind
Gy;r

Gy;r\ gJ
g�/

Gy;rC . Then, by Lemma 3.1, there are h 2 GŒySx

and � 2 gd�1
.�r/C

such that � is represented by h.X C �/. On the other hand,

Ggx;r � gJ and g�jGgx;r is a self-direct sum of g�d�1. Therefore � is a .Gy;r \
Ggx;r/-subrepresentation of such a self-direct sum. This means that � D g�d�1
on Gy;r \ Ggx;r. Equivalently,

�
h.X C �/C gy;.�r/C

� \ g.X C gx;.�r/C/ ¤ ; in
terms of dual cosets. By [KM03, Corollary 2.3.5], this is in turn equivalent to
hGh�1x;0C.X C � C gd�1

h�1y;.�r/C
/ \ gGx;0C.X C gd�1

x;.�r/C
/ ¤ ;. This implies h�1g 2

Gh�1y;0C CG.X/Gx;0C by [KM03, Lemma 2.3.6]. Hence, g 2 Gy;0C hCG.X/Gx;0C .
It follows that h�1g 2 Gy;0C Gd�1Gx;0C . Hence, g 2 GŒySxGy;0CGd�1Gx;0C �
Sx;yGd�1Gx;0C . ut

Observe that GzT�.rı/Gz D GCWT�.rı/WGC, and GC � Gx. Combining these
with Lemmas 4.11 and 4.12,

X ı � .Sx;y Gd�1Gx/\ .GxWT�.rı/WGx/ (9)

when (HB) and (HGT) are valid. We note that Sx;y depends only on .G;G0 D
Gd�1; x/ and y.

Proposition 4.13. The double coset space GxnX ı=J is finite. More precisely,
setting Ls WD Gd�1

Œx Gx;s, we have

jGxnX ı=Jj � Cx;G0 	 ].W/2.rı C 3/rGŒLs W J 	 volG=ZG.Ls/
� 1
2 ; (10)

for some constant Cx;G0 > 0 (which may be chosen explicitly; see Lemma 4.14
below).
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Proof. Note that each T�.rı/=.CG.T/0ZG/ is finite where CG.T/0 is the maximal
parahoric subgroup of CG.T/ and ] .T�.rı/=.CG.T/0ZG// � .rı C 3/rG . Hence,
]
�
GznX=.GŒz/

� � .rıC3/rG by (7). Since GCNG.T/GC D GxNG.T/Gx D GzT�Gz

and NG.T/=.CG.T/0Z/ D W.T�=.CG.T/0Z//W, we have

].GxnX ı=GŒx/ � .]W/2.rı C 3/rG :

Since jGxnX ı=Jj D P
x2GxnX ı=GŒx

ˇ
ˇGxnGxgGŒx=J

ˇ
ˇ, the proof of (10) is completed

by the following lemma:

Lemma 4.14. If GxgJ � X ı, then

ˇ
ˇGxnGxgGŒx=J

ˇ
ˇ � Cx;G0 	 ŒLs W J volG=ZG.Ls/

� 12

where Cx;G0 WD volG=ZG.GŒx/
1=2 	 ] �ZGGxnSx;y

� 	 q.2 dimk.G/Cdimk.N// ]
�
GŒx=.ZGGx/

�
.

Proof. By (9), there is a w 2 Gd�1 such that GxgGx � Sx;ywGx. Then

ˇ
ˇGxnGxgGŒx=J

ˇ
ˇ � ˇˇGxnSx;ywGŒx=J

ˇ
ˇ � ŒLs W J 	 ]

�
.ZGGxnSx;y

� 	 ]�GxwGŒx=Ls
�
:

Let T be as before. Let Td�1 be a maximal and maximally k-split torus of Gd�1 such
that the k-split components T0k and Td�1

k of T0 and Td�1, respectively, satisfy that
T0k � Td�1

k � T and x 2 A.T0/ � A.Td�1/ � A.T/. By the Iwahori decomposition
of Gd�1 one may write w D u1w0u2 with u1; u2 2 Gd�1

x and w0 2 NGd�1 .Td�1/.
Replacing w with w0 if necessary, one may assume that w 2 NGd�1 .Td�1/ since this
doesn’t change Sx;ywGx.

It is enough to show that there is a unipotent subgroup U such that

ˇ̌
GxnGxwGŒx=Ls

ˇ̌ � q2 dim.G/ 	 ] �GŒx=.ZGGx/
� 	 Œ.U \ GŒx/ W .U \ Ls/:

Indeed if the inequality is true, since GŒx \U D Gx \U, Lemma 3.10 applied to U
implies that

Œ.U \GŒx/ W .U \ Ls/ � qdimk N ŒGŒx W Ls
1=2

� volG=ZG.GŒx/
1=2qdimk NvolG=ZG.Ls/

�1=2;

ending the proof. (As x is fixed, C0 D volG=ZG.GŒx/
1=2 depends only on the Haar

measure of G.)
It remains to find a desired U. Let M D CG.Td�1

k / (resp. Md�1 WD CGd�1 .Td�1
k /)

be the minimal Levi subgroup of G (resp. Gd�1) containing Td�1. Write w WD w0t
with w0 in a maximal parahoric subgroup of Gd�1 containing Gd�1

x and t 2 Td�1
0 .

Let L, U, and U associated with t as in [Del76] (so that our L, U, and U are his
Mg, UCg , U�g for g D t). That is, L D f` 2 G j f tn`gn2Z is boundedg, U D fu 2
G j tnu ! 1 as n ! 1g and U D fu 2 G j tnu ! 1 as n ! 1g. Then, U and
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U are opposite unipotent subgroups with respect to the Levi subgroup L. Note that
M � L. Now, since Gx;0C and Gd�1

x;0C Gx;s are decomposible with respect to L;U;U,
we have

ˇ
ˇGxnGxwGŒx=Ls

ˇ
ˇ � qdimk.G/]

�
GŒx=.ZGGx/

� ˇˇGxnGxwGx;0C=.Gx;0C \ Ls/
ˇ
ˇ

� q2 dimk.G/ ]
�
GŒx=.ZGGx/

�
ŒGx;0C \ U W .Gd�1

x;0C Gx;s/\ U

� q2 dimk.G/ ]
�
GŒx=.ZGGx/

�
ŒGx \U W Ls \U:

ut

4.5 Proof of the Main Theorems

This subsection is devoted to the proof of Theorem 4.2 and its quantitative version
in Theorem 4.18. Combining the estimates of the previous subsection, we have the
following:

Proposition 4.15. Suppose (HB), (HGT), and (Hk) are valid. Let � D �†. Let
� 2 G0C \ Greg with sd.�/ � r

2
. Then, we have

ˇ
ˇ̌
ˇ
‚�.�/

deg.�/

ˇ
ˇ̌
ˇ � C1 	 .]W/2 	 qdim.G/CrG.A�;†C1/ 	D.�/�1 	 .rC 4/rGvolG=Z.Ls/

1
2 ; (11)

where C1 D maxfCx;G0g where the maximum runs over the finitely many G-orbits of
.x;G0/ and Cx;G0 is the constant as in Lemma 4.14.

Proof. Without loss of generality, we may reduce to cases as in Sect. 4.2. In the
following,  W Gx ! Gx is the map defined by  .g/ D g�g�1 and for g 2 Gx,
Hg WD Gx \ gJ. Our starting point is formula (6) computing ‚�.�/. The summand
for each g has a chance to contribute to the trace of � only if g0

� 2 Gx \ gJ for
some g0 2 Gx. In the summand for g, decompose indGx

Gx\gJ
g� as the direct sum of the

spaces of functions supported on exactly one left Gx \ gJ-coset in Gx. The element
� permutes the spaces by translating the functions by � on the right. So it is easy to

see that each space may contribute to the trace of � on V
Gy;rC

� only if the supporting
Gx \ gJ-coset is fixed by � . Hence we have

ˇ
ˇ̌
ˇ
‚�.�/

deg.�/

ˇ
ˇ̌
ˇ D

volG=ZG.J/

dim �

ˇ̌
ˇTr

�
�.�/jVGy;rC

�

�ˇ̌
ˇ

� volG=ZG.J/

dim �

X

g2GxnXı=J

s:t: g0
�2Hg

#Fix.� j.Gx \ gJ/nGx/ 	 dim �
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D volG=ZG.J/

dim �

X

g2GxnXı=J

s:t: g0
�2Hg

Œ �1.Hg/ W Hg dim �

D volG=ZG.J/
X

g2GxnXı=J

s:t: g0
�2Hg

Œ �1.Hg/ W Hg

� C1 	 qdim.G/CrG.A�;†C1/ 	 D.�/�1 	 .]W/2 .rı C 3/rG ŒLs W J
	 volG=ZG.Ls/

� 12 volG=ZG.J/

D C1 	 qdim.G/CrG.A�;†C1/ 	D.�/�1 	 .]W/2 .rC 4/rGvolG=ZG.Ls/
1=2:

The
P

above runs over g 2 GxnX ı=J such that g0

� 2 Hg for some g0 2 Gx. The
second last inequality follows from Corollary 3.9 and Proposition 4.13. The last
equality follows from ŒLs W JvolG=ZG.J/ D volG=ZG.Ls/. ut
Proof of Theorem 4.2. Let �i D �†i , i D 1; 2; 	 	 	 be a sequence of supercuspidal
representations in IrrYu.G/ with deg.�i/ ! 1. It is enough to consider such
a sequence since there are countably many isomorphism classes of irreducible
supercuspidal representations up to character twists. Recall from Sect. 4.2, we may
assume x†i 2 †i is in a fixed G-orbit. Since deg.�i/ ! 1 as i ! 1, we have
r˙i !1 as i!1 and r˙i > 2sd.�/ for almost all �i. Hence, (11) holds for � with
i large enough. Note that in (11), when hG > 1, only .r†i C 4/rG 	 qrGsvolG=ZG.Ls†i

/
1
2

varies as �i varies with i large enough. It suffices to show that this quantity
approaches zero as r†i ! 1. Since the term .r C 4/rG has a polynomial growth
in r while qrGsvolG=Z.Ls/ decays exponentially as s D r=2 tends to infinity by
Lemma 4.17. The case hG D 1 is similar, hence we are done. ut
Remark 4.16. It is also interesting to discuss the role of the subgroup Gy;rC in
our proof. This subgroup appears in Lemma 4.5 from the local constancy of
the character ‚� . Of course for the purpose of that lemma any open subgroup

K � Gy;rC would work. However, from the fact that Gy;r-representations in V
Gy;rC

�

are minimal K-types, we acquire another description ofX ı as in Lemma 4.12, which
is again used to get an estimate in Lemma 4.14.

In the remainder of this section we upgrade Theorem 4.2 to a uniform quantitative
statement. From here on we may and will normalize the Haar measure on G=Z such
that vol.GŒx=Z/ D 1. This is harmless because there are finitely many conjugacy

classes of . EG; x/ as explained in Sect. 4.2.

Lemma 4.17. (i) If hG > 1 and G has irreducible root datum, there exists a
constant � > 0 such that for all � D �† 2 IrrYu.G/,

qrGsvol.Ls/
1=2 � qdim G 	 deg.�/�� :



286 J.-L. Kim et al.

(ii) If hG D 1, there exists a constant � > 0 such that for all � D �† 2 IrrYu.G/,

vol.Ls/
1=2 � qdim G 	 deg.�/�� :

(iii) In general, suppose G is reductive. There exists a constant � > 0 such that for
all � D �˙ 2 IrrYu.G/,

qrGsvol.Ls/
1=2 � qdim G 	 deg.�/�� :

Proof. (i) Observe that

vol.J=Z/�1 D ŒGŒx W J � ŒZGx W ZGx;sDŒGx W .Z \ Gx/Gx;s� q.dim G�dim Z/s;

vol.Ls=Z/�1 D ŒGŒx W Ls � ŒGŒx W G0ŒxGx;s � ŒGx;0C W G0x;0C Gx;s

� q.dim G�dim G0/.s�1/;

with G0 D Gd�1. Recall that deg.�/ � qdim Gvol.J=Z/�1. Take

� WD min
G0¨G

dim G � dim G0 � 2rG

2.dim G � dim Z/
;

where G0 runs over the set of proper tamely ramified twisted Levi subgroups
of G. If we know � > 0 then the lemma follows from the following chain of
inequalities:

deg.�/� � q� dim Gq.dim G�dim G0�2rG/s=2 � qdim G=2q.dim G�dim G0�2rG/s=2

� qdim G 	 q�rGs 	 vol.Ls=Z/�1=2:

It remains to show that � > 0. Since dim G D dimk G, it is enough to show
that dim G�dim M�2rG > 0 when M is a proper Levi subgroup which arises
in a supercuspidal datum. This can be seen as follows. If G of type other than
A, the inequality holds for any proper Levi subgroup M. If G is of type An,
then � > 0 unless M is of type An�1. However such a Levi subgroup does not
arise as part of supercuspidal datum when n � 2, and the assumption hG > 1

excludes the case n D 1.
(ii) In this case, we can take � D minG0¨G

dim G�dim G0

2.dim G�dim Z/ . It is clear that � > 0 and
the rest of the proof works as in (i).

(iii) This follows from (i) and (ii). ut
Since J � Ls, the above proof implies the lower bound vol.J=Z/�1 �

q.dim G�dim G0/.s�1/. Combined with Lemma 2.9, this yields deg.�/ � q.dim G�dim G0/.s�1/.
The following theorem is an improvement of Theorem 4.2.

Theorem 4.18. Assume hypotheses (HB), (HGT), and (Hk). There exist constants
A; �;C > 0 depending only on G such that the following holds. For every � 2
G0C \Greg and � 2 IrrYu.G/ such that sd.�/ � r=2,
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D.�/Aj‚�.�/j � C 	 deg.�/1�� : (12)

Proof. Let � WD �† 2 IrrYu.G/ and recall that r D r† is the depth of � . Since
� 2 G0 we have �.1 � ˛.�// � 0 for all ˛ 2 ˆ.T� /. In view of Definition 3.3, we
have

D.�/ D
Y

˛2ˆ.T� /
j1 � ˛.�/j � q�sd.�/ � 1:

Proposition 4.15 yields a bound of the form

D.�/

ˇ
ˇ̌
ˇ
‚�.�/

deg.�/

ˇ
ˇ̌
ˇ � C 	 qrGA�;†vol.Ls/

1=2;

where C 2 R>0 is a constant depending only on G. Consider the case that hG > 1.
Recall that A�;† D hGsd.�/C s. Let us take A WD rGhG C 1. Then

D.�/A
ˇ
ˇ
ˇ
ˇ
‚�.�/

deg.�/

ˇ
ˇ
ˇ
ˇ � q�rGhGsd.�/D.�/

ˇ
ˇ
ˇ
ˇ
‚�.�/

deg.�/

ˇ
ˇ
ˇ
ˇ � C 	 qrG�svol.Ls/

1=2:

Then, by Lemma 4.17(i), we have

D.�/Aj‚�.�/j � C0 	 deg.�/1��

with C0 WD Cqdim G and the same � as in that lemma, completing the proof when
hG > 1.

In the remaining case hG D 1, we have A�;† D sd.�/. Take A WD rG C 1. Then

D.�/A
ˇ
ˇ
ˇ̌‚�.�/

deg.�/

ˇ
ˇ
ˇ̌ � q�rGsd.�/D.�/

ˇ
ˇ
ˇ̌‚�.�/

deg.�/

ˇ
ˇ
ˇ̌ � C 	 vol.Ls/

1=2:

The proof is finished by applying Lemma 4.17(ii) and taking C0 D Cqdim G again.
ut

4.6 On the Assumption sd.�/ � r=2

Theorem 4.18 above remains valid without the assumption sd.�/ � r=2. Indeed the
uniform estimate (12) holds in the range r < 2sd.�/ by a different argument that we
now explain.2

2A priori we are proving the bound (12) in two disjoint regions with two different values of .A; �/;
call them .A1; �1/ and .A2; �2/. When we say that Theorem 4.18 is valid without the assumption
sd.�/ � r=2, it means that there’s a single choice of .A; �/ that works in both regions. This is
immediate because � 2 G0C , in which case it follows that D.�/ 	 1. So it, enough to take
A D max.A1;A2/ and � D min.�1; �2/, possibly at the expense of increasing the constant C
in (12).
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It suffices to produce a polynomial upper-bound on the trace character j‚�.�/j
in the range r < 2sd.�/. By [AK07, Corollary 12.9] and [MS12] (as explained in
the proof of Lemma 4.5) the character ‚� is constant on �Gy;t if t D 2sd.�/ C 1.

The analogue of (4) holds, hence j‚�.�/j � dim V
Gy;t
� . It is sufficient to show under

the same hypotheses (HB), (HGT), and (Hk) as above that for all � 2 IrrYu.G/,
y 2 B.G/, and t � 1,

dim V
Gy;t
� � qBt (13)

for some constant B > 0 depending only on G. Indeed D.�/ � q�sd.�/ and 2s D
r < t D 2sd.�/C 1 so (12) follows with A D 2B and � D 1.

Similarly as in Definition 4.8 we introduce the subset X ı � G. Mackey’s
decomposition implies that dim V

Gy;t
� � dim �	ŒGx W Gy;t	jGxnX ı=Jj. The dimension

dim � is uniformly bounded by Lemma 2.9, the term ŒGx W Gy;t is polynomially
bounded (see Lemma 4.17), as well as the third term by Proposition 4.13. This
establishes (13).

5 Miscellanies

5.1 Trace Characters Versus Orbital Integrals
of Matrix Coefficients

The bulk of the proof above was to establish a power saving as deg.�/!1. In fact
we can develop two distinct approaches, the first of which is taken in this paper.

1. We have handled the trace characters ‚�.g/ using first their local con-
stancy [SS97]. The proof then was by a uniform estimate on the irreducible
factors of the restriction of c-indG

J � to a suitable subgroup.
2. The other approach developed in [KST] is via the orbital integral O� .��/ of

a matrix coefficient �� which can be written explicitly from Yu’s construction.
The proof is via a careful analysis of the conjugation by � on J and uses notably
a recent general decomposition theorem of Adler–Spice [AS08].

For � regular and elliptic semisimple the orbital integral O� .��/ and the trace
character ‚�.�/ coincide as follows from the local trace formula of Arthur; in
this case, our approaches (1) and (2) produce similar estimates. The approach (1),
where � is regular, is well suited to establish our proposed conjecture, while the
approach (2), where � is elliptic (but not regular), is well suited for application of
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the trace formula. Indeed the goal of [KST] is to establish properties of families
of automorphic representations, similarly to [ST11], as we prescribe varying
supercuspidal representations at a given finite set of primes.

5.2 Analogues for Real Groups

We would like to see the implication of Harish-Chandra’s work on the analogue
of Conjecture 4.1 for real groups. Only in this subsection, let G be a connected
reductive group over R. Write AG for the maximal split torus in the center of G and
put AG;1 WD AG.R/

0. Then G.R/ has discrete series if and only if G contains an
elliptic maximal torus T over R, namely a maximal torus T such that T.R/=AG;1
is compact. Fix a choice of T and a maximal compact subgroup K � G.R/ such
that T � KAG;1. Let WR denote the relative Weyl group for T.R/ in G.R/. Write
t WD Lie T.R/ and t� for its linear dual. Set q.G/ WD 1

2
dimR.G.R/=K/ 2 Z. Let

� be an (irreducible) discrete series of G.R/ whose central character is unitary, and
denote by �� 2 it� its infinitesimal character. Let � be a regular element of T.R/,
which is uniquely written as � D z exp H for z 2 K \ Z.G.R// and H 2 Lie T.R/.

Proposition 5.1. The real group analogue of Conjecture 4.1 is verified for elliptic
regular elements � and discrete series with unitary central characters.

Proof. Harish-Chandra’s character formula for discrete series on elliptic maximal
tori implies that (as usual D.�/ is the Weyl discriminant)

D.�/1=2‚�.�/ D .�1/q.G/
X

w2WR

sgn.w/e�� .H/:

Hence D.�/1=2j‚�.�/j � jWRj. ut
Note that we have a much stronger version for part (ii) of the conjecture, allowing

� D 1. To verify part (i) when � is contained in a non-elliptic maximal torus, one
can argue similarly by using the character formula due to Martens [Mar75] as far
as holomorphic discrete series are concerned. A general approach would be to use a
similar character formula as above, which exists but comes with a subtle coefficient
in each summand which depends on w and � . The coefficients can be analyzed
in two steps: firstly one studies the analogous coefficients for stable discrete series
characters (as studied by Herb; also see [Art89, p. 273]), and secondly relates the
character of a single discrete series of G.R/ to the stable discrete series characters
on endoscopic groups of G.R/ following the idea of Langlands and Shelstad. For
instance, this has been done in [Her83] (also see [Art89, p. 273] for the first step).
On the other hand, Herb has another approach avoiding endoscopy in [Her98]. We
do not pursue either approach further in this paper as it would take us too far afield.
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5.3 Analogues for Finite Groups

Let G be a finite group of Lie type over a finite field with q � 5 elements.
Gluck [Glu95] has shown that if � is a nontrivial irreducible representation of G
and � is a noncentral element, then the trace character satisfies

j��.�/j � dim.�/p
q � 1:

The bound has interesting applications, see, e.g., [Glu97, LS05, LS01, LOST10].

5.4 Open Questions

In this subsection we raise the question of the possible upper-bounds on ‚�.�/ in
terms of both � and � . One may ask about the sharpest possible bound. Our main
result was a bound of the form (Theorem 4.18)

D.�/Aj‚�.�/j � Cdeg.�/� ; (14)

where C is independent of � 2 G0C\Greg and � 2 IrrYu.G/. Slightly more generally
we fix a bounded subset B � G and assume in the following that � 2 B \ Greg.

The most optimistic bound would be that

D.�/
1
2 j‚�.�/j

‹� C; (15)

where � 2 B and C depends only on B. In the appendix we shall verify that the
estimate (15) is valid for the group G D SL2.k/. However the analogue of this
bound already doesn’t hold in higher rank when varying the residue characteristic
and � is a Steinberg representation, as we explain in [KST]. It would be interesting
to investigate all the counterexamples to (15) in general and find in which cases it
holds.

There is a wide range of possibilities between (14) and (15). The exact asymptotic
of j‚�.�/j lies somewhere in between, and based on Harish-Chandra regularity
theorem and our work in [KST] it seems plausible that the exact bound should be
A D 1

2
and � slightly below 1 depending on G.

Appendix: The Sally–Shalika Character Formula

We study the Sally–Shalika formula [SS68] for characters of admissible representa-
tions of G D SL2.k/, where k is a p-adic field. Our goal is to establish a bound
of the form (15) for the character ‚�.�/ that is completely uniform in � . The
explicit calculation of character values is crucial for this. It would be interesting
to investigate where such a result can hold in general.
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Let Z D f˙1g be the center of G. We follow mostly the notation and convention
from [ADSS11]. We assume throughout that p � 2e C 3 where e is the absolute
ramification degree of k. We let 	 2 f"; "$;$g, with $ is a uniformizer of Ok and
" is any fixed element of O�k n.O�k /2. Let k	 WD k.

p
	/ and k1	 � k�	 be the subgroup

of elements of norm one. We extend the valuation from k� to k�	 . Note that there is
a unique non-trivial quadratic character '" W k1" ! f˙1g.

Inside G we let T	 ' k1	 be the associated maximal elliptic tori given by the
matrices

�
a b

b	 a

�
where a C b	 2 k1	 . As 	 ranges in f"; "$;$g this describes

the stable conjugacy classes of elliptic tori (abstractly k	 is the splitting field of
T	 ). There is a finer classification of G-conjugacy classes: there are two unramified
conjugacy classes of unramified elliptic tori, denoted T" D T";1 and T";$ while for
ramified elliptic tori, the answer depends on whether �1 is a square in the residue
field. If �1 is not a square, then besides T$ D T$;1 and T"$ D T"$;1 there are two
additional G-conjugacy classes denoted T$;" and T"$;".

The torus filtration is as described in [ADSS11, §3.2], namely an element
1 C x 2 k1	 ' T	 with v.x/ > 0 has depth equal to v.x/. In particular we have
D.�/ D q�2dC.�/ for all regular semisimple � 2 G where dC.�/ WD max

z2Z
d.z�/ is

the maximal depth.
Every supercuspidal representation of G is of the form � D �˙.T; '/ where

.T; ';˙/ is a supercuspidal parameter. Here T is an elliptic tori up to G-conjugation
and ' is a quasi-character of T. The depth of � is equal to the depth of ' which is
the smallest r � 0 such that ' is trivial on TrC .

Let dg be the Haar measure on G=Z.G/ is as in [ADSS11, §6], thus

vol.SL.2;Ok// D q2�1
q
1
2

. The formal degree is by construction deg.�/ D dim.�/
vol.J/ .

By a theorem of Harish-Chandra deg.�/ is proportional to the constant term c0.�/
in the expansion of ‚� near the identity. Here we find deg.�/ D c 	 c0.�/ where

c WD � 2q
1
2

qC1 .
The Sally–Shalika formula is an exact formula for the character ‚�.�/ for

any regular noncentral semisimple element � 2 G. Here we shall give a direct
consequence tailored to our purpose of studying of the asymptotic behavior of
characters.

Proposition A.1. If � D �.T"; '/ has depth r, then the following holds:

D.�/
1
2 j‚�.�/j D

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

ˇ̌
'.�/C '.��1/ˇ̌; � 2 T"nZT"

rC

1˙ deg.�/D.�/
1
2 ; � 2 T";�

rC ; � 2 f1;$g
1 � deg.�/D.�/

1
2 ; � 2 ArC

deg.�/D.�/
1
2 ; o/w if � 2 GrC :

The character vanishes in the other cases, namely if � 62 GrC [ T". The formal
degree is deg.�/ D qr.
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Proof. This is [ADSS11, §14]. Note that in their notation the quasi-character ' is
denoted  there; the additive character�k is denotedƒ there.

Since the Gauss sum H.ƒ0; k"/ is unramified, we have that it is equal to .�1/rC1
according to [ADSS11, Lemma 4.2].

The assertion on the formal degree is [ADSS11, Remark 10.16] since
c0.�/ D �qr. ut
Proposition A.2. If � D �.$; '/ has depth r, then the following holds:

D.�/
1
2 j‚�.�/j �

8
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
:̂

2; � 2 T	nZT	r
1:5; � 2 T$;�r nT$;�rC ; � 2 f1;$g
1; � 2 T"$;�r nT"$;�

rC ; � 2 f1;$g
1C deg.�/D.�/

1
2 ; � 2 T$;�

rC [ ArC

deg.�/D.�/
1
2 ; o/w if � 2 GrC :

The character vanishes in the other cases, namely if � 62 GrC [ T	 . The formal
degree is deg.�/ D 1

2
.qC 1/qr� 12 .

Proof. Again this is [ADSS11, §14] where it is shown that c0.�/ D � 12 .qC1/qr� 12 .
The ramified Gauss sum H.ƒ0; k$/ is a fourth root of unity according

to [ADSS11, Lemma 4.2]. In the second case we have the inequality � 1 C jAj
where the exponential sum is

A WD 1

2
p

q

X

x2.k1$/rWrC

x¤�˙1

sgn$.tr .� � x//'.x/:

Here k1	 � k�	 is the subgroup of elements of norm 1, and .k1$/rWrC

denotes [ADSS11, §5.1] the quotient group .k1$/r=.k
1
$/rC . This is an additive

group that can be described by writing explicitly x D 1C ˛2rX where X 2 O=.$/.
We have tr .x/ D 2C tr .˛2r/X, and similarly we shall write � D 1C ˛2rY.

Since sgn$ is the quadratic character attached to $ , we are left with �.X � Y/
where � is the Legendre symbol on O=.$/. The character ' has conductor r, thus
X 7! '.1C ˛2rX/ is a non-trivial additive character. Finally the exponential sum A
is a unit times a Gauss sum, thus jAj D 1

2
.

In the third case the character is equal to an exponential sum which can be
handled similarly. ut

We finally consider the remaining four “exceptional” supercuspidal representa-
tions. They all have depth zero.

Proposition A.3. Suppose that � is an exceptional supercuspidal representation
induced from T". Then the following holds:

2D.�/
1
2 j‚�.�/j � 1C D.�/

1
2 ; � 2 T"nZT"

0C [ A0C [ T0C ;
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where T is any of the elliptic tori, and the character vanishes otherwise. The formal
degree is deg.�/ D 1

2
. If � is induced from T";$ , the same formula holds with T"

replaced by T";$ .

Remark A.4. The behavior D.�/ ! 1 is qualitatively different than for the other
“ordinary” supercuspidals.

Proof. This follows from [ADSS11, §9, §15]. The passage from T" to T";$ is
explained in [ADSS11, Remark 9.8]. ut
Corollary A.5. For all supercuspidal representations � of SL.2; k/ and all regular
semisimple � , the following holds:

D.�/
1
2 j‚�.�/j � 2C D.�/

1
2 :

Proof. This follows by combining the Propositions A.1, A.2 and A.3. In the
last three cases of Proposition A.1 we need to observe that � 2 GrC which is
equivalent to d.�/ > r. This implies dC.�/ > r and thus D.�/ < q�2r. Therefore
deg.�/D.�/

1
2 < 1.

Similarly in the last two cases of Proposition A.2 we have that � 2 GrC and
in view of the normalization of the valuation this implies that D.�/ < q�2r�1.
Therefore deg.�/D.�/

1
2 � 1

2
which concludes the claim. ut
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Endoscopy and Cohomology
of a Quasi-Split U.4/

Simon Marshall

Abstract We prove asymptotic upper bounds for the L2 Betti numbers of the
locally symmetric spaces associated with a quasi-split U.4/. These manifolds are
8-dimensional, and we prove bounds in degrees 2 and 3, with the behavior in
the other degrees being well understood. In degree 3, we conjecture that these
bounds are sharp. Our main tool is the endoscopic classification of automorphic
representations of U.N/ by Mok.

1 Introduction

Let E be an imaginary quadratic field. Let N � 1, let U.N/ be the quasi-split
unitary group of degree N with respect to E=Q, and let G be an inner form of
U.N/. Let � � G.Q/ be an arithmetic congruence lattice, and for n � 1 let �.n/
be the corresponding principal congruence subgroup of � . Let K1 be a maximal
compact subgroup of G.R/. Let Y.n/ D �.n/nG.R/=K1, which is a complex
orbifold (or manifold if n is large enough). We let Hi

.2/.Y.n// be the L2 cohomology

groups of Y.n/. By Borel and Casselman [BC], Hi
.2/.Y.n// is equal to the space

of square-integrable harmonic i-forms on Y.n/, and we shall identify it with this
space from now on. Note that Hi

.2/.Y.n// D Hi.Y.n// when Y.n/ is compact. We set

hi
.2/.Y.n// D dim Hi

.2/.Y.n//. This article is interested in how hi
.2/.Y.n// grow with

n, specifically in the case when G D U.4/.
We let V.n/ D j� W �.n/j, which is asymptotically equal to the volume of

Y.n/. The standard bound that we wish to improve over is hi
.2/.Y.n//� V.n/. This

follows from the equality of hi
.2/ with an ordinary Betti number if � is cocompact,

and otherwise from the noncompact version of Matsushima’s formula in [BG,
Proposition 5.6] which expresses hi

.2/.Y.n// in terms of automorphic representa-
tions, together with Savin’s bound [Sa] for the multiplicity of a representation in the
cuspidal spectrum and Langlands’ theory of Eisenstein series.
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The basic principle that we shall use to bound hi
.2/.Y.n// is the fact that, if i is

not half the dimension of Y.n/, the archimedean automorphic forms that contribute
to hi

.2/.Y.n// must be nontempered. In the case where � is cocompact, one may
combine this principle with the trace formula and asymptotics of matrix coefficients
to prove a bound of the form hi

.2/.Y.n// � V.n/1�ı for some ı > 0. In [SX],
Sarnak and Xue suggest the optimal bound that one should be able to prove in this
way using only the archimedean trace formula. In the case when N D 3 and �
is cocompact (which implies that Y.n/ have real dimension 4), they predict that
h1.2/.Y.n//�� V.n/1=2C� , while they prove that h1.2/.Y.n//�� V.n/7=12C�.

There is a deeper way in which one may exploit nontemperedness to prove
bounds for cohomology. In [Mo] Mok, following Arthur [Art], classifies the
automorphic spectrum of U.N/ in terms of conjugate self-dual cusp forms on
GLM=E for M � N. One of the implicit features of this classification is that if a
representation � on U.N/ is sufficiently nontempered at one place, then it must
be built up from cusp forms on groups GLM=E with M strictly less than N—in
other words, � comes from a smaller group. We have been interested in deriving
quantitative results from this qualitative feature of the classification. In [Ma], we
used this (more precisely, the complete solution of endoscopy for U.3/ by Rogawski
in [Ro]) to prove that h1.2/.Y.n// �� V.n/3=8C� when N D 3 and G is arbitrary,
strengthening the bound of Sarnak and Xue. Moreover, we proved that this bound is
sharp. In this article, we partially extend this result to the case G D U.4/. Note that
in this case, the real dimension of Y.n/ is 8.

Theorem 1.1. If G D U.4/ and i D 2 or 3, and n is only divisible by primes that
split in E, we have hi

.2/.Y.n//�� V.n/8=15C� .

See Theorem 3.1 for a precise statement. We expect Theorem 1.1 to be sharp in
the case i D 3, but when i D 2we expect the true order of growth to be V.n/2=5C� for
reasons discussed below. Note that we have h1.2/.Y.n// D 0 for all n, by combining
the noncompact Matsushima formula of Borel and Garland [BG, Proposition 5.6]
with the vanishing theorems of, e.g., §10.1 of Borel and Wallach [BW]. The results
of Savin [Sa] also imply that h4.2/.Y.n//� V.n/.

1.1 Outline of Proof

To describe the method of proof of Theorem 1.1 in more detail, we begin by outlin-
ing the classification of Arthur and Mok. We define an Arthur parameter for U.N/
to be a formal linear combination  D �.n1/� 
1 � : : :� �.nl/� 
l, where �.k/
denotes the unique irreducible (complex-algebraic) representation of SL.2;C/ of
dimension k, and 
i is a conjugate self-dual cusp form on GLmi=E, subject to certain
conditions including that N D P

nimi. To each  , there is associated a packet … 

of representations of U.N/.A/, certain of which occur in the automorphic spectrum.
Moreover, the entire automorphic spectrum is obtained in this way. If we combine
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this classification with the noncompact case of Matsushima’s formula, we have

hi
.2/.Y.n// �

X

 

X

�2… 

hi.g;KI�1/ dim�K.n/
f : (1)

Here, g is the Lie algebra of U.N/.R/, K is a maximal compact subgroup of
U.N/.R/, we let Hi.g;KI�1/ denote .g;K/ cohomology, and hi.g;KI�1/ D
dim Hi.g;KI�1/. As mentioned above, if i is not the middle degree, then those
 contributing to the sum must be non-generic, i.e. one of the representations of
SL.2;C/ must be nontrivial.

We deduce Theorem 1.1 from (1) in two steps.

Step 1: Bound
P

�f2… ;f
dim�K.n/

f for each  , where… ;f denotes the finite part
of the packet… .

Step 2: Sum the resulting bounds over those  that contribute to cohomology in
the required degree.

We begin step 1 by writing … ;f D ˝p… ;p, so that we must bound
P

�p2… ;p
dim�K.n/

p for each p. When p is split in E, … ;p is an explicitly described
singleton, and it is easy to do this directly. When p is nonsplit, we use the trace
identities appearing in the definition of … ;p [Mo, Theorem 3.2.1]. By writing

dim�K.n/
p as a trace, these allow us to relate

P
�p2… ;p

dim�K.n/
p to objects like

dim
K0.n/
i , where 
i is one of the cusp forms appearing in  and K0.n/ is a suitable

congruence subgroup of GL.mi/.
As an example, one type of packet that contributes to (1) when N D 4 is those of

the form  D �.2/� 
, where 
 is a cusp form on GL2=E. After carrying out step
1 in this case, we obtain

X

�f2… ;f

dim�K.n/
f � n5C�

X

� 0
f 2….
/f

dim� 0K
0.n/

f (2)

where ….
/ is the packet on U.2/ corresponding to 
, and K0.n/ is the standard
principal congruence subgroup of level n on U.2/. Step 2 is bounding the right-
hand side of (2). We do this by observing that if … contains a cohomological
representation, and � 0 2 ….
/ as in (2), then there are only finitely many
possibilities for the infinitesimal character of � 01, and hence of � 01 itself. We
may therefore bound the right-hand side of (2) in terms of the multiplicities of
archimedean representations on U.2/, and these may be bounded by the results of
Savin.

The reason we do not expect Theorem 1.1 to be sharp when i D 2 is that the
main contribution to h2.2/ comes from parameters of the form �.2/ � 
 with 
 on
GL2. (Note that this relies on the Adams–Johnson conjectures on the structure of
cohomological Arthur packets, which have now been proved by Arancibia, Moeglin,
and Renard [AMR].) We do not have sharp bounds for the contribution from these
parameters, because we do not have sharp bounds for the dimensions of spaces
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of K-fixed vectors in Speh representations induced from GL2 � GL2 on GL4. To
be more precise, if � is such a Speh representation of GL.4;Qp/, we require a
bound for dim�K.pk/, where K.pk/ is the usual principal congruence subgroup, that
is uniform in both k and � . In particular, this is more difficult than knowing the
Kirillov dimension of these representations.

We have restricted to levels that are split in E because of an issue with the twisted
fundamental lemma, which is used in step 1 in the case of inert primes. Allowing
level in this argument would require an extension of the twisted FL, which states
that the twisted transfer takes the characteristic functions of principal congruence
subgroups to functions of the same type. This would follow from the twisted FL
for Lie algebras, which is not known at this time. However, it should be possible to
prove it by following Waldspurger’s proof for groups in [Wa].

The tools used in the proof should extend to a general U.N/ with a little extra
work. However, because the recipe for the degrees of cohomology on U.N/ to which
an Arthur parameter can contribute is complicated, the result this would give for
cohomology growth would not be as strong.

2 The Endoscopic Classification for U.N/

In this section we describe the endoscopic classification for the quasi-split group
U.N/ by Mok. Because of the large amount of notation that must be introduced to
do this in full, we shall often omit details that are not directly relevant to the proof
of Theorem 1.1.

2.1 Number Fields

Throughout this section, F will denote a local or global field of characteristic 0,
and E will denote a quadratic étale F-algebra. We will assume that E is a quadratic
extension of F unless specified otherwise. The conjugation of E over F will be
denoted by c. We set �F D Gal.F=F/. The Weil groups of F and E will be denoted
by WF and WE, respectively. If F is local, we let LF denote its local Langlands group,
which is given by WF if F is archimedean and WF � SU.2/ otherwise. If F is global,
the adeles of F and E will be denoted by A and AE. If F is local (resp. global), �will
denote a character of E� (resp. A�E =E�) whose restriction to F� (resp. A�) is the
quadratic character associated with E=F by class field theory. We will often think of
� as a character of WE .



Endoscopy and Cohomology of a Quasi-Split U.4/ 301

2.2 Algebraic Groups

For any N � 1, we let U.N/ denote the quasi-split unitary group over F with respect
to E=F, whose group of F-points is

U.N/.F/ D fg 2 GL.N;E/j tc.g/Jg D Jg

where

J D

0

B
@

1

: :
:

1

1

C
A :

In the case when E D F � F, we have

U.N/.F/ D f.g1; g2/ 2 GL.N;F/ � GL.N;F/j g2 D Jtg�11 J�1g:

Projection onto the first and second factors defines isomorphisms �1; �2 W U.N/.F/ '
GL.N;F/, and we have �2 ı ��11 W g 7! Jtg�1J�1.

We define G.N/ D ResE=FGL.N/. We let 	 denote the automorphism of G.N/
whose action on F-points is given by

	.g/ D ˆN
tc.g/�1ˆ�1N for g 2 G.N/.F/ ' GL.N;E/;

where

ˆN D

0

BB
B
@

1

�1
: :
:

.�1/N�1

1

CC
C
A
:

We defineeGC.N/ D G.N/Ì h	i, and let eG.N/ denote the G.N/-bitorsor G.N/Ì 	 .
We will denote these groups by UE=F.N/, GE=F.N/, etc. when we want to explicate
the dependence on the extension E=F.

Our discussion in this section will implicitly require choosing Haar measures
on the F-points of these groups when F is local, in particular when discussing
transfers of functions and character relations. We may do this in an arbitrary way,
subject only to the condition that the Haar measures assign mass 1 to a hyperspecial
maximal compact subgroup when one exists. This condition allows us to state the
fundamental lemma without the introduction of any constant factors.
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2.3 L-groups and Embeddings

If G is a connected reductive algebraic group over F, the L-group LG is an extension
bG Ì WF, wherebG is the complex dual group of G. If G1 and G2 are two such groups,
an L-morphism LG1 ! LG2 is a map that reduces to the identity map on WF. An L-
embedding is an injective L-morphism. In this paper we shall only need to consider
LG when G is a product of the groups U.N/, GL.N/, and G.N/. Because the L-
group of G1 � G2 is the fiber product of LG1 and LG2 over WF , it suffices to specify
LG when G is one of these groups. We have LGL.N/ D GL.N;C/ �WF . We have
LU.N/ D GL.N;C/ Ì WF , where WF acts through its quotient Gal.E=F/ via the
automorphism

g 7! ˆN
tg�1ˆ�1N :

We have LG.N/ D .GL.N;C/�GL.N;C//Ì WF , where WF acts through Gal.E=F/
by switching the two factors. We let O	 denote the automorphism of 1G.N/ given by
O	.x; y/ D .ˆN

ty�1ˆ�1N ; ˆN
tx�1ˆ�1N /.

We define the L-embedding �� W LU.N/! LG.N/ for � D ˙1 as follows. (Note
we will often abbreviate˙1 to simply˙.) We define �C D 1 and �� D �, and we
choose wc 2 WF nWE. We define �� by the following formulae.

g Ì 1 7! .g; tg�1/ Ì 1 for g 2 GL.N;C/

I Ì � 7! .��.�/I; �
�1
� .�/I/ Ì � for � 2 WE

I Ì wc 7! .�ˆN ; ˆ
�1
N / Ì wc:

Note that the conjugacy class of �˙ is independent of the choice of wc.

2.4 Endoscopic Data

In the cases we consider in this paper, it suffices to work with a simplified notion of
endoscopic datum that we now describe. See [KS] for the general definition. Let G0

be a connected reductive group over F, and let 	 be a semisimple automorphism of
G0. Let G be the G0-bitorsor G0 Ì 	 . We let O	 be the automorphism of bG0 that is
dual to 	 and preserves a fixed �F-splitting of bG0. We shall only need to consider
the cases where 	 is trivial or G is the torsor eG.N/ defined in Sect. 2.2, in which
cases the dual automorphism O	 is the one given in Sect. 2.3.

We let bG D bG0 Ì O	 . An endoscopic datum for G is a triple .G0; s; � 0/ satisfying
the following conditions.

• s 2 bG is semi-simple.
• G0 is a quasi-split connected reductive group over F.
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• � 0 W LG0 ! LG0 is an L-embedding.
• The restriction of � 0 to bG0 is an isomorphism bG0 ' Cent.s;bG0/0.
• We have Ad.s/ ı � 0 D a 	 � 0, where a W WF ! Z.bG0/ is a 1-cocycle that is

cohomologically trivial if F is local, and is everywhere locally trivial if F is
global.

We refer to [KS, Sect. 2.1] for the definition of equivalence of endoscopic data.
We will often omit the data s and � 0 if they are not immediately relevant. We say
that an endoscopic datum is elliptic if we have

.Z.bG0/�F /0 � Z.bG0/
O	;�F :

We denote the set of equivalence classes of endoscopic data for G by E.G/, and the
subset of elliptic data by Eell.G/. We set E.eG.N// D eE.N/. From now on, we shall
only use the notation E.G/ when G is a group, i.e. when 	 is trivial.

There is a subseteE sim.N/ �eEell.N/, called the set of simple endoscopic data, that
consists of the elements .U.N/; �C/ and .U.N/; ��/ where �˙ are the embeddings
of Sect. 2.3.

2.5 Transfer of Functions

From now until the end of Sect. 2.7, we assume that F is local. If G is an F-
group, we denote C10 .G/ by H.G/. We denote C10 .eG.N// by eH.N/. If G is a
connected reductive group over F and .G0; � 0/ 2 E.G/, there is a correspondence
between H.G/ and H.G0/ known as the endoscopic transfer. More precisely, there
is a nonempty subset of H.G0/ associated with any f 2 H.G/, and we let f .G

0;�0/

(which we will often abbreviate to f G0

) denote a choice of function from it. We say
that f .G

0;�0/ is an endoscopic transfer of f to G0. The transfer is defined using orbital
integrals on G and G0 in a way that we do not need to make explicit in this paper.
Its construction is primarily due to Shelstad in the real case, and Waldspurger [Wa3]
in the p-adic case (assuming the fundamental lemma). See [Art, Sect. 2.1] for more
details.

We shall require the fundamental lemma, due to Laumon and Ngô [LN, Ngo],
Hales [Ha], Waldspurger [Wa2], and others. This states that if the local field F is
p-adic, all data are unramified, and K and K0 are hyperspecial maximal compact
subgroups of G and G0, then the characteristic functions 1K and 1K0 correspond
under endoscopic transfer.

There is a similar transfer in the twisted case. If .G; �/ 2 eE.N/, this associates
a function f .G;�/ 2 H.G/ with a function f 2 eH.N/. There is a twisted
fundamental lemma, derived by Waldspurger in [Wa] from the untwisted case and
his nonstandard variant, which states that the characteristic functions of hyperspecial
maximal compact subgroups are associated by transfer if F is p-adic and all data are
unramified.
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2.6 Local Parameters

Let G be a connected reductive algebraic group over F. A Langlands parameter for
G is an admissible homomorphism

� W LF ! LG:

We let ˆ.G/ denote the set of Langlands parameters up to conjugacy by bG. An
Arthur parameter for G is an admissible homomorphism

 W LF � SL.2;C/! LG

such that the image of LF in bG is bounded. We let ‰.G/ denote the set of Arthur
parameters modulo conjugacy by bG, and let ‰C.G/ denote the set of parameters
obtained by dropping this boundedness condition.

If  2 ‰C.G/, we define the following groups, which control the character
identities for the local Arthur packet associated with  .

S D Cent.Im ;bG/;

S D S =Z.bG/�F ;

S D �0.S /:

In all cases we consider, we will have S ' .Z=2Z/r for some r. We also define

s D  
�
1;

��1 0

0 �1
��

;

which is a central semi-simple element of S .

2.6.1 Endoscopic Data Associated with Arthur Parameters

There is a correspondence between pairs .G0;  0/ with G0 2 E.G/ and  0 2
‰.G0/, and pairs . ; s/ with  2 ‰.G/ and s a semi-simple element of S .
(Note that we place a stronger equivalence relation on G0 here than the usual
equivalence of endoscopic data; see [Mo, Sect. 3.2] for details.) In one direction,
this correspondence associates with a pair .G0;  0/ (where G0 is an abbreviation
of .G0; s0; � 0/) the pair . ; s/, where  D � 0 ı  0 and s is the image of s0 in
S D S =Z.bG/�F .

Conversely, suppose we have a pair . ; s/. Let s0 be any lift of s to S . We set
bG0 D Cent.s0;bG/0. Because  .WF/ commutes with s0 it normalizes bG0, and this
action allows us to define an L-group LG0. We may combine  jWF and the inclusion
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bG0 � bG to obtain an L-embedding � 0 W LG0 ! LG, which gives an endoscopic
datum .G0; s0; � 0/. Because  factors through � 0.LG0/, this gives an L-parameter
 0 2 ‰.G0/.

2.6.2 Base Change Maps

We now discuss the map from parameters of U.N/ to parameters of G.N/ given
by �˙. We first note that there is an isomorphism ˆ.G.N// ' ˆ.GL.N;E//,
which is given explicitly in [Mo, Sect. 2.2], and corresponds to the fact that both
sets parametrize representations of G.N/.F/ ' GL.N;E/. If � 2 ˆ.U.N//, the
parameter in ˆ.GL.N;E// corresponding to �˙ ı � under this isomorphism is just
�jLE˝�˙. In particular, in the case of �C the parameter is just obtained by restriction
to LE (this is usually known as the standard base change map).

2.6.3 Parities of Local Parameters

One may characterize the image of ˆ.U.N// in ˆ.G.N// under �˙. We say that an
admissible homomorphism � W LE ! GL.N;C/ is conjugate self-dual if �c ' �_,
where �c.�/ D �.w�1c �wc/ for � 2 LE and wc 2 WF n WE. There is a notion of
parity for a conjugate self-dual representation [Mo, Sect. 2.2], which is analogous
to a self-dual representation being either orthogonal (even) or symplectic (odd). We
have the following characterization of the image of �˙ on parameters.

Lemma 2.1. For � D ˙1, the image of

�� W ˆ.U.N//! ˆ.G.N// ' ˆ.GL.N;E//

is given by the parameters in ˆ.GL.N;E// that are conjugate self-dual with parity
�.�1/N.

2.7 Local Arthur Packets

In Sect. 2.5, Theorem 2.5.1, and Theorem 3.2.1 of [Mo], Mok associates a packet
… of representations of U.N/with any 2 ‰C.U.N//. We recall some of the key
features of this construction in the case when  2 ‰.U.N//, which is all we shall
need in this paper. The first step is to associate with any  N 2 e‰.N/ an irreducible
unitary representation of G.N/, denoted � N . We have the Langlands parameter � N

associated with  N , given by

� N .�/ D  N

�
�;

� j� j1=2 0

0 j� j�1=2
��

; � 2 LF: (3)
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Let � N be the standard representation of G.N/ associated with � N , and let � N

be its Langlands quotient. � N is an irreducible admissible conjugate self-dual
representation of G.N/ ' GL.N;E/, and in [Mo, Sect. 3.2] Mok defines a canonical
extension of � N to eG.N/C, denoted Q� N . Mok defines a linear form on eH.N/ by

Qf 7! Qf N. N/; Qf 2 eH.N/
Qf N. N/ D tr Q� N .Qf /:

If G 2 E.U.N// and  2 ‰.G/, Mok defines a linear form

f 7! f G. /; f 2 H.G/: (4)

In the case G D U.N/, Mok characterizes f G. / as a transfer of the linear form
Qf N.� ı  / for � D �˙.

Proposition 2.2 (Theorem 3.2.1(a) of Mok [Mo]). Let G D U.N/, and let  2
‰.G/. For either of the embeddings �˙, we have

Qf G. / D Qf N.�˙ ı  /; Qf 2 eH.N/;

where Qf G. / denotes the evaluation of the linear form f G. / on the transfer of Qf to
H.G/ associated with �˙.

Proposition 2.2 in fact gives a definition of f G. / when G D U.N/, because
both transfer mappings eH.N/ ! H.U.N// associated with �˙ are surjective by
Mok [Mo, Proposition 3.1.1(b)]. As a general G 2 E.U.N// is a product of the
groups U.M/ and G.M/, and the definition of f G. / is easy for G.M/ because it is
a general linear group, this can be used to define f G. / for all G. We will only need
to consider the case where G is a product of two unitary groups in this paper.

We shall use the following character identities, which relate the linear forms
f G. / to traces of irreducible representations of U.N/.

Proposition 2.3 (Theorem 3.2.1(b) of Mok [Mo]). Let  2 ‰.U.N//. There
exists a finite multi-set … whose elements are irreducible admissible represen-
tations of U.N/, and a mapping

… ! bS 
� 7! h	; �i

with the following property. If s 2 S , and .G0;  0/ is the element of E.U.N//
corresponding to . ; s/ as in Sect. 2.6.1, then we have

f G0

. 0/ D
X

�2… 

hs s; �itr�.f /; f 2 H.U.N//:
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Here we have identified s s with its image in S , and f G0

. 0/ denotes the evaluation
of the linear form f G0

. 0/ on the transfer of f to H.G0/.

The multiset … is referred to as the Arthur packet associated with  . Note that
if we set s D 1 in Proposition 2.3, then we obtain an expression for f U.N/. / in
terms of traces of the representations in… . Because we always have s2 D 1, if we
set s D s we obtain

f G0

. 0/ D
X

�2… 

tr�.f /; f 2 H.U.N//:

We will use this to bound
P

�2… 
dim�K for various compact open subgroups K of

U.N/.F/.

2.8 Global Parameters

We now discuss the global version of the constructions of Sects. 2.6 and 2.7. For the
rest of Sect. 2 we assume that F is global. The main difficulty in adapting these
constructions is that we do not have a global analogue of the Langlands group
LF . However, if LF existed, its irreducible N-dimensional representations would
correspond to cusp forms on GLN . Therefore, instead of considering representations
of LF � SL.2;C/, Mok considers formal linear combinations of products of GLN

cusp forms with representations of SL.2;C/, and parametrizes the spectrum of U.N/
using these.

For n � 1, we let �.n/ denote the unique irreducible (complex-) algebraic
representation of SL.2;C/ of dimension n. We let ‰sim.N/ denote the set of simple
global Arthur parameters, which are formal expressions  N D 
� � where 
 is a
unitary cuspidal automorphic representation of GL.m;AE/ and � D �.n/ for some
n, and N D mn. We let ‰.N/ denote the set of global Arthur parameters, which are
formal expressions

 N D  N1
1 � 	 	 	�  Nr

r

with Ni
i 2 ‰sim.Ni/ and N1C	 	 	CNr D N. If N D 
�� 2 ‰sim.N/, we define its

conjugate dual to be  N;� D 
�� �, where 
� is the conjugate dual representation
to 
, and say that  N is conjugate self-dual if  N D  N;�. We denote the set of
conjugate self-dual parameters in ‰sim.N/ by e‰sim.N/. We extend these notions to
‰.N/ by defining the conjugate dual of

 N D  N1
1 � 	 	 	�  Nr

r 2 ‰.N/
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to be

 N;� D  N1;�
1 � 	 	 	�  Nr ;�

r :

We denote the set of conjugate self-dual parameters in ‰.N/ by e‰.N/. Note that
requiring  N 2 ‰.N/ to be conjugate self-dual is not the same as requiring that
 

Ni
i D  Ni ;�

i for all i, as we are free to rearrange the terms. We say that

 N D  N1
1 � 	 	 	�  Nr

r 2 e‰.N/

is elliptic if the  Ni
i are distinct and  

Ni
i D  

Ni;�
i for all i, and denote the

set of elliptic parameters by e‰ell.N/. We denote the set of generic parameters,
that is those for which all the representations � are trivial, by ˆ.N/, and define
ê�.N/ D e‰�.N/ \ˆ.N/. It follows that we have chains of parameters

e‰sim.N/ � e‰ell.N/ � e‰.N/; and

êsim.N/ � êell.N/ � ê.N/:

To any parameter  N 2 e‰.N/, Mok [Mo, Sect. 2.4] associates a group L N that
is an extension of WF by a complex algebraic group, and an L-homomorphism Q N W
L N � SL.2;C/ ! LG.N/. We will not recall the definition of these objects, and
give a qualitative description of them instead. If we think of  N as corresponding to
a hypothetical representation of LF �SL.2;C/, L N would contain the image of this
representation. Because of this, we will use L N and Q N to define what it means for
 N to factor through the maps �˙ W LU.N/! LG.N/, and thus give a parameter for
U.N/.

If .U.N/; �˙/ 2 eE sim.N/, we define ‰.U.N/; �˙/ to be the set of pairs  D
. N ; Q /, where  N 2 e‰.N/ and

Q W L N � SL.2;C/! LU.N/

is an L-homomorphism such that Q N D �˙ ı Q . If  D . N ; Q / 2 ‰.U.N/; �˙/,
we set L D L N .

2.8.1 Parities of Global Parameters

If �N 2 êsim.N/ is associated with a conjugate self-dual cusp form 
, Theo-
rem 2.4.2 of Mok [Mo] states that there is a unique base change map �� with � D ˙
such that
 is the weak base change of a representation of U.N/ under �� . Following
Mok, we refer to �.�1/N�1 as the parity of �N and 
. We may extend this definition
to  N D 
� � 2 e‰sim.N/ as follows: if we assume that 
 is a base change under
�ı , we define � D ı.�1/N�m�nC1, and define �.�1/N�1 to be the parity of  N . It



Endoscopy and Cohomology of a Quasi-Split U.4/ 309

follows from these definitions that the parity of 
� � is the product of the parities
of 
 and �, where the parity of �.n/ is defined to be opposite to the parity of n
(corresponding to the fact that �.n/ is orthogonal if n is odd and symplectic if n is
even).

This is compatible with the notion of parity discussed in Sect. 2.6.3. In particular,
if 2 e‰sim.N/ has invariant �, then the L-homomorphismL �SL.2;C/! LG.N/
factors through �� . In particular, if  N 2 êsim.N/, then L N D LU.N/ and Q N is
the product of �� with the trivial map on SL.2;C/. We will also see in Sect. 2.9 that
if v is nonsplit in E, the localization  N

v W LFv � SL.2;C/ ! LGEv=Fv .N/ of  N

factors through the local base change map �˙;v .

2.8.2 Square-Integrable Parameters

We define ‰2.U.N/; �˙/ to be the subset of ‰.U.N/; �˙/ for which  N 2 e‰ell.N/.
This is known as the set of square-integrable parameters of U.N/ with respect to
�˙, because these are the parameters that give the discrete automorphic spectrum
of U.N/. In concrete terms, a parameter  N 2 e‰ell.N/ can be extended to  D
. N ; Q / 2 ‰2.U.N/; ��/ if and only if  N D  N1

1 � : : :� 
Nl
l with the parameters

 
Ni
i 2 e‰sim.Ni/ all having parity �.�1/N�1. More concretely, if  Ni

i D �i � �.ni/

with �i 2 êsim.mi/, we require that ıi.�1/miCni D �.�1/N for all i, where ıi is such
that the cusp form 
i associated with �i is a weak base change from U.mi/ under
�ıi .

2.9 Localization of Parameters

Having introduced global and local versions of our parameters, we now discuss the
localization maps taking the former to the latter. We let v be a place of F, and let
Ev D E˝F Fv, U.N/v D UEv=Fv , and G.N/v D GEv=Fv .N/.

We first assume that v does not split in E. Consider a simple generic parameter
�N 2 ˆsim.N/. As �N corresponds to a cusp form
 on GL.N;AE/, we may consider
the local factor 
v , which is an irreducible unitary representation of GL.N;Ev/.
By the local Langlands correspondence for GL.N/ by Harris-Taylor [HT] and
Henniart [Hen], and the isomorphism ˆ.GL.N;Ev// ' ˆ.G.N/v/ of Sect. 2.6.2,

v corresponds to a local Langlands parameter �N

v 2 ˆv.N/ WD ˆ.G.N/v/. This
gives the localization map from ˆsim.N/ to ˆv.N/, which takes êsim.N/ to êv.N/.
This may be naturally extended to a map N 7!  N

v from‰.N/ to‰Cv .N/ that takes
e‰.N/ to e‰Cv .N/.

Now consider a parameter  D . N ; Q / 2 ‰.U.N/; ��/. By Mok [Mo, Corol-
lary 2.4.11], the localization  N

v factors through the embedding ��;v W LU.N/v !
LG.N/v . This allows us to define  v 2 ‰.U.N/v/ by requiring that ��;v ı v D  N

v .
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We now assume that v splits in E, and write v D ww. As in Sect. 2.2 we have
isomorphisms �w W U.N/v ! GL.N;Ew/ and �w W U.N/v ! GL.N;Ew/ corre-
sponding to the projections of Ev to Ew and Ew. If  D . N ; Q / 2 ‰.U.N/; ��/,
we may think of the localisations  N

w and  N
w as elements of ‰C.GL.N;Ew//

and ‰C.GL.N;Ew//. When  N
w 2 ‰.GL.N;Ew//, we may define � N

w
to be the

representation associated with � N
w

by local Langlands, where � N
w

is as in (3). The
definition of � N

w
for  N

w 2 ‰C.GL.N;Ew// is given in [Mo, Sect. 2.4], and will
not be needed in this paper because the GLN cusp forms we consider are known to
satisfy the Ramanujan conjectures.

The conjugate self-duality of  N implies that � N
w
D .� N

w
/_, and �w ı ��1w is the

automorphism g 7! Jtg�1J�1 of Sect. 2.2 (under the identification Ew D Ew D Fv).
Therefore the pullback of � N

w
via �w is isomorphic to the pullback of � N

w
via �w.

We denote this representation of U.N/v by � v . We define  v 2 ‰C.U.N/v/ to be
the parameter obtained by composing  N

w W LFv � SL.2;C/ ' LEw � SL.2;C/ !
LGL.N;Ew/ with the isomorphism L�w W LGL.N;Ew/! LU.N/v induced by �w. We
define… v D f� vg to be the local Arthur packet associated with  v .

2.10 The Global Classification

We may now state the global classification theorem. For any  in the set of global
parameters‰2.U.N/; �˙/, we have the localizations v and the local Arthur packets
… v associated with  v in Sects. 2.7 and 2.9. We define the global Arthur packet
… to be the restricted direct product of the … v , in the sense that it contains those
˝v�v 2 ˝v… v such that the (global analogue of the) character h	; �vi is trivial
for almost all v. We will write … D ˝v… v by slight abuse of notation. In [Mo,
Sect. 2.5], Mok defines a subset… .� / � … in terms of symplectic root numbers
and the pairings in Proposition 2.3, which we do not need to make explicit. The
classification is as follows.

Theorem 2.4. For � D ˙1, we have a U.N/.A/-module decomposition of the
discrete automorphic spectrum of U.N/:

L2disc.U.N/.F/nU.N/.A// D
X

 2‰2.U.N/;��/

X

�2… .� /

�:

Mok’s proof of Theorem 2.4 builds on work by many authors, notably Arthur,
who classified the discrete spectrum of quasi-split symplectic and orthogonal groups
in [Art], and Moeglin and Waldspurger, who proved the stabilization of the twisted
trace formula. Theorem 2.4 is being extended to general forms of unitary groups
by Kaletha et al. in [KMSW] and its projected sequels. In joint work with Shin, we
hope to show that this extension of Theorem 2.4 implies strong (and conjecturally
sharp) upper bounds for cohomology growth on arithmetic manifolds associated
with U.n; 1/ for any n.
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3 Application of the Global Classification

In this section, we rephrase Theorem 1.1 in terms of Arthur packets by applying the
results of Sect. 2 to the manifolds Y.n/.

3.1 Notation

Let E be an imaginary quadratic field with ring of integers O. We apply the
notation of Sect. 2 to the extension E=Q. We denote places of Q and E by v and
w, respectively. We recall the character � of E�nA�E whose restriction to A

� is the
character associated with E=Q by class field theory. We let Sf be a finite set of finite
places of Q that contains all finite places at which E is ramified, and all finite places
that are divisible by a place of E at which � is ramified.

If G is an algebraic group over Q or Qv, we denote G.Qv/ by Gv , and likewise
for groups over E. For any N � 1 we let eG.N/v D G.N/v Ì 	 , and eHv.N/ D
C10 .eG.N/v/. We fix Haar measures on U.N/v and eG.N/v for all N � 1 and all
v, subject to the condition that these measures assign volume 1 to a hyperspecial
maximal compact when v is finite and the groups are unramified. All traces and
twisted traces will be defined with respect to these measures.

We shall identify the infinitesimal character of an irreducible admissible repre-
sentation of U.N/1 and GL.N;C/ with a point in C

N=SN and .CN=SN/ � .CN=SN/

respectively, where SN is the symmetric group.
We choose a compact open subgroup K D Q

p Kp � U.4/.Af /, subject to the
condition that Kp D U.4/.Zp/ for p … Sf . For any n � 1 that is relatively prime to
Sf , we define Kp.n/ to be the subgroup of Kp consisting of elements congruent to 1
modulo n when p … Sf , and Kp.n/ D Kp otherwise, and define K.n/ D Qp Kp.n/.

We let K1 be the standard maximal compact subgroup of U.4/1. For any n � 1
that is relatively prime to Sf , we define Y.n/ D U.4/.Q/nU.4/.A/=K1K.n/. For
any 0 � i � 8, we let hi

.2/.Y.n// denote the dimension of the space of square
integrable harmonic i-forms on Y.n/.

3.2 Reduction of Theorem 1.1 to Arthur Packets

The precise form of Theorem 1.1 we shall prove is the following.

Theorem 3.1. If i D 2; 3, and n is relatively prime to Sf and divisible only by
primes that split in E, we have hi

.2/.Y.n//� n9.

The implied constant depends only on K, and we shall ignore the dependence
of implied constants on K for the rest of the paper. By considering the action of
the center on the connected components of Y.n/, Theorem 3.1 implies that the
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connected component Y0.n/ of the identity satisfies hi
.2/.Y

0.n// �� n8C�. This

implies Theorem 1.1 when combined with the asymptotic Vol.Y0.n// D n15Co.1/.
We shall only prove Theorem 3.1 in the case i D 3, as the case i D 2 is identical.

We begin by applying the extension of Matsushima’s formula to noncompact
quotients [BG, Proposition 5.6], which gives

h3.2/.Y.n// D
X

�2L2disc.U.4/.Q/nU.4/.A//
h3.g;KI�1/ dim�K.n/

f : (5)

If we combine this with Theorem 2.4, we obtain

h3.2/.Y.n// �
X

 2‰2.U.4/;�C/

X

�2… 

h3.g;KI�1/ dim�K.n/
f : (6)

It follows from the proof of the Adams–Johnson conjectures in [AMR], or Propo-
sition 13.4 of Bergeron et al. [BMM], that if � 2 … satisfies h3.g;KI�1/ ¤ 0,
then  is not generic. It follows that  N must be of one of the following types.

1. �.2/� �N
1 � �N

2 , �N
i 2 êell.i/.

2. �.2/� �N , �N 2 êell.2/.
3. �.3/� �N

1 � �N
2 , �N

i 2 ê.1/.
4. �.4/� �N , �N 2 ê.1/.

We bound the contribution of parameters of types (1) and (2) in Sects. 4 and 5,
respectively. It follows from the description of the packets… at split places that all
representations contained in packets of type (4) must be characters, and these make
a contribution of�� n1C� to h3.2/.Y.n//. We shall also omit the case of parameters

of type (3); it may be proven that they make a contribution of�� n5C� using the
same methods as in Sect. 5.

4 The Case  N D �.2/� 	N
1

� 	N
2

Let h3.2/.Y.n//
? denote the contribution to h3.2/.Y.n// from parameters of the form

�.2/� �N
1 � �N

2 , which by (6) satisfies

h3.2/.Y.n//
? �

X

 2‰2.U.4/;�C/
 ND�.2/��N

1 ��N
2

X

�2… 

h3.g;KI�1/ dim�K.n/
f : (7)

We assume that the sum is restricted to those �N
2 lying in êsim.2/ until the end of

Sect. 4.2, and describe how to treat composite �N
2 in Sect. 4.3. We note that  2

‰2.U.4/; �C/ implies that �N
1 and �N

2 must be even and odd, respectively. The main
result of this section is the following.
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Proposition 4.1. We have the bound h3.2/.Y.n//
? � n9.

For i D 1; 2, we let Ki D Q
p Ki;p be a compact open subgroup of U.i/.Af /

such that Ki;p D U.i/.Zp/ for all p … Sf , and let eKi D Q
w
eKi;w be a compact open

subgroup of GL.i;AE;f / such that eKi;w D GL.i;Ow/ for all wjp … Sf . We define
eK � GL.4;AE;f / in a similar way. The groups K2;p and eK1;w for wjp 2 Sf will
be specified in the proof of Proposition 4.2, and the groups K1;p, eK2;w, and eKw for
wjp 2 Sf may be chosen arbitrarily. We define congruence subgroups K�.n/ of these
groups for n relatively prime to Sf in the usual way, and recall that n will only be
divisible by primes that split in E.

We let eP be the standard parabolic subgroup of GL.4;E/ with Levi eL D
GL.2;E/ � GL.2;E/, and let P be the corresponding standard parabolic subgroup
of U.4/.

4.1 Controlling a Single Parameter

We first bound the contribution from a single Arthur parameter to h3.2/.Y.n//
?.

We therefore fix �N
i 2 êsim.i/ for i D 1; 2 with �N

1 even and �N
2 odd, and let

 2 ‰.U.4/; �C/ be the unique parameter with  N D �.2/ � �N
1 � �N

2 . We let
�N

i correspond to a conjugate self-dual cuspidal automorphic representation 
i of
GL.i;AE/. We assume that 
i are tempered at all places. This assumption is not
necessary, but simplifies the proof of Proposition 4.2 and will be proven to hold for
all parameters that contribute to cohomology.

We define  N
1 D �.2/ � �N

1 and  N
2 D �N

2 , and for i D 1; 2 we let  i 2
‰.U.2/; �C/ be the corresponding unitary parameters. We shall prove the following
bound for the finite part of the contribution of … to h3.2/.Y.n//

?.

Proposition 4.2. There is a choice of eK1;w for wjp, p 2 Sf , and K2;p for p 2 Sf ,
depending only on K, such that

X

�f2… ;f

dim�K.n/
f � ŒK W .K \ P.Af //K.n/ dim
eK1.n/1

X

� 0
f 2… 2;f

dim� 0K2.n/f ;

where … ;f D ˝p… p is the finite part of … , and likewise for… 2 .

The proposition will follow from the factorization of … ;f , and the series of
lemmas below.

Lemma 4.3. Let p … Sf be nonsplit in E, and let wjp. We have

X

�p2… p

dim�
Kp
p D dim


eK1;w
1;w

X

� 0
p2… 2;p

dim�
0K2;p
p :
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Proof. We have

X

�p2… p

dim�
Kp
p D

X

�p2… p

tr.�p.1Kp//;

and we may manipulate the right-hand side using the local character identities
of Propositions 2.2 and 2.3. Let .G0; � 0/ 2 Eell.U.4/p/ be the unique endoscopic
datum with G0 D U.2/p � U.2/p, and let  0p D  1;p �  2;p 2 ‰.G0/. It may
be seen that .G0;  0p/ is the pair associated with . p; s / by the correspondence of

Sect. 2.6.1. We recall the distribution f 7! f G0

. 0p/ on H.G0/ associated with  0p
in (4). Applying Proposition 2.3 with s D s p , and the fundamental lemma for the
group G0 2 E.U.4/p/, gives

X

�p2… p

tr.�p.1Kp// D .1K2;p � 1K2;p/
G0

. 0p/:

Because  0p D  1;p �  2;p, the factorization property of the linear form f G0

. 0p/
allows us to write this as

X

�p2… p

tr.�p.1Kp// D 1U.2/
K2;p

. 1;p/1
U.2/
K2;p

. 2;p/;

where f 7! f U.2/. i;p/ are the distributions on H.U.2/p/ associated with  i;p.

Because s i;p D e for i D 1; 2, we may express 1U.2/
K2;p

. i;p/ in terms of traces of
representations by applying Proposition 2.3 with s D e, which gives

1
U.2/
K2;p

. i;p/ D
X

� 0
p2… i;p

tr.� 0p.1K2;p// D
X

� 0
p2… i;p

dim�
0K2;p
p : (8)

This gives the required expression for 1U.2/
K2;p

. 2;p/.

We evaluate 1U.2/
K2;p

. 1;p/ by applying Proposition 2.2 with the embedding �

chosen to be �C W LU.2/p ! LG.2/p. If we restrict the map

�C ı  1;p W LQp � SL.2;C/! LG.2/p

to LEw � SL.2;C/, it is equivalent to

�C ı  1;p W LEw � SL.2;C/! GL.2;C/

� � A 7! �N
1;w.�/A:

It follows that the representation of G.2/p ' GL.2;Ew/ associated with �C ı  1;p
is equal to 
1;w ı det. We denote the canonical extension of this representation to
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eGC.2/p by Q�1. If we identifyeK2;w with a subgroup of G.2/p, the twisted fundamental
lemma implies that we may take Qf D 1eK2;wÌ	 2 eHp.2/ in Proposition 2.2 to obtain

1
U.2/
K2;p

. 1;p/ D tr. Q�1.1eK2;wÌ	 //:

Because 	2 D 1, we have

tr. Q�1.1eK2;wÌ	 // D ˙ dim Q�eK2;w1 D ˙ dim
eK1;w1;w :

Applying Eq. (8) with i D 1 implies that 1U.2/
K2;p

. 1;p/ � 0, which means that we must
take the positive sign. This completes the proof. ut
Lemma 4.4. Let p … Sf be split in E, and let wjp. Let … p D f�pg, and … 2;p D
f� 0pg. We have

dim�
Kp.n/
p D ŒKp W .Kp \ Pp/Kp.n/ dim
eK1;w.n/1;w dim�

0K2;p.n/
p :

Proof. Under the identification U.4/p ' GL.4;Ew/, the discussion of Sect. 2.9
implies that �p is isomorphic to the representation induced from the representation
.
1;w ı det/˝
2;w ofePw. The restriction of �p to Kp is isomorphic to the induction
of .
1;wıdet/˝
2;w fromePw\eKw toeKw. BecauseeKw.n/\eLw D eK2;w.n/�eK2;w.n/,

and dim.
1;w ı det/eK2;w.n/ D dim
eK1;w.n/1;w , we have

dim�
Kp.n/
p D ŒeKw W .eKw \ePw/eKw.n/ dim


eK1;w.n/
1;w dim�

0K2;p.n/
p

which is equivalent to the lemma. ut
Lemma 4.5. Let p 2 Sf , and let wjp. There is a choice of eK1;w and K2;p, depending
only on Kp, such that

X

�p2… p

dim�
Kp
p � dim


eK1;w
1;w

X

� 0
p2… 2;p

dim�
0K2;p
p :

Proof. If p is split, this follows from the explicit description of … p as in
Lemma 4.4. Assume that p is nonsplit, and continue to use the notation of
Lemma 4.3. Lete1Kp 2 H.G0/ be a transfer of 1Kp to G0. Reasoning as in the proof
of Lemma 4.3 gives

X

�p2… p

dim�
Kp
p D vol.Kp/

�1e1G0

Kp
. 0p/;

where vol.Kp/ denotes the volume of Kp with respect to our chosen Haar measure
on U.4/p. We may writee1Kp D

P
fi;1� fi;2 for fi;j 2 H.U.2/p/, and the factorization
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property of f G0

. 0p/ gives

e1G0

Kp
. 0p/ D

X

i

.fi;1 � fi;2/
G0

. 0p/

D
X

i

f U.2/
i;1 . 1;p/f

U.2/
i;2 . 2;p/:

Applying Proposition 2.3 with s D e gives

f U.2/
i;2 . 2;p/ D

X

� 0
p2… 2;p

tr.� 0p.fi;2//

� C.fi;2/
X

� 0
p2… 2;p

dim�
0K2;p
p

if K2;p is chosen so that fi;2 is bi-invariant under K2;p for all i. Likewise, applying

Proposition 2.2 and the definition of Q� N
1;p

shows that f U.2/
i;1 . 1;p/ � C.fi;1/ dim


eK1;w
1;w

if eK1;w is chosen sufficiently small depending on fi;1. As the collection of functions
fi;j depended only on Kp, so do eK1;w and K2;p, and the constant factors. ut

4.2 Summing Over Parameters

We now use Proposition 4.2 to control the contribution to h3.2/.Y.n//
? from all  .

Lemma 4.6. Let  2 ‰.U.4/; �C/, and suppose that  N D �.2/� �N
1 � �N

2 with
�N

i 2 êsim.i/. If � 2 … 1
satisfies H�.g;KI�/ ¤ 0, then we have

�N
1;1 W z 7! .z=z/˛

0

�N
2;1 W z 7!

�
.z=z/˛1

.z=z/˛2

�

with ˛0 2 f1; 0;�1g, ˛i 2 f3=2; 1=2;�1=2;�3=2g, and ˛1 ¤ ˛2.
Proof. We write

�N
1;1 W z 7! z˛

0

zˇ
0

�N
2;1 W z 7!

�
z˛1zˇ1

z˛2zˇ2

�
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with ˛0 � ˇ0; ˛i � ˇi 2 Z. If we let � 1
be the Langlands parameter associated

with  1 as in (3), any � 2 … 1
has the same infinitesimal character as the

representations in the L-packet of � 1
, which is .˛0 C 1=2; ˛0 � 1=2; ˛1; ˛2/ 2

C
4=S4 (see, for instance, [Vo, Proposition 7.4]). If � is to have cohomology, it

must have the same infinitesimal character as the trivial representation, so that
f˛0 C 1=2; ˛0 � 1=2; ˛1; ˛2g D f3=2; 1=2;�1=2;�3=2g. This implies that ˛0 2
f1; 0;�1g and ˛i 2 f3=2; 1=2;�1=2;�3=2g with ˛1 ¤ ˛2. Because 
1 is a
character we have ˛0 D �ˇ0, and because 
2 is a cusp form on GL.2;E/ we have
j˛i C ˇij < 1=2 so that ˛i D �ˇi. This completes the proof. ut

For i D 1; 2, we define ˆrel.i/ � êsim.i/ to be the set of parameters �N
i

such that �N
i;1 satisfies the relevant constraints of Lemma 4.6. If �N

2 2 ˆrel.2/ is
associated with a cuspidal representation 
, it follows that 
 is regular algebraic,
conjugate self-dual, and cuspidal, and hence tempered at all places by Theorem 1.2
of Caraiani [Ca].

Lemma 4.6 and Eq. (7) imply that

h3.2/.Y.n//
? �

X

 ND�.2/��N
1 ��N

2

�N
i 2ˆrel.i/

X

�2… 

dim�K.n/
f

D
X

 ND�.2/��N
1 ��N

2

�N
i 2ˆrel.i/

#.… 1
/
X

�f2… ;f

dim�
K.n/
f :

We may ignore the factor #.… 1
/ because there are only finitely many possibilities

for  1. Applying Proposition 4.2 to the right-hand side gives

h3.2/.Y.n//
?�ŒK W .K\P.Af //K.n/

X

�N
1 2ˆrel.1/

dim
eK1.n/1

X

�N
2 2ˆrel.2/

X

� 0
f 2… 2;f

dim� 0K2.n/f ;

where 
1 is the automorphic character associated with �N
1 . We may enlarge the sum

from… 2;f to … 2 , which gives

h3.2/.Y.n//
?�ŒK W .K\P.Af //K.n/

X

�N
1 2ˆrel.1/

dim
eK1.n/1

X

�N
2 2ˆrel.2/

X

� 02… 2

dim� 0K2.n/f :

(9)

Lemma 4.6 implies that there are only three possibilities for 
1;1, and therefore

X

�N
1 2ˆrel.1/

dim
eK1.n/1 � ŒK1 W K1.n/: (10)

There is a finite set „1 of representations of U.2/1 such that if �N
2 2 ˆrel.2/ and

� 0 2 … 2 , then � 01 2 „1. Moreover, because  2 is a simple generic parameter,
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we have… .� / D … and so every � 0 2 … 2 occurs in L2disc.U.2/.Q/nU.2/.A//
with multiplicity one. We define X.n/ D U.2/.Q/nU.2/.A/=K2.n/, and let
m.�1;X.n// denote the multiplicity with which a representation �1 occurs in
L2disc.X.n//. We have

X

�N
2 2ˆrel.2/

X

� 02… 2

dim� 0K2.n/f �
X

� 02L2disc.U.2/.Q/nU.2/.A//
� 0

12„1

dim� 0K2.n/f

D
X

�12„1

m.�1;X.n//

� ŒK2 W K2.n/: (11)

Combining (9)–(11) gives

h3.2/.Y.n//
? � ŒK W .K \ P.Af //K.n/ŒK2 W K2.n/ŒK1 W K1.n/:

Applying the formula for the order of GL.N/ over a finite field completes the proof.

4.3 The Case of 	N
2

Composite

We now briefly explain how to bound the contribution to h3.2/.Y.n//
? from parame-

ters with �N
2 D �N

21 � �N
22, where �N

2i 2 ê.1/. We let �N
2i correspond to a conjugate

self-dual character 
2i on GL.1;AE/. Let P2 be the standard Borel subgroup of
U.2/. We may prove the following analogue of Proposition 4.2.

Proposition 4.7. There is a choice of eK1;w for wjp, p 2 Sf , depending only on K,
such that

X

�f2… ;f

dim�K.n/
f � ŒK W .K \ P.Af //K.n/ŒK2 W .K2 \ P2.Af //K2.n/

dim
eK1.n/1 dim
eK1.n/21 dim
eK1.n/22 : (12)

The proof follows the same lines, by using the explicit description of � p when
p is split and the character identities of Propositions 2.2 and 2.3 when p is inert.
There are� n3 choices for the three characters, and the coset factors in (12) make
a contribution of�� n5C� . Therefore the contribution to cohomology of parameters
of this type is bounded by�� n8C� as required.
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5 The Case  N D �.2/� 	N

We now define h3.2/.Y.n//
? to be the contribution to h3.2/.Y.n// from parameters of

the form �.2/ � �N . As in Sect. 4, we assume that �N 2 êsim.2/ until the end of
Sect. 5.2, and describe how to treat composite �N in Sect. 5.3. We note that  2
‰2.U.4/; �C/ implies that �N must be even. The main result of the section is the
following.

Proposition 5.1. We have the bound h3.2/.Y.n//
? � n9.

We define compact open subgroups K0 D Q
p K0p � U.2/.Af /, eK0 D Q

w
eK0w �

GL.2;AE;f /, and eK D Q
w
eKw � GL.4;AE;f /. We assume that K0p D U.2/.Zp/ for

all p … Sf , and likewise for the other groups. The local components of these groups
for wjp 2 Sf will be specified in the proof of Proposition 5.2. We define congruence
subgroups K0.n/, etc. of these groups for n relatively prime to Sf in the usual way,
and recall that n will only be divisible by primes that split in E.

We let eP be the standard parabolic subgroup of GL.4;E/ with Levi eL D
GL.2;E/ � GL.2;E/, and let P be the corresponding standard parabolic subgroup
of U.4/. We let P0 be the standard Borel subgroup of U.2/.

5.1 Controlling a Single Parameter

We fix an even parameter �N 2 êsim.2/, and let  2 ˆ.U.4/; �C/ be the unique
parameter with  N D �.2/ � �N . We let �N correspond to a conjugate self-dual
cuspidal automorphic representation
 of GL.2;AE/. We assume that 
 is tempered
at all places; as before, this is done only for simplicity. We let  0 2 ‰.U.2/; ��/ be
the unique parameter with  0N D �N . We shall prove the following bound for the
finite part of the contribution of … to h3.2/.Y.n//

?.

Proposition 5.2. There is a choice of K0p for p 2 Sf , depending only on K, such that

X

�f2… ;f

dim�
K.n/
f � ŒK0 W .K0 \ P0.Af //K

0.n/ŒK W .K \ P.Af //K.n/
X

� 0
f 2… 0 ;f

dim�
0K0.n/
f :

(13)

We begin the proof of Proposition 5.2 with Lemma 5.4 and Corollary 5.5 below,
which control the left-hand side of (13) in terms of 
.

Lemma 5.3. Let p … Sf be split in E, and let wjp. Let … p D f�pg. We have

dim�
Kp.n/
p � ŒKp W .Kp \ Pp/Kp.n/.dim


eK0
w.n/

w /2: (14)
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Proof. Under the identification U.4/p ' GL.4;Ew/, �p is the Langlands
quotient of the representation � w of GL4.Ew/ induced from the representation

w.x1/j det.x1/j1=2 ˝ 
w.x2/j det.x2/j�1=2 ofePw. We have

dim�
Kp.n/
p � dim �eKw.n/

 w
:

The restriction of � w to eKw is isomorphic to the induction of 
w.x1/�
w.x2/ from
eKw \ePw to eKw. We see that

dim �eKw.n/
 w

D ŒeKw W .eKw \ePw/eKw.n/ dim.
w � 
w/
eLw\eKw.n/

D ŒeKw W .eKw \ePw/eKw.n/.dim

eK0

w.n/
w /2;

which is equivalent to the lemma. ut
We remove the square on the right-hand side of (14) using the following lemma.

Lemma 5.4. If p … Sf is split and wjp, we have

dim

eK0

w.n/
w � ŒeK0w W .eK0w \eP0w/eK0w.n/ D ŒK0p W .K0p \ P0p/K0p.n/:

Proof. If 
w is a principal series representation or a twist of Steinberg, this is
immediate. If 
w is supercuspidal, this follows by examining the construction of
supercuspidal representations given in §7.A of Gelbart [Ge]. ut
Corollary 5.5. Let p … Sf be split in E, and let wjp. Let … p D f�pg. We have

dim�
Kp.n/
p � ŒKp W .Kp \ Pp/Kp.n/ŒK

0
p W .K0p \ P0p/K0p.n/ dim


eK0
w.n/

w :

Lemma 5.6. Let p … Sf be nonsplit in E, and let wjp. We have

X

�p2… p

dim�
Kp
p � dim


eK0
w

w :

Proof. Identify eKw with a subgroup of G.4/p. The twisted fundamental lemma
implies that the functions 1Kp and 1eKwÌ	 are related by transfer. Applying Propo-
sition 2.3 with s D e gives

1
U.4/
Kp

. p/ D
X

�p2… p

dim�
Kp
p ;

and combining this with Proposition 2.2 and the twisted fundamental lemma gives

X

�p2… p

dim�
Kp
p D tr. Q� p.1eKwÌ	 //:
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The twisted trace tr. Q� p.1eKwÌ	 // is equal to the trace of Q� p.	/ on �eKw
 p

, so we have

tr. Q� p.1eKwÌ	 // � dim�eKw
 p
:

Under the identification G.4/p ' GL.4;Ew/, � p is the Langlands quotient of
the representation � w induced from 
w.x1/j det.x1/j1=2 ˝ 
w.x2/j det.x2/j�1=2. We
therefore have

dim�eKw
 p
� dim �eKw

 w
� dim


eK0
w

w ;

and the result follows. ut
Lemma 5.7. Let p 2 Sf , and let wjp. There is a choice ofeK0w, depending only on K,
such that

X

�p2… p

dim�
Kp
p � dim


eK0
w

w :

Proof. Suppose that p is nonsplit. By Mok [Mo, Proposition 3.1.1(b)], we may
choose a function e1Kp 2 eHp.4/ corresponding to 1Kp under twisted transfer.
Reasoning as in Lemma 5.6 gives

X

�p2… p

dim�
Kp
p D vol.Kp/

�1tr. Q� p.
e1Kp//;

where vol.Kp/ denotes the volume of Kp with respect to our choice of Haar measure
on U.4/p. If we choose eKw � GL.4;Ew/ ' G.4/p to be a compact open subgroup
such thate1Kp is bi-invariant undereKw, we have

tr. Q� p.
e1Kp//� dim�eKw

 p
:

Under the identification G.4/p ' GL.4;Ew/, � p is the Langlands quotient of the
representation � w induced from 
w.x1/j det.x1/j1=2˝
w.x2/j det.x2/j�1=2. Choose
eK0w so that the producteK0w �eK0w is contained in eKw. We then have

dim�eKw
 p
� dim �eKw

 w
� .dim


eK0
w

w /2:

Bounding dim

eK0

w
w by a constant depending on eK0w, and hence Kp, completes the

proof for p nonsplit. The proof in the split case follows in exactly the same way
using the explicit description of �p. ut
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Let SE=Q be a set of finite places of E that contains exactly one place above every
finite place of Q. Combining Corollary 5.5, Lemma 5.6, and Lemma 5.7 gives

X

�2… ;f

dim�K.n/
f � ŒK0 W .K0\P0.Af //K

0.n/ŒK W .K\P.Af //K.n/
Y

w2SE=Q

dim

eK0

w.n/
w :

Proposition 5.2 now follows from the lemma below.

Lemma 5.8. There is a choice of K0p for p 2 Sf , depending only on K, such that

Y

w2SE=Q

dim

eK0

w.n/
w �

X

� 0
f 2… 0 ;f

dim� 0K
0.n/

f :

Proof. We may factorize the right-hand side as

X

� 0
f 2… 0;f

dim� 0K
0.n/

f D
Y

p

X

� 0
p2… 0

p

dim�
0K0

p.n/
p :

Let p be an arbitrary prime, and wjp. It suffices to show that

dim

eK0

w.n/
w �

X

� 0
p2… 0

p

dim�
0K0

p.n/
p (15)

if p … Sf , and that if p 2 Sf the same inequality holds with a constant factor
depending only on eK0, and hence K.

If p is split, then… 0
p

contains a single representation that is isomorphic to 
w˝
��1w under the identification U.2/p ' GL.2;Ew/, and (15) is immediate.

Suppose that p … Sf is nonsplit. The definition of  0p implies that if �� W
LU.2/p ! LG.2/p, the representation of G.2/p ' GL.2;Ew/ associated with
�� ı  0p 2 ‰p.2/ is 
w. We let Q
w denote the canonical extension of 
w to a
representation ofeGC.2/p, and identifyeK0w with a subgroup of G.2/p. Proposition 2.2
and the twisted fundamental lemma give

tr. Q
w.1eK0
wÌ	 // D

X

� 0
p2… 0

p

tr.� 0p.1K0
p
// D

X

� 0
p2… 0

p

dim�
0K0

p
p : (16)

The left-hand side of (16) is equal to the trace of Q
w.	/ on 

eK0

w
w . If dim


eK0
w

w D 0,

then both sides of (16) are 0, and (15) holds. If dim

eK0

w
w D 1, then 	2 D 1 implies

that tr. Q
w.1eK0
wÌ	 // D ˙1. Positivity implies that we must take the plus sign so

that (15) also holds.
Suppose that p 2 Sf is nonsplit, and suppose that the left-hand side of (15)

is nonzero. Up to twist, there are only finitely many possibilities for 
w that are
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supercuspidal or Steinberg, and we may deal with these cases by simply choosing
K0p so that (15) is true in each case. If 
w is induced from a unitary character of the
Borel, then … 0

p
is described explicitly in §11.4 of Rogawski [Ro] and (15) follows

easily from this description. ut

5.2 Summing Over Parameters

We define ˆrel � êsim.2/ to be the set of even parameters �N such that �N1 is
given by

�N1 W z 7!
�

z=z
z=z

�
:

It may be shown in the same way as Lemma 4.6 that if  2 ‰.U.4/; �C/ satisfies
 N D �.2/ � �N with �N 2 êsim.2/, and � 2 … 1

satisfies H�.g;KI�/ ¤ 0,
then �N 2 ˆrel. If �N 2 ˆrel corresponds to the cusp form 
, and �1 is given
by �1.z/ D .z=z/1=2Ct with t 2 Z, then 
1 � �1 has infinitesimal character
.3=2Ct;�1=2CtI �3=2�t; 1=2�t/ 2 .C2=S2/�.C2=S2/. Theorem 1.2 of Caraiani
[Ca] then implies that
 is tempered at all places. It follows from this discussion that

h3.2/.Y.n//
? �

X

 ND�.2/��N

�N2ˆrel

X

�2… 

dim�K.n/
f : (17)

Applying Proposition 5.2 to the sum on the right-hand side (and ignoring the
factors #.… 1

/ as in Sect. 4.2) gives

h3.2/.Y.n//
? � ŒK0 W .K0 \ P0.Af //K

0.n/ŒK W .K \ P.Af //K.n/

�
X

 02‰.U.2/;��/
 0N2ˆrel

X

� 02… 0

dim� 0K
0.n/

f : (18)

The restriction on the infinitesimal characters of parameters in ˆrel implies that
there is a finite set of representations „1 of U.2/1 such that if  0N 2 ˆrel,
then all the representations in … 0

1
are in „1. Because ˆrel consists of

simple generic parameters we have … 0 D … 0.� 0/, and so every � 0 2 … 0

occurs in L2disc.U.2/.Q/nU.2/.A// with multiplicity one. If we define X.n/ D
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U.2/.Q/nU.2/.A/=K0.n/, and let m.�1;X.n// denote the multiplicity as in
Sect. 4.2, this gives

X

 02‰.U.2/;��/
 0N2ˆrel

X

� 02… 0

dim� 0K
0.n/

f �
X

� 02L2disc.U.2/.Q/nU.2/.A//
� 0

12„1

dim� 0K
0.n/

f

D
X

�12„1

m.�1;X.n//

� ŒK0 W K0.n/: (19)

Combining (17)–(19) gives

h3.2/.Y.n//
? � ŒK0 W .K0 \ P0.Af //K

0.n/ŒK W .K \ P.Af //K.n/ŒK
0 W K0.n/;

and applying the formula for the order of GL.N/ over a finite field completes the
proof.

5.3 The Case of Composite 	N

We now suppose that �N D �N
1 � �N

2 , where �N
i 2 ê.1/ correspond to conjugate

self-dual characters 
i. We may prove the following analogue of Proposition 5.2.

Proposition 5.9. There is a choice ofeK1;w for wjp 2 Sf , depending only on K, such
that

X

�f2… ;f

dim�K.n/
f � ŒK W .K \ P.Af //K.n/ dim
eK1.n/1 dim
eK1.n/2 :

Unlike Proposition 5.2, this bound is sharp. The reason for this is that the repre-
sentation� p for split p is equivalent to the induction of .
1;wıdet.x1//j det.x1/j1=2˝
.
2;w ı det.x2//j det.x2/j�1=2 from ePw to GL.4;Ew/, and it is easy to give a sharp
bound for the dimension of invariants undereKw.n/, unlike the Speh representations
considered in Lemma 5.3. We obtain a bound of n6C� for the contribution of these
parameters to h3.2/.Y.n//

?.
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Distribution of Hecke Eigenvalues for GL.n/

Jasmin Matz

Abstract The purpose of this survey is to briefly summarize and explain the results
of Matz (Weyl’s law for Hecke operators on GL.n/ over imaginary quadratic number
fields, 2013, arXiv:1310.6525) and joint work with Templier (Sato-Tate equidistri-
bution for the family of Hecke-Maass forms on SL.n;Z/, arXiv:1505.07285) about
the asymptotic distribution of eigenvalues of Hecke operators on cusp forms for
GL.n/. We also to sketch some motivation and potential extensions of our results.

1 Introduction

Let F be a number field with ring of adeles AF, and let n � 2 be an integer. Let
G D GL.n/, and let G.AF/

1 WD fg 2 G.AF/ j j det gjAF D 1g where j 	 jAF denotes
the adelic absolute value on A

�
F . One is interested in the spectral decomposition of

the space L2.G.F/nG.AF/
1/ under the right regular representation of G.AF/. Under

G.AF/ the space L2.G.F/nG.AF/
1/ decomposes into invariant subspaces as

L2.G.F/nG.AF/
1/ D L2cusp.G.F/nG.AF/

1/˚ L2res.G.F/nG.AF/
1/

˚ L2cts.G.F/nG.AF/
1/;

where L2cusp (resp. L2res, resp. L2cts) denotes the cuspidal (resp. residual, resp. continu-
ous) part of L2 under the right regular representation of G.AF/

1. The cuspidal part is
the most fundamental one in the sense that the residual and continuous parts can be
described in terms of Eisenstein series and their residues attached to cuspidal rep-
resentations on Levi subgroups of G [Lan76, MW95]. It is therefore of importance
to understand the spectral properties of the space of cusp forms. One of the most
basic questions is to asymptotically count the number of Laplace eigenfunctions
of bounded eigenvalue for the locally symmetric spaces G.F/nG.AF/

1=K where
K D K1 	 Kf � K is a finite index subgroup of a fixed maximal compact subgroup
K � G.AF/. The Weyl law answers this question in many cases.
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Suppose F D Q for the rest of the introduction. Then O.n/ is a maximal compact
subgroup of G.F1/ D G.R/, and G.AQ/

1=O.n/ ' SLn.R/= SO.n/ DW X. Let
� be the Laplacian on L2.X/, and let � � SLn.R/ be an arithmetic congruence
subgroup. Weyl’s law in its most basic form counts the number of eigenvalues of �
in L2cusp.�nX/. More precisely, let 0 � 
1 � 
2 � : : : be the cuspidal eigenvalues
of � (with multiplicities). Then

#fi j 
2i � Yg � c vol.�nX/Yd (1)

as Y ! 1 for c > 0 a constant depending only on n, and d D dimR X. This
was proven by Selberg for n D 2 [Sel56], by Miller for n D 3 [Mil01], and by
Müller for general n [Mül07]. The Weyl law also holds for more general groups,
cf. [DKV79, LV07]. This in particular proves the existence of infinitely many cusp
forms in L2.�nX/ but stills gives only crude information on the spectral properties
of �nX. Apart from � there are many more naturally occurring operators on
L2cusp.�nX/, and one can study the distribution of their (joint) eigenvalues as well.

Let D.X/ be the algebra of SLn.R/-invariant differential operators on X. It is
isomorphic to the Weyl group invariants Z.sln.C//W ' aW

C
of the center Z.sln.C//

of the universal enveloping algebra of the Lie algebra sln.C/ of SLn.C/. Here a is the
Lie algebra of the maximal diagonal torus in SLn.R/ which can be identified with
all vectors .X1; : : : ;Xn/ 2 R

n such that
P

i Xi D 0, and aC is its complexification. If
� � L2cusp.X/ is an irreducible component, elements of D.X/ act by a scalar on � by
Schur’s Lemma so that � defines a character �� W aW

C
�! C (the infinitesimal

character), that is, �� is a W-invariant element in the dual space a�
C

of aC. In
generalization of (1) one can ask how the �� distribute if one takes larger and larger
subsets of a�

C
. This question was answered by Lapid and Müller [LM09], see also

below.
Apart from the algebra of differential operators, there is a second family of

operators acting on L2cusp.�nX/, namely, the algebra of Hecke operators. The Hecke
algebra is commutative and preserves the eigenspaces of D.X/. Suppose fTngn2N is
a family of Hecke operators, and let  1; 2; : : : be a joint eigenbasis for L2cusp.�nX/
for D.X/ and fTngn2N. For every i let �i 2 a�

C
=W be the infinitesimal character of

the irreducible representation generated by  i, and let ai.n/ 2 Œ�kTnk; kTnk be the
eigenvalue of  i under Tn. Here kTnk denotes the operator norm of Tn. Then

ƒi WD .�i; ai.1/; ai.2/; : : :/

defines a point in the space

A WD a�
C
=W �

Y

n2N
Œ�kTnk; kTnk;

and one can ask how theseƒi distribute in A (with respect to the chosen ordering of
the basis). This question was studied in [Sar87] for n D 2, and in [ST15] for groups
G for which G.R/ has discrete series, cf. also [SST16].
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2 Results

2.1 Notation

Recall that n � 2 and G D GL.n/ over a fixed number field F. AF denotes the ring
of adeles of F, and AF;f the finite part of AF;f . Let OF be the ring of integers of F.
If v is a non-archimedean place of F, we write OFv for the ring of integers in Fv ,
qv � OFv for the maximal ideal in OFv , $v 2 qv for a fixed uniformizing element
of Fv , and qv for the cardinality of the residue field at v. Let T0 � G be the maximal
torus consisting of diagonal matrices, and let P0 D T0U0 be the usual minimal
parabolic subgroup of upper triangular matrices with U0 the unipotent radical of P0.
We write Z � G for the center of G. We also identify Z.F/ with a subgroup of the
finite part Z.AF;f / � G.AF;f /.

We fix the usual maximal compact subgroup K � G.AF/, K DQv Kv, with

Kv D

8
ˆ̂
<

ˆ̂
:

O.n/ if v is a real place;

U.n/ if v is a complex place;

G.OFv / if v is non-archimedean:

For a non-archimedean place v and an integer m � 0 let

Kv.q
m
v / D ker

�
Kv �! G.OFv =q

m
v /
�

be the principal congruence subgroup of level qm
v . If a � OF is an ideal with prime

factorization a DQv<1 qmv
v , we put

Kf .a/ D
Y

v<1
Kv.q

mv
v /;

and K.a/ D K1 	Kf .a/ with K1 D Qvj1Kv � G.F1/ DQvj1 G.Fv/. If F D Q

and N 2 Z�1, we also write Kf .N/ D Kf .NZ/ and K.N/ D K.NZ/.
Let …cusp.G.AF/

1/ denote the set of irreducible cuspidal automorphic represen-
tations of G.AF/

1, and for � D �1 	 �f 2 …cusp.G.AF/
1/ let ��1

2 a�
C
=W

denote the infinitesimal character of �1. If convenient, we identify � with its
representation space so that we may write dim�K for the dimension of the subspace
of K-fixed vectors in the representation space of � .

For simplicity of the statements below we choose the Haar measure on G.Fv/
such that it gives Kv volume 1 for every v. We then take the product measure on
G.AF/, and fix the measure on G.AF/

1 via the exact sequence

1 �! G.AF/
1 ,! G.AF/ �! R>0 �! 1
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where we take the usual multiplicative Lebesgue measure on R>0. The maximal
compact subgroup K then has volume 1 with respect to the measure on G.AF/

1.
If „ � G.AF/ (resp. „ � G.AF/

1, resp. „ � G.AF;f /) is a measurable subset,
we write vol.„/ for the volume on „ with respect to the measure on G.AF/

(resp. G.AF/
1, resp. G.AF;f /). For different choices of measures one might need

to adjust some of the constants below accordingly.

2.2 Weyl Law with Remainder Term for SLn.R/

Let F D Q, and let K D K1 	 Kf with Kf � Kf a finite index subgroup such
Kf � Kf .N/ for some N � 3. This last requirement ensures that Kf does not have
any non-trivial element of finite order.

Lapid and Müller [LM09] proved a refined version of the Weyl law for
G.F/nG.AF/

1=K: If � � ia� is a W-invariant bounded domain with piecewise
C2-boundary, then

X

�2…cusp.G.AQ/
1/W

��12t�

dim�K D vol.G.Q/nG.AQ/
1=Kf /

jWj
Z

t�
c.�/�2 d�

C O.td�1.log t/maxf3;ng/; (2)

as t ! 1, where c.�/ denotes the Harish-Chandra c-function for SLn.R/ so
that c.�/�2d� is the spherical Plancherel measure for SLn.R/. In more classical
terms this gives the asymptotic distribution (with weight factor dim�K.N/) of the
infinitesimal characters of cusp forms on �.N/nX, N � 3. This is because the
quotient G.Q/nG.AQ/

1=K.N/ is isomorphic to .Z=NZ/�-copies of �.N/nX for
�.N/ D f� 2 SLn.Z/ j � 
 1 mod Ng the principal congruence subgroup of
level N. Taking � to be the unit ball in ia�, one recovers the usual Weyl law (1)
together with an upper bound for the error term.

Let Bt.0/ denote the ball of radius t in a�
C

. According to [LM09] one also has

X

�2…disc.G.AQ/
1/W

��12Bt.0/nia�

dim�K D O.td�2/ (3)

i.e., the number of non-tempered � 2 …cusp.G.AQ/
1/ (which are supposed to be

non-existent according to the generalized archimedean Ramanujan Conjecture) is at
most of lower order than the number of tempered representations.
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2.3 Traces of Hecke Operators

We now turn to the main results of [Mat, MT]. Let F be an imaginary quadratic
number field (that is, a quadratic field extension of Q with one complex place) or
F D Q. The first case is covered in [Mat] while the second case is the subject
of [MT].

2.3.1 Hecke Algebra

For every non-archimedean place v of F consider the spherical Hecke algebra
Hv D C1c .G.Fv/ == Kv/ of locally constant, compactly supported bi-Kv-invariant
functions. This is a commutative C-algebra under convolution for which the
characteristic function of Kv is the unit element. For � D .�1; : : : ; �n/ 2 Z

n let
�v;� 2 Hv denote the characteristic function of the double coset Kv$

�
v Kv , where

$�
v WD

 
$
�1
v

: : :

$
�n
v

!

:

The set of functions f�� j � 2 Z
n; �1 � : : : � �ng generates Hv as a C-algebra. We

write Z
n;C for the set of tuples .�1; : : : ; �n/ 2 Z

n with �1 � : : : � �n. If � 2 Z
n,

we write k�k D .P�2i /
1=2 for the usual Euclidean norm of �. If � � 0, we let H��v

be the sub-vector-space of Hv generated (as a vector space over C) by the functions
�v;� with k�k � �. If S is a finite set of non-archimedean places, we put HS DQ
v2S Hv , and H�
S D Q

v2S H��vv if 
 D .�v/v2S is a sequence of non-negative
numbers. If �S 2 HS, we also identify �S with a function � 2 C1c .G.AF;f / == Kf /

by putting � D �S 	 1KS[S1 where S1 is the set of archimedean places of F, and
1KS[S1 W G.AS[S1

F / �! C the characteristic function of KS[S1 D Qv 62S[S1
Kv .

If 
 D .�v/v2S is a sequence of non-negative numbers, we set

…� D
Y

v2S

q�vv :

This number provides an upper bound for the “degrees” (that is, L1-norms) of the
Hecke operators in H�
S : There exists a > 0 such that for every �S 2 H


S with
j�Sj � 1 we have k�kL1.G.AF;f // D k�SkL1.G.FS// � …a


.

2.3.2 Distribution of Traces of Hecke Operators

Let F D f� 2 …cusp.G.AF/
1/ j �K ¤ 0g be the spectral set of all everywhere

unramified cuspidal representations with trivial K1-type, cf. [SST16]. Let� � ia�
be as before. We use the infinitesimal character and the domain � to put an order
on the set F : For t > 0 let

F.t/ D F�.t/ D f� 2 F j ��1
2 t�g:
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According to the generalized archimedean Ramanujan conjecture, every element of
F should eventually appear in F.t/ for t sufficiently large if � is “thick enough,”
that is, if � is such that

S
t>0 t� D ia�. In any case, the estimate (3) from [LM09]

shows (for F D Q; but one can show that a similar statement is true for F imaginary
quadratic) that one does not miss “too many” elements.

Theorem 2.1. (i) As t!1 we have

jF.t/j � jO�F j
vol.G.F/nG.AF/

1=Kf /

jWj
Z

t�
c.�/�2 d�

in the sense that the difference of the left and right-hand side tends to 0 as
t!1. Here jO�F j is the number of multiplicative units in OF.

(ii) There exist constants a; b; ı > 0 (depending only on n, �, and F) such that
the following holds: For every finite set of non-archimedean places S0, every
sequence of non-negative numbers 
 D .�v/v2S0 and every �S0 2 H�
S0

with
j� j � 1 we have

lim
t!1

jF.t/j�1 X

�2F.t/
tr�f .�/ D lim

t!1
jF.t/j�1 X

�2F.t/
tr�S0 .�S0 / D

X

z2Z.F/=Z.OF /

�.z/; (4)

and
ˇ
ˇ
ˇ
ˇ̌
ˇ
jF.t/j�1

X

�2F.t/
tr�f .�/�

X

z2Z.F/=Z.OF/

�.z/

ˇ
ˇ
ˇ
ˇ̌
ˇ
� a…b


t�ı (5)

for every t � 1.

Remark 2.2. (i) The number jO�F j is finite by our assumption that F has only one
archimedean place.

(ii) Taking S0 D ; so that � is the characteristic function of Kf , the second
part of Theorem 2.1 also gives an upper bound for the remainder term of
the asymptotic of the first part. Hence for F D Q we obtain the analogue
of [LM09] but for the full modular group � D SLn.Z/ (which was excluded
in [LM09] for technical reasons)—however with a slightly worse error term.

(iii) Taking �S0 D
Q
v2S0

�v;�v in the above theorem, we see that the main term,
that is the right-hand side of (4), vanishes for many sequences of �v . More
precisely, the main term vanishes unless

�v;1 D : : : D �v;n (6)

for every v < 1. In this situation, � corresponds to an ideal a � OF defined
by a D Q

v2S0
q
�v;1
v and �.z/ ¤ 0 if and only if z (identified with an element

in F�) generates a so that a needs to be principal. Hence if for every v (6) is
satisfied and if the sequence of �v;1, v 2 S0, corresponds to a principal ideal,
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we get

lim
t!1 jF.t/j

�1 X

�2F.t/
tr�f .�/ D 1;

and the left-hand side vanishes in all other cases. In general, any �S0 2 H

S0

is a linear combination of characteristic functions of double cosets so that this
consideration can be applied to an arbitrary �S0 .

If F D Q, we can reformulate the above result in more measure theoretic terms,
namely in terms of measures on the unitary dual of PGLn.QS/. (For F ¤ Q one can
make a similar reformulation but one has to be more careful with central characters.)
Let H D PGLn. Let FH D f�0 2 …cusp.H.AQ// j �KH ¤ 0g for KH D K\H.AQ/

the usual maximal compact subgroup of H.AQ/, and put FH.t/ D f�0 2 FH j
��1

2 t�g. The sets F and FH as well as F.t/ and FH.t/ can be canonically
identified with each other since every � 2 F has trivial central character so that it
can be identified with an element of FH. Hence if � D �S0 ˝ 1KS0 2 C1c .G.AQ;f //

is bi-Kf -invariant,

tr�f .�/ D
Z

G.AQ;f /

�.x/'.x/ dx

where ' is a normalized spherical matrix coefficient for �f . This equals

Z

Z.AQ;f /nG.AQ;f /

Z

Z.AQ;f /

�.zg/ dz '.g/ dg D
Z

Z.AQ;f /nG.AQ;f /

X

�2Z.Q/=Z.Z/

�.�g/'.g/ dg

Hence the above equals

Z

Z.AQ;f /nG.AQ;f /

0

@
X

�2Z.Q/=Z.Z/

�.�g/

1

A '.g/ dg D tr�f . Q�/

where

Q�.x/ D
X

�2Z.Q/=Z.Z/

�.�x/ D
X

�2Z.ZŒS�1
0 /=Z.Z/

�S0 .�x/ Df�S0 .x/

with ZŒS�10  D ZŒp�1 j p 2 S0. In particular,

X

�2F.t/
tr�S0 .�S0 / D

X

�2FH.t/

tr�S0 .f�S0 /:
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Since jF.t/j D jFH.t/j we get by Theorem 2.1

lim
t!1

ˇ
ˇFH.t/

ˇ
ˇ�1

X

�2FH.t/

tr�S0 .f�S0 / Df�S0 .1/: (7)

Each �0 2 FH defines a point in

Aur WD
Y

v<1
1H.Qv/

ur;

as well as its projection to the S0-component

Aur
S0
WD

Y

v2S0

1H.Qv/
ur

where 1H.Qv/
ur denotes the unramified unitary dual of H.Qv/. Hence we can ask

how the set FH.t/, considered as a subset of Aur or Aur
S0

, distributes in Aur or Aur
S0

.
For n D 2 this question was studied in [Sar87] for F D Q, and in [IR10] for F
imaginary quadratic; for groups with discrete series at1, this question was studied
in [Ser97, CDF97, Shi12, ST15].

For �v 2 1H.Qv/
ur let ı�v denote the Dirac measure supported at �v , and let

ı�S0
DQv2S0

ı�v . Put



S0
count;t D

ˇ
ˇFH.t/

ˇ
ˇ�1

X

�02FH.t/

ı�S0
:

For each v < 1 we also have the spherical Plancherel measure 
Pl;v on 1H.Qv/
ur.

Let 
Pl;S0 D
Q
v2S0


Pl;v . Then (7) says that


count;t.cf�S0 / �! 

S0
Pl .
cf�S0 /

as t!1 for every �S0 2 HS0 , and it also gives an upper bound for the error term.
Here cf�S0 D

Q
v2S0

be�v with be�v defined by

be�v.�v/ D tr�v.e�v/

for every tempered �v 2 1H.Qv/
ur. By Sauvageot’s density principle [Sau97] (cf.

also [Shi12, ST15, FLM15]) this is enough to prove that 
S0
count,t �! 


S0
Pl since the

bi-KH
S0

-invariant functions on H.FS0/ are contained in the image of HS0 under the
map �S0 7!f�S0 .
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2.3.3 Standard L-Functions

The above theorem gives information on the coefficients of L-functions attached
to unramified cuspidal representations: If � 2 F , there is a standard L-function
L.s; �/ associated with � for<s sufficiently large. The L-function can be written as
a Dirichlet series

L.s; �/ D
X

aOF

Aa.�/N.a/
�s

for suitable coefficients Aa.�/ 2 C, where the sum runs over all integral ideals in
OF , and N.a/ D jOF=aj denotes the norm of the ideal a. Moreover, for each a
there exists an element in the Hecke algebra �S0 2 HS0 (with S0 the set of places
dividing a) such that Aa.�/ D tr�S0 .�S0 / for all � 2 F . More precisely, this � is a

linear combination of those
Q
v<1 ��v with N.a/ D Qv<1 q

P
i �v;i

v and �v;1 � : : : �
�v;n � 0. In the case of F D Q and a a principal ideal NZ, then � D TN is the usual
Hecke operator attached to N [Gol06, §9].

Then the above theorem implies that there exist a; b; ı > 0 such that for every
ideal a � OF we have

lim
t!1 jF.t/j

�1 X

�2F.t/
Aa.�/ D

(
1 if a D bn for some principal ideal b � OF;

0 else;

and further,

ˇ
ˇ
ˇ
ˇ
ˇ̌jF.t/j�1

X

�2F.t/
Aa.�/ � ın.a/

ˇ
ˇ
ˇ
ˇ
ˇ̌ � aN.a/bt�ı ; t � 1;

where ın.a/ D 1 if a is the nth power of some principal ideal in OF , and ın.a/ D 0
otherwise.

Using Hecke relations, one can similarly compute the asymptotics for higher
moments

P
�2F.t/ Aa.�/

k for any k 2 Z�0.

2.4 The Relevance of the Error Term

Since much work needs to be invested to prove the estimate (5), we want to indicate
briefly a motivation for it: As explained above, the traces of Hecke operators are
closely related to standard L-functions of automorphic representations. Our spectral
set of representations F.t/ defines a family of L-functions L.s; �/, � 2 F.t/. There
has been much recent interest in the distribution of low-lying zeros of families of
L-functions, cf. [KS99, ILS00, ST15, SST16]. More precisely, one is interested in
the k-level densities
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jF.t/j�1
X

�2F.t/

X

��j1
;:::;��jk

ˆ

�
��j1 log t

2�
; : : : ;

��jk log t

2�

�
; (8)

whereˆ is a Schwartz–Bruhat function on R
k whose Fourier transform has compact

support, and the ��j1 D 1
2
C i��j1 ; : : : ; �

�
jk
D 1

2
C i��jk run over all pairwise different

k-tuples of zeros of L.s; �/. Since we do not assume GRH, the ��j may happen
to be complex, and we identify ˆ with its holomorphic extension to C

k. (Similar
expressions can be studied for other families of L-functions of course.)

It is conjectured that the low-lying zeros of families of L-functions are distributed
according to certain symmetry types associated with the families (cf. [SST16,
Conjecture 2]). This means that for any Schwartz–Bruhat functionˆ the limit of (8)
as t!1 is supposed to equal

Z

Rk
ˆ.x/W.x/ dx (9)

where W.x/ is a certain density attached to the conjectured symmetry type.
One can attack this problem by using the explicit formula for L-functions

(cf. [ST15]). To control unwanted terms in the explicit formula one then uses the
estimate (5) among other things. In particular, one can show that for the family
of L-functions attached to F.t/ the expression (8) approaches (9) as t ! 1 for
any Schwartz–Bruhat functions ˆ whose Fourier transform has sufficiently small
support, see [MT]. The quality of the estimate (5) controls the allowed size of the
support of the Fourier transform of ˆ.

There is another application of our results, see [MT, Corollaries 1.6, 1.7], namely,
we can give a bound towards the p-adic Ramanujan conjecture on average (see
[LM09] for an average bound towards the archimedean Ramanujan conjecture). If
� 2 F , then for every finite prime p we can identify �p with its Satake parameter in

˛�.p/ D diag.˛.1/� .p/; : : : ; ˛
.n/
� .p// 2 T0.C/=W. The p-adic Ramanujan conjecture

asserts that in fact ˛�.p/ 2 T0.C/1=W for all � 2 F and all finite primes p where
T0.C/1 denotes the group of all complex diagonal matrices with entries of absolute
value 1. From our results we can now deduce the following: For 	; t > 0 define

R.p; t; 	/ D jf� 2 F.t/ j max
1�j�n

logp j˛.j/� .p/j > 	gj:

Hence the p-adic Ramanujan conjecture asserts that R.p; t; 	/ D 0 for every 	 > 0.
Note that it is known that R.p; t; 	/ D 0 whenever 	 > 1

2
� 1

n2C1 by Luo et al.
[LRS99]. Then we can deduce, on the one hand, that there are constants c; ! > 0

such that for all t � 1, all 	 > 0 and all finite primes p we have

R.p; t; 	/ � Ctd�c	C !
log p
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for some C > 0, a constant which depends on p and 	 . On the other hand we can
show that if we are given a finite set S0 of finite primes, then for every 	 > 0 there
exists a constant � > 0 such that

R.p; t; 	/ � C0td��

for all t � 1. Here C0 > 0 is again a constant depending only on S0 and 	 .

3 Idea of Proof

The main tool for proving Theorem 2.1 is the Arthur–Selberg trace formula for the
group G D GL.n/ over F (again, F D Q or F is imaginary quadratic in this section).
It is a common approach to use various kinds of trace formulae to prove the Weyl law
in its different forms, cf. [Sel56, DKV79, Mil01, Mül07, LV07, LM09, Mül16]. In
fact, one motivation for Selberg to develop the trace formula was to prove the Weyl
law for locally symmetric spaces �nSL2.R/= SO.2/ for � � SL2.R/ an arithmetic
congruence subgroup.

Recall that the Arthur–Selberg trace formula is an identity of distributions

Jgeom.f / D Jspec.f /

of the so-called geometric and spectral side on the space of smooth, compactly
supported test functions f 2 C1c .G.AF/

1/, cf. [Art05]. The main strategy is then
as follows: For an appropriate choice of test function (or rather a family of test
function—see below for details), it is not too hard to show that

P
�W ��12t� tr�f .�/

is the main part of the spectral side (or rather of some integral over t� of the spectral
side) as t ! 1. Similarly, it can be shown that jF.t/j�1Pz2Z.F/=Z.OF/

�.z/ is the
main part of the (integral over t� of the) geometric side. The main difficulty is to
obtain an upper bound for the error term, and in particular, to prove its effectiveness
in � . This is achieved by analyzing the remaining parts of the geometric and spectral
side of the trace formula.

Finding good upper bounds for the remaining parts of the geometric side of the
trace formula is the most difficult part. Bounding the remaining parts on the spectral
side is very similar to the proof in [LM09], and we will not go into further details.
Many of the problems on the geometric side which we need to consider do not
appear in the treatment of the geometric side in [LM09]. This is because in [LM09]
the non-archimedean test function is fixed in contrast to the fact that we want to vary
our S0 and �S0 . In fact, in [LM09] it can be achieved that only the unipotent part of
the geometric side of the trace formula remains to study (see also below for a short
reminder of the coarse expansion of Jgeom.f /).

To explain the proof in some more detail we first need to explain our choice of
test functions.
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3.1 Test Functions

The family of test functions used in our proof is constructed with the spectral side in
mind: It is of the form F
;� D .f
1 	�/jG.AF/1 for a suitable family of bi-K1-invariant
functions f
1 2 C1c .G.F1/1 == K1/ depending on the spectral parameter 
 2 a�

C
.

The choice of the non-archimedean part of the test function suggests itself from
what we want to get from the cuspidal part of the trace formula, and it is the same
as in [LM09]. More precisely, it is chosen such that tr�1.f
1/ only contributes if
��1

is very close to 
. In particular, the integral

Z

t�

X

�2F
tr�.F
;� / d
 (10)

basically captures only those � 2 F with ��1
2 t�, that is, it equals

X

�2F W ��12t�

tr�f .�/

up to an error term which can be estimated, cf. also [LM09].
The family f
1 is constructed following the ideas of [DKV79]. By the Paley–

Wiener Theorem the diagram

is commutative and all maps are isomorphisms. Here:

• P.a�
C
/W is the space of Weyl group invariant Paley–Wiener functions on a�

C
,

• H denotes the spherical Fourier transform (= Harish–Chandra transform),
• A is the Abel transform, and
• F the Fourier transform.

Hence the inverses A�1 and H�1 are well defined. If h 2 C1c .aC/W and 
 2 a�
C

,
we put h
.X/ WD h.X/e�h
;Xi where h	; 	i denotes the pairing on a�

C
� aC. One then

fixes an appropriate choice of h 2 C1c .aC/W as in [DKV79] (cf. [LM09]) and puts
f
1 WD A�1.h
/. More precisely,

f
1.g/ D jWj�1
Z

ia�

F.h
/.�/��.g/c.�/�2 d�; (11)
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where

��.g/ D
Z

K1

eh�C�;H0.kg/i dk

is the elementary spherical function of parameter �, and c.�/ denotes the Harish-
Chandra c-function for G.F1/.

3.2 Expansions of the Geometric Side

The starting point for the analysis of Jgeom.F
;� / is its coarse expansion,
see [Art78], [Art05, §10]: Two elements g1; g2 2 G.F/ are called geometrically
equivalent if their semisimple parts (in the Jordan decomposition) are conjugate
in G.F/. Since G D GL.n/, this amounts to saying that g1 and g2 have the same
characteristic polynomial. G.F/ then decomposes into a disjoint union of geometric
equivalence classes under this relation, and we write O for the set of all these
equivalence classes.

Example 3.1. The variety of unipotent elements ounip in G.F/ constitutes one of the
equivalence classes in O. Similarly, for any central element � 2 Z.F/, the geometric
equivalence class generated by � equals �ounip.

Arthur shows that there exist distributions Jo W C1c .G.AF/
1/ �! C, o 2 O,

such that

Jgeom.f / D
X

o2O
Jo.f /;

see [Art05, §10]. For a fixed compactly supported test function, all but finitely many
Jo.f / vanish so that the coarse expansion is in fact a finite sum. More precisely, the
distribution Jo has support in

[

�2o
Ad G.AF/ 	 �;

where Ad G.AF/ 	 � is the G.AF/-conjugacy class of � .
Each of the distributions Jo has a finer expansion (cf. [Art05, §19]): Let o 2 O

and let S be a sufficiently large set of places of F depending on f and o as explained
in [Art86, §7]. In particular, S must contain the archimedean place of F, and it
has to be so large that f can be written as fS ˝ 1KS with fS 2 C1c .G.FS/

1/ and
1KS 2 C1c .G.AS

F// the characteristic function of KS D Qv 62S Kv . Then

Jo.f / D
X

M

jWMj
jWGj

X

�

aM.S; �/JG
M.�; fS/; (12)
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where

• M runs over all F-Levi subgroups of G containing the maximal torus T0 of
diagonal matrices,

• WM denotes the Weyl group of the pair .T0;M/,
• � runs over a (arbitrary) set of representatives for the M.F/-conjugacy classes in

M.F/ \ o,
• aM.S; �/ 2 C are certain “global” coefficient that are independent of f ,
• JG

M.fS; �/ are certain S-adic weighted orbital integrals, and
• aM.S; �/ 2 C and JG

M.fS; �/ depend only on the M.F/-conjugacy class of � .

Since there are only finitely many M.F/-conjugacy classes in M.F/ \ o, this fine
expansion of Jo.f / is a finite sum. One should note that the sum over � in general
needs to be taken over a set of representatives for a certain equivalence relation on
M.F/\o that depends on S. It is a special feature of G D GL.n/ that this equivalence
relation reduces to conjugacy and thus is independent of S.

Using our family of test functions F
;� in the geometric side of the trace formula
and integrating over 
 2 t� (hence mirroring the integral (10) on the geometric
side of the trace formula), we need to consider for each o 2 O the sum-integral

X

M

jWMj
jWGj

X

�

aM.S; �/
Z

t�
JG

M.f

1 	 �Snf1g; �/ d
:

The pairs .M; �/ 2 fGg�Z.F/ are exactly those which contribute to the main term:
If M D G and � 2 Z.F/, one has

aG.S; �/ D vol.G.F/nG.AF/
1/

and
Z

t�
JG

M.f

1 	 �Snf1g; �/ d
 D �.z/

Z

t�
f
1.1/ d
:

Using Plancherel inversion, one can show that this last integral equals
jWj�1 Rt� c.�/�2 d� up to a contribution to the error term (see [LM09]).

Hence it remains to show that the rest of the geometric side only contributes
to the error term in (5). The remaining main steps in the proof of Theorem 2.1
in [Mat, MT] are therefore as follows:

1. Find the (finitely many) classes o 2 O for which Jo.F
;� / ¤ 0, and keep track
of how they depend on � .

2. Find a sufficiently large set of places S such that the fine expansion (12) holds
for any o from step (1). Keep track of the dependence of S on � .

3. For any pair .M; �/ 62 fGg � Z.F/ with � 2 o \ M.F/ find an upper bound
for aM.S; �/ for any o from step (1) and S from step (2). Keep track of the
dependence on � .
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4. For any pair .M; �/ 62 fGg � Z.F/ with � 2 o \M.F/ find an upper bound for
the integral j Rt� JG

M.F

;�
S ; �/ d
j for any o from step (1) and S from step (2).

Keep track of the dependence on � .

We will not comment any further on steps (1) and (2) but explain the relevance
and main difficulties in the last two steps.

3.3 Global Coefficients

The global coefficients aM.S; �/ are in general only understood in some special
cases, although there has been some recent progress [CL, Cha]. If � is semisimple,
aM.S; �/ is independent of S and equals

aM.S; �/ D vol.M� .F/nM� .AF/
1/;

where M� .F/ is the centralizer of � in M.F/ [Art86, Theorem 8.2]. If � is not
semisimple, exact expressions for aM.S; �/ are only known in a few low-rank
examples [JL70, Fli82, HW]. For GL.n/ there exists at least an upper bound which
is sufficiently good to prove the error estimate in (5) [Mat15]: There exist a; b > 0

depending only on n and the degree of F over Q such that

aM.S; �/ � aDb
F

X

.sv/v2S2ZjSj
�0WP

v sv�n�1

Y

v2SnS1

ˇ
ˇ
ˇ̌
ˇ
�
.sv/
Fv
.1/

�Fv .1/

ˇ
ˇ
ˇ̌
ˇ
;

where �Fv .s/ D .1 � q�s
v /
�1 denotes the local Dedekind zeta function, and �.sv/Fv

.s/
its sv th derivative. For certain types of � the upper bound for aM.�; S/ has recently
been improved in [Cha].

3.4 Erratum to [Mat15]

There is a mistake in the volume formula for G.F/nG.AF/
1 as stated in [Mat15]

which has some effect on the formulation of a conjecture in that paper.
In fact, in the normalization of measures in [Mat15] the adelic quotient

G.F/nG.AF/
1 has volume

vol.G.F/nG.AF/
1/ D D

n.n�1/
4

F res
sD1 �F.s/

nY

kD2
�F.k/;



342 J. Matz

where �F is the Dedekind zeta function of F, and if n D 1, the empty product is
interpreted as 1. This formula was incorrectly stated in [Mat15] where the factor

D
n.n�1/
4

F was missing on the right-hand side. This does not have any effect on the
statement or proof of the results of Matz [Mat15]. However, the statement of the first
part of Matz [Mat15, Conjecture 1.3] needs to be modified by the obvious power of
the discriminant of DF.

More precisely, the inequality .4/ in [Mat15, Conjecture 1.3] should read

ˇ
ˇaM.V ; S/

ˇ
ˇ � CDNMC�

F

X

sv2Z�0;v2SfinWP
sv��

Y

v2Sfin

ˇ
ˇ
ˇ
ˇ
�
.sv/
F;v .1/

�F;v.1/

ˇ
ˇ
ˇ
ˇ;

see [Mat15] for the missing notation. Here the number NM is defined as follows:
There is a partition .n1; : : : ; nr/ of n such that M is over F isomorphic to GL.n1/
� : : : � GL.nr/. We then define NM DPr

iD1 ni.ni � 1/=4.

3.5 Weighted Orbital Integrals

To attack step (4), one first needs to better understand the weighted orbital integrals.
The first step is to reduce the S-adic integral JG

M.�; fS/ to a linear combination of
products of v-adic integrals for v 2 S. This can be done by using Arthur’s splitting
formula for weighted orbital integrals [Art88, § 9]. It reduces step (4) basically to
two different problems, namely, to bound for every Levi L � M

• the archimedean integral:

ˇ
ˇ
ˇ
ˇ

Z

t�
JL

M.�; f

1/ d


ˇ
ˇ
ˇ
ˇ ; (13)

• the non-archimedean integrals
ˇ
ˇJL

M.�; �v/
ˇ
ˇ for v 2 Snf1g.

For the non-archimedean integrals, it was shown in [Mat] by using explicit
computations on the Bruhat–Tits building as in [ST15, § 7] combined with bounds
for unweighted orbital integrals [ST15, § 7, Appendix B] that there exist a; b; c > 0
depending only on n and the global field F such for any non-archimedean v, any
�v � 0, and any �v 2 H��vv , j�vj � 1, we have

ˇ
ˇJL

M.�; �v/
ˇ
ˇ � qaCb�v

v ��v .�/c

where

��v .�/ WD
Y

˛

maxf1; j1 � ˛. Q�/j�1F.�/g
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with ˛ running over all positive roots of .T0;G/, F.�/=F the splitting field of � , and
Q� 2 T0.F.�// a diagonal matrix having the same eigenvalues as � (in F.�/). Note
that ��v .�/ is well defined since the entries of Q� are unique up to permutation (i.e.,
Q� is unique up to conjugation by Weyl group elements).

To estimate (13), we require a good pointwise upper bound for the elementary
spherical functions ��. This task is significantly easier if F is imaginary quadratic
than if F D Q. In the former case F1 D C, the elementary spherical functions
�� for GLn.C/ are well understood and can be expressed as rational functions in
eh�;H0.�/i and eh�;H0.�/i. In the latter case, F1 D R, the elementary spherical functions
for GLn.R/ can only be expressed as integrals, but not as rational functions of
elementary functions as in the complex case. It is not easy to obtain a non-trivial
estimate for these functions which is effective in the spectral parameter as well as
the group parameter. Recently a sufficiently good upper bound for these spherical
functions was proven in [BP, MT]. There were several preceding upper bounds for
spherical functions, cf. [DKV83, Mar], but they always required at least one of the
variables (the spherical parameter or the group element) to stay in a bounded set and
away from the singular set.

4 Further Directions

4.1 Improving the Error Term

As explained in Sect. 2.4, the effective dependence of the bound (5) on � makes
Theorem 2.1 applicable in proving certain conjectures about low-lying zeros of
families of L-functions. It would be desirable to improve the bound (5) or at least to
control the constant b in terms of n as this would lead to a better understanding of
how large the support of the Fourier transform of the test functionˆ in (8) may be.

The main obstacles when trying to give an upper bound for b are bounding
the non-archimedean weighted orbital integrals JL

M.�; �v/, and bounding the global
coefficients aM.�; S/. In principle, the upper bounds for both quantities can be at
least made effective in n, but with our types of proofs only very crude bounds would
arise. Recent work [Cha] gives good bounds for the global coefficients in some
special cases.

4.2 General Number Fields

The purpose of this section is to formulate the analogue of our main theorem over a
general number field [see (14)], and to explain what points then need to be changed
in the proof of the theorem. In particular, the construction of the archimedean test
function needs to be modified.
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Suppose F is a number field of degree d D ŒF W Q with r1 real and r2 complex
places so that d D r1 C 2r2. For each vj1 let a�v;0 D X.T0=Q/Q ˝ R ' R

n where
X.T0=Q/Q denotes the group of rational characters T0 �! GL.1/ for T0 considered
as a group over Q, and av;0 D HomR.a

�
v;0;R/. Similarly, let a�0 D X.ResF=Q T0/Q˝

R and a0 D HomR.a
�
0 ;R/ with X.ResF=Q T0/Q the group of Q-characters of T0 as a

group over F. Then

a0 '
M

vj1
av;0; and a�0 '

M

vj1
a�v;0:

We define av;G, a�v;G, aG, and a�G similarly with G in place of T0. We let av, a�v , a,
and a� be the spaces such that av;0 D av ˚ av;G, a�v;0 D a�v ˚ a�v;G, and so on. Let

a1 D fX D .Xi/1�i�n.r1Cr2/ 2 a0 j
X

i

Xi D 0g;

and

a1;� D f� D .�i/1�i�n.r1Cr2/ 2 a�0 j
X

i

�i D 0g:

Further, let

a1G D aG \ a1; and a1;�G D a�G \ a1;�:

If � 2 …cusp.G.AF/
1/, the infinitesimal character ��1

is now an element in a1;�
C

.
It has a unique decomposition

��1
D ���1

C
X

vj1
�� 0

v
2 a1;�G;C ˚

M

vj1
a�v;C

where ���1
corresponds to the central character ��1

of �1, � 01 D ��1�1
�1, and

� 01 D
Q
vj1 � 0v .

Let � � a1;�
C

be a nice bounded set. For simplicity we assume that � is of the
form

� D �Z ˚
M

vj1
�v

for suitable nice bounded subsets �Z � a1;�G;C , and�v � a�v;C.
For each vj1 let f
vv , 
v 2 a�v;C be constructed as before. Let fZ W

Z.F1/=R>0.Z.F1/ \ K1/ �! C be a compactly supported function with
fZ.1/ D 1, and let bfZ denote its Fourier transform on a1;�G;C . For 
Z 2 a1;�G;C let

f
Z
Z be such that cf
Z

Z .�Z/ D bfZ.�Z � 
Z/. We then define

f
1.g/ D f
Z
Z .z/

Y

vj1
f
vv .g0v/
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for g 2 G.F1/1 with z its central component in Z.F1/ \ G.F1/1, g0 D z�1g DQ
vj1 g0v , and 
 D 
Z CPvj1 
v 2 a1;�G;C ˚

L
vj1 a�v;C D a1;�

C
.

This choice of test function allows us to essentially reduce the analysis of the
trace formula to the previously considered cases for F D Q or F imaginary
quadratic. In particular, the integral over the cuspidal part of the spectral side of
the trace formula for the test function f
1 	 �

Z

t�
Jcusp.f


1 	 �/ d


should equal, up to an error term,

X

�2F.t/
tr�f .�/;

where F D f� 2 …cusp.G.AF/
1/ j �K ¤ 0g and F.t/ D f� 2 F j ��1

2 t�g as
before. On the other hand, if z 2 Z.F/, then it should follow similarly as in the other
cases that up to a negligible error term we have

X

z2Z.F/

Z

t�
f
1 	 �.z/ d
 D ƒ.t/

X

z2Z.F1/

�.z/

with

ƒ.t/ D vol.G.F/nG.AF/
1=Kf /

Y

vj1
jWj�1

Z

t�v

cv.�/�2 d�

where cv denotes the Harish-Chandra c-function for G.Fv/1, and F1 the set of all
elements in F� which lie in the kernel of the composite map

F� �! aG �! a1G :

Here the first map is given by x 7! .log jxvjv/vj1, and the second map is the
orthogonal projection onto a1G . That z 2 Z.F/nZ.F1/ only contribute to the error
term can be seen by Fourier inversion and integration by parts. The remaining parts
of the trace formula again should only contribute to the error term.

Hence the final statement is expected to be

lim
t!1ƒ.t/

�1 X

�2F.t/
tr�S0 .�S0 / D

X

z2Z.F1/

�.z/: (14)
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4.3 General Level

In the previous section we only considered the family F of everywhere unramified
cuspidal representations. If Kf � Kf is a finite index subgroup, one can more
generally consider the family

FK D f� 2 …cusp.G.AF/
1/ j �K ¤ 0g

of cuspidal representations having a K-fixed vector for K WD K1 	 Kf . We can
accordingly put FK.t/ D f� 2 FK j ��1

2 t�g. For F D Q and Kf contained in
Kf .N/ for some N � 3, the Weyl law was proven in [LM09] as explained above.
However, the dependence of the estimate of the error term on Kf was left unspecified
in [LM09]. It might be interesting to make this dependence explicit as this might also
allow to study families of representations with varying level.

Remark 4.1. The method of using the trace formula to prove the Weyl law has the
disadvantage that one counts the representations in FK.t/ with a certain weight
factor, namely the dimension dim�K of the K-fixed space of � . If K D K is the
maximal compact subgroup, then by multiplicity-one one has dim�K D 1 for
every � 2 F.t/ D FK.t/ so that in this case one indeed counts the number of
representations in FK.t/. It would be interesting to see whether one can count the
number of � 2 FK.t/ of conductor K, or at least the number of newforms over
� 2 FK.t/.

In [Mat] the upper bound in the error term was made effective in Kf if the ground
field F is imaginary quadratic (the same can be done for F D Q). More precisely,
we prove the following in [Mat]: Let Kf � Kf be a finite index subgroup and put
K D K1 	 Kf . The Weyl law then becomes (cf. (2) from [LM09] for F D Q)

ƒK.t/ WD
X

�2FK.t/

dim�K � jZ.F/\ Kf jvol.G.F/nG.AF/
1=K/

jWj
Z

t�
c.�/�2 d�

(15)

as t!1. (Recall that c denotes the Harish-Chandra c-function on G.F1/, that is,
here it is the c-function for GLn.C/.) Moreover, there exist constants a; b; c; ı > 0

depending only on n, F, and � such that the following holds: Let „ � G.AF;f / be
an open compact subset which is bi-Kf -invariant (that is, k1„k2 D „ for all k1; k2 2
Kf ), and let �„ 2 C1c .G.AF;f // be the characteristic function of „ normalized by
vol.Kf /

�1. Then

lim
t!1ƒK.t/

�1 X

�2FK.t/

tr�f .�„/ D
X

z2Z.F/=Z.F/\Kf

�„.z/ D
ˇ
ˇ.Z.F/\„/=.Z.F/\ Kf /

ˇ
ˇ ;
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and
ˇ
ˇ̌
ˇ
ˇ
ˇ
ƒK.t/

�1 X

�2FK .t/

tr�f .�„/�
ˇ
ˇ.Z.F/\„/=.Z.F/\ Kf /

ˇ
ˇ

ˇ
ˇ̌
ˇ
ˇ
ˇ
� aŒK W Kb vol.„/ct�ı

(16)

for every t � 1.

Remark 4.2. (i) Taking „ D Kf , (16) also provides an upper bound for the error
term in (15).

(ii) If Kf D Kf , the upper bound for the remainder term in (16) is the same a
in Theorem 2.1: In the situation of Theorem 2.1 we may assume that �S0 DQ
v2S0

�v with �v 2 H��vv the characteristic function of „v WD Kv$
�v
v Kv for

suitable �v with k�vk � �v . But then the volume of „ D Q
v<1„v (which

equals the degree of the Hecke operator �) is � …a

 for some a > 0 depending

only on n and F.

4.4 General K1-type

So far we only considered representations with trivial K1-type, that is, � such
that �K11 ¤ 0. Suppose � is an irreducible unitary representation of K1 with
representation space V� . One can consider � 2 …cusp.G.AF/

1/ which have K1-
type � , that is, for which � occurs in the decomposition of the restriction of �1 to
K1 into irreducibles. For F D Q and Kf � Kf a finite index subgroup, the main
term of the Weyl law for representations with Kf -fixed vector and K1-type � (with
�.�1/ D id if �1 2 Kf ) was proven in [Mül07]. More precisely, taking� D B1.0/
the unit ball in ia� [Mül07] proves that as t!1

X

�2FK.t/

dim�
Kf

f dim .H�1
˝ V� /

K1 � ıKf dim �

vol.Kf /

vol.G.Q/nG.AQ/
1/

.4�/d=2�.d=2C 1/ td

whereH�1
denotes the representation space of�1, and ıKf equals 1 or 2 depending

on whether �1 62 Kf or �1 2 Kf .
The method of proof of [Mül07] is not applicable if one wants to obtain a

bound on the error term. It might, however, be possible to modify the proof
of [LM09, Mat, MT] to incorporate more general K1-types. Already in [MT] we
use a particular non-trivial K1-type to obtain odd Maass forms. In general, however,
one major obstacle in carrying this approach over to arbitrary � is that the inversion
formula (11) for the spherical Harish-Chandra transform is in general not valid. For
certain K1-types it still holds (cf. [HS94, Chap. I, § 5]), but in general one needs
to take into account the residues arising in the proof of the Paley–Wiener theorem
when changing the contour of certain integrals [Del82, Art83, Shi94].
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Suppose for simplicity that � is one-dimensional, and consider for � 2 ia�
C

the
elementary �-spherical function

ˆ�;�.g/ D
Z

K1

eh�C�;H0.kg/i�.k�1�.kg// dk; g 2 G.F1/;

where �.kg/ denotes the K1-component of kg in its Iwasawa decomposition kg D
tuk1 2 T0.R/U0.R/K1. Then ˆ�;�.g/ 2 End V� , and ˆ�;� satisfies the invariance
properties

ˆ�;�.k1gk2/ D �.k1k2/ˆ�;�.g/

for all k1; k2 2 K1, g 2 G.F1/. The Harish-Chandra transform gives a map

f 7! H.f /.�/ WD
Z

G.F1/1
f .g/ˆ��1;�.g/ dg; � 2 a�

C

for f 2 C1c .G.F1/1; �/, the space of all f 2 C1c .G.F1/1/ satisfying f .k1gk2/ D
�.k1k2/f .g/ for all k1; k2 2 K1 and g 2 G.F1/. The resulting function is a
holomorphic function on a�

C
. However, the inversion formula (11) for H is only

valid for certain � .
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Zeta Functions for the Adjoint Action of GL.n/
and Density of Residues of Dedekind
Zeta Functions

Jasmin Matz

Abstract We define zeta functions for the adjoint action of GLn on its Lie
algebra and study their analytic properties. For n � 3 we are able to fully
analyse these functions. If n D 2, we recover the Shintani zeta function for the
prehomogeneous vector space of binary quadratic forms. Our construction naturally
yields a regularisation, which is necessary to improve the analytic properties of these
zeta function, in particular for the analytic continuation if n � 3.

We further obtain upper and lower bounds on the mean value X� 52
P

E ressD1 �E.s/
as X ! 1, where E runs over totally real cubic number fields whose second
successive minimum of the trace form on its ring of integers is bounded by X. To
prove the upper bound we use our new zeta function for GL3. These asymptotic
bounds are a first step towards a generalisation of density results obtained by
Datskovsky in case of quadratic field extensions.

1 Introduction

The purpose of this paper is twofold. First of all, we want to provide another point
of view for the construction of the Shintani zeta function Z.s; ‰/ associated with
the space of binary quadratic forms [Shi75, Yuk92], and we want to generalise
this approach to higher dimensions, namely, to the action of GL1 �GLn on the Lie
algebra gln. The analytic properties of the zeta function Z.s; ‰/ are unsatisfactory
but it can be “adjusted” (cf. [Yuk92, Dat96]) to satisfy a simple functional equation
with only finitely many poles. The advantage of our approach is that a suitable
modification naturally emerges (for Z.s; ‰/ as well as for the higher dimensional
case).

The second purpose of this paper is to make a first step towards the generalisation
of a result from [Dat96] to higher dimensions: We prove upper and lower bounds
on the density of residues of Dedekind zeta functions attached to totally real cubic
number fields. For the upper bound we use our new zeta function for n D 3.
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Our construction of the zeta functions has also close connections with the Arthur–
Selberg trace formula for the group GL.n/. We shall comment further on this below
and in Sect. 6.1.

An interesting class of zeta functions, namely the Shintani zeta functions, can be
constructed from prehomogeneous vector spaces, cf. [SS74, Shi75, Yuk92, Kim03].
One fundamental example of a prehomogeneous vector space is the space of binary
quadratic forms with rational coefficients together with the group GL1 �GL2 acting
on this space by multiplication by scalars and by changing basis, respectively. One
can associate a zeta function Z.s; ‰/ with this space as in [Shi75, Yuk92]. There
are two natural generalisations of this space to higher dimensions corresponding
to different interpretations: From the point of view of quadratic forms, the obvious
generalisation is to consider GL1 �GLn acting on quadratic forms in n variables.
This is again a prehomogeneous vector space which was studied in [Shi75, Suz79],
for example.

On the other hand, we can equally well identify the space of binary quadratic
forms with the Lie algebra sl2 of SL2 so that the action of GL2 becomes the adjoint
representation on sl2. From this point of view, it is more natural to generalise to
higher dimensions by considering the action of GL1 �GLn on sln (or gln D sln˚gl1)
by letting GL1 act by multiplication by scalars and GLn by the adjoint action. This
is the point of view we take in this paper. However, this is not a prehomogeneous
vector space for n � 3 so that the general theory of Shintani zeta functions does not
apply.

One reason to study such zeta functions is that in many cases the Dirichlet
coefficients of these functions contain information on certain arithmetic quantities
which can often be studied with Tauberian theory, see, for example, [Shi75,
DW88, WY92, Dat96, Bha05, Bha10, TT13, BST13]. For example, the Shintani
zeta function Z.s; ˆ/ introduced above can be used to deduce density theorems for
class numbers of binary quadratic forms as well as for residues of Dedekind zeta
functions for quadratic number fields, cf. [Shi75, Dat96].

We shall see that one can find the residues of Dedekind zeta functions of certain
field extensions over Q in the Dirichlet coefficients of the zeta function we are going
to define. Although the underlying structure of our space is not prehomogeneous in
general, we can still extract some information from our zeta function, at least in the
cubic case.

The paper consists of two main parts. The second part applies the results from
the first part but is otherwise independent from it.

We are now going to describe our results in some more detail and try to give a
guide for reading the paper. Let n � 2, G D GLn, and let g D gln be the Lie algebra
of G. Then G acts on g by the adjoint action Ad. Let A denote the ring of adeles of
Q, j 	 jA the usual absolute norm on A

�, and G.A/1 D fg 2 G.A/ j j det gjA D 1g.
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Part 1

1.1 Definition of the Zeta Function

We generalise the zeta function Z.s; ‰/ (we will recall the definition of the
Shintani zeta function in Sect. 6.3) to higher dimensions by defining the main (or
unregularised) zeta function for G by

„main.s; ˆ/ D
Z 1

0

�n.sC n�1
2 /

Z

G.Q/nG.A/1
X

ŒX

ˆ.�Ad x�1X/ dx d��

for s 2 C, <s � 0, and ˆ W g.A/ �! C a Schwartz–Bruhat function.
Here the sum inside the integral runs over all Ad G.Q/-equivalence classes ŒX
of regular elliptic elements in g.Q/, that is, elements which have an irreducible
characteristic polynomial over Q. This defines a holomorphic function for <s >
nC1
2

, cf. Theorem 1.1 below. For n D 2 the function„main.	; ˆ/ basically coincides
with the (unmodified) Shintani zeta function Z.s; ‰/ from [Shi75, Yuk92, Dat96]
(cf. Sect. 6.3 and [Mat11]) for ‰ constructed from ˆ in a certain way.

To study„main.	; ˆ/ one needs to regularise it in a suitable way. For n D 2 a reg-
ularisation is needed to obtain a “nice” functional equation and only finitely many
poles (cf. [Yuk92, Dat96] for Z.s; ‰/), but for higher dimensions, the regularisation
appears to be even more essential: Already for n D 3, it seems that „main.	; ˆ/
cannot be continued to all of C, cf. [Mat11, IV.iii]. Our method of regularisation is
different from the previously used methods for Z.s; ˆ/: In [Yuk92, Dat96] smoothed
Eisenstein series were used to cut off diverging integrals. In contrast to this we use a
more geometric truncation process that is analogous to the one employed by Arthur
for his trace formula in the group case; cf. also [Lev99] for a similar truncation for
the Shintani zeta function attached to the space of binary quartic forms. To perform
this truncation we use Chaudouard’s trace formula for g (= truncated summation
formula) from [Cha02]: Let O denote the set of geometric equivalence classes on
g.Q/. This set corresponds bijectively to Ad G.Q/-orbits of semisimple elements,
cf. Sect. 2.4. Let n 2 O be the nilpotent variety in g. One can attach to every o 2 O
and to every truncation parameter T in the coroot space a of G a distribution JT

o on
the space of Schwartz–Bruhat functions ˆ W g.A/ �! C, cf. Sect. 2.7. They are
defined similar to Arthur’s distributions on the space of test functions on a reductive
algebraic group appearing in Arthur’s trace formula. We now define the regularised
zeta function„T.s; ˆ/ as follows: If � 2 R>0, set ˆ�.x/ D ˆ.�x/. Then

„T.s; ˆ/ WD
Z 1

0

�n.sC n�1
2 /

X

o2O; o¤n

JT
o .ˆ�/ d��; (1)

provided this integral converges. For later applications in the second part of the
paper we need to extend this definition to a certain class S�.g.A//, 0 < � � 1, of
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not necessarily smooth test functions, cf. Sect. 2.5. This extension to non-smooth
functions is important for later applications in Part 2. The function „main.	; ˆ/
corresponds to the partial sum over such o 2 O which are attached to orbits of
regular elliptic elements in the definition of „T.s; ˆ/.

1.2 Relation to Arthur’s Trace Formula and Automorphic
L-Functions

The function„T.	; ˆ/ is closely related to Arthur’s trace formula for G as „T.	; ˆ/
“contains” the geometric side of Arthur’s trace formula for a certain non-standard
test function, cf. Sect. 6. „T.s; ˆ/ therefore also “contains” the spectral side of
Arthur’s trace formula. The discrete spectrum, contributing to the spectral side,
therefore also contributes to „T.s; ˆ/. Choosing a suitable non-standard test
function the contribution from the discrete spectrum to „T.s; ˆ/ in fact equals

X

�

L�.s; �/

where the sum runs over all unramified automorphic representations of G.A/1

appearing in L2disc.G.Q/nG.A/1/, and L�.s; �/ is the standard L-function of � with
a suitable completion at 1. This follows from the construction in [GJ72]. Such
sums of L-functions play a central role in the theory of “Beyond Endoscopy”
(cf. [Lan04]). That these sums show up as a “part” of our zeta functions reflects
the fact that the Lie algebra g is Vinberg’s universal monoid for G D GL.n/,
cf. [Ngô14].

1.3 Analytic Properties of„T.s;ˆ/

Our first main result is the following:

Theorem 1.1 (cf. Theorem 3.4). Let n � 2. There exists � 2 .0;1/ depending
only on n such that for every ˆ 2 S�.g.A// the following holds:

(i) If T is sufficiently regular, the integral defining „T.s; ˆ/ converges absolutely
and locally uniformly for <s > nC1

2
. In particular, „T.s; ˆ/ is holomorphic in

this half plane.
(ii) „T.s; ˆ/ is a polynomial in T of degree at most dim a D n � 1 and can be

defined for every T 2 a. Then for every T the function„T.s; ˆ/ is holomorphic
in <s > nC1

2
.

Here S�.g.A// for � 2 .0;1 is a generalisation of the space of Schwartz–
Bruhat functions on g.A/, see Sect. 2.5 for the definition. In fact, if � D 1,
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S.g.A// D S1.g.A// is equal to the usual space of Schwartz–Bruhat functions.
If � is finite, elements of S�.g.A// are in general only differentiable up to order �
and satisfy the same conditions of a Schwartz–Bruhat function but only up to this
order.

In this way we get a well-defined family „T.s; ˆ/ of zeta functions indexed
by the parameter T 2 a and varying continuously with T. By the nature of our
construction this family depends on an initial choice of minimal parabolic subgroup
in G. We can, however, choose a zeta function in this family which is independent
of this choice: Taking T D 0, the function „0.s; ˆ/ does not depend on the fixed
minimal parabolic subgroup but only on the fixed maximal compact subgroup and
maximal split torus (cf. [Art81, Lemma 1.1]).

One of the standard methods to get the meromorphic continuation and functional
equation of zeta functions is to use the Poisson summation formula. In our context,
Chaudouard’s trace formula takes the place of the Poisson summation formula, and
the main obstruction to obtain the meromorphic continuation and the functional
equation for„T .s; ˆ/ is to understand the nilpotent contribution JT

n.ˆ�/. Restricting
to n � 3, we are able to analyse the nilpotent distribution JT

n.ˆ�/ completely (see
Sects. 4 and 5), obtaining our main result of Part 1:

Theorem 1.2 (cf. Theorem 5.7). Let G D GLn with n � 3, and let R > n be given.
Then there exists � 2 .0;1/ such that for every ˆ 2 S�.g.A// and T 2 a the
following holds.

(i) „T.s; ˆ/ has a meromorphic continuation to all s 2 C with <s > �R, and
satisfies for such s the functional equation

„T.s; ˆ/ D „T.1 � s; Ô /:

(ii) The poles of „T.s; ˆ/ in <s > �R are parametrised by the nilpotent orbits
N � g.Q/. More precisely, its poles occur exactly at the points

s�N D
1 � n

2
C dimN

2n
and sCN D

1C n

2
� dimN

2n

and are of order at most dim aC1 D n. In particular, the furthermost right and
furthermost left pole in this region are both simple, correspond to N D 0, and
are located at the points sC0 D 1Cn

2
and s�0 D 1�n

2
, respectively. The residues at

these poles are given by

res
sDs�

0

„T.s; ˆ/ D vol.G.Q/nG.A/1/ˆ.0/; and

res
sDsC

0

„T.s; ˆ/ D vol.G.Q/nG.A/1/
Z

g.A/

ˆ.X/ dX:
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Remarks 1.3.

(i) The inconvenient way in which the first part of the theorem is stated is due
to the fact that the space of functions S�.g.A// is not closed under Fourier
transform if � <1, cf. the definition of the space S�.g.A// in Sect. 2.5.

(ii) If � D 1, then ˆ is a Schwartz–Bruhat function and „T.s; ˆ/ can be
meromorphically continued to all of C.

(iii) For applications in the second part of the paper we indeed need to be able to
choose test functions in S�.g.A// with � <1. This is because for the proof of
Theorem 1.5 we use test functions which are not smooth but only differentiable
up to a certain order.

(iv) Similar results as Theorem 1.1 and Theorem 1.2 hold if we replace GLn by
SLn and gln by sln. The region of absolute convergence then has to be adjusted
to <s > .n C 1/=2 � 1=n, and the locations of the poles have to be adjusted
accordingly.

Chaudouard’s trace formula is valid for any reductive group. In principle, it
should be possible to define the zeta function „T.s; ˆ/ as in (1) for G an arbitrary
connected reductive group acting on its Lie algebra. At least Theorem 1.1 should
stay true for more general Q-split reductive groups; we restricted to GLn mainly
to make it not more technical as it already is. The main obstruction for extending
Theorem 1.2 to n > 3 (or more general groups) lies in understanding the nilpotent
distribution JT

n.ˆ�/, cf. Sects. 4, 5, and Appendix 1. For n D 2; 3 the structure
of the decomposition of the nilpotent variety into nilpotent orbits gives rise to
the functional equation and the position of the poles of the zeta function. This
is expected to be the case also for n > 3. For n > 3 there is a different
approach to obtain the meromorphic continuation of„T.s; ˆ/ than we present here,
cf. Remark 5.4 and Example 5.10. The advantage of our approach is that it also gives
the full principal parts of the Laurent expansion at all poles from the knowledge of
certain polynomials (in T) JT

N .ˆ/ attached to the nilpotent orbits N .
One could take this approach even further, by considering a general rational

representation of the group instead of its adjoint representation. In [Lev01] equiv-
alence classes o and corresponding distributions JT

o .ˆ/ are defined for such a
representation, and also a kind of “trace formula” is proved for this situation. For
the Shintani zeta function of binary quartic forms such an approach has been carried
out in [Lev99].

For G D GL2 and G D GL3, we can show that „main.s; ˆ/ is indeed the main
part of „T.s; ˆ/ in the following sense:

Proposition 1.4 (cf. Corollaries 7.3 and 7.5). If G D GL2 or G D GL3, then
„T.s; ˆ/�„main.s; ˆ/ continues holomorphically at least to<s > n

2
. In particular,

the furthermost right pole of „T.s; ˆ/ and „main.s; ˆ/ coincide and have the same
residue.

A similar result should of course also hold for n > 3. This result will become
important in Part 2, where we will use the analytic properties of„main.s; ˆ/ to apply
a Tauberian theorem in order to obtain information on the Dirichlet coefficients of
„main.s; ˆ/ for n D 3 in which case they are related to geometric properties of cubic
number fields.
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Part 2

1.4 Density of Residues

A main application of the Shintani zeta function Z.s; ‰/, which is attached to
the space of binary quadratic forms, is to prove the mean value behaviour of the
class numbers of binary quadratic forms [Shi75]. From our point of view, another
closely related density result obtained from Z.s; ‰/ is of more interest to us:
Datskovsky [Dat96] proved that if S is a finite set of prime places of Q including
the Archimedean place, and rS D .rv/v2S is a fixed signature for quadratic number
fields, then as X !1 one has

X

L

res
sD1 �L.s/ D ˛.rS/X; (2)

where L runs over all quadratic fields of signature rS at the places in S and absolute
discriminant DL less than or equal to X, and ˛.rS/ is a suitable non-zero constant.
Here �L.s/ is the Dedekind zeta function attached to L. As a first step towards
generalising this, we prove upper and lower bounds for the densities of residues
of Dedekind zeta functions of totally real cubic number fields.

Suppose E is a totally real number field of degree n with ring of integers OE � E.
We denote by QE W OE=Z �! R the positive definite quadratic form QE.�/ D
trE=Q �

2 � 1
n .trE=Q �/

2 for � 2 OE=Z, where trE=Q W E �! Q denotes the field
trace of E=Q. We denote the successive minima of QE on OE=Z by m1.E/ � m2.E/
� : : : � mn�1.E/. If n D 2, then m1.L/ D DL=2 for every quadratic field L so that
the sum in (2) runs over all quadratic fields with m1.E/ � X=2. Our main result of
Part 2 is the following:

Theorem 1.5 (cf. Theorem 10.1). We have

lim sup
X!1

X� 52
X

EW m1.E/�X

res
sD1 �E.s/ <1 (3)

where the sum extends over all totally real cubic number fields E for which the first
successive minimum m1.E/ is bounded by X.

We complement the above upper bound (3) with the following result:

Proposition 1.6 (cf. Proposition 10.3). For every " > 0, we have

lim inf
X!1 X� 52C"

X

EW m1.E/�X

res
sD1 �E.s/ D 1;

where the sum extends over totally real cubic number fields E.
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This is a first step towards a generalisation of (2) to the cubic case with S D
f1g and the Archimedean signature of totally real cubic number fields. As in the
quadratic case, one expects that in fact the limit of the left-hand side in (3) exists
and is non-zero:

Conjecture 1.7. There exists a constant ˛3 > 0 such that as X !1
X

EW m1.E/�X

res
sD1 �E.s/ � ˛3X 5

2 ;

where the sum extends over all totally real cubic number fields E for which the first
successive minimum m1.E/ is bounded by X.

The strategies to prove Theorem 1.5 and Proposition 1.6 are quite different from
each other: For the first result we use a suitable sequence of test functions and
apply a Tauberian Theorem to „main.s; ˆ/ to obtain an asymptotic for the density
of certain orbital integrals in Proposition 9.2. These orbital integrals are basically
products of ressD1 �E.s/ and a certain quantity c.�;ˆf /, � 2 E, obtained from the
non-Archimedean partˆf of the test functionˆ. For an appropriateˆf we can show
that c.�;ˆf / � 1 for every relevant � so that Theorem 1.5 is a direct consequence
of Proposition 9.2. To prove Proposition 1.6, on the other hand, we use a different
approach (independent of our results for „T.s; ˆ/): We basically show that there
are sufficiently many irreducible cubic polynomials.

In principle, we would like to deduce the full conjectured asymptotic from
Proposition 9.2, that is, from the properties of„main.s; ˆ/. This would indeed follow
if we would be allowed to replace the coefficients c.�;ˆf / by 1. In Appendix 2
we give a sequence of test functions .ˆm

f /m for which c.�;ˆm
f / ! 1. However,

a certain uniformity of the convergence with respect to QE.�/ is needed to prove
Conjecture 1.7. We were not able to do this so far.

Our methods can at least heuristically be applied to GLn for every n � 2. In
particular, the first pole of „T.s; ˆ/ as well as „main.s; ˆ/ for GLn should be at
s D nC1

2
. This suggests

Conjecture 1.8. For every n � 3 there exists ˛n > 0 such that as X !1
X

EW m1.E/�X

res
sD1 �E.s/ � ˛nX

n.nC1/�2
4 ;

where the sum extends over all totally real n-dimensional number fields E for which
the first successive minimum m1.E/ is bounded by X.

Ordering fields with respect to the first successive minimum of QE (in contrast to
the discriminant) is also related to a conjecture of Ellenberg–Venkatesh, cf. [EV06,

Remark 3.3]: Basically they conjecture that X�
n.nC1/�2

4
P

EW m1.E/�X 1 has a non-zero
limit as X ! 1 where E runs over n-dimensional number fields. As remarked in
[EV06], it is possible to show a “weak form” of this asymptotic under a strong
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hypothesis on the existence of sufficiently many squarefree polynomials. If one
could prove an n-dimensional analogue of Proposition 9.2 and make the passage
from c.�;ˆf / to 1 work (e.g., with a sequence of test function as .ˆm

f /m), this
should lead to another approach to (a slightly weaker form of) the conjecture of
Ellenberg–Venkatesh.

This second part of the paper is organised as follows: In Sect. 8 we first recall and
prove some properties of orbital integrals, before stating and proving an asymptotic
for the mean value of certain orbital integrals in Sect. 9, cf. Proposition 9.2. Our
main result Theorem 1.5 in Sect. 10 will then be an easy consequence of Proposi-
tion 9.2 together with results in Sect. 8. Finally, we will prove Proposition 1.6 at the
end of Sect. 10.

2 Notation and General Conventions

2.1 General Notation

We fix notation, mainly following [Cha02, Art05]:

• A denotes the ring of adeles of Q. If v is a place of Q, Qv denotes the completion
of Q at v, j 	 jv is the usual v-adic norm on Qv so that if v D p is a non-
Archimedean place, we have jpjp D p�1. Then j 	 jA denotes the norm on A

�
given by the product of the j 	 jv’s. If it is clear from the context, we may also
write j 	 j for j 	 jA or j 	 jv.

• n � 2 is an integer, and G denotes GLn as a group defined over Q with Lie
algebra g D gln. 1n 2 G denotes the identity element.

• P0 D T0U0 is the minimal parabolic subgroup of upper triangular matrices with
T0 the torus of diagonal elements and U0 its unipotent radical of upper triangular
matrices. If P � T0 is a Q-defined parabolic subgroup with Levi component
M D MP � T0, then F.M/ denotes the set of (Q-defined) parabolic subgroups
containing M, and P.M/ � F.M/ the subset of parabolic subgroups with Levi
component M. For P 2 F.T0/ with Levi decomposition P D MPUP, we denote
by p D mPCuP the corresponding decomposition of the Lie algebra. For P1;P2 2
F.T0/ with P1 � P2, put uP2

P1
WD u21 WD uP1 \ mP2 and uP2

P1
WD uP1 \ mP2 WD

u NP1\mP1 for NP1 2 P.MP1/ the opposite parabolic subgroup. AM � M.R/ denotes
the identity component of the split component of the center in M.A/. We usually
identify the groups M.A/1 and AMnM.A/.

• P 2 F.T0/ is called standard if P0 � P and we write Fstd � F.T0/ for the set of
standard parabolic subgroups.

• a�P is the root space, i.e. the R-vector space spanned by all rational characters
MP �! GL1, and aP D aMP D HomR.a

�
P;R/ is the coroot-space. †P denotes

the set of reduced roots of the pair .AMP ;UP/

We denote by�P2
P1
D �2

1 the set of simple roots and by†P2
P1
D †21 the set of all

positive roots of the action of A1 D AP1 on U1 \M2. If ˛ 2 �2
1, then ˛_ denotes
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the corresponding coroot. Similarly, b�P2
P1
D b�2

1 is the set of simple weights, and

if $ 2 b�2
1, then $_ denotes the corresponding coweight. If ˛ 2 �2

1, we denote
by $˛ 2 b�2

1 the weight such that $˛.ˇ
_/ D ı˛ˇ for all ˇ 2 �2

1 (here ı˛ˇ is the
Kronecker ı).

• If a 2 AP and � 2 a�P, write �.a/ D e�.HP.a//. For P1 � P2, let

AP2
P1
D A21 D fa 2 AP1 j 8˛ 2 �P2 W ˛.a/ D 1g ' AP1=AP2 ;

and aP2
P1
D log A21 � aP1 . Set a D aG

0 . For M � G let M.A/1 be the intersection
of the kernels of all rational characters M.A/ �! C. Let aC0 D fH 2 a0 j
8˛ 2 �0 W ˛.H/ > 0g be the positive chamber in a0 with respect to our fixed
minimal parabolic subgroup. Similarly, we define aC. Denote by �21 D �P2

P1
2 aC0

the unique element in aC0 such that the modulus function of MP1.A/ on uP2
P1
.A/

satisfies ı21.m/ WD ıP2
P1
.m/ WD j det Ad mjuP2

P1
.A/
j D e2�

2
1.H0.m// for all m 2 MP1 .A/,

and we write �1 D �P1 D �G
P1

and ı0 D ıG
P0

.
• Let HP D HMP W G.A/ D M.A/U.A/K �! aP be the map characterised by

HP.muk/ D HP.m/ and HP.exp H/ D H for all H 2 aP.
• We denote by ˆ.A0;MR/ the set of weights of A0 with respect to MR so that
ˆ.A0;MR/ D †R

0 [ f0g [
��†R

0

�
. Then we have a direct sum decomposition

g D L
ˇ2ˆ.A0;MR/

gˇ for gˇ the eigenspace of ˇ in g. We take the usual vector

norm k 	 kA D k 	 k on g.A/ obtained by identifying g.A/ with A
n2 via the matrix

coordinates. Then if X 2 g.A/, X D P
ˇ2ˆ.A0;MR/

Xˇ with Xˇ 2 gˇ.A/, then
kXk DPˇ2ˆ.A0;MR/

kXˇk.
• If M D T0, we write F D F.T0/, H0 D HM0 , a0 D aM0 , etc., and further put

a D aG
0 and aC D �aG

0

�C
.

2.2 Characteristic Functions

Let P1;P2;P 2 F be parabolic subgroups with P1 � P2. We define the following
functions (cf. [Art78]):

• O�P2
P1
D O�21 W a0 �! C is the characteristic function of the set

fH 2 a0 j 8$ 2 O�2
1 W $.H/ > 0g:

If P2 D G, we also write O�P1 D O�1 D O�G
1 .

• �
P2
P1
D �21 W a0 �! C is the characteristic function of the set

fH 2 a0 j 8˛ 2 �2
1 W ˛.H/ > 0g:

If P2 D G, we also write �P1 D �1 D �G
1 .
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• �
P2
P1
D �21 W a0 �! C is the characteristic function of the set

fH 2 a0 j 8˛ 2 �21 W ˛.H/ > 0I 8˛ 2 �1n�21 W ˛.H/ � 0I 8$ 2 O�2 W $.H/ > 0g:

Remark 2.1. The function �21 is related to �21 and O�21 by �21 D
P

RW P2R.�1/dimaR
2

�R
1 O�R.

• T 2 aC is called sufficiently regular if d.T/ WD min˛2�0 ˛.T/ is sufficiently
large, i.e., if T is sufficiently far away from the walls of the positive Weyl chamber
(cf. [Art78]). We fix a small number ı > 0 such that the set of sufficiently regular
T 2 a satisfying d.T/ > ıkTk is a non-empty open cone in aC.

• For sufficiently regular T 2 aC the function FP.	;T/ W G.A/ �! C is defined as
the characteristic function of all x D umk 2 G.A/ D U.A/M.A/K, P D MU,
satisfying

$.H0.
m/ � T/ � 0

for all 
 2 M.Q/ and $ 2 b�M
0 . If P D G, we sometimes write F.	;T/ D

FG.	;T/.
• If T 2 aC is sufficiently regular, [Art78, Lemma 6.4] gives for every x 2 G.A/

the identity

X

RW P0RP

X

ı2R.Q/nP.Q/
FR.ıx;T/�P

R .H0.ıx/� T/ D 1:

2.3 Measures

We fix the following maximal compact subgroups: If v is a non-Archimedean place,
then Kv D G.Zv/. If v is Archimedean, we take K1 D O.n/. Globally, we take
K D Q

v�1Kv � G.A/1. Up to normalisation there exists a unique Haar measure
on Kv , and we normalise it by vol.Kv/ D 1 for every v, and then take the product
measure on K. We further choose measures as follows:

• Qv and Q
�
v , v <1: normalised by vol.Zv/ D 1 D vol.Z�v /.

• R, R�, R>0, AG, A0: usual Lebesgue measures.
• C, C�: twice the usual Lebesgue measure.
• A and A

�: product measures.
• A

1 D fa 2 A
� j jajA D 1g: measure induced by the exact sequence 1 �!

A
1 ,! A

� j�jA��! R>0 �! 1.
• V finite dimensional Q-vector space with fixed basis: take the measures induced

from A (resp. Qv) on V.A/ (resp. V.Qv/) via the isomorphism V.A/ ' A
dim V

(respectively, V.Qv/ ' Q
dim V
v ) with respect to this basis. This in particular

defines measures on U0.A/ and U0.Qv/ if we take the canonical bases corre-
sponding to the root coordinates.
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• T0.A/ and T0.Qv/: measures induced from A
� and Q

�
v via the isomorphism

T0.A/ ' .A�/n�1 (respectively, T0.Qv/ ' .Q�v /n�1) provided by the diagonal
coordinates.

• G.A/ and G.Qv/: compatible with the Iwasawa decomposition G.A/ D
T0.A/U0.A/K (resp. G.Qv/ D T0.Qv/U0.Qv/Kv) such that for every integrable
function f on G.A/ we have

Z

G.A/
f .g/dg D

Z

T0.A/

Z

U0.A/

Z

K
f .tuk/ dk du dt

D
Z

T0.A/

Z

U0.A/

Z

K
ı0.t/

�1f .utk/ dk du dt

(similarly for the local case).

• G.A/1: measure induced by the exact sequence 1 �! G.A/1 ,! G.A/
j det.�/jA�����!

R>0 �! 1.
• Levi subgroup M � T0: compatible with previous cases using that M is

isomorphic to a direct product of general linear groups.
• parabolic subgroups P 2 F.T0/: compatible with previous cases by using

Iwasawa decomposition for P.

2.4 Equivalence Classes

Let g.Q/ss (resp. G.Q/ss) denote the set of semisimple elements in g.Q/
(resp. G.Q/). We define an equivalence relation on g.Q/ as follows: Let X;Y 2 g.Q/
and write X D Xs C Xn, Y D Ys C Yn for the Jordan decomposition with
Xs, Ys 2 g.Q/ss semisimple and Xn 2 gXs.Q/, Yn 2 gYs.Q/ nilpotent, where
gXs D fY 2 g j ŒXs;Y D 0g is the centraliser of Xs in g. We call X and Y equivalent
if and only if there exists ı 2 G.Q/ such that Ys D Ad ı�1Xs. We denote the set of
equivalence classes in g.Q/ by O.

Let n � g.Q/ denote the set of nilpotent elements. Then n 2 O constitutes
exactly one equivalence class (corresponding to the orbit of Xs D 0), and
decomposes into finitely many nilpotent orbits under the adjoint action of G.Q/. On
the other hand, if o 2 O corresponds to the orbit of a regular semisimple element
Xs (i.e., the eigenvalues of Xs (in an algebraic closure of Q) are pairwise different),
then o is in fact equal to the orbit of Xs.

2.5 Test Functions

Let b denote the Lie algebra of either one of the standard parabolic subgroups
of G, of one of their unipotent radicals, or of one of their Levi components. We
fix the standard vector norm k 	 k on b.R/ by identifying b.R/ ' R

dimb via the
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usual matrix coordinates. Let U.b/ denote the universal enveloping algebra of the
complexification b.C/. For every � 2 Œ0;1/ we fix a basis B� D Bb;� of the finite
dimensional C-vector space U.b/�� of elements in U.b/ of degree � �. For a real
number a � 0 and a non-negative integer b � � we define seminorms k 	 ka;b on the
spaces C�.b.R// by setting for f 2 C�.b.R//

kfka;b WD sup
x2b.R/

�
.1C kxk/a

X

X2Bb

ˇ
ˇ.Xf /.x/

ˇ
ˇ
�

with .Xf /.x/ D � d
dt f .xetX/

	
tD0. We put

S�.b.R// WD ff 2 C�.b.R// j 8a <1; b � � W kfka;b <1g;

and

S.b.R// D S1.b.R// WD ff 2 C1.b.R// j 8a <1; b <1 W kfka;b <1g:

Then S.b.R// is the usual space of Schwartz functions on b.R/. Dualy to S�.b.R//
we define for � � 1

S�.b.R// WD ff 2 C1.b.R// j 8a � �; b <1 W kfka;b <1g

so that S1.b.R// D S1.b.R// D S.b.R//. We define the spaces S�.b.A// and
S�.b.A// similarly, namely, S�.b.A// D S�.b.R// ˝ S.b.Af // and S�.b.A// D
S�.b.R// ˝ S.b.Af // where S.b.Af // D N0

p<1 S.b.Qp// is the usual space of
Schwartz Bruhat functions, that is, S.b.Qp// is the space of smooth and compactly
supported functions ˆp W b.Qp/ �! C and the restricted tensor product is taken
with respect to the functions ˆ0p, the characteristic function of b.Zp/. In particular,
S.b.A// is the usual space of Schwartz–Bruhat functions on b.A/.

The topology induced by the set of seminorms k 	 ka;b, a < 1, b � � (resp.
a � �, b < 1) makes S�.b.R// (resp. S�.b.R//) into a Frechet space. We define
another family k 	 ka;b;1 of seminorms on S�.b.R// (resp. S�.b.R//) with a; b in the
same range as before except that a � � � dim b � 1 in the case of S�.b.R// by

kfka;b;1 D
Z

b.R/

.1C kxk/a
X

X2Bb

ˇ̌
.Xf /.x/

ˇ̌
dx:

Then these seminorms are continuous with respect to the topology induced by
the k 	 ka0;b0 . (The words “seminorm” and “continuous seminorm” will be used
synonymously.)

Remark 2.2. For our later estimates when we need the seminorms defined above we
usually fix the non-Archimedean part of the test function, and only prove that we
can find an upper bound in terms of seminorms on S�.b.R// and S�.b.R//. With
a little more care one could make the upper bounds stronger in the sense that they
could be stated in terms of seminorms on the whole space S�.b.A// and S�.b.A//.
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We fix a non-degenerate invariant bilinear form h	; 	i W g.A/ � g.A/ �! A by
setting hX;Yi D tr.XY/ for X;Y 2 g.A/. Let  W QnA �! C be the non-trivial
character constructed in [Lan94, XIV, § 1]. We define the Fourier transform

b W S�.g.A// �! S�.g.A//; b̂.Y/ WD
Z

g.A/

ˆ.X/ .hX;Yi/ dX

with respect to this bilinear form.

Remark 2.3. It is clear that if1 � �0 � � > 0, then S�0

.g.A// � S�.g.A// so that
every statement holding for ˆ 2 S�.g.A// for some � 2 .0;1 also holds for each
ˆ0 2 S�0

.g.A// for every �0 � �.

2.6 Siegel Sets

If T 2 a, let AG
0 .T/ denote the set of all a 2 AG

0 with ˛.H0.a/ � T/ > 0 for all
˛ 2 �0. Reduction theory proves the existence of T1 2 �aC such that

G.A/1 D G.Q/P0.A/
1AG

0 .T1/K:

We fix such a T1 from now on and write

CT1 D fg D pk 2 P0.A/K j 8˛ 2 �0 W ˛.H0.a/� T1/ > 0g:

If then f W G.Q/nG.A/1 �! R�0 is measurable, we have

Z

G.Q/nG.A/1
f .g/ dg �

Z

AGP0.Q/nCT1

f .g/ dg

D
Z

K

Z

U0.Q/nU0.A/

Z

T0.Q/nT0.A/1

Z

AG
0

ı0.a/
�1�G

0 .H0.a/� T1/f .uatk/ da dt du dk:

(4)

2.7 Distributions Associated with Equivalence Classes

For o 2 O and sufficiently regular T 2 aC define for x 2 G.A/ and integrable
ˆ W g.A/ �! C (cf. [Cha02])

KP;o.x; ˆ/ D
Z

uP.A/

X

X2mP.Q/\o
ˆ.Ad x�1.X C U// dU;
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kT
o.x; ˆ/ D

X

P2Fstd

.�1/dim AP=AG
X

ı2P.Q/nG.Q/
O�P.H0.ıx/ � T/KP;o.ıx; ˆ/; and

JT
o .ˆ/ D

Z

AGG.Q/nG.A/
kT
o.x; ˆ/ dx

provided the sum-integrals converge.

Part 1. The Zeta Function

3 The Trace Formula for Lie Algebras and Convergence
of Distributions

Let us recall some of the main results from [Cha02].

Theorem 3.1 ([Cha02], Théorem̀e 3.1, Théorem̀e 4.5). For all ˆ 2 S.g.A// and
sufficiently regular T 2 aC we have

Z

AGG.Q/nG.A/

X

o2O
jkT

o.x; ˆ/j dx <1: (5)

and

X

o2O
JT
o .ˆ/ D

X

o2O
JT
o .
Ô /: (6)

The distributions JT
o .ˆ/ and

P
o2O JT

o .ˆ/ are polynomials in T of degree at most
dim a.

The Poisson summation like identity (6) is what we refer to as Chaudouard’s
trace formula for the Lie algebra g.

Remark 3.2.

(i) Since the distributions in the theorem are polynomials in T for T varying in a
non-empty open cone of a, they can be defined at any point T 2 a, with (6)
then being valid for all T 2 a.

(ii) The results in [Cha02] hold for arbitrary connected reductive groups G.
(iii) Equation (5) holds for everyˆ 2 S�.g.A//[S�.g.A//, and (6) holds for every

ˆ 2 S�.g.A// if � > 0 is sufficiently large in a sense depending only on n,
cf. also the proof of Lemma 3.7 below.

For ˆ W g.A/ �! C, � 2 .0;1/, and x 2 g.A/ put

ˆ�.x/ WD ˆ.�x/:
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For fixed �,ˆ� 2 S�.g.A// ifˆ 2 S�.g.A//, andˆ� 2 S�.g.A// ifˆ 2 S�.g.A//.
Hence (6) becomes

X

o2O
JT
o .ˆ�/ D ��n2

X

o2O
JT
o .
Ô
��1 /

if � is sufficiently large. Let O� WD Onfng, and for sufficiently regular T 2 aC set
JT� D

P
o2O�

JT
o .

Definition 3.3. We define the regularised zeta function by

„T.s; ˆ/ D
Z 1

0

�n.sC n�1
2 /JT�.ˆ�/ d��

provided this sum-integral converges.

Theorem 3.4. There exists � > 0 depending only on n such that for all ˆ 2
S�.g.A// the following holds:

(i) If T is sufficiently regular, the function

„T;C.s; ˆ/ D
Z 1

1

�n.sC n�1
2 /JT�.ˆ�/ d��

is absolutely and locally uniformly convergent for all s 2 C and hence entire.
(ii) If T is sufficiently regular, the integral defining„T .s; ˆ/ and also

„T
o.s; ˆ/ WD

Z 1

0

�n.sC n�1
2 /JT

o .ˆ�/ d��; o 2 O�;

are well defined and absolutely and locally uniformly convergent for s 2 C

with <s > nC1
2

(and hence holomorphic there). Moreover,

„T.s; ˆ/ D
X

o2O�

„T
o.s; ˆ/:

(iii) The distributions „T;C.s; ˆ/, „T
o.s; ˆ/, and „T.s; ˆ/ are polynomials in T

of degree at most dim a D n � 1. The coefficients of these polynomials are
holomorphic functions in s for s ranging in the regions indicated above.

We need the analogue results for test functionsˆ 2 S�.g.A//:

Theorem 3.5.

(i) Let R > n be arbitrary. Then there exists � > 0 such that for allˆ 2 S�.g.A//
and all sufficiently regular T, the function

„T;C.s; ˆ/ D
Z 1

1

�n.sC n�1
2 /JT�.ˆ�/ d��

is absolutely and locally uniformly convergent for all s 2 C with <s < R.
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(ii) With R, �, ˆ, and T as before, the integral defining„T .s; ˆ/ and also

„T
o.s; ˆ/ WD

Z 1

0

�n.sC n�1
2 /JT

o .ˆ�/ d��; o 2 O�;

are well defined and absolutely and locally uniformly convergent for s 2 C

with R > <s > nC1
2

(and hence holomorphic there). Moreover,

„T.s; ˆ/ D
X

o2O�

„T
o.s; ˆ/:

(iii) The distributions „T;C.s; ˆ/, „T
o.s; ˆ/, and „T.s; ˆ/ are polynomials in T

of degree at most dim a D n � 1. The coefficients of these polynomials are
holomorphic functions in s for s ranging in the regions indicated above.

Remark 3.6. The distributions in the theorems can again be defined at every point
T 2 a by taking the value of the polynomial at this point. Their analytic properties
as stated in the theorems stay valid for every T 2 a.

Both theorems are immediate consequences of the following lemma.

Lemma 3.7. Let T 2 aC be sufficiently regular and let ˆf 2 S.g.Af //. If ˆ1 is a
function on g.R/ we write ˆ D ˆ1 	ˆf in the following.

(i) There exists an integer � > 0 (depending on n) such that the following holds.

(a) For every N 2 N there exists a seminorm 
N on the space S�.g.R// such
that

Z

AGG.Q/nG.A/

X

o2O�

jkT
o.x; ˆ�/j dx � 
N.ˆ1/��N (7)

for all � 2 Œ1;1/ and ˆ1 2 S�.g.R//.
(b) There exists a seminorm 
 on S�.g.R// (resp. S�.g.R//) such that

Z

AGG.Q/nG.A/

X

o2O�

jkT
o.x; ˆ�/j dx � 
.ˆ1/��n2 (8)

for all � 2 .0; 1 and ˆ1 2 S�.g.R// (resp. ˆ1 2 S�.g.R//).

(ii) If N 2 N, then there exists an integer � > 0 and a seminorm 
N on the space
S�.g.R//, both depending only on n and N, such that

Z

AGG.Q/nG.A/

X

o2O�

jkT
o.x; ˆ�/j dx � 
N.ˆ1/��N (9)

for all � 2 Œ1;1/ and ˆ1 2 S�.g.R//.
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We will prove this lemma in Sect. 3.2 below, but first deduce Theorem 3.4 from it
(The proof of Theorem 3.5 is analogous and we omit it here.)

Proof of Theorem 3.4.

(i) By Lemma 3.7 we have for N arbitrarily large and every � � 1,

j�n.sC n�1
2 /JT�.ˆ�/j � 
N.ˆ1/�n.<sC n�1

2 /��N ;

which is of course integrable over � 2 Œ1;1/ if N is chosen sufficiently large.
(ii) We split the integral defining„T.s; ˆ/ into one integral over � 2 .0; 1 and one

over � 2 Œ1;1/. By the first part of the proposition the second integral defines
a holomorphic function on all of C. For the first integral we have jJT�.ˆ�/j �

.ˆ1/��n2 for all � � 1 by Lemma 3.7 so that

Z 1

0

j�n.sC n�1
2 /JT�.ˆ�/j d�� � 
.ˆ1/

Z 1

0

�n.<sC n�1
2 /��n2 d��;

which is finite if <s > nC1
2

, and hence proving the second part of the
proposition.

(iii) By Theorem 3.1 JT
o .ˆ/ and JT�.ˆ/ are polynomials of degree at most dim a in

T. The assertion thus follows from the previous parts of the proposition.
ut

3.1 Auxiliary Results

To prove Lemma 3.7, we need some preparation. Let P1;P2;R 2 Fstd be standard
parabolic subgroups with P1 � R � P2, and write Pi D MiUi for their Levi
decomposition. We define

Qm2
1 D QmP2

P1
D m2n

� [

Q2F W
P1Q¨P2

m2 \ q

�
:

Note that 0 62 Qm2
1.Q/ unless P1 D P2. Moreover, Qm2

1 D m1 if and only if P1 D P2.
Similarly, put

u201 D uP20
P1
D u21n

� [

Q2F W
P1Q¨P2

uQ
1

�
D u21n

� [

Q2F W
P1Q¨P2

uP1 \mQ

�
;

and define u201 with uQ
1 in place of uQ

1 analogously. Note that 0 62 u201 .Q/ unless
P1 D P2.
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Definition 3.8.

(i) If S � †21 is a subset, we say that S has property ….P1;R;P2/ if for every
˛ 2 �2

1n�R
1 there exists ˇ 2 S such that $˛.ˇ

_/ > 0. In particular, S D ; has
property….P1;R;P2/.

(ii) If S � †21 has property ….P1;R;P2/, we define u0S � u2R as the set consisting
of all Y D P

ˇ2†21 Y�ˇ 2 u2R with Y�ˇ ¤ 0 for ˇ 2 S and Y�ˇ D 0 for
ˇ 62 S. Here Y�ˇ denotes the component of Y in the .�ˇ/-eigenspace of the
decomposition of u2R with respect to �†21. In particular, u0; D ; unless R D P1
in which case u0; D u101 D f0g.

(iii) If S � †R
1 has property….P1;P1;R/, let mR;S � mR consist of all Y 2 mR such

that Y�ˇ ¤ 0 for all ˇ 2 S and Y�ˇ D 0 for all ˇ 2 †R
1nS. Here Y�ˇ denotes

the component of Y in the .�ˇ/-eigenspace of the decomposition of mR with
respect to ˆ.A1;MR/.

Lemma 3.9. Write m2 DLˇ2ˆ.A1;M2/
mˇ with mˇ the eigenspace for ˇ in m2, and

if X 2 m2.Q/, let Xˇ 2 mˇ.Q/ be its ˇ-component so that X D P
ˇ2ˆ.A1;M2/

Xˇ.
Then:

(i) For every Y 2 u20R .Q/, there exists a subset S � †21 with property ….P1;R;P2/
such that Y�ˇ D 0 for all ˇ 2 †21nS and Y�ˇ ¤ 0 for all ˇ 2 S. In particular,

u20R D
G

S†21
u0S

where the disjoint union is over all subsets S � †21 having property
….P1;R;P2/.

(ii) If P1 ¨ R and X 2 QmR
P1
.Q/, there exists a non-empty subset S � †R

1 with
property ….P1;P1;R/ such that X�ˇ ¤ 0 for every ˇ 2 S. In particular,

QmR
P1 �

G

S†R
1

mR;S:

where the disjoint union is over all non-empty subsets S � †R
1 having property

….P1;P1;R/.

Proof.

(i) Let Y 2 u2R. Let the set S � †21 be defined to consist exactly of those ˇ 2 †21
with Y�ˇ ¤ 0. S has property….P1;R;P2/: For that suppose that instead there
exists ˛ 2 �2

1n�R
1 such that for all ˇ 2 S we have $˛.ˇ

_/ � 0. Now every
ˇ is a non-negative linear combination of elements in �2

1 so that $˛.ˇ
_/ �

0 implies $˛.ˇ
_/ D 0. But this implies that ˇ 2 †

Q
1 for some parabolic

subgroup Q ¨ P2, R � Q. Hence Y 2 uQ
R .Q/ in contradiction to Y 2 u20R .Q/ so

that our set S must have property….P1;R;P2/.
(ii) This follows from the definitions. ut
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Lemma 3.10. Suppose R ¨ P2. If m > dim u2R, then there exist constants c > 0

and k˛ � 0 for every ˛ 2 �2
1 such that

• k˛ > 0 for all ˛ 2 �2
1n�R

1 , and
• for all a 2 AG

1 D AG
P1

, we have

X

Y2u20R .
1
N Z/

jjAd a�1Yjj�m � c
Y

˛2�21
e�k˛˛.H0.a//:

Proof. This is a slightly refined version of [Art78, pp. 946–947] in that we give a
sufficient lower bound for the exponent m. Suppose first that m > 0 is sufficiently
large. We shall later see that m > dim u2R suffices.

Consider non-empty subsets S � †2R with property ….P1;R;P2/. By
Lemma 3.9(i) the set u20R . 1N Z/ is the direct sum over such sets S of u0S. 1NZ/. For
ˇ 2 †2R let fE�ˇ;igiD1;:::;d�ˇ

, d�ˇ WD dim u�ˇ , be a basis for the eigenspace

u�ˇ of �ˇ in u2R, which is orthogonal with respect to the norm k 	 k, i.e.
kPi biE�ˇ;ik D P

i jbij for all b1; : : : ; bd�ˇ
2 R. Thus, if Y 2 uS.

1
NZ/, we

can uniquely write Y DPˇ2S

Pd�ˇ

iD1 Y�ˇ;iE�ˇ;i, and get for every a 2 AG
1 that

kAd a�1Yk D
X

ˇ2S

e2ˇ.H0.a//
d�ˇX

iD1
kY�ˇ;ik:

Let R D .Rˇ/ˇ2S be a tuple of non-empty subsets Rˇ � f1; : : : ; d�ˇg, and define

u0S;R D
˚
Y 2 u0S j Y�ˇ;i ¤ 0, ˇ 2 S and i 2 Rˇg:

Clearly, u0S D
F

RD.Rˇ/ˇ2S
u0S;R with the disjoint union being over all tuples R as

before. As there are only finitely many such tuples R, it suffices to consider the sum
over Y 2 u0S;R. 1N / for one of the tuples R.

Then, since 0 62 u0S because of R ¨ P2,

X

Y2u0
S;R.

1
N Z/

kAd a�1Yk�m D
X

Y2u0
S;R.

1
N Z/

�X

ˇ2S

X

i2Rˇ

eˇ.H0.a//kY�ˇ;ik
��m

�
Y

ˇ2S

Y

i2Rˇ

X

Y�ˇ;i2 1N Znf0g

�
eˇ.H0.a//kY�ˇ;ik

�� m
r

;

where r WDPˇ2S jRˇj � dim u2R. This last product equals

� X

X2 1N Znf0g
kXk� m

r

�r Y

ˇ2S

Y

i2Rˇ

e�mˇ.H0.a//=r D
� X

X2 1N Znf0g
kXk�m

r

�r Y

ˇ2S

e�mjRˇ jˇ.H0.a//=r:
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The sum
P

X2 1N Znf0g kXk�
m
r is finite if m > r, so it is in particular finite if m >

dim u2R � r, which gives our lower bound on m. Now every ˇ is a non-negative
linear combination of roots in �2

1 so that the above product equals
� X

X2 1N Znf0g
kXk� m

r

�r Y

˛2�21
e�k˛;S;R˛.H0.a//

for suitable constants k˛;S;R � 0. Since S has property ….P1;R;P2/, there exists
for every ˛ 2 �2

1n�R
1 some ˇ 2 S such that ˛ occurs non-trivially in ˇ. Hence,

since jRˇj > 0 for every ˇ 2 S, the corresponding coefficient satisfies k˛;S;R > 0 if
˛ 2 �2

1n�R
1 , which finishes the proof. ut

Lemma 3.11. For ˇ 2 ˆ.A1;mR/ D ˆ.AR
1 ;mR/ DW ˆR

1 , denote by mˇ � mR the
eigenspace of ˇ in mR so that mR D L

ˇ2ˆR
1
mˇ . Put AR

1 .T1/ D fa 2 AR
1 j 8˛ 2

�R
1 W ˛.HP1 .a/� T1/ > 0g, let k > 1 be given, and let � > k C n2. Let N > 0 be a

positive integer.
Then for every ˛ 2 �R

0 there exists a constant k˛ � 0, and for every ˇ 2 ˆR
0 a

seminorm 
ˇ on S1.mˇ.R// (resp. S�.mˇ.R//) such that the following holds:

• k˛ > 0 for every ˛ 2 �R
0n�1

0, and
• for all � > 0, all 'ˇ 2 S1.mˇ.R// (resp. 'ˇ 2 S�.mˇ.R//), and all a 2 AR

1 .T1/
we have

ıR
0 .a/

�1 X

X2 QmR
P1
. 1N Z/

X 62n

Y

ˇ2ˆR
0

'ˇ.�ˇ.a/
�1Xˇ/

�

8
ˆ̂
<̂

ˆ̂̂
:

�� dimmR
.'/
Q

˛2�R
0n�10

e�k˛˛.H0.a// if � � 1;

��k
.'/
Q

˛2�R
0n�10

e�k˛˛.H0.a// if � � 1;
(10)

where 
.'/ WD Qˇ2ˆR
1

ˇ.'ˇ/.

Proof. Suppose first that R ¤ P1. The left-hand side of (10) can by Lemma 3.9(ii)
be bounded by a sum over non-empty subsets S � †R

1 with property ….P1;P1;R/
of the terms
�Y

ˇ2S

X

X�ˇ2m�ˇ.
1
N Z/nf0g

'�ˇ.�ˇ.a/X�ˇ/
�� Y

ˇ2ˆ10[†R
1

X

Xˇ2mˇ.
1
N Z/

'ˇ.�ˇ.a/
�1Xˇ/

�
:

Recall that if V is a finite dimensional vector space and ƒ � V.R/ some lattice,
then for every r > 1 there exists a seminorm 
r on SrCdim V.V.R// such that for all
s > 0 and all ‰ 2 SrCdim V.V.R//[ S1.V.R// we have

X

XD.X1;:::;Xdim V /2ƒ;X1¤0
j‰.sX/j � 
r.‰/ supf1; s�1gdim V supf1; sg�r;
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see, e.g., [Wri85, pp. 510–511]. (Note that in [Wri85] this estimate was only proved
for ‰ 2 S.V.R//, but it is clear from the proof there that one only needs a
polynomial decay of ‰ up to a certain power and no differentiability at all.) In
particular, after possibly changing the seminorm in a way depending only on dim V ,
we get

X

X2ƒ
j‰.sX/j �

(

r.‰/s� dim V if s � 1;

r.‰/ if s � 1; and

(11)

X

X2ƒ;X¤0
j‰.sX/j �

(

r.‰/s� dim V if s � 1;

r.‰/s�r if s � 1: (12)

From this it follows that for every ˇ 2 f0g [ †R
1 there exists a seminorm 
ˇ on

SdimmˇC1.mˇ.R// (resp. S1.mˇ.R//) such that for all � > 0 and all a 2 AR
1 .T1/ we

have

X

Xˇ2mˇ.
1
N Z/

'ˇ.�ˇ.a/
�1Xˇ/ �

(

ˇ.'ˇ/ˇ.a/dimmˇ .��1 C 1/dimmˇ if ˇ � 0;

ˇ.'ˇ/.�

�1 C 1/dimmˇ if ˇ < 0:

For this inequality also recall that a 2 AR
0 .T1/ implies that ˇ.a/ is uniformly

bounded from below if ˇ > 0. Hence for all � > 0 and a 2 AR
1 .T1/,

Y

ˇ2f0g[†R
1

X

Xˇ2mˇ.
1
N Z/

'ˇ.�ˇ.a/
�1Xˇ/ � ıR

0 .a/.�
�1 C 1/dimp1

Y

ˇ2f0g[†R
1


ˇ.'ˇ/

�
8
<

:

cıR
0 .a/

Q
ˇ2ˆ10[†R

1

ˇ.'ˇ/ if � � 1;

cıR
0 .a/�

� dimp1
Q
ˇ2f0g[†R

1

ˇ.'ˇ/ if � < 1;

where c > 0 is some constant.
Similarly, for every ˇ 2 S and every k > 1, there is a seminorm 
�ˇ;k on

SkCdimm�ˇ
.m�ˇ.R// (resp. S1.m�ˇ.R//) such that for all � > 0 and all a 2 AR

0 .T1/
we have

X

X�ˇ2m�ˇ.
1
N Z/nf0g

'�ˇ.�ˇ.a/X�ˇ/ �
(

�ˇ;k.'�ˇ/��kˇ.a/�k if � � 1;

�ˇ;k.'�ˇ/.�ˇ.a//� dimm�ˇ if � < 1:

Hence,

Y

ˇ2S

X

X�ˇ2m�ˇ .
1
N Z/nf0g

'�ˇ.�ˇ.a/X�ˇ/ �
(
��k

P
ˇ2S dimm�ˇ 
S;k.'/

Q
ˇ2S ˇ.a/

�k if � � 1;
��

P
ˇ2S dimm�ˇ 
S;k.'/

Q
ˇ2S ˇ.a/

� dimm�ˇ if � < 1;
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where 
S;k.'/ WD Q
ˇ2S 
�ˇ;k.'�ˇ/. Now every ˇ 2 S can be written as ˇ DP

˛2�R
0

bˇ;˛˛ for bˇ;˛ � 0 suitable constants so that
P

ˇ2S ˇ D
P

˛2�R
0

B˛˛ with

B˛ WDPˇ2S bˇ;˛. Since S has property….P1;P1;R/, we have B˛ > 0 if ˛ 2 �R
0n�1

0

so that

Y

ˇ2S

ˇ.a/�k � c
Y

˛2�R
0n�10

e�kB˛˛.H0.a//

for a suitable constant c > 0. Multiplying the above estimates gives the assertion if
R ¤ P1. If R D P1, we simply use the estimate for the sum over X 2 ƒ, X ¤ 0,
given in (11) and (12). ut
Remark 3.12. Under the same assumptions and with the same notation as in the
previous lemma, it actually follows that for a suitable seminorm 
, we have for
every � 2 .0; 1

ıR
0 .a/

�1 X

X2 QmR
P1
. 1N Z/\n

Y

ˇ2ˆR
1

'ˇ.�ˇ.a/
�1Xˇ/ � �� dimmRC1
.'/

Y

˛2�R
0n�10

e�k˛˛.H0.a//;

(13)

since if X is nilpotent, tr X D 0. Hence in the proof the sum over X0 2 m0.
1
N Z/ can

be restricted to the vector subspace of traceless matrices which has codimension
1. Of course, similar versions of this inequality hold if we intersect m0 with other
vector subspaces of positive codimension.

Lemma 3.13. Suppose we are given positive numbers m˛ > 0 for each ˛ 2 �2
1.

Then for every sufficiently regular T 2 aC we have

Z

AG
1

�21 .H0.a/� T/
Y

˛2�21
e�m˛˛.H0.a// da <1: (14)

Proof. This is essentially contained in [Cha02, p. 365] (cf. also [Art78, p. 947]),
but we need to find a sufficient lower bound for the m˛. We can write the integral
in (14) as

Z

aG
1

�21 .H � T/
Y

˛2�21
e�m˛˛.H/ dH:

If H 2 aG
P1

, we decompose it as H D H1 C H2 with uniquely determined H1 2 a21
and H2 2 aG

2 . Then �21 .H � T/ ¤ 0 implies t˛ WD ˛.H/ D ˛.H1/ > ˛.T/ for all
˛ 2 �2

1, and also the existence of a constant c > 0 (independent of H) such that

kH2k � c.1C
X

˛2�21
t˛/ � c

Y

˛2�21
.1C t˛/
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(cf. [Art78, Corollary 6.2]). Hence the volume in aG
2 of all contributing H2 is

bounded by a polynomial in the t˛ for ˛ 2 �2
1 so that there exists some c > 0

such that the above integral is bounded by

c
Y

˛2�21

Z 1

˛.T/
.1C t˛/

ke�m˛ t˛ dt˛:

Since m˛ > 0 for all ˛ 2 �2
1, this implies the assertion. ut

Let b � g be a subspace as in Sect. 2.5, and let S be a set of roots acting on b
such that we have a direct decomposition b DLˇ2S bˇ. Let k 	 k denote a norm on
b.A/ compatible with this direct sum decomposition (i.e., if B D P

ˇ Bˇ 2 b.A/,
Bˇ 2 bˇ.A/, then kBk DPˇ kBˇk).
Lemma 3.14. Let � > 0 be a sufficiently large integer (with “sufficiently large”
depending on n) and let ˆf 2 S.Af /. Then for every Y 2 U.b/�� , there exists a
constant cY > 0 such that the following holds: For every ˆ1 2 S�.b.R// (resp.
ˆ1 2 S�.b.R//) there are functions 'ˇ D 'ˇ;1 	 'ˇ;f 2 S1.bˇ.A/// D S.bˇ.A//
(resp. 'ˇ D 'ˇ;1 	 'ˇ;f 2 S�.bˇ.A//), ˇ 2 S, such that (with ˆ D ˆ1 	ˆf )

(i) 'ˇ � 0 for all ˇ.
(ii) jˆ.B/j �Qˇ2S 'ˇ.Bˇ/ for all B DPˇ2S Bˇ 2 b.A/.

(iii) For every tuple .Yˇ/ˇ2S 2Lˇ2S U.bˇ/ of degree
P

ˇ2S deg Yˇ � � we have

Y

ˇ2S

kYˇ'ˇ;1kL1.bˇ.R// � c
X

X2Bb;�

kXˆ1kL1.b.R//

and

Y

ˇ2S

sup
Bˇ2bˇ.R/

jYˇ'ˇ;1.Bˇ/j � ckˆ1k0;�

for c D max.fcYˇgˇ [ f
Q
ˇ2S cYˇ g/.

Proof. We basically follow the proof of [FL11b, Lemma 3.4]. Since the set of
functions

N
ˇ S.bˇ.Af // is dense in S.b.Af // and ˆf is fixed, it suffices to treat

the Archimedean part. As in the proof of [FL11b, Lemma 3.3] it follows that there
exists a constant c1 > 0 such that for any ˆ1 2 S�.b.R// (resp.ˆ1 2 S�.b.R//)
and any X 2 b.R/ we have

jˆ1.X/j � c1
X

Y12Bb;�0

Z

b.Œ�1;1/
j.Y1ˆ1/.X C Z/j dZ

where �0 > 0 is a suitable constant which can be chosen to depend only on n.
If � is sufficiently large, the right-hand side is well defined. We now choose a
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non-negative, smooth, and compactly supported function ' on b.R/ such that
' � c1 on b.Œ�1; 1/. Put

Q̂1 WD
X

Y12Bb;�0

jY1ˆ1j  ':

Note that the convolution with ' maps S�.b.R// to S.b.R// and S�.b.R// to
S�.b.R//. Hence Q̂1 2 S.b.R// (resp. Q̂1 2 S�.b.R//) and Q̂ is non-negative
and Q̂1.B/ � jˆ1.B/j for all B 2 b.R/. Moreover,

kY Q̂1kL1.b.R// � kY'1kL1.b.R//

X

Y12Bb;�0

kY1ˆ1kL1.b.R//

as well as

sup
B2b.R/

jY Q̂1.B/j � kY'1kL1.b.R//

X

Y12Bb;�0

sup
B2b.R/

jY1ˆ1.B/j � c1kY'1kL1.b.R//kˆ1k0;�

for all Y 2 U.b.R// where c1 > 0 is a suitable constant depending only on
the chosen bases Bb;�0 and Bb;� . Since the set of functions

N
ˇ S.bˇ.R// (resp.

N
ˇ S�.bˇ.R//) is dense in S.b.R// (resp. S�.b.R//), we can replace Q̂1 by a

product of suitable functions 'ˇ;1 on the root spaces bˇ.R/ without changing any
of above properties. ut

3.2 Proof of Lemma 3.7

Proof of Lemma 3.7. We basically follow the proof of [Cha02, Théorème 3.1], but
we need to keep track of the central variable � the whole time.

(i) Let � � 1. For o 2 O�, the truncated kernel kT
o.x; ˆ/ can be written as a sum

over standard parabolic subgroups P1;P2 with P1 � P2 of

kT
o.x; ˆ/ D

X

P1;P;P2W
P1PP2

X

ı2P1.Q/nG.Q/
.�1/dim AP=AG FP1.ıx; T/�P2

P1
.H0.ıx/�T/KP;o.ıx; ˆ/;

(15)

provided the right-hand side converges, cf. [Cha02, Lemma 2.8]. Hence the
left-hand side of (7) can be bounded from above by a sum over parabolic
subgroups P1;P2 with P1 � P2, and over o 2 O� of

Z

AGP1.Q/nG.A/
FP1.x;T/�P2

P1
.H0.x/ � T/	

ˇ
ˇ̌
ˇ
ˇ
ˇ

X

PW P1PP2

.�1/dim AP=AG
X

X2mP.Q/\o

Z

uP.A/

ˆ.�Ad x�1.X C U// dU

ˇ
ˇ̌
ˇ
ˇ
ˇ

dx;
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cf. [Cha02, pp. 360–361]. This can be replaced by the sum over P1;R;P2 with
P1 � R � P2, and over o 2 O� of

Z

AGP1.Q/nG.A/
FP1 .x;T/�P2

P1 .H0.x/� T/�

X

X2QmR
P1
.Q/\o

ˇ
ˇ̌
ˇ
ˇ
ˇ

X

PW R�P�P2

.�1/dim AP=AG
X

Y2uP
R.Q/

Z

uP.A/

ˆ.�Ad x�1.XC Y C U//dU

ˇ
ˇ̌
ˇ
ˇ
ˇ

dx:

(16)

We can decompose

AGP1.Q/nG.A/ D U1.Q/nU1.A/ �M1.Q/nM1.A/
1 � AG

1 �K

and write x 2 AGP1.Q/nG.A/ accordingly as x D umak. Then FP1 .x;T/ D
FP1.m;T/. Following the arguments on [Cha02, p. 361], we can replace ˆ
by
R
�
ˆ.Ad g�1	/ dg 2 S�.g.A// for a suitable compact subset � � G.A/1

(depending on T), and consider instead of the integral above the sum over
P1;R;P2 with P1 � R � P2, and o 2 O� of

Z

AG
1

e�2�0.H0.a//�
P2
P1 .H0.a/� T/�

X

X2QmR
P1
.Q/\o

ˇ
ˇ
ˇ
ˇ
ˇ̌

X

PW R�P�P2

.�1/dim AP=AG
X

Y2uP
R.Q/

Z

uP.A/

ˆ.�Ad a�1.XC Y C U// dU

ˇ
ˇ
ˇ
ˇ
ˇ̌ da:

(17)

We now distinguish the cases R D P2 and R ¨ P2. For R D P2, (17) equals the
sum over P1 � P2 of

Z

AG
1

e�2�0.H0.a//�
P2
P1 .H0.a/ � T/

X

X2 Qm
P2
P1
.Q/

X 62n

ˇ
ˇ̌
ˇ
ˇ

Z

uP2 .A/

ˆ.�Ad a�1.X CU// dU

ˇ
ˇ̌
ˇ
ˇ

da

D �� dimuP2

Z

AG
1

e�2.�0��2/.H0.a//�
P2
P1 .H0.a/�T/

X

X2 Qm
P2
P1
.Q/

X 62n

ˇ̌
‰P2 .�Ad a�1X/

ˇ̌
da;

(18)

where ‰P2.Y/ WD
R
uP2 .A/

ˆ.Y C U/ dU 2 S�.m2.A//.
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For R ¨ P2, we apply Poisson summation with respect to the sum over Y.
In the resulting alternating sum many terms cancel out as explained in [Cha02,
pp. 362–363]. So the sum over R ¨ P2 of (17) can be bounded by the sum over
P1;R;P2, P1 � R ¨ P2, of

Z

AG
1

e�2�0.H0.a//�P2
P1
.H0.a/� T/	

X

X2 QmR
P1
.Q/

X 62n

ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ

X

NY2uP20

R .Q/

Z

uR.A/

ˆ.�Ad a�1.X C U// .hU; NYi/ dU

ˇ
ˇ̌
ˇ
ˇ
ˇ
ˇ

da: (19)

For our purposes, we can replace ˆ by Lemma 3.14 by the product ‰mR‰uR

with ‰mR 2 S.mR.A//, ‰uR 2 S.uR.A//, ‰mR ; ‰uR � 0, satisfying the
inequalities of Lemma 3.14.

Changing variables, we may consider instead of (19) the integral

�� dimuR

Z

AG
1

e�2.�0��R/.H0.a//�
P2
P1
.H0.a/ � T/	

X

X2 QmR
P1
.Q/

X 62n

‰mR.�Ad a�1X/ 	
X

NY2uP20

R .Q/

Z

uR.A/
‰uR.U/ .hU; ��1 Ad a�1 NYi/ dU da:

(20)

The compact support of ˆ at the finite places implies the existence of N 2 N

such that all contributing NY and X must have coordinates in 1
NZ. Let m � 0

be a sufficiently large even integer. By standard estimates for Schwartz–Bruhat
functions,

ˇ̌
ˇ
ˇ

Z

uR.A/

‰uR.U/ .hU; ��1 Ad a�1 NYi/
ˇ̌
ˇ
ˇ dU

� k��1 Ad a�1 NYk�m
X

D2Bm=2

Z

uR.A/

j.D‰uR/.U/j dU

DW k��1 Ad a�1 NYk�m
m
uR
.‰uR/:

This last sum over the set of differential operators defines the seminorm 
m
uR

on S.uR.A// which is continuous when restricted to S.uR.R// for fixed non-
Archimedean test function. Hence (20) is bounded by
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�m�dimuR
um
R
.‰uR/

Z

AG
1

e�2.�0��R/.H0.a0a//�
P2
P1
.H0.a/� T/	

� X

NY2uP20

R . 1N Z/

kAd a�1 NYk�m

�� X

X2 QmR
P1
. 1N Z/

X 62n

ˇ
ˇ‰mR.�Ad a�1X/

ˇ
ˇ
�

da: (21)

Write mR DLˇ2ˆR
1
mR;ˇ for the eigenspace decomposition of mR with respect

to ˆR
1 D ˆ.A1;MR/. In particular, mR;0 D m1. By Lemma 3.14 there are

'ˇ 2 S.mR;ˇ.A//, 'ˇ � 0, such that j‰mR.Z/j �
Q
ˇ2ˆ.A0;MR/

'ˇ.Zˇ/ for all
Z DP

ˇ Zˇ 2 mR.A/ DL
ˇ mR;ˇ, and such that they satisfy the estimates of

Lemma 3.14. With this, (21) is bounded by

�m�dimuR
uR.‰uR/

Z

AG
1

e�2.�0��R/.H0.a//�
P2
P1
.H0.a/� T/	

� X

NY2uP20

R . 1N Z/

kAd a�1 NYk�m

�� X

X2 QmR
P1
. 1N Z/

X 62n

Y

ˇ2ˆR
1

'ˇ.�ˇ.a/
�1Xˇ/

�
da: (22)

If m > dim uP2
R , then by Lemma 3.10 there are c1 > 0, and real numbers k˛ � 0

for ˛ 2 �2
0 with k˛ > 0 whenever ˛ 2 �2

0n�R
0 , such that

X

NY2uP20

R . 1N Z/

kAd a�1 NYk�m � c1
Y

˛2�20
e�k˛˛.H0.a//: (23)

Setting
P
NY2uP20

R . 1N Z/
kAd a�1 NYk�m WD 1 and m D 0 in the case P2 D R, we

can consider the cases P2 D R and R ¨ P2 together.
To the second product in (22) we apply Lemma 3.11. This we are allowed

to, since �P2
P1
.H0.a/ � T/ ¤ 0 implies that a 2 A21.T1/. Thus (21) is bounded

by a finite sum of terms of the form

c0��NCm�dimuR

Z

AG
1

�
P2
P1
.H1.a/� T/

Y

˛2�20n�10
e�l˛˛.H0.a// da (24)

for all � � 1 and all N > 0, where l˛ > 0 and c0 > 0 are constants depending
only on N. By Lemma 3.13 the second integral is finite. Thus (7) is proven.

(ii) Now assume that � 2 .0; 1. We essentially argue as above, but have to change
the upper bounds for the two products occurring in the integral (22). We apply
Lemma 3.10 to bound the left-hand side of (23) again by the same quantity
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as before. To bound the last term in the integral in (22), we use Lemma 3.11
giving for this term an upper bound of

�� dimmRıR
0 .a/

Y

˛2�R
0n�10

e�k˛˛.H0.a//

times the value of some seminorm applied to the '
’s. Hence (21) is bounded
by the product of the value of a seminorm (depending on m) applied to ˆ1
with

�m�dimuR�dimmR

with m > dim uP2
R arbitrary if R ¤ P2 and m D 0 if R D P2, and

Z

AG
1

�
P2
P1
.H0.a/� T/

Y

Q̨2�21
e�l0˛ Q̨.H0.a// da

for suitable l0̨ > 0. Since (for P2 D R as well as R ¤ P2)

dim uR � mC dimmR � dim g D n2 (25)

the assertion (8) follows again from Lemma 3.13.
(iii) It is clear from the proof of the first part of the lemma that if � is sufficiently

large with respect to N, then the analogue assertion holds for ˆ 2 S�.g.A//
instead of ˆ 2 S�.g.A//.

ut
Remark 3.15. In (25) we have dim uR C dimmR � dim g � 1 unless R D P2 D G,
and if R ¨ G we have dim uR C dimmR � dim g � 2 unless n D 2.

4 Nilpotent Auxiliary Distributions

Recall that n � g.Q/ denotes the set of nilpotent elements. Under the action of
G.Q/ it decomposes into finitely many orbits which we denote by N � n. If N ¤
0 and X0 2 N , X0 can be embedded into an sl2-triple fX0;YX0 ;HX0g � g with
HX0 semisimple and YX0 nilpotent. The element HX0 defines a grading on g, g DL

i2Z gi with gi D fX 2 g j ŒHX0 ;X D iXg and X0 2 g2. We set pX0 D
L

i�0 gi,
which is the associated Jacobson–Morozov parabolic subalgebra, uX0 D

L
i>0 gi,

u
>j
X0
D L

i>j gi, and u
�j
X0
D L

i�j gi. Correspondingly, let PX0 D MX0UX0 � G be
the Jacobson–Morozov parabolic subgroup with Lie algebra pX0 and Levi part MX0
with Lie algebra mX0 D g0, and unipotent radical UX0 with Lie algebra uX0 . The
representative X0 of N can be chosen such that PX0 is a standard parabolic subgroup
and HX0 2 aMX0

. If N D 0, then X0 D 0, and we set HX0 D 0, PX0 D G.
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We have a decomposition

N D
[

ı2PX0 .Q/nG.Q/
Ad ı�1 	 u�2X0

.Q/

(disjoint union), and the action of MX0 on u2X0 D g2 defines a prehomogeneous
vector space, i.e. the orbit V0 WD Ad MX0X0 � g2 is open and dense. We shall write

u
2;reg
N .Q/ D N \ g2.Q/

or just u2;reg.Q/ if N is clear from the context.
Let CMX0

.X0/ D fm 2 MX0 j Ad m�1X0 D X0g be the stabiliser of X0 under the
action of MX0 , and CUX0

.X0/ D fu 2 UX0 j Ad u�1X0 D X0g the stabiliser of X0 in
UX0 . If there is no danger of confusion, we drop the subscript X0 and write H D HX0 ,
P D PX0 , etc.

Note that for every � 2 R>0 we have

Ad.�X0;�/X0 D �X0; where �X0;� WD e
log�
2 HX0 2 ZMX0 .A/

where ZMX0=center of MX0 .

Remark 4.1. If X 2 u2;reg.Q/ and if fX;HX;YXg is the associated sl2-triple, then
HX D HX0 .

Example 4.2. For the cases n D 2 and n D 3 we list our choice of Jacobson–
Morozov parabolics and their relevant properties:

• n D 2. There are two nilpotent orbits, the trivial orbit Ntriv and the regular one
Nreg:

N X0 HX0 PX0 CU.X0/ u2;reg

Ntriv 0 0 G f12g f0g
Nreg

�
0 x0
0 0

� �
1

�1

�
P0 U0

˚�
0 x
0 0

� j x ¤ 0
�

where x0 2 Q is any non-zero element.
• n D 3. There are three nilpotent orbits, the trivial orbit Ntriv, the minimal

(=subregular) one Nmin, and the regular one Nreg: where x0; y0 2 Q are any
non-zero elements.

In all of these examples we fix measures on CU.X0;A/ and CM.X0;A/ in the obvious
way.
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N X0 HX0 PX0 CU.X0/ u2;reg

Ntriv 0 0 G f12g f0g
Nmin

�
0 0 x0
0 0 0
0 0 0

� �
1
0

�1

�
P0 U0

n�
0 0 x
0 0 0
0 0 0

�
j x ¤ 0

o

Nreg

�
0 x0 0
0 0 y0
0 0 0

� �
2
0

�2

�
P0

n�
1 x1 x2
0 1 x3
0 0 1

�
j x1 D x0

y0
x3
o n�

0 x 0
0 0 y
0 0 0

�
j x � y ¤ 0

o

The following is a slight variant of [RR72, Theorem 1].

Lemma 4.3. There exists a constant c > 0 such that for every function f W V0.A/ D
g2.A/ �! C, which is integrable and for which all occurring integrals are finite,
we have

Z

CM.X0;A/nM.A/
f .Ad m�1X0/ıU�2 .m/�1da D c

Z

V0.A/
'.X/f .X/dX;

where ' W g2.A/ �! C is defined as follows: Let Z1; : : : ;Zr be a basis of g1, and
Z01; : : : ;Z0r a basis of g�1, which are dual to each other with respect to the Killing

form. For X 2 g2 write ŒX;Z0i  D
P

cji.X/Zj, and set '.X/ D j det.cij.X//i;j/j 12 .

Example 4.4. For N the trivial or regular orbit from Example 4.2, we have g1 D
0 D g�1 so that '.X/ 
 1. If n D 3 and N D Nmin, then g1 D f

�
0 � 0
0 0 �
0 0 0

�
g and

'.
�
0 0 x
0 0 0
0 0 0

�
/ D jxj.

Proof of Lemma 4.3. Let X 2 g2.A/ and m 2 M.A/. Then ' transforms according
to [RR72, Lemma 2] via '.Ad mX/ D j det Ad mjg1 j'.X/ D ıg1 .m/'.X/. Let

ƒ1.f / D
Z

CM.X0;A/nM.A/
f .Ad m�1X0/ıU�2 .m/�1dm; and

ƒ2.f / D
Z

V0.A/
'.X/f .X/dX:

Let m0 2 M.A/ and put f m0 .X/ D f .Ad m�10 X/. Then

ƒ1.f
m0 / D

Z

CM.X0;A/nM.A/
f .Ad m0

�1 Ad m�1X0/ıU�2 .m/�1dm

D
Z

CM.X0;A/nM.A/
f .Ad.mm0/

�1X0/ıU�2 .m/�1dm D ıU�2 .m0/ƒ1.f /;

and, using the above transformation property of ',
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ƒ2.f
m0 / D

Z

V0.A/
'.X/f .Ad m�10 X/dX D ıg2 .m0/

Z

V0.A/
'.Ad m0X/f .X/dX

D ıg2 .m0/ıg1 .m0/

Z

V0.A/
'.X/f .X/dX D ıU�2 .m0/

Z

V0.A/
'.X/f .X/dX:

ut
We need to attach certain auxiliary distributions to the nilpotent orbit N , namely,

jTN ; QjTN W S�.g.A//[ S�.g.A// �! C

(� sufficiently large as in Lemma 3.7). The first distribution is defined by (for the
definition of QjTN see Definition 4.6 below)

jTN .ˆ/ D
Z

G.Q/nG.A/1
F.x;T/

X

�2N
ˆ.Ad x�1�/dx:

This integral is absolutely convergent since the integral with the sum over � 2 N
replaced by � 2 g.Q/ is already absolutely convergent (cf. [Cha02, Art85]).

Proposition 4.5. There exists � > 0 depending only on n such that the following
holds. For every nilpotent orbit N there is a distribution JT

N W S�.g.A// [
S�.g.A// �! C such that

JT
n.ˆ/ D

X

N
JT
N .ˆ/:

Moreover, JT
N .ˆ/ is a polynomial in T of degree at most dim a, and there exist c > 0

and for fixed ˆf 2 S.Af // a seminorm 
 on S�.g.R// (resp. S�.g.R// such that

ˇ̌
JT
N .ˆ/ � jTN .ˆ/

ˇ̌

D
ˇ
ˇ
ˇ
ˇ
ˇ̌J

T
N .ˆ/ �

Z

G.Q/nG.A/1
F.x;T/

X

�2N
ˆ.Ad x�1�/dx

ˇ
ˇ
ˇ
ˇ
ˇ̌ � 
.ˆ1/e�ckTk

for all sufficiently regular T 2 aC with d.T/ � ıkTk.
Proof. The assertion is the analogue to [Art85, Theorem 4.2] where it is stated for
smooth compactly supported functions on the group G.A/. Large parts of the proof
of [Art85, Theorem 4.2] carry over to our situation, we have, however, to take into
account that our test function is not compactly supported anymore. We define an
auxiliary function similar as in [Art85]: Let N be a nilpotent orbit and let " > 0 be
given. Let q1; : : : ; qr be polynomials on g such that N D fX 2 g j q1.X/ D : : : D
qr.X/ D 0g. We can choose q1; : : : ; qr with coefficients in Q. Let �1 W R �! R be
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a non-negative smooth function with support in Œ�1; 1 which identically equals 1
on Œ�1=2; 1=2 and such that 0 � �1 � 1. Define

ˆ"N .X/ D ˆ.X/�1."�1jq1.X/j1/ 	 : : : 	 �1."�1jqr.X/j1/

so that ˆ"N D ˆ in a neighbourhood of N . It follows from the proof of
[Art85, Theorem 4.2] that it suffices to show the analogue of [Art85, Lemma 4.1],
namely that
Z

G.Q/nG.A/1
F.x;T/

X

X2nnN
jˆ"N .Ad x�1X/jdx � 
.ˆ1/"a.1C kTk/dim a (26)

for a suitable seminorm 
, and a suitable number a > 0. Hence, using (4), we need
to bound (after integratingˆ over a compact subset)

Z

AG
0 .T1/

ı0.a/
�1F.a;T/

X

X2nnN
jˆ"N .Ad a�1X/jda:

It suffices to take the sum over X 2 g.Q/nN . Moreover, since ˆ is smooth and
compactly supported at the non-Archimedean places, there exists N > 0 such that
we can take the sum instead over points with entries in 1

NZ and replace ˆ by its
Archimedean part ˆ1 as ˆf stays fixed. For R > 0 define a function ˆR.X/ WD
ˆ1.X/�1.R�1kX1k/ so that the support of ˆR is compact and contained in fX 2
g.R/ j kX1k � Rg, and ˆR.X/ D ˆ1.X/ if kX1k � R=2. Moreover, if D 2 U.g/
denotes an element of degree k � �, then there exists a constant cD > 0 depending
only on D and �1 such that

kDˆRkL1.g.R// � cD

X

Y2Bg;�

kYˆ1kL1.g.R// D cDkˆ1k0;�;1:

It follows from the proof of [Art85, Lemma 4.1] that there exist constants
r; a0; c > 0 depending only on n such that if � is sufficiently large (in a sense
depending only on n),

Z

AG
0 .T1/

ı0.a/
�1F.a;T/

X

X2g. 1N Z/nN
j.ˆR/

"
N .Ad a�1X/j da

� cRa0kˆ1k0;�;1"r.1C kTk/dim a

for every R � 1, since the support of ˆR is compact and contained in the ball of
radius R around 0 2 g.R/. In particular, if 1 � R1 � R2, we get

Z

AG
0 .T1/

ı0.a/
�1F.a;T/

X

X2g. 1N Z/nN
j�ˆR1 �ˆR2

�"
N .Ad a�1X/j da

� cRa0
2 


R1
� .ˆ1/"r.1C kTk/dim a;
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where


R1
� .ˆ1/ WD

X

Y2Bg;�

Z

g.R/nBR1

j.Yˆ1/.X/jdX

for BR1 WD fX 2 g.R/ j kXk < R1g. Let M 2 Z>0 and suppose � > M. Since
ˆ1 2 S�.g.R//[S�.g.R//, there exists CM > 0 and kM; lM � 0 such that (possibly
enlarging � accordingly)


R1
� .ˆ1/ � CMR�N

1 kˆ1kkM ;lM ;1:

Fix M > a0. By definition jˆ1 � ˆ2i j � 2Pj�i�1 jˆ2jC2 � ˆ2j j so that for every
i > 0, we get

Z

AG
0 .T1/

ı0.a/
�1F.a;T/

X

X2g. 1N Z/nN
j�ˆ1 �ˆ2i

�"
N ;v
.Ad a�1X/j da

� cM

X

j�i�1
2.a0�M/jkˆ1kkM ;lM ;1"

r.1C kTk/dim a

D c0M2.a0�M/.i�1/kˆ1kkM ;lM ;1"
r.1C kTk/dim a

for cM; c0M > 0 suitable constants. Hence if we fix an arbitrary integer i > 0, we get

Z

AG
0 .T1/

ı0.a/
�1F.a;T/

X

X2g. 1N Z/nN
jˆ"N .Ad a�1X/j da

� c
�
2.a0�M/.i�1/kˆ1kkM ;lM ;1 C 2ia0kˆ1k0;�

�
"r.1C kTk/dim a

for a suitable constant c > 0 proving the inequality (26). Taking M D a0C1 (which
only depends on n) and � > a0 C 1 also proves the assertion about the existence
of �. ut
Definition 4.6. If T 2 aC is sufficiently regular, we set

QjTN .ˆ/ D
Z

AGM.Q/nM.A/

Z

u>2.A/

QFM.m;T/
X

�2u2;reg
N .Q/

ıU.m/
�1ˆ.Ad m�1.�CX// dX dm

where the truncation function QFM.	;T/ W G.A/ �! C is defined as the characteristic
function of the set of all x 2 G.A/ of the form x D umk, m 2 M.A/, u 2 U.A/,
k 2 K, satisfying

8$ 2 b�0 8� 2 M.Q/ W $.H0.�m/ � T/ � 0:

Note that QFM.umk;T/ D QFM.m;T/ D FM.m;T/ O�P.T �H0.m//.
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From now on we assume n � 3. However, the main result of the following,
namely Theorem 5.7, should basically stay true for general n, cf. Remark 5.9.

We shall further assume that any test functionˆ is invariant by Ad k for all k 2 K.
In particular, the function QFM.	;T/ simplifies in our situation. If N D Ntriv D 0 is
the trivial orbit, we have QFM.m;T/ D QFG.m;T/ D F.m;T/ and

QjTNtriv
.ˆ/ D volT.G.Q/nG.A/1/ˆ.0/

where volT.G.Q/nG.A/1/ D R
G.Q/nG.A/1 F.x;T/ dx denotes the volume of the

truncated quotient which satisfies

lim
TW d.T/!1 volT.G.Q/nG.A/1/ D vol.G.Q/nG.A/1/:

On the other hand, the Jacobson–Morozov parabolic subgroup for any other
occurring nilpotent orbit equals P0 D T0U0 so that QFM.m;T/ D O�0.T � H0.m//
in all these cases. Hence in all the non-trivial cases we have

QjTN .ˆ/ D
Z

AGT0.Q/nT0.A/
ı0.t/

�1 O�0.T � H0.t//
Z

u>2.A/

X

�2u2;reg
N .Q/

ˆ.Ad t�1.� C X// dX dt

D
Z

AG
0

ı0.a/
�1 O�0.T �H0.a//

Z

u>2.A/

X

�2u2;reg
N .Q/

ˆ.Ad a�1.� C X// dX da

where we used the invariance of ˆ under Ad k, k 2 K, for the equality. This
expression is defined for any T 2 a so that we do not need to assume that T is
sufficiently regular.

Lemma 4.7. Let � > 0 and ˆf 2 S.g.Af //. There exists a seminorm 
 on
S�.g.R// (resp. S�.g.R//) such that for all � > 0 and all ˆ1 2 S�.g.R// (resp.
ˆ1 2 S�.g.R//) we have (with ˆ D ˆ1 	ˆf )

Z

AGT0.Q/nT0.A/
ı0.t/

�1 O�0.T � H0.t//
Z

u>2.A/

X

�2u2;reg
N .Q/

jˆ.Ad t�1.� C X//j dX dt

� �� dimN=2.1C j log�j/
.ˆ1/: (27)

Moreover, we have

QjTN .ˆ�/ D �� dimN=2QjT�
log�
2 H

N .ˆ/

for H D HX0 the semisimple element of the sl2-triple attached to N as in
Example 4.4.
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Proof. For N D 0 there is nothing to show so that we assume that N is not
the trivial orbit. Without loss of generality we may assume that ˆ � 0. Let
‰ W g2.A/ �! C be defined by ‰.�/ D R

u>2.A/ ˆ.� C X/ dX. Then the left-hand
side of (27) equals

�� dimu>2
Z

AGT0.Q/nT0.A/
ıU�2 .t/�1 O�0.T �H0.t//

X

�2u
2;reg
N .Q/

‰.�Ad t�1�/ dt

D�� dimu>2
Z

CT0 .X0;A/nT0.A/

Z

AGCT0 .X0;Q/nCT0 .X0;A/
ıU�2 .ts/�1 O�0.T � H0.ts//‰.�Ad t�1X0/ ds dt:

Now ıU�2 .ts/�1 D ıU1 .s/�1ıU�2 .t/�1. Let

t.X0; 	/ W V0.A/ �! CT0 .X0;A/nT0.A/

be the inverse of the map t 7! X D Ad t�1X0. Then by Lemma 4.3 the above equals
a constant multiple of

�� dimu>2
Z

V0.A/
'.X/‰.�X/

Z

AGCT0 .X0;Q/nCT0 .X0;A/
ıU1 .s/�1 O�0.T�H0.t.X0;X/s// ds dX:

Changing �X to Y we obtain

��ı.N /

Z

V0.A/
'.Y/‰.Y/

Z

AGCT0 .X0;Q/nCT0 .X0;A/
ıU1 .s/�1 O�0.T �H0.t.X0; �

�1Y/s// ds dY

where

ı.N / D dim u>2 C dim V0 C 1

2
dim g1 D dimN=2: (28)

If N D Nreg is the regular orbit, we have g1 D 0 and AGCT0 .X0;Q/nCT0 .X0;A/ D
Z.Q/nZ.A/1 so that we can bound the inner integral trivially by vol.Q�nA1/ D 1.
Hence in this case we get the upper bound

�� dimN=2

Z

V0.A/
'.Y/‰.Y/ dY D �� dimN=2

Z

V0.A/
‰.Y/ dY

which is bound by �� dimN=2 times some seminorm of ˆ.
We are left with the case n D 3 and N D Nmin the minimal orbit. In that case

every s 2 Z.A/CT0 .X0;Q/nCT0 .X0;A/ is of the form s D diag.a; a�2; a/ for a 2
Q
�nA�, and t 2 CT0 .X0;A/nT0.A/ can be represented by t D diag.b; 1; b�1/, b 2

A
�. In particular, ıU1 .s/ D 1. Multiplying Y by ��1 we get

H0.t.X0; �
�1Y/s/ D H0.t.X0;Y//C 1

2
log� 	 H C log jaj 	 .1;�2; 1/;
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for H D HX0 the semisimple element of the sl2-triple we fixed above. Plugging this
into the integral, we obtain an upper bounded of the form of a product of ��ı.N /.1C
j log�j/ times some seminorm in ‰ (depending on T). Using this expression and
converting the changes of variables back we also get the second claim. ut

5 Nilpotent Distributions, Continuation of „T.s;ˆ/
and Functional Equation

In this section we proof the main Theorem 5.7. We continue to assume that n � 3
but we shall comment on possible generalisations to n > 3 at the appropriate places.

Proposition 4.5 implies that to understand the nilpotent distribution JT
n it suffices

to study the distributions JT
N or jTN . The homogeneity property of the distributions

QjTN .ˆ�/ from Lemma 4.7 will also give a certain homogeneity of the distributions
JT
N .ˆ�/. To prove this, we first need to show that jTN can be approximated by QjTN :

Proposition 5.1. Let � > 0 be as in Lemma 3.7 and let ˆf 2 S.g.Af //. There
exists a seminorm 
 on S�.g.R// (resp. S�.g.R//), and " > 0 such that for all
ˆ1 2 S�.g.R// (resp. ˆ1 2 S�.g.R//) we have (with ˆ D ˆ1 	ˆf )

ˇ
ˇ
ˇ
ˇj

T
N .ˆ/ � QjTN .ˆ/

ˇ
ˇ
ˇ
ˇ � 
.ˆ1/e�"kTk (29)

for all sufficiently regular T 2 aC with d.T/ � ıkTk.
We postpone the proof of this proposition to Appendix 1.

Remark 5.2. For n > 3 this proposition is expected to stay valid at least for certain
types of nilpotent orbits. For the regular (or “regular by blocks”) nilpotent orbits,
see also [CL15] for related results (in the function field case).

Corollary 5.3. Let I � R>0 be a compact interval and let � be as before. Let
ˆf 2 S.g.Af //. Then:

(i) There exists a seminorm 
 on S�.g.R// (resp. S�.g.R//) and a constant " >
0 such that for all ˆ1 2 S�.g.R// (resp. ˆ1S�.g.R//) and all sufficiently
regular T 2 aC with d.T/ � ıkTk we have

ˇ
ˇJT

N .ˆ/ � QjTN .ˆ/
ˇ
ˇ � 
.ˆ1/e�"kTk

for every nilpotent orbit N .
(ii) For every T 2 aC such that T and T � log�

2
HX0 are sufficiently regular for all

� 2 I, we have

JT
N .ˆ�/ D ��ı.N /J

T� log�
2 HX0

N .ˆ/ (30)

for every nilpotent orbit N , all � 2 I, and ˆ1 2 S�.g.R// (resp. ˆ1 2
S�.g.R//). Recall that ı.N / was defined in (28).



388 J. Matz

(iii) As a polynomial, JT
N .ˆ�/ can be defined at every point T 2 a, and (30) holds

for all T 2 a and � 2 R>0.

Remark 5.4. The homogeneity property of JT
N .ˆ�/ from the second part of the

corollary determines not only the location and order of the poles of „T.s; ˆ/ (see
below). One can also read off the principal parts of the Laurent expansions at the
poles from the coefficients of the polynomial JT

N .ˆ/, cf. Example 5.10. As we shall
explain below, there is a way to prove the analytic continuation of „T.s; ˆ/ for
general n which also correctly determines the location of the poles. This method,
however, does not easily give the correct order of the poles or the principal parts of
the Laurent expansions.

Proof of Corollary 5.3.

(i) This is a direct consequence of Propositions 4.5 and 5.1.
(ii) By the first part we have for every ˆ1 2 S�.g.R// (resp. ˆ1 2 S�.g.R//)

and every � 2 I that

jJT
N .ˆ�/� QjTN .ˆ�/j � 
.ˆ1;�/e�"kTk

for every sufficiently regular T 2 aC with d.T/ � ıkTk. Since I is compact
and 
.ˆ1;�/ varies continuously in �, CI WD max�2I 
.ˆ1;�/ exists and is
finite. Similarly, we have

j��ı.N /J
T� log�

2 H
N .ˆ/ � ��ı.N /QjT�

log�
2 H

N .ˆ/j � ��ı.N /
.ˆ1/e�"kT�
log�
2 Hk

for all T 2 a with d.T � log�
2

H/ � ıkT � log�
2

Hk and T � log�
2

H sufficiently
regular. As

QjTN .ˆ�/ D ��ı.N /QjT�
log�
2 H

N .ˆ/;

we therefore get with �I WD min�2I � that

jJT
N .ˆ�/� ��ı.N /J

T� log�
2 H

N .ˆ/j � maxfCI ; �
�ı.N /
I 
.ˆ1/ge�"kT�

log�
2 Hk

(31)

for all T 2 a with d.T � log�
2

H/ � ıkT � log�
2

Hk and d.T/ � ıkTk if both T

as well as T � log�
2

H are sufficiently regular.
The set of T 2 aC satisfying both inequalities is an open cone in aC so that

JT
N .ˆ�/—being a polynomial in T—is uniquely determined by this estimate.

Thus the left-hand side of (31) must identically vanish and the second part of
the corollary follows.

(iii) As a polynomial, JT
N .ˆ�/ can be defined at every point T 2 a with (30) holding

for all � 2 I. Since I � R>0 is arbitrary, (30) holds for all � 2 R>0. ut
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The next two corollaries are obvious from our previous results so that we omit
their proofs.

Corollary 5.5. Let T 2 a be arbitrary, and let N be a nilpotent orbit. Let � > 0 be
as before, and let ˆ 2 S�.g.A//.

(i) The function JT;�
N .s; ˆ/ defined by

JT;�
N .s; ˆ/ D

Z 1

0

�n.sC n�1
2 /JT

N .ˆ�/d
��

converges absolutely and locally uniformly for <s > 1�n
2
C 1

nı.N /. It defines
a holomorphic function in this half plane and has a meromorphic continuation
to all s 2 C with only pole at 1�n

2
C 1

nı.N / D 1�n
2
C dimN

2n ; which is of order
at most dim aC 1.

(ii) The function JT;C
N .1 � s; ˆ/ defined by

JT;C
N .1 � s; Ô / D

Z 1

0

�n.sC n�1
2 /��n2JT

N . Ô ��1 /d��

converges absolutely and locally uniformly for <s > nC1
2
� 1

nı.N /. It defines
a holomorphic function in this half plane and has a meromorphic continuation
to all s 2 C with only pole at nC1

2
� 1

nı.N / D nC1
2
� dimN

2n ; which is of order
at most dim aC 1.

Corollary 5.6. Let ˆ 2 S�.g.A// and put

IT
N .s; ˆ/ D JT;C

N .1 � s; Ô /� JT;�
N .s; ˆ/:

Then for every T 2 a, IT
N .s; ˆ/ has a meromorphic continuation to all s 2 C and

satisfies the functional equation

IT
N .s; ˆ/ D IT

N .1 � s; Ô /:

Its only poles are at

1 � n

2
C dimN

2n
and

nC 1
2
� dimN

2n
;

which are both of order at most dim aC 1.

Our main theorem is now an easy consequence of the previous results.

Theorem 5.7. Let G D GLn with n � 3, and let R > n be given. Then there exists
� <1 such that for every ˆ 2 S�.g.A// and T 2 a the following holds.

(i) „T.s; ˆ/ is holomorphic for all s 2 C with <s > nC1
2

. It equals a polynomial
in T of degree at most dim a D n � 1.
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(ii) „T.s; ˆ/ has a meromorphic continuation to all s 2 C with <s > �R, and
satisfies for such s the functional equation

„T.s; ˆ/ D „T.1 � s; Ô /:

(iii) The poles of „T.s; ˆ/ in <s > �R are parametrised by the nilpotent orbits
N � n. More precisely, its poles occur exactly at the points

s�N D
1 � n

2
C dimN

2n
and sCN D

1C n

2
� dimN

2n

and are of order at most dim aC1 D n. In particular, the furthermost right and
furthermost left pole in this region are both simple, correspond to N D 0, and
are located at the points sC0 D 1Cn

2
and s�0 D 1�n

2
, respectively. The residues

at these poles are given by

res
sDs�

0

„T.s; ˆ/ D vol.AGG.Q/nG.A//ˆ.0/; and

res
sDsC

0

„T.s; ˆ/ D vol.AGG.Q/nG.A// Ô .0/:

Remark 5.8. If we take ˆ 2 S1.g.A// D S.g.A//, then „T.s; ˆ/ has a
meromorphic continuation to all of C.

Proof. We only prove the theorem for � D 1. The other case works similar by
using the analogue results from the previous sections for � < 1 instead and we
omit the details for notational reasons. For every � 2 .0;1/ and every T 2 a
Chaudouard’s trace formula gives

JT�.ˆ�/ D ��n2JT�. Ô ��1 /C ��n2JT
n.
Ô
��1 /� JT

n.ˆ�/:

Define

IT
n.s; ˆ/ D

Z 1

0

�n.sC n�1
2 /
�
��n2JT

n.
Ô
��1 / � JT

n.ˆ�/
�

d��

which converges for <s > nC1
2

and defines a holomorphic function there. By
Corollary 5.5, we may split IT

n.s; ˆ/ into a sum
P

N IT
N .s; ˆ/. Hence for s 2 C

with <s > nC1
2

we get

„T.s; ˆ/ D „T;C.s; ˆ/C„T;C.1 � s; Ô /C IT
n.s; ˆ/:

The assertions then follow from Theorems 3.4, 3.5, and Corollary 5.6. ut
Remark 5.9. For more general n > 3 we cannot (yet) prove the homogeneity
property of JT

N .ˆ�/ from Corollary 5.3, but one could try to use another approach
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to prove results analogous to Theorem 5.7 for n > 3. More precisely, using Arthur’s
fine geometric expansion (or rather its analogue for the Lie algebra) we have
(cf. [Art85] in the group case)

JT
n.ˆ�/ D

X

.M;X/

aM.X; S/JT
M.X; ˆ�/;

where M runs over all Levi subgroups M � T0 and X 2 m.Q/ over a set of
representatives of the nilpotent M.Q/-orbits in m.Q/. The aM.X; S/ are certain
global coefficients and JT

M.X; ˆ�/ certain weighted orbital integrals. The set S is
a suitable sufficiently large finite set of places (depending on the support of ˆ�, but
independent of �).

The global coefficients are in general not well understood (but see [Cha14] for
some recent progress), but they are independent of the test function (as long as the
set S can be kept fixed) and is therefore irrelevant for our purposes. Note that for
G D GLn every nilpotent orbit is a Richardson orbit. Hence the weighted orbital
integrals can be written as

JT
M.X; ˆ�/ D

Z

uX.QS/

ˆ.�Y/wM.T;Y/ dY;

where pX D mX C uX is a standard parabolic subalgebra of G such that the orbit
N of X under G.QS/ intersects uX.QS/ in a dense open subset, and wM.T;Y/ is a
certain weight function. Note that for M D G we get the unweighted integral

JT
G.X; ˆ�/ D

Z

uX.QS/

ˆ.�Y/ dY;

which is independent of T and homogeneous of degree � dim uX D � dimN=2 in
�, that is, JT

G.X; ˆ�/ D �� dimN=2JT
G.X; ˆ/.

Following Arthur’s construction (in the group case) of the weight function
wM.T;X/ in [Art88], it should be possible to show that

wM.T; �
�1X/ D

n�1X

iD0
wM;i.T;X/.log�/i

for wM;i.T;X/ suitable weight functions of the same type as wM.T;X/. This would
be enough to infer (along the same lines as above) the meromorphic continuation
and functional equation of „T.s; ˆ/, and the location of the poles (which are the
same as before). It would also give an upper bound on the order of the poles, namely
the poles are of order at most n.

However, as pointed out before, this approach does not give the full principal
parts of the Laurent expansions at the poles. For this a very good understanding of
the weight functions would be necessary.
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Example 5.10. We compute the Laurent expansions at the poles of „T.s; ˆ/ for
GL2. The truncation parameter T is in this case of the form T D .T1;�T1/. For T1
sufficiently large we have (see [Gel96] for the unipotent contribution to the trace
formula for GL2)

JT
n.ˆ/ D vol.G.Q/nG.A/1/ˆ.0/C d

ds


.s � 1/

Z

A�

jajs
Z

K
ˆ.Ad k�1X.a// dk d�a

�

jsD1

C 2T1

Z

A

Z

K
ˆ.Ad k�1X.a// dk da

where X.a/ D �
0 a
0 0

�
. Splitting this according to the nilpotent orbits we get

JT
Ntriv

.ˆ/ D vol.G.Q/nG.A/1/ˆ.0/ and JT
Nreg

.ˆ/ D JT
n.ˆ/ � JT

Ntriv
.ˆ/. Write

'.a/ D R
Kˆ.Ad k�1X.a// dk so that '�.a/ WD '.�a/ D R

Kˆ�.Ad k�1X.a// dk.
Then

JT
Nreg

.ˆ�/ D d

ds


.s� 1/

Z

A�

jajs'.�a/ d�a

�

jsD1
C 2T1

Z

A

'.�a/ da

D ��1 d

ds


.s � 1/

Z

A�

jajs'.a/ d�a

�

jsD1

C��1 log��1 lim
s!1


.s � 1/

Z

A�

jajs'.a/ d�a

�

C2��1T1
Z

A

'.a/ da

D ��1 d

ds


.s � 1/

Z

A�

jajs'.a/ d�a

�

jsD1
C ��1.2T1 � log�/

Z

A

'.a/ da

D ��1JT� 1
2 log�HX0

Nreg
.ˆ/:

Computing IT
Nreg

.s; ˆ/ we get

IT
Nreg

.s; ˆ/ D � 1

4.s� 1/2
OQ'.0/C 1

2.s� 1/JT
Nreg

.b̂/C 1

4s2
O'.0/ � 1

2s
JT
Nreg

.ˆ/

where Q' denotes the function obtained from b̂ analogous to ' obtained from ˆ.
This gives the principal parts of the Laurent expansions of „T.s; ˆ/ at s D 1 and at
s D 0.

In particular, „T.s; ˆ/ has poles of second order at s D 1 and s D 0, and poles
of simple order (from the trivial orbit) at s D 3=2 and s D �1=2.

Similarly the distributions IT
N .s; ˆ/ can be computed for n D 3 by using

the expression for the unipotent distribution (in the group case) from [Fli82]
(cf. also [Mat11]).
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6 Connections to Arthur’s Trace Formula and Shintani
Zeta Function

The purpose of this section is to explain some connections of our zeta functions
to other previously mentioned topics, namely the Shintani zeta function for binary
quadratic forms, Arthur’s trace formula, and automorphic zeta functions.

We first define the main part of the zeta functions. Let n � 2 be arbitrary.
Recall that X 2 g.Q/ss (resp. � 2 G.Q/ss) is called regular if its eigenvalues
(over some algebraic closure of Q) are pairwise different, and that X 2 g.Q/ss

(resp. � 2 G.Q/ss) is called regular elliptic if X (resp. � ) is regular and if the
commutator subgroup GX (resp., G� ) is not contained in any proper parabolic
subgroup of G. Note that an element X 2 g.Q/ (resp. � 2 G.Q/) is regular elliptic
if and only if its eigenvalues are pairwise distinct and some (and hence any) of them
generates an n-dimensional field extension over Q.

Let Oreg denote the set of equivalence classes attached to the orbits of regular
elements in g.Q/, and Oer the set of classes attached to orbits of elliptic regular
elements in g.Q/. Further, write O0reg D OregnOer. We define the “main part” of
„T as

„T
main.s; ˆ/ D

Z 1

0

�n.sC n�1
2 /

X

o2Oer

JT
o .ˆ�/ d��:

By Theorem 3.4 this defines a holomorphic function for <s > nC1
2

. In the next
section we will see that, at least for G D GLn and n � 3, this function is indeed the
main part of „T .s; ˆ/ in the sense that it is responsible for the rightmost pole.

Note that in fact„T
main.s; ˆ/, or more generally each of the distributions JT

o .ˆ�/,
o 2 Oer, is independent of T: If o 2 Oer, then kT

o.x; ˆ/ D KG;o.x; ˆ/ DP
X2oˆ.Ad x�1X/. So we also write „main.s; ˆ/ D „T

main.s; ˆ/. The distribution
Jo.ˆ/ D JT

o .ˆ/ can also be expressed as an orbital integral: Let X 2 o so that the
centraliser GX of X in G is reductive. We fix a Haar measure on GX.A/. Denoting
the quotient measure on GX.A/nG.A/ again by dg, we then get

Jo.ˆ/ D JT
o .ˆ/ D vol.GX.Q/nGX.A/

1/

Z

GX.A/nG.A/
ˆ.Ad g�1X/ dg

(cf. [Cha02, § 5]).

6.1 Relation to Arthur’s Trace Formula

Let G D GLn, and let OG denote the set of geometric equivalence classes in the
group G.Q/ as defined by Arthur (usually denoted by O). To distinguish them from
the equivalence classes we defined here on the set g.Q/, we shall write Og D O
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if necessary. Let Og
er (resp. OG

er) denote the set of equivalence classes attached to
orbits of elliptic regular elements X 2 g.Q/ (resp. � 2 G.Q/). We have a canonical
inclusion G D GLn ,! g of G-varieties preserving the semisimple elements
G.Q/ss ,! g.Q/ss. This is of course a special feature of GLn and does not apply
to general reductive groups. If �s 2 G.Q/ss and oG 2 OG is the equivalence class
attached to �s, it is straightforward that oG 2 Og is also the equivalence class
attached to �s viewed as an element in g.Q/ss. This gives an inclusion OG ,! Og

and we view OG as a subset of Og. Moreover, Og
er D OG

er.
Arthur’s trace formula is an identity

JG;T
geom.f / D JG;T

spec.f /

of the so-called geometric and spectral distribution on a space of suitable test
functions f on G.A/1. The geometric side allows a coarse geometric expansion given
by JG;T

geom.f / D
P

o2OG JG;T
o .f / for T 2 a and JG;T

o a certain distribution attached to
o, cf. [Art05] (usually JG;T

o is denoted by JT
o ).

Let ˆ 2 S.g.A//. For s 2 C with <s > .n C 1/=2 define a smooth function
fs W G.A/ �! C by

fs.g/ D
Z 1

0

�n.sC n�1
2 /ˆ.�g/d�:

By [FLM11] fs may be used as a test function for a certain expansion of the spectral
side of Arthur’s trace formula if <s > .n C 1/=2. If n � 3 and <s > .n C 1/=2,
there are also expansion, of the geometric side of the trace formula which converge
absolutely with fs as a test function, see [FL11a, Mat11]. Also, the regular elliptic
(or more generally semisimple) part of the trace formula converges absolutely for
such fs and any n by [FL11b]. In particular,

„main.s; ˆ/ D
X

o2OG
er

JG
o .fs/;

defines a holomorphic function in <s > .n C 1/=2 for every n. Here the sum
is the regular elliptic part of Arthur’s trace formula (again, JG;T

o .fs/ D JG
o .fs/ is

independent of T). Also JG;T
geom.fs/ D JG;T

spec.fs/ defines a holomorphic function in
<s > .nC 1/=2 for arbitrary n.

For n D 2; 3 one could try to use the geometric side JG;T
geom.fs/ as a regularisation

for„T.s; ˆ/ and Arthur’s trace formula as a replacement for the Poisson summation
formula. However, the geometric (or, equivalently, spectral) side of Arthur’s trace
formula seems to be “too small” in the sense that the function arising from the
continuous spectrum on the spectral side might have no meromorphic continuation
to all of C in general. It is quite possible that JG;T

geom.fs/ (and also„main.s; ˆ/) cannot
be meromorphically continued to all of C, cf. [Mat11, IV.iii]. This is one reason
why it seems more natural to study „main.s; ˆ/ in the context of the trace formula
for g instead of G.
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For example, if n D 2, the spectral side of the trace formula has infinitely many
poles coming from the contribution of the continuous spectrum. More precisely, the
infinitely many poles come from the intertwining operators. For example, in the
unramified case, this contribution actually equals (cf. [Mat11])

1

2�i

Z

iR
r.�/�1r0.�/ tr I.�; fs/ d�;

where r.�/ D ��.1�2�/
��.1C2�/ with �� the completed Riemann zeta function is the

normalising factor of the intertwining operator, and I.�; 	/ denotes the representation
parabolically induced from the trivial representation on the diagonal torus twisted
with the unitary character attached to the parameter � .

6.2 Automorphic L-Functions

Even though JG;T
geom.fs/ does not provide the right regularisation for „main.s; ˆ/,

JG;T
geom.fs/ can be viewed as a “piece” of „T.s; ˆ/. Hence also the spectral side

JG;T
spec.fs/ is a piece of „T.s; ˆ/. The spectral side with the test function fs contains a

particularly interesting part. Suppose that the functionˆ is bi-K-invariant. Then the
cuspidal part of the spectral side JG;T

spec.fs/ contributes a sum of zeta functions

X

�

Z.s; ˆ; �/;

where the sum runs over all unramified cuspidal automorphic representations � of
G.A/1, and Z.s; ˆ; �/ is a certain zeta function as defined in [GJ72]. By the theory
of Godement–Jacquet [GJ72] the ideal generated by all the Z.s; ˆ; �/,ˆ 2 S.g.A//
is generated by the completed automorphic L-function L�.s; �/ attached to � . This
actually reflects the fact that the Lie algebra g is Vinberg’s universal monoid for
GL.n/, and the fs are non-standard test functions, cf. [Ngô14, Sak14].

If we chooseˆ such that fs has cuspidal image (that is, JG;T
spec.fs/ D JG;T

cusp.fs/ is just
the cuspidal contribution), then

X

�

Z.s; ˆ; �/ D JG;T
geom.fs/

is independent of T, and it follows from [GJ72] that JG;T
geom.fs/ has a continuation to

an entire function and satisfies the functional equation under s$ 1� s andˆ$ b̂.
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6.3 Connection to the Shintani Zeta Function
in the Quadratic Case

The purpose of this section is to explain the connection between the Shintani zeta
function [Shi75, Yuk92, Dat96] and the main part of the zeta function „main.s; ˆ/
for GL2, or, equivalently, the regular elliptic part of Arthur’s trace formula for
GL2, cf. also [Lap02]. We shortly review some notation and results from [Dat96]
and [Yuk92].

Let G D GL2. The Shintani zeta function studies the action of G on the three
dimensional space of binary quadratic forms with rational coefficients. The space of
such forms will be denoted by V , its rational points by VQ and VA D VQ ˝ A. Let
S.VA/ be the space of Schwartz–Bruhat functions on VA. If X D .X1;X2;X3/ 2 VA

is a binary quadratic form, X.u; v/ D X1u2C X2uvC X3v2, the action of G is given
by g 	 X.u; v/ D X..u; v/gt/. Explicitly this is given by

X 7!
0

@
a2 2ac c2

ab adC bc cd
b2 2bd d2

1

A

0

@
X1
X2
X3

1

A

for g D �
a b
c d

� 2 G.A/. GL1 acts by multiplication on the coefficients of V . Let
H D GL1 �GL2 so that H acts on V . We denote this action by h 	 X. We view H as
embedded in GL.V/ ' GL3 so that we can write det h for h D .a; g/ 2 H which
equals det h D a det.g/.

Note that there is an isomorphism g ' V ˚ A1 with A1 the one-dimensional
affine space over Q. Under this isomorphism the adjoint action of G on g splits into
the action of the subgroup HG D f.det g�1; g/ 2 H j g 2 Gg � H on V plus the
identity on A1. In particular, under the projection g �! A1, g 7! tr g, each fibre is
isomorphic to V and is invariant under the action of G. For X 2 V let �X 2 g be
the unique element in the fibre above 0 2 A1 defined by the above isomorphism.
The measure on VA is the natural one obtained from the identification VA ' A

3

given via the coefficients of the quadratic form. For the inner form Œ	; 	 on VA we
adopt the convention from [Dat96] by defining ŒX;Y D X1Y3 � 1

2
X2Y2 C X3Y1.

Let  D N
v  v W A �! C

� be the previously fixed non-trivial character. Then
b‰.Y/ D R

VA
‰.X/ .ŒX;Y/ dX denotes the Fourier transform with respect to  . If

ˆ 2 S.g.A//, we use the same character to define the Fourier transform ofˆ on the
space of all 2 � 2 matrices by b̂.x/ D R

g.A/ ˆ.y/ .tr.xy//dy. Note that if a 2 A,
X 2 VA, then

b̂.aC �X/ D
Z

g.A/
ˆ.y/ .tr..aC �X/y// dy D �

Z

A

Z

VA

ˆ.bC �Y/ .2ab/ .ŒX;Y / dY db

For a binary quadratic form X 2 VQ we denote the splitting field of X over Q by
F.X/, and write P.X/ D X22 � 4X1X3 for the discriminant of the form X. Clearly,
ŒF.X/ W Q � 2 and ŒF.X/ W Q D 2 if and only if P.X/ is not a square in Q.
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Let V 00
Q
D fX 2 VQjŒF.X/ W Q D 2g. Then V with the above action of H is a

prehomogeneous vector space with relative invariant P. In particular the action of
H.R/ on VR has only finitely many orbits.

For ‰ 2 S.VA/ and s 2 C, <s > 3=2, the Shintani zeta-function (with trivial
central character) is defined by [Dat96, Yuk92]

Z.‰; s/ D
Z

H.Q/nH.A/
j det hj2s

X

X2V00
Q

‰.h 	 X/ dh:

This is a special case of a zeta function associated with a prehomogeneous vector
space. It can be shown (see [Dat96]) that this zeta functions has a meromorphic
continuation to the whole complex plane. In order to get a functional equation
an adjusted Shintani zeta function is necessary. One can show that this adjusted
function also occurs naturally as a part of the geometric side of the trace formula,
cf. [Mat11].

Let G.Q/ell denote the set of all elliptic elements in G.Q/, and G.Q/ell, reg �
G.Q/ell the subset of all regular elliptic elements. Then G.Q/ell,reg D F

o2OG
er
o DF

o2Og
er
o.

Theorem 6.1. Suppose ˆ 2 S.g.A// is invariant under scalar matrices with
scalars in bZ�. Then the main part „main.s; ˆ/ of the zeta function for G equals
the Shintani zeta function Z.‰; s/ up to an entire function where

‰.X/ D
Z

A

ˆ.aC �X/da; X 2 VA:

In particular, the poles and residues of „main.s; ˆ/ and Z.‰; s/ coincide.

Remark 6.2. Similarly the adjusted Shintani zeta function from [Yuk92] can be
basically identified with „T .s; ˆ/ (see [Mat11]).

Proof. Let <s > 3
2
. We use the map g.Q/ �! Q from above. Note that the

intersection of each fibre with G.Q/ell,reg is isomorphic to V 00
Q

. By definition the
function„main.s; ˆ/ equals

Z

G.Q/nG.A/1

Z 1

0

X

X2V00
Q

X

q2Q
ˆ.�q12 C �g�1�Xg/�2sC1 d�� dg:

We split the integral over � in one over .0; 1 and one over Œ1;1/. Since ˆ is a
Schwartz–Bruhat function, the integral

Z

G.Q/nG.A/1

Z 1

1

X

X2V00
Q

X

q2Q
�2sC1ˆ.�q12 C �g�1�Xg/ d�� dg

converges absolutely for all s 2 C, i. e. defines a holomorphic function on C.
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The remaining part of the integral is
Z

G.Q/nG.A/1

Z 1

0

�2sC1 X

X2V00
Q

X

q2Q
ˆ.�q12 C �g�1�Xg/ d�� dg:

We apply the Poisson summation formula to the inner sum over q to get

X

q2Q
ˆ.�zq12 C �g�1�Xg/ D 1

�

X

a2Q
F1ˆ.

a

�
C �g�1�Xg/;

where

F1ˆ.yC �zg�1�Xg/ D
Z

A

ˆ.qC �zg�1�Xg/ .qy/ dq

is the Fourier-transform in the “central” variable, which is again a Schwartz–Bruhat
function on A˚ VA ' g.A/. Using this, the integral for .0; 1 equals

Z

G.Q/nG.A/1

Z 1

0

X

X2V00
Q

�2s
X

a2Q�

F1ˆ.
a

�
C �g�1�Xg/ d�� dg

C
Z

G.Q/nG.A/1

Z 1

0

�2s
X

X2V00
Q

F1ˆ.�g�1�Xg/ d�� dg:

Changing the variable � to ��1 in the first integral we get

Z

G.Q/nG.A/1

Z 1

1

��2s�1 X

X2V00
Q

X

a2Q�

F1ˆ.�zaC ��1g�1�Xg/ d�� dg;

which again converges absolutely for all s 2 C. So the analytic behaviour of the
regular elliptic contribution is completely determined by

Z

G.Q/nG.A/1

Z 1

0

�2s
X

X2V00
Q

F1ˆ.�g�1�Xg/ d�� dg;

and we change nothing of its analytic properties if instead we consider

Z

G.Q/nG.A/1

Z 1

0

�2s
X

X2V00
Q

F1ˆ.�g�1�Xg/ d�� dg;

which is exactly the Shintani zeta function Z.‰; s/ for ‰.X/ D F1ˆ.�X/, X 2 VA.
ut



Zeta Functions for GL.n/ 399

7 Poles of„main.s;ˆ/ for G D GLn, n � 3

In this section let G D GLn with n � 3. We assume throughout that � > 0 is
sufficiently large as in Lemma 3.7. The purpose of this section is to show that
„main.s; ˆ/ is indeed the main part of „T.s; ˆ/ in the sense that it is responsible
for the furthermost right pole of „T.s; ˆ/.

We group the equivalence classes in O� into subsets of different type: Let Oc �
O denote the set of equivalence classes attached to the orbits of central elements.
Hence n 2 Oc and for every o 2 Oc there exists a 2 Q such that o D a1nCn. Write
Oc;� D Ocnfng. Then if n D 2, we get a disjoint union

Ogl2� D Oc;� [O0reg [Oer:

If n D 3, there is one type of equivalence classes missing: Let O.2;1/ denote the set
of o 2 O D Ogl3 for which there are a; b 2 Q, a ¤ b, such that every element X 2 o
has a as an eigenvalue with multiplicity 2 and b as an eigenvalue with multiplicity
1. We denote the equivalence class corresponding to a; b by o.a;b/. Then

Ogl3� D Oc;� [O0reg [Oer [O.2;1/:

If convenient, we will assume without further notice thatˆ is invariant under Ad K.

7.1 Contribution from Oc;�

We first deal with the contribution from the classes in Oc;�.

Proposition 7.1. Let T 2 aC be sufficiently regular and ˆ 2 S�.g.A//. Then there
exists a constant C > 0 such that

ˇ
ˇ
ˇ
ˇ
X

o2Oc;�

JT
o .ˆ�/

ˇ
ˇ
ˇ
ˇ � C��n2C1 (32)

for all � 2 .0; 1.
Proof. By the proof of Lemma 3.7, it suffices to estimate the sum over o 2 O0c
and standard parabolic subgroups P1 � R � P2 of (16). It further follows from the
proof of that lemma and Remark 3.15 that it suffices to find a bound for the case
that R D P2 D G if G D GL3, and R D P2 if G D GL2. However, if G D GL2 and
R D P2 ¨ G, we can use the estimate given in Remark 3.12 (recall that o D a1nCn
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for some a 2 Qnf0g) in the proof of Lemma 3.7 to get the stated upper bound.
Hence we are left with R D P2 D G for n D 2 as well as n D 3.

G D GL2: We need to estimate the sum-integrals
Z

AGP0.Q/nG.A/
�G
0 .H0.x/ � T/

X

X2Q12;X¤0

X

Y2n\ QmG
0 .Q/

ˇ̌
ˆ.�.X C Ad x�1Y//

ˇ̌
dx; and

(33)
Z

AGG.Q/nG.A/
F.x;T/

X

X2Q12;X¤0

X

Y2n

ˇ
ˇˆ.�.X CAd x�1Y//

ˇ
ˇ dx: (34)

We can replace jˆjwithout loss of generality by a productˆ1ˆ2 withˆ1 2 S.A/
and K-conjugation invariantˆ2 2 S.sl2.A// such that jˆ.X/j � ˆ1.tr X/ˆ2.X�
1
2

tr X id/ for all X 2 g.A/ and such that the relevant seminorms of ˆ1 and ˆ2
are bounded from above by seminorms of ˆ in the sense of Lemma 3.14. If
Y D .Yij/i;jD1;2 2 n, then Y22 D �Y11, and either Y11 D Y21 D Y22 D 0 (such
elements do not occur in the sum (33)), or Y21 ¤ 0 and Y12 D �Y211=Y21 so that
Y D � 1 Y11=Y21

0 1

� �
0 0

Y21 0

� �
1 �Y11=Y21
0 1

�
. Hence (33) can be bounded from above by

Z

AGT0.Q/nG.A/
�G
0 .H0.x/� T/

X

a2Qnf0g
ˆ1.�a/

X

Y02Qnf0g
ˆ2
�
�Ad x�1

 
0 0

Y0 0

!
�

dx

� C1�
�1
Z

AG
0

ı0.a/
�1�G

0 .H0.a/ � T/
X

Y02Qnf0g

Z

U0.A/
ˆ2
�
�Ad.ua/�1

 
0 0

Y0 0

!
�

du da;

where C1 > 0 is a suitable constant depending on ˆ1. Now if we write a D
diag.a; a�1/ 2 AG

0 , a 2 R>0,

Z

U0.A/
ˆ2.�Ad.ua/�1

�
0 0

Y0 0

�
/du D

Z

A

ˆ2
�
�

��uY0 �u2a�2Y0
a2Y0 uY0

��
du

� '.�a2Y0/
Z

A

'.�uY0/'.��u2a�2Y0/ du;

where ' 2 S.A/ is a suitable function related to ˆ2 by Lemma 3.14. We can
moreover assume that ' is monotonically decreasing in the sense that if x; y 2 A

with jxj � jyj, then '.x/ � '.y/. If �G
0 .H0.a/ � T/ D 1, i.e., 2 log a � ˛.T/

for ˛ the unique simple root, we distinguish the cases juj � 1 and juj � 1. With
this we can bound the last integral by '.�a2Y0/a2��1C2/ for C2 > 0 a suitable
constant. Hence (33) is bounded by

C3�
�3
Z

AG
0

ı0.a/
�1�G

0 .H0.a/� T/ da D C3�
�3e�˛.T/=2

for a suitable C3 > 0 depending on ˆ.
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Now for (34) note that n is the disjoint union of u0 and n\ QmG
0 .Q/. Then (34) is

bounded from above by

��1C1/
�Z

AGP0.Q/nCT1

F.x;T/
X

Y2u0.Q/
jˆ2.�Ad x�1Y/j dx

C
Z

AGP0.Q/nCT1

F.x;T/
X

Y2n\ QmG
0 .Q/

jˆ2.�Ad x�1Y/j dx

�

for which the first sum is bounded by

��1C1'.0/2
Z

AG
0 .T1/

ı0.a/
�1
�Z

U0.Q/nU0.A/
F.ua;T/ du

�X

Y2Q
'.�a�2Y/ da

� ��1C1'.0/2
Z e˛.T/=2

e˛.T1/=2
a�2

X

Y2Q
'.�a�2Y/ d�a:

This is bounded by the product of ��2C4 and a linear polynomial in T for some
suitable C4 > 0 depending on ˆ. For the second integral recall that F.uak;T/ �
O�0.T �H0.a// D �G

0 .T �H0.a// for all a 2 AG
0 .T1/. Using similar manipulations

as for (33), the second integral is therefore bounded by

C5�
�3
Z e˛.T/=2

e˛.T1/=2
a�2 d�a;

which equals a constant multiple of C5��3e�˛.T/ for some constant C5 > 0

depending on ˆ. Hence the assertion of the proposition is proven for G D GL2.
G D GL3: For every standard parabolic in P1 � G we need to estimate the sum-

integral

Z

AGP1.Q/nG.A/
FP1.x; T/�G

P1
.H0.x/�T/

X

X2Q13;X¤0

X

Y2n\ QmG
P1
.Q/

ˇ
ˇˆ.�.XCAd x�1Y//

ˇ
ˇ dx;

(35)

or rather, using the same notation and arguments as in the previous case,
Z

AGP1.Q/nG.A/
FP1.x;T/�G

P1 .H0.x/� T/
X

Y2n\ QmG
P1
.Q/

ˇ
ˇˆ2.�Ad x�1Y/

ˇ
ˇ dx;

since again
P

X2Q;X¤0 ˆ1.�X/ � C1��1 for some constant C1 > 0 depending on
ˆ1. First, suppose P1 D P0 is the minimal parabolic subgroup. Then QmG

P0
.Q/\n

is the disjoint union of the set of those nilpotent Y D .Yij/i;jD1;2;3 with Y31 ¤ 0

and those with Y31 D 0, but Y21 ¤ 0 ¤ Y32. The elements Y satisfying the
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second property are contained in the codimension one vector subspace fY 2 n j
Y31 D 0g of n so that by similar arguments as before, an upper bound as asserted
holds for this sum. Hence we are left to consider the sum over those Y 2 n
with Y31 ¤ 0. By the same reasoning we may further restrict to those Y with
Y31 ¤ 0 ¤ Y21. Since Y is nilpotent, for every such Y there exists u 2 U0.Q/

such that in the matrix Ad uY either the second or third column is identically
equal to 0. Moreover, the .2; 1/- and the .3; 1/-entry in Ad uY is the same as in
Y and a similar analysis as in the case of G D GL2 for (33) shows that (35) is
bounded as asserted.
Next suppose that P1 D M1U1 is the maximal standard parabolic subgroup with
M1 D GL2 �GL1 ,! GL3 (diagonally embedded). (The other maximal standard
parabolic subgroup is treated the same way.) Then

AGP1.Q/nG.A/ ' U1.Q/nU1.A/ � AGM1.Q/nM1.A/ �K;

FP1 .umk;T/ D FM1 .m;TM1 / for u 2 U1.A/, m 2 M1.A/, k 2 K, and
�G

P1
.H0.umk/�T/ D �G

P1
.H0.m/�T/. Now if Y 2 n\ QmG

P1
.Q/, then .Y31;Y32/ ¤

.0; 0/, and there exists u 2 U0.Q/ such that the second or third column of Ad uY
is identically 0. If there exists u 2 U1.Q/ such that the last column of Ad uY is
0 (note that the .3; 1/-and .3; 2/-entries stay unchanged under Ad u), we proceed
similar as in the case of GL2 and the estimation of (33). Otherwise there exists
u 2 UM1

0 .Q/ such that the second column of Ad uY is 0 and the .3; 1/-entry stays
unchanged. This again leads to an upper bound of the asserted form by using a
similar approach as for GL2 and (34).
Hence we are left with P1 D G. We estimate the corresponding integral again
by an integral over a quotient of the Siegel domain AGP0.Q/nCT1 . Moreover,
FG.umk;T/ � O�G

0 .T � H0.m// for umk 2 U0.A/T0.A/K. Hence a similar
reasoning as for GL2 and the integral (34) yields an upper bound as asserted.
Taking the estimates for all standard parabolic subgroups P1 together, the
assertion follows now also for GL3. ut

7.2 Contribution from O0
reg

Let o 2 O0reg and let X1 2 o be semisimple. Let P1 be the smallest standard parabolic
subgroup such that X1 2 m1.Q/. We may assume that X1 2 o is chosen such that
X1 is not contained in any proper (not necessarily standard) parabolic subalgebra
of m1.Q/. We may further assume that if G D GL2, then M1 D GL1 �GL1 D T0
(diagonally embedded into G), or if G D GL3, then M1 D GL1 �GL1 �GL1 D T0
or M1 D GL2 �GL1. Then GX1 � M1;X1 and X1 2 Om1

er so that AM1 D AGX1
,

where Om1
er � Om1 denotes the set of regular elliptic equivalence classes in m1.Q/.

Let M D fT0g if G D GL2, and M D fT0;GL2 �GL1g if G D GL3. We have
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a canonical bijection (given by induction of the equivalence classes along the
unipotent radical of an arbitrary parabolic subgroup with Levi component M)

[

M2M
Om

reg, ell �! O0reg: (36)

For o 2 Oreg the distribution JT
o .ˆ/ is a weighted orbital integral and equals for

sufficiently regular T

JT
o .ˆ/ D vol.AM1GX1 .Q/nGX1.A//

Z

GX1 .A/nG.A/
ˆ.Ad x�1X1/v1.x;T/ dx

(cf. [Cha02, § 5.2]), where the weight function v1.x;T/ is given by the volume of
the convex hull (in aG

1 ) of the projections of the points

s�1T � s�1HP.w
�1
s x/

where P runs over all standard parabolic subgroups, s W a1 �! aP over all
isomorphisms obtained by restriction of Weyl group elements, and ws 2 G.Q/ is
a representative of this Weyl group element. In particular, v1.	;T/ is left M1.A/-
and right K-invariant. It is easily seen that this expression for JT

o .ˆ/ stays true for
ˆ 2 S�.g.A// with � as in Theorem 5.7.

Proposition 7.2. Let T 2 aC be sufficiently regular and let ˆ 2 S�.g.A//.

(i) For o 2 O0reg and X1 2 o as before, v1.x;T/ is a polynomial in the variables
log.q.x;X1// and T with q ranging over a finite collection of polynomials in the
coordinate entries of x, X1 and T.

(ii) There is a constant C > 0 depending on ˆ such that

X

o2O0
reg

ˇ̌
JT
o .ˆ�/

ˇ̌ � C��.n2� 1
2 /

for all � 2 .0; 1.
Proof.

(i) This is clear from the definition of the weight function.
(ii) Using Iwasawa decomposition, the left M1.A/-, and the right K-invariance of

v1.	;T/, we get for every o 2 O0reg

JT
o .ˆ�/ D vG

X1

Z

M1;X1 .A/nM1.A/

Z

U1.A/
ˆ�.Ad u�1 Ad m�1X1/v1.u;T/ du dm

where we write vG
X1
D vol.AGX1

GX1 .Q/nGX1.A// (note that vG
X1
D v

M1

X1
).

As X1 and therefore also Ad m�1X1 is semisimple and regular (X1 is reg-
ular elliptic in m1), the map U1.A/ 3 u 7! U D U.u;Ad m�1X1/ WD



404 J. Matz

Ad u�1 Ad m�1X1 � Ad m�1X1 2 u1.A/ is a diffeomorphism with Jacobian
D.X1/ WD det.ad.Ad m�1X1/I u2/ D det.ad X1I u2/. We denote its inverse by
U 7! u.U;Ad m�1X// 2 U1.A/. Hence the above integral equals

vG
X1 jD.X1/jA

Z

M1;X1 .A/nM1.A/

Z

u1.A/
ˆ�.Ad m�1X1 C U/v1.u.U;Ad m�1X1/;T/ dU dm

D vG
X1�

� dimu1

Z

M1;X1 .A/nM1.A/

Z

u1.A/
ˆ.�Ad m�1X1 C U/v1.u.�

�1U;Ad m�1X1/;T/ dU dm

For Y 2 m1.A/ define

‰M1 .�;Y/ D
Z

u1.A/

ˆ.�Y C U/v1.u.�
�1U;Y/;T/ dU:

By the first part of the proposition, we can find a finite collection of polynomials
Q1; : : : ;Qm, q1;1; : : : ; q1;l1 ; : : : ; qm;lm , and integers k1; : : : ; km � 0 such that

jv1.u.��1U;Y/;T/j �
mX

iD1
j log�jki Qi

�
log qi;1.U;Y;T/; : : : ; log qi;li.U;Y;T/

�

for all � 2 .0; 1 and U, Y, and T as before. Then

j‰M1 .�;Y/j �
mX

iD1
j log�jki Q‰M1

i;� .Y/;

where for Y 2 m1.A/,

Q‰M1

i .Y/ WD
Z

u1.A/

Q̂ .Y C U/Qi
�

log qi;1.U;Y;T/; : : : ; log qi;li.U;Y;T/
�

dU

and Q‰M1

i;� .Y/ WD Q‰M1
i .�Y/. Here Q̂ 2 S.g.A// is a suitable smooth function

satisfying the seminorm estimates as in Lemma 3.14 and such that Q̂ � jˆj.
Then Q‰M1

i 2 S.m1.A//, and

jJT
o .ˆ�/j � �� dimu1

mX

iD1
j log�jki JM1;TM1

om1 . Q‰M1
i /;

where om1 2 Om1

reg, ell denotes the inverse image of o under the map (36), TM1

is the projection of T onto aM1

0 , and JM1;TM1

om1 denotes the distribution associated
with om1 with respect to M1. Hence by Lemma 3.7 there exist constants CM > 0

for every M 2M (depending on ˆ) such that for every � 2 .0; 1 we have
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X

o2Oreg

jJT
o .ˆ�/j �

X

M2M
�� dimu

mX

iD1
j log�jki

X

o02Om
reg,ell

JM1;TM1

o0 . Q‰M1

i /

�
X

M2M
�� dimu

mX

iD1
j log�jkiCM�

� dimm

� C
X

M2M
�� dimp

mX

iD1
j log�jki ;

where C D maxM CM . Since dim p � dim g�1 for every M 2M, the assertion
follows by using some trivial estimate of the form j log�jki � ci�

�1=2, ci > 0

some constant, for the logarithmic terms. ut
Above results together with the fact that all distributions are polynomials in T so

that above results hold for every T 2 a and not only sufficiently regular ones, imply
the following:

Corollary 7.3. If n D 2, then „T.s; ˆ/ � „main.s; ˆ/ can be holomorphically
continued at least to <s > nC1

2
� 1

2
D 1 for every T 2 a.

7.3 Contribution of the Classes of Type .2 ; 1/

For n D 3, the contribution from the classes in O.2;1/ is still missing. Let o.a;b/ 2
O.2;1/. Then every semisimple element in o.a;b/ is over GL3.Q/ conjugate to Xs D
diag.a; a; b/ so that GXs D GL2 �GL1 DW M2 (diagonally embedded in GL3). Let
P2 D M2U2 denote the standard parabolic subgroup with Levi component M2. Note
that o.a;b/ D a13 C o.0;b�a/.

Proposition 7.4. Let T 2 aC be sufficiently regular and let ˆ 2 S�.g.A//. There
exists a constant C > 0 depending on ˆ such that

ˇ
ˇ
ˇ
ˇ
X

o2O.2;1/

ˆT
o.ˆ�/

ˇ
ˇ
ˇ
ˇ � C��n2C1

for all � 2 .0; 1.
Proof. We use the same idea as for the central contribution so that we need to
consider the sum-integrals

Z

AGP1.Q/nG.A/
FP1 .x;T/�G

P1 .H0.x/ � T/
X

o2O.2;1/

X

X2 QmG
P1
.Q/\o

ˇ
ˇˆ.�Adx�1X/

ˇ
ˇ dx

for standard parabolic subgroups P1 � G.
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Suppose first that P1 D P0 is minimal. Then X 2 QmG
P0
.Q/ if and only if X31 ¤ 0

or X31 D 0 and X21 ¤ 0 ¤ X32. The sum-integral restricted to X satisfying the
second property X31 D 0 gives an upper bound as asserted by the same reasons as
before. Hence it suffices to consider

Z

AGP0.Q/nG.A/
�G

P0.H0.x/ � T/
X

o2O.2;1/

X

X2oWX31¤0

ˇ
ˇˆ.�Ad x�1X/

ˇ
ˇ dx:

As remarked before, we have
S

o2O.2;1/
o D S

a2Q
�
a13 CSb2Qnf0g o.0;b/

�
. If Y 2

o.0;b/ and Y31 ¤ 0, then det Y D 0 and there exists u 2 U2.Q/ such that Z WD Ad uY
satisfies Z31 D Y31 ¤ 0 and Z13 D Z23 D Z33 D 0, or there exists u 2 UM2

0 .Q/

such that Z WD Ad uY satisfies Z31 D Y31 ¤ 0 and Z12 D Z22 D Z32 D 0. Let
Vi
3;1 � g.Q/, i D 2; 3, denote the elements Z 2 g.Q/ with Z31 ¤ 0 and Z1i D Z2i D

Z3i D 0. Then the above integral is bounded by

Z

AGU
M2
0 .Q/nG.A/

�G
0 .H0.x/ � T/

X

a2Q

X

Z2V33;1

ˇ
ˇˆ.�Ad x�1.a13 C Z//

ˇ
ˇ dx

C
Z

AGU2.Q/nG.A/
�G
0 .H0.x/� T/

X

a2Q

X

Z2V23;1

ˇ
ˇˆ.�Ad x�1.a13 C Z//

ˇ
ˇ dx:

From this it follows similarly as in the central case that the integral satisfies the
asserted upper bound.

The remaining cases P0 ¨ P1 � G are combinations of the previous case and the
considerations for the central contribution. We omit the details. ut
Corollary 7.5. If n D 3, then „T.s; ˆ/ � „main.s; ˆ/ can be holomorphically
continued at least to <s > nC1

2
� 1

2
D 3

2
for every T 2 a.

Part 2. Density Results for the Cubic Case

The purpose of this second part of the paper is to give upper and lower bounds (see
Theorem 10.1 and Proposition 10.3) for the mean value

X� 52
X

EW m1.E/�X

res
sD1 �E.s/ (37)

as X ! 1, where E runs over all totally real cubic fields and m1.E/ denotes the
second successive minimum of the trace form on the ring of integers of E, see
below for a definition. For the upper bound we study the main part of the zeta
function „main.s; ˆ/ for GL3 for suitable test functions ˆ. As explained above, the
distributions Jo.ˆ/ for o 2 Oer occurring in the definition of „main.s; ˆ/ are orbital
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integrals over orbits of regular elliptic elements. Hence in Sect. 8 we first study the
local orbital integrals at the non-Archimedean places. In Sect. 9 we define suitable
test functions and show an asymptotic for mean values of orbital integrals by using
results from Part 1, before finally proving the asymptotic upper and lower bounds
for (37) in Sect. 10.

8 Non-Archimedean Orbital Integrals

In this section let G D GLn and g D gln with n � 2 arbitrary. If E is an n-
dimensional field extension of Q, let OE be the ring of integers of E. For � 2 G.Q/
let Œ� D fx�1�x j x 2 G.Q/g be the conjugacy class of � in G.Q/. As before,
let G.Q/er denote the set of regular elliptic elements in G.Q/. Let Fn be the set of
n-dimensional number fields. We get a surjective map from G.Q/er onto the set of
isomorphism classes in Fn by attaching to � 2 G.Q/er the conjugacy class of the
field Q.�/ for � an (arbitrary) eigenvalue of � . If ŒE � Fn is such a conjugacy class
and if �ŒE � G.Q/er is the inverse image of ŒE under this map, then �ŒE is invariant
under conjugation by elements of G.Q/, and

f� 2 E j Q.�/ D Eg �! Œ��  2 �ŒE= �

is surjective. Here �� 2 G.Q/ denotes the companion matrix of the characteristic
polynomial of �, and the map is jAut.E=Q/j-to-1.

If K is a finite field extension of Qp with ring of integers OK � K, we normalise
the measures on K and K� such that vol.OK/ D 1 D vol.O�K /. If 	 2 OK is such that
f1; 	; : : : ; 	n�1g is a basis of K over Qp, let �	 2 GLn.Qp/ denote the companion
matrix of 	 . Then G�	 .Qp/ is isomorphic to K� via the isomorphism induced by
f1; 	; : : : ; 	n�1g and we define the measure on G�	 .Qp/ via this isomorphism. If
ˆp 2 S.g.Qp//, we define the p-adic orbital integrals

Ip.ˆp; 	/ D Ip.ˆp; �	 / D
Z

G�	 .Qp/nG.Qp/

ˆp.g
�1�	g/ dg:

If � 2 G.Q/er, then G� .Qp/ is isomorphic to a direct product of K�1 � : : : � K�r for
suitable finite field extensions K1; : : : ;Kr=Qp and we choose the measure on G� .Qp/

such that it is compatible with our choice of measures on K�1 � : : : � K�r , and put
If .ˆf ; �/ D Q

p<1 Ip.ˆp; �/. Similarly, we define I1.ˆ1; �/ (resp., I.ˆ; �/) if
ˆ1 2 S�.g.R/ (resp.,ˆ 2 S�.g.A//).

Our aim in this section is to understand the quantities

c.ˆp; �/ D Ip.ˆp; �/

ŒOQpŒ� W ZpŒ�
; and c.ˆf ; �/ D If .ˆf ; �/

ŒOQŒ� W ZŒ� ;
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where we denote for a Q- or Qp-algebra A the ring of integers of A by OA. If � 2 E
generates E over Q, we set Ip.ˆp; �/ D Ip.ˆp; ��/, and define If .ˆp; �/, I.ˆ; �/,
c.ˆp; �/, c.ˆf ; �/ analogously.

For a prime p and E 2 Fn let Ep D E ˝Q Qp. If ˆp (resp., ˆf ) is supported
in g.Zp/ (resp., g. OZ/), then the orbital integral Ip.ˆp; �/ (resp., If .ˆf ; �/) vanishes
unless � 2 OEp (resp., � 2 OE). We denote by ˆ0p 2 S.g.Qp// the characteristic
function of g.Zp/, and ˆ0f D

Q
p<1ˆ0p 2 S.g.Af //.

Proposition 8.1. Let E 2 Fn and � 2 OE be such that Q.�/ D E. Then

(i) If Ep ' K1˚: : :˚Kr with Ki=Qp field extensions, and if under this isomorphism
� corresponds to .�1; : : : ; �r/ 2 K1 ˚ : : :˚ Kr, we have

c.ˆ0p; �/ D
rY

iD1
c.ˆ0p; �i/;

where ˆ0p also denotes the characteristic function of gni.Zp/, ni WD ŒKi W Qp,
and cp is defined on the smaller groups similar as before.

(ii) c.ˆ0p; �/ � 1.
(iii) c.ˆ0p; � C a/ D c.ˆ0p; �/ for every a 2 Z. Hence c.ˆ0f ; 	/ is a well defined

function on OE=Z.

Before proving this proposition we need a few auxiliary results and fix some further
notation. If � as is in the proposition, denote by Pp;� the standard parabolic subgroup
of type .n1; : : : ; nr/. Then

Ip.ˆ
0
p; �/ D ıPp;� .diag.�1; : : : ; �r//

�1=2
rY

iD1
Ip.ˆ

0
p; �i/: (38)

Let � denote the discriminant map for E �! Q as well as for g.Q/ �! Q and
F �! Qp for F=Qp a finite field extensions of arbitrary degree. If F is either Q or
Qp for some prime p <1, let A be a finite-dimensional semisimple F-algebra, and
R � A an OF-order. We denote by Frac.R/ the set of fractional ideals of R in A, i.e.
the set of all full-rank OF-lattices a � A such that Ra � a. If a � A is a lattice of
full rank, let M.a/ D fa 2 A j aa � ag be the multiplier of a. This is an OF-order
in A, in particular M.a/ � OK and a 2 Frac.M.a//. Let

Frac0.R/ D fa 2 Frac.R/ jM.a/ D Rg:

Let P.R/ D faR j a 2 A�g be the set of all R-principal ideals in A. In general,
neither Frac.R/ nor Frac0.R/ are groups, but they are acted on by P.R/ so that we
may build the quotients Frac.R/=P.R/ and Frac0.R/=P.R/, which are both finite.
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Lemma 8.2. Suppose K is a finite field extension of Qp, and 	 2 OK generates K
over Qp, i.e. K D Qp.	/. Then

Ip.ˆ
0
p; 	/ D

X

oOK W 	2o

ˇ
ˇ Frac0.o/=P.o/

ˇ
ˇ�O�K W o�

	

where o runs over all Zp-orders in OK containing 	 .

Remark 8.3. If ZpŒ	 D OK , then Ip.ˆ
0
p; 	/ D 1.

Proof. We first show

Z

Q�
p nG.Qp/

ˆ0p.g
�1�	g/ dg D ŒK� W .O�KQ�p /

X

oOK W 	2o

ˇ
ˇ Frac0.o/=P.o/

ˇ
ˇ�O�K W o�

	
:

(39)

The set f1; 	; : : : ; 	n�1g forms a basis of K relative to which the matrix �	
corresponds to the endomorphism K �! K given by multiplication with 	 .
Moreover, this basis defines a map

‰ W G.Qp/ D GLn.Qp/ �! Lp D fL � K j L is Zp-lattice of full rankg:

Hence ˆ0p.g
�1�	g/ ¤ 0 if and only if 	 maps the lattice Lg D gOK � K defined by

g into itself, i.e. 	Lg � Lg, or equivalently 	 2 M.Lg/ � OK . Hence the integral
equals

X

oOK W 	2o

X

a2Frac0.o/=Q�
p

vol
�
‰�1.a/

�
:

Hence we have to compute the volume of ‰�1.a/ as a subset of G.Qp/. Now two
elements g1; g2 2 G.Qp/ define the same Zp-lattice if and only if there exists k 2
G.Zp/ D Kp with g2 D g1k. Hence with our normalisation of measures we get
vol

�
‰�1.a/

� D 1. Since

ˇ̌
Frac0.o/=Q�p

ˇ̌ D ˇ̌ Frac0.o/=.o�Q�p /
ˇ̌ D ˇ̌ Frac0.o/=.O�KQ�p /

ˇ̌�
O�K W o�

	

D ˇˇ Frac0.o/=P.o/
ˇ
ˇ
ˇ
ˇK�=.O�KQ�p /

ˇ
ˇ�O�K W o�

	
;

the assertion (39) follows. If the extension K=Qp is unramified, ŒK� W .O�KQ�p / D 1.
In general, ŒK� W .O�KQ�p / D ŒK W O�KQp so that this index equals the ramification
index, and we therefore have ŒK� W .O�KQ�p / D vol.Q�p nK�/ D vol.Q�p nG	 .Qp//.
Hence the assertion of the lemma follows. ut
Proof of Proposition 8.1. (i) This follows from (38) and the identity

ŒOE W ZpŒ�
2ıp;� .diag.�1; : : : ; �r// D

rY

iD1
ŒOKi W ZpŒ�i

2:
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(ii) By (i) the quotient c.ˆ0p; �/ equals a finite product of terms of the form

ŒO�E W ZpŒ	
�

ŒOE W ZpŒ	

ˇ
ˇ Frac0.ZpŒ	/=P.ZpŒ	/

ˇ
ˇ

C 1

ŒOE W ZpŒ	

X

oW
ZpŒ	 ¨oOE

ˇ
ˇ Frac0.o/=P.o/

ˇ
ˇŒO�E W o�

for E=Qp a finite extension generated by 	 2 E with maximal ideal p �
OE of norm q. Hence it certainly suffices to show ŒO�

E WZpŒ	 
�

ŒOEWZpŒ	 
� 1, since

ˇ
ˇ Frac0.ZpŒ	/=P.ZpŒ	/

ˇ
ˇ � 1 and the rest of the sum is non-negative.

To show this, let f � ZpŒ	 denote the conductor of ZpŒ	. Then p=f � OE=f
is the unique maximal ideal so that .p \ ZpŒ	/=f is the unique maximal ideal
in ZpŒ	=f. Hence

#.OE=f/
� D #.OE=f/� #.p=f/ D #.OE=f/.1 � q�1/; and

#.ZpŒ	=f/
� D #.ZpŒ	=f/.1 � .#.ZpŒ	=.ZpŒ	 \ p///�1/:

But since ZpŒ	=.ZpŒ	 \ p/ ,! OE=p is injective, we altogether get

ŒO�E W ZpŒ	
�

ŒOE W ZpŒ	
D 1 � q�1

1 � .#.ZpŒ	=.ZpŒ	 \ p///�1
� 1:

(iii) This is a direct consequence of the explicit form of the orbital integral from
Lemma 8.2. ut

9 An Asymptotic for Orbital Integrals

From now let G D GL3 and g D gl3. The aim of this section is to prove a density
result for orbital integrals, namely Proposition 9.2 below. If � 2 G.Q/er, we take the
product measure on G� .A/ D Qp�1G� .Qp/ with local measures as in the previous
section. Let j 	 jE W A�E �! R>0 denote the adelic norm. Using the exact sequence

1 �! A
1
E ,! A

�
E

j�jE��! R>0 �! 1, we also fix a measure on A
1
E. With this choice of

normalisation of measures we get

vol.R>0G�� .Q/nG�� .A// D vol.E�nA1E/ D �EjDEj 12

for every � 2 E with Q.�/ D E, where

�E D res
sD1 �E.s/:
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For a cubic field E the set of � 2 E generating E over Q is exactly EnQ, as E does
not have non-trivial subfields. For ˆ 2 S�.g.A//, we therefore have

„main.s; ˆ/

D
X

E2F3

�E

jAut.E=Q/j jDEj 12
X

�2EnQ

Z 1

0

Z

G�� .A/nG.A/
�3sC3ˆ.�g�1��g/ d�� dg:

(40)

Let FC3 � F3 be the set of all totally real cubic number fields, and E 2
FC3 . Let QE W OE=Z �! R be the positive definite quadratic form QE.�/ D
trE=Q �

2 � 1
3
.trE=Q �/

2. We denote its successive minima by m1.E/ � m2.E/, and
its discriminant by �.QE/. Similarly, Q W g.A/ �! A denotes the quadratic form
on the matrices given by Q.x/ D tr x2 � 1

3
.tr x/2.

Remark 9.1. We have 3�.QE/ D DE.

Proposition 9.2. Let ˆf 2 S.g.Af // be supported in g.bZ/, and suppose that
c.ˆf ; � C a/ D c.ˆf ; �/ for all � 2 G.Q/ and a 2 Z. Then

X

E2FC
3

�E

jAut.E=Q/j
X

�2OE=Z;�¤0
QE.�/�X

c.ˆf ; �/ D ˇ.ˆf /X
5
2 C o.X

5
2 / (41)

for X !1, and ˇ.ˆf / is a certain constant depending on ˆf with ˇ.ˆ0f / ¤ 0.

The proof of this proposition will occupy the rest of this section.

Remark 9.3.

(i) The constraint on the support of ˆf is not essential, it only changes the lattices
in E one has to sum over.

(ii) It is possible to find an analogue of the asymptotic (41) also for fields with a
complex place. However, one has to replace QE, since QE is no longer positive
definite if E has a complex place.

9.1 Test Functions

We want to use the analytic properties of „main.s; ˆ/ to prove the proposition,
hence our first task is to find test functions which separate the totally real fields
from the rest. To this end, we first construct two sequences of test functions at
the Archimedean places. Let  "̇ W R ! R�0 be smooth non-negative functions
satisfying

 C
" .x/ D 0 if x <

"

2
; 0 �  C

" .x/ � 1 if
"

2
� x � "; and  C

" .x/ D 1 if x > ";

 �
" .x/ D 0 if jxj > "; and 0 �  �

" .x/ � 1; if jxj � ";



412 J. Matz

and

1 �  C" .x/C  �" .x/ � 2 if x > 0:

Define functions‰"̇ W g.R/ �! R by

‰"̇ .x/ D  "̇
�
�.x � 1

3
tr x13/

j tr x2 � 1
3
.tr x/2j3

�
D  "̇

�
�.x � 1

3
tr x13/

jQ.x/j3
�
:

These functions are well defined and continuous, since  "̇ is compactly supported.
Moreover, away from the set of x with Q.x/ D tr x2 � 1

3
.tr x/2 D 0 they are smooth.

For x 2 g.R/ and large N 2 N put

ˆ";1̇ .x/ D  "̇
��.x � 1

3
tr x13/

jQ.x/j3
�

Q.x/Ne�� tr xtx D ‰"̇ .x/Q.x/Ne�� tr xtx:

For given � 2 N, we can choose N large enough such that ˆ";1̇ 2 S�.g.R//. The
properties of ˆ"̇ can be summarised as follows.

Lemma 9.4. For all x 2 g.R/, g 2 G.R/, and � 2 R>0, we have

(i) ˆ";1̇ .Ad g�1x/ D ˆ"̇ .x/. In particular, we may write ˆ";1̇ .�/ D ˆ";1̇ .��/ for
every � 2 E and E 2 F3.

(ii) ˆ";1̇ .�x/ D ˆ";1̇ .x/.
(iii) ˆ";1̇ .xC �13/ D ˆ";1̇ .x/.
(iv) ˆ";C1 .�Ad g�1x/ D 0 if x has a non-real eigenvalue.

If we fix ˆf 2 S.g.Af // as in Proposition 9.2, we define test functions ˆ";C D
ˆ";C1 ˆf and ˆ";� D ˆ";�1 ˆf . They implicitly depend on the integer N, and ˆ";˙ 2
S�.g.A// with � depending on N.

By Lemma 9.4(iv) we have I1.ˆ";C; �/ D 0 if � 2 G.Q/er is not diagonisable
over G.R/. Hence for the test function ˆ";C only totally real fields contribute to
„main.s; ˆ";C/, i.e. we get

EC" .s/ WD „main.s; ˆ
";C/ D

X

E2FC
3

vol.E�nA1E/
jAut.E=Q/j

X

�2OEnZ
ŒOE W ZŒ�c.ˆf ; �/‰

C
" .�/	

�Z 1

0

Z

G�� .R/nG.R/
�s.�2QE.�//

Ne���2 tr.x�1��x/t.x�1��x/ d�� dx

�
: (42)

Similarly, we set E�" .s/ D „main.s; ˆ";�/.

Remark 9.5. Separating the totally real fields from the rest is more complicated in
the cubic than in the quadratic case. This is due to the absence of a prehomogeneous
vector space structure so that there are infinitely many orbits under the action of
GL1 �GL3 on g.A/.
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Lemma 9.6. There exists N > 0 such that the following holds. Let ˆf be as in
Proposition 9.2. Then EC" .s/ is holomorphic for <s > 2, and has a meromorphic
continuation at least in <s > 3=2 with only singularity at s D 2, which is a simple
pole. Moreover, for <s > 2 the function EC" .s/ equals up to an entire function the
series

IN.s/
X

E2FC
3

�E

jAut.E=Q/j
X

�2OE=ZW
�¤0

c.ˆf ; �/‰
C
" .�/QE.�/

� 3s�1
2 ; (43)

where for <s > 0

IN.s/ D 1p
3�

Z 1

0

�3s�1C2Ne���2 d�� D 1p
3�

�.3sC2N�1
2

/

2�
3sCN�1

2

:

Proof. The first assertion follows from Theorem 1.2 and Proposition 1.4. Let
E 2 FC3 , and consider the map OE �! Z ˚ OE=Z, � 7! .tr �; � C Z/, which
is a group isomorphism. As the coefficients c.ˆf ; 	/ and the function ‰C" are well-
defined maps on OE=Z, the inner sum for E in (42) equals

X

�02OE=ZW
�0¤0

ŒOE W ZŒ�0c.ˆf ; �0/‰
C
" .�0/	

�Z 1

0

Z

G��0
.R/nG.R/

�3sC3C2NQE.�0/
N
X

a2Z
e���2 tr.x�1��0 x/t.x�1��0 x/�3��2a2 d�� dx

�
:

We split the integral over � in one integral over � 2 Œ0; 1 and one over � 2 Œ1;1/.
The sum over all E of the second integral defines an entire function on all of C so
that we may ignore it. For the sum over the first one we apply Poisson summation
to the sum over a 2 Z, to obtain

X

a2Z
e�3��2a2 D

X

b2Z
.3�/�

1
2 ��1e�3��1��2b2 :

Changing variables ��1 2 Œ0; 1 $ � 2 Œ1;1/, the sum over b ¤ 0 yields again
an entire function which we can ignore. Hence we are left with the term belonging
to b D 0. We may add the integral over � 2 Œ1;1/ without changing its analytic
behaviour. Thus up to an entire function, EC" .s/ equals

1p
3�

X

E2FC
3

vol.E�nA1E/
jAut.E=Q/j

X

�02OE=ZW
�0¤0

ŒOE W ZŒ�c.ˆf ; �/‰
C
" .�/	

�Z 1

0

Z

G��0
.R/nG.R/

�3sC2C2NQE.�0/
Ne���2 tr.x�1��0 x/t.x�1��0 x/ d�� dx

�
:
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As E is totally real, for every �0 2 OE=Z, the matrix ��0 is over G.R/ conjugate to a
diagonal matrix (with pairwise distinct eigenvalues) so that

Z

G��0
.R/nG.R/

e���2 tr.x�1��0 x/t.x�1��0 x/ dx

D �.�0/� 12 e���2QE.�0/

Z

U0.R/
e���2.u

2
1Cu22Cu23/ du D �.�0/� 12 e���2QE.�0/��3:

Notice that �.�0/�
1
2 D ŒOE W ZŒ�0�1D�

1
2

E and vol.E�nA1E/D�
1
2

E D ressD1 �E.s/ D
�E. Hence changing � to QE.�0/

1
2 �, the assertion follows upon defining IN as

described. ut
Lemma 9.7. There exists N > 0 such that the following holds. Let ˆf be as
in Proposition 9.2. Then E�" .s/ is holomorphic for <s > 2 and continues to a
meromorphic function at least in<s > 3=2 with only pole at s D 2 which is simple.
Up to an entire function (defined on all of C), E�" .s/ equals for <s > 2 the sum of

IN.s/
X

E2FC
3

�E

jAut.E=Q/j
X

�2OE=ZW
�¤0

c.ˆf ; �/‰
�
" .�/QE.�/

� 3s�1
2

and

4

r
�

3

�.3sC2l
2
/

�
3sC2l
2

X

E2F3nFC
3

�E

X

�2OE=ZW
�¤0

c.ˆf ; �/‰
�
" .�/JN.�; s/QE.�/

N ;

where

JN.�; s/ D
Z 1

1

.QE.�/C 4.=Q�/2�2/� 3sC2N
2 d�;

and Q� denotes one of the two non-real conjugates of � 2 EnQ if E 2 F3nFC3 .

Proof. Again, the first assertion is given by Theorem 1.2 and Proposition 1.4.
Similarly as in the proof of Lemma 9.6, E�" .s/ can be written as the sum over all
cubic fields E 2 F (now of any signature) of

vol.E�nA1E/
jAut.E=Q/j

X

�02OE=ZW
�0¤0

ŒOE W ZŒ�0c.ˆf ; �0/‰
�
" .�0/	

�Z 1

0

Z

G��0
.R/nG.R/

�3sC3C2NQE.�0/
N
X

a2Z
e���2 tr.x�1��0 x/t.x�1��0 x/� �3 �2a2 d�� dx

�
:
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For totally real extensions, the proof of the last lemma tells us that the respective
sum essentially (i.e., up to an entire function) equals

IN.s/
X

E2FC
3

�E

jAut.E=Q/j
X

�2OE=ZW
�¤0

c.ˆf ; �/‰
�
" .�/QE.�/

� 3s�1
2 ;

with IN.s/ defined as before.
For E 2 F3nFC3 and �0 2 OE=Z, �0 ¤ 0, we can follow along the same lines.

However, the integral
R

G��0
.R/nG.R/ e���2 tr.x�1��0 x/t.x�1��0 x/ dx now equals

8���2j�.�/j� 12
Z 1

2j=Q�j
e���2.QE.�/C�2/ d�;

where Q� 2 C denotes one of the two non-real conjugates of �. Changing .QE.�/C
�2/

1
2 � to �, we obtain for the double integral

8�j�.�/j� 12 QE.�0/
N
Z 1

0

�3sC2Ne���2 d��
Z 1

2j=Q�j
.QE.�/C �2/� 3sC2N

2 d�

from which the assertion follows. ut

9.2 Dirichlet Series

To study the Dirichlet series obtained in the last section and to finish the proof of
Proposition 9.2, we need to define a few more auxiliary functions. N > 0 denotes
a sufficiently large integer such that Lemmas 9.6 and 9.7 hold. For t 2 C with
<t > 5=2 set

˛"̇ .t/ D
X

E2FC
3

�E

jAut.E=Q/j
X

�2OE=ZW
�¤0

c.ˆf ; �/‰"̇ .�/QE.�/
�t; and

A"̇ .X/ D
X

E2FC
3

�E

jAut.E=Q/j
X

�2OE=Z;�¤0
QE.�/�X

c.ˆf ; �/‰"̇ .�/

(these are both independent of N). Then by Lemmas 9.6 and 9.7 (as IN.
2tC1
3
/ is

holomorphic and non-vanishing in all of<t > 7=4), the series defining ˛"̇ converge
absolutely in<t > 5=2 can be meromorphically continued up to<t > 7=4, and each
has in this half plane only one pole which is located at t D 5=2, and is simple with
residue

�".ˆf / WD 3

2
IN.2/

�1 res
sD2E"̇ .s/:
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The functions are related by the Mellin transformation and its inverse (cf. [MV07,
§ 5]): We have for �0 � 0

A"̇ .X/ D
1

2�i

Z �0Ci1

�0�i1
˛"̇ .t/

Xt

t
dt; and

˛"̇ .t/ D
Z 1

1

X�t dA"̇ .X/:

Further define

�".t/ D
X

E2F3nFC
3

�E

X

�2OE=ZW
�¤0

c.ˆf ; �/‰
�
" .�/J.�;

2tC 1
3

/QE.�/
N ; and

C".X/ D 1

2�i

Z �0Ci1

�0�i1
�".t/

Xt

t
dt

D
X

E2F3nFC
3

�E

X

�2OE=ZW
�¤0

c.ˆf ; �/‰
�
" .�/QE.�/

N

Z b.�;X/

1

.QE.�/C 4.=Q�/2�2/�N� 1
2 d�;

where

b.�;X/ D
8
<

:
maxf1;

p
X�QE.�/

2j=Q�j g if QE.�/ � X;

1 if QE.�/ > X:

This definition together with the definition of ‰�" .�/ ensures that for every X, the
sum over E and � is in fact finite. From the last expression of C".X/, it is clear that
if N is even, C".X/ is a non-negative, monotonically increasing function in X.

Proof of Proposition 9.2. We assume that N is even and sufficiently large such that
Lemmas 9.6 and 9.7 hold. By definition of ‰C" and ‰�" we have ‰C" .�/ � 1 �
‰C" .�/C‰�" .�/ for all � 2 E if E is totally real. Hence for every X > 0, we get

AC" .X/ �
X

E2FC
3

�E

jAut.E=Q/j
X

�2OE=Z;�¤0
QE.�/�X

c.ˆf ; �/ DW †.X/ � AC" .X/C A�" .X/:

(44)
The coefficients �E

jAut.E=Q/jc.ˆf ; �/‰
C
" .�/ in the Dirichlet series ˛C" .t/ are non-

negative. Hence the properties of ˛C" .t/ stated above allow us to apply the Wiener–
Ikehara Tauberian Theorem [MV07, Corollary 8.7]. This yields the asymptotic

AC" .X/ � �".ˆf /X
5
2 C o.X

5
2 /
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as X !1. Therefore,

lim inf
X!1 X�

5
2 †.X/ � �".ˆf /

for every " > 0 so that

lim inf
X!1 X�

5
2 †.X/ � �0.ˆf /;

where

�0.ˆf / D 2�9=2�.3/p
3

Z

x2g.R/W �.x/>0
e�� tr xtx dx

Z

g.Af /

ˆf .xf / dxf ;

since �".ˆf /! �0.ˆf / for "& 0.
To show the reverse inequality, we have to work harder. Consider now the

function E�" . 2tC1
3
/. It has a simple pole at t D 5=2, and is holomorphic elsewhere in

some half plane<s > 7=4. As 4
p
3�

�.tCNC 1
2 /

� tCNC 1
2

is holomorphic and non-zero in that

half plane, the function

� tCNC 1
2

4
p
3��.tC N C 1

2
/
E�" .

2tC 1
3

/ D 1

8
p
�

�.tC N/

�.tC N C 1
2
/
˛�" .t/C �".t/

D 1

8�
ˇN.t/˛

�
" .t/C �".t/

has the same properties as E�" where

ˇN.t/ D
Z

R

.1C x2/�.tCNC 1
2 / dx D 2

Z 1

1

y�.tCNC 1
2 / d

p
y � 1:

The residue ��" .ˆf / at t D 5=2 is given by a constant multiple of

Z

g.R/

ˆ";�1 .x/ dx
Z

g.Af /

ˆf .xf / dxf ;

which tends to 0 as "& 0.
For X > 0 and �0 � 0 sufficiently large, let

BN.X/ D 1

2�i

Z �0Ci1

�0�i1
ˇN.t/

Xt

t
dt; and

ABN;".X/ D 1

2�i

Z �0Ci1

�0�i1
ˇN.t/˛

�
" .t/

Xt

t
dt:
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In particular,

BN.X/ D 2
Z X

1

y�.N�1/ d
p

y � 1:

From the definitions it is clear that C".X/ � 0, BN.X/ � 0, and ABN;".X/ � 0, and
the functions are monotonically increasing. Hence an application of the Wiener-
Ikehara Theorem gives limX!1 X� 52 .ABN;".X/ C C".X// D ��" .ˆf /, and, as

everything is non-negative, ABN;".X/ � ��" .ˆf /X
5
2 C R".X/, where R".X/ is a

suitable error function with R".X/! 0 as X !1. Therefore,

X
5
2 ��" .ˆf /C R".X/ � 1

2�i

Z �Ci1

�0�i1
ˇN.t/˛".t/

Xt

t
dt

and the right-hand side can be written as

1

2�i

Z �Ci1

�0�i1
˛�" .t/

�Z 1

1

v�tdBl.v/

�
Xt

t
dt

D
Z 1

1

�
1

2�i

Z �Ci1

�0�i1
˛�" .t/

�
X

v

�t dt

t

�
dBN.X/ D

Z 1

1

A�" .
X

v
/ dBN.v/:

As A�" is monotonically increasing, the last integral is bounded from below by

�
Z 3

2

A�" .
X

v
/ dBN.v/ � A�" .

X

3
/

Z 3

2

dBN.v/ > 0

for all X > 0. Hence there exists a constant c > 0 such that for every " > 0, we have
lim supX!1 X� 52 A�" .X/ � c��" .ˆf /, and thus

lim sup
X!1

X� 52 A�" .X/ �! 0 for "& 0:

Hence

lim sup
X!1

X�
5
2 †.X/ D lim sup

X!1
X�

5
2AC" .X/C lim sup

X!1
X�

5
2 A�" .X/

� �C" .ˆf /C c��" .ˆf / �! �0.ˆf /

for "& 0, which finishes the proof of the asymptotic. ut



Zeta Functions for GL.n/ 419

10 Bounds for Mean Values of Residues of Dedekind
Zeta Functions

We want to use the result from the last section to obtain information on the mean
value of residues of Dedekind zeta functions. As c.ˆ0f ; �/ � 1 for all � 2 EnQ and
all E 2 F3 by Proposition 8.1, an immediate consequence of Proposition 9.2 is the
following upper bound.

Theorem 10.1. There exists ˛ <1 such that

lim sup
X!1

X�
5
2

X

E2FC
3 W

m1.E/�X

res
sD1 �E.s/ � ˛: (45)

Remark 10.2. Note that one can take ˛ to be equal to ˇ.ˆ0f / (from Proposition 9.2),
which is explicitly computable. To obtain a better upper bound (which should be
optimal, in fact), one can try to use the sequence of test functions from Appendix 2,
that is, the optimal ˛ should equal the limit over m of ˇ.ˆm

f /.

To complement this upper bound we show the following lower bound.

Proposition 10.3. We have for every " > 0, we have

lim inf
X!1 X� 52C"

X

E2FC
3 W

m1.E/�X

res
sD1 �E.s/ D1:

In fact, Conjecture 1.7 is expected to be true. The proof of this proposition is of
a complete different nature than the proof of Theorem 10.1: Basically we will
show that there are sufficiently many irreducible cubic polynomials, cf. also the
introduction where a relation to [EV06, Remark 3.3] is explained. Ultimately, one
hopes that Proposition 10.3 (and even Conjecture 1.7) can also be deduced from
Proposition 9.2, cf. Appendix 2 for a sequence of test functions that might be useful.
We need the following auxiliary result to prove Proposition 10.3:

Lemma 10.4.

(i) Let Q W R2 �! R be a positive definite quadratic form with discriminant�.Q/
and first successive minimum m1.Q/ � 1. Then, as X !1, we have

X

�2Z2W
Q.�/�X

1 D 2�X
p
�.Q/

C O

�s
m1.Q/

�.Q/
X

1
2

�

with implied constant independent of Q.
(ii) For all " > 0, we have as X !1

X

E2FC
3 W

m2.E/�X

�E

X

�2OE=Z;�¤0;
QE.�/�X

1 D O.X2C"/:
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Proof.

(i) We need to count all points in Z
2 which are contained in the ellipse EX WD

fx 2 R
2 j Q.x/ � Xg. By a theorem of Gauss [Coh80, p.161], the number of

such points is equal to the area 2�Xp
�.Q/

of the ellipse EX plus some small error

term of order RX
1
2 for R the length of the major axis of the ellipse E1 and all

implicit constants independent of Q. Since m1.Q/ � 1, it is easily verified that

R �
q

m1.Q/
�.Q/ finishing the proof of the assertion.

(ii) By Minkowski’s second theorem (see, e.g. [Cas97, VIII.4.3]), there are a1; a2 >
0 such that for all cubic fields E, a1m1.E/m2.E/ � DE � a2m1.E/m2.E/ so that
m1.E/ � m2.E/ � X implies c0DE � m1.E/m2.E/ � 16X2 for some c0 > 0,
and moreover, m1.E/=�.QE/ is bounded from above by an absolute constant.
Hence there is by (i) some constant C > 0 such that

X

�2OE=Z; �¤0;
QE.�/�X

1 � C
X

p
�.QE/

for all E with m1.E/ � m2.E/ � X. By the Brauer–Siegel Theorem [Lan94,
XVI, § 4 Theorem 4], there exists for all " > 0 some number C" > 0 such

that �E D ressD1 �E.s/ D 4D
� 12
E hERE � C"D"

E for all totally real cubic fields E.
Hence the left-hand side of (ii) equals

X

E2FC
3 W

m2.E/�X

�E

X

�2OEnZW
QE.�/�X

1 � CC"
p
3

X

EW m2.E/�X

XD
"� 12
E :

This can be bounded by

CC"
p
3X

X

EW DE�16X2

D
"� 1

2

E � CC"
p
3X1C"

X

EW DE�16X2

D
� 12
E :

By [DH71, Theorem 1] or [DW88, Theorem I.1],
P

EW DE�X 1 D c0X C o.X/
for some c0 > 0 so that

CC"
p
3X1C"

X

EW DE�16X2

D
� 12
E � 16c0CC"

p
3X2C" C o.X2C"/

which is the assertion.
ut

Proof of Proposition 10.3. It suffices to assume that " 2 .0; 1=2/. We first show that

lim inf
X!1 X�

5
2C"

X

E2FC
3

X

�2OE=Z;�¤0;
QE.�/�X

�E D1 (46)
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for every " > 0. Let " > 0. By the Brauer–Siegel Theorem there exists A" > 0

such that �E � A"D
� "
2

E for all E. Thus this sum is bounded from below by
A"X�

"
2
P

E2FC
3

NE.X/, where NE.X/ WD
ˇ
ˇf� 2 OE=Z W � ¤ 0; QE.�/ � Xgˇˇ.

Hence it will certainly suffice to show that there exists C > 0 such that

X

E2FC
3

NE.X/ � CX
5
2

as X ! 1. The map associating with the pair E 2 FC3 , � 2 OE=Z, � ¤ 0, the
characteristic polynomial T3 C a1T C a0 of � � 1

3
tr �13 is 3� 1 or 1� 1 depending

on whether E is Galois or not. As E is totally real, we have �.� � 1
3

tr �13/ D
�4a31 � 27a20 > 0, or equivalently a20 � � 4

27
a31. Since X � QE.�/ D �2a1 > 0, this

implies

� X

2
� a1 < 0 and 0 < a0 �

r

� 4
27

a31 �
1

3
p
6

X
3
2 : (47)

Hence, ignoring constants, there are a
3
2

1 many a0 and

Z X=2

1

a
3
2

1 da1 D 1

10
p
2

X
5
2 � 2

5

many a1 satisfying all the conditions. On the other hand, any irreducible polynomial
with integral coefficients satisfying the inequalities in (47) defines (a conjugacy
class of) a cubic field E and � as before. Thus we only need to show that
the reducible polynomials with coefficients satisfying above constraints do not
contribute to CX

5
2 . If T3 C a1T C a0 is reducible over Q, we can write it as a

product .T2 C b1T C b0/.T C c/ with b1; b0; c 2 Z. Hence c D �b1, cb0 D a0 and
b0 � c2 D a1. Hence if we fix a0 (for which there are at most O.X

3
2 / possibilities),

there are at most O.aı0/ � O.Xı/ possibilities for c and b0 for any ı > 0. Thus there

are only O.X
3
2Cı/ reducible polynomials satisfying above constraints. This finishes

the proof of (46).
Now split the sum over E in the following parts: One belonging to E 2 FC3 such

that m1.E/ > X, one over E such that m1.E/ � X < m2.E/, and the last one over E
such that m1.E/ < m2.E/ � X. For E with m1.E/ > X, there are no � contributing
to the sum in (46) so that the sum on the left-hand side of (46) equals

X� 52C"
X

E2FC
3 W

m1.E/�X<m2.E/

�ENE.X/C X� 52C"
X

E2FC
3 W

m1.E/�m2.E/�X

�ENE.X/: (48)
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By Lemma 10.4(ii), the second sum tends to 0 for X ! 1 provided " < 1
2
. Hence

the limes inferior of the first part of the sum is not bounded from below as X !1
for any " 2 .0; 1=2/. As m1.E/ � X < m2.E/, every � 2 OE=Z, � ¤ 0, with
QE.x/ � X is of the form � D n�0 for some n 2 N, and �0 one of the two non-zero
primitive vectors in OE=Z. Note that QE.˙�0/ D m1.E/. Thus

X

E2FC
3 W

m1.E/�X<m2.E/

�ENE.X/ D
X

n2N

X

E2FC
3 W

m1.E/�X<m2.E/

�E

X

�02.OE=Z/prim; xi0¤0
QE.�0/� X

n2

1

D 2
X

n2N

X

E2FC
3 W

m1.E/� X
n2
<m2.E/

�E;

where .OE=Z/prim denotes the set of primitive vectors in OE=Z. Suppose there are
� 2 .0; 1=2/ and 0 < c0 <1 such that

lim inf
X!1 X�

5
2C�

X

E2FC
3 W

m1.E/�X<m2.E/

�E D c0 <1:

Then

X� 52C�
X

E2FC
3 W

m1.E/�X<m2.E/

�ENE.X/ D 2
X

n2N
n�5C2�.

X

n2
/� 52C�

X

E2FC
3 W

m1.E/� X
n2
<m2.E/

�E

and, for every n, lim infX!1. X
n2
/� 52C�

P
E2FC

3 ; m1.E/� X
n2
<m2.E/

�E D c0 so that the

limit inferior of the above is 2c0�.5� 2�/ in contradiction to the unboundedness of
the limit inferior of the first sum in (48) as X ! 1. This finishes the proof of the
proposition. ut
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Appendix 1: Asymptotic Approximation of Truncation
Functions

The purpose of this appendix is to prove Proposition 5.1 in the case of a nilpotent
orbit N � n for G D GLn and n � 3.

The Case n D 2

There are two nilpotent orbits in g, namely Ntriv D 0 and Nreg. For Ntriv there is
nothing to show so that we only consider N D Nreg. We denote by X0 an element
as in Example 4.2. The associated Jacobson–Morozov parabolic subgroup for X0 is
P D P0 D T0U0, and CU0 .X0/ D U0.

Lemma A.1. Let � be as in Lemma 3.7 and let ˆf 2 S.g.Af //. Then there exists a
seminorm 
 on S�.g.R// such that for every ˆ1 2 S�.g.R// and nilpotent orbit
N � g.Q/, we have

ˇ̌
jTN .ˆ/ � QjTN .ˆ/

ˇ̌ � 
.ˆ1/e�c2kTk

for all T 2 aC with d.T/ > kTk=2, where ˆ D ˆ1 	ˆf .

Proof. We only consider N D Nreg. Let ˆ1 2 S�.g.R//. We may assume that ˆ
is K-conjugation invariant. Then

jTNreg
.ˆ/ D

Z

AG
0

ı0.a/
�1
�Z

U0.Q/nU0.A/
F.ua;T/ du

� X

X2u0.Q/\Nreg

ˆ.Ad a�1X/ da:

Note that QFT0 .a;T/ D O�G
0 .T � H0.a// D 0 implies F.ua;T/ D 0 for all u 2 U0.A/,

i.e., F.ua;T/ � QFT0 .a;T/ for all u and a. The sum inside the integral is over all
X D �

1 x
0 1

� DW X.x/ with x 2 Q, x ¤ 0. Let '.x/ D ˆ.X.x//, x 2 A, and write
a D diag.b; b�1/ with b 2 .0;1/. Then

X

X2u0.Q/\Nreg

ˆ.Ad a�1X/ D
X

x2Q�

'.b�2x/

and there exists a seminorm 
 on S�.g.R// (depending on ˆf ) such that for all
b 2 .0; 1/ we have

ˇ
ˇ
ˇ̌
ˇ
ˇ

X

x2Q�

'.b�2x/

ˇ
ˇ
ˇ̌
ˇ
ˇ
� 
.ˆ1/b3:
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In particular, for every b0 2 .0; 1/ we have

0 �
Z b0

0

b�2
�
QFT0 .a;T/ �

Z

U0.Q/nU0.A/
F.ua;T/ du

�
ˇ
ˇ̌
ˇ
ˇ
ˇ

X

x2Q�

'.b�2x/

ˇ
ˇ̌
ˇ
ˇ
ˇ

d�b

� 
.ˆ1/
Z b0

0

b d�b D 
.ˆ1/b0:

Now let b > b0. We want to find an upper bound for the difference

QFT0 .a;T/�
Z

U0.Q/nU0.A/
F.va;T/ dv: (49)

Let ˛ be the unique positive root of .T0;U0/ and $ the corresponding coroot. We
may assume that b is such that QFT0 .a;T/ D 1, that is, b < e$.T/, as otherwise (49)
vanishes. Note that (49) is always non-negative. It equals

volfv 2 U0.Q/nU0.A/ j 9� 2 G.Q/ W $.H0.�va/� T/ > 0g
� volfv 2 U0.Q/nU0.A/ j 9u 2 U0.Q/ W $.H0.uva/� T/ > 0g
C volfv 2 U0.Q/nU0.A/ j 9u 2 U0.Q/ W $.H0.wuva/� T/ > 0g

for w D �
0 1
1 0

�
a representative for the non-trivial Weyl group element. Here we

used the left P0.Q/-invariance of H0. Using again the left U0.Q/-invariance and
that QFT0 .a;T/ D 1, the volume of the first set is 0 so that we only need to estimate

volfv 2 U0.Q/nU0.A/ j 9u 2 U0.Q/ W $.H0.wuva/� T/ > 0g: (50)

For that write u D � 1 x
0 1

� 2 U0.Q/ and v D � 1 y
0 1

� 2 U0.Q/nU0.A/. Then

$.H0.wuva// D $.wH0.a//C$.H0.wa�1uva// D �$.H0.a//� log k.1; b�2.xC y//kA

for k 	 kA the adelic vector norm. But k.1; b�2.xC y//kA � 1 so that

$.H0.wuva/� T/ � �$.H0.a//�$.T/ � � log b0 �$.T/

which is � 0 if d.T/ D $.T/ � � log b0. In particular, the volume (50) vanishes
for every b � b0 if d.T/ � log b0. Choosing b0 D e�kTk=2, we therefore get

ˇ
ˇjTN .ˆ/�QjTN .ˆ/

ˇ
ˇ �

Z e�kTk=2

0

b�2

�
QFT0 .a; T/�

Z

U0.Q/nU0.A/
F.ua; T/ du

�
ˇ
ˇ̌
ˇ
ˇ
ˇ

X

x2Q�

'.b�2x/

ˇ
ˇ̌
ˇ
ˇ
ˇ

d�b

� 
.ˆ1/e�kTk=2

which proves the assertion of the lemma. ut
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The Case n D 3

There are now three different nilpotent orbits in g: The trivial orbit Ntriv D 0, the
minimal orbit Nmin, and the regular orbit Nreg. We recall our choices of X0, and the
Jacobson–Morozov parabolic from Example 4.2. The first case again is trivial so
that we only consider the other two. In both of these cases the associated Jacobson–
Morozov parabolic is the minimal parabolic.

Lemma A.2. There are c1; c2 > 0 such that for every X0 2 u
2;reg
N .Q/, N 2

fNmin;Nregg, and v0 2 CU0 .X0;A/nU0.A/ we have

ˇ
ˇ QFT0 .t;T/ �

Z

CU0 .X0;Q/nCU0 .X0;A/
F.vv0t;T/ dv

ˇ
ˇ � c1e

�c2kTk (51)

for all t 2 T0.A/ and all sufficiently regular T 2 aC with d.T/ > ıkTk.
Proof. Write �0 D f˛1; ˛2g such that ˛.diag.t1; t2; t3// D jt1=t2j and
˛2.diag.t1; t2; t3// D jt2=t3j. We consider the two nilpotent orbits separately.

N D Nmin

We have CU0 .X0/ D U0 so that v0 D 1. Let t 2 T0.A/. It is clear that QFT0 .t;T/ D 0
again implies that F.vt;T/ D 0 for all v 2 U0.A/nU0.A/. Hence we again assume
that t is such that QFT0 .t;T/ D 1. To estimate the left-hand side of (51) it will
therefore suffice to bound the volume of the set

fv 2 U0.Q/nU0.A/ j 9� 2 G.Q/ 9$ 2 b�0 W $.H0.�vt/ � T/ > 0g:

Using Bruhat decomposition for G.Q/ and the left P0.Q/-invariance of H0, it
suffices to bound for each w 2 W and $ 2 b�0 the volume of the set

VT.w;$;T/ D fv 2 U0.Q/nU0.A/ j 9u 2 U0.Q/ W $.H0.wuvt/ � T/ > 0g:

Now for v 2 U0.Q/nU0.A/ and u 2 U0.Q/ we have H0.wuvt/ D
H0..wtw�1/.wt�1uvt// D wH0.t/C H0.wt�1uvt/ so that

$.H0.wuvt/� T/ > 0, $.H0.wt�1uvt// > $.T � wH0.t//, e�$.H0.wt�1uvt// < e$.wH0.t/�T/:

Hence vol VT.w;$; t/ equals

vol
�fx1; x2; x3 2 Œ0; 1 j 9y1; y2; y3 2 Q W �$.H0.wt�1

�
1 x1Cy1 x2Cy2

1 x3Cy3
1

�
t// < �$.T � wH0.t//g�
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Suppose u D
�
1 u1 u2
1 u3
1

�
2 U0.A/. We first want to compute the last two rows of

wuw�1, as they can be used to compute$.H0.wuw�1//.

• w D w1 D id, then the last two columns equal

�
0 1 u3
0 0 1

�
:

• w D w2 is the simple reflexion about the root ˛1. Then the last two rows equal

�
u1 1 u2
0 0 1

�

• w D w3 is the simple reflexion about the root ˛2. Then the last two rows equal

�
0 1 0

0 u3 1

�

• w D w4 is the longest Weyl element. Then the last two rows equal

�
u3 1 0
u2 u1 1

�

• w D w5 is represented by
�
0 0 1
1 0 0
0 1 0

�
. Then the last two rows equal

�
u2 1 u1
u3 0 1

�

• w D w6 D w�15 . Then the last two rows equal

�
0 1 0

u1 u2 1

�
:

The case $ D $2: Using the above computations, we have for u WD�
1 x1Cy1 x2Cy2

1 x3Cy3
1

�

e�$2.H0.wit�1ut// D

8
ˆ̂
<

ˆ̂:

k.0; 0; 1/kA D 1 if i 2 f1; 2g;
k.0; e�˛2.H0.t//.x3 C y3/; 1/kA if i 2 f3; 5g;
k.e�.˛1C˛2/.H0.t//.x2 C y2/; e�˛1.H0.t//.x1 C y1/; 1/kA if i 2 f4; 6g:
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Since QFT0 .t;T/ ¤ 0, we have $2.T � wH0.t// D $2.T � H0.t// � 0 so that
vol VT.w1;$2; t/ D vol VT.w2;$2; t/ D 0.

Now if w 2 fw3;w5g we have $2.wH0.t// D .$1 �$2/.H0.t//, and therefore

e�$2.H0.wt�1ut// < e$2.wH0.t/�T/ , k.0; e�˛2.H0.t//.x3Cy3/; 1/kA < e.$1�$2/.H0.t//�$2.T/:

Writing out the adelic norm on the left-hand side, this is equivalent to (recall that
x3 2 Œ0; 1)

.1C e�2˛2.H0.t//.x3 C y3/
2/1=2

Y

p<1
maxf1; jy3jpg < e.$1�$2/.H0.t//�$2.T/:

We can write y3 D a=b with a; b coprime integers. Then
Q

p<1maxf1; jy3jpg D jbj
so that the above is equivalent to

1C e�2˛2.H0.t//.x3 C y3/
2 < b�2e2.$1�$2/.H0.t//�2$2.T/

, .x3 C a

b
/2 <

�
b�2e2.$1�$2/.H0.t//�2$2.T/ � 1	 e2˛2.H0.t//:

If there exists x3 satisfying this inequality, we must necessarily have
e.$1�$2/.H0.t//�$2.T/ > 1 and jbj < e.$1�$2/.H0.t//�$2.T/. It moreover suffices to
consider 0 � a � b, since if for a > b there still exists x3 as before, then the volume
of VT.w;$2; t/ equals 1. Hence the volume of all x3 2 Œ0; 1 for which there exists
y3 2 Q as above is bounded by

X

0<b<e.$1�$2/.H0.t//�$2.T/

X

0�a<b

b�1e.$1�$2/.H0.t//�$2.T/e˛2.H0.t// � e2.$1�$2/.H0.t//�2$2.T/e˛2.H0.t//:

Note that 2.$1�$2/C˛2 D $1 so that, since$1.H0.t// � $1.T/ by assumption,
we get

vol VT.w;$2; t/ � e�˛2.T/

for w 2 fw3;w5g.
Now if w 2 fw4;w6g, we have $2.wH0.t// D �$1.H0.t//. Therefore,

e�$2.H0.wt�1ut// < e$2.wH0.t/�T/

, k.e�.˛1C˛2/.H0.t//.x2 C y2/; e
�˛1.H0.t//.x1 C y1/; 1/kA < e�$1.H0.t//�$2.T/:

This is equivalent to

.1C e�2˛1.H0.t//.x1 C y1/
2 C e�2.˛1C˛2/.H0.t//.x2 C y2/

2/1=2
Y

p<1

maxf1; jy1jp; jy2jpg < e�$1.H0.t//�$2.T/:
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Write yi D ai=bi with ai; bi coprime integers. Then
Q

p<1maxf1; jy1jp; jy2jpg D
lcm.b1; b2/ DW b, and as above it suffices to consider 0 � a1; a2 < b <

e�$1.H0.t//�$2.T/. Hence the volume of VT.w;$2; t/ is bounded by the sum over
all such a1; a2; b of the volume of all x1; x2 2 Œ0; 1 satisfying

e�2˛1.H0.t//.x1 C a1
b
/2 C e�2.˛1C˛2/.H0.t//.x2 C a2

b
/2 < b�2e�2$1.H0.t//�2$2.T/ � 1

so that for w 2 fw4;w6g we have

vol VT.w;$2; t/ �
X

0<b<e�$1.H0.t//�$2.T/

be˛1.H0.t//e.˛1C˛2/.H0.t//e�$1.H0.t//�$2.T/

� e˛1.H0.t//e.˛1C˛2/.H0.t//e�3$1.H0.t//�3$2.T/ D e�3$2.T/:

The case $ D $1: Using the same notation as before, we can compute

e�$1.H0.wit�1ut// D
8
ˆ̂
<

ˆ̂:

k.0; 0; 1/kA D 1 if i 2 f1; 3g;
k.0; 1; e�˛1.H0.t//.x1 C y1//kA if i 2 f2; 6g;
k.1; e�˛2.H0.t//.x3 C y3/; e�.˛1C˛2/.H0.t//

�
.x1 C y1/.x3 C y3/� .x2 C y2/

�
/kA if i 2 f4; 5g:

If w 2 fw1;w3g it follows as before that VT.w;$1; t/ D 0. If w 2 fw2;w6g, then
$1.wH0.t// D .$2 �$1/.H0.t//, and it follows as before that vol VT.w;$1; t/ is
bounded from above by

e2.$2�$1/.H0.t//�2$1.T/e˛1.t/ � e�˛1.T/

by our assumption on t.
For the last case w 2 fw4;w5g we have$1.wH0.t// D �$2.H0.t// so that

e�$1.H0.wt�1ut// < e$1.wH0.t/�T/

is equivalent to

k.1; e�˛2.H0.t//.x3 C y3/; e
�.˛1C˛2/.H0.t//

�
.x1 C y1/.x3 C y3/� .x2 C y2/

�
/kA < e�$2.H0.t//�$1.T/:

It follows similarly as before (we may replace .x1 C y1/.x3 C y3/ � .x2 C y2/ by
x2 C y2 for our purposes) that the volume vol VT.w;$1; t/ is bounded by

e˛2.H0.t//e.˛1C˛2/.H0.t//e�3$2.H0.t//�3$1.T/ D e�3$1.T/

finishing the case $ D $1.
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Taking all computations for$ D $1;$2 together, we obtain
ˇ
ˇ
ˇ̌QFT0 .t; T/�

Z

CU .X0;Q/nCU.X0;A/
F.vt; T/ dv

ˇ
ˇ
ˇ̌ � 2�e�˛1.T/Ce�˛2.T/Ce�3$1.T/Ce�3$2.T// � 8e�d.T/

for all t 2 T0.Q/nT0.A/. For d.T/ > ıkTk the assertion follows.

N D Nreg

Let t 2 T0.A/ be again such that QFT0 .t;T/ D 1. For X0 D
�
0 x0 0
0 0 y0
0 0 0

�
2 u

2;reg
Nreg

.Q/, the

Jacobson–Morozov parabolic subgroup is again P D P0, and

CU0 .X0/ D f
�
1 a b
0 1

y0
x0

a

0 0 1

�
g:

For notational reasons we only consider the case x0 D y0, the remaining cases
being similar. As a complement of CU0 .X0/ � U0 we choose the subspace V WD
f
�
1 c 0
0 1 �c
0 0 1

�
g � U0. Let v0 D v0.c/ D

�
1 c 0
0 1 �c
0 0 1

�
2 V.A/ be fixed. We want to

approximate the sets

VT.$; t; v
0/ D fv 2 CU0 .X0;Q/nCU0 .X0;A/ j 9� 2 G.Q/ W $.H0.�vv

0t/�T/ > 0g

for each$ 2 f$1;$2g. We split this set into disjoint sets VT.w;$; t; v0/ for w 2 W
according to the Bruhat decomposition as before.

The case $ D $2: If applicable, we use the same notation as in the case of the
minimal orbit, but now write x1 D aC c, x3 D a � c, and x2 D b � ac with c fixed
and a; b 2 QnA. Hence

e�$2.H0.wt�1yvv0 t// D

8
ˆ̂
<

ˆ̂:

k.0; 0; 1/kA D 1 if w 2 fw1;w2g;
k.0; e�˛2.t/.a� cC y3/; 1/kA if w 2 fw3;w5g;
k.e�.˛1C˛2/.t/.b� acC y2/; e�˛1.t/.aC cC y1/; 1/kA if w 2 fw4;w6g:

The first case w 2 fw1;w2g again leads to vol VT.w;$2; t; v0/ D 0 for every t with
QFT0 .t;T/ D 1.

If w 2 fw3;w5g, we now choose a fundamental domain for a as Œc; 1C c so that
this case can in fact be treated similar to the minimal orbit. Hence

vol VT.w;$2; t; v
0/ � e�˛2.T/:

Similarly, if w 2 fw4;w6g we can choose the fundamental domains for a and b
in such a way that we are left with the same type of estimates as in the case of the
minimal orbit. Hence

vol VT.w;$2; t; v
0/ � e�3$2.T/:
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The case $ D $1: As for the minimal orbit, we obtain

e�$1.H0.wit�1yvv0 t// D
8
ˆ̂
<

ˆ̂
:

k.0; 0; 1/kA D 1 if i 2 f1; 3g;
k.0; 1; e�˛1.t/.aC cC y1//kA if i 2 f2; 6g;
k.1; e�˛2.t/.a� cC y3/; e�.˛1C˛2/.t/

�
.aC cC y1/.a� cC y3/� .b� acC y2/

�
/kA if i 2 f4; 5g:

Choosing for each w appropriate fundamental domains for a and b, we are left with
the same computations and estimates as in the minimal orbit case.

Taking everything together, we again obtain: For the regular unipotent
orbit with Jacobson–Morozov parabolic P D P0 we can approximateR

CU.u0;Q/nCU .u0;A/
F.vt;T/ dv by QFT0 .t;T/ asymptotically in T, in fact,

ˇ
ˇ
ˇ̌ QFT0 .t;T/ �

Z

CU.X0;Q/nCU .X0;A/
F.vt;T/ dv

ˇ
ˇ
ˇ̌ � 8e�d.T/

for all t 2 T0.Q/nT0.A/. For d.T/ > ıkTk the assertion follows. ut
Corollary A.3. Let � > 0 be as in Lemma 3.7 and let ˆf 2 S.g.Af //. There exists
a seminorm 
 on S�.g.R// (depending on ˆf ) such that for every ˆ1 2 S�.g.R//
and every nilpotent orbit N we have

ˇ̌
jTN .ˆ/ � QjTN .ˆ/

ˇ̌ � 
.ˆ1/e�c2kTk

for every sufficiently regular T 2 aC with d.T/ > ıkTk, where ˆ D ˆ1 	ˆf .

Proof. Again, we only need to consider the non-trivial orbits, and we moreover may
assume thatˆ is K-conjugation invariant. First consider the regular orbit N D Nreg.
Using the results and notation of Lemma A.2 and proceeding similar as in the n D 2-
case, we can bound

ˇ
ˇjTN .ˆ/ � QjTN .ˆ/

ˇ
ˇ from above by

� c1e
�c2kTk

Z

AG
0

ı0.a/
�1 O�G

0 .T�H0.a//
Z

u>2.A/

X

X2u2.Q/\N

ˇ
ˇˆ.Ad a�1.XCU//

ˇ
ˇ dU da:

The integral again is bounded from above by a seminorm (independent of T) applied
to ˆ1 as in the proof of Lemma 4.7.

Now consider the case N D Nmin. Similar as before, we are left to estimate

c1e
�c2kTk

Z

AG
0

ıU�2 .a/�1 O�G
0 .T � H0.a//

X

X2u2.Q/\N

ˇ
ˇˆ.Ad a�1X/

ˇ
ˇ da

� c1e
�c2kTk

Z e$1.T/=2

0

Z e$2.T/=2

0

a�21 a�22
X

x2Qnf0g
'.a�11 a�12 x/ d�a1 d�a2;
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for ' a suitable function. If we change one of the variables to a1a2, we can analyse
the integral similar as before to obtain the assertion. ut
Remark A.4. For the regular orbit, one could prove the corollary without the
detailed analysis from the previous lemma by using the behaviour of the test
function ˆ similarly as in the proof in the case of n D 2. See also [CL15] for
related work on regular orbits.

Appendix 2: A Sequence of Test Functions

In this appendix, we give a sequence of test functions at the non-Archimedean places
which might be useful to deduce Conjecture 1.7 from Proposition 9.2.

For a prime p define Q̂ p W g.Qp/ �! C by

Q̂ p.x/ D
8
<

:

ŒOQp ŒxWZpŒx

Ip.ˆ0p;x/
D c.ˆ0p; x/

�1 if �.x/ ¤ 0; and x 2 g.Zp/;

0 else:

Then Q̂ p is locally constant in g.Qp/nfx 2 g.Qp/ j �.x/ D 0g, but not on all of
g.Qp/. For x 2 g.Qp/ with Q̂ p.x/ ¤ 0, we have

c. Q̂ p; x/ D 1

ŒOQp Œx W ZpŒx

Z

Gx.Qp/nG.Qp/

Q̂ p.g
�1xg/ dg D 1

so that in fact one would actually like to use Q̂ f WD Q
p<1 Q̂ p as a test function at

the Archimedean places, which we are not allowed to do because of Q̂ f 62 S.g.Af //.
However, we can construct a sequence of functions in S.g.Af // converging to
Q̂ f : Let † � g.Zp/ denote the set of all x 2 g.Zp/ such that �.x/ D 0. For m 2 N0

define a function ˆm
p W g.Qp/ �! C by

ˆm
p .x/ D

(
1 if x 2 †C pmg.Zp/;

Q̂ p.x/ if x 62 †C pmg.Zp/:

In particular,ˆ0p coincides with the characteristic function of g.Zp/. By construction
ˆm

p 2 S.g.Qp// andˆm
p is Kp-invariant. Let m D .mp/p<1 be a sequence of integers

mp 2 N0 of which almost all are zero. Let DivC.Q/ denote the set of all such
sequences. It has a partial order given by m � m0 if and only if mp � m0p for all

primes p. Define the function ˆm
f W g.Af / �! C by ˆm

f D
Q

p<1ˆ
mp
p . Then

ˆf 2 S.g.Af // and it is Kp-invariant.
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By definition we have for all m;m0 2 DivC.Q/ with m � m0 and all x 2 g.Af /

we have

0 � Q̂ f .x/ � ˆm
f .x/ � ˆm0

f .x/ � ˆ0f .x/ � 1:

Moreover, limmˆ
m
f .x/ D Q̂ f .x/ for every x. Similarly, the functionsˆ

mp
p are mono-

tonically decreasing with limit function Q̂ p so that limmp!1
R
g.Qp/

ˆ
mp
p .x/ dx D

R
g.Qp/

Q̂ p.x/ dx and

lim
mp!1

Z

G� .Qp/nG.Qp/

ˆ
mp
p .g�1�g/ dx D

Z

G� .Qp/nG.Qp/

Q̂ p.g
�1�g/ dx D 1

for all regular elliptic � . The existence of these limits does not suffice to pass from
c.�;ˆf / to 1 in the asymptotic 9.2 which would prove Conjecture 1.7. It would be
necessary to show uniformity of the convergence in Q.�/ D tr �2� 1

3
.tr �/2 and the

number of primes for which mp ¤ 0.
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Some Results in the Theory of Low-Lying
Zeros of Families of L-Functions

Blake Mackall, Steven J. Miller, Christina Rapti,
Caroline Turnage-Butterbaugh, and Karl Winsor

Abstract While Random Matrix Theory has successfully modeled the limiting
behavior of many quantities of families of L-functions, especially the distributions
of zeros and values, the theory frequently cannot see the arithmetic of the family.
In some situations this requires an extended theory that inserts arithmetic factors
that depend on the family, while in other cases these arithmetic factors result in
contributions which vanish in the limit, and are thus not detected. In this chapter we
review the general theory associated with one of the most important statistics, the
n-level density of zeros near the central point. According to the Katz–Sarnak density
conjecture, to each family of L-functions there is a corresponding symmetry group
(which is a subset of a classical compact group) such that the behavior of the zeros
near the central point as the conductors tend to infinity agrees with the behavior
of the eigenvalues near 1 as the matrix size tends to infinity. We show how these
calculations are done, emphasizing the techniques, methods, and obstructions to
improving the results, by considering in full detail the family of Dirichlet characters
with square-free conductors. We then move on and describe how we may associate a
symmetry constant with each family, and how to determine the symmetry group of a
compound family in terms of the symmetries of the constituents. These calculations
allow us to explain the remarkable universality of behavior, where the main terms
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are independent of the arithmetic, as we see that only the first two moments of
the Satake parameters survive to contribute in the limit. Similar to the Central
Limit Theorem, the higher moments are only felt in the rate of convergence to
the universal behavior. We end by exploring the effect of lower order terms in
families of elliptic curves. We present evidence supporting a conjecture that the
average second moment in one-parameter families without complex multiplication
has, when appropriately viewed, a negative bias, and end with a discussion of
the consequences of this bias on the distribution of low-lying zeros, in particular
relations between such a bias and the observed excess rank in families.

1 Introduction

The purpose of this chapter is to describe some results, and the methods used to
prove them, in the theory of low-lying zeros and the connections between number
theory and random matrix theory. There is now an extensive literature on the subject.
See, for example the books [Da, Ed, For, Iw, IwKo, KaSa2, Meh, Ti] and the survey
articles [BFMT-B, Con, KaSa1, KeSn1, KeSn2, KeSn3], as well as [Ha, FirMil] for
popular accounts of the history of the meeting of the two fields.

Briefly, assuming the Generalized Riemann Hypothesis (GRH) the non-trivial
zeros of any nice L-function lie on its critical line, and therefore it is possible to
investigate the statistics of its normalized zeros. The work of Montgomery and
Odlyzko [Mon, Od1, Od2] suggested that zeros of L-functions in the limit are well
modeled by eigenvalues of matrix ensembles. Initially the comparison was made
between number theory and the Gaussian Unitary Ensemble (GUE) with statistics
such as n-level correlations and spacings between zeros; however, these statistics
are insensitive to finitely many zeros and in particular miss the behavior at the
central point. This is a significant issue, as there are many situations in number
theory where these central values are important, such as the Birch and Swinnerton-
Dyer conjecture [BS-D1, BS-D2], and these statistics had the same limiting values
both for different families of L-functions and different matrix ensembles. The
reader unfamiliar with these statistics and results should see the introduction of
[AAILMZ, ILS] (or the introduction of any of the dissertations in low-lying zeros!)
for more details.

Following the work of Katz–Sarnak [KaSa1, KaSa2] a new statistic was intro-
duced, the n-level density; unlike the earlier statistics, this depends on the family
or ensemble being studied. We mostly concentrate on the 1-level density in this
paper, though see [Mil1, Mil2] for some important applications of the 2-level density
(which we briefly discuss later).

Let � be an even Schwartz test function on R whose Fourier transform

O�.y/ D
Z 1

�1
�.x/e�2� ixydx (1)
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has compact support. Let FN be a (finite) family of L-functions satisfying GRH.
The 1-level density associated with FN is defined by

D1;FN .�/ D
1

jFN j
X

f2FN

X

j

�

�
log cf

2�
�
.j/
f

�
; (2)

where 1
2
C i�.j/f runs through the non-trivial zeros of L.s; f /. Here cf is the “analytic

conductor” of f , and gives the natural scale for the low zeros. As � is Schwartz,
only low-lying zeros (i.e., zeros within a distance� 1= log cf of the central point
s D 1=2) contribute significantly. Thus the 1-level density can help identify the
symmetry type of the family.

Based in part on the function-field analysis where G.F / is the monodromy group
associated with the family F , Katz and Sarnak [KaSa1, KaSa2] conjectured that for
each reasonable irreducible family of L-functions there is an associated symmetry
group G.F / (one of the following five: unitary U, symplectic USp, orthogonal O,
SO(even), SO(odd)), and that the distribution of critical zeros near 1=2 mirrors the
distribution of eigenvalues near 1. (Similar correspondences hold for other statistics,
such as the values of L-functions being well modeled by values of characteristic
polynomials; see, for example, [CFKRS].) The five groups have distinguishable
1-level densities.

To evaluate (2), one applies the explicit formula, converting sums over zeros
to sums over primes. By [KaSa1], the 1-level densities for the classical compact
groups are

W1;SO(even).x/ D K1.x; x/
W1;SO(odd).x/ D K�1.x; x/C ı.x/
W1;O.x/ D 1

2
W1;SO(even).x/C 1

2
W1;SO(odd).x/

W1;U.x/ D K0.x; x/
W1;USp.x/ D K�1.x; x/;

(3)

where K.y/ D sin�y
�y , K�.x; y/ D K.x � y/ C �K.x C y/ for � D 0;˙1, and ı.x/

is the Dirac delta functional. It is often more convenient to work with the Fourier
transforms of the densities:

bW1;SO(even).u/ D ı.u/C 1
2
I.u/

bW1;SO(odd).u/ D ı.u/� 1
2
I.u/C 1

bW1;O.u/ D ı.u/C 1
2

bW1;U.u/ D ı.u/
bW1;USp.u/ D ı.u/� 1

2
I.u/;

(4)

where I.u/ is the characteristic function of Œ�1; 1. While these five densities are
distinguishable for test functions � where the support of O� exceeds Œ�1; 1, the
three orthogonal densities are indistinguishable inside this region. While for many
families of interest we cannot calculate the 1-level density beyond Œ�1; 1, we are
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able to uniquely associate a symmetry group by studying the 2-level densities, which
are mutually distinguishable for arbitrarily small support (see [Mil1, Mil2]).

Let F be a family of L-functions, and FN the subset with analytic conductors
N (or at most N, or of order N). There is now a large body of work supporting the
Katz–Sarnak conjecture that the behavior of zeros near the central point s D 1=2 in
a family of L-functions (as the conductors tend to infinity) agrees with the behavior
of eigenvalues near 1 of a classical compact group (unitary, symplectic, or some
flavor of orthogonal). Evidence in support of this conjecture has been obtained
for many families of L-functions, including Dirichlet characters [Gao, ER-GR,
FioMil, HuRud, LevMil, OS1, OS2, Rub], elliptic curves [HuyKeSn, Mil1, Mil2,
Yo1], weight k level N cuspidal newforms [ILS, Ro, HuMil, MilMo, RiRo, Ro],
Maass forms [AAILMZ, AMil, GolKon], L-functions attached to number fields
[FoIw, MilPe, Ya], symmetric powers of GL2 automorphic representations [Gü],
and Rankin–Selberg convolutions of families [DuMil1, DuMil2] to name a few.

Our purpose is to introduce the reader to some of the techniques and issues of
the field. Any introduction must by necessity be brief and must sadly omit many
interesting and related results. In particular, we do not discuss other models for zeros
near the central point, such as the Hybrid Model (see [GoHuKe], where L-functions
are modeled by a partial Euler product, which encodes number theory, and a partial
Hadamard product, which is believed to be modeled by matrix ensembles), or the
L-function Ratios Conjecture [CFZ1, CFZ2, ConSn, ConSn2, FioMil, GJMMNPP,
HuyMM, Mil5, Mil7, MilMo]. We also mostly ignore the issues that arise when
studying 2-level (or higher) densities (see [HuMil] for a determination of an
alternative to the Katz–Sarnak density conjecture which facilitates comparisons
between number theory and random matrix theory).

We begin in Sect. 2 by first calculating the 1-level density of various families
of Dirichlet L-functions. This simple family is very amenable to analysis. As such,
it provides an excellent introduction to the subject and allows one to see the main
ideas and techniques without becoming bogged down in technical computations.
We thus show the calculations in complete detail in the hopes that doing so will
help introduce newcomers to the subject.

We then turn in Sect. 3 to determining the symmetry group of convolutions of L-
functions. Recently Shin and Templier [ShTe] determined the symmetry group for
many families (see also the article by Sarnak, Shin, and Templier [SaShTe] in this
volume); using the work of Dueñez–Miller [DuMil1, DuMil2] we are able to use
inputs such as these to find the symmetry group of Rankin–Selberg convolutions,
thus reducing the study of compound families to that of simple ones. In the course of
our analysis we see the role lower order terms play. This leads to a nice interpretation
of the remarkable universality in behavior between number theory and random
matrix theory reminiscent of the universality found in the Central Limit Theorem,
which we elaborate on in great detail.

We conclude in Sect. 4 with a very brief synopsis of some work in progress on
lower order terms in families of elliptic curves, and the effect they have on rates of
convergence and detecting the arithmetic of the family (which is missed by the main
term in the 1-level density).
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2 Families of Dirichlet L-Functions

To date, there has been significant success in showing agreement between zeros near
the central point in families of L-functions and eigenvalues near 1 of ensembles
of classical compact groups. The purpose of this section is to analyze one of the
simplest examples, that of Dirichlet L-functions. The advantage of this calculation
is that many of the technical difficulties that plague other families are not present,
and thus this provides an excellent opportunity to introduce the reader to the subject.
Our first result is the following, proved by Hughes and Rudnick [HuRud].

Theorem 2.1 (1-Level Density for Family of Prime Conductors). Let O� be an
even Schwartz function with supp. O�/ � Œ�2; 2, m a prime, and Fm D f� W � is
primitive mod mg. Then

1

Fm

X

�2Fm

X

��WL. 12Ci��;�/D0
�

�
��

log.m=�/

2�

�
D
Z 1

�1
�.y/dyC O

�
1

log m

�
: (5)

As m ! 1, the above agrees only with the N ! 1 limit of the 1-level density of
N � N unitary matrices.

The argument below is from notes by the second named author written during
the completion of his thesis [Mil1].

After proving this agreement between number theory and random matrix theory,
there are two natural ways to proceed. The first is to try to extend the support. It turns
out that extending the support is related to deep arithmetic questions concerning
the distribution of primes in congruence classes, which we emphasize below.
While unfortunately at present there are no unconditional results, recently Fiorilli
and Miller [FioMil] showed how to extend the support under various standard
assumptions. Depending on the strength of the assumed cancelation, their results
range from increasing the support up to .�4; 4/ all the way to showing agreement
for any finite support.

The other direction is to remove the restriction that the conductor is prime.

Theorem 2.2 (Dirichlet Characters from Square-Free Numbers). Let FN;sq�free

denote the family of primitive Dirichlet characters arising from odd square-free
numbers m 2 ŒN; 2N, and let O� be an even Schwartz function with supp. O�/ �
Œ�2; 2 Denote the conductor of � by c.�/. Then

1

jFN;sq�freej
X

�2FN;sq�free

X

��WL. 12Ci��;�/D0
�

�
��

log.c.�/=�/

2�

�

D
Z 1

�1
�.y/dyCO

�
1

log N

�
: (6)

As N ! 1, the above agrees only with the N ! 1 limit of the 1-level density of
N � N unitary matrices.
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While the arguments in [FioMil] also apply to general square-free moduli, their
approach is different. We prove this result by first generalizing Theorem 2.1 to a
conductor with exactly r distinct prime factors, and obtain good estimates on the
error terms as a function of r. Theorem 2.2 then follows by controlling how many
square-free numbers have r factors, highlighting a common technique in the subject.
We elected to show this method of proof precisely because it showcases an important
technique in the subject. It is also possible to attack a fixed m directly, which we do
in Theorem 2.9.

2.1 Dirichlet Characters from Prime Conductors

Before computing the 1-level density of the low-lying zeros of Dirichlet L-functions,
as one of the aims of this article is to provide a self-contained introduction to the
subject we first quickly review the needed properties of Dirichlet characters and their
associated L-functions. After these preliminaries, we use the explicit formula (see
for example [ILS, RudSa]) to relate sums of our test function over the zeros to sums
of its Fourier transform weighted by Dirichlet characters. We are able to analyze
these sums very easily due to the orthogonality relations of Dirichlet characters, and
obtain support up to Œ�2; 2. See [Da, IwKo] for more on Dirichlet characters.

2.1.1 Review of Dirichlet Characters

If m is prime, then .Z=mZ/� is cyclic of order m�1with generator g (so any element
is of the form ga for some a). Let �m�1 D e2� i=.m�1/. The principal character �0 is

�0.k/ D
(
1 if .k;m/ D 1
0 if .k;m/ > 1.

(7)

Each of the m � 2 primitive characters are determined (because they are
multiplicative) once their action on a generator g is specified. As each � W
.Z=mZ/� ! C

�, for each � there exists an l such that �.g/ D �`m�1. Hence for
each `, 1 � ` � m � 2, we have

�`.k/ D
(
�`am�1 if k 
 ga mod m

0 if .k;m/ > 0.
(8)

In most families one is not so fortunate to have such explicit formulas; these
facilitate many calculations (such as proving the orthogonality relations for sums
over the characters).

Let � be a primitive character modulo m. Set

c.m; �/ D
m�1X

kD0
�.k/e2� ik=mI (9)
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c.m; �/ is a Gauss sum of modulus
p

m. The associated L-function L.s; �/ (and the
completed L-function�.s; �/) are given by

L.s; �/ D
Y

p

.1 � �.p/p�s/�1

�.s; �/ D ��
1
2 .sC�/�

�
sC �
2

�
m

1
2 .sC�/L.s; �/; (10)

where

� D
(
0 if �.�1/ D 1
1 if �.�1/ D �1

�.s; �/ D .�i/�
c.m; �/p

m
�.1 � s; N�/: (11)

Let � be an even Schwartz function with compact support, say contained in the
interval .��; �/, and let � be a non-trivial primitive Dirichlet character of conductor
m. The explicit formula1 gives

X

��

�

�
��

log.m
�
/

2�

�
D
Z 1

�1
�.y/dy

�
X

p

log p

log.m=�/
O�
�

log p

log.m=�/

�
Œ�.p/C �.p/p�1=2

�
X

p

log p

log.m=�/
O�
�
2

log p

log.m=�/

�
Œ�2.p/C �2.p/p�1

C O

�
1

log m

�
; (12)

where we are assuming GRH2 to write the zeros as 1
2
C i��, ��� 2 R, and the

contribution from the primes to the third and higher powers are absorbed in the
big-Oh term.3 Sometimes it is more convenient to normalize the zeros not by the

1The derivation is by doing a contour integral of the logarithmic derivative of the completed L-
function times the test function, using the Euler product and shifting contours; see [RudSa] for
details.
2It is worth noting that these formulas hold without assuming GRH. In that case, however, the zeros
no longer lie on a common line and we lose the correspondence with eigenvalues of Hermitian
matrices.
3A similar absorbtion holds in other families, so long as the Satake parameters satisfy j˛i.p/j �
Cpı for some ı < 1=6.



442 B. Mackall et al.

logarithm of the analytic conductor but rather by something that is the same to first
order.4 Explicitly, for m 2 ŒN; 2N we have

X

��

�

 

��
log.N

�
/

2�

!

D log.m=�/

log.N=�/

Z 1

�1
�.y/dy

�
X

p

log p

log.N=�/
O�
�

log p

log.N=�/

�
Œ�.p/C �.p/p�1=2

�
X

p

log p

log.N=�/
O�
�
2

log p

log.N=�/

�
Œ�2.p/C �2.p/p�1

C O

�
1

log N

�
; (13)

and for any subset N of ŒN; 2N

1

jN j
X

m2N

log.m=�/

log.N=�/
D 1C O

�
1

log N

�
: (14)

Consider Fm, the family of primitive characters modulo a prime m. There are
m � 2 elements in this family, given by f�`g1�`�m�2. As each �` is primitive, we
may use the Explicit Formula. To determine the 1-level density we must evaluate

Z 1

�1
�.y/dy � 1

m � 2
X

�.m/
�¤�0

X

p

log p

log.m=�/
O�
�

log p

log.m=�/

�
Œ�.p/C �.p/p�1=2

� 1

m � 2
X

�.m/
�¤�0

X

p

log p

log.m=�/
O�
�
2

log p

log.m=�/

�
Œ�2.p/C �2.p/p�1

C O

�
1

log m

�
: (15)

Definition 2.3 (First and Second Sums). We call the two sums in (15) the First
Sum and the Second Sum (respectively), denoting them by S1.mI�/ and S2.mI�/.

The Density Conjecture states that the family average should converge to the
Unitary Density:

4We comment on this in greater length when we consider the family of all characters with square-
free modulus. Briefly, a constancy in the conductors allows us to pass certain sums through
the test functions to the coefficients. This greatly simplifies the analysis of the 1-level density;
unfortunately cross terms arise in the 2-level and higher cases, and the savings vanish (see
[Mil1, Mil2]).
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lim
m!1D1;Fm.�/ D lim

m!1
X

�.m/
�¤�0

X

��

�

�
��

log.m
�
/

2�

�
D
Z 1

�1
�.y/dy: (16)

We prove this for O� supported in Œ�2; 2, which establishes Theorem 2.1. We break
the proof into two steps. First, we show in Lemmas 2.4 and 2.5 that the first sum does
not contribute as m!1 for such O�, and then complete the proof in Lemma 2.6 by
showing the second sum does not contribute for any finite support.

2.1.2 The First Sum S1.mI	/

As one of our goals is to see how far we can get with elementary methods, in
the lemma below we show that simple estimation of the prime sums allows us to
determine the 1-level for support up to .�2; 2/, and then immediately strengthen it
by using the Brun–Titchmarsh Theorem to get it for Œ�2; 2.
Lemma 2.4 (Contribution from S1.mI�/). For supp. O�/ � .��; �/ and m prime,
S1.mI�/� m�=2�1, implying that this term does not contribute to the main term in
the 1-level density for � < 2.

Proof. We must analyze

S1.mI�/ D 1

m � 2
X

�.m/
�¤�0

X

p

log p

log.m=�/
O�
�

log p

log.m=�/

�
Œ�.p/C�.p/p�1=2: (17)

Since the orthogonality of the Dirichlet characters implies

X

�.m/

�.k/ D
(

m � 1 if k 
 1 mod m

0 otherwise,
(18)

we have for any prime p ¤ m that

X

�.m/
�¤�0

�.p/ D
(

m � 2 if p 
 1 mod m

�1 otherwise.
(19)

Let

ım.p; 1/ D
(
1 if p 
 1 mod m

0 otherwise.
(20)

The contribution to the sum from p D m is zero; if instead we substitute �1
for

P
�.m/
�¤�0

�.m/, our error is O
�
1=
p

m
�

and hence negligible relative to the other
errors.
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We now calculate S1.mI�/ with O� an even Schwartz function with support
in .��; �/. As the conductors are constant in the family, we may interchange
the summations and first average over the family. This allows us to exploit the
cancelation in sums of Dirichlet characters.

S1.mI�/ D 1

m � 2
X

�.m/
�¤�0

X

p

log p

log.m=�/
O�
�

log p

log.m=�/

�
Œ�.p/C �.p/p�1=2

D 1

m � 2
X

p

log p

log.m=�/
O�
�

log p

log.m=�/

� X

�.m/
�¤�0

Œ�.p/C �.p/p�1=2

D 2

m � 2
X

p

log p

log.m=�/
O�
�

log p

log.m=�/

�
p�1=2.�1C .m � 1/ım.p; 1//

� 1

m

m�X

pD2
p�1=2 C

m�X

pD1
p�1.m/

p�1=2

� 1

m

m�X

kD1
k�1=2 C

m�X

kDmC1
k�1.m/

k�1=2

� 1

m

m�X

kD1
k�1=2 C 1

m

m�X

kD1
k�1=2 � 1

m
m�=2: (21)

Notice that we had to be careful with the estimates of the sum over primes congruent
to 1 modulo m. Each residue class modulo m has approximately the same sum,
with the difference between two classes bounded by the first term of whichever
class has the smallest element. As our numbers k are of the form `m C 1 for ` 2
f1; 2; 3; : : : g, the class k 
 1.m/ has the smallest sum of the m classes. Thus if we
add all the classes modulo m and divide by m, we increase the sum, justifying the
above arguments.

Hence S1.mI�/ D 1
m m�=2, implying that there is no contribution from the first

sum if � < 2. ut
The next lemma illustrates a common theme in the subject: additional arithmetic

information translates to increased support (and vice-versa).

Lemma 2.5. For supp. O�/ � Œ�2; 2 and m prime, S1.mI�/ � 1= log m, implying
that this term does not contribute to the main term in the 1-level density.

Proof. Following [HuRud] we use the Brun–Titchmarsh Theorem to improve our
bound for the prime sums in (21) when � D 2. Revisiting that calculation, we find

S1.mI�/� 1

m log m

m2X

pD1

log pp
p
C 1

log m

m2X

pD1
p�1.m/

log pp
p
: (22)
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The Brun–Titchmarsh theorem (see [HuRud, MonVa]) states that if x > 2m and
.a;m/ D 1 then

�.xIm; a/ WD #fp � x W p 
 a.m/g < 2x

�.m/ log.x=m/
: (23)

We can trivially bound the contribution from the primes in (22) less than 2q by the
arguments from Lemma 2.4, and for the remaining we argue as in [HuRud]. The
two sums are handled similarly. For example, for the second prime sum we have

1

log m

m2X

p>2m
p�1.m/

log p

p�1=2
� 1

log m

Z m2

2m

log xp
x

1

m

dx

log.x=m/
� 1

log m
; (24)

proving that this term does not contribute when � D 2. The first prime sum in (22)
follows analogously, completing the proof. ut

2.1.3 The Second Sum S2.mI	/

Lemma 2.6 (Contribution from S2.mI�/). For supp. O�/ � .��; �/ and m prime,
S2.mI�/ � �

log m
m , implying that this term does not contribute to the main term in

the 1-level density for any finite � .

Proof. We must analyze (for m prime)

S2.mI�/ D 1

m � 2
X

�.m/
�¤�0

X

p

log p

log.m=�/
O�
�
2

log p

log.m=�/

�
Œ�2.p/C �2.p/p�1:

(25)
The orthogonality relations immediately imply

S.m/ WD
X

�.m/
�¤�0

Œ�2.p/C �2.p/ D
(
2.m � 2/ if p 
 ˙1.m/
�2 if p 6
 ˙1.m/. (26)

The proof is straightforward as �2.p/ D �.p2/ (and similarly for �).
Let

ım.p;˙/ D
(
1 if p 
 ˙1 mod m

0 otherwise.
(27)
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We argue as we did in our analysis of S1.mI�/ in Lemma 2.4, and find

S2.mI�/ D 1

m � 2
X

�.m/
�¤�0

X

p

log p

log.m=�/
O�
�
2

log p

log.m=�/

�
Œ�2.p/C �2.p/p�1

D 1

m � 2
X

p

log p

log.m=�/
O�
�
2

log p

log.m=�/

� X

�.m/
�¤�0

Œ�2.p/C �2.p/p�1

D 1

m � 2
m�=2X

p

log p

log.m=�/
O�
�
2

log p

log.m=�/

�
p�1Œ�2C .2m � 2/ım.p;˙/

� 1

m � 2
m�=2X

p

p�1 C 2m � 2
m � 2

m�=2X

pD1

p�˙1.m/

p�1

� 1

m � 2
m�=2X

kD1
k�1 C

m�=2X

kDmC1
k�1.m/

k�1 C
m�=2X

kDm�1
k��1.m/

k�1

� 1

m � 2 log.m�=2/ C 1

m

m�=2X

kD1
k�1 C 1

m

m�=2X

kD1
k�1 C O

�
1

m

�

� �

�
log m

m
C log m

m
C log m

m
C 1

m

�
: (28)

Therefore S2.mI�/ D O.� log m
m /, so for all fixed, finite � there is no contribution.

ut

2.2 Dirichlet Characters from Square-Free Conductors

We now remove the restriction that m is prime and consider the more general case of
square-free conductors. The purpose of this section is to highlight some of the issues
that arise in the analysis of low-lying zeros in families of L-functions in a setting
where the methods can be appreciated without being overwhelmed by technical
details.

Specifically, we discuss the question of how to normalize these zeros (either
locally or globally), as well as how to combine results from different cases. We find
it is convenient to partition the space of characters by the number of prime factors,
which we denote by r, of their conductors. We then generalize our bounds on the first
and second sums, explicitly determining the r dependence. The proof is completed
by standard results on sums of the divisor function. This procedure is used in the
analysis of many other families. For example, in [ILS] the analysis of newforms is
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accomplished by using inclusion–exclusion to apply the Petersson formula to the
various spaces of oldforms, removing their contributions and carefully combining
the errors.

Our main result is Theorem 2.2. As the proof is similar to the proof of
Theorem 2.1, we content ourselves below with highlighting the differences. The
first choice is how to normalize the zeros of each Dirichlet L-function. We can split
our family by the conductor, and note that the normalization of the zeros depends
only on this quantity. Further, this number varies monotonically as we move from
N to 2N. While we could normalize by the average log-conductor, or even by log N,
there is no additional work to rescale each L-function’s zeros by the logarithm of
the conductor. The reason is that we will break the analysis below by the size of the
conductor, and our first and second sums do not contribute. The situation is different
for the contribution from the Gamma factor; however, by (14) there is no affect on
the main terms. While the situation appears different if we looked at the 2-level
density, as then we would have cross terms and would have to deal with sums of
products of logarithms of conductors and Dirichlet characters, there is no difficulty
here as the conductors are constant among characters with the same moduli, and
monotonically increasing with the moduli. These properties allow us to again break
the analysis into characters with the same moduli. The situation is very different for
one-parameter families of elliptic curves. There, we have to be significantly more
careful, as these cross terms become much harder to handle. For more on these
issues, see [Mil1, Mil2].

Before proving Theorem 2.2, we first set some notation and isolate some useful
results. Fix an r � 1 and distinct, odd primes m1; : : : ;mr. Let

m WD m1m2 	 	 	mr

M1 WD .m1 � 1/.m2 � 1/ 	 	 	 .mr � 1/ D �.m/
M2 WD .m1 � 2/.m2 � 2/ 	 	 	 .mr � 2/: (29)

Note M2 is the number of primitive characters mod m, each of conductor m. For each
`i 2 Œ1;mi � 2 we have the primitive character discussed in the previous section,
�`i . A general primitive character mod m is given by a product of these characters:

�.u/ D �`1.u/�`2.u/ 	 	 	�`r .u/: (30)

Let Fm D f� W � D �`1�`2 	 	 	�`r g. Then jFmj D M2, and we are led to
investigating the following sums:

S1.m; rI�/ D 1

M2

X

�2Fm

X

p

log p

log.m=�/
O�
�

log p

log.m=�/

�
�.p/C �.p/p

p

S2.m; rI�/ D 1

M2

X

�2Fm

X

p

log p

log.m=�/
O�
�
2

log p

log.m=�/

�
�2.p/C �2.p/

p
I (31)
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we have added an r in the notation above to highlight the fact that m has r distinct
odd prime factors. We first bound these two sums in terms of r, and then sum over r
to complete the proof of Theorem 2.2.

2.2.1 The First Sum S1.m; rI	/ (m Square-Free)

Lemma 2.7 (Contribution from S1.m; rI�/). Notation as above (in particular, m
has r factors),

S1.m; rI�/� 1

M2

2rm�=2: (32)

Proof. We must study
P

�2Fm
�.p/ (the sum with � is handled similarly). Earlier

we showed

mi�2X

`iD1
�`i .p/ D

(
mi � 1 � 1 if p 
 1 mod mi

�1 otherwise.
(33)

Define

ımi.p; 1/ D
(
1 if p 
 1 mod mi

0 otherwise.
(34)

Then

X

�2Fm

�.p/ D
m1�2X

`1D1
	 	 	

mr�2X

`rD1
�`1 .p/ 	 	 	�`r .p/

D
rY

iD1

mi�2X

`iD1
�`i.p/ D

rY

iD1
.�1C .mi � 1/ımi.p; 1//: (35)

Let us denote by k.s/ an s-tuple .k1; k2; : : : ; ks/ with k1 < k2 < 	 	 	 < ks. This is
just a subset of f1; 2; : : : ; rg. There are 2r possible choices for k.s/. We use these to
expand the above product. Define

ık.s/.p; 1/ D
sY

iD1
ımki

.p; 1/: (36)

If s D 0, we set ık.0/.p; 1/ D 1 for all p. Then

rY

iD1
.�1C .mi � 1/ımi.p; 1// D

rX

sD0

X

k.s/

.�1/r�sık.s/.p; 1/
sY

iD1
.mki � 1/: (37)
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Let h.p/ D 2 log p
log.m=�/

O�
�

log p
log.m=�/

�
� jj O�jj. Then

S1 D
m�X

p

1

2
h.p/p�1=2

1

M2

X

�2F
Œ�.p/C �.p/

D
m�X

p

h.p/p�1=2
1

M2

rX

sD0

X

k.s/

.�1/r�sık.s/.p; 1/
sY

iD1
.mki � 1/

�
m�X

p

p�1=2
1

M2

0

@1C
rX

sD1

X

k.s/

ık.s/.p; 1/
sY

iD1
.mki � 1/

1

A : (38)

Observing that m=M2 � 3r we see the s D 0 sum contributes

S1;0 D 1

M2

m�X

p

p�1=2 � 3rm�=2�1; (39)

which is negligible for � < 2, though it is also bounded by m�=2�1=M2. Now we
study

S1;k.s/ D 1

M2

sY

iD1
.mki � 1/

m�X

p

p�1=2ık.s/.p; 1/: (40)

The effect of the factor ık.s/.p; 1/ is to restrict the summation to primes p 
 1.mki/

for ki 2 k.s/. The sum will increase if instead of summing over primes satisfying
the congruences we sum over all numbers n satisfying the congruences (with
n � 1 C Qs

iD1 mki ). As the sum is now over integers and not primes, we can use
basic uniformity properties of integers to bound it. We are summing integers modQs

iD1 mki , so summing over integers satisfying these congruences is basically just
Qs

iD1.mki/
�1 Pm�

nD1 n�1=2 D Qs
iD1.mki/

�1m�=2. We can do this as the sum of the
reciprocals from the residue classes of

Qs
iD1 mki differ by at most their first term.

Throwing out the first term of the class 1CQs
iD1 mki makes it have the smallest sum

of the
Qs

iD1 mki classes, so adding all the classes and dividing by
Qs

iD1 mki increases
the sum. Hence (recalling m=M2 � 3r)

S1;k.s/ � 1

M2

sY

iD1
.mki � 1/

sY

iD1
.mki/

�1m�=2 � 3rm�=2�1; (41)

though it is also bounded by m�=2�1=M2. Therefore, for all s the S1;k.s/ contribute
3rm�=2�1. There are 2r choices, yielding

S1 � 6rm�=2�1; (42)
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which is negligible as m goes to infinity for fixed r if � < 2. If instead we do not use
m=M2 � 3r, we obtain a bound of O.2rm�=2=M2/. ut

The worst errors occur when m is the product of the first r primes. Let pi denote
the ith prime. The Prime Number Theorem implies for r large that

log m D
X

p�pr

log p � pr: (43)

As pr � r log r, we find log m � r log r or r � log m= log log m. Thus

6r � er log 6 � mlog 6= log log m: (44)

While this is o.m�/ for any � > 0, this estimate is wasteful when m has few prime
factors. For example, if m D 1050, then mlog 6= log log m � m0:3775, which is sizable. We
thus prefer to leave the estimate of S1.m; rI�/ as a function of r, and then average
over the number of square-free integers with exactly r distinct odd prime factors.
Such a division will lead to significantly better results for the family of square-free
conductors.

2.2.2 The Second Sum S2.m; rI	/ (m Square-Free)

Lemma 2.8 (Contribution from S2.m; rI�/). Notation as above (in particular, m
has r factors),

S2.m; rI�/� 1

M2

3rm1=2: (45)

Proof. We must study
P

�2F �2.p/ (the sum with � is handled similarly). Earlier
we showed

mi�2X

`iD1
�2`i
.p/ D

(
mi � 1� 1 if p 
 ˙1 mod mi

�1 otherwise.
(46)

Then

X

�2F
�2.p/ D

m1�2X

`1D1
	 	 	

mr�2X

`rD1
�2`1 .p/ 	 	 	�2`r

.p/

D
rY

iD1

mi�2X

`iD1
�2`i
.p/

D
rY

iD1
.�1C .mi � 1/ımi.p; 1/C .mi � 1/ımi.p;�1//: (47)
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Instead of having 2r terms as in the first sum, now we have 3r. Let k.s/ be as
before, and let j.s/ be an s-tuple of˙1’s. As s ranges from 0 to r we get each of the
3r possibilities, as for a fixed s there are

�r
s

�
choices for k.s/, each of these having 2s

choices for j.s/ (note
Pr

sD0 2s
�r

k

� D .1C2/r). Let h.p/ D 2 log p
log.m=�/

O�
�
2

log p
log.m=�/

�
�

jj O�jj. Define

ık.s/.p; j.s// D
sY

iD1
ımki

.p; ji/: (48)

Then

X

�2F
�2.p/ D

rX

sD0

X

k.s/

X

j.s/

.�1/r�sık.s/.p; j.s//
sY

iD1
.mki � 1/: (49)

Therefore

S2 D 1

M2

X

p

log p

log.m=�/
O�
�
2

log p

log.m=�/

�
p�1

X

�2F
Œ�2.p/C �2.p/

D 1

M2

X

p

h.p/
rX

sD0

X

k.s/

X

j.s/

p�1.�1/r�sık.s/.p; j.s//
sY

iD1
.mki � 1/

� 1

M2

X

p

rX

sD0

X

k.s/

X

j.s/

p�1ık.s/.p; j.s//
sY

iD1
.mki � 1/

D
rX

sD0

X

k.s/

X

j.s/

S2;k.s/;j.s/: (50)

The term where s D 0 is handled easily (recall m=M2 � 3r):

S2;0;0 D 1

M2

m�X

p

p�1 � 3r log m�

m
(51)

(we could also bound it by � log.m/=M2).
We would like to handle the terms for s ¤ 0 analogously as before. The

congruences on p from k.s/ and j.s/ force us to sum only over certain primes modQs
iD1 mki , with each prime satisfying p � mki˙1. We increase the sum by summing

over all integers satisfying these congruences. As each congruence class modQs
iD1 mki has basically the same sum, we can bound our sum over primes satisfying

the congruences k.s/; j.s/ by
Qs

iD1.mki/
�1Pm�

nD1 n�1 DQs
iD1.mki/

�1 log m� .
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There is one slight problem with this argument. Before each prime was congruent
to 1 mod each prime mki , hence the first prime occurred no earlier than at 1 CQs

kD1 mki . Now, however, some primes are congruent to C1 mod mki while others
are congruent to �1, and it is possible the first such prime occurs before

Qs
kD1 mki .

For example, say the prime is congruent toC1 mod 11, and �1 mod 3; 5; 17. We
want the prime to be greater than 3 	 5 	 11 	 17, but 3 	 5 	 17� 1 is congruent to �1
mod 3; 5; 17 andC1 mod 11. (Fortunately it equals 254, which is composite.)

So, for each pair .k.s/; j.s// we handle all but the possibly first prime as we did in
the First Sum case. We now need an estimate on the possible error for low primes.
Fortunately, there is at most one for each pair, and as our sum has a 1=p, we can
expect cancelation if it is large.

Fix now a pair (remember there are at most 3r pairs). As we never specified
the order of the primes mi, without loss of generality (basically, for notational
convenience) we may assume that our prime p is congruent to C1 mod mk1 	 	 	mka ,
and �1 mod mkaC1

	 	 	mks .
The contribution to the second sum from the possible low prime in this pair is

1

M2

1

p

sY

iD1
.mki � 1/: (52)

How small can p be? The C1 congruences imply that p 
 1.mk1 	 	 	mka ), so p is at
least mk1 	 	 	mkaC1. Similarly the �1 congruences imply p is at least mkaC1

	 	 	mks�
1. Since the product of these two lower bounds is greater than

Qs
iD1.mki � 1/, at

least one must be greater than
�Qs

iD1.mki � 1/
�1=2

. Therefore the contribution to
the second sum from the possible low prime in this pair is bounded by (remember
m=M2 � 3r)

1

M2

 
sY

iD1
.mki � 1/

!1=2
� m1=2

M2

� 3rm�1=2: (53)

Combining this with the estimate for the primes larger than
Qs

iD1.mki � 1/ yields

S2;k.s/;j.s/ � 3rm�1=2 C 3r

m
log m� ; (54)

yielding (as there are 3r pairs)

S2 D
rX

sD0

X

k.s/

X

j.s/

S2;k.s/;j.s/� 9rm�1=2I (55)

if we don’t use m=M2 � 3r we find a bound of 3rm1=2=M2. ut
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2.2.3 Proof of Theorem 2.2

We now extend the results of the previous sections to consider the family FNIsq�free

of all primitive characters whose conductor is an odd square-free integer in ŒN; 2N.
Some of the bounds below can be improved, but as the improvements do not increase
the range of convergence, they will only be sketched.

Proof (Proof of Theorem 2.2). First we calculate the number of primitive characters
arising from odd square-free numbers m 2 ŒN; 2N. Let m D m1m2 	 	 	mr. Then m
contributes .m1�2/ 	 	 	 .mr�2/ characters. On average we might expect the number
of characters to be of order N, and as a positive percent of numbers are square-free,
we expect there to be on the order of N2 characters.

Instead we prove there are at least N2= log2 N primitive characters in the family;
as we are winning by power savings and not logarithms, the log2 N factor is
harmless. There are at least N= log2 N C 1 primes in the interval. For each
prime p (except possibly the first) we have p � 2 � N. Hence there are at least
N 	 N

log2 N
D N2= log2 N primitive characters. Let M D jFNIsq�freej. Then

M � N2 log�2 N ) 1

M
� log2 N

N2
: (56)

We recall the results from the previous section. Fix an odd square-free number
m 2 ŒN; 2N, and say m has r D r.m/ factors. Before we divided the First and
Second Sums by M2 D .m1 � 2/ 	 	 	 .mr � 2/, as this was the number of primitive
characters in our family. Now we divide by M. Hence the contribution to the First
and Second Sums from this m is

S1.m; rI�/� 1

M
2r.m/m�=2

S2.m; rI�/� 1

M
3r.m/m1=2: (57)

Note that 2r.m/ D �.m/, the number of divisors of m. While it is possible to prove

X

n�x

�`.n/� x.log x/2
`�1 (58)

the crude bound

�.n/ � c.�/n� (59)

yields the same region of convergence. Note 3r.m/ � �2.m/. Therefore by
Lemma 2.7 the contributions to the first sum are majorized by
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2NX

mDN
m square�free

S1.m; rI�/�
2NX

mDN

1

M
2r.m/m�=2

� 1

M
N�=2

2NX

mDN

�.m/

� 1

M
N�=2c.�/N1C�

� log2 N

N2
N�=2c.�/N1C�

� c.�/N
1
2 �C��1 log2 N: (60)

For � < 2, choosing � < 1 � 1
2
� yields S1 goes to zero as N tends to infinity. For

the second sum, Lemma 2.8 bounds it by

2NX

mDN
m square�free

S2.m; rI�/�
2NX

mDN

1

M
3r.m/m1=2

� 1

M
N1=2

2NX

mDN

�2.m/

� c.�/
log2 N

N2
N1=2N1C2�

� c.�/N2�� 1
2 log2 N; (61)

which converges to zero as N tends to infinity for all � and completes the proof. ut

2.3 Dirichlet Characters from a Fixed Modulus

We thank the referee for the following theorem and proof, which extends Theo-
rem 2.1 to the family of Dirichlet characters for any fixed modulus.

Theorem 2.9 (Dirichlet Characters from a Fixed Modulus). Let Fm denote the
family of primitive Dirichlet characters arising from a fixed m, and let O� be an even
Schwartz function with supp. O�/ � .�2; 2/. Denote the conductor of � by c.�/. Then

1

�.m/

X

�.m/
�¤�0

X

��WL. 12Ci��;�/D0
�

�
��

log.c.�/=�/

2�

�
D
Z 1

�1
�.y/dyC O

�
1

log m

�
:

(62)

As m ! 1, the above agrees only with the m ! 1 limit of the 1-level density of
m � m unitary matrices.
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Proof. We argue similarly as in the proof of Theorem 2.1. From Eq. (3.8) of [IwKo]
we have

X

�.m/

�.p/ D
X

dj.p�1;m/
�.d/
.m=d/: (63)

We can now bound the first prime sum, S1.mI�/:

S1.mI�/ D 1

�.m/

X

djm
�.d/
.m=d/

X

p�1.d/

log p

log.m=�/
O�
�

log p

log.m=�/

�
2Re.�.p//p

p

� m�=2

�.m/

X

djm

�.d/

d
� �.m/

�.m/
m�=2; (64)

which is O.1= log m/, completing the proof. ut
Remark 2.10. We could argue as in the proof of Theorem 2.9, and by applying
trekhe Brun–Titchmarsh Theorem extend the support to Œ�2; 2.

3 Convolutions of Families of L-Functions

The analysis of Dirichlet L-functions in Sect. 2 highlights the general framework
for determining the behavior of the low-lying zeros in a family and identifying
the corresponding symmetry group. In this section we describe how to find the
symmetry group of a compound family in terms of its constituent pieces. In order
to view these results in the proper context, we first briefly summarize the procedure
used in most works to calculate 1-level densities, and refer the reader to [SaShTe]
in this volume for a more detailed treatment.

These calculations break down into three steps. The first step is to understand
and control conductors. In most families analyzed to date they are either constant, or
monotonically increasing. Their importance stems from the fact that their logarithm
controls the spacing of zeros near the central point, and constancy or monotonicity
allows us to pass sums over the family past the test function to the Fourier
coefficients. When these properties fail, the computations are significantly harder.
A notable exception is in one-parameter families of elliptic curves over Q.T/, where
for t 2 ŒN; 2N variations in the logarithms of the conductors, from log.Nd/ to
log.cNd/, greatly complicate the analysis and require careful sieving.

The second step is the classic explicit formula, which relates sums of our test
function � at the zeros of the L-functions to sums of its Fourier transform O� at the
primes (weighted by the coefficients of the L-function). This is very similar to the
role the Eigenvalue Trace Lemma plays in random matrix theory. While we wish
to understand the eigenvalues of a matrix, it is the matrix elements where we have
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information; the Eigenvalue Trace Lemma allows us to pass from knowledge of the
matrix coefficients (which we have) to knowledge of the eigenvalues (which we
desire). The explicit formulas in number theory play a similar role.

The explicit formula is useless, however, unless we have a way to execute the
resulting sums. The final step is to use an averaging formula for weighted sums
of L-function coefficients. Examples here include the orthogonality relations of
Dirichlet characters, the Petersson formula for holomorphic cusp forms, and the
Kuznetsov trace formula for Maass forms. Unfortunately, as our family becomes
more complicated the averaging formulas become harder to use, and often yield
smaller support. This can be seen in comparison of some recent work (such as
[GolKon, MaTe, ShTe]).

The goal for the remainder of this section is to discuss how to identify the
corresponding symmetry group for a family of L-functions, and to discuss the role
the Fourier coefficients play in the rate of convergence of the 1-level density to the
scaling limits of ensembles from the classical compact groups.

3.1 Identifying the Symmetry Group of a Family

Determining the corresponding symmetry group for a family of L-functions is one
of the hardest questions in the subject. In many cases we cannot compute the
1-level density for large enough support to distinguish between the three orthogonal
candidates (though we can uniquely determine which works by looking at the 2-level
density). In many situations we are able to argue by analogy with a function field
analogue, where the situation is clearer and the answer arises from the monodromy
group. Another approach is to work with the Sato–Tate measure of the family as
carried out in [ShTe].

A folklore conjecture stated that the symmetry was determined by the sign of
the functional equations. For example, if all the signs were odd, then the family had
to have SO(odd) symmetry. If the signs are all even, then there are two candidates:
Symplectic and SO(even). Initially many thought that SO(even) symmetry happened
when there was a corresponding family with odds signs that was being ignored (for
example, splitting the family of weight k and level N > 1 cuspidal newforms by
sign and ignoring the forms with odd sign), and that if there were no corresponding
family with odd signs then the symmetry would be Symplectic. Dueñez and Miller
[DuMil1] disproved this conjecture by analyzing a family suggested by Sarnak:
fL.s; � � sym2f / W f 2 Hkg, where � is a fixed even Hecke–Maass cusp form
and Hk is a Hecke eigenbasis for the space of holomorphic cusp forms of weight k
for the full modular group. Their proof involved finding the symmetry group of a
Rankin–Selberg convolution in terms of the symmetry groups of the constituents.
They generalized their argument to many families in [DuMil2]. We quickly sketch
the main ideas of that argument, and then conclude this section with an interpretation
of convergence to the limiting densities in the spirit of the Central Limit Theorem.
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We first need some standard notation and results.

• �: A cuspidal automorphic representation on GLn.
• Q� > 0: The analytic conductor of L.s; �/ DP��.n/=ns.
• By GRH5 the non-trivial zeros are 1

2
C i��;j.

• f˛�;i.p/gniD1: The Satake parameters, and ��.p�/ D Pn
iD1 ˛�;i.p/� . Thus the p�-

th coefficient of L.s; �/ is the �-th moment of the Satake parameters.
• L.s; �/ DPn

��.n/
ns DQp

Qn
iD1 .1 � ˛�;i.p/p�s/�1.

The explicit formula, applied to a given L.s; �/, yields

X

j

g

�
��;j

log Q�

2�

�
D Og.0/� 2

X

p

1X

�D1
Og
�
� log p

log Q�

�
��.p�/ log p

p�=2 log Q�

: (65)

For ease of exposition, we assume the conductors in our family are constant,6 and
thus Q� D Q say. Thus in calculating the 1-level density we can push the sum over
our family FN through the test function; here,FN are all forms in our infinite family
F with some restriction involving N on the conductor (frequent choices are the
conductor equals N, lives in an interval ŒN; 2N, or is at most N). The 1-level density
is then found by taking the limit as N !1. We rescale the zeros by log R, where R
is closely related to Q (it sometimes differs by a fixed, multiplicative constant; this
extra flexibility simplifies some of the resulting expressions for various families).

We also assume sufficient decay in the ��.p�/’s so that the sum over primes with
n � 3 converges; this is known for many families. Determining the 1-level density,
up to lower order terms which we will return to later, is equivalent to analyzing the
N !1 limits of

S1.FN/ WD �2
X

p

Og
�

log p

log R

�
log pp
p log R

2

4 1

jFN j
X

�2FN

��.p/

3

5

S2.FN/ WD �2
X

p

Og
�
2

log p

log R

�
log p

p log R

2

4 1

jFN j
X

�2FN

��.p
2/

3

5 : (66)

As

��.p
�/ D ˛�;1.p/� C 	 	 	 C ˛�;n.p/�; (67)

5The definition of the 1-level density as a sum of a test function at scaled zeros is well defined even
if GRH fails; however, in that case the zeros are no longer on a line and we thus lose the ability to
talk about spacings between zeros. Thus in many of the arguments in the subject GRH is only used
to interpret the quantities studied, though there are exceptions (in [ILS] the authors use GRH for
Dirichlet L-functions to expand Kloosterman sums).
6It is easy to handle the case where the conductors are monotone by rescaling the zeros by the
average log-conductor; as remarked many times above the general case is more involved.
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we see that only the first two moments of the Satake parameters enter the calculation.
The sum over the remaining powers,

S�.FN/ WD �2
1X

�D3

X

p

Og
�
�

log p

log R

�
log p

p�=2 log R

2

4 1

jFN j
X

�2FN

��.p
�/

3

5 ; (68)

is O.1= log R/ under the Ramanujan Conjectures.7

To date, the only families where the first sum S1.FN/ is not negligible are
elliptic curve families with rank. The presence of non-zero terms here require trivial
modifications to the classical random matrix ensembles, and effectively in the limit
only result in additional independent zeros at the central point. Thus, if the family
has rank r, the scaling limit is that of a block diagonal matrix, with an r � r identity
matrix in the upper left, and then an .N� r/� .N� r/matrix in the lower right (with
the other two rectangular blocks zero).

We introduce a symmetry constant for the family, cF , as follows:

cF WD lim
N!1

1

jFN j
X

�2FN

��.p
2/; (69)

which is the limit of the average second moment of the Satake parameters. The
corresponding classical compact group is Unitary if cF is 0, Symplectic if cF D 1,
and Orthogonal if cF D �1. Equivalently, cF D 0 (respectively, 1 or -1) if the
family F has Unitary (respectively, Symplectic or Orthogonal) symmetry.

3.2 Identifying the Symmetry Group from Rankin–Selberg
Convolutions

In this section we assume we have two families of L-functions where we can
determine the corresponding symmetry group. Under standard assumptions (which
are proven in many cases), the Rankin–Selberg convolution exists and it makes sense
to talk about the symmetry group of the family. We assume for simplicity below that
�2 is not the representation contragredient to �1, and thus the L-function below will
not have a pole, though with more book-keeping this case can readily be handled.
The Satake parameters of the convolution �1;p � �2;p are

f˛�1��2;k.p/gnm
kD1 D f˛�1;i.p/ 	 ˛�2;j.p/g 1�i�n

1�j�m
: (70)

7The Satake parameters j˛�;ij are bounded by pı for some ı, and it is conjectured that we may
take ı D 0. While this conjecture is open in general, for many forms there is significant progress
towards these bounds with some ı < 1=2. See, for example, recent work of Kim and Sarnak
[Kim, KimSa]. For our purposes, we only need to be able to take ı < 1=6, as such an estimate and
trivial bounding suffices to show that the sum over all primes and all � � 3 is O.1= log R/.



Some Results in the Theory of Low-Lying Zeros 459

The main result is that the symmetry of the new compound family is beautifully
and simply related to the symmetry of the constituent pieces. See [DuMil2] for a
statement of which families are nice (examples include Dirichlet L-functions and
GL2 families).

Theorem 3.1 (Dueñez–Miller [DuMil2]). If F and G are nice families of L-
functions, then cF�G D cF 	 cG .

Proof (Sketch of the proof). From (70), we find that the moments of the Satake
parameters for �1;p � �2;p are

nmX

kD1
˛�1��2;k.p/� D

nX

iD1
˛�1;i.p/

�

mX

jD1
˛�2;j.p/

�: (71)

Thus, if �1 2 GN and �2 2 GM , we find

cF�G D lim
N;M!1

1

jFN j jGMj
X

�12FN
�22GM

��1��2.p2/

D lim
N;M!1

1

jFN j
X

�12FN

��1.p
2/

1

jGMj
X

�22GN

��2.p
2/ D cFcG : (72)

The first sum is handled similarly, and the higher moments do not contribute by
assumption on the family (the definition of a good family includes sufficient bounds
towards the Ramanujan conjecture to handle the � � 3 terms).

3.3 Connections to the Central Limit Theorem

We end this section by interpreting our results in the spirit of the Central Limit
Theorem, which we hope will shed some light on the universality of results.

Interestingly, random matrix theory does not seem to know about arithmetic.
By this we mean that very different families of L-functions converge to one of
the five flavors (unitary, symplectic, or one of the three orthogonals), independent
of the arithmetic structure of the family. It doesn’t matter if we have quadratic
Dirichlet characters or the symmetric square of GL2-forms; we see symplectic
behavior. Similarly it doesn’t matter if our family of elliptic curves have complex
multiplication or not, or instead are holomorphic cusp forms of weight k or Maass
forms; we see orthogonal behavior.8

8There are some situations where arithmetic enters. The standard example is that in estimating
moments of L-functions one has a product akgk , where ak is an arithmetic factor coming from
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One of the first places this universality was noticed was in the work of Rudnick
and Sarnak [RudSa], who showed for suitable test functions that the n-level
correlations of zeros arising from a fixed cuspidal automorphic representation
agreed with the Gaussian Unitary Ensemble. The cause of their universality was that
the answer was governed by the first and second moments of the Fourier coefficients,
and explained why the behavior of zeros far from the central point was the same for
all L-functions.

We have a similar explanation for the behavior of the zeros near the central
point. Our universality is due to the fact that the main term of the limiting behavior
depends only on the first two moments of the Satake parameters, which to date
have very few possibilities. The effect of the higher moments are felt only in the
� � 3 terms, which (under the Generalized Ramanujan Conjectures) contribute
O.1= log R/. While these contributions vanish in the limit, they can be felt in how
the limiting density is approached.

Notice how similar this is to the Central Limit Theorem, which in its simplest
form states that the normalized sum of independent random variables drawn from
the same nice distribution (finite moments suffice) converges to being normally
distributed. If the mean 
 and the variance �2 of a random variable X are finite,
we can always study instead the standardized random variable Z D .X � 
/=� ,
which has mean 0 and variance 1. Thus the first ‘free’ moment of our density is the
third (or fourth if the distribution is symmetric). A standard proof is to look at the
Fourier transform of the N-fold convolution, Taylor expand, and then show that the
inverse Fourier transform converges to the Gaussian. The higher moments emerge
only in the error terms, and while they have no contribution as N ! 1 they do
affect the rate in which the density of the convolution approaches the Gaussian.

Thus, for families of L-functions the higher moments of the Satake parameters
help control the convergence to random matrix theory, and can depend on the
arithmetic of family. This leads to the exciting possibility of isolating lower order
terms in 1-level densities, and seeing the arithmetic of the family emerge.

Unfortunately, it is often very hard to isolate these lower order terms from other
errors. For example, Dueñez and Miller [DuMil2] convolve two families of elliptic
curves with ranks r1 and r2, and see a potential lower order term of size r1r2 divided
by the logarithm of the conductor. Thus, while this looks like a lower order term
which is highly dependent on the arithmetic of the family, there are other error terms
which can only be bounded by larger quantities (though we believe these bounds are
far from optimal and that this product term should be larger in the limit). We discuss
some of these issues in more detail in the concluding section.

the arithmetic of the form and gk arises from random matrix theory. See, for example, [CFKRS,
KeSn1, KeSn2].
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4 Lower Order Terms and Rates of Convergence

In this section we discuss some work (see [Mil3, Mil6]) on lower order terms in
families of elliptic curves, though similar results can be done for other families
(especially families of Dirichlet L-functions [FioMil] or cusp forms [MilMo]). We
first report on some families where these lower order terms have been successfully
isolated (which is different than the example from convolving two families with
rank from Sect. 3.3), and end with some current research about finer properties of
the distribution of the Satake parameters in families of elliptic curves and lower
order terms.

4.1 Arithmetic-Dependent Lower Order Terms in Elliptic
Curve Families

The results below are from [Mil6], where many families of elliptic curves were
studied. For families of elliptic curves, it is significantly easier to calculate and work
with �E.p/ (which is an integer and computable via sums of Legendre symbols) then
the Satake parameters ˛E;1.p/ and ˛E;2.p/. We thus first re-express the formula for
the 1-level density to involve sums over the �E’s, and then give several families with
lower order terms depending on the arithmetic.

It is often convenient to study weighted moments (for example, in [ILS] much
work is required to remove the harmonic weights, which facilitated applications of
the Petersson formula). For a family F and a weight function w define

Ar;F .p/ WD 1

WR.F /

X

f 2F
f 2S.p/

wR.f /�f .p/
r

A0r;F .p/ WD
1

WR.F /

X

f 2F
f 62S.p/

wR.f /�f .p/
r

S.p/ WD ff 2 F W p − Cf g; (73)

where Cf is the conductor of f (when doing the computations, there are sometimes
differences at primes dividing the conductor, and it is worth isolating their contribu-
tion). The main difficulty in determining the 1-level density is evaluating

S.F / WD � 2
X

p

1X

mD1

1

WR.F /

X

f2F
wR.f /

˛f ;1.p/m C ˛f ;2.p/m

pm=2

log p

log R
O�
�

m
log p

log R

�
;

(74)

where we are assuming we have GL2 forms.
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The following alternative expansion for the explicit formula from [Mil6] is
especially tractable for families of elliptic curves:

S.F / D � 2
X
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1X
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p log R
O�
�
2

log p

log R

�

�2
X

p

A1;F .p/

p1=2
log p

log R
O�
�

log p
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�
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: (75)

Letting eAF .p/ WD 1
WR.F /

P
f2S.p/ wR.f /

�f .p/3

pC1��f .p/
p

p , by the geometric series

formula we may replace SA.F / with S QA.F /, where

S QA.F / D �2 O�.0/
X

p

eAF .p/p3=2.p � 1/ log p

.pC 1/3 log R
: (76)

We now state some results (see [Mil6] for the proofs). For comparison purposes
we start with the family of cuspidal newforms, as this family is significantly easier to
calculate and serves as a good baseline. In reading the formulas below, it is important
to note that the contributions from the smaller primes are significantly more than
those from the larger primes. For elliptic curves the primes 2 and 3 often behave
differently; while they will have no affect on the main term, they will strongly
influence the lower order terms.

In the subsections below, we assume the logarithms of the conductors are of size
log R, so that we are comparing zeros of similar size. In all families of elliptic curves
we start with an elliptic curve over Q.T/, and then form a one-parameter family by
looking at the specializations from setting T equal to integers t.
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4.1.1 Fk;N the Family of Even Weight k and Prime Level N Cuspidal
Newforms, or Just the Forms with Even (or Odd) Functional
Equation

Up to O.log�3 R/, as N !1 for test functions � with supp. O�/ � .�4=3; 4=3/ the
(non-conductor) lower order term for either of these families is

C 	 2 O�.0/= log R; (77)

with C � �1:33258. In other words, the difference between the Katz–Sarnak
prediction and the 1-level density has a lower order term of order 1= log R, with
the next correction O.1= log3/. Note the lower order corrections are independent of
the distribution of the signs of the functional equations, and the weight k.

4.1.2 CM Example, with or Without Forced Torsion: Specializations of
y2 D x3 C B.6T C 1/
 Over Q.T/, with B 2 f1; 2 ; 3; 6g and 
 2 f1; 2g

This family of elliptic curves has complex multiplication. We consider the sub-
family obtained by sieving and restricting T so that .6TC 1/ is .6=�/-power free. If
� D 1, then all values of B give the same result, while if � D 2 then the four values
of B have different lower order corrections. Note if � D 2 and B D 1 then there is a
forced torsion point of order three, .0; 6T C 1/.

Up to errors of size O.log�3 R/, the (non-conductor) lower order terms are again
of size C 	 2 O�.0/= log R; we give numerical approximations for the C’s for various
choices of B and �:

B D 1; � D 1 W �2:124 	 2 O�.0/= log R;

B D 1; � D 2 W �2:201 	 2 O�.0/= log R;

B D 2; � D 2 W �2:347 	 2 O�.0/= log R

B D 3; � D 2 W �1:921 	 2 O�.0/= log R

B D 6; � D 2 W �2:042 	 2 O�.0/= log R: (78)

4.1.3 CM Example, with or Without Rank: Specializations of
y2 D x3 � B.36T C 6/.36T C 5/x Over Q.T/, with B 2 f1; 2g

We consider another complex multiplication family. If B D 1, the family has rank
1 over Q.T/, while if B D 2, the family has rank 0. We consider the sub-family
obtained by sieving to .36T C 6/.36T C 5/ is cube-free. Again we find a lower
order term of size C 	 2 O�.0/= log R, with next term of size O.1= log3 R/. The most
important difference between these two families is the contribution from the SeA .F /
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terms, where the B D 1 family is approximately �0:11 	 2 O�.0/= log R, while the
B D 2 family is approximately 0:63 	 2 O�.0/= log R. This large difference is due to
biases of size �r in the Fourier coefficients at.p/ in a one-parameter family of rank
r over Q.T/.

The main term of the average moments of the pth Fourier coefficients are given
by the complex multiplication analogue of Sato–Tate in the limit, for each p there
are lower order correction terms which depend on the rank.

4.1.4 Non-CM Example: Specializations of y2 D x3 � 3x C 12T Over Q.T/

Up to O.log�3 R/, the (non-conductor) lower order correction for this family is C 	
2 O�.0/= log R, where C � �2:703. Note this answer is very different than the family
of weight 2 cuspidal newforms of prime level N.

4.2 Second Moment Bias in One-Parameter Families
of Elliptic Curves

In Sect. 4.1 we saw lower order terms to the 1-level density for families of elliptic
curves which depended on the arithmetic of the family. In this section we report on
work on progress on possible family-dependent lower order terms to the second
moment of the Fourier coefficients in families of elliptic curve L-functions; see
[MMRW] for a more complete investigation of these families, and Appendix for
some initial results on other families. We then conclude in Sect. 4.3 by exploring
the implications such a bias would have on low-lying zeros (in particular, in
understanding the excess rank phenomenon).

We have observed an interesting property in the average second moments of the
Fourier coefficients of elliptic curve L-functions over Q.T/. Specifically, consider
an elliptic curve E W y2 D x3 C A.T/x C B.T/ over Q.T/, where A.T/;B.T/ are
polynomials in ZŒT and the curve Et (obtained by specializing T to t) has coefficient
at.p/ (of size 2

p
p) in the series expansion of its L-function. Define the average

second moment A2.p/ for the family by

A2.p/ WD 1

p

X

t mod p

at.p/
2 (79)

(where for notational convenience we are suppressing the subscript E on A2, as the
family is fixed). Michel [Mic] proved that

A2.p/ D p2 C O.p3=2/ (80)
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for families of elliptic curves with non-constant j-invariant j.T/, and cohomological
arguments show that the lower-order terms9 are of sizes p3=2, p, p1=2, and 1. In every
case that we have proven or numerically analyzed, the following conjecture holds.

Conjecture 4.1 (Bias Conjecture). For any family of elliptic curves E over Q.T/,
the largest lower order term in the second moment of E which does not average to
0 is on average negative. Explicitly, from Michel [Mic] we have

A2.p/ D p2 C ˇ3=2.p/p3=2 C ˇ1.p/pC ˇ1=2p1=2 C ˇ0.p/ (81)

where each ˇr.p/ is of order 1; when we write the second moment thusly the first
ˇr.p/ term which does not average to zero will average to a negative value.

Below, we give several proven cases of the Bias Conjecture and some preliminary
numerical evidence supporting the conjecture. We have made several additional
observations about the terms in the second moments, though we do not know if
these always hold.

• In families with constant j-invariant, the largest term is on average p2 (rather than
exactly p2), and the Bias Conjecture appears to hold similarly.

• Every explicit second moment expression has a non-zero p3=2 term or a non-zero
p term (or both). The term of size p3=2 always averages to 0, and the term of size
p is always on average negative.

• In many cases the terms of size p3=2 and/or p are governed by the values of an
elliptic curve coefficient, that is, a sum of the form

X

x mod p

�
ax3 C bx2 C cxC d

p

�
; (82)

possibly squared, cubed, or multiplied by p, et cetera.

Rosen and Silverman [RoSi] proved that the negative bias in the first moments is
related to the rank of family by

lim
X!1

1

X

X

p�X

A1.p/
log p

p
D rankE .Q.T//: (83)

It is natural to ask whether the bias in the second moments is also related to the
family rank. We are currently investigating this. More generally, we can ask if higher
moments are also biased and if this bias is also related to the rank of the family.

9These bounds cannot be improved, as Miller [Mil3] found a family where there is a term of size
p3=2.
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4.2.1 Evidence: Explicit Formulas

We have proven the conjecture for a variety of specific families and some restricted
cases, and list a few of these below; these are a representative subset of families
we have successfully studied, and we are currently investigating many more. The
average bias refers to the average value of the coefficient of the largest lower order
term not averaging to 0 (which in all of our cases is the p term).

Lemma 4.2. Consider elliptic curve families of the form y2 D ax3 C bx2 C cx C
d C eT. These families have rank 0 over Q.T/, and for primes p > 3 with p − a; e
and p − b2 � 3ac,

A2.p/ D p2 � p

�
1C

�
b2 � 3ac

p

�
C
��3

p

��
: (84)

These families obey the Bias Conjecture with an average bias of �1 in the p term.

Lemma 4.3. Consider families of the form y2 D ax3 C bx2 C .cT C d/x. These
families have rank 0, and for primes p > 3 with p − a; b; c,

A2.p/ D p2 � p

�
1C

��1
p

��
: (85)

These families obey the Bias Conjecture with an average bias of �1 in the p term.

Lemma 4.4. Consider families of the form y2 D x3CTnx. These families have rank
0, and for primes p > 3,

A2.p/ D
8
<

:
.p� 1/

�P
x.p/

�
x3Cx

p

��2
if n 
 0.2/

�
p2 � p

� �
1C

�
�1
p

��
if n 
 1.2/:

(86)

These families obey the Bias Conjecture with an average bias of �4=3 for n 
 0.2/
and �1 for n 
 1.2/ in the p term.

Lemma 4.5. Consider families of the form y2 D x3C Tn. These families have rank
0, and for primes p > 3,

A2.p/ D

8
ˆ̂
<̂

ˆ̂
:̂

.p � 1/
�P

x.p/

�
x3C1

p

��2
if n 
 0.3/

p2 � p
�
1C

�
�3
p

��
if n 
 1.3/

p2 � p if n 
 2.3/:
(87)

These families obey the Bias Conjecture with an average bias of �4=3 for n 
 0.3/
and �1 for n 
 1; 2.3/ in the p term.
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Lemma 4.6. Consider families of the form y2 D x3 C Tx2 C .mt � 3m2/x �m3 for
m a non-zero integer. These families have rank 0 for m non-square and rank 1 for m
a square, and for primes p > 3,

A2.p/ D p2 � p

�
2C 2

��3
p

��
� 1: (88)

These families obey the Bias Conjecture with an average bias of �2.

Lemmas 4.2 and 4.3 prove the Bias Conjecture for a large number of families
studied by Fermigier in [Fe2]. A more systematic study of Fermigier’s families
(which is in progress [MMRW]) will help determine whether the bias in second
moments is correlated to the family rank. Lemmas 4.4 and 4.5 provide examples
of complex-multiplication families where the Bias Conjecture holds. Lemma 4.6
proves the conjecture for a family with an unusual distribution of signs, providing
stronger evidence for the conjecture.

4.2.2 Numerical Data

The following lemma is useful for analyzing Fermigier’s rank 1 families [Fe2].

Lemma 4.7. Consider families of the form y2 D ax3 C cx2 C .dT C e/xC g. For
p − d; g,

A2.p/ D p2 C pc1.p/ � pc0.p/; (89)

where c0.p/ is the number of roots of the congruence 2ax3 C cx2 � g 
 0.p/ and

c1.p/ DPx;yWaxy2C.ax2Ccx/y�g�0.p/
�

xy
p

�
.

We are not able to explicitly determine the c1.p/ term in general, but the data
in Table 1 suggests that on average this term is 0. We averaged these coefficients
over the 6000th to the 7000th primes, and all averages are very small in absolute
value. Thus, we believe that these families obey the Bias Conjecture with an average
bias of c0.p/, which in most cases is about 1. We collected additional data on
rank 2 families, and found similar evidence from these families that the p3=2 term
coefficient is on average 0.

We also collected numerical data for several families that were too complicated
to analyze explicitly. We used two averaging statistics,

Ep

�
A2.p/� p2

p3=2

�
; Ep

�
A2.p/� p2

p

�
; (90)

where the averages are taken over some range of primes. These statistics are meant
to quantify the average bias in the cases where the largest lower term is of size
p3=2 and p, respectively. For these families, we calculated the second moment for
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Table 1 Averages of p3=2 term coefficients in rank 1 families

Family Average.c1.p// Average.c0.p//

y2 D 4x3 � 7x2 C 4txC 4 0.0068 0.974

y2 D 4x3 C 5x2 C .4t � 2/xC 1 �0.0176 1.005

y2 D 4x3 C 5x2 C .4tC 2/xC 1 �0.0174 1.005

y2 D 4x3 C x2 C .4tC 2/xC 1 0.0399 0.993

y2 D 4x3 C x2 C 4txC 4 0.0068 0.985

y2 D 4x3 C x2 C .4tC 6/xC 9 �0.0113 1.988

y2 D 4x3 C 4x2 C 4txC 1 0.0072 0.974

y2 D 4x3 C 5x2 C .4tC 4/xC 4 0.0035 1.012

y2 D 4x3 C 4x2 C 4txC 9 0.0256 1.005

y2 D 4x3 C 5x2 C 4txC 4 0.0043 1.005

y2 D 4x3 C 5x2 C .4tC 6/xC 9 �0.0143 1.037

the 100th–150th primes. In every case, the running p3=2-normalized average was
small in magnitude, further suggesting that the p3=2 term coefficient is on average 0.
In most families, the p-normalized statistic revealed a clear negative average bias,
but two families showed a positive p-normalized average bias. The problem behind
these statistics is the rate of decay of the p3=2 term. In order for these statistics to
reliably detect an average bias, the average coefficient of the p3=2 term would need to
exhibit enough cancelation that in the limit it would be smaller than the conjectured
bias coming from the lower order terms. This is only a heuristic, but it suggests
that we need to improve this method of analyzing general families. The positive
average families were positive overall but had a negative average on the second half
of the primes. However, here we feel as though we are trying to force out a negative
average. For several families that support the conjecture, we tried averaging only
over the second half of our sample to see if the bias was still negative in this reduced
sample, and it was in each case.

In the last section we discuss connections of the negative bias with excess rank. It
is important to note, however, that it is the smallest primes that contribute the most.
Thus while there may be a negative bias overall, at the end of the day what might
matter most is what occurs for the primes 2 and 3 (and other small primes).

4.3 Biases and Excess Rank

We end by very briefly discussing an application of the conjectured negative bias
in the second moments to the observed excess rank in families. For more details,
see [Mil3]. The purpose of this section is to show how the arithmetic in lower order
terms can be used as a possible explanation for some interesting phenomena. The
1-level density, with an appropriate test function, is used to obtain upper bounds
for the average rank; there were several papers using essentially the 1-level density
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for this purpose before Katz and Sarnak isolated the 1-level density as a statistic
to study independent of rank estimation. We show that lower order terms arising
from arithmetic contribute for finite conductors and require a very slight change in
the upper bound of the average rank. Of course, this is not a proof of a connection
between these factors and the average rank, as all we can show is that these affect
the upper bound; however, it is worth noting the role they play in such calculations.
For more on finite models and the behavior of elliptic curve zeros, see [DHKMS1,
DHKMS2].

For a one-parameter family of elliptic curves E of rank r over Q.T/, assuming
the Birch and Swinnerton-Dyer conjecture by Silverman’s specialization theorem
eventually all curves Et have rank at least r, and under natural standard conjectures
a typical family will have equidistribution of signs of the functional equations. The
minimalist conjecture on rank suggests that in the limit half should have rank r and
half rank r C 1, giving an average rank of r C 1=2; however, in many families this
is not observed. Instead, roughly 30% have rank r and 20% rank rC 2, while about
48% have rank rC1 and 2% rank rC3. The question is whether or not the average
rank stays on the order of rC 1

2
C0:40 (or anything larger than rC1=2), or if this is

a result of small conductors and the limiting behavior not being seen. See [Fe1, Fe2,
Wa] for numerical investigations and [BhSh1, BhSh2, Br, H-B, FoPo, Mic, Sil, Yo2]
for theoretical bounds of the average rank.

Consider families where the average second moment of at.p/2 is p2�mE pCO.1/
with mE > 0, and let t 2 ŒN; 2N for simplicity. We have already handled the
contribution from p2 to the 1-level density, and the �mE p term contributes

S2 � �2
N

X

p

log p

log R
O�
�
2

log p

log R

�
1

p2
N

p
.�mE p/

D 2mE

log R

X

p

O�
�
2

log p

log R

�
log p

p2
: (91)

Thus there is a contribution of size 1
log R . A good choice of test functions (see

Appendix A of [ILS], or [FrMil] for optimal test functions for all classical compact
groups and larger support) is the Fourier pair

�.x/ D sin2.2� �
2

x/

.2�x/2
; O�.u/ D

(
��juj
4

if juj � �
0 otherwise.

(92)

Note �.0/ D �2

4
, O�.0/ D �

4
D �.0/

�
, and evaluating the prime sum in (91) gives

S2 �
�
0:986

�
� 2:966

�2 log R

�
mE

log R
�.0/: (93)
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While we expect any � to hold, in all theoretical work to date � is greatly restricted.
In [Mil3] the consequences of this are analyzed in detail for various values of � . If
� D 1 and mE D 1, then the 1=� term would contribute 1, the lower correction
would contribute 0:03 for conductors of size 1012, and thus the average rank is
bounded by 1 C r C 1

2
C 0:03 D r C 1

2
C 1:03. This is significantly higher than

Fermigier’s observed r C 1
2
C 0:40. If we were able to prove our 1-level density

for � D 2, then the 1=� term would contribute 1=2, and the lower order correction
would contribute 0:02 for conductors of size 1012. Thus the average rank would
be bounded by 1=2 C r C 1=2 C 0:02 D r C 1=2 C 0:52. While the main error
contribution is from 1=� , there is still a noticeable effect from the lower order terms
in A2.p/. Moreover, we are now in the ballpark of Fermigier’s bound; of course, we
were already there without the potential correction term!
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Appendix: Biases in Second Moments in Additional Families

By Megumi Asada, Eva Fourakis, Steven J. Miller and
Kevin Yang

This appendix describes work in progress on investigating biases in the second
moments of other families. It is thus a companion to Sect. 4.2. Fuller details and
proofs will be reported by the authors in [AFMY]; our purpose below is to quickly
describe results on analogues of the Bias Conjecture.

Dirichlet Families

Let q be prime, and let Fq be the family of nontrivial Dirichlet characters of level
q. In this family, the second moment is given by

M2.FqIX/ D
X

p<X

X

�2Fq

�2.p/: (94)

Denote the amalgamation of families by FY D [Y=2<q<YFq, with the naturally
defined second moment.
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Computing M2.Fq;X/ is straightforward from the orthogonality relations, which
as we’ve seen earlier yields a quantity related to the classical problem on the dis-
tribution of primes in residue classes. Approximating carefully �.X/ and �.X; q; a/
via the Prime Number Theorem, one can deduce the following.

Theorem 4.8. The family Fq has positive bias, independent of q, in the second
moments of the Fourier coefficients of the L-functions.

Remark 4.9. Note that the behavior of Dirichlet L-functions is very different than
that from families of elliptic curves.

Now, suppose q ¤ ` is a prime such that q 
 1.`/. Let Fq;` be the family of non-
trivial `-torsion Dirichlet characters of level q, which is nonempty by the stipulated
congruence condition. In this family, the second moment is given by

M2.Fq;`IX/ D
X

p<X

X

�2Fq;`

�2.p/: (95)

Define FY WD [Y=2<q<YFq;`q for any choice of suitable `q for each q.

Theorem 4.10. The family Fq;` has zero bias independent of q and `. Thus,
FY exhibits zero bias in the second moments of the Fourier coefficients of the
L-functions.

Families of Holomorphic Cusp Forms

Let Sk;q.�0/ denote the space of cuspidal newforms of level q, weight k and
trivial nebentypus, endowed with the structure of a Hilbert space via the Petersson
inner product. Let Bk;q.�0/ be any orthonormal basis of Sk;q.�0/ and let FX WD
[k<XWk�0.2/Bk;qD1.�0/. In this family, the second moment is given by the weighted
Fourier coefficients10:

M2.FXI ı/ D
X

p<Xı

X

k<XWk�0.2/

X

f2Bk;q.�0/

j f .p/j2; (96)

where  f .p/ D .� .k�1// 12
.4�p/

k�1
2

�f .p/
p

log p, with �f .p/ the Hecke eigenvalue of f for the

Hecke operator Tp. Let FXI" D [q<X"FX be the amalgamation of families with the
second moment

M2.FXI"I ı/ D
X

p<Xı

X

q<X"

X

k<XWk�0.2/

X

f2Bk;q.�0/

j f .p/j2: (97)

10Following [ILS] we can remove the weights, but their presence facilitates the application of the
Petersson formula.
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The Petersson Formula provides an explicit method of computing M2.FX I ı/ via
Kloosterman sums and Bessel functions. Averaging over the level and weight to
obtain asymptotic approximations as in [ILS], we prove the following theorem in
[AFMY].

Theorem 4.11. The family FX has negative bias, independent of the level q of 1
2
,

in the second moments of the Fourier coefficients of the L-functions. Thus, FXI"
exhibits negative bias.

Let us now let H�k;q.�0/ denote a basis of newforms of Petersson norm 1 for prime
level q and even weight k. We consider another weighted second moment, given by

Mweighted
2 .FX I ı/ D

X

p<Xı

X

k<XWk�0.2/

X

f2H�
k;q.�0/

� .k/

.4�/k
j�f .p/j2: (98)

Similarly, let FXI" D [q<X"FX be the amalgamation of these families with the
weighted second moment

Mweighted
2 .FXI"I ı/ D

X

p<Xı

X

q<X"

X

k<XWk�0.2/

X

f2H�
k;q.�0/

� .k/

.4�/k
j�f .p/j2: (99)

We prove the following in [AFMY].

Theorem 4.12. The family FX has positive bias dependent on the level q. More-
over, the family FX;" exhibits positive bias as well.

If we now consider the unweighted second moment given by

M2.FX I ı/ D
X

p<Xı

X

k<XWk�0.2/

X

f2H�
k;q.�0/

�2f .p/; (100)

we prove the following in [AFMY] as well.

Theorem 4.13. Assume ı < 1 and " D 1. The family FX has positive bias
dependent on q. Moreover, the family FXI" exhibits positive unweighted bias as
well.
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Asymptotics of Automorphic Spectra
and the Trace Formula

Werner Müller

Abstract This paper is a survey article on the limiting behavior of the discrete
spectrum of the right regular representation in L2.�nG/ for a lattice � in a
semisimple Lie group G. We discuss various aspects of the Weyl law, the limit
multiplicity problem, and the analytic torsion.

1991 Mathematics Subject Classification. Primary: 11F70, Secondary: 58J52,
11F75

1 Introduction

Let G be a connected linear semisimple Lie group of noncompact type with a fixed
choice of a Haar measure. Let ….G/ denote the set of all equivalence classes of
irreducible unitary representations of G, equipped with the Fell topology [Di]. We
fix a Haar measure on G. Let � � G be a lattice in G, i.e., a discrete subgroup such
that vol.�nG/ < 1. Let R� be the right regular representation of G on L2.�nG/.
Let L2disc.�nG/ be the span of all irreducible subrepresentations of R� and denote
by R�;disc the restriction of R� to L2disc.�nG/. Then R�;disc decomposes discretely as

R�;disc Š OM
�2….G/m�.�/�; (1)

where

m�.�/ D dim HomG.�;R�/ D dim HomG.�;R�;disc/

is the multiplicity with which � occurs in R� . The multiplicities are known to
be finite under a weak reduction-theoretic assumption on .G; �/ [OW], which
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is satisfied if G has no compact factors or if � is arithmetic. The study of the
multiplicities m�.�/ is one of the main concerns in the theory of automorphic forms.
Apart from special cases like discrete series representations, one cannot hope in
general to describe the multiplicity function on ….G/ explicitly. A more feasible
and interesting problem is the study of the asymptotic behavior of the multiplicities
with respect to the growth of various parameters such as the level of congruence
subgroups or the infinitesimal character of � . This is closely related to the study of
families of automorphic forms (see [SST]).

The first problem in this context is the Weyl law. Let K be a maximal compact
subgroup of G. Fix an irreducible representation � of K. Let ….GI �/ be the
subspace of all � 2 ….G/ such that Œ�jK W � > 0. Especially, if � is the trivial
representation, then ….GI �/ is the spherical dual …sph.G/. Given � 2 ….G/,
denote by �� D �.�/ the Casimir eigenvalue of � . For � � 0 let the counting
function be defined by

N�
�.�/ D

X

�2….GI�/
j�� j��

m�.�/: (2)

Then the problem is to determine the behavior of the counting function as �!1.
Another basic problem is the limit multiplicity problem, which is the study

of the asymptotic behavior of the multiplicities if vol.�nG/ ! 1. For G D
GLn.R/ this corresponds to the study of harmonic families of cuspidal automorphic
representations of GLn.A/, A being the ring of adeles (see [SST]). More precisely,
for a given lattice � define the discrete spectral measure 
� on ….G/, associated
with � , by


� D 1

vol.�nG/
X

�2….G/
m�.�/ı� ; (3)

where ı� is the Dirac measure at � . Then the limit multiplicity problem is concerned
with the study of the asymptotic behavior of 
� as vol.�nG/!1. For appropriate
sequences of lattices .�n/ one expects that the measures 
�n converge to the
Plancherel measure 
pl on ….G/.

There are closely related problems in topology and spectral theory. One of them
concerns Betti numbers. Let K be a maximal compact subgroup of G and put eX D
G=K. Let � be a uniform lattice in G and let .�n/ be a tower of normal subgroups
of � . Put X D �neX and Xn D �nneX, n 2 N. Then Xn ! X is a sequence of finite
normal coverings of X. For any topological space Y let bk.Y/ denote the k-th Betti
number of Y. Then

lim
n!1

bk.Xn/

vol.Xn/
D b.2/k .X/; (4)
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where b.2/k .X/ is the k-th L2-Betti number of X. This was proved by Lück [Lu1] in
the more general context of CW-complexes. In the case of locally symmetric spaces,
it follows from the results about limit multiplicities. Again, it was extended by Abert
et al. [AB1] to much more general sequences of uniform lattices.

A more sophisticated spectral invariant is the Ray-Singer analytic torsion TX.�/

(see [RS]). It depends on a finite dimensional representation � of � and is defined in
terms of the spectra of the Laplace operators �p.�/ on p-forms with coefficients
in the flat bundle associated with �. Of particular interest are representations
of � which arise as the restriction of a representation of G. For appropriate
representations, called strongly acyclic, Bergeron and Venkatesh [BV] studied the
asymptotic behavior of log TXn.�/ as n!1. One of their main results is

lim
n!1

log TXn.�/

vol.Xn/
D log T.2/X .�/; (5)

where T.2/X .�/ is the L2-torsion [Lo, MV]. Using the equality of analytic torsion and
Reidemeister torsion [Ch, Mu1], (5) implies results about the growth of the torsion
subgroup in the integer homology of arithmetic groups. Let G be a semisimple
algebraic group over Q, G D G.R/ and � � G.Q/ a co-compact, arithmetic
subgroup. As shown in [BV], there are strongly acyclic representations � of G
on a finite dimensional vector space V such that V contains a �-invariant lattice
M. Let M be the local system of free Z-modules over X, attached to M. Then the
cohomology H�.X;M/ of X with coefficients in M is a finite abelian group. Denote
by jH�.X;M/j its order. Assume that d D dim.X/ is odd. Then by [BV] one has

lim
n!1

dX

pD1
.�1/pC d�1

2
log jHp.Xn;M/j

Œ� W�n
D cM;G vol.X/;

where cM;G is a constant that depends only on G and M. Moreover, if ı.G/ WD
rank G � rank K D 1, then cM;G > 0. It is conjectured that the limit

lim
n!1

log jHj.Xn;M/j
Œ� W�n

(6)

always exists and is equal to zero, unless ı.G/ D 1 and j D .d � 1/=2. In the
latter case it is equal to cM;G times vol.X/. The conjecture is known to be true for
G D SL2.C/.

An important problem is to extend these results to the non-compact case.
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2 The Arthur Trace Formula

The trace formula is one of the main technical tools to study the kind of spectral
problems mentioned in the introduction. For R-rank one groups the Selberg trace
formula is available [Wa1]. In the higher rank case the Selberg trace formula is
replaced by the Arthur trace formula.

In this section we recall Arthur’s trace formula, and in particular the refinement
of the spectral expansion obtained in [FLM1].

2.1 Notation

We will mostly use the notation of [FLM1]. Let G be a reductive group defined
over Q and let A be the ring of adeles of Q. We fix a maximal compact subgroup
K D Qv Kv D K1 	Kfin of G.A/ D G.R/ 	G.Afin/.

Let g and k denote the Lie algebras of G.R/ and K1, respectively. Let 	 be the
Cartan involution of G.R/ with respect to K1. It induces a Cartan decomposition
g D p ˚ k. We fix an invariant bi-linear form B on g which is positive definite on
p and negative definite on k. This choice defines a Casimir operator � on G.R/,
and we denote the Casimir eigenvalue of any � 2 ….G.R// by �� . Similarly, we
obtain a Casimir operator �K1

on K1 and write �� for the Casimir eigenvalue of
a representation � 2 ….K1/ (cf. [BG, § 2.3]). The form B induces a Euclidean
scalar product .X;Y/ D �B.X; 	.Y// on g and all its subspaces. For � 2 ….K1/
we define k�k as in [CD, § 2.2].

We fix a maximal Q-split torus S0 of G and let M0 be its centralizer, which is
a minimal Levi subgroup defined over Q. We assume that the maximal compact
subgroup K � G.A/ is admissible with respect to M0 [Ar5, § 1]. Denote by A0 the
identity component of S0.R/, which is viewed as a subgroup of S0.A/. We write
L for the (finite) set of Levi subgroups containing M0, i.e., the set of centralizers
of subtori of S0. Let W0 D NG.Q/.S0/=M0 be the Weyl group of .G;S0/, where
NG.Q/.H/ is the normalizer of H in G.Q/. For any s 2 W0 we choose a representative
ws 2 G.Q/. Note that W0 acts on L by sM D wsMw�1s .

Let now M 2 L. We write SM for the split part of the identity component of
the center of M. Set AM D A0 \ SM.R/ and W.M/ D NG.Q/.M/=M, which can
be identified with a subgroup of W0. Denote by a�M the R-vector space spanned by
the lattice X�.M/ of Q-rational characters of M and let a�M;C D a�M ˝R C be its
complexification. We write aM for the dual space of a�M, which is spanned by the
co-characters of SM . Let

HM WM.A/! aM
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be the homomorphism given by

eh�;HM.m/i D j�.m/jA D
Y

v

j�.mv/jv (7)

for any � 2 X�.M/ and denote by M.A/1 � M.A/ the kernel of HM . Let L.M/ be
the set of Levi subgroups containing M and P.M/ the set of parabolic subgroups
of G with Levi part M. We also write F.M/ D FG.M/ D `

L2L.M/ P.L/ for
the (finite) set of parabolic subgroups of G containing M. Note that W.M/ acts on
P.M/ and F.M/ by sP D wsPw�1s . Denote by†M the set of reduced roots of SM on
the Lie algebra of G. For any ˛ 2 †M we denote by ˛_ 2 aM the corresponding co-
root. Let L2disc.AMM.Q/nM.A// be the discrete part of L2.AMM.Q/nM.A//, i.e., the
closure of the sum of all irreducible subrepresentations of the regular representation
of M.A/. We denote by …disc.M.A// the countable set of equivalence classes of
irreducible unitary representations of M.A/ which occur in the decomposition of
L2disc.AMM.Q/nM.A// into irreducible representations.

For any L 2 L.M/ we identify a�L with a subspace of a�M. We denote by aL
M the

annihilator of a�L in aM. We set

L1.M/ D fL 2 L.M/ W dim aL
M D 1g

and

F1.M/ D
[

L2L1.M/

P.L/:

Note that the restriction of the scalar product .	; 	/ on g defined above gives aM0 the
structure of a Euclidean space. In particular, this fixes Haar measures on the spaces
aL

M and their duals .aL
M/
�. We follow Arthur in the corresponding normalization of

Haar measures on the groups M.A/ [Ar1, § 1].

2.2 Intertwining Operators

The main ingredient of the spectral side of the Arthur trace formula are logarithmic
derivatives of intertwining operators. We shall now describe the structure of the
intertwining operators.

Let P 2 P.M/. We write aP D aM. Let UP be the unipotent radical of P and MP
the unique L 2 L.M/ (in fact the unique L 2 L.M0/) such that P 2 P.L/. Denote
by †P � a�P the set of reduced roots of SM on the Lie algebra uP of UP. Let �P be
the subset of simple roots of P, which is a basis for .aG

P /
�. Write a�P;C for the closure

of the Weyl chamber of P, i.e.

a�P;C D f� 2 a�M W
˝
�; ˛_

˛ � 0 for all ˛ 2 †Pg D f� 2 a�M W
˝
�; ˛_

˛ � 0 for all ˛ 2 �Pg:
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Denote by ıP the modulus function of P.A/. Let NA2.P/ be the Hilbert space
completion of

f� 2 C1.M.Q/UP.A/nG.A// W ı�
1
2

P �.	x/ 2 L2disc.AMM.Q/nM.A//; 8x 2 G.A/g
with respect to the inner product

.�1; �2/ D
Z

AMM.Q/UP.A/nG.A/
�1.g/�2.g/ dg:

Let ˛ 2 †M . We say that two parabolic subgroups P;Q 2 P.M/ are adjacent along
˛, and write Pj˛Q, if †P \ �†Q D f˛g. Alternatively, P and Q are adjacent if the
closure PQ of PQ belongs to F1.M/. Any R 2 F1.M/ is of the form PQ for a
unique unordered pair fP;Qg of parabolic subgroups in P.M/, namely P and Q are
maximal parabolic subgroups of R, and Pj˛Q with ˛_ 2 †_P \ aR

M . Switching the
order of P and Q changes ˛ to �˛.

For any P 2 P.M/ let HPWG.A/ ! aP be the extension of the map HM , which
is defined by (7), to a left UP.A/-and right K-invariant map. Denote by A2.P/ the
dense subspace of NA2.P/ consisting of its K- and Z.gC/-finite vectors, where Z.gC/
is the center of the universal enveloping algebra of gC WD g˝ C. That is, A2.P/ is

the space of automorphic forms � on UP.A/M.F/nG.A/ such that ı
� 12
P �.	k/ is a

square-integrable automorphic form on AMM.F/nM.A/ for all k 2 K. Let �.P; �/,
� 2 a�M;C, be the induced representation of G.A/ on NA2.P/ given by

.�.P; �; y/�/.x/ D �.xy/eh�;HP.xy/�HP.x/i:

It is isomorphic to IndG.A/
P.A/

�
L2disc.AMM.Q/nM.A//˝ eh�;HM .�/i�.

For P;Q 2 P.M/ let

MQjP.�/ W A2.P/! A2.Q/; � 2 a�M;C;

be the standard intertwining operator [Ar3, § 1], which is the meromorphic
continuation in � of the integral

ŒMQjP.�/�.x/ D
Z

UQ.A/\UP.A/nUQ.A/
�.nx/eh�;HP.nx/�HQ.x/i dn; � 2 A2.P/; x 2 G.A/:

These operators satisfy the following properties.

(1) MPjP.�/ 
 Id for all P 2 P.M/ and � 2 a�M;C.
(2) For any P;Q;R 2 P.M/ we have MRjP.�/ D MRjQ.�/ ı MQjP.�/ for all � 2

a�M;C. In particular, MQjP.�/�1 D MPjQ.�/.
(3) MQjP.�/� D MPjQ.��/ for any P;Q 2 P.M/ and � 2 a�M;C. In particular,

MQjP.�/ is unitary for � 2 ia�M .
(4) If Pj˛Q, then MQjP.�/ depends only on h�; ˛_i.
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Given � 2 …disc.M.A//, let A2
�.P/ be the space of all � 2 A2.P/ for which the

function x 2 M.A/ 7! ı
� 12
P �.xg/, g 2 G.A/, belongs to the �-isotypic subspace

L2.AMM.Q/nM.A//. For any P 2 P.M/ we have a canonical isomorphism of
G.Af / � .gC;K1/-modules

jP W Hom.�;L2.AMM.Q/nM.A///˝ IndG.A/
P.A/ .�/! A2

�.P/:

If we fix a unitary structure on � and endow Hom.�;L2.AMM.Q/nM.A/// with
the inner product .A;B/ D B�A (which is a scalar operator on the space of �), the
isomorphism jP becomes an isometry.

Suppose that Pj˛Q. The operator MQjP.�; s/ WD MQjP.s$/jA2
� .P/

, where$ 2 a�M
is such that h$;˛_i D 1, admits a normalization by a global factor n˛.�; s/ which
is a meromorphic function in s. We may write

MQjP.�; s/ ı jP D n˛.�; s/ 	 jQ ı .Id˝RQjP.�; s// (8)

where RQjP.�; s/ D ˝vRQjP.�v; s/ is the product of the locally defined
normalized intertwining operators and � D ˝v�v [Ar3, § 6], (cf. [Mu6,
(2.17)]). In many cases, the normalizing factors can be expressed in terms of
automorphic L-functions [Sha1, Sha2]. For example, let G D GL.n/. Then
the global normalizing factors n˛ can be expressed in terms of Rankin-Selberg
L-functions. The properties of these functions are collected and analyzed in
[Mu4, Mu5, § 4,5]. Write M ' Qr

iD1 GL.ni/, where the root ˛ is trivial onQ
i�3 GL.ni/, and let � ' ˝�i with representations �i 2 …disc.GL.ni;A//. Let

L.s; �1 � Q�2/ be the completed Rankin-Selberg L-function associated with �1 and
�2. It satisfies the functional equation

L.s; �1 � Q�2/ D �.1
2
; �1 � Q�2/N.�1 � Q�2/ 12�sL.1 � s; Q�1 � �2/ (9)

where j�. 1
2
; �1 � Q�2/j D 1 and N.�1 � Q�2/ 2 N is the conductor. Then we have

n˛.�; s/ D L.s; �1 � Q�2/
�. 1
2
; �1 � Q�2/N.�1 � Q�2/ 12�sL.sC 1; �1 � Q�2/

: (10)

2.3 The Trace Formula

Arthur’s trace formula gives two alternative expressions for a distribution J on
G.A/1. Note that this distribution depends on the choice of M0 and K. For h 2
C1c .G.A/1/, Arthur defines J.h/ as the value at the point T D T0 specified in [Ar5,
Lemma 1.1] of a polynomial JT.h/ on aM0 of degree at most d0 D dim aG

M0
. Here,

the polynomial JT.h/ depends in addition on the choice of a parabolic subgroup
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P0 2 P.M0/. Consider the equivalence relation on G.Q/ defined by � � � 0
whenever the semisimple parts of � and � 0 are G.Q/-conjugate. Let O be the set
of the resulting equivalence classes (which are in bijection with conjugacy classes
of semisimple elements). The coarse geometric expansion [Ar1] is

JT.h/ D
X

o2O
JT
o .h/; (11)

where the summands JT
o .h/ are again polynomials in T of degree at most d0.

Write Jo.h/ D JT0
o .h/, which depends only on M0 and K. Then Jo.h/ D 0 if the

support of h is disjoint from all conjugacy classes of G.A/ intersecting o (cf. [Ar6,
Theorem 8.1]). By [ibid., Lemma 9.1] (together with the descent formula of [Ar5,
§ 2]), for each compact set � � G.A/1 there exists a finite subset O.�/ � O
such that for h supported in � only the terms with o 2 O.�/ contribute to (11). In
particular, the sum is always finite. The geometric side of the trace formula is then
defined to be the distribution

Jgeo.h/ D
X

o2O
Jo.h/; h 2 C1c .G.A/1/: (12)

When o consists of the unipotent elements of G.Q/, we write JT
unip.h/ for JT

o .h/.
We now turn to the spectral side. Let L �M be Levi subgroups in L, P 2 P.M/,

and let m D dim aG
L be the co-rank of L in G. Denote by BP;L the set of m-tuples

ˇ D .ˇ_1 ; : : : ; ˇ_m / of elements of †_P whose projections to aL form a basis for aG
L .

For any ˇ D .ˇ_1 ; : : : ; ˇ_m / 2 BP;L let vol.ˇ/ be the co-volume in aG
L of the lattice

spanned by ˇ and let

„L.ˇ/ D f.Q1; : : : ;Qm/ 2 F1.M/m W ˇ_i 2 aQi
M ; i D 1; : : : ;mg

D f.P1P01; : : : ;PmP0m/ W Pijˇi P0i; i D 1; : : : ;mg:

For any smooth function f on a�M and 
 2 a�M denote by D
f the directional
derivative of f along 
 2 a�M . For a pair P1j˛P2 of adjacent parabolic subgroups in
P.M/ write

ıP1jP2 .�/ D MP2jP1 .�/D$MP1jP2 .�/ W A2.P2/! A2.P2/;

where $ 2 a�M is such that h$;˛_i D 1. 1 Equivalently, writing MP1jP2 .�/ D
ˆ.h�; ˛_i/ for a meromorphic functionˆ of a single complex variable, we have

ıP1jP2 .�/ D ˆ.
˝
�; ˛_

˛
/�1ˆ0.

˝
�; ˛_

˛
/:

1Note that this definition differs slightly from the definition of ıP1jP2 in [FL1].
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For any m-tuple X D .Q1; : : : ;Qm/ 2 „L.ˇ/ with Qi D PiP0i, Pijˇi P0i, denote by
�X .P; �/ the expression

vol.ˇ/

mŠ
MP0

1jP.�/
�1ıP1jP0

1
.�/MP0

1jP0
2
.�/ 	 	 	 ıPm�1jP0

m�1
.�/MP0

m�1jP0
m
.�/ıPmjP0

m
.�/MP0

mjP.�/:

In [FLM1, pp. 179–180] we define a (purely combinatorial) map XL W BP;L !
F1.M/m with the property that XL.ˇ/ 2 „L.ˇ/ for all ˇ 2 BP;L. 2

For any s 2 W.M/ let Ls be the smallest Levi subgroup in L.M/ containing ws.
We recall that aLs D fH 2 aM j sH D Hg. Set

�s D jdet.s � 1/
a

Ls
M
j�1:

For P 2 F.M0/ and s 2 W.MP/ let M.P; s/ W A2.P/ ! A2.P/ be as in [Ar3,
p. 1309]. M.P; s/ is a unitary operator which commutes with the operators �.P; �; h/
for � 2 ia�Ls

. Now we can state the refined spectral expansion.

Theorem 2.1 ([FLM1]). For any h 2 C1c .G.A/1/ the spectral side of Arthur’s
trace formula is given by

Jspec.h/ WD
X

ŒM

Jspec;M.h/; (13)

ŒM ranging over the conjugacy classes of Levi subgroups of G (represented by
members of L), where

Jspec;M.h/ D 1

jW.M/j
X

s2W.M/

�s
X

ˇ2BP;Ls

Z

i.aG
Ls
/�

tr.�XLs .ˇ/
.P; �/M.P; s/�.P; �; h// d�

(14)

with P 2 P.M/ arbitrary. The operators are of trace class and the integrals are
absolutely convergent.

Note that the term corresponding to M D G is Jspec;G.h/ D tr Rdisc.h/. Next assume
that M is the Levi subgroup of a maximal parabolic subgroup P. Furthermore, let
L D M. Let NP be the opposite parabolic subgroup to P. Then up to a constant, the
contribution to the spectral side is given by

X

�2…disc.M.A/1/

Z

ia�

tr

�
M NPjP.�; �/�1

d

dz
M NPjP.�; �/M.P; s/�.P; �; �; h/

�
d�:

2The map XL depends in fact on the additional choice of a vector 
 2 .a�
M/

m which does not lie in
an explicit finite set of hyperplanes. For our purposes, the precise definition of XL is immaterial.
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The trace formula is the statement that the spectral side equals the geometric side,
i.e., the following equality holds:

Jspec.h/ D Jgeo.h/; h 2 C1c .G.A/1/: (15)

3 The Weyl Law

The Weyl law is concerned with the study of the asymptotic behavior of the counting
function (2) as �!1. This is the first problem which needs to be solved in order to
be able to pursue a deeper study of the cuspidal automorphic spectrum. For example,
the study of statistical properties of the automorphic spectrum requires first of all to
know that the spectrum is infinite and has the right asymptotic properties. This, in
particular, concerns the study of families of automorphic forms (see [SST]).

The investigation of the asymptotic behavior of the counting function (2) is
closely related to the study of the counting function of the eigenvalues of the Laplace
operator on a compact Riemannian manifold. We briefly recall the Weyl law in this
case. Let M be a smooth, compact Riemannian manifold of dimension n with smooth
boundary @M (which may be empty). Let

� D � div ı grad D d�d

be the Laplace-Beltrami operator associated with the metric g of M. We consider
the Dirichlet eigenvalue problem

�� D ��; �
ˇ
ˇ
@M
D 0: (16)

As is well known, (16) has a discrete set of solutions

0 � �0 � �2 � 	 	 	 ! 1

whose only accumulation point is at infinity and each eigenvalue occurs with finite
multiplicity. The corresponding eigenfunctions �i can be chosen such that f�igi2N0
is an orthonormal basis of L2.M/. For � � 0 let

N.�/ D #
˚
jW�j � �

�

be the counting function, where eigenvalues are counted with multiplicities. Let
�.s/ be the Gamma function. Then the Weyl law states

N.�/ D vol.M/

.4�/n=2�
�

n
2
C 1��

n=2 C o.�n=2/; �!1: (17)
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This was first proved by Weyl [We] for a bounded domain � � R
3. Written in a

slightly different form it is known in physics as the Rayleigh-Jeans law. Garding
[Ga] proved Weyl’s law for a general elliptic operator on a domain in R

n. For a
closed Riemannian manifold (17) was proved by Minakshisundaram and Pleijel
[MP]. Formula (17) does not say much about the finer structure of the distribution
of the eigenvalues. A basic problem is the estimation of the remainder term

R.�/ WD N.�/ � vol.M/

.4�/n=2�
�

n
2
C 1��

n=2: (18)

For a closed Riemannian manifold, Avakumović [Av] established the Weyl law with
the following optimal estimation of the remainder term

R.�/ D O.�.n�1/=2/: (19)

This result was extended to more general and higher order operators by Hörmander
[Ho].

The connection with the estimation of the counting function (2) is established
as follows. Let eX D G=K. It can be equipped with a G-invariant metric which
is unique up to scaling. Let X D �neX. Assume that � is torsion free. Then X is
a complete Riemannian manifold of finite volume. Let � 2 bK and let eE� ! eX
be the homogeneous vector bundle associated with � , which is equipped with the
invariant Hermitian metric induced by � . Let E� D �neE� be the corresponding
locally homogeneous vector bundle over X. Let C1.X;E�/ be the space of smooth
sections of E� . There is a canonical isomorphism

C1.X;E�/ Š .C1.�nG/˝ V� /
K (20)

(see [Mia, p. 4]). Let r� be the connection in E� induced by the canonical
connection in eE� . Let �� D .r� /�r� be the Bochner-Laplace operator, acting in
C1.X;E� /. It is an elliptic, second order, formally self-adjoint differential operator
of Laplace type, i.e., its principal symbol is given by k�k2x IdE�;x . Let � 2 Z.gC/ be
the Casimir element and R�.�/ the Casimir operator acting in C1.�nG/. With
respect to the isomorphism (20) the Bochner-Laplace operator is related to the
Casimir operator R�.�/ by

�� D �R�.�/C �� Id; (21)

where �� is the Casimir eigenvalue of � . Assume that X is compact. Then �� has
a pure discrete spectrum consisting of a sequence of eigenvalues 0 � �1 � �2 �
	 	 	 ! 1 of finite multiplicities. Let

N�.�I �/ D #fjW�j � �g
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be the counting function of the eigenvalues, where eigenvalues are counted with
their multiplicity. Using (20) and (21), it follows that the counting function (2) has
the same asymptotic behavior as N�.�I �/. A generalization of (17) is the following
Weyl law

N�.�I �/ D dim.�/ vol.�nG=K/

.4�/d=2�.d=2C 1/ �
d=2 C o.�d=2/; �!1; (22)

where d D dim.X/. To prove (22) one can use the heat equation method [BGV, Gi].
It starts with the observation that the heat operator e�t�� is an integral operator with
a smooth kernel K� .t; x; y/. Since the underlying manifold is compact, it follows
that the heat operator is a trace class operator and one has the following elementary
“trace formula”

1X

jD1
e�t�j D Tr

�
e�t��

� D
Z

X
tr K� .t; x; x/ dx: (23)

(see [BGV, Proposition 2.32]). The construction of an approximation of the heat
kernel gives rise to an asymptotic expansion of the form

Z

X
tr K� .t; x; x/ dx � t�d=2

1X

jD0
ajt

j (24)

as t! 0C. Moreover a0 D dim.�/ vol.X/=.4�/d=2 (see [BGV, Theorem 2.30], [Gi,
Chap. 1, § 1.7]). Combined with (23), it follows that

1X

jD1
e�t�j D dim.�/ vol.�nG=K/

.4�/d=2
t�d=2 C O.t�d=2C1/ (25)

as t ! 0C. Applying Karamata’s theorem [BGV, Theorem 2.42], we obtain the
Weyl law (22). The heat equation method does not lead to any nontrivial estimation
of the remainder term. The method of Avakumović [Av] and Hörmander [Ho]
is based on the study of the wave equation (see [DG]). For a locally symmetric
manifold this means to use the Selberg trace formula. So far estimations of the
remainder term are only known if � is the trivial representation, i.e., for the case of
the Laplace operator on functions.

For a locally symmetric space X D �neX,eX D G=K, there is not only the Laplace
operator, but the whole algebra of G-invariant differential operators D.eX/ on eX,
which one needs to consider. The structure of D.eX/ can be described as follows. Let
G D NAK be the Iwasawa decomposition of G, W the Weyl group of .G;A/, and a
be the Lie algebra of A. Let S.aC/ be the symmetric algebra of the complexification
aC D a ˝ C of a and let S.aC/W be the subspace of Weyl group invariants in
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S.aC/. Then by a theorem of Harish-Chandra [He, Chap. X, Theorem 6.15] there is
a canonical isomorphism


WD.eX/ Š S.aC/
W : (26)

This shows that D.eX/ is commutative. The minimal number of generators equals
the rank of eX which is dim a [He, Chap. X, § 6.3]. Let � 2 a�

C
. Then by (26), �

determines an character

��WD.eX/! C

and �� D ��0 if and only if � and �0 are in the same W-orbit. Since S.aC/ is integral
over S.aC/W [He, Chap. X, Lemma 6.9], each character of D.eX/ is of the form ��
for some � 2 a�

C
. Thus the characters of D.eX/ are parametrized by a�

C
=W.

Each D 2 D.eX/ descends to a differential operator

DWC1.�neX/! C1.�neX/:

Assume that �neX is compact. Let E � C1.�neX/ be an eigenspace of the Laplace
operator. Then E is a finite-dimensional vector space which is invariant under D 2
D.eX/. For each D 2 D.eX/, the formal adjoint D� of D also belongs to D.eX/. Thus
we get a representation

�WD.eX/! End.E/

by commuting normal operators. Therefore, E decomposes into the direct sum of
joint eigenspaces of D.eX/. Given � 2 a�

C
=W, let

E.�/ D f' 2 C1.�neX/WD' D ��.D/'; D 2 D.eX/g:

Let m.�/ D dim E.�/. Then the spectrumƒ.�/ of �neX is defined to be

ƒ.�/ D f� 2 a�
C
=WWm.�/ > 0g;

and we get an orthogonal direct sum decomposition

L2.�neX/ D
M

�2ƒ.�/
E.�/: (27)

If we pick a fundamental domain for W, we may regard ƒ.�/ as a subset of a�
C

.
If rank.eX/ > 1, then ƒ.�/ is multidimensional. In this setting, a generalization of
the Weyl law has been established by Duistermaat et al. [DKV]. To describe the
result, we need to introduce some notations. Let ˇ.i�/, � 2 a�, be the Plancherel
density. Let

ƒtemp.�/ D ƒ.�/\ ia�; ƒcomp.�/ D ƒ.�/ nƒtemp.�/
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be the tempered and complementary spectrum, respectively. Given an open bounded
subset � of a� and t > 0, let

t� WD ft
W
 2 �g: (28)

One of the main results of [DKV] is the following asymptotic formula for the
distribution of the tempered spectrum [DKV, Theorem 8.8]

X

�2ƒtemp.�/\.it�/
m.�/ D vol.�neX/

jWj
Z

it�
ˇ.�/ d�CO.td�1/; t!1: (29)

Note that the leading term is of order O.td/. The growth of the complementary
spectrum is of lower order. Let Bt.0/ � a�

C
be the ball of radius t > 0 around 0.

There exists C > 0 such that for all t � 1
X

�2ƒcomp.�/\Bt.0/

m.�/ � Ctd�2 (30)

[DKV, Theorem 8.3]. The main tool to prove (29) and (30) is the Selberg trace
formula.

The estimations (29) and (30) contain more information about the distribution
of ƒ.�/ then just the Weyl law. Indeed, the eigenvalue of � corresponding to � 2
ƒtemp.�/ equals k � k2 C k � k2. So if we choose � in (29) to be the unit ball,
then (29) together with (30) reduces to Weyl’s law for �neX.

We note that (29) and (30) can also be rephrased in terms of representation theory.
Let R� be the right regular representation of G in L2.�nG/ defined by

.R�.g1/f /.g2/ D f .g2g1/; f 2 L2.�nG/; g1; g2 2 G:

Let ….G/ denote the set equivalence classes of unitary irreducible representations
of G. Since �nG is compact, R� decomposes into the direct sum of irreducible
unitary representations of G (see [GGP, § 2.3]). Given � 2 ….G/, let m.�/ be the
multiplicity with which � occurs in R� . Let H� denote the Hilbert space in which
� acts. Then

L2.�nG/ Š
M

�2….G/
m.�/H� :

Now observe that L2.�neX/ D L2.�nG/K . Let HK
� denote the subspace of K-fixed

vectors in H� . Then

L2.�neX/ Š
M

�2….G/
m.�/HK

� :
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Note that dimHK
� � 1. Let …sph.G/ � ….G/ be the subset of all � with HK

� 6D f0g.
This is the spherical dual. Given � 2 …sph.G/, let �� be the infinitesimal character
of � . If � 2 …sph.G/, then �� 2 a�

C
=W. Moreover � 2 …sph.G/ is tempered, if � is

unitarily induced from the minimal parabolic subgroup P D NAM. In this case we
have �� 2 ia�=W. So (29) can be rewritten as

X

�2…sph.G/
��2it�

m.�/ D vol.�nG/
jWj

Z

it�
ˇ.�/ d�C O.tn�1/; t!1: (31)

If � is not co-compact, then �� has a nonempty continuous spectrum which
consists of a half-line Œc;1/ for some c � 0. This makes it much more difficult
to study the discrete spectrum of this operator, because almost all eigenvalues, if
they exist, will be embedded into the continuous spectrum. It is well known from
mathematical physics that embedded eigenvalues are unstable under perturbations.
One of the basic tools to study the cuspidal automorphic spectrum is the trace
formula.

3.1 Rank One

In the non-compact case, a general Weyl law was first derived by Selberg for a
hyperbolic surface X D �nH of finite area, where H D SL.2;R/= SO.2/ is the
upper half-plane. We briefly recall the method which is based on the trace formula.
It illustrates the basic idea which is also used in the higher rank case.

Let � D d�d be the Laplace operator with respect to the hyperbolic metric.
Then �, regarded as operator in L2.X/ with domain C1.X/, is essentially self-
adjoint. The spectrum of� is the union of a pure point spectrum and the absolutely
continuous spectrum. The pure point spectrum consists of a sequence of eigenvalues

0 D �0 < �1 � �2 � 	 	 	

of finite multiplicities. If X is non-compact then, in general, we only know that �0
exists. We slightly change the definition of the counting function by

N�.�/ WD #fjW
q
�j � �g:

The new terms in the trace formula, which are due to the non-compactness of
�nH arise from the parabolic conjugacy classes in � and the Eisenstein series.
Let us recall the definition of Eisenstein series. Let a1; : : : ; am 2 R [ f1g be
representatives of the �-conjugacy classes of parabolic fixed points of � . The ai’s
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are called cusps. For each ai let �ai be the stabilizer of ai in � . Choose �i 2 SL.2;R/
such that

�i.1/ D ai; ��1i �ai�i D
��
1 n
0 1

�
W n 2 Z



:

Then the Eisenstein series Ei.z; s/ associated with the cusp ai is defined as

Ei.z; s/ D
X

�2�ain�
Im.��1i �z/s; Re.s/ > 1: (32)

The series converges absolutely and uniformly on compact subsets of the half-plane
Re.s/ > 1 and it satisfies the following properties.

(1) Ei.�z; s/ D Ei.z; s/ for all � 2 � .
(2) As a function of s, Ei.z; s/ admits a meromorphic continuation to C which is

regular on the line Re.s/ D 1=2.
(3) Ei.z; s/ is a smooth function of z and satisfies �zEi.z; s/ D s.1 � s/Ei.z; s/:

The contribution of the Eisenstein series to the Selberg trace formula is given by
their zeroth Fourier coefficients of the Fourier expansion in the cusps. The zeroth
Fourier coefficient of the Eisenstein series Ek.z; s/ at the cusp al is given by

Z 1

0

Ek.�l.xC iy/; s/ dx D ıkly
s C Ckl.s/y

1�s;

where ıkl is Kronecker’s delta function and Ckl.s/ is a meromorphic function of
s 2 C. Put

C.s/ WD .Ckl.s//
m
k;lD1 :

This is the so-called scattering matrix. Let g 2 C1c .R/ and let h D Og be the Fourier
transform of g. Let �.s/ WD det C.s/. Denote by f�g the hyperbolic �-conjugacy
classes. For every hyperbolic element � , denote by �0 the primitive hyperbolic
element such that � D � k

0 for some k 2 N. Every nontrivial hyperbolic conjugacy
class f�g corresponds to a unique closed geodesic c� . Let l.�/ denote its length.
Write the eigenvalues as

�j D 1

4
C r2j ; rj 2 Œ0;1/ [ i.0; 1=2:
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Then the trace formula is the following identity

X

j

h.rj/ � 1

4�

Z 1

�1
h.r/

�0

�
.1=2C ir/ drC 1

4
�.1=2/h.0/

D Area.�nH/
4�

Z

R

h.r/r tanh.�r/ drC
X

f�g

l.�0/

2 sinh
�

l.�/
2

�g.l.�//

� m

2�

Z 1

�1
h.r/

� 0

�
.1C ir/drC m

4
h.0/�m ln 2 g.0/ (33)

(see [Se1, (9.31)]). The left-hand side is the spectral side, which contains all terms
associated with the spectrum and the right-hand side is the geometric side. The
trace formula holds for every discrete subgroup � � SL.2;R/ with co-finite area.
In analogy to the counting function of the eigenvalues we introduce the winding
number

M�.�/ D � 1

4�

Z �

��
�0

�
.1=2C ir/ dr; (34)

which measures the continuous spectrum. Using the cut-off Laplacian of Lax-
Phillips [CV] one can deduce the following elementary bounds

N�.�/� �2; M�.�/� �2; � � 1: (35)

These bounds imply that the trace formula (33) holds for a larger class of functions.
In particular, it can be applied to the heat kernel kt. Its spherical Fourier transform
equals ht.r/ D e�t.1=4Cr2/, t > 0. If we insert ht into the trace formula, we get the
following asymptotic expansion as t! 0.

X

j

e�t�j � 1

4�

Z

R

e�t.1=4Cr2/ �
0

�
.1=2C ir/ dr

D Area.�nH/
4�t

C a log tp
t
C bp

t
C O.1/

(36)

for certain constants a; b 2 R. Using [Se1, (8.8), (8.9)] it follows that the winding
number M�.�/ is monotonically increasing for � � 0. Therefore we can apply a
Tauberian theorem to (36) and we get the following Weyl law, established by Selberg
[Se1]. As �!1 we have

N�.�/CM�.�/ � Area.�nH/
4�

�2: (37)
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In general, we cannot estimate separately the counting function and the winding
number. For congruence subgroups, however, the entries of the scattering matrix can
be expressed in terms of well-known analytic functions. For �.N/ the determinant
of the scattering matrix �.s/ has been computed by Huxley [Hu]. It has the form

�.s/ D .�1/lA1�2s

�
�.1 � s/

�.s/

�k Y

�

L.2 � 2s; N�/
L.2s; �/

; (38)

where k; l 2 Z, A > 0, the product runs over Dirichlet characters � to some modulus
dividing N and L.s; �/ is the Dirichlet L-function with character �. Especially for
�.1/ we have

�.s/ D p� �.s� 1=2/�.2s� 1/
�.s/�.2s/

; (39)

where �.s/ denotes the Riemann zeta function.
Using Stirling’s approximation formula to estimate the logarithmic derivative

of the Gamma function and standard estimations for the logarithmic derivative of
Dirichlet L-functions on the line Re.s/ D 1 [Pr, Chap. V, Theorem 7.1], we get

�0

�
.1=2C ir/ D O.log.4C jrj//; jrj ! 1: (40)

This implies that

M�.N/.�/� � log�: (41)

Together with (37) we obtain Weyl’s law for the point spectrum of the Laplacian on
X.N/ D �.N/nH:

N�.N/.�/ � Area.X.N//

4�
�2; �!1; (42)

which is due to Selberg [Se1, p. 668]. A similar formula holds for other congruence
groups such as �0.N/. In particular, (42) implies that for congruence groups there
exist infinitely many linearly independent Maass cusp forms.

By a more sophisticated use of the Selberg trace formula one can estimate the
remainder term (see [Mu7]). For congruence subgroups one gets

Theorem 3.1. For every N 2 N we have

N�.N/.�/ D Area.X.N//

4�
�2 CO.� log�/ (43)

as �!1.
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A finite area hyperbolic surface for which the Weyl law holds is called by Sarnak
essentially cuspidal. Now it is strongly believed that essential cuspidality is limited
to special arithmetic surfaces. This is based on work by Phillips and Sarnak
who studied the behavior of the discrete spectrum when � is deformed in the
corresponding Teichmüller space. We refer to [Sa1] for a detailed discussion of
their method. This led Phillips and Sarnak to the following conjectures.

Conjecture 1. (1) The generic � in a given Teichmüller space of finite area
hyperbolic surfaces is not essentially cuspidal.

(2) Except for the Teichmüller space of the once punctured torus, the generic � has
only a finite number of discrete eigenvalues.

Reznikov [Rez] has extended the method described above to deal with arithmetic
quotients of rank one globally symmetric spaces. He has shown that for congruence
quotients the determinant of the scattering matrix can be expressed as a ratio of
automorphic L-functions. Using the properties of the L-functions, it follows that the
determinant of the scattering matrix is a meromorphic function of order one. As
above, this implies the following theorem.

Theorem 3.2 ([Rez]). Any congruence subgroup of the unit group of a rational
quadratic form in the group of motions of the hyperbolic space is essentially
cuspidal.

A similar result holds for congruence quotients of the complex hyperbolic space.

3.2 Higher Rank

We turn now to the general case. We assume that G D G.R/, where G is a connected
semisimple algebraic group over Q. Let X D �neX D �nG=K and E� ! X be
as above. Let �� WC1.X;E�/ ! C1.X;E�/ be the Bochner-Laplace operator. As
operator in L2.X;E�/ it is essentially self-adjoint. Let L2disc.X;E�/ be the subspace
of L2.X;E�/ which is the closure of the span of all L2-eigensections of �� . Recall
that a cusp form for � is a smooth K-finite function �W�nG ! C which is a joint
eigenfunction of the center of the universal enveloping algebra Z.gC/ and which
satisfies

Z

�\NPnNP

�.nx/ dn D 0

for all unipotent radicals NP of proper parabolic subgroups P of G, which are of the
form P D P.R/ for a rational parabolic subgroup P of G. Put

L2cus.X;E� / WD .L2cus.�nG/˝ V� /
K :
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Then L2cus.X;E�/ is contained in L2disc.X;E�/. The orthogonal complement
L2res.X;E�/ of L2cus.X;E�/ in L2disc.X;E�/ is called the residual subspace. By
Langland’s theory of Eisenstein series it follows that L2res.X;E�/ is spanned by
iterated residues of cuspidal Eisenstein series (see [La2]). By definition we have an
orthogonal decomposition

L2disc.X;E�/ D L2cus.X;E�/˚ L2res.X;E�/:

Let Ndisc
� .�I �/, Ncus

� .�I �/, and Nres
� .�I �/ be the counting function of the eigen-

values with eigensections belonging to the corresponding subspace. The following
results about the growth of the counting functions hold for any lattice � in a real
semisimple Lie group. Let d D dim X. Donnelly [Do] has proved the following
bound for the cuspidal spectrum

lim sup
�!1

Ncus
� .�; �/

�d=2
� dim.�/ vol.X/

.4�/d=2�
�

d
2
C 1� : (44)

For the full discrete spectrum, we have at least an upper bound for the growth of the
counting function. The main result of [Mu2] states that

Ndisc
� .�; �/� .1C �2d/: (45)

This result implies that invariant integral operators are of trace class on the discrete
subspace which is the starting point for the trace formula. The proof of (45) relies
on the description of the residual subspace in terms of iterated residues of Eisenstein
series.

Let Ncus
� .�/ be the counting function with respect to the trivial representation of

K, i.e., the counting function of the cuspidal spectrum of the Laplacian on functions.
Then Sarnak [Sa2] conjectured that if rank.G=K/ > 1, Weyl’s law holds for Ncus

� .�/,
which means that equality holds in (44). Furthermore, one expects that the growth
of the residual spectrum is of lower order than the cuspidal spectrum.

In the meantime Sarnak’s conjecture has been verified in quite a number of cases.
A. Reznikov proved it for congruence groups in a group G of real rank one, Miller
[Mi] proved it for G D SL.3/ and � D SL.3;Z/, the author [Mu5] established it
for G D SL.n/ and a congruence subgroup � . The most general result is due to
Lindenstrauss and Venkatesh [LV] who proved the following theorem.

Theorem 3.3. Let G be a split adjoint semi-simple group over Q and let � � G.Q/
be a congruence subgroup. Let d D dim S. Then

Ncus
� .�/ � vol.�neX/

.4�/d=2�
�

d
2
C 1��

d=2; �!1: (46)

The method used by Lindenstrauss and Venkatesh is based on the construction of
convolution operators with pure cuspidal image. It avoids the delicate estimates of
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the contributions of the Eisenstein series to the trace formula. This proves existence
of many cusp forms for these groups.

For an arbitrary K-type, we have the following theorem proved in [Mu3].

Theorem 3.4. Let n � 2 andeX D SL.n;R/= SO.n/. Let d D dimeX D n.nC1/=2�
1. For every principal congruence subgroup � of SL.n;Z/ and every irreducible
unitary representation � of SO.n/ such that � jZ� D Id, we have

Ncus
� .�; �/ � dim.�/ vol.�neX/

.4�/d=2�.d=2C 1/�
d=2 (47)

as �!1.

The residual spectrum for SL.n/ has been described by Moeglin and Waldspurger
[MW]. Combined with (44) it follows that for G D SL.n/ we have

Nres
�.N/.�; �/� �d=2�1; (48)

where d D dim SL.n;R/= SO.n/ and �.N/ � SL.n;Z/ is the principal congruence
subgroup of level N.

The proof of Theorem 3.4 uses the Arthur trace formula combined with the heat
equation method similar to the proof of (42). The application of the Arthur trace
formula requires the adelic reformulation of the problem.

We briefly describe the method. For all details we refer to [Mu5]. For simplicity
we consider only the trivial K1-type, i.e., we consider the counting function
Ncus
� .�/. By (48) we can replace the counting function Ncus

� .�/ by Ndisc
� .�/. Let

G D GL.n/ be regarded as an algebraic group over Q. Denote by AG the
split component of the center of G and let AG.R/

0 be the component of 1 in
AG.R/. Let …disc.G.A/; �0/ be the set of all irreducible subrepresentations of the
regular representation of G.A/ in L2.G.Q/AG.R/

0nG.A//. Given a representation
� 2 …disc.G.A/; �0/, let m.�/ denote the multiplicity with which � occurs in
L2.G.Q/AG.R/

0nG.A//. For any irreducible representation � D �1 ˝ �f of
G.A/, let H�1

and H�f denote the Hilbert space of the representation �1 and

�f , respectively. Let Kf be an open compact subgroup of G.Af /. Denote by HKf
�f the

subspace of Kf -invariant vectors in H�f and by HK1
�1

the subspace of K1-invariant
vectors in H�1

. Given � 2 ….G.A/; �0/, denote by ��1
the Casimir eigenvalue

of the restriction of �1 to G.R/1. Assume that �1 ¤ Kf . Then (47) for the trivial
K1-type follows by Karamata’s theorem [BGV, Theorem 2.42] from the existence
of an asymptotic expansion of the form

X

�2…disc.G.A/;�0/

m.�/et��1 dim
�
HKf
�f

�
dim

�
HK1
�1
/ � vol.G.Q/nG.A/1=Kf /

.4�/d=2
t�d=2

(49)

as t! C0.
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To establish (49) we apply the Arthur trace formula as follows. We choose a
certain family of test functions Q�1t 2 C1c .G.A/1/, depending on t > 0, which at the
infinite place are given by the heat kernel ht 2 C1.G.R/1/ of the Laplacian e� oneX,
multiplied by a certain cutoff function 't, and which at the finite places is given by
the normalized characteristic function of an open compact subgroup Kf of G.Af /.
Then by the non-invariant trace formula [Ar1] we have the equality

Jspec. Q�1t / D Jgeo. Q�1t /; t > 0:

Then we study asymptotic behavior of the spectral and the geometric side as t! 0.
To deal with the geometric side, we use the fine o-expansion [Ar6]

Jgeo.f / D
X

M2L

X

�2.M.QS//M;S

aM.S; �/JM.�; f /; (50)

which expresses the distribution Jgeo.f / in terms of weighted orbital integrals
JM.�; f /. Here M runs over the set of Levi subgroups L containing the Levi
component M0 of the standard minimal parabolic subgroup P0, S is a finite set of
places of Q, and .M.QS//M;S is a certain set of equivalence classes in M.QS/. This
reduces our problem to the investigation of weighted orbital integrals. The key result
is that

lim
t!0 td=2JM. Q�1t ; �/ D 0;

unless M D G and � D 1. This follows from the description of the local weighted
orbital integrals by [Ar4, Corollary 6.2]. The contributions to (50) of the terms
where M D G and � D 1 are easy to determine. Using the behavior of the heat
kernel ht.1/ as t! 0, it follows that

Jgeo. Q�1t / �
vol.G.Q/nG.A/1=Kf /

.4�/d=2
t�d=2 (51)

as t ! 0. To deal with the spectral side we use Theorem 2.1. This theorem
allows us to replace Q�1t by a similar function �1t 2 C1.G.A/1/ which is given
as the product of the heat kernel ht at infinity and the normalized characteristic
function of Kf . The term in Jspec.�

1
t / corresponding to M D G is Jspec;G.�

1
t / D

tr Rdisc.�
1
t /, which is equal to the left-hand side of (49). If M is a proper Levi

subgroup of G, then Jspec;M.�
1
t / is given by (14), which is a finite sum of integrals.

The main ingredient of the integrals are logarithmic derivatives of intertwining
operators and the estimation of these integrals is reduced to the estimation of the
logarithmic derivatives. Using (8) this problem is reduced to the estimation of
the logarithmic derivatives of the normalizing factors and the local intertwining
operators. In the case of G D GL.n/, the normalizing factors are expressed
in terms of Ranking-Selberg L-functions (10). Using the analytic properties of



Asymptotics of Automorphic Spectra and the Trace Formula 499

Rankin-Selberg L-functions, it follows that there exist C > 0 and T > 1 such that
for � D �1 ˝ �2, �i 2 …disc.GL.ni;A//, we have

Z TC1

T

ˇ
ˇ
ˇ
ˇ
n0̨ .�; i�/
n˛.�; i�/

ˇ
ˇ
ˇ
ˇ d� � C log.T C �.�1 � Q�2//; (52)

where �.�1 � Q�2/ D N.�1 � Q�2/.2 C c.�1 � Q�2/, N.�1 � Q�2/ is the conductor
occurring in the functional equation (9) and c.�1 � Q�2/ is the analytic conductor
defined in [Mu5, (4.21)]. For the proof of (52) see [Mu5, Proposition 5.1]. In the
case of SL.2;R/ we have the pointwise estimate (40). If we integrate it, we get
the analogue of (52) which would suffice to derive the Weyl law for the principal
congruence subgroups of SL.2;Z/.

Finally we have to deal with normalized intertwining operators

RQjP.�; s/ D ˝vRQjP.�v; s/:

Since the open compact subgroup Kfin of G.Afin/ is fixed, there are only finitely
many places v for which we have to consider RQjP.�v; s/. The main ingredient for
the estimation of the logarithmic derivative of RQjP.�v; s/, which is uniform in �v ,
is a weak version of the Ramanujan conjecture (see [MS, Proposition 0.2]).

Combining these estimations, it follows that for every proper Levi subgroup M
of G we have

Jspec;M.�
1
t / D O.t�.d�1/=2/ (53)

as t! C0. This proves (49).
The next problem is to estimate the remainder term in the Weyl law. For G D

SL.n/ this problem has been studied by E. Lapid and the author in [LM]. Actually,
we consider not only the cuspidal spectrum of the Laplacian, but also the cuspidal
spectrum of the whole algebra of SL.n;R/-invariant differential operators D.eX/ on
eX D SL.n;R/= SO.n/.

As D.eX/ preserves the space of cusp forms, we can proceed as in the compact
case and decompose L2cus.�neX/ into joint eigenspaces of D.eX/. Recall that by (26)
the characters of D.eX/ are parametrized by a�

C
=W. Given � 2 a�

C
=W, denote by ��

the corresponding character of D.eX/ and let

Ecus.�/ D
˚
' 2 L2cus.�neX/WD' D ��.D/'

�

be the associated joint eigenspace. Each eigenspace is finite-dimensional. Let
m.�/ D dim Ecus.�/. Define the cuspidal spectrumƒcus.�/ to be

ƒcus.�/ D f� 2 a�
C
=WWm.�/ > 0g:
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Then as in (27) we have an orthogonal direct sum decomposition

L2cus.�neX/ D
M

�2ƒcus.�/

Ecus.�/:

Let ˇ.�/ be the Plancherel measure on ia�. Then in [LM] we established the
following extension of main results of [DKV] to congruence quotients of eX D
SL.n;R/= SO.n/.

Theorem 3.5. Let d D dimeX. Let � � a� be a bounded domain with piecewise
smooth boundary. Then for N � 3 we have

X

�2ƒcus.�.N//
�2it�

m.�/ D vol.�.N/neX/
jWj

Z

it�
ˇ.�/ d�C O

�
td�1.log t/max.n;3/

�
; (54)

as t!1, and

X

�2ƒcus.�.N//
�2Bt.0/nia�

m.�/ D O
�
td�2� ; t!1: (55)

If we apply (54) and (55) to the unit ball in a�, we get the following corollary.

Corollary 3.6. Let eX D SL.n;R/= SO.n/ and d D dimeX. Let �.N/ be the
principal congruence subgroup of SL.n;Z/ of level N. Then for N � 3 we have

Ncus
�.N/.�/ D

vol.�.N/neX/
.4�/d=2�

�
d
2
C 1��

d=2 CO
�
�.d�1/=2.log�/max.n;3/

�
; �!1:

The condition N � 3 in Theorem 3.5 is imposed for technical reasons. It
guarantees that the principal congruence subgroup �.N/ is neat in the sense of
Borel, and in particular, has no torsion. This simplifies the analysis by eliminating
the contributions of the non-unipotent conjugacy classes in the trace formula. In fact,
in the recent paper [MT], Matz and Templier have eliminated the assumption N � 3
at the expense of the remainder term which is only O.td�1=2/ (see [MT, (1.1)]).
Moreover, [MT, Remark 1.9] contains a discussion of a possible improvement of
the estimation of the remainder term.

Note that ƒcus.�.N// \ ia� is the cuspidal tempered spherical spectrum. The
Ramanujan conjecture [Sa3] for GL.n/ at the Archimedean place states that

ƒcus.�.N// � ia�

so that (55) is empty, if the Ramanujan conjecture is true. However, the Ramanujan
conjecture is far from being proved. Moreover, it is known to be false for other
groups G and (55) is what one can expect in general.
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The method to prove Theorem 3.5 is an extension of the method of [DKV]. The
Selberg trace formula, which is one of the basic tools in [DKV], is replaced by the
non-invariant Arthur trace formula. Again, one of the main issues in the proof is the
estimation of the logarithmic derivatives of the intertwining operators occurring on
the spectral side of the trace formula.

3.3 Upper and Lower Bounds

In some cases it suffices to have upper or lower bounds for the counting function.
For example, Donnelly’s result (44) implies that there exists a constant C > 0 such
that

Ncus
� .�I �/ � C.1C �d=2/; � � 0: (56)

For the full discrete spectrum we have the bound (45). However, the exponent is
not the optimal one. For some applications it is necessary to have such a bound
which is uniform in � . For the cuspidal spectrum this problem has been studied
by Deitmar and Hoffmann [DH]. To state the result, we have to introduce some
notations. Let �n.N/ be the principal congruence subgroup of GL.n;Z/ of level N.
Let G be a connected reductive linear algebraic group over Q. Let �WG ! GL.n/
be a faithful Q-rational representation. A family T of subgroups of G.Q/ is called a
family of bounded depth in G.Q/ if there exists D 2 N which satisfies the following
property: For every � 2 T there exists N 2 N such that �n.N/ \ �.G.Q// is a
subgroup of �.�/ of index at most D. Then the result of Deitmar and Hoffmann
[DH, Corollary 18] is the following theorem.

Theorem 3.7. Let �0 � G.Q/ be an arithmetic subgroup. Let T be a family
subgroups of �0 which is of bounded depth in G.Q/. There exists C > 0 such that
for all � 2 T and all � � 0 we have

Ncus
� .�I �/ � CŒ�0W�.1C �/d=2: (57)

Conjecture 2. The estimation (57) holds for Ndisc
� .�I �/.

Given the description of the residual spectrum for GL.n/ by [MW], it seems possible
to establish this conjecture for GL.n/.

As for lower bounds there is the weak Weyl law established in [LM]. For � 2 bK
let

c� .�/ D dim.�/ vol.�neX/
.4�/d=2�.d=2C 1/

be the constant in Weyl’s law, where d D dim.eX/. Let G be a semisimple algebraic
group defined over Q and let � � G.Q/ be a congruence subgroup defined by an
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open compact subgroup Kfin D Qp Kp of G.Afin/. Let S be a finite set of primes. We
will say that � is deep enough with respect to S, if for every prime p 2 S, Kp is a
subgroup of some minimal parahoric subgroup of G.Qp/. Then the main result of
[LM] is the following theorem.

Theorem 3.8. Let G be an almost simple connected and simply connected semisim-
ple algebraic group defined over Q such that G.R/ is noncompact. Let S be a finite
set of primes containing at least two primes. Then for every congruence subgroup
� � G.Q/ there exists a nonnegative constant cS.�/ � 1 such that for every � 2 bK
with � jZ� D Id we have

c�.�/cS.�/ � lim inf
�!1

Ncus
� .�; �/

�d=2
:

Moreover cS.�/ > 0 if � is deep enough with respect to S.

3.4 Self-Dual Automorphic Representations

So far, we considered only the family of all cusp forms of GL.n;A/. A nontrivial
subfamily is formed by the family of self-dual automorphic representations. They
arise as functorial lifts of automorphic representations of classical groups. Functo-
riality from quasisplit classical groups to general linear groups has been established
by Cogdell et al. [CKP] for generic automorphic representations and then by Arthur
[Ar8] for all representations. In his thesis, V. Kala has studied the counting function
of self-dual cuspidal automorphic representations of GL.n;A/. For N 2 N with
prime decomposition N D Qp pr.p/ let

Kp.N/ WD
˚
k 2 GL.n;Zp/W k 
 1 mod pr.p/

Zp
�

Let K.N/ be the principal congruence subgroup defined by

K.N/ WD O.n/ �
Y

p

Kp.N/:

Let

NK.N/
sd .�/ WD

X

�.…/��
…Še…

dim…K.N/;

where the sum ranges over all self-dual cuspidal automorphic representations …
of GL.n;A/ with Casimir eigenvalues � �. Then the main result of [Ka] is the
following theorem.
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Theorem 3.9. Let n D 2mC " with " D 0; 1. Put d D m2Cm. For all N 2 N there
exist constants C1;C2 > 0 such that for �� 0 one has

C1�
d=2 � NK.N/

sd .�/ � C2�
d=2:

By Corollary 3.6, the counting function of all cuspidal representations, counted
similarly, is asymptotic to C�d=2, where d D .n2 C n � 2/=2. Hence for n > 2, the
density of self-dual cusp forms is zero.

The main idea of the proof of Theorem 3.9 is to consider the descent � of each
self-dual cuspidal automorphic representation… of GL.n;A/ to one of the quasisplit
classical groups G.A/ and to use results towards the Weyl law on G.A/. The number
d D m2 C m is related to the dimension of the corresponding symmetric space
G.R/=K1 (see [Ka, p. 17]). The key problem of the proof is to relate the Casimir
eigenvalue and the existence of K.N/-fixed vectors for… and � .

In a special case Kala’s method leads to an exact asymptotic formula. Let n D 2m
and d D m2 C m. Let K D O.n/ �Qp Kp with Kp D GL.n;Zp/. Then there exists
C > 0 such that

NK
sd.�/ D C�d=2 C o.�d=2/ (58)

(see [Ka, Corollary 6.2.2]). One may conjecture that this is true in general.

3.5 Weyl’s Law for Hecke Operators

An important extension of the Weyl law is the study of the asymptotic distribution
of infinitesimal characters of cuspidal automorphic representations weighted by the
eigenvalues of Hecke operators acting on cusp forms of GL.n/. For details we refer
to the recent papers by Matz [Ma1], Matz and Templier [MT] and the survey article
of Matz in these proceedings.

4 The Limit Multiplicity Problem

The limit multiplicity problem is another basic problem which is concerned with the
asymptotic behavior of automorphic spectra.

In this section we summarize some of the known results about the limit
multiplicity problem. Let G be a semisimple Lie group, � � G a lattice in G, and

� the measure (3) on ….G/. To begin with we recall some facts concerning the
Plancherel measure 
pl on ….G/. First of all, the support of 
pl is the tempered
dual ….G/temp, consisting of the equivalence classes of the irreducible unitary
tempered representations. Up to a closed subset of Plancherel measure zero, the
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topological space ….G/temp is homeomorphic to a countable union of Euclidean
spaces of bounded dimensions. Under this homeomorphism the Plancherel density
is given by a continuous function. We call the relatively quasi-compact subsets of
….G/ bounded. We note that 
�.A/ < 1 for bounded sets A � ….G/ under the
reduction-theoretic assumptions on .G; �/mentioned above (see [BG]). A bounded
subset A of ….G/temp is called a Jordan measurable subset, if 
pl.@A/ D 0, where
@A D NA � int.A/ is the boundary of A in ….G/temp. Furthermore, a Riemann
integrable function on….G/temp is a bounded, compactly supported function which
is continuous almost everywhere with respect to the Plancherel measure.

Let .
n/n2N be a sequence of Borel measures on….G/. We say that the sequence
.
n/n2N has the limit multiplicity property (property (LM)), if the following two
conditions are satisfied.

(1) For every Jordan measurable set A � ….G/temp we have


n.A/! 
pl.A/; as n!1:

(2) For every bounded subset A � ….G/ n….G/temp we have


n.A/! 0; as n!1:

We note that condition (1) can be restated as

(1a) For every Riemann integrable function f on ….G/temp one has

lim
n!1
n.f / D 
pl.f /:

Now let .�n/n2N be a sequence of lattices in G. The sequence .�n/n2N is said to
have the limit multiplicity property (LM), if the sequence of measures .
�n/n2N has
property (LM).

The limit multiplicity problem can be formulated as follows: under which
conditions does the sequence of measures 
�n satisfy property (LM)?

The limit multiplicity problem has been studied to a great extent in the case of
uniform lattices. In this case, R� decomposes discretely. It started with the work of
DeGeorge and Wallach [DW1, DW2], who considered towers of normal subgroups,
i.e., descending sequences of normal subgroups of finite index of a given uniform
lattice with trivial intersection. For such sequences they dealt with the case of
discrete series representations and the tempered spectrum, if the split rank of G is
1. Subsequently, Delorme [De] solved the limit multiplicity problem affirmatively
for normal towers of cocompact lattices. Recently, there has been great progress in
proving limit multiplicity for much more general sequences of uniform lattices by
Abert et al. [AB1, AB2]. In particular, families of non-commensurable lattices were
considered for the first time. The basic idea is the notion of Benjamini–Schramm
convergence (BS-convergence), which originally was introduced for sequences of
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finite graphs of bounded degree and has been adopted by Abert et al. to sequences
of Riemannian manifolds. For a Riemannian manifold M and R > 0 let

M<R D fx 2 MW injradM.x/ < Rg:
Let .�n/ be a sequence of lattices in G. Then the orbifolds Mn D �nnX are said to
BS-converge to X, if for every R > 0 one has

lim
n!C1

vol..Mn/<R/

vol.Mn/
D 0: (59)

To find examples of sequences .�n/ which satisfy this condition, consider a
cocompact arithmetic lattice �0 � G. By [AB1, Theorem 5.2] there exist constants
c; 
 > 0 such that for any congruence subgroup � � �0 and any R > 1 one has

vol..�nX/<R/ � ecR vol.�nX/1�
: (60)

Thus any sequence .�n/ of congruences subgroups of �0 such that vol.�nnG/!1
as n!1 satisfies (59).

A family of lattices in G is called to be uniformly discrete, if there exists a
neighborhood of the identity in G that intersects trivially all of their conjugates.
For torsion-free lattices �n this is equivalent to the condition that there is a uniform
lower bound of the injectivity radii of the manifolds �nnX. In particular, any family
of normal subgroups .�n/ of a fixed uniform lattice � is uniformly discrete. Now
the following theorem is one of the main results of [AB1, Theorem 1.2].

Theorem 4.1 ([AB1]). Let .�n/ be a uniformly discrete sequence of lattices in G
such that the orbifolds �nnX BS-converge to X. Then the sequence .�n/ has the (LM)
property.

It follows from the discussions above that any sequence of congruence subgroups
.�n/ of a given cocompact arithmetic lattice �0 of G satisfies the assumptions of the
theorem.

A special case of the limit multiplicity property is the case of a singleton A D
f�g. Let ….G/d � ….G/ be the discrete series and d.�/ the formal degree of � 2
….G/d. If .�n/ is a sequence of lattices in G which satisfies the (LM) property, then
it follows that

lim
n!1

m�n.�/

vol.�nnG/ D
(

d.�/; � 2 ….G/d;
0; else:

(61)

It was first proved by DeGeorge and Wallach [DW1] that (61) holds for any tower
of normal subgroups of a given uniform lattice of G.

An important problem is to extend these results to the non-cocompact case.
Then the spectrum contains a continuous part and much less is known. The limit
multiplicity problem has been solved for normal towers of arithmetic lattices and
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discrete series L-packets of representations (with regular parameters) by Rohlfs and
Speh [RoS]. Then Savin [Sav] solved the limit multiplicity problem for the discrete
series and normal towers of congruence subgroups.

In [FLM2] we dealt with the general case. Let F be a number field and denote by
OF its ring of integers. For the non-compact lattice SL.n;OF/ � SL.n;F ˝ R/ we
have the following result.

Theorem 4.2. Let F be a number field. Then the collection of principal congruence
subgroups .�N/ of SL.n;OF/ has the limit multiplicity property.

In [FL2], T. Finis and E. Lapid extended this result to the collection of all
congruence subgroups of SL.n;OF/, not containing non-trivial central elements.
In [FLM2], we also discussed the case of a general reductive group.

4.1 The Density Principle and the Trace Formula

A standard approach to the limit multiplicity problem is to use integration against
test functions on G and the trace formula. Let K be a maximal compact subgroup
of G. Denote by C1c;fin.G/ the space of smooth, compactly supported bi-K-finite

functions on G. Given f 2 C1c;fin.G/, define Of .�/ for � 2 ….G/ by Of .�/ WD tr�.f /.

The function � 2 ….G/ 7! Of .�/ on ….G/ is the “Fourier transform” of f . Let 
 be
a Borel measure on….G/. Then 
.Of / is defined (of course, it might be divergent). In
particular, we have the two Borel measures 
pl and 
� defined on ….G/. For these
measures we have 
pl.Of / D f .1/ and


�.Of / D 1

vol.�nG/ tr R�;disc.f /: (62)

By [Mu2], R�;disc.f / is a trace class operator. Thus the right-hand side is well
defined. Furthermore, by the Plancherel theorem we have 
pl.Of / D f .1/. The
density principle of Sauvageot [Sau], which is a refinement of the work of Delorme,
can be stated as follows.

Theorem 4.3. Let .
n/n2N be a sequence of Borel measures on ….G/ and assume
that for all f 2 C1c;fin.G/ we have


n.Of /! 
pl.Of / D f .1/; as n!1: (63)

Then .
n/n2N satisfies (LM).

Now let .�n/n2N be a sequence of lattices in G. Then by Theorem 4.3 it follows
that .�n/n2N satisfies (LM), if


�n.Of /! f .1/; n!1; (64)
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for all f 2 C1c;fin.G/. A standard approach to verify (64) is to use the trace formula.
In the case of co-compact lattices this is rather simple. Let � be a cocompact lattice
in G. In this the Selberg trace formula we obtain

vol.�nG/
�.Of / D tr R�.f / D
X

f�g2C.�/

vol.��nG� /

Z

G�nG
f .x�1�x/ dx;

where C.�/ denotes the �-conjugacy classes of � , and G� (resp. �� ) denotes the
centralizer of � in G (resp. �). Let �1 � � be a finite index subgroup. For � 2 � let

c�1.�/ D jfı 2 �1n� W ı�ı�1 2 �1gj: (65)

In [Co], Corwin shows that the elements on the right-hand side of the trace formula
for �1 can be grouped together in a way to give


�1.Of / D
1

vol.�nG/
X

f�g2C.�/

vol.��nG� /
c�1 .�/

Œ� W�1
Z

G�nG
f .x�1�x/ dx: (66)

For a central element � we obviously have c�1.�/ D Œ� W�1. Assume that the center
of � is trivial. Let .�n/n2N be a sequence of finite index subgroups of � . Then we
have


�n.
Of / D f .1/C 1

vol.�nG/
X

f�g2C.�/nf1g
vol.��nG� /

c�n.�/

Œ� W�n

Z

G�nG
f .x�1�x/ dx:

(67)

By dominated convergence, it follows that in order to establish (63) for the sequence
.�n/n2N, it suffices to show that for every � 2 � , � ¤ 1, we have

c�n.�/

Œ� W�n
! 0; as n!1: (68)

Now note that if �1 is a normal subgroup of � , then c�1 .�/=Œ� W�1 is the
characteristic function of �1. Thus for normal towers of finite index subgroups of �
the condition (68) holds trivially. This implies Delorme’s result.

If � is not co-compact, the Selberg trace formula is only available in the rank one
case. We have to switch to the adelic framework so that we can use the Arthur trace
formula.

Thus let now G be an arbitrary reductive group defined over Q. Let A D R�Afin
be the locally compact adele ring of Q. For every place v of Q (i.e., v D1 or v D p
a prime) let j 	 jv be the normalized absolute value of Q. As usual, G.R/1 denotes
the intersection of the kernels of the homomorphisms j�jWG.R/ ! R

C, where �
runs over the Q-rational characters of G. Similarly we define the normal subgroup
G.A/1 of G.A/. Every � 2 ….G.A/1/ can be written as � D �1 ˝ �fin, where
�1 2 ….G.R/1/ and �fin 2 ….G.Afin//. Fix a Haar measure on G.A/. For any
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open compact subgroup Kf of G.Afin/, let 
K D 
G
K be the measure on ….G.R/1/

defined by


K D 1

vol.G.Q/nG.A/1=K/

X

�2….G.R/1/
HomG.R/1 .�; L

2.G.Q/nG.A/1=K//ı�

D vol.K/

vol.G.Q/nG.A/1/
X

�2….G.A/1/
dim HomG.A/1.�; L

2.G.Q/nG.A/1// dim.�fin/
Kı�1

:

(69)
We say that a sequence .Kn/n2N of open compact subgroups of G.Afin/ has the limit
multiplicity property, if 
Kn ! 
pl, n!1, in the sense that

(1) For every Jordan measurable subset A � ….G.R/1//temp we have 
Kn.A/ !

pl.A/ as n!1, and

(2) For every bounded subset A � ….G.R/1/n….G.R/1//temp, we have
Kn.A/!
0 as n!1.

Again we can rephrase the first condition by saying that for any Riemann integrable
function f on ….G.R/1/temp we have


Kn.f /! 
pl.f /; as n!1: (70)

Note that when G satisfies the strong approximation property (which is the case if
G is semisimple, simply connected, and without any Q-simple factor H for which
H.R/ is compact) and K is an open compact subgroup of G.Afin/, then we have

G.Q/nG.A/=K Š �KnG.R/;

where �K D G.Q/\ K is a lattice in the connected semisimple Lie group G.R/.
Now for f 2 C1c;fin.G.R/

1/ we have


K.Of / D 1

vol.G.Q/nG.A/1/ tr Rdisc.f ˝ 1K/ (71)

and


pl.Of / D f .1/: (72)

Sauvageot’s density principle [Sau] can now be reformulated as follows.

Theorem 4.4. Let .Kn/n2N be a sequence of open compact subgroups of G.Afin/.
Suppose that for every f 2 C1c;fin.G.R/

1/ we have


Kn.Of /! f .1/; n!1: (73)

Then .Kn/n2N has the limit multiplicity property.
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To try to verify (73), it is natural to use Arthur’s (non-invariant) trace formula, which
is an equality

Jspec.h/ D Jgeo.h/; h 2 C1c .G.A/1/;

of two distribution on G.A/1 [Ar1, Ar2, Ar3]. The distribution Jspec is expressed
in terms of spectral data and Jgeo in terms of geometric data. The main terms on
the geometric side are the elliptic orbital integrals. In particular, the contribution
vol.G.Q/nG.A/1/h.1/ of the identity element occurs on the geometric side. The
main term on the spectral side is tr Rdisc.h/. By (71) it follows that (73) can be
broken down into the following two statements. For every f 2 C1c;fin.G.R/

1/ we
have

Jspec.f ˝ 1Kn/� tr Rdisc.f ˝ 1Kn/! 0; n!1; (74)

and

Jgeo.f ˝ 1Kn/! vol.G.Q/nG.A/1/f .1/; n!1: (75)

We call (74) the spectral—and (75) the geometric limit property.

4.2 Bounds on Co-rank One Intertwining Operators

In this section we formulate two conditions on the behavior of the intertwining
operators MQjP which imply the spectral limit property for a given G. They also
imply Weyl’s law for the group G. We call these properties (TWN) (tempered
winding number) and (BD) (bounded degree). The first property is global and
second local. The first property is connected with analytic problems in the theory of
automorphic L-functions.

We will use the notation A � B to mean that there exists a constant c
(independent of the parameters under consideration) such that A � cB. If c depends
on some parameters (say F) and not on others, then we will write A�F B.

Fix a faithful Q-rational representation � W G ! GL.V/ and a Z-lattice ƒ in
the representation space V such that the stabilizer of Oƒ D OZ ˝ ƒ � Afin ˝ V in
G.Afin/ is the group Kfin. (Since the maximal compact subgroups of GL.Afin ˝ V/
are precisely the stabilizers of lattices, it is easy to see that such a lattice exists.) For
any N 2 N let

K.N/ D fg 2 G.Afin/ W �.g/v 
 v .mod N Oƒ/; v 2 Oƒg (76)

be the principal congruence subgroup of level N, an open normal subgroup of Kfin.
The groups K.N/ form a neighborhood basis of the identity element in G.Afin/. For
an open subgroup K of Kfin let the level of K be the smallest integer N such that
K.N/ � K. Analogously, define level.Kv/ for open subgroups Kv � Kv .
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As in [Mu6], for any � 2 ….M.R// we define ƒ� D
p
�2� C �2� , where �

is a lowest K1-type of IndG.R/
P.R/ .�/ and �� and �� are the Casimir eigenvalues of

� and � , respectively. Note that this is well defined, because �� is independent
of � . Roughly speaking, ƒ� measures the size of � . For M 2 L, ˛ 2 †M and
� 2 …disc.M.A// let n˛.�; s/ be the global normalizing factor defined by (8).

Definition 4.5. We say that the group G satisfies the property (TWN) (tempered
winding number) if for any M 2 L, M ¤ G, and any finite subset F � ….KM;1/
there exists an integer k > 1 such that for any ˛ 2 †M and any � > 0 we have

Z

iR

ˇ
ˇ̌
ˇ
n0̨ .�; s/
n˛.�; s/

ˇ
ˇ̌
ˇ .1C jsj/�k ds�F ;� .1Cƒ�1

/k level.KM/
� (77)

for all open compact subgroups KM of KM;fin and all � D �1˝�fin 2 …disc.M.A//
such that �1 contains a KM;1-type in the set F and �KM

fin ¤ 0.

Since the normalizing factors n˛.�; s/ arise from co-rank one situations, the
property (TWN) is hereditary for Levi subgroups.

Remark 4.6. If we fix an open compact subgroup KM , then the corresponding bound

Z

iR

ˇ
ˇ
ˇ̌n
0̨ .�; s/

n˛.�; s/

ˇ
ˇ
ˇ̌ .1C jsj/�k ds�KM .1Cƒ�1

/k

is the content of [Mu6, Theorem 5.3]. So, the point of (TWN) lies in the dependence
of the bound on KM .

Remark 4.7. In fact, we expect that

Z TC1

T

ˇ
ˇ
ˇ
ˇ
n0̨ .�; it/
n˛.�; it/

ˇ
ˇ
ˇ
ˇ dt� 1C log.1C T/C log.1Cƒ�1

/C log level.KM/ (78)

for all T 2 R and � 2 …disc.M.A//KM . This would give the following strengthening
of (TWN):

Z

iR

ˇ
ˇ
ˇ
ˇ
n0̨ .�; s/
n˛.�; s/

ˇ
ˇ
ˇ
ˇ .1C jsj/�2 ds� 1C log.1Cƒ�1

/C log level.KM/

for any � 2 …disc.M.A//KM .

Remark 4.8. If G0 is simply connected, then by [Lub, Lemma 1.6] (cf. also [FLM2,
Proposition 1]) we can replace level.KM/ by vol.KM/

�1 in the definition of (TWN)
(as well as in (78)).

For GL.n/ the normalizing factors are expressed in terms of Rankin-Selberg L
functions (see (10)). The known properties of Rankin-Selberg L-functions lead to
the estimation (52), which implies the desired estimation. By [FLM2, Lemma 5.4],
the case of SL.n/ can be reduced to GL.n/. In this way we get (see [FLM2]).
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Theorem 4.9. The estimate (78) holds for G D GL.n/ or SL.n/ with an implied
constant depending only on n. In particular, the groups GL.n/ and SL.n/ satisfy the
property (TWN).

Remark 4.10. For general groups G the normalizing factors are given, at least
up to local factors, by quotients of automorphic L-functions associated with the
irreducible constituents of the adjoint action of the L-group LM of M on the
unipotent radical of the corresponding parabolic subgroup of LG [La1]. To argue
as above, we would need to know that these L-functions have finitely many poles
and satisfy a functional equation with the associated conductor bounded by an
arbitrary power of level.KM/ for automorphic representations � 2 …disc.M.A//KM .
Unfortunately, finiteness of poles and the expected functional equation are not
known in general. It is possible that for classical groups these properties are within
reach.

Now we come to the second condition, which is a condition on the local
intertwining operators. Recall that for a finite prime p, the matrix coefficients of the
local normalized intertwining operators RQjP.�p; s/Kp are rational functions of ps.
Moreover, their denominators can be controlled in terms of �p, and the degrees of
these denominators are bounded in terms of G only. For any Levi subgroup M 2 L
let GM be the closed subgroup of G generated by the unipotent radicals UP, where
P 2 P.M/. It is a connected semisimple normal subgroup of G.

Definition 4.11. We say that G satisfies (BD) (bounded degree) if there exists a
constant c (depending only on G and �), such that for any M 2 L, M ¤ G,
and adjacent parabolic groups P;Q 2 P.M/, any prime p, any open subgroup
Kp � Kp and any smooth irreducible representation �p of M.Qp/, the degrees of the
numerators of the linear operators RQjP.�p; s/Kp are bounded by c logp levelGM .KP/

if Kp is hyperspecial, and by c.1C logp levelGM.Kp//, otherwise.

Property (BD) has been studied in [FLM3]. By [FLM3, Theorem 1, Proposi-
tion 6] we have the following theorem.

Theorem 4.12. The groups GL.n/ and SL.n/ satisfy (BD).

The property (BD) has the following consequence.

Proposition 4.13. Suppose that G satisfies (BD). Let M 2 L and let P;Q 2 P.M/
be adjacent parabolic subgroups. Then for all � 2 …disc.M.A//, for all open
subgroups K � Kfin and all � 2 ….K1/ we have
Z

iR

�
�
�
�RQjP.�; s/�1

d

ds
RQjP.�; s/

ˇ
ˇ
ˇ
IG
P .�/

�;K

�
�
�
� .1C jsj2/�1 ds

� 1C log.k�k C level.KIGCM//: (79)

The proof of the proposition follows from a generalization of Bernstein’s inequal-
ity [BE]. Suppose that G satisfies (TWN) and (BD). Combining (77) and (79) we
get an appropriate estimate for the corresponding integral involving the logarithmic
derivative of the intertwining operators.
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4.3 Application to the Limit Multiplicity Problem

The limit multiplicity property is a consequence of properties (TWN) and (BD).
The proof proceeds by induction over the Levi subgroups of G. The property that is
suitable for the induction procedure is not the spectral limit property, but a property
that we call polynomial boundedness (PB). This is a weaker version of the statement
of Conjecture 2.

We write D for the set of all conjugacy classes of pairs .M; ı/ consisting of a
Levi subgroup M of G.R/1 and a discrete series representation ı of M1, where M D
AM �M1 and AM is the largest central subgroup of M isomorphic to a power of R>0.
For any ı 2 D let ….G.R/1/ı be the set of all irreducible unitary representations
which arise by the Langlands quotient construction from the irreducible constituents
of IL

M.ı/ for Levi subgroups L � M. Here, IL
M denotes (unitary) induction from an

arbitrary parabolic subgroup of L with Levi subgroup M to L.

Definition 4.14. Let M be a set of Borel measures on ….G.R/1/. We call M
polynomially bounded (PB), if for all ı 2 D there exist Nı > 0 such that



�f� 2 ….G.R/1/ıW j�� j � Rg��ı .1C R/Nı

for all 
 2M and R > 0.

Now consider the measures 
K defined by (69). Let M 2 L and denote by
KM.N/ the congruence subgroups of M.Afin/, defined by (76). Denote by
M

KM.N/
the

measure defined by (71) with M in place of G. Then the key result is the following
lemma.

Lemma 4.15. Suppose that G satisfies (TWN) and (BD). Then for each M 2 L, the
collection of measures f
M

KM.N/
g, N 2 N, is polynomially bounded.

This has the consequence that if G satisfies (TWN) and (BD), then for every M ¤ G
and f 2 C1c;fin.G.R/

1/ we have

Jspec;M.f ˝ 1K.N//! 0

as N ! 1. Thus by Theorem 2.1 it follows that if G satisfies (TWN) and (BD),
then for every f 2 C1c;fin.G.R/

1/ we have

Jspec.f ˝ 1K.N//� tr Rdisc.f ˝ 1K.N//! 0

for n ! 1. Thus the spectral limit property is satisfied in this case. By
Theorems 4.9 and 4.12, the groups GL.n/ and SL.n/ satisfy (TWN) and (BD) and
therefore, the spectral limit property holds for GL.n/ and SL.n/.

To deal with the geometric limit property we use the coarse geometric expansion

JT.h/ D
X

o2O
JT
o .h/; h 2 C1c .G.A/1/; (80)
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(see (11) for the notation). Write Jo.f / D JT0
o .f /, which depends only on M0

and K. Let JT
unip be the contribution of the unipotent elements of G.Q/ to the

trace formula (11), which is a polynomial in T 2 aM0 of degree at most
d0 D dim aG

M0
[Ar7]. It can be split into the contributions of the finitely many

G. NQ/-conjugacy classes of unipotent elements of G.Q/. It is well known [[Ar7,
Corollary 4.4]] that the contribution of the unit element is simply the constant
polynomial vol.G.Q/nG.A/1/h.1/. Write

JT
unip�f1g.h/ D JT

unip.h/� vol.G.Q/nG.A/1/h.1/; h 2 C1c .G.A/1/:

Define the distributions Junip and Junip�f1g as JT0
unip and JT0

unip�f1g, respectively. Since
the groups K.N/ form a neighborhood basis of the identity element in G.sAfin/, it
is easy to see that for a given h 2 C1c .G.A/1/, for all but finitely many N one has

J.h˝ 1K.N// D Junip.h˝ 1K.N//: (81)

For any compact subset � � G.R/1 we write C1� .G.R/1/ for the Fréchet space
of all smooth functions on G.R/1 supported in � equipped with the seminorms
supx2�j.Xh/.x/j, where X ranges over the left-invariant differential operators on
G.R/. The key result is the following proposition.

Proposition 4.16. For any compact subset � � G.R/1 there exists a seminorm
jj 	 jj on C1� .G.R/1/ such that

jJunip�f1g.h˝ 1K.N//j � .1C log.N//

N
khk

for all h 2 C1� .G.R/1/ and all N 2 N.

The proof of Proposition 4.16 consists of a slight extension of Arthur’s arguments in
[Ar7]. Combining (81) and Proposition 4.16 the geometric limit property follows.
This completes the proof of Theorem 4.2 for F D Q. The case of a general F is
proved similarly. For details see [FLM2].

5 Analytic Torsion and Torsion in the Cohomology
of Arithmetic Groups

The theorem of DeGeorge and Wallach on limit multiplicities for discrete series
[DW1] implies the statement (4) on the approximation of L2-Betti numbers by
normalized Betti numbers of finite covers [AB2]. For towers of normal subgroups
of finite index, Lück [Lu1] proved this in the more general context of finite CW
complexes. This is part of his study of the approximation of L2-invariants by
their classical counterparts [Lu2]. A more sophisticated spectral invariant is the
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analytic torsion introduced by Ray and Singer [RS]. The study of the corresponding
approximation problem has interesting applications to the torsion in the cohomology
of arithmetic groups.

5.1 Analytic Torsion and L2-Torsion

Let X be a compact Riemannian manifold of dimension n and let �W�1.X/! GL.V/
a finite dimensional representation of its fundamental group. Let E� ! X be the
flat vector bundle associated with �. Choose a Hermitian fiber metric in E�. Let
�p.�/ be the Laplace operator on E�-valued p-forms with respect to the metrics on
X and in E�. It is an elliptic differential operator, which is formally self-adjoint and
non-negative. Since X is compact,�p.�/ has a pure discrete spectrum consisting of
sequence of eigenvalues 0 � �0 � �1 � 	 	 	 ! 1 of finite multiplicity. Let

�p.sI �/ WD
X

�j>0

��s
j (82)

be the zeta function of �p.�/. The series converges absolutely and uniformly on
compact subsets of the half-plane Re.s/ > n=2 and admits a meromorphic extension
to s 2 C, which is holomorphic at s D 0 [Shu]. Then the Ray-Singer analytic torsion
TX.�/ 2 R

C is defined by

TX.�/ WD exp

0

@1
2

nX

pD1
.�1/pp

d

ds
�p.sI �/

ˇ
ˇ
sD0

1

A : (83)

It depends on the metrics on X and E�. However, if dim.X/ is odd and � acyclic,
which means that H�.X;E�/ D 0, then TX.�/ is independent of the metrics [Mu3].
The analytic torsion has a topological counterpart. This is the Reidemeister torsion
T top

X .�/ (usually it is denoted by �X.�/), which is defined in terms of a smooth
triangulation of X [RS, Mu1]. It is known that for unimodular representations �
(meaning that j det�.�/j D 1 for all � 2 �1.X/) one has the equality

TX.�/ D T top
X .�/ (84)

[Ch, Mu1]. In the general case of a non-unimodular representation the equality does
not hold, but the defect can be described [BZ].

Let Xi ! X, i 2 N, be sequence of finite coverings of X. Let inj.Xj/ denote the
injectivity radius of Xj and assume that inj.Xj/!1 as j!1. Then the question
is: Does

log TXj.�/

vol.Xj/
(85)
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converge as j ! 1 and if so, what is the limit? For a tower of normal coverings
and the trivial representation �0 a conjecture of Lück [Lu2, Conjecture 7.4] states
that the sequence (85) converges and the limit is the L2-torsion, first introduced by
Lott [Lo] and Mathei [MV]. The L2-torsion is defined as follows. Recall that the
zeta function �p.s/ can be expressed in terms of the heat operator

�p.s/ D 1

�.s/

Z 1

0

.Tr
�
e�t�p

� � bp/t
s�1 dt;

where bp is the p-th Betti number and Re.s/ > n=2. Let e�te�p be the heat operator of
the Laplace operator e�p on p-forms on the universal coveringeX of X. LeteKp.t; x; y/

be the kernel of e�te�p . Note that eKp.t; x; y/ is a homomorphism of ƒpT�y .X/ to
ƒpT�x .X/. Let F � eX be a fundamental domain for the action of � WD �1.X/ on
eX. Then the �-trace of e�te�p.�/ is defined as

Tr�
�

e�te�p

�
WD
Z

F
treKp.t; x; x/ dx: (86)

The L2-Betti number b.2/p is defined as

b.2/p WD lim
t!1Tr�

�
e�te�p

�
:

In order to be able to define the Mellin transform of the �-trace one needs to know
the asymptotic behavior of Tr�.e�te�p/ as t! 0 and t!1. Using a parametrix for
the heat kernel which is pulled back from a parametrix on X, one can show that for
t ! 0, Tr�.e�te�p/ has an asymptotic expansion similar to the compact case [Lo].
For the large time behavior we need to introduce the Novikov-Shubin invariants

Q̨p D sup
n
ˇp 2 Œ0;1/WTr�

�
e�te�p

�
� b.2/p D O.t�ˇp=2/ as t!1

o
(87)

Assume that Q̨p > 0 for all p D 1; : : : ; n. Then the L2- torsion T.2/X 2 R
C can be

defined by

log T.2/X D
1

2

nX

pD1
.�1/pp


d

ds

�
1

�.s/

Z 1

0

Tr�

�
e�te�0

p

�
ts�1 dt

�ˇ̌
ˇ
ˇ
sD0

C
Z 1

1

t�1 Tr�
�

e�te�0
p

�
dt

�
; (88)

where e�0p denotes the restriction of e�p to the orthogonal complement of kere�p and
the first integral is defined near s D 0 by analytic continuation. This definition can
be generalized to all finite dimensional representations � of � , if the corresponding
Novikov-Shubin invariants are all positive. Then the L2-torsion T.2/X .�/ is defined as
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in (88). If there exists c > 0 such that the spectrum of�p.�/ is bounded from below
by c, then the integral

Z 1

0

Tr�
�

e�te�p.�/
�

ts�1 dt

converges for Re.s/ > n=2 and admits a meromorphic continuation to C which is
holomorphic at s D 0. Thus, if there is a positive lower bound of the spectrum of all
�p.�/, p D 1; : : : ; n, then T.2/X .�/ can be defined in the usual way by

log T.2/X .�/ D 1

2

nX

pD1
.�1/pp

d

ds

�
1

�.s/

Z 1

0

Tr�
�

e�te�p.�/
�

ts�1 dt

� ˇˇ
ˇ
ˇ
sD0
:

Let � D �1.X; x0/ and let .�i/i2N0 be a tower of normal subgroups of finite index of
� D �0. Let Xi D �ineX, i 2 N0, be the corresponding covering of X. Let TX and T.2/X
denote the analytic torsion and L2-torsion with respect to the trivial representation.
Lück [Lu2, Conjecture 7.4] has made the following conjecture.

Conjecture 3. For every closed Riemannian manifold X the L2-torsion T.2/X exists
and for a sequence of coverings .Xi ! X/i2N as above one has

lim
i!1

log TXi

Œ� W�i
D log T.2/X :

One is tempted to make this conjecture for any finite dimensional representation �.

5.2 Compact Locally Symmetric Spaces

Now we turn to the locally symmetric case. Let X D �neX, where eX D G=K is a
Riemannian symmetric space of non-positive curvature and � � G is a discrete,
torsion free, cocompact subgroup. Let � be an irreducible finite dimensional
complex representation of G. Let E� ! X be the flat vector bundle associated
with the representation � j� of � . By [MM], E� can be equipped with a canonical
Hermitian fiber metric, called admissible, which is unique up to scaling. Let �p.�/

be the Laplace operator on p-forms with values in E� , with respect to the choice of
any admissible fiber metric in E� . Let TX.�/ be the corresponding analytic torsion.
Let e�p.�/ be the Laplace operator on eE� -valued p-forms on eX. Let eE� ! eX be
the homogeneous vector bundle defined by � jK . By [MM] there is a canonical
isomorphism

E� Š �neE�
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and the metric on E� is induced by the homogeneous metric oneE� . Thus

C1.eX;eE� / Š .C1.G/˝ V� /
K : (89)

Let R be the right regular representation of G in C1.G/ and let R.�/ be the
operator in .C1.G/ ˝ V� /K induced by the Casimir element. Then with respect
to the isomorphism (89) we have

e�p.�/ D �R.�/C �� Id

(see [MM]). This implies that the heat operator e�te�p.�/ is a convolution operator
given by a kernel

Hp;�
t WG! End.ƒpp� ˝ V� /:

Let hp;�
t 2 C1.G/ be defined by hp;�

t .g/ D tr Hp;�
t .g/, g 2 G. Then it follows

from (86) that

Tr�
�

e�te�p.�/
�
D vol.X/hp;�

t .1/: (90)

Now one can use the Plancherel theorem to compute hp;�
t .1/ and determine its

asymptotic behavior as t ! 0 and t ! 1. For the trivial representation this was
carried out in [Ol] and for strongly acyclic � in [BV]. So let e�p.�/

0 be the restriction
of e�p.�/ to the orthogonal complement of the kernel of e�p.�/. Now let

Q̨p.X; �/ WD sup
n
ˇp 2 Œ0;1/WTr�

�
e�te�p.�/

0
�
D O.t�ˇp=2/ as t!1

o
; (91)

p D 0; : : : ; n, be the twisted Novikov-Shubin invariants. Assume that Q̨p.X; �/ > 0,

p D 0; : : : ; n. Then the L2-torsion T.2/X .�/ is defined. By [Ol, Theorem 1.1] this
is the case for the trivial representation. Furthermore, if � is strongly acyclic, then
Q̨p.X; �/ D 1 for all p. Using the definition of the L2-torsion, it follows that

log T.2/X .�/ D vol.X/t.2/eX .�/; (92)

where t.2/eX .�/ is a constant that depends only oneX and � .

Now let .�j/ be sequence of torsion free cocompact lattices in G. Let Xj D �jneX
and assume that inj.Xj/ !1 if j!1. A representation � WG ! GL.V/ is called
strongly acyclic, if there is c > 0 such that the spectrum of �Xj;p.�/ is contained in
Œc;1/ for all j 2 N and p D 0; : : : ; n.

Now let G be a connected semisimple algebraic Q-group. Let G D G.R/. Then
it is proved in [BV] that strongly acyclic representations exist. For such repre-
sentations Bergeron and Venkatesh [BV, Theorem 4.5] established the following
theorem.
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Theorem 5.1. Let � WG! GL.V/ be strongly acyclic. Then

lim
j!1

log.TXj.�//

vol.Xj/
D t.2/X .�/; (93)

where Xj D �jneX and inj.Xj/!1 as j!1.

The number t.2/X .�/ can be computed using the Plancherel theorem. Let ı.G/ D
rank.G/ � rank.K/ be the fundamental rank or “deficiency” of G. By [BV,
Proposition 5.2] one has

Proposition 5.2. If ı.G/ ¤ 1, then t.2/X .�/ D 0. For ı.G/ D 1 one has

.�1/ dimeX�1
2 t.2/X .�/ > 0:

We note that the simple Lie groups G with ı.G/ D 1 are SL3.R/ and SO.p; q/ with
pq odd, especially G D SO0.2mC 1; 1/ is a group with fundamental rank 1.

Next we briefly recall the main steps of the proof of Theorem 5.1. To indicate
the dependence of the heat operator and other quantities on the covering Xj, we use
the subscript Xj. The uniform spectral gap at 0 implies that there exist constants
C; c > 0 such that for all p D 0; : : : ; n, j 2 N and t � 1 one has

Tr
�

e�t�Xj ;p.�/
�
� Ce�tc vol.Xj/ (94)

(see [BV]). This is the key result that makes the method to work. Let

KXj.t; �/ WD
1

2

nX

pD1
.�1/pp Tr

�
e�t�Xj ;p.�/

�
: (95)

Using (94) it follows that the analytic torsion can be defined by

log TXj.�/ D
d

ds

�
1

�.s/

Z 1

0

KXj.t; �/t
s�1 dt

� ˇˇ
ˇ
ˇ
sD0
: (96)

Let T > 0. Then we can split the integral and rewrite the right-hand side as

log TXj.�/ D
d

ds

�
1

�.s/

Z T

0

KXj.t; �/t
s�1 dt

� ˇˇ̌
ˇ
sD0
C
Z 1

T
KXj.t; �/t

�1 dt:

By (94) there exist C; c > 0 such that

1

vol.Xj/

ˇ
ˇ
ˇ
ˇ

Z 1

T
KXj.t; �/t

�1 dt

ˇ
ˇ
ˇ
ˇ � Ce�cT (97)
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for all j 2 N0 and T > 1. To deal with the first term one can use the Selberg trace
formula. Put

k�t WD
1

2

nX

pD1
.�1/pphp;�

t :

Then the Selberg trace formula gives

KXj.t; �/ D vol.Xj/k
�
t .1/C HXj.k

�
t /;

where HXj.k
�
t / is the contribution of the hyperbolic conjugacy classes. Using (90)

and the definition of k�t , it follows that

d

ds

�
1

�.s/

Z T

0

k�t .1/t
s�1 dt

� ˇˇ
ˇ
ˇ
sD0
D t.2/eX .�/C O

�
e�cT

�

as T !1. Regrouping the terms of the hyperbolic contribution HXj.k
�
t / as in (67) it

follows that the corresponding integral divided by vol.Xj/ converges to 0 as j!1.
This proves the theorem.

One expects Theorem 5.1 to be true in general. However, if there is no spectral
gap at zero, one cannot argue as above. The key problem is to control the
small eigenvalues as j ! 1. Sufficient conditions on the behavior of the small
eigenvalues are discussed in [Lu2] and in the 3-dimensional case also in [BSV].

In view of the potential applications to the cohomology of arithmetic groups,
discussed in the next section, it is very desirable to extend Theorem 5.1 to the
non-compact case. The first problem one faces is that the corresponding Laplace
operators have a nonempty continuous spectrum and therefore, the heat operators
are not trace class and the analytic torsion cannot be defined as above. This problem
has been studied by Raimbault [Ra1] for hyperbolic 3-manifolds and in [MP2] for
hyperbolic manifolds of any dimension.

So let G D SO0.n; 1/, K D SO.n/ and eX D G=K. Equipped with a
suitably normalized G-invariant metric, eX becomes isometric to the n-dimensional
hyperbolic space H

n. Let � � G be a torsion free lattice. Then X D �neX is
an oriented n-dimensional hyperbolic manifold of finite volume. As above, let
� WG ! GL.V/ be a finite dimensional complex representation of G. The first step
is to define a regularized trace of the heat operators e�t�p.�/. To this end one uses
an appropriate height function to truncate X at sufficient high level Y > Y0 to get
a compact manifold X.Y/ � X with boundary @X.Y/, which consists of a disjoint
union of n � 1-dimensional tori. Let Kp;� .t; x; y/ be the kernel of the heat operator
e�t�p.�/. Using the spectral resolution of �p.�/, it follows that there exist ˛.t/ 2 R

such that
R

X.Y/ tr Kp;� .t; x; x/ dx � ˛.t/ log Y has a limit as Y !1. Then we define
the regularized trace as

Trreg
�
e�t�p.�/

� WD lim
Y!1

�Z

X.Y/
tr Kp;� .t; x; x/ dx � ˛.t/ log Y

�
: (98)
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We note that the regularized trace is not uniquely defined. It depends on the choice
of truncation parameters on the manifold X. However, if X0 D �0nHn is given
and if truncation parameters on X0 are fixed, then every finite covering X of X0 is
canonically equipped with truncation parameters, namely one simply pulls back the
height function on X0 to a height function on X via the covering map.

Let 	 be the Cartan involution of G with respect to K D SO.n/. Let �	 D � ı 	 .
If � 6Š �	 , it can be shown that Trreg

�
e�t�p.�/

�
is exponentially decreasing as t !

1 and admits an asymptotic expansion as t ! 0. Therefore, the regularized zeta
function �reg;p.sI �/ of �p.�/ can be defined as in the compact case by

�reg;p.sI �/ WD 1

�.s/

Z 1

0

Trreg
�
e�t�p.�/

�
ts�1 dt: (99)

The integral converges absolutely and uniformly on compact subsets of the half-
plane Re.s/ > n=2 and admits a meromorphic extension to the whole complex
plane, which is holomorphic at s D 0. So in analogy with the compact case, the
regularized analytic torsion TX.�/ 2 R

C can be defined by the same formula (83).
In even dimension the analytic torsion is rather trivial. Therefore, we assume that

n D 2mC1. Furthermore, for technical reasons we assume that every lattice � � G
satisfies the following condition: For every �-cuspidal parabolic subgroup P of G
one has

� \ P D � \ NP; (100)

where NP denotes the unipotent radical of P. Let �0 be a fixed lattice in G and let
X0 D �0neX. Let �j, j 2 N, be a sequence of finite index torsion free subgroups of �0.
This sequence is called to be cusp uniform, if the tori which arise as cross sections
of the cusps of the manifolds XJ WD �jneX satisfy some uniformity condition (see
[MP2, Definition 8.2]).

The following theorem and its corollaries are established in [MP2]. One of the
main results of [MP2] is the following theorem which may be regarded as an analog
of Theorem 5.1 for oriented finite volume hyperbolic manifolds.

Theorem 5.3. Let �0 be a lattice in G and let �i, i 2 N, be a sequence of finite-
index normal subgroups which is cusp uniform and such that each �i, i � 1, is
torsion-free and satisfies (100). If limi!1Œ�0 W �i D 1 and if each �0 2 �0 � f1g
only belongs to finitely many �i, then for each � with � ¤ �	 one has

lim
i!1

log TXi.�/

Œ� W �i
D t.2/

Hn .�/ vol.X0/: (101)

In particular, if under the same assumptions �i is a tower of normal subgroups, i.e.
�iC1 � �i for each i and \i�i D f1g, then (101) holds.
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For hyperbolic 3-manifolds, Theorem 5.3 was proved by Raimbault [Ra1] under
additional assumptions on the intertwining operators. We emphasize that the above
theorem holds without any additional assumptions.

Now we specialize to arithmetic groups. First consider �0 WD SO0.n; 1/.Z/.
Then �0 is a lattice in SO0.n; 1/. For q 2 N let �.q/ be the principal congruence
subgroup of �0 of level q. Using a result of Deitmar and Hoffmann [DH], it
follows that the family of principal congruence subgroups �.q/ is cusp uniform
[MP2, Lemma 10.1]. Thus Theorem 5.3 implies the following corollary (see [MP2,
Corollary 1.3]).

Corollary 5.4. For any finite dimensional irreducible representation � of SO0.n; 1/
with � 6Š �	 the principal congruence subgroups �.q/, q � 3, of �0 WD
SO0.n; 1/.Z/ satisfy

lim
q!1

log TXq.�/

Œ� W�.q/ D t.2/
Hn .�/ vol.X0/;

where Xq WD �.q/nHn and X0 WD �0nHn.

We recall that by Proposition 5.2 we have .�1/ n�1
2 t.2/

Hn .�/ > 0.
Next we consider the 3-dimensional case. We note that every lattice � �

SO0.3; 1/ can be lifted to a lattice � 0 � Spin.3; 1/. Moreover, recall that there is
a natural isomorphism Spin.3; 1/ Š SL2.C/. If � is the standard representation of
SL2.C/ on C

2, then the finite dimensional irreducible representations of SL2.C/
are given by Symp � ˝ Symq N�, p; q 2 N, where Symk denotes the k-th symmetric
power and N� denotes the complex conjugate representation to �. One has .Symp �˝
Symq N�/	 D Symq �˝Symp N�. For D 2 N square free let OD be the ring of integers
of the imaginary quadratic field Q.

p�D/ and let �.D/ WD SL2.OD/. Then �.D/
is a lattice in SL2.C/. If a is a non-zero ideal in OD, let �.a/ be the associated
principal congruence subgroup of level a. Then Theorem 5.1 implies the following
corollary (see [MP2, Corollary 1.4]).

Corollary 5.5. Let D 2 N be square free. Let ai be a sequence of non-zero ideals
in OD such that each N.ai/ is sufficiently large and such that limi!1 N.ai/ D 1.
Put XD WD �.D/nH3 and Xi WD �.ai/nH3. Let � D Symp �˝ Symq N� with p ¤ q.
Then one has

lim
i!1

log TXi.�/

Œ�.D/W�.ai/
D t.2/

H3
.�/ vol.XD/:
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5.3 Applications to the Cohomology of Arithmetic Groups:
The Cocompact Case

Theorem 5.1 has interesting consequences for the cohomology of arithmetic groups.
Let � � G be a discrete, torsion free, cocompact subgroup. Let � WG ! GL.V/ be
a finite dimensional real representation and let E ! X be the associated vector
bundle. Choose a fiber metric h in E. Assume that there exist a �-invariant lattice
M � V . Let M be the associated local system of free Z-modules over X. Then we
have E DM˝ R. Let H�.X;M/ be the cohomology of X with coefficients in M.
Each Hq.X;M/ is a finitely generated Z-module. Let Hq.X;M/tors be the torsion
subgroup and

Hq.XIM/free D Hq.X;M/=Hq.X;M/tors:

We identify Hq.X;M/free with a subgroup of Hq.X;E/. Let h	; 	iq be the inner
product in Hq.X;E/ induced by the L2-metric on Hq.X;E/. Let e1; : : : ; erq be a
basis of Hq.X;M/free and let Gq be the Gram matrix with entries hek; eli. Put

Rq.�; h/ D
q
j det Gqj; q D 0; : : : ; n:

Define the “regulator” R.�; h/ by

R.�; h/ D
nY

qD0
Rq.�; h/

.�1/q : (102)

Recall that the Reidemeister torsion T top
X .�; h/ depends on the metric h through

the choice of an orthonormal basis in the cohomology H�.X;E/, where the inner
product in H�.X;E� / is defined as above. The key result relating Reidemeister
torsion and cohomology is the following proposition.

Proposition 5.6. Let � be a unimodular representation of � on a finite-dimensional
R-vector space V. Let M � V be a �-invariant lattice and let M be the associated
local system of finitely generated free Z-modules on X. Let h be a fiber metric in the
flat vector bundle E DM˝ R. Then we have

T top
X .�; h/ D R.�; h/ 	

nY

qD0
jHq.X;M/torsj.�1/qC1

: (103)

Especially, if � j� is acyclic, i.e., if H�.X;E/ D 0, then T top
X .�; h/ is independent of

h and we denote it by T top
X .�/. Moreover, R.�; h/ D 1. Then H�.X;M/ is a torsion

group and one has

T top
X .�/ D

nY

qD0
jHq.X;M/j.�1/qC1

:
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Representations � of G which admit a �-invariant lattice arise in the following
arithmetic situation. Let G be a semisimple algebraic group defined over Q and
let G D G.R/. Let � � G.Q/ be an arithmetic subgroup. Let V0 be a Q-vector
space and let �WG! GL.V0/ be a rational representation. Then there exists a lattice
M � V0 which is invariant under � and V0 D M ˝Z Q. Let V D V0 ˝Q R and let
� WG ! GL.V/ be the representation induced by �. Then M � V is a �-invariant
lattice.

Assume that � � G.Q/ is cocompact in G (equivalently assume that G is
anisotropic). Then it is proved in [BV] that strongly acyclic arithmetic �-modules
M exist. Assume that ı.G/ D 1. Let M be a strongly acyclic arithmetic �-module.
Then by (84), Theorem 5.1 and Proposition 5.2 it follows that there exists a constant
C > 0, which depends on G and M, such that

lim
j!1

nX

kD0
.�1/kC dim.eX/�1

2
log jHk.Xj;M/j

Œ� W�j
D C vol.�neX/ (104)

(see [BV, (1.4.2)]). This implies the following theorem of Bergeron and Venkatesh
[BV, Theorem 1.4].

Theorem 5.7. Suppose that ı.eX/ D 1. Then strongly acyclic arithmetic �-modules
exist. For any such module M,

lim inf
j

X

k�a.mod 2/

log jHk.Xj;M/j
Œ� W�j

� C vol.�neX/;

where a D .dim.eX/� 1/=2 and C > 0 depends only on G and M.

In Theorem 5.7, one cannot in general isolate the degree which produces torsion. A
conjecture of Bergeron and Venkatesh [BV, Conjecture 1.3] claims the following.

Conjecture 4. The limit

lim
j!1

log jHk.Xj;M/torsj
Œ� W�j

exists for each k and is zero unless ı.G/ D 1 and k D dim.eX/�1
2

. In that case, it
is always positive and equal to a positive constant CG;M, which can be explicitly
described, times vol.�neX/.
An example, for which this conjecture can be verified is G D SL.2;C/.

If the representation � of G is not acyclic, various difficulties occur. First of all,
the spectrum of the Laplace operators has no positive lower bound which causes
the problem with the small eigenvalues discussed above in the context of analytic
torsion. Secondly the regulator R.�; h/ is in general nontrivial. It turns out to be
rather difficult to control the growth of the regulator. Of particular interest is the case
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of the trivial representation, i.e., the integer homology Hk.Xj;Z/. The 3-dimensional
case has been studied in [BSV]. In this paper the authors discuss conditions which
imply that the results of [BV] on strongly acyclic local systems can be extended to
the case of the trivial local system. There are conditions on the cohomology and the
spectrum of the Laplace operator on 1-Forms. The conditions on the spectrum are
as follows. Let .�i/i2N be a sequence of cocompact congruence subgroups of a fixed
arithmetic subgroup � � SL.2;C/. Let Xi D �inH3 and put Vi WD vol.Xi/. Let �.i/j
j 2 N, be the eigenvalues of the Laplace operator on 1-forms of Xi. Assume:

(1) For every " > 0 there exists c > 0 such that

lim sup
i!1

1

Vi

X

0<�
.i/
j �c

j log�.i/j j � ":

(2) b1.Xi;Q/ D o. Vi
log Vi

/.

Let TXi be the analytic torsion with respect to the trivial local system. As shown in
[BSV], conditions (1) and (2) imply that

log TXi

Vi
�! t.2/

H3
D � 1

6�
; i!1:

Unfortunately, it seems to be difficult to verify (1) and (2). The other problem is
to estimate the growth of the regulator (see [BSV]). We note that condition (1) is
equivalent to the following condition (10).

(10) Let d
1 be the spectral measure of e�1. For every c > 0 one has

1

Vi

X

0<�
.i/
j �c

log�.i/j �!
Z c

0

log� d
1.�/; i!1:

There is a certain similarity with the limit multiplicity problem.
Finally we note that there is related work by Calegari and Venkatesh [CaV] who

use analytic torsion to compare torsion in the cohomology of different arithmetic
subgroups of SL.2;C/ and establish a numerical form of a Jacquet-Langlands
correspondence in the torsion case.

5.4 The Finite Volume Case

Many important arithmetic groups are not cocompact. So it is desirable to extend
the results of the previous section to the finite volume case. In order to achieve this
one has to deal with the following problems.
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(1) Define an appropriate regularized version T reg
X .�/ of the analytic torsion for

a finite volume locally symmetric space X D �neX and establish the analog
of (93). So let �j � � be a sequence of subgroups of finite index and
Xj WD �jneX, j 2 N. Assume that vol.Vj/ ! 1. Under appropriate additional
assumptions on the sequence .�j/j2N one has to show that

lim
j!1

log T reg
Xj
.�/

vol.Xj/
D t.2/eX .�/:

(2) Show that T reg
X .�/ has a topological counterpart T top

X .�/, possibly the Reide-
meister torsion of an intersection complex.

(3) If E� is arithmetic, i.e., if there is a local system of finite rank free Z-modules
M over X such that E� DM˝ R, establish an analog of (103).

(4) Estimate the growth of the regulator.

For hyperbolic manifolds (1) has been proved in [Ra1] in the 3-dimensional case
and in [MP1] and [MP2] in general. It would be very interesting to extend these
results to the higher rank case. SL.3;R/ seems to be doable.

Raimbault [Ra2] has studied (2) in the 3-dimensional case and established a kind
of asymptotic equality of analytic and Reidemeister torsion, which is sufficient for
the present purpose. Of course, the goal is to prove an exact equality. For hyperbolic
manifolds there is some recent progress [AR]. Unfortunately, this paper does not
cover the relevant flat bundles. The method requires that the flat bundle can be
extended to the boundary at infinity. This is not the case for the flat bundles which
arise from representations of G by restriction to � . Pfaff [Pf] has established a gluing
formula for the regularized analytic torsion of a hyperbolic manifold, which reduces
the problem to the case of a cusp.

(4) has been studied by Raimbault [Ra2] for 3-dimensional hyperbolic manifolds.
It turns out to be very difficult. The real cohomology never vanishes. There is
always the part of the cohomology coming from the boundary. This is the Eisenstein
cohomology introduced by Harder [Ha]. These cohomology classes are represented
by Eisenstein classes, which are rational cohomology classes. The problem is to
estimate the denominators of the Eisenstein classes which seems to be a hard
problem.
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Families of L-Functions and Their Symmetry

Peter Sarnak, Sug Woo Shin, and Nicolas Templier

Abstract A few years ago the first-named author proposed a working definition of
a family of automorphic L-functions. Then the work by the second and third-named
authors on the Sato–Tate equidistribution for families made it possible to give a
conjectural answer for the universality class introduced by Katz and the first-named
author for the distribution of the zeros near sD 1/2. In this article we develop these
ideas fully after introducing some structural invariants associated to the arithmetic
statistics of a family.
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1 Definition of Families and Conjectures

The zoo of automorphic cusp forms � on G D GLn over Q correspond bijectively
to their standard completed L-functions ƒ.s; �/ and they constitute a countable
set containing species of different types. For example, there are self-dual forms,
ones corresponding to finite Galois representations, to Hasse–Weil zeta functions
of varieties defined over Q, to Maass forms, etc. From a number of points of
view (including the nontrivial problem of isolating special forms) one is led to
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study suchƒ.s; �/’s in families in which the �’s have similar characteristics. Some
applications demand the understanding of the behavior of the L-functions as � varies
over a family. Other applications involve questions about an individual L-function.
In practice a family is investigated as it arises.

For example, the density theorems of Bombieri [Bomb] and Vinogradov [Vin65]
are concerned with showing that in a suitable sense most Dirichlet L-functions have
few violations of the Riemann hypothesis, and as such it is a powerful substitute
for the latter. Other examples are the GL2 subconvexity results which are proved
by deforming the given form in a family (see [IS00] and [MV10] for accounts). In
the analogous function field setting the notion of a family of zeta functions is well
defined, coming from the notion of a family of varieties defined over a base. Here
too the power of deforming in a family in order to understand individual members
is amply demonstrated in the work of Deligne [Del80]. In the number field setting
there is no formal definition of a family F of L-functions.

Our aim is to give a working definition [Sarn08] for the formation of a family
which will correspond to parametrized subsets of A.G/, the set of isobaric automor-
phic representations on G.A/. As far as we can tell these include almost all families
that have been studied. For the most part our families can be investigated using
the trace formula, monodromy groups in arithmetic geometry and the geometry
of numbers. We introduce below the following invariants of a family: Sato–Tate
measure, indicators, homogeneity type, rank and average root number. Thereby we
put forth some structural properties of the arithmetic statistics of families and wish it
to contribute towards a general framework. These invariants lead to a determination
of the distribution of the zeros near s D 1

2
of members of the family. For the high

zeros of a given ƒ.s; �/, it was shown in [RS96] that the local scaled spacing
statistics follows the universal GUE laws (Gaussian Unitary Ensemble). We find
that the low-lying zeros (i.e., near s D 1

2
) of a family F follow one of the three

universality classes computed in [KS-b] as the scaling limits of monodromy groups.
For the purpose of defining a family we will assume freely various standard

conjectures when convenient. While many of these are well out of reach, important
special cases are known and in passing to families they become approachable. We
begin by reviewing some notation and invariants associated with individual �’s.

Any � 2 A.G/ decomposes as an isobaric sum � D �1��2� 	 	 	��r with �j an
automorphic cusp form on GLnj , n1Cn2C	 	 	Cnr D n [JPSS83]. Correspondingly
ƒ.s; �/ D ƒ.s; �1/ƒ.s; �2/ 	 	 	ƒ.s; �r/ and this reduces the study to that of cusp
forms, which will be our main focus. Here and elsewhere the central character of
� is normalized to be unitary and the functional equation relates ƒ.s; �/ to ƒ.1 �
s; Q�/, where Q� is the representation contragradient to � . Furthermore we assume
that the central character of � is trivial when restricted to R>0 (equivalently is of
finite order). Denote by Acusp.G/ the subset of cuspidal automorphic representations
on G. By our normalization this is a countable set. For � 2 Acusp.G/ its conductor
N.�/ is a positive integer defined as the product over appropriate powers of various
primes v at which �v is ramified (here � ' ˝v�v). It is the integer appearing
in the functional equation forƒ.s; �/ (see [GJ72]). The analytic conductor C.�/ as
defined in [IS00] is the product of N.�/ with a factor coming from �1. The analytic
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conductor measures the “complexity” of � (and also the local density of zeros of
ƒ.s; �/ near s D 1

2
) much like the height of rational points in diophantine analysis.

As in that setting the set S.x/ D f�; C.�/ < xg is finite (see [Brum06]). It would
be interesting to derive a Weyl–Schanuel type theorem for this “universal” family,
giving the asymptotic behavior of S.x/ as x goes to infinity.1 We will use C.�/ to
order the elements of a family F � Acusp.G/. The root number ".�/ D ". 1

2
; �/ is a

complex number of unit modulus that occurs as the sign of the functional equation
relatingƒ.s; �/ to ƒ.1� s; Q�/ ([GJ72]). We say that � is self-dual if � D Q� and in
this case ".�/ D ˙1. For a self-dual� ,ƒ.s; ���/ D ƒ.s; �; sym2/ƒ.�; s;^2/ and
� is said to be orthogonal or symplectic according to the first or the second factor
above carrying the pole at s D 1 (in the orthogonal case � is a standard functorial
transfer of a form on a symplectic group or an even orthogonal group and similarly
for the symplectic case from an odd orthogonal group). The symplectic case can
only occur if n is even, and if � is orthogonal then ".�/ D 1 ([Lapid] and [Art13,
Theorem 1.5.3.(b)]).

The question of the distribution of �v as v varies over the primes is the
generalized Sato–Tate problem and its formulation is problematic. Each �v is a
point in the unitary dual of G.Qv/ and according to the generalized Ramanujan
conjectures it lies in the tempered dual 1G.Qv/

temp if � is cuspidal (see [Sarn05]).
Moreover for v large �v is unramified and hence can be identified with a diagonal
unitary matrix .˛�v .1/; : : : ; ˛�v .n// that is a point in an n-dimensional torus quotient
Tc=W, where Tc is the product of n unit circles and W is the permutation group
on n letters (we divide by W since the matrix is only determined up to GLn.C/

conjugacy). The generalized Sato–Tate conjecture asserts that these �v’s become
equidistributed with respect to a measure 
ST.�/ on Tc (or more precisely Tc=W) as
v ! 1. If � corresponds to a finite irreducible Galois representation �, whose
image is denoted B � GLn.C/, then 
ST.�/ exists by the Chebotarev density
theorem and is equal to the push forward 
B of Haar measure on B to the tempered
conjugacy classes G#

c ' Tc=W of Gc ' U.n/, a maximal compact subgroup which
is isomorphic to a compact unitary group. Langlands [Lan04] suggests that for any �
there is a (possibly non-connected) reductive algebraic subgroup B of GLn.C/ such
that 
ST.�/ D 
B where the latter denotes the pushforward of the Haar measure on
B \ Gc. In [Ser12] Serre gives a precise formulation in terms of Lie group data and
a constructive approach when � comes from geometry. In any case it follows from
the analytic properties of ƒ.s; �/ and ƒ.s; � � Q�/ that

Z

Tc

�.t/
ST.t/ D
Z

Bc

.˛1.	/C 	 	 	 C ˛n.	//
B.	/ D 0
Z

Tc

j�.t/j2 
ST.t/ D
Z

Bc

j˛1.	/C 	 	 	 C ˛n.	/j2 
B.	/ D 1
(1)

1Brumley–Milicevic [BM] have recently done so for GL.2/=Q.
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where �.t/ D tr.t/. Hence B is irreducible in GLn.C/. In general it may happen
that 
B1 D 
B2 for B1 not conjugate to B2 in GLn.C/ (see [AYY]), so that B may
not be determined up to conjugacy. For our purposes it is 
B that is important, so
let I.T/ WD I#.GLn.C// denote the countable set of probability measures that come
from irreducible subgroups B as above. Langlands’s assertion is that 
ST.�/ is in
I.T/ and we will then loosely speak of � being of type B if 
ST.�/ D 
B, even if B
is not unique.

We turn to our formulation of a parametric family F of automorphic representa-
tions on G. F D .W;F/ consists of a parameter space W and a map F W W ! A.G/,
and is based on two very general conjectural means of constructing automorphic
forms: spectral and geometric.

Harmonic Families Let H be a connected reductive algebraic group defined over
Q and A.H/ the set of discrete automorphic representations on H.A/. A harmonic
(spectral) set H of forms on H is a subset of A.H/ consisting of forms � which are
unramified outside of a finite set of places, or for which �v 2 Bv for v in a finite
set of places and Bv is a nice subset of positive Plancherel measure in the unitary
dual 1H.Qv/, or a hybrid of these conditions. The important thing is that these sets
H can be isolated using the trace formula on H.Q/nH.A/. Let r W LH ! LG be a
representation of the corresponding Langlands dual group, then functoriality gives
a map r� W H! A.G/ and defines a parametric family F D .H; r�/ of automorphic
representations on G.

Geometric Families These parametric families come from zeta functions which
are formed from counting solutions to algebraic equations over finite fields, namely
Dedekind zeta functions and Hasse–Weil zeta functions. Let W be an open dense
subscheme of Am

Q
D SpecQŒW1; : : : ;Wm (or ZŒW1; : : : ;Wm if we work over Z)

with W1; : : : ;Wm transcendental parameters. Let X be a smooth and proper scheme
over W with integral fibers. So specializing the base to w D .w1; : : : ;wm/ 2W.Q/

yields a smooth proper variety Xw over Q.
As part of the data defining the corresponding parametric family we may restrict

the w’s locally overR to lie in a real projective cone C to ensure that the discriminant
D.w/ (see Remark (i) below) corresponding to the family has controlled size in
terms of the height of w as a point of Pm.Q/. Put W D C\W.Q/. For the w’s in W
we get in this way a Hasse–Weil L-function (if Xw is zero dimensional, a Dedekind
zeta function) on the étale cohomology group in a fixed degree d

L.s;Hd
Ket.Xw �Q Q;Ql// (2)

by specializing to w. (See Appendix 1 below for the definition. It involves a choice
of a field isomorphism � W Ql ' C, though the expectation is that (2) is independent
of the choice.) Note that the dimension n of the d-th cohomology of the closed
fibers of X is constant over W. Assuming the modularity conjecture (Conjecture 4 in
Appendix 1) we get a map F W W ! A.G/ D A.GLn/ such that F.w/ is the j det jd=2-
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twist of the automorphic representation corresponding to (2) (so that L.s;F.w// D
L.s C d

2
;Hd

et.Xw �Q Q;Ql//). This gives us a parametric family F D .W;F/ of
automorphic forms.

Remarks. (i) Our aim is a statistical study of members of the family. For
parametric families F D .W;F/ this means ordering the members according to
the sets

fw 2 W W C.F.w// < xg ;
and this can be achieved with the caveat that one first replaces C.F.w// by a
dominating gauge function D.w/ D Disc.Xw/ which approximates C.F.w//.
There are many cases for which F is essentially one-to-one and then F.W/ is a
parametrized subset of A.G/. We call such a subset a parametrized family,
where we can drop the parameter space W since the study of F.W/ when
ordered by conductor does not depend on the parametrization.

(ii) Various operations can be performed on parametric families such as union;
F[F0 which is the family with parameter space W tW 0 and the corresponding
map F or F0. For the product F � F0 we take as parameters W � W 0 and the
map F.w/ � F.w0/, where the last is the Rankin product giving a form on
GLnn0 if F is on GLn and F0 on GLn0 . (The product � � � 0 corresponds to the
functorial map � ˝ �0 where � and �0 are the standard representations of GLn

and GLn0 .) In this product setting we allow one of the factors to be a singleton
in forming the product family. One is tempted to form other Boolean operations
such as intersections on parametrized families and this can be done (yielding
new families) in many cases. However in general global diophantine equations
on the parameters W intervene and these can lead to subsets of A.G/ which are
not families in our sense and which don’t obey any of the predictions below
(see Sect. 3).

(iii) There are various subsets of A.G/ which aren’t realized in terms of our
general constructions which form natural families and which probably obey the
conjectures below. These are defined through Galois and class groups and other
arithmetic invariants. For example, the set of �’s which correspond to finite
Galois representations, and among these the set of �’s for which the image of
the corresponding Galois representation is a given group B (up to conjugation).
Another is the set of Hecke zeta functions of class groups of number fields of a
given degree, cf. Sect. 3.5 below. While abelian H’s above can be studied to the
same extent as our general families using class field theory, we don’t know how
to study these families in any generality and hence we do not include them as
part of the general definition. Note, however, that one can often produce large
parametric subfamilies of these arithmetic “families.”

(iv) The twist by j det jd=2 in the definition of a geometric family .W;F/ is
introduced to ensure that the (non-archimedean) local components of � D
F.w/ are unitary, cf. the remark below Conjecture 1 and the last paragraph of
Appendix 1.
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With the definition of a parametric family in place we put forth the basic
conjectures about them. These may look far-fetched at first, but unlike the study
of individual forms, they can be studied and there is ample evidence (by way of
proof) for the conjectures. We will give various examples in Sect. 2.

For � 2 A.G/ we write the finite part of its standard L-function as

L.s; �/ D
Y

v<1
L.s; �v/ D

1X

nD1

��.n/

ns
: (3)

In studying a (harmonic or geometric) parametric family F D .W;F/ the first thing
one needs to count asymptotically is

jF.x/j D
X

wW C.F.w//<x

1: (4)

Since with our normalization there are finitely many automorphic representations
� 2 A.G/ of conductor less than x, this count is indeed finite as soon as F is finite-
to-one. This means that there are obvious cases that should be excluded, for example
if the L-map r were to factor through LH ! WQ for harmonic families or if X
were isotrivial for geometric families. If F is not finite-to-one, we impose suitable
constraints on the parameter space such as restriction to a projective cone in the
geometric setting which renders the finiteness (see Sect. 2.1).

Also implicit in our definition is the requirement that a family has infinite
cardinality. This infiniteness is not strictly necessary at first since, for example,
Conjecture 1 below reduces to the Sato–Tate conjecture for an individual represen-
tation but then as we move on to finer arithmetic invariants and to the universality
conjecture this becomes critical. Thus we assume from now on that the parameter
space W is infinite. Then jF.x/j ! 1 as x ! 1 and we expect an asymptotic for
jF.x/j that is a power of x, possibly with logarithms attached.

The following more general vertical limits should exist as x!1 with a modest
uniformity in n > 1:

X

wW C.F.w//<x

�F.w/.n/ D tF.n/ 	 jF.x/j C O.nA jF.x/jı/ (5)

for some A <1 and ı < 1. As mentioned before it is understood that in practice the
ordering by conductor is often replaced by a closely related ordering involving an
approximation in terms of the parameters in the family. Also in some explicit cases
one might look at shells fw W x < C.F.w// < xC Hg rather than balls, as smaller
sets give finer individual information.

The structure of the limits in (5) can be described in terms of p-adic densities.
Each � 2 A.G/ determines a point .�1; �2; �3; �5; : : :/ in

Q
v
3GLn.Qv/, with its

product topology (and �v is unramified for v large enough).
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Conjecture 1 (Sato–Tate Conjecture for F). There is p0 D p0.F/ > 0 such
that if we order the w’s in W by C.F.w// then F.w/ is equidistributed in Y WD
Q

p>p0

3GLn.Qp/ with respect to a measure 
.F/ satisfying:

(i) it is a probability measure and is supported on the tempered spectrum, hence
the same holds for 
p.F/ the projection of 
.F/ on 3GLn.Qp/,

(ii) it has a decomposition as a convex sum 
.F/ D �1 C �2 C 	 	 	 C �r of positive
measures such that each �j is a product measure on Y,

(iii) the average of the 
p.F/ over p exists and defines the Sato–Tate measure

ST.F/ on T, that is

lim
x!1

1

x

X

p06p<x

log p 	 
p.F/jT DW 
ST.F/ (6)

(for many families there is no need to average over p as lim
p!1
p.F/jT D


ST.F/),
(iv) 
ST.F/ is a probability measure and lies in the convex hull of I.T/.

The intuition for (iv) is clear enough,
ST.F/ is a mixture of the measures
ST.�/

for the “generic” � in F.W/. The decomposition asserts that only finitely many
B-types occur generically in F.

Remark. An analogous conjecture can be stated for the harmonic set H itself
without any reference to the L-morphism r. In this case 3GLn.Qp/ should be replaced

by the unitary dual 1H.Qp/, and H would be ordered by an invariant analogous to the
conductor. This analogue of Conjecture 1 is treated in [ST16], for example. See
Sect. 2.5 below for more details.

Remark. A priori F.w/may not define a point in Y but one can simply interpret the
equidistribution in the conjecture as asserting in particular that the number of w such
that F.w/ does not lie in Y is statistically negligible. In other words, we need not
assume that the local components �p (for p > p0) are unitary for each � D F.w/
to make sense of the conjecture, though we do expect them to be always unitary.
For harmonic families, the unitarity of �p is standard (assuming the Langlands
functoriality map for r� is compatible with the transfer of A-parameters via r) and
comes down to the fact that the local A-parameters for GLn.Qp/ correspond to
unitary representations. For geometric families, the unitarity is known in the case
of good reduction but generally conditional on the weight-monodromy conjecture,
cf. Remark (iv) above and Appendix 1.

For our purpose only some cruder invariants of 
ST.F/ are critical. These are the
following indicators:
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i1.F/ D
Z

T
j�.t/j2 
ST.F/.t/

i2.F/ D
Z

T
�.t/2 
ST.F/.t/

i3.F/ D
Z

T
�.t2/ 
ST.F/.t/

(7)

where �.t/ D tr.t/. We note the following equality:

i3.F/ D lim
x!1

1

x

X

p<x

tF.p
2/ log p: (8)

Assuming (5) and the Riemann hypothesis for the relevant L-functions one can
show the following.

(i) i1.F/ > 1 and i1.F/ D 1 iff almost all F.w/’s are cuspidal. In this case we say
that F is essentially cuspidal and for the most part we assume that this is the
case. So for our statistical distribution questions the family is in Acusp.G/.

(ii) 0 6 i2.F/ 6 1 and i2.F/ D 1 iff almost all F.w/’s are self-dual and i2.F/ D 0
iff almost all F.w/’s are not self-dual. In the former case we say that F is
essentially self-dual and in the latter case F is non self-dual. Note that i2.F/ D
0) i3.F/ D 0.

(iii) �1 6 i3.F/ 6 1 and i3.F/ D 1 iff almost all F.w/’s are orthogonal and
i3.F/ D �1 iff almost all F.w/’s are symplectic (called essentially orthogonal
and essentially symplectic, respectively).

The above analysis allows one to compute for any F satisfying (5) the Sato–Tate
measures corresponding to the equidistribution of the F.w/’s for each of the three
types. This gives positive measures 
U.F/, 
O.F/, and 
Sp.F/ on T such that


ST.F/ D 
U.F/C 
O.F/C 
Sp.F/: (9)

The proportions of type of F.w/ in F are determined from our indicators:


U.F/.T/C 
O.F/.T/C 
Sp.F/.T/ D 1 D i1.F/


O.F/.T/C 
Sp.F/.T/ D i2.F/


O.F/.T/� 
Sp.F/.T/ D i3.F/:

(10)

As a complement it is helpful to note the following

Z

T
�.t/
ST.F/.t/ D 0;
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which follows from the fact that F is essentially cuspidal and hence the absence of
pole at s D 1 for almost all F.w/’s. Equivalently the limit

lim
x!1

1

x

X

p<x

tF.p/ log p

exists and always is equal to zero. This is to be compared with (8) above and (11)
below.

The interpretation of these indicators in terms of B-types is clear. If
ST.F/ D 
B

for some B, then by classical representation theory of compact groups, i1.F/ D 1

asserts that B is irreducible in GLn.C/, i2.F/ D 1 asserts that B is self-dual (as a
subgroup of GLn.C/) and i3.F/ is the Frobenius–Schur indicator of B in GLn.C/. If
assertion (iv) of Conjecture 1 holds, that is 
ST.F/ is a convex combination of 
B’s,
then even though this decomposition need not be unique,2 collecting the B-types
according to their indices i2, i3 will reproduce the unique decomposition of 
ST.F/
given in (10).

The assertion (ii) of Conjecture 1 suggests that there is a stronger decomposition
F D F1 [ 	 	 	 [ Fr, although this is not formally part of the conjecture. Here each
subfamily Fi of F has asymptotic density pi 2 Œ0; 1 and �i D pi
.Fi/. A family
Fi such that 
.Fi/ is a direct product of measures on 3GLn.Qp/ is irreducible in
some sense. For example, it is plausible that it implies that its horizontal average

ST.Fi/ be of the form 
B for some irreducible B as above and thus Fi is essentially
homogeneous.

Indeed in many of the examples discussed in Sect. 2 such a B will be shown
to exist (see notably Sects. 2.5 and 2.11). Then we can say that we have attached
a Sato–Tate group H.F/ D B to the (irreducible) family F. We abstain from
attempting a general conjecture about H.F/ for at least two reasons, first because
H.F/ is not uniquely determined by 
ST.F/ so that a consistent definition seems
hopeless, and second because for certain thin families the existence of H.F/ is at the
same level of difficulty as the existence of the Langlands group H� for an individual
� (see Sect. 2.8).

To put forth our prediction for the distribution of the zeros near s D 1
2

of members
of a family F we need two further invariants attached to the family. The first is the
rank, r.F/, which is typically zero. The only case where we expect it might not
be zero is for geometric families for which s D 1

2
is a special value of ƒ.s; �/

connected with a version of the generalization of the Birch and Swinnerton-Dyer
conjecture. In the case of elliptic curves, if there are parametric, global rational
solutions to the equations defining X (namely solutions in Q.W1; : : : ;Wm/) they will
specialize to solutions of Xw for w D .w1; : : : ;wm/ 2 W. In general one considers
not only rational points but rational algebraic cycles as in the conjecture by Tate,
Lichtenbaum, Deligne, Bloch–Kato, Beilinson, and others.

2Jun Yu [Yu13] has given examples of this non-uniqueness.
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The rank of the family is concerned with the rate of convergence of 
p.F/ to

ST.F/, and is defined to be

r.F/ WD lim
x!1

1

x

X

p<x

�tF.p/
p

p log p: (11)

For these geometric families one can show that tF.p/� p�1=2, so that (11) measures
the next to leading term.

This formula (11) in the context of families and rank of elliptic surfaces has
been proposed by Nagao [Nagao]. For X a family of elliptic curves forming an
elliptic surface the equality of r.F/ and the rank of X=Q.W/ follows from the Tate
conjecture for the surface, see [RS98]. The universal distributions for zeros near s D
1
2

are concerned with fluctuations over the family after removing these persistent
zeros at s D 1

2
. In what follows we assume that these have been removed or more

simply that r.F/ D 0 (according to definition (11)).3

The final invariant of F that we need concerns the symplectic �’s in F. For these
the epsilon factor or root number ".�/ can be C1 or �1 and it is not dictated
by the Sato–Tate measure of F. According to (10) we can decompose the family
into essential subfamilies FU, FO, FSp and we would like to decompose FSp further
as FSp;C and FSp;� according to " D 1 or �1. Since ".�/ is given in terms of
a product of local "-factors at the ramified places of � , one can compute this
decomposition analytically in many cases. However to do so in general involves
computing averages over our parametric family of the Möbius function 
. Namely
cancellations in sums

X

w


.M.w// (12)

where w varies over a large set in Z
m and M 2 ZŒW1; : : : ;Wm. These are

predicted by natural generalization of Chowla’s conjectures and are known in
special cases [Helf04].

Assuming these allows one to refine the decomposition (10) as


ST.F/ D 
U.F/C 
O.F/C 
Sp;C.F/C 
Sp;�.F/; (13)

as well as the corresponding decomposition into essentially homogeneous subfam-
ilies. In particular this reduces the study of the distribution of the low-lying zeros
(as well as other statistical questions for F) to the case of F being one of these four
homogeneous families.

We now move to the main statistics of families that we will study, namely low-
lying zeros. There are other statistics of interest notably moments of L-values, which

3For a homogeneous symplectic family of positive rank the third and fourth rows of Conjecture 2
below should read � D .�1/r.F/ and � D �.�1/r.F/ , respectively.
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are known since the work of Keating–Snaith [KS00] to relate to the symmetry type.
See [CFKRS] and [Mich07] for a broad review of results and applications (there
has been much progress since the appearance of these reviews). Our definition of
families captures most of the examples studied to date (see Sect. 2), although not
all of them (see Sect. 3). Our Conjecture 1 is a precise formulation of all the local
statistics expected for families. In fact our notion of families provides a natural
setting for the axiomatic recipes in [CFKRS], specifically Conjecture 1 as well
as Conjecture 2 below are consistent with the family averaging assumptions made
in [CFKRS, p. 82].

Write the zeros of ƒ.s; �/ as 1
2
C i�.�/j (with multiplicities). For the purpose of

studying the zeros near s D 1
2

we scale the �.�/j ’s setting

Q�.�/j WD �.�/j

log C.�/

2�
: (14)

This normalization is universal (i.e., there are no parameters in this process,
the conductor C.�/ measures the local density). The four universality classes of
distributions determined in [KS-b] are

(1) U.1/: the scaling limit of the distribution near 1 of eigenvalues of matrices in
U.N/, N !1,

(2) Sp.1/: the scaling limit of the distribution near 1 of eigenvalues of matrices in
USp.2N/, N !1,

(3) SOeven.1/: the scaling limit of the distribution near 1 of eigenvalues of matrices
in SO.2N/, N !1,

(4) SOodd.1/: the scaling limit of the distribution near 1 of the eigenvalues of
matrices in SO.2N C 1/, N !1.

In the theoretical (rather than numerical) study of the Q�.�/j ’s as � varies over F one

computes the fluctuation r-level densities W.r/, r > 1 (see [KS-b, KS99] and also
the examples in Sect. 2), and these determine all other statistics.

We can finally state the

Conjecture 2 (Universality Conjecture). Let F be a rank 0 essentially homoge-
neous family. Then the low-lying zeros of the members of F follow the laws in the
following table:

Homogeneity type of F Symmetry type of F Fluctuation r-level density

Non self-dual U.1/ W.r/
0 , r > 1

Orthogonal Sp.1/ W.r/
� , r > 1

Symplectic "D 1 SOeven.1/ W.r/
C

, r > 1

Symplectic "D �1 SOodd.1/ W.r/
� , r > 1
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The r-variable densities W.r/ are those from [KS-b]. Note that for the type
Symplectic " D �1, we omit the zero at s D 1

2
, which is there because of the

sign of the functional equation when forming the densities of each member. The
fact that W.r/� is entered on lines 2 and 4 of this table is surprising but can be related
to a similar coincidence at the level of the Weyl integration formula which is already
observed in [Weyl].

In the formulation of Conjecture 2 above we have restricted ourselves to homo-
geneous families. This is for simplicity since one could easily consider families
of forms which have mixed types, for example it often happens that essentially
symplectic families have a root number that takes both the values 1 and �1 with
positive proportion (see Sect. 2 for more examples). The low-lying zeros of such
mixed families will be distributed according to the densities above, with weights
determined by the decomposition (10).

The Sato–Tate conjecture for families (Conjecture 1) is in fact a theorem
under mild assumptions as we shall explain with examples in the next section
(see notably Sect. 2.11 for general geometric families and Sect. 2.5 for general
harmonic families). The conjecture is independent of the analytic continuation of
the corresponding L-functions and it only captures a portion of the arithmetic of the
families.

This is in contrast to the universality conjecture (Conjecture 2) which is far
reaching. It involves arithmetic cancellations which if true lie much deeper. Also
its formulation relies on the zeros �.�/j and thus assumes the analytic continuation
ofƒ.s; �/ inside the critical strip, which is often a conditional statement. It seems an
interesting question to find a substitute towards an unconditional formulation of the
universality conjecture in all cases since the Symmetry Type is an intrinsic invariant
of a family that should be independent of functoriality or modularity conjectures.
One important source of additional invariants of families are p-adic ones (Selmer
groups, p-adic L-functions, etc.) which also can be closely tied with the Symmetry
Type, see notably Heath-Brown [Hea94], Bhargava–Shankar [BS13] as well as the
recent [BKLPR] and the references therein.

Besides theoretical results yielding Conjecture 2 for restricted supports of test
functions, an important piece of evidence comes from numerical experiments. There
are robust algorithms [Rub05] to numerically compute the zeros and there is ample
and excellent agreement for families of L-functions of low degrees.

Another important part of the picture is the function field analogue, where we
work with the function field Fq.X/ of a curve X and an `-adic sheaf F of dimension
d. See [ST16, p. 5] and [Katz01] for a discussion. For example, if F is irreducible
self-dual orthogonal, then there is a natural pairing on H1.X;F/which is symplectic
invariant by the action of Frobenius. This is consistent with Conjecture 2 and even
stronger since it provides a spectral interpretation which is lacking over number
fields.

As a corollary to the universality above we conclude that if n is odd, and F a pure
self-dual family (i.e., all members are self-dual) then its symmetry type is Sp.1/
without any further assumptions (in this case r.F/ D 0 since s D 1

2
is not critical
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in the context of Deligne’s special value conjectures [Del79]; see Appendix 2).
Similarly a harmonic family F arising from automorphic forms on split E8, F4 or
G2 will have symmetry type Sp.1/ since all irreducible representations of their
dual groups are self-dual and orthogonal [Ste68].

2 Examples

In this section we collect various examples of families, some old some new,
which explicate the notions above and which prove in part the various claims and
conjectures. It is this wealth of examples that we have tried to unify.

2.1 n=1

For G D GL.1/, the set A.G/ consists of all the primitive (nontrivial) Dirichlet
characters � so that parametrized families can be described explicitly. The most
basic such family is

F.2/ D ˚� W �2 D 1� : (15)

In terms of our formation it arises either as all the self-dual forms on GL1 or as the
geometric family coming from the curve Z2 D W over ZŒW, i.e., the Dedekind zeta
function of quadratic extensions of Q after removing the constant factor of �.s/. The
last gives a parametric family which after a standard square-free sieving argument
renders F.2/ as a parametrized family. According to Conjecture 2 the Symmetry
Type of F.2/ should be Sp.1/. There is ample evidence for this both numerical and
theoretical (see Rubinstein’s thesis [Rub01]). In this case where GL1.C/ is abelian
and 1-dimensional, I.T/ corresponds bijectively to the finite subgroups of Tc D
fz W jzj D 1g together with Tc itself. The Sato–Tate measure for F.2/ exists and is
equal to 
B where B D f1;�1g � T. In fact 
.F.2// D Q

v 
B (that is 
B at each
place v), r.F/ D 0 and i1.F.2// D i2.F.2// D i3.F.2// D 1.

The precise statement about the low-lying zeros of L.s; �/ is as follows. For �
primitive of period q its conductor N.�/ is q and since �1 D 1 or sgn, the analytic
conductor C.�/ D q as well. To form the r-level density sums write the zeros of
ƒ.s; �/, � 2 F.2/ as

1

2
C i�.�/j ; with j D ˙1;˙2; 	 	 	

where �.�/j > 0 if j > 1 and �.�/�j D ��.�/j .
For ˆ 2 S.Rr/ even in each variable, form the r-level (scaled) densities for the

low-lying zeros of ƒ.s; �/:
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D.�;ˆ/ WD
X�

j1;j2;��� ;jr
ˆ

 
�
.�/
j1

log C.�/

2�
; : : : ;

�
.�/
j1

log C.�/

2�

!

; (16)

where  denotes the sum is over jk D ˙1;˙2; : : : and jk1 ¤ jk2 if k1 ¤ k2. The full
Sp.1/ conjecture for F.2/ is equivalent to

1

F.2/.x/

X

�2F.2/.x/
D.�;ˆ/!

Z

Rr
ˆ.u/W.r/� .u/ du; as x!1 (17)

for any r > 1 and ˆ 2 S.Rr/, where

W.r/� .x1; 	 	 	 ; xr/ D det.K�.xi; xj//iD1;:::;r
jD1;��� ;r

;

K�.x; y/ WD sin�.x � y/

�.x � y/
� sin�.xC y/

�.xC y/

and

F.2/.x/ D ˚� 2 F.2/ W C.�/ < x
�
: (18)

The first to consider the 1-level density for this family were Özlük and Sny-
der [OS93], who proved (17) for r D 1 and support of the Fourier transform b̂ ofˆ
contained in .� 2

3
; 2
3
/. Rubinstein [Rub01] established (17) for any r > 1 as long as

the support b̂ �
n
� W Pr

jD1
ˇ
ˇ�j

ˇ
ˇ < 1

o
. Later Gao [Gao] proved that the limit on the

l.h.s. of (17) exists for support b̂ �
n
� W Pr

jD1
ˇ
ˇ�j

ˇ
ˇ < 2

o
but attempts to prove that

his answer agrees with the r.h.s. in (17) failed until recently. What remained was
an apparently difficult series of combinatorial identities. These are recently proven
in [ERR13] thus establishing (17) in this bigger range. An interesting feature of
their proof is that it uses the function field analogues to verify the identities and
in this sense it is similar to the recent proof of the Fundamental Lemma ([Ngo]
and the references therein). The point is that replacing Q by Fq.t/ and computing
the analogue r-level densities for the family of quadratic extensions of Fq.t/ leads
to the same answers and ranges as the case of Q. But now averaging over q and
keeping track of uniformity to switch orders leads to the setting in which [KS-b]
prove the full Sp.1/ conjecture and hence the combinatorial identities must hold
in the case of Q! An alternative combinatorial proof of the identities should also be
possible along the line of [CS].
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2.2 Number Fields and Artin L-Functions

The zero dimensional cases of the geometric families are already very rich. Let K D
Q.W1; : : : ;Wm/ with W1; : : : ;Wm indeterminates and let f 2 KŒx be irreducible
with splitting field L and Galois group B. According to Hilbert’s irreducibility
theorem the set of w D .w1; : : : ;wm/ in Q

m for which f .x;w/ is irreducible
over Q and the Galois group of its splitting field Lw=Q is equal to B is the
complement of a thin set ([Ser97, p. 123]). We call such w’s f -generic and these
are almost all of the points when counting the w’s by height ([Ser97, § 13.1]). Let
� W B! GLn.C/ be an irreducible n-dimensional representation and let H D �.B/.
To each generic w we have the corresponding irreducible Galois representation
�w W Gal.Lw=Q/! GLn.C/. This gives a family of n-dimensional Artin L-functions
L.s; �w/ and (conjecturally) automorphic cuspforms �w on G D GLn.A/. That is,
we have a parametrized family F D .W;F/ where F.w/ D �w for w generic. By
the Chebotarev density theorem for each such w, the Sato–Tate measure 
�w exists
and is equal to 
H . So we expect that 
ST.F/ D 
H as well. This is indeed so
if we order the �w’s by the height of w. For p large the asymptotics in (5) with
n D pe holds. This follows by considering the w’s mod p and then studying the
variety f .x;w1; : : : ;wm/ D 0 over Fp and using the theory of Artin’s congruence
zeta and L-functions for curves over finite fields in the case of the variable w1,
and [Weil, LW54] in general. This leads to the existence of the vertical limits 
p.F/
and also that these converge to 
H as p ! 1. That is 
ST .F/ exists and is equal
to 
H in this ordering. A more appropriate ordering of the w’s is by the size of
D.w/ where D D D.W1; : : : ;Wm/ is the discriminant of f . The analogue of (5) can
be carried out for this ordering as well, at least if w keeps away from directions in
which D.w/ vanishes. The conductor of �w is essentially the content of D.w/ and (5)
can be carried out if the degree of D is small compared to the number of variables
W. In all cases we find that 
ST.F/ D 
H . Once we have 
H the key indicators
i2.F/ and i3.F/ (here i1.F/ D 1) are then determined by the corresponding Schur
indicators of H. Conjecture 2 can be established for F for test functions of limited
support (as discussed in Sect. 2.1) if D.w/ is of low degree.

Some very interesting parametrized families arise in connection with Dedekind
zeta functions of number fields of fixed degree k. For k D 2 this is the family F.2/ in
Sect. 2.1. For k D 3 consider the parameters W1;W2;W3;W4 and the corresponding
binary cubic forms (it is convenient to work projectively here) f .W/ D W1x3 C
W2x2yCW3xy2CW4y3. The Galois group of f over Q.W/ is S3. Let V.Q/ be the Q-
vector space of such forms with w D .w1;w2;w3;w4/ 2 Q

4. Let Vgen.Q/ denote the
points w 2 V.Q/ for which the splitting field Lw of fw is an S3 extension of Q. This
together with a fixed irreducible representation � of S3 yields a parametric family
F as above. The group GL2.Q/ acts on V.Q/ by linear change of variables and it
preserves the fields Lw. The quotient GL2.Q/nVgen.Q/ parameterizes exactly the S3
splitting fields of degree 3 polynomials over Q (see [WY92]). In order to count these
when ordered by conductor it is best to work over Z rather than Q as was done in
[DH71] who parametrized and counted the cubic extensions of Q when ordered by
discriminant. With GL2.Z/ acting on V.Z/ and V.R/ one determines a fundamental



546 P. Sarnak et al.

domain � and then orders points in �.Z/ by the discriminant D.w1;w2;w3;w4/
which has degree 4. Furthermore one can sieve to fundamental discriminants and to
points in �gen.Z/. The most delicate point technically is dealing with w’s in �.Z/
with D.w/ 6 X and w near the directions where D.w/ D 0. To each f in this
parametrized reduced set correspond three conjugate cubic fields K0f ;K00f ;K000f gotten

by adjoining to Q one of the roots of f and disc.K.j/
f / D D.f /. In this way one

obtains a parametrization of the cubic extensions of Q with Galois group S3. Now
�

K
.j/
f
.s/=�.s/ D L.s; �f / where �f is the corresponding 2-dimensional irreducible

representation of S3. Thus this family ��f of GL2-cuspforms (which are known to
exist in this case since �f is dihedral) is the parametrized family F3 of Dedekind zeta
functions of cubic extensions. We have 
ST.F/ D 
H where H is the dihedral group
D3 in GL2.C/. It is orthogonal and hence ij.F/ D 1 for j D 1; 2; 3. In particular F3
has an Sp.1/ symmetry. This example is due to Yang [Yang].

For k D 4; 5 the parametrization over Q of degree k extensions with Sk Galois
groups in terms of G.Q/ orbits of points in certain G-prehomogeneous vector spaces
V is given in [WY92]. The theory over Z as needed to determine the density of
such quartic and quintic fields is due to Bhargava ([Bha05, Bha10]). In all of these
cases (including k > 6 if they could be suitably parametrized) 
ST.Fk/ D 
Hk ,
where Hk is the k � 1 dimensional representation of Sk realized as the symmetries
of the k � 1 simplex. Since this representation is orthogonal we have ij.Fk/ D 1,
for j D 1; 2; 3 and all of these parametrized families have an Sp.1/ symmetry. A
detailed treatment of families of Artin representations is the subject of [SST15].

2.3 Families of Elliptic Curves

We next consider geometric families E ! W of curves of genus one. The
1-parameter families are geometrically the same as elliptic surfaces fibered over
the affine line. The singular fibers are classified by Kodaira and Néron and can be
determined with Tate’s algorithm. A 1-parameter family is given by polynomials in
ZŒw which are the coefficients of the equation of a plane algebraic curve. A well-
studied example is that of quadratic twists of a given elliptic curve which can be
written in Weierstrass form as wy2 D x3 C ax C b. It can be viewed as a twist of
a fixed elliptic curve with the quadratic family from Sect. 2.1 (for quadratic twists
of any fixed automorphic form see Sect. 2.8 below). There is a natural 2-parameter
family F.ell/ given by y2 D x3Cw1xCw2, where every elliptic curve over Q appears
as a fiber with a; b 2 Z. The discriminant function is D.w/ D 4w31 C 27w22. By
modularity we obtain in each situation a parametric family F of automorphic cusp
forms on PGL.2/.

Conjecture 1 can be verified for each of these families F of elliptic curves and the
Sato–Tate measure 
ST.F/ exists with indicators i1.F/ D i2.F/ D 1 and i3.F/ D
�1. Hence these families are homogeneous symplectic and correspondingly have
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symmetry type O.1/. For F.ell/ this follows from a theorem of Birch [Birch] while
in general see Sect. 2.11 below.

There is a caveat that we order the elliptic curves by height rather than conductor.
Ordering by height for F.ell/ means that we restrict to a box,

max.4jw1j3; 27jw2j2/ < x; with x!1.

It is desirable to be able to order by conductor C.w/ < x with x!1 which yields
interesting questions related to the square-free sieve for the discriminant polynomial
D.w/. For F.ell/ it follows from [FNT92, DK00] that the number of non-isogeneous
semistable elliptic curves of conductor C.w/ < x is at least x

5
6 and at most x1C". The

average conductor is also important and it leads one to consider the ratio log C.w/
log jD.w/j

which is less than 1 and according to a conjecture of Szpiro should be greater than
1
6
� " with a finite number of exceptions. For F.ell/ the ratio can be shown to be

one on average using the square-free sieve which is known for polynomials in 2-
variables of degree 6 6 by Greaves [Greaves] (for 1-parameter families it is known
for degree 6 3 by [Hoo76]).

The next interesting invariant is the rank r.F/ defined in (11). For F.ell/ it follows
from [Birch] that tF.ell/ .p/ � p�1 and thus r.F.ell// D 0. For a 1-parameter
family it is shown in Miller [Miller] using the Tate conjecture proven in Rosen-
Silverman [RS98] that r.F/ coincides with the rank of the elliptic surface overQ.w/.
There are examples of 1-parameter families where r.F/ is greater than 18 and indeed
such families have been used via specialization to produce rational elliptic curves of
high rank [Elk07].

Mazur showed that there are finitely many possibilities for the torsion subgroup
of elliptic curves over Q. Harron-Snowden [HS13] recently established various
bounds towards counting elliptic curves with prescribed torsion subgroup. In the
process they actually show that for each prescribed torsion subgroup, elliptic curves
are parametrized by a corresponding moduli space which is close to being an open
subscheme of the affine line A1. Thus these are parametric families according to our
definition (e.g., see, [HS13, § 3] where each family is explicitly given by polynomial
equations with one free parameter).

The root number is the subtlest of the invariants. In the family .7 C 7w4/y2 D
x3 � x found by Cassels–Schinzel [CS82], the root number �. 1

2
;Ew/ D �1 for all

w 2 Z,4 whereas the rank r.F/ D 0. Another example [Wash87] is the 1-parameter
family y2 D x3Cwx2 � .wC 3/xC 1 which has root number �. 1

2
;Ew/ D �1 for all

w 2 Z and for which r.F/ D 1. Thus the rank r.F/ and the root numbers of member
of F can behave independently from one another and this explains why in Sect. 1 we
treat them as distinct invariants.

The average root number is governed by the polynomial M 2 ZŒw1; : : : ;wm

whose zero set is the locus of the fibers Ew with nodal (multiplicative) singularity.

4In fact �. 1
2
;Ew/ D �1 also if we let w 2 Q which should be viewed a 2-parameter family by

writing w D w1
w2

and ordering by height max.jw1j; jw2j/ < x.
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Note that M is a polynomial factor of the discriminant D. It is shown by Helf-
gott [Helf04] how the average root number in these cases is reduced to sums of
the type (12) and thus if M is non-constant, that is if the family has at least one
nodal geometric fiber, then the average root number should be zero. In the two
examples from the preceding paragraph M is constant and indeed one can find
in [Rizzo, Helf04] further examples of families of elliptic curves with M constant,
where the average root number can assume any value in a dense subset of Œ�1; 1.
The sum (12) can be estimated unconditionally for polynomials of low degree, for
example [Helf05]

1

x2
X

jw1j;jw2j<x


.w31 C 2w32/ D o.1/; as x!1. (19)

An example where the root number is shown to average to zero unconditionally is
the 2-parameter family y2 D x.xC w1/.xC w2/ which contains every elliptic curve
over Q with full rational 2-torsion .Z=2Z/2 as a fiber over .w1;w2/ 2 Z

2. The case
of F.ell/ is more difficult. The method of proof of (19) is closely related to the work
of Friedlander–Iwaniec and Heath-Brown on primes represented by polynomials in
2-variables.

The upshot is that Conjecture 2 is verified for families of quadratic twists
in [Rub01], for F.ell/ in [Young, BZ08] and under the above assumptions for
1-parameter families in [Miller]. This yields upper-bounds for the average analytic5

rank as a corollary, see, for example, the articles in the proceedings [LMS07].

2.4 Dwork Families

In this section we investigate a certain parametric family of Dwork hypersurfaces,
which were prominent examples in Dwork’s detailed study of hypersurfaces in the
1960s. (See introduction of [Katz09] for a commentary on the literature.) Let U D
SpecZŒ 1

nC1 ;w, a subscheme of the affine line over ZŒ 1
nC1 . Consider the subscheme

X of Pn
U cut out by the equation

nX

iD0
xnC1

i D .nC 1/w
nY

iD0
xi;

where .x0 W 	 	 	 W xn/ and w are the coordinates for Pn and U, respectively. The family
X ! U is a family of elliptic curves for n D 2 and that of K3 surfaces for n D 3.
In general the fibers of X ! U have dimension n� 1, so the cohomology in degree

5The average rank of Selmer groups, which yields upper-bounds for the average Mordell-Weil rank,
can be bounded by other methods, see [Hea94, FIMR] for the 1-parameter families of quadratic
twists and [BS13, BS14] for F.ell/.
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n � 1 is the most interesting. We could work with the whole of Hn�1 cohomology
but it is convenient to deal with a piece of cohomology by exploiting a group action
on X. Let 
nC1 be the set of .n C 1/-st roots of unity. (One may view 
nC1 as a
group scheme over U.) Let H be the quotient group .
nC1/nC1=�.
nC1/, where
� is the diagonal embedding. Then H acts on X by letting .˛0 W 	 	 	 W ˛n/ act by
.x0 W 	 	 	 W xn/ 7! .˛0x0 W 	 	 	 W ˛nxn/ on X. Let H0 denote the subgroup of H which is
a quotient of f.˛0 W 	 	 	 W ˛n/ W Qn

iD0 ˛i D 1g by �.
nC1/.
Consider the setup and notation for geometric families in Sect. 1. Take C to be

the set of w 2 Z such that w − .nC1/, viewed as a set of closed points of U. Denote
by Xw the fiber of X over w 2 U. Use the discriminant function D.w/ D wnC1 � 1
on C. Define the map F W C ! A.GLn/ such that F.w/ is the j det j n�1

2 -twist of the
automorphic representation corresponding to the Gal.Q=Q/-representation

Hn�1
et .Xw �Q Q;Ql/

H0 (20)

via Conjecture 4 (or Conjecture 5). Note that F.w/ 2 A.GLn/ since (20) has
dimension n over Ql as can be shown by computing its dimension for w D 0

([LNM82, Lemma 1.1], cf. [HSBT, Lemma 1.1]). Since Xw has good reduction
modulo p whenever p − D.w/, cf. [Katz09, § 3], the Galois representation (20)
is unramified at such p, hence F.w/ should be unramified outside the prime divisors
of D.w/.

Suppose that n is even.
The monodromy of the Dwork family F is shown by Dwork to be the full

symplectic group (if one is only interested in the symplectic pairing it can also
be constructed by Poincaré duality, cf. [HSBT, Lemma 1.10, Corollary 1.11]). The
two main conjectures from Sect. 1 yield the following: first, 
ST.F/ arises from
the push-forward of a Haar measure on a maximal compact subgroup of Sp.n;C/
in GL.n;C/. This is proved as explained in Sect. 2.11 below using the Deligne–
Katz equidistribution theorem. In other words the family has a Sato–Tate group
H.F/ D Sp.n;C/. Second, Conjecture 2 says that the Symmetry Type of F should
be a superposition of SOeven.1/ and SOodd.1/. The superposition depends on the
distribution of " D 1 and " D �1 which we expect will be 50%.

Finally when n is odd, (20) is even dimensional and equipped with a perfect
symmetric pairing and the exact monodromy is also computed by Dwork. Thus in
this case 
ST.F/ arises from an even orthogonal group and Conjecture 2 says that
the Symmetry Type of F should be Sp.1/. It would be desirable to test all these
low-lying zeros predictions for this family numerically.

2.5 Harmonic Families and Plancherel Equidistribution

Consider a spectral set H � A.H/ of automorphic representations of a connected
reductive group H over Q and an L-map r W LH ! L GLn. These data give rise to a
harmonic family F. We discuss the Sato–Tate equidistribution for F as formulated
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in Conjecture 1. In fact we need not assume the functoriality conjecture for r to
make sense of the conjecture. Namely for each � 2 H unramified outside of the
finite set of places S, we can attach [Borel] the partial L-function LS.s; �; r/, which
should be the partial L-function for r�� if we assumed that r�� was an automorphic
representation of GLn. The prime p0 is chosen large enough so that p > p0) p 62 S
and thus the unramified representation �p D r��p is known.

The asymptotic count of (4) is a Weyl’s law or limit multiplicity problem. This
has a long history with a vast literature. For limit multiplicities for towers of
subgroups it starts with the classical article of DeGeorge–Wallach [DeGW78]. In
the case that � 2 H have discrete series �1 at infinity the asymptotic count is well
understood and it is natural to first focus on this case for studying harmonic families.
See the end of this subsection for a discussion of the Maass forms case.

The next step is the quantitative equidistribution (5) which is much more
difficult to obtain. The PGL.2/ case is treated in [ILS01], see Sect. 2.7 below. A
generalization to higher rank groups was recently achieved by the second and third-
named authors [ST16].

To fix notation, the spectral set H will be the set of automorphic representations
� of H.A/ which are cohomological at infinity with regular weight. (This means
that the infinite component of � has nonzero Lie algebra cohomology against an
irreducible algebraic representation with regular highest weight.) Such � is always
cuspidal by a theorem of Wallach. If we consider the weight aspect it will be
convenient to fix a level at finite places. Also the weights will be restricted to
a cone inside the positive Weyl chamber. (This condition is parallel to the cone
condition for geometric families and is important for similar reasons such as the
uniform control of the analytic conductor.) If we consider the level aspect, then
we fix a regular weight at infinity and consider a sequence of principal congruence
subgroups of level N !1.

The main theorem of [ST16] is a quantitative Plancherel equidistribution theorem
for the local factors �p of representations � 2 H. Fix a test function ' which is a
Weyl invariant polynomial on the dual maximal torus of H. For each prime p large
enough one can evaluate ' against the unramified representations �p of H.Qp/ and
we have

X

�2H.x/
'.�p/ D jH.x/j

Z
'.�/
pl

p .d�/C O.jH.x/jı pA/ (21)

where 
pl
p is the unramified Plancherel measure on 1H.Qp/ and ı < 1. The main

term comes from the contribution of the identity on the geometric side of Arthur’s
cohomological trace formula [Art89]. The remainder term comes from bounding
the other orbital integrals. The multiplicative constant in O.	/ is uniform in p and x.
This uniformity is a major difficulty in the proof because the number of conjugacy
classes O to be considered on the geometric side is unbounded. In particular we
have a weak control on the regularity of O, it can, for example, ramify at several
arbitrary large primes. We refer to [ST16, § 1.7] for a summary of the harmonic
analysis techniques that we use to resolve this difficulty.
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We deduce from (21) that each
p.F/ comes from the restriction of the Plancherel

measure on 1H.Qp/. Precisely 
p.F/ is the pushforward of 
pl
p under the functorial

lift attached to r W LH ! GL.n;C/. This is the assertion (i) of Conjecture 1. The
main term tF.n/ in the asymptotic (5) is expressed in terms of these p-adic densities.
We also get assertion (ii) and the global measure 
.F/ by inserting a more general
test function ' that is supported at finitely many places.

Maass forms are automorphic forms invariant under a maximal compact
subgroup at infinity. They correspond to automorphic representations whose
archimedean factors are spherical which is a condition that fits well in our formation
of harmonic families. We expect the results to be similar to the case discussed
above. The classical case of Maass forms on GL.2/ can be treated using the Selberg
trace formula. In higher rank the asymptotic Weyl’s law is established in general
by Lindenstrauss–Venkatesh [LV07]. Weyl’s law with remainder term and the
quantitative equidistribution (21) are more difficult despite the harmonic analysis
on the spherical unitary dual being well understood [Helgason, DKV83].6 These
difficulties revolve around the presence of Eisenstein series: notably there is not
yet a satisfactory description of the residual spectrum for general groups. The
absolute convergence of the Arthur trace formula recently established by Finis–
Lapid–Müller [FLM11] is an important step forward. J. Matz and the third-named
author [MT] have recently established the case of Maass forms on GL.n/.

2.6 Invariants of Harmonic Families

We form the Sato–Tate measure 
ST.F/ D lim
p!1
p.F/jT in assertion (iii) of

Conjecture 1. Using the formula of Macdonald for the unramified Plancherel
measure one can show this limit exists.7 The measure 
ST.F/ coincides with the
Sato–Tate measure attached to the image of LH viewed as a subgroup of GL.n;C/.
This can be taken as the Sato–Tate group H.F/ of the family, thus for harmonic
families the existence of such a group is proven.

Next we examine the three indicators i1.F/, i2.F/, and i3.F/ in (7). From now on
we make the assumption that the representation r W LH ! GL.n;C/ is irreducible
which can be seen to be equivalent to i1.F/ D 1. Thus the family F is essentially
cuspidal. This implies under the GRH that the functorial lift r�� is cuspidal for
most � 2 H which needs to be established by a separate unconditional argument.
The strategy is to the relate the non-cuspidality of r�� to the vanishing of certain
periods of � (which is a well-studied and difficult problem, see the works of Jacquet,

6The difficulty is with the contribution of the continuous spectrum and in fact allowing noncongru-
ence groups Weyl’s law may fail [PS85].
7This holds literally if H is a split group. For a general H the Plancherel measure at a prime p
depends on the splitting behavior (it is “Frobenian”). The average of 
p.F/jT over the primes
p < x as in (6) converges and assertion (iii) follows from Chebotarev equidistribution theorem.
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Jiang, Soudry, and many others), that is that � is distinguished and then to show that
this doesn’t happen generically for almost all members � of F.

The indicator i2.F/ is either 1 or 0, depending on whether r is self-dual or not.
The indicator i3.F/ is denoted s.r/ in [ST16]. It is the Frobenius–Schur indicator
of r which is either �1, 1 or 0, depending on whether r is symplectic, orthogonal,
or not self-dual, respectively. Thus the family F is essentially homogeneous if r is
irreducible and the homogeneity type is determined.

The rank r.F/ is zero for harmonic families. This follows from the defining
Eq. (11) and the Macdonald formula for the Plancherel measure which implies in
every case the estimate tF.p/ D O.p�1/, see [ST16, § 2]. This vanishing of the rank
reflects the fact that the central L-value (or the L-derivative if the root number is�1)
is expected to vanish only for arithmetical reason which should happen only for a
few exceptional members of the family F.

The root number is the most subtle of the invariants attached to the family F. It
is relevant for essentially symplectic families and corresponds to a decomposition


ST.F/ D 
Sp;C.F/C 
Sp;�.F/:

For families in the level aspect the root number is related to the Möbius function.
See [ILS01] and the discussion below for the case of PGL.2/. In the weight aspect
the root number could be dealt with along the lines of [ST16] although we have
omitted the details there.

As we have noted repeatedly Conjecture 2 lies deeper. Its formulation assumes
the analytic continuation of the completed L-functions ƒ.s; �; r/ inside the critical
strip in order to define the zeros. This is known in many cases notably via
Rankin–Selberg integrals and the Langlands–Shahidi method. The functoriality
conjecture of Langlands asserts that the L-functions should be attached to an isobaric
representation r�� 2 A.GLn/.

In this regard let us observe that under the Ramanujan conjecture for GLn (resp.
with a bound 	 < 1

2
towards Ramanujan), each of the local factors Lv.s; �; r/ has

no pole for <e.s/ > 0 (resp. <e.s/ > 	). Hence any zero � with <e.�/ > 0

(resp. <e.�/ > 	) of the partial L-function LS.�; �; r/ D 0 cannot be cancelled
by a potential pole of a local factor Lv.s; �; r/ at s D �. The set of non-trivial
zeros of LS.s; �; r/ (i.e., within the critical strip) will coincide with the set of
zeros of ƒ.s; �; r/. Thus Conjecture 2 only depends on the analytic continuation
of the partial L-functions. The formulation is robust because it is independent of
the ramified factors Lv.s; �; r/ (the analysis of which is the most delicate aspect
in all known constructions of L-functions and the expected properties aren’t fully
established in many cases).

Once the above invariants
ST.F/, i2.F/, i3.F/, r.F/ and eventually 
Sp;˙.F/ are
found one can verify Conjecture 2 for a test function with restricted support. The
size of the support depends directly on the quality of the estimate (21). The details
are found in [ST16, § 12] while the Criterion 1.2 in [ST16] is the insight which has
motivated our present formulation of Conjecture 2.

We note that there is ample flexibility in choosing the spectral set H � A.H/. For
example one can add harmonic analysis constraints at finitely many places. As soon
as H is “large enough,” the invariants of the family are independent of the choice
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and thus the Symmetry Type remains the same. The analogue for geometric families
is to add congruences constraints on the parameters which is also very natural.

2.7 Classical Modular Forms

As mentioned above the case of H D PGL.2/ is treated in [ILS01]. One might
wonder what an arbitrary parametrized spectral subset of A.H/ should look like
since our definition allows flexibility in choosing the local harmonic constraints.8

The problematic case of forms of weight k D 1 is discussed in Sect. 3. In this
subsection we focus on the results of [ILS01] which correspond to the spectral set
of holomorphic cuspforms Sk.N/ of weight k > 2 and square-free level N where
either k;N !1 with a possible additional average in dyadic intervals.

Suppose for simplicity that r is the embedding SL.2;C/! GL.2;C/ and denote
by S the corresponding family of standard Hecke L-functions. The conductor is k2N
and thus jS.x/j which is the number of forms f 2 S with C.f / < x is asymptotic to
x up to a multiplicative constant.

Conjecture 1 holds for S as consequence of [ILS01] and the Plancherel
equidistribution results [ST16] described in the previous subsections. The measure

ST.S/ is obtained from the conjugacy classes of SU.2/ and hence coincides
with the classical Sato–Tate measure. If we let T1 be the one-dimensional torus
of SL.2;C/ and parametrize T1=W by

�
ei	 0
0 e�i	

�
with 0 6 	 6 � , then


ST .S/ D 2

�
sin2 	 d	:

The indicators are given by i1.S/ D i2.S/ D 1 and i3.S/ D �1. (More
generally the Frobenius–Schur indicator of the k-th symmetric power representation
SL.2;C/ ! GL.k C 1;C/ is equal to .�1/k.) Thus the family S is essentially
symplectic and this is in accordance with the SO.1/ Symmetry Type.

To go further we decompose the family S D SC [ S� according to the root
number beingC1 or�1, respectively. The proportion of each piece is 50%. The root
number is ".f / D ik
.N/�f .N/N

1
2 , so this statement is equivalent to cancellations

in sums of the type
P

f2S.x/
�f .N/N

1
2 which is an example of the Möbius type sums

discussed in (12). This sum can be analyzed directly via the Petersson trace formula
as in [ILS01] or alternatively using representation theory and the results in [ST16].
Above a prime p j N, the p-component of f is tamely ramified with trivial central
character and thus is either the Steinberg representation or a twist of the Steinberg
representation by the unramified quadratic character; each representation carries

8In the context where H is the unit group of a division algebra, P. Nelson has recently
proposed [Nelson] conditions for certain test functions to isolate such “nice” spectral sets.
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50% of the mass of 
p.S/ which comes from restriction of the Plancherel measure

on 4PGL2.Qp/.
For ˆ 2 S.R/ and f 2 S we denote by D.f ; ˆ/ the one-level distribution of

the low-lying zeros of ƒ.s; f / (removing one zero at s D 1
2

if f 2 S�). Then
Conjecture 2 reads

1

jS˙.x/j
X

f2S˙.x/

D.f ; ˆ/!
Z 1

�1
ˆ.u/W.1/

˙ .u/ du; as x!1: (22)

In other words the Symmetry Type of SC (resp. S�) is SOeven.1/ (resp.
SOodd.1/).

Unconditionally the asymptotic (22) holds if the support of b̂ is restricted to
.�1; 1/. Under the GRH for Dirichlet L-functions one can extend the support to
.�2; 2/. This extension is significant because then the one-level density distin-
guishes between the Sp.1/, SOeven.1/ and SOodd.1/ Symmetry Types since the
distributions W.1/

C and W.1/
1 agree in u 2 .�1; 1/ but split at u D ˙1.

There are many interesting applications of GL.1/ and GL.2/ families, notably
the non-vanishing of L-values, distribution of prime numbers, quantum chaos,
subconvexity, equidistribution of arithmetic cycles, and more. Here we have shown
how to generalize the Symmetry Type with restricted support to higher rank
families. We view the low-lying zeros statistics as a first step towards these other
arithmetic features and applications.

2.8 GL(1) Twists

We fix � a cuspidal automorphic representation of GL.n/ over Q. If � is a Dirichlet
character, we can consider the twist � ˝ � which is again a cuspidal automorphic
representation of GL.n/. In Sect. 2.1 we have discussed GL.1/ families, for example
the family F.2/ of quadratic characters. One can construct a parametric family

F D ˚� ˝ �; � 2 F.2/
�
:

As we have discussed in the remarks following the definition of families we allow
one of the factor, to be a singleton f�g when considering the Rankin–Selberg
product of families.

The quantitative equidistribution (5) is easily verified as well as the first two
assertions of Conjecture 1. The assertion (iii), however, is as difficult as the
individual Sato–Tate conjecture for � itself. We identify the n-dimensional torus T
with the diagonal of GL.n;C/ and thus with the product of n copies of C�. Assume
the Sato–Tate conjecture holds for � with a certain limit measure 
ST .�/ on T and
recall the Sato–Tate measure
ST.F

.2// D 
B for F.2/ where B D f1;�1g � C
�. We

have a natural multiplication homomorphism m W C� � T ! T given by pointwise
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multiplication of each coordinate. The assertion (iii) of Conjecture 1 holds and the
Sato–Tate measure of the family F is the direct image


ST.F/ D m�.
B � 
ST .�//: (23)

Equivalently 
ST .F/ is half the sum of 
ST.�/ and the image of 
ST .�/ under
t 7! �t. Note that since the family F is thin the average over the primes p < x
in (6) is critical (see also the footnote 7 on page 551 for another example).

Often 
ST .F/ D 
ST.�/, for example in the case that � is a holomorphic
modular form on GL.2/ of weight at least two for which the individual Sato–Tate
is known. On the other hand, the two measures may differ. The simplest example
is when � is a cubic Dirichlet character on GL.1/ in which case 
ST.�/ is the

Haar measure on the group
n
1; e

2i�
3 ; e

4i�
3

o
while 
ST.F/ is the Haar measure on

n
1; e

i�
3 ; e

2i�
3 ;�1; e 4i�

3 ; e
5i�
3

o
.

In view of (23) and tr.�t/ D � tr.t/ the indicators can be computed as

i2.F/ D
Z

T
tr.t/2 
ST .�/.t/

i3.F/ D
Z

T
tr.t2/ 
ST .�/.t/

and i1.F/ D 1 since � is cuspidal. Thus we expect that F is essentially homogeneous
and its homogeneous type is dictated by � . In fact we only need to know which of
L.s; �; sym2/ or L.s; �;^2/ has a pole at s D 1, which is very little information
about the Sato–Tate group H� . So even if the Sato–Tate measure of � remains
mysterious we can verify the universality Conjecture 2 for F unconditionally,
see [Rub01]. For example, if � is self-dual orthogonal, then F is essentially
orthogonal and the Symmetry Type is Sp.1/.

We can consider other GL.1/ twists as, for example, the family F0 WD f� ˝ �g
as � ranges through all Dirichlet characters of conductor q 6 Q with Q!1. Then
the same analysis applies where we should replace B by the full unit circle S1 � C

�.
Thus we expect the Sato–Tate measure


ST .F
0/ D m�.
S1 � 
ST.�//:

The indicators are easier to compute in this case since we have i1.F0/ D 1 and
i2.F0/ D i3.F0/ D 0. Thus the family F0 is non self-dual and the Symmetry Type
is U.1/ independently of any property of � . One simply uses that � is cuspidal
and thus L.s; � � Q�/ has a simple pole at s D 1 which controls all the restricted
n-level densities universally. This is entirely analogous to the universality of high
zeros found in [RS96]. This surprising universality and the behavior of the families
F and F0 fit nicely into our main conjectures.
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We can analyze the previous example using the Sato–Tate group H� � GL.n;C/,
assuming it exists. Then we would associate with the family F0 the group H.F0/
generated by H� and C

�. In the same way that 
ST.�/ corresponds to H� , we have
that 
ST.F

0/ corresponds to H.F0/.
Conversely we don’t know what H.F0/ is unless we are willing to assume the

existence of H� . In fact this example shows that if the family F is thin like this one,
knowing H.F/ is tantamount to knowing H� and so one may as well face having to
define H� conjecturally, for every � , if we want H.F/ in general.

One expects that H� would be either a torus or semisimple. On the other hand,
H.F0/ obviously isn’t and this immediately explains the vanishing of the indicators
i2.F0/ D i3.F0/ D 0. In general a family whose Sato–Tate group has infinite center
has to have U.1/ Symmetry Type.

2.9 Rankin–Selberg Products

In [DM06] Dueñez–Miller investigate an interesting example of a parametric family
of L-functions obtained by a GL.2/ � GL.3/ Rankin–Selberg product. Let � be a
fixed even unramified Hecke–Maass form on PGL.2/. Consider the spectral set of
holomorphic cusp forms f 2 Sk.1/ with k!1. We can form the family

F WD ˚� � sym2.f /; f 2 Sk.1/
�

which consists of L-functions of degree 6. By the work of Kim and Shahidi
functoriality is known in this case so F is a family of automorphic representations on
GL.6/. By construction all these forms are self-dual symplectic and the root number
". 1
2
; � � sym2.f // can be verified to be 1 for all f .
If we assume the Sato–Tate conjecture for � , then we can verify Conjecture 1 for

F. The measure 
ST.F/ on the 6-dimensional torus is associated with the subgroup
SU.2/�PSU.2/ of U.6/, where the embedding is given by .	1; 	2/ 7! 	1˝sym2 	2.
Since

tr.	1 ˝ sym2 	2/ D tr.	1/ tr.sym2 	2/;

the indicators can be easily computed to be i1.F/ D i2.F/ D 1 and i3.F/ D �1.
Thus the family is essentially symplectic as we expect. In fact as usual we don’t
need to assume the full Sato–Tate conjecture for � to compute these indicators,
only the knowledge of the simple pole of ƒ.s; � � Q�/ at s D 1 suffices.

In [DM06] the 1-level and 2-level densities for a small restricted support are
obtained unconditionally. This determines the Symmetry Type as SOeven.1/ in
Conjecture 2. This family F has the feature that each L-function has even functional
equation without having to decompose a bigger family according to the root number,
a feature which is present for any family with a Sp.1/ Symmetry Type. Thus we
can conclude following [DM06] that the Symmetry Type is not just a theory of signs
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of functional equations, which is also apparent in our Conjecture 2. More generally
as studied in a subsequent paper [DM09] the Symmetry Type has a certain predicted
behavior under Rankin–Selberg product of families. This can also be explained by
Conjecture 2 since if F1 and F2 are two essentially cuspidal homogeneous families
we expect that F1 � F2 be homogeneous and in view of the properties of the
Frobenius–Schur indicator that i3.F1 � F2/ D i3.F1/i3.F2/.

Another family that is constructed with Rankin–Selberg type integral consists
of adjoint L-functions. For a family attached to the spectral set of Maass forms
H on SL.3;Z/ this is studied recently by Goldfeld–Kontorovich [GK13] using
their version of the Kuznetsov trace formula. They consider the harmonic family
F D .H;Ad�/ where Ad� corresponds to the adjoint representation. The main
result of [GK13] is that the family has Symmetry type Sp.1/ when the density
sums (17) with r D 1 are weighted by special values at 1 of L-functions of members
of the family. (These weights are not expected to affect the Symmetry type.)
This is consistent with our Conjecture 2 since F is a homogeneous family which
is essentially orthogonal. Indeed if � is a cuspidal automorphic representation on
SL.3;Z/ then L.s; �;Ad/ is self-dual and orthogonal (it is always cuspidal because
we are in full level, thus � is not a base change).

Actually this example generalizes nicely: let H be any split connected quasi-
simple group over Q. Form the adjoint representation which is an L-map from
LH to GLn where n D dim H. Consider a generic spectral set H as above and
the family .H;Ad�/. The adjoint representation is irreducible and it preserves the
Killing form on Lie.LH/ which is bilinear symmetric and non-degenerate. Thus
we expect almost all L-functions to be cuspidal and self-dual orthogonal, thus the
family to be essentially orthogonal. Therefore according to Conjecture 2 we expect
that any universal family of adjoint L-functions have Symmetry Type Sp.1/. For
H D PGL.2/ the adjoint representation is the same as the symmetric square and this
is a result in [ILS01].

The case of H D PGSp.4/ is recently studied by Kowalski–Saha–
Tsimerman [KST12]. Namely they consider the spectral set S�k .Sp.4;Z// � A.H/
of Siegel cusp forms of weight k!1. Let r be the degree four spin representation
of LH D Spin.5;C/. We can form the family of L-functions

F WD ˚L.s;F; r/; F 2 S�k .Sp.4;Z//
�

which by functoriality for classical groups are known to correspond to automorphic
representations of GL.4/.

The main result of [KST12] is a (weighted) equidistribution result which is
essentially related to Conjecture 1 for F. The measure 
p.F/ is a (relative)
Plancherel measure whose limit 
ST .F/ exists as p ! 1 and coincides with the
Sato–Tate measure associated with the subgroup r.LH/ � GL.4;C/.

One finds that i1.F/ D 1, thus the family is essentially cuspidal. The mem-
bers F 2 S�k .Sp.4;Z// such that L.s;F; r/ is not cuspidal are precisely the
Saito–Kurokawa lifts from SL.2;Z/. These form a (spectral) subset which is
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asymptotically negligible which confirms that almost all members of the family are
cuspidal.

Next we have i2.F/ D 1 and i3.F/ D �1 and thus the family is essentially
symplectic. In view of the isomorphism Spin.5;C/ ' Sp.4;C/, the representation r
is self-dual symplectic which is consistent. The root number is .�1/k thus we expect
according to Conjecture 2 an SOeven.1/ or SOodd.1/ Symmetry Type, depending
on the parity of the weight k.

The analysis of the low-lying zeros with a test function of restricted support is
carried out in [KST12] but the results are altered by the presence of a weighting
factor for each F. Since this weight is itself a central value of L-function by a
formula conjectured by Böcherer and Furusawa–Martin, it carries much fluctuation
which apparently yields a symmetry which is not consistent with our conjectures.
If these weights are removed, we expect that this feature will disappear. Here this
means that the weights which appear naturally from the application of the Petersson
trace formula would need to be removed in order to interpret the symmetry type,
see [Kow13] for further discussions.

2.10 Universal Families

For the universal family of all cuspidal automorphic forms on GLn.A/ we expect
that the Sato–Tate Conjecture 1 still holds. The measure 
p.F/ is closely related to
the Plancherel measure. Precisely for each integer k > 0, let
plŒpk be the restriction
of the Plancherel measure to the subset of representations in 3GLn.Qp/ of conductor
pk. Then 
p.F/ will be an explicit linear combination of the measures 
plŒpk.

Example. This can be verified for n D 1, the universal family F of all Dirichlet
characters, see also [Kow13]. The total mass of 
plŒpk is '.pk/, the Euler function.
A direct calculation shows that


p.F/ D a
1X

kD0

1

p2k

plŒpk

where a D p3

.p�1/.pC1/2 .

Note, however, that for the “family” of forms of level nŠ or product of consecutive
primes 2 	 3 	 5 	 7 : : :, the Sato–Tate conjecture in the form (5) fails (as observed
by Junehyuk Jung). The universality of the low-lying zeros in Conjecture 2 is still
expected to hold here, but for deeper reasons. The case of families of Dirichlet
characters can be verified directly, the case of GL.2/ is done in [ILS01] and the
general case is done in [ST16].
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2.11 Deligne–Katz Equidistribution and Geometric Families

In this subsection we consider geometric families. Our goal is to explain how to
approach Conjecture 1 using monodromy groups. There are many technical issues
that we ignore and we confine ourselves to an outline.

We begin with a general geometric family as in the definition in Sect. 1. Thus
W is an open dense subscheme of A

m
Z

, and f W X ! W is smooth and proper
with integral fibers. To concentrate on examples of geometric nature, we assume the
fibers to be geometrically connected. For any w 2 W WD W.Z/ \ C we denote the
fiber by Xw. This gives rise to a parametric family F of Hasse-Weil L-functions.

The local L-factor can be described using Grothendieck’s l-adic monodromy
theorem. (We need a result in p-adic Hodge theory when p D l but it is harmless
to assume p > l for our purpose.) Let �w be the Gal.Q=Q/-representation acting
on the space Hd

Ket
.Xw �Q Q;Ql/. For any prime p we consider the Weil–Deligne

representation

rw;p WD �WDv.�jGal.Qp=Qp/
/;

see Appendix 1 for details. Also let �w;p WD rec�1.�w;p/ ˝ j det jd=2 viewed as an

element of 1G.Qp/ where G D GLn. (As remarked in the previous section, the fact
that �w;p is unitary is conditional on the weight-monodromy conjecture if Xw has
bad reduction.) The local L-factor at p is given by

L.s; �w;p/ D L.s; rw;p/ D det.1 � Frobpp�sjVIp \ ker N/�1

where V is the underlying space of rw;p and N is the corresponding nilpotent
operator.

As a preliminary step we examine the ramification of the representations �w;p.
If �w;p is ramified, then p is a prime of bad reduction for Xw and also D.w/ 
 0

.mod p/, where D is the discriminant function of the family. Conjecture 1 is rather
precise because the assertions (i) and (ii) include the statistics of the ramified
representations. The depth of the representations �w;p 2 1G.Qp/ is bounded by a
constant [ST14, § 3] independent of w; p because its field of rationality is Q.

For each unramified�w;p we obtain an element tw;p 2 T=W. A crucial observation
is that it depends only on w modulo p. Thus the measure 
p.F/jT (and more
generally 
p.F/) is atomic, in fact supported on a finite subset of T=W. It is given
explicitly by the following sum of Dirac measures:


p.F/jT D 1

jW.Fp/j
X

w2W.Fp/;

D.w/ 6�0

ıtw;p ; (24)

where the sum has been restricted to those w such that �w;p is unramified by
demanding that D.w/ 6
 0 .mod p/. It implies by the Lang-Weil bound [LW54],
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p.F/.T/ D 1 � O

�
1

p

�
: (25)

In view of (25) the ramified representations play no role in the assertions (iii) and
(iv) of Conjecture 1 and hence also in the construction of 
ST.F/ which is our main
interest. Thus from now on we shall focus on (24) and those representations �w;p

which are unramified.
The analysis involves sets of integer points w D .w1; : : : ;wm/ in sectors W

in Z
m in regions defined by a homogeneous polynomial which approximates the

conductor, for example a height condition that w lies in a large box (that is, each
wi lies in an interval). The sectors defining C are chosen to make these sets finite
by avoiding the projective zero locus of the discriminant D. The assertion (24) is
deduced from the convergence:

1

jF.x/j
X

w2W.Z/\C;
jwijdi<x;8i

ıtw;p *
1

jW.Fp/j
X

w2W.Fp/;

D.w/ 6�0

ıtw;p ;

which follows from the fact that tw;p depends only on w modulo p.
The above reasoning is the key arithmetic input. And indeed this argument occurs

often in number theory such as in the circle method. This localization away from the
zero locus of D makes the problem easier and in general it forces us to count the
parametrized elements �w in the family with some natural multiplicity.9

To establish assertions (iii) and (iv) of Conjecture 1 it remains to study the
measures 
p.F/jT and thus we are reduced to a problem over finite fields. The
reduction is possible because we have chosen W to be affine in the definition
of geometric families. In fact we see from the argument that we could relax this
assumption somewhat, but not entirely see Sect. 3.1 below.

It is convenient to formulate the problem over finite fields by introducing the
sheaf G WD Rdf�Ql, which is the “Hd along the fibers Xw”. It is a lisse `-adic sheaf
over W of rank n. The Grothendieck base change theorem implies that there is an
action of the arithmetic fundamental group �1.W/ on a finite dimensional Ql-vector
space which can be identified with the cohomology group of the fibers [KS-b].
Specifically there is a linear action by automorphism which yields the monodromy
representation �1.W/ ! GL.n;Ql/, which is well defined up to conjugation. The
geometric fundamental group �geom

1 .W/ is a normal subgroup of �1.W/, and we
denote by Ggeom the Zariski closure of its image. By a theorem of Deligne Ggeom is
semisimple. The Zariski closure of the image of the arithmetic fundamental group
�1.W/ is denoted Garith.10 Thus Ggeom is a normal subgroup of Garith and from now

9We note that we make analogous simplifying assumption in the case of harmonic families,
see Sect. 2.5, where we have allowed some mild weights such as dim.�v/Uv which doesn’t change
the final answer but makes the problem easier to analyze with the trace formula.
10Here we are assuming as in [Katz13] geometric connectedness.
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on we impose the hypothesis that Garith � GmGgeom, see the recent article of Katz
[Katz13] for details, cf. Hypothesis (H) there. This essentially amounts to a purity
assumption on the sheaf G, which gives a uniform control on the size of Frobenius
eigenvalues.

For each prime p and w 2W.Fp/, the image of Frobenius under the monodromy
representation lies in Garith. Thanks to the hypothesis above, we can rescale it by a
scalar and obtain an element Frobw;p 2 Ggeom well defined up to the choice of an
l-adic unit and up to conjugation. Moreover by purity all the eigenvalues of �Frobw;p

lie on the unit circle and therefore �Frobw;p may be viewed up to conjugation as an
element of Bc, the maximal compact subgroup of Ggeom, again we refer to [Katz13]
for details.

We form the probability measure


p.G/ WD 1

jW.Fp/j
X

w2W.Fp/

ıFrobw;p

on B#
c . The key point of these constructions is that the pushforward of 
p.G/ under

B#
c ! Tc=W coincides up to O

�
1
p

�
with the measure 
p.F/jT defined in (24) above.

It remains to let the prime p!1. The equidistribution of the measures 
p.G/,
with respect to the Haar measure of B, is Katz’s variant of Deligne’s equidistribution
theorem, see [Katz13] and [KS-b, § 9]. It is important here that it can be proven
that the monodromy depends only on the topology of the family X ! W . In other
words the geometric fundamental group is independent of p for p large, see [Katz13,
Theorem 2.1].

Specifically we apply Theorem 5.1 of [Katz13] (with all ni equal to 1) to the
sheaf G, which is �-pure by [KS-b, 9.1.15], to obtain that


p.G/ * 
ST.F/; as p!1, (26)

where 
ST.F/ is the pushforward of the Haar measure under B#
c ! Tc=W. Note that

the base scheme S for us is of the form SpecZŒ1=N and therefore the Hypothesis
(AFG) in [Katz13] involves removing finitely many primes p. This finishes the
outline of the proof of the assertions (iii) and (iv) of Conjecture 1 for F.

For example, for the family of all elliptic curves which we have discussed
in Sect. 2.3, the equidistribution theorem is an early result of Birch [Birch]. The
example of 1-parameter families of hyperelliptic curves of genus g is treated
in [KS-b], where we have Ggeom D Sp.2g/ and Garith D GSp.2g/. Another inter-
esting example is the universal family of smooth projective hypersurfaces of given
dimension and degree, which is also in [KS-b]. Finally the above equidistribution
applies to the Dwork families discussed in Sect. 2.4.

Conjecture 2 can be established for F for test functions of limited support and
conditionally on the modularity conjecture for the Xw. Both for harmonic families
(see §2.6) and for geometric families we have attached a group H.F/ such that the
associated Sato–Tate measure
ST .F/ is computed in terms of H.F/. As we observed
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earlier the measure 
ST.F/ need not determine the group H.F/ uniquely, however
there is a natural choice which comes from the method of proof of Conjecture 1,
namely H.F/ WD r.LH/ for harmonic families and H.F/ WD Ggeom for geometric
families.

Serre has recently put forward a Sato–Tate conjecture for schemes which is
related to the above discussion. Let X ! W be a scheme of finite type. If W is
a point, then this is the usual Sato–Tate conjecture for the Hasse–Weil L-functions
attached to X. If W satisfies some suitable conditions, it is a direct consequence
of (26) as explained in [Katz13] because it asks for the convergence for x ! 1
of the average for pr < x of the measures 
pr.G/. There are differences of this to
our Sato–Tate conjecture for families: one being that the Sato–Tate conjecture for
scheme is expected to be true for any base W (and is proven in [Katz13] under mild
assumptions if W is not a point), whereas it is easy to construct counterexamples to
our Conjectures 1 and 2 for families if the base W were arbitrary (see Sect. 3.1).

2.12 Prospects

Under certain assumptions we have verified for the above families the concepts
introduced in Sect. 1. It is desirable to lift these assumptions as much as possible
since this would strengthen our knowledge and make certain results unconditional.
We summarize here the nature of these issues and give some plausible outlook of
how some could be addressed in future work. We shall focus solely on the Sato–Tate
equidistribution for families as formulated in Conjecture 1.

For general harmonic families, the Sato–Tate equidistribution for families
implies working with general test functions, which raises important questions on
the global harmonic analysis of the trace formula. One such question is formulated
in [FLM15] in the context of limit multiplicities and concerns a uniform estimate
on the winding number of normalizing scalars of intertwinning operators. Another
challenge concerns the description of the residual spectrum which is known for
GL.n/ and used crucially in establishing quantitative error terms in the Weyl’s
law [LM09, MT]. These and related problems now seem within reach in the context
of classical groups from the work of Arthur and others.

Local harmonic analysis and representation theory of p-adic groups and real
Lie groups also play a major role in Conjecture 1. One would like to capture a
portion of the spectrum that is as fine as possible. Over the reals this means discrete
series versus stable packets and short spectral windows for Maass forms. For p-adic
groups this means working with congruence subgroups beyond principal towers,
see, e.g., [FL15], and possibly working with a single supercuspidal representation,
a question discussed in [KST16] which will appear in this proceedings volume.
Another property concerns uniform control on the matrix coefficients of intertwin-
ning operators, which is studied in [MS04] over the reals and in [FLM12] over
the p-adics. Finally the analytic conductor of representations, which is used in the
present formulation of Conjecture 1, is difficult to define in complete generality. For
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this it is essential to clarify the relation between depth and conductor, see [Kala] for
work in this direction, and it would be important to improve our understanding of
the local Langlands correspondence in the tame case.

For geometric families it is a difficult problem in each specific example to
identify the monodromy group. Also it is difficult to make the parametrization F
one-to-one; this is related to the implementation of the square-free sieve, which
a major step in the work of Bhargava on counting number fields with bounded
discriminant. Analogously to the question of depth versus conductor mentioned
above for automorphic representations, there is a question of the relation between
height and conductor for Hasse-Weil L-functions.

3 Non-Examples

In this section we give some “families” of automorphic forms that do not fit into
our prescription in Sect. 1. While some of these are natural and Conjectures 1 and 2
probably apply to them, they lack parametrizations and hence any known means of
study and hence remain very speculative.

3.1 Limitations

We begin by pointing to limitations in forming families. The base space W of
parameters in our definition of a geometric family is allowed to be P

m=Q, Am=Z

or products of such. Unlike the algebro-geometric setting of families over finite
fields, we cannot allow a general base W which is defined by equations over Z (or
Q). According to the solution of Hilbert’s 10th problem [Mat93] one cannot say
much about such sets W.Z/, for example deciding if they are finite or not, and
in general these sets may be unwieldy (see the example below). In particular the
averages (5), or for that matter any other statistics associated with the family, need
not exist. What would suffice for W.Z/ in order for us to analyze the family to the
extent that is described in Sects. 1 and 2 is that W be “strongly Hardy–Littlewood”
in the sense of [BR95].

The same difficulty arises if we try to perform simple Boolean operations on our
families. If F1 D .W1;F1/ and F2 D .W2;F2/ are two parametric families in A.G/,
then a natural parametric definition of their intersection is F12 D .W12;F12/ where
W12 D f.w1;w2/ W F1.w1/ D F2.w2/g � W1 �W2 and F12..w1;w2// D F1.w1/ (D
F2.w2/) for .w1;w2/ 2 W12. Note that if F1 and F2 are embeddings (so that F1.w1/
an F2.w2/ are parametrized sets in A.G/) then F12 parametrizes F1.W1/ \ F2.W2/.
The problem is that W12 � W1 � W2 encodes a general diophantine set and again
we are dealing with unwieldy sets for which the various statistical averages over the
family need not exist.
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A concrete example of the above where we allow various operations on a
parametric family is the following: Let R 2 N be a recursive set [Mat93]. There
is a polynomial P D PR 2 ZŒW1; : : : ;W10 such that P.Z10/\N D R (see [Mat93]).
Consider the parametric family F in A.GL1/ given by

F W X2 D p.W1; : : : ;W10/

so that

F..w1; : : : ;w10// D �D.w1;:::;w10/

where D.w1; : : : ;w10/ is the square-free part of p.w1; : : : ;w10/ and � the Dirichlet
character corresponding to the quadratic field Q.

p
p.w//. Then F D .W;F/ is a

parametric family in our sense and the discussion in Sects. 1 and 2 applies to it.
However if we consider the image T D F.Z10/ in A.GL1/ and impose the condition
that the field corresponding F.w/ is real (that is we intersect T with N) then we
arrive at the subset R of N, realized as a subsect of F.2/. The set of recursive subsets
of N is very general and certainly any statement such as (5) will not hold for such a
general R (when ordered by height).

3.2 Fields of Rationality

In this section we introduce a construction of families via field of rationality. Let �
be an automorphic representation of GLn.A/. The field of rationality Q.�/ for � is
by definition the fixed field in C under

f� 2 Aut.C/ W �� ' �g

where �� WD � ˝C;� C. A well-known conjecture states that ŒQ.�/ W Q < 1 if
and only if � is algebraic in the sense of Clozel [Clozel]. (These notions and the
conjecture extend to arbitrary connected reductive groups, cf. [BG11].)

Let F D .H;F/ be a harmonic family as in Sect. 1. For a number field K (as a
subfield of C) define FK to be the subset consisting of � 2 F such that Q.�/ � K.
Similarly for an integer A > 1 define F6A WD f� 2 F W ŒQ.�/ W Q 6 Ag. Observe
that each of FK and F6A is supposed to contain only algebraic members by the
conjecture just mentioned. If F is ramified at only finitely many primes, then FK

and F6A are conjectured to be finite sets, cf. [ST14, Conj 5.10], and verified to
be finite when G is a general linear group or a quasi-split classical group. (See
Theorem 1.6 and Corollary 6.8 of [ST14].)

Example. In the setup for harmonic families take H D G D GL2. Let H be the
family of all cuspidal automorphic representations � of GL2.A/ such that �1 is the
discrete series of lowest weight (so that � correspond to classical modular forms of
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weight 2). Suppose that F comes from the identity L-morphism r. Then FQ D F61
is nothing but the family of all normalized cuspforms of weight 2 whose Fourier
coefficients are rational numbers.

The family FQ in the example is identified with the family of all elliptic curves
overQ, cf. Appendix 1 below. The family corresponds to the moduli stack of elliptic
curves over Q or a moduli scheme if a suitable level structure is added. So this
example almost fits in the framework of geometric families considered earlier, to
which the two main conjectures apply. This leads us to the question as to when the
families FK and F6A can be realized as geometric families. Moreover we may ask.

Question 3.3. Suppose that the family FK (resp. F6A) has infinite cardinality. Are
Conjectures 1 and 2 true for the family FK (resp. F6A)?

To shed light on the question, let us pursue the connection with geometric
families further when the family FQ is constructed as in the above example
except that the weight is a general integer k > 2, following [PR15]. (Also see
[Kha10, § 7.2].) A conjecture of Paranjape and Ramakrishnan states that each � 2
FQ should be associated with a two-dimensional Gal.Q=Q/-subrepresentation of
Hk�1.X��QQ;Ql/ for some Calabi-Yau variety X� over Q of dimension k�1 (such
that the two-dimensional piece should be cut out by the part with Hodge numbers
.k � 1; 0/ and .0; k � 1/). If true, this suggests that FQ might be a family of 2-
dimensional motives appearing in the family of Hk�1-cohomology arising from a
family of .k � 1/-dimensional Calabi-Yau varieties. When k D 2 this reduces to
the discussion of the family of elliptic curves over Q above. In case k D 3, where
all � are of CM type and X� are K3 surfaces, see [ES13] for a recent result due to
Elkies and Schütt. A partial result towards the general case is worked out in [PR15].
However it is known that there are only finitely many � which are of CM type,
correspond to a weight 3 cuspform, and have Q as field of rationality, and similarly
for all odd k > 3 under the GRH, cf. [ES13, § 3] for more details. So the assumption
of the above question is not superfluous. In fact the authors do not know a criterion
for FK to be infinite.

More generally these conjectures about other rationality for algebraic representa-
tions all point to geometric families again. So philosophically perhaps many families
obtained by specifying the field of definition are already included in our geometric
families. (However it may be too bold to predict that all such families obtained by
constraining the field of rationality can be constructed via geometry. For instance,
the case of GL.n/ for n > 3 is unclear.) On the other hand, we note that a result
on the degree of the field of rationality by two of us [ST14] can be interpreted
as the following statement: a harmonic family cannot be defined by a geometric
construction, at least when the components at infinity are discrete series, because
then the degree of the field of rationality would be bounded.

There are other examples such as the family of all Maass forms of eigenvalue
1
4
, say with integer coefficients. A letter [Sarn02], extended in [Brum03] shows that

these forms are the same as certain Galois representations with a given H-type (see
below). So this family too can be thought of in two ways.
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3.3 Local Conditions with Measure Zero

In the construction of harmonic families we allowed ourselves to restrict a local
component �v to a nice subset Bv � 1H.Qv/ only for Bv of positive Plancherel
volume. It is of interest to study some cases where Bv has measure zero. In doing
so our main tool for studying the family, namely the trace formula, cannot be used
effectively to isolate members of the family.

An important special case is to take �1 in a specified finite subset. For a
fixed irreducible algebraic representation � of H over C, take B1 to be the set of
�1 21H.R/ such that �1 is cohomological for �, namely �1 ˝ � has nonzero Lie
algebra cohomology in some degree. Then B1 is a finite set and often has Plancherel
measure zero, for instance when H D GLn for n > 3 and � is arbitrary. Then
� 2 A.H/ is such that �1 2 B1 captures the information about the cohomology
of the corresponding locally symmetric space for H with coefficients in a local
system arising from �. One could refine the above choice of B1 by taking B1
to be a singleton �1 2 1H.R/ which is cohomological for � but not a discrete
series. As a further generalization of the special case above, one can take B1 to be
a finite set consisting of �1 21H.R/ which are C-algebraic in the sense of [BG11,
Definition 2.3.3]. Roughly speaking, it means that the infinitesimal character of �1
is integral after twisting by the half sum of all positive roots of H. For example, we
get the family of all weight 1 cuspforms and the family of all Maass cuspforms with
Laplace eigenvalue 1/4 when H D GL.2/ and B1 is a suitably chosen singleton.

In all of these cases it is already a difficult problem to enumerate H as analytic
conductor grows, in other words to study the asymptotic growth of (4). The answer
to the last is well known when B1 consists of discrete series (and thus has
a positive volume) by work of de George-Wallach [DeGW78].11 In the case at
hand concerning these families for which B1 is as above, there have been some
conjectures and results concerning the sizes of these sets, see [SX91, CE09, Mar12].
Here we take a step further to pose the question of whether our main conjectures
(Conjectures 1 and 2) are true for such families. The same question can be asked
when we prescribe constraints at finite places by subsets of Plancherel measure zero.

3.4 Universal H-Types

As discussed above any of our pure families F has a H-type associated with it,
namely an H such that 
ST.F/ D 
H . Conversely one might try form universal
families with a given H-type. Given H, the set of �’s in Acusp.G/ with H� D H
would be such a family, or we could impose this condition on �’s in any one of
our families. There are some basic difficulties with such a construction. The first is

11A general uniform such limit multiplicity theorem has been derived recently in [ABBGNRS].
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that we don’t know how to define H� in general. To begin with we can get around
this problem by restricting to �’s which are algebraic. The second problem is more
serious and this is, in any generality we have no means of understanding such an FH

and even the simplest requisite (4) is mysterious. Nevertheless it would seem safe to
expect that the H-type of FH is H, and that Conjectures 1 and 2 would hold for any
rich enough such FH (for example, it should at least be an infinite set). A numerical
study of such “families,” even for GL2-forms, would be revealing. The difficulty
with a theoretical study of such �’s is closely related (but easier since we only ask
asymptotic questions) to the analytic problem of recognizing �’s in Acusp.G/ with a
given H� that is raised by Langlands in his “Beyond Endoscopy” paper [Lan04].

While we can’t attack these H-type families, we can in all cases (at least where
the Noether conjecture is known) produce geometric parametric subfamilies of any
of these types. In many cases these subfamilies are probably close to being a positive
proportion of the H-types. In fact one of the standard approaches to the inverse
Galois problem for special finite H’s is to make a H-extension of Q.T1;T2; : : : ;Tm/

and then to specialize the t’s and use Hilbert irreducibility by counting (see [Ser97]).
This very construction is a geometric parametric family according to our definition
and of course it gives a large subfamily of such a H-type in our context.

There are some H’s for which FH can be studied, primarily using class field
theory. For G D GL.1/ and H a finite cyclic subgroup of C�, FH consists of all
Dirichlet characters of order jHj (for jHj D 2 this is the family F.2/ from §2.1).
Conjecture 1 is established without much trouble and 
ST.FH/ D 
H and for jHj >
3, i2.FH/ D 0 and the symmetry type is U.1/. Conjecture 2 has been established
for test functions of restricted support and numerically for jHj D 3 [GZ11, DFK04].

For G D GL.2/ an interesting family related to H-types, with H not fixed but
varying itself over a class of groups, was constructed by Hecke. Namely �’s which
are holomorphic cusp forms of weight 1 for which H� is (finite) dihedral. One can
study a refined version of Conjectures 1 and 2 for this family by collecting these
forms into smaller packets which correspond to Hecke characters of the class group
of Q.

p
D/, where D! �1. This was done in [FI03] who show that the symmetry

type is Sp.1/. From our point of view this is “clear” since HF is a dihedral subgroup
of GL2.C/ and in particular has Frobenius–Schur indicator equal to 1. Other than
using class field theory and specifically 1-dimensional characters, we know of few
examples where universal families of H-types can be studied.

3.5 Closing Comments

There are obvious variations on these constructions. We can combine number field
(geometric) families and harmonic families. For example, let fKigi2I be a family of
number fields over Q of fixed degree d such that disc.Ki/!1. A further option is
to require that in addition that Ki’s have isomorphic Galois groups, that they satisfy
a constraint on primes of ramification, or some other reasonable properties. Let H
be a connected reductive group over Q, with an L-group representation r W LH !
GL.m;C/. The latter gives rise to an L-group representation R W L.resKi=Q H/ !
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GL.md;C/ by applying r on each copy of the dual group of H. The functorial lift
corresponding to R is the functorial lift with respect to r over Ki followed by the
automorphic induction from GLm over Ki to GLmd over Q. The resulting family F is
a family of automorphic L-functions of degree md. If functoriality for r (over each
Ki) is known, then we may think of F as a family of automorphic representations
of GL.md;A/ whose standard L-functions are as above. Sometimes it happens that
every L.s; �;R/ factorizes as a product of L-functions and has a certain factor in
common. In that case we may as well remove the common factor altogether. This
construction yields examples which are not covered by families of the first chapter.

Finally note that for any of our parametric families one can impose further
restrictions in exhausting F or placing arithmetic conditions on the conductors.
For example, one can collect the �’s in F in shells of given conductor (going to
infinity) if these sets are large, or one can restrict to �’s in F with conductor a
prime number. We view these as simple variations of our formation of families,
albeit often technically more problematic. We have emphasized families which are
cuspidal and pure, however mixed types arise naturally enough. A good example
is that of Dedekind zeta functions of quartic field extensions of Q. For these a
positive proportion has Galois closure S4 (as in Sect. 2.2) but there is also a positive
proportion with Galois group D4 whose invariants are quite different (see [Bha05]).

Appendix 1. Hasse–Weil L-Functions

Here we recall the definition of the Hasse–Weil L-function (2) and the mod-
ularity conjecture. The modularity conjecture (Conjecture 4 below) states that
the L-functions arising from algebraic varieties over Q should be automorphic
L-functions. In fact we will explain how L-functions are attached to l-adic Galois
representations, in particular the étale cohomology space appearing in (2). To do so
we recall the local Langlands correspondence for general linear groups in order to
be precise about the matching of L-functions at ramified places. We also reformulate
the modularity conjecture as a bijective correspondence between certain l-adic
Galois representations and automorphic representations preserving L-functions,
incorporating observations by Clozel and Fontaine-Mazur. The reader is referred
to [Tay04] for an excellent survey of many topics discussed in this Appendix.

Let p be a prime and K a finite extension of Qp with residue field cardinality qK .
Write WK for the Weil group of K. For an algebraically closed field � of character-
istic 0, denote by Repn.WK/� (resp. Rep.GLn.K//�) the set of isomorphism classes
of n-dimensional Frobenius-semisimple Weil-Deligne representations of WK (resp.
irreducible smooth representations of GLn.K/) on k-vector spaces. For simplicity
an element of Repn.WK/ will be called an (n-dimensional) WD-representation of
WK . Recall that such a representation is represented by .V; �;N/ where V is an n-
dimensional space over �, � W WK ! GL�.V/ is a representation such that �.IK/

is finite and �.w/ is semisimple for every w 2 WK , and N 2 End�.V/ is a nilpotent
operator such that wNw�1 D jwjN where j 	 j W WK ! R

�
>0 is the transport of the
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modulus character on K� via class field theory. The local Langlands reciprocity map
is a bijection

recK W Rep.GLn.K//C ! Repn.WK/C

uniquely characterized by a list of properties, cf. [HT01]. In particular L.s; �/ D
L.s; rec.�//, ".s; �;  / D ".rec.�/;  / for any nontrivial additive character  W
F ! C

� (and a fixed Haar measure on F), and we also have an equality of
conductors f .�/ D f .recK.�//. Here the local L and " factors as well as conductors
are independently defined on the left and right-hand sides. Here we will only recall
the definition of the conductor and L-factor for WD-representations, which is due
to Grothendieck, leaving the rest of definitions and further references to [Tate] and
[Tay04]. For .V; �;N/ 2 Repn.WK/� the conductor is given by

f .V/ WD dim.V=VIK \ ker N/C
Z 1

0

dim V=VIu
K du;

where Iu
K is the upper numbering filtration on the inertia group IK . Now let FrobK

denote the geometric Frobenius in WK=IK . The local L-factor is defined to be

L.s;V/ WD det.1 � FrobKq�s
K jVIK \ ker N/�1

so that we have the equality L.s; �/ D det.1 � FrobKq�s
K jrec.�/IK \ ker N/�1 for

� 2 Rep.GLn.K//C.
Now fix a field isomorphism � W Ql ' C and let � W Gal.F=F/ ! GLn.Ql/

be a continuous semisimple Galois representation which is unramified at almost
all primes and potentially semistable (equivalently de Rham) at places of F above l.
Such a � is to be called algebraic. At each finite place v of F, there is a functor WDv

from continuous representations of Gal.Fv=Fv/ ! GLn.Ql/ (assumed potentially
semistable if vjl) to WD-representations of WFv . The construction of WDv relies
on Grothendieck’s monodromy theorem when v − l and Fontaine’s work in l-adic
Hodge theory if vjl.

The (global) conductor for � is
Q
v p

fv
v where pv is the prime ideal of OF

corresponding to v, and fv D f .�jGal.Fv=Fv//. With � is associated a product function
in a complex variable s, which is a priori formal infinite product:

L.s; �/ WD
Y

vWfinite

Lv.s; �/; Lv.s; �/ WD L.s; �WDv.�jGal.Fv=Fv///:

When � arises as a subquotient in the l-adic cohomology of an algebraic variety
over F, one can apply Deligne’s purity theorem to show that L.s; �/ converges
absolutely for Re.s/ � 1 (with often explicit lower bound). Further there is a
recipe for the archimedean factor L1.s; �/ in terms of Hodge-Tate weights of �
at places above l. (See the definition of �.R; s/ in [Tay04, § 2], taking R to be the
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induced representation of � from Gal.F=F/ to Gal.F=Q/.) This leads to a completed
L-function

ƒ.s; �/ WD L.s; �/L1.s; �/:

In the main body of the paper we were interested in the L-functions for Galois
representations arising from varieties. Let X be a smooth projective variety over
Q, so X has good reduction modulo p for all but finitely many primes p. Then a
reciprocity law for X on a concrete level would be a description of the number
of points of X in Fp (and its finite extensions) in terms of automorphic data at p
(i.e., local invariants at p of several automorphic representations of general linear
groups) as p runs over the set of primes with good reduction, cf. [Lan76]. This may
be thought of as a non-abelian reciprocity law generalizing the Artin reciprocity
law in class field theory as well as an observation about elliptic modular curves
by Eichler-Shimura. Now we say that � W Gal.Q=Q/ ! GLn.Ql/ comes from
geometry if

• � is unramified away from finitely many primes,
• there exists a finite collection of smooth projective varieties Xi and integers

di;mi 2 Z (indexed by i 2 I) such that � appears as a subquotient of

M

i2I

Hdi
et .X �Q Q;Ql/.mi/:

As usual .mi/ denotes the Tate twist. One can speak of the obvious analogue with
Q replaced by any finite extension F over Q. In the language of L-functions the
following conjecture presents a precise form of the reciprocity law as above.

Conjecture 4. Let � W Ql ' C be an isomorphism. If � W Gal.F=F/ ! GLn.Ql/

comes from geometry, then L.s; �/ is automorphic, namely there exists an isobaric
automorphic representation … of GLn.AF/ such that Lv.s;…/ D Lv.s; �/ at every
finite place v and v D 1 (so that L.s;…/ D L.s; �/ and ƒ.s;…/ D ƒ.s; �/).

The Hasse-Weil conjecture predicts that L.s; �/ should have nice analytic
properties such as analytic continuation, functional equation, and boundedness in
vertical strips. If we believe in the Hasse-Weil conjecture, the converse theorem
(discovered by Weil and then developed notably by Piatetskii-Shapiro and Cogdell)
gives us a good reason to also believe that Conjecture 4 is true.

The conjecture begs two natural questions, namely a useful characterization of
� coming geometry and a description of … that arise from such �. The conjectural
answers have been provided by Fontaine-Mazur and Clozel, respectively. Indeed
a conjecture by Fontaine-Mazur asserts that a continuous semisimple l-adic repre-
sentation � comes from geometry if and only if it is algebraic. Following Clozel a
cuspidal automorphic representation … of GLn.AF/ is said to be L-algebraic if,
roughly speaking, the L-parameters for … at infinite places consist of algebraic
characters in a suitable sense (see [BG11] for the definition; this differs from
[Clozel] in that no adjustment by the n�1

2
-th power is made, cf. comments below
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Conjecture 5). An isobaric sum of cuspidal representations �r
iD1…i is algebraic

if every …i is algebraic. Then we can reformulate Conjecture 4 as one about the
existence of the global Langlands correspondence preserving L-functions:

Conjecture 5. Fix � as above. Then there exists a bijection … $ � between the
set of L-algebraic isobaric automorphic representations of GLn.AF/ and the set
of algebraic n-dimensional semisimple l-adic representations of Gal.F=F/ (up to
isomorphism) such that the local L-factors are the same, so that L.s;…/ D L.s; �/
andƒ.s;…/ D ƒ.s; �/.
Remark. The strong multiplicity one theorem and the Chebotarev density theorem
imply that if there is a correspondence…$ � as above then it should be a bijective
correspondence and unique (but it does depend on the choice of �). It is expected that
the set of cuspidal … maps onto the set of irreducible �. A stronger property, often
referred to as the local-global compatibility, is believed to be true at finite places
v: it says that recFv .…v/ D �WD.�jGal.Fv=Fv//. (This is stronger only at ramified
places.) In particular it should be true that � and… have the same conductor (at finite
places). Since we are concerned with unitary duals, we have adopted the unitary
normalization for the Langlands correspondence and algebraicity. For arithmetic
considerations it is customary to twist … by the 1�n

2
-th power of the modulus

character in the conjecture. If so, one should replace “L-algebraic” by “C-algebraic,”
cf. [BG11].

It is worth noting that Conjecture 4 suffices for our purpose in discussing
geometric families. An important part of the Langlands program has been to confirm
Conjecture 4 when � is the l-adic cohomology of a Shimura variety (in any degree),
which in turn led to many instances of the map … 7! � in Conjecture 5. Another
remarkable result toward the conjectures is the modularity of elliptic curves over
Q due to Wiles and Breuil-Conrad-Diamond-Taylor, who identified L.s; �/ with the
L-function of a weight 2 modular form when � is the étale H1 of an elliptic curve
over Q. Recent developments include modularity lifting and potential modularity
theorems. As we have no capacity to make a long list of all known cases of either
Conjecture 4 or 5, we mention survey articles [Tay04] and [Harr10] for the reader
to begin reading about progress until 2009.

We close the discussion with a comment on the unitarity of local components
and the issue of correct twist, cf. Remark (iv) below the definition of geometric
families in Sect. 1. Consider the automorphic representation … corresponding via
the above conjectures to � D Hd

et.X �Q Q;Ql/ for a smooth proper variety X over
Q (which is not necessarily geometrically connected). Set …0 WD … ˝ j det jd=2. If
X has good reduction modulo a prime p, then the geometric Frobenius acts on the
Hd-cohomology with absolute values pd=2 under any choice of �. (This is Deligne’s
theorem on the Weil Conjectures if p ¤ l. The argument extends to p D l by work of
Katz-Messing.) Hence the twist the Satake parameters of …0p have absolute value 1,
so…0p is unitary. In general when X has bad reduction modulo p, the unitarity of…0p
can be deduced from the weight-monodromy conjecture in mixed characteristic (as
stated in [Saito]). Despite recent progress, cf. [Sch12], the latter conjecture is still
open. What we said of � should remain true when � is a subquotient of Hd

et.X �Q
Q;Ql/.
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Appendix 2. Non-Criticality of the Central Value for
Orthogonal Representations

Deligne ([Del79]) made a conjecture on special values of motivic L-functions. For
a given L-function there is a set of the so-called critical values of s to which
his conjecture applies. For our purpose we take on faith a motivic version of
Conjecture 5 (cf. [Lan12, § 6] and Remark 3.5 above) on the existence of a bijection
between absolutely irreducible pure motives M of rank n over Q and cuspidal C-
algebraic automorphic representations � of GLn.A/ such that

L.sC n � 1
2

;M/ D L.s; �/:

Thereby Deligne’s conjecture translates to a conjecture on automorphic L-functions.
We copy the definition of s being critical from the motivic side to the automorphic
side in the obvious way. We are particularly interested in the question of whether
the central value s D 1=2 is critical for a cuspidal automorphic L-function which is
unitarily normalized (for this a twist by a suitable power of the modulus character
may be needed). The goal of appendix is to show

Proposition 3.6. Suppose that a cuspidal automorphic representation � of
GLn.A/ is

(1) orthogonal (i.e., � is self-dual and L.s; �;Sym2/ has a pole) and
(2) regular and C-algebraic.

Then s D 1=2 is not critical for L.s; �/.

The statement, in particular the definition of criticality, is unconditional in that
no unproven assertions need to be assumed. However the proof is conditional on
Conjecture 5 as well as various conjectures around motives that are supposed to be
true (see Sect. 1 of [Del79] for the latter). We freely assume them below.

Proof. There should be a pure irreducible rank n motive M over Q corresponding to
� . We follow the conventional normalization so that the weight of M is w D n � 1.
(Note that the second assumption on � implies that M has Hodge numbers 0 or 1. In
the Hodge realization the dimension of Mp;q is at most one, and zero if pCq ¤ n�1.)
Since � is self-dual, M is self-dual up to twist. More precisely there is a perfect
pairing

M ˝M ! Q.1 � n/

where Q.1 � n/ is the .1 � n/-th power of the Tate motive.
The center of symmetry for L.s;M/, the L-function associated with M, is at s D

.1C w/=2 D n=2. The necessary condition (which may not be sufficient) for it to
be critical is that n=2 2 Z, namely that n is even (so w is odd). Hence we may and
will assume that n is even. Now consider the l-adic realization

Ml ˝Ml ! Ql.1 � n/;
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where Ml is now an irreducible l-adic representation of Gal.Q=Q/. By a result of
Bellaiche-Chenevier’s ([BC11]) the sign of Ml is equal to .�1/n�1 D �1, meaning
that the above pairing on Ml is symplectic. (To apply their result we need both
assumptions (1) and (2) on � .) Translating back to the automorphic side we deduce
that � is also symplectic. We have shown that if s D 1=2 is critical then � is
symplectic, completing the proof. ut
Example. When n D 1 and � corresponds to a Dirichlet character �, it is well
known that the central value s D 1=2 for L.s; �/ is not critical. In this case � is
clearly orthogonal and the proposition applies.

Example. Consider the case of n D 2 where � corresponds to weight k cuspforms
(k > 1). Since we are concerned with self-dual representations, we normalize the
correspondence such that � is self-dual. Then � is regular algebraic if and only if
k is even. (To deal with odd weight forms, one could twist � by a half-power of
the modulus character, but then � would be self-dual only up to a twist.) In case
k is even, we associate with � a pure motive M of rank 2 and weight 1 such that
dim M1�k=2;k=2 D dim M1�k=2;k=2 D 1. It is equipped with a symplectic pairing
M �M ! Q.�1/.
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