
Chapter 6
HOSVD on Tensors and Its Extensions

Abstract This chapter describes in detail tensor decomposition for recommender
systems. As our running toy example, we will use a tensor with three dimensions
(i.e., user–item–tag). The main factorization method that will be presented in this
chapter is higher order SVD (HOSVD), which is an extended version of the Singular
Value Decomposition (SVD) method. In this chapter, we will present a step-by-step
implementation of HOSVD in our toy example. Then we will present how we can
update HOSVD when a new user is registered in our recommender system. We
will also discuss how HOSVD can be combined with other methods for leveraging
the quality of recommendations. Finally, we will study limitations of HOSVD and
discuss in detail the problem of non-unique tensor decomposition results and howwe
can deal with this problem. We also discuss other problems in tensor decomposition,
e.g., actualization and scalability.

Keywords HOSVD · Higher order singular value decomposition · Tensor decom-
position

6.1 Algorithm’s Outline

In the following, we provide a solid description of the HOSVD method with an
outline of the algorithm for the case of social tagging systems, where we have three
participatory entities (user, item, and tag). In particular, we provide details of how
HOSVD is applied to tensors and how item/tag recommendation is performed based
on detected latent associations.

The tensor reduction approach initially constructs a tensor, based on usage data
triplets {u, i, t}of users, item, and tag.Themotivation is to use all the three objects that
interact inside a social tagging system. Consequently, we proceed to the unfolding
of A, where we build three new matrices. Then, we apply SVD in each new matrix.
Finally, we build core tensor S and resulting tensor Â. The six steps of the HOSVD
approach are summarized as follows:

© The Author(s) 2016
P. Symeonidis and A. Zioupos, Matrix and Tensor Factorization Techniques
for Recommender Systems, SpringerBriefs in Computer Science,
DOI 10.1007/978-3-319-41357-0_6

81

82 6 HOSVD on Tensors and Its Extensions

• Step 1: The initial tensor A construction, which is based on usage data triplets
(user, item, tag).

• Step 2: The matrix unfoldings of tensor A, where we matricize the tensor in all
three modes, creating three new matrices (one for each mode). (see Eq. 5.1)

• Step 3: The application of SVD in all three newmatrices, wherewe keep the c-most
important singular values for each matrix.

• Step 4: The construction of the core tensor S that reduces dimensionality (see
Eq. 5.3).

• Step 5: The construction of the Â tensor that is an approximation of tensorA (see
Eq. 5.4).

• Step 6: Based on the weights of the elements of the reconstructed tensor Â, we
recommend an item/tag to the target user u.

Steps 1–5 build a model and can be performed offline. The recommendation in
Step 5 is performed online, i.e., each time we have to recommend an item/tag to a
user, based on the built model.

6.2 HOSVD in STSs

In this section, in order to illustrate how HOSVD works for item recommendation,
we applyHOSVDon a toy example. As illustrated in Fig. 6.1, three users tagged three
different items (web links). In Fig. 6.1, the part of an arrow line (sequence of arrows
with the same annotation) between a user and an item represents that the user tagged
the corresponding item, and the part between an item and a tag indicates that the
user tagged this item with the corresponding tag. Thus, annotated numbers on arrow
lines give the correspondence between the three types of objects. For example, user
u1 tagged item i1 with tag “BMW,” denoted as t1. The remaining tags are “Jaguar,”
denoted as t2, “CAT,” denoted as t3.

From Fig. 6.1, we can see that users u1 and u2 have common interests on cars,
while user u3 is interested in cats.A third-order tensorA ∈ R

3×3×3 can be constructed
from usage data. We use the co-occurrence frequency (denoted as weights) of each
triplet user, item, and tag as elements of tensorA, which are given in Table6.1. Note
that all associatedweights are initialized to 1. Figure6.2 shows the tensor construction
of our running example.

Table 6.1 Associations of the running example

Arrow line User Item Tag Weight

1 u1 i1 t1 1

2 u2 i1 t1 1

3 u2 i2 t2 1

4 u3 i3 t3 1

http://dx.doi.org/10.1007/978-3-319-41357-0_5
http://dx.doi.org/10.1007/978-3-319-41357-0_5
http://dx.doi.org/10.1007/978-3-319-41357-0_5

6.2 HOSVD in STSs 83

Fig. 6.1 Usage data of the running example

users

items

tags

Fig. 6.2 The tensor construction of our running example

After performing tensor reduction analysis, we can get the reconstructed tensor
of Â, which is presented in Table6.2, whereas Fig. 6.3 depicts the contents of Â
graphically (weights are omitted). As shown in Table6.2 and Fig. 6.3, the output of
the tensor reduction algorithm for the running example is interesting, because a new
association among these objects is revealed. The new association is between u1, i2,
and t2. It is represented with the last (boldfaced) row in Table6.2 and with the dashed
arrow line in Fig. 6.3.

If we have to recommend to u1 an item for tag t2, then there is no direct indication
for this task in the original tensor A. However, we see that in Table6.2 the element
of Â associated with (u1, i2, r2) is 0.44, whereas for u1, there is no other element
associating other tags with i2. Thus, we recommend item i2 to user u1, who used tag
t2. For the current example, the resulting Â tensor is shown in Fig. 6.4.

84 6 HOSVD on Tensors and Its Extensions

Fig. 6.3 Illustration of the tensor reduction algorithm output for the running example

Table 6.2 Associatings derived on the running example

Arrow line User Item Tag Weight

1 u1 i1 t1 0.72

2 u2 i1 t1 1.17

3 u2 i2 t2 0.72

4 u3 i3 t3 1

5 u1 i2 t2 0.44

users

items

tags

Fig. 6.4 The resulting Â tensor for the running example

The resulting recommendation is reasonable, because u1 is interested in cars rather
than cats. That is, the tensor reduction approach is able to capture latent associations
among the multitype data objects: user, items, and tags. The associations can then
be used to improve the item recommendation procedure.

6.2 HOSVD in STSs 85

6.2.1 Handling the Sparsity Problem

Sparsity is a severe problem in three-dimensional data, which could affect the
outcome of SVD. To address this problem, instead of SVD we can apply kernel
SVD [2, 3] in three unfolded matrices. Kernel SVD is the application of SVD in
the kernel-defined feature space. Smoothing with kernel SVD is also applied by
Symeonidis et al. in [11].

For each unfolding Ai (1 ≤ i ≤ 3), we have to nonlinearly map its contents to
a higher dimensional space using a mapping function φ. Therefore, from each Ai

matrix we derive an Fi matrix, where each element axy of Ai is mapped to the
corresponding element fxy of Fi , i.e., fxy = φ(axy). Next, we can apply SVD and
decompose each Fi as follows:

Fi = U (i)S(i)(V (i))T (6.1)

The resulting U (i) matrices are then used to construct the core tensor.
Nevertheless, to avoid explicit computation of Fi , all computations must be done

in the form of inner products. In particular, as we are interested to compute only
matrices with left singular vectors, for each mode i we can define a matrix Bi as
follows:

Bi = Fi F
T
i (6.2)

As Bi is computed using inner products from Fi , we can substitute the computation
of inner products with the results of a kernel function. This technique is called the
“kernel trick” [3] and avoids the explicit (and expensive) computation of Fi . As each
U (i) and V (i) are orthogonal and each S(i) is diagonal, it easily follows from Eqs.6.1
and 6.2 that:

Bi = (U (i)S(i)(V (i))T)(U (i)S(i)(V (i))T)T = U (i)(S(i))2(V (i))T (6.3)

Therefore, each required U (i) matrix can be computed by diagonalizing each Bi

matrix (which is square) and taking its eigenvectors.
Regarding the kernel function, in our experiments, we use the Gaussian kernel

K (x, y) = e− ||x−y||2
c , which is commonly used in many applications of kernel SVD.

As Gaussian kernel parameter c, we use the estimate for standard deviation in each
matrix unfolding.

6.2.2 Inserting New Users, Tags, or Items

As new users, tags, or items are being introduced to the system, the tensor Â, which
provides the recommendations, has to be updated. The most demanding operation is
the updating of SVD of the correspondingmode in Eqs. 6.1 and 6.3. Aswewould like

86 6 HOSVD on Tensors and Its Extensions

to avoid the costly batch recomputation of the corresponding SVD, we can consider
incremental solutions [1, 9]. Depending on the size of the update (i.e., number of new
users, tags, or items), different techniques have been followed in related research. For
small update sizes, we can consider the folding-in technique [4, 9], whereas for larger
update sizes, we can consider incremental SVD techniques [1]. Both techniques are
described next [11].

6.2.3 Update by Folding-in

Given a new user, we first compute the new 1-mode matrix unfolding A1. It is
easy to see that entries of the new user result in appending of a new row in
A1. This is exemplified in Fig. 6.5. Figure6.5a shows the insertion of a new user
in the tensor of the current example (new values are presented with red color).
Notice that to ease presentation, new user tags and items are identical to those of
user U2.

Let u denote the new row that is appended to A1. Figure6.5b shows the new A1,
i.e., the 1-mode unfolded matrix, where it is shown that contents of u (highlighted
with red color) have been appended as a new row in the end of A1.

Since A1 changed, we have to compute its SVD, as given in Eq.6.5. To avoid a
batch SVD recomputation, we can use the existing basisU (1)

c1 of left singular vectors
to project the u row onto the reduced c1-dimensional space of users in the A1 matrix.
This projection is called folding-in and is computed using the following Eq.6.4 [4]:

unew = u · V (1)
c1 · (S(1)

c1)−1 (6.4)

In Eq.6.4, unew denotes the mapped row, which will be appended toU (1)
c1 , whereas

V (1)
c1 and (S(1)

c1)−1 are dimensionally reduced matrices derived when SVD was
originally applied to A1, i.e., before insertion of the new user. In the current example,
computation of unew is described in Fig. 3.4.

The unew vector should be appended to the end of theU (1)
c1 matrix. For the current

example, appending should be done to the previously U (1)
c1 matrix. Notice that in

the example, unew is identical with the second column of the transpose of U (1)
c1 . The

reason is that the new user has identical tags and items with userU2 and we mapped
them on the same space (recall that the folding-in techniquemaintains the same space
computed originally by SVD) (Fig. 6.6).

http://dx.doi.org/10.1007/978-3-319-41357-0_3

6.2 HOSVD in STSs 87

1 0

1 0

0 0

0

0 0

0 0

0 0

0 1

0 0

0

0

0

0

0

0

0

0

0

1

1 0 0

0 1 0

0 0 0

(a)

(b)
 1 0 0 0 0 0 0 0 0

A1 = 1 0 0 0 1 0 0 0 0
 0 0 0 0 0 0 0 0 1
1 0 0 0 1 0 0 0 0

Fig. 6.5 Example of folding in a new user: a the insertion of a new user in tensor, b the new 1-mode
unfolded matrix A1

-0.85 0

unew

= 1 0 0 0 1 0 0 0 0

u

×

×

-0.85 0
0 0
0 0
0 0

-0.53 0
0 0
0 0
0 0
0 1

V(1)
c1

× 0.62 0
0 1

(S(1)
c1)−1

Fig. 6.6 The result of folding-in for the current example

Finally, to update the tensor Â, we have to perform products given in Eq.6.1.
Notice that onlyU (1)

c1 has been modified in this equation. Thus, to optimize insertion
of new users, as mode products are interchangeable, we can perform this product
as

[S ×2 U (2)
c2 ×3 U (3)

c3

] ×1 U (1)
c1 , where the left factor (inside the brackets), which

is unchanged, can be prestored so as to avoid its recomputation. For the current
example, the resulting Â tensor is shown in Fig. 6.7.

88 6 HOSVD on Tensors and Its Extensions

0.72 0

1.17 0

0 0

0

0 0

0 0

0 0.44

0 0.72

0 0

0

0

0

0

0

0

0

0

0

 1

0

0

0 0 0

1.17 0

0.72 0

Fig. 6.7 The resulting Â tensor of running example after the insertion of new user

An analogous insertion procedure can be followed for the insertion of a new item
or tag. For a new item insertion, we have to apply Eq.6.4 on the 2-mode matrix
unfolding of tensor A, while for a new tag, we apply Eq.6.4 on the 3-mode matrix
unfolding of tensor A.

6.2.4 Update by Incremental SVD

Folding-in incrementally updates SVD, but the resulting model is not a perfect SVD
model, because the space is not orthogonal [9]. When the update size is not big,
the loss of orthogonality may not be a severe problem in practice. Nevertheless, for
larger update sizes the loss of orthogonality may result in an inaccurate SVD model.
In this case, we need to incrementally update SVD so as to ensure orthogonality.
This can be attained in several ways. Next, we describe the approach proposed by
Brand [1].

Let Mp×q be a matrix, upon we which apply SVD and maintain the first r singular
values, i.e.,

Mp×q = Up×r Sr×r V
T
r×q (6.5)

Assume that each column of matrix Cp×c contains additional elements. Let
L = U\C = UTC be the projection of C onto the orthogonal basis of U . Let also
H = (I −UUT)C = C −UL be the component of C orthogonal to the subspace
spanned by U (I is the identity matrix). Finally, let J be an orthogonal basis of H
and let K = J\H = J T H be the projection of C onto subspace orthogonal to U .
Consider the following identity:

[U J]

[
S L
0 K

] [
V 0
0 I

]T

=
[
U (I −UUT)C/K

] [
S UTC
0 K

] [
V 0
0 I

]T

=
[
USV T C

]
= [M C]

6.2 HOSVD in STSs 89

Like an SVD, left and right matrices in the product are unitary and orthogonal. The
middle matrix, denoted as Q, is diagonal. To incrementally update SVD, Q must be
diagonalized. If we apply SVD on Q, we get:

Q = U ′S′(V ′)T (6.6)

Additionally, define U ′′, S′′, andV ′′ as follows:

U ′′ = [U J]U ′, S′′ = S′, V ′′ =
[
V 0
0 I

]
V ′ (6.7)

Then, the updated SVD of matrix [M C] is as follows:

[M C] = [USV T C] = U ′′S′′(V ′′)T (6.8)

This incremental update procedure takes O((p + q)r2 + pc2) time.
Returning to the application of an incremental update for new users, items, or tags,

as described in Sect. 6.2.3, in each case it resulted in a number of new rows that are
appended to the end of the unfolded matrix of the corresponding mode. Therefore,
we need an incremental SVD procedure in the case where we add new rows, whereas
the aforementioned method works in the case where we add new columns. In this
case, we simply swap U for V and U ′′ for V ′′.

6.3 Limitations and Extensions of HOSVD

In this section, we discuss some limitations of HOSVD and describe other extensions
of the HOSVDmethod. In particular, we discuss in detail the problem of non-unique
tensor decomposition results and how we can deal with this problem. We also dis-
cuss other problems in tensor decomposition, e.g., missing data, scalability, and
overfitting.

As far as scalability is concerned, the runtime complexity is cubic in the size
of latent dimensions. This is shown in Eq.5.6, where three nested sums have to
be calculated just for predicting a single (user, item, tag) triplet. In the direction
of solving this scalability issue, there are approaches to improve the efficiency of
HOSVD [5, 12].

As far as non-unique of tensor decompositions (HOSVD and PARAFAC) results
is concerned, since their objective functions are nonconvex, there are a large num-
ber of local optima. That is, starting from different starting points, the iteratively
improved solution may converge to different local solutions (see Sect. 5.3). Duo
et al. [6] have experimentally shown that for all real-life data sets they tested, the
HOSVD solution is unique (i.e., different initial starting points always converge to a
unique global solution), whereas the PARAFAC solution is almost always not unique.

http://dx.doi.org/10.1007/978-3-319-41357-0_5
http://dx.doi.org/10.1007/978-3-319-41357-0_5

90 6 HOSVD on Tensors and Its Extensions

Since HOSVD solutions are unique, it means that the resulting approximation tensor
is repeatable and reliable.

Someone could argue that HOSVD does not handle missing data, since it treats all
(user, item, and tag) triplets—that are not seen and are just unknown or missing—as
zeros. To address this problem, instead of SVD, we can apply kernel SVD [2] in the
three unfolded matrices. Kernel SVD is the application of SVD in the kernel-defined
feature space and can smooth the severe data sparsity problem. In the same direction,
lexical similarity between tags can further downsize the sparsity problem. That is,
by considering also the synonymity of tags, we can increase the number of nonzero
elements in the tensor.

Finally, someone could claim that HOSVD supports no regularization, and thus,
it is sensitive to overfitting. In addition, appropriate tuning of selected parame-
ters cannot guarantee a solution to the aforementioned regularization problem.
To address this problem, we can extend HOSVD with L2 regularization, which
is also known as Tikhonov regularization. After the application of a regularized
optimization criterion, possible overfitting can be reduced. That is, since the basic
idea of the HOSVD algorithm is to minimize an elementwise loss on elements
of Â by optimizing the square loss, we can extend it with L2 regularization
terms.

6.3.1 Combining HOSVD with a Content-Based Method

Social tagginghas become increasingly popular inmusic information retrieval (MIR).
It allows users to tag music resources such as songs, albums, or artists. Social tags
are valuable to MIR, because they comprise a multifaceted source of information
about genre, style, mood, users’ opinion, or instrumentation.

Symeonidis et al. [8] examined the problemof personalized song recommendation
(i.e., resource recommendation) based on social tags. They proposed the modeling
of social tagging data with three-order tensors, which capture cubic (three-way) cor-
relations between users–tags–music items. The discovery of a latent structure in this
model is performed with HOSVD, which helps to provide accurate and personalized
recommendations, i.e., adapted to particular users’ preferences.

However, the aforementioned model suffers from sparsity that incurs in social
tagging data. Thus, to further improve the quality of recommendation, Nanopou-
los et al. [7] enhanced the HOSVD model with a tag-propagation scheme that uses
similarity values computed between music resources based on audio features. As a
result, this hybrid model effectively combines both information about social tags and
audio features. Nanopoulos et al. [7] examined experimentally the performance of
the proposed method with real data from Last.fm. Their results indicate superiority
of the proposed approach compared to existing methods that suppress cubic rela-

6.3 Limitations and Extensions of HOSVD 91

tionships that are inherent in social tagging data. Additionally, their results suggest
that combination of social tagging data with audio features is preferable to use the
former alone.

6.3.2 Combining HOSVD with a Clustering Method

In this section,wedescribe howwecan combineHOSVDwith the clusteringof tags in
STSs. In this direction, Panagiotis Symeondis [10] proposed an effective preprocess-
ing step, i.e., the clustering of tags, that can reduce the size of tensor dimensions and
deal with its missing values. To perform clustering of tags, he initially incorporates
in his model two different auxiliary ways to compute similarity/distance between
tags. First, he computes cosine similarity of tags based on term frequency-inverse
document frequency within the vector space model. Second, to address polysemy
and synonymity of tags, he also computes their semantic similarity by utilizing the
WordNet1 dictionary.

After clustering tags, he uses centroids of found tag clusters as representatives for
tensor tag dimension. As a result, he efficiently overcame the tensor’s computational
bottleneck by reducing both factorization dimension and data sparsity. Moreover,
clustering of tags is an effective means to reduce tag ambiguity and tag redun-
dancy, resulting in better accuracy prediction and item recommendations. He used
three different clusteringmethods (i.e., k-means, spectral clustering, and hierarchical
agglomerative clustering) for discovering tag clusters.

The main intuition of combining HOSVDwith a clustering method (e.g., spectral
clustering, k-means, etc.) in STSs is based on the fact that if we perform tag clustering
before tensor construction, we will be able to build a lower dimension tensor based
on found tag clusters. The ClustHOSVD algorithm consists of three main parts:
(i) tag clustering, (ii) tensor construction and its dimensionality reduction, and
(iii) item recommendation based on detected latent associations. Figure6.8 depicts
the outline of ClustHOSVD. The input is the initial usage data triplets (user, tag,
item), a selected user u and a tag t that u is interested in. The output is the reduced
approximate tensor which incorporates the tag cluster dimension and a set of recom-
mended items to user u.

1http://wordnet.princeton.edu.

http://wordnet.princeton.edu

92 6 HOSVD on Tensors and Its Extensions

Algorithm ClustHOSVD
Input
n {user, tag, item}-triplets of the training data.
k: number of clusters
u: a selected user.
t: a selected tag.

Output
Â: an approximate tensor with user, tag cluster, and item dimension.
N : the number of recommended items.

Step 1. Perform clustering (k-means, spectral, etc.) on tag dimension.
1.a) Compute the tag–tag similarities and the k cluster centroids.
1.b) Compute the distance of each tag from the cluster centroid.
1.c) Execute the clustering on tag dimension.

Step 2. Apply HOSVD on Tensor.
2.a) Build the initial A tensor inserting the tag cluster dimension.
2.b) Perform HOSVD to decompose and recompose theA tensor.

(Steps 1–6 of Section 6.1).
Step 3. Generate the item recommendation list.

3.a) Get from the approximate tensor Â the w likeliness that user u
will tag item i with a tag from cluster c.

3.b) Recommend the top-N items with the highest w likeliness
to user u for tag t.

Fig. 6.8 Outline of the ClustHOSVD Algorithm

In step 1, complexity of ClustHOSVD depends on the selected clustering algo-
rithm. In case we apply k-means, its time complexity is O(Ic × k × i × f), where
|Ic| is the number of tag clusters, k is the number of clusters, i is the number of
iterations until k-means converge, and f is the number of tag features, where each
tag can be expressed as an f -dimensional vector. In case we apply multiway spectral
clustering, we can apply first k-means to cluster the tags of the tripartite graph, and
then we can apply spectral clustering only on cluster centroids (representative tags of
each cluster). Using this implementation, the overall computation cost of multiway
spectral clustering is O(k3) + O(Ic × k × i × f). Finally, the time complexity of
hierarchical agglomerative clustering takes O(t3) operations, where |t | is the number
of tags, which makes it slow for large data sets.

In step 2, runtime complexity of HOSVD is cubic in the size of latent dimensions.
However, ClustHOSVD algorithm performs clustering on the tag dimension, result-
ing usually in a small number of tag clusters. Notice that the same procedure can be

6.3 Limitations and Extensions of HOSVD 93

followed for other two dimensions (users and items). Thus, it can result a tensor with
a very small number of latent dimensions.

In step 3, top-N recommended items are found after sorting w likeliness values
that user u will tag item i with a tag from cluster c, using a sorting algorithm (quick-
sort) with complexity O(Ii log Ii), where |Ii | is the number of items.

References

1. Burke, R.: Hybrid recommender systems: survey and experiments. User Model. User-Adap.
Inter. 12(4), 331–370 (2002)

2. Chin, T.-J., Schindler, K., Suter, D.: Incremental kernel svd for face recognition with image
sets. In: Proceedings of the 7th International Conference on Automatic Face and Gesture
Recognition (FGR 2006), pp. 461–466. IEEE (2006)

3. Cristianini, N., Shawe-Taylor, J.: Kernel Methods for Pattern Analysis. Cambridge University
Press (2004)

4. Furnas, G., Deerwester, S., Dumais, S., et al.: Information retrieval using a singular value
decomposition model of latent semantic structure. In: Proceedings of ACMSIGIR Conference,
pp. 465–480 (1988)

5. Kolda, T.G., Sun, J.: Scalable tensor decompositions for multi-aspect data mining. In:
ICDM’08: Proceedings of the 8th IEEE International Conference onDataMining, pp. 363–372.
IEEE Computer Society, Dec 2008

6. Luo, D., Ding, C., Huang, H.: Are tensor decomposition solutions unique? on the global
convergence hosvd and parafac algorithms. In: Advances in Knowledge Discovery and Data
Mining, pp. 148–159. Springer (2011)

7. Nanopoulos, A., Rafailidis, D., Symeonidis, P., Manolopoulos, Y.: Musicbox: personalized
music recommendation based on cubic analysis of social tags. IEEE Trans. Audio Speech
Lang. Process. 18(2), 407–412 (2010)

8. Nanopoulos, A., Symeonidis, P., Ruxanda, M., Manolopoulos, Y.: Ternary semantic analysis
of social tags for personalized music recommendation. In: ISMIR’08: Proceedings of the 9th
ISMIR Conference, New York, pp. 219–224 (2008)

9. Sarwar, B., Konstan, J., Riedl, J.: Incremental singular value decomposition algorithms for
highly scalable recommender systems. In: International Conference on Computer and Infor-
mation Science (2002)

10. Symeonidis, P.: ClustHOSVD: item recommendation by combining semantically enhanced tag
clustering with tensor HOSVD. IEEE Syst. Man Cybern. (2015)

11. Symeonidis, P., Nanopoulos, A., Manolopoulos, Y.: A unified framework for providing recom-
mendations in social tagging systems based on ternary semantic analysis. IEEE Trans. Knowl.
Data Eng. 22(2) (2010)

12. Turney, P.: Empirical evaluation of four tensor decomposition algorithms. Technical report
(NRC/ERB-1152) (2007)

	6 HOSVD on Tensors and Its Extensions
	6.1 Algorithm's Outline
	6.2 HOSVD in STSs
	6.2.1 Handling the Sparsity Problem
	6.2.2 Inserting New Users, Tags, or Items
	6.2.3 Update by Folding-in
	6.2.4 Update by Incremental SVD

	6.3 Limitations and Extensions of HOSVD
	6.3.1 Combining HOSVD with a Content-Based Method
	6.3.2 Combining HOSVD with a Clustering Method

	References

