
Chapter 5
Related Work on Tensor Factorization

Abstract In this chapter, we provide a preliminary knowledge overview of tensors.
Moreover, we provide the related work on tensor decomposition methods. The first
method that is discussed is the Tucker Decomposition (TD) method, which is the
underlying tensor factorization model of Higher Order Singular Value Decomposi-
tion. TD decomposes a tensor into a set of matrices and one small core tensor. The
second one is the PARAFACmethod (PARAllel FACtor analysis), which is the same
as the TD method with the restriction that the core tensor should be diagonal. The
third method is the Pairwise Interaction Tensor Factorization method, which is a spe-
cial case of the TD method with linear runtime both for learning and prediction. The
last method that is analyzed is the low-order tensor decomposition (LOTD) method.
This method has low functional complexity, is uniquely capable of enhancing statis-
tics, and avoids overfitting compared with traditional tensor decompositions such as
TD and PARAFAC.

Keywords Tensor decomposition

5.1 Preliminary Knowledge of Tensors

Formally, a tensor is a multidimensional matrix. A N -order tensor A is denoted
as A ∈ R

I1...IN , with elements ai1,...,iN . The higher order singular value decomposi-
tion [10] generalizes the singular value decomposition (SVD) computation to tensors.
To apply the higher order singular value decomposition (HOSVD) technique on a
third-order tensorA, threematrix unfolding1 operations are defined as follows [10]:

1We define as “matrix unfolding” of a given tensor the matrix representations of that tensor in which
all column (row, …) vectors are stacked one after the other.
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A1 ∈ R
I1×(I2 I3), A2 ∈ R

I2×(I1 I3), A3 ∈ R
(I1 I2)×I3 (5.1)

where A1, A2, A3 are called the mode-1, mode-2, mode-3 matrix unfolding ofA,
respectively. The unfoldings of A in the three modes are illustrated in Fig. 5.1.

Fig. 5.1 Visualization of the three unfoldings of a third-order tensor

In the following, we will present an example of tensor decomposition adopted
from [10]:

Example 1 Define a tensorA ∈ R
3×2×3 by a1,1,1 = a1,1,2 = a2,1,1 = −a2,1,2 =

1, a2,1,3 = a3,1,1 = a3,1,3 = a1,2,1 = a1,2,2 = a2,2,1 = −a2,2,2 = 2, a2,2,3 =
a3,2,1 = a3,2,3 = 4, a1,1,3 = a3,1,2 = a1,2,3 = a3,2,2 = 0. The tensor and its
mode-1 matrix unfolding A1 ∈ R

I1×I2 I3 are illustrated in Fig. 5.2.

Next, we define the mode-n product of a N -order tensor A ∈ R
I1×···×IN by a

matrix U ∈ R
Jn×In , which is denoted as A ×n U . The result of the mode-n product

is an (I1 × I2 × · · · × In−1 × Jn × In+1 × · · · × IN )-tensor, the entries of which are
defined as follows:

(A ×n U )i1i2...in−1 jn in+1...iN =
∑

in

ai1i2...in−1in in+1...iN u jn ,in (5.2)
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Fig. 5.2 Visualization of tensor A ∈ R
3×2×3 and its mode-1 matrix unfolding

Since we focus on third-order tensors, n ∈ {1, 2, 3}, we use mode-1, mode-2, and
mode-3 products.

In terms of mode-n products, SVD on a regular two-dimensional matrix (i.e.,
second-order tensor) can be rewritten as follows [10]:

F = S ×1 U
(1) ×2 U

(2) (5.3)

whereU (1) = (u(1)
1 u(1)

2 . . . u(1)
I1

) is aunitary (I1×I1)-matrix,2U (2) = (u(2)
1 u(2)

2 . . . u(2)
I1

)

is a unitary (I2 × I2)-matrix, and S is an (I1 × I2)-matrix with the properties of:

i. pseudodiagonality: S = diag(σ1, σ2, . . . , σmin{I1,I2}) and
ii. ordering: σ1 ≥ σ2 ≥ · · · ≥ σmin{I1,I2} ≥ 0.

By extending this form of SVD, HOSVD of a third-order tensorA can be written
as follows [10]:

A = S ×1 U
(1) ×2 U

(2) ×3 U
(3) (5.4)

where U (1), U (2), U (3) contain the orthonormal vectors (called the mode-1, mode-
2, and mode-3 singular vectors, respectively) spanning the column space of the
A1, A2, A3 matrix unfoldings. S is called the core tensor and has the property of
“all-orthogonality.”3 This decomposition also refers to a general factorization model
known as Tucker decomposition [20].

2An n×nmatrixU is said to be unitary if its column vectors form an orthonormal set in the complex
inner product space Cn . That is, UTU = In .
3All-orthogonality means that the different “horizontal matrices” of S (the first index i1 is kept
fixed, while the two other indices, i2 and i3, are free) are mutually orthogonal with respect to the
scalar product of matrices (i.e., the sum of products of corresponding entries vanishes); at the same
time, different “frontal” matrices (i2 fixed) and different “vertical” matrices (i3 fixed) should be
mutually orthogonal as well. For more information, see [10].
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In the following, we will discuss several factorization models that have been pro-
posed for tag recommendation. We investigate their model assumptions, complexity,
and their relations among each other.

5.2 Tucker Decomposition and HOSVD

The Tucker decomposition (TD) was first introduced by Tucker [20] in 1963. The
Tucker I decomposition method is an important variation of the Tucker decomposi-
tion, which is later known as HOSVD [10]. HOSVD decomposes a tensor into a set
of matrices and one small core tensor. In this section, we elaborate on how HOSVD
can be employed for tensor factorization in social tagging systems (STSs).

The ternary relation of users, items, and tags in STSs can be represented as a third-
order tensorA, such that tensor factorization techniques can be employed in order to
exploit the underlying latent semantic structure inA. The idea of computing low-rank
tensor approximations has already been used for many different purposes [3, 9, 10,
17, 18, 22]. The basic idea is to cast the recommendation problem as a third-order
tensor completion problem by completing the nonobserved entries in A.

Formally, a social tagging system is defined as a relational structure F :=
(U, I, T,Y ) in which

• U , I , and T are disjoint nonempty finite sets, whose elements are called users,
items, and tags, respectively, and

• Y is the set of observed ternary relations between them, i.e., Y ⊆ U × I × T ,
whose elements are called tag assignments.

• A post corresponds to the set of tag assignments of a user for a given item, i.e., a
triple (u, i, Tu,i )with u ∈ U , i ∈ I , and a nonempty set Tu,i := {t ∈ T | (u, i, t) ∈
Y }.
Y which represents the ternary relation of users, items, and tags can be depicted

by the binary tensor A = (au,i,t ) ∈ R
|U |×|I |×|T | where 1 indicates observed tag

assignments and 0 missing values, i.e.,

au,i,t :=
{
1, (u, i, t) ∈ Y

0, else

Now, we express the tensor decomposition as

Â := Ĉ ×u Û ×i Î ×t T̂ (5.5)

where Û , Î , and T̂ are low-rank feature matrices representing a mode (i.e., user,
items, and tags, respectively) in terms of its small number of latent dimensions kU ,
kI , kT , and Ĉ ∈ R

kU×kI×kT is the core tensor representing interactions between the
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Fig. 5.3 Tensor
decomposition in STS.
Figure adapted from [15]

latent factors. Themodel parameters to be optimized are represented by the quadruple
θ̂ := (Ĉ, Û , Î , T̂ ) (see Fig. 5.3).

The basic idea of the HOSVD algorithm is to minimize an elementwise loss on
the elements of Â by optimizing the square loss, i.e.,

argmin
θ̂

∑

(u,i,t)∈Y
(âu,i,t − au,i,t )

2

After the parameters are optimized, predictions can be done as follows:

â(u, i, t) :=
kU∑

ũ=1

kI∑

ĩ=1

kT∑

t̃=1

ĉũ,ĩ,t̃ · ûu,ũ · îi,ĩ · t̂t,t̃ (5.6)

where Û = [ûu,ũ]u=1,...,U
ũ=1,...,kU

, Î = [îi,ĩ ]i=1,...,I
ĩ=1,...,kI

, T̂ = [t̂t,t̃ ]t=1,...,T
t̃=1,...,kT

and indices over the
feature dimension of a feature matrix are marked with a tilde, and elements of a
feature matrix are marked with a hat (e.g., t̂t,t̃ ).

Please notice that there are incremental solutions to update the tensor, as more
data are accumulated to the system. However, please notice that the reason for the
cubic complexity (i.e., O(k3) with k := min(kU , kI , kT )) of HOSVD is the core
tensor.

5.3 AlsHOSVD

The reconstructed tensor of the previous subsection (also known as truncated
HOSVD) is not optimal, but is a good starting point for an iterative alternating least
squares (ALS) algorithm to best fit the reconstructed tensor to the original one [8].
The basic idea of the AlsHOSVD algorithm tries to minimize theerror between the
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initial and the predicted values of the tensor. The pseudocode of the approach is
depicted in Algorithm 5.1.

Algorithm 5.1 AlsHOSVD
Require: The initial tensor A with user, tag, and item dimensions.
Ensure: The approximate tensor Âwith kU , kI and kT left leading eigenvectors of each dimension,

respectively.

1: Initialize core tensor C and left singular vectorsU (1),U (2),U (3) of A1, A2, and A3, respectively.
2: repeat
3: C = A ×1 UkU

(1)T ×2 UkI
(2)T ×3 UkT

(3)T

4: Â = C ×1 UkU
(1) ×2 UkI

(2) ×3 UkT
(3)

5: UkU
(1) ← kU leading left singular vectors of A1

6: UkI
(2) ← kI leading left singular vectors of A2

7: UkT
(3) ← kT leading left singular vectors of A3

8: until ‖A − Â‖2 ceases to improve OR maximum iterations reached
9: return C, UkU

(1),UkI
(2), and UkT

(3)

As shown in line 8 of Algorithm 5.1, AlsHOSVDminimizes an objective function
that computes the error among real and predicted values of original and approximate
tensors. This is done cyclically until our objective function ceases to fit to the original
values or the maximum number of user-defined iterations is reached. Please notice
that values of leading left singular vectors in all three modes (lines 5–7) increased
gradually in each repetition.

5.4 Parallel Factor Analysis (PARAFAC)

The PARAFAC [6] model a.k.a. canonical decomposition [2] (CANDECOMP)
reduces the complexity of the TD model by assuming only a diagonal core tensor.

cũ,ĩ,t̃
!=

{
1, if ũ = ĩ = t̃

0, else
(5.7)

which allows to rewrite the model equation:

âu,i,t =
k∑

f =1

ûu, f · îi, f · t̂t, f , for u = 1, . . . ,U, i = 1, . . . , I, t = 1, . . . , T (5.8)

In contrast to TD, model equation of PARAFAC can be computed in O(k). In total,
model parameters θ̂ of the PARAFAC model are as follows:

Û ∈ R
|U |×k, Î ∈ R

|I |×k, T̂ ∈ R
|T |×k (5.9)

The assumption of a diagonal core tensor is a restriction of the TD model.
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A graphical representation of TD and PARAFAC is shown in Fig. 5.4. It is seen
that any PARAFAC model can be expressed by a TD model (with diagonal core
tensor).

T̂Û ÎĈ xU xI xT T̂Û ÎxU xI xT

0

0
0

0

0

1
1

(a) (b)

Fig. 5.4 Relationship betweenTucker decomposition (TD) andparallel factor analysis (PARAFAC)

Let M be the set of models that can be represented by a model class. In [14], it
is shown that for tag recommendation

MPARAFAC ⊂ MTD (5.10)

This means that any PARAFAC model can be expressed with a TD model but there
are TDmodels that cannot be represented with a PARAFACmodel. In [14, 16] it was
pointed out that this does not mean that TD is guaranteed to have a higher prediction
quality than PARAFAC. On the contrary, as all model parameters are estimated from
limited data, restricting the expressiveness of a model can lead to a higher prediction
quality if the restriction is in line with true parameters.

5.5 Pairwise Interaction Tensor Factorization (PITF)

Rendle and Schmidt-Thieme [13] proposed the (PITF) model, which is a special
case of the TD model with a linear runtime both for learning and prediction. PITF
explicitly models pairwise interactions between users, items, and tags. Whereas TD
and PARAFAC directly express a ternary relation, the idea of PITF is to model
pairwise interactions instead. The motivation is that observations are typically very
limited and sparse in tag recommendation data, and thus it is often easier to estimate
pairwise interactions than ternary ones. This assumption is reflected in the model
equation of PITF which reads:

âu,r,t =
k∑

f

ûu, f · t̂Ut, f +
k∑

f

îi, f · t̂ It, f (5.11)

with model parameters θ̂
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Û ∈ I
|U |×k, Î ∈ I

|I |×k, ˆTU ∈ I
|T |×k, T̂ I ∈ I

|T |×k (5.12)

Note that in contrast to PARAFAC, there are two factor matrices for tags: one (TU )
for the interaction of tags with users and a second one (T I ) for the interaction of tags
with items.

5.6 PCLAF and RPCLAF Algorithms

In this section, we elaborate on how tensor decomposition techniques can be
employed in location-based social networks (LBSNs). The ternary relation of users,
locations, and activities in LBSNs can be represented as a third-order tensor.

Zheng et al. [23] introduced apersonalized recommendation algorithm forLBSNs,
which performs personalized collaborative location and activity filtering (PCLAF).
PCLAF treats each user differently and uses a collective tensor and matrix factoriza-
tion to provide personalized recommendations. As shown in Fig. 5.5, the novelty of
PCLAF lies in the utilization of a user–location–activity tensor along with user–user,
user–location, location–features, and activity–activity matrices.

As also shown in Fig. 5.5, to fill missing entries in the tensor A, PCLAF decom-
poses A w.r.t. each tensor dimension (i.e., user, location, activity). Then, PCLAF
forces latent factors to be shared with additional matrices to utilize their informa-
tion. After such latent factors are obtained, PCLAF reconstructs an approximation
tensor Â by filling all missing entries. Notice that PCLAF uses a PARAFAC-style
regularized tensor decomposition framework to integrate the tensor with additional
matrices. In particular, Zheng et al. [23] construct a third-order tensor A, which
captures relations among users X , locations Y , activities Z , and location featuresU .

Fig. 5.5 Visual representation of a user–location–activity tensor along with user–user, user–
location, location–features, and activity–activity matrices adapted from [23]
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They initially decompose tensor A to three low-dimensional representations with
respect to each tensor entity (i.e., users, locations, and activities). Then, they recon-
struct the tensor trying to fill all its missing entries. To do so, they exploit additional
information from user–user, location–feature, activity–activity, and location–activity
matrices. They want to minimize the error between real and predicted values of the
reconstructed tensor as shown in the following objective function Eq.5.13:

L(X,Y, Z ,U ) = 1

2
‖A − [X,Y, Z ]‖2 + λ1

2
tr(XT LB X)

+ λ2

2
‖C − YUT ‖2 + λ3

2
tr(ZT LDZ) (5.13)

+ λ4

2
‖E − XY T ‖2 + λ5

2
(‖X‖2 + ‖Y‖2 + ‖Z‖2 + ‖U‖2)

where B denotes the user–user matrix, C is the location–feature matrix, D is the
activity–activity matrix, and E is the location–activity matrix. LB and LD are
Laplacian matrices of B and D, respectively (i.e., LB = Q − B and LD = Q − D,
where Q is a diagonal matrix). tr denoted as the trace of a matrix. Finally, λi are
model parameters.

In addition, Zheng et al. [24] proposed the ranking-based personalized collabora-
tive location and activity filtering (RPCLAF). RPCLAF takes a direct way to solve
the recommendation problem using a ranking loss objective function. That is, instead
of minimizing the prediction error between the real and predicted user preference for
an activity in a location, the RPCLAFmethod formulates the user’s location–activity
pairwise preferences by Eq.5.14:

θu,l,a,a′ :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

+1, if Au,l,a > Au,l,a′ | (u, l, a) ∈ Ii ∧ (u, l, a′) /∈ Ii ;
0, if Au,l,a = Au,l,a′ | (u, l, a) ∈ Ii ∧ (u, l, a′) ∈ Ii ;
−1, if Au,l,a < Au,l,a′ | (u, l, a) /∈ Ii ∧ (u, l, a′) ∈ Ii ;
?, if (u, l, a) /∈ Ii ∨ (u, l, a′) /∈ Ii

(5.14)

where Ii denotes location–activity pairwise preferences of user i in tensor A, Au,l,a

denotes the preference of user u on the activity a that she performed in location
l, whereas Au,l,a′ denotes the preference for user u on the activity k ′ that she per-
formed in location l. Based on Eq.5.14, RPCLAF distinguishes between positive
and negative location–activity pairwise preferences and missing values to learn a
personalized ranking of activities/locations. The idea is that positive (+1) and neg-
ative examples (−1) are only generated from observed location–activity pairwise
preferences. Observed location–activity pairwise preferences are interpreted as pos-
itive feedback (+1), whereas nonobserved location–activity pairwise preferences are
marked as negative (−1) feedback. All other entries are assumed to be either missing
(?) or zero values.
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Fig. 5.6 Left Tensor’s data representation of the HOSVD algorithm (left) and the RPCLAF
algorithms (right)

To give a more clear view of tensor representation based on ranking, in Fig. 5.6,
we compare tensor representation of the HOSVD [19] algorithm, with the tensor
representation of RPCLAF.

The left-hand side of Fig. 5.6 shows the tensor representation of the HOSVD
algorithm [19], where the positive feedback is interpreted as 1 and the rest as 0. The
right-hand side of Fig. 5.6 shows the tensor representation of the RPCLAF algorithm
where observed location–activity pairwise preferences are considered positive feed-
back (+1), while nonobserved location–activity pairwise preferences are marked as
negative feedback (−1). All other entries are either missing (?) or zero values. For
example, in the right-hand side of Fig. 5.6, the value of tensor element A3,1,1 is +1,
because it holds A3,1,1 > A3,1,2, whereas the value of tensor element A3,1,2 = −1
because A3,1,2 < A3,1,1.

5.7 Other Tensor Decomposition Methods

A drawback of TD models such as HOSVD is the fact that the construction of the
core tensor requires cubic runtime in factorization dimension for both prediction
and learning. Moreover, they suffer from sparsity that incurs in STSs and LBSNs. To
overcome the aforementioned problem,HOSVDcan be performed efficiently follow-
ing the approach of Sun and Kolda [7]. Other approaches to improve the scalability
to large data sets are through slicing [21] or approximation [4]. Rendle et al. [12]
proposed ranking with tensor factorization (RTF), a method for learning optimal
factorization of a tensor for a specific problem of tag recommendations. Moreover,
Cai et al. [1] proposed LOTD, which also targets the very sparse data problem for
tag recommendation. Their LOTD method is based on low-order polynomials that
present low functional complexity. LOTD is capable of enhancing statistics and
avoids overfitting, which is a problem of traditional tensor decompositions such as
Tucker and PARAFAC decompositions. It has been experimentally shown [1] with
extensive experiments on several data sets that LOTD outperforms PITF and other
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methods in terms of efficiency and accuracy. Another method which outperformed
PITF is proposed by Gemmell et al. [5]. Their method builds a weighted hybrid tag
recommender that blends multiple recommendation components drawing separately
on complementary dimensions. Moreover, Leginus et al. [11] improved tensor-based
recommenders with clustering. They reduced the tag space by exploiting clustering
techniques so that both the quality of recommendations and the execution time are
improved.
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