
Chapter 1
Introduction

Abstract Representing data in lower dimensional spaces has been used extensively
in many disciplines such as natural language and image processing, data mining, and
information retrieval. Recommender systems deal with challenging issues such as
scalability, noise, and sparsity and thus, matrix and tensor factorization techniques
appear as an interesting tool to be exploited. That is, we can deal with all afore-
mentioned challenges by applying matrix and tensor decomposition methods (also
known as factorization methods). In this chapter, we provide some basic defini-
tions and preliminary concepts on dimensionality reduction methods of matrices and
tensors. Gradient descent and alternating least squares methods are also discussed.
Finally, we present the book outline and the goals of each chapter.

Keywords Matrix decomposition · Tensor decomposition

1.1 Recommender Systems

The Web contains more than 4.9 billion pages until the date this book was pub-
lished and it is growing rapidly day by day. There is a huge amount of information,
which burdens people to find what they may need. To overcome this problem, we
often rely on recommendations from others who have more experience on a topic.
In the Web, this is attained with the help of a collaborative filtering (CF) algorithm,
which provides recommendations based on the suggestions of users, who have sim-
ilar preferences for products. Basically, it is an algorithm for matching people with
similar interests under the assumption that similar people like similar products. These
kind of recommendations are provided from systems, known as recommender sys-
tems. Recommender systems use techniques, which are widely studied in research
communities of information retrieval, machine learning, and data mining [16, 36].
These systems have been developed to effectively support the customer’s
decision-making process mainly for commercial purposes (i.e., what product to buy
on Amazon.com, what TV show or movie to rent on Netflix.com, etc.).
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4 1 Introduction

In the following, we will discuss an example of a simple recommender system
with four users, who have rated four movies, as shown in Fig. 1.1.

Fig. 1.1 Four users have rated four movies using a [1–5] rating scale

Figure1.1 presents a weighted user-movie bipartite graph, where each edge
between a user and a movie has a weight which indicates the degree of preference of
a user for that movie (using a [0–5] rating scale). For reasons of clarity, in Fig. 1.1,
we present only “positive” ratings (≥4). Let us assume in our running example that
we want to predict the rating of user 4 onmovie 4 (X-Men). To show this assumption,
we use a dotted line for the edge that connects user 4 with movie 4 and the possible
rating is shown with a question mark. The challenge of a recommender system is to
correctly predict a rating for those items for which a user has not expressed explicitly
her preference (with no rating value at all). In case our recommender system pre-
dicts this rating as positive (i.e., higher than 4 in the rating scale 0–5), then, it could
recommend movie 4 (X-Men) to the target user 4.

Our example of Fig. 1.1 can be represented with a user–item rating matrix A,
which is shown in Fig. 1.2a. Please notice that in contrast to Fig. 1.1, Fig. 1.2 also
presents ratings with values 0, 1, 2, and 3. In the case that we read matrix A horizon-
tally, Fig. 1.2 represents the ratings that a user Ui gives to a set of movies I j , where
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j ≥ 1. In the case that we read the matrix A vertically, Fig. 1.2 represents the ratings
that one movie (i.e., I1) receives from several users Ui , where i ≥ 1.

To ease the discussion, we will use the running example illustrated in Fig. 1.2
where I1−4 are items and U1−4 are users. As shown, the example data set is divided
into training and test sets. The null cells (no rating) are presented as zeros.

I1 I2 I3 I4
U1 4 1 1 4
U2 1 4 2 0
U3 2 1 4 5

(a)
I1 I2 I3 I4

U4 1 4 1 ?

(b)

Fig. 1.2 a Training set (3 × 4), b Test set (1 × 4)

1.2 Recommender Systems in Social Media

Online social networks (OSNs) contain gigabytes of data that can bemined to provide
product recommendations to a target user.Besides explicit friendship relations among
users, there are also other implicit relations. For example, users can co-comment on
products and can co-rate them. Thus, item recommendation can be provided in such
systems based on the suggestions of our friends whom we trust. Recommender
systems are widely used by OSNs to stimulate users to extend their personal social
graph or for marketing purposes by recommending products that their friends have
liked. Moreover, recommender systems can act like filters, trying to provide the right
personalized information to each different user. Typically, a recommendation algo-
rithm takes as input the preferences of the user and her friends from their profile and
conscripts them to yield recommendations for new ties such as friends, companies,
places, products, etc.

In the following, we will discuss a more extended example, where we will try to
provide recommendations to user 4 by exploiting both her ratings on movies and her
friendship network, as shown in Fig. 1.3, which consists of two layers. The first layer
contains the friendship network among users, whereas the second layer shows the
movies, which are rated only positively by users.

Our recommender system’s task is to predict a rating for user 4 on movie 4.
As shown, user 4 is a friend of user 2, who does not like the X-Men movie at all
(rated it with 0 in the [0–5] rating scale as shown in Fig. 1.2a). Based on the theory of
homophily, which claims that friendsmay share common characteristics (i.e., beliefs,
values, preferences, etc.), we cannot predict a high rating for user 4 on the X-Men
movie. This is a simple example of how a social network (i.e., friendship network)
can help a recommender system to leverage the quality of its recommendations by
exploiting the information from the friendship network.



6 1 Introduction

Fig. 1.3 The users’ friendship network and the user-movie rating information

1.3 Matrix Factorization

Recommender systems mainly base their suggestions on rating data of two entities
(users and items), which are often placed in a matrix with one representing users
and the other representing items of interest. For example, Netflix collects ratings for
movies using the five-star selection schema, and TiVo users indicate their prefer-
ences for TV shows by pressing thumbs-up and thumbs-down buttons. These ratings
are given explicitly by users creating a sparse user–item rating matrix, because an
individual user is likely to rate only a small fraction of the items that belong to the
item set. Another challenging issue with this user–item rating matrix is scalability
of data (i.e., the large number of possible registered users or inserted items), which
may affect the time performance of a recommendation algorithm.

We can deal with all aforementioned challenges by applying matrix decomposi-
tion methods (also known as factorization methods). Matrix factorization denotes a
process, where a matrix is factorized into a product of matrices. A matrix factoriza-
tion method is useful for solving plenty of problems, both analytical and numerical;
an example of a numerical problem is the solution of linear equations and eigenvalue
problems. Its importance relies on the exploitation of latent associations that exist
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in the data among participating entities (e.g., between users and items). In a trivial
form, the matrix factorization method uses two matrices, which hold the information
of correlation between the user-feature and item-feature factors, respectively.

Figure1.4 shows an example of latent factors, which could be revealed after
performing matrix decomposition. As shown, the X′X axis divides both people and
movies according to sex (e.g., male or female). When a movie is closer to the female
part of X′X axis, it means that this movie is most popular among women rather than

Fig. 1.4 A simplified illustration of the latent factors, which characterizes both users and movies
using two axes—male versus female and war-like versus romantic
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men. The Y′Y axis divides people and movies as “war-like” and “romantic.” A “war-
like” viewer is assumed to prefer movies showing blood and deaths. In contrast, a
“romantic” viewer chooses movies that present love and passion. To predict a user’s
rating of a movie, we can compute the dot product of the movie’s and user’s [x,
y] coordinates on the graph. In addition, Fig. 1.4 shows where movies and users
might fall on the basic two dimensions. For example, we would expect user 3 to love
“Casablanca,” to hate “TheKing’s Speech,” and to rate “Amelie” above average. Note
that some movies (i.e., “Taken 3”) and users (i.e., user 4) would be characterized as
fairly neutral on these two dimensions.

One strong point of matrix factorization is that it also allows the incorporation
of additional information. When explicit feedback is not available, recommender
systems can infer user preferences using implicit feedback, which indirectly reflects
opinions by observing user behavior including purchase history, browsing history,
search patterns, or even mouse movements. Implicit feedback usually denotes the
presence or absence of an event, so it is typically represented by a densely filled
matrix [26].

There are many matrix factorization methods (see Chap.2). The popularity of
these methods and the motivation to study them more in recent years came by their
advantage of combining high-performance scalability with good predictive accuracy.

1.4 Tensor Factorization

Standard CF-based algorithms operate on matrices (second-order tensors) repre-
senting relations between users and items. However, real-world problems usu-
ally consist of more than two participating entities. For example, social tagging
systems (STSs) mainly consist of three participating entities (users, items, and
tags). Moreover, in location-based social networks (LBSNs), we have also three
interacting entities (users, locations, and tags). In LBSNs, users can share location-
related information with each other to leverage the collaborative social knowledge.
LBSNs consist of a new social structure made up of individuals connected by in-
terdependency derived from their locations in the physical world as well as their
location-tagged media content, such as photographs, videos, and texts. As shown in
Fig. 1.5, users visit locations in the real world and provide geo-tagged information
content (e.g., comments, photographs, videos). In particular, Fig. 1.5 presents three
layers, namely user, location, and content. It is obvious that someone could exploit
information from each layer independently to leverage recommendations. However,
in a more advanced case, we could also exploit ternary relation among entities (i.e.,
user, location, and content), which goes through all layers.

Because of the ternary relation of data in many cases (e.g., STSs, LBSNs,
etc.), many recommendation algorithms originally designed to operate on matrices
cannot be applied. Higher order problems put forward new challenges and oppor-
tunities for recommender systems. For example, ternary relation of STSs can be
represented as a third-order tensorA = (au,i,t ) ∈ R

|U |×|I |×|T |. Symeonidis et al. [44],

http://dx.doi.org/10.1007/978-3-319-41357-0_2
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Fig. 1.5 Visual representation of users, locations, and content (i.e., photographs/videos, tags, etc.)

for example, proposed to interpret the user assignment of a tag on an item, as a
binary tensor where 1 indicates observed tag assignments and 0 missing values (see
Fig. 1.6):

au,i,t :=
{
1, if user u assigns on item i tag t

0, otherwise

Tensor factorization techniques can be employed in order to exploit the underlying
latent semantic structure in tensor A. While the idea of computing low-rank tensor
approximations has already been used in many disciplines such as natural language,
image processing, data mining and information retrieval [11, 13, 24, 28, 42, 43,
46], just a few years ago, it was applied to recommendation problems in STSs and
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Fig. 1.6 Tensor
representation of a STS
where positive feedback is
interpreted as 1 (i.e.,
autr := 1) and the rest as 0
(i.e., autr := 0)

users

items

tags

LBSNs. The basic idea is to transform the recommendation problem as a third-order
tensor completion problem, by trying to predict nonobserved entries in A.

1.5 Mathematical Background and Notation

In this section, we provide all important notations of variables and symbols, which
will be used throughout the book. Moreover, we provide some basic theorems or
mathematical definitions as preliminary knowledge to help the reader understand
more easily the concepts that will be discussed later.

The notation of every matrix, variable symbol, and any other basic mathematical
term is presented in Tables1.1 and 1.2, respectively.

Linear algebra plays an important role inmatrix and tensor decomposition. There-
fore, preliminary concepts on matrices drawn from linear algebra are reviewed in
this section.

A diagonal matrix (also known as square matrix) is a matrix in which entries
outside the main diagonal are all zero. Thus, a matrix A with N × N dimensions is
diagonal if the following constraint is satisfied:

ai j = 0 i f i �= j ∀i, j ∈ {1, 2, . . . , N } (1.1)

The (column) rank of a matrix A ∈ R
N×M is defined to be the number of linearly

independent column vectors. The (row) rank of A is defined to be the number of
linearly independent row vectors of A.

A square matrix A ∈ R
N×N is called invertible (or nonsingular), if there is a

matrix B ∈ R
N×N such that:

AB = I and BA = I (1.2)

where I ∈ R
N×N is the identity matrix. A square matrix that is not invertible is called

singular. A is singular, if its rank is less than N .
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Table 1.1 Definition of matrices and variables that will be used throughout this book

Matrices and variables

I Identity matrix An n × n square matrix with 1 s on the
main diagonal and 0s elsewhere

R Real numbers The set of real numbers

A User–item rating matrix This is the user–item rating matrix, which
holds ratings of users on movies. Cells
with zeros denote the absence of a rating

Â Prediction matrix This is a user–item rating matrix, which
holds predicted ratings

U User-latent feature matrix This matrix holds preferences of users
over items on a latent feature space of
dimensionality f . In the CUR method, U
has another meaning (see Sect. 2.6)

V Item-latent feature matrix This matrix expresses how much an item
is preferred by users on a latent feature
space of dimensionality f

Λ Eigenvalue matrix An r × r diagonal matrix filled with
nonzero eigenvalues of matrix A

E Eigenvector matrix E (n × r matrix) stores eigenvectors of A

Γ Symmetric nonnegative matrix with
diagonal elements equal to zero and other
elements greater than zero

C Randomly chosen set of r columns of
matrix A

R Randomly chosen set of r rows of matrix
A

F Friendship matrix Stores the friendship information among
users. 1s declare friendship and 0s no
friendship

λ Eigenvalue An eigenvalue λ

e Eigenvector An eigenvector e

η eta This variable controls the size of the step
toward minimization of an objective
function

β beta The coefficient that regularize predicted
users’ ratings on items

γ gamma The coefficient that regulates the
contribution of the friendship network

An eigenvector of a square matrix AN×N is a nonzero vector e ∈ R
N that satisfies

the following equation:
Ae = λe, (1.3)

meaning that the vector Ae follows the direction of e. λ is the eigenvalue of A
corresponding to the eigenvector e.

http://dx.doi.org/10.1007/978-3-319-41357-0_2
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Table 1.2 Definition of mathematical symbols that will be used throughout this book

Symbols

i, j Indices Denote the position of an element inside a
matrix

�= Not equal Is not equal to

≤ Inequality Is less than or equal to

≥ Inequality Is greater than or equal to

≈ Approximately equal Is approximately equal to

B	 Transpose symbol Reflects matrix B over its main diagonal
(which runs from top-left to bottom-right)
to obtain B	

B−1 Inverse symbol The inverse of a square matrix is a matrix
such that BB−1 = I

∀ For all

∈ Set membership Is an element of

/∈ Set membership Is not an element of

→ Material implication if . . . then

⇐⇒ Material equivalence if and only if

b Vector Euclidean vector

∧ And

∨ Or

· Dot product The dot product of vectors or matrices

‖ . . . ‖ Norm Euclidean norm∑
Sum The sum of elements from beginning to

end

∂ Partial derivative The partial derivative of a function

A square matrix A ∈ R
N×N is called orthogonal, if column vectors of A form an

orthonormal set in ∈ R
N . In other words, an orthogonal matrix is a square matrix

with real numbers as entries, whose columns and rows are orthogonal unit vectors
as shown below:

AA	 = A	A = I : I is the identity matrix (1.4)

This leads to equivalent characterization: a matrix A is orthogonal if its transpose
is equal to its inverse:

A	 = A−1 (1.5)

The Frobenius norm ||A|| of a matrix is given by:

||A|| =
N∑
i=1

M∑
j=1

ai j
2. (1.6)
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1.6 Book Outline

In the sequel, a brief introduction to each chapter of the book follows:

Chapter 2. Related Work on Matrix Factorization
In this chapter, we provide the related work on basic matrix decomposition meth-
ods. The first method that we discuss is known as eigenvalue decomposition, which
decomposes the initial matrix into a canonical form [1, 20, 34, 35, 48]. The sec-
ond method is nonnegative matrix factorization (NMF), which factorizes the initial
matrix into two smaller matrices with the constraint that each element of the fac-
torized matrices should be nonnegative [3, 7, 8, 14, 18, 22, 29–31, 47]. The third
method is probabilistic matrix factorization (PMF), which scales well to large data
sets. The PMF method performs well on very sparse and imbalanced data sets using
spherical Gaussian priors. The last but one method is probabilistic latent semantic
analysis (PLSA) which is based on a mixture decomposition derived from a latent
class model. This results in a more principled approach which has a solid foundation
in statistics. The last method is CUR decomposition, which confronts the problem
of density in factorized matrices (a problem that is faced when handling the SVD
method) [15, 32, 33].

Chapter 3. Performing SVD on Matrices and Its Extensions
In this chapter, we describe singular value decomposition (SVD), which is applied
on recommender systems [2, 5, 9, 12, 19, 27, 40, 41]. We discuss in detail the math-
ematical background and present (step by step) the SVDmethod using a toy example
of a recommender system. We also describe UV decomposition [38] in detail, which
is an instance of SVD, as we have mathematically proven. We minimize an objec-
tive function, which captures the error between the predicted and the real value of a
user’s rating. We also provide a step-by-step implementation of UV decomposition
using a toy example, which is followed by a short representation of the algorithm in
pseudocode form [4, 17, 49]. Finally, an additional constraint of friendship is added
to the objective function to leverage the quality of recommendations [25].

Chapter 4. Experimental Evaluation on Matrix Decomposition Methods
In this chapter, we study the performance of described SVD and UV decom-
position algorithms, against an improved version of the original item-based CF
algorithm [23, 39] combined with SVD. For the UV decomposition method, we
will present the appropriate tuning of parameters of its objective function to have an
idea of how we can get optimized values of its parameters. We will also answer the
question if these values are generally accepted or if they should be different for each
data set. The metrics we will use are root-mean-square error (RMSE), precision,
and recall. The size of a training set is fixed at 75%, and we perform a fourfold
cross-validation.

http://dx.doi.org/10.1007/978-3-319-41357-0_2
http://dx.doi.org/10.1007/978-3-319-41357-0_3
http://dx.doi.org/10.1007/978-3-319-41357-0_4
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Chapter 5. Related Work on Tensor Factorization
In this chapter, we provide a preliminary knowledge overview of tensors. Moreover,
we provide the related work on tensor decomposition methods. The first method that
is discussed is the Tucker Decomposition (TD) method [45], which is the underlying
tensor factorization model of Higher Order Singular Value Decomposition [28]. TD
decomposes a tensor into a set of matrices and one small core tensor. The second one
is the PARAFAC method (PARAllel FACtor analysis) [10, 21], which is the same
as the TD method with the restriction that the core tensor should be diagonal. The
third one is the Pairwise Interaction Tensor Factorization method [37], which is a
special case of the TD method with linear runtime both for learning and prediction.
The last method that is analyzed is the low-order tensor decomposition (LOTD). This
method has low functional complexity, is uniquely capable of enhancing statistics,
and avoids overfitting compared with traditional tensor decompositions such as TD
and PARAFAC [6].

Chapter 6. Performing HOSVD on Tensors and Its Extensions
In this chapter, we describe tensor decomposition for recommender systems in detail.
Wewill use—as a toy example—a tensor with three dimensions (i.e., user–item–tag).
The main factorization method that will be presented in this chapter is higher order
SVD (HOSVD), which is an extended version of the Singular Value Decomposition
(SVD) method. In this chapter, we will present a step-by-step implementation of
HOSVD in our toy example. Then, we will present how we can update HOSVD
when a new user is registered in our recommender system. We will also discuss
how HOSVD can be combined with other methods for leveraging the quality of
recommendations. Finally, we will study limitations of HOSVD and discuss in detail
the problem of non-unique tensor decomposition results and how we can deal with
this problem. We will also discuss other problems in tensor decomposition, e.g.,
actualization and scalability.

Chapter 7. Experimental Evaluation on Tensor Decomposition Methods
In this chapter, we will provide experimental results of tensor decomposition meth-
ods on real data sets in STSs.Wewill discuss the criteria that wewill set for testing all
algorithms and the experimental protocol we will follow. Moreover, we will discuss
the metrics that we will use (i.e., Precision, Recall, root-mean-square error, etc.).
Our goal is to present the main factors that influence the effectiveness of algorithms.

Chapter 8. Conclusions and Future Work
In this chapter, we will discuss the main conclusions of the experimental evaluation,
limitations of each algorithm, and will provide future research directions.
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