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Gambogic Acid and Its Role in Chronic
Diseases
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Abstract Kokum, a spice derived from the fruit of the Garcinia hanburyi tree, is
traditionally used in Ayurvedic medicines to facilitate digestion and to treat sores,
dermatitis, diarrhoea, dysentery, and ear infection. One of the major active com-
ponents of kokum is gambogic acid, also known as guttic acid, guttatic acid,
beta-guttilactone, and beta-guttiferin. Gambogic acid’s anti-proliferative,
anti-bacterial; antioxidant and anti-inflammatory effects result from its modulation
of numerous cell-signaling intermediates. This chapter discusses the sources,
chemical components, mechanism of action, and disease targets of the kokum spice.
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15.1 Introduction

Mother Nature has gifted us a variety of natural agents, including nutraceuticals. One
of the well-known nutraceuticals is Gambogic acid (GA), which is a xanthonoid
derived from the brownish or orange resin from Garcinia hanburyi (Fig. 15.1).
Garcinia hanburyi is a small to medium-sized evergreen tree with smooth gray bark,
and it is native to Cambodia, southern Vietnam, and Thailand. Garcinia indica,
primarily of Indian origin, is known by many names: bindin, biran, bhirand, bhinda,
kokum, katambi, panarpuli, ratamba, amsol, and tamal. In English language, it is
commonly known as mangosteen, wild mangosteen, red mango, Hanbury’s Garcinia,
gambojia, gamboge, and Indian gamboge tree. Germans called this gummi-gutti.

The Garcinia indica seed contains 23–26 % oil, which is used in confectionery,
medicines, and cosmetics. It is used in curries and other dishes as a slightly bitter
spice, a souring agent, and as a substitute for tamarind.
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In traditional medicine, such as ayurveda, kokum is prescribed for edema,
rheumatism, delayed menstruation, constipation and other bowel complaints, and
intestinal parasites. The extract of Garcinia cambogia is used as an herbal appetite
suppressant and weight-loss supplement.

In last decades, worldwide extensive studies have been performed on Gambogic
acid to understand its full potential as therapeutic agents against variety of diseases
including chronic diseases such as cancers which is summarized in following
sections.

15.2 Physciochemical Properties of GA

GA is also chemically called as Guttic acid, Guttatic acid, beta-Guttilactone, and
beta-Guttiferin. The molecular formula and weight of GA is C38H44O8 and 628.76,
respectively. The appearance of this xanthone is amorphous orange solid. The core
of GA is known as xanthone core and contains a unique 4-oxatricyclo [4.3.1.03,7]
decan-2-one scaffold [1, 2]. Earlier studies regarding its structural activity rela-
tionships (SAR) revealed that the C¼C bond of the a,b-unsaturated ketone in GA is
critical for its antitumor activity, while the HOC(6), C(8)¼O, and C(30)OOH groups
could tolerate a variety of modifications Fig. 15.1 [3, 4]. Along these lines various
modifications have been performed to make GA as a better antitumor agent [5, 6].

Garcinia hanburyi
( False Mangosteen)

Fruit and pulp Dried pulp
( Kokum)

Gambogic Acid

Fig. 15.1 Plant species and fruits by which gambogic acid is derived. Highlighted circles on GA
structure indicate the most common sites for novel derivative generation
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15.3 Modulation of Cell Signaling Pathways by GA

Enthusiasm shown by researchers from around the globe clearly suggests that GA
has been one of the “hot” nutraceuticals. GA has shown to be effective on different
chronic diseases (Sect. 4.1 covers different chronic diseases), but its effect on
cancer has been studied the most. Almost a decade ago our group showed that the
anti-inflammatory and anticancer response of GA is associated with its inhibitory
response on Nuclear Factor-Kappa B (NF-jB) [7], since then plethora of studies
suggest that GA regulates several key signaling pathways. GA exhibits
anti-proliferative, antioxidant, and anti-inflammatory effects by modulating cell
signaling pathways, enzymes, and molecular targets, such as epigenetic regulators,
protein kinases, transcription factors, inflammatory biomarkers, and growth regu-
lators. Through microarray analysis, GA modulates many gene products [8, 9]
(Table 15.1).

15.3.1 GA Inhibits Signaling of Nuclear
Factor-Kappa B (NF-jB)

The transcription factor NF-jB is one of the major mediators of inflammation and is
linked with many diseases including cancer, diabetes, arthritis, and neurological
disorders. Therefore, an agent that can suppress NF-jB activation has potential for
clinical use against various chronic illnesses. GA suppression of NF-jB activation
induced by TNF-a, LPS, and various agents [7, 10] leads to the suppression of
NF-jB regulated products, such as cyclooxygenase type 2 (COX-2), inducible
nitric oxide synthase (iNOS), and survival proteins [7, 10, 11]. These actions give it
great potential as a broad-spectrum clinical agent.

15.3.2 GA Inhibits Phosphatidylinositol 3′-Kinase/Protein
Kinase B (PI3K/Akt)

Serine/threonine-specific protein kinase B, commonly designated Akt, is a central
regulator of widely divergent cellular processes, including proliferation, differen-
tiation, migration, survival, and metabolism [12, 13]. Akt is activated by a variety
of stimuli, through growth factor receptors, in a PI3K-dependent manner [12, 13].
Frequently in human cancer, normal signaling along the Akt/PKB/phosphatase, and
tensin homolog (PTEN) pathway is disrupted [14]. Akt plays important roles in
development, progression, and resistance to chemotherapy in cells [12, 13].
Blocking Akt signaling can mediate apoptosis and inhibit the growth of tumor cells
in vitro [14]. GA inhibits Akt activation, which leads to inhibition of tumor cell
proliferation and survival [15–19].
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Table 15.1 A list of
molecular targets of
Gambogic acid

Transcription factor

Nuclear factor—kappa B #
STAT-3 - #
STAT-5 #
Inflammatory cytokines

IL-6 #
Tumor necrosis factor alpha#
Enzymes

Cyclooxygenase-2 #
Inducible nitric oxide synthase#
Matrix metalloproteinase#
Src homology 2 domain-containing typrosine phosphate 2#
Kinases

Focal adhesion kinase#
Janus kinase #
Mitogen-activated protein kinase #
Protein kinase A#
Protein kinase B#
Protein kinase C#
Growth factors

Vascular endothelial growth factor #
Receptors

Chemokine (C-X-C motif) receptor 4 #
Transferrin receptor #
Adhesion molecules

Endothelial leukocyte adhesion molecule-1

Intracellular adhesion molecule-1 #
Anti-apoptotic proteins

B-cell lymphoma protein-2 #
Bcl-xL #
Inhibitory apoptosis protein-1 #
Mcl-1 #
Survivin #
Others

Cyclin D1 #
Heat shock protein 90 #
Heat shock protein 70 "
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15.3.3 GA Inhibits Mitogen-Activated Protein
Kinase (MAPK)

MAPKs are evolutionarily conserved enzymes that play a key role in the inflam-
matory stimuli and environmental stresses that lead to the activation of three
independent pathways: p44/42 MAPK extracellular signal-regulated kinases 1 and
2 (ERK1/ERK2), c-Jun N-terminal kinase, and p38 MAPK [20]. In vitro studies of
several cancer cells showed that GA inhibits MAPK pathways [21]. Moreover, this
phytochemical also inhibited ERK in HT-29, HepG2, KBM5, and NCI-H460
cancer cells [22–24].

15.3.4 GA Inhibits Src

The Src family of proteins consists of eight non-receptor tyrosine kinases charac-
terized by a common structure [25]. Src kinases are involved in signal transduction
pathways that are triggered by a variety of surface receptors, including receptors for
tyrosine kinases, integrin, and antigens, as well as receptors coupled with the
G-protein [25, 26]. As a consequence of changes observed in protein expression
and kinase activity in cancer cells, the Src family has been implicated in the
development of cancer [25, 26]. This prompted the design of specific inhibitors, the
most common of which are adenine mimetics, to treat solid tumors and leukemia
clinically [25, 26]. In addition, some of the Src kinases expressed in hematopoietic
cells play pivotal roles in lymphocyte maturation and activation [25]. This finding
encouraged the development of safe and effective Src-specific inhibitors that are
currently in clinical trials as immune-suppressants for the treatment of immuno-
logical disorders [15, 27]. Separate research showing that GA inhibits Src in PC3,
and K562 cells suggests that GA may also have clinical potential against cancers
and immunological disorders in which Src plays a pivotal role [15, 16].

15.3.5 GA Inhibits Signal Transducer and Activator
of Transcription-3 (STAT-3) Pathways

Proteins in the STAT family are among the best studied of the latent cytoplasmic
signal-dependent transcription factors [28–30]. In vitro studies of the MCF-7,
MCF-10A, U266, and MM1.s cell lines suggest that GA modulates the nuclear
translocation and DNA binding of STAT3 and inhibits genes modulated by this
transcription factor [28, 31].
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15.3.6 GA Inhibits Chemokine X-Receptor 4 (CXCR4)
and Downstream Signaling Pathways

Chemokine receptors belong to class A seven transmembrane G-protein-coupled
receptors and consist of 350 amino acids on average. Primary receptors are defined
as CXCR, CCR, CR, or CX3CR [32]. The function of atypical chemokine receptors
is to modulate immune responses by scavenging, sequestration, buffering as well as
intracellular transport of chemokines from inflammatory sites [33–35]. The receptor
CXCR4 is expressed on almost all of the hematopoietic cells, embryonic pluripo-
tent, and tissue-committed stem cells, allowing them to migrate and invade along
CXCL12 gradients. In malignant cells the chemokine receptor that is most com-
monly found is the receptor CXCR4 [34, 36]. At least 23 different types of tumor
cells from human cancers of epithelial, mesenchymal and hematopoietic origin
express CXCR4 [37]. In cancer, CXCL12 plays a role in the mobilization and
recruitment of these cells to the inflammatory tumor microenvironment,
neo-angiogenic niches, supporting revascularization, tumor growth, and metastasis
[32, 38]. Thus an inhibitor of CXCR4/CXCL12 axis will inhibit tumor metastasis,
GA is one of those inhibitors. Recently, we showed that GA directly interacts with
CXCR4 and inhibits the migration of multiple myeloma cells [17]. We further
demonstrate that GA inhibits CXCR4 regulated pathways and suppresses the bone
loss [17]. Overall, GA has a tremendous potential to be used a therapeutic agent.

15.3.7 GA Inhibits CBP/p300 Histone Aceyltransferase
(HAT) and Histone Deacetylase (HDAC)

The process of histone acetylation and deacetylation in eukaryotic cells alters
chromatin structure and thereby modulates gene expression [39]. HATs and
HDACs are classes of enzymes that effect histone acetylation [40]. These enzymes
can also acetylate and deacetylate several nonhistone substrates, which can have
functional consequences. Altered HAT and HDAC activities can lead to several
diseases, ranging from cancer to neurodegenerative disorders. Therefore, HAT and
HDAC inhibitors are being developed as therapeutic agents. GA inhibits HAT and
HDAC activity in A549 lung cancer cells [41]. These activities of GA demonstrate
its great potential as a therapeutic candidate.

15.3.8 GA Inhibits the Activation of Focal Adhesion
Kinase (FAK)

FAK is a 119- to 121-kDa non-receptor protein kinase widely expressed in various
tissues and cell types [42]. Several studies showed that FAK plays an important role
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in integrin signaling [43–45]. Once activated, whether by integrin or non-integrin
stimuli, FAK binds to and activates several other molecules, such as Src, Src
adaptor protein p130Cas, the growth factor receptor-bound protein 2 (Grb2), PI3K,
and paxillin, and thus promotes signaling transduction [44, 46–50]. In a recent
study, FAK was held responsible for uninhibited proliferation, protection from
apoptosis, invasion, migration, adhesion, and spread, as well as tumor angiogenesis
[46, 47]. Our group showed that GA modulates the tyrosine phosphorylation of
FAK and subsequently induce apoptosis by downregulating Src, ERK, and Akt
signaling in prostate cancer PC3 cells [16].

15.3.9 GA Inhibits iNOS

iNOS is expressed in a variety of cell types, particularly inflammatory cells, in
response to diverse pro-inflammatory stimuli [51–53]. iNOS, which may be
induced by bacterial LPS or its derivative lipid A, is expressed by a variety of solid
tumors and generates high levels of nitric oxide inside tumor cells [10]. In vitro
studies showed that GA inhibits LPS- and interferon-gamma-induced iNOS in
RAW246.6 cells [10].

15.3.10 GA Induces the Production of Reactive Oxygen
Species (ROS)

ROS have been linked with various cell signaling pathways [54, 55]. GA, induces
the production of ROS [56].

15.3.11 GA Inhibits COX-2

Overexpression of COX-2 is associated with many cancers and is linked with tumor
cell proliferation and suppression of apoptosis [57, 58]. Therefore, COX-2 inhibi-
tors have great potential in the treatment of cancers and inflammatory conditions, as
evidenced by the U. S. Food and Drug Administration’s approval of celecoxib, a
known COX-2 inhibitor, for the treatment of various inflammatory conditions [59].
GA, too, has been shown to inhibit COX-2 activation induced by TNF-a in KBM5
leukemic cells [7].
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15.3.12 GA Inhibits Matrix Metalloproteinase 7 & 9
(MMP-7 & 9)

Also known as matrilysin, MMP-7 is a “minimal domain” MMP that exhibits
proteolytic activity against components of the extracellular matrix [60–62]. MMP-7
is frequently overexpressed in human cancer tissues and is associated with cancer
progression [63]. Therefore, MMP-7 inhibitors have great potential in the treatment
of cancer [64]. The studies showed that GA inhibits the expression of MMP-7 in
breast cancer cells like MDA-MB-231 and MDA-MB-435 [65, 66], further sup-
porting the idea that GA may be effective against breast cancer in humans.

15.3.13 GA Inhibits Tubulin

Microtubules are a major component of the cytoskeleton. They are important in
many cellular events and play a crucial role in cell division [67]. As such, micro-
tubules are a highly attractive target for anticancer-drug design. Tubulin-binding
agents, also called anti-microtubule or microtubule-targeted agents, are widely used
chemotherapeutic drugs with a proven clinical efficacy against breast, lung, ovarian,
prostate, and hematologic malignancies, as well as childhood cancers [68, 69].
Research has shown that GA belongs to this class of agents because it inhibits
microtubule assembly and prevents cell division [20].

15.3.14 GA Inhibits Expression of Cyclin D1

The sequential transcriptional activation of cyclins, the regulatory subunits of cell
cycle-specific kinases, is thought to regulate progress through the cell cycle [70].
Thus, cyclins are potential oncogenes, and overexpression of cyclin D1 or ampli-
fication at its genomic locus, 11q13, is commonly seen in breast cancer, head, and
neck cancer, non-small-cell lung cancer, and mantle cell lymphoma [71, 72]. GA
has been shown to inhibit Cyclin D1 in several cancers including leukemia and
multiple myeloma [7, 31].

15.3.15 GA Induces Cleavage of Poly(ADP-Ribose)
Polymerases (PARPs)

PARPs are cell signaling enzymes present in eukaryotes and are involved in poly
(ADP ribosylation) of DNA-binding proteins [73]. Pharmacological degradation of
PARP-1 may enhance the activity of antitumor drugs by inhibiting necrosis and
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activating apoptosis [74]. In vitro studies have shown that GA induces PARP
degradation and enhances apoptosis in T98 glioma, HeLa, non-small lung cancer
A549 and NCI-H460, breast cancer, and multiple myeloma cells [7, 11, 17, 22, 24,
31, 66, 75–77].

15.3.16 GA Inhibits Tumor Necrosis Factor-a (TNF-a)

TNF-a is a vital member of the multifunctional superfamily of TNFs and plays
important roles in immunity and cellular remodeling, as well as apoptosis and cell
survival [78]. Because TNF-a is a key player in inflammation and cancer, several
efforts are underway to develop therapeutic TNF-a antagonists. Two such antag-
onists are from the Garcinia species. At a dose of 5 lM, both GA and cambogin
inhibited the release of TNF-a by LPS-activated macrophages [79, 80], suggesting
another mechanism for their antitumor activity.

15.3.17 GA Inhibits the Expression of Bcl-2 Family
Proteins

The bcl-2 gene family consists of at least 25 genes that are proapoptotic or
anti-apoptotic and share at least one of the four characteristic BH domains [81]. The
anti-apoptotic protein bcl-2, which displays sequence homology in all four domains
(i.e., BH1–BH4), promotes cell survival [82]. Increased expression of the bcl-2
protein commonly occurs in human malignancies and is associated with disease
maintenance and progression, resistance to chemotherapy, and poor clinical out-
come. Antisense oligonucleotides targeting bcl-2 have been shown to facilitate
apoptosis in various tumor types [83]. Therefore, bcl-2 inhibitors have great
potential in the treatment of cancer. In vitro and in vivo studies showed that GA
inhibits bcl-2 expression in MGC-803, HL-60, MCF-7, A375M, SMMC-7721,
BGC-823, Jeko-1, and K562 [15, 84–88].

15.3.18 GA Induces BID

Pro-apoptotic BID activates the multi-domain bcl-2 family members bcl-2–
associated X protein (BAX) and bcl-2 homologous antagonist killer (BAK) [89].
Activation of either BAX or BAK produces an allosteric conformational change and
releases cytochrome c [90]. This means that compounds that can induce BID could be
very useful in the treatment of cancer. GA and its derivative GA3 are such inducers
because these agents activate BID and induces apoptosis in cancer cells [91].
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15.3.19 GA Induces BAD

BAD is proapoptotic and proliferative, suggesting that the cell cycle functions of the
multi-domain bcl-2 family members [89]. BAD antagonizes both the cell cycle and
anti-apoptotic functions of bcl-2 and bcl-xL through BH3 binding [89].
Overexpression of the BH3-onlymolecule BAD renders the cell unable to arrest inG0
and persistently activates cdk2 [92]. Previous study showed that GA in combination
with nanoparticle Fe3O4 activates BAD and induces apoptosis in LOVO cells [93].

15.3.20 GA Inhibits Cytochrome c

Cytochrome c, an intermediate in apoptosis, is released by the mitochondria in
response to proapoptotic stimuli. The studies have shown that GA, induces the
expression of cytochrome c in colorectal cancer HT-29, bladder cancer T24 and
UMUC3, breast cancer MDA-MB-231, and human hepatocellular carcinoma cells
[94–96].

15.3.21 GA Induces the Activation of Caspase-3
and Caspase-9

Caspases play a central role in mediating various apoptotic responses. In vitro and
in vivo research of GA has shown that it induces the activation of caspase-3 and
caspase-9 in various cancer cells including glioma, osteosarcoma, non-small lung
cancer, leukemia, lymphoma, breast cancer, pancreatic cancer, melanoma and
multiple myeloma and, induces apoptosis [7, 11, 17, 22, 24, 31, 66, 75–77].

15.4 Role of GA in Chronic Diseases

Extensive studies from past one decade have shed light on GA’s potential as
anti-inflammatory and anticancer agents. So far the focus of the studies have been to
identify the molecular targets by which GA exerts its effects, primarily on cancer
cells. However, a very recent study showed that GA could be used as an
anti-psoriatic agent [97]. Importantly, the molecular mechanism by which GA
mediates its effect strongly suggest that it could be used for the prevention and
treatment of many organ and tissue disorders, which are associated with inflam-
mation and oxidative stress. GA alleviates oxidative stress, inflammation in chronic
diseases and regulates inflammatory and pro-inflammatory pathways related with
most chronic diseases.
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15.4.1 Cardiovascular Diseases

Cardiovascular Diseases (CVDs), including heart disease, vascular disease and
atherosclerosis, are the most critical current global health threat. Epidemiological
and clinical trials have shown strong consistent relationships between the inflam-
mation markers and risk of cardiovascular diseases [98]. It is widely appreciated
that the key mechanisms in the development of CVDs are inflammation and oxidant
stress, activation of pro-inflammatory cytokines, chronic transmural inflammation,
and C reactive protein (CRP) [99]. Thus cytokines, other bioactive molecules, and
cells that are characteristic of inflammation are believed to be involved in athero-
genesis. An elegant recent study by Liu et al. [100] showed that GA inhibits
pressure overload or isoproterenol infusion-induced cardiac hypertrophy and
fibrosis, through the inhibition of the proteasome and the NF-jB pathway, sug-
gesting that GA treatment may provide a new strategy to treat cardiac hypertrophy
and changes in myocardial NF-jB signaling [100].

15.4.2 Rheumatoid Arthritis

Rheumatoid arthritis (RA) could give rise to a systemic chronic inflammatory
disorder and may impact many organs and tissues but mainly attack flexible
(synovial) joints [101]. It was reported that oxidative stress made an important
contribution to joint destruction in RA [102]. ROS is a significant mediator that
activates a variety of transcription factors including NF-jB and AP-1, thus regu-
lating the expression of over 500 different genes, such as growth factors,
chemokines, cell cycle regulatory molecules, inflammatory cytokines, and
anti-inflammatory molecules [103]. Therefore, transcription factors and genes,
involved in inflammation and antioxidation, are suspected to play a crucial adjective
function in RA. The main treatment of RA is to reduce arthritis reaction, inhibit
disease development and irreversible bone destruction, protect the joints and muscle
function, and ultimately achieve complete remission or low disease activity.
Treatment principles include patient education, early treatment, and combination
therapy [104, 105]. Drug therapy includes nonsteroidal anti-inflammatory drugs
(NSAIDs), slow-acting antirheumatic drugs, immunosuppressive agents, immune
and biological agents, and botanicals. NSAIDs are most common. Our earlier
studies strongly suggest that GA is one of the NSAIDs with anti-inflammatory and
antioxidant actions both in vivo and in vitro and could be used effectively as
anti-RA agent. Recent studies of Cascao et al. [106] support our hypothesis. By
using rat RA model, this group showed that GA inhibits RA by inhibiting the levels
of cytokines and key inflammatory molecules [106].
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15.4.3 Diabetes and Obesity

Type 2 diabetes is a chronic disease where cells have reduced insulin signaling,
leading to hyperglycemia, and long-term complications, such as heart, kidney, and
liver disease. Recently, more and more studies have shown the critical roles of
oxidative stress and inflammatory reactions in the pathogenesis of diabetes. Studies
have shown that AMP-activated protein kinase (AMPK) plays a key role in
maintaining intracellular and whole-body energy homeostasis. Activation of AMPK
has been shown to ameliorate the symptoms of type 2 diabetes and obesity. In vitro
studies by Zhao et al. [107] demonstrate that GA, activates AMPK by increasing the
phosphorylation of AMPKa and its downstream substrate ACC in various cell lines
[107]. This group also showed that GA induced activation of AMPK was associated
with increased intracellular ROS level. Collectively, these results suggest that GA
may be a novel direct activator of AMPK and could be used as anti-diabetic agent.
However, further studies are required to fully evaluate this function of GA.

15.4.4 Psoriasis

Psoriasis is a chronic inflammatory skin disease characterized by thick, red, and
scaly lesions on any part of the body, which affects approximately 2 % of the
population worldwide [108]. Many cytokines, including interleukin-23(IL-23),
IL-17A, TNF-a, IL-6, IL-1b, and IL-22, are also involved in the pathogenesis of
psoriasis [109]. Along these lines a recent study showed that GA could be used as
an anti-psoriatic agent [97].

15.4.5 Cancer

Inflammation plays key roles in all the ways of tumorigenesis and therapy response
[110]. Activation and interaction between STAT3 and NF-jB are very vital in the
control of cancer cells and inflammatory cells [111]. TNF-a, VEGF, IL-10, MMP-2
and MMP-9, MCP, CD4+ T, AP-1, Akt, PPAR-c, MAP kinases, and mTORC1 are
also important linking factors between inflammation and cancer [111]. It has been
shown that GA suppresses the growth of various cancer cells such as non-small cell
lung cancer [112], human hepatocellular carcinoma [113], oral squamous cell
carcinoma [114], human breast cancer [86], human malignant melanoma [115],
human gastric carcinoma [116], and human leukemia cancer [7] and multiple
myeloma [31, 117]. A variety of mechanisms have been proposed by which GA
inhibits the proliferation of cancer cells and induces apoptosis. These include
inhibition of antiapoptotic proteins Bcl-2 [86, 88] and survivin [118]; induction of
apoptosis-associated proteins p53 [119], bax, and procaspase-3 [115]; activation of
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c-jun-NH2-kinase, p38 [20], and GSK-3b [15]; inhibition of topoisomerase II by
binding to its ATPase domain [120], downregulation of the MDM2 oncogene and
subsequent induction of p21 [119]; suppression of LPS induced COX-2 [10]; and
downregulation of human telomerase reverse transcriptase [121]. It has also been
shown that GA directly binds to c-myc [122], transferrin receptors [123], and
CXCR4 [124]. Recently, a proteomic approach revealed that GA suppresses
expression of 14-3-3 protein sigma and stathmin [116]. We have shown earlier that
GA inhibits NF-jB and its regulated gene products in human myeloid leukemia [7];
STAT3 and its regulated gene products in MM [31]. Most recently, we showed that
GA interacts with CXCR4 and inhibits chemotaxis and osteoclastogenesis in MM
[124]. Recently, it is shown that GA is a novel tissue specific proteasome inhibitor,
with potency comparable to bortezomib [25]. In addition, recent studies have shown
that GA is bioavailable, less toxic, effective, and inhibits development of tumors in
animal models, and most importantly it has been approved for phase 2 clinical trial
in solid tumors [4, 121, 125, 126]. Since, GA modulates the expression of proteins
plays important role in survival, migration, invasion and chemoresistance of mul-
tiple myeloma cells (Fig. 15.2), we have been working on the development of GA
as anti-myeloma agent.

Gambogic
acid

PI3K

JAK/STAT3

Raf

NF-κB

MCL-1
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Fig. 15.2 Intimate relationship between multiple myeloma and bone marrow microenvironment.
Bone marrow stromal cells secrete cytokine a growth factors, these growth factors activates several
pathways in multiple myeloma. Gambogic acid targets these pathways
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15.5 Biological Activities of GA in Animal Models

Besides the extensive in vitro demonstrations of GA’s anti-proliferative effects,
numerous other studies have evaluated its efficacy in various animal models in vivo
(Table 15.2). The in vivo studies have investigated the effects of GA on tumor
angiogenesis and the biomarkers COX-2 and VEGF in prostate carcinoma [16].
One group demonstrated that systemic administration of GA for 3 weeks to athymic
mice bearing non-small lung NCI-H1993 xenografts significantly inhibited tumor
growth [127]. Meanwhile, others have shown that GA can suppress the growth of
cervical carcinoma [128], modulate the growth of colorectal cancer [129], modulate
the growth of prostate cancer in rodents [16], inhibit the growth of human B-cell
lymphoma by inducing proteasome inhibition [130] in nude mice, and inhibits
hepatocellular carcinoma, multiple myeloma, bladder cancer tumor growth, in part
by suppressing angiogenesis, and inducing apoptosis [7, 11, 17, 22, 24, 31, 66, 75–
77]. More recent studies have evaluated GA’s chemosensitizing effects [118]. Our
group evaluated the chemosensitizing effect of GA in combination with paclitaxel,
TNF-a, 5-FU on multiple myeloma [7]. Together, these in vivo animal studies
clearly suggest GA’s anticancer potential when administered either alone or in
combination with currently employed chemotherapeutic agents.

Table 15.2 A list of studies describing antitumor effects of gambogic acid in animals

Tumor Cell line Route Dose (mg/kg) Model References

Lung SPC-A1 i.v. 4, 8 Xenograft [121]

NCI-H1993 i.p. 10, 20 or 30 Xenograft [127]

NCI-H1975 i.v. 8 Xenograft [137]

A549 i.p. 8, 16 and 32 Xenograft [134]

Gastric cancer BGC-823 i.v. 8 Xenograft [85]

Cervical carcinoma HeLa cells i.p. 2 Xenograft [128]

Chronic myeloid
leukemia

KBM5 i.p. 3 Xenograft [24]

Liver HepG2 i.v. 1.5 Xenograft [132]

Ovarian SKOV3 1.0 Xenograft [133]

Breast MDA-MB-231 i.v. 4 and 8 Orthotopic [94]

Hepatoma H22 i.v. 2, 4 and 8 Xenograft [125]

H22 p.o. 12.5, 25, 30 and
50

Xenograft [125]

SMMC-7721 i.v. 2, 4, and 8 Xenograft [131, 136]

Melanoma B16-F10 i.v. 0.375, 0.75, and
1.5

Orthotopic [135]

Colon HT-29 i.v. 5, 10 and 20 Xenograft [129]
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15.6 Biological Activities of GA in Humans

There are no clinical studies so far in USA, however in China GA is in Phase II
clinical trial [4, 121, 125, 126]. The plethora of studies clearly suggest GA’s
potential as anticancer agent. It the opportune time to seriously consider this xan-
thone in clinical trial especially in USA.

15.7 Conclusions

The spice derived from kokum, the fruit of Garcinia indica, is used in Indian
cuisines and Ayurvedic medicine. The main component isolated from kokum is
GA, which demonstrates thrust quencher, antioxidant, antimicrobial, antiulceration,
and anticancer properties. Although GA is a potent, biologically active compound,
only a number of studies are carried out in animals and none have been done in
humans. Because of its diverse range of biological activity in vitro, more in vivo
and clinical studies are warranted to establish its true usefulness as a clinical
therapeutic agent in a variety of human diseases.
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