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Abstract. The high energy costs for data movement compared to com-
putation gives paramount importance to data locality management in
programs. Managing data locality manually is not a trivial task and also
complicates programming. Tiling is a well-known approach that provides
both data locality and parallelism in an application. However, there is
no standard programming construct to express tiling at the application
level. We have developed a multicore programming model, TiDA, based
on tiling and implemented the model as C++ and Fortran libraries. The
proposed programming model has three high level abstractions, tiles,
regions and tile iterator. These abstractions in the library hide the details
of data decomposition, cache locality optimizations, and memory affinity
management in the application. In this paper we unveil the internals of
the library and demonstrate the performance and programability advan-
tages of the model on five applications on multiple NUMA nodes. The
library achieves up to 2.10x speedup over OpenMP in a single compute
node for simple kernels, and up to 22x improvement over a single thread
for a more complex combustion proxy application (SMC) on 24 cores.
The MPI+TiDA implementation of geometric multigrid demonstrates a
30.9 % performance improvement over MPI+OpenMP when scaling to
3072 cores (excluding MPI communication overheads, 8.5 % otherwise).

1 Introduction

The energy cost for computation is improving at a faster rate than the energy cost
of moving data on-chip [28]. However, current multicore programming models
offer very little facility to express information about data locality or data move-
ment in the memory hierarchy, while almost all parallel systems contain multiple
nonuniform memory access (NUMA) nodes and multiple levels of caches. Cur-
rent programming models fundamentally assume an abstract machine model,
where processing elements within a compute node are equidistant. A data-centric
model, on the other hand, can provide programming abstractions that describe
how the data is laid out on the system and apply the computation to the data
where it resides. Furthermore, as processor chips move towards hundred and
even thousand-way parallelism, designs that cluster cores into NUMA regions,
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where cores within a region are cache-coherent but cores across regions are not,
are expected to emerge [24]. Taking these architectural trends into the account,
locality management will be the key to achieve scalability on the next gener-
ation computing systems. In response to these architecture changes, we have
developed a tiling based programming model, which preserves data-locality in
an application.

Tiling and domain decomposition are both well known methods that
enhances both data locality and parallelism. Traditionally tiling, also known
as cache blocking, is manually applied to loop iterations in a program. There is
a plethora of prior work to automate tiling transformations that focus on iter-
ation space tiling using traditional compiler analysis [17,19,25] and polyhedral
compiler analysis for perfectly [1,20,22] and imperfectly nested loops [7,16].
However, there is only limited support for tiling in commercial compilers due
to the complexity of generating optimized code without domain-specific knowl-
edge or programmer intervention. Another issue with exclusively compiler-based
approaches is that they are agnostic about how the parallel execution of tiles
is mapped to the underlying architecture. Loop transformations are carried out
independently per nested loop, without respecting data locality in the whole
program. Application developers need to have a more direct approach in the
programming model to manage memory affinity in a way that can be exploited
by both the compiler and the runtime system. We argue that this crucial data
locality optimization should be formalized and elevated to a fundamental feature
of the programming model given its broad impact on application performance
and programmer productivity.

We have developed a tiling based programming model, called TiDA, that
provides a multi-language library interface to express parallelism and data local-
ity using a handful of simple programming abstractions. In [26], we introduced
the initial design principles of TiDA. In this paper, we describe the underly-
ing abstractions for a generalized tiling-based programming model, present a
more mature version TiDA library, unveil its implementation details and present
extensive performance analysis on five applications. The over-arching tiling-
based programming model enables a natural expression of data decomposition
and data layout with logical tiles and regional tiles, so that an abstract tile
iterator hides the thread management and mapping of tiles onto the underly-
ing core topology. The implementation of the TiDA API achieves performance
portability by isolating architecture specific information to a handful of program
parameters, tile size and region size, and enables metadata to propagate to all
loops and functions in the application. We show the effectiveness of the library
with five structured grid applications including an advanced combustion proxy
application and geometric multi-grid solver. Lastly, both the Fortran and C++
library implementations of TiDA are available online for download at https://
bitbucket.org/tidaproject/public-source.

https://bitbucket.org/tidaproject/public-source
https://bitbucket.org/tidaproject/public-source
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2 Programming Model

2.1 Data Locality Model

The energy cost of data movement is rapidly becoming a dominant factor,
because the energy cost for computation is improving at a faster rate than
the energy cost of moving data [28]. In fact, it is projected that with 11 nm
technology the energy cost for transporting two floating-point operands for an
addition just 5 mm on-chip will be comparable to a simple addition operation
itself [24]. The design of on-chip networks poses not only energy but performance
constraints as well because contention, latency, and throughput effects can have
a significant impact on application execution time [10]. Therefore, given strin-
gent power budgets and the increased cost of data movement, it will no longer
be practical to continue to maintain the illusion of a flat and infinitely fast on-
chip interconnect. Despite the changes in the abstract machine model of modern
multicore architectures, the programming models still have the assumption of
uniform distance between the compute units. For example, OpenMP assumes
processing units are equidistant to each other and binding threads to the cores
are left to the programmer or to the OS. In reality, compute units are not equidis-
tant to each other and there is non-uniform interconnect topology as in Intel’s
Knights Landing, which has a 2D mesh-based network connecting 72 cores [2].
And yet our current on-chip threading and process models do not offer a natural
abstraction for handling this non-uniformity.

Fig. 1. Decrease in dynamic energy consumption for ghost cell exchange for the locality-
aware placement compared to random placement of data on the chip.

As a motivating example, we quantify the gains in dynamic energy in on-
chip data movement as a result of locality-management. We model the dynamic
energy consumption of the ghost zone exchange using an analytical power
model [3] for two applications: Heat and CNS, which are explained in Sect. 5. We
model efficient direct communication between cores for the ghost zone exchange
steps without accessing memory. This direct ghost zone exchange can be cre-
ated by hardware-managed cache coherence or with explicit data movement for
software managed coherence (such as GPUs or local-store architectures). Cores
are assigned a 163 tile of double-precision floating point variables each. Locality-
aware placement of data reduces the dynamic energy dissipated to complete the
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ghost zone exchange by 40–70 % compared to the random placement for the Heat
and CNS applications as shown in Fig. 1. The energy gain for the locality-aware
placement stems from reducing the average number of hops (communication dis-
tance). Reducing the number of hops reduces the number of channels and routers
packets traverse which reduces the dynamic energy dissipated. The results on
energy dissipation show the importance of correct data placement and the need
for locality management support by a programming model. But for conventional
threading/process models, both of these features must be handled manually by
the programmer – a very unfriendly and non-portable interface.

2.2 Programming Abstractions

The primary design goal of TiDA is to provide simple programming abstrac-
tions for writing loop oriented code that offers options to describe different data
decompositions and abstract away the details of how the data layout changes are
implemented in each loop. We present two partitioning abstractions to handle
locality as shown in Fig. 2 and an iterator to manipulate them:

Fig. 2. A grid is physically partitioned into regional tiles (regions). Each region is
logically partitioned into logical tiles. 27 regions with 8 logical tiles in each are shown.

Region: is a physical partitioning of data into regional tiles where data
within a region is contiguous, but each region is discontiguous with other regions.
Such decomposition may introduce halos as shown in Fig. 3a, which consist of
neighboring cells outside of the local domain at the boundaries that must be
updated across computation phases, which will be discussed later. This abstrac-
tion is intended to address locality across NUMA nodes or regional coherence
domains expected to emerge in exascale node architectures.

Tile: is a logical partitioning of data that is expressed in blocking of the
iteration space. The iteration space is the order in which elements of a data array
are visited by the iterations of a nested loop. Whereas repartitioning regional
tiles to change working set sizes would require data reorganization to change the
tile sizes, logical tiles can shrink the size of working sets to fit within available
on-chip memory by changing the blocking factor of the iteration space without
requiring data reorganization.

Tile Iterator: provides an interface to decouple the loop traversal from the
loop body. It can hide complicated traversal orders, parallelization and execution
strategies of tiles.
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Figure 2 illustrates the partitioning of data and abstractions used for the par-
titioning. A grid is subdivided into regional tiles and region is locally partitioned
into logical tiles.

2.3 Parameterization

Determining the optimal number of regions and size of a tile depend on the
underlying machine’s memory subsystem, the application itself, and other loop
optimizations performed by the compiler. Therefore, it is important to support
parameterization of the key elements of our tiling abstraction to facilitate perfor-
mance portability in the programming model, and runtime retuning to support
dynamically adaptive codes such as Adaptive Mesh Refinement (AMR).

Fig. 3. (a) Halo cells of a regional tile is shown, (b) two different geometries of logical
tiles in a regional tile. Dynamic tile size allows traversing a region in different orders.

An analytical model would argue that local tile sizes that are set at loop-
by-loop basis would yield to optimal performance instead of program global tile
sizes [27]. The advantage of local tile sizes is that the optimal tile size depends
on array usage and loop content because different loops have different working
set sizes. On the other hand, changing tile size may bring overhead because
metadata needs to be reconstructed when tiling information is changed. Fur-
thermore, different tile sizes can cause some of the threads to access non-local
NUMA nodes because thread or memory pinning does not change loop-by-loop
basis. Migrating threads to cores that are closer to the source NUMA node is
an expensive process and can offset the benefits gained from using different tile
sizes. Our programming model allows local tile sizes for logical tiles because logi-
cal tiles changes how the data space is viewed and traversed in the computation,
can be also used to disable tiling for loops that do not exhibit any cache reuse.
For example, in Fig. 3b, a regional tile is divided into logical tiles in two different
ways. On the contrary, changing regional tile sizes requires reallocation of the
data structures.

3 Implementation

3.1 Overview

We have developed TiDA as standalone C++ and Fortran libraries to make it
easier to integrate into existing code frameworks. The library API provides an
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alternative to domain-specific languages or auto-tuning compilers that generate
code variants. It also provides an alternative to C++ layout abstractions based
on template metaprogramming, which do not interoperate well with other lan-
guages. Thus, converting existing applications over to use the TiDA abstractions
is not as disruptive as completely rewriting the original application. In fact, the
existing naively written loop nests in legacy codes largely remain intact with
single line TiDA API calls used to annotate data array allocations as shown
in Listing 1.1 and at the entry point to each loop nest or kernel invocation as
shown in Listing 1.2. The programming abstractions are not tied to a particular
language and can be incorporated into other languages such as Python or Julia.

Currently, the library supports programs operating on block-structured grid
applications such as combustion, seismic, weather simulations and image process-
ing. Such applications are generally limited by memory bandwidth on cur-
rent systems [11,29], and expected to become even more memory bandwidth-
constrained on future HPC as memory bandwidth improves more slowly than
computational throughput [23]. These applications benefit greatly from tiling
to improve cache reuse and from domain decomposition to increase parallelism.
Indeed, the novelty of our approach is the generalization of best practices so that
a single implementation can be applied for a broad array of codes. Although we
are using structured stencils to motivate our demonstration, our generalized
interfaces for domain decomposition and tiling are applied pervasively to sup-
port parallelization to other classes of algorithms such as dense and sparse linear
algebra, particle-in-cell methods, and many others.

3.2 TiDA Types

The library provides new data types to embed the programming abstractions
into a program. These are:

Fig. 4. Data structure of tilearray and absTileArray in TiDA

– tilearray: contains data and metadata. A tilearray is intended to replace
the pure multidimensional array types in the original application that defines
the values in a physical domain. The library extends an array with metadata
that abstracts away details about data partitioning. The metadata follows the
array through the code so that changes in partitioning strategy or mapping do
not require any of the computation to be updated. tilearray has a pointer
to an array of regions.
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– region: represents a region in a tilearray and holds the actual data and its
iteration space that the data is defined. Typically a TiDA programmer does
not directly interact with regional tiles.

– tile: merely holds the low and high ends for a rectangular portion of the
multidimensional array for logical or regional tiles and does not hold any
data. Each tile is assigned an ID that uniquely identifies it.

– absTileArray: is used to build an abstract structure for tilearrays and to
create a loop iterator. It defines a multidimensional iteration space through
an array of tiles. Figure 4 illustrates the interaction of these four data types.

– tileItr: is created to iterate over set of tiles in an absTileArray or
tilearray. If a logical tile size is passed to the build method of tileItr,
then the iterator logically tiles the regions based on the provided tile size.
tileItr is declared as private to a thread so that each tileItr object points
to a distinct set of tiles in an absTileArray. At the build method, TiDA
statically distributes tiles to threads based on thread IDs.

3.3 Supporting Parameterization

Selecting the tile size has a great impact on performance and its optimal value
depends on the cache size and other loop optimizations such as loop fusion.
Thus, being able to configure the tile size brings both performance and produc-
tivity benefits. In TiDA, the programmer has the option to specify logical tile
size when the data structure is created or through environment variable, called
(TIDA TILESIZE=tx,ty,tz), which makes it trivial to tune tile size for an appli-
cation. A programmer does not need to change any of the solvers as the metadata
information propagates to all loops in the code following that array and trans-
parently changes the loop iteration behavior. The geometry of the regions can
be set in an environment variable (TIDA REGIONS=rx,ry,rz) as well. The region
size is then calculated in the library based on the problem size. For example, on
a compute node with four NUMA nodes, choosing region geometry of 1,2,2 or
1,1,4 is expected to yield the best performance.

By default, logical tile size is global and does not change during execution.
It is possible to change the global tile size per loop-basis by passing a tile size
argument to the tile iterator. TiDA does not allow region size changes during
execution except to re-allocate the array with the new layout, making the per-
formance cost transparent to the programmer. In practice the search complexity
to find optimal tile size per loop is too large for large-code basis and not desired
by the application developers. We generally suggest using this feature only to
disable tiling for loops where there is no data reuse because tiling can disrupt
hardware prefetchers. The element-wise operations can illustrate the benefit of
this feature because operations are performed on independent elements and the
loops are highly compute bound. TiDA can be combined with an analytical
model [27] to help select the optimal tile size for an application on a given
architecture, which is out of scope of this paper.
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3.4 Tile Boundaries

TiDA provides an interface, fill tileboundary(), to update halos that is
needed for structured grid problems. The depth of the halos can be specified
in the build method when constructing a TiDA array. TiDA updates the halos
of the region boundaries in regional tiling. This abstraction is important because
it enables codes to migrate to machines with dramatically different memory con-
sistency semantics, such as on software managed memory hierarchies and future
systems with regional coherence models. TiDA relies on the programmer to place
a call for fill tileboundary() and to handle the inter-node communication
(with e.g. MPI). This may introduce an extra copy overhead if the supplemen-
tary library is unaware of TiDA. However, this overhead can be eliminated by
composing messages directly from a tileArray.

3.5 Thread and Memory Affinity

Data placement and thread binding play an important role in performance.
Without NUMA-aware mapping and execution, the codes scale poorly due to the
large memory access latency effects. A programmer using OpenMP can partly
control affinity by setting KMP affinity or GOMP CPU AFFINITY. This app-
roach is prone to mistakes and is not portable across platforms. TiDA utilizes the
HWLOC tool [15] to query available compute units and their physical numbering
to automate thread binding. TiDA binds consecutive thread IDs to consecutive
cores in a compact and balanced way. If there are fewer threads than cores, it will
distribute them over the cores to increase memory bandwidth but place threads
close to each to reduce the halo exchange latency.

In OpenMP programs, it is left to the operating system to bind pages to
NUMA domains using the first touch policy. TiDA’s region abstraction does
not leave the binding to luck and the implementation assigns each region to
a NUMA domain. In case a programmer creates only one region, then TiDA
performs a parallel initialization to initialize data on NUMA systems, which also
implements a first touch page mapping policy. Both thread binding and NUMA-
aware mapping are currently static. Future work will look into user-controlled
and dynamic affinity management where either thread or data is migrated to
adapt the application execution.

4 Code Example

The code snippet in Listing 1.1 shows an example to illustrate how a tilearray
is built in TiDA using the syntax of our Fortran library. Lines 1 and 2 declare
variables with type absTileArray and tilearray. In the next line, lo and hi
are declared as integer vectors defining the low and high ends of the index space
of the grid. tilesizes and numregions are integer vectors for the tile sizes
and number of regional tiles, respectively. They are optional arguments to the
build method of absTileArray. Their values can be read from the environment
variables as well. Line 7 builds the metadata for array A and B with the index
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space and chops the space defined by lo and hi into tiles, and creates an array of
tiles. Line 8 builds a tilearray, allocates its space based on the absTileArray
and sets the depth of ghost zone. Line 9 builds another tilearray with the same
structure. Finally, destroy in Lines 11–13 free the data structures.
1 type(tilearray) :: A, B
2 type(absTileArray) :: abstractAB
3

4 integer :: lo(2), hi(2)
5 integer :: tilesizes (2), numregions (2)
6 ...
7 abstractAB= absTileArray_build(lo, hi, numregions , tilesizes)
8 A = tilearray_build(abstractAB , nGhosts)
9 B = tilearray_build(abstractAB , nGhosts)

10 ...
11 call destroy(abstractAB)
12 call destroy(A)
13 call destroy(B)

Listing 1.1. Building TiDA arrays in two dimensions

1 type(tileItr) : : ti
2 integer : : tlo(2), thi(2), reglo (2), reghi (2)
3 integer : : i, j
4 double precision , pointer : : ptrA(:,:)
5

6 !$OMP PARALLEL PRIVATE(ti, tlo , thi , reglo , reghi , i, j, ptrA)
7

8 ti = tileItr_build(abstractAB)
9 !ti = tileItr_build(abstractAB , logtilesize)

10

11 do while(next_tile(ti)) !<--- Looping over logical tiles
12

13 ptrA =>dataptr(A, ti) !
14 tlo = get_lwb(ti) ! metadata
15 thi = get_upb(ti) !
16

17 !Option 1: process a tile within a loop
18 do j = tlo(2), thi(2) !
19 do i = tlo(1), thi(1) !
20 ptrA(i,j) = compute(i,j) ! Element
21 ... ! loops
22 end do !
23 end do !
24

25 !Option 2: process a tile within a function
26 reglo = get_lwb(get_region(A, ti)) !
27 reghi = get_upb(get_region(A, ti)) !
28

29 call compute_a_tile(ptrA , tlo , thi , reglo , reghi)
30

31 end do
32 !$OMP END PARALLEL

Listing 1.2. Operations on TiDA arrays

Listing 1.2 shows an example usage of TiDA. Line 1 declares a tile iterator,
ti. At line 6, an OpenMP parallel region, spawning multiple threads, is started.
In Line 8, tileItr build returns a tile iterator that points to a set of tiles,
private to the calling thread, in the tiled array A. Line 9 shows a variation of the
tileItr build function that creates a tile iterator with a different logical tile
size than the one used for constructing abstractAB. This feature can be used
for implementing function- or loop-specific tile size rather than program global
tile size as illustrated in Fig. 3a.
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In the do-while statement next tile checks and increments the tile itera-
tor if there are more logical tiles to process. In Line 13 through 15, the code
retrieves the tilearray metadata. Line 13, dataptr returns the pointer to the
floating point data for the current tile of the tile iterator ti in the tiled array
A. Depending on the numregions, this pointer points to a different location in
the grid but all this is hidden behind the TiDA interface. Line 14 and 15 get the
lower and upper bounds of the current logical tile in ti. Here we demonstrate
two different ways to process a tile. One way to process a tile is using the
element loops as shown in line 18 through 23. Element loops iterate over the
data points within a tile. TiDA does not modify the original loop bodies but
introduces tiling loops and new bounds for the element loops. Another way is to
process a tile within a function containing multiple nested loops as in line 29.
In this case, we pass the region sizes to a Fortran subroutine with an explicit-
shape array argument for performance reason instead of passing a pointer with
no explicit size information. reglo and reghi on Lines 26 and 27, contain the
low and high ends of the region, in which ptrA is defined.

Not all loops operate on the interior grid. Some loops may expand to sweep
a domain including the ghost zone, such as an initialization loop. For such loops,
TiDA provides the expand lwb(ti, expansion) interface to expand lower (and
upper) bounds of a tile, where expansion is an integer vector. This function
returns expanded bounds of a tile depending on whether the tile resides at the
grid boundaries or not.

5 Experimental Evaluation

5.1 Evaluated Platforms

We use the “Hopper” supercomputer at the National Energy Research Scien-
tific Computing Center (NERSC) for our experiments. A Hopper compute node
contains two sockets of 2.1 GHz 12-core Magny-Cours processors. Each socket
is comprised of two 6-core chips, totaling four NUMA nodes. The stream band-
width is 51 GB/s for a Hopper node. All computations use double precision
arithmetic.

5.2 Performance Evaluation of Single-Mesh Applications

First, we evaluate TiDA performance on single-mesh applications, namely Heat,
Wave, CNS, and SMC, and compare performance against baseline implementa-
tions. The baseline versions perform no tiling and use OpenMP for outermost
loop parallelization. For the baseline versions, we set the thread affinities and
perform parallel initialization on the NUMA systems. TiDA programs use the
programming abstractions described in this paper and use no other manual code
optimizations. TiDA implementations use program global tile sizes. We have
tuned the logical tile sizes for each application and set the number of regions to
number of NUMA nodes for all applications. The characteristics of the applica-
tions are listed in Table 1. Figure 5 compares the TiDA library against OpenMP
(OMP) with no tiling for a problem size of 2563 in double precision on Hopper.
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Table 1. Characteristics of evaluated applications. #Loops indicate only 3D spatial
loops in solvers. Byte/Flop ratios are for unlimited cache.

Heat Wave CNS SMC miniMG

Stencil 7-point 13-point 27-point 27-point 7-point

#Halos 1 6 4 4 1

#Loops 1 4 14 28 5/grid level

#3D arrays 2 6 46 157 5/grid level

Flops/point 7 79 1625 15K 20

Byte/flop 3.43 1.14 1.32 0.82 2

Fig. 5. Hopper speedups for Heat, Wave, CNS and SMC for problem size of 2563.

1. Heat solves the heat transfer equation, given a constant heat conduction
coefficient and no heat source. The solver iteratively updates a data point
using 6 nearest neighbors, requiring three planes to be loaded into the cache
for an update. Thus, its working set size is about 1.5 MB (3 ∗ 8 ∗ 2562), far
exceeding the size of the L2 cache on Hopper. Tiling greatly reduces memory
traffic: for example, 256∗16∗16 tiles that yield the best performance for Heat
also reduces the working size to 90 KB, which falls within the limits of the
L2. Smaller tiles come with a trade-off because the halos of each tile must be
brought in the cache, leading to an increase in data movement to the point
where tiling incurs more traffic than the untiled code.

2. Wave studies the constant speed wave equation solved with a third-order
Runge-Kutta scheme for time stepping. Wave implements a star-shape, 13-



TiDA: High-Level Programming Abstractions for Data Locality Management 127

point stencil in a communication avoiding fashion where it expands its halos
from 2 to 6 cells so it can compute 3 time steps in a row without exchanging
halos. Since a region allocates its domain including its halos separately from
other regions, it needs to exchange the deep ghost zone with other regions.
Even though for this kernel, filling ghost zone accounts for 10 % of the exe-
cution time, TiDA still outperforms the OpenMP implementation.

3. CNS, developed by the Exascale Combustion Codesign Center, integrates
the compressible Navier-Stokes equations and assumes constant transport
properties. This application employs a 27-point stencil kernel. The TiDA
improvement over OpenMP is about 17 % on 24 cores. CNS reaches out to
four cells in all dimensions when it updates stencil grids in a Runge-Kutta
step. However, the updates are performed one derivate at a time and there is
reuse only in one of the dimensions in a loop. Because of this property, CNS
would benefit from using different logical tile sizes for different loop nests.
Moreover, in CNS some loops (4 out of 14) have no reuse and merely stream
a number of arrays and perform point-wise operations. In such cases, tiling
does not help and performance is ultimately bounded by memory bandwidth.

4. SMC [13] is an advanced proxy for the direct numerical combustion codes
such as S3D [8]. SMC integrates the multicomponent reacting compressible
Navier-Stokes equations with models for chemical species diffusion and kinet-
ics. The dynamical core of SMC uses 8th-order stencil operations to approxi-
mate spatial derivatives, converting the system into a large set of ordinary dif-
ferential equations that are integrated using a third-order, low-storage, TVD
Runge-Kutta scheme. The computational cost of the algorithm depends on
the number of chemical species and the number of reactions between the
species. Our experiments use 9 chemical species.

TiDA is a clear winner for the SMC application, realizing 21.8x the perfor-
mance on 24 cores as shown in Table 2 and Fig. 5. SMC is particularly challenging
for OpenMP and good case study for TiDA because of the high number of data
arrays used in the computation. The working set size is very large (about 256 MB
for N = 256) even for 9 species. The exascale target for SMC is 50 or more chem-
ical species, which will further increase the working set size. As chemical species
are added to the simulation, the memory traffic required per Runge-Kutta step
increases linearly. Thus, tiling in all dimensions is indispensable for SMC both
in current and future machines. We also manually tiled SMC and compared
our results on Hopper. The performance of the manual tiling is only 5 % better
than TiDA. This indicates that the library introduces a small overhead on the
application.

5.3 Region and Tile Size Parameters

The results in Fig. 5 in the previous section are obtained by using program global
tile sizes and program global number of regions. Even though setting global
values for these parameters is easy and provides reasonably good performance,
TiDA provides APIs to use local tile sizes or array-specific region sizes. We study
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Table 2. Hopper running time of TiDA and OpenMP for SMC.

Time (sec) Time (sec) Speedup Speedup

TiDA OpenMP TiDA OpenMP

Baseline 553.1 553.1 1.0 1.0

6 threads 110.2 144.9 5.0 3.8

12 threads 48.0 89.1 11.5 6.2

18 threads 32.6 61.4 17.0 9.0

24 threads 25.4 53.3 21.8 10.4

impact of using local parameters on the CNS application because it has 14 loops
and accesses 46 three dimensional arrays.

We first study the impact of using local tile sizes on performance. A program-
mer can set a different logical tile size for a loop nest or for a function when a tile
iterator is created. The CNS application is implemented using four main func-
tions, namely Diffterm, Hypterm, CtoPrim and Update. We created a different
tile iterator with a different tile size for each function and measure the execu-
tion time. Figure 6 (Left) shows the performance improvement over the program
global tile sizes for each function and overall speedup of the application. Two of
the functions did not benefit from tile size changes because there is little or no
reuse in these functions. Diffterm and Hypterm have a different optimal tile size
than the program global tile size and enjoy 10 % and 6 % speedup, respectively.
The overall performance improvement for function-specific tile sizes is 7 %.

Fig. 6. Left: speedup for function-specific tile sizes over program global tile sizes. Right:
speedup for array-specific region sizes over program global region sizes.

In TiDA, it is possible to use a different region size per array as long as an
iterator uses the same logical tile size to iterate all the relevant arrays. This
feature is particularly useful for arrays without halos because one can create
smaller regional tiles than there are NUMA domains without paying the extra
memory space cost for halos. In an extreme case a regional tile size can be
equal to logical tile size. In CNS, 18 of the three dimensional arrays does not
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have halo cells. For those we choose a region size that is equal to the logical
tile size. Figure 6 (Right) shows the performance improvement for the array-
specific region size over program global region size. Diffterm and Hypterm benefit
from array-specific region sizes and give 9 % and 19 % speedup, respectively.
Using mix region size lowers the performance of the Update function because this
function makes references to 36 arrays out of 46 and has very little cache reuse.
Nonetheless Update accounts less than 10 % of the execution time, overall array-
specific region size provides 11 % performance improvement over the program
global region size.

Fig. 7. Multigrid strong scaling results on a single Hopper node, finest grid size 2563.

5.4 Performance Evaluation of Multigrid

MiniMG is a compact multigrid application that solves Poisson’s equation with
periodic boundary conditions. MiniMG iterates V-cycles, which uses Red-Black
Gauss Seidel smooths at each grid level. Our original MiniMG implementa-
tion employs the data structures provided by Boxlib [30], a software framework
for adaptive mesh refinement (AMR). A program written in Boxlib consists of
distributed-memory arrays called multiFabs, each consisting multiple Fabs (For-
tran Array Boxes). While multiFab can span across different processes, a Fab is
contiguous in the local memory of a process.

We implemented the multigrid solver in TiDA and compared its performance
against OMP. (i) OMP-naive parallelizes computations of each Fab using all
the cores in a compute node without any locality optimizations such as first
touch or thread binding. (ii) OMP employs a similar parallelization scheme
as OMP-naive does. However, this variant initializes Fabs in parallel to take
advantage of NUMA-aware initialization for locality. OpenMP threads execute
tiles of a Fab in parallel. Similar to OMP and OMP-naive, there is no parallelism
across Fabs. (iii) TiDA splits Fabs into regions (e.g. 4 regions on Hopper) to
map each region to a NUMA node, then tiles each region using the logical tiling.
This variant employs nested OpenMP parallelism. Both regions and tiles in each
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region are executed by OpenMP threads in parallel. Program global tile and
region sizes are used.

Figure 7 shows the strong-scaling results of the MiniMG variants in a single
compute node. For all cases, the solution grid is 2563, divided to eight 1283

Fabs. The poor performance of OMP-naive demonstrates the significance of data
placement when multiple NUMA domains are present. TiDA outperforms other
variants on 24 cores and reduces the execution time of OMP, a NUMA-aware
OpenMP implementation, by up to 37 %. The reason is that TiDA does not suffer
from the latency overhead caused by spanning the working set across the NUMA
nodes. Specifically, TiDA overcomes the latency problem by assigning each region
to a NUMA node, reducing the number of remote memory accesses. Moreover,
given the speculation that an exascale machine will have hundreds of coherence
domains, regional tiling will be even more advantageous. The performance of
TiDA slightly drops on 18 cores due to load imbalance (i.e. assigning 8 Fabs
to 3 NUMA nodes). In the future, TiDA will mitigate the impact of such load
imbalance by supporting tile migration.

Fig. 8. Hybrid programming results for multigrid on Hopper, finest grid size is 10243.

We create hybrid variants that use MPI+TiDA and MPI+OMP to parallelize
the multigrid solver across compute nodes. On-node communication is conducted
via sharing memory, whereas off-node communication relies on message passing.
Our original multigrid solver implements a truncated V-cycle. Thus, a fixed Fab
size must be used so that all code variants run the same numerical algorithm. In
this study we do not use a pure MPI variant, which employs one MPI process
per core because that variant would require very small Fabs, reducing the con-
vergence rate of the solution.

Figure 8 shows the strong-scaling study on 128 compute nodes (3072 cores)
on Hopper, fixing the finest grid at 10243 and Fab size at 1283. We can see
that MPI+TiDA outperforms MPI+OMP on up to 3072 cores. However, the
performance improvement of MPI+TiDA over MPI+OMP steadily reduces from
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15.4 % on 192 cores to 8.5 % on 3072 cores. This is because the cost of off-node
communication grows as the number of cores increases in strong scaling. Indeed
on 3072 cores, the communication overhead accounts for 45 % of the execution
time, thus the performance benefit of using TiDA becomes less significant. As
shown in the same figure, without including the off-node communication time,
the performance improvement by MPI+TiDA increases from 23.3 % to 30.9 %
(going from 192 to 3072 cores). Currently Boxlib is responsible for handling
inter-process communication. In the future, we plan to add a runtime support
to hide communication overheads by overlapping with computation.

5.5 Programming Effort

The primary goal of TiDA is to enable data locality optimizations through
abstractions without requiring extensive code changes in the legacy codes. The
number of lines of code (#loc) added to existing implementations of the appli-
cations is insignificant compared to the size of the programs. For example, for
the Heat, we added fewer than 10 lines to build metadata and tilearrays, and
added six lines to extract the metadata per nested loop. Moreover, tiling can
be performed over a function, which can contain multiple nested loops and no
communication phase. Then the #loc can be even smaller because the retrieving
tile bounds and pointer to its data can be performed at the function level, sig-
nificantly reducing the #loc. For example, in the SMC code even though there
are 28 nested loops, only four function calls containing those loops needed to
be tiled, thus only about 50 lines of TiDA code are added to original 3780 lines
of SMC code. When the presented applications ran on another platform, the
programmer does not need to modify the source but tune the tile size and region
size. Programming effort of using TiDA could be further reduced by elevating
the tiling primitives to the level of a language construct (such as an attribute in
a Fortran array descriptor) or an embedded directive (extension to OpenMP),
but all of TiDA’s performance and coding efficiency benefits are available via its
library interface.

6 Related Work

OpenMP is the most common approach for shared-memory parallelism. OpenMP
does not provide a simple abstraction for data decomposition or tiling. The
collapse clause in OpenMP increases parallelism through flattening the multi-
dimensional iteration space into a single dimension but it doesn’t implement
cache-blocking on the iteration space. The programmer has to introduce nested
parallelism to be able to implement tiling however nested parallelism compli-
cates the locality management because it is left to the OS to schedule the newly
created threads within a nested region.

Recently, several interfaces and language extensions have emerged to pro-
vide data structure and layout abstractions for data locality. Kokkos [12] and
Dash [14] support multi-dimensional arrays in C++ and address the intra-chip
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data layout changes using C++ meta-programming. GridTool [5] targets multi-
stage regular grids that are common in complex weather and climate models and
implements the methods with C++ template meta-programming. In both cases,
the paradigm is packaged using intense C++ metaprogramming, which is not
amenable to other languages such as C, Fortran, Python, etc. Given the installed
base of existing code that is written in languages other than C++, TiDA offers
language neutral access to these tiling abstractions.

Chen et al. [9] developed tiled MapReduce for large scale data processing
with fault tolerance support. Application focus in TiDA is different; it targets
structured grid problems, particularly Adaptive Mesh Refinement codes, which
are challenging to optimize in large-scale systems. Hierarchically Tiled Arrays
(HTA) [6] describes hierarchy and topology of data where computation and com-
munication are represented by overloaded array operations. The array notations
hide the cost of temporary arrays and layout transformations, often leading to
severe performance penalties, which prevents HTA to be integrated into other
parallel libraries. TiDA avoids operator overloading and array notations, and
uses abstractions that balance productivity and performance.

Past work has also clearly demonstrated the performance and energy advan-
tages of locality-aware task placement for on-chip data movement. Placements
that exploit communication locality and Network on Chip (NoC) topology have
been shown to increase effective communication bandwidth by reducing con-
tention on NoCs by 53 % [21], decrease packet latency by 23 % [31], decrease
energy by 60 % [18], and provide tighter quality-of-service guarantees compared
to locality-agnostic placements [18]. However, past work lacks interaction with
the application layer and thus typically resorts to heuristic algorithms or reactive
techniques such as process migration [4] using predicted or observed communica-
tion graphs and requirements. TiDA improves on past work by generating data-
centric and topology-aware mappings based on each application’s data structure
layout abstracted from the programmer.

7 Conclusion

We introduce TiDA as a durable tiling abstraction for data-centric computing.
TiDA provides a simple API to describe tile size and data layout and isolates tun-
ing parameters to a single point in the code where the data is instantiated, pro-
viding performance portability. The results for five stencil applications show its
enhanced scalability potential on HPC systems. Moreover, TiDA’s abstractions
are forward looking. It supports layouts for alternative cache-coherence mecha-
nisms as massively-parallel chip architectures move towards regional coherence
models. Even though we implemented TiDA using Fortran and C++ as the base
languages, the abstractions are not tied to these languages and can be imple-
mented in any other languages. If the API is elevated to a language, the metadata
retrieval and tuning for tile size and memory layout can be lifted from the pro-
grammer to the compiler and runtime, which would further reduce programmer
burden.
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We are currently developing a runtime system to hide communication over-
heads between TiDA regions and allow asynchronous execution of tiles. In addi-
tion, we plan to extend the current API to target GPU architectures.
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