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Abstract. Sparse matrices are a core component in many numeri-
cal simulations, and their efficiency is essential to achieving high per-
formance. Dynamic sparse-matrix allocation (insertion) can benefit a
number of problems such as sparse-matrix factorization, sparse-matrix-
matrix addition, static analysis (e.g., points-to analysis), computing
transitive closure, and other graph algorithms. Existing sparse-matrix
formats are poorly designed to handle dynamic updates. The compressed
sparse-row (CSR) format is fully compact and must be rebuilt after each
new entry. Ellpack (ELL) stores a constant number of entries per row,
which allows for efficient insertion and sparse matrix-vector multipli-
cation (SpMV) but is memory inefficient and strictly limits row size.
The coordinate (COO) format stores a list of entries and is efficient for
both memory use and insertion time; however, it is much less efficient
at SpMV. Hybrid ellpack (HYB) compromises by using a combination
of ELL and COO but degrades in performance as the COO portion fills
up. Rows that use the COO portion require it to be completely traversed
during every SpMV operation.

In this paper we introduce a new sparse matrix format, dynamic com-
pressed sparse row (DCSR), that permits efficient dynamic updates. These
updates are significantly faster than those made to a HYB matrix while
maintaining SpMV times comparable to CSR. We demonstrate the efficacy
of our dynamic allocation scheme, evaluating updates and SpMV opera-
tions on adjacency matrices of sparse-graph benchmarks on the GPU.

1 Introduction

Sparse matrix-vector multiply (SpMV) is the workhorse operation of many
numerical simulations and has seen use in a wide variety of areas such as data
mining [1] and graph analytics [2]. In these algorithms, a majority of the total
processing is often spent on SpMV operations. Iterative computations such as the
power method and conjugate gradient are commonly used in numerical simula-
tions and require successive SpMV operations [3]. The use of GPUs has become
increasingly common in computing these operations as they are, in principle,
highly parallelizable. GPUs have both a high computational throughput and a
high memory bandwidth. Operations on sparse matrices are generally memory
bound; this makes the GPU a good target platform due to its higher memory
bandwidth compared to that of the CPU, but it is still difficult to attain high
performance with sparse matrices because of thread divergence and noncoalesced
memory accesses.
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Some applications require dynamic updates to the matrix; generally con-
strued, updates may include inserting or deleting entries. Fully compressed for-
mats such as compressed sparse row (CSR) cannot handle these operations with-
out rebuilding the entire matrix. Rebuilding the matrix is orders of magnitude
more costly than performing an SpMV operation. The ellpack (ELL) format allo-
cates a fixed amount of space for each row, allowing fast insertion of new entries
and fast SpMV, but limits each row to a predetermined number of entries and
can be highly memory inefficient. The coordinate (COO) format stores a list of
entries and permits both efficient memory use and fast dynamic updates but is
unordered and slow to perform SpMV operations. The hybrid-ellpack (HYB) for-
mat attempts a compromise between these by combining an ELL matrix with a
COO matrix for overflow. This compromise requires examination of the overflow
matrix for SpMV operations and efficiency suffers.

Matrix representations of sparse graphs sometimes exhibit a power-law dis-
tribution (when the number of nodes with a given number of edges scales as a
power of the number of edges). This distribution results in a long tail in which
a few rows have a relatively high number of entries whereas the rest have a
relatively low number. Important real-world phenomena exhibit the power-law
distribution. Their corresponding matrices can represent adjacency graphs, web
communication, and finite-state simulations. Such a matrix is also the patholog-
ical case for memory efficiency in the ELL format and requires significant use of
the COO portion of a HYB matrix, making neither particularly well suited for
dynamic sparse-graph applications.

One motivating application for our work is control-flow analysis (CFA): a gen-
eral approach to static program analysis of higher-order languages [4,5]. These
algorithms use an approximate interpretation of their target code to yield an
upper bound on the propagation of data and control through a program across
all possible actual executions. A CFA involves a series of increasing operations
on a graph (extending it with nodes and edges), terminating when a fixed point
is reached (a steady state in which the analysis is self-consistent).

Recent work has shown how to implement this kind of static analysis as
linear-algebraic operations on the sparse-matrix representation of a function
[6,7]. Other recent work shows how to implement an inclusion-based points-to
analysis of C on the GPU by applying a set of semantic rules to the adjacency
matrix of a sparse-graph [8]. These algorithms may be likened to finding the
transitive closure of a graph encoded as an adjacency matrix. The matrix is
repeatedly extended with new entries derived from SpMV until a fixed point is
reached (no more edges need to be accumulated). Each of these approaches to
static analysis on the GPU is very different; however, both require high perfor-
mance sparse-matrix operations and dynamic insertion of new entries.

1.1 Contributions

Existing matrix formats are ill-suited for such dynamic allocation, with many
being fully compressed or otherwise unable to be efficiently extended with new
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entries. Our contribution in this paper is to present a fast, dynamic method for
sparse-matrix allocation:

1. We present a new sparse matrix format, dynamic compressed sparse
row (DCSR), that allows for efficient dynamic updates, exhibits
easy conversion with standard CSR, and has fast SpMV.

2. We implement an open-source library for DCSR and demonstrate
its efficacy, benchmarking SpMV and insertions using the adjacency
matrices for a suite of sparse-graph benchmarks.

2 Background

In this paper we are concerned with dynamic updates to sparse matrices. As
SpMV is arguably the most important sparse-matrix operation, we want to
maintain efficient times for the problem Ax = y. A major goal of sparse-matrix
formats is to reduce irregularity in the memory accesses. We provide a brief
overview of some of the most commonly used sparse-matrix formats.

The coordinate (COO) format is the simplest sparse-matrix format. It rep-
resents a matrix with three vectors holding the row indices, column indices,
and values for all nonzero entries in the matrix. The entries within a COO for-
mat must be sorted by row in order to efficiently perform an SpMV operation.
SpMV operations are conducted in parallel through segmented reductions over
the length of the arrays. Tracking which thread has processed the final entry in
a row requires explicit inter-thread communication.

The compressed sparse row/column (CSR/CSC) formats are similar to COO
in that they have arrays that fully store two of the three sets, either the column
indices or the row indices in addition to the values. Either the rows or columns
(in CSR or CSC, respectively) are compressed to store only offsets corresponding
to the row/column locations in the other two arrays. For CSR, entry i and i+1 in
the row offsets array will store the starting and ending offsets for row i. CSR has
been shown to be one of the best formats in terms of memory usage and SpMV
efficiency due to its fully compressed nature, and thus it has become widely used
[9]. CSR has a greater memory efficiency than COO, which is a significant factor
in speeding up SpMV operations due to decreased memory bandwidth usage.

The ellpack (ELL) format uses two arrays, each of size m × k (where m is
the number of rows and k is a fixed width), to store the column indices and
the values of the matrix [10,11]. These arrays are stored in column-major order
to allow for efficient parallel access across rows. This format is best suited for
matrices that have a fixed number of entries per row.

Allocating enough memory in each row to store the entire matrix is pro-
hibitively expensive for ELL when a matrix contains even one long row. The
hybrid-ellpack (HYB) format offers a compromise by using a combination of
ELL and COO. It stores as much as possible in an ELL portion, and the over-
flow from rows with a number of entries greater than the fixed ELL width is
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stored in a COO portion. ELL and HYB have become popular on SIMD archi-
tectures due to the ability of thread warps to look through consecutive rows in
an efficient parallel manner [12].

The diagonal format (DIA) is best suited for banded matrices. It is formed by
two arrays that store the nonzero data and the offsets from the main diagonal.
The nonzero values are stored in an m × k array where m is the number of
rows in the matrix and k is the maximum number of nonzeros of any row in the
matrix. The offsets are stored with respect to the main diagonal, with positive
offsets to the right and negative offsets to the left. The SpMV parallelization of
this format is similar to that of ELL with one thread/vector assigned to each
row in the matrix. The values array is statically sized, similar to ELL, which
restricts its ability to handle dynamic insertions.

A number of other specialized sparse-matrix formats have been developed,
including diagonal (DIA), jagged diagonal storage (JDS), block diagonal (BDIA),
skyline storage (SKS), tiled COO (TCOO), block ELL (BELL), and sliced-ELL
(SELL) [13], which offer improved performance for specific matrix types. Blocked
variants of these and other formats work by storing localized entries in blocks
for better data locality and a reduction in index storage. “Cocktail” frameworks
that mix and match matrix formats to fit specific subsets of the matrix have
been developed, but they require significant preprocessing and are not easily
modified dynamically [14]. Garland et al. have provided detailed reviews of the
most common sparse-matrix formats [10,11,15], as well as an analysis of their
performance on throughput-oriented many-core processors [16].

Block formats, such as BRC [17] and BCCOO [18] that use blocking, have
limited ability to add in additional entries. BRC can add new entries only if
those entries correspond to zeros within blocks that have been stored. BCCOO
can handle the addition of new entries, but it suffers from many of the same
problems as COO. Also, new insertions will not always follow a blocked structure,
so additional blocks may be sparse, which lowers memory efficiency.

Many sparse-matrix formats are fully compressed and do not allow additional
entries to be added to the matrix dynamically. Adding additional entries to a
CSR matrix requires rebuilding the entire matrix, since there is no free space
between entries. Of existing formats, COO is the most amenable to dynamic
updates because new entries can be placed at the end of the data structure.
However, updating a COO matrix in parallel requires atomic operations to keep
track of currently available memory locations. The ELL/HYB formats allow for
some additional entries to be added in a limited fashion. ELL cannot add in
more entries per row than the given width of the matrix, and while the HYB
format has a COO matrix to handle overflow from the ELL portion, it cannot
be efficiently updated in parallel since atomic operations are required and the
COO portion must maintain the sorted property.

A great deal of research has been devoted to improving the efficiency of
SpMV, which has been studied on both multi-core and many-core architectures.
Williams et al. demonstrated the efficacy of using architecture-specific data
structures to optimize performance [19,20]. As SpMV is a bandwidth-limited
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operation, research has also produced other methods, such as automatic tun-
ing, blocking, and tiling, to increase cache hit rates and decrease bandwidth
usage [21–23].

Graph applications often use sparse binary adjacency matrices to represent
graphs and translate graph operations to linear algebraic operations [24]. A com-
mon graph algorithm is finding a transitive closure by repeated multiplication of
its adjacency matrix. The transitive closure of an adjacency matrix R calculates
R+ = ∪

i∈{1,2,3,...}
Ri, where Ri is the ith power of the matrix. This operation results

in Ri having a nonzero between any pair of nodes that are connected by a path
of length i. The union (addition/binary-or) of all R, . . . Rn will have a nonzero
entry for every pair of nodes that are connected by a path of length ≤ n. This
process of unioning successive powers of R can be continued until a fixed point is
reached and all nodes that are connected by a path of any length will be marked
in the matrix.

3 Dynamic Compressed Sparse Row (DCSR)

We present a dynamic sparse-matrix allocation method that allows for efficient
dynamic updates while maintaining fast SpMV times. Our dynamic allocation
uses a row offset array, representing a dense array of ordered rows, and for each
a fixed number of segment offsets. The column indices and values are stored in
arrays that are logically divided into these data segments in the same way that
CSR row offsets partition the column indices and values. Each such segment is
a contiguous portion of memory that stores entries within a row. Segments may
contain more space than entries to allow for future insertions. The contiguous
arrangement of entries within the set of segments for a given row is equivalent
to the CSR format. In the following subsection we illustrate how dynamic allo-
cation is performed, after which we provide details of how DCSR operations are
implemented.

Initializing the matrix can be accomplished in one of two ways. Either a
matrix can be loaded from another format (e.g., COO or CSR), or the matrix
can be initialized as blank. In the latter case, each row is assigned an initial
number of entries (an initial segment size) in the column indices and values
arrays. The row offset array is initialized with space for k segment offset pairs,
with either no allocated segments or a single allocated segment of size μ per
row. In the latter case this allocation consumes the same amount of memory
as an ELL matrix with a row width of μ, except in row-major order instead
of column-major order. A memory buffer with excess space maintained, using
a simple bump-pointer allocation method to add new segments, to allow for
dynamic allocation. This allocation pointer is set to the end of the currently
used space (rows × μ in the case of a new matrix). A maximum size of memory
buffer for the columns and values arrays is specified by the user. Figure 1 provides
an illustrative comparison of CSR, HYB, and DCSR formats.

In total, the format consists of four arrays for column indices, values, row
offsets, and row sizes, in addition to a memory allocation pointer. The row offsets
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Fig. 1. Comparison of CSR, DCSR, and HYB formats. (Color figure online)

array functions in a manner similar to that of its CSR counterpart, except that
both a beginning and ending offset are stored and space exists for up to k
such pairs per row. This table is encoded as a strided array where the starting
and ending offsets of segment k in row i are indexed by (i ∗ 2 + k ∗ pitch) and
(i∗2+k∗pitch+1), respectively. The pitch may be defined as a value convenient
for cache performance such that pitch ≥ 2 ∗ rows. This pitch value is chosen to
ensure memory aligned accesses. The number of memory segment offset pairs
(the max k) is an adjustable parameter specified at matrix construction. The
column indices and values correspond 1:1, just as in CSR. Unlike CSR, however,
there may be more than one memory segment assigned to a given row and these
segments need not be contiguous. As the last segment for a row may not be
full, the actual row sizes are maintained so the used portion of each segment is
known.

Explicitly storing row sizes allows for optimization techniques such as adap-
tive CSR (ACSR) [25] (of which we take advantage). This optimization imple-
ments customized kernels to process bins of specified row-lengths. During this
binning process, we create a permuted set of row indices that are sorted according
to these bin groupings. We launch each bin-specific kernel with these permuted
indices on its own stream, which allows each kernel to easily access the rows that
it needs to process without scanning over the matrix.
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When inserting new elements within a row, the last allocated segment for
that row is located, and if space is available the new elements are inserted in
a contiguous fashion after the current entries. If that segment does not have
enough room, a new segment will be allocated with the appropriate size plus
an additional amount α. The α value represents additional “slack space” and
allows for a greater number of entries to be inserted without the creation of a
new segment. Although we experimented with setting α to be a factor of the
previous segment size, for our tests we settled on a value of μ (average row size
of matrix). When a new segment is allocated, the memory allocation pointer
is atomically increased by the size of the new segment. A hard limit on these
additions, before defragmentation is required, is fixed by the number of seg-
ments k. The defragmentation operation always reduces the number of segments
in each row to one, which allows the format to scale to an arbitrary number of
allocations. Pseudo-code for new segment allocation is provided by Algorithm1.

When inserting new elements into the matrix, it is possible that duplicate
nonzero entries (i.e., two or more entries with the same row and column index) will
be added. Duplicate entries are handled in one of two ways. The first method is to
simply let the accumulation occur, as it does not pose a problem for many opera-
tions. SpMV operations are tolerant of duplicate entries since the reduction relies
on associative operations. This result will be correct to within floating point tol-
erance. For binary matrices, the row-vector inner products will produce the same
result irrespective of duplicate nonzeros. A second solution is to perform a seg-
mented reduction on the entries after sorting by row and column. This operation
combines all duplicate entries into a single entry but is generally not needed when
performing only SpMV and addition operations. In our tests, we let the values
accumulate for all formats as they do not hinder the SpMV operations that are
performed. Pseudo-code for an insertion operation is given by Algorithm2.

An SpMV operation works as follows. Initially the first pair of segment offsets
is fetched. The entries within the corresponding segment are multiplied by the
appropriate values in x according to the algorithm being used (CSR-scalar, CSR-
vector, etc.). If the row size is greater than the capacity of the current memory
segment, the next pair of offsets is fetched. If the size of the current segment
plus the running sum of the previous segment sizes is greater than or equal to
the row size, the final segment of that row has been found. If the final segment
is not full, the location of the last entry can be determined by the difference of
the row size and the running sum. This process continues until the entire row
has been read. This is illustrated in Algorithm3.

As the matrix accumulates more segments, SpMV performance decreases
slightly. A fixed number of segments also means this process cannot continue
forever. Our solution to both problems is to implement a defragmentation oper-
ation that compacts all entries within the column indices and values arrays,
eliminating empty space. This operation compacts all segments in a row into
a single segment. The defragmentation may be invoked periodically, or more
conservatively when a row has reached its maximum capacity of segments. In
practice we do the latter and set a flag when any row reaches its maximum
segment count. At this point we consider defragmentation to be required.
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Algorithm 1. Allocate Segments
Input: sizes, offsets, Aj, Ax, B offsets, B cols, B vals
Output: sizes, offsets, Aj, Ax

1 row ← vid ; // vector ID

2 while row < n rows do
3 sid ← 0 ; // segment index

4 rl ← sizes[row] ; // row length

5 idx ← 0 ; // thread row index

6 start ← offsets[row ∗ 2] ; // starting segment offset

7 end ← offsets[row ∗ 2 + 1] ; // ending segment offset

8 free mem ← 0;
9 B start ←B offsets[row ∗ 2];

10 B end ←B offsets[row ∗ 2 + 1];
11 rlB ← B row end − B row start;
12 if rlA ≥ 0 then
13 while A idx < rlA do
14 idx ← idx + (A end − A start);
15 if idx < rlA then
16 sid ← sid + 1;
17 A start ← offsets[sid∗pitch+row ∗ 2];
18 A end ← offsets[sid∗pitch+row ∗ 2 + 1];

19 idx ← A end + rlA − idx;

20 else
21 idx ← A start;

22 free mem ← A end − A start;
23 if lane = 0 AND free mem < rlB AND rlB > 0 then

// allocate new space

24 size ← rlB − free mem + α;
25 addr ← atomicAdd(sizes[n rows], size);

// allocate new row segment

26 offsets[(sid + 1)*pitch + row ∗ 2] ← addr;
27 offsets[(sid + 1)*pitch + row ∗ 2 + 1] ← addr + size;

// Allocate new entries (Algorithm 2)

28 Insert Elements();
29 row ← row + num vectors;

Defragmentation performs the equivalent to a sort-by-row operation on the
entries of the matrix; however, we formulated a method that does not require
an actual sort and is significantly faster than doing so. We perform a prefix-
sum operation on the row sizes to calculate the new row offsets in a compacted
CSR form. After this, the entries are shuffled from their current indices to their
new indices in newly allocated column indices and values buffers, after which we
set a pointer in our data structure to these new arrays and free the old buffers
(shallow copy). By using the knowledge of the row sizes to compute resulting
offsets and indices, we eliminate the need to do any comparisons in this operation,
which greatly improves performance. The defragmentation process is described
by Algorithm 4.
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Fig. 2. Illustration of insertion and defragmentation operations with DCSR. (Color
figure online)

Figure 2 illustrates an example of inserting new elements into a DCSR matrix.
Initially the matrix has four populated rows with the memory allocation pointer
being 16. Row 0 can insert one additional entry in its current segment before
a new segment needs to be allocated. Rows 1 and 2 have enough room for two
additional entries, and row 3 is full. Figure 2 shows a set of new entries that are
inserted into rows 0, 2, and 3. In this case a new segment of size 4 is allocated
for row 0 and row 3. The additional segments need not be consecutive nor in
order of row since the exact offsets are stored for each segment. Finally, the
defragmentation operation computes new segment offsets from the row sizes.
The entries are shuffled to their new indices, which results in a single compacted
segment for each row.
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Algorithm 2. Insert Elements
Input: sizes, offsets, Aj, Ax, B cols, B vals
Output: sizes, Aj, Ax

1 B idx ← B start+lane ; // add thread lane

2 while B idx < B end do
3 if idx ≥ A end then
4 pos ← idx − A end;
5 sid ← sid + 1;
6 A start ← offsets[sid∗pitch+row ∗ 2];
7 A end ← offsets[sid∗pitch+row ∗ 2 + 1];
8 idx ← A start + pos;

9 Aj[idx] ← B cols[B idx];
10 Ax[idx] ← B vals[B idx];
11 B idx ← B idx+ VECTOR SIZE;
12 idx ← idx+ VECTOR SIZE;

13 if lane = 0 then
14 sizes[row] ← sizes[row] + rlB;

Algorithm 3. DCSR SpMV
Input: sizes, offsets, Aj, Ax, x, y
Output: y

1 tid ← thread index ; // thread ID

2 lane ← tid % V ec Size ; // lane ID

3 vid ← tid / V ec Size ; // vector ID

4 for row ← vid to num rows, row += num vecs do
5 idx ← 0 ; // thread row index

6 rl ← sizes[row] ; // row length

7 sid ← 0 ; // segment index

8 while idx < rl do
9 start ← offsets[sid∗pitch + row ∗ 2];

10 end ← offsets[sid∗pitch + row ∗ 2 + 1];
/* accumulate local sums */

11 for j ← start to end, j += V ec Size do
12 sum += Ax[j] * x[Aj[j]];

13 idx += (end - start);

14 y[row] = sum;

As CSR is the most commonly used sparse matrix format, we designed DCSR
to be compatible with CSR algorithms and to allow for easy conversion between
the formats. Minimal overhead is required to convert from CSR to DCSR and
vice versa. When converting from CSR to DCSR, the column indices and values
arrays are copied directly. For the row offsets array, the ith element is copied
to indices i ∗ 2 − 1 and i ∗ 2 for all elements except the first and last one.
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Algorithm 4. Defragment DCSR
Input: sizes, offsets, Aj, Ax
Output: offsets, Aj, Ax
/* prefix sum on row sizes */

1 exclusive scan(sizes, temp offsets);
2 new T cols(size(Aj)), new T vals(size(Ax));
3 CompactIndices(T cols, T vals, temp offsets, Aj, Ax, offsets, sizes);

/* shallow copy, old arrays deleted */

4 Aj = &T cols, Ax = &T vals;
5 SetRowOffsets(offsets, sizes, temp offsets);

A simple subtraction must be performed to calculate the row sizes from the row
offsets. Converting back to CSR is equally simple, assuming the matrix is first
defragmented; the column indices and values arrays are copied back, and the
starting segment offset from each row is copied to the row offsets array.

4 Experimental Results

In our tests we used an Intel Xeon E5-2640 processor running at 2.50 GHz,
128 GB of memory, and 3 NVIDIA Tesla K20c GPUs. For additional scaling
tests, we used an Intel Xeon E5630 processor running at 2.53 GHz, 128 GB of
memory, and 8 NVIDIA Tesla M2090 GPUs. We compiled using g++ 4.7.2,
CUDA 5.5, and Thrust 1.8, comparing our method against modern implemen-
tations in Nvidia CUSP [26]. Table 1(a) provides a list of the matrices that we
used in our tests as well as their sizes, number of nonzeros, and row entry distri-
butions. All the matrices can be found in the University of Florida sparse-matrix
database [27].

Memory consumption is a major concern for sparse matrix formats, as one of
the primary reasons for eliminating the storage of zeros is to reduce the memory
footprint. The ELL component of HYB is best suited to store rows with an equal
number of entries. If there is a large variance in row size, much of the ELL portion
may end up storing many zeros, which is inefficient. We provide a comparison of
memory consumption for HYB, DCSR (using 2, 3, and 4 segments), and CSR
formats in Table 1(b). We compute the storage size of the HYB format using
an ELL width equal to the average number of nonzeros per row (μ) for the
given matrix. CSR has the smallest memory footprint since its row indices have
been compressed to the number of rows in the matrix. We see that DCSR has a
significantly smaller memory footprint in almost all test cases. Test cases such
as AMA and DBL have lower memory consumption for HYB than for DCSR
(with 3 and 4 segments), because these matrices have a low variance in row size.
This low variance in row size makes them well suited for DCSR with 4 segments
uses 20% less memory on average than HYB.

The conversion time between formats is often a key factor when determining
the efficacy of a particular format. High conversion times can significantly hinder
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Table 1. (a): Matrices used in tests. NNZ: total number of nonzeros, μ: average row
size, σ: standard deviation of row sizes, max: maximum row size. (b): Comparison of
memory consumption among HYB, CSR, and DCSR formats. Size of HYB is listed in
bytes (using ELL width of μ), and sizes for DCSR and CSR are listed as a percent of
the HYB size.

Matrix Abbr. NNZ Rows \ Cols μ \ σ \ Max

amazon-2008 AMA 5M 735K 7 \ 4 \ 10
cnr-2000 CNR 3M 325K 9 \ 21 \ 2716
dblp-2010 DBL 807K 326K 2 \ 4 \ 154

enron ENR 276K 69K 3 \ 28 \ 1392
eu-2005 EU2 19M 862K 22 \ 29 \ 6985
flickr FLI 9M 820K 11 \ 87 \ 10K

hollywood-2009 HOL 57M 1139K 50 \ 160 \ 6689
in-2004 IN2 16M 1382K 12 \ 37 \ 7753

indochina-2004 IND 194M 7414K 26 \ 216 \ 6985
internet INT 207K 124K 1 \ 4 \ 138
kron-18 KRO 10M 262K 40 \ 261 \ 29K

ljournal-2008 LJO 79M 5363K 14 \ 37 \ 2469
rail4284 RAL 11M 4K \ 1M 2633 \ 4K \ 56K

soc-LiveJournal1 SOC 68M 4847K 14 \ 35 \ 20K
webbase-1M WEB 3M 1000K 3 \ 25 \ 4700

wikipedia-2005 WIK 19M 1634K 12 \ 31 \ 4970

(a) Matrices

Matrix HYB size DCSR DCSR DCSR CSR
2 segs. 3 segs. 4 segs.

AMA 54M 0.924 1.026 1.128 0.77
CNR 47M 0.626 0.679 0.732 0.547
DBL 12M 0.86 1.052 1.245 0.572
ENR 4M 0.653 0.762 0.871 0.489
EU2 236M 0.675 0.703 0.731 0.633
FLI 160M 0.546 0.585 0.624 0.487
HOL 859M 0.531 0.541 0.551 0.516
IN2 229M 0.654 0.7 0.746 0.585
IND 2791M 0.571 0.591 0.612 0.541
INT 4M 0.761 0.969 1.177 0.449
KRO 171M 0.493 0.505 0.516 0.475
LJO 1152M 0.594 0.63 0.665 0.541
RAL 149M 0.577 0.577 0.577 0.576
SOC 1009M 0.595 0.631 0.668 0.54
WEB 40M 0.966 1.155 1.344 0.682
WIK 276M 0.635 0.68 0.725 0.567

(b) Memory Occupancy

performance. Architecture-specific formats may provide better performance, but
unless the rest of the code base uses that format, the conversion time must be
accounted for. We provide the overhead required to convert to and from CSR and
COO matrices in Table 2(a). The conversion times have been normalized against
the time required to copy CSR → CSR. The conversion times to DCSR are only
slightly higher compared to that of CSR. HYB requires significant overhead
as the entries must first be distributed throughout the ELL portion and the
remaining overflow entries distributed to the COO portion.

4.1 Matrix Updates

To measure the speed of dynamic updates, we ran two series of tests that involved
streaming updates and iterative updates. In the streaming updates test, we incre-
mentally build up the matrix by continuously inserting new entries. The elements
are first buffered into three arrays for the rows, columns, and values. We initial-
ize the matrix sizes according to the average number of nonzeros for the given
input. Afterward, the entries are added in a streaming parallel fashion to the
matrices.

Updating a HYB matrix first requires checking the ELL portion, and if the
row in question is full, inserting the new entry into the COO portion. Any
updates to the COO portion require atomic operations to ensure synchronous
writes between multiple threads. These atomic updates are prohibitive to fast
parallel updates as all threads are contending to insert entries onto the end of
the COO matrix.
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Table 2. (a): Comparison of relative conversion times. Conversions are normalized
against time to copy CSR→CSR. (b): Overhead of DCSR defragmentation and HYB
sorting is measured as the ratio of one operation against a single CSR SpMV. Update
time is measured as the ratio of 1000 updates to a single CSR SpMV. (∞ means this
test was unable to complete within machine resource limits)

From COO COO COO CSR CSR DCSR
To CSR DCSR HYB DCSR HYB CSR

AMA 2.93 3.03 9.22 1.06 9.25 0.9
CNR 2.24 2.62 14.84 1.04 13.62 0.87
DBL 4.34 5.74 18.07 1.17 16.83 1.1
ENR 5.56 5.95 27.15 1.29 26.95 1.14
EU2 2.1 2.29 16.08 1.06 15.67 0.99
FLI 2.13 2.5 23.29 1.06 19.74 0.96
HOL 1.82 1.9 20.37 1.01 20.3 0.99
IN2 2.15 2.42 18.12 1.06 18.15 0.98
IND 1.93 1.98 ∞ 1.03 ∞ 1.01
INT 12.07 13.74 21.38 1.3 15.12 1.0
KRO 1.78 2.09 24.01 1.0 20.14 0.91
LJO 2.09 2.19 19.96 1.02 19.97 0.98
RAL 1.73 2.03 20.67 1.0 17.97 0.91
SOC 2.22 2.35 20.47 1.06 20.41 1.01
WEB 2.89 3.19 11.45 1.16 11.56 0.86
WIK 2.18 2.42 20.13 1.07 20.11 0.98

(a) Conversion Times

Matrix DCSR HYB DCSR HYB
defrag sort update update

AMA 3.9 2.12 2.02 4.89
CNR 5.13 6.75 3.77 15.26
DBL 5.69 4.66 3.6 10.23
ENR 5.49 8.0 2.21 18.2
EU2 2.32 4.28 2.65 12.05
FLI 1.58 4.22 1.94 10.01
HOL 1.54 5.57 2.55 12.45
IN2 2.58 5.85 3.14 13.34
IND 2.15 ∞ 3.36 ∞
INT 6.74 6.19 1.76 8.78
KRO 1.02 3.43 1.82 11.3
LJO 1.45 3.02 1.34 6.1
RAL 0.72 2.04 1.82 13.61
SOC 1.05 3.74 1.02 5.74
WEB 2.65 1.93 2.54 7.39
WIK 1.39 2.54 1.32 5.49

(b) Sorting Overhead

Updating a DCSR matrix requires finding the last occupied (current) seg-
ment within a row. If that segment is not full, the new entry is added into it
and the row size is increased. When the current segment for a row fills up, a
new segment is allocated dynamically. Since atomic operations are required only
for the allocation of new segments, and not for each individual element, syn-
chronization overhead is kept low. By allowing for dynamically sized slack space
within a row, we dramatically reduce the number of atomic operations that are
required to allocate new entries. In this way, DCSR was designed to be updated
in an efficient parallel manner.

The number of segments, initial row width, and α value can be tuned for
the problem to give a reasonable limit on updates. In our tests we used four
segments and α value of μ (average row size of the matrix). When a row nears
its limit, a defragmentation is required in order to reduce that row to a single
segment.

Figure 3 provides the results of our iterative and streaming matrix update
tests. We do not compare to CSR in the latter case, since it is not possible to
dynamically add entries without rebuilding the matrix. The goal of this operation
is to load the matrix; insertion checks are not performed. DCSR saw an average
speedup of 4.8× over HYB with streaming updates. In the case of IND, only
DCSR was able to perform the operation within memory capacity.
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Fig. 3. Top: relative speedup of DCSR compared to HYB for iterative updates with
SpMV operations. The speedup is compared to a normalized CSR baseline. Bottom:
relative speedup of DCSR compared to HYB for matrix updates. (Color figure online)

We also executed an iterative update test to compare the abilities of the for-
mats to perform a combination of dynamic updates and SpMV operations. This
test is analogous to what would be performed in a graph application (such as
CFA) where the graph is updated at periodic intervals. In the iterative updates
test we perform a series of iterations consisting of a matrix addition operation
(A = A + B) followed by several SpMV operations Ax = y. Part (a) of Fig. 3
provides the results for our iterative updates. Within each iteration, the matrix
is updated with an additional 0.2% random nonzeros followed by 5 SpMV opera-
tions, which is repeated 50 times, yielding a total increase of 10% to the number
of nonzeros. We compare the DCSR and HYB results to a normalized CSR
baseline. In the CSR case a new matrix must be created to update the original
matrix, which causes a significant amount of overhead (in terms of computation
and memory). In the cases of LJO and SOC, CSR was not able to complete
within memory capacity, so we normalized against HYB.

DCSR shows significant improvement over HYB on streaming updates in all
test cases (in some by as much as 8×). DCSR also outperforms HYB in all test
cases on iterative updates, and in some cases by as much as 2.5×. The Amazon-
2008 matrix has a low standard deviation, and the majority of its entries fit nicely
into the ELL portion, which greatly speeds up SpMV operations. However, even
in this case DCSR slightly outperforms HYB on iterative updates due to having
lower overhead for defragmentation. In all other cases DCSR exhibits noticeable
performance improvements over HYB and CSR.
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Fig. 4. FLOP ratings of SpMV operations for CSR, DCSR, and HYB. (Color figure
online)

4.2 SpMV Results

In the SpMV tests we take the same set of matrices and perform SpMV opera-
tions with randomly generated dense vectors. We performed each SpMV opera-
tion 100× times and averaged the results. Figure 4 provides the results for these
SpMV tests using both single and double-precision floating-point arithmetic.
We implemented an adaptive binning optimization [25] (labeled ACSR), which
requires relatively little overhead and provides noticeable speed improvements
by using specialized kernels on bins of rows with similar row sizes. In these tests
we compare across several variants of our format, including DCSR, defragmented
DCSR, ADCSR, and defragmented ADCSR, in addition to standard implemen-
tations of HYB and CSR.

The fragmented DCSR times are 8% slower than the defragmented DCSR
times on average. When the DCSR format is defragmented, it sees SpMV times
competitive with those of CSR (1% slower on average). With the adaptive bin-
ning optimization applied, we see that ADCSR outperforms HYB in many cases.
On average, ADCSR performed 9% better than HYB across our benchmarks.

4.3 Post-processing Overhead

Post-processing overhead is a concern when dealing with dynamic matrix
updates. Dynamic segmentation allows for DCSR to be updated with new entries
without requiring the entries to be defragmented. SpMV operations can be per-
formed on the DCSR format regardless of the order of the segments, unlike HYB
matrices, where a sort is required anytime an entry is added to the COO por-
tion. The SpMV operation for HYB matrices assumes the COO entries are sorted
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by row (without this property the COO SpMV would be dramatically slower).
Table 2 provides post-processing times for HYB and DCSR formats relative to a
single SpMV operation. In the case of IND, HYB was unable to sort and update
due to insufficient memory overhead (represented as ∞).

The defragmentation operation can internally order rows by row size at no
additional cost. This ordering is similar to the row sorting technique illustrated
in [28], although we use a global sorting scope as opposed to a localized one.
In addition, the internal order of segments may be changed arbitrarily, and
this permutation remains invisible from the outside because starting and end-
ing segment indices are managed explicitly. To accomplish this optimization we
permute row sizes according to the permuted row indices (which have already
been binned and sorted by row size). The permuted row sizes can then be used
to create new offsets for the monolithic segments produced by defragmentation.
This operation has the effect of internally reordering column and value data by
row size at no additional cost. We observed this internal reordering provides a
noticeable SpMV performance improvement of 12%. This improvement is from
an increased cache-hit rate via better correlation between bin-specific kernels
and the memory they access.

The DCSR defragmentation incurs a lower overhead than HYB sort because
entries can be shuffled to their new index without a sort operation. DCSR defrag-
mentation is 2× faster on average than HYB sorting, and this step is infrequently
required (while HYB sorting must be performed at every insertion). These fac-
tors allow DCSR to have significantly lower post-processing overhead.
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Fig. 5. Scaling results for SpMV with 1 and 2 K20 GPUs (upper) and 1, 2, 4, and 8
M2090 GPUs (lower). (Color figure online)
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4.4 Multi-GPU Implementation

DCSR can be effectively mapped to multiple GPUs. The matrix can be parti-
tioned across n devices by dividing rows between them (modulo n) after sorting
by row size. This mapping provides a roughly even distribution of nonzeros
between the devices. Figure 5 provides scaling results for DCSR across two Tesla
K20c GPUs and up to eight Tesla M2090 GPUs. We see an average speedup of
1.93× for the single precision and 1.97× for double precision across the set of
test matrices. The RAL matrix sees a smaller performance gain due to our dis-
tribution strategy of dividing up the rows. The added parallelism is split across
rows but, in this case, the matrix has few rows and many columns. We see nearly
linear scaling for most test cases.

For the matrices INT and ENR we see reduced scaling due to small matrix
sizes. In these cases the kernel launch times account for a significant portion of
the total time due to a relatively small workload. The total compute time can
be roughly represented as c + x

n , where c is the kernel launch overhead, and the
workload x is divided among n devices (assuming x can be fully parallelized).
As the number of devices increases, the work per device decreases whereas the
kernel launch time remains constant. In our tests we perform 100× iterations
of each kernel, which leads to poor scaling performance on small matrices. We
performed additional tests in which we moved the iterations into the kernel itself
and called the kernel once, eliminating the additional kernel launch times. In this
case we see scaling for the INT matrix of 1.94×, 3.55×, and 6.03×, and for the
ENR matrix we see scaling of 1.80×, 2.70×, and 3.76× for 2, 4, and 8 GPUs,
respectively. These results indicate that the poor performance of those cases
was primarily due to the low amount of work done relative to the kernel launch
overhead.

5 Conclusion

We have described a fast, flexible, and memory-efficient strategy for dynamic
sparse-matrix allocation. The design of current formats limits the extension of
an existing matrix with new entries. As many applications require or would
benefit from efficient dynamic updates, we have proposed a strategy of explic-
itly managed dynamic segmentation that makes this operation inexpensive. Our
approach is presented and evaluated using a new format (DCSR) that provides
a robust method for allocating streaming updates while maintaining fast SpMV
times on par with that of CSR. The format gracefully degrades in performance
upon dynamic extension, but does not require a sort to be performed after insert-
ing new entries (as opposed to COO-based formats such as HYB).

Without defragmentation, SpMV times are only marginally slower than that
of a fully constructed CSR matrix, and after defragmentation they are roughly
equal. With adaptive binning applied, DCSR gives faster overall SpMV times as
compared to the HYB format. DCSR is significantly more efficient in terms of
memory use as well. ELL must allocate enough room in every row for the longest
row in a matrix. HYB is a vast improvement, allowing long rows to overflow into
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its COO portion; however, DCSR exhibited lower memory consumption on every
benchmark when set to allow 2 segments per row, and still used 20% less memory
on average when allowing 4 segments per row.

A key advantage of DCSR design is compatibility with CSR-scalar, CSR-
vector, and other CSR algorithms. Only minor modifications are required to
account for a difference in the format of the row offsets array. We have demon-
strated how CSR-specific optimizations, such as adaptive binning, can be easily
applied to DCSR. Other optimizations such as tiling and blocking could also be
used. This compatibility also means that minimal overhead is required to convert
to and from CSR. Numerous sparse-matrix formats have been developed that
are specifically tailored to GPU architectures. These formats offer improved per-
formance, but require converting from whatever previous format was being used.
As CSR is the most commonly used sparse-matrix format, and large amounts of
software already incorporate it into their code bases, it is often not worth the
conversion cost to introduce another format. DCSR reduces this barrier to use
with a low cost of conversion.

To the best of our knowledge, no other work has created a dynamic format
such as DCSR for iterative updates to sparse matrices. Some dynamic graph
algorithms, such as approximate betweenness centrality [29], require dynamic
updates but do not specify how the graph should be represented and modified—
a matrix encoding would require a dynamic format to be efficient. Dynamic
insertion algorithms, like that described in [30], use a modified insertion sort
that disperses gaps throughout the data in order to reduce insertion time from
O(n) to O(log n) with high probability. This method probabilistically reduces the
overall cost of the insertion sort from O(n2) to O(n log n). The defragmentation
operation we implement can be done in O(n) and insertions require O(1), which
is better than insertion sort. Also, leaving many intermittent gaps between the
data would slow SpMV times. We mitigate this problem by grouping entries
contiguously within segments.

We believe our strategy lends itself well to certain operations and problems,
such as graph algorithms that require periodically updating the graph with new
entries. These applications have not previously been well addressed by sparse-
matrix formats. Our work also opens up a number of interesting research ques-
tions as to whether existing algorithms that rebuild matrices between iterations
could be improved by a matrix format that permits dynamic updates directly.

References

1. Im, E., Yelick, K.: Optimization of sparse matrix kernels for data mining. In: First
SIAM Conference on Data Mining (2000)

2. Gilbert, J., Reinhardt, S., Shah, V.: High-performance graph algorithms from par-
allel sparse matrices. In: K̊agström, B., Elmroth, E., Dongarra, J., Waśniewski,
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