
Distributed Job Allocation for Large-Scale
Manycores

Subramanian Ramachandran and Frank Mueller(B)

North Carolina State University, Raleigh, NC 27695-8206, USA
mueller@cs.ncsu.edu

Abstract. Contemporary operating systems heavily rely on single sys-
tem images with shared memory constructs that may not scale well to
large core counts. We consider the challenge of distributed job alloca-
tion, where each job is comprised of a set of tasks to be mapped to
disjoint cores. A naive solution performing fragmented allocations may
quickly escalate to deadlocks, where jobs hold and wait for cores in cir-
cular dependencies. To tackle these challenges, we propose a deadlock
free distributed job allocation protocol. We have devised two policies
for avoiding deadlocks, namely active cancellation and sequencer-based
atomic broadcast. The protocol and the two policies have been imple-
mented and evaluated on a Tilera TilePro64 processor with 64 cores on
a single socket. Results show sparse job allocations to incur lower over-
head for active cancellation while sequencer-based atomic broadcast has
less overhead for denser allocations.

1 Introduction

While Moore’s law has held for a considerable time in microprocessor design, it
has reached its limits and may not keep pace with the ever increasing process-
ing demand. Nonetheless, multicore/manycore processors have the potential to
enjoy continued performance increases to meet future processing needs while
reducing/constraining power consumption. Current trends in the industry indi-
cate that the number of cores that fit on a single chip is rapidly increasing. With
current single microprocessor chips packing 64+ cores on a die [1–3] and special-
ized computing devices, e.g., graphic processing units (GPUs), already support
over 1000 core today.

Current multicores fall short of their scalability potential. One reason for
this stems from reusing conventional Single System Image (SSI) OS designs
for multicore architectures. With SSI, resources are aggregated to present a
single view of the OS environment while data access and communication are
realized via shared memory over traditional bidirectional buses. This approach
delivers some performance increases in the natural evolution from single core
up to 16 cores, but it deteriorates rapidly when the number of cores increases
further [4]. Recent work [4–6] shows that coherent shared memory may not scale

This work was supported in part by NSF grants 0905181 and 1239246.

c© Springer International Publishing Switzerland 2016
J.M. Kunkel et al. (Eds.): ISC High Performance 2016, LNCS 9697, pp. 404–425, 2016.
DOI: 10.1007/978-3-319-41321-1 21

Distributed Job Allocation for Large-Scale Manycores 405

well to large core counts. They instead promote the usage of scalable message
passing for OS communication in large-scale manycores. Intel’s Knights Landing
(KNL) next-generation Xeon Phi provides L2 cache coherence via SSI, which may
lead to contention at the mesh interconnect, similar to the overheads of shared
memory shown to exceed those of simple message passing over the network-on-
chip (NoC) for 16 cores or more in previous Tilera research [4,7]. Based on these
observations, we conjecture that future large-scale NoCs may support shared
memory partitions only for partitions of 8–16 cores complemented by message
passing across partitions. This would depart from an SSI design and necessitate a
distributed paradigm, which then requires a distributed job allocation approach
for parallel codes to be executed, the focus of this work. An alternative solution
would be hierarchical locks for non-uniform memory access (NUMA) systems [8],
but this would still require a centralized job allocation strategy with limitations
on scalability whereas a distributed approach is more general We believe that
research on distributed designs for NoCs is essential for now as the implications
of scalability limitations persist.

In this work, we propose a novel protocol to tackle the challenges of job
allocation in a distributed system. Allocating jobs of tasks on a partitioned
multi-resource system is known to be NP-hard, even for prioritized jobs [9]. The
problem is further complicated in a distributed system due to the distributed
nature of job generation. A naive approach allowing fragmented allocations could
quickly lead to deadlocks in the job allocation algorithm. Our distributed job
allocation protocol with two policies, active cancellation and sequencer-based
atomic broadcast, takes a well disciplined approach in solving these issues. First,
we avoid deadlocks by enforcing a globally unique order to resolve conflicting job
allocations. Second, we split the job allocation problem into two subproblems:
(1) query and reserve available resources; (2) find a good task-to-core mapping.
Such a split enables effective heuristics [10,11] to tackle NP-hard task-to-core
mapping while our distributed job allocation protocol reserves cores for the job.

While our distributed job allocation protocol is generic in scheduling any
application, we use Message Passing Interface (MPI) [12] applications as our
standard workload in this work for the following reasons: All ranks (tasks) of
an MPI program need to start execution at the same time. Such a workload
demands guaranteed availability of cores to start execution or waits until they
are available. This allows us to model the job wait time as the overhead of the
distributed job allocation protocol. And enables more flexible execution models
where tasks are dynamically created in a distributed manner, e.g., using fine-
grained task graphs to track dependencies.

In summary, this paper, makes the following contributions: (1) We propose
the Pico-kernel Adaptive and Scalable Operating System (PICASO) to address
the scalability challenges of future manycore processors. (2) We analyze the
distributed job allocation problem and present a protocol with two policies,
active cancellation and sequencer-based atomic broadcast. (3) We evaluate the
solutions on the Tilera TilePro64 through a set of benchmarks to analyze the
performance and scalability.

406 S. Ramachandran and F. Mueller

2 PICASO

PICASO features a distributed message passing system comprised of pico-kernels
per core. Pico-kernels are worker cores that execute a job’s user tasks. A set of
pico-kernels are managed by a micro-kernel. Micro-kernels are dedicated cores
for control purposes, e.g., to manage a set of pico-kernels and schedule jobs
in coordination with other micro-kernels. Let a micro-kernel domain be the
set of pico-kernels governed by this micro-kernel. Micro-kernels are typically
topographically centered within its domain.

A pico-kernel reports only to its parent micro-kernel. A micro-kernel, on the
other hand, apart from controlling its set of pico-kernels, also co-ordinates with
other micro-kernels. An advantage of such a system is the decentralization of
control, where each micro-kernel may engage in fast and autonomous decisions
on managing its set of pico-kernels. Since pico-kernels are just worker cores,
we use the terms pico-kernels and cores interchangeably in this work. Figure 1
shows how a PICASO system with micro- and pico-kernel abstraction can be
organized in a large-scale manycore system. In contrast to other manycores,
PICASO partitions the available cores into different domains represented by
different colors. Each domain has a topologically centered core chosen to be the
micro-kernel. The chosen micro-kernels (in red) manage their set of pico-kernels.
All external interactions occur only between micro-kernels.

Fig. 1. Sample micro kernel (uk) plus pico kernel abstraction for manycores (Color
figure online)

3 Distributed Job Allocation

We use the following terminology in our discussion: (1) A task is the basic unit of
execution. (2) A job consists of a collection of tasks. (3) The home micro-kernel
of a particular job is the micro-kernel where the job submission was initiated.

Assumptions: In this work, we consider jobs that require to be co-scheduled,
i.e., these jobs consist of inter-dependent tasks that need to be concurrently

Distributed Job Allocation for Large-Scale Manycores 407

executed on different nodes/cores. An example would be jobs of MPI programs,
where all associated tasks need to start execution at the same time. Such a job
allocation process can be divided into two steps: (1) Query available idle cores
and reserve them for this job. (2) Devise the best possible task-to-core mapping
from the available cores. Our focus in this paper is on the former part. Once
enough cores are reserved for a job, methods and results from prior work [10,11]
can be applied to find the best task-to-core mapping for a given job. However,
the problem becomes more complicated when extended to a distributed system
due to the nature of job generation.

Conventional solutions involve a centralized resource manager that handles
all job allocations. All cores continuously report their availability to this entity.
Such an approach does not scale to a large number of cores due to (1) con-
tention at the centralized entity (because of the incessant status updates) and
(2) a single point of failure. More importantly, it allows for only a single job
submission portal. These restrictions are undesirable for large core counts where
jobs generate allocations queued up at different cores throughout the system.

Our proposed pico-/micro kernel distributed system abstraction partitions
the available cores between different micro-kernels. This domain-specific del-
egation of scheduling capabilities to micro-kernels enables jobs that can be
locally satisfied within a single micro-kernel domain to be handled by fast and
autonomous decisions.

For jobs requiring more cores than can be locally satisfied, the home micro-
kernel, where the particular job is submitted, co-ordinates with other micro-
kernels to devise the allocation of cores to this job. Multiple job requests sub-
mitted at different micro-kernels could compete with each other for resources.
Hence, we need a co-ordination protocol to resolve these conflicts and to choose
the next job to execute loosely based on a globally unique order. This global
unique order could be based on user-defined priority or a First Come First
Serve (FCFS) policy. Such an ordering guarantees fairness and avoids starva-
tion. Adhering to loose ordering rather than strict allows non-conflicting job
allocations to proceed in parallel, thereby increasing the system utilization.

But a lack of such co-ordination protocols may lead to deadlocks. Deadlocks
can happen when multiple jobs submitted at different micro-kernels hold differ-
ent subsets of cores and wait for more cores to become available. Yet, none are
able to proceed because all cores have been allocated to jobs without meeting
the full allocation request of any single job in full. Figure 2 shows a deadlock con-
dition with two micro-kernel domains. Each domain has initially 8 pico-kernels
(worker cores) available. In step 1, two job submissions require 12 and 16 cores,
respectively. In step 2, each job first holds on to available local cores and sends
out a request for more cores. In step 3, each micro-kernel is blocked waiting
indefinitely for responses to their requests. Since none of the job requests are
fully satisfied, the system remains deadlocked.

Random back-off schemes could be used to recover in case of potential dead-
locks. In such a method, different micro-kernels yield their cores and retry their
job allocations after waiting for a randomly chosen back-off time. This proba-
bilistically avoids a deadlock again, but fails to guarantee a bound on completion

408 S. Ramachandran and F. Mueller

Fig. 2. Deadlock: 2 simultaneous jobs submissions (uk = micro-kernel)

time for the allocation algorithm. A more serious issue is potential starvation
of jobs that require large allocations as they might never be satisfied. There-
fore, a job allocation algorithm that avoids starvation with an upper bound on
completion time is required.

4 Deadlock-Free Job Allocation

We have devised a distributed job allocation protocol for large-scale manycores.
Two policies for deadlock avoidance are proposed, namely (1) active cancellation
and (2) sequencer-based atomic broadcast. Both of these policies require that a
globally unique order be established. For example, we could use timestamps of
the job submission time along with the micro-kernel identifier to devise a glob-
ally unique job identifier, or we could use user-defined priorities in conjunction
with a method to break ties for matching priorities. For the discussion in this
work, we will refer to job priority based on a globally unique job ordering rather
than a user-defined priority. In the following sections, we examine the two differ-
ent approaches, compare their capabilities and finally conclude with a detailed
performance evaluation.

4.1 The Main Scheduling Loop

Algorithm 1 shows the main scheduling loop. It performs two main functions: (1)
Process any incoming message, and (2) in the absence of an incoming message,
schedule pending job requests submitted at this micro-kernel.

The scheduling loop uses message passing as the only means of communi-
cation between micro-kernels, and between a micro-kernel and its set of pico-
kernels. There can also be architecture-specific optimizations for micro- to pico-
kernel communication, not shown here.

Distributed Job Allocation for Large-Scale Manycores 409

Algorithm 1. Scheduling loop at each micro-kernel
while TRUE do

post nonblocking receive for fixed size header
repeat

if policy == active cancellation then
schedule job via active cancellation // (2)

else if policy == atomic broadcast then
schedule jobs via atomic broadcast // (2)

end if
until fixed size header is received
receive entire message body (blocking) // (1)
call respective message handler routine

end while

The significant message types of the distributed job allocation protocol are as
follows: Core Allocation Request: Sent by the home micro-kernel of the job. The
request is propagated to all micro-kernels via an efficient request propagation
scheme. Core Allocation Response: Sent by a micro-kernel when it commits cer-
tain cores to a particular job. Job Spawn Request: Sent by the home micro-kernel
when it devises the best task allocation for the given job. This request follows the
same propagation path earlier traversed by the Core Allocation Request. Micro-
kernels that are not part of an allocation, release their reservations for this job
when they receive this request. Job Cancel Request: When the active cancellation
policy is used, this message is sent by the home micro-kernel if it determines
that there is an higher priority job to be satisfied first (see Subsect. 4.2). Submit
Job to Sequencer: Under the sequencer-based atomic broadcast policy, all micro-
kernels use this message to submit their job requests to the fixed sequencer (see
Subsect. 4.3).

4.2 Active Cancellation

The periodic active cancellation procedure works as follows: Any micro-kernel
that launches a job requiring more than the locally satisfiable cores sends a
core allocation request to all its neighbors. This request is propagated to all
other micro-kernels via an efficient request propagation scheme (see Sect. 4.4).
A greedy policy is employed, i.e., the request to each micro-kernel always asks
for the total number of cores required for the job, even if other micro-kernels
have already simultaneously allocated a subset of cores for this job. This policy
frequently allocates more cores than needed for a job, but guarantees a successful
allocation (of cores committed to this job) and facilitates termination (unlike
non-greedy approaches).

The algorithm handles the arrival of a higher priority core allocation request
as follows: Each micro-kernel maintains a wait queue based on the globally unique
order consisting of both the job requests it has sent out and the job requests
it has received. All incoming job requests are inserted in the wait queue as per

410 S. Ramachandran and F. Mueller

the globally unique ordering. If the new request is the head of the wait queue,
it first checks if this request has a higher priority than any job request it has
sent out earlier. If so, it engages in active cancellation of the lower priority job
changing it to the BLOCKED state pending a renewed request. This frees up
resources otherwise allocated to unsuccessful lower priority job requests. Finally,
the micro-kernel commits as many cores as it can afford for this job request by
responding with the committed cores to the home micro-kernel of this partic-
ular job request. The micro-kernel contributes new cores to this commitment
whenever its resources become free. This scheme satisfies multiple job requests
loosely based on the global ordering but also offers a relaxation to this hard
criteria by allowing a lower priority request to proceed if its allocation is satis-
fied quickly enough before a higher priority job overrides it in the wait queue.
This relaxation is allowed under the assumption that any job using a successful
allocation will eventually complete, after which time the resources it was given
becomes available for the next high priority job in the wait queue (bounded by
the longest job).

4.3 Sequencer Based Atomic Broadcast

This method is inspired by the sequencer based atomic broadcast as explained
in Défago et al. [13]. In this method, a micro-kernel is elected to be the sin-
gle sequencer of the system. All job requests, even if submitted at different
micro-kernels, are in turn forwarded to the sequencer to ensure globally unique
ordering. The sequences sends the request to all the micro-kernels only once it
has determined which job to execute next. Our approach differs here. Instead
of broadcasting the request, we use a custom built request propagation scheme
as explained in Sect. 4.4. This ensures that the job allocations happen in order
without any collisions. Less conflicts directly translate to fewer messages com-
pared to active cancellation. But since each micro-kernel has to send requests to
the sequencer, it leads to contention at the sequencer and additional delays even
for small allocation requests, which could have been solved with just a few neigh-
boring micro-kernels. As we show in Sect. 7, this additional overhead translates
into real performance benefits only in case of dense and large job allocations.

4.4 Pattern-Based Message Propagation

An efficient method for propagating request messages, such as core allocation
and job spawn requests from any given source to all other micro-kernels in a
2D mesh topology, is required. Multi-casting messages from a given source to all
micro-kernels is inefficient as this involves sending individual messages to each
micro-kernel, unless hardware support for multi-casting exists [14]. Therefore,
we have designed and implemented two alternatives: (1) a fixed pattern-based
propagation scheme and (2) an adaptive pattern-based propagation scheme. We
use the term nodes when introducing these schemes, as they not only apply to

Distributed Job Allocation for Large-Scale Manycores 411

micro-kernels but any set of nodes in a 2D mesh topology. The adaptive pattern-
based propagation scheme has the advantage that it does not expect nodes to
be arranged in a 2D mesh topology.

Fixed Pattern-Based Propagation. When a message needs to be sent to all
nodes in a 2D mesh processor NoC, the source sends the message only to its
neighboring nodes. Each neighbor in turn propagates the request to its next set
of unvisited neighbors following a predefined pattern over a minimum spanning
tree. The pattern depends on the placement of the initial source of the message.
Consider Fig. 3(a). The source initially sends the request to all its neighbors with
an embedded information to propagate the request toward the East (and North
if in column 1). Each node receiving this message propagates the request as per
the embedded information. Similarly, if the source is located at bottom-right,
the propagation will be toward West(+North) etc. Fig. 3(b) shows the pattern
when the source is located at the center, in which case each arm takes the
responsibility of propagating the request in all four directions. Following such
a predefined pattern avoids duplicate requests, which waste link resources and
increase processing time at the nodes.

(a) Fixed pattern, source: lower left (b) Fixed pattern, source at center (c) Adaptive pattern

Fig. 3. Pattern-based request propagation schemes

Adaptive Pattern-Based Propagation. This scheme involves an initializa-
tion phase responsible for forming the adaptive pattern. In this phase, an empty
message is forwarded from the given source to all its neighbors. Each neighbor
in turn broadcasts the message to all of its next set of neighbors until all the
nodes have been visited. At this point, each node has received the given message
from multiple sources. It chooses one among these sources as a preferred source
and informs it. The preferred source remembers this decision and forwards all
messages it receives to this node. The criteria to choose the preferred source can
be based on various policies, e.g., the first received request or shortest distance
from the source to this node, to name a few. At the end of the first phase, every
node has identified its preference from which source it wishes to receive a request
in the future; or, alternatively, each node has remembered a list of neighbors to
forward a message to that was received from a particular source. This forms
an adaptive pattern (spanning tree) ensuring each node receives a message only
once. An advantage of such adaptive patterns compared to fixed patterns is that

412 S. Ramachandran and F. Mueller

the patterns could be adaptively rearranged in case of link failures. The ini-
tialization phase needs to be run only once during the system startup or when
recovering from faults, hence reducing the overhead by amortizing the costs.

As an example, consider the pattern shown in Fig. 3(c) for a 3 × 3 tile with
numbered nodes. This pattern is formed with 1 as the source node and forwarding
paths from nodes 1 to 2 & 4, 2 to 3 & 5, 4 to 7, 5 to 8 & 6 and 8 to 9.

5 Implementation

The distributed job allocation protocols are applicable to any system of inter-
networked cores, even heterogeneous cores [1,14]. But for the purpose of imple-
mentation and experimentation alone, the job allocator has been optimized for a
2D-mesh architecture, such as the Tilera TilePro64 [1,2]. The Tilera TilePro64
processor has 64 tiles interconnected with a 2D-Mesh NoC interconnect. Each
tile has a processor engine running at 700 MHz, a switch engine for routing
on the NoC over five different network interconnects and a cache engine. The
User Dynamic Network (UDN) interconnect is the only one available for user-
generated messages. We use the services of the NoCMsg [4] library. NoCMsg pro-
vides a deadlock free, scalable and efficient low-level message passing layer over
UDN with an MPI like interface. This motivated our design choice and, hence,
our scheduling loop. The protocols and the messages were designed entirely
around these MPI like interfaces. This, in itself, makes our design generic enough
to be ported to other message passing libraries as well.

For our experiments, we use an ordering based on a FCFS policy. Each tile
on the TilePro64 has synchronized clocks. Hence, we use the time-stamp of the
job submission along with the unique micro-kernel identifier of the job’s home
micro-kernel as a tie breaker for job submissions.

6 Evaluation Framework

We use the TilePro64 processor [1] for our evaluation. While the TilePro64
supports 64 tiles, at least two tiles are reserved exclusively by Tilera’s hypervisor
for administrative tasks and Input/Output operations. The maximum square tile
size that can be reserved for user tasks is 7 × 7. We choose a square tile size so
as to eliminate possibilities of discrepancies due to other asymmetric tile sizes.
Overall, the Tilera platform limits our evaluation to 49 cores. Tilera supports a
subset of Linux (but not a fully compatible Linux design) for system calls that
go through the hypervisor. Job allocation, however, becomes the responsibility
of the user to pin tasks to specific cores. We lift this burden via our distributed
job allocation design, which is agnostic of Tilera’s Linux layer and generalizes
to any distributed OS design.

We support two different experimental frameworks for testing the perfor-
mance of the job allocator, (1) a real task mode, and (2) a partial simulation
mode. The real task mode supports execution of jobs that are MPI programs
from the NAS Parallel benchmarks (NPB). Figure 4 shows the real task mode

Distributed Job Allocation for Large-Scale Manycores 413

on the Tilera TilePro64 processor. This small PICASO system on a 6×6 tile has
been divided into four regions. Each region has a topologically centered micro-
kernel managing a set of 8 pico-kernels. Thus, a combination of NPB of power
of two sizes (1,2,4,8,16 and 32) can be executed. This platform is primarily used
to assess the schedulability of real user tasks.

Fig. 4. PICASO system, 6 × 6 tile on TilePro64 (Color figure online)

The limited number of usable cores on the TilePro64 constraints our scala-
bility tests on the real task mode. To overcome this, we have developed a partial
simulation framework, where we consider all cores in the reserved tile as micro-
kernels without pico-kernels. Task execution is simulated by timers triggering a
job completion message after a certain user-defined execution time. This simula-
tion platform is justified by the fact that the distributed job allocation protocol
requires only micro-kernel interaction. Our results could be directly translated
to the real task mode combining them with the pico-kernel management over-
heads obtained in the real task mode. Partial simulation assesses our protocol
with up to 49 micro-kernels on a 7 × 7 tile.

The following sections detail the experiments/results under the real task
mode and the partial simulation mode for different job allocation mixtures.

7 Experimental Results

The distributed job allocator and user programs are compiled as applications
with O3 optimizations using Tilera’s C/C++/Fortran compilers of the Multicore
Development Environment (MDE) 3.03.

7.1 Performance Analysis

We first analyze the performance of both proposed schemes under partial simu-
lation. We execute a set of job loads. For each job, we measure the job allocation
overhead as the wait time of the job from the time of submission to the time it
receives all the resources to execute. This wait time includes both the overhead
of the distributed job allocation protocol and the time spent waiting for the ear-
lier job allocations to terminate and to release its cores. Our focus is to measure

414 S. Ramachandran and F. Mueller

the overhead of the distributed job allocation protocol in isolation. Hence, for
performance tests, we use an initial state where no jobs are active. We then trig-
ger simultaneous job submissions from different micro-kernels as they have the
highest probability to result in fragmented allocations. This creates a workload
for our protocol triggering its deadlock avoidance subsystem. Note that all our
experiments cover cases where the job allocations require large numbers of cores
that need more than one micro-kernel domain to be fully satisfied. Recall that
job allocations, which could be satisfied within a single micro-kernel domain,
have a constant overhead.

For all our experiments, the reported job wait times are averaged over 15
runs. The maximum relative standard deviation observed in these experiments
was less than 20 %, except for the experiment in Fig. 5(b) with a relative stan-
dard deviations of up to 41 %. We discuss this exception and other significant
experimental details in the following relevant sections.

In our experiments, we compare both our proposed polices, active cancella-
tion and sequencer-based atomic broadcast, against one another. When reporting
the relative performance improvement or degradation, we always follow the con-
vention of comparing active cancellation against sequencer-based atomic broad-
cast as follows: Let the overhead of active cancellation be denoted as Oac and
the overhead of sequencer-based atomic broadcast be denoted as Oab. Then the
relative performance change of active cancellation is given by: (Oab−Oac)

Oab
×100%

7.2 Overhead for Sparse Job Allocations

This experiment uses the partial simulation mode. Job allocation requests are
generated simultaneously from the four extreme corners of a 7 × 7 tile. These
requests can be satisfied with just a few nearby micro-kernels even before the
conflicting job requests arrive from the other corners. Hence, in most of these
cases, cancellation of the lower priority job request may not even be required as
all the simultaneously submitted jobs are satisfied without the need for global
ordering. Conversely, with sequencer-based atomic broadcast, all requests have to
still go to the single sequencer, which can only serve one request at a time so that
serialization delays impact these small job allocations. This experiment proves
that active cancellation provides best performance in scenarios where sparse job
submissions can proceed in parallel.

In the following set of experiments, we consider two scenarios: Jobs that
can be execute in parallel and jobs that need to be executed serially one after
another.

Jobs Executing in Parallel. Figure 5(a) and 5(b) depict the scenario where
each job can proceed in parallel. For the four jobs (x-axis), their corresponding
job wait times are depicted (y-axis). The job wait time does not include execution
times of prior jobs as all these jobs execute in parallel. Hence, the measured job
wait time can be considered as the exclusive protocol overhead. We observe a
relative decrease in the job wait times for active cancellation when compared to
sequencer-based atomic broadcast.

Distributed Job Allocation for Large-Scale Manycores 415

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

Job1 Job2 Job3 Job4

Jo
b

W
ai

t T
im

e
(s

ec
on

ds
)

Jobs

active cancellation
atomic broadcast

(a) 3 micro-kernels

 0
 0.001
 0.002
 0.003
 0.004
 0.005
 0.006
 0.007
 0.008
 0.009
 0.01

Job1 Job2 Job3 Job4

Jo
b

W
ai

t T
im

e
(s

ec
on

ds
)

Jobs

active cancellation
atomic broadcast

(b) 12 micro-kernels

Fig. 5. Overhead for parallel allocations (a) 3 micro-kernels (b) 12 micro-kernels (Color
figure online)

In the 1st experiment (Fig. 5(a)), each job requires a number of pico-kernels
(cores) that is satisfied with available cores from 3 out of a total of 49 micro-
kernel domains. We observed a relative performance improvement for active can-
cellation over sequencer-based atomic broadcast of 23% for the 1st job, 76% for
the 2nd job and 83% for the 3rd and 4th jobs. The serialization at the sequencer
results in “backpressure” that aggregates latency (compared to resolving requests
in parallel).

In the 2nd experiment (Fig. 5(b)), each job requires a number of pico-kernels
(cores) that is satisfied with available cores from 12 out of the total 49 micro-
kernel domains. The relative performance improvement of active cancellation
over sequencer-based atomic broadcast for the four jobs were: 21% for the first
job, 58% for the second job, 73% for the third job and 48% for the fourth job.
For active cancellation, we observe a maximum relative standard deviation of
41% in this experiment, which is explained as follows: The wait time of each
job depends on how many cancellations are required after the first job has been
successfully allocated. In some runs, we observe that a lower priority job request
propagated fast enough to succeed in its allocation before a higher priority job
triggers cancellation. In these cases, the job wait times for the lower priority jobs
are reduced. They are otherwise above average if more cancellations occur.

Jobs Executing Serially. When jobs execute serially, job wait times depend
largely on execution times of preceding jobs. When prior jobs take a long time,
this becomes the main contributor to the job wait time. Conversely, when the
execution time is lower than the minimum job allocation overhead, then the
overhead of the distributed job allocation protocol is the main contributor to
the job wait time. Hence, for the next two experiments, we consider both short
and long running jobs. Short running jobs help assess the actual overhead of the
two polices. Long running jobs demonstrate that for serially executing jobs, this
performance improvement is not entirely carried over as a reduction in the job
wait times.

416 S. Ramachandran and F. Mueller

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

Job1 Job2 Job3 Job4

Jo
b

W
ai

t T
im

e
(s

ec
on

ds
)

Jobs

active cancellation
atomic broadcast

(a) 24 micro-kernels (short runs)

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0.008

Job1 Job2 Job3 Job4

Jo
b

W
ai

t T
im

e
(s

ec
on

ds
)

Jobs

active cancellation
atomic broadcast

(b) 49 micro-kernels (short runs)

Fig. 6. Overhead for short jobs (a) 24 micro-kernels (short runs) (b) 49 micro-kernels
(short runs) (Color figure online)

Short Running Jobs: We set the job execution times to 0.001 seconds, which is
below the minimum overhead observed. Figure 6(a) depicts a case where each job
requires a number of pico-kernels (cores) that is satisfied by exactly 24 out of the
total 49 micro-kernel domains. Hence, two out of the four jobs can run in parallel.
As not all jobs can run in parallel, allocations of the lower priority jobs require
cancellation so that the allocation of higher priority jobs is satisfied. This results
in an additional overhead for active cancellation compared to sequencer-based
atomic broadcast of ≈ 17% and ≈ 12%, respectively, for the first two jobs, but
considerably less for the next two jobs (7% and 4%, respectively). Figure 6(b)
depicts the case where all jobs require a number of pico-kernels (cores) that
is satisfied by exactly all available 49 micro-kernel domains and, hence, execute
serially one after another. Here, active cancellation incurs additional overhead as
lower priority job allocations need to be canceled to enforce the globally unique
order. The overhead for active cancellation is ≈ 12% for the 1st job and reduces
considerably to 4% for the 2nd job, and then to ≈ 1% for the 3rd/4th jobs.

Long Running Jobs : For these experiments, we set the job execution times
to 0.5 seconds, which is much higher than the overhead of the distrib-
uted job allocation protocol. Hence, in these cases, the execution time is
the main contributor to the job wait time. During the initial execution
delay for the spawned jobs, the job allocation protocol reorders the job wait
queue. Therefore, subsequent jobs are spawned as soon as the earlier jobs
complete with a minimal overhead. Figure 7(a) depicts a case where each
job requires a number of pico-kernels (cores) that is satisfied by exactly
24 out of the total 49 micro-kernel domains. Hence, two out of the four
jobs can run in parallel. Job wait times are depicted on the y-axis on a
logarithmic scale. Here, active cancellation incurs an additional overhead of 17%
and 13%, for the first two jobs, respectively. The additional overhead for the next
two jobs is very minimal (0.03% to 0.05%). Figure 7(b) depicts the case where
all jobs require a number of pico-kernels (cores) that is satisfied by exactly all
available 49 micro-kernel domains and, hence, execute serially one after another.

Distributed Job Allocation for Large-Scale Manycores 417

Job wait times are depicted on the y-axis on a logarithmic scale again. Here,
active cancellation incurs an additional overhead of ≈ 12% for the first job but
only 0.01 − 0.04% for subsequent jobs. Hence, the above experiments show that
for long running jobs, which execute serially one after another, the performance
gain achieved by sequencer-based atomic broadcast is minimal.

 0.001

 0.01

 0.1

 1

Job1 Job2 Job3 Job4

Jo
b

W
ai

t T
im

e
(s

ec
on

ds
)

Jobs

active cancellation
atomic broadcast

(a) 24 micro-kernels (long runs)

 0.001

 0.01

 0.1

 1

 10

Job1 Job2 Job3 Job4
Jo

b
W

ai
t T

im
e

(s
ec

on
ds

)
Jobs

active cancellation
atomic broadcast

(b) 49 micro-kernels (long runs)

Fig. 7. Overhead for long jobs (a) 24 micro-kernels (long runs) (b) 49 micro-kernels
(long runs) (Color figure online)

7.3 Job Allocation Overhead for Increasing Tile Sizes

In this experiment, we scale the tile size (n×n) from 2 × 2 to the maximum
supported size of 7 × 7. Per tile size, we generate n simultaneous job requests,
each requiring pico-kernels (cores) satisfied by exactly n micro-kernel domains.
E.g., in a tile size of 2 × 2, there will be 2 simultaneous job requests requiring
pico-kernels (cores) satisfied by 2 micro-kernels each, and in a tile size of 7 × 7,
there will be 7 simultaneous job requests requiring pico-kernels (cores) satisfied
by 7 micro-kernels each. This experiment shows the additional overhead for jobs
that can ideally execute in parallel.

The results depicted in Fig. 8 compare the job wait times of the first and
last jobs for active cancellation and atomic broadcast. Here, the job wait times
are depicted on the y-axis for different tile sizes on the x-axis. We observe that
the wait time for the first among the n jobs is consistently lower for active
cancellation as it does not incur the overhead of submitting all job requests at
the sequencer. We observe a reduction in the job wait time of the first job from
6% for a tile size of 2×2 to up to 60% for a tile size of 7×7. For the sake of
analysis, let us assume that the highest priority job overrides all other jobs in
their home micro-kernels before any of the lower priority jobs gets a chance to
execute. In this case, there will be one initial request sent for the highest priority
job. For all other lower priority jobs, there will be n − 1 initial requests plus
n− 1 cancel and finally n− 1 repeat requests sent in total. Thus, all subsequent
jobs incur this additional overhead. Notice that significant performance gains in
spawning the first job compensates for this additional overhead for subsequent

418 S. Ramachandran and F. Mueller

jobs to a large extent. Compared to sequencer-based atomic broadcast, we observe
a slight increase in the job wait times for active cancellation (1−12% for smaller
tile sizes, i.e., 2 × 2 and 3 × 3). But for larger tile sizes, we observe a more
significant reduction in the overhead for active cancellation (up to 15%). This
experiment reinforces our earlier finding that as long as multiple simultaneous
job submissions can execute in parallel, active cancellation has a lower overhead
compared to sequencer-based atomic broadcast.

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0.008

 0.009

2x2 3x3 4x4 5x5 6x6 7x7

jo
b

w
ai

t t
im

e
(s

ec
on

ds
)

tile size (nxn), with n job submissions

active cancellation first job
atomic broadcast first job
active cancellation last job
atomic broadcast last job

Fig. 8. Job allocations as tile size
increases (Color figure online)

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0 5 10 15 20 25 30 35 40 45 50C
on

fli
ct

 r
es

ol
ut

io
n

tim
e

(s
ec

on
ds

)

of simultaneous jobs for tile size 7x7

active cancellation
atomic broadcast

Fig. 9. Worst case for n simultaneous
jobs

7.4 Worst-Case Conflict Resolution for N Simultaneous Jobs

In this experiment with n simultaneous job submissions, we measure the conflict
resolution time for the first job to execute. We use a fixed tile size of 7 × 7 in
the partial simulation mode. As all the cores are considered to be micro-kernels
in this mode, a maximum of 49 micro-kernels are available. All job submissions
require a large number of pico-kernels (cores) that can only be satisfied by the
cores available in all the 49 micro-kernel domains. In this worst-case scenario,
the sequencer-based atomic broadcast scheme provides the best performance. The
sequencer-based atomic broadcast scheme just has to wait for the job allocation
request with the highest priority to arrive. It can then send out core allocation
requests one after another. The maximum overhead occurs when the highest
priority job request is the one that reaches the sequencer last. Compare this
to the considerable overhead in active cancellation. Here, in the worst-case, the
n− 1 lower priority job requests together could have reserved all available cores
in all micro-kernels. But none would have reserved enough to proceed executing.
Hence, for the highest priority job request to execute, it has to override each of
the lower priority job request in all other micro-kernels by sending job cancel
requests. In the worst-case, n − 1 cancellation requests need to be sent before
the first job can get enough cores for its allocation to be satisfied. We see this
reflected in Fig. 9. The wait time for the first job is shown on the y-axis and
x-axis depicts n, the number of simultaneous job submissions. We observe that

Distributed Job Allocation for Large-Scale Manycores 419

the worst-case performance is better for the sequencer-based atomic broadcast
scheme once the number of micro-kernels simultaneously requesting allocations
exceeds 1/4th of the total number of micro-kernels.

7.5 Experiments with NPB Codes in Real Task Mode

The real task mode on the TilePro64, introduced in Sect. 6, consists of 4 micro-
kernels, each managing a set of 8 pico-kernels. We can execute jobs that require
a maximum of 32 cores in this mode. To confirm the pattern observed under
the partial simulation mode, we conduct similar, yet scaled down experiments
in real task mode.

Job Allocations Executing in Parallel. Here, two jobs (NPB FT Class = S
size = 16) run in parallel in two different micro-kernel domains with inputs chosen
to be L2 resident (to ensure that experiments are not dominated by DRAM
memory latencies). Each job requires 16 cores, which can be satisfied in parallel.
We measure the average job wait time. This wait time is exclusively due to the
protocol overhead as it does not include any resource wait time. This experiment
is an approximation of the sparse job allocations explained in the context of the
partial simulation mode. We observe results following the same pattern: Under
active cancellation, less overhead is incurred compared to sequencer-based atomic
broadcast. These results are shown in Fig. 10. The y-axis depicts job wait time
for the two jobs executing in parallel (x-axis).

 0

 0.0001

 0.0002

 0.0003

 0.0004

 0.0005

 0.0006

 0.0007

Job1 Job2

Jo
b

W
ai

t T
im

e
(s

ec
on

ds
)

Jobs

active cancellation
atomic broadcast

Fig. 10. Real task mode: parallel job
alloc. (Color figure online)

 0

 0.0001

 0.0002

 0.0003

 0.0004

 0.0005

 0.0006

 0.0007

Job1 Job2 Job3 Job4

Jo
b

W
ai

t T
im

e
(s

ec
on

ds
)

Jobs

active cancellation
atomic broadcast

Fig. 11. Real task mode: Serial Job
Alloc. (Color figure online)

Job Allocations Executing Serially. In this experiment, four jobs (NPB
FT Class = S size = 32) requiring all the 32 cores available from all of the four
micro-kernels are submitted simultaneously. These job submissions compete for
all resources and are eventually serialized to execute one after another. Thus,
this experiment is similar to the partial simulation mode experiment in Sect. 7.4,
which measured the worst-case conflict resolution time for n simultaneous job

420 S. Ramachandran and F. Mueller

submissions. We obtain similar results, where sequencer-based atomic broadcast
performs much better than active cancellation. Figure 11 shows these results with
the exclusive job wait time on the y-axis for the four jobs on the x-axis. Exclusive
job wait time is calculated here as the actual job wait time minus execution times
of all prior jobs. This metric provides the job allocation overhead in isolation. A
purely centralized approach should perform inferior. But our sequencer approach
uses a centralized approach enhanced by contention-free communication over a
spanning tree of micro-kernels (Fig. 3), which scales further.

7.6 Performance of Pattern-Based Propagation

To evaluate the impact of scalability of pattern-based message propagation, a
simple experiment was devised. A request is broadcasted to all nodes (cores) in a
7×7 tile (max. 49 nodes). The time to broadcast this request and receive a reply
from all endpoints in the reverse path of broadcast is measured. The results in
Fig. 12 compare the time taken on the y-axis against the number of nodes to
which the message is broadcast on the x-axis. Four different schemes are com-
pared: (1) A naive broadcast scheme (The source sends m individual messages
to m recipients.); (2) distributed flooding (The source sends the message to all
its neighbors who multi-cast the message to their neighbors until all nodes have
received the message.); (3) fixed pattern-based propagation (see Sect. 4.4); and
(4) adaptive pattern-based propagation (see Sect. 4.4). We resort to analysis to
determine scalability in number of cores on our single chip platform.

For our analysis, let us assume a tile size of n×n. One sender needs to broad-
cast the message to the remaining n2−1 recipients. Among the different schemes,
the naive broadcast scheme tends to be the most time consuming. In this scheme,
a single source node sends the message to all the recipients and waits for replies
from each of them. This increases the load on the single source. The number
of individual end-to-end messages on the NoC equals the number of recipients
of the broadcast, i.e., n2 − 1. But it is important to note that, on a 2D mesh
topology with X-Y dimension ordered routing, the messages are sent over the
same link multiple times resulting in unnecessary link utilization. We can easily
observe that as the same X-Y path is traversed multiple times, there is heavy
contention on a few links that become the bottleneck.

Distributed flooding performs slightly better. In this method, the load on
the single source node is reduced as all nodes contribute to forwarding the mes-
sage. Also, the message is sent exactly once over each link. But the number of
individual messages on the NoC is comparatively larger than that of the naive
broadcast scheme. For a tile size of n × n, the total number of messages equals
the total number of links on the NoC, i.e., 2n(n − 1). Hence, after a threshold
point, the cost of distributed flooding tends to increase and is as costly as the
naive broadcast scheme. This trend was observed in Fig. 12, when the number
of nodes is greater than 43.

Distributed Job Allocation for Large-Scale Manycores 421

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

 0.004

 0.0045

 0.005

 5 10 15 20 25 30 35 40 45 50

br
oa

dc
as

t t
im

e
(s

ec
on

ds
)

number of nodes

naive broadcast
distributed flooding
Adaptive pattern-based
Fixed pattern-based

Fig. 12. Different request propagation schemes (Color figure online)

Fixed pattern-based propagation, where messages propagate in a predefined
pattern, uses the least number of individual messages, namely n2 − 1. The fixed
pattern reduces the number of links used to n2−1 and the message is sent exactly
once on each link. Also, the load on the single source node is considerably reduced
as each recipient forwards the message further. Hence, pattern-based propagation
consumes the least amount of time (see Fig. 12).

In the adaptive pattern-based propagation scheme, the number of individual
messages is n2 − 1, which is the same as in the fixed pattern-based scheme.
Also, the scheme ensures that the message is sent only once per link. Even the
additional cost in setting up the adaptive pattern is amortized over multiple
runs. Hence, the adaptive pattern-based scheme performs as good as the fixed
pattern-based scheme (see Fig. 12). The adaptive pattern-based scheme is only
slightly costlier than the fixed pattern-based scheme. This is explained as follows:
Depending on the adaptive pattern formed, certain nodes may need to forward
the message to more than one recipient (unlike the fixed pattern-based scheme).
E.g., nodes 2 and 5 incur this additional processing time in Fig. 3(c).

8 Related Work

Manycores have sparked many OS redesigns [5,6,15–20]. Our micro-kernel and
pico-kernel abstraction is design for larger number of cores and was inspired
by FOS and Barrelfish [6,15], where application and OS services run on physi-
cally separate cores. In contrast to FOS, we benefit more from spatial locality as
pico-kernels (cores) only need to communicate with their parent micro-kernel.
We follow the core of the design principles postulated by Peter et al. [21] for
designing multi-core schedulers. We even go one level further and take a purely
distributed message passing approach as the primary means of communication
via adoption of NoCMsg [4] for low-level messaging. Boyd-Wickizer et al. [20]
analyze and fix scalability issues in the Linux kernel for several system appli-
cations and show that good scalability up to 48 cores could be achieved by

422 S. Ramachandran and F. Mueller

modest changes. However, their workload consisted of embarrassingly parallel
codes, such as independent Apache threads and parallelized “make” commands.

The compute chip of BlueGene/Q [22,23] has 16 cores for executing applica-
tion tasks, one core dedicated to OS services and one (disabled) to increase man-
ufacturing yield. This is similar to our approach of dedicated micro-kernels for
OS services and applications. Our design differs as we propose multiple dedicated
micro-kernels managing the cores in a manycore chip rather than across nodes.
Kobbe et al. [24] provide agent-based allocation on a multicore for malleable
applications, where cores of a job are governed by a single agent. ADAM [25]
also uses an agent-based approach but requires a global (centralized) agent coor-
dinating smaller agents per cluster of cores. Our approach is much finer grained
with multiple micro-kernels coordinating the allocation of a job in a distributed
manner. It is also lighter weight than agent-based allocation in Grid/Cloud com-
puting, which use complex allocation schemes with high latency unsuitable for
on-chip allocation [26,27].

Job schedulers for HPC clusters, such as the TORQUE resource manager [28],
SLURM [29] and the Maui scheduler [30], use similar algorithms for resource allo-
cation and employ backfilling algorithms to increase utilization. These cluster
schedulers are centralized while Mesos [31] only allocates a subset of requested
resources and Omega [32] allows parallel schedulers to access shared state in a
lock free manner. All of them have scalability limitations due to shared/cen-
tralized state (covered by our sequences-based approach in experiments), while
our advanced design follows a distributed/message passing design and scales.
Omega employs an optimistic concurrency control and has parallel scheduling
capabilities. But atomic updates to the shared state serialize scheduling deci-
sions. Instead, we allow individual micro-kernels to be scheduled in parallel and
resolve conflicts only when needed. Our techniques and algorithms also have
been tailored and optimized to benefit from the on-chip communication of NoC
processors. Job co-scheduling for High-end computing (HEC) systems often use
a single job submission portal [33,34], which requires a centralized resource man-
ager that does not scale. Tang et al. [35] propose a distributed job co-scheduler for
HEC systems. They propose to resolve deadlocks by yielding the resources after
a predefined wait time subject to deadlock (see Sect. 3). Our approach differs as
we avoid deadlocks in job allocation and guarantee a definite completion time for
the distributed job allocator. NoC architectures like the Kalray MPPA-256 [14]
have specialized support for multi-casting, which can vastly improve the perfor-
mance of our distributed job allocation protocol as job requests propagate fast
resulting in fewer cancellations for active cancellation. Most NoC architectures
([1,3]) lack hardware support for multi-casting, while our efficient pattern-based
request propagation schemes can be applied to them.

9 Conclusion

We introduce PICASO, a distributed message passing system, to meet the scal-
ability challenges of future manycore processors and demonstrate the ease and

Distributed Job Allocation for Large-Scale Manycores 423

usability of such a system in managing large numbers of cores on a single chip.
We study the distributed job allocation problem and propose a protocol with
two policies, active cancellation and sequencer-based atomic broadcast. Both poli-
cies avoid fragmented allocations (that would otherwise lead to deadlocks) and
guarantee allocations loosely following a global order. Experimental TilePro64
results indicate that for sparse job allocations the active cancellation scheme pro-
vides lower overhead while for denser job allocations the sequencer-based atomic
broadcast scheme provides lower overhead.

References

1. Tilera tile64 processor family. https://en.wikipedia.org/wiki/TILE64
2. Wentzlaff, D., Griffin, P., Hoffmann, H., Bao, L., Edwards, B., Ramey, C., Mattina,

M., Miao, C.C., Brown III, J.F., Agarwal, A.: On-chip interconnection architecture
of the tile processor. IEEE Micro. 27, 15–31 (2007)

3. Howard, J., et al.: A 48-core IA-32 message-passing processor with DVFS in 45nm
CMOS. In: Solid-State Circuits Conference Digest of Technical Papers (ISSCC),
pp. 108–109 (2010)

4. Zimmer, C., Mueller, F.: Nocmsg: scalable noc-based message passing. In: Inter-
national Symposium on Cluster Computing and the Grid (CCGRID) (2014)

5. Baumann, A., Barham, P., Dagand, P.E., Harris, T., Isaacs, R., Peter, S., Roscoe,
T., Schüpbach, A., Singhania, A.: The multikernel: a new OS architecture for
scalable multicore systems. In: Symposium on Operating Systems Principles, pp.
29–44 (2009)

6. Wentzlaff, D., Agarwal, A.: Factored operating systems (fos): the case for a scalable
operating system for multicores. SIGOPS Oper. Syst. Rev. 43, 76–85 (2009)

7. Zimmer, C., Mueller, F.: NoCMsg: a scalable message passing abstraction for
network-on-chips. TACO 12(1), 1–24 (2015). doi:10.1145/2701426

8. Chabbi, M., Fagan, M., Mellor-Crummey, J.: High performance locks for multi-
level numa systems. In: ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, pp. 215–226 (2015)

9. Davis, R.I., Burns, A.: A survey of hard real-time scheduling for multiprocessor
systems. ACM Comput. Surv. (CSUR) 43(4), 35 (2011)

10. Zimmer, C., Mueller, F.: Low contention mapping of real-time tasks onto tilepro
64 core processors. In: IEEE Real-Time Embedded Technology and Applications
Symposium, pp. 131–140 (2012)

11. Agarwal, T., Sharma, A., Kale, K.: Topology-aware task mapping for reducing
communication contention on large parallel machines. In: International Parallel
and Distributed Processing Symposium, April 2006

12. Snir, M., Otto, S., Huss-Lederman, S., Walker, D., Dongarra, J.: MPI: The Com-
plete Reference, vol. 1, 2nd edn. MIT Press, Cambridge (1998)

13. Défago, X., Schiper, A., Urbán, P.: Total order broadcast and multicast algorithms:
taxonomy and survey. ACM Comput. Surv. (CSUR) 36(4), 372–421 (2004)

14. de Dinechin, B.D., de Massas, P.G., Lager, G., Léger, C., Orgogozo, B., Reybert,
J., Strudel, T.: A distributed run-time environment for the Kalray MPPA-256
integrated manycore processor. Procedia Comput. Sci. 18, 1654–1663 (2013)

15. Baumann, A., Peter, S., Schüpbach, A., Singhania, A., Roscoe, T., Barham, P.,
Isaacs, R.: Your computer is already a distributed system. why isn’t your OS? In:
HotOS (2009)

https://en.wikipedia.org/wiki/TILE64
http://dx.doi.org/10.1145/2701426

424 S. Ramachandran and F. Mueller

16. Gamsa, B., Krieger, O., Appavoo, J., Stumm, M.: Tornado: maximizing locality
and concurrency in a shared memory multiprocessor operating system. In: OSDI,
pp. 87–100 (1999)

17. Boyd-Wickizer, S., Chen, H., Chen, R., Mao, Y., Kaashoek, M.F., Morris, R.,
Pesterev, A., Stein, L., Wu, M., Dai, Y.H., et al.: Corey: an operating system for
many cores. In: OSDI, pp. 43–57 (2008)

18. Nightingale, E.B., Hodson, O., McIlroy, R., Hawblitzel, C., Hunt, G.: Helios: het-
erogeneous multiprocessing with satellite kernels. In: Proceedings of the ACM
SIGOPS 22nd Symposium on Operating Systems Principles, pp. 221–234. ACM
(2009)

19. Liu, R., Klues, K., Bird, S., Hofmeyr, S., Asanovic, K., Kubiatowicz, J.: Tessel-
lation: space-time partitioning in a manycore client OS. In: HotPar 2009, vol. 3,
Berkeley, CA (2009)

20. Boyd-Wickizer, S., Clements, A.T., Mao, Y., Pesterev, A., Kaashoek, M.F., Morris,
R., Zeldovich, N.: An analysis of Linux scalability to many cores (2010)

21. Peter, S., Schüpbach, A., Barham, P., Baumann, A., Isaacs, R., Harris, T., Roscoe,
T.: Design principles for end-to-end multicore schedulers. In: 2nd Workshop on Hot
Topics in Parallelism, Berkeley, CA, USA (2010)

22. Haring, R.A., Ohmacht, M., Fox, T.W., Gschwind, M.K., Satterfield, D.L., Sug-
avanam, K., Coteus, P.W., Heidelberger, P., Blumrich, M.A., Wisniewski, R.W.,
et al.: The IBM BlueGene/Q compute chip. IEEE Micro. 32(2), 48–60 (2012)

23. Boyle, P.: The BlueGene/Q supercomputer. In: PoS LATTICE 2012, vol. 20 (2012)
24. Kobbe, S., Bauer, L., Lohmann, D., Schröder-Preikschat, W., Henkel, J.: Distrm:

distributed resource management for on-chip many-core systems. In: Proceedings
of the Seventh IEEE/ACM/IFIP International Conference on Hardware/Software
Codesign and System Synthesis, pp. 119–128 (2011)

25. Al Faruque, M.A., Krist, R., Henkel, J.: Adam: run-time agent-based distributed
application mapping for on-chip communication. In: Design Automation Confer-
ence, pp. 760–765

26. Cao, J., Jarvis, S.A., Saini, S., Kerbyson, D.J., Nudd, G.R.: Arms: an agent-based
resource management system for grid computing. Sci. Program. 10(2), 135–148
(2002)

27. Berman, F., Wolski, R., Casanova, H., Cirne, W., Dail, H., Faerman, M., Figueira,
S., Hayes, J., Obertelli, G., Schopf, J., Shao, G., Smallen, S., Spring, N., Su, A.,
Zagorodnov, D.: Adaptive computing on the grid using apples. IEEE Trans. Parallel
Distrib. Syst. 14(4), 369–382 (2003)

28. Staples, G.: TORQUE resource manager. In: Supercomputing, p. 8 (2006)
29. Yoo, A.B., Jette, M.A., Grondona, M.: SLURM: simple linux utility for resource

management. In: Feitelson, D.G., Rudolph, L., Schwiegelshohn, U. (eds.) JSSPP
2003. LNCS, vol. 2862, pp. 44–60. Springer, Heidelberg (2003)

30. Jackson, D.B., Snell, Q.O., Clement, M.J.: Core algorithms of the maui sched-
uler. In: Feitelson, D.G., Rudolph, L. (eds.) JSSPP 2001. LNCS, vol. 2221, p. 87.
Springer, Heidelberg (2001)

31. Hindman, B., Konwinski, A., Zaharia, M., Ghodsi, A., Joseph, A.D., Katz, R.,
Shenker, S., Stoica, I.: Mesos: a platform for fine-grained resource sharing in the
data center. In: USENIX Conference on Networked Systems Design and Imple-
mentation, pp. 295–308 (2011)

32. Schwarzkopf, M., Konwinski, A., Abd-El-Malek, M., Wilkes, J.: Omega: flexible,
scalable schedulers for large compute clusters. In: European Conference on Com-
puter Systems, pp. 351–364 (2013)

Distributed Job Allocation for Large-Scale Manycores 425

33. Huedo, E., Montero, R.S., Llorente, I.M.: A framework for adaptive execution in
grids. Softw.: Pract. Exp. 34(7), 631–651 (2004)

34. Kannan, S., Roberts, M., Mayes, P., Brelsford, D., Skovira, J.F.:
Workload management with loadleveler. IBM Redbooks 2, 2 (2001).
http://www.redbooks.ibm.com/redbooks/pdfs/sg246038.pdf

35. Tang, W., Desai, N., Vishwanath, V., Buettner, D., Lan, Z.: Job coscheduling on
coupled high-end computing systems. In: ICPP Workshops, pp. 317–326 (2011)

http://www.redbooks.ibm.com/redbooks/pdfs/sg246038.pdf

	Distributed Job Allocation for Large-Scale Manycores
	1 Introduction
	2 PICASO
	3 Distributed Job Allocation
	4 Deadlock-Free Job Allocation
	4.1 The Main Scheduling Loop
	4.2 Active Cancellation
	4.3 Sequencer Based Atomic Broadcast
	4.4 Pattern-Based Message Propagation

	5 Implementation
	6 Evaluation Framework
	7 Experimental Results
	7.1 Performance Analysis
	7.2 Overhead for Sparse Job Allocations
	7.3 Job Allocation Overhead for Increasing Tile Sizes
	7.4 Worst-Case Conflict Resolution for N Simultaneous Jobs
	7.5 Experiments with NPB Codes in Real Task Mode
	7.6 Performance of Pattern-Based Propagation

	8 Related Work
	9 Conclusion
	References

