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Abstract. Innovations in operating-system-level virtualization tech-
nologies such as resource control groups, isolated namespaces, and lay-
ered file systems have driven a new breed of virtualization solutions
called containers. Applications running in containers depend on the host
operating system (OS) for resource allocation, throttling, and prioritiza-
tion. However, the OS is designed to provide only best-effort/fair-share
resource allocation. Lack of resource management, as in virtual machine
managers, constrains the use of containers and container-based clusters
to a subset of workloads other than traditional high-performance com-
puting (HPC) workflows. In this paper, we describe problems with the
fair-share resource management of CPUs, network bandwidth, and I/O
bandwidth on HPC workloads and present mechanisms to allocate, throt-
tle, and prioritize each of these three critical resources in containerized
HPC environments. These mechanisms enable container-based HPC clus-
ters to host applications with different resource requirements and enforce
effective resource use so that a large collection of HPC applications can
benefit from the flexibility, portability, and agile characteristics of con-
tainers.

1 Introduction

While operating-system-based virtualization and containers are not new con-
cepts, the emerging use of containers as a mechanism for operations across
clusters in datacenters has the potential to change the computing landscape
in HPC [26]. It also opens new research challenges in this field. Specifically,
containers still need proper mechanisms for enforcing controlled resource alloca-
tion and management in containerized environments. This experimental paper
describes mechanisms for the management of three key resources in container-
ized HPC applications: CPU, I/O, and network. The paper extends preliminary
work presented in three posters at IEEE Cluster 2015 [9,11,19] by describing the
mechanisms in a cohesive fashion and presenting their implementation in detail.
Our implementation is based on Docker technology but can be adapted to other
container technologies.
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Containers depend on the host OS for resource allocation and throttling.
The fact that each container does not have its own kernel removes the kernel
overhead from the container image and makes containers lighter weight in their
memory and file system footprint as well as more easily portable than virtual
machine (VM) images for HPC applications. On the other hand, the depen-
dency on the host OS limits the containers’ capability to control the allocation
and management of HPC resources. Because traditional operating systems are
designed to provide best-effort and fair-share resource allocation, they do not
always support the workload requirements of containerized HPC applications.
Thus, a containerized HPC application may, for example, experience substan-
tial slowdowns because of the frequent context switching associated with the
default fair-share scheduler, or they may suffer from high contention because of
the fair-share bandwidth allocated by the OS kernel.

The contributions of this paper to the solution of resource managements
problems in containerized HPC environments are threefold. First, we address the
CPU allocation challenge for CPU-intensive applications running inside Docker
containers that share the same compute node. By default, the host OS schedul-
ing policy shares the node’s CPUs between the containers using its fair-share
quanta-based scheduling policy. In this policy each container is allowed to use a
node’s CPU for a predefined amount of time (typically 10 ms) before the next
container is assigned to the CPU in a round-robin fashion. For applications such
as LINPACK, this kind of fair sharing significantly slows the application perfor-
mance because more time is spent on context switching than on real computa-
tion. To achieve better performance, we introduce a timeslicing mechanism [13]
currently missing at the container level. When our mechanism is used, only a sin-
gle container is scheduled at any time on shared resources for a prolonged period
of time. This technique is akin to gang scheduling in HPC. With such a sim-
ple mechanism, we can improve an application’s performance in a containerized
environment by up to 4x.

Second, we address the challenge associated with disk I/O contention and disk
I/O load imbalance in containerized applications across datacenter clusters. By
default, containers are placed on nodes based only on available CPU and memory,
ignoring the nodes’ I/O load and capacity. This placement may result in poor I/O
load balancing across the datacenter machines and ultimately in I/O hotspots
for those nodes hosting containers with intensive I/O operations (e.g., frequent
checkpointing). To prevent the formation of hotspots, we propose a two-tiered
mechanism (i.e., at both the node and cluster levels) that extends Docker and
Docker Swarm, making both capable of monitoring the containers’ I/O activities
and allocating containers based on I/O load balance across the datacenter nodes.
We demonstrate how our two-tiered mechanism has the potential for higher
bandwidth utilization without the contention effect.

Third, we address the challenge associated with network bandwidth throt-
tling and prioritization. In order to ensure high-quality performance for critical,
communication-intensive applications executed in containers, a required band-
width level should be ensured without expanding or overprovisioning the net-
work. By default in containers such as Docker, networks are configured to provide
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the “best effort” to all the traffic. Under these conditions, parameters such as
bandwidth, reliability, and packets per second for a specific HPC application
cannot be guaranteed. Consequently, a communication-intensive containerized
application may experience unacceptable performance when hosted on nodes
with other containerized applications. We address this problem by proposing a
mechanism that enables bandwidth limits and preferential delivery service for
critical applications in containers. Our solution can control latency and delay
while providing a way to reduce data losses.

The rest of this paper is organized as follows. Section 2 presents our mecha-
nism for dynamic CPU resource allocation among containers. Section 3 presents
methods to enforce I/O constraints among containers. Section 4 describes our
mechanism to manage the network among containers. Section 5 provides back-
ground on containers and Docker as well as relevant related work. Section 6
briefly summarizes our conclusions.

2 CPU Allocations in Containers

Docker builds on the Linux kernel to allocate CPU resources to containers.
Specifically, Docker uses Linux control groups (CGroups [2]) to provide por-
tions of CPU resource pools to containers. Users specify the number of shares
to give to a container or group of containers a priori (or statically), and the
Linux OS gives each container a CPU allocation proportional to the number
of shares that the container was allocated. When the specified shares saturate
the CPU resource pools, the kernel allocates a fair share across all containers.
Traditionally, containers are given time slices of 10 ms before context switching.
The frequent context switching imposes an overhead on the system and causes
cache thrashing, ultimately leading to performance degradation. Figure 1 shows
an example of execution times for different numbers of containers ranging from
1 to 5, when running the LINPACK benchmark with a default 10 ms time slice.
The optimal execution time has a linear behavior (ideal); the observed execut-
ing time is superlinear (10 ms time slice). The fine-grained time-slice granularity
defines the interval each container is allowed to run on the CPU resources before
being preempted. Every time a container’s context switch is performed, the new
context thrashes the content of the cache memory and overwrites the previously
running container’s context, requiring storing all its applications’ values and exe-
cution state. The shorter the cycle in which the containers’ context switching
occurs, the less locality that can be exploited by the containers’ applications and
the more context switches that are performed.

To mitigate losses in performance associated with static resource allocation
and frequent context switching, we design and implement a mechanism that
allows Docker to define and deploy a dynamic, coarse-grained time slice for
each container. The mechanism serializes the containers’ consumption of CPU
resources and is particularly suitable for high-caching, compute-intensive HPC
applications in containers.
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Fig. 1. Example of execution times for different numbers of containers running the
LINPACK benchmark on an unmodified Linux OS with default 10 ms time slice.

2.1 CPU Allocation Mechanism

Current Docker containers support only static resource allocations. Shares are
defined a priori and remain unchanged during the containers’ executions. Our
mechanism enables dynamic resource allocations at runtime by serializing the
containers’ execution for longer time-slice intervals. The serialization is obtained
by increasing the shares of one container to 100 % and decreasing the shares of
all other containers to 0 %. From an implementation point of view, we extend
Docker with a simple but effective round-robin time-slice policy integrated into
an Observe-Decide-Act (ODA) control loop [24] that schedules individual con-
tainers to be run one at a time for a defined time-slice interval. The round-robin
policy first selects the container with the highest number of shares and allows
it to run for the duration of the slice. The control loop then repeats, selecting
containers in a round-robin fashion, each time reserving the entire pool of CPU
resources for a single container.

With the ODA loop, we can collect container-specific information (e.g., pri-
ority information, application-specific information, and metadata on container
requirements) that can serve as additional input for the decision-making process
of the ODA loop. This is not possible if a third-party solution that runs out-
side Docker (e.g., in the Linux OS) is used. Moreover, the docker API and the
command user interface are not changed, making the deployment of new capabil-
ities for the user easier. Furthermore, we can leverage the Docker’s client-server
structure. The background Docker daemon provides the API to create, delete,
or modify any container in the host OS; the Docker client provides the users
with the command line interface, launches the daemon if necessary, and sends
the commands to the daemon through the use of HTTP-like connections. In
our implementation of the mechanism, a single Docker client can handle several
Docker daemons, and a single ODA loop can handle multiple CPU resources
in the distributed environment. Specifically, in our implementation, the CPU
utilization is monitored at each step of the ODA loop; when overutilization is



Resource Management for Running HPC Applications in Container Clouds 265

detected, the allocation mechanism decides whether to adjust the CPU shares to
control which container is using the CPU resources of the corresponding machine.

To implement the allocation mechanism, we modify the Docker 1.6.1 source
files at three levels. First, we modify the Docker daemon’s driver by adding a
new function that modifies CGroups’ parameters for a given container. Specif-
ically, at the driver level, we create a new update driver interface that updates
the containers’ CGroups configuration dynamically by pulling the current con-
figuration (i.e., libcontainer::Container::Config) and pushing a new config-
uration with updated CPU shares allocation (i.e., libcontainer::Container
::Set). We use the new function in the driver to make all of the necessary
CGroup parameter modifications. Second, we add a new interface to the API of
the server front-end that receives the update command for a specific container.
Specifically, at the server front-end, we create a new POST handler that handles
CPU share update commands sent from the client and initiates a new “update”
job on the daemon. Third, we modify the Docker client by adding an additional
command to the Docker command line interface. The new command handles the
ODA loop, retrieves utilization information from the RESTful API, and pushes
new CPU allocation information to the RESTful API. The source code of our
implementation is available on GitHub at [22].

2.2 Empirical Results

To evaluate Docker when using our mechanism, we create containers for a high-
caching, compute-intensive benchmark such as LINPACK [10] with a matrix of
size 1000 × 1000 and a block size of 100× 100. This is a large-enough problem
size to represent a long-term execution (i.e., longer than 60 s) on our 8-core
nodes, one for each hardware thread. Each container utilizes 100 % of the CPU
resources available on the host machine.

The first question we address in our assessment is the identification of an opti-
mal time-slice size. To this end, we measure the execution time of the benchmark
with different time-slice intervals ranging from 0.5 to 20 s and different numbers
of containers ranging from 2 to 5. Figure 2a zooms in on the execution times for
two containers; Fig. 2b zooms out for four configurations of 2, 3, 4, and 5 con-
tainers. For smaller time-slice intervals, we see no improvement in performance
because of a delay in the reaction time for CGroups when used through Docker.
Reaction time here is the amount of time elapsed between when a CGroup is
changed and when the change results in altering the application performance.
CGroup value changes do not instantaneously impact application performance
because the OS scheduler does not pick them up as soon as they are changed.
We observed an average delay time of approximately 700 ms. As the time-slice
interval grows, we observe a performance sweet spot around 10 s for any number
of containers considered in our tests.

The second question we address in our assessment is the impact of our mech-
anism on performance. To this end, we consider the optimal time-slice interval
of 10 s (within the observed sweet spot window observed in Fig. 2b). Figure 3
shows the context switching of 5 containers when using our mechanism for the
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LINPACK benchmark. In the test depicted in the figures, we start the adaptive
scheduler after 10 s. The figure outlines the overlapping in the containers’ exe-
cutions before our mechanism is applied and the subsequent time-slice intervals.
Within every ODA cycle, each container assumes complete control over the CPU
resources for its time-slice interval. This process repeats until all the containers
terminate their computation.

In Fig. 4 we compare the execution times of containers under differing levels of
overallocation when using our mechanism (10 s time slice) versus using the tradi-
tional Linux implementation (10-ms time slice). For the sake of completeness we
also add the ideal performance trend. As already outlined in Fig. 1, without our
mechanism, as we increase the oversubscription of resources, the execution times

Fig. 2. Impact of time-slice intervals on execution times for different number of con-
tainers. (Color figure online)

Fig. 3. Time slice of five containers and 10 s time slice.
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significantly increases in a superlinear pattern because of caching and synchro-
nization conflicts. With our mechanism, on the other hand, the performance is
almost linear with the number of concurrent containers and improves by approx-
imately a factor of 4 because of the mitigation of the aforementioned issues. With
our mechanism, five containers take ∼5x the time of a single container whereas
in the default model, five containers take over ∼20x times the time of a single
container.

Fig. 4. Execution time for different numbers of containers with and without our mech-
anism with a time-slice interval of 10 s. (Color figure online)

We observe that our mechanism based on serializing applications in contain-
ers is efficient when there is an oversubscription of CPU resources and appli-
cations are highly optimized for maximal resource usage such as in LINPACK.
The longer time-slice interval ultimately reduces cache thrashing and the over-
head of context switching. Unlike the Linux scheduler, our time-slice intervals
are on the order of seconds; performance sweet spots are observed for inter-
vals ranging between 10 and 15 s. Under this time slice, a number of containers
ranging between two and five are able to freely operate alone for long periods
of time while taking full advantage of the locality during their execution. Our
results demonstrate that an adaptive control scheme can positively affect the
overall application performance. We are not suggesting that this mechanism is
suitable for all applications; different application domains need different time
slices. LINPACK is an example of compute-intensive applications where OS-
based allocations is clearly not sufficient and a better CPU allocation results
in a significant performance improvements when the application is executed in
containerized workloads.

3 I/O Management of Container Clusters

HPC applications perform disk I/O operations (i.e., read and write) for vari-
ous reasons such as reading the input parameters of a program, writing output
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results of a simulations, and periodically checkpointing the simulation state.
The management of containerized applications is ignorant of the applications’
load and nodes’ I/O capacity. In other words, containers are placed on machines
based only on available CPU and memory knowledge. When dealing with I/O-
intensive applications, this naive placement of containers ultimately results in
poor I/O load balancing across datacenter machines. Figure 5a shows an exam-
ple of naive allocation of containers and its impact on the I/O bandwidth. The
results in the figure refer to 90 containers executed in 14 virtual machines, each
container hosting one I/O-intensive application. Each application continuously
streams data to disk with different I/O rates: of 2 MB/s, 4 MB/s, or 8 MB/s.
The I/O rate is randomly assigned at the container’s launch time. The number
of containers per VM depends on what containers are selected to be scheduled
on the specific VM. In the figure we observe that after all the applications have
been launched, the I/O bandwidth imbalance between nodes is significant, on
the order of 50 MB/s. While the example in the figure depicts a load-imbalanced
scenario across VMs, a similar behavior is expected across nodes in datacenter
clusters.

To balance the load across nodes, we define a two-tier solution that combines
a node-level mechanism and a cluster-level mechanism. At the node level, we
change the Docker daemon to allow monitoring each container’s I/O load, and
we set absolute upper bounds on the container’s I/O bandwidth. At the cluster
level, we enable the scheduling system to perform load balancing by placing new
containers across nodes based on the node’s system I/O capability and utilized
I/O bandwidth. Together these two mechanisms allow I/O-intensive applica-
tions to effectively execute with available I/O resources in HPC containerized
environments.

3.1 Allocation Mechanisms

While kernels provide statistics on the I/O activity of each node and the Blkio
CGroup has various parameters that allow us to control allocations such as I/O
operations per second and bandwidth per second, container managers such as
Docker do not provide API functions to leverage these capabilities [1]. At the
node level, we extend the Docker API to capture the I/O device status for each
container; the status includes disk utilization in terms of how much time the
storage device has outstanding work (i.e., is busy), write bandwidth in terms of
the number of bytes written to the device per second, read bandwidth in terms
of the number of bytes read from the device per second, and wait time in terms
of the average time (milliseconds) for I/O requests issued to the device to be
served. To capture the I/O activities and to modify bandwidth limits for reads
and writes in containers, we augment the client-side API of the Docker daemon
in three ways. In our first modification, we add the ability for the Docker daemon
to determine the maximum I/O bandwidth of the node it is running on. When
a Docker daemon starts, it continuously performs unbuffered writes of 4 MB for
30 s and then calculates the effective bandwidth over that time period. In our
second modification, we add the ability for the Docker daemon to determine the
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current I/O bandwidth utilization on each of the nodes. The Docker daemon
parses the node’s kernel information present at /proc/diskstats. Among the
many statistics stored in /proc/diskstats is the number of sectors read and
written to disk since boot. Every two seconds, the modified Docker daemon
parses the number of sectors read and written, comparing the values between
samples, and computes a running average of bytes accessed per second over 15
samples. We add this information, along with the maximum bandwidth, to the
response for the /info Docker API call. For the third modification, we enable
the Docker daemon to set the blkio.throttle write bps device flag and the
blkio.throttle read bps device flag in the Blkio controller. Setting these
flags under the CGroup directory named after the container ID allows us to limit
the I/O bandwidth of a container.

At the cluster level, we ensure that the I/O load is being balanced across
entire clusters. This task involves ensuring that the I/O load is distributed across
the nodes of a cluster and that no node in the cluster is overburdened with
I/O operations. To this end we monitor the average load of each node (i.e.,
CPU, memory, and I/O loads); the I/O load is monitored, and the I/O device
status is stored with the modifications described above. When a new container
is scheduled, it is allocated to the node with the lowest total load, where the
weight of each load type is user configurable. We implement our solution on
top of Docker Swarm. Note, however, that our method is generic to any other
scheduling solution and can be easily extended to other schedulers such as Mesos
and SLURM. While Docker Swarm includes the capability to monitor CPU and
memory as well as to schedule containers across a cluster, it lacks knowledge of
the I/O capacity and utilization of the containers. The node-level mechanism
described above extends the Docker daemon to make the I/O activity of each
node and the I/O throttling of containers available through the /info Docker
API call. The information is made available to Docker Swarm by augmenting
the internal data structures of Swarm to store the I/O information for each node
in the cluster and by increasing the frequency at which Swarm makes the /info
API call to each Docker daemon so that Swarm always has an up-to-date view
of the cluster’s I/O state. We include the collected I/O information in Swarm’s
scheduling strategies and adapt the node weighting function that Swarm uses to
determine the current load on a node to integrate the I/O weight together with
the existing CPU and memory weights. These modifications to Docker Swarm
allow us to determine when the I/O of a node is saturated and consequently stop
scheduling containers on that specific node. The modifications also allow Swarm
to better load balance container allocations across the cluster when using the
spread scheduling strategy since it can include I/O when calculating the load
on a node. The source code of the implementation of our node-level [20] and
cluster-level [15] mechanisms is available on GitHub.

3.2 Empirical Results

To demonstrate the benefits of I/O knowledge once integrated in Docker Swarm,
we repeat the test in Fig. 5a but with our modified Swarm. As described above,
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Fig. 5. Examples of imbalanced and balanced I/O load obtained with and without our
augmented Docker and Docker Swarm. Each line represents the I/O used by one of 14
VMs running multiple I/O-intensive containerized applications. (Color figure online)

our test is performed on 14 VMs running 90 containers on the modified Docker
daemons. Each VM had a dedicated core and dedicated hard drive to minimize
contention. Figure 5b shows the results for the augmented Docker and Docker
Swarm with full knowledge of the system’s I/O. Contrary to the results in Fig. 5a,
the I/O load across the 14 VMs is well balanced, and each VM is roughly using
the same I/O bandwidth. More important, no single VM has maxed out its disk
bandwidth. Under this balancing scheme, I/O-intensive containerized applica-
tions get their desired bandwidth easily and without contention. More generally,
Fig. 5b provides a proof of concept to support the claim that the additional
I/O knowledge allows Swarm to make better decisions at schedule time, which
ultimately result in better load balancing and higher resource utilization. When
applied to containers on HPC clusters, the same mechanism allows container-
ized applications to satisfy the I/O requirements and balance the load across the
nodes of a datacenter.

4 Network Allocations in Containers

The Docker networking interface offers limited options to configure the net-
work usage of containers. Docker networks are currently configured to provide
the “best effort” to the network traffic. When Docker boots up, a single vir-
tual Ethernet bridge, called docker0, is generated. By default, all the contain-
ers are configured to be in the same subnet and use docker0 to enable the
communication with one another. Thus, no throttling or traffic prioritization is
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available. Without throttling, communication-intensive applications can starve
other applications. Moreover, the lack in network traffic prioritization can cause
poor performance in time-sensitive containerized applications. For example, a
container hosting a real-time HPC application (e.g., a streaming application
with fast Fourier transformations requiring iterative manipulations) may require
more bandwidth than does a container hosting a batch or analytics applications.
Figure 7a shows an example of a scenario with four containers with different
traffic priorities: the first container has high network traffic priority, the second
medium priority, and the last two low priority. Each container hosts an applica-
tion that downloads a 450 MB file over FTP from an FTP server. Although we
assign different priorities to the four containers a priori and the four download
jobs start simultaneously (with one job in each container), the network band-
widths do not reflect the desired traffic prioritization with the default Docker
networking.

To support different bandwidths and priorities for a pool of Docker containers
with different network requirements, we implement two mechanisms that allow
Docker to provide prioritization and throttling based on a network priority or
rate limit assigned to containers by the user a priori. The two mechanisms can
be used separately or in concert, since they complement each other.

4.1 Throttling and Priority-Based Allocation

Our priority-based mechanism extends Docker to include a priority scheme for
network traffic. The priority scheme is enforced by using a packet classifier and
scheduler. When using the packet classifier, packets are classified and added to
one of three available priority queues (i.e., high, medium, or low). The medium
level is the default level that is assigned to any container when no priority is
defined by the user. The scheduler dequeues the packets and sends each packet
to a container according to the queue’s priority. Figure 6 provides a high-level
overview of the mechanism.

We use the Linux traffic control (TC) utility to classify and then schedule
the network traffic in and out of the docker0 interface [6]. Using the TC utility,
we configure a network scheduling algorithm, also called a queuing discipline
(qdisc), for both the ingress and egress directions [5]. Specifically, we use the
PRIO qdisc, a scheduling algorithm that contains an arbitrary number of classes
with priorities. We configured the PRIO qdisc to utilize three classes, where
Class 1 has the highest priority, Class 2 (the default class) has a medium priority,
and Class 3 has the lowest priority. In order for the PRIO qdisc to schedule
packets based on priority, the packets must first be classified. We use TC filters
to classify incoming and outgoing packets based on their IP address. A priority
is assigned to containers when they are created. Since each container has an
unique IP address, packets coming from or going to a container’s IP address
take on the priority of that container. For example, all the packets that have
destination IP address of a container with high priority are enqueued to Class 1.
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Fig. 6. Overview of the packet classifier and scheduler workflow.

Similarly, the packets with destination IP address of a container with default
and low priority are added to Classes 2 and 3, respectively. Once the packets are
properly classified and populate the appropriate class queues, the PRIO qdisc
can begin scheduling the packets. The PRIO qdisc scheduler first checks for
packets in the queue of Class 1; if no packets are available to dequeue, then
the queue of Class 2 is checked; and if no packets are available to dequeue in
the queue of Class 2, the queue of Class 3 is checked. The dequeuing of packets
from the queue of different classes enforces the scheduling policy and priorities
of containers. The problem with using just a PRIO qdisc is that individual
connections, or “flows,” within the same class can contend with one another
and degrade performance. To avoid this scenario, we add a stochastic fairness
queuing (SFQ) qdisc to each class. SFQ ensures fairness within each class by
scheduling flows of the same class in a round-robin fashion, thus preventing any
single flow from drowning out the rest of the flows.

Our throttle-based mechanism gives Docker the capability to throttle the
rate at which the packets are sent or received by a given container. To throt-
tle each container to its specified limit, we use TC to apply an independently
configurable token bucket filter (TBF) qdisc to each container’s packet queue.
Each TBF has two required parameters. The first parameter is the traffic rate
limit, specified by the users and assigned during the containers’ initialization.
The second parameter is the burst size, which determines the size of the buffer
used by the TBF to queue packets when traffic is being throttled. If the buffer
size is too small, packets may be dropped because more packets arrive than can
be accommodated in the buffer. These dropped packets will cause an overhead
to our throttling mechanism. We reduce this overhead by configuring the qdisc
parameters for optimal performance—specifically, by setting the burst size to
10 % of the user-defined throttle rate. The source code of the implementation
of both our network prioritization and throttling mechanisms is available on
GitHub [12].



Resource Management for Running HPC Applications in Container Clouds 273

4.2 Empirical Results

We assessed our priority-based mechanism by repeating the test in Fig. 7a with
the same four containers uploading a 200 MB file to the same FTP server but
this time with the property-based mechanism in place. Figure 7b shows the net-
work throughput observed for the four containers. In Fig. 7a we use the default
Docker network, and the network throughput remains the same for all three
containers despite the user-defined priorities. On the other hand, in Fig. 7b we
observe different network throughput for the four containers because of our mech-
anism. Initially, the high-priority container (#1) has the highest share of the
total throughput. When the file download completes for the high-priority con-
tainer, the medium-priority container (#2) gets the highest share of the total
throughput. Similarly, when the file download completes for the medium-priority
container, the low-priority containers (#3 and #4) get all the bandwidth. The
results also show that the low-priority containers get an equal share of the total
throughput. These results prove that our mechanism implements priorities in
containers and that the containers with equal priority get an equal share of the
available bandwidth.

Fig. 7. Network throughput of 4 containers downloading 450 MB over FTP with and
without our network prioritization mechanism. Container 1 is assigned high priority,
Container 2 medium priority, and Containers 3 and 4 low priority. (Color figure online)

To assess our throttle-based mechanism, we assign different bandwidth limits
to three containers running on the same node and then monitor the network
throughput experienced by each container. The containers’ limits are 4.5, 3, and
1.5 MBps. The containers are configured to execute only a single job of uploading
a file of size 200 MB to an FTP server. We use an FTP server to receive files from
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all the containers. The network throughput of all three containers is monitored
for the duration of the uploads, first without throttle-based mechanism and then
with the mechanism in place. Figure 8a shows the network throughput obtained
by the three containers without our mechanism; Fig. 8b shows the throughput
for the same test with our mechanism.

Fig. 8. Network throughput of three containers without and with throttle-based mech-
anism. When the throttle-based mechanism is in place, the three bandwidth limits
of 4.5, 3, and 1.5 MBps are observed for the three containers’ uploads. (Color figure
online)

Without the throttle-based mechanism, the network throughput is almost
the same for all the containers. On the other hand, with limits, the network
throughput is throttled to 4.5 MBps for Container 1, 3 MBps for Container 2,
and 1.5 MBps for Container 3. The dips in the network throughput are due to
the congestion control mechanism of TCP. In particular, if a packet loss occurs,
multiple duplicate ACK signals are received, and the congestion window (cwnd)
is reduced by the sender. The congestion window size estimates the congestion
between sender and receiver and avoids overloading the link between sender and
receiver with too much traffic.

The results of our empirical tests show that our Docker implementation with
the throttle-based and priority-based mechanisms efficiently provides resource
allocations to containers based on priorities and requirements. Specifically, our
extension to Docker networking guarantees that containers’ network bandwidth
matches assigned priorities. Providing priority-based network allocation to con-
tainers has three advantages. First, container hosting bandwidth-intensive appli-
cations can be assigned a limit to prevent them from contending with other con-
tainers sharing the network. Second, operating costs can be reduced by using
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existing network resources more efficiently and thus delaying or reducing the
need for expansion or upgrades. Third, time-sensitive and critical applications
hosted in high-priority containers can now be assigned higher priority to get a
higher share of network bandwidth, without starving other containers. More-
over, when containers host applications using UDP, which is not sensitive to
network congestion, our mechanisms allow the associated containers to be throt-
tled appropriately to achieve the desired level of bandwidth sharing.

5 Background and Related Work

This section provides background on container technologies, including container
clouds. Also discussed in related work on Docker.

5.1 Containers, Docker, and Container Clouds

OS-based virtualization has supported containerization since the early 1980s,
enabling users to isolate and customize their processes’ environments (e.g., each
container can have its own set of libraries while sharing resources of the sys-
tem). FreeBSD Jails [18], Solaris Zones, AIX WPARs (Workload PARtitions),
and HP UX containers are all examples of container technology used in various
application domains.

Linux OS introduced resource control groups (i.e., CGroups) in 2007.
CGroups are a set of features to measure, control, and isolate CPU, memory,
disk I/O, network, namespace, and devices to a set of processes. Namespaces in
particular allow the creation of containers with their own identify in terms of
hostname, process identifiers, and network devices. CGroups are used to build
isolated execution contexts called containers. Docker [21], Warden [3], Kuber-
netes [4], LMCTFY, LXC, LXD, and rkt are only a few examples of container
technologies built on top of Linux CGroups. As of this writing, Docker is by
far the most popular container technology. Figure 9 shows a typical system with
Docker technology. The host operating system consists of the Docker Container
Manager (i.e., Docker Engine). This engine can create, modify, and delete con-
tainers. Containers are created from file system packages called Docker images.
A Docker image is a file system that contains all of the software necessary to run
an application. The software includes the application code, dependent libraries,
tools, and system libraries. There can be one or more docker containers per
application on a given host, as shown in the figure. Other container technologies
such as Warden and rkt are built on these same concepts. Although each con-
tainer can have its own set of application codes and libraries, all the containers
running on a host share the host kernel. Thus, the Container Manager depends
on the host kernel for resource isolation, management, and enforcement. Linux
kernels provide only fair sharing of resources across processes; advanced sharing
policies are not normally implemented as part of the base kernel.

Container clouds are technologies that enable a cluster of Docker Engines to
run on multiple hosts and offer the cluster resources as a service to multiple users
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Fig. 9. Illustration of a typical container system. Docker Engine creates and manages
the containers. The host OS provides the resource management functions.

with supporting tools for application composition, deployment, and operations.
Docker Swarm is a clustering solution to group a set of Docker Engines. When
an application composed of multiple containers is deployed to a Swarm cluster,
different containers of the application may run on different nodes. In this context,
efficient resource management has to be enforced across the multiple containers.
Such efficient resource management is still missing for container-based clusters
hosting HPC applications.

5.2 Related Work

The National Energy Research Scientific Computing Center (NERSC) developed
Shifter [17], a system that allows for HPC centers and users to utilize Docker
images in their normal workflows. It makes code deployment easier for users and
software stack management easier for center administrators because application
dependencies are integrated into the Docker images. Their system integrates
with many existing HPC resources such as high-speed interconnects, parallel
filesystems, batch job schedulers, resource managers, and HPC-specific operating
systems (Cray Linux environment). Their work shows that Docker can be a
valuable addition to the HPC workflow, but it lacks extensive testing of the
overhead associated with containers.

Extensive analyses have been made of the overheads associated with con-
tainers compared with other virtualization methods and “bare metal” execu-
tion [8,14,23,27]. These analyses are usually limited to a single machine, how-
ever, and rarely study the effects of multiple containers running simultaneously.
Soltesz et al. do study the contention caused by multiple containers on an overal-
located system, but their work targets Linux-VServer, a virtualization technology
that predates Linux containers and is limited to the CPU and I/O resources of a
single machine [25].

Others have developed two-tiered systems for resource management of con-
tainers. Hong et al. developed a node-level system that monitors the CPU and
memory usage of the containers running on each node in the cluster and a
cluster-level scheduler that places new containers on nodes with the lightest
load [16]. This is similar to how Docker Swarm schedules containers. Our two-
tiered method is similar, with the crucial difference being that our method
includes disk I/O in the load calculation. Blagodurov et al. developed a node-
level system that pins memory-intensive applications to separate NUMA nodes
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in order to minimize contention and a cluster-level manager that migrates heav-
ily contended applications to less contended nodes [7]. Their method does not
directly integrate with the container scheduler, however, and thus they make
decisions only at runtime, after the contention has occurred. Our method seeks
to prevent contention before it happens, by integrating with the container sched-
uler and improving the scheduling decisions.

6 Conclusion

The resource management provided by the operating system is not sufficient for
containerized workloads in HPC. We discuss resource management challenges in
CPU, network, and I/O and describe solutions that achieve better application
performance and system utilization. Our CPU management mechanism allows
users to mitigate the performance slowdown due to frequent context switching
and fair share. Our I/O management mechanism deals with I/O contention by
allowing Docker to set up I/O bandwidth limits and to perform cluster-wide
I/O load balancing. Our network management mechanism enables application-
specific bandwidth priorities and bandwidth limits. Our results demonstrate that
advanced resource management technologies are necessary to leverage containers
for a broad set of HPC applications.
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