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Abstract. HPC developers aim to deliver the very best performance. To
do so they constantly think about memory bandwidth, memory hierar-
chy, locality, floating point performance, power/energy constraints and
so on. On the other hand, application scientists aim to write perfor-
mance portable code while exploiting the rich feature set of the hardware.
By providing adequate hints to the compilers in the form of directives
appropriate executable code is generated. There are tremendous benefits
from using directive-based programming. However, applications are also
becoming more and more complex and we need sophisticated tools such
as auto-tuning to better explore the optimization space. In applications,
loops typically form a major and time-consuming portion of the code.
Scheduling these loops involves mapping from the loop iteration space
to the underlying platform - for example GPU threads. The user tries
different scheduling techniques until the best one is identified. However,
this process can be quite tedious and time consuming especially when it
is a relatively large application, as the user needs to record the perfor-
mance of every schedule’s run. This paper aims to offer a better solution
by proposing an auto-tuning framework that adopts an analytical model
guiding the compiler and the runtime to choose an appropriate schedule
for the loops, automatically and determining the launch configuration for
each of the loop schedules. Our experiments show that the predicted loop
schedule by our framework achieves the speedup of 1.29x on an average
against the default loop schedule chosen by the compiler.

1 Introduction

Heterogeneous architectures that comprise of CPU processors and computational
accelerators such as GPUs have been increasingly adopted for scientific com-
puting. The low-level programming models CUDA and OpenCL for GPUs offer
users programming interfaces with execution models closely matching that of
GPU architectures. Effectively using these interfaces for creating highly optimized
applications require programmers to thoroughly understand the underlying archi-
tecture, as well as significantly change the program structures and algorithms.
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This affects both productivity and performance. Standardized directive-based
models such as OpenACC [3] and OpenMP for accelerators [5] require develop-
ers to insert directives and runtime calls into the existing source code offloading
portions of Fortran or C/C++ codes to be executed on accelerators.

Directives are high-level language constructs that programmers can use to
provide useful hints to compilers to perform certain transformations and opti-
mizations on the annotated code region. The use of directives can significantly
improve programming productivity. Users can still achieve high performance of
their program comparable to code written in CUDA or OpenCL, subjected to
the requirements that a ‘careful’ choice of directives and compiler optimization
strategies be made. One such scenario encountered quite commonly in a program
is loop scheduling.

Loop scheduling defines the mapping of loop nest(s) to the underlying archi-
tecture. Consider the architecture is a GPU that consists of a number of GPU
threads with complex topology settings; it is a daunting task to determine map-
ping strategies of the loop nest to those threads in order to achieve better per-
formance. Different loop schedules reflect different memory access orders. Loop
transformations change memory access orders that results in exploiting better
locality - temporal and spatial. The reuse distance model [4] is a classic model
predominantly used for CPUs to capture both types of locality in CPU archi-
tectures. However we cannot apply this model directly on GPUs due to the sig-
nificant architectural differences between the CPUs and the GPUs. This paper
aims to extend the reuse model to suit its applicability for GPUs.

The main contributions of this paper include:

– To the best of our knowledge, we are the first to propose a locality-aware
auto-tuning framework to address the GPU loop scheduling issue.

– In the proposed framework, we extend the classic reuse distance model to
GPU architecture in order to estimate GPU cache hit rate accurately.

– Our results demonstrate that our proposed framework chooses the loop sched-
ule producing better performance compared to the default loop schedule cho-
sen by default by the compiler.

The organization of this paper is as follows: Sect. 2 gives an overview of GPU
architecture and OpenACC model. Section 3 provides a motivating example illus-
trating the performance impact of different loop schedules. In Sect. 4, we explain
in detail the proposed auto-tuning framework on how to choose a loop sched-
ule with better locality. Performance results are discussed in Sect. 5. Section 6
highlights the related work in this area. We conclude our work in Sect. 7.

2 GPU Architecture and OpenACC Directives

GPU architectures differ significantly from that of traditional processors.
Employing a Single Instruction Multiple Threads (SIMT) architecture, NVIDIA
GPUs have hundreds of cores that can process thousands of software threads
simultaneously. GPUs organize both hardware cores and software threads into
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two-level of parallelism. Hardware cores are organized into an array of Streaming
Multiprocessors (SMs), each SM consisting of a number of cores named as Scalar
Processors (SPs). Each SM has its own L1 cache which is not cache coherent,
and all SMs share an unified L2 cache.

The compute-intensive part of an application, called kernel, is offloaded to
GPUs for parallel execution. The GPU launches massive threads to execute that
kernel. The thread unit in GPU scheduling is called a warp (a warp size has 32
threads for NVIDIA GPUs). Multiple warps form a thread block and multiple
thread blocks form a grid. Both the thread block and grid can be 1D, 2D, or
3D. For programmers, the challenge to efficiently utilize the massive parallel
capabilities of GPUs is to map the kernels to the thread hierarchy, and efficient
data layout in the GPU memory hierarchy to maximize coalesced memory access
for the threads.

Directive-based high-level programming models for accelerators, e.g. Ope-
nACC and OpenMP extensions for accelerators, have been designed to address
the programmability challenge of GPUs. Using these programming models, pro-
grammers insert compiler directives into a program to annotate portions of code
to be offloaded onto accelerators for executions. This approach relies heavily
on the compiler to generate efficient code for thread mapping and data layout.
It could be potentially challenging to extract the optimal performance using
such an approach rather than using other explicit programming models. How-
ever, the directive-based models simplify programming on heterogeneous systems
thus saving development time, while also preserving the original code structure
assisting in code portability.

OpenACC allows users to specify three levels of parallelism in a data parallel
region: gang, worker and vector parallelism to map the loop nests to the multiple-
level thread hierarchy of GPUs. Programmer provides hints to map these three-
level parallelism to GPU threads but the effectiveness of the mapping relies
on the compiler and runtime implementation strategies. We use a high quality,
open-source, validated OpenACC compiler called OpenUH [18]. Adhering to
OpenACC standards, this compiler maps “gang” to thread block, “worker” to
Y-dimension of thread block and “vector” to X-dimension of thread block [3].

3 A Motivating Example

Matrix multiplication has been widely used in scientific computing. We use this
application to illustrate the importance of loop scheduling in GPU. The square-
matrix multiplication we used is C = AB where the size of matrix A, B, and C is
n×n. The elements in matrix C are Ci,j =

∑n
k=1 ai,kbk,j where both the indices i

and j loops from 1 through n. A double nested loop was constructed to solve this
matrix multiplication. Multiple ways could be adopted to map this loop nest to
the underlying GPU threads using directive-based programming model. Table 1
shows how this loop nest could be mapped in so many different ways to GPU
threads. The table also indicates different launch configurations. The launch
configuration specifies the thread block and grid shape and size that are used to
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Table 1. The performance difference for matrix multiplication with different loop
schedules and launch configurations

Loop schedule number Loop schedule detail Performance (ms)

0 bx(1)/tx(128) 3.24

1 by(1)/bx(1) tx(128) 3.36

2 by(1) ty(128)/bx(1) tx(1) 11.04

3 by(1) ty(64)/bx(1) tx(2) 5.87

4 by(1) ty(32)/bx(1) tx(4) 4.28

5 by(1) ty(16)/bx(1) tx(8) 3.47

6 by(1) ty(8)/bx(1) tx(16) 3.09

7 by(1) ty(4)/bx(1) tx(32) 3.16

8 by(1) ty(2)/bx(1) tx(64) 3.19

9 by(1) ty(1)/bx(1) tx(128) 3.28

run a loop. All of the 10 loop schedules in the table use only one thread block
with 128 threads. However, since the loop nest is mapped to threads differently,
there are differences in their performance. The loop schedule 0 is the default loop
schedule chosen by the compiler. However, we notice that there are other loop
schedules demonstrating better performance than the default schedule that the
compiler chose. What are the strategies to choose an optimal or sub-optimal loop
schedule and its corresponding launch configuration? Our proposed auto-tuning
framework discussed in the rest of the paper provides suitable proven answers
to this question.

We would like to keep the notations used for our framework as general as
possible and not tie it to any specific programming model/language:

– bx, by and bz: denote X, Y and Z dimension of the grid, respectively
– tx, ty and tz: denote X, Y and Z dimension of the thread block, respectively
– num bx, num by and num bz: denote the size of X, Y and Z dimension of the

grid, respectively
– num tx, num ty and num tz: denote the size of X, Y and Z dimension of the

thread block, respectively

4 Auto-tuning for GPU Loop Scheduling

4.1 The Auto-tuning Framework

In this section, we describe our auto-tuning framework and the analytical model
proposed that enables the identification of the appropriate loop schedule, and
the launch configuration used for each of the loop schedules. Figure 1 gives an
overview of the auto-tuning framework. The compiler generates multiple kernel
files with different loop schedules. The loop schedule is chosen from a set of
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Fig. 1. The framework of auto-tuning for loop scheduling

loop schedule patterns which covers both double and triple nested loops. The
framework chooses a launch configuration from the launch configuration search
space which depends on the iteration space of each loop. The search of launch
configuration is guided by the rule of maximizing the GPU occupancy. Before
applying the framework, an application needs to run once on CPU to generate a
sequential memory trace. Based on the loop schedule and the launch configura-
tion, all memory accesses in the memory trace are assigned to GPU threads. This
step defines the access of memory references for GPU threads. Next, the thread
scheduling defines the execution order of the memory accesses in the trace.

In the execution of memory accesses, the memory coalescing is very critical.
In GPU, a warp (the smallest execution unit) defines a set of consecutive threads.
If consecutive threads access consecutive memory addresses, then the memory
accesses are coalesced meaning they are merged into fewer memory transactions.
We simulate the memory coalescing behavior in GPU architecture in our model.
For instance, if the memory addresses referenced by all threads in a warp are in
one cache line, then these memory access requests will be merged into only one
memory request.

After memory requests are coalesced, the memory trace is fed into the mem-
ory access cost model where a memory access cost is computed, with the cache
model. This process is repeated until the framework iterates over all loop sched-
ules and the launch configuration space. Finally, the framework picks the optimal
loop schedule and the corresponding launch configuration that has the minimal
memory access cost. The compiler then recompiles the same program using the
selected loop schedule. The major components in this framework will be dis-
cussed in the following sub-sections:
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4.2 Loop Schedule Patterns

We only consider double and triple nested loops. Note that here the loop nest
level means parallelizable loop nest. For instance, in the body of the parallelizable
loop nest, there could be another nested loop that is sequentially executed. In
the current GPU programming models such as OpenACC, the maximum level of
the parallelizable loop nest is three. If a nested loop has more levels to parallelize,
it can be collapsed into double or triple nested loop.

Listing 1.1 shows a double nested loop example. Using the notations described
in the previous Sect. 3, we now introduce three loop schedules for the double
nested loop (use x-loop for the inner loop and y-loop for the outer loop):

– schedule 2 1: x-loop is mapped to the X-dimension of a thread block, and
y-loop is mapped to the X-dimension of the grid.

– schedule 2 2: x-loop is mapped to X-dimension of both thread block and grid,
and y-loop is mapped to Y-dimension of the grid.

– schedule 2 3: x-loop is mapped to X-dimension of both thread block and grid,
and y-loop is mapped to Y-dimension of both thread block and grid.

These loop schedule directives are implicitly added by the compiler. The graph-
ical explanation for these loop schedules are shown in Figs. 2, 3 and 4. The
detailed mapping function from the loop iterations to GPU threads for double
nested loop are shown in Listings 1.3, 1.4 and 1.5. The purpose of schedule 2 2
is to overcome the GPU hardware threads limit within a block. In both schedule
2 1 and 2 2, the threads computing the outer loop are in different thread blocks,
which are likely to be scheduled to different GPU SMs (Streaming Multiproces-
sor). This may not exploit the data locality efficiently. So how do we improve
data locality? We consider the loop schedule 2 3 that allows some threads com-
puting the outer loop iterations to remain in the same block thus improving data
locality. For triple nested loop, a code example is shown in Listing 1.2 and other
similar loop schedules are designed. Because of the space limit, we only illustrate
the graphical representation for one loop schedule in Fig. 5, in which x-loop, y-
loop and z-loop refer to the inner most loop, the middle loop and the outer
most loop, respectively. The loop schedule in Fig. 5 means x-loop is mapped to
X-dimension of thread block, y-loop is mapped to Y-dimension of thread block
and z-loop is mapped to X-dimension of the grid.

#pragma acc loop
for(j = jstart; j < jend; j++){

#pragma acc loop
for(i = istart; i < iend; i++){

......
}

}

Listing 1.1. Double nested loop
example

#pragma acc loop
for(k = kstart; k < kend; k++){

#pragma acc loop
for(j = jstart; j < jend; j++){

#pragma acc loop
for(i = istart; i < iend; i++){

......
}

}
}

Listing 1.2. Triple nested loop
example
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#pragma acc loop bx(num_bx)
for(j = jstart; j < jend; j++){

#pragma acc loop tx(num_tx)
for(i = istart; i < iend; i++){

......
}

}
mapping function to CUDA:

j = jstart + blockIdx.x + t ∗ gridDim.x, (t = 0, 1, ...,
jend−jstart
gridDim.x − 1)

i = istart + threadIdx.x + t ∗ blockDim.x, (t = 0, 1, ...,
iend−istart
blockDim.x − 1)

Listing 1.3. Loop schedule 2 1

#pragma acc loop by(num_by)
for(j = jstart; j < jend; j++){

#pragma acc loop bx(num_bx) tx(num_tx)
for(i = istart; i < iend; i++){

......
}

}
mapping function to CUDA:
j = jstart + blockIdx.y + t ∗ gridDim.y

(t = 0, 1, ...,
jend−jstart
gridDim.y − 1)

i = istart + threadIdx.x + blockIdx.x ∗ blockDim.x + t ∗ blockDim.x ∗ gridDim.x

(t = 0, 1, ...,
iend−istart

blockDim.x∗gridDim.x − 1)

Listing 1.4. Loop schedule 2 2

#pragma acc loop by(num_by) ty(num_ty)
for(j = jstart; j < jend; j++){

#pragma acc loop bx(num_bx) tx(num_tx)
for(i = istart; i < iend; i++){

......
}

}
mapping function to CUDA:
j = jstart + threadIdx.y + blockIdx.y ∗ blockDim.y + t ∗ blockDim.y ∗ gridDim.y

(t = 0, 1, ...,
jend−jstart

blockDim.y∗gridDim.y − 1)

i = istart + threadIdx.x + blockIdx.x ∗ blockDim.x + t ∗ blockDim.x ∗ gridDim.x

(t = 0, 1, ...,
iend−istart

blockDim.x∗gridDim.x − 1)

Listing 1.5. Loop schedule 2 3

Fig. 2. Loop schedule 2 1 Fig. 3. Loop schedule 2 2
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Fig. 4. Loop schedule 2 3 Fig. 5. Loop schedule 3 1

4.3 Thread Scheduling

The memory trace is defined for how the memory is accessed by threads, which
is further defined for how the thread blocks are scheduled into different SMs and
how the threads are scheduled within each SM. When the GPU launches a grid
of threads for a kernel, that grid is divided into ‘waves’ of thread blocks. For
example let us assume there are 15 SMs. Each SM has 2 thread blocks hence
30 thread blocks in total. Thread block 0 and thread block 15 will be assigned
to SM0. Thread block 1 and thread block 16 will be assigned to SM1. If there
was a scenario with 60 thread blocks and each SM allows at most 2 blocks (30
blocks for 15 SMs), we will need to assign these blocks into two waves; 30 thread
blocks to the first wave and the other 30 thread blocks to the second wave. We
use round-robin scheduling mechanism to schedule the thread blocks to all SMs
in all waves. The number of threads scheduled is independent of the grid size.
For instance, if the grid size is 2048 and only 128 threads are scheduled, then
each thread will process 2048/128=16 elements.

Figure 6 shows thread scheduling mechanism. It highlights two waves sched-
uled to one SM. Each wave has two thread blocks; each thread block has two
warps; each warp has two threads; each thread has five memory accesses. We
access the memory references in a round-robin manner. This memory access
pattern gives us the memory trace.

The equation to calculate the number of waves is given in Eq. 1. The number
of waves is obtained by dividing the total number of thread blocks by the active
thread blocks per SM times the number of SMs. The active blocks per SM
is given in Eq. 2. For instance, in Kepler GPU, the max threads per SM is
2048 and max thread blocks per SM is 16 and upon knowing the number of
thread blocks in the kernel, which is specified by the launch configuration, we
can determine the number of waves.

waves =
thread blocks

active blocks per SM × #SMs
(1)
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SM waves

thread blocks

warps
threads memory accesses

Fig. 6. Thread scheduling used in the auto-tuning framework

active blocks per SM =
min(max threads per SM/block size,max thread blocks per SM) (2)

4.4 Memory Access Cost Model

After memory coalescing, the memory trace is fed into the memory access cost
model which computes the memory access cost for a specific loop schedule and
launch configuration. The metric used in this model is presented as

Costmem =
#levels∑

i

(Ni × Li) (3)

where Ni means the number of transactions happened in level i of the memory
hierarchy, and Li means the latency of memory level i.

The rationale behind this metric is the memory hierarchy in GPU architec-
ture which is shown in Fig. 7. When the kernel needs to access a global memory
address, it needs to load that address from L1 cache. If the data is already in
L1 cache, then the access is a hit. If the data is not in L1 cache, then the access
is a miss and it needs to load the data from L2 cache. If the data is not in L2
cache, then it needs to further load the data from DRAM. So the formula after
expanding the Eq. 3 is shown in Eq. 4, which is the sum of memory access cost
from L1, L2 and DRAM. The formula for calculating each individual cost is
given in Eqs. 5, 6 and 7. The ‘4’ in Eqs. 6 and 7 explains the number of global
memory load transaction that is increased by 1 every 128 bytes in L1 cache,
but every 32 bytes in L2 cache and DRAM. Since the memory access latency
order from high to low - DRAM, L2 cache and L1 cache, we would like to access
higher order memory as less as possible. In other words, we would like to have
few global loads and low L1 and L2 cache miss rates as possible. When there is
intra-thread data reuse or inter-thread data reuse, different loop schedules have
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different cache miss rates, and finally the performance of the kernels using those
loop schedules would be different.

Costmem = MemL1 + MemL2 + MemDRAM (4)

MemL1 = global loads ∗ (1 − L1 miss rate) ∗ L1 latency (5)

MemL2 = global loads ∗ L1 miss rate ∗ 4 ∗ L2 latency (6)

MemDRAM = global loads ∗L1 miss rate ∗L2 miss rate ∗ 4 ∗DRAM latency
(7)
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Fig. 7. GPU memory hierarchy
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Fig. 8. L1 cache modeling

The key factors of the model are to estimate the global memory loads, L1 and
L2 cache miss rates. To estimate L1 and L2 cache miss rate, we use reuse distance
model [4]. It is a classic model to model the cache misses in CPU applications.
The primary reasons for cache misses are cold/compulsory, conflict, capacity
misses, famously termed as the 3 C model. The cold miss occurs when there is
no data in the cache, no matter how big the cache is. The conflict miss usually
occurs in direct-mapped caches and set-associative caches. Two cache lines may
map to the same cache slot even though there may be empty slots. The capacity
miss happens when there are no more available slots in the cache. The reuse
distance model assumes that a LRU replacement fully associative cache is used.
So it can only predict cold miss and capacity miss.

To the best of our knowledge, there is no existing work that discusses GPU
L2 cache modeling. We found a couple of other related research work discussing
GPU L1 cache modeling. Tang et al. [17] applied the reuse distance theory to
model the GPU L1 cache. However, there were a few weaknesses and limitations
in their approach: (1) they assumed only one thread block is active in one SM
which is not true in the real hardware; (2) they modeled the cold miss and conflict
miss but did not model capacity miss, however some research have shown that
only a minority of the misses are conflict misses in both CPU [6] and GPU [14];
(3) they validated their model against a GPU simulator which is not a real
hardware per se. Nugteren et al. [14] also used the reuse distance to model GPU
L1 cache. However, in their implementation, all thread blocks were scheduled into
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only one SM which is not the case in a real hardware. Our thread scheduling
mechanism overcomes the drawbacks of the above two papers discussed.

The reuse distance theory can measure both spatial locality and temporal
locality if the distance is measured with cache line granularity. The spatial local-
ity defines that the nearby memory addresses are likely to be referenced again
in the near future. The temporal locality defines that the same data is likely to
be referenced again in the near future.

The spatial locality is reflected by the memory coalescing level in the GPU
kernel. If a GPU kernel has coalesced memory accesses, then it has better spatial
locality than the kernel that has uncoalesced memory accesses. This is because
the coalesced memory accesses allow the nearby data elements to be accessed at
the same time the current data is accessed.

The temporal locality is reflected by the loop schedule. Different loop sched-
ules pose different temporal locality since the execution order of the threads
are different. The reuse distance theory can capture both the spatial locality
and temporal locality effectively. Table 2 shows a reuse distance example. In this
example, assume the cache line is of 16 bytes. If the data is accessed first or when
a cold miss happens, the reuse distance is recorded as ∞. The reuse distance is
a metric that defines the distinct memory accesses between the current memory
access and the last access. If the reuse distance is larger or equal to the total
number of cache lines, then a data reference is missed in the cache. The cache hit
rate can be obtained by diving the hits by the total number of hits and misses.

Table 2. Reuse distance example. Assume cache line has 16 bytes and the cache size
is 32 bytes. The reuse distance is based on cache line granularity

Address 0 8 16 96 8 16 17 104

Cache line 0 0 1 6 0 1 1 6

Reuse distance ∞ 0 ∞ ∞ 2 2 0 2

Cache hit/miss Miss Hit Miss Miss Miss Miss Hit Miss

Although the classic reuse distance model can predict the cache miss rate
in CPU, it cannot be simply applied as-is on the GPU since the architectures
are significantly different. The most important difference is that in GPU, the
threads in a warp execute in lock-step manner and therefore memory coalesc-
ing is important in the memory accesses of a warp. If the memory addresses
referenced by all the threads in a warp are in a cache line, then the memory
accesses are merged into one memory access. Another difference is the paral-
lel processing feature including parallel memory processing in GPU. Therefore
in our implementation, the L1 modeling includes parallel memory processing.
But we also compare it with the base implementation. The difference of “Base”
and “Modeled” are shown in Fig. 8. In Base version, the memory coalescing is
applied to the memory trace. Then the memory requests from different warps
are processed in order. If the memory requests in a warp are not coalesced, then
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they are also processed in order within a warp. In Modeled version, we also apply
memory coalescing, but we further add a timestamp. The timestamp is added
to the following warps but it is also added to the threads in the same warp if
their memory requests are not coalesced.

In the reuse distance model implementation, a key factor is the input, which
is a memory trace. In our analytical model, the memory traces are different
for different loop schedules. This is because different loop schedules assign the
loop iterations into GPU threads differently, therefore the memory traces are
different, and eventually the cache misses are different.

For L2 cache modeling, we must first apply L1 cache modeling for all SMs
and record the cache misses in their individual list. Then the memory trace is
processed in round-robin manner which is similar to the description in Fig. 6.

5 Performance Evaluation

The experimental platform is Intel Xeon processor E5520 with frequency
2.27 GHz and 32 GB main memory and an Nvidia Quadro K6000 GPU card
which uses K40 architecture. L1 and L2 cache sizes are 16 KB and 1.5 MB,
respectively. The cache line size for both L1 and L2 is 128 bytes. The proposed
framework is implemented within the OpenUH compiler. The actual L1 and L2
cache hit rates are obtained from l1 cache global hit rate and l2 l1 read hit rate
metrics in CUDA profiler nvprof and the actual global memory loads are obtained
from gld transactions metric.

To evaluate our auto-tuning framework, we consider several benchmarks:
two synthetic benchmarks (x-reuse and y-reuse), four from kernelGen OpenACC
Performance Test Suite [2] (Matrix Multiplication, Jacobi, Laplacian and Diver-
gence), one from CUDA SDK (Matrix Transpose) and one from EPCC Ope-
nACC benchmarks [1] (Himeno). We test different data reuse patterns using
the two synthetic benchmarks. Figure 9 shows these two benchmarks along with
another pattern i.e. xy-reuse, a classic Matrix Multiplication case. The “x” here
refers to the inner loop and “y” refers to the outer loop in a double nested loop.
In the x-reuse benchmark, the inner loop reuses the common data; while in the
y-reuse benchmark, the outer loop reuses the common data. The third case is
the xy-reuse where both the inner and the outer loop reuse some common data.

x-reuse y-reuse

Fig. 9. Data reuse patterns
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Figure 10 shows results for L1 cache hit modeling for some of the bench-
marks discussed above. Figure 10(a) and (b) are results for the two synthetic
benchmarks and Fig. 10(c) and (d) are results for a couple of benchmarks from
kernelGen suite. (Results for other benchmarks were quite similar, so due to
space constraints we have not included them in the paper). The results indicate
that modeled result is more accurate than “Base” version since it considers the
parallel memory processing. Figure 10(a) shows that cache hit rates are high for
all loop schedules. This is because for all iterations in x loop, the data they share
are in one row and in the same contiguous memory section. Figure 10(b) shows
that the shared data are in the same column and therefore they are not contigu-
ous in memory. This leads to relatively lower cache hit. Figure 10(c), results for
Matrix Multiplication, show that there is data reuse in both x and y loops and
therefore the shape of cache hit results seem like a combination of x-reuse and
y-reuse. Figure 10(d), results for Jacobi show that, the overall hit rate is slightly
lesser than x-reuse. This is because the data, the threads share are stencil-like.
For instance considering a 4-point stencil, for different points, the data that the
threads access are not in contiguous memory locations, however for a specific
point the data, the threads share, are still in contiguous memory location. As
a result the cache hit rates are still relatively high. If the cache hit is high, the
indication is that the threads will take lesser time to fetch data from high-latency
memory.

The GPU L2 cache modeling result is shown in Fig. 11. We show the results
for partial benchmarks including Laplacian, Divergence and Himeno. The results
indicate that some loop schedules have low L2 cache hit while other loop sched-
ules have high L2 cache hit. This illustates the importance of choosing the right
loop schedules. The error percentage between the actual and the modeled L2
hit is only 4.37 %, 13.72 % and 2.76 % for Laplacian, Divergence and Himeno,
respectively. The low error percentages indicate that our model can capture the
L2 locality for different loop schedules accurately.

Figure 12 shows the global memory loads of kernels for the four benchmarks
discussed in Fig. 10. The plots show that the modeled loads (before kernel launch)
are exactly the same as the actual loads (profiled results) thus indicating that our
proposed model is accurately predicting the memory loads. Figure 12(b) indicates
that for y-reuse synthetic benchmark, no matter what the loop schedule is, the
memory access appears to be fully coalesced leading to the same number of global
memory loads all the time. In the other three plots, the tallest bars indicate the
loop schedules for which the memory accesses are fully uncoalesced, while the
shortest bars indicate the loop schedules for which memory accesses are fully
coalesced, and the bars between the tallest and the shortest bars indicate partial
memory coalescing. (Results for other benchmarks in kernelGen suite and EPCC
were quite similar, so due to space constraints we have not included them in the
paper). Higher the global memory loads, higher the time taken by the threads
to process the memory requests.

Figure 13 shows several plots that demonstrate close correlation of kernel
performance and the memory access cost modeling. We use the coefficient of
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Fig. 10. GPU L1 cache modeling (Color figure online)

Fig. 11. GPU L2 cache modeling (Color figure online)

determination R2 to measure the strength of the relationship between the kernel
performance and the memory access cost in the model. R2 is a popular indicator
on how well a variable can be used to predict the value of another variable. The
values of R2 range from 0 (poor indicator) to 1 (excellent predictor). The R2

value for all benchmarks are listed in Table 3 and the average value is 0.93 indi-
cating the strong correlation between the kernel performance and the memory
access cost modeling. Based on the memory access cost modeling, an optimal or a
sub-optimal loop schedule is chosen by the framework. For all benchmarks tested,
the speedup of the loop schedule chosen by the model against the default loop
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Fig. 12. Global memory loads (Color figure online)

schedule chosen by the compiler are listed in Table 3 and the average speedup is
1.29x. This proves the effectiveness of the proposed framework.

6 Related Work

To the best of our knowledge, there were only a few similar research on how to solve
the loop scheduling issues on a GPU. Siddiqui et al. [16] presented how to choose
the optimal loop schedule with machine learning approach. They used exhaustive
search to find the optimal and sub-optimal loop schedules for the training data
sets and stored those information into a database. For the new test benchmark,
they found the closest training benchmark and applied its loop schedules to that
test benchmark. Their approach, however, could only be used for different prob-
lem sizes in the same application because it was difficult to define how close two
applications are. Instead of exhaustive search, Montgomery et al. [13] used more
efficient search approach such as direct search to find the optimal loop schedule.
Their approach required to execute the kernels with different loop schedules. Our
approach, however, only needs to run the kernel once on CPU because the model
predicts the optimal loop schedule before the kernel’s execution on GPU. This is
one of the major highlights of our proposed framework.
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Fig. 13. Plots demonstrating correlation of performance vs memory access cost mod-
eling (Color figure online)

Table 3. Evaluation results

Benchmark Source Nested loop type R2 Speedup

x-reuse Synthetic Double 0.927 1.0

y-reuse Synthetic Double 0.683 2.74

Matrix multiplication Performance test suite Double 0.913 1.03

Jacobi Performance test suite Double 0.998 1.1

Laplacian Performance test suite Triple 0.999 1.05

Divergence Performance test suite Triple 0.999 0.96

Matrix transpose CUDA SDK Double 0.943 1.37

Himeno EPCC Triple 0.994 1.09
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Lee et al. [11] presented a framework to automatically and efficiently map
a nested loop to GPU using Domain Specific Language (DSL). The parameters
that form the search space included the dimension of the nested loop, the block
size and degree of parallelism, which is essentially the grid size. They applied
some hard constraints and soft constraints to restrict the search space. For all
loop schedules we consider, many of them have the same software constraints
such as the level of memory coalescing. The cache locality, which is a key factor,
was not considered in their model.

We looked into some of the other related work on auto-tuning, [8,9,12]; these
papers obtained the performance of auto-tuning the kernels by running those ker-
nels. Our goal is different from them since we use an analytical model to predict the
loop schedule without running the kernel. Hu et al. [10] and Baghsorkhi et al. [5]
used analytical models to predict the performance of a kernel. Our work, however,
do not need to predict the execution time of a kernel accurately because the com-
putation part is the basically the same for all loop schedules and the difference
of the performance part is the memory cost. Other research include the effect of
cache on GPU applications. Picchi and Zhang [15] applied L2 cache locking mech-
anism to improve GPU application performance. Choi and Kim [7] analyzed the
L1 and L2 cache behavior for some benchmarks with a GPU simulator.

7 Conclusion and Future Work

This paper discusses the importance of auto-tuning loop scheduling for GPU
computing. We propose an analytical model-based auto-tuning framework to
find the optimal or sub-optimal loop schedule that is better than the default loop
schedule chosen by the compiler. The model used in the framework is locality-
aware as it can predict the cache locality for each loop schedule. The model
also predicts the total number of global memory loads and based on these infor-
mation it obtains a memory access cost for each loop schedule. The framework
iterates over all loop schedule patterns and launch configuration space and picks
the loop schedule with the least memory access cost. We analyze the proposed
framework with multiple benchmarks. The results indicate that the memory
access cost modeling has strong correlation with the kernel performance and
the loop schedule picked by the framework can achieve 1.29x speedup over the
default loop schedule chosen by the compiler. For the future work, we will inte-
grate more factors into the model to improve the prediction of the loop schedule
that is as close as the optimal loop schedule.
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