
Julian M. Kunkel
Pavan Balaji
Jack Dongarra (Eds.)

 123

LN
CS

 9
69

7

31st International Conference, ISC High Performance 2016
Frankfurt, Germany, June 19–23, 2016
Proceedings

High Performance
Computing

Lecture Notes in Computer Science 9697

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Julian M. Kunkel • Pavan Balaji
Jack Dongarra (Eds.)

High Performance
Computing
31st International Conference, ISC High Performance 2016
Frankfurt, Germany, June 19–23, 2016
Proceedings

123

Editors
Julian M. Kunkel
Deutsches Klimarechenzentrum
Hamburg
Germany

Pavan Balaji
Argonne National Laboratory
Lemont, IL
USA

Jack Dongarra
University of Tennessee
Knoxville, TN
USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-41320-4 ISBN 978-3-319-41321-1 (eBook)
DOI 10.1007/978-3-319-41321-1

Library of Congress Control Number: 2016942512

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer International Publishing Switzerland 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG Switzerland

Preface

ISC High Performance, formerly known as the International Supercomputing Con-
ference, was founded in 1986 as the Supercomputer Seminar. Originally organized by
Hans Meuer, Professor of Computer Science at the University of Mannheim and former
director of the computer center, the seminar brought together a group of 81 scientists
and industrial partners who all shared an interest in high-performance computing. Since
then the annual conference has become a major international event within the HPC
community, and accompanying its growth in size over the years, the conference has
moved from Mannheim via Heidelberg, Dresden, Hamburg, and Leipzig to Frankfurt.
With 2,846 attendees and 153 exhibitors from over 56 countries in 2015, we were
happy to see that this steady growth of interest also turned ISC High Performance 2016
into a powerful and memorable event.

In 2007, we decided to strengthen the scientific part of the conference by presenting
selected talks on relevant research results within the HPC field. These research paper
sessions began as a separate day preceding the conference, where slides and accom-
panying papers were made available via the conference website. The research paper
sessions have since evolved into an integral part of the conference, and this year the
scientific presentations took place over a period of three days.

For the past several years, the ISC High Performance conference has presented an
ISC-sponsored award to encourage outstanding research in high-performance com-
puting and to honor the overall best research paper submitted to the conference. Last
year, this annual award was renamed as the Hans Meuer Award in memory of the late
Dr. Hans Meuer, general chair of the ISC conference from 1986 through 2014, and co-
founder of the TOP500 project. From all research papers submitted, the Research
Papers Program Committee nominated the three papers with the highest review scores
for the award and, in a face-to-face meeting, elected the best paper.

For ISC High Performance 2016, the call for participation was issued in Fall 2015,
inviting researchers and developers to submit the latest results of their work to the
Program Committee. In all, 60 papers were submitted from authors all over the world.
This year, again a significant effort was made to improve the overall process. The
Research Papers Program Committee consisted of 54 members selected from several
countries throughout the world. Furthermore, 17 external expert reviewers were invited
from the community to help with paper reviews of specific topics. After initial reviews
were in place, a rebuttal process was made in which authors were given an opportunity
to respond to reviewers’ questions and help clarify issues the reviewers might have. To
come to a final consensus on the papers to be accepted, we introduced a face-to-face
meeting where each paper was discussed. Finally, the committee selected 25 papers for
publication and for presentation in the research paper sessions.

We are pleased to announce that many fascinating topics in HPC are covered by the
proceedings. The papers address the following issues in regards to the development of
an environment for exascale supercomputers:

– Cost-efficient data centers
– Scalable applications
– Advancements in algorithms
– Scientific libraries
– Programming models
– Architectures
– Performance models and analysis
– Automatic performance optimization
– Parallel I/O
– Energy efficiency

We believe that this selection is highly appealing across a number of specializations.
Three award committees selected papers considered to be of exceptional quality and

worthy of special recognition:

– The Hans Meuer Award honors the overall best research paper submitted to the
conference. The award went to:
“Mitigating MPI Message Matching Misery” by Mario Flajslik, James Dinan, and
Keith D. Underwood.

– PRACE, the Partnership for Advanced Computing in Europe, awards a prize to the
best scientific paper by a European student or scientist. This year’s award was
granted to:
“Dynamic Sparse-Matrix Allocation on GPUs” by James King, Thomas Gilray,
Robert M. Kirby and Matthew Might.

– The Gauss Centre for Supercomputing sponsors the Gauss Award. This award is
assigned to the most outstanding paper in the field of scalable supercomputing and
went to:
“Predictive Modeling for Job Power Consumption in HPC Systems” by Andrea
Borghesi, Andrea Bartolini, Michele Lombardi, Michela Milano and Luca Benin.

We would like to express our gratitude to all our colleagues for submitting papers to
the ISC scientific sessions, as well as to the members of the Program Committee for
organizing this year’s attractive program.

June 2016 Julian M. Kunkel
Pavan Balaji

Jack Dongarra

VI Preface

Organization

Research Papers Program Committee

David Abramson Monash University, Australia
Ilkay Altintas San Diego Supercomputer Center, USA
Pavan Balaji Argonne National Laboratory, USA (Co-chair)
Thomas Bönisch High Performance Computing Center Stuttgart, Germany
Mahdi Bohlouli University of Siegen, Germany
Ron Brightwell Sandia National Laboratories, USA
Eva Burrows University of Bergen, Norway
Xing Cai Simula Research Laboratory, Norway
Ewa Deelman USC Information Sciences Institute, USA
Jack Dongarra University of Tennessee and Oak Ridge National

Laboratory, USA (Chair)
Tomas Flouri Heidelberg Institute for Theoretical Studies, Germany
Holger Fröning University of Heidelberg, Germany
Lutz Gross University of Queensland, Australia
Daniel Hackenberg Technische Universität Dresden, Germany
Bilel Hadri KAUST Supercomputing Lab, Saudi Arabia
Mary Hall University of Utah, USA
David Ham Imperial College London, UK
Frank Hannig Friedrich-Alexander-Universität Erlangen-Nürnberg,

Germany
Magne Haveraaen University of Bergen, Norway
Stephan Herhut Google, Denmark
Weicheng Huang National Center for High-Performance Computing, Taiwan
Zhiyi Huang University of Otago, New Zealand
Volodymyr Kindratenko University of Illinois at Urbana-Champaign, USA
Julian M. Kunkel Deutsches Klimarechenzentrum, Germany

(Proceedings Chair)
Dong Li University of California, Merced, USA
Fang-Pang Lin National Center for High-Performance Computing, Taiwan
Qing Liu Oak Ridge National Laboratory, USA
Hatem Ltaief KAUST, Saudi Arabia
Thomas Ludwig Deutsches Klimarechenzentrum, Germany
Arthur Maccabe Oak Ridge National Laboratory, USA
M. Manjunathaiah University of Reading, UK
Simon Mcintosh-Smith University of Bristol, UK
Richard Membarth DFKI and Saarland University, Germany
Marek Michalewicz A*Star Computational Resource Center, Singapore

Bernd Mohr Jülich Supercomputing Center, Germany
Alexander Moskovsky RSC SCKIF, Russia
Matthias Müller RWTH Aachen University, Germany
Kengo Nakajima University of Tokyo, Japan
Julio Ortega Universidad de Granada, Spain
Dhabaleswar Panda Ohio State University, USA
Huynh Phung A*STAR, Singapore
Thomas Poulet CSIRO, Australia
Ying Qian East China Normal University, China
Francisco Rodrigo Universidad Carlos III de Madrid, Spain
Sven-Bodo Scholz Heriot-Watt University, UK
Federico Silla Technical University of Valencia, Spain
Yogesh Simmhan Indian Institute of Science, India
Alexandros Stamatakis Technische Universität München, Germany
Osamu Tatebe University of Tsukuba, Japan
Michela Taufer University of Delaware, USA
Jeyan Thiyagalingam University of Liverpool, UK
Yuichi Tsujita RIKEN AICS, Japan
Jeff Vetter Oak Ridge National Laboratory, USA
Xavier Vigouroux Bull, France
Vladimir Voevodin Lomonosov Moscow State University, Russia
Thomas Wild Technische Universität München, Germany
Peter Ziegenhein Institute of Cancer Research, UK

PHD Forum Program Committee

Lorena Barba George Washington University, USA (Chair)
Anshu Dubey Argonne National Laboratory, USA
Anne Elster Norwegian University of Science and Technology,

Norway
Fernanda Foerter Oak Ridge National Laboratory, USA
Georg Hager Friedrich-Alexander-Universität Erlangen-Nürnberg,

Germany
Paul Kelly Imperial College London, UK
Kengo Nakajima University of Tokyo, Japan
Amanda Randles Duke University, USA
Michelle Mills Strout University of Arizona, USA
Ana Lucia Varbanescu University of Amsterdam, The Netherlands
Michela Taufer University of Delaware, USA
Richard Vuduc Georgia Institute of Technology, USA
Gerhard Wellein Friedrich-Alexander-Universität Erlangen-Nürnberg,

Germany (Co-chair)
Felix Wolf Technische Universität Darmstadt, Germany
Rio Yokota Tokyo Institute of Technology, Japan

VIII Organization

Research Poster Session Program Committee

Alvaro Aguilera ZIH/TU Dresden, Germany
Mahdi Bohlouli University of Siegen, Germany
Thomas Bönisch HLRS, Germany
Xing Cai Simula Research Laboratory, Norway
Javier Garcia Blas Universidad Carlos III de Madrid, Spain
David Ham Imperial College London, UK
Khalid Hasanov IBM Research, Ireland
Weicheng Huang National Center for High-Performance Computing, Taiwan
Julian Kunkel Deutsches Klimarechenzentrum, Germany
Ravindranath Reddy

Manumachu
UCD School of Computer Science, Ireland

Simon McIntosh-Smith University of Bristol, UK
Richard Membarth Intel Visual Computing Institute, Saarland University,

Germany
Kengo Nakajima University of Tokyo, Japan
Gabriel Noaje A*STAR Computational Resource Centre, Singapore
Julio Ortega University of Granada, Spain
Andrej Sozykin Ural Federal University, Russia
Osamu Tatebe University of Tsukuba, Japan
Jeyarajan

Thiyagalingam
Oxford University, UK

Vladimir Voevodin Moscow State University, Russia (Chair)
Peter Ziegenhein The Institute of Cancer Research, UK

HPC in Asia Program Committee

Taisuke Boku University of Tsukuba, Japan (Chair)
Ralph Bording Pawsey, Australia
Horst Gietl ISC Group, Germany
R. Govindarjan IISC, India
Weicheng Huang NCHC, Taiwan
Zhong Jin CAS, China
Jysoo Lee KISTI, Korea
Yutong Lu NUDT, China
Martin Meuer ISC Group, Germany
Marek T. Michalewicz A*STAR, Singapore
Hiroshi Nakashima Kyoto University, Japan
Nages Sieslack ISC Group, Germany

Tutorials Committee

Pavan Balaji Argonne National Laboratory, USA
Rosa M. Badia BSC, Spain

Organization IX

Franck Cappello INRIA and UIUC, France
James Dinan Intel, USA
Ganesh Gopalakrishnan University of Utah, USA
Bill Gropp University of Illinois at Urbana-Champaign, USA (Chair)
Torsten Hoefler ETH Zurich, Switzerland
Elizabeth Jessup University of Colorado, USA
Fred Johnson SAIC, USA
Alice Koniges LBNL, USA
Michael Resch HLRS, Germany
Rajeev Thakur Argonne National Laboratory, USA

BoFs Committee

David Bader Georgia Institute of Technology, USA
Natalie Bates Energy Efficient HPC Working Group, USA
Costas Bekas IBM Research Zurich, Switzerland
Alfred Geiger T-Systems Solutions for Research, Germany
Horst Gietl ISC Group, Germany (Chair)
Georg Hager Friedrich-Alexander-Universität Erlangen-Nürnberg,

Germany
Peter Kogge University of Notre Dame, USA
Julian Kunkel Deutsches Klimarechenzentrum, Germany
Jysoo Lee KISTI, Korea
Pekka Lehtovuori CSC – IT Center for Science, Finland
Cynthia R. McIntyre Washington Technology Partners, USA
Marek Michalewicz A*STAR Computational Resource Center, Singapore
Bernd Mohr Jülich Supercomputing Center, Germany
Jean-Philippe Nominé CEA, France
Marie-Christine Sawley Intel, France
Martin Schulz Lawrence Livermore National Laboratory, USA
Rainer Spurzem Chinese Academy of Sciences and University

of Heidelberg, Germany
Vladimir Voevodin Moscow State University, Russia
Heike Walther ISC Group, Germany
Michele Weiland EPCC - The University of Edinburgh, UK
Gerhard Wellein Friedrich-Alexander-Universität Erlangen-Nürnberg,

Germany
Jan Wender science+computing, Germany
Andreas Wierse SICOS BW, Germany

Workshop Committee

Rosa M. Badia BSC, Spain
Francois Bodin Irisa, France
Bronis R. de Supinski LLNL, USA
Craig Lucas NAG, UK

X Organization

Gerald F. Lofstead II SNL, USA
Naoya Maruyama RIKEN AICS, Japan
Bernd Mohr JSC, Germany (Co-chair)
Marie-Christine Sawley Intel, France
Seetharami R. Seelam IBM Research, USA
John Shalf NERC, USA
Michela Taufer University of Delaware, USA (Co-chair)
Antonino Tumeo PNNL, USA

Additional Reviewers for the Research Papers

Cihan Altinay The University of Queensland, Australia
Lucas Czech Heidelberg Institute for Theoretical Studies, Germany
Minh Dinh University of Queensland, Australia
Tingxing Dong AMD, USA
Joel Fenwick University of Queensland, Australia
Yuhua Guo Virginia Commonwealth University, USA
Dan Huang University of Central Florida, USA
Siddhartha Jana University of Houston, USA
Chao Jin University of Queensland, Australia
Hideyuki Kawashima University of Tsukuba, Japan
Jialin Liu Lawrence Berkeley National Lab, USA
Sarah Lutteropp Karlsruhe Institute of Technology, Germany
Radhika Nath Reading University, UK
Hoang Nguyen University of Queensland, Australia
Milos Puzovic STFC, Hartree, UK
Joseph Schuchart TU Dresden, Germany
Huadong Xia MicroStrategy, USA

Organization XI

Contents

Autotuning and Thread Mapping

An Analytical Model-Based Auto-tuning Framework
for Locality-Aware Loop Scheduling . 3

Rengan Xu, Sunita Chandrasekaran, Xiaonan Tian,
and Barbara Chapman

Performance, Design, and Autotuning of Batched GEMM for GPUs 21
Ahmad Abdelfattah, Azzam Haidar, Stanimire Tomov,
and Jack Dongarra

TCU: A Multi-Objective Hardware Thread Mapping Unit for HPC Clusters . . . 39
Ravi Kumar Pujari, Thomas Wild, and Andreas Herkersdorf

Data Locality and Decomposition

Dynamic Sparse-Matrix Allocation on GPUs . 61
James King, Thomas Gilray, Robert M. Kirby, and Matthew Might

An Efficient Parallel Load-Balancing Framework for Orthogonal
Decomposition of Geometrical Data . 81

Bruno R.C. Magalhães, Farhan Tauheed, Thomas Heinis,
Anastasia Ailamaki, and Felix Schürmann

Parallel Community Detection Algorithm Using a Data Partitioning
Strategy with Pairwise Subdomain Duplication . 98

Diana Palsetia, William Hendrix, Sunwoo Lee, Ankit Agrawal,
Wei-keng Liao, and Alok Choudhary

TiDA: High-Level Programming Abstractions for Data
Locality Management . 116

Didem Unat, Tan Nguyen, Weiqun Zhang, Muhammed Nufail Farooqi,
Burak Bastem, George Michelogiannakis, Ann Almgren, and John Shalf

Scalable Applications

OpenAtom: Scalable Ab-Initio Molecular Dynamics
with Diverse Capabilities . 139

Nikhil Jain, Eric Bohm, Eric Mikida, Subhasish Mandal, Minjung Kim,
Prateek Jindal, Qi Li, Sohrab Ismail-Beigi, Glenn J. Martyna,
and Laxmikant V. Kale

http://dx.doi.org/10.1007/978-3-319-41321-1_1
http://dx.doi.org/10.1007/978-3-319-41321-1_1
http://dx.doi.org/10.1007/978-3-319-41321-1_2
http://dx.doi.org/10.1007/978-3-319-41321-1_3
http://dx.doi.org/10.1007/978-3-319-41321-1_4
http://dx.doi.org/10.1007/978-3-319-41321-1_5
http://dx.doi.org/10.1007/978-3-319-41321-1_5
http://dx.doi.org/10.1007/978-3-319-41321-1_6
http://dx.doi.org/10.1007/978-3-319-41321-1_6
http://dx.doi.org/10.1007/978-3-319-41321-1_7
http://dx.doi.org/10.1007/978-3-319-41321-1_7
http://dx.doi.org/10.1007/978-3-319-41321-1_8
http://dx.doi.org/10.1007/978-3-319-41321-1_8

SPRITE: A Fast Parallel SNP Detection Pipeline . 159
Vasudevan Rengasamy and Kamesh Madduri

Machine Learning

Predictive Modeling for Job Power Consumption in HPC Systems 181
Andrea Borghesi, Andrea Bartolini, Michele Lombardi, Michela Milano,
and Luca Benini

Towards Machine Learning on the Automata Processor 200
Tommy Tracy II, Yao Fu, Indranil Roy, Eric Jonas,
and Paul Glendenning

AutoMOMML: Automatic Multi-objective Modeling
with Machine Learning . 219

Prasanna Balaprakash, Ananta Tiwari, Stefan M. Wild,
Laura Carrington, and Paul D. Hovland

Datacenters and Cloud

Supercomputing Centers and Electricity Service Providers:
A Geographically Distributed Perspective on Demand Management
in Europe and the United States . 243

Tapasya Patki, Natalie Bates, Girish Ghatikar, Anders Clausen,
Sonja Klingert, Ghaleb Abdulla, and Mehdi Sheikhalishahi

Resource Management for Running HPC Applications in Container Clouds . . . 261
Stephen Herbein, Ayush Dusia, Aaron Landwehr, Sean McDaniel,
Jose Monsalve, Yang Yang, Seetharami R. Seelam, and Michela Taufer

Communication Runtime

Mitigating MPI Message Matching Misery . 281
Mario Flajslik, James Dinan, and Keith D. Underwood

INAM2: InfiniBand Network Analysis and Monitoring with MPI 300
Hari Subramoni, Albert Mathews Augustine, Mark Arnold,
Jonathan Perkins, Xiaoyi Lu, Khaled Hamidouche,
and Dhabaleswar K. Panda

Comparing Runtime Systems with Exascale Ambitions Using the Parallel
Research Kernels . 321

Rob F. Van der Wijngaart, Abdullah Kayi, Jeff R. Hammond,
Gabriele Jost, Tom St. John, Srinivas Sridharan, Timothy G. Mattson,
John Abercrombie, and Jacob Nelson

XIV Contents

http://dx.doi.org/10.1007/978-3-319-41321-1_9
http://dx.doi.org/10.1007/978-3-319-41321-1_10
http://dx.doi.org/10.1007/978-3-319-41321-1_11
http://dx.doi.org/10.1007/978-3-319-41321-1_12
http://dx.doi.org/10.1007/978-3-319-41321-1_12
http://dx.doi.org/10.1007/978-3-319-41321-1_13
http://dx.doi.org/10.1007/978-3-319-41321-1_13
http://dx.doi.org/10.1007/978-3-319-41321-1_13
http://dx.doi.org/10.1007/978-3-319-41321-1_14
http://dx.doi.org/10.1007/978-3-319-41321-1_15
http://dx.doi.org/10.1007/978-3-319-41321-1_16
http://dx.doi.org/10.1007/978-3-319-41321-1_16
http://dx.doi.org/10.1007/978-3-319-41321-1_17
http://dx.doi.org/10.1007/978-3-319-41321-1_17

Intel Xeon Phi

High Order Seismic Simulations on the Intel Xeon Phi Processor
(Knights Landing) . 343

Alexander Heinecke, Alexander Breuer, Michael Bader,
and Pradeep Dubey

Leveraging a Cluster-Booster Architecture for Brain-Scale Simulations 363
Pramod Kumbhar, Michael Hines, Aleksandr Ovcharenko,
Damian A. Mallon, James King, Florentino Sainz, Felix Schürmann,
and Fabien Delalondre

Manycore Architectures

Efficient and Predictable Group Communication for Manycore NoCs 383
Karthik Yagna, Onkar Patil, and Frank Mueller

Distributed Job Allocation for Large-Scale Manycores 404
Subramanian Ramachandran and Frank Mueller

Extreme-Scale Computations

Many-Core Acceleration of a Discrete Ordinates Transport Mini-App
at Extreme Scale . 429

Tom Deakin, Simon McIntosh-Smith, and Wayne Gaudin

Efficiency of High Order Spectral Element Methods on Petascale
Architectures . 449

Maxwell Hutchinson, Alexander Heinecke, Hans Pabst, Greg Henry,
Matteo Parsani, and David Keyes

Resilience

Scalability of Partial Differential Equations Preconditioner Resilient
to Soft and Hard Faults . 469

Karla Morris, Francesco Rizzi, Khachik Sargsyan, Kathryn Dahlgren,
Paul Mycek, Cosmin Safta, Olivier Le Maître, Omar Knio,
and Bert Debusschere

Multi-versioning Performance Opportunities in BGAS System
for Resilience . 486

Nan Dun, Dirk Pleiter, Aiman Fang, Nicolas Vandenbergen,
and Andrew A. Chien

Author Index . 505

Contents XV

http://dx.doi.org/10.1007/978-3-319-41321-1_18
http://dx.doi.org/10.1007/978-3-319-41321-1_18
http://dx.doi.org/10.1007/978-3-319-41321-1_19
http://dx.doi.org/10.1007/978-3-319-41321-1_20
http://dx.doi.org/10.1007/978-3-319-41321-1_21
http://dx.doi.org/10.1007/978-3-319-41321-1_22
http://dx.doi.org/10.1007/978-3-319-41321-1_22
http://dx.doi.org/10.1007/978-3-319-41321-1_23
http://dx.doi.org/10.1007/978-3-319-41321-1_23
http://dx.doi.org/10.1007/978-3-319-41321-1_24
http://dx.doi.org/10.1007/978-3-319-41321-1_24
http://dx.doi.org/10.1007/978-3-319-41321-1_25
http://dx.doi.org/10.1007/978-3-319-41321-1_25

Autotuning and Thread Mapping

An Analytical Model-Based Auto-tuning
Framework for Locality-Aware Loop Scheduling

Rengan Xu1(B), Sunita Chandrasekaran2, Xiaonan Tian1,
and Barbara Chapman1

1 Department of Computer Science, University of Houston, Houston, TX, USA
{rxu6,xtian2,bchapman}@uh.edu

2 Department of Computer and Information Sciences,
University of Delaware, Newark, DE, USA

schandra@udel.edu

Abstract. HPC developers aim to deliver the very best performance. To
do so they constantly think about memory bandwidth, memory hierar-
chy, locality, floating point performance, power/energy constraints and
so on. On the other hand, application scientists aim to write perfor-
mance portable code while exploiting the rich feature set of the hardware.
By providing adequate hints to the compilers in the form of directives
appropriate executable code is generated. There are tremendous benefits
from using directive-based programming. However, applications are also
becoming more and more complex and we need sophisticated tools such
as auto-tuning to better explore the optimization space. In applications,
loops typically form a major and time-consuming portion of the code.
Scheduling these loops involves mapping from the loop iteration space
to the underlying platform - for example GPU threads. The user tries
different scheduling techniques until the best one is identified. However,
this process can be quite tedious and time consuming especially when it
is a relatively large application, as the user needs to record the perfor-
mance of every schedule’s run. This paper aims to offer a better solution
by proposing an auto-tuning framework that adopts an analytical model
guiding the compiler and the runtime to choose an appropriate schedule
for the loops, automatically and determining the launch configuration for
each of the loop schedules. Our experiments show that the predicted loop
schedule by our framework achieves the speedup of 1.29x on an average
against the default loop schedule chosen by the compiler.

1 Introduction

Heterogeneous architectures that comprise of CPU processors and computational
accelerators such as GPUs have been increasingly adopted for scientific com-
puting. The low-level programming models CUDA and OpenCL for GPUs offer
users programming interfaces with execution models closely matching that of
GPU architectures. Effectively using these interfaces for creating highly optimized
applications require programmers to thoroughly understand the underlying archi-
tecture, as well as significantly change the program structures and algorithms.
c© Springer International Publishing Switzerland 2016
J.M. Kunkel et al. (Eds.): ISC High Performance 2016, LNCS 9697, pp. 3–20, 2016.
DOI: 10.1007/978-3-319-41321-1 1

4 R. Xu et al.

This affects both productivity and performance. Standardized directive-based
models such as OpenACC [3] and OpenMP for accelerators [5] require develop-
ers to insert directives and runtime calls into the existing source code offloading
portions of Fortran or C/C++ codes to be executed on accelerators.

Directives are high-level language constructs that programmers can use to
provide useful hints to compilers to perform certain transformations and opti-
mizations on the annotated code region. The use of directives can significantly
improve programming productivity. Users can still achieve high performance of
their program comparable to code written in CUDA or OpenCL, subjected to
the requirements that a ‘careful’ choice of directives and compiler optimization
strategies be made. One such scenario encountered quite commonly in a program
is loop scheduling.

Loop scheduling defines the mapping of loop nest(s) to the underlying archi-
tecture. Consider the architecture is a GPU that consists of a number of GPU
threads with complex topology settings; it is a daunting task to determine map-
ping strategies of the loop nest to those threads in order to achieve better per-
formance. Different loop schedules reflect different memory access orders. Loop
transformations change memory access orders that results in exploiting better
locality - temporal and spatial. The reuse distance model [4] is a classic model
predominantly used for CPUs to capture both types of locality in CPU archi-
tectures. However we cannot apply this model directly on GPUs due to the sig-
nificant architectural differences between the CPUs and the GPUs. This paper
aims to extend the reuse model to suit its applicability for GPUs.

The main contributions of this paper include:

– To the best of our knowledge, we are the first to propose a locality-aware
auto-tuning framework to address the GPU loop scheduling issue.

– In the proposed framework, we extend the classic reuse distance model to
GPU architecture in order to estimate GPU cache hit rate accurately.

– Our results demonstrate that our proposed framework chooses the loop sched-
ule producing better performance compared to the default loop schedule cho-
sen by default by the compiler.

The organization of this paper is as follows: Sect. 2 gives an overview of GPU
architecture and OpenACC model. Section 3 provides a motivating example illus-
trating the performance impact of different loop schedules. In Sect. 4, we explain
in detail the proposed auto-tuning framework on how to choose a loop sched-
ule with better locality. Performance results are discussed in Sect. 5. Section 6
highlights the related work in this area. We conclude our work in Sect. 7.

2 GPU Architecture and OpenACC Directives

GPU architectures differ significantly from that of traditional processors.
Employing a Single Instruction Multiple Threads (SIMT) architecture, NVIDIA
GPUs have hundreds of cores that can process thousands of software threads
simultaneously. GPUs organize both hardware cores and software threads into

An Analytical Model-Based Auto-tuning Framework 5

two-level of parallelism. Hardware cores are organized into an array of Streaming
Multiprocessors (SMs), each SM consisting of a number of cores named as Scalar
Processors (SPs). Each SM has its own L1 cache which is not cache coherent,
and all SMs share an unified L2 cache.

The compute-intensive part of an application, called kernel, is offloaded to
GPUs for parallel execution. The GPU launches massive threads to execute that
kernel. The thread unit in GPU scheduling is called a warp (a warp size has 32
threads for NVIDIA GPUs). Multiple warps form a thread block and multiple
thread blocks form a grid. Both the thread block and grid can be 1D, 2D, or
3D. For programmers, the challenge to efficiently utilize the massive parallel
capabilities of GPUs is to map the kernels to the thread hierarchy, and efficient
data layout in the GPU memory hierarchy to maximize coalesced memory access
for the threads.

Directive-based high-level programming models for accelerators, e.g. Ope-
nACC and OpenMP extensions for accelerators, have been designed to address
the programmability challenge of GPUs. Using these programming models, pro-
grammers insert compiler directives into a program to annotate portions of code
to be offloaded onto accelerators for executions. This approach relies heavily
on the compiler to generate efficient code for thread mapping and data layout.
It could be potentially challenging to extract the optimal performance using
such an approach rather than using other explicit programming models. How-
ever, the directive-based models simplify programming on heterogeneous systems
thus saving development time, while also preserving the original code structure
assisting in code portability.

OpenACC allows users to specify three levels of parallelism in a data parallel
region: gang, worker and vector parallelism to map the loop nests to the multiple-
level thread hierarchy of GPUs. Programmer provides hints to map these three-
level parallelism to GPU threads but the effectiveness of the mapping relies
on the compiler and runtime implementation strategies. We use a high quality,
open-source, validated OpenACC compiler called OpenUH [18]. Adhering to
OpenACC standards, this compiler maps “gang” to thread block, “worker” to
Y-dimension of thread block and “vector” to X-dimension of thread block [3].

3 A Motivating Example

Matrix multiplication has been widely used in scientific computing. We use this
application to illustrate the importance of loop scheduling in GPU. The square-
matrix multiplication we used is C = AB where the size of matrix A, B, and C is
n×n. The elements in matrix C are Ci,j =

∑n
k=1 ai,kbk,j where both the indices i

and j loops from 1 through n. A double nested loop was constructed to solve this
matrix multiplication. Multiple ways could be adopted to map this loop nest to
the underlying GPU threads using directive-based programming model. Table 1
shows how this loop nest could be mapped in so many different ways to GPU
threads. The table also indicates different launch configurations. The launch
configuration specifies the thread block and grid shape and size that are used to

6 R. Xu et al.

Table 1. The performance difference for matrix multiplication with different loop
schedules and launch configurations

Loop schedule number Loop schedule detail Performance (ms)

0 bx(1)/tx(128) 3.24

1 by(1)/bx(1) tx(128) 3.36

2 by(1) ty(128)/bx(1) tx(1) 11.04

3 by(1) ty(64)/bx(1) tx(2) 5.87

4 by(1) ty(32)/bx(1) tx(4) 4.28

5 by(1) ty(16)/bx(1) tx(8) 3.47

6 by(1) ty(8)/bx(1) tx(16) 3.09

7 by(1) ty(4)/bx(1) tx(32) 3.16

8 by(1) ty(2)/bx(1) tx(64) 3.19

9 by(1) ty(1)/bx(1) tx(128) 3.28

run a loop. All of the 10 loop schedules in the table use only one thread block
with 128 threads. However, since the loop nest is mapped to threads differently,
there are differences in their performance. The loop schedule 0 is the default loop
schedule chosen by the compiler. However, we notice that there are other loop
schedules demonstrating better performance than the default schedule that the
compiler chose. What are the strategies to choose an optimal or sub-optimal loop
schedule and its corresponding launch configuration? Our proposed auto-tuning
framework discussed in the rest of the paper provides suitable proven answers
to this question.

We would like to keep the notations used for our framework as general as
possible and not tie it to any specific programming model/language:

– bx, by and bz: denote X, Y and Z dimension of the grid, respectively
– tx, ty and tz: denote X, Y and Z dimension of the thread block, respectively
– num bx, num by and num bz: denote the size of X, Y and Z dimension of the

grid, respectively
– num tx, num ty and num tz: denote the size of X, Y and Z dimension of the

thread block, respectively

4 Auto-tuning for GPU Loop Scheduling

4.1 The Auto-tuning Framework

In this section, we describe our auto-tuning framework and the analytical model
proposed that enables the identification of the appropriate loop schedule, and
the launch configuration used for each of the loop schedules. Figure 1 gives an
overview of the auto-tuning framework. The compiler generates multiple kernel
files with different loop schedules. The loop schedule is chosen from a set of

An Analytical Model-Based Auto-tuning Framework 7

generate kernels with
different schedules

choose launch

generate sequential
memory trace

thread scheduling

memory coalescing

memory access
cost model

GPU cache model

pick the optimal loop
schedule and launch

launch

space

loop schedule
patterns

Compiler

Framework

Fig. 1. The framework of auto-tuning for loop scheduling

loop schedule patterns which covers both double and triple nested loops. The
framework chooses a launch configuration from the launch configuration search
space which depends on the iteration space of each loop. The search of launch
configuration is guided by the rule of maximizing the GPU occupancy. Before
applying the framework, an application needs to run once on CPU to generate a
sequential memory trace. Based on the loop schedule and the launch configura-
tion, all memory accesses in the memory trace are assigned to GPU threads. This
step defines the access of memory references for GPU threads. Next, the thread
scheduling defines the execution order of the memory accesses in the trace.

In the execution of memory accesses, the memory coalescing is very critical.
In GPU, a warp (the smallest execution unit) defines a set of consecutive threads.
If consecutive threads access consecutive memory addresses, then the memory
accesses are coalesced meaning they are merged into fewer memory transactions.
We simulate the memory coalescing behavior in GPU architecture in our model.
For instance, if the memory addresses referenced by all threads in a warp are in
one cache line, then these memory access requests will be merged into only one
memory request.

After memory requests are coalesced, the memory trace is fed into the mem-
ory access cost model where a memory access cost is computed, with the cache
model. This process is repeated until the framework iterates over all loop sched-
ules and the launch configuration space. Finally, the framework picks the optimal
loop schedule and the corresponding launch configuration that has the minimal
memory access cost. The compiler then recompiles the same program using the
selected loop schedule. The major components in this framework will be dis-
cussed in the following sub-sections:

8 R. Xu et al.

4.2 Loop Schedule Patterns

We only consider double and triple nested loops. Note that here the loop nest
level means parallelizable loop nest. For instance, in the body of the parallelizable
loop nest, there could be another nested loop that is sequentially executed. In
the current GPU programming models such as OpenACC, the maximum level of
the parallelizable loop nest is three. If a nested loop has more levels to parallelize,
it can be collapsed into double or triple nested loop.

Listing 1.1 shows a double nested loop example. Using the notations described
in the previous Sect. 3, we now introduce three loop schedules for the double
nested loop (use x-loop for the inner loop and y-loop for the outer loop):

– schedule 2 1: x-loop is mapped to the X-dimension of a thread block, and
y-loop is mapped to the X-dimension of the grid.

– schedule 2 2: x-loop is mapped to X-dimension of both thread block and grid,
and y-loop is mapped to Y-dimension of the grid.

– schedule 2 3: x-loop is mapped to X-dimension of both thread block and grid,
and y-loop is mapped to Y-dimension of both thread block and grid.

These loop schedule directives are implicitly added by the compiler. The graph-
ical explanation for these loop schedules are shown in Figs. 2, 3 and 4. The
detailed mapping function from the loop iterations to GPU threads for double
nested loop are shown in Listings 1.3, 1.4 and 1.5. The purpose of schedule 2 2
is to overcome the GPU hardware threads limit within a block. In both schedule
2 1 and 2 2, the threads computing the outer loop are in different thread blocks,
which are likely to be scheduled to different GPU SMs (Streaming Multiproces-
sor). This may not exploit the data locality efficiently. So how do we improve
data locality? We consider the loop schedule 2 3 that allows some threads com-
puting the outer loop iterations to remain in the same block thus improving data
locality. For triple nested loop, a code example is shown in Listing 1.2 and other
similar loop schedules are designed. Because of the space limit, we only illustrate
the graphical representation for one loop schedule in Fig. 5, in which x-loop, y-
loop and z-loop refer to the inner most loop, the middle loop and the outer
most loop, respectively. The loop schedule in Fig. 5 means x-loop is mapped to
X-dimension of thread block, y-loop is mapped to Y-dimension of thread block
and z-loop is mapped to X-dimension of the grid.

#pragma acc loop
for(j = jstart; j < jend; j++){

#pragma acc loop
for(i = istart; i < iend; i++){

......
}

}

Listing 1.1. Double nested loop
example

#pragma acc loop
for(k = kstart; k < kend; k++){

#pragma acc loop
for(j = jstart; j < jend; j++){

#pragma acc loop
for(i = istart; i < iend; i++){

......
}

}
}

Listing 1.2. Triple nested loop
example

An Analytical Model-Based Auto-tuning Framework 9

#pragma acc loop bx(num_bx)
for(j = jstart; j < jend; j++){

#pragma acc loop tx(num_tx)
for(i = istart; i < iend; i++){

......
}

}
mapping function to CUDA:

j = jstart + blockIdx.x + t ∗ gridDim.x, (t = 0, 1, ...,
jend−jstart
gridDim.x − 1)

i = istart + threadIdx.x + t ∗ blockDim.x, (t = 0, 1, ...,
iend−istart
blockDim.x − 1)

Listing 1.3. Loop schedule 2 1

#pragma acc loop by(num_by)
for(j = jstart; j < jend; j++){

#pragma acc loop bx(num_bx) tx(num_tx)
for(i = istart; i < iend; i++){

......
}

}
mapping function to CUDA:
j = jstart + blockIdx.y + t ∗ gridDim.y

(t = 0, 1, ...,
jend−jstart
gridDim.y − 1)

i = istart + threadIdx.x + blockIdx.x ∗ blockDim.x + t ∗ blockDim.x ∗ gridDim.x

(t = 0, 1, ...,
iend−istart

blockDim.x∗gridDim.x − 1)

Listing 1.4. Loop schedule 2 2

#pragma acc loop by(num_by) ty(num_ty)
for(j = jstart; j < jend; j++){

#pragma acc loop bx(num_bx) tx(num_tx)
for(i = istart; i < iend; i++){

......
}

}
mapping function to CUDA:
j = jstart + threadIdx.y + blockIdx.y ∗ blockDim.y + t ∗ blockDim.y ∗ gridDim.y

(t = 0, 1, ...,
jend−jstart

blockDim.y∗gridDim.y − 1)

i = istart + threadIdx.x + blockIdx.x ∗ blockDim.x + t ∗ blockDim.x ∗ gridDim.x

(t = 0, 1, ...,
iend−istart

blockDim.x∗gridDim.x − 1)

Listing 1.5. Loop schedule 2 3

Fig. 2. Loop schedule 2 1 Fig. 3. Loop schedule 2 2

10 R. Xu et al.

Fig. 4. Loop schedule 2 3 Fig. 5. Loop schedule 3 1

4.3 Thread Scheduling

The memory trace is defined for how the memory is accessed by threads, which
is further defined for how the thread blocks are scheduled into different SMs and
how the threads are scheduled within each SM. When the GPU launches a grid
of threads for a kernel, that grid is divided into ‘waves’ of thread blocks. For
example let us assume there are 15 SMs. Each SM has 2 thread blocks hence
30 thread blocks in total. Thread block 0 and thread block 15 will be assigned
to SM0. Thread block 1 and thread block 16 will be assigned to SM1. If there
was a scenario with 60 thread blocks and each SM allows at most 2 blocks (30
blocks for 15 SMs), we will need to assign these blocks into two waves; 30 thread
blocks to the first wave and the other 30 thread blocks to the second wave. We
use round-robin scheduling mechanism to schedule the thread blocks to all SMs
in all waves. The number of threads scheduled is independent of the grid size.
For instance, if the grid size is 2048 and only 128 threads are scheduled, then
each thread will process 2048/128=16 elements.

Figure 6 shows thread scheduling mechanism. It highlights two waves sched-
uled to one SM. Each wave has two thread blocks; each thread block has two
warps; each warp has two threads; each thread has five memory accesses. We
access the memory references in a round-robin manner. This memory access
pattern gives us the memory trace.

The equation to calculate the number of waves is given in Eq. 1. The number
of waves is obtained by dividing the total number of thread blocks by the active
thread blocks per SM times the number of SMs. The active blocks per SM
is given in Eq. 2. For instance, in Kepler GPU, the max threads per SM is
2048 and max thread blocks per SM is 16 and upon knowing the number of
thread blocks in the kernel, which is specified by the launch configuration, we
can determine the number of waves.

waves =
thread blocks

active blocks per SM × #SMs
(1)

An Analytical Model-Based Auto-tuning Framework 11

SM waves

thread blocks

warps
threads memory accesses

Fig. 6. Thread scheduling used in the auto-tuning framework

active blocks per SM =
min(max threads per SM/block size,max thread blocks per SM) (2)

4.4 Memory Access Cost Model

After memory coalescing, the memory trace is fed into the memory access cost
model which computes the memory access cost for a specific loop schedule and
launch configuration. The metric used in this model is presented as

Costmem =
#levels∑

i

(Ni × Li) (3)

where Ni means the number of transactions happened in level i of the memory
hierarchy, and Li means the latency of memory level i.

The rationale behind this metric is the memory hierarchy in GPU architec-
ture which is shown in Fig. 7. When the kernel needs to access a global memory
address, it needs to load that address from L1 cache. If the data is already in
L1 cache, then the access is a hit. If the data is not in L1 cache, then the access
is a miss and it needs to load the data from L2 cache. If the data is not in L2
cache, then it needs to further load the data from DRAM. So the formula after
expanding the Eq. 3 is shown in Eq. 4, which is the sum of memory access cost
from L1, L2 and DRAM. The formula for calculating each individual cost is
given in Eqs. 5, 6 and 7. The ‘4’ in Eqs. 6 and 7 explains the number of global
memory load transaction that is increased by 1 every 128 bytes in L1 cache,
but every 32 bytes in L2 cache and DRAM. Since the memory access latency
order from high to low - DRAM, L2 cache and L1 cache, we would like to access
higher order memory as less as possible. In other words, we would like to have
few global loads and low L1 and L2 cache miss rates as possible. When there is
intra-thread data reuse or inter-thread data reuse, different loop schedules have

12 R. Xu et al.

different cache miss rates, and finally the performance of the kernels using those
loop schedules would be different.

Costmem = MemL1 + MemL2 + MemDRAM (4)

MemL1 = global loads ∗ (1 − L1 miss rate) ∗ L1 latency (5)

MemL2 = global loads ∗ L1 miss rate ∗ 4 ∗ L2 latency (6)

MemDRAM = global loads ∗L1 miss rate ∗L2 miss rate ∗ 4 ∗DRAM latency
(7)

K
er

ne
l

Texture

Global
read only

Global

Local

Shared

Texture
cache

L1
cache

Shared
memory

L2
cache

DRAM

global loads l2 loads DRAM loads

Fig. 7. GPU memory hierarchy

0 1 2 3 4 5 6 7

0 1 2 3

1 2 3 4

timestamp

Base:

Modeled:

warp0 warp1

warp0

warp1

Fig. 8. L1 cache modeling

The key factors of the model are to estimate the global memory loads, L1 and
L2 cache miss rates. To estimate L1 and L2 cache miss rate, we use reuse distance
model [4]. It is a classic model to model the cache misses in CPU applications.
The primary reasons for cache misses are cold/compulsory, conflict, capacity
misses, famously termed as the 3 C model. The cold miss occurs when there is
no data in the cache, no matter how big the cache is. The conflict miss usually
occurs in direct-mapped caches and set-associative caches. Two cache lines may
map to the same cache slot even though there may be empty slots. The capacity
miss happens when there are no more available slots in the cache. The reuse
distance model assumes that a LRU replacement fully associative cache is used.
So it can only predict cold miss and capacity miss.

To the best of our knowledge, there is no existing work that discusses GPU
L2 cache modeling. We found a couple of other related research work discussing
GPU L1 cache modeling. Tang et al. [17] applied the reuse distance theory to
model the GPU L1 cache. However, there were a few weaknesses and limitations
in their approach: (1) they assumed only one thread block is active in one SM
which is not true in the real hardware; (2) they modeled the cold miss and conflict
miss but did not model capacity miss, however some research have shown that
only a minority of the misses are conflict misses in both CPU [6] and GPU [14];
(3) they validated their model against a GPU simulator which is not a real
hardware per se. Nugteren et al. [14] also used the reuse distance to model GPU
L1 cache. However, in their implementation, all thread blocks were scheduled into

An Analytical Model-Based Auto-tuning Framework 13

only one SM which is not the case in a real hardware. Our thread scheduling
mechanism overcomes the drawbacks of the above two papers discussed.

The reuse distance theory can measure both spatial locality and temporal
locality if the distance is measured with cache line granularity. The spatial local-
ity defines that the nearby memory addresses are likely to be referenced again
in the near future. The temporal locality defines that the same data is likely to
be referenced again in the near future.

The spatial locality is reflected by the memory coalescing level in the GPU
kernel. If a GPU kernel has coalesced memory accesses, then it has better spatial
locality than the kernel that has uncoalesced memory accesses. This is because
the coalesced memory accesses allow the nearby data elements to be accessed at
the same time the current data is accessed.

The temporal locality is reflected by the loop schedule. Different loop sched-
ules pose different temporal locality since the execution order of the threads
are different. The reuse distance theory can capture both the spatial locality
and temporal locality effectively. Table 2 shows a reuse distance example. In this
example, assume the cache line is of 16 bytes. If the data is accessed first or when
a cold miss happens, the reuse distance is recorded as ∞. The reuse distance is
a metric that defines the distinct memory accesses between the current memory
access and the last access. If the reuse distance is larger or equal to the total
number of cache lines, then a data reference is missed in the cache. The cache hit
rate can be obtained by diving the hits by the total number of hits and misses.

Table 2. Reuse distance example. Assume cache line has 16 bytes and the cache size
is 32 bytes. The reuse distance is based on cache line granularity

Address 0 8 16 96 8 16 17 104

Cache line 0 0 1 6 0 1 1 6

Reuse distance ∞ 0 ∞ ∞ 2 2 0 2

Cache hit/miss Miss Hit Miss Miss Miss Miss Hit Miss

Although the classic reuse distance model can predict the cache miss rate
in CPU, it cannot be simply applied as-is on the GPU since the architectures
are significantly different. The most important difference is that in GPU, the
threads in a warp execute in lock-step manner and therefore memory coalesc-
ing is important in the memory accesses of a warp. If the memory addresses
referenced by all the threads in a warp are in a cache line, then the memory
accesses are merged into one memory access. Another difference is the paral-
lel processing feature including parallel memory processing in GPU. Therefore
in our implementation, the L1 modeling includes parallel memory processing.
But we also compare it with the base implementation. The difference of “Base”
and “Modeled” are shown in Fig. 8. In Base version, the memory coalescing is
applied to the memory trace. Then the memory requests from different warps
are processed in order. If the memory requests in a warp are not coalesced, then

14 R. Xu et al.

they are also processed in order within a warp. In Modeled version, we also apply
memory coalescing, but we further add a timestamp. The timestamp is added
to the following warps but it is also added to the threads in the same warp if
their memory requests are not coalesced.

In the reuse distance model implementation, a key factor is the input, which
is a memory trace. In our analytical model, the memory traces are different
for different loop schedules. This is because different loop schedules assign the
loop iterations into GPU threads differently, therefore the memory traces are
different, and eventually the cache misses are different.

For L2 cache modeling, we must first apply L1 cache modeling for all SMs
and record the cache misses in their individual list. Then the memory trace is
processed in round-robin manner which is similar to the description in Fig. 6.

5 Performance Evaluation

The experimental platform is Intel Xeon processor E5520 with frequency
2.27 GHz and 32 GB main memory and an Nvidia Quadro K6000 GPU card
which uses K40 architecture. L1 and L2 cache sizes are 16 KB and 1.5 MB,
respectively. The cache line size for both L1 and L2 is 128 bytes. The proposed
framework is implemented within the OpenUH compiler. The actual L1 and L2
cache hit rates are obtained from l1 cache global hit rate and l2 l1 read hit rate
metrics in CUDA profiler nvprof and the actual global memory loads are obtained
from gld transactions metric.

To evaluate our auto-tuning framework, we consider several benchmarks:
two synthetic benchmarks (x-reuse and y-reuse), four from kernelGen OpenACC
Performance Test Suite [2] (Matrix Multiplication, Jacobi, Laplacian and Diver-
gence), one from CUDA SDK (Matrix Transpose) and one from EPCC Ope-
nACC benchmarks [1] (Himeno). We test different data reuse patterns using
the two synthetic benchmarks. Figure 9 shows these two benchmarks along with
another pattern i.e. xy-reuse, a classic Matrix Multiplication case. The “x” here
refers to the inner loop and “y” refers to the outer loop in a double nested loop.
In the x-reuse benchmark, the inner loop reuses the common data; while in the
y-reuse benchmark, the outer loop reuses the common data. The third case is
the xy-reuse where both the inner and the outer loop reuse some common data.

x-reuse y-reuse

Fig. 9. Data reuse patterns

An Analytical Model-Based Auto-tuning Framework 15

Figure 10 shows results for L1 cache hit modeling for some of the bench-
marks discussed above. Figure 10(a) and (b) are results for the two synthetic
benchmarks and Fig. 10(c) and (d) are results for a couple of benchmarks from
kernelGen suite. (Results for other benchmarks were quite similar, so due to
space constraints we have not included them in the paper). The results indicate
that modeled result is more accurate than “Base” version since it considers the
parallel memory processing. Figure 10(a) shows that cache hit rates are high for
all loop schedules. This is because for all iterations in x loop, the data they share
are in one row and in the same contiguous memory section. Figure 10(b) shows
that the shared data are in the same column and therefore they are not contigu-
ous in memory. This leads to relatively lower cache hit. Figure 10(c), results for
Matrix Multiplication, show that there is data reuse in both x and y loops and
therefore the shape of cache hit results seem like a combination of x-reuse and
y-reuse. Figure 10(d), results for Jacobi show that, the overall hit rate is slightly
lesser than x-reuse. This is because the data, the threads share are stencil-like.
For instance considering a 4-point stencil, for different points, the data that the
threads access are not in contiguous memory locations, however for a specific
point the data, the threads share, are still in contiguous memory location. As
a result the cache hit rates are still relatively high. If the cache hit is high, the
indication is that the threads will take lesser time to fetch data from high-latency
memory.

The GPU L2 cache modeling result is shown in Fig. 11. We show the results
for partial benchmarks including Laplacian, Divergence and Himeno. The results
indicate that some loop schedules have low L2 cache hit while other loop sched-
ules have high L2 cache hit. This illustates the importance of choosing the right
loop schedules. The error percentage between the actual and the modeled L2
hit is only 4.37 %, 13.72 % and 2.76 % for Laplacian, Divergence and Himeno,
respectively. The low error percentages indicate that our model can capture the
L2 locality for different loop schedules accurately.

Figure 12 shows the global memory loads of kernels for the four benchmarks
discussed in Fig. 10. The plots show that the modeled loads (before kernel launch)
are exactly the same as the actual loads (profiled results) thus indicating that our
proposed model is accurately predicting the memory loads. Figure 12(b) indicates
that for y-reuse synthetic benchmark, no matter what the loop schedule is, the
memory access appears to be fully coalesced leading to the same number of global
memory loads all the time. In the other three plots, the tallest bars indicate the
loop schedules for which the memory accesses are fully uncoalesced, while the
shortest bars indicate the loop schedules for which memory accesses are fully
coalesced, and the bars between the tallest and the shortest bars indicate partial
memory coalescing. (Results for other benchmarks in kernelGen suite and EPCC
were quite similar, so due to space constraints we have not included them in the
paper). Higher the global memory loads, higher the time taken by the threads
to process the memory requests.

Figure 13 shows several plots that demonstrate close correlation of kernel
performance and the memory access cost modeling. We use the coefficient of

16 R. Xu et al.

Fig. 10. GPU L1 cache modeling (Color figure online)

Fig. 11. GPU L2 cache modeling (Color figure online)

determination R2 to measure the strength of the relationship between the kernel
performance and the memory access cost in the model. R2 is a popular indicator
on how well a variable can be used to predict the value of another variable. The
values of R2 range from 0 (poor indicator) to 1 (excellent predictor). The R2

value for all benchmarks are listed in Table 3 and the average value is 0.93 indi-
cating the strong correlation between the kernel performance and the memory
access cost modeling. Based on the memory access cost modeling, an optimal or a
sub-optimal loop schedule is chosen by the framework. For all benchmarks tested,
the speedup of the loop schedule chosen by the model against the default loop

An Analytical Model-Based Auto-tuning Framework 17

Fig. 12. Global memory loads (Color figure online)

schedule chosen by the compiler are listed in Table 3 and the average speedup is
1.29x. This proves the effectiveness of the proposed framework.

6 Related Work

To the best of our knowledge, there were only a few similar research on how to solve
the loop scheduling issues on a GPU. Siddiqui et al. [16] presented how to choose
the optimal loop schedule with machine learning approach. They used exhaustive
search to find the optimal and sub-optimal loop schedules for the training data
sets and stored those information into a database. For the new test benchmark,
they found the closest training benchmark and applied its loop schedules to that
test benchmark. Their approach, however, could only be used for different prob-
lem sizes in the same application because it was difficult to define how close two
applications are. Instead of exhaustive search, Montgomery et al. [13] used more
efficient search approach such as direct search to find the optimal loop schedule.
Their approach required to execute the kernels with different loop schedules. Our
approach, however, only needs to run the kernel once on CPU because the model
predicts the optimal loop schedule before the kernel’s execution on GPU. This is
one of the major highlights of our proposed framework.

18 R. Xu et al.

Fig. 13. Plots demonstrating correlation of performance vs memory access cost mod-
eling (Color figure online)

Table 3. Evaluation results

Benchmark Source Nested loop type R2 Speedup

x-reuse Synthetic Double 0.927 1.0

y-reuse Synthetic Double 0.683 2.74

Matrix multiplication Performance test suite Double 0.913 1.03

Jacobi Performance test suite Double 0.998 1.1

Laplacian Performance test suite Triple 0.999 1.05

Divergence Performance test suite Triple 0.999 0.96

Matrix transpose CUDA SDK Double 0.943 1.37

Himeno EPCC Triple 0.994 1.09

An Analytical Model-Based Auto-tuning Framework 19

Lee et al. [11] presented a framework to automatically and efficiently map
a nested loop to GPU using Domain Specific Language (DSL). The parameters
that form the search space included the dimension of the nested loop, the block
size and degree of parallelism, which is essentially the grid size. They applied
some hard constraints and soft constraints to restrict the search space. For all
loop schedules we consider, many of them have the same software constraints
such as the level of memory coalescing. The cache locality, which is a key factor,
was not considered in their model.

We looked into some of the other related work on auto-tuning, [8,9,12]; these
papers obtained the performance of auto-tuning the kernels by running those ker-
nels. Our goal is different from them since we use an analytical model to predict the
loop schedule without running the kernel. Hu et al. [10] and Baghsorkhi et al. [5]
used analytical models to predict the performance of a kernel. Our work, however,
do not need to predict the execution time of a kernel accurately because the com-
putation part is the basically the same for all loop schedules and the difference
of the performance part is the memory cost. Other research include the effect of
cache on GPU applications. Picchi and Zhang [15] applied L2 cache locking mech-
anism to improve GPU application performance. Choi and Kim [7] analyzed the
L1 and L2 cache behavior for some benchmarks with a GPU simulator.

7 Conclusion and Future Work

This paper discusses the importance of auto-tuning loop scheduling for GPU
computing. We propose an analytical model-based auto-tuning framework to
find the optimal or sub-optimal loop schedule that is better than the default loop
schedule chosen by the compiler. The model used in the framework is locality-
aware as it can predict the cache locality for each loop schedule. The model
also predicts the total number of global memory loads and based on these infor-
mation it obtains a memory access cost for each loop schedule. The framework
iterates over all loop schedule patterns and launch configuration space and picks
the loop schedule with the least memory access cost. We analyze the proposed
framework with multiple benchmarks. The results indicate that the memory
access cost modeling has strong correlation with the kernel performance and
the loop schedule picked by the framework can achieve 1.29x speedup over the
default loop schedule chosen by the compiler. For the future work, we will inte-
grate more factors into the model to improve the prediction of the loop schedule
that is as close as the optimal loop schedule.

References

1. EPCC OpenACC Benchmarks (2015). https://www.epcc.ed.ac.uk/research/
computing/performance-characterisation-and-benchmarking/epcc-openacc-bench
mark-suite

2. KernelGen Performance Test Suite, December 2015. https://hpcforge.org/plugins/
mediawiki/wiki/kernelgen/index.php/Performance Test Suite

https://www.epcc.ed.ac.uk/research/computing/performance-characterisation-and-benchmarking/epcc-openacc-benchmark-suite
https://www.epcc.ed.ac.uk/research/computing/performance-characterisation-and-benchmarking/epcc-openacc-benchmark-suite
https://www.epcc.ed.ac.uk/research/computing/performance-characterisation-and-benchmarking/epcc-openacc-benchmark-suite
https://hpcforge.org/plugins/mediawiki/wiki/kernelgen/index.php/Performance_Test_Suite
https://hpcforge.org/plugins/mediawiki/wiki/kernelgen/index.php/Performance_Test_Suite

20 R. Xu et al.

3. OpenACC (2016). http://www.openacc.org
4. Almási, G., Caşcaval, C., Padua, D.A.: Calculating stack distances efficiently. In:

ACM SIGPLAN Notices, vol. 38, pp. 37–43. ACM (2002)
5. Baghsorkhi, S.S., Delahaye, M., Gropp, W.D., Wen-mei, W.H..: Analytical perfor-

mance prediction for evaluation and tuning of GPGPU applications. In: Workshop
on EPHAM2009, in Conjunction with CGO, Citeseer (2009)

6. Beyls, K., Hollander, E.D.: Reuse distance as a metric for cache behavior. In:
Proceedings of the IASTED Conference on Parallel and Distributed Computing
and Systems, vol. 14, pp. 350–360 (2001)

7. Choi, K.H., Kim, S.W.: Study of cache performance on GPGPU. IEIE Trans. Smart
Process. Comput. 4(2), 78–82 (2015)

8. Cui, X., Chen, Y., Zhang, C., Mei, H.: Auto-tuning dense matrix multiplication
for GPGPU with cache. In: IEEE 16th International Conference on Parallel and
Distributed Systems (ICPADS), pp. 237–242. IEEE (2010)

9. Grauer-Gray, S., Xu, L., Searles, R., Ayalasomayajula, S., Cavazos, J.: Auto-tuning
a high-level language targeted to GPU codes. In: Innovative Parallel Computing
(InPar), pp. 1–10. IEEE (2012)

10. Hu, Y., Koppelman, D.M., Brandt, S.R., Löffler, F.: Model-driven auto-tuning of
stencil computations on GPUs. In: Proceedings of the 2nd International Workshop
on High-Performance Stencil Computations, pp. 1–8 (2015)

11. Lee, H., Brown, K.J., Sujeeth, A.K., Rompf, T., Olukotun, K.: Locality-aware
mapping of nested parallel patterns on GPUs. In: 47th Annual IEEE/ACM Inter-
national Symposium on Microarchitecture (MICRO), pp. 63–74. IEEE (2014)

12. Mametjanov, A., Lowell, D., Ma, C.-C., Norris, B.: Autotuning stencil-based com-
putations on GPUs. In: IEEE International Conference on Cluster Computing
(CLUSTER), pp. 266–274. IEEE (2012)

13. Montgomery, C., Overbey, J.L., Li, X.: Autotuning openACC work distribution via
direct search. In: Proceedings of the 2015 XSEDE Conference: Scientific Advance-
ments Enabled by Enhanced Cyberinfrastructure, p. 38. ACM (2015)

14. Nugteren, C., van den Braak, G.-J., Corporaal, H., Bal, H.: A detailed GPU cache
model based on reuse distance theory. In: High Performance Computer Architec-
ture (HPCA), pp. 37–48. IEEE (2014)

15. Picchi, J., Zhang, W.: Impact of L2 cache locking on GPU performance. In: South-
eastCon, pp. 1–4. IEEE (2015)

16. Siddiqui, S., AlZayer, F., Feki, S.: Historic learning approach for auto-tuning ope-
nACC accelerated scientific applications. VECPAR-2014. LNCS, vol. 8969, pp.
224–235. Springer, Heidelberg (2014)

17. Tang, T., Yang, X., Lin, Y.: Cache miss analysis for GPU programs based on
stack distance profile. In: 31st International Conference on Distributed Computing
Systems (ICDCS), pp. 623–634. IEEE (2011)

18. Tian, X., Xu, R., Yan, Y., Yun, Z., Chandrasekaran, S., Chapman, B.: Compiling
a high-level directive-based programming model for GPGPUs. LCPC 2013. LNCS,
vol. 8664, pp. 105–120. Springer International Publishing, New York (2014)

http://www.openacc.org

Performance, Design, and Autotuning
of Batched GEMM for GPUs

Ahmad Abdelfattah1(B), Azzam Haidar1, Stanimire Tomov1,
and Jack Dongarra1,2,3

1 Department of Electrical Engineering and Computer Science,
University of Tennessee, Knoxville, USA

{aahmad2,haidar,tomov,dongarra}@eecs.utk.edu
2 Oak Ridge National Laboratory, Oak Ridge, USA

3 University of Manchester, Manchester, UK

Abstract. The general matrix-matrix multiplication (GEMM) is the
most important numerical kernel in dense linear algebra, and is the key
component for obtaining high performance in most LAPACK routines.
As batched computations on relatively small problems continue to gain
interest in many scientific applications, a need arises for a high perfor-
mance GEMM kernel for batches of small matrices. Such a kernel should
be well designed and tuned to handle small sizes, and to maintain high
performance for realistic test cases found in the higher level LAPACK
routines, and scientific computing applications in general.

This paper presents a high performance batched GEMM kernel on
Graphics Processing Units (GPUs). We address batched problems with
both fixed and variable sizes, and show that specialized GEMM designs
and a comprehensive autotuning process are needed to handle problems
of small sizes. For most performance tests reported in this paper, the pro-
posed kernels outperform state-of-the-art approaches using a K40c GPU.

Keywords: GEMM · Batched GEMM · HPC · GPU computing ·
Autotuning

1 Introduction

Scientific computing applications extract their high-performance (HP) and effi-
ciency through fast linear algebra libraries, and most notably the GEMM routine.
Indeed, in the area of dense linear algebra (DLA), algorithms are designed as
much as possible to use GEMM, e.g., as in the LAPACK library. For exam-
ple, direct solvers for large dense linear system and least squares problems
require O(n3) floating point operations (flops), of which O(n3) are in GEMM.
Consequently, they run as fast/efficiently as running GEMM. Application areas
that rely on DLA, and therefore GEMM, are computational electromagnetics,
material science, fluid dynamics, applications using boundary integral equa-
tions, computational statistics, econometrics, control theory, signal processing,
curve fitting, and many more. Therefore, even a slight improvement in GEMM,
is extremely valuable and has great impact.
c© Springer International Publishing Switzerland 2016
J.M. Kunkel et al. (Eds.): ISC High Performance 2016, LNCS 9697, pp. 21–38, 2016.
DOI: 10.1007/978-3-319-41321-1 2

22 A. Abdelfattah et al.

Aside from scientific computing that requires large DLA, numerous other
applications, that will normally require sparse linear algebra computations, use
domain decomposition type frameworks where the overall computation is cast
in terms of many, but small enough, problems/tasks to fit into certain levels
of the machines’ memory hierarchy. Many times it is advantageous to represent
these small tasks as DLA problems on small matrices, as in applications such as
astrophysics [16], metabolic networks [11], CFD and the resulting PDEs through
direct and multifrontal solvers [22], high-order FEM schemes for hydrodynam-
ics [5], direct-iterative preconditioned solvers [9], and some image [17] and signal
processing [3]. Moreover, even in the area of DLA itself, large dense matrices can
be broken into tiles and the algorithms expressed in terms of small tasks over
them [2]. Also note that, implementation-wise, large GEMMs are parallelized
on current computing architectures, including GPUs, as many small GEMMs.
Under these circumstances, the only way to achieve good performance is to find
a way to group these small inputs together and run them in large “batches.” The
most needed and performance-critical kernel here is a batched GEMM [4,7,8].
Finally, tensor contractions, used to model multilinear relations in areas of recent
interest like big-data analytics and machine learning, as well as large scale high-
order FEM simulations, can also be reduced to batched GEMMs [1].

To address the needs for batched linear algebra on new architectures, as
outlined above, we designed high-performance batched GEMM algorithms for
GPUs. We consider batched problems with both fixed and variable sizes. While
we leverage optimization techniques from the classic GEMM kernel for one mul-
tiplication at a time, we also developed a different design scheme for the tuning
process that can flexibly select the best performing set of tuning parameters.
For variable size problems, we propose new interfaces, as well as techniques,
to address the irregularity of the computation. We show that aside from the
performance critical algorithmic designs and innovations, a comprehensive auto-
tuning process is needed in order to handle the enormous complexity of tuning
all GEMM variants resulting from our designs. The complexity is further exac-
erbated by targeting problems for entire ranges of small sizes (vs. for a few dis-
crete sizes). Using a K40c GPU, the proposed kernels outperform state-of-the-art
approaches (e.g., cuBLAS and MKL libraries) in most of the performance tests
reported in this work.

2 Related Work

To enable GPUs for a large-scale adoption in the HP scientific computing arena,
a fast GEMM had to be developed. This became feasible with the introduction of
shared memory in the GPUs. While general purpose GPU computing was possi-
ble before that, performance was memory bound, as data - once read - could not
be reused in many computations. The availability of shared memory made data
reuse possible, and the first compute-bound GEMM for GPUs was developed
in 2008 [21]. As the GPUs continued improving, new GEMM algorithms had to
be developed to better use to the evolving architecture, especially its memory

Batched Matrix Multiplication on GPUs 23

hierarchy. In particular, [18] presented a GEMM algorithm and implementation
(in MAGMA, later incorporated in cuBLAS) that applied hierarchical commu-
nications/blocking on all memory levels available at the time, including a new
register blocking. Blocking sizes, along with other performance-critical choices
were parametrized and used in autotuning frameworks [12,14], but improvements
were limited to certain very specific matrix sizes. Coding these multilevel block-
ing types of algorithms in native machine language was used to overcome some
limitations of the CUDA compiler or warp scheduler (or both) to achieve bet-
ter performance [19]. Similarly, assembly implementations [6,13] are used today
in cuBLAS for Kepler and Maxwell GPUs to obtain higher performance than
corresponding CUDA codes.

Besides the batched GEMM in cuBLAS, there have been a number of research
papers on batched GEMM, developed as needed for particular applications. For
example, a batched GEMM for very small sizes (up to 16) was developed for a
high-order finite element method (FEM) [10]. Tensor contraction computations
for large scale high-order FEM simulations were reduced to batched GEMM [1],
obtaining close to peak performance for very small matrices (90+% of a the-
oretically derived peak) using some of the techniques that we developed and
describe in detail here. Matrix exponentiation from the phylogenetics domain
was reduced to batched GEMMs on small square matrices [15], obtaining very
good performance for fixed sizes (4, 20, and 60) in single precision.

3 Batched GEMM Design and Implementation Details

This section discusses the main design and tuning approaches for batched GEMM
kernels that support both fixed and variable sizes. From now on, variable size
batched GEMM is abbreviated as vbatched GEMM. Our goal is to minimize coding
effort and to design one kernel that could be easily adapted for use in both
fixed and variable size batched GEMM. We begin by considering only fixed size
batched problems. We then discuss the modifications we incorporated to handle
a variable size problem at the end of the section.

Routine Interface. Each GEMM in a batch routine has the form of the stan-
dard BLAS GEMM:

C = α · op(A) × op(B) + β · C,

where A, B, and C are matrices, α and β are input scalars, and op() specifies
whether an input matrix is transposed. The interface of a batched/vbatched
kernel must manage independent multiplications of matrices that are not nec-
essarily stored contiguously in memory. As a result, the batched kernel requires
the address of every individual matrix. It also requires the size and the leading
dimension of every matrix. While such information can be passed using single
integers in the fixed sizes case, arrays of integers are needed for the vbatched
problems. Our kernels support multiplications with different values for α and β.
We also add an extra input argument batchCount that indicates the number of
matrices in the batch. Table 1 summarizes an example of the interface written
in the C language for the batched/vbatched DGEMM routine.

24 A. Abdelfattah et al.

Table 1. Interface of batched and vbatched matrix multiplication kernel against stan-
dard BLAS interface (GEMM: C = α · op(A) × op(B) + β · C).

Argument Description BLAS Batched Vbatched

TRANSA op(A) char char char

TRANSB op(B) char char char

M Rows of op(A)/C int int int*

N Columns of op(B)/C int int int*

K Columns of op(A)/rows of op(B) int int int*

α Alpha double double* double*

A Input matrix double* double** double**

LDA Leading dimension of A int int int*

B Input matrix double* double** double**

LDB Leading dimension of B int int int*

β Beta double double* double*

C Input/output matrix double* double** double**

LDC Leading dimension of C int int int*

batchCount Number of matrices N/A int int

Fig. 1. Example of blocking in the GEMM kernel.

Kernel Design. To design a GEMM kernel in CUDA and take advantage of the
available threads, thread blocks and multiprocessors of a GPU, the computation
must be partitioned into blocks of threads (also called thread blocks, or simply
TBs) that execute independently from each other on the GPU multiprocessors.
To do that, as shown in Fig. 1, the matrix C can be subdivided into rectangular
blocks of size BLKM × BLKN , and each of these blocks computed by one TB.

Batched Matrix Multiplication on GPUs 25

Specifics on how to do this efficiently, e.g., using hierarchical blocking of both
communications and computations, as noted in Sect. 2, are given in a design
by Nath et al. [18], which is also available in the MAGMA library [20]. We
use these ideas to build an extended CUDA kernel that is efficient for batched
computations (note that the batched GEMM in cuBLAS also uses this early
MAGMA GEMM kernel). However, some rules change here in the case of small
matrices. For example, the standard GEMM kernel design tries to maximize the
use of shared memory while for batched small GEMM, we should minimize the
use of shared memory to allow more than one TB to be executed on the same
multiprocessor. The results obtained by our autotuning framework, described
below, prove this choice.

The TBs computing a single matrix C can be specified as a 2D grid of size
(
⌈

M
BLKM

⌉
,

⌈
N
BLKN

⌉
). A TB processes an entire slice of A and an entire slice of

B to perform the necessary multiplication. The reading from global memory is
blocked, so that the kernel loads a BLKM × BLKK block of A and a BLKK × BLKN
block of B into shared memory, where the multiplication can benefit from the
fast shared memory bandwidth. Moreover, a double buffering technique is used
to enforce data prefetching into registers, where the computation is additionally
blocked. For multiple/batched GEMMs, each C can be computed independently
by its 2D grid of TBs, similarly to the standard case. Thus, we design a batched
GEMM for a 3D grid of TBs, where one dimension specifies a particular GEMM,
and the 2D subgrid specifies the TBs for computing that particular GEMM.

The kernel has many tuning parameters such as the BLK M, BLK N, and BLK K
illustrated in Fig. 1, and DIM X and DIM Y used to configure the number of threads
in a TB, among others to specify algorithmic variations. For example, a key
distinction with the case of single GEMM is that matrices can be very small,
e.g., sub-warp in size. Therefore, instead of having multiple TBs working on a
single C matrix, we have parametrized the basic kernel to allow configurations
where a TB computes several GEMMs. This design is critical for obtaining close
to peak performances for very small sizes [1].

Search Space Generation and Pruning. The MAGMA batched GEMM ker-
nel has a total of 10 tuning parameters, which can produce millions of combi-
nations if we use a brute-force generator. In can be computationally infeasible
to search in an enormous design space like this. Therefore, to reduce it, we use
generator rules that accept two sets of constraints in order to prune the parame-
ter space. The first set corresponds to the hardware constraints, as defined by
the GPU generation and model. Two examples of such constraints are the maxi-
mum number of threads in a TB (e.g., 1, 024 for a Kepler GPU), and the amount
of shared memory required per TB (48 KB). Violation of hardware constraints
usually leads to compilation errors or kernel launch failures.

The second set represents soft constraints that rule out kernel instances that
are unlikely to achieve good performance for batched workloads. Violation of
such constraints can still produce runnable kernels, but they are predictably
not good candidates from a performance perspective. Specifying the rules is
important in order to avoid mispredicting and consequently ruling out good

26 A. Abdelfattah et al.

candidates. For example, our experience shows that configurations that use a
small number of threads per TB and small amounts of shared memory can be
very efficient for batched computations. The explanation for this observation is
that multiple TBs can run concurrently on the same Streaming Multiprocessor
(SM), thus maximizing throughput. Therefore, we consider kernels that use a
number of threads as small as 32, and rule out kernels that tend to maximize the
occupancy per TB, e.g., the ones using more than 512 threads per TB. We point
out that this is the opposite of a previous work that targeted classic GEMM
operations [12], where the soft constraints were set to rule out kernels using
less than 512 threads. Our search space generator ended up with 6, 400 eligible
GEMM kernels. Since the autotuning experiment is performed once per a GPU
model, we found that a brute-force approach is feasible to test all the eligible
kernels within a reasonable amount of time.

Test Cases. A classical test case for a GEMM kernel is to tune for square
matrices which is a good choice if only large matrices are targeted. However,
this scenario rarely appears in higher-level LAPACK routines, such as the LU
and QR factorizations, where the multiplication usually involves rectangular
matrices (tall-skinny and short-wide matrices), with relatively small values of
K compared to M and N. For small matrices computation, K gets even smaller.
For example, the batched LU factorization [7] uses a panel of width up to 128,
but it performs the panel factorization recursively as two panels of width 64,
each factorized as two panels of width 32. Eventually, each panel of width 32 is
factorized as four panels of size 8. Figure 2 shows this recursive nested blocking
in the batched LU factorization for small matrices. As a result, in addition to
the square sizes, we define our test cases as having discrete small values of K (8,
16, 32, etc.), while varying M and N.

For simplicity, all performance tests are conducted for fixed size batched
computations, so that we can specify a winning kernel instance for every tested
size. The vbatched GEMM kernel is assumed to have the same tuning decision
as the fixed size batched GEMM.

Fig. 2. Recursive nested panel factorization in batched LU.

Batched Matrix Multiplication on GPUs 27

Autotuning Output Analysis. For every test case – specified by precision, a
transposition mode that we call shape, and (M, N, K) sizes – we run all eligible
GEMM kernels. We developed an automated selection process that sorts all ker-
nels according to their performances at each data point, and stores the ID of the
kernel instance with the best performance. After repeating the same step for all
data points, the automated process selects the five (this number can be chosen
by the user) most frequent kernel instances that scored the best performance
across all data points. We also plot the maximal and the minimal performance
obtained by all the kernels at every data point. For a fixed size GEMM: for
every shape (e.g., NN, NT, etc.), every test case (e.g., square, tall-skinny K= 8
tall-skinny K= 32, wide, etc.), one or multiple winning versions can be selected
in such a way as to provide the best performance for the entire range of sizes. For
variable size GEMM: for every shape, we select one winning version that scores
a performance within 5–10% of the best achievable performance and that fits all
the sizes for a specific test case. The details for these choices are described below.

Performance Sensitivity and Software Framework. Figure 3 shows exam-
ple performance graphs for some test cases, where the five best performing kernel
instances are nominated by our selection process. We observe that not only dif-
ferent test cases have different winning versions, but also a single test case may
have two or three winning versions according to the ranges of M and N. Unlike
tuning for big matrices [12], which ended up with four kernels across all test
cases, we observe that the performance is very sensitive for small matrices, and
an efficient software framework that can call the correct winning version for each
test case is required. Such a framework should be able to handle a large number
of versions while preserving reasonable programming and coding effort. It should
also provide an easy-to-modify code structure for future tuning experiments.

Template-Based Design. The original tuning of the classic GEMM kernels [18]
resulted in finding a few versions, best for different cases. Each version is instan-
tiated in a separate file where the corresponding tuning parameters are listed
using compile-time macros (#define). This structure is impractical if many ker-
nel versions are considered. Another drawback of such a design is that a kernel
version must have all shapes covered. This is an unnecessary restriction, since
we might need more kernels for the NN shape than for the NT shape, for example.
It is more flexible to decouple GEMM shapes from each other.

Therefore, we use CUDA C++ templates to enable a unified code base for
the batched/vbatched GEMM kernels. Templates enable an easy instantiation
of a kernel with specific precision and tuning parameters. Figure 4 shows an
example for the DGEMM routine using templates. Each set of tuning parame-
ters is described as an array of integers. In addition, switching among versions
becomes as simple as changing a single number, namely the kernel ID passed to
the instance macro. We point out that the condition list in Fig. 4 is relatively
short in practice, since our experiments show that we need less than a handful
of versions per precision. The only cost, which is paid once, is the need to gen-
erate all possible combinations of tuning parameters using the space generator.
Once this step is finished, any future changes to the code in Fig. 4 become very

28 A. Abdelfattah et al.

Fig. 3. GEMM performance of the five most frequent, best performing kernels in
selected test cases. Each instance is associated with an ID and the number of occur-
rences. batchCount= 500. (Color figure online)

simple. In addition, there is no need to keep the same number of kernels across
all shapes, or keep different DGEMM versions in separate files.

Now we describe how we move from the fixed size batched GEMM to the
vbatched GEMM. There are two main approaches to address a vbatched prob-
lem on GPUs. The first assumes that a vbatched kernel is launched directly from
the CPU side. Since the launch involves configuration of TBs, the kernel must
be configured to accommodate the largest matrix dimensions in the batch. As a
result, subgrids assigned to smaller matrices will have some threads (or even full
TBs) with no work. We developed Early Termination Mechanisms (ETMs) to
solve this problem. An ETM is a lightweight software layer that, at the beginning

Batched Matrix Multiplication on GPUs 29

Fig. 4. DGEMM routines using templates with flexible switching.

of a kernel launch, identifies threads with no work and immediately terminates
them to avoid over-occupancy and memory access violations. ETMs are imple-
mented at the level of a thread, so that each thread can independently determine
whether it should proceed with the execution or not. Note that such an approach
requires these maximal dimensions to be known on the CPU side prior to the
kernel launch.

The second approach is based on the relatively new CUDA GPUs technology
called dynamic parallelism. It enables a GPU kernel to launch another GPU
kernel. In this case, a vbatched kernel is launched from the GPU side. The CPU
role is to launch a parent kernel with a total number of CUDA threads equal to
the number of matrices in the batch. Each CUDA thread then launches a GPU
GEMM kernel for one matrix based on its dimensions. As opposed to the first
approach, dynamic parallelism waives the need to know the largest dimensions
across all matrices. However, it assumes that the underlying CUDA runtime
will schedule execution of the child kernels efficiently on the GPU, which is not

30 A. Abdelfattah et al.

always the case, as described in Sect. 4. Dynamic parallelism is a technology that
is available only on GPUs with compute capability 3.5 (Kepler) or higher.

The vbatched GEMM kernel uses the same code base as the fixed size batched
routine, with the use of either ETMs or dynamic parallelism. Examples for both
approaches are highlighted in Fig. 5. Shown are the output matrices of three
independent GEMMs. The first approach (ETMs) requires knowledge about the
maximum values of M, N, and K across all matrices. Note that such values do not
necessarily belong to one matrix. Based on these values, it determines the GEMM
kernel version to be called. As shown in Fig. 5(a), all matrices are processed
using a single kernel that is called from the CPU. Each subgrid is responsible
for one matrix. All matrices are subdivided using the same blocking size. The
ETM layer is responsible for terminating TBs marked by ×, which do not have
any work. The second approach, which is based on dynamic parallelism, lets
the CPU launch a parent kernel with a number of master threads. Each master
thread launches a GEMM kernel for its assigned matrix, and it chooses the best
working GEMM instance for it. Consequently, this approach allows matrices to
be subdivided using different blocking sizes.

Fig. 5. Approaches for vbatched GEMM.

4 Performance Results and Analysis

System Setup. Performance tests are conducted on a machine equipped with
two 8-core Intel Sandy Bridge CPUs (Intel Xeon E5–2670, running at 2.6 GHz),
and a Kepler generation GPU (Tesla K40c, running at 745 MHz, with ECC on).
CPU performance tests use Intel MKL Library 11.3.0. GPU performance tests
use CUDA Toolkit 7.0. Due to space limitations, we show results for double
precision only. We point out that the proposed tuned kernels support all other
precisions, with roughly similar performance behavior. The performance of the
MAGMA GEMM kernel is compared against the cuBLAS batched GEMM kernel,
the cuBLAS classic GEMM kernel offloaded to concurrent streams, and the MKL
GEMM kernel running on 16 CPU cores. The MKL library is configured to assign

Batched Matrix Multiplication on GPUs 31

Fig. 6. Fixed size batched DGEMM performance for shape NN. (Color figure online)

one core per matrix at a time, and is used within an OpenMP parallel loop that
is dynamically unrolled to balance the workload among cores.

Fixed Size. Figure 6 shows the performance for the NN shape, with different
problem sizes that are typically used in higher-level factorization and solve algo-
rithms. The tuned MAGMA kernel achieves the best performance when K is
small, regardless of M, and N. In Figs. 6(a) through 6(d), it scores speedups of
up to 87 %, 38 %, 86 %, and 26 % against the best competitor (cuBLAS batched),
respectively. Starting K = 32, the MAGMA DGEMM kernel loses its advantage to
the streamed GEMM, except for the small range of M and N, which is of particular

32 A. Abdelfattah et al.

Fig. 7. Fixed size batched DGEMM performance for shape NT. (Color figure online)

importance for batched computation. In Fig. 6(e) and (f), MAGMA is generally
faster than the batched cuBLAS kernel, achieving up to 43 % and 35 % speedups,
respectively. However, the streamed GEMM, apart from some drops in Fig. 6(e),
becomes the best performing kernel when M and N are around 200. A similar
behavior is observed in Fig. 7 for the NT shape. MAGMA scores speedups up to
48 %, 39 %, 96 %, and 16 % against the batched cuBLAS kernel, for Figs. 7(a)
through 7(d), respectively. When K gets larger as in Fig. 7(e) and (f), MAGMA
has the advantage for relatively small values of M and N, with a 45 % speedup
against batched cuBLAS for K = 32, and a slightly better better performance

Batched Matrix Multiplication on GPUs 33

Fig. 8. Impact of batchCount on performance (DGEMM, shape NN, K=32, N=M).
(Color figure online)

for the square case. Otherwise, the streamed cuBLAS kernel mostly achieves the
best performance, except for the midrange in Fig. 7(e), where MAGMA takes
over.

Figure 8 shows an example of the effect of batchCount on performance. As
expected, a larger batchCount can affect the performance significantly for small
matrix sizes, with at least 40 % performance difference for sizes less than 50. This
is because the GPU is not saturated with enough work for small batchCount of
such size range. Such performance difference decreases consistently as the sizes
get larger. We observe that, in most of our tests, there is negligible impact of
batchCount on performance after size 256.

Variable Size. Now considering the matrix test suites for the vbatched GEMM,
each point M on the x-axis in Figs. 9 and 10 represents a distribution of sizes.
Given a maximum value of M, the interval [1:M] is sampled randomly according
to a certain distribution in order to generate the sizes. In this paper, we show
results for uniform and Gaussian distributions.

Figure 9 shows the performance for the vbatched DGEMM kernel against a
uniform distribution for the NN shape, while Fig. 10 considers the NT shape.
In both shapes, the MAGMA DGEMM based on ETMs has a clear advantage
in Figs. 9(a) through 9(d), and 10(a) through 10(d). The MAGMA DGEMM
kernel based on dynamic parallelism is either equal to or better than the former
approach for relatively large sizes in the cases of K = 32 and square matrices.
The asymptotic speedups scored by the ETM-based kernel against streamed
GEMM/MKL are 6.73×/5.47×, 5.45×/2.18×, 3.75×/10.20×, and 4.34×/11.06×
in Figs. 9(a) through 9(d), and 8.34×/10.52×, 4.82×/7.86×, 4.20×/9.38×, and
3.80×/9.86× in Figs. 10(a) through 10(d), respectively. In Figs. 9(e) and 10(e),
there is no winning kernel for all sizes. The two MAGMA kernels outperform
other competitors for Maximum M up to 300. The streamed GEMM dominates
the midrange, and then gets nearly matched or slightly outperformed by the

34 A. Abdelfattah et al.

Fig. 9. Vbatched DGEMM performance for shape NN with uniform distribution. (Color
figure online)

MAGMA kernel based on dynamic parallelism. For the case of square matrices
(Figs. 9(f) and 10(f)), the streamed GEMM achieves the best performance unless
matrices are too small, where the ETM-based MAGMA kernel is the best choice.
We observe a similar behavior when we repeat all the above test cases based on
the Gaussian distribution. For space limitations, we highlight only two test cases
for the NN shape in Fig. 11.

Batched Matrix Multiplication on GPUs 35

Fig. 10. Vbatched DGEMM performance for shape NT with uniform distribution (Color
figure online)

Sub-warp Sizes. Finally, we want to point out that the framework presented
was also used to find batched GEMM kernels for very small (sub-warp in size)
matrices. Performance there is memory bound and can be modeled. Results show
that we obtain close to peak performance [1] (90+% of the theoretically derived
peak) to significantly outperform cuBLAS on GPUs and MKL on CPUs.

36 A. Abdelfattah et al.

Fig. 11. Vbatched DGEMM performance for shape NN with Gaussian distribution
(Color figure online)

5 Conclusion and Future Work

This paper presented a design and autotuning framework for fixed and variable
size batched matrix-matrix multiplication using GPUs. Similarly to the GEMM
routine, batched GEMMs on small matrices are needed in many applications
from big-data analytics to data mining, and more. The work focused on the
algorithmic design and performance autotuning for small fixed and variable sizes
on test cases found in batched LAPACK factorization and solve algorithms.
With a comprehensive autotuning process and a flexible software framework,
we are able to find and call the best kernel configuration (within our design
space) according to many deciding factors. The flexible software scheme ensures
minimal coding effort if future changes are required, and can be used efficiently
for other computational kernels that have a large number of tuning parameters.

Future directions include adding support for multiplications with different
shapes within the same GPU kernel, thorough testing of the vbatched routine
against different size distributions, and performance analysis and profiling of
the dynamic-parallelism based kernels in order to analyze and understand their
behavior and overhead. Work on applying and tuning the batched GEMMs in
specific applications, e.g., using application-specific knowledge, especially in com-
puting applications requiring variable sizes like direct multifrontal solvers for
sparse matrices, is of high interest and subject to future work.

Acknowledgment. This work is based upon work supported by the National Science
Foundation under Grants No. ACI-1339822 and CSR 1514286, NVIDIA, the Depart-
ment of Energy (LLNL subcontract under DOE contract DE-AC52-07NA27344), and
in part by the Russian Scientific Foundation, Agreement N14-11-00190.

Batched Matrix Multiplication on GPUs 37

References

1. Abdelfattah, A., Baboulin, M., Dobrev, V., Dongarra, J., Earl, C., Falcou, J.,
Haidar, A., Karlin, I., Kolev, T., Masliah, I., Tomov, S.: High-performance tensor
contractions for GPUs. In: International Conference on Computational Science
(ICCS 2016). Elsevier, Procedia Computer Science, San Diego, CA, USA, June
2016

2. Agullo, E., Demmel, J., Dongarra, J., Hadri, B., Kurzak, J., Langou, J., Ltaief, H.,
Luszczek, P., Tomov, S.: Numerical linear algebra on emerging architectures: the
PLASMA and MAGMA projects. J. Phys.: Conf. Ser. 180(1), 012037 (2009)

3. Anderson, M., Sheffield, D., Keutzer, K.: A predictive model for solving small
linear algebra problems in GPU registers. In: IEEE 26th International Parallel
Distributed Processing Symposium (IPDPS) (2012)

4. Dong, T., Haidar, A., Luszczek, P., Harris, A., Tomov, S., Dongarra, J.: LU Fac-
torization of small matrices: accelerating batched DGETRF on the GPU. In: Pro-
ceedings of 16th IEEE International Conference on High Performance and Com-
munications (HPCC 2014) August 2014

5. Dong, T., Dobrev, V., Kolev, T., Rieben, R., Tomov, S., Dongarra, J.: A step
towards energy efficient computing: redesigning a hydrodynamic application on
CPU-GPU. In: IEEE 28th International Parallel Distributed Processing Sympo-
sium (IPDPS) (2014)

6. Gray, S.: A full walk through of the SGEMM implementation (2015). https://
github.com/NervanaSystems/maxas/wiki/SGEMM

7. Haidar, A., Dong, T., Luszczek, P., Tomov, S., Dongarra, J.: Batched matrix
computations on hardware accelerators based on GPUs. Int. J. High Per-
form. Comput. Appl. (2015). http://hpc.sagepub.com/content/early/2015/02/06/
1094342014567546.abstract

8. Haidar, A., Dong, T.T., Tomov, S., Luszczek, P., Dongarra, J.: A framework for
batched and GPU-resident factorization algorithms applied to block householder
transformations. In: Kunkel, J.M., Ludwig, T. (eds.) ISC High Performance 2015.
LNCS, vol. 9137, pp. 31–47. Springer, Heidelberg (2015)

9. Im, E.J., Yelick, K., Vuduc, R.: Sparsity: optimization framework for sparse
matrix kernels. Int. J High Perform Comput. Appl. 18(1), 135–158 (2004).
http://dx.doi.org/10.1177/1094342004041296

10. Jhurani, C., Mullowney, P.: A GEMM interface and implementation on NVIDIA
GPUs for multiple small matrices. CoRR abs/1304.7053 (2013). http://arxiv.org/
abs/1304.7053

11. Khodayari, A., Zomorrodi, A.R., Liao, J.C., Maranas, C.: A kinetic model of
escherichia coli core metabolism satisfying multiple sets of mutant flux data. Metab.
Eng. 25C, 50–62 (2014)

12. Kurzak, J., Tomov, S., Dongarra, J.: Autotuning GEMM kernels for the Fermi
GPU. IEEE Trans. Parallel Distrib. Syst. 23(11), 2045–2057 (2012)

13. Lai, J., Seznec, A.: Performance upper bound analysis and optimization of SGEMM
on Fermi and Kepler GPUs. In: Proceedings of the 2013 IEEE/ACM International
Symposium on Code Generation and Optimization (CGO), CGO 2013, pp. 1–
10. IEEE Computer Society, Washington, DC, USA (2013). http://dx.doi.org/10.
1109/CGO.2013.6494986

14. Li, Y., Dongarra, J., Tomov, S.: A note on auto-tuning GEMM for GPUs. In: Allen,
G., Nabrzyski, J., Seidel, E., van Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds.)
ICCS 2009, Part I. LNCS, vol. 5544, pp. 884–892. Springer, Heidelberg (2009)

https://github.com/NervanaSystems/maxas/wiki/SGEMM
https://github.com/NervanaSystems/maxas/wiki/SGEMM
http://hpc.sagepub.com/content/early/2015/02/06/1094342014567546.abstract
http://hpc.sagepub.com/content/early/2015/02/06/1094342014567546.abstract
http://dx.doi.org/10.1177/1094342004041296
http://arxiv.org/abs/1304.7053
http://arxiv.org/abs/1304.7053
http://dx.doi.org/10.1109/CGO.2013.6494986
http://dx.doi.org/10.1109/CGO.2013.6494986

38 A. Abdelfattah et al.

15. Lopez, M., Horton, M.: Batch matrix exponentiation. In: Kindratenko, V. (ed.)
Numerical Computations with GPUs, pp. 45–67. Springer International Publishing
(2014), http://dx.doi.org/10.1007/978-3-319-06548-9 3

16. Messer, O.E.B., Harris, J.A., Parete-Koon, S., Chertkow, M.A.: Multicore and
accelerator development for a leadership-class stellar astrophysics code. In: Man-
ninen, P., Öster, P. (eds.) PARA 2012. LNCS, vol. 7782, pp. 92–106. Springer,
Heidelberg (2013)

17. Molero, J., Garzón, E., Garćıa, I., Quintana-Ort́ı, E., Plaza, A.: Poster: a batched
Cholesky solver for local RX anomaly detection on GPUs, PUMPS (2013)

18. Nath, R., Tomov, S., Dongarra, J.: An improved magma GEMM for fermi graph-
ics processing units. Int. J. High Perform. Comput. Appl. 24(4), 511–515 (2010).
http://dx.doi.org/10.1177/1094342010385729

19. Tan, G., Li, L., Triechle, S., Phillips, E., Bao, Y., Sun, N.: Fast implementation
of DGEMM on Fermi GPU. In: Proceedings of 2011 International Conference for
High Performance Computing, Networking, Storage and Analysis, SC 2011, pp.
35:1–35:11. ACM, New York (2011). http://doi.acm.org/10.1145/2063384.2063431

20. Tomov, S., Dongarra, J., Baboulin, M.: Towards dense linear algebra for hybrid
GPU accelerated manycore systems. Parellel Comput. Syst. Appl. 36(5–6), 232–
240 (2010)

21. Volkov, V., Demmel, J.: Benchmarking GPUs to tune dense linear algebra. In:
SC 2008: Proceedings of the 2008 ACM/IEEE conference on Supercomputing, pp.
1–11. IEEE Press, Piscataway (2008)

22. Yeralan, S.N., Davis, T.A., Ranka, S.: Sparse mulitfrontal QR on the GPU. Techni-
cal report, University of Florida Technical Report (2013). http://faculty.cse.tamu.
edu/davis/publications files/qrgpu paper.pdf

http://dx.doi.org/10.1007/978-3-319-06548-9_3
http://dx.doi.org/10.1177/1094342010385729
http://doi.acm.org/10.1145/2063384.2063431
http://faculty.cse.tamu.edu/davis/publications_files/qrgpu_paper.pdf
http://faculty.cse.tamu.edu/davis/publications_files/qrgpu_paper.pdf

TCU: A Multi-Objective Hardware Thread
Mapping Unit for HPC Clusters

Ravi Kumar Pujari(B), Thomas Wild, and Andreas Herkersdorf

Institute for Integrated Systems, Technische Universität München,
Munich, Germany

{ravi.kumar,thomas.wild,herkersdorf}@tum.de

Abstract. Meeting multiple, partially orthogonal optimization targets
during thread scheduling on HPC and manycore platforms simultane-
ously, like maximizing CPU performance, meeting deadlines of time
critical tasks, minimizing power and securing thermal resilience, is a
major challenge because of associated scalability and thread manage-
ment overhead. We tackle these challenges by introducing the Thread
Control Unit (TCU), a configurable, low-latency, low-overhead hardware
thread mapper in compute nodes of an HPC cluster. The TCU takes
various sensor information into account and can map threads to 4–16
CPUs of a compute node within a small and bounded number of clock
cycles in round-robin, single- or multi-objective manner. The TCU design
can consider not just load balancing or performance criteria but also
physical constraints like temperature limits, power budgets and reliabil-
ity aspects. Evaluations of different mapping policies show that multi-
objective thread mapping provides about 10 to 40 % less mapping latency
for periodic workloads compared to single-objective or round-robin poli-
cies. For bursty workloads under high load conditions, a 20 % reduction
is achieved.

The TCU macro has a mere 9% hardware area overhead and achieves
more than 150 k thread mappings per second on an FPGA prototype of a
RISC quad-core compute node operating at moderate 50 MHz. A 45 nm
technology ASIC realization of TCU can operate well above 1GHz and
support up to 3.15 million thread mappings per second.

Keywords: Hardware scheduler · Thread mapper · Multi-objective ·
MPSoC · HPC · Manycore systems

1 Introduction

Supercomputers were traditionally built by connecting many single CPU moth-
erboards over Ethernet. Advancements in fabrication technology resulted in
increased integration density in terms of number of transistors per die area.
System-on-chip (SoC) architectures with manycore processor [8,9,15] connected
over bus or network on chip evolved. High Performance Computing (HPC) clus-
ters are now realized by interconnecting many such multi-socket multiprocessor
SoC nodes over Ethernet backplane or InfiniBand switches [1].
c© Springer International Publishing Switzerland 2016
J.M. Kunkel et al. (Eds.): ISC High Performance 2016, LNCS 9697, pp. 39–58, 2016.
DOI: 10.1007/978-3-319-41321-1 3

40 R.K. Pujari et al.

Along with the advent of many flavors of multiprocessor systems, algorithms
with parallel programming constructs like tasks, processes and threads were
developed. Threads represent a unit of code which can be run in parallel on a
processor. Most of the modern day application programs are modeled as sin-
gle or multiple threads and are designed to exploit the thread level parallelism.
Compute resources are shared among multiple threads either by (a) temporal
multiplexing on a uniprocessor system using a timer tick and/or (b) spatial mul-
tiplexing as done in symmetric multi-processor systems (SMP). OpenMP (for
SMP) and/or MPI (for NUMA) library constructs are used to program multi-
threaded applications for HPC. These applications are written with performance
as an optimization goal. Efficiency in terms of meeting deadlines, higher through-
put or higher MIPS are the main objectives while mapping threads.

Thermal, power and reliability [2,6,11] concerns on these many-processor
compute platforms favor spatial multiplexing of threads. On one hand we have
the dynamics of chip status like power consumption, heat dissipation, temper-
ature gradients leading to hotspots or reliability issues, and on the other hand
the changing application workloads results in differential utilization of proces-
sor cores and variations in cache hit/miss rates and memory or IO bandwidth
requirements. Not just sheer performance but power or thermal resilience also
have to be considered while mapping threads on such manycore HPC systems.
We deal here with optimization problems with orthogonal requirements: appli-
cations want faster or guaranteed performance while from the hardware’s health
perspective it is desirable to run slower and cooler. Meeting multiple objectives
while operating so many processors in an HPC cluster is a burden for the con-
ventional software-based middleware or operating systems.

Figure 1 shows an HPC cluster architecture wherein compute nodes are con-
nected over a backplane board or infiniBand switches. Each of these compute
nodes are multi-socket, multicore processing systems with reconfigurable fab-
ric. This paper mainly deals with the architectural support needed for better
coupling between these compute nodes and presents the Thread Control Unit
(TCU), a hardware multi-objective thread mapper realized using the recon-
figurable logic blocks on each compute node. A Fast, tunable, multi-objective
in-hardware thread mapping strategy which considers multiple sensors while
assigning threads to processors is the central idea of the TCU. For pragmatic
reasons and to limit the feasibility proof for the TCU in this work, an integrated
multi-core FPGA prototype design comprising of two compute nodes connected
over a NoC link is developed.

In the following section we first present the prior art of different software- and
hardware-based approaches employed in thread mapping and their objectives
or optimization goals. Next we introduce our multi-objective thread mapping
strategy which makes use of multiple sensors followed by concrete realization
of the TCU on an FPGA prototype design. In a later section the performance
evaluation of the TCU using different synthetic workloads is shown, and we
conclude with the merits and outlook for this work.

TCU: A Multi-Objective Hardware Thread Mapping Unit for HPC Clusters 41

Fig. 1. TCU placed within HPC compute nodes

2 Related Work

Resource management on multi-processor systems is conventionally performed in
the software layers like programming language libraries, middleware software or
operating system (OS). In particular, the mapping of threads on to cores is done
by a resource manager. A time sharing, pre-emptive or cooperative OS scheduler
performs this by means of system calls. Searching and allocating processor cores
to map threads, the context switches due to system calls add up as additional
time overhead to each thread.

This delay overhead would become a severe bottleneck [12]; about 30 % for
fine grained parallel application threads which are of just a few 1000 s of CPU
clock cycles. In order to avoid frequent context switches, the resource manage-
ment is done in a layer higher in the software stack, namely in user space. Cilk [7],
a C/C++ library extension, for example uses spawning of many lightweight user
level threads being managed by one worker thread per core. Similarly, OpenMP
[5], Intel thread building blocks [13] and MPI are language/library extensions
implementing run time support for spawning and unrolling of loop parallel pro-
grams. Erlang [14] runtime system similarly provides implementation of light-
weight threads/processes which are run on top of a single OS scheduled process
per core. Each OS scheduled process has its own ready queue (FIFO). The run-
time systems of these languages/libraries make use of spawn-sync mechanisms
to create threads and manage inter-thread communication. A central aspect of
all these programming extensions is the ready queue management by worker
threads. Many other OS processes can coexist along with these application-
specific worker threads. Thus only a share of the time slice of the processor as

42 R.K. Pujari et al.

allocated and allowed by the underlying pre-emptive/cooperative operating sys-
tem is used by the worker thread. Load balancing among the worker threads is
achieved by means of a work stealing approach or active migration of jobs.

As an OS support provided in the programming stack, Tessellation [3], a
thin, hypervisor-like resource management solution, employs two-stage schedul-
ing namely (a) resource allocation, (b) resource usage. Applications are built
in resource containers (cells) and scheduling of threads is done within a cell
boundary by a software user level runtime system. Cells can be non-multiplexed
(exclusive access to hardware resources), time-triggered, event-triggered and best
effort. This two-stage scheduling approach to manage hundreds of cores is wel-
come, but the non-functional physical aspects of the underlying chip like temper-
ature, power or reliability also need to be considered while scheduling. Similarly,
in Cilk, OpenMP and MPI libraries load balancing criteria do not consider these
non-functional physical aspects. The objective is to be as fast as possible and
purely performance-centric. Accounting for the physical effects is mainly left to
the underlying hardware abstraction layer (HAL) of the OS.

Static temperature-aware task scheduling based on Integer Linear Program-
ming (ILP) problem formulation running on a eight-core UltraSPARC T1 proces-
sor is presented in [4]. Dynamic techniques for load balancing as an extension to
Solaris scheduler is also presented wherein the threads are moved among ready
queues per cores. This thread migration is done at the interval of 20 s. Obtaining
an ILP solution for every new thread spawned is not a feasible approach if the
problem domain is expanded to hundreds of cores with large volumes of fast
fluctuating sensor data. ILP helps if there is a-priori knowledge of threads incar-
nation and execution pattern. If not just temperature, but also power, reliability
sensors, performance counters, etc. are also to be considered for ILP, then the
search space of resource management would grow exponentially.

Carbon [10] tries to address the user space ready queue management for user
level threads by having dedicated on-chip hardware extensions in the form of
Local and Global Thread Units (LTU, GTU). The essence of load balancing is
in pulling threads from GTU into LTU if the LTU FIFOs are free. The GTU
and LTU are modeled as hardware blocks and evaluated using an in-house ISA
simulator. The software layers are agnostic to the underlying load balancing.

Hardware extensions like Carbon follow an inherent optimization policy of
“faster the better”, when mapping threads. Physical constraints like thermal lim-
itations, power budget (dark silicon) aren’t considered. Software optimizations
which address these have very large time constants of load balancing. Hence
there is a need for a fast, scalable and multi-objective thread mapping strat-
egy in 100+ core architectures which doesn’t add additional overhead. A pure
software-only approach is not sufficient, instead adequate hardware support is
needed to mitigate the overhead of optimization while mapping threads. We
address these deficiencies in this paper by employing an in-hardware thread
mapping strategy and introduce our TCU. The TCU takes the physical runtime
characteristic of chip into account while mapping threads and can be augmented
to existing parallel programming constructs like OpenMP, Cilk or MPI.

TCU: A Multi-Objective Hardware Thread Mapping Unit for HPC Clusters 43

3 Hardware Accelerated Thread Assignment

In this paper, we address the problem of thread management with compute nodes
of HPC clusters as shown in Fig. 1. We assume applications are broken down into
multiple independent threads and these threads can be run to completion on any
of the CPUs. An application in need of computational resources requests the
operating system or resource manager to identify and allocate compute nodes.
The resource manager can identify the currently free compute nodes as done in
current conventional HPC clusters. To mitigate the mapping overhead and enable
a mapping that takes current load, temperature and dependability monitoring
infrastructure into account, we propose that actual mapping and ready queue
management of the threads be offloaded to dedicated hardware.

We introduce hardware extension in the compute nodes in the form of thread
control units (TCU) (Fig. 1). Applications send jobs or threads to the compute
nodes allocated to them. Incoming threads are assigned to cores by the dedicated
TCU present in each node. The threads are sent to the TCU directly from an
application running on a CPU on a remote node. The next section elaborates
the mapping principle of the TCU.

3.1 Multi-objective Thread Assignment

To achieve synergy between performance and physical operating limitations,
applications need to express their demands and hardware should try to give
differential quality of service at the expense of associated cost. Figure 2 illustrates
this problem concretely in the context of mapping the incoming threads on to
ready queues of processors. We address this thread mapping problem in the
following section.

Ready Queues

Network Adapter

CPU /
Core 0

?

°C
W

Temperature

PowerFill Level

Utilization

%

CPU /
Core 1

CPU /
Core 2

CPU /
Core 3

Fig. 2. Thread mapping problem

44 R.K. Pujari et al.

Sensors and Monitors in a Multi-processor System: Different approaches
are used to measure the performance of an application. We considered both per-
formance counter-based monitors and sensors for physical effects like power con-
sumption, temperature, etc. Table 1 lists some of the available sensors/monitors
per processor core.

Table 1. Sensors per core in a compute node

Sensors Vmin Vmax Bits Unit

Ready queue fill level 0 64 7 (-)

CPU utilization (measure of pipeline stalls) 0 100 16 (%)

CPU temperature 22 85 8 (◦C)

CPU power 10 46 16 MW

Arrival rate (of threads) 0 1000 16 Threads/ms

Service rate (per core) 0 1000 16 Threads/ms

An application may have objective functions like high performance operation
(implying higher CPU utilization and higher service rate) which can be orthog-
onal to lower power mode of operation (lower temperature and power values).
At any given point in time, these monitors can have arbitrary values based on
the current/past run-time behavior of applications. As a consequence, (a) it is
really difficult for an application programmer to express the exact values for
these sensors that are suitable for the application to run and (b) also for the
OS, the search space would be prohibitively large to find a processor matching
all the hardware monitoring conditions as desired by an application. Finding
a processor meeting the right balance of the required sensor values is an NP
hard problem. Studies on NoC-based MPSoCs [12] show that even a single hop
radius search within the same chip can cost considerable runtime overhead. This
overhead can be even larger for multi-socket off-chip many-processor compute
platforms. Thus to tackle this scalability problem hardware assistance is used.

Coupling Sensor Data with Application Needs: Applications can’t express
the exact sensor values they need in order to run properly. Instead applications
can easily express the relative importance of the different sensors. To express
the application needs with respect to the desired sensor values, we classify the
applications into finite set of different classes.

Table 2 depicts the application classification based on the relative importance
of each of these monitors under different classes. Each class is defined by a set
of sensor weights, which are pre-set or tuned by the runtime software. Class 0
implements a simple round-robin scheme, whereas classes 1, 2 and 3 are single-
objective giving preference to only one of the sensors. Classes 4 and 5 represent
multi-objective assignment policies which consider multiple sensors simultane-
ously. The number of classes can be extended based on other sensors like cache

TCU: A Multi-Objective Hardware Thread Mapping Unit for HPC Clusters 45

Table 2. Application class configuration matrix with weights for different sensors

Class ID Sensors

Fill level CPU Util. CPU Temp. Arrival rate Service rate

Round-robin 0 0 0 0 0 0

Low-latency 1 1 0 0 0 0

Compute-intensive 2 0 1 0 0 0

Low-temperature 3 0 0 1 0 0

Multi-objective 4 0.3 0.3 0.3 0 0

Multi-objective 5 1 0 0 0.3 0.3

miss counters etc. Applications express their hardware needs by specifying their
class id as part of the thread descriptor. We assume a thread descriptor having a
3-tuple data structure (void * thread, void * argv, char class id) with the memory
footprint of just 9 bytes. As a concrete example, the #pragma in OpenMP could
be extended with an additional class id field as shown in the below code snippet.
A similar adaptation can be done for Cilk or MPI programming constructs to
provide the class id of the threads being spawned.

omp set num threads (READY QUEUE SIZE ∗ NUM CPU) ;
#pragma omp p a r a l l e l f o r c lass id (compute intensive)
{

unsigned i n t i , j , k ;
f o r (i = 0 ; i < N; i++)

f o r (j = 0 ; j < M; j++)
f o r (k = 0 ; k < P; k++)

c [i] [j] = a [i] [k] ∗ b [k] [j] ;
}

Figure 3 depicts that different normalized sensors are weighted to identify
the core to map new threads spawned by an application. This multi-objective
thread mapping strategy addresses the problem in Fig. 2. Based on the weights
applied and the current sensor value of each core, the thread mapper assigns
incoming threads to the core with the minimum cost. The cost of running the
thread on each core is computed on every new thread arrival using the up-
to-date sensor values. If multiple cores have the same minimum cost, then a
round-robin selection policy is employed among all the cores that have the same
minimum cost. To keep the thread mapper design simple, fast and HW realizable
we restricted to using only linear cost function. A higher order cost computation
depending on history of sensor data can be employed which would result in higher
implementation overhead. In the next section we present the design details of
the TCU which performs the multi-objective thread mapping.

46 R.K. Pujari et al.

WUtil

CPU
Utilization
[0 - 100 %]

Core_0

Core_1

Core_2

Cost_0

Cost_1

Cost_2

Cost_3 Core_3

Min_Select_and_RoundRobin

Core_Select

WTemp

CPU
Temperature
[22 - 85 °C]

WPower

Power
Consumption
[10 - 46 mW]

WArvRate

Arrival Rate
[0 - 1000

threads/ms]

WSrvRate

Service Rate
[0 - 1000

threads/ms]

WFIFOLvl

FIFO
Level

[0 - 64]

Normalizer

[0 - 65535]

Fig. 3. Thread mapper: multi-objective sensor data-based thread assignment

3.2 Thread Control Unit

The Thread Control Unit (TCU) performs multi-objective thread assignment on
an HPC compute processor node using multiple sensors. These sensors have to
be either extracted or emulated per core (Table 1). For evaluation purpose, we
prototyped two compute tiles, similar to compute nodes on an HPC rack, con-
nected over an NoC [8] link on an FPGA. Each node consists of four Leon3 RISC
processor cores. We enhanced each tile by adding a TCU block. Figure 4 shows
the TCU comprising of the monitor aggregator (to collect the sensor values),
queue selector (realizing the thread mapper (Fig. 3)), ready queues (Fig. 2) and
the application class configuration matrix (Table 2). The design decision and the
implementation details of each block are as follows:

Ready Queues: 64-bit-wide hardware FIFOs per core are used as ready queues.
Selecting the appropriate FIFO depth is critical as smaller size means frequent
overflows while larger queues are costly in terms of hardware. The optimum size
of the FIFO can be determined using the network calculus if the application’s
injection rates and service/execution time are fixed. As the thread spawning is
non-deterministic, for the FPGA prototype we set the FIFO depth to 64. Thus
64 threads per core can be stored in the ready queue and a maximum of 256
threads (64× 4 cores) can be sent on a parallel loop unrolling. The underflow
signal is used to power down cores and save power when no more threads are
lying in the FIFOs.

TCU: A Multi-Objective Hardware Thread Mapping Unit for HPC Clusters 47

Ready Queues

 TCU

Network Adapter

Monitor
Aggregator

App Class
Conf Matrix

Queue
Selector

CPU_Stall

Arrival_Rate
FIFO_LevelCPU_Instruction

Queue_Select

Class_ID

Weights (W)

Service_Rate

Normalized
Sensor Values

Bus Interface

Fig. 4. TCU block diagram

Monitor Aggregator: This block provides all the different sensors per core
to perform queue selection logic. A direct numerical comparison of the different
monitor values from Table 1 is not possible as the meaning, their bit widths
and units are different. A linear normalizer equation to convert each of these M
sensor values (Vij) of N cores to a uniform 16-bit-wide value as shown below is
applied within this block.

Vij norm =
[

(Vij − Vjmin)
(Vjmax − Vjmin)

]

· [216 − 1]

∣
∣
∣
∣
∣
∀i ∈ N,∀j ∈ M

As many sensors/monitors are needed they had to be built into the prototype
design. Some of the sensors are already available such as the fill level of the ready
queues. The derivative of fluctuations in the fill level of the ready queue is used
to obtain the arrival and service rates. The number of clock cycles a CPU is
stalled in each millisecond is used to calculate the CPU utilization. The power
and temperature sensors are emulated based on the switching activity within
the core.

Application Class Configuration Matrix: For the prototype, design the
number of classes that are available in the configuration matrix is set to 8.
Thus the total class configuration matrix is a memory mapped 8× 32-bit RAM.
Table 2 shows the normalized values in decimal format, but the actual weights
to be applied to each sensor is quantized to 16 levels (0 to 15) and hence 4 bits
per weight.

48 R.K. Pujari et al.

Queue Selector: Figure 3 suggests that the cost computation be done in paral-
lel for each core and the normalization and weighting for each sensor also be done
in parallel. An implementation trade-off criterion here would be the area over-
head (number of multipliers, critical path) vs. performance (number of clocks,
parallel/pipelined computation). Due to resource constraints on the FPGA, the
costs are computed using a single MAC (multiply and accumulate) in a pipelined
fashion as shown in Fig. 5. Each of the M sensors’ normalized values (Vij norm)
is read out from the monitor aggregator sequentially and the costs for all the N
cores is also computed one after the other.

Wj

Vij_norm

D M
inIdx&

R
R

Queue_SelectD

D

D

D

#N

en
sel en

#M

rstrst
clk

j
i

Fig. 5. Queue selector: pipelined cost computation

Governing access to critical sections, namely the ready queues, is a major
concern in any SMP system. In conventional OS, the ready queues are realized
as data structures located in memory. Any update (addition/deletion) of threads
in the data structures is generally done using locks under a critical section of
code. These accesses to critical sections are costly and performance hindering.
In a compute tile, threads can be enqueued from the network adapter and the
local cores simultaneously. The enqueue logic has to be atomic, i.e. store thread
descriptors from each enqueuer simultaneously. Hence separate memory-mapped
temporary buffers for thread descriptors from each enqueuer are incorporated
to avoid any blocking calls in software. This provides atomicity and lock-free
synchronization of multi-word enqueues.

3.3 TCU Prototype

Figure 6 shows the block diagram of two tiled MPSoC prototyped on a Virtex6
FPGA platform. For simplicity reasons, memory controller and IO peripherals
are not shown, but are part of the prototype.

Resource Utilization: On the FPGA prototype design, ready queue FIFOs
are mapped on the BlockRAM resources and the rest of the TCU components
are synthesized using FPGA slices. Table 3a shows the resource utilization in

TCU: A Multi-Objective Hardware Thread Mapping Unit for HPC Clusters 49

Fig. 6. Evaluation set-up for the TCU; Cores on tile 0 send two workloads to tile 1

comparison to a compute tile consisting of four Leon3 cores. The major share of
FPGA slices were used to realize the registers to store the sensor data, weights
and the temporary storages for incoming threads from the network adapter and
local cores. Queue selection logic (Fig. 5) consumed only 285 slices. The TCU’s
share within the compute tile is about 9 % of slices. The TCU is completely
realized in the TSMC 45 nm technology with worst case operating conditions.
We synthesized using Synopsys design compiler to get the area, frequency and
power estimates as shown in Table 3b. We let the tool synthesize FIFO RAM
blocks using gates and as expected almost 80 % of the area is used to realize the
FIFOs. The area of the TCU scales linearly with the number of cores. As evident
from the synthesis results, the major area is consumed by the ready queue FIFOs
(non-combinatorial) and increases with an increasing number of cores. Hence
the TCU’s share remained constant at about 9–10% even for designs with 8 and
12 cores per compute tile. Designs beyond 12 cores where not feasible to realize
due to limited FPGA resources. We verified this scalability on the CHIPit multi-
FPGA prototyping platform where we implemented a 2 × 2 tile design consisting
of five cores each.

Table 3. Resource utilization on FPGA and ASIC synthesis

50 R.K. Pujari et al.

Performance Metrics: The FPGA prototype of two compute tiles with
four core each operates at a moderate clock frequency of 50 MHz. The TCU
takes 72–112 clock cycles to evaluate the cost of assigning each incoming
thread onto a core. Hence the maximum latency for each incoming thread is
112 × 20 ns = 2.24 ms for operating at 50 MHz.

The end-to-end latency is measured by continuously sending threads from
cores in tile 0 to tile 1 over the NoC. The number of threads spawned on the
target tile (among all the cores) was about 9000854 in 60 s i.e. 150k thread map-
pings per second. This corresponds to 6.668 ms per thread for a single hop over
NoC including the delay in driver code. On ASIC, this corresponds to 317 ns at
1050 MHz (Table 3b).

The gist of this high transfer rate discussion is to show that an on-chip TCU
can map about 3.15 million (150k × 1050 MHz/50 MHz) arbitrarily small threads
each running for just a few 300–400 ns. Also, a standalone TCU realized off-chip
on an FPGA fabric can operate at well above a 50 MHz clock rate and thus
can cater to embarrassingly parallel programming needs on HPC clusters. For
example, RDMA (remote DMA) feature of InfiniBand interconnect switches can
be used to transfer threads spawned from one compute node on loop unrolling to
another, and the TCU can be used to map the incoming threads at the receiving
node without any OS or software intervention.

4 Experimental Validation

TCU evaluation has been performed on the two-tile FPGA prototype shown in
Fig. 6 and introduced in the previous section. Cores in tile 0 send threads to tile
1 over a 128-bit-wide NoC interconnect. Threads are sent as a single NoC packet
of 68 bits payload consisting of 32 bit thread pointer, 32 bit data pointer and
4 bit class id. The class weights are set as in Table 2.

Workload Generator: Two workloads 1 (short runner) and 2 (long runner)
are generated from core 0 and core 1 of tile 0 and sent to tile 1. The injection
and execution periods of the threads are varied to mimic the periodic and bursty
nature of applications with varying workloads. Table 4 shows the parameters set
for workload generation. Workload 1 generates periodic threads while workload
2 can send a burst of threads that are spawned on the target tile. This mimics
spawning of threads by real applications on say loop unrolling.

Table 4. Workload generator parameters

Workload Type Burst
Size

Injection
Period (ms)

Execution
Period (ms) (±10 %)

1 Short Runner Periodic 1 10 10–40

2 Long Runner Periodic / Bursty 1–11 250 250–1000

TCU: A Multi-Objective Hardware Thread Mapping Unit for HPC Clusters 51

The two workloads can represent two different parallel phases of a single
generic application requiring different execution times, or can be multiple com-
peting applications running simultaneously on a compute node. The execution
time here includes the binary or data transfer time as required for send/receive
constructs in MPI or load/store time in OpenMP in NUMA architectures. For
observability, we keep the injection period fixed, and vary the execution period of
threads to generate different load situations on target tiles. For example, the exe-
cution time of threads from workload 1 can be varied from 10–40 ms or workload
2 from 250–1000 ms to generate 25–100 % of average load.

Single Periodic Workload: Figs. 7, 8 and 9 show the measured responses of
the TCU for a single periodic workload generating 50 % average CPU load when
single-objective mapping policies (classes 1,2 and 3) were applied. Also depicted
are zoom out sections of the steady state responses between 60–64th second.

Class 1 (see Table 2) gives minimum latency, i.e. minimum fill level of ready
queue (Fig. 7) and uses only two out of four cores. If an application is cache-
sensitive and prefers to keep all its threads on the same cores, then class 1 is best
suited. But this leads to a large difference in CPU utilization and temperature
gradient among the four cores.

Ready Queue

CPU Utilization

Temperature

Fi
ll

L
ev

el

Core 0
Core 1
Core 2
Core 3
Avg

0 20 40 60 80 100 62 6460

20

40

60

0 20 40 60 80 100 62 6460

Pe
rc

en
ta

ge
 (

%
)

20
40
60
80

100

0 20 40 60 80 100 62 6460

°
C

el
ci

us

20
40
60
80

seconds

seconds

seconds

Fig. 7. Class 1: Minimize ready queue fill level

Class 2 (Fig. 8) utilizes all the cores equally by frequently changing its
mapping decision for the incoming threads. The mean temperature was about

52 R.K. Pujari et al.

Ready Queue

CPU Utilization

Temperature

Fi
ll

L
ev

el
0 20 40 60 80 100 62 6460

20

40

60

0 20 40 60 80 100 62 6460

Pe
rc

en
ta

ge
 (

%
)

20
40
60
80

100

0 20 40 60 80 100 62 6460
seconds

seconds

seconds
°

C
el

ci
us

20
40
60
80

Fig. 8. Class 2: Optimize load distribution

48–50◦C but the temperature gradient was about 10◦C. Also, the number of
threads having to wait in queue is increased by an average of five (maximum up
to 20) threads, adversely affecting the performance.

Next, in class 3 (Fig. 9), the TCU attempts to operate all the cores at the
same temperature and reduces the temperature gradient (≤ 1◦C) by switching
off some or all of the cores for some time. This causes non-uniform utilization
of cores and thus the number of threads in ready queue is increased drastically
to an average of 10 with a peak of 40 threads in waiting. Though class 3 gives
minimum temperature gradient, its performance in comparison to classes 1 and 2
is worsened and isn’t suitable for compute intensive tasks.

Classes 1, 2, and 3 perform very well in meeting only a single objective
at the expense of other objectives. Figure 10 shows the TCU’s response to
threads belonging to multi-objective class 4. The steady state response (zoom
out section) in the figure shows that TCU tries to keep the average FIFO level as
low as possible by using all the CPUs, thus distributing the load and minimizing
the temperature gradient. It offers the optimum operating point considering all
the three sensors simultaneously.

Even when the average workload was increased to 75 %, the mean tempera-
ture increased to 65◦C, but the steady state characteristics of the classes never-
theless showed similar behaviour. The class 1 was good on the latency aspect as
no threads were pending in the FIFOs, while class 2 showed better utilization and
class 3 had minimal temperature gradient. Multi-objective class 4 offered min-
imum temperature gradient with better utilization and minimum FIFO levels.

TCU: A Multi-Objective Hardware Thread Mapping Unit for HPC Clusters 53

Ready Queue

CPU Utilization

Temperature

0 20 40 60 80 100 62 6460

20

40

60

Pe
rc

en
ta

ge
 (

%
)

20
40
60
80

100

0 20 40 60 80 100 62 6460
seconds

seconds
°

C
el

ci
us

20
40
60
80

0 20 40 60 80 100 62 6460
seconds

Fi
ll

L
ev

el

Fig. 9. Class 3: Minimize temperature gradient

Ready Queue

Temperature

0 20 40 60 80 100 62 6460

Pe
rc

en
ta

ge
 (

%
)

20
40
60
80

100

0 20 40 60 80 100 62 6460
seconds

seconds

°
C

el
ci

us

20
40
60
80

0 20 40 60 80 100 62 6460
seconds

20

40

60

Fi
ll

L
ev

el

CPU Utilization

Fig. 10. Class 4: Multi-objective with FIFO level, CPU utilization and temperature

54 R.K. Pujari et al.

Note any other multi-objective mapping policy can be deployed using TCU,
making use of different sensors and corresponding weights.

A single periodic workload is a very simplistic model for representing a
real application. Class 3 (Fig. 9, temperature-aware) and class 4 (Fig. 10, multi-
objective) minimized the temperature gradient at the expense of thread latency
when compared to class 1 (Fig. 7, compute-intensive). Hence to compare the
benefit of using multi-objective (class 4 or 5) over round-robin (class 0) or single-
objective (class 1 or 3) policies, a measure of performance in terms of minimizing
thread latency was further investigated. We present this evaluation next, using
two different workloads.

Two Periodic Workloads: Short and long runners are generated from tile 0
and sent to tile 1. The two workloads are assigned to different classes and the
latency for all the threads spawned in a 60-s duration under steady state is
logged. The experiments are performed for three different scenarios. First, a

Short runners: latency > 10 ms
Long runners: latency > 250 ms

100

80

60

40

20

0%
 o

f
th

re
ad

s
no

t s
er

vi
ce

d
w

ith
in

 th
ei

r
in

je
ct

io
n

pe
ri

od

RRSOMO
1:2 Ratio

RRSO MO
1:1 Ratio

RRSO MO
2:1 Ratio

(a) Average CPU load: 50%

100

80

60

40

20

0
RRSO MO
1:2 Ratio

RRSO MO
1:1 Ratio

RRSO MO
2:1 Ratio

(b) Average CPU load: 75%

100

80

60

40

20

0
RRSOMO
1:2 Ratio

RRSO MO
1:1 Ratio

RRSOMO
2:1 Ratio

(c) Average CPU load: 90%

Fig. 11. Workload mix of short and long runners under different load conditions on
four cores is varied in proportion of 1:2, 1:1 and 2:1 ratio. Latency observed by the
two periodic workloads on employing different policies. RR: Round-robin; SO: Single-
objective considering only FIFO level; MO: Multi-objective with FIFO level, CPU
utilization and temperature

TCU: A Multi-Objective Hardware Thread Mapping Unit for HPC Clusters 55

round-robin (RR) policy is used for both workloads by assigning them to class 0.
The second scenario is single-objective (SO) wherein short runners are assigned
to class 1 (fill level-sensitive) and long runners to class 3 (temperature). In the
third multi-objective (MO) scenario, in order to benefit from multiple sensors,
long runners are assigned to class 4. The total load produced by both workloads
is varied from 50 %, 75 % to 90 % and the individual contribution of load due
to short and long runners is mixed in the ratio of 1:2, 1:1 and 2:1 respectively.
Since the total load in below 100 % (work-conserving), an ideal mapper could
always assign incoming threads to one of the free cores without any latency.

Figure 11 shows the percentage of threads that experience delay beyond their
injection period due to the TCU’s mapping decisions. For moderate loads of
about 50 %, at least 20 to 38 % of the threads had to wait in one of the ready
queues before being serviced using RR. When the load was increased to about
75 %, almost 50–60 % of short runners and 80 % of long runners weren’t serviced
on arrival using RR. The situation was even worse for peak loads, with almost
80 % of threads for both short and long runners having to wait. In comparison to
RR, only 4 % of short runners and worst case 4 % long runners had to wait with
single or multi-objective for 50 % load situation. For high load situations of 75 %
and 90 %, long runners are better served with MO than SO when they are in the
majority. When long runners are in the minority, they experience just about 1 %
performance degradation with MO compared to SO. Hence for an application
generating long running threads, MO would be the preferred choice rather than
the RR or SO policy.

Periodic and Burst Workloads: We further investigated the effect of the
bursty or sporadic nature of applications. For this, first a baseline steady state
load of 25 % is generated by sending periodic short runner threads. Second, a
burst of long runners (with execution time 250 ms) of burst size 4, 8 or 11 is
sent every second. Short runners experience no delay only if a bursty workload
is not sent. We logged for about 60 s all the threads that experienced latency on
arrival.

Figure 12 shows that about 45–95 % of short runners experience delay. This
is because RR policy is being fair to all the arriving threads, hence caters to
incoming long runner threads as well. Short runners are better isolated from
bursty long runners when single- or multi-objective MO1 (class 4), MO2 (class
5) policies are used. For low bursts (Fig. 12a), less than 2 % of short runners are
delayed using MO2 against SO (5 %) or MO1 (4 %). For medium bursts (size
8), MO1 outperforms the other policies. For high burst (Fig. 12c), the benefit of
MO1 or MO2 over SO is not significant.

RR being fair, it very well serves all the bursty long runner threads upon
arrival (Fig. 12a and b) without delay. But for high bursts (Fig. 12c), only 18 %
of long runners are delayed with multi-objective (MO1) as against 24 % with
RR. Thus for highly bursty workloads, MO1 outperforms RR. Overall, MO1 is
better in serving bursty long runners while isolating the periodic short runners
simultaneously.

56 R.K. Pujari et al.
%

 o
f

th
re

ad
s

no
t s

er
vi

ce
d

w
ith

in
 th

ei
r

in
je

ct
io

n
pe

ri
od

100

80

60

40

20

0
RR SO MO1 MO2

Short runners: latency > 10 ms
Bursty long runners: latency > 1000 ms

(a) Burst length: 4

100

80

60

40

20

0
RR SO MO1 MO2

(b) Burst length: 8

100

80

60

40

20

0
RR SO MO1 MO2

(c) Burst length: 11

Fig. 12. Effect of bursty long runners of varying burst length on periodic short
runner threads. RR: Round-robin; SO: Single-objective considering only FIFO level;
MO1: Multi-objective with FIFO level, CPU utilization and temperature; MO2: Multi-
objective with FIFO level, thread arrival and service rates

5 Conclusion

A multi-objective hardware-based thread control unit (TCU) for mapping
threads on many-processor compute nodes of HPC clusters is presented. Fast
and up-to-date sensors-based cost evaluation is the central idea of the TCU. The
benefits of mapping threads in a compute node using multiple sensors simulta-
neously as against using a single sensor are illustrated. Round-robin, single- or
multi-objective mapping policies are evaluated using concurrent multiple appli-
cation workloads. Applications spawning threads in a periodic manner expe-
rience minimum mapping latency with multi-objective policies in comparison
to round-robin or single-objective policies. They are better isolated from other
bursty applications. Even for bursty and long-running applications, a high ser-
vice rate is achieved using a multi-objective policy.

About 150 K thread mappings per second are achieved by the TCU on an
FPGA prototype operating at a moderate frequency of 50 MHz. Very short
running threads of just a few instructions can be spawned from one compute
node, and can be mapped on the fly almost at the link rate onto processor cores
on another compute node by the TCU. The design of the TCU is generic and

TCU: A Multi-Objective Hardware Thread Mapping Unit for HPC Clusters 57

extendible to HPC platforms that provide fast and direct access to its sensor
data. For example cache or TLB hit/miss rates can be directly fed to TCU
as additional sensors, and it can map successive train of threads to cores hav-
ing higher hit rates thereby benefiting from data locality. The TCU’s thread
mapping policy can be tailored to meet any other application-specific needs or
objectives by using different sensors/performance counters available on the com-
pute platform. TCU acts as a dedicated hardware accelerator for offloading OS
thread scheduling and mapping services. A small area footprint (9 % overhead
per four-CPU compute node) and high performance justify implementing the
TCU as an on-chip ASIC solution. Our current work in progress is evaluation
of the TCU using NAS benchmarks on a 2× 2 compute node design prototyped
on a multi-FPGA platform.

Acknowledgement. This work was supported by the German Research Founda-
tion (DFG) as part of the Transregional Collaborative Research Center “Invasive
Computing” (SFB/TR 89).

References

1. Association, I.T.: InfiniBand Architecture Specification, Release 1.0 (2000). http://
www.infinibandta.org/specs

2. Borkar, S.: Designing reliable systems from unreliable components: the chal-
lenges of transistor variability and degradation. IEEE Micro 25(6), 10–16 (2005).
http://dx.doi.org/10.1109/MM.2005.110

3. Colmenares, J., Eads, G., Hofmeyr, S., Bird, S., Moreto, M., Chou, D., Gluzman,
B., Roman, E., Bartolini, D., Mor, N., Asanovic, K., Kubiatowicz, J.: Tessellation:
refactoring the OS around explicit resource containers with continuous adapta-
tion. In: 2013 50th ACM/EDAC/IEEE Design Automation Conference (DAC), pp.
1–10, May 2013

4. Coskun, A., Rosing, T., Whisnant, K., Gross, K.: Static and dynamic temperature-
aware scheduling for multiprocessor SoCs. IEEE Trans. Very Large Scale Integr.
VLSI Syst. 16(9), 1127–1140 (2008)

5. Dagum, L., Menon, R.: OpenMP: an industry standard API for shared-
memory programming. IEEE Comput. Sci. Eng. 5(1), 46–55 (1998).
http://dx.doi.org/10.1109/99.660313

6. Esmaeilzadeh, H., Blem, E., St. Amant, R., Sankaralingam, K., Burger, D.: Dark
silicon and the end of multicore scaling. In: Proceedings of the 38th Annual Inter-
national Symposium on Computer Architecture, pp. 365–376, ISCA 2011. ACM,
New York, NY, USA (2011). http://doi.acm.org/10.1145/2000064.2000108

7. Frigo, M., Leiserson, C.E., Randall, K.H.: The implementation of the
Cilk-5 multithreaded language. SIGPLAN Not. 33(5), 212–223 (1998).
http://doi.acm.org/10.1145/277652.277725

8. Henkel, J., Herkersdorf, A., Bauer, L., Wild, T., Hubner, M., Pujari, R., Grudnit-
sky, A., Heisswolf, J., Zaib, A., Vogel, B., Lari, V., Kobbe, S.: Invasive manycore
architectures. In: 2012 17th Asia and South Pacific Design Automation Conference
(ASP-DAC), pp. 193–200, January 2012

http://www.infinibandta.org/specs
http://www.infinibandta.org/specs
http://dx.doi.org/10.1109/MM.2005.110
http://dx.doi.org/10.1109/99.660313
http://doi.acm.org/10.1145/2000064.2000108
http://doi.acm.org/10.1145/277652.277725

58 R.K. Pujari et al.

9. Howard, J., Dighe, S., Hoskote, Y., Vangal, S., Finan, D., Ruhl, G., Jenkins, D.,
Wilson, H., Borkar, N., Schrom, G., Pailet, F., Jain, S., Jacob, T., Yada, S.,
Marella, S., Salihundam, P., Erraguntla, V., Konow, M., Riepen, M., Droege, G.,
Lindemann, J., Gries, M., Apel, T., Henriss, K., Lund-Larsen, T., Steibl, S.,
Borkar, S., De, V., Van Der Wijngaart, R., Mattson, T.: A 48-core IA-32 message-
passing processor with DVFS in 45 nm CMOS. In: 2010 IEEE International
Solid-State Circuits Conference Digest of Technical Papers (ISSCC), pp. 108–109,
February 2010

10. Kumar, S., Hughes, C.J., Nguyen, A.: Carbon: architectural support for fine-
grained parallelism on chip multiprocessors. SIGARCH Comput. Archit. News
35(2), 162–173 (2007). http://doi.acm.org/10.1145/1273440.1250683

11. Li, Y., Skadron, K., Brooks, D., Hu, Z.: Performance, energy, and thermal consid-
erations for SMT and CMP architectures. In: 11th International Symposium on
High-Performance Computer Architecture, HPCA-11 2005, pp. 71–82, February
2005

12. Pujari, R.K., Wild, T., Herkersdorf, A., Vogel, B., Henkel, J.: Hardware assisted
thread assignment for RISC based MPSoCs in invasive computing. In: 2011 13th
International Symposium on Integrated Circuits (ISIC), pp. 106–109, December
2011. http://doi.acm.org/10.1109/ISICir.2011.6131920

13. Reinders, J.: Intel Threading Building Blocks, 1st edn. O’Reilly & Associates Inc.,
Sebastopol (2007)

14. Virding, R., Wikström, C., Williams, M.: Concurrent Programming in ERLANG,
2nd edn. Prentice Hall International (UK) Ltd., Hertfordshire (1996)

15. Wentzlaff, D., Griffin, P., Hoffmann, H., Bao, L., Edwards, B., Ramey, C.,
Mattina, M., Miao, C.C., Brown III, J.F., Agarwal, A.: On-chip intercon-
nection architecture of the tile processor. IEEE Micro 27(5), 15–31 (2007).
http://dx.doi.org/10.1109/MM.2007.89

http://doi.acm.org/10.1145/1273440.1250683
http://doi.acm.org/10.1109/ISICir.2011.6131920
http://dx.doi.org/10.1109/MM.2007.89

Data Locality and Decomposition

Dynamic Sparse-Matrix Allocation on GPUs

James King(B), Thomas Gilray, Robert M. Kirby, and Matthew Might

University of Utah, Salt Lake City, USA
{jsking2,tgilray,kirby,might}@cs.utah.edu

Abstract. Sparse matrices are a core component in many numeri-
cal simulations, and their efficiency is essential to achieving high per-
formance. Dynamic sparse-matrix allocation (insertion) can benefit a
number of problems such as sparse-matrix factorization, sparse-matrix-
matrix addition, static analysis (e.g., points-to analysis), computing
transitive closure, and other graph algorithms. Existing sparse-matrix
formats are poorly designed to handle dynamic updates. The compressed
sparse-row (CSR) format is fully compact and must be rebuilt after each
new entry. Ellpack (ELL) stores a constant number of entries per row,
which allows for efficient insertion and sparse matrix-vector multipli-
cation (SpMV) but is memory inefficient and strictly limits row size.
The coordinate (COO) format stores a list of entries and is efficient for
both memory use and insertion time; however, it is much less efficient
at SpMV. Hybrid ellpack (HYB) compromises by using a combination
of ELL and COO but degrades in performance as the COO portion fills
up. Rows that use the COO portion require it to be completely traversed
during every SpMV operation.

In this paper we introduce a new sparse matrix format, dynamic com-
pressed sparse row (DCSR), that permits efficient dynamic updates. These
updates are significantly faster than those made to a HYB matrix while
maintaining SpMV times comparable to CSR. We demonstrate the efficacy
of our dynamic allocation scheme, evaluating updates and SpMV opera-
tions on adjacency matrices of sparse-graph benchmarks on the GPU.

1 Introduction

Sparse matrix-vector multiply (SpMV) is the workhorse operation of many
numerical simulations and has seen use in a wide variety of areas such as data
mining [1] and graph analytics [2]. In these algorithms, a majority of the total
processing is often spent on SpMV operations. Iterative computations such as the
power method and conjugate gradient are commonly used in numerical simula-
tions and require successive SpMV operations [3]. The use of GPUs has become
increasingly common in computing these operations as they are, in principle,
highly parallelizable. GPUs have both a high computational throughput and a
high memory bandwidth. Operations on sparse matrices are generally memory
bound; this makes the GPU a good target platform due to its higher memory
bandwidth compared to that of the CPU, but it is still difficult to attain high
performance with sparse matrices because of thread divergence and noncoalesced
memory accesses.
c© Springer International Publishing Switzerland 2016
J.M. Kunkel et al. (Eds.): ISC High Performance 2016, LNCS 9697, pp. 61–80, 2016.
DOI: 10.1007/978-3-319-41321-1 4

62 J. King et al.

Some applications require dynamic updates to the matrix; generally con-
strued, updates may include inserting or deleting entries. Fully compressed for-
mats such as compressed sparse row (CSR) cannot handle these operations with-
out rebuilding the entire matrix. Rebuilding the matrix is orders of magnitude
more costly than performing an SpMV operation. The ellpack (ELL) format allo-
cates a fixed amount of space for each row, allowing fast insertion of new entries
and fast SpMV, but limits each row to a predetermined number of entries and
can be highly memory inefficient. The coordinate (COO) format stores a list of
entries and permits both efficient memory use and fast dynamic updates but is
unordered and slow to perform SpMV operations. The hybrid-ellpack (HYB) for-
mat attempts a compromise between these by combining an ELL matrix with a
COO matrix for overflow. This compromise requires examination of the overflow
matrix for SpMV operations and efficiency suffers.

Matrix representations of sparse graphs sometimes exhibit a power-law dis-
tribution (when the number of nodes with a given number of edges scales as a
power of the number of edges). This distribution results in a long tail in which
a few rows have a relatively high number of entries whereas the rest have a
relatively low number. Important real-world phenomena exhibit the power-law
distribution. Their corresponding matrices can represent adjacency graphs, web
communication, and finite-state simulations. Such a matrix is also the patholog-
ical case for memory efficiency in the ELL format and requires significant use of
the COO portion of a HYB matrix, making neither particularly well suited for
dynamic sparse-graph applications.

One motivating application for our work is control-flow analysis (CFA): a gen-
eral approach to static program analysis of higher-order languages [4,5]. These
algorithms use an approximate interpretation of their target code to yield an
upper bound on the propagation of data and control through a program across
all possible actual executions. A CFA involves a series of increasing operations
on a graph (extending it with nodes and edges), terminating when a fixed point
is reached (a steady state in which the analysis is self-consistent).

Recent work has shown how to implement this kind of static analysis as
linear-algebraic operations on the sparse-matrix representation of a function
[6,7]. Other recent work shows how to implement an inclusion-based points-to
analysis of C on the GPU by applying a set of semantic rules to the adjacency
matrix of a sparse-graph [8]. These algorithms may be likened to finding the
transitive closure of a graph encoded as an adjacency matrix. The matrix is
repeatedly extended with new entries derived from SpMV until a fixed point is
reached (no more edges need to be accumulated). Each of these approaches to
static analysis on the GPU is very different; however, both require high perfor-
mance sparse-matrix operations and dynamic insertion of new entries.

1.1 Contributions

Existing matrix formats are ill-suited for such dynamic allocation, with many
being fully compressed or otherwise unable to be efficiently extended with new

Dynamic Sparse-Matrix Allocation on GPUs 63

entries. Our contribution in this paper is to present a fast, dynamic method for
sparse-matrix allocation:

1. We present a new sparse matrix format, dynamic compressed sparse
row (DCSR), that allows for efficient dynamic updates, exhibits
easy conversion with standard CSR, and has fast SpMV.

2. We implement an open-source library for DCSR and demonstrate
its efficacy, benchmarking SpMV and insertions using the adjacency
matrices for a suite of sparse-graph benchmarks.

2 Background

In this paper we are concerned with dynamic updates to sparse matrices. As
SpMV is arguably the most important sparse-matrix operation, we want to
maintain efficient times for the problem Ax = y. A major goal of sparse-matrix
formats is to reduce irregularity in the memory accesses. We provide a brief
overview of some of the most commonly used sparse-matrix formats.

The coordinate (COO) format is the simplest sparse-matrix format. It rep-
resents a matrix with three vectors holding the row indices, column indices,
and values for all nonzero entries in the matrix. The entries within a COO for-
mat must be sorted by row in order to efficiently perform an SpMV operation.
SpMV operations are conducted in parallel through segmented reductions over
the length of the arrays. Tracking which thread has processed the final entry in
a row requires explicit inter-thread communication.

The compressed sparse row/column (CSR/CSC) formats are similar to COO
in that they have arrays that fully store two of the three sets, either the column
indices or the row indices in addition to the values. Either the rows or columns
(in CSR or CSC, respectively) are compressed to store only offsets corresponding
to the row/column locations in the other two arrays. For CSR, entry i and i+1 in
the row offsets array will store the starting and ending offsets for row i. CSR has
been shown to be one of the best formats in terms of memory usage and SpMV
efficiency due to its fully compressed nature, and thus it has become widely used
[9]. CSR has a greater memory efficiency than COO, which is a significant factor
in speeding up SpMV operations due to decreased memory bandwidth usage.

The ellpack (ELL) format uses two arrays, each of size m × k (where m is
the number of rows and k is a fixed width), to store the column indices and
the values of the matrix [10,11]. These arrays are stored in column-major order
to allow for efficient parallel access across rows. This format is best suited for
matrices that have a fixed number of entries per row.

Allocating enough memory in each row to store the entire matrix is pro-
hibitively expensive for ELL when a matrix contains even one long row. The
hybrid-ellpack (HYB) format offers a compromise by using a combination of
ELL and COO. It stores as much as possible in an ELL portion, and the over-
flow from rows with a number of entries greater than the fixed ELL width is

64 J. King et al.

stored in a COO portion. ELL and HYB have become popular on SIMD archi-
tectures due to the ability of thread warps to look through consecutive rows in
an efficient parallel manner [12].

The diagonal format (DIA) is best suited for banded matrices. It is formed by
two arrays that store the nonzero data and the offsets from the main diagonal.
The nonzero values are stored in an m × k array where m is the number of
rows in the matrix and k is the maximum number of nonzeros of any row in the
matrix. The offsets are stored with respect to the main diagonal, with positive
offsets to the right and negative offsets to the left. The SpMV parallelization of
this format is similar to that of ELL with one thread/vector assigned to each
row in the matrix. The values array is statically sized, similar to ELL, which
restricts its ability to handle dynamic insertions.

A number of other specialized sparse-matrix formats have been developed,
including diagonal (DIA), jagged diagonal storage (JDS), block diagonal (BDIA),
skyline storage (SKS), tiled COO (TCOO), block ELL (BELL), and sliced-ELL
(SELL) [13], which offer improved performance for specific matrix types. Blocked
variants of these and other formats work by storing localized entries in blocks
for better data locality and a reduction in index storage. “Cocktail” frameworks
that mix and match matrix formats to fit specific subsets of the matrix have
been developed, but they require significant preprocessing and are not easily
modified dynamically [14]. Garland et al. have provided detailed reviews of the
most common sparse-matrix formats [10,11,15], as well as an analysis of their
performance on throughput-oriented many-core processors [16].

Block formats, such as BRC [17] and BCCOO [18] that use blocking, have
limited ability to add in additional entries. BRC can add new entries only if
those entries correspond to zeros within blocks that have been stored. BCCOO
can handle the addition of new entries, but it suffers from many of the same
problems as COO. Also, new insertions will not always follow a blocked structure,
so additional blocks may be sparse, which lowers memory efficiency.

Many sparse-matrix formats are fully compressed and do not allow additional
entries to be added to the matrix dynamically. Adding additional entries to a
CSR matrix requires rebuilding the entire matrix, since there is no free space
between entries. Of existing formats, COO is the most amenable to dynamic
updates because new entries can be placed at the end of the data structure.
However, updating a COO matrix in parallel requires atomic operations to keep
track of currently available memory locations. The ELL/HYB formats allow for
some additional entries to be added in a limited fashion. ELL cannot add in
more entries per row than the given width of the matrix, and while the HYB
format has a COO matrix to handle overflow from the ELL portion, it cannot
be efficiently updated in parallel since atomic operations are required and the
COO portion must maintain the sorted property.

A great deal of research has been devoted to improving the efficiency of
SpMV, which has been studied on both multi-core and many-core architectures.
Williams et al. demonstrated the efficacy of using architecture-specific data
structures to optimize performance [19,20]. As SpMV is a bandwidth-limited

Dynamic Sparse-Matrix Allocation on GPUs 65

operation, research has also produced other methods, such as automatic tun-
ing, blocking, and tiling, to increase cache hit rates and decrease bandwidth
usage [21–23].

Graph applications often use sparse binary adjacency matrices to represent
graphs and translate graph operations to linear algebraic operations [24]. A com-
mon graph algorithm is finding a transitive closure by repeated multiplication of
its adjacency matrix. The transitive closure of an adjacency matrix R calculates
R+ = ∪

i∈{1,2,3,...}
Ri, where Ri is the ith power of the matrix. This operation results

in Ri having a nonzero between any pair of nodes that are connected by a path
of length i. The union (addition/binary-or) of all R, . . . Rn will have a nonzero
entry for every pair of nodes that are connected by a path of length ≤ n. This
process of unioning successive powers of R can be continued until a fixed point is
reached and all nodes that are connected by a path of any length will be marked
in the matrix.

3 Dynamic Compressed Sparse Row (DCSR)

We present a dynamic sparse-matrix allocation method that allows for efficient
dynamic updates while maintaining fast SpMV times. Our dynamic allocation
uses a row offset array, representing a dense array of ordered rows, and for each
a fixed number of segment offsets. The column indices and values are stored in
arrays that are logically divided into these data segments in the same way that
CSR row offsets partition the column indices and values. Each such segment is
a contiguous portion of memory that stores entries within a row. Segments may
contain more space than entries to allow for future insertions. The contiguous
arrangement of entries within the set of segments for a given row is equivalent
to the CSR format. In the following subsection we illustrate how dynamic allo-
cation is performed, after which we provide details of how DCSR operations are
implemented.

Initializing the matrix can be accomplished in one of two ways. Either a
matrix can be loaded from another format (e.g., COO or CSR), or the matrix
can be initialized as blank. In the latter case, each row is assigned an initial
number of entries (an initial segment size) in the column indices and values
arrays. The row offset array is initialized with space for k segment offset pairs,
with either no allocated segments or a single allocated segment of size μ per
row. In the latter case this allocation consumes the same amount of memory
as an ELL matrix with a row width of μ, except in row-major order instead
of column-major order. A memory buffer with excess space maintained, using
a simple bump-pointer allocation method to add new segments, to allow for
dynamic allocation. This allocation pointer is set to the end of the currently
used space (rows × μ in the case of a new matrix). A maximum size of memory
buffer for the columns and values arrays is specified by the user. Figure 1 provides
an illustrative comparison of CSR, HYB, and DCSR formats.

In total, the format consists of four arrays for column indices, values, row
offsets, and row sizes, in addition to a memory allocation pointer. The row offsets

66 J. King et al.

Fig. 1. Comparison of CSR, DCSR, and HYB formats. (Color figure online)

array functions in a manner similar to that of its CSR counterpart, except that
both a beginning and ending offset are stored and space exists for up to k
such pairs per row. This table is encoded as a strided array where the starting
and ending offsets of segment k in row i are indexed by (i ∗ 2 + k ∗ pitch) and
(i∗2+k∗pitch+1), respectively. The pitch may be defined as a value convenient
for cache performance such that pitch ≥ 2 ∗ rows. This pitch value is chosen to
ensure memory aligned accesses. The number of memory segment offset pairs
(the max k) is an adjustable parameter specified at matrix construction. The
column indices and values correspond 1:1, just as in CSR. Unlike CSR, however,
there may be more than one memory segment assigned to a given row and these
segments need not be contiguous. As the last segment for a row may not be
full, the actual row sizes are maintained so the used portion of each segment is
known.

Explicitly storing row sizes allows for optimization techniques such as adap-
tive CSR (ACSR) [25] (of which we take advantage). This optimization imple-
ments customized kernels to process bins of specified row-lengths. During this
binning process, we create a permuted set of row indices that are sorted according
to these bin groupings. We launch each bin-specific kernel with these permuted
indices on its own stream, which allows each kernel to easily access the rows that
it needs to process without scanning over the matrix.

Dynamic Sparse-Matrix Allocation on GPUs 67

When inserting new elements within a row, the last allocated segment for
that row is located, and if space is available the new elements are inserted in
a contiguous fashion after the current entries. If that segment does not have
enough room, a new segment will be allocated with the appropriate size plus
an additional amount α. The α value represents additional “slack space” and
allows for a greater number of entries to be inserted without the creation of a
new segment. Although we experimented with setting α to be a factor of the
previous segment size, for our tests we settled on a value of μ (average row size
of matrix). When a new segment is allocated, the memory allocation pointer
is atomically increased by the size of the new segment. A hard limit on these
additions, before defragmentation is required, is fixed by the number of seg-
ments k. The defragmentation operation always reduces the number of segments
in each row to one, which allows the format to scale to an arbitrary number of
allocations. Pseudo-code for new segment allocation is provided by Algorithm1.

When inserting new elements into the matrix, it is possible that duplicate
nonzero entries (i.e., two or more entries with the same row and column index) will
be added. Duplicate entries are handled in one of two ways. The first method is to
simply let the accumulation occur, as it does not pose a problem for many opera-
tions. SpMV operations are tolerant of duplicate entries since the reduction relies
on associative operations. This result will be correct to within floating point tol-
erance. For binary matrices, the row-vector inner products will produce the same
result irrespective of duplicate nonzeros. A second solution is to perform a seg-
mented reduction on the entries after sorting by row and column. This operation
combines all duplicate entries into a single entry but is generally not needed when
performing only SpMV and addition operations. In our tests, we let the values
accumulate for all formats as they do not hinder the SpMV operations that are
performed. Pseudo-code for an insertion operation is given by Algorithm2.

An SpMV operation works as follows. Initially the first pair of segment offsets
is fetched. The entries within the corresponding segment are multiplied by the
appropriate values in x according to the algorithm being used (CSR-scalar, CSR-
vector, etc.). If the row size is greater than the capacity of the current memory
segment, the next pair of offsets is fetched. If the size of the current segment
plus the running sum of the previous segment sizes is greater than or equal to
the row size, the final segment of that row has been found. If the final segment
is not full, the location of the last entry can be determined by the difference of
the row size and the running sum. This process continues until the entire row
has been read. This is illustrated in Algorithm3.

As the matrix accumulates more segments, SpMV performance decreases
slightly. A fixed number of segments also means this process cannot continue
forever. Our solution to both problems is to implement a defragmentation oper-
ation that compacts all entries within the column indices and values arrays,
eliminating empty space. This operation compacts all segments in a row into
a single segment. The defragmentation may be invoked periodically, or more
conservatively when a row has reached its maximum capacity of segments. In
practice we do the latter and set a flag when any row reaches its maximum
segment count. At this point we consider defragmentation to be required.

68 J. King et al.

Algorithm 1. Allocate Segments
Input: sizes, offsets, Aj, Ax, B offsets, B cols, B vals
Output: sizes, offsets, Aj, Ax

1 row ← vid ; // vector ID

2 while row < n rows do
3 sid ← 0 ; // segment index

4 rl ← sizes[row] ; // row length

5 idx ← 0 ; // thread row index

6 start ← offsets[row ∗ 2] ; // starting segment offset

7 end ← offsets[row ∗ 2 + 1] ; // ending segment offset

8 free mem ← 0;
9 B start ←B offsets[row ∗ 2];

10 B end ←B offsets[row ∗ 2 + 1];
11 rlB ← B row end − B row start;
12 if rlA ≥ 0 then
13 while A idx < rlA do
14 idx ← idx + (A end − A start);
15 if idx < rlA then
16 sid ← sid + 1;
17 A start ← offsets[sid∗pitch+row ∗ 2];
18 A end ← offsets[sid∗pitch+row ∗ 2 + 1];

19 idx ← A end + rlA − idx;

20 else
21 idx ← A start;

22 free mem ← A end − A start;
23 if lane = 0 AND free mem < rlB AND rlB > 0 then

// allocate new space

24 size ← rlB − free mem + α;
25 addr ← atomicAdd(sizes[n rows], size);

// allocate new row segment

26 offsets[(sid + 1)*pitch + row ∗ 2] ← addr;
27 offsets[(sid + 1)*pitch + row ∗ 2 + 1] ← addr + size;

// Allocate new entries (Algorithm 2)

28 Insert Elements();
29 row ← row + num vectors;

Defragmentation performs the equivalent to a sort-by-row operation on the
entries of the matrix; however, we formulated a method that does not require
an actual sort and is significantly faster than doing so. We perform a prefix-
sum operation on the row sizes to calculate the new row offsets in a compacted
CSR form. After this, the entries are shuffled from their current indices to their
new indices in newly allocated column indices and values buffers, after which we
set a pointer in our data structure to these new arrays and free the old buffers
(shallow copy). By using the knowledge of the row sizes to compute resulting
offsets and indices, we eliminate the need to do any comparisons in this operation,
which greatly improves performance. The defragmentation process is described
by Algorithm 4.

Dynamic Sparse-Matrix Allocation on GPUs 69

Fig. 2. Illustration of insertion and defragmentation operations with DCSR. (Color
figure online)

Figure 2 illustrates an example of inserting new elements into a DCSR matrix.
Initially the matrix has four populated rows with the memory allocation pointer
being 16. Row 0 can insert one additional entry in its current segment before
a new segment needs to be allocated. Rows 1 and 2 have enough room for two
additional entries, and row 3 is full. Figure 2 shows a set of new entries that are
inserted into rows 0, 2, and 3. In this case a new segment of size 4 is allocated
for row 0 and row 3. The additional segments need not be consecutive nor in
order of row since the exact offsets are stored for each segment. Finally, the
defragmentation operation computes new segment offsets from the row sizes.
The entries are shuffled to their new indices, which results in a single compacted
segment for each row.

70 J. King et al.

Algorithm 2. Insert Elements
Input: sizes, offsets, Aj, Ax, B cols, B vals
Output: sizes, Aj, Ax

1 B idx ← B start+lane ; // add thread lane

2 while B idx < B end do
3 if idx ≥ A end then
4 pos ← idx − A end;
5 sid ← sid + 1;
6 A start ← offsets[sid∗pitch+row ∗ 2];
7 A end ← offsets[sid∗pitch+row ∗ 2 + 1];
8 idx ← A start + pos;

9 Aj[idx] ← B cols[B idx];
10 Ax[idx] ← B vals[B idx];
11 B idx ← B idx+ VECTOR SIZE;
12 idx ← idx+ VECTOR SIZE;

13 if lane = 0 then
14 sizes[row] ← sizes[row] + rlB;

Algorithm 3. DCSR SpMV
Input: sizes, offsets, Aj, Ax, x, y
Output: y

1 tid ← thread index ; // thread ID

2 lane ← tid % V ec Size ; // lane ID

3 vid ← tid / V ec Size ; // vector ID

4 for row ← vid to num rows, row += num vecs do
5 idx ← 0 ; // thread row index

6 rl ← sizes[row] ; // row length

7 sid ← 0 ; // segment index

8 while idx < rl do
9 start ← offsets[sid∗pitch + row ∗ 2];

10 end ← offsets[sid∗pitch + row ∗ 2 + 1];
/* accumulate local sums */

11 for j ← start to end, j += V ec Size do
12 sum += Ax[j] * x[Aj[j]];

13 idx += (end - start);

14 y[row] = sum;

As CSR is the most commonly used sparse matrix format, we designed DCSR
to be compatible with CSR algorithms and to allow for easy conversion between
the formats. Minimal overhead is required to convert from CSR to DCSR and
vice versa. When converting from CSR to DCSR, the column indices and values
arrays are copied directly. For the row offsets array, the ith element is copied
to indices i ∗ 2 − 1 and i ∗ 2 for all elements except the first and last one.

Dynamic Sparse-Matrix Allocation on GPUs 71

Algorithm 4. Defragment DCSR
Input: sizes, offsets, Aj, Ax
Output: offsets, Aj, Ax
/* prefix sum on row sizes */

1 exclusive scan(sizes, temp offsets);
2 new T cols(size(Aj)), new T vals(size(Ax));
3 CompactIndices(T cols, T vals, temp offsets, Aj, Ax, offsets, sizes);

/* shallow copy, old arrays deleted */

4 Aj = &T cols, Ax = &T vals;
5 SetRowOffsets(offsets, sizes, temp offsets);

A simple subtraction must be performed to calculate the row sizes from the row
offsets. Converting back to CSR is equally simple, assuming the matrix is first
defragmented; the column indices and values arrays are copied back, and the
starting segment offset from each row is copied to the row offsets array.

4 Experimental Results

In our tests we used an Intel Xeon E5-2640 processor running at 2.50 GHz,
128 GB of memory, and 3 NVIDIA Tesla K20c GPUs. For additional scaling
tests, we used an Intel Xeon E5630 processor running at 2.53 GHz, 128 GB of
memory, and 8 NVIDIA Tesla M2090 GPUs. We compiled using g++ 4.7.2,
CUDA 5.5, and Thrust 1.8, comparing our method against modern implemen-
tations in Nvidia CUSP [26]. Table 1(a) provides a list of the matrices that we
used in our tests as well as their sizes, number of nonzeros, and row entry distri-
butions. All the matrices can be found in the University of Florida sparse-matrix
database [27].

Memory consumption is a major concern for sparse matrix formats, as one of
the primary reasons for eliminating the storage of zeros is to reduce the memory
footprint. The ELL component of HYB is best suited to store rows with an equal
number of entries. If there is a large variance in row size, much of the ELL portion
may end up storing many zeros, which is inefficient. We provide a comparison of
memory consumption for HYB, DCSR (using 2, 3, and 4 segments), and CSR
formats in Table 1(b). We compute the storage size of the HYB format using
an ELL width equal to the average number of nonzeros per row (μ) for the
given matrix. CSR has the smallest memory footprint since its row indices have
been compressed to the number of rows in the matrix. We see that DCSR has a
significantly smaller memory footprint in almost all test cases. Test cases such
as AMA and DBL have lower memory consumption for HYB than for DCSR
(with 3 and 4 segments), because these matrices have a low variance in row size.
This low variance in row size makes them well suited for DCSR with 4 segments
uses 20% less memory on average than HYB.

The conversion time between formats is often a key factor when determining
the efficacy of a particular format. High conversion times can significantly hinder

72 J. King et al.

Table 1. (a): Matrices used in tests. NNZ: total number of nonzeros, μ: average row
size, σ: standard deviation of row sizes, max: maximum row size. (b): Comparison of
memory consumption among HYB, CSR, and DCSR formats. Size of HYB is listed in
bytes (using ELL width of μ), and sizes for DCSR and CSR are listed as a percent of
the HYB size.

Matrix Abbr. NNZ Rows \ Cols μ \ σ \ Max

amazon-2008 AMA 5M 735K 7 \ 4 \ 10
cnr-2000 CNR 3M 325K 9 \ 21 \ 2716
dblp-2010 DBL 807K 326K 2 \ 4 \ 154

enron ENR 276K 69K 3 \ 28 \ 1392
eu-2005 EU2 19M 862K 22 \ 29 \ 6985
flickr FLI 9M 820K 11 \ 87 \ 10K

hollywood-2009 HOL 57M 1139K 50 \ 160 \ 6689
in-2004 IN2 16M 1382K 12 \ 37 \ 7753

indochina-2004 IND 194M 7414K 26 \ 216 \ 6985
internet INT 207K 124K 1 \ 4 \ 138
kron-18 KRO 10M 262K 40 \ 261 \ 29K

ljournal-2008 LJO 79M 5363K 14 \ 37 \ 2469
rail4284 RAL 11M 4K \ 1M 2633 \ 4K \ 56K

soc-LiveJournal1 SOC 68M 4847K 14 \ 35 \ 20K
webbase-1M WEB 3M 1000K 3 \ 25 \ 4700

wikipedia-2005 WIK 19M 1634K 12 \ 31 \ 4970

(a) Matrices

Matrix HYB size DCSR DCSR DCSR CSR
2 segs. 3 segs. 4 segs.

AMA 54M 0.924 1.026 1.128 0.77
CNR 47M 0.626 0.679 0.732 0.547
DBL 12M 0.86 1.052 1.245 0.572
ENR 4M 0.653 0.762 0.871 0.489
EU2 236M 0.675 0.703 0.731 0.633
FLI 160M 0.546 0.585 0.624 0.487
HOL 859M 0.531 0.541 0.551 0.516
IN2 229M 0.654 0.7 0.746 0.585
IND 2791M 0.571 0.591 0.612 0.541
INT 4M 0.761 0.969 1.177 0.449
KRO 171M 0.493 0.505 0.516 0.475
LJO 1152M 0.594 0.63 0.665 0.541
RAL 149M 0.577 0.577 0.577 0.576
SOC 1009M 0.595 0.631 0.668 0.54
WEB 40M 0.966 1.155 1.344 0.682
WIK 276M 0.635 0.68 0.725 0.567

(b) Memory Occupancy

performance. Architecture-specific formats may provide better performance, but
unless the rest of the code base uses that format, the conversion time must be
accounted for. We provide the overhead required to convert to and from CSR and
COO matrices in Table 2(a). The conversion times have been normalized against
the time required to copy CSR → CSR. The conversion times to DCSR are only
slightly higher compared to that of CSR. HYB requires significant overhead
as the entries must first be distributed throughout the ELL portion and the
remaining overflow entries distributed to the COO portion.

4.1 Matrix Updates

To measure the speed of dynamic updates, we ran two series of tests that involved
streaming updates and iterative updates. In the streaming updates test, we incre-
mentally build up the matrix by continuously inserting new entries. The elements
are first buffered into three arrays for the rows, columns, and values. We initial-
ize the matrix sizes according to the average number of nonzeros for the given
input. Afterward, the entries are added in a streaming parallel fashion to the
matrices.

Updating a HYB matrix first requires checking the ELL portion, and if the
row in question is full, inserting the new entry into the COO portion. Any
updates to the COO portion require atomic operations to ensure synchronous
writes between multiple threads. These atomic updates are prohibitive to fast
parallel updates as all threads are contending to insert entries onto the end of
the COO matrix.

Dynamic Sparse-Matrix Allocation on GPUs 73

Table 2. (a): Comparison of relative conversion times. Conversions are normalized
against time to copy CSR→CSR. (b): Overhead of DCSR defragmentation and HYB
sorting is measured as the ratio of one operation against a single CSR SpMV. Update
time is measured as the ratio of 1000 updates to a single CSR SpMV. (∞ means this
test was unable to complete within machine resource limits)

From COO COO COO CSR CSR DCSR
To CSR DCSR HYB DCSR HYB CSR

AMA 2.93 3.03 9.22 1.06 9.25 0.9
CNR 2.24 2.62 14.84 1.04 13.62 0.87
DBL 4.34 5.74 18.07 1.17 16.83 1.1
ENR 5.56 5.95 27.15 1.29 26.95 1.14
EU2 2.1 2.29 16.08 1.06 15.67 0.99
FLI 2.13 2.5 23.29 1.06 19.74 0.96
HOL 1.82 1.9 20.37 1.01 20.3 0.99
IN2 2.15 2.42 18.12 1.06 18.15 0.98
IND 1.93 1.98 ∞ 1.03 ∞ 1.01
INT 12.07 13.74 21.38 1.3 15.12 1.0
KRO 1.78 2.09 24.01 1.0 20.14 0.91
LJO 2.09 2.19 19.96 1.02 19.97 0.98
RAL 1.73 2.03 20.67 1.0 17.97 0.91
SOC 2.22 2.35 20.47 1.06 20.41 1.01
WEB 2.89 3.19 11.45 1.16 11.56 0.86
WIK 2.18 2.42 20.13 1.07 20.11 0.98

(a) Conversion Times

Matrix DCSR HYB DCSR HYB
defrag sort update update

AMA 3.9 2.12 2.02 4.89
CNR 5.13 6.75 3.77 15.26
DBL 5.69 4.66 3.6 10.23
ENR 5.49 8.0 2.21 18.2
EU2 2.32 4.28 2.65 12.05
FLI 1.58 4.22 1.94 10.01
HOL 1.54 5.57 2.55 12.45
IN2 2.58 5.85 3.14 13.34
IND 2.15 ∞ 3.36 ∞
INT 6.74 6.19 1.76 8.78
KRO 1.02 3.43 1.82 11.3
LJO 1.45 3.02 1.34 6.1
RAL 0.72 2.04 1.82 13.61
SOC 1.05 3.74 1.02 5.74
WEB 2.65 1.93 2.54 7.39
WIK 1.39 2.54 1.32 5.49

(b) Sorting Overhead

Updating a DCSR matrix requires finding the last occupied (current) seg-
ment within a row. If that segment is not full, the new entry is added into it
and the row size is increased. When the current segment for a row fills up, a
new segment is allocated dynamically. Since atomic operations are required only
for the allocation of new segments, and not for each individual element, syn-
chronization overhead is kept low. By allowing for dynamically sized slack space
within a row, we dramatically reduce the number of atomic operations that are
required to allocate new entries. In this way, DCSR was designed to be updated
in an efficient parallel manner.

The number of segments, initial row width, and α value can be tuned for
the problem to give a reasonable limit on updates. In our tests we used four
segments and α value of μ (average row size of the matrix). When a row nears
its limit, a defragmentation is required in order to reduce that row to a single
segment.

Figure 3 provides the results of our iterative and streaming matrix update
tests. We do not compare to CSR in the latter case, since it is not possible to
dynamically add entries without rebuilding the matrix. The goal of this operation
is to load the matrix; insertion checks are not performed. DCSR saw an average
speedup of 4.8× over HYB with streaming updates. In the case of IND, only
DCSR was able to perform the operation within memory capacity.

74 J. King et al.

AMA CNR DBL ENR EU2 FLI HOL IN2 IND INT KRO LJO RAL SOC WEB WIK0

5

10

R
el

at
iv

e
Sp

ee
du

p DCSR HYB CSR

(a) Iterative Updates

AMA CNR DBL ENR EU2 FLI HOL IN2 IND INT KRO LJO RAL SOC WEB WIK0

2

4

6

8

R
el

at
iv

e
Sp

ee
du

p

(b) Streaming Updates

Fig. 3. Top: relative speedup of DCSR compared to HYB for iterative updates with
SpMV operations. The speedup is compared to a normalized CSR baseline. Bottom:
relative speedup of DCSR compared to HYB for matrix updates. (Color figure online)

We also executed an iterative update test to compare the abilities of the for-
mats to perform a combination of dynamic updates and SpMV operations. This
test is analogous to what would be performed in a graph application (such as
CFA) where the graph is updated at periodic intervals. In the iterative updates
test we perform a series of iterations consisting of a matrix addition operation
(A = A + B) followed by several SpMV operations Ax = y. Part (a) of Fig. 3
provides the results for our iterative updates. Within each iteration, the matrix
is updated with an additional 0.2% random nonzeros followed by 5 SpMV opera-
tions, which is repeated 50 times, yielding a total increase of 10% to the number
of nonzeros. We compare the DCSR and HYB results to a normalized CSR
baseline. In the CSR case a new matrix must be created to update the original
matrix, which causes a significant amount of overhead (in terms of computation
and memory). In the cases of LJO and SOC, CSR was not able to complete
within memory capacity, so we normalized against HYB.

DCSR shows significant improvement over HYB on streaming updates in all
test cases (in some by as much as 8×). DCSR also outperforms HYB in all test
cases on iterative updates, and in some cases by as much as 2.5×. The Amazon-
2008 matrix has a low standard deviation, and the majority of its entries fit nicely
into the ELL portion, which greatly speeds up SpMV operations. However, even
in this case DCSR slightly outperforms HYB on iterative updates due to having
lower overhead for defragmentation. In all other cases DCSR exhibits noticeable
performance improvements over HYB and CSR.

Dynamic Sparse-Matrix Allocation on GPUs 75

AMA CNR DBL ENR EU2 FLI HOL IN2 IND INT KRO LJO RAL SOC WEB WIK0

5

10

15
G

FL
O

PS
CSR DCSR Def. DCSR ADCSR Def. ADCSR HYB

(a) Single Precision

AMA CNR DBL ENR EU2 FLI HOL IN2 IND INT KRO LJO RAL SOC WEB WIK0

5

10

G
FL

O
PS

(b) Double Precision

Fig. 4. FLOP ratings of SpMV operations for CSR, DCSR, and HYB. (Color figure
online)

4.2 SpMV Results

In the SpMV tests we take the same set of matrices and perform SpMV opera-
tions with randomly generated dense vectors. We performed each SpMV opera-
tion 100× times and averaged the results. Figure 4 provides the results for these
SpMV tests using both single and double-precision floating-point arithmetic.
We implemented an adaptive binning optimization [25] (labeled ACSR), which
requires relatively little overhead and provides noticeable speed improvements
by using specialized kernels on bins of rows with similar row sizes. In these tests
we compare across several variants of our format, including DCSR, defragmented
DCSR, ADCSR, and defragmented ADCSR, in addition to standard implemen-
tations of HYB and CSR.

The fragmented DCSR times are 8% slower than the defragmented DCSR
times on average. When the DCSR format is defragmented, it sees SpMV times
competitive with those of CSR (1% slower on average). With the adaptive bin-
ning optimization applied, we see that ADCSR outperforms HYB in many cases.
On average, ADCSR performed 9% better than HYB across our benchmarks.

4.3 Post-processing Overhead

Post-processing overhead is a concern when dealing with dynamic matrix
updates. Dynamic segmentation allows for DCSR to be updated with new entries
without requiring the entries to be defragmented. SpMV operations can be per-
formed on the DCSR format regardless of the order of the segments, unlike HYB
matrices, where a sort is required anytime an entry is added to the COO por-
tion. The SpMV operation for HYB matrices assumes the COO entries are sorted

76 J. King et al.

by row (without this property the COO SpMV would be dramatically slower).
Table 2 provides post-processing times for HYB and DCSR formats relative to a
single SpMV operation. In the case of IND, HYB was unable to sort and update
due to insufficient memory overhead (represented as ∞).

The defragmentation operation can internally order rows by row size at no
additional cost. This ordering is similar to the row sorting technique illustrated
in [28], although we use a global sorting scope as opposed to a localized one.
In addition, the internal order of segments may be changed arbitrarily, and
this permutation remains invisible from the outside because starting and end-
ing segment indices are managed explicitly. To accomplish this optimization we
permute row sizes according to the permuted row indices (which have already
been binned and sorted by row size). The permuted row sizes can then be used
to create new offsets for the monolithic segments produced by defragmentation.
This operation has the effect of internally reordering column and value data by
row size at no additional cost. We observed this internal reordering provides a
noticeable SpMV performance improvement of 12%. This improvement is from
an increased cache-hit rate via better correlation between bin-specific kernels
and the memory they access.

The DCSR defragmentation incurs a lower overhead than HYB sort because
entries can be shuffled to their new index without a sort operation. DCSR defrag-
mentation is 2× faster on average than HYB sorting, and this step is infrequently
required (while HYB sorting must be performed at every insertion). These fac-
tors allow DCSR to have significantly lower post-processing overhead.

AMA CNR DBL ENR EU2 FLI HOL IN2 IND INT KRO LJO RAL SOC WEB WIK0

10

20

30

G
FL

O
PS

1 GPU 2 GPUs

(a) Tesla K20c

(b) Tesla M2090

Fig. 5. Scaling results for SpMV with 1 and 2 K20 GPUs (upper) and 1, 2, 4, and 8
M2090 GPUs (lower). (Color figure online)

Dynamic Sparse-Matrix Allocation on GPUs 77

4.4 Multi-GPU Implementation

DCSR can be effectively mapped to multiple GPUs. The matrix can be parti-
tioned across n devices by dividing rows between them (modulo n) after sorting
by row size. This mapping provides a roughly even distribution of nonzeros
between the devices. Figure 5 provides scaling results for DCSR across two Tesla
K20c GPUs and up to eight Tesla M2090 GPUs. We see an average speedup of
1.93× for the single precision and 1.97× for double precision across the set of
test matrices. The RAL matrix sees a smaller performance gain due to our dis-
tribution strategy of dividing up the rows. The added parallelism is split across
rows but, in this case, the matrix has few rows and many columns. We see nearly
linear scaling for most test cases.

For the matrices INT and ENR we see reduced scaling due to small matrix
sizes. In these cases the kernel launch times account for a significant portion of
the total time due to a relatively small workload. The total compute time can
be roughly represented as c + x

n , where c is the kernel launch overhead, and the
workload x is divided among n devices (assuming x can be fully parallelized).
As the number of devices increases, the work per device decreases whereas the
kernel launch time remains constant. In our tests we perform 100× iterations
of each kernel, which leads to poor scaling performance on small matrices. We
performed additional tests in which we moved the iterations into the kernel itself
and called the kernel once, eliminating the additional kernel launch times. In this
case we see scaling for the INT matrix of 1.94×, 3.55×, and 6.03×, and for the
ENR matrix we see scaling of 1.80×, 2.70×, and 3.76× for 2, 4, and 8 GPUs,
respectively. These results indicate that the poor performance of those cases
was primarily due to the low amount of work done relative to the kernel launch
overhead.

5 Conclusion

We have described a fast, flexible, and memory-efficient strategy for dynamic
sparse-matrix allocation. The design of current formats limits the extension of
an existing matrix with new entries. As many applications require or would
benefit from efficient dynamic updates, we have proposed a strategy of explic-
itly managed dynamic segmentation that makes this operation inexpensive. Our
approach is presented and evaluated using a new format (DCSR) that provides
a robust method for allocating streaming updates while maintaining fast SpMV
times on par with that of CSR. The format gracefully degrades in performance
upon dynamic extension, but does not require a sort to be performed after insert-
ing new entries (as opposed to COO-based formats such as HYB).

Without defragmentation, SpMV times are only marginally slower than that
of a fully constructed CSR matrix, and after defragmentation they are roughly
equal. With adaptive binning applied, DCSR gives faster overall SpMV times as
compared to the HYB format. DCSR is significantly more efficient in terms of
memory use as well. ELL must allocate enough room in every row for the longest
row in a matrix. HYB is a vast improvement, allowing long rows to overflow into

78 J. King et al.

its COO portion; however, DCSR exhibited lower memory consumption on every
benchmark when set to allow 2 segments per row, and still used 20% less memory
on average when allowing 4 segments per row.

A key advantage of DCSR design is compatibility with CSR-scalar, CSR-
vector, and other CSR algorithms. Only minor modifications are required to
account for a difference in the format of the row offsets array. We have demon-
strated how CSR-specific optimizations, such as adaptive binning, can be easily
applied to DCSR. Other optimizations such as tiling and blocking could also be
used. This compatibility also means that minimal overhead is required to convert
to and from CSR. Numerous sparse-matrix formats have been developed that
are specifically tailored to GPU architectures. These formats offer improved per-
formance, but require converting from whatever previous format was being used.
As CSR is the most commonly used sparse-matrix format, and large amounts of
software already incorporate it into their code bases, it is often not worth the
conversion cost to introduce another format. DCSR reduces this barrier to use
with a low cost of conversion.

To the best of our knowledge, no other work has created a dynamic format
such as DCSR for iterative updates to sparse matrices. Some dynamic graph
algorithms, such as approximate betweenness centrality [29], require dynamic
updates but do not specify how the graph should be represented and modified—
a matrix encoding would require a dynamic format to be efficient. Dynamic
insertion algorithms, like that described in [30], use a modified insertion sort
that disperses gaps throughout the data in order to reduce insertion time from
O(n) to O(log n) with high probability. This method probabilistically reduces the
overall cost of the insertion sort from O(n2) to O(n log n). The defragmentation
operation we implement can be done in O(n) and insertions require O(1), which
is better than insertion sort. Also, leaving many intermittent gaps between the
data would slow SpMV times. We mitigate this problem by grouping entries
contiguously within segments.

We believe our strategy lends itself well to certain operations and problems,
such as graph algorithms that require periodically updating the graph with new
entries. These applications have not previously been well addressed by sparse-
matrix formats. Our work also opens up a number of interesting research ques-
tions as to whether existing algorithms that rebuild matrices between iterations
could be improved by a matrix format that permits dynamic updates directly.

References

1. Im, E., Yelick, K.: Optimization of sparse matrix kernels for data mining. In: First
SIAM Conference on Data Mining (2000)

2. Gilbert, J., Reinhardt, S., Shah, V.: High-performance graph algorithms from par-
allel sparse matrices. In: K̊agström, B., Elmroth, E., Dongarra, J., Waśniewski,
J. (eds.) Applied Parallel Computing. State of the Art in Scientific Computing.
LNCS, vol. 4699, pp. 260–269. Springer, Heidelberg (2007)

3. Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd edn. Society for Indus-
trial and Applied Mathematics, Philadelphia (2003). Saad:2003:IMS

Dynamic Sparse-Matrix Allocation on GPUs 79

4. Shivers, O.: Control-Flow Analysis of Higher-Order Languages. Carnegie-Mellon
University, Pittsburgh (1991)

5. Midtgaard, J.: Control-flow analysis of functional programs. ACM Comput. Surv.
44(3), 10:1–10:33 (2012)

6. Gilray, T., King, J., Might, M.: Partitioning 0-CFA for the GPU. In: Workshop on
Functional and Constraint Logic Programming, September 2014

7. Prabhu, T., Ramalingam, S., Might, M., Hall, M.: EigenCFA: accelerating flow
analysis with GPUs. In: Proceedings of the Symposium on the Principals of Pro-
gramming Languages, pp. 511–522 (2010)

8. Mendez-Lojo, M., Burtscher, M., Pingali, K.: A GPU implementation of inclusion-
based points-to analysis. ACM SIGPLAN Not. 47(8), 107–116 (2012)

9. Greathouse, J.L., Daga, M.: Efficient sparse matrix-vector multiplication on GPUs
using the CSR storage format. In: Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis, SC 2014, pp.
769–780. IEEE Press, Piscataway (2014)

10. Garland, M.: Sparse matrix computations on manycore GPU’s. In: Proceedings of
the 45th Annual Design Automation Conference, DAC 2008, pp. 2–6. ACM, New
York (2008)

11. Garland, M., Kirk, D.B.: Understanding throughput-oriented architectures. Com-
mun. ACM 53(11), 58–66 (2010)

12. Bell, N., Garland, M.: Efficient Sparse Matrix-Vector Multiplication on CUDA.
NVIDIA Corporation (2008). NVR-2008-004

13. Monakov, A., Lokhmotov, A., Avetisyan, A.: Automatically tuning sparse matrix-
vector multiplication for GPU architectures. In: Patt, Y.N., Foglia, P., Duester-
wald, E., Faraboschi, P., Martorell, X. (eds.) HiPEAC 2010. LNCS, vol. 5952, pp.
111–125. Springer, Heidelberg (2010)

14. Su, B.Y., Keutzer, K.: clSpMV: a cross-platform OpenCL SpMV framework on
GPUs. In: Proceedings of the 26th ACM International Conference on Supercom-
puting, ICS 2012, pp. 353–364. ACM, New York (2012)

15. Vuduc, R.W.: Automatic Performance Tuning of Sparse Matrix Kernels. University
of California, Berkeley (2003). AAI3121741

16. Bell, N., Garland, M.: Implementing sparse matrix-vector multiplication
onthroughput-oriented processors. In: SC 2009, Proceedings of the Conference on
High Performance Computing Networking, Storage and Analysis, pp. 1–11. ACM,
New York (2009)

17. Ashari, A., Sedaghati, N., Eisenlohr, J., Sadayappan, P.: An efficient two-
dimensional blocking strategy for sparsematrix-vector multiplication on GPUs. In:
Proceedings of the 28th ACM International Conference on Supercomputing, ICS
2014, pp. 273–282. ACM, New York (2014)

18. Yan, S., Li, C., Zhang, Y., Zhou, H.: yaSpMV: yet another SpMV framework on
GPUs. In: Proceedings of the 19th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, PPopp 2014, pp. 107–118. ACM, New York
(2014)

19. Williams, S., Oliker, L., Vuduc, R., Shalf, J., Yelick, K., Demmel, J.: Optimization
of sparse matrix-vector multiplication on emerging multicore platforms. In: Pro-
ceedings of the ACM/IEEE Conference on Supercomputing, SC 2007, pp. 38:1–
38:12. ACM, New York (2007)

20. Liu, X., Smelyanskiy, M., Chow, E., Dubey, P.: Efficient sparse matrix-vector mul-
tiplication on x86-based many-coreprocessors. In: Proceedings of the 27th Inter-
national ACM Conference on International Conference on Supercomputing, ICS
2013, pp. 273–282. ACM, New York (2013)

80 J. King et al.

21. Yang, X., Parthasarathy, S., Sadayappan, P.: Fast sparse matrix-vector multiplica-
tion on GPUs: implications for graph mining. Proc. VLDB Endow. 4(4), 231–242
(2011)

22. Choi, J.W., Singh, A., Vuduc, R.W.: Model-driven autotuning of sparse matrix-
vector multiply on GPUs. SIGPLAN Not. 45(5), 115–126 (2010)

23. Reguly, I., Giles, M.: Efficient sparse matrix-vector multiplication on cache-based
GPUs. In: Innovative Parallel Computing (InPar), pp. 1–12 (2012)

24. Kepner, J., Gilbert, J.: Graph Algorithms in the Language of Linear Algebra.
Society for Industrial and Applied Mathematics, Philadelphia (2011)

25. Ashari, A., Sedaghati, N., Eisenlohr, J., Parthasarathy, S., Sadayappan, P.: Fast
sparse matrix-vector multiplication on GPUs for graph applications. In: Proceed-
ings of the International Conference for High Performance Computing, Networking,
Storage and Analysis, SC 2014, pp. 781–792. IEEE Press, Piscataway (2014)

26. Bell, N., Garland, M.: CUSP: generic parallel algorithms for sparse matrix and
graph computations (2012). Version 0.3.0

27. Davis, T.A., Hu, Y.: The University of Florida sparse matrix collection. ACM
Trans. Math. Softw. 38(1), 1–25 (2011)

28. Kreutzer, M., Hager, G., Wellein, G., Fehske, H., Bishop, A.R.: A unified
sparse matrix data format for modern processors with wide SIMD units. CoRR.
abs/1307.6209 (2013)

29. McLaughlin, A., Bader, D.A.: Revisiting edge and node parallelism for dynamic
GPU graph analytics. In: IEEE International on Parallel Distributed Processing
Symposium Workshops (IPDPSW), pp. 1396–1406 (2014)

30. Bender, M.A., Farach-Colton, M., Mosteiro, M.A.: Insertion sort is O(n log n).
Theor. Comput. Syst. 39(3), 391–397 (2006)

An Efficient Parallel Load-Balancing
Framework for Orthogonal Decomposition

of Geometrical Data

Bruno R.C. Magalhães1(B), Farhan Tauheed2, Thomas Heinis2,
Anastasia Ailamaki2, and Felix Schürmann1

1 Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL),
Biotech Campus, 1202 Geneva, Switzerland

bruno.magalhaes@epfl.ch
2 Data-Intensive Applications and Systems Laboratory,

École Polytechnique Fédérale de Lausanne (EPFL),
1015 Lausanne, Switzerland

Abstract. The accurate subdivision of spatially organized datasets is a
complex problem in computer science but specifically important for load
balancing in parallel environments. The problem is to (a) find a partition-
ing where each partition has the same number of elements and (b) the
communication between partitions (duplicate members) is minimized.
We present a novel parallel load-balancing framework — Sort Balance
Split (SBS) — the first to our knowledge to perform accurate parallel
partitioning of multidimensional data, while requiring a fixed number of
communication steps independent of network size or input data distri-
bution. When compared to the state of the art sampling and parallel
partitioning methods adopted by HPC problems, it delivers better load
balancing on a shorter time to solution. We analyse four partitioning
schemes that SBS can be applied to, and evaluated our method on 4096
nodes of an IBM BlueGene/Q supercomputer partitioning up to 1 trillion
elements, and exhibiting almost-linear scaling properties.

Keywords: Geometric partitioning · Spatial partitioning · Recursive
bisection · Jagged partitioning · Load balancing

1 Introduction

Geometrical domain decomposition has been widely applied in several scientific
fields. An accurate decomposition is important, as the best performance on a
network of computing nodes is achieved with good data distribution across all
processing entities and by the reduction of intra-network communication. In the
case where we have a parallel and homogeneous architecture, if the processing
time for each element is equal, the best load balancing has an even distribu-
tion across all processing entities. Most domain partitioning methods of static
geometrical data rely either on connection or geometry-based decompositions.
c© Springer International Publishing Switzerland 2016
J.M. Kunkel et al. (Eds.): ISC High Performance 2016, LNCS 9697, pp. 81–97, 2016.
DOI: 10.1007/978-3-319-41321-1 5

82 B.R.C. Magalhães et al.

Connectivity-based partitioning is based on the analysis of the connectivity
of the elements and aims to equalize the weight of edges or nodes via graph
or hypergraph partitioning [17]. A hypergraph is a generalization of a graph
where edges can connect more than two vertices and are called hyperedges. Some
hypergraph partitioning applications are numerical linear algebra [5], integrated
circuit design [14] and web document categorization [3]. Scotch [18], METIS and
ParMETIS [13] are the most commonly used large-scale graph partitioners. For
hypergraph partitioning, Zoltan [4] is the most commonly used toolkit.

Geometry-based partitioning relies on the principle that spatially placed ele-
ments require neighbouring elements’ information for the processing of data.
Such methods tend to divide the universe in several regions and allocate one
region per compute node. Most common are straight decomposition, surfaces
and space filling curves [1]. For geometrically-based partitions, the simplest and
fastest method to compute is the orthogonal slicing creating rectangular parti-
tions, as it can be easily expressed, has a low memory overhead, and allows for
efficient implementation of common operations such as spatial queries, index-
ing, intersection and inclusion of other shapes. Another common feature of these
types of problems is that elements may require information about their neigh-
bourhood which may be partially stored on other processors’ main memory.
This can be solved typically by copying those neighbouring elements to the
local processor — a method typically termed ghosting and which requires more
memory on these nodes holding duplicated (ghost) elements. Once a processor
is allocated a region, its computation is performed independently; this parallel
processing falls in the category of pleasantly parallel tasks. An alternative method
of handling data dependency across several nodes is by actively communicating
neighbourhood information to other nodes as required.

This document presents the Sort Balance Split (SBS), a novel parallel
framework for geometric data division based on orthogonal cut planes, built
from three core operations: distributed sorting, load balancing, and network
split — hence the name. The SBS allows for the efficient parallel implemen-
tation of any slicing algorithm based on orthogonal slices. The SBS delivers
accurate slicing cut points, good weak and strong scaling properties, and high
speed-up and performance increase over the state of the art, particularly for large
networks and datasets. Contrary to most spatial decomposition algorithms, the
SBS allows for decoupling of the complexity/structure of the dataset from the
scalability, and therefore the methods and execution times presented in this doc-
ument are valid and applicable to any spatial decomposition problem. Moreover,
this collection of features makes the SBS particularly adequate for highly dense
and heterogeneous datasets requiring high precision partitioning for good work
load balancing, such as the neuronal networks containing billions of elements
handled internally in our project. We analyse the complexity of four slicing con-
figurations that can be built with SBS: single axis, Non-Uniform Grid (NUG,
General Block Distribution, or Rectilinear partitions), Sort Tile Recursive (STR,
or Jagged Partitions), and Orthogonal Recursive Bisection (ORB) or Recursive
Coordinate Bisection (RCB). The remainder of the document is organized as

An Efficient Parallel Load-Balancing Framework 83

follows: Sect. 2 formalizes and analyses the complexity behind different slicing
techniques and Sect. 3 presents the details of the parallel implementation. The
testing results are detailed in Sect. 4. Section 5 presents our final conclusions.

1.1 Related Work and Applications

Previous applications of parallel and large scale domain decomposition of geo-
metrical data targeting distributed computation include particle interaction in
astrophysics (particularly N-body simulations on the Gordon Bell Prize (GBP)
winners of 2009 [8], 2010 [9] and 2012 [12]), cardiac model simulations ([20] and
the GBP 2015 finalist [19]), fluid dynamics (cloud cavitation on the GBP 2013
winner [22]), materials engineering (materials crystallization on the GBP 2011
winner [24]), weather forecasting [21] and direct volume rendering [16].

The most common serial partitioning methods – including several GBP win-
ners mentioned above – perform domain decomposition based on a sample of
data and repeat the procedure until a minimum quality threshold is reached [2].
Common methods rely on histograms of element distribution in all dimensions
and calculate the partitioning cut planes based on the histogram bins [15]. Due
to its low resolution, this approach is mostly suitable for quasi-uniformly distrib-
uted datasets. Alternative methods are based on approximated slicing positions
given by a grid of workload per sub-section of the volume [23], which is unsuit-
able for data in a high dimensional space as the number of volumes required for
a high resolution presents a bottleneck in memory required to store all data.

Parallel partitioning in very large networks has also been presented by [25],
as a four step algorithm – local sorting, splitter finding, data redistribution
and p-way merging – that provides exact splitting, yet requires several collective
(AllReduce) operations and one broadcast per compute node. The most com-
mon parallel algorithm is the Recursive Coordinate Bisection, available in the
Zoltan toolkit [4], computing the slicing cut point coordinates with a binary-
search approach to find the median. The initial cut plane is taken as the average
between the minimum and maximum on the cut direction. Afterwards, a parallel
reduction operation computes the weights of all elements on both sides of the cut
plane, and the cut is subsequently moved depending on the total weights. This
process is repeated until both sides respect a given imbalance threshold. The
space is then split into subgroups used for recursion. The communication cost is
dependent on the depth of recursion i.e. network size. Data migration happens
at every bisection, thus high data movement may be required during partition-
ing, depending on the initial data distribution. The parallel Multi-Jagged algo-
rithm [6] (MJ, implemented in the Zoltan2 toolkit), to our knowledge the only
parallel implementation of a multidimensional-jagged geometric partitioner, is
a generalization of the RCB algorithm to multiple dimensions. The amount of
communication and number of iterative steps is not predictable on either the
RCB or MJ, as both depend on the initial data distribution.

In order to tackle the main issues of the aforementioned serial and parallel
methods – high load imbalance, unpredictable (possibly high) number of com-
munication steps, and/or high execution time – the SBS method we introduce

84 B.R.C. Magalhães et al.

guarantees low and fixed communication cost (6 collective calls) per dimension,
precise slicing cut planes, and fixed complexity in terms of local computation
(one sorting operation per dimension). This methodology is particularly efficient
on low latency networks, and particularly those tuned for collective communi-
cation such as the BlueGene/Q architecture. The performance properties are
independent of the network size and the data layout. This is a unique feature of
the SBS, allowing decoupling of the complexity/structure of the dataset from the
scalability, contrary to most common algorithms such as histogram-based (highly
dependent on density and bin size) and sampling-based algorithms (dependent
on the sampling set and size), or the parallel RCB as implemented in Zoltan
toolkit (high variability in number of iterations based on the imbalance of each
step therefore dependent on data distribution).

2 Model and Algorithms

For convenience, we will describe an orthogonal data division algorithm as a
slicing method, each region termed a slice, and the coordinates that delimit
the orthogonal lines separating the slices termed slicing cut points. The set of
all elements in the multidimensional space is referred to as our universe.

2.1 Slicing Problem Definition

Let E be the ordered set of n elements {ei}ni=1 to be processed. Each element
e ∈ E has a position x(e) ∈ R

m with coordinates xd(e), for d = 1...m and an
extent V (e) ⊆ R

m such that x(e) ∈ V (e). When V (e) = {x(e)} then we have a
point dataset E. The orthogonal slicing problem on a m-dimensional space aims
at partitioning the elements in E across s slices or sub-sets {Ri}si=1, satisfying
the following properties:

1. Cover:
⋃

Ri = E ;
2. Distinct: Rj

⋂
Ri = ∅,∀i �= j;

3. Let Bj = [b1�
j , b1�

j] × [b2�
j , b2�

j] × ... × [bm�
j , bm�

j] ⊆ R
m be the axis-aligned

bounding volume of Rj such that bd�
j = min

e∈Rj

xd(e) and bd�
j = max

e∈Rj

xd(e);

then, bounding boxes have zero-volume intersection i.e.
vol(Bi

⋂
Bj) = φ,∀i �= j.

4. |#Rj − #Ri| ≤ 1, where # is the cardinality, i.e. slices have equal size when
s divides n, or difference 1 in size otherwise.

In brief, equally sized sub-sets cover the initial set of elements without over-
lapping in space. In the cases where E is not a point dataset but where the
elements have spatial extent, it may not be possible to slice completely the vol-
ume in non-overlapping rectangles, therefore the second rule does not hold, i.e.
!∃Ri, Rj ⊆ E such that Ri

⋂
Rj = Q and Q �= ∅, where Q is the set of ghost

elements that are duplicated among processors.

An Efficient Parallel Load-Balancing Framework 85

2.2 Elements Sorting on a Given Dimension

Sorting of a dataset E on a dimension d = 1...m is the operation that returns a
permutation of E so that xd(ei) ≤ xd(ej), ∀i ≤ j.

2.3 Slices Coordinates Calculation

Let E be a sequence of n elements sorted on a particular dimension d, and in s
slices. The subset E′

k (where k = 1...s) that contains all the elements of the kth

slice of E in d can be determined as:

E′
k = E

[
⌊n

s

⌋
(k − 1) + 1,

⌊n

s

⌋
k

]

(1)

where E[first, last] denotes the ordered sub-set of E containing all elements
from index first to last inclusive, and 	
 denotes the floor operation.

2.4 Computational Complexity

From Sect. 2.3, it follows that the slicing cut point can be calculated in constant
time if the set is represented as a vector of elements sorted beforehand. This
can be explained by the access operation requiring a single memory access to
the cut point position which can be performed in constant time. For the sorting
operation, we will assume an average complexity of O(n · log2 n) typically found
on a mergesort or average-case quicksort algorithm. Table 1 details and summa-
rizes the complexity and limitations of each slicing configuration. This will be
extended to a parallel implementation in the following section.

3 Sort Balance Split

The Sort Balance Split framework relies on a sequential three-step algorithm
applied recursively to each dimension:

1. distributed parallel sorting (Sect. 3.1), a prerequisite for the calculation of cut
points in constant time;

2. distributed load balancing (Sect. 3.2), to solve the data imbalance of the pre-
vious sort;

3. network split (Sect. 3.3), the basis of SBS recursivity;

The algorithm terminates when every processor is allocated a region of data
(slice). The final datasets are guaranteed to be unique, disjoint and of equal sizes,
as a result of the three steps. Figure 1 illustrates an example of an application
of the SBS algorithm based on the Sort Tile Recursive method on a 2D space.

86 B.R.C. Magalhães et al.

Table 1. Computational steps of the four slicing configurations applied to a total of s
slices, covering a universe of dimensionality d and n elements. We assume a user-defined
sorting operation with average-case time complexity of O(n·log2 n), and negligible time
for the calculation of slice cut points.

Scheme Computation steps Properties / Limitations

Single Axis = n · log2 n One sorting of all elements on a sin-
gle direction, independently of the
number of dimensions.

Non-
Uniform
Grid

= d · n · log2 n One sorting of all elements applied
to each dimension, iteratively; slic-
ing configuration for the d dimen-
sions must decompose final number
of slices s i.e.

∏d
k=1 Sk = s.

Sort
Tile
Recursive

= n · log2 n
+n · log2

n
S1

+n · log2
n

S1S2
+...
+n · log2

n
S1S2...Sd−1

=
∑d

i=1 n · log2
n

∏i−1
k=0 Sk

One sorting for each subslice’s data
on each dimension, applied itera-
tively; sub-slices computations are
independent; slicing configuration
for the d dimensions must decom-
pose final number of slices s i.e.∏d

k=1 Sk = s; Faster than NUG as
each new dimension requires sorting
across smaller datasets; we assume
S0 = 1 i.e. the initial universe is a
single slice including all elements.

Orthogonal
Recursive
Bisection

= n · log2 n
+n · log2

n
2

+n · log2
n
4

+n · log2
n
8

+...
+n · log2

n
log2 s

=
∑log2 s

i=1 n · log2
n

2i−1

Total number of slices s must be
a power of 2; requires one sorting
of half of the elements of a slice
per iteration for a total of log2 s
steps, therefore a slow method on
large networks; sub-slices computa-
tions are independent.

3.1 Distributed Sorting

Let A ⊕ B represent the function that concatenates 2 sequences of elements A
and B, and let

⊕s
i=1 Ei = E1 ⊕ E2 ⊕ ... ⊕ Es represent the concatenation of

several sequences. The sequences E′
1, E

′
2, ..., E

′
s are the result of a distributed

sorting of E1, E2, ...Es iff:

1.
⊕s

i=1 E′
i is a permutation of

⊕s
i=1 Ei ;

2.
⊕s

i=1 E′
i is sorted;

An Efficient Parallel Load-Balancing Framework 87

Initial data sorting and load
balancing on X axis

sorting and load
balancing on Y axis

network split on Y axis

1

1

1

1

2
2

2
2

3

3

3
3

4

4
4

1 1
2

2

3

3

4

1

1

1

2

2

3

3

4

4

4

1
2

2

3

3

4

1

1

1

2

2

3

3

4

4

4

1

2
3

4

1

2
3

4

1
1

2

2

3

3

4

4 1

2
3

4

1

2
3

4

1
1

2

2

3

3

4

4

Key: rank 1 rank 2 rank 3 rank 41 2 3 4

x

y

network split on X axis

Fig. 1. A sample workflow (left to right) detailing the Sort Balance Split implementa-
tion of the Sort Tile Recursive applied to 16 points on a 2D space slices divided across
4 nodes on a 2 × 2 slicing configuration.

In practice, the distributed sorting algorithm re-distributes the elements
spread across several compute nodes in such a way that all elements are sorted
locally on each node’s memory, and globally with respect to each node’s rank
on the network. In our application we implemented the parallel sample sort ([7],
detailed in Fig. 2) due to its linear run time execution and scaling properties: the
number of communications is fixed and independent of the network size. This
method is unstable in the sense that it does not guarantee the same number
of elements per node on the pre and post sorting phases. This is overcome by
proceeding with a load balancing step after the sorting operation.

3.2 Distributed Load Balancing

A load balancing algorithm aims to balance the number of elements per node
across a network while respecting the initial ordering of the elements.

The sequences E′
1, E

′
2, ...E

′
s of sizes n′

1, n
′
2, ...n

′
s are said to be the results of

a load balancing of E1, E2, ...Es of sizes n1, n2, ...ns iff:

1.
⋃s

i=1 Ei =
⋃s

i=1 E′
i, the initial and final elements are the same;

2.
⊕s

i=1 E′
i is not a permutation of

⊕s
i=1 Ei, i.e. order is preserved;

3. |#E′
j − #E′

i| ≤ 1, where # is the size, i.e. sequences have equal size when s
divides n, or difference 1 in size otherwise;

4. order of data across all nodes is preserved;

Figure 3 illustrates our implementation of the distributed load balancing algo-
rithm.

3.3 Network Split

A network split operation divides a network of several compute nodes into several
sub-networks of nodes, where each node belongs to one sub-network only. In our
model, we enforce nodes with sequential ranks to be placed together in the new
sub-network and in the same order as before the split. This guarantees that the
global order of data across the network is respected. Given a compute node with

88 B.R.C. Magalhães et al.

Initial data: 21 elements distributed across 3 nodes ranked 0 to 2

5-7 30 -9 -3 -617 13410 12 6-815722 20 1 3 -22

rank 0 rank 1 rank 2

Step 1: Each node sorts its own data locally

Step 2: Each node collects N equally distant samples of its data (where N is the total
number of node), and sends them to a root node

17-9 -7 -6 -3 305 13124 5 10-8207-2 1 2 3 2215

17-9 -7 -6 -3 305 13124 5 10-8207-2 1 2 3 2215

data sent to root: 452 7 22 -6 131030

Step 3: root node sorts the received samples, takes N samples from them and broadcasts
them to all nodes. The samples represent each processor's interval of data.

137-6 2 4 5 302210

Step 4: Each node sends the portion of its segments to the corresponding destination,
based on their intervals. Each receiver places the received data in the same order as

In practice: All ranks received the samples [4,10,13]. Therefore:
- rank 0 will receive all data from minimum to 4;
- rank 1 will receive all data between 4 and 10;
- rank 2 will receive all data from 10 to 30;

rank 0 rank 1 rank 2

4 5 6 71-3-9 -8 -7 -6 32-2 3015 20 221312 1710

8 elements 7 elements 6 elements

9 elements 4 elements 8 elements

Fig. 2. A top-to-bottom workflow and a practical example of a parallel implementation
of the Sample Sort algorithm applied to 21 elements distributed among 3 computing
nodes. Note that every node finishes the execution with a different (and unpredictable)
number of elements compared to the initial state. On an MPI implementation, the
method requires 3 collective operations: MPI Gatherv, MPI Bcast and MPI Alltoallv.

a rank nodeid, part of a network with an id commid and holding commsize nodes,
we calculate the new node rank and network id for the slicing of dimension d
into Sd slices as:

node′
id ←

⌊

nodeid mod
commsize

Sd

⌋

(2)

and

comm′
id ←

⌊

nodeid /
commsize

Sd

⌋

. (3)

An Efficient Parallel Load-Balancing Framework 89

Initial data: 19 elements distributed across 3 nodes ranked 0 to 2

Step 2: each node selectively sends (receives) the data to (from) all the other nodes,
according to the previously calculated intervals

4 5 6 7 1310 3015 20 221-3-9 -8 -7 -6 32-2

Step 1: every node broadcasts its elements count, in order to calculate the
exact location of the correct split points.

4 5 6 7 1310 3015 20 221-3-9 -8 -7 -6 32-2

1 2 3 4 5 6 3022207 10 13 15-3-9 -8 -7 -6 -2

6 elements 6 elements 7 elements

9 elements 6 elements 4 elements

rank 0 rank 1 rank 2

Fig. 3. A top-to-bottom workflow and a practical example of a parallel implementation
of our load balancing algorithm, dividing 19 elements among 3 compute nodes. On an
MPI implementation, the method requires 2 collective operations: MPI Alltoall and
MPI Alltoallv.

For reference, Fig. 4 provides the implementation details for our network split
algorithm.

3.4 Computational Complexity

From the previous sections, it follows that an MPI-based Sort Balance Split
implementation based on a sample parallel sort followed by load balancing
requires a total of 1 sorting operation of the data in local memory and 6 col-
lective communication steps per dimension. Table 2 provides a comparison of
the number of computational complexity between a serial implementation (from
Table 1) and a parallel implementation of the four slicing schemes, with an extra

Step 2: based on previous, split network in K independent networks, e.g:

Step 1: each node calculates its new rank and sub-group id

Initial data: data distributed across 8 nodes ranked 0 to 7 grouped in 1 comm. group

rank 0 rank 1 rank 3 rank 7rank 4rank 2 6rank 5

-2 -1 -4 6 1 3 22 -1 -8-41-3-1 -6 -29-2

comm 0

rank 0 rank 1 rank 1 rank 1 rank 0rank 0 0rank 1

3 2-1 -8-4 6 1 2-4-2 -11 -29-3-1 -6 -2if K=4
comm 0 comm 3comm 1 comm 2

Fig. 4. A sample implementation of a network split: 8 initial compute nodes are
grouped in 4 sub-groups. On an MPI implementation, the method requires one col-
lective call (MPI Comm split).

90 B.R.C. Magalhães et al.

Table 2. Analysis of the serial and parallel implementation of the four mentioned
slicing configurations applied to s slices and a dataset of n elements on d dimensions.
The overhead of a collective communication operation involving p processors is repre-
sented as ϕ(p). In terms of computation steps, the main difference is the size of the
input data on the sorting operation: the parallel implementation performs one sorting
of size n/s per node (first step of distributed sorting). The overhead of the remain-
ing steps of the distributed sorting (3 collective calls), the load balancing (2 collective
calls) and the network split (1 collective call) operations of the SBS are included on
the communication steps.

Scheme Serial implementation SBS-based parallel implementation

(from Table 1) computation steps communication steps

Single n log2 n n
s

log2
n
s

6 · ϕ(s)

axis

One sorting of a subset of n elements shared across s

slices, and 6 global communications.

Non- d · n log2 n d · n
s

log2
n
s

6 · d · ϕ(s)

Uniform

Grid

Same as single axis slicing applied to all the d dimensions.

Sort
∑d

i=1 n · log2 n
∏i−1

k=0 Sk

∑d
i=1

n
s

log2
n
s

6 ·∑d
i=1 ϕ(s

∏i−1
k=0 Sk

)

Tile

Recursive

Same steps and sorting size as NUG; the network size for

a given dimension i is given by s
∏i−1

k=0 Sk

instead (where

S0 = 1).

Orthogonal
∑log2 s

i=1 n log2
n

2i−1
∑log2 s

i=1
n
s

log2
n
s

6 ·∑log2 s
i=1 ϕ(s

2i−1)

Recursive

Bisection

Same rationale as STR applied to 2 sub-slices per dimen-

sion and for log2s slicing steps; network size for a dimen-

sion i given by s
2i−1 .

reference for the communication overhead. An initial analysis shows that the
SBS speed-up over the serial case is more prominent as we increase the input
data size and/or the network size. In practice this efficiency increment is due to
the communication overhead being compensated by a faster (distributed) sort-
ing, therefore it is required to have a substantial amount of data per node in
order for this speed-up to be noticeable. These claims will be confirmed in our
benchmarking results in the following section.

4 Results

The Sort Balance Split was tested in terms of load imbalance across the net-
work, time to solution and scaling properties. The reference benchmarks are the
most common histogram- and sampling-based on a serial architecture, and the
Zoltan toolkit’s RCB on a parallel environment. Section 4.3 details an initial
analysis of the ghosting phenomena related to each of the four slicing schemas
mentioned above, when applied to our dataset. The quality of our algorithm is

An Efficient Parallel Load-Balancing Framework 91

measured in Sect. 4.4 where a small scale analysis of the load imbalance on 512
nodes compares the load imbalance of the best performant slicing schema with
the histogram- and sampling-based approximation algorithms. Finally, Sect. 4.5
follows with a benchmark of the SBS against the most common serial and par-
allel algorithms (used on the Gordon Bell Prize winners mentioned initially) on
a network of 16384 MPI ranks, where the SBS is shown to provide better load
balancing on a lower time to solution. Finally, Sect. 4.6 shows very good (almost
linear) weak and strong scaling properties of the SBS framework.

4.1 Testing Environment

The specifications of the BlueGene/Q environment used for testing are: 4096
nodes of A2 compute chip [10] for a total of 0.8 Petaflops theoretical peak, 16 GB
DRAM/node for a total of 64 TB DRAM memory, standard IBM BlueGene/Q
Compute Node Kernel. Testing results for networks of 8192 and 16384 MPI
ranks were performed with a set-up of 2 and 4 MPI ranks per compute node,
respectively. We believe such set-up of virtual MPI ranks does not degrade the
quality of results as there were no differences in performance when applied to
our network on 4096 or less compute nodes.

4.2 Data Representation

Our input data is a biologically inspired representation of a network of neurons
with 3D morphologies (refer to [11] for details). The diversity of neurons is
based on 1500 unique neuron morphologies which are cloned, rotated and tightly
placed in space. A neuron (cell) is simplified as a central nucleus (soma) and a
set of branches spreading out from several extremities of the soma. A branch
is a sequence of connected compartments. A compartment’s contour (its lipid
bilayer forming a neuron membrane) is represented as a cylinder on a 3D space,
and mentioned on this document as a segment. On a branch, a segment’s end
point serves as the following segment’s start point. Other non-spatially defined
characteristics of a compartment - e.g. ion channels, electrochemical gradients,
ion pumps, transporters - are not relevant for the context of this document, thus
we focus solely on the geometrical representation of such model. The geometrical
distribution is highly heterogeneous: the center of a circuit is densely populated –
having between 40–80 % of volume occupied by segments – and the endings of the
branches may extend to sparse areas of the volumetric space. When partitioning
a collection of neurons, the method aims at equalizing the number of segment
points across all compute nodes. For the purpose of ghosting, the radius and
length between two consecutive points provide the extent of the shape.

4.3 Slicing Schemes Load Imbalance

For the analysis of the load imbalance we applied the four mentioned slicing
configurations to a circuit of 31 K neurons spread across 16384 domains, and we

92 B.R.C. Magalhães et al.

Table 3. Analysis of the load imbalance of the four slicing configurations applied to
a 31 K neurons circuit - approximately 449.5 Million segments - after partitioning on
16384 domains.

Segments Count Base case Single axis Non uniform

grid

Sort tile

recursive

Orthogonal rec.

bisec.

Pre-ghosting Post-ghosting Post-ghosting Post-ghosting Post-ghosting

Max. – 572307 89994 31423 31508

Min. – 27509 5241 26687 27505

Max - Min – 544798 84753 4736 4003

Avg. 27435 504678 31220 29853 30020

StdDev – 117036 6529 905 774

Total count 449.5M 8268.8M 511.5M 489.1M 491.8M

Duplication – 1739.3% 13.7% 8.8% 9.4%

present the results in Table 3. Our motivation is to understand how the over-
head of the ghosting step applied to highly heterogeneous datasets is affected by
different partitioning schemes. The results show the Sort Tile Recursive as the
best performant slicing configuration: it allows for an accurate load balancing
and a very low overhead added by ghost elements. It also runs very efficiently,
only second to the single axis (which is impractical due to the high amount of
ghosting). Finally, the STR adds the benefit of minimizing the communication
overheard of the subsequent execution as it allows for a 3D slicing configuration
that matches the physical nodes placement on the BlueGene/Q 5D torus net-
work. Due to the high imbalance and the maximum number of elements across
all domains, the Non-Uniform Grid is infeasible.

4.4 Load Imbalance of Approximation Methods

We perform an analysis of the load imbalance of the histogram-, sampling-, and
SBS-based (no sampling) methods applied to four circuits of 10 K neurons on
a network of 512 compute nodes. We measure how the imbalance provided by
an approximation method affects the final data distribution, and consequently
the total execution time defined by the compute node with the largest dataset.
The workload distribution results are displayed in Fig. 5. Sampling elements
are picked uniformly from equidistantly positioned indices of the input dataset.
The histogram based partitioning implements the Non Uniform Grid configu-
ration with 3000 equidistant bins per dimension, while the sampling- and the
SBS-based partitioning were computed based on the Sort Tile Recursive con-
figuration, shown previously to be the best performant for our input data. Our
results exhibit poor histogram-based partitioning, driven by two main factors:
the underlying NUG partitioning does not allow for an accurate balancing (also
shown in Table 3), and the equidistant bins of the histogram lead to a low preci-
sion of slicing cut points, critical for the central areas of high density. The analysis
of the other methods are straightforward: for any of the input sets tested, an
increase of the sampling size taken from the input data leads to an decrease of
the load imbalance. The study of load imbalance of these approximation meth-

An Efficient Parallel Load-Balancing Framework 93

ods on larger inputs and compute networks was limited by the high imbalance
(thus high memory requirements) of the histogram-based method.

H
is

to
g
ra

m

S
a
m

p
li
n
g

0
.1

%

S
a
m

p
li
n
g

1
%

S
B

S

0

50 000

100 000

150 000

200 000

250 000

circuit 1

H
is

to
g
ra

m

S
a
m

p
li
n
g

0
.1

%

S
a
m

p
li
n
g

1
%

S
B

S

circuit 2

H
is

to
g
ra

m

S
a
m

p
li
n
g

0
.1

%

S
a
m

p
li
n
g

1
%

S
B

S

circuit 3

H
is

to
g
ra

m

S
a
m

p
li
n
g

0
.1

%

S
a
m

p
li
n
g

1
%

S
B

S

circuit 4

Fig. 5. Comparison of the workload distribution for histogram-, sampling-, and SBS-
based slicing methods, applied to 512 compute nodes and 4 different circuits of 10 K
neurons, after communication of ghost elements. Results provided as average (dotted)
and min-max (vertical bar) number of segment points across all compute nodes.

4.5 Large Scale Runtime Analysis

Our large scale analysis focus on the most common approaches for orthogonal
partitioning: the serial multi-jagged (STR) approach with sampling, the Zoltan-
based parallel RCB, and the SBS-based multi-jagged/STR. Tests were run on a
network ranging from 1024 to 16384 MPI ranks, as presented in Fig. 6. Due to
the limitations of our synthetically-inspired data generation tools, the input data
utilized is a set of randomly generated coordinates with an uniform distribution.
This is in fact irrelevant, as the the execution time of the SBS method (contrarily
to Zoltan) is independent of the data layout, therefore the application of SBS to
any spatial decomposition problem yields similar execution time. Testing results
show that the use of sampling in order to reduce the execution time provides a
reduction of runtime proportional to the sampling rate. When compared to the
serial implementation, the SBS-based STR allows a speed-up proportional to the
increase of compute nodes. The SBS is shown to perform faster than the serial
case with 0.1 % sampling for any network larger than 1024 ranks. On our largest
tested network, the SBS outperformed the serial non-sampled implementation by
5 orders of magnitude, and achieved a speed-up of about 200× compared to the
serial sampling from 0.1 % of the input data. The Zoltan-based implementation
presents an inferior performance when compared to the SBS, particularly visible
for smaller datasets on large networks. For large datasets, Zoltan yields a higher

94 B.R.C. Magalhães et al.

107 108 109 1010 1011 1012

100

101

102

103

104

105

106

107

Input size

W
a
ll
cl

o
ck

ti
m

e
(s

ec
s)

SBS, 1024 ranks Zoltan, 1024 ranks serial, no sampling

SBS, 2048 ranks Zoltan, 2048 ranks serial, 10% sampling

SBS, 4096 ranks Zoltan, 4096 ranks serial, 1% sampling

SBS, 8192 ranks Zoltan, 8192 ranks serial, 0.1% sampling

SBS, 16384 ranks Zoltan, 16384 ranks

Fig. 6. Execution times for the serial sampling, Zoltan-based RCB and SBS-based Sort
Tile Recursive slicing configurations. Sampling runtimes exclude the redistribution of
the data based on the slicing cut points computed at the root node. Zoltan configured
to allow an unbalancing threshold of 10 % (default value).

runtime, again most prominent for large networks. For the results with Zoltan
we used the default configuration settings (e.g. imbalance threshold of 10 %) and
it is conceivable that the results can improve if different settings were used. Due
to an internal error it was not possible to perform a Zoltan partitioning on 1
trillion elements.

4.6 Weak and Strong Scaling

Weak scaling of the SBS has been tested for networks of 1024 to 16384 MPI ranks
and different input sizes as displayed in Fig. 7. Weak scaling results (Fig. 7) show
our method scaling across any number of compute nodes and problem sizes,
and presenting nearly perfect weak scaling properties. Strong scaling results
are presented in Fig. 8 where the SBS allows for almost ideal (linear) strong
scaling. This feature is mostly prominent for large datasets as the communication
overhead is almost negligible compared to the computation.

An Efficient Parallel Load-Balancing Framework 95

1024 2048 4096 8192 16384
1

10

100

1,000

Number of MPI ranks

W
a
ll
cl

o
ck

ti
m

e
(s

ec
s)

1 Million points per rank

2 Million points per rank

4 Million points per rank

8 Million points per rank

16 Million points per rank

Fig. 7. Weak scaling of the Sort Balance Split framework applied to a 3D slicing based
on the Sort Tile Recursive algorithm.

1024 2048 4096 8192 16384
1

10

100

1,000

Number of MPI ranks

W
a
ll
cl

o
ck

ti
m

e
(s

ec
s)

1.07 Billion points

2.14 Billion points

4.29 Billion points

8.59 Billion points

17.18 Billion points

34.36 Billion points

68.72 Billion points

137.44 Billion points

Fig. 8. Strong scaling of the Sort Balance Split framework applied to a 3D slicing based
on the Sort Tile Recursive algorithm.

5 Summary and Conclusions

This paper presents and details the Sort Balance Split — a parallel framework
for orthogonal domain decomposition based on a distributed load balancing,
distributed sorting and network split algorithm — that serves as an efficient
implementation of four slicing configurations: single axis, non uniform grid, sort
tile recursive and orthogonal recursive bisection. We ran our methods on biolog-
ically inspired neural networks, and compared the SBS efficiency with the most
common methods used in the large state of the art HPC problems and Gor-
don Bell Prize finalists, based on histogram, sampling, and parallel multi-jagged
methods, where it provides a more accurate result on a shorter time to solution.
At large scale, our method was shown to exhibit good weak and strong scale
properties, and to scale linearly with input and network size, while running on a
fixed number of communication steps independently of the network size or input
data distribution.

96 B.R.C. Magalhães et al.

Acknowledgements. The work was supported by funding from the ETH Domain for
the Blue Brain Project (BBP). The BlueBrain IV BlueGene/Q system is financed by
ETH Board Funding to the Blue Brain Project and hosted at the Swiss National Super-
computing Center (CSCS). We thank James King, Stuart Yates and Fabien Delalondre
for technical discussions.

References

1. Aluru, S., Sevilgen, F.E.: Parallel domain decomposition and load balancing using
space-filling curves. In: Proceedings of Fourth International Conference on High-
Performance Computing, pp. 230–235. IEEE (1997)

2. Blackston, D., Suel, T.: Highly portable and efficient implementations of parallel
adaptive n-body methods. In: Proceedings of the 1997 ACM/IEEE Conference on
Supercomputing, SC 1997, pp. 1–20. ACM, New York (1997). http://doi.acm.org/
10.1145/509593.509597

3. Boley, D., Gini, M., Gross, R., Han, E.H.S., Hastings, K., Karypis, G., Kumar, V.,
Mobasher, B., Moore, J.: Partitioning-based clustering for web document catego-
rization. Decis. Support Syst. 27(3), 329–341 (1999)

4. Boman, E.G., Catalyurek, U.V., Chevalier, C., Devine, K.D.: The Zoltan and Isor-
ropia parallel toolkits for combinatorial scientific computing: partitioning, ordering,
and coloring. Sci. Prog. 20(2), 129–150 (2012)

5. Catalyurek, U.V., Aykanat, C.: Hypergraph-partitioning-based decomposition for
parallel sparse-matrix vector multiplication. IEEE Trans. Parallel Distrib. Syst.
10(7), 673–693 (1999)

6. Deveci, M., Rajamanickam, S., Devine, K., Catalyurek, U.: Multi-jagged: a scal-
able parallel spatial partitioning algorithm. IEEE Transactions on Parallel and
Distributed Systems, PP(99), 1–1 (2015)

7. Grama, A.: Introduction to Parallel Computing. Pearson Education, Upper Saddle
River (2003)

8. Hamada, T., Narumi, T., Yokota, R., Yasuoka, K., Nitadori, K., Taiji, M.: 42 tflops
hierarchical n-body simulations on gpus with applications in both astrophysics
and turbulence. In: Proceedings of the Conference on High Performance Comput-
ing Networking, Storage and Analysis, SC 2009, pp. 62:1–62:12. ACM, New York
(2009). http://doi.acm.org/10.1145/1654059.1654123

9. Hamada, T., Nitadori, K.: 190 tflops astrophysical n-body simulation on a cluster
of gpus. In: Proceedings of the 2010 ACM/IEEE International Conference for High
Performance Computing, Networking, Storage and Analysis, SC 2010, pp. 1–9. IEEE
Computer Society, Washington (2010). http://dx.doi.org/10.1109/SC.2010.1

10. Haring, R., Ohmacht, M., Fox, T., Gschwind, M., Satterfield, D., Sugavanam, K.,
Coteus, P., Heidelberger, P., Blumrich, M., Wisniewski, R., Gara, A., Chiu, G.,
Boyle, P., Chist, N., Kim, C.: The IBM blue Gene/Q compute chip. IEEE Micro
32(2), 48–60 (2012)

11. Hill, S.L., Wang, Y., Riachi, I., Schürmann, F., Markram, H.: Statistical connectiv-
ity provides a sufficient foundation for specific functional connectivity in neocorti-
cal neural microcircuits. Proc. National Acad. Sci. 109(42), E2885–E2894 (2012).
http://www.pnas.org/content/109/42/E2885.abstract

12. Ishiyama, T., Nitadori, K., Makino, J.: 4.45 pflops astrophysical n-body simulation
on k computer: The gravitational trillion-body problem. In: Proceedings of the
International Conference on High Performance Computing, Networking, Storage
and Analysis, SC 2012, pp. 5:1–5:10. IEEE Computer Society Press, Los Alamitos
(2012). http://dl.acm.org/citation.cfm?id=2388996.2389003

http://doi.acm.org/10.1145/509593.509597
http://doi.acm.org/10.1145/509593.509597
http://doi.acm.org/10.1145/1654059.1654123
http://dx.doi.org/10.1109/SC.2010.1
http://www.pnas.org/content/109/42/E2885.abstract
http://dl.acm.org/citation.cfm?id=2388996.2389003

An Efficient Parallel Load-Balancing Framework 97

13. Karypis, G.: METIS and ParMETIS. In: Padua, D. (ed.) Encyclopedia of Parallel
Computing, pp. 1117–1124. Springer, Heidelberg (2011)

14. Karypis, G., Aggarwal, R., Kumar, V., Shekhar, S.: Multilevel hypergraph parti-
tioning: applications in vlsi domain. IEEE Trans. Very Large Scale Integr. VLSI
Syst. 7(1), 69–79 (1999)

15. Kozloski, J., Sfyrakis, K., Hill, S., Schurmann, F., Peck, C., Markram, H.: Identi-
fying, tabulating, and analyzing contacts between branched neuron morphologies.
IBM J. Res. Dev. 52(12), 43–55 (2008)

16. Kutluca, H., Aykanat, C., et al.: Image-space decomposition algorithms for sort-
first parallel volume rendering of unstructured grids. J. Supercomput. 15(1), 51–93
(2000)

17. Papa, D.A., Markov, I.L.: Hypergraph partitioning and clustering. In: Approxima-
tion Algorithms and Metaheuristics, pp. 61–1 (2007)

18. Pellegrini, F., Roman, J.: Scotch: a software package for static mapping
by dual recursive bipartitioning of process and architecture graphs. In:
Liddell, H., Colbrook, A., Hertzberger, B., Sloot, P.M.A. (eds.) HPCN-
Europe 1996. LNCS, vol. 1067, pp. 493–498. Springer, Heidelberg (1996).
http://dl.acm.org/citation.cfm?id=645560.658570

19. Randles, A., Draeger, E.W., Oppelstrup, T., Krauss, L., Gunnels, J.A.: Massively
parallel models of the human circulatory system. In: Proceedings of the Inter-
national Conference for High Performance Computing, Networking, Storage and
Analysis, p. 1. ACM (2015)

20. Reumann, M., Fitch, B.G., Rayshubskiy, A., Keller, D.U., Seemann, G., Dossel, O.,
Pitman, M.C., Rice, J.J.: Orthogonal recursive bisection data decomposition for
high performance computing in cardiac model simulations: dependence on anatom-
ical geometry. In: Annual International Conference of the IEEE Engineering in
Medicine and Biology Society, EMBC 2009, pp. 2799–2802. IEEE (2009)

21. Rodrigues, E.R., Navaux, P.O.A., Panetta, J., Fazenda, A., Mendes, C.L., Kale,
L.V.: A comparative analysis of load balancing algorithms applied to a weather
forecast model. In: 2010 22nd International Symposium on Computer Architecture
and High Performance Computing (SBAC-PAD), pp. 71–78. IEEE (2010)

22. Rossinelli, D., Hejazialhosseini, B., Hadjidoukas, P., Bekas, C., Curioni, A.,
Bertsch, A., Futral, S., Schmidt, S.J., Adams, N.A., Koumoutsakos, P.: 11
PFLOP/s simulations of cloud cavitation collapse. In: Proceedings of the Inter-
national Conference on High Performance Computing, Networking, Storage and
Analysis, SC 2013, pp. 3:1–3:13. ACM, New York (2013). http://doi.acm.org/10.
1145/2503210.2504565

23. Saule, E., Bas, E.Ö., Çatalyürek, Ü.V.: Load-balancing spatially located computa-
tions using rectangular partitions. CoRR abs/1104.2566 (2011). http://arxiv.org/
abs/1104.2566

24. Shimokawabe, T., Aoki, T., Takaki, T., Endo, T., Yamanaka, A., Maruyama, N.,
Nukada, A., Matsuoka, S.: Peta-scale phase-field simulation for dendritic solidifi-
cation on the tsubame 2.0 supercomputer. In: Proceedings of 2011 International
Conference for High Performance Computing, Networking, Storage and Analy-
sis. SC 2011, pp. 3:1–3:11. ACM, New York (2011). http://doi.acm.org/10.1145/
2063384.2063388

25. Siebert, C., Wolf, F.: A scalable parallel sorting algorithm using exact splitting.
Technical report, German Research School for Simulation Sciences GmbH (2010)

http://dl.acm.org/citation.cfm?id=645560.658570
http://doi.acm.org/10.1145/2503210.2504565
http://doi.acm.org/10.1145/2503210.2504565
http://arxiv.org/abs/1104.2566
http://arxiv.org/abs/1104.2566
http://doi.acm.org/10.1145/2063384.2063388
http://doi.acm.org/10.1145/2063384.2063388

Parallel Community Detection Algorithm
Using a Data Partitioning Strategy

with Pairwise Subdomain Duplication

Diana Palsetia1(B), William Hendrix2, Sunwoo Lee1, Ankit Agrawal1,
Wei-keng Liao1, and Alok Choudhary1

1 Northwestern University, Evanston, IL, USA
{drp925,slz839,ankitag,wkliao,choudhar}@eecs.northwestern.edu

2 University of South Florida, Tampa, FL, USA
whendrix@usf.edu

Abstract. Community detection is an important data clustering tech-
nique for studying graph structures. Many serial algorithms have been
developed and well studied in the literature. As the problem size grows,
the research attention has recently been turning to parallelizing the tech-
nique. However, the conventional parallelization strategies that divide
the problem domain into non-overlapping subdomains do not scale with
problem size and the number of processes. The main obstacle lies in
the fact that the graph algorithms often exhibit a high degree of data
dependency, which makes developing scalable parallel algorithms a great
challenge.

We present PMEP, a distributed-memory based parallel commu-
nity detection algorithm that adopts an unconventional data partitioning
strategy. PMEP divides a graph into subgraphs and assigns each pair of
subgraphs to one process. This method duplicates a portion of computa-
tional workload among processes in exchange for a significantly reduced
communication cost required in the later stages. After data partition-
ing, each process runs MEP on the assigned subgraph pair. MEP is a
community detection algorithm based on the idea of maximizing equi-
librium and purity. Our data partitioning method effectively simplifies
the communication required for combining the local results into a global
one and hence allows us to achieve better scalability over existing par-
allel algorithms without sacrificing the result quality. Our experimental
results show a speedup of 126.95 on 190 MPI processes for using syn-
thetic data sets and a speedup of 204.22 on 1225 processes for using a
real-world data set.

1 Introduction

Data clustering is a branch of data mining algorithms that organizes a collec-
tion of data points into groups based on their similarity [10]. Clustering graph
data, also known as community detection, usually refers to the identification of
vertex subsets (clusters) that have significantly more internal edges than exter-
nal ones [7]. Since the past few years, the volume of data has surpassed the
c© Springer International Publishing Switzerland 2016
J.M. Kunkel et al. (Eds.): ISC High Performance 2016, LNCS 9697, pp. 98–115, 2016.
DOI: 10.1007/978-3-319-41321-1 6

Parallel Community Detection Algorithm 99

capabilities of traditional sequential algorithms. For instance, CNM (Clauset,
Newman, Moore), a popular community detection algorithm based on maxi-
mum modularity takes approximately 18 hours to process a social network data
set containing 2,238,731 users and 14,608,137 connections [5,22]. Demands on
high-performance solutions have encouraged researchers to develop heuristic and
parallel algorithms for tackling large data problems.

Graph problems are data-driven, i.e., the memory access pattern in graph
algorithms is often irregular and highly dependent on the network structure.
Unlike spatial-based data clustering algorithms where the similarity of two data
points can be determined by their distance, most graph algorithms must tra-
verse the edges to calculate the affinity of a vertex to another. Thus, scalable
performance can be difficult to achieve for a parallel algorithm because the graph
structure is not known a priori [16]. In addition, graph clustering algorithms are
iterative in nature with a high degree of data dependency. While there have
been a few parallel graph clustering algorithms proposed recently, they suffer
from frequent process synchronization and their result quality is affected by the
processing order of vertex assignment to communities [1].

We propose a distributed-memory based parallel algorithm called PMEP
which parallelizes MEP, a community detection algorithm based on the idea of
maximizing equilibrium and purity of communities [23]. MEP has been demon-
strated to produce high quality of results for medium to large graphs. To par-
allelize MEP, we use a data partitioning strategy that duplicates a portion of
computational workload in exchange for a lower communication cost required
in the later stage when combing local results into a global one. This strategy is
motivated by the fact that graph problems are highly data dependent and it is
unlikely for a data partitioner to produce subgraphs that can be processed inde-
pendently on multiple processes without incurring a high cost of synchronization
and communication. We employ the Parallel METIS (ParMETIS) graph parti-
tioner [12,13] to break a graph into K subgraphs and assign each subgraph pair
of all possible pairwise combinations to one of P processes, where P =

(
K
2

)
.

This pairwise subgraph partitioning approach assigns each subgraph to (K − 1)
processes, resulting in (K − 2) duplicated computation for processing the sub-
graph. Once received the assigned subgraph pairs, each process performs MEP
on local data independently from other processes. The partial clustering results
are then combined by resolving the conflicts on the community memberships
found across all processes, which requires only one synchronization.

We used both synthetic and real-world data to evaluate PMEP. Using a
synthetic data with 2 million vertices and 35.3 million edges, we achieved a
speedup of 126.95 when running PMEP on 190 MPI processes. We evaluated
the real-world data collected from Youtube using up to 1225 MPI processes and
achieved a speedup of 204.22. We also compare the scalability of PMEP against
the MPI implementation of parallel Louvain and observe that PMEP delivers a
better performance.

100 D. Palsetia et al.

2 Related Work

Fortunato gives a thorough overview of representative community detection algo-
rithms, of which modularity-based methods are the most popular [7]. Since maxi-
mizing the graph modularity was proven to be an NP-complete problem [4], there
have been several greedy approaches proposed [2,5,19]. Other than modularity-
based methods, Zardi et al. introduced MEP, an algorithm that aims to maximize
the equilibrium of communities [23]. This technique does not suffer from “resolu-
tion limit” problem that small communities are absorbed into large communities,
an issue commonly seen in most of the modularity-based methods.

Riedy et al. use maximal matching to solve the parallel modularity maximiza-
tion problem [17], based on CNM algorithm proposed by Clauset, Newman, and
Moore [5]. This parallel approach was implemented using OpenMP and achieved
a maximal speedup of 13× on a Cray-XMT shared-memory machine using 80
compute cores and uk-2002 graph data set [3]. Louvain is another popular algo-
rithm that addresses CNM drawbacks by using a hierarchical extraction process
[2]. The majority of parallel implementations for Louvain are using OpenMP
for shared-memory machines. Bhowmick and Srinivasan proposed a heuristic
to eliminate some computations that can be implicitly obtained by computing
the modularity [1]. Their OpenMP implementation creates a need for critical
sections, which eventually limits the scalability. Staudt and Meyerhenke [18]
parallelized the Louvain algorithm using an ensemble learning technique that
combines multiple base classifiers or weak classifiers to form a strong classifier,
as a preprocessing step. Lu et al. [15] use heuristics of coloring and vertex follow-
ing to parallelize the Louvain algorithm. All of the above approaches achieved
the maximal speedups of 8× on 32 threads.

Wickramaarachchi et al. [21] implemented a distributed memory parallel Lou-
vain algorithm using MPI and achieved the best speedup of 5× on 128 processes.
Similar to our approach, they also used a graph partitioning method. However,
they only parallelized the first stage of Louvain.

3 MEP Algorithm

The Maximizing Equilibrium and Purity algorithm (MEP) is a community detec-
tion algorithm that identifies a community based on its internal and external
connectivity [23]. Let G = (V,E) be an undirected graph, where V and E are
the sets of vertices and edges, respectively. MEP partitions G into k communities
C = {C1, . . . , Ck}, where ∀ i, Ci ⊆ V and ∀ i �= j, Ci ∩ Cj = ∅. In other words,
C1, . . . , Ck are non-overlapping communities. The computation of MEP consists
of two phases: region growing and community merging. The region growing
phase starts with each vertex as a community containing only itself and grows
the communities based on the connectivity of vertices. The communities identi-
fied in this phase are the locally optimal solutions, which will later be examined
and possibly combined in the merging phase.

In the rest of this paper, we refer N(v) as the set of vertices that have edges
directly connecting to vertex v. We denote d(v) as the cardinality (or degree)

Parallel Community Detection Algorithm 101

Algorithm 1. Region Growing Phase
Input: graph G = (V,E)
Output: Communities C = {C1, C2, . . . , Ck}
1: for each vi ∈ V do
2: Ci ← {vi} � vertex starts out as a singleton
3: Create F , a free list, and add all vertices into F
4: Sort the vertices in F based on their degrees
5: while F �= ∅ do
6: Select v from F with the highest degree
7: Delete v from F
8: NFDN(v) ← 0
9: comp(v, 1 · · · N(v)) ← 0

10: for each u ∈ N(v) do
11: if u is free then
12: NFDN(v) ← NFDN(v) + 1
13: else
14: comp(v, Cu) ← comp(v, Cu) + 1
15: Find Cx whose comp(v, Cx) is the maximal
16: if NFDN(v) ≤ comp(v, Cx) then
17: Add v to Cx

18: else
19: RecuriveGrowth(N(v), Cv, F) � grows Cv

of v and d(v) = |N(v)|. A vertex v is referred as a free vertex, if it does not
belong to any community but itself. The number of free, direct neighbors of
vertex v is denoted as NFDN(v) = |{u|u ∈ N(v) ∧ u is free}|. A vertex is
said to be compatible to a community Ci if most of its direct neighbors are
in Ci. Equation 1 defines the compatibility of vertex v to community Ci. The
maximum compatibility of vertex v is the maximum among its compatibilities
to all communities and its NFDN, as shown in Eq. 2. A vertex is defined as pure
to a community Ci if and only if its compatibility to Ci is equal to its maximum
compatibility.

comp(v, Ci) = |{(v, u)|u ∈ N(v) ∧ u ∈ Ci}| (1)

compmax(v) = max{maxCi∈C comp(v, Ci),NFDN(v)} (2)

v is pure to Ci iff comp(v, Ci) = compmax(v) (3)

3.1 Region Growing Phase

Algorithm 1 presents the region growing phase. Initially, all vertices start out
as singleton communities and are marked as free in list F . The vertices in F
are then sorted by their degrees in an increasing order. The algorithm grows
communities starting from the vertex with the highest degree, v. If v’s maximal
compatibility is larger than NFDN(v), then v is added to the community that
has the maximal compatibility. Otherwise, the algorithm will grow Cv by adding

102 D. Palsetia et al.

direct neighbors of v if they are pure to Cv. For each newly added members, the
algorithm recursively adds pure neighbors of those members (indirect connected
neighbors of v) to grow Cv. The vertices are removed from the free list F once
they were added to a community. This process iterates until the direct neighbors
of v are exhausted, at which point the algorithm moves on to the vertex with
next highest degree in F . At the end, the region growing phase produces an
initial set of communities C = {C1, C2, . . . , Ck}.

The community initialization in line 2 of Algorithm1 takes O(|V |) time.
In line 4, we sort the vertices by their degree using a counting sort in O(|V |)
time. Starting from the vertex with the highest degree in F , we compute its
compatibilities to the communities to which its (non-free) direct neighbors belong
in lines 10–14. This takes O(d) time. In the worst case, the time becomes O(Δ),
where Δ as the maximum degree of a graph from the most connected vertex
in the graph. The next step is to check the purity by comparing the maximal
compatibility currently found against the number of free direct neighbors. If the
number of free direct neighbors is larger, then we need to recursively check the
purity for all the neighbors in line 19. The number of iterations to call procedure
RecursiveGrowth is O(d) and in the worst case O(Δ). Finding the maximal
compatibility for each neighbor in line 3 takes O(|V |) time. Thus, each call to
RecursiveGrowth takes O(Δ|V |) time, which makes the complexity of entire
recursive call O(Δ2|V |). Assuming the while loop in line 5 repeats �1 times and
1 ≤ �1 ≤ |V |/2. The overall complexity of the region grow phase is O(�1Δ2|V |).
The worst case, �1 = |V |/2, happens when each vertex in the graph is connected
to only one other vertex, making the complexity become O(Δ2|V |2). The best
case, �1 = 1, happens when every vertex is connected to every other vertex
i.e. the graph being a clique, which makes the complexity become O(Δ2|V |).
Therefore, the complexity of region grow depends on how close the neighbors
of a vertex v form a clique. This quantity can be measured and is commonly
referred to the local clustering coefficient, denoted as lcc. A high average local
clustering coefficient alcc of a graph is an indicator of the presence of dense
subgraphs [20]. The alcc values range from 0 to 1. Value of �1 decreases as alcc
value approaches to 1 and increases as alcc approaches to 0.

The region-growing phase exhibits a high degree of data dependency, because
the processing of vertex v depends on the results of processing all the vertices
with higher degrees than v. However, this priori information is not known. Such a
high degree of data dependency exhibited in graph problems in general makes the
parallelization of any graph clustering algorithm an extremely challenging task.

3.2 Community Merge Phase

This phase first checks whether the initial communities found in the region grow-
ing phase are in equilibrium or not. The concept of equilibrium is simply the
definition of strong communities. A community is strong if it has more internal
connections (also defined as compactness) than the average external connections
(also defined as separation). Equation 4 defines compactness of a community as
the number of edges within the community and Eq. 5 defines separation of two

Parallel Community Detection Algorithm 103

Algorithm 2. Recursive Growth
Input: a set of vertices N , Community C, and free list F
Output: updated C and F

Procedure RecursiveGrowth(N, C, F)
1: newN ← ∅
2: for each u ∈ N do
3: Find compmax(u)
4: if comp(u, C) = compmax(u) then � if u is pure
5: Add u to C and delete u from F
6: Add u to newN
7: if newN �= ∅ then
8: RecursiveGrowth(newN, C, F)

communities as the number of edges between them. Equation 6 defines the aver-
age separability of a community. Equation 7 describes the equilibrium condition
for a community, i.e. its average separation over all other communities is less
than its compactness. Communities that are not in equilibrium will be merged
to the community with which it has the highest separation. After the merge, the
overall purity of a community may decrease. In this case, the impure vertices
are moved to communities in which they are pure. Algorithm3 describes the
community merge phase.

compact(Ci) = |{(v, u)|(v, u) ∈ E, v ∈ Ci ∧ u ∈ Ci}| (4)

sep(Ci, Cj) = |{(v, u)|(v, u) ∈ E, v ∈ Ci ∧ u ∈ Cj}| (5)

sepavg(Ci) =
1

|C|
|C|∑

j=1∧j �=i

sep(Ci, Cj) (6)

sepavg(Ci) < compact(Ci) (7)

We denote |C ′| to be the number of communites after the region growing
phase. Algorithm 3 initially populates a |C ′| × |C ′| matrix with the pairwise
separability and calculates the compactness for each community in C ′. It iter-
ates through all the edges of the graph, which takes O(|E|) time. Finding the
maximum and average separability for each community, as well as updating the
matrix for any merged community (lines 8–12), take O(|C ′|) time, for a total of
O(|C ′|2) time per iteration of the while loop in line 5. The algorithm iterates
through all the vertices after each merge round for reassigning the membership
(lines 15–18), at a cost of O(|E|). While this while loop could potentially iter-
ate O(|C ′|) times, we find empirically that the number of iterations is a small
constant. If the number of iterations is �2, then the overall complexity for the
merge phase becomes O(�2(|C ′|2 + |E|)). This phase of the MEP algorithm has
a high data dependency on the order of communities being processed, because
when a community pair is merged, all connections with those two communities
need to be updated.

104 D. Palsetia et al.

Algorithm 3. Community Merge Phase
Input: graph G = (V,E)
Input: initial communities C = {C1, C2, . . . , Ck}
Output: modified communities C = {C1, C2, . . . , Ck′}
1: for each Ci ∈ C do
2: Calculate compact(Ci)
3: for each Cj ∈ C ∧ j �= i do
4: Calculate sep(Ci, Cj)
5: while true do
6: merge count ← 0
7: for each Ci ∈ C do
8: if sepavg(Ci) > compact(Ci) then
9: Find Cj in C where sep(Ci, Cj) is maximal

10: Merge Ci and Cj into a new Ck′

11: Delete Ci and Cj from C
12: Update compact(Ck′) and sep(Ck′)
13: Add Ck′ to C
14: merge count ← merge count + 1
15: for each v in Ck′ do
16: if comp(v, Ck′) �= compmax(v) then
17: Find Ct in C that has compmax(v)
18: Add v to Ct and delete v from Ck′

19: if merge count = 0 then
20: break the while loop

4 Design and Implementation

Conventional parallelization strategies often consist of three steps: breaking the
problem domain into a set of subproblems, solving subproblems independently
and concurrently, and combining the subproblem solutions into a global solution
for the original problem instance. Following the same principle, our paralleliza-
tion divides a graph into subgraphs, detects communities within each subgraph
independently using MEP, and merges the local communities to get the global
solution. Contrary to the conventional approach that often seeks to generate
non-overlapped subproblems, we adopt a data partitioning method that dupli-
cates workload among processes. Our idea is motivated by the fact that graph
problems are highly data dependent and it is unlikely for a data partitioner to
produce subgraphs that can be processed independently without a high cost of
process synchronization and communication at a later stage. For instance, if a
non-overlapping partitioning is used, then the local results computed in each
process must be sent to all other processes for merging, because any subgraph
may have external edges connecting to all other subgraphs. Such a complete
all-to-all personalized communication may be required multiple times when the
algorithm traverses edges across multiple subgraphs to grow a community. Thus,
a high communication cost is inevitable for such an approach. Owing to this, we
design a strategy that duplicates a portion of computational workload among

Parallel Community Detection Algorithm 105

processes in exchange for a lower communication cost and hence heavier local
computational workload. Our parallel algorithm consists of the following phases:

4.1 Parallel Read

The input graph data is stored in a file of compressed storage format (CSR), a
widely used text format for storing graphs. In a CSR file, each line corresponds
to a vertex and its adjacency list (vertex IDs of direct neighbors). This format
is understood by ParMETIS [11], the data partitioner employed by our parallel
algorithm (discussed in the next section). To enable parallel I/O, we convert the
input file into a binary form but in the same data layout. During this off-line
conversion, we also calculate the file starting offsets of adjacent lists and store the
offsets in a separate file. In our parallel read phase, we partition vertices evenly
into disjoint blocks among all processes. At first, all processes read the total
number of vertices and edges to calculate the ranges of vertices to be assigned
to individual processes. Through the offset file, each process can perform a file
seek operation to jump to the file location containing the vertex subset to be
read. We use an MPI collective read to read the graph data in parallel. A low
cost is expected for this phase, as the I/O pattern from the above partitioning
method is known to be highly scalable on state-of-the-art parallel file systems.

4.2 Graph Partitioning

There are several graph partitioning techniques proposed in the literature [8]. A
high-quality partitioner can produce subgraphs that are well connected within
each subgraph and fewer edges between them. Our parallel algorithm employs the
Parallel METIS (ParMETIS) graph partitioner. METIS is a multilevel partition-
ing algorithm that produces high quality partitions by minimizing the resulting
inter-subdomain connectivity and enforcing contiguous partitions [12,13]. Imple-
mented using MPI, ParMETIS partitions a graph into K disjoint subgraphs in
parallel, given K as a user input parameter.

Given P compute processes, one naive parallelization strategy is to partition
a graph into P subgraphs and assign each subgraph to a process. However,
when using this approach, the external edges between two subgraphs cannot be
used to grow communities during the local computation, as processes possess no
vertex data on the remote subgraphs connected through those external edges.
To continue growing or merging the local communities, the intermediate results
must be distributed among processes, which could involve multiple levels of data
synchronization. Because a subgraph may have external edges connecting to all
other subgraphs, a high communication cost is anticipated if this naive approach
is used. To avoid such problem, we choose to duplicate a portion of computational
workload in exchange for a lower communication complexity.

Our data partitioning method assigns every possible combination of subgraph
pairs to a unique process. In this approach, the external edges between every two
subgraphs can be used by a process to grow the communities. Given a graph and
P processes, we call the ParMETIS library subroutine ParMETIS V3 PartKway to

106 D. Palsetia et al.

partition the graph into K subgraphs such that P =
(
K
2

)
. A process is assigned all

edges in subgraphs ki, and kj , along with the edges between them. This strategy
requires the number of processes P to be

(
K
2

)
. For instance, when K = 2 we have

one process, which is the serial case. When K = 10, our parallel program must
run on

(
10
2

)
= 45 processes. This subgraph partitioning approach assigns each

subgraph to exactly (K − 1) processes, resulting in duplicated computation for
detecting communities within the subgraph. This is the cost we intend to trade
for achieving a lower communication cost later on.

The subroutine ParMETIS V3 PartKway consists of three phases: graph coars-
ening, initial partitioning, and refinement. According to [11], coarsening and
refinement take O(|E|) time with O(log(|V |)) stages. The partitioning phase
takes O(|E′|) time, where E′ is the number of edges in the coarsened graph, and
scales relative to

√
P . This partitioning function and hence our data partitioning

phase takes O(|E| log(|V |) + |E′|/√
P) time.

4.3 Subgraph ID Distribution

The output of ParMETIS V3 PartKway is an array in each process containing the
subgraph IDs for the local vertices. Thus only the subgraph IDs of the local
vertices assigned in the read phase are known. To achieve the pairwise subgraph
duplication, we must also obtain the subgraph IDs for the vertices in the local
vertices’ adjacency lists. The subgraph IDs will be used to calculate the ranks of
processes to which a vertex and its edges are to be duplicated. Because vertices
are divided among processes in a block fashion in the read phase, the rank of a
process that possesses the subgraph ID of a given vertex can be calculated by
simply dividing the vertex ID by the block size.

In order to minimize the communication, we sort each list based on the vertex
IDs and remove repeated vertices. The inter-process communication is carried
out in three steps. First, an MPI Alltoall is called to exchange the number
of vertices to be sent and received among all processes. Next, send and receive
buffers, one for each remote process, are allocated and a hash table lookup is
performed to fill the send buffer with the requested subgraph IDs. The last
step uses asynchronous communication calls (isend and irecv) to complete the
communication. On average, each process is assigned |E|/P edges and out of
which |V |/P vertices’ subgraph IDs are already known. Thus, the complexity of
this phase in terms of communication is O(|E|/P).

4.4 Pairwise Subgraph Duplication

Given K subgraphs, there are
(
K
2

)
combinations of subgraph pairs. We assign

each process a pair of subgraphs along with the internal and external edges
connecting the pair. If the two vertice of an edge belong to the same subgraph,
the edge is internal. Otherwise the edge is external. An internal edge is identified
when the subgraph IDs of its two vertices agree. To assign an external edge
to a process, we use Eq. 8 to calculate the process rank p, where ki and kj

Parallel Community Detection Algorithm 107

are subgraph IDs of the edge’s two vertices, respectively. Using our duplication
scheme, an external edge will be assigned to one and only one process and an
internal edge is assigned in duplication to (K − 1) processes.

p = kj ∗ (kj + 1)/2 − ki − 1, for j > i (8)

To start the duplication, each process first scans and packs all the edges
from its local adjacency lists to send buffers if they are for remote processes.
Adopting the similar communication method used in the previous phase, we
call MPI asynchronous isend/irecv functions to distribute the workload. Edge
scanning and packing takes O(|E|/P) time. Assuming ParMETIS evenly divides
the edges into K subgraphs, there are at most O(|E|/K) external edges between
each subgraph pair. Therefore, the complexity of this phase is O(|E|/√P) as
K =

√
P .

4.5 Local Graph Construction

We use adjacency lists to represent the vertices and edges of the subgraph pair
assigned to each process. To achieve a constant time for a vertex lookup in the
later local MEP phase, we use a hash table to store the adjacency lists. The
timing of creating a hash table depends on the efficiency of hashing function and
the frequency of hash collision. In our implementation we use Jenkins’ hash1.
Assuming that it takes O(h) time for adding an edge to the hash table, the time
complexity of this phase is O(h|E|/P), as each process is assigned O(|E|/P)
edges on average.

4.6 Local Region Growing

We implement the region growing phase of MEP algorithm using a union-find
data structure to keep track of a vertex’s community membership [6]. We also
store the maximum compatibility (Eq. 3) of each vertex denoted as its purity and
use it later in the global resolution phase to finalize the vertex’s membership. The
sequential complexity of this phase is O(�1Δ2|V |). Because of our duplication
strategy, each subgraph is duplicated in

√
P processes and thus the complexity

of this phase is O(�1Δ2|V |/√
P).

4.7 Local Community Merge

We implement the community merge phase of MEP algorithm using a sparse
community matrix M to represent the number of edges within and between the
communities. As mentioned in Sect. 3.2, a vertex may change membership upon
merging. When this happens, we update the vertex’s purity value, which will be
used in the next phase for resolving membership conflicts. As each process has
O(|E|/√P) edges and |C ′|/P communities, where |C ′| denotes the number of
communities found after the region growing phase, the time complexity of this
phase is O(�2(|C ′|2/P + |E|/√P)).
1 http://burtleburtle.net/bob/.

http://burtleburtle.net/bob/

108 D. Palsetia et al.

4.8 Global Resolution

The locally detected communities are to be merged globally. Because each ver-
tex is assigned to (K − 1) processes, the memberships calculated by different
processes may disagree. When such conflicts occur, we resolve them based on
the vertex’s purity. We divide this global resolution task among all processes
based on the vertex IDs, in a block partitioning fashion. In other words, process
rank i is responsible for vertices of IDs from (|V |/P) · i to (|V |/P) · (i + 1). All
processes only redistribute the vertices’ purities and their root IDs, using MPI
asynchronous communication (isend and irecv). The overall communication mes-
sage size exchanged among processes is 2|V | integers.

Each process receives (K − 1) purities and root IDs for each of |V |/P vertices
it is responsible. To resolve a conflict, we let the community with higher purity
win the conflict. Essentially, we treat the purity as the support of a vertex to a
community. When root IDs differ but the purities are equal, we assign the vertex
to the community with a larger root ID. Since the operation of finding the maxi-
mum is both associative and commutative, this strategy ensures the convergence,
no matter in what order the resolution is performed on the partial results. Once
all conflicts are resolved, we use an MPI collective write function to write the com-
munity IDs to a shared file in parallel. The computation time complexity of this
phase is O(K|V |/P) = O(|V |/√P) and communication complexity is O(|V |/P).

4.9 Complexity Analysis

The overall complexity of PMEP becomes O(|E|log(|V |) + �1Δ
2|V |/√

P +
�2(|C ′|2/P + |E|/√P)), which corresponds to the graph partitioning and local
MEP phases. Our complexity analysis implies that the computation time of
PMEP is to be dominated by these two phases.

5 Experiments and Performance Evaluation

We implement PMEP in C using Message Passing Interface (MPI) for com-
munication and I/O. Our experiments were carried out on Hopper, a Cray XE6
supercomputer at the National Energy Research Scientific Computing (NERSC)
Center. Each compute node on Hopper contains two twelve-core AMD Magny-
Cours 2.1-GHz processors and 32 GB of memory. We use both real-world and
synthetic graph data sets. Table 1 provides some graph properties of the data
sets used in our experiments, which include number of vertices (|V |), number of
edges (|E|), maximum degree (Δ), number of ground truth communities (|C|),
and average local clustering coefficient (alcc). Note that higher the alcc value,
denser the graph [20].

5.1 Synthetic Graphs

For a better control on the quality of community results with various graph
properties, we synthesize four large graphs, g1, g2, g3, and g4, with ground truth

Parallel Community Detection Algorithm 109

Table 1. Graph properties of data set used in our experiments.

Graph |V | |E| Δ |C| alcc

g1 2.00 M 35.37 M 88 39,685 0.111

g2 2.00 M 35.06 M 88 35,318 0.299

g3 6.00 M 88.88 M 75 122,750 0.299

g4 6.00 M 88.85 M 75 122,471 0.587

Youtube 1.13 M 2.99 M 28,754 8,385 0.081

M: million

Fig. 1. Execution time and speedups for synthetic graphs (Color figure online).

using LFR benchmark [14]. The graphs become denser from g1 to g4 as the alcc
values increase. The LFR benchmark allows us to set alcc values by changing
the fraction of edges a vertex shares with others in different communities, while
keeping other parameters constant, such as |V |, |E|, and Δ. Figure 1 presents
the execution time and speedup of PMEP. Given two graphs of the same size,
we observe that lower the alcc value higher the execution time. For example,
g1’s alcc = 0.111 is lower than g2’s 0.299 and g1 has a higher execution time
than g2. Similarly, g3 has a smaller alcc value than g4 and thus takes more time
to complete. This performance trend matched our complexity analysis in Sect. 3
that the lower alcc value corresponds to higher values in Δ, �1, �2, and |C ′|. Given
a fixed alcc value, the execution time increases as the number of vertices and
edges. In our experiment, graphs g2 and g3 have the same alcc value, 0.299, and
because g3 has more vertices and edges, its execution time is higher than g2.

Among the four graphs, we observe that g1 scales much better than the rest
and g4’s speedups are the worst. To help understand the differences, we collected
the timing breakdown for individual phases of PMEP. In Fig. 2, the upper four
charts show the percentages of timing for all phases and the bottom four charts
show the speedups for the top three phases that dominate the overall execution
time. From the percentage charts, we can see that the top three phases are the

110 D. Palsetia et al.

Fig. 2. Timing breakdown and speedup for individual phases of PMEP. (Color figure
online)

local MEP, ParMETIS, and graph construction. For g1, the local MEP takes
about 64 % to 93 % of the total time and because its speedup curve is quite close
to the linear line, the overall speedups follow the similar trend. The best speedup
for g1 is 126.95 when running 190 MPI processes.

For graphs g2, g3, and g4, the non-MEP phases start to take larger portions
of the total time. However, since the local MEP still shows the dominant per-
centages in most of the cases, its scalability remains a strong influence to the
overall speedup. The top three speedup charts show that the local MEP achieves
lower speedups than the ones in g1’s chart and similar trends for the other two
phases. The lower speedups altogether from the top three phases explain the
lower overall speedups for g2, g3, and g4.

The high timing percentage of local MEP phase in g1 can be explained by its
lower alcc value. As discussed in Sect. 3, a smaller alcc corresponds to a larger �1,
meaning more iterations required on checking the compatibility and purity of a
vertex’s neighbors. In addition, the sparser graph g1 produces more fragmented
intermediate communities |C ′| and hence a larger �2. Therefore, small alcc in g1
makes both the region growing and community merging of the local MEP phase
the most expensive phase. This behavior is consistent with the local MEP’s
complexity analysis.

As the number of processes increases, the timing percentages of graph par-
titioning phase (ParMETIS) increases proportionally, taking a significant per-
centage of the overall execution time. From its speedup charts, the scalability of
ParMETIS flattens quickly as the number of processes reaches to 40. Recall that
ParMETIS consists of three phases, among which only the initial partitioning

Parallel Community Detection Algorithm 111

phase scales with respect to
√

P , and the other two remain constant regardless
of P . As the number of processes increases, the two non-scalable phases start
to dominate and hence explain the speedup curve. This behavior implies the
PMEP’s overall performance could be limited by the scalability of ParMETIS.

The local graph construction phase noticeably takes a larger portion of the
overall time for dense graphs. In addition, the percentages increase significantly
as the number of processes. As we build the vertex adjacency lists into a hash
table, the timing depends on the efficiency of the hash function and the frequency
of hash collision. For dense graphs, a high number of hash collisions is expected
because more vertices sharing the same neighbors. When using vertex IDs as
hash keys, there is a high chance for a densely connected graph that the same
keys (vertices) are used when inserting new edges to the hash table. The effect of
increasing cost on hash collisions can be seen when comparing the percentages
of g2 to g1 and g4 to g3.

The subgraph ID distribution phase occupies only a small fraction of the
overall execution time and the main cost of this phase is the communication. Its
complexity in term of communication amount is O(|E|/P) per process. When
there are sufficiently large workloads, this phase appears negligible compared
to other phases. Both the pairwise subgraph duplication and global resolution
phases are mainly communication tasks. The complexity of pairwise duplica-
tion phase O(|E|/√

P) is the worst case scenario and in the real timing results
show much smaller, as seen from the timing percentage breakdown charts for
all the synthetic graphs. The global reduction phase also occupies very a small
percentage of the execution time. The small communication amount complex-
ity O(|V |/P) explains the observed results. The I/O cost takes less than 1 % of
the overall time. As we use MPI collective I/O to read/write files stored in the
Lustre parallel file system on Hopper, the low I/O cost is expected.

5.2 Real World Data Set

The real-world dataset, youtube, used in our experiments was obtained from the
collection of the Stanford Large Network Dataset Collection2. Although there
are other real-world graphs that come with the ground truth communities, but
most of them do not contain disjoint communities. This graph is considered
sparse, it has very low alcc value 0.081. Figure 3 shows the overall execution time,
speedups, percentage breakdown, and speedups of the top-three phases. The
youtube graph has a small alcc value similar to the synthetic graph g1 and both
numbers of vertices and edges are less than g1. However, the maximum degree
(Δ = 28, 754) of youtube graph is much higher than all the synthetic graphs.
According to the overall complexity derived in Sect. 4.9, such a high Δ value
makes the local MEP workload much higher than the rest of phases. This effect
can be seen from the breakdown percentage chart where the local MEP phase
dominates the overall execution time. As the local MEP speedups show good
scalability, the overall speedups follow the similar trend. The highest speedup

2 http://snap.stanford.edu/data/index.html.

http://snap.stanford.edu/data/index.html

112 D. Palsetia et al.

Fig. 3. Performance results of the youtube graph. (Color figure online)

achieved is 204.22 when running PMEP on 1225 MPI processes. Although this
number is far from the linear speedup, we consider it a very good result for a
parallel graph algorithm, given the fact that a high degree of data dependency
in graph problems.

In Fig. 3, we also show the number of edges assigned to each process for our
pairwise subgraph duplication strategy and the even data partitioning method.
The number of edges per process for our approach is O(|E|/√P), while the
even partitioning method is O(|E|/P). As the number of processes increases,
the chart shows the average number of edges of our approach deviates increas-
ingly from the even partitioning method. This indicates that achieving a linear
speedup is unlikely for PMEP if the computation workload of the graph prob-
lem is determined by the number of edges. However, our pairwise duplication
approach produces a very small cost of inter-process communication, which is
unlikely achievable by the even partitioning method.

5.3 Result Quality Analysis

In order to evaluate the quality of the community structures output from our
algorithm against the known ground truth generated by the benchmark, we
adopt a metric called adjusted rand index (ARI) [9]. Given two communities
X and Y , the overlap between the two communities can be summarized by
a contingency table where each entry txy denotes the number of vertices in

Parallel Community Detection Algorithm 113

Fig. 4. Comparison between PMEP and parallel Louvain (Color figure online).

common between X and Y . ARI outputs a score ranging from −1 to 1, where 1
indicates that the two communities match perfectly and −1 indicates that two
communities are in complete disagreement.

In terms of quality, we find PMEP results within 95 % accuracy to ground
truth for both synthetic and real-world dataset. The quality results for graphs
g1 to g4 for selected numbers of MPI process counts are shown in Table 2. These
results demonstrate PMEP produces a high quality clustering solution when we
increase the number of processes. Duplicating the internal edges implies that
communities within the subgraphs are not split up, while still allowing to grow
communities across multiple subgraphs. Thus, the heuristic used in our global
resolution phase is shown to work well in producing high quality results.

5.4 Comparison with Parallel Louvain

We compare PMEP with the MPI implementation of parallel Louvain3 [21].
Louvain is designed to minimize the value of modularity (Q), a popular metric
in the graph community for measuring the strength of division of a graph into
communities. Modularity is defined in Eq. 9, where ei and ai denote the fractions
of internal and external edges in community Ci, respectively.

Q =
∑|C|

i=1
(ei − a2

i) (9)

Although the design goal of PMEP is different (PMEP is to maximize equilib-
rium and purity), we are interested to see the scalability of the parallel Louvain
and its comparison to PMEP. Note that a direct comparison in execution time
is not fair because MEP and Louvain are two completely different algorithms. In
our experiments, we set the stop condition ε to 0.1, meaning when the change of
modularity value from the previous iteration increases to more than ε. In Fig. 4,
we present the speedup chart for g1 and g3. PMEP scalability is significantly
3 https://github.com/usc-cloud/parallel-louvain-modularity.

https://github.com/usc-cloud/parallel-louvain-modularity

114 D. Palsetia et al.

Table 2. ARI and modularity for synthetic graphs.

P g1 g2 g3 g4

ARI Q Q(PL) ARI Q Q(PL) ARI Q Q(PL) ARI Q Q(PL)

1 0.997 0.504 0.504 1.000 0.700 0.703 1.000 0.700 0.701 1.000 0.899 0.900

3 0.999 0.504 0.502 0.999 0.699 0.695 1.000 0.700 0.699 1.000 0.899 0.900

10 0.986 0.501 0.504 0.998 0.699 0.698 0.980 0.700 0.699 0.998 0.899 0.900

28 0.957 0.504 0.503 0.974 0.699 0.700 0.964 0.700 0.700 0.991 0.899 0.900

55 0.946 0.504 0.504 0.969 0.700 0.699 0.950 0.700 0.698 0.988 0.899 0.900

91 0.962 0.502 0.504 0.980 0.700 0.699 0.955 0.700 0.700 0.985 0.899 0.900

136 0.950 0.502 0.504 0.994 0.700 0.700 0.972 0.700 0.700 0.985 0.899 0.900

190 0.971 0.504 0.500 0.998 0.700 0.700 0.982 0.700 0.700 1.000 0.899 0.900

better for both graphs and in the meanwhile the parallel Louvain’s speedup curve
starts to flatten when P reaches 32. We note that parallel Louvain currently only
parallelizes its first phase that computes the initial communities based on mod-
ularity maximization. To show that PMEP can also deliver high quality results
in term of modularity, the measured values are provided in Table 2. We observe
PMEP’s modularity measures are consistent with parallel Louvain (PL).

6 Conclusion

Community detection for large graphs is extremely challenging due to a lack of a
priori information of the graph structure and a high degree of data dependency.
The scalability and quality of a parallel algorithm is significantly impacted by the
data partitioning scheme it employs. Our proposed PMEP addresses this chal-
lenge by adopting a pairwise subdomain duplication partitioning approach that
aims to trade some additional computation workload for significant reduction
in communication cost. The experimental results show that PMEP successfully
achieves this goal and in the meanwhile maintains a high quality of clustering
results. Our future work include the investigation of the ParMETIS and graph
construction phases, as they have shown poor scalability in the timing break-
down charts.

Acknowledgment. This work is supported in part by the following grants: NSF
awards CCF-1029166, IIS-1343639, CCF-1409601; DOE awards DE-SC0007456, DE-
SC0014330; AFOSR award FA9550-12-1-0458; NIST award 70NANB14H012; DARPA
award N66001-15-C-4036.

References

1. Bansal, S., Bhowmick, S., Paymal, P.: Fast community detection for dynamic com-
plex networks. In: Mangioni, G. (ed.) CompleNet 2010. CCIS, vol. 116, pp. 196–207.
Springer, Heidelberg (2011)

Parallel Community Detection Algorithm 115

2. Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of
communities in large networks. J. Stat. Mech: Theory Exp. 2008(10), P10008
(2008)

3. Boldi, P., Codenotti, B., Santini, M., Vigna, S.: Ubicrawler: a scalable fully dis-
tributed web crawler. Softw.: Pract. Experience 34(8), 711–726 (2004)

4. Brandes, U., Delling, D., Gaertler, M., Görke, R., Hoefer, M., Nikoloski, Z.,
Wagner, D.: On finding graph clusterings with maximum modularity. In:
Brandstädt, A., Kratsch, D., Müller, H. (eds.) WG 2007. LNCS, vol. 4769,
pp. 121–132. Springer, Heidelberg (2007)

5. Clauset, A., Newman, M.E.J., Moore, C.: Finding community structure in very
large networks. Phys. Rev. E 70(6), 066111 (2004)

6. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
3rd edn. The MIT Press, Cambridge (2009)

7. Fortunato, S.: Community detection in graphs. Phys. Rep. 486(3–5), 75–174 (2010)
8. Hendrickson, B., Kolda, T.G.: Graph partitioning models for parallel computing.

Parallel Comput. 26(12), 1519–1534 (2000)
9. Hubert, L., Arabie, P.: Comparing partitions. J. Classif. 2(1), 193–218 (1985)

10. Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: a review (1999)
11. Karypis, G., Kumar, V.: Parallel multilevel k-way partitioning scheme for irregular

graphs. In: Proceedings of the 1996 ACM/IEEE Conference on Supercomputing
(1996)

12. Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning
irregular graphs. SIAM J. Sci. Comput. 20(1), 359–392 (1998)

13. Karypis, G., Kumar, V.: Multilevel k-way partitioning scheme for irregular graphs.
Parallel Distrib. Comput. 48(1), 96–129 (1998)

14. Lancichinetti, A., Fortunato, S., Radicchi, F.: Benchmark graphs for testing
community detection algorithms. Phys. Rev. E Stat. Nonlin. Soft Matter Phys.
78(4 Pt 2), 046110 (2008)

15. Lu, H., Halappanavar, M., Kalyanaraman, A., Choudhury, S.: Parallel heuristics
for scalable community detection. In: Proceedings of the International Workshop
on Multithreaded Architectures and Applications (MTAAP), IPDPS Workshops
(2014)

16. Meyerhenke, H., Gehweiler, J.: On dynamic graph partitioning and graph clustering
using diffusion. In: Algorithm Engineering. Dagstuhl Seminar Proceedings, vol.
10261 (2010)

17. Riedy, E.J., Meyerhenke, H., Ediger, D., Bader, D.A.: Parallel community detection
for massive graphs. In: Graph Partitioning and Graph Clustering, pp. 207–222
(2012)

18. Staudt, C., Meyerhenke, H.: Engineering high-performance community detection
heuristics for massive graphs. In: ICPP, pp. 180–189 (2013)

19. Wakita, K., Tsurumi, T.: Finding community structure in mega-scale social net-
works:[extended abstract]. In: Proceedings of the 16th International Conference on
World Wide Web, pp. 1275–1276. ACM (2007)

20. Watts, D.J., Strogatz, S.H.: Collective dynamics of’small-world’networks. Nature
393(6684), 409–10 (1998)

21. Wickramaarachchi, C., Frincu, M., Small, P., Prasanna, V.: Fast parallel algorithm
for unfolding of communities in large graphs. In: 2014 IEEE High Performance
Extreme Computing Conference (HPEC), pp. 1–6, September 2014

22. Zafarani, R., Liu, H.: Social computing data repository at arizona state university.
School Comput. Inf. Decis. Syst. Eng. (2009)

23. Zardi, H., Romdhane, L.B.: An o(n2) algorithm for detecting communities of unbal-
anced sizes in large scale social networks. Know.-Based Syst. 37, 19–36 (2013)

TiDA: High-Level Programming Abstractions
for Data Locality Management

Didem Unat1(B), Tan Nguyen2, Weiqun Zhang2, Muhammed Nufail Farooqi1,
Burak Bastem1, George Michelogiannakis2, Ann Almgren2, and John Shalf2

1 Koç University, Istanbul, Turkey
dunat@ku.edu.tr

2 Lawrence Berkeley National Laboratory, Berkeley, CA, USA

Abstract. The high energy costs for data movement compared to com-
putation gives paramount importance to data locality management in
programs. Managing data locality manually is not a trivial task and also
complicates programming. Tiling is a well-known approach that provides
both data locality and parallelism in an application. However, there is
no standard programming construct to express tiling at the application
level. We have developed a multicore programming model, TiDA, based
on tiling and implemented the model as C++ and Fortran libraries. The
proposed programming model has three high level abstractions, tiles,
regions and tile iterator. These abstractions in the library hide the details
of data decomposition, cache locality optimizations, and memory affinity
management in the application. In this paper we unveil the internals of
the library and demonstrate the performance and programability advan-
tages of the model on five applications on multiple NUMA nodes. The
library achieves up to 2.10x speedup over OpenMP in a single compute
node for simple kernels, and up to 22x improvement over a single thread
for a more complex combustion proxy application (SMC) on 24 cores.
The MPI+TiDA implementation of geometric multigrid demonstrates a
30.9 % performance improvement over MPI+OpenMP when scaling to
3072 cores (excluding MPI communication overheads, 8.5 % otherwise).

1 Introduction

The energy cost for computation is improving at a faster rate than the energy cost
of moving data on-chip [28]. However, current multicore programming models
offer very little facility to express information about data locality or data move-
ment in the memory hierarchy, while almost all parallel systems contain multiple
nonuniform memory access (NUMA) nodes and multiple levels of caches. Cur-
rent programming models fundamentally assume an abstract machine model,
where processing elements within a compute node are equidistant. A data-centric
model, on the other hand, can provide programming abstractions that describe
how the data is laid out on the system and apply the computation to the data
where it resides. Furthermore, as processor chips move towards hundred and
even thousand-way parallelism, designs that cluster cores into NUMA regions,
c© Springer International Publishing Switzerland 2016
J.M. Kunkel et al. (Eds.): ISC High Performance 2016, LNCS 9697, pp. 116–135, 2016.
DOI: 10.1007/978-3-319-41321-1 7

TiDA: High-Level Programming Abstractions for Data Locality Management 117

where cores within a region are cache-coherent but cores across regions are not,
are expected to emerge [24]. Taking these architectural trends into the account,
locality management will be the key to achieve scalability on the next gener-
ation computing systems. In response to these architecture changes, we have
developed a tiling based programming model, which preserves data-locality in
an application.

Tiling and domain decomposition are both well known methods that
enhances both data locality and parallelism. Traditionally tiling, also known
as cache blocking, is manually applied to loop iterations in a program. There is
a plethora of prior work to automate tiling transformations that focus on iter-
ation space tiling using traditional compiler analysis [17,19,25] and polyhedral
compiler analysis for perfectly [1,20,22] and imperfectly nested loops [7,16].
However, there is only limited support for tiling in commercial compilers due
to the complexity of generating optimized code without domain-specific knowl-
edge or programmer intervention. Another issue with exclusively compiler-based
approaches is that they are agnostic about how the parallel execution of tiles
is mapped to the underlying architecture. Loop transformations are carried out
independently per nested loop, without respecting data locality in the whole
program. Application developers need to have a more direct approach in the
programming model to manage memory affinity in a way that can be exploited
by both the compiler and the runtime system. We argue that this crucial data
locality optimization should be formalized and elevated to a fundamental feature
of the programming model given its broad impact on application performance
and programmer productivity.

We have developed a tiling based programming model, called TiDA, that
provides a multi-language library interface to express parallelism and data local-
ity using a handful of simple programming abstractions. In [26], we introduced
the initial design principles of TiDA. In this paper, we describe the underly-
ing abstractions for a generalized tiling-based programming model, present a
more mature version TiDA library, unveil its implementation details and present
extensive performance analysis on five applications. The over-arching tiling-
based programming model enables a natural expression of data decomposition
and data layout with logical tiles and regional tiles, so that an abstract tile
iterator hides the thread management and mapping of tiles onto the underly-
ing core topology. The implementation of the TiDA API achieves performance
portability by isolating architecture specific information to a handful of program
parameters, tile size and region size, and enables metadata to propagate to all
loops and functions in the application. We show the effectiveness of the library
with five structured grid applications including an advanced combustion proxy
application and geometric multi-grid solver. Lastly, both the Fortran and C++
library implementations of TiDA are available online for download at https://
bitbucket.org/tidaproject/public-source.

https://bitbucket.org/tidaproject/public-source
https://bitbucket.org/tidaproject/public-source

118 D. Unat et al.

2 Programming Model

2.1 Data Locality Model

The energy cost of data movement is rapidly becoming a dominant factor,
because the energy cost for computation is improving at a faster rate than
the energy cost of moving data [28]. In fact, it is projected that with 11 nm
technology the energy cost for transporting two floating-point operands for an
addition just 5 mm on-chip will be comparable to a simple addition operation
itself [24]. The design of on-chip networks poses not only energy but performance
constraints as well because contention, latency, and throughput effects can have
a significant impact on application execution time [10]. Therefore, given strin-
gent power budgets and the increased cost of data movement, it will no longer
be practical to continue to maintain the illusion of a flat and infinitely fast on-
chip interconnect. Despite the changes in the abstract machine model of modern
multicore architectures, the programming models still have the assumption of
uniform distance between the compute units. For example, OpenMP assumes
processing units are equidistant to each other and binding threads to the cores
are left to the programmer or to the OS. In reality, compute units are not equidis-
tant to each other and there is non-uniform interconnect topology as in Intel’s
Knights Landing, which has a 2D mesh-based network connecting 72 cores [2].
And yet our current on-chip threading and process models do not offer a natural
abstraction for handling this non-uniformity.

Fig. 1. Decrease in dynamic energy consumption for ghost cell exchange for the locality-
aware placement compared to random placement of data on the chip.

As a motivating example, we quantify the gains in dynamic energy in on-
chip data movement as a result of locality-management. We model the dynamic
energy consumption of the ghost zone exchange using an analytical power
model [3] for two applications: Heat and CNS, which are explained in Sect. 5. We
model efficient direct communication between cores for the ghost zone exchange
steps without accessing memory. This direct ghost zone exchange can be cre-
ated by hardware-managed cache coherence or with explicit data movement for
software managed coherence (such as GPUs or local-store architectures). Cores
are assigned a 163 tile of double-precision floating point variables each. Locality-
aware placement of data reduces the dynamic energy dissipated to complete the

TiDA: High-Level Programming Abstractions for Data Locality Management 119

ghost zone exchange by 40–70 % compared to the random placement for the Heat
and CNS applications as shown in Fig. 1. The energy gain for the locality-aware
placement stems from reducing the average number of hops (communication dis-
tance). Reducing the number of hops reduces the number of channels and routers
packets traverse which reduces the dynamic energy dissipated. The results on
energy dissipation show the importance of correct data placement and the need
for locality management support by a programming model. But for conventional
threading/process models, both of these features must be handled manually by
the programmer – a very unfriendly and non-portable interface.

2.2 Programming Abstractions

The primary design goal of TiDA is to provide simple programming abstrac-
tions for writing loop oriented code that offers options to describe different data
decompositions and abstract away the details of how the data layout changes are
implemented in each loop. We present two partitioning abstractions to handle
locality as shown in Fig. 2 and an iterator to manipulate them:

Fig. 2. A grid is physically partitioned into regional tiles (regions). Each region is
logically partitioned into logical tiles. 27 regions with 8 logical tiles in each are shown.

Region: is a physical partitioning of data into regional tiles where data
within a region is contiguous, but each region is discontiguous with other regions.
Such decomposition may introduce halos as shown in Fig. 3a, which consist of
neighboring cells outside of the local domain at the boundaries that must be
updated across computation phases, which will be discussed later. This abstrac-
tion is intended to address locality across NUMA nodes or regional coherence
domains expected to emerge in exascale node architectures.

Tile: is a logical partitioning of data that is expressed in blocking of the
iteration space. The iteration space is the order in which elements of a data array
are visited by the iterations of a nested loop. Whereas repartitioning regional
tiles to change working set sizes would require data reorganization to change the
tile sizes, logical tiles can shrink the size of working sets to fit within available
on-chip memory by changing the blocking factor of the iteration space without
requiring data reorganization.

Tile Iterator: provides an interface to decouple the loop traversal from the
loop body. It can hide complicated traversal orders, parallelization and execution
strategies of tiles.

120 D. Unat et al.

Figure 2 illustrates the partitioning of data and abstractions used for the par-
titioning. A grid is subdivided into regional tiles and region is locally partitioned
into logical tiles.

2.3 Parameterization

Determining the optimal number of regions and size of a tile depend on the
underlying machine’s memory subsystem, the application itself, and other loop
optimizations performed by the compiler. Therefore, it is important to support
parameterization of the key elements of our tiling abstraction to facilitate perfor-
mance portability in the programming model, and runtime retuning to support
dynamically adaptive codes such as Adaptive Mesh Refinement (AMR).

Fig. 3. (a) Halo cells of a regional tile is shown, (b) two different geometries of logical
tiles in a regional tile. Dynamic tile size allows traversing a region in different orders.

An analytical model would argue that local tile sizes that are set at loop-
by-loop basis would yield to optimal performance instead of program global tile
sizes [27]. The advantage of local tile sizes is that the optimal tile size depends
on array usage and loop content because different loops have different working
set sizes. On the other hand, changing tile size may bring overhead because
metadata needs to be reconstructed when tiling information is changed. Fur-
thermore, different tile sizes can cause some of the threads to access non-local
NUMA nodes because thread or memory pinning does not change loop-by-loop
basis. Migrating threads to cores that are closer to the source NUMA node is
an expensive process and can offset the benefits gained from using different tile
sizes. Our programming model allows local tile sizes for logical tiles because logi-
cal tiles changes how the data space is viewed and traversed in the computation,
can be also used to disable tiling for loops that do not exhibit any cache reuse.
For example, in Fig. 3b, a regional tile is divided into logical tiles in two different
ways. On the contrary, changing regional tile sizes requires reallocation of the
data structures.

3 Implementation

3.1 Overview

We have developed TiDA as standalone C++ and Fortran libraries to make it
easier to integrate into existing code frameworks. The library API provides an

TiDA: High-Level Programming Abstractions for Data Locality Management 121

alternative to domain-specific languages or auto-tuning compilers that generate
code variants. It also provides an alternative to C++ layout abstractions based
on template metaprogramming, which do not interoperate well with other lan-
guages. Thus, converting existing applications over to use the TiDA abstractions
is not as disruptive as completely rewriting the original application. In fact, the
existing naively written loop nests in legacy codes largely remain intact with
single line TiDA API calls used to annotate data array allocations as shown
in Listing 1.1 and at the entry point to each loop nest or kernel invocation as
shown in Listing 1.2. The programming abstractions are not tied to a particular
language and can be incorporated into other languages such as Python or Julia.

Currently, the library supports programs operating on block-structured grid
applications such as combustion, seismic, weather simulations and image process-
ing. Such applications are generally limited by memory bandwidth on cur-
rent systems [11,29], and expected to become even more memory bandwidth-
constrained on future HPC as memory bandwidth improves more slowly than
computational throughput [23]. These applications benefit greatly from tiling
to improve cache reuse and from domain decomposition to increase parallelism.
Indeed, the novelty of our approach is the generalization of best practices so that
a single implementation can be applied for a broad array of codes. Although we
are using structured stencils to motivate our demonstration, our generalized
interfaces for domain decomposition and tiling are applied pervasively to sup-
port parallelization to other classes of algorithms such as dense and sparse linear
algebra, particle-in-cell methods, and many others.

3.2 TiDA Types

The library provides new data types to embed the programming abstractions
into a program. These are:

Fig. 4. Data structure of tilearray and absTileArray in TiDA

– tilearray: contains data and metadata. A tilearray is intended to replace
the pure multidimensional array types in the original application that defines
the values in a physical domain. The library extends an array with metadata
that abstracts away details about data partitioning. The metadata follows the
array through the code so that changes in partitioning strategy or mapping do
not require any of the computation to be updated. tilearray has a pointer
to an array of regions.

122 D. Unat et al.

– region: represents a region in a tilearray and holds the actual data and its
iteration space that the data is defined. Typically a TiDA programmer does
not directly interact with regional tiles.

– tile: merely holds the low and high ends for a rectangular portion of the
multidimensional array for logical or regional tiles and does not hold any
data. Each tile is assigned an ID that uniquely identifies it.

– absTileArray: is used to build an abstract structure for tilearrays and to
create a loop iterator. It defines a multidimensional iteration space through
an array of tiles. Figure 4 illustrates the interaction of these four data types.

– tileItr: is created to iterate over set of tiles in an absTileArray or
tilearray. If a logical tile size is passed to the build method of tileItr,
then the iterator logically tiles the regions based on the provided tile size.
tileItr is declared as private to a thread so that each tileItr object points
to a distinct set of tiles in an absTileArray. At the build method, TiDA
statically distributes tiles to threads based on thread IDs.

3.3 Supporting Parameterization

Selecting the tile size has a great impact on performance and its optimal value
depends on the cache size and other loop optimizations such as loop fusion.
Thus, being able to configure the tile size brings both performance and produc-
tivity benefits. In TiDA, the programmer has the option to specify logical tile
size when the data structure is created or through environment variable, called
(TIDA TILESIZE=tx,ty,tz), which makes it trivial to tune tile size for an appli-
cation. A programmer does not need to change any of the solvers as the metadata
information propagates to all loops in the code following that array and trans-
parently changes the loop iteration behavior. The geometry of the regions can
be set in an environment variable (TIDA REGIONS=rx,ry,rz) as well. The region
size is then calculated in the library based on the problem size. For example, on
a compute node with four NUMA nodes, choosing region geometry of 1,2,2 or
1,1,4 is expected to yield the best performance.

By default, logical tile size is global and does not change during execution.
It is possible to change the global tile size per loop-basis by passing a tile size
argument to the tile iterator. TiDA does not allow region size changes during
execution except to re-allocate the array with the new layout, making the per-
formance cost transparent to the programmer. In practice the search complexity
to find optimal tile size per loop is too large for large-code basis and not desired
by the application developers. We generally suggest using this feature only to
disable tiling for loops where there is no data reuse because tiling can disrupt
hardware prefetchers. The element-wise operations can illustrate the benefit of
this feature because operations are performed on independent elements and the
loops are highly compute bound. TiDA can be combined with an analytical
model [27] to help select the optimal tile size for an application on a given
architecture, which is out of scope of this paper.

TiDA: High-Level Programming Abstractions for Data Locality Management 123

3.4 Tile Boundaries

TiDA provides an interface, fill tileboundary(), to update halos that is
needed for structured grid problems. The depth of the halos can be specified
in the build method when constructing a TiDA array. TiDA updates the halos
of the region boundaries in regional tiling. This abstraction is important because
it enables codes to migrate to machines with dramatically different memory con-
sistency semantics, such as on software managed memory hierarchies and future
systems with regional coherence models. TiDA relies on the programmer to place
a call for fill tileboundary() and to handle the inter-node communication
(with e.g. MPI). This may introduce an extra copy overhead if the supplemen-
tary library is unaware of TiDA. However, this overhead can be eliminated by
composing messages directly from a tileArray.

3.5 Thread and Memory Affinity

Data placement and thread binding play an important role in performance.
Without NUMA-aware mapping and execution, the codes scale poorly due to the
large memory access latency effects. A programmer using OpenMP can partly
control affinity by setting KMP affinity or GOMP CPU AFFINITY. This app-
roach is prone to mistakes and is not portable across platforms. TiDA utilizes the
HWLOC tool [15] to query available compute units and their physical numbering
to automate thread binding. TiDA binds consecutive thread IDs to consecutive
cores in a compact and balanced way. If there are fewer threads than cores, it will
distribute them over the cores to increase memory bandwidth but place threads
close to each to reduce the halo exchange latency.

In OpenMP programs, it is left to the operating system to bind pages to
NUMA domains using the first touch policy. TiDA’s region abstraction does
not leave the binding to luck and the implementation assigns each region to
a NUMA domain. In case a programmer creates only one region, then TiDA
performs a parallel initialization to initialize data on NUMA systems, which also
implements a first touch page mapping policy. Both thread binding and NUMA-
aware mapping are currently static. Future work will look into user-controlled
and dynamic affinity management where either thread or data is migrated to
adapt the application execution.

4 Code Example

The code snippet in Listing 1.1 shows an example to illustrate how a tilearray
is built in TiDA using the syntax of our Fortran library. Lines 1 and 2 declare
variables with type absTileArray and tilearray. In the next line, lo and hi
are declared as integer vectors defining the low and high ends of the index space
of the grid. tilesizes and numregions are integer vectors for the tile sizes
and number of regional tiles, respectively. They are optional arguments to the
build method of absTileArray. Their values can be read from the environment
variables as well. Line 7 builds the metadata for array A and B with the index

124 D. Unat et al.

space and chops the space defined by lo and hi into tiles, and creates an array of
tiles. Line 8 builds a tilearray, allocates its space based on the absTileArray
and sets the depth of ghost zone. Line 9 builds another tilearray with the same
structure. Finally, destroy in Lines 11–13 free the data structures.
1 type(tilearray) :: A, B
2 type(absTileArray) :: abstractAB
3

4 integer :: lo(2), hi(2)
5 integer :: tilesizes (2), numregions (2)
6 ...
7 abstractAB= absTileArray_build(lo, hi, numregions , tilesizes)
8 A = tilearray_build(abstractAB , nGhosts)
9 B = tilearray_build(abstractAB , nGhosts)

10 ...
11 call destroy(abstractAB)
12 call destroy(A)
13 call destroy(B)

Listing 1.1. Building TiDA arrays in two dimensions

1 type(tileItr) : : ti
2 integer : : tlo(2), thi(2), reglo (2), reghi (2)
3 integer : : i, j
4 double precision , pointer : : ptrA(:,:)
5

6 !$OMP PARALLEL PRIVATE(ti, tlo , thi , reglo , reghi , i, j, ptrA)
7

8 ti = tileItr_build(abstractAB)
9 !ti = tileItr_build(abstractAB , logtilesize)

10

11 do while(next_tile(ti)) !<--- Looping over logical tiles
12

13 ptrA =>dataptr(A, ti) !
14 tlo = get_lwb(ti) ! metadata
15 thi = get_upb(ti) !
16

17 !Option 1: process a tile within a loop
18 do j = tlo(2), thi(2) !
19 do i = tlo(1), thi(1) !
20 ptrA(i,j) = compute(i,j) ! Element
21 ... ! loops
22 end do !
23 end do !
24

25 !Option 2: process a tile within a function
26 reglo = get_lwb(get_region(A, ti)) !
27 reghi = get_upb(get_region(A, ti)) !
28

29 call compute_a_tile(ptrA , tlo , thi , reglo , reghi)
30

31 end do
32 !$OMP END PARALLEL

Listing 1.2. Operations on TiDA arrays

Listing 1.2 shows an example usage of TiDA. Line 1 declares a tile iterator,
ti. At line 6, an OpenMP parallel region, spawning multiple threads, is started.
In Line 8, tileItr build returns a tile iterator that points to a set of tiles,
private to the calling thread, in the tiled array A. Line 9 shows a variation of the
tileItr build function that creates a tile iterator with a different logical tile
size than the one used for constructing abstractAB. This feature can be used
for implementing function- or loop-specific tile size rather than program global
tile size as illustrated in Fig. 3a.

TiDA: High-Level Programming Abstractions for Data Locality Management 125

In the do-while statement next tile checks and increments the tile itera-
tor if there are more logical tiles to process. In Line 13 through 15, the code
retrieves the tilearray metadata. Line 13, dataptr returns the pointer to the
floating point data for the current tile of the tile iterator ti in the tiled array
A. Depending on the numregions, this pointer points to a different location in
the grid but all this is hidden behind the TiDA interface. Line 14 and 15 get the
lower and upper bounds of the current logical tile in ti. Here we demonstrate
two different ways to process a tile. One way to process a tile is using the
element loops as shown in line 18 through 23. Element loops iterate over the
data points within a tile. TiDA does not modify the original loop bodies but
introduces tiling loops and new bounds for the element loops. Another way is to
process a tile within a function containing multiple nested loops as in line 29.
In this case, we pass the region sizes to a Fortran subroutine with an explicit-
shape array argument for performance reason instead of passing a pointer with
no explicit size information. reglo and reghi on Lines 26 and 27, contain the
low and high ends of the region, in which ptrA is defined.

Not all loops operate on the interior grid. Some loops may expand to sweep
a domain including the ghost zone, such as an initialization loop. For such loops,
TiDA provides the expand lwb(ti, expansion) interface to expand lower (and
upper) bounds of a tile, where expansion is an integer vector. This function
returns expanded bounds of a tile depending on whether the tile resides at the
grid boundaries or not.

5 Experimental Evaluation

5.1 Evaluated Platforms

We use the “Hopper” supercomputer at the National Energy Research Scien-
tific Computing Center (NERSC) for our experiments. A Hopper compute node
contains two sockets of 2.1 GHz 12-core Magny-Cours processors. Each socket
is comprised of two 6-core chips, totaling four NUMA nodes. The stream band-
width is 51 GB/s for a Hopper node. All computations use double precision
arithmetic.

5.2 Performance Evaluation of Single-Mesh Applications

First, we evaluate TiDA performance on single-mesh applications, namely Heat,
Wave, CNS, and SMC, and compare performance against baseline implementa-
tions. The baseline versions perform no tiling and use OpenMP for outermost
loop parallelization. For the baseline versions, we set the thread affinities and
perform parallel initialization on the NUMA systems. TiDA programs use the
programming abstractions described in this paper and use no other manual code
optimizations. TiDA implementations use program global tile sizes. We have
tuned the logical tile sizes for each application and set the number of regions to
number of NUMA nodes for all applications. The characteristics of the applica-
tions are listed in Table 1. Figure 5 compares the TiDA library against OpenMP
(OMP) with no tiling for a problem size of 2563 in double precision on Hopper.

126 D. Unat et al.

Table 1. Characteristics of evaluated applications. #Loops indicate only 3D spatial
loops in solvers. Byte/Flop ratios are for unlimited cache.

Heat Wave CNS SMC miniMG

Stencil 7-point 13-point 27-point 27-point 7-point

#Halos 1 6 4 4 1

#Loops 1 4 14 28 5/grid level

#3D arrays 2 6 46 157 5/grid level

Flops/point 7 79 1625 15K 20

Byte/flop 3.43 1.14 1.32 0.82 2

Fig. 5. Hopper speedups for Heat, Wave, CNS and SMC for problem size of 2563.

1. Heat solves the heat transfer equation, given a constant heat conduction
coefficient and no heat source. The solver iteratively updates a data point
using 6 nearest neighbors, requiring three planes to be loaded into the cache
for an update. Thus, its working set size is about 1.5 MB (3 ∗ 8 ∗ 2562), far
exceeding the size of the L2 cache on Hopper. Tiling greatly reduces memory
traffic: for example, 256∗16∗16 tiles that yield the best performance for Heat
also reduces the working size to 90 KB, which falls within the limits of the
L2. Smaller tiles come with a trade-off because the halos of each tile must be
brought in the cache, leading to an increase in data movement to the point
where tiling incurs more traffic than the untiled code.

2. Wave studies the constant speed wave equation solved with a third-order
Runge-Kutta scheme for time stepping. Wave implements a star-shape, 13-

TiDA: High-Level Programming Abstractions for Data Locality Management 127

point stencil in a communication avoiding fashion where it expands its halos
from 2 to 6 cells so it can compute 3 time steps in a row without exchanging
halos. Since a region allocates its domain including its halos separately from
other regions, it needs to exchange the deep ghost zone with other regions.
Even though for this kernel, filling ghost zone accounts for 10 % of the exe-
cution time, TiDA still outperforms the OpenMP implementation.

3. CNS, developed by the Exascale Combustion Codesign Center, integrates
the compressible Navier-Stokes equations and assumes constant transport
properties. This application employs a 27-point stencil kernel. The TiDA
improvement over OpenMP is about 17 % on 24 cores. CNS reaches out to
four cells in all dimensions when it updates stencil grids in a Runge-Kutta
step. However, the updates are performed one derivate at a time and there is
reuse only in one of the dimensions in a loop. Because of this property, CNS
would benefit from using different logical tile sizes for different loop nests.
Moreover, in CNS some loops (4 out of 14) have no reuse and merely stream
a number of arrays and perform point-wise operations. In such cases, tiling
does not help and performance is ultimately bounded by memory bandwidth.

4. SMC [13] is an advanced proxy for the direct numerical combustion codes
such as S3D [8]. SMC integrates the multicomponent reacting compressible
Navier-Stokes equations with models for chemical species diffusion and kinet-
ics. The dynamical core of SMC uses 8th-order stencil operations to approxi-
mate spatial derivatives, converting the system into a large set of ordinary dif-
ferential equations that are integrated using a third-order, low-storage, TVD
Runge-Kutta scheme. The computational cost of the algorithm depends on
the number of chemical species and the number of reactions between the
species. Our experiments use 9 chemical species.

TiDA is a clear winner for the SMC application, realizing 21.8x the perfor-
mance on 24 cores as shown in Table 2 and Fig. 5. SMC is particularly challenging
for OpenMP and good case study for TiDA because of the high number of data
arrays used in the computation. The working set size is very large (about 256 MB
for N = 256) even for 9 species. The exascale target for SMC is 50 or more chem-
ical species, which will further increase the working set size. As chemical species
are added to the simulation, the memory traffic required per Runge-Kutta step
increases linearly. Thus, tiling in all dimensions is indispensable for SMC both
in current and future machines. We also manually tiled SMC and compared
our results on Hopper. The performance of the manual tiling is only 5 % better
than TiDA. This indicates that the library introduces a small overhead on the
application.

5.3 Region and Tile Size Parameters

The results in Fig. 5 in the previous section are obtained by using program global
tile sizes and program global number of regions. Even though setting global
values for these parameters is easy and provides reasonably good performance,
TiDA provides APIs to use local tile sizes or array-specific region sizes. We study

128 D. Unat et al.

Table 2. Hopper running time of TiDA and OpenMP for SMC.

Time (sec) Time (sec) Speedup Speedup

TiDA OpenMP TiDA OpenMP

Baseline 553.1 553.1 1.0 1.0

6 threads 110.2 144.9 5.0 3.8

12 threads 48.0 89.1 11.5 6.2

18 threads 32.6 61.4 17.0 9.0

24 threads 25.4 53.3 21.8 10.4

impact of using local parameters on the CNS application because it has 14 loops
and accesses 46 three dimensional arrays.

We first study the impact of using local tile sizes on performance. A program-
mer can set a different logical tile size for a loop nest or for a function when a tile
iterator is created. The CNS application is implemented using four main func-
tions, namely Diffterm, Hypterm, CtoPrim and Update. We created a different
tile iterator with a different tile size for each function and measure the execu-
tion time. Figure 6 (Left) shows the performance improvement over the program
global tile sizes for each function and overall speedup of the application. Two of
the functions did not benefit from tile size changes because there is little or no
reuse in these functions. Diffterm and Hypterm have a different optimal tile size
than the program global tile size and enjoy 10 % and 6 % speedup, respectively.
The overall performance improvement for function-specific tile sizes is 7 %.

Fig. 6. Left: speedup for function-specific tile sizes over program global tile sizes. Right:
speedup for array-specific region sizes over program global region sizes.

In TiDA, it is possible to use a different region size per array as long as an
iterator uses the same logical tile size to iterate all the relevant arrays. This
feature is particularly useful for arrays without halos because one can create
smaller regional tiles than there are NUMA domains without paying the extra
memory space cost for halos. In an extreme case a regional tile size can be
equal to logical tile size. In CNS, 18 of the three dimensional arrays does not

TiDA: High-Level Programming Abstractions for Data Locality Management 129

have halo cells. For those we choose a region size that is equal to the logical
tile size. Figure 6 (Right) shows the performance improvement for the array-
specific region size over program global region size. Diffterm and Hypterm benefit
from array-specific region sizes and give 9 % and 19 % speedup, respectively.
Using mix region size lowers the performance of the Update function because this
function makes references to 36 arrays out of 46 and has very little cache reuse.
Nonetheless Update accounts less than 10 % of the execution time, overall array-
specific region size provides 11 % performance improvement over the program
global region size.

Fig. 7. Multigrid strong scaling results on a single Hopper node, finest grid size 2563.

5.4 Performance Evaluation of Multigrid

MiniMG is a compact multigrid application that solves Poisson’s equation with
periodic boundary conditions. MiniMG iterates V-cycles, which uses Red-Black
Gauss Seidel smooths at each grid level. Our original MiniMG implementa-
tion employs the data structures provided by Boxlib [30], a software framework
for adaptive mesh refinement (AMR). A program written in Boxlib consists of
distributed-memory arrays called multiFabs, each consisting multiple Fabs (For-
tran Array Boxes). While multiFab can span across different processes, a Fab is
contiguous in the local memory of a process.

We implemented the multigrid solver in TiDA and compared its performance
against OMP. (i) OMP-naive parallelizes computations of each Fab using all
the cores in a compute node without any locality optimizations such as first
touch or thread binding. (ii) OMP employs a similar parallelization scheme
as OMP-naive does. However, this variant initializes Fabs in parallel to take
advantage of NUMA-aware initialization for locality. OpenMP threads execute
tiles of a Fab in parallel. Similar to OMP and OMP-naive, there is no parallelism
across Fabs. (iii) TiDA splits Fabs into regions (e.g. 4 regions on Hopper) to
map each region to a NUMA node, then tiles each region using the logical tiling.
This variant employs nested OpenMP parallelism. Both regions and tiles in each

130 D. Unat et al.

region are executed by OpenMP threads in parallel. Program global tile and
region sizes are used.

Figure 7 shows the strong-scaling results of the MiniMG variants in a single
compute node. For all cases, the solution grid is 2563, divided to eight 1283

Fabs. The poor performance of OMP-naive demonstrates the significance of data
placement when multiple NUMA domains are present. TiDA outperforms other
variants on 24 cores and reduces the execution time of OMP, a NUMA-aware
OpenMP implementation, by up to 37 %. The reason is that TiDA does not suffer
from the latency overhead caused by spanning the working set across the NUMA
nodes. Specifically, TiDA overcomes the latency problem by assigning each region
to a NUMA node, reducing the number of remote memory accesses. Moreover,
given the speculation that an exascale machine will have hundreds of coherence
domains, regional tiling will be even more advantageous. The performance of
TiDA slightly drops on 18 cores due to load imbalance (i.e. assigning 8 Fabs
to 3 NUMA nodes). In the future, TiDA will mitigate the impact of such load
imbalance by supporting tile migration.

Fig. 8. Hybrid programming results for multigrid on Hopper, finest grid size is 10243.

We create hybrid variants that use MPI+TiDA and MPI+OMP to parallelize
the multigrid solver across compute nodes. On-node communication is conducted
via sharing memory, whereas off-node communication relies on message passing.
Our original multigrid solver implements a truncated V-cycle. Thus, a fixed Fab
size must be used so that all code variants run the same numerical algorithm. In
this study we do not use a pure MPI variant, which employs one MPI process
per core because that variant would require very small Fabs, reducing the con-
vergence rate of the solution.

Figure 8 shows the strong-scaling study on 128 compute nodes (3072 cores)
on Hopper, fixing the finest grid at 10243 and Fab size at 1283. We can see
that MPI+TiDA outperforms MPI+OMP on up to 3072 cores. However, the
performance improvement of MPI+TiDA over MPI+OMP steadily reduces from

TiDA: High-Level Programming Abstractions for Data Locality Management 131

15.4 % on 192 cores to 8.5 % on 3072 cores. This is because the cost of off-node
communication grows as the number of cores increases in strong scaling. Indeed
on 3072 cores, the communication overhead accounts for 45 % of the execution
time, thus the performance benefit of using TiDA becomes less significant. As
shown in the same figure, without including the off-node communication time,
the performance improvement by MPI+TiDA increases from 23.3 % to 30.9 %
(going from 192 to 3072 cores). Currently Boxlib is responsible for handling
inter-process communication. In the future, we plan to add a runtime support
to hide communication overheads by overlapping with computation.

5.5 Programming Effort

The primary goal of TiDA is to enable data locality optimizations through
abstractions without requiring extensive code changes in the legacy codes. The
number of lines of code (#loc) added to existing implementations of the appli-
cations is insignificant compared to the size of the programs. For example, for
the Heat, we added fewer than 10 lines to build metadata and tilearrays, and
added six lines to extract the metadata per nested loop. Moreover, tiling can
be performed over a function, which can contain multiple nested loops and no
communication phase. Then the #loc can be even smaller because the retrieving
tile bounds and pointer to its data can be performed at the function level, sig-
nificantly reducing the #loc. For example, in the SMC code even though there
are 28 nested loops, only four function calls containing those loops needed to
be tiled, thus only about 50 lines of TiDA code are added to original 3780 lines
of SMC code. When the presented applications ran on another platform, the
programmer does not need to modify the source but tune the tile size and region
size. Programming effort of using TiDA could be further reduced by elevating
the tiling primitives to the level of a language construct (such as an attribute in
a Fortran array descriptor) or an embedded directive (extension to OpenMP),
but all of TiDA’s performance and coding efficiency benefits are available via its
library interface.

6 Related Work

OpenMP is the most common approach for shared-memory parallelism. OpenMP
does not provide a simple abstraction for data decomposition or tiling. The
collapse clause in OpenMP increases parallelism through flattening the multi-
dimensional iteration space into a single dimension but it doesn’t implement
cache-blocking on the iteration space. The programmer has to introduce nested
parallelism to be able to implement tiling however nested parallelism compli-
cates the locality management because it is left to the OS to schedule the newly
created threads within a nested region.

Recently, several interfaces and language extensions have emerged to pro-
vide data structure and layout abstractions for data locality. Kokkos [12] and
Dash [14] support multi-dimensional arrays in C++ and address the intra-chip

132 D. Unat et al.

data layout changes using C++ meta-programming. GridTool [5] targets multi-
stage regular grids that are common in complex weather and climate models and
implements the methods with C++ template meta-programming. In both cases,
the paradigm is packaged using intense C++ metaprogramming, which is not
amenable to other languages such as C, Fortran, Python, etc. Given the installed
base of existing code that is written in languages other than C++, TiDA offers
language neutral access to these tiling abstractions.

Chen et al. [9] developed tiled MapReduce for large scale data processing
with fault tolerance support. Application focus in TiDA is different; it targets
structured grid problems, particularly Adaptive Mesh Refinement codes, which
are challenging to optimize in large-scale systems. Hierarchically Tiled Arrays
(HTA) [6] describes hierarchy and topology of data where computation and com-
munication are represented by overloaded array operations. The array notations
hide the cost of temporary arrays and layout transformations, often leading to
severe performance penalties, which prevents HTA to be integrated into other
parallel libraries. TiDA avoids operator overloading and array notations, and
uses abstractions that balance productivity and performance.

Past work has also clearly demonstrated the performance and energy advan-
tages of locality-aware task placement for on-chip data movement. Placements
that exploit communication locality and Network on Chip (NoC) topology have
been shown to increase effective communication bandwidth by reducing con-
tention on NoCs by 53 % [21], decrease packet latency by 23 % [31], decrease
energy by 60 % [18], and provide tighter quality-of-service guarantees compared
to locality-agnostic placements [18]. However, past work lacks interaction with
the application layer and thus typically resorts to heuristic algorithms or reactive
techniques such as process migration [4] using predicted or observed communica-
tion graphs and requirements. TiDA improves on past work by generating data-
centric and topology-aware mappings based on each application’s data structure
layout abstracted from the programmer.

7 Conclusion

We introduce TiDA as a durable tiling abstraction for data-centric computing.
TiDA provides a simple API to describe tile size and data layout and isolates tun-
ing parameters to a single point in the code where the data is instantiated, pro-
viding performance portability. The results for five stencil applications show its
enhanced scalability potential on HPC systems. Moreover, TiDA’s abstractions
are forward looking. It supports layouts for alternative cache-coherence mecha-
nisms as massively-parallel chip architectures move towards regional coherence
models. Even though we implemented TiDA using Fortran and C++ as the base
languages, the abstractions are not tied to these languages and can be imple-
mented in any other languages. If the API is elevated to a language, the metadata
retrieval and tuning for tile size and memory layout can be lifted from the pro-
grammer to the compiler and runtime, which would further reduce programmer
burden.

TiDA: High-Level Programming Abstractions for Data Locality Management 133

We are currently developing a runtime system to hide communication over-
heads between TiDA regions and allow asynchronous execution of tiles. In addi-
tion, we plan to extend the current API to target GPU architectures.

Acknowledgments. Dr. Unat is supported by the Marie Sklodowska Curie Reinte-
gration Grant 655965 by the European Commission. Authors from KU are supported
by the Turkish Science and Technology Research Centre Grant No: 215E285. Authors
from LBNL were supported by the SciDAC Program and the Exascale Co-Design Pro-
gram under the U.S. DOE contract DE-AC02-05CH11231. This research used resources
of the National Energy Research Scientific Computing Center, which is supported by
the Office of Science of the U.S. DOE under Contract No. DE-AC02-05CH11231. We
would like to acknowledge and thank John Bell and Hakan Memisoglu for their input.

References

1. PLuTo, A polyhedral automatic parallelizer and locality optimizer for multicores.
Software. http://pluto-compiler.sourceforge.net

2. Real World Technologies: Knights Landing Details. http://www.realworldtech.
com/knights-landing-details/

3. Balfour, J., Dally, W.J.: Design tradeoffs for tiled CMP on-chip networks. In: Pro-
ceedings of the 20th Annual International Conference on Supercomputing, ICS
2006 (2006)

4. Bertozzi, S., Acquaviva, A., Bertozzi, D., Poggiali, A.: Supporting task migration
in multi-processor systems-on-chip: a feasibility study. In: Proceedings of Design,
Automation and Test in Europe, 2006, DATE 2006, vol. 1, pp. 1–6, March 2006

5. Bianco, M., Cumming, B.: A generic strategy for multi-stage stencils. In: Silva, F.,
Dutra, I., Santos Costa, V. (eds.) Euro-Par 2014 Parallel Processing. LNCS, vol.
8632, pp. 584–595. Springer, Heidelberg (2014)

6. Bikshandi, G., Guo, J., Hoeflinger, D., Almasi, G., Fraguela, B.B., Garzarán, M.J.,
Padua, D., von Praun, C.: Programming for parallelism and locality with hierarchi-
cally tiled arrays. In: Proceedings of the Eleventh ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, PPopp, 2006, pp. 48–57. ACM,
New York (2006)

7. Bondhugula, U., Hartono, A., Ramanujam, J., Sadayappan, P.: A practical auto-
matic polyhedral parallelizer and locality optimizer. SIGPLAN Not. 3(6), 101–113
(2008)

8. Chen, J.H., Choudhary, A., de Supinski, B., DeVries, M., Hawkes, E.R., Klasky, S.,
Liao, W.K., Ma, K.L., Mellor-Crummey, J., Podhorszki, N., Sankaran, R., Shende,
S., Yoo, C.S.: Terascale direct numerical simulations of turbulent combustion using
S3D. Comput. Sci. Discovery 2(1), 015001 (2009)

9. Chen, R., Chen, H.: Tiled-mapreduce: efficient and flexible mapreduce processing
on multicore with tiling. ACM Trans. Archit. Code Optim. 10(1), 3:1–3:30 (2013)

10. Das, R., Mutlu, O., Moscibroda, T., Das, C.R.: Application-aware prioritization
mechanisms for on-chip networks. In: Proceedings of the 42nd Annual IEEE/ACM
International Symposium on Microarchitecture, MICRO, pp. 280–291 (2009)

11. Datta, K., Murphy, M., Volkov, V., Williams, S., Carter, J., Oliker, L., Patterson,
D., Shalf, J., Yelick, K.: Stencil computation optimization and auto-tuning on state-
of-the-art multicore architectures. In: Proceedings of the ACM/IEEE Conference
on Supercomputing, SC 2008, pp. 4:1–4:12. IEEE Press, Piscataway (2008)

http://pluto-compiler.sourceforge.net
http://www.realworldtech.com/knights-landing-details/
http://www.realworldtech.com/knights-landing-details/

134 D. Unat et al.

12. Edwards, H.C., Sunderland, D., Porter, V., Amsler, C., Mish, S.: Manycore
performance-portability: Kokkos multidimensional array library. Sci. Program.
20(2), 89–114 (2012)

13. Emmett, M., Zhang, W., Bell, J.B.: High-order algorithms for compressible reacting
flow with complex chemistry. Combust. Theor. Model. 18(3), 361–387 (2014)

14. Fuchs, T., Fürlinger, K.: Expressing and exploiting multidimensional locality in
DASH. In: Proceedings of the SPPEXA Symposium 2016. Lecture Notes in Com-
putational Science and Engineering, Garching, Germany, January 2016

15. Goglin, B.: Managing the topology of heterogeneous cluster nodes with hardware
locality (hwloc). In: International Conference on High Performance Computing and
Simulation, HPCS 2014, Bologna, Italy, 21–25 July 2014, pp. 74–81 (2014)

16. Hall, M., Chame, J., Chen, C., Shin, J., Rudy, G., Khan, M.M.: Loop transfor-
mation recipes for code generation and auto-tuning. In: Gao, G.R., Pollock, L.L.,
Cavazos, J., Li, X. (eds.) LCPC 2009. LNCS, vol. 5898, pp. 50–64. Springer, Hei-
delberg (2010)

17. Hartono, A., Baskaran, M.M., Bastoul, C., Cohen, A., Krishnamoorthy, S., Norris,
B., Ramanujam, J., Sadayappan, P.: Parametric multi-level tiling of imperfectly
nested loops. In: Proceedings of the 23rd International Conference on Supercom-
puting, ICS 2009, pp. 147–157. ACM, New York (2009)

18. Jingcao, H., Marculescu, R.: Energy-aware mapping for tile-based NoC architec-
tures under performance constraints. In: Proceedings of the Asia and South Pacific
Design Automation Conference, ASP-DAC 2003, pp. 233–239 (2003)

19. Kim, D., Rajopadhye, S.: Parameterized tiling for imperfectly nested loops. Techni-
cal report CS-09-101, Department of Computer Science, Colorado State University
(2009)

20. Kim, D., Renganarayanan, L., Rostron, D., Rajopadhye, S., Strout, M.M.: Multi-
level tiling: M for the price of one. In: Proceedings of the ACM/IEEE Conference
on Supercomputing, SC 2007, pp. 51:1–51:12. ACM, New York (2007)

21. Murali, S., De Micheli, G.: Bandwidth-constrained mapping of cores onto NoC
architectures. In: Proceedings of the Conference on Design, Automation and Test
in Europe - vol. 2, DATE ’04, (2004)

22. Renganarayanan, L., Kim, D.G., Rajopadhye, S., Strout, M.M.: Parameterized
tiled loops for free. SIGPLAN Not. 42(6), 405–414 (2007)

23. Rogers, B.M., Krishna, A., Bell, G.B., Ken, V., Jiang, X., Solihin, Y.: Scaling the
bandwidth wall: challenges in and avenues for CMP scaling. In: Proceedings of
the 36th Annual International Symposium on Computer Architecture, ISCA, pp.
371–382 (2009)

24. Shalf, J., Dosanjh, S., Morrison, J.: Exascale computing technology challenges.
In: Palma, J.M.L.M., Daydé, M., Marques, O., Lopes, J.C. (eds.) VECPAR 2010.
LNCS, vol. 6449, pp. 1–25. Springer, Heidelberg (2011)

25. Unat, D., Cai, X., Baden, S.B.: Mint: realizing CUDA performance in 3D stencil
methods with annotated C. In: Proceedings of the International Conference on
Supercomputing, ICS 2011, pp. 214–224. ACM, New York (2011)

26. Unat, D., Chan, C., Zhang, W., Bell, J., Shalf, J.: Tiling as a durable abstraction
for parallelism and data locality. In: Workshop on Domain-Specific Languages and
High-Level Frameworks for High Performance Computing, 18 November 2013

27. Unat, D., Chan, C., Zhang, W., Williams, S., Bachan, J., Bell, J., Shalf, J.: Exasat:
an exascale co-design tool for performance modeling. Int. J. High Perform. Comput.
Appl. 29(2), 209–232 (2015)

28. Unat, D., Shalf, J., Hoefler, T., Schulthess, T., Dubey, A., (eds.) et al.: Program-
ming abstractions for data locality. Technical report (2014)

TiDA: High-Level Programming Abstractions for Data Locality Management 135

29. Vega, A., Cabarcas, F., Ramirez, A., Valero, M.: Breaking the bandwidth wall in
chip multiprocessors. In: International Conference on Embedded Computer Sys-
tems, SAMOS, pp. 255–262 (2011)

30. Zhang, W., Almgren, A., Day, M., Nguyen, T., Shalf, J., Unat, D.: BoxLib with
tiling: an AMR software framework. SIAM J. Sci. Comput. (2016)

31. Zhou, W., Zhang, Y., Mao, Z.: An application specific NoC mapping for optimized
delay. In: Design and Test of Integrated Systems in Nanoscale Technology, DTIS
2006, 184–188, September 2006

Scalable Applications

OpenAtom: Scalable Ab-Initio Molecular
Dynamics with Diverse Capabilities

Nikhil Jain1(B), Eric Bohm1, Eric Mikida1, Subhasish Mandal2,
Minjung Kim2, Prateek Jindal1, Qi Li3, Sohrab Ismail-Beigi2,

Glenn J. Martyna3, and Laxmikant V. Kale1

1 Department of Computer Science, University of Illinois at Urbana-Champaign,
Champaign, USA

nikhil.jain@acm.org
2 Department of Applied Physics, Yale University, New Haven, USA

3 IBM TJ Watson Laboratory, Yorktown Heights, USA

Abstract. The complex interplay of tightly coupled, but disparate,
computation and communication operations poses several challenges for
simulating atomic scale dynamics on multi-petaflops architectures. Ope-
nAtom addresses these challenges by exploiting overdecomposition and
asynchrony in Charm++, and scales to thousands of cores for real-
istic scientific systems with only a few hundred atoms. At the same
time, it supports several interesting ab-initio molecular dynamics simu-
lation methods including the Car-Parrinello method, Born-Oppenheimer
method, k-points, parallel tempering, and path integrals. This paper
showcases the diverse functionalities as well as scalability of OpenAtom
via performance case studies, with focus on the recent additions and
improvements to OpenAtom. In particular, we study a metal organic
framework (MOF) that consists of 424 atoms and is being explored as
a candidate for a hydrogen storage material. Simulations of this system
are scaled to large core counts on Cray XE6 and IBM Blue Gene/Q sys-
tems, and time per step as low as 1.7 s is demonstrated for simulating
path integrals with 32-beads of MOF on 262,144 cores of Blue Gene/Q.

1 Introduction

Modern supercomputers have become larger and more complex with each suc-
cessive generation. Although new platforms present novel opportunities, best use
of these platforms can be made only by overcoming the challenges that each new
architecture poses to the users. Scientific methods and their requirements also
change as the domain of interest and goals of research evolve over time. Hence,
applications used for simulating scientific phenomena on HPC systems need to
grow continually in terms of their scientific capability and parallel scalability.

OpenAtom is a scalable implementation of the Car-Parrinello Ab-initio
Molecular Dynamics (CPAIMD) method [7] implemented using the Charm++
runtime system [23]. It is suitable for studying materials at the atomistic level
wherein the electronic structure must be explicitly modeled in order to accu-
rately simulate the behavior of the system being investigated. For example, Fig. 1
c© Springer International Publishing Switzerland 2016
J.M. Kunkel et al. (Eds.): ISC High Performance 2016, LNCS 9697, pp. 139–158, 2016.
DOI: 10.1007/978-3-319-41321-1 8

140 N. Jain et al.

shows the schematic of a metal-organic framework (MOF) that is the subject
of materials research as a candidate for hydrogen storage [22], and is currently
being simulated using OpenAtom in this regard. Typical studies at this level
of detail are generally restricted to a few hundred atoms as they require numer-
ous communication-intensive Fast Fourier Transformations (FFTs). This makes
scalable parallelization of such methods challenging. In our previous work, we
have shown that OpenAtom is able to make use of Charm++’s asynchrony
and object-based overdecomposition approach to overcome these challenges for
performing CPAIMD on IBM’s Blue Gene/L and Blue Gene/P systems [5,6].

Fig. 1. Schematic representation of
MOF with 43 H2

While the computational capacity
of HPC systems has been increasing
steadily, the size of scientific systems of
interest (such as MOF) has not grown
proportionately because the time scales
of interest for the study of important
phenomena have not been reached (mini-
mal 100–1000 ps). This motivates a drive
to achieve fastest time per step as the
time step of the discrete time solver is
order 0.1 femtosecond. Hence, it is criti-
cal that modeling software provide good
strong scaling for the fixed sized prob-
lems being studied.

On the other hand, scientific methods that enable faster convergence (e.g.,
parallel tempering [10]), or are capable of simulating more complex physical phe-
nomena at atomic scale (e.g. quantum effects using path integrals [20]) require
concurrent execution of weakly coupled atomic systems of the same size. Imple-
mentation and execution of such scenarios present productivity and performance
challenges that also need to be addressed by software such as OpenAtom.

Our recent efforts in OpenAtom have been focused on finding solutions to
the challenges described above so that scalable simulations can be performed
on production HPC systems. This paper presents these recent additions and
improvements to OpenAtom and highlights the following contributions:

– Generalized topology-aware mapping schemes for OpenAtom are pro-
posed and their positive impact is demonstrated.

– Charm-FFT, a new scalable FFT library which uses 2D-decomposition and
minimizes communication, is presented and its benefits are shown.

– Multi-instance “Uber” method is a novel scheme added to OpenAtom,
which provides a powerful tool to seamlessly implement and execute new
scientific methods/variations individually and concurrently. As a result, users
can now run methods such as k-points, path integrals, and parallel tempering
together in a single run of OpenAtom, if desired.

– BOMD [21] is presented as a new addition to OpenAtom’s capability.
– Performance results that demonstrate the scalability of all scientific meth-

ods provided in OpenAtom are presented. A time per step of only 1.7 s is
shown for simulating 32-beads of MOF on 262,144 cores of Blue Gene/Q.

OpenAtom: Scalable Ab-Initio Molecular Dynamics with Diverse Capabilities 141

2 Background and Related Work

OpenAtom is an implementation of the CPAIMD method [7] in Charm++
[1], and has been described in [6,18,23]. The CPAIMD method is an effective
technique to simulate atomistic dynamics on a ground state potential surface
derived from a Kohn-Sham (KS) density functional theory formulation within
a local or gradient corrected approximation. It has a wide range of applications
in chemistry, biology, materials science, and geophysics, etc. [8,11]. CPAIMD
computations involve many phases with complex dependencies, and as such have
proven to be difficult to scale. OpenAtom utilizes Charm++’s ability to nat-
urally compose multiple dissimilar modules and thus allows various phases of
CPAIMD to overlap in both time and space.

Charm++ [1] is an adaptive runtime system built upon the idea of overde-
composed migratable parallel objects that communicate asynchronously via
remote method invocations. A key principle in Charm++ applications is that
the programmer should not have to think in terms of nodes, cores, or some
other hardware specific entity. A program is developed as a collection of parallel
objects, called chares, that coordinate via messaging and are composed of both
the data and the computation of the particular application. It is then the job of
the runtime system to map these objects to the hardware, manage communica-
tion between these objects, and schedule them for execution as work becomes
available for them. This allows the programmer to decompose the problem in a
way that is natural to the algorithm itself, rather than decomposing based on
the specific hardware that is being used in a given run.

2.1 Parallelization of OpenAtom in Charm++

Parallelization of the CPAIMD method follows directly from the expression
of the density functional and overlap integrals between the KS electronic
states [18,23]. There are over ten different kinds of chares, each representing
different phases of the computation as shown in Fig. 2. Note that although the
phase numbers are linearly increasing, different phases may overlap with each
other based on their computation tasks as discussed next.

Fig. 2. Parallel structure of OpenAtom

142 N. Jain et al.

KS Electronic States: Each state, I, has both a discrete real-space
(RSI(x, y, z)) and g-space (GSI(gx, gy, gz)) representation, where the latter is
the Fourier expansion coefficients of the state in the plane wave basis. The rep-
resentations are interconverted via concurrent 3D-FFTs (phases I and VII in
Fig. 2). The real-space representation for each state is decomposed in 1D along
planes of the 3D grid. However, application of a spherical cut-off to the g-space
representation results in an imbalanced decomposition if 1D decomposition along
planes is used. This imbalance is corrected by aggregating small “planes” into
larger chunks of data as described in [18].

Electronic Density: The electronic density, ρ, is expressed using both a discrete
real-space (RhoR) and g-space (RhoG) representation, where RhoR(x, y, z) =∑

I |RSI(x, y, z)|2. As for the states, RhoR is decomposed along planes, while
imbalances in RhoG due to spherical cut-off are corrected by aggregation of
smaller planes into larger chunks. The application of the Euler-Exponential
Spline method [19] to the computation of local electron-nuclear interaction
creates another grid with real-space and g-space components (RhoRHart and
RhoGHart). In addition to being decomposed like RhoR and RhoG, these grids
are also decomposed along the number of atom types, Natm−type. All these com-
putations are overlapped with each other and contribute to the “Kohn-Sham
potential” (phase V), which is communicated to RS (phase VI in Fig. 2).

Nonlocal Pseudopotential: The non-local pseudopotential energy accounts
for the fact that the CPAIMD method mathematically eliminates “core” elec-
trons and considers only the “valence” electrons. The interaction and the kinetic
energy of non-interacting electrons is computed independently of the density-
related terms by particle planes, and thus leads to adaptive overlap of phase III
with phases II, IV, V, and VI.

Pair Calculators: Corrections are necessary to handle first order variations
that cause deviations from orthogonality in GSI(gx, gy, gz). To do so, the Λ
matrix is computed and the forces, FGSI

(gx, gy, gz), are modified:
Λ(I,K) =

∑
g FGSI

(gx, gy, gz) GSK(gx, gy, gz)
FGSI

(gx, gy, gz) − =
∑

K Λ(I,K) GSK(gx, gy, gz)

This task is performed by the PCasymm chares, which concurrently compute
matrix multiples for pairs of states (phase IX in Fig. 2). Further corrections in
second order variations to orthogonality must be applied to the newly evolved
states. The PCsymm chares perform this task by computing the overlap matrix
and are assisted by the Ortho chares for computing the inverse square root of
the overlap matrix. (phase X in Fig. 2).

Atoms: As the atom position data is needed by multiple phases, it is replicated
throughout the platform as a group, i.e., a chare array with one chare on every
processor. Given the small number of atoms, this does not add a significant
memory overhead. Integration of the forces to adjust the position of the particles
is parallelized up to Natms and is trivial compared to the other operations. This
computation is kicked off in phase VIII and is completed in phase XI.

OpenAtom: Scalable Ab-Initio Molecular Dynamics with Diverse Capabilities 143

2.2 Related Work

CPMD is an MPI-based implementation of ab-initio molecular dynamics
developed through collaboration between IBM and the Max-Planck Institute,
Stuttgart [9]. It has a large feature list which includes path integrals and sup-
port for excited states. However, in [3], it shows weak scaling up to 256 nodes
only. QBox is another MPI-based implementation of first-principle molecular
dynamics developed at UC Davis that demonstrated scaling up to 64 K nodes of
Blue Gene/L for very large atomic systems [13]. Its feature list for performing
CPAIMD and BOMD is similar to that of OpenAtom. However, to the best of
our knowledge, it does not have native support for multi-instance methods that
enables execution of ensemble methods such as k-points, path integrals, parallel
tempering, etc. without code input from the users.

In HPC, several application and runtime system developers have studied
techniques for mapping [2,5,12,14] to three-dimensional torus topologies with
the emergence of supercomputers like the IBM Blue Gene and Cray XT/XE
series. Bhatele [4] explore use of information about application’s communica-
tion patterns and network’s topology to create automated tools for generating
better mappings. Hoefler and Snir [15] discuss generic mapping algorithms to
minimize contention and demonstrate their applicability to torus, PERCS, and
fat-tree networks. In addition to being custom designed for OpenAtom, map-
ping techniques presented in this paper differ from related approaches in two
ways. First, mapping of a large number of objects of distinct types to processes
is performed. Second, instead of being platform dependent, higher level mapping
rules are defined to optimize performance on multiple platforms.

3 New Capabilities

The CPAIMD method has been commonly used to simulate nuclear motion on
a ground state potential surface. Recently, researchers have extended the basic
CPAIMD method in many ways to expand the scope of problems which can be
effectively handled. Several of these extensions share a commonality in that they
each consist of a set of slightly different, but mostly independent, instances of
the standard CPAIMD computation. These include k-points sampling, quantum
path integrals molecular dynamics, spin density functionals, and parallel temper-
ing simulations. Depending on the extension, the instances interact in different
ways among themselves, but those differences lead to relatively small changes
in the overall flow of control. We refer to all these extensions as multi-instance
methods.

3.1 Uber Scheme

To support different multi-instance methods, we have implemented an overarch-
ing Uber indexing infrastructure. This scheme allows multiple instances to reuse
all the objects that implement CPAIMD in OpenAtom by creating distinct

144 N. Jain et al.

copies of the objects that are required by the instances. Objects that belong to
a given instance are maintained as a distinct set of chare arrays and thus form
an Uber comprising one simulation instance. Objects that are shared among
different instances are referenced using shallow copies. Furthermore, Ubers are
composable across different methods, i.e., multiple types of multi-instance meth-
ods can be used in any given simulation.

When multi-instance methods are executed, the first step taken by the Uber
scheme is the division of compute resources among the instances. Given that the
work performed by most of the Ubers is of similar load, a balanced division of
compute resources is performed. Section 4.3 presents the schemes that can be
used to select specific cores that are assigned to each of the Ubers. Next, objects
required for performing simulation within each Uber are created. On any given
process and from any of these objects, the variable thisInstance can be accessed
to find more information about the Uber a given object belongs to. Currently,
an Uber is identified by four indices, each of which refers to a type of multi-
instance method supported in OpenAtom (discussed next). After the initial set
up, all Ubers simulate the configurations assigned to them. Information exchange
and synchronization among Ubers is efficiently performed using basic Charm++
constructs such as remote method invocation and collective operations.

In OpenAtom, an Uber is identified by four indices, which are the instance’s
offsets in four different types of multi-instance methods:

– Path Integrals: used to study nuclear quantum effects.
– Parallel Tempering : used for sampling to treat rough energy landscapes.
– k-points: enables sampling of the Brillion Zone (BZ) to study metals and/or

small systems.
– Spin Density Functional : treats magnetic systems.

We now briefly describe each of these methods that have been added recently
to OpenAtom, except Spin which is currently being implemented.

Path Integrals: In order to explore nuclear quantum effects, Feynman’s Imag-
inary Time Path Integral method (CPAIMD PI) [20] has been implemented. In
this method, each classical nucleus is replaced by a ring polymer of P beads
connected by harmonic links to their nearest neighbors. The method’s compu-
tational complexity increases linearly with P as the inter-bead interactions are
imaginary time ordered and each bead group forms a classical subsystem.

CPAIMD PI has been integrated into OpenAtom such that each Uber has an
independent electronic computation (RS,GS,RhoRS, etc.) associated with that
bead’s set of nuclei. Therefore, the entirety of the standard CPAIMD method
shown in Fig. 2 is local to each Uber. The additional work required to evaluate
and integrate the intrapolymer forces to evolve the ensemble is order P . It is
implemented by force and position exchanges between each representation of
the N nuclear particles from all the beads. This communication extends the
standard CPAIMD nuclear force integration phase (phase XI in Fig. 2) such
that the simulation cannot proceed until the bead forces are computed. Thus, it
forces a synchronization across all beads in every time step.

OpenAtom: Scalable Ab-Initio Molecular Dynamics with Diverse Capabilities 145

Parallel Tempering: One widely used method to sample rough energy land-
scapes in statistical physics is Parallel Tempering (PT) [10]. In this method, a
set of complete CPAIMD parallel simulations are initiated with different tem-
peratures. The lower temperatures in the set explore low lying minima while
the higher temperatures traverse the energy landscape. After every time step,
the Ubers that are nearest neighbors in temperature space exchange tempera-
tures via a rigorous Monte-Carlo acceptance rule. The computational complex-
ity of this method also increases linearly with the number of temperatures being
explored. However, a global synchronization is not needed at the end of each time
step since the temperature exchange only happens among nearest neighbors.

k-points Sampling of the Brillion Zone: In a previous work, we studied
large, insulating systems where computation at only the Γ -point of the Brillion
zone (BZ) [7] was sufficient [23]. In small, metallic or semiconducting systems,
more points are required, and that is the functionality k-points sampling pro-
vides. Away from the Γ -point, at finite k, the states are complex and a set of nk

k-points with weights wk are used to sample the BZ. Different k-points interact
in the formation of the density - there is only 1 density summed over all k-points
taking into account the weights. Hence different Ubers get their own copy of state
chares, but all of them point to the same density chares (RhoRS,RhoGHart,
etc.) and atoms. The parallel scalability of this method is typically bounded by
the time spent in the density phase.

3.2 Born-Oppenheimer Method

Other than CPAIMD, the Born-Oppenheimer method [21] (BOMD) is the other
common method used to generate the dynamics of nuclei on the ground state
energy surface provided by Kohn-Sham density functional theory. Unlike the
CPAIMD method which introduces a fictitious dynamics for the expansion coef-
ficients of the KS-states, under BOMD, the density functional (and hence the
expansion coefficients of the KS-states) is minimized and then the atoms are
evolved using a straightforward symplectic integrator. This leads to a secular
growth in the energy. We have added the capability of using BOMD as an alter-
native for performing simulations in OpenAtom. Use of BOMD impacts the
flow diagram in Fig. 2 in the following way: instead of performing phase VIII in
every time step, the system is first minimized and then phase VIII is performed.

Method comparison: Both CPAIMD and BOMD methods have been known
to be stable and can be used to simulate important scientific phenomena. At any
time, an improvement in one method can leap-frog the other as the preferred
way to go. The advantage of the BOMD is its simplicity. The disadvantage is
that the minimization procedure is truncated at a finite tolerance in practice,
which can lead to higher aggregated error.

4 Parallel Optimizations

Parallel implementation of phases described in Sect. 2.1 leads to several commu-
nication intensive operations in OpenAtom. In any given phase, several FFTs,

146 N. Jain et al.

section-reductions, and multicasts are performed concurrently. Multi-instance
methods exacerbate the situation by increasing the number of occurrences of
these operations and by adding communication of their own. As a result, it is
important that communication is well orchestrated and task-mapping is per-
formed to maximize the network utilization and reduce the overheads.

4.1 Distance-Aware Mapping

Significant work had been done on mapping OpenAtom to compact the 3D-
grid network topology used in systems such as IBM Blue Gene/P [16]. Since
the 3D-nature of simulated space (e.g. 3D state grid) matched the 3D-grid of
Blue Gene/P’s torus, high performing precise mapping schemes were developed
to obtain improved performance on those systems. However, the mappings from
the past no longer lead to optimal performance because of (1) changes in dimen-
sionality of the networks, e.g. Blue Gene/Q has a 5D-torus, and (2) irregular
allocations, e.g. on Cray XE6/XK7 systems, typical allocations are not restricted
to an isolated high bisection bandwidth cuboid. Hence, we have developed new
schemes that improve upon the old schemes in two ways: portability to a larger
set of current supercomputers and less time to compute the mapping.

Separation of Concerns: The main principle underlying the mapping improve-
ments is the separation of logic that decides mapping from assumptions regarding
the interconnect topology. For example, the new mapping schemes take decisions
based on relative closeness of pairs of processes, but how the closeness is defined
and computed is left to the topology manager. This separation enables us to
define generic rules of thumb on relative placements of objects of various types
with respect to other objects.

Boilerplate Mapping Algorithm: A typical mapping routine for a given chare
type consists of three steps: find the available list, reorder/process the list based
on the object type, and make assignments. The first step simply queries the
topology manager to provide a distance-aware list of available cores/processors.
Thereafter, to find suitable candidates among the available cores for the given
objects, the available list is either divided among smaller sets or sorted in a
particular order using the topology manager. Finally, suitable cores are assigned
objects while accounting for load balance and exclusion among various cores.
Throughout the process, a highly efficient exclusion list is maintained to down-
select cores for mapping remaining objects of the same type or other types.

Distance-Aware Order of Processes: To obtain a list of available cores for
an object type, we start with a list of all cores available to the current job.
Thereafter, any exclusions defined by the previous mappings of other types of
objects are applied. The exclusions are typically useful in assigning to different
cores objects of different types that are expected to be active concurrently. In
addition, they are used for excluding cores with special tasks, e.g. rank 0 is
responsible for control flow management tasks, and is thus given fewer objects.
We provide the option to override exclusions either by the user as a configuration
parameter or due to lack of sufficient number of cores in the current job.

OpenAtom: Scalable Ab-Initio Molecular Dynamics with Diverse Capabilities 147

In the past, for mapping on Blue Gene/P, the ordering of the list was closely
tied to the number of chares that host a state in the simulated system. By forcing
the number of such chares to be a factor of the number of cores, the mapping
was able to divide the available set of cores evenly. Given the isolated cuboidal
allocations of Blue Gene/P, the mapping was also able to divide the available
set of cores among smaller cuboids and assign them to the states [5], leading to
high efficiency communication patterns.

In the new mapping scheme, all the above restrictions have been removed,
while preserving the performance. The topology manager orders a given set of
cores by making a pass through the set of processors in a topology-aware manner.
For making the pass, the available cores are divided among small topologically-
close units and ordered accordingly. For example, on Cray’s XE6, the traversal
is performed along the longest axis using small cubes of size 4 × 4 × 4. The
main advantage of such a traversal is the guaranteed topological proximity of
the cores that are close in the list. At the same time, communication among a
pair of cores, P1, that is reasonably distant from another pair of cores, P2, is
less likely to interfere with the communication of the pair P2.

Mapping the States: The two types of state objects, RS and GS, play a
central role in the control flow of OpenAtom. Forward and backward FFTs are
performed between RS and GS in every iteration. After the forward FFT to
RS, a plane-wise reduction on RS is performed to the density objects, which
return the result via a multicast to RS. Following the backward FFT to GS,
multicast and reductions are performed between GS and pair calculators. Given
the plane-based nature of both these operations and the bisection bandwidth
requirement of O(#states) FFTs between RS and GS, it is better to spread RS
and GS on the given cores such that communication to/from the planes does
not interfere, while the planes use as much bisection bandwidth as possible.

Hence, the mapping code divides the distance-aware ordered list of cores it
obtains from the topology manager evenly among the planes of RS/GS using a
block-mapping scheme. This mapping does not add any of the cores to the global
exclusion list since every core in the system has at least one RS/GS object.

Mapping the Density: Contributions from all the RS objects are combined
to create the density for RhoR by a reduction operation. Given the plane-based
division of RS, the aggregation is also performed along the planes. Hence, to
improve the performance of the reduction, the density planes of RhoR are placed
near the cores that host the corresponding RS planes. These cores are added
to the exclusion list for mapping the remaining density objects. Other density
objects, RhoG, RhoRHart, and RhoGHart, are then evenly spread on cores
sorted by their distance from the centroid of the cores that host RhoR.

Particle Planes and Pair Calculators: Both types of particle planes, RPP
and GPP , are closely tied to the states. The GPP objects are co-located with GS
objects since they work on a large amount of common data. The RPP objects
are spread across the set of cores that host GS/GPP objects for corresponding
plane. This helps improve the performance of FFTs between RPP and GPP .

148 N. Jain et al.

Finally, to map the pair calculators, a new distance-aware list of cores is obtained
from the topology manager and the pair calculators are mapped in that order
while maintaining load balance. This scheme works well because it places the
pair calculators for a given plane close to where its GS objects are mapped.

4.2 Overdecomposed FFTs with Cutoffs

The existing code for performing parallel FFTs in OpenAtom is based on 1D-
decomposition of data. Hence, the amount of parallelism available for state and
density FFTs are O(#states ∗ #planes) and O(#planes), respectively. In a
typical OpenAtom simulation, the number of states is at the most 1000. Each
of the states is represented using grids that contain at the most 300 × 300 × 300
points. This implies that the maximum parallelism available in state FFTs is
O(300, 000), but is only O(300) for density FFTs. Thus 1D-decomposition based
density FFTs severely limits the scalability of OpenAtom, especially on large
machines with many more compute nodes.

Charm-FFT Overview: To eliminate the scaling bottleneck due to density
FFTs, we have developed a fully asynchronous Charm++ based FFT library,
Charm-FFT. This library allows users to create multiple instances of the library
and perform concurrent FFTs using them. Each of the FFT runs in the back-
ground as other parts of user code execute, and a callback is invoked when the
FFT is complete. The key features of this library are:

1. 2D-decomposition: Users can define fine-grained 2D-decomposition that
increases the amount of available parallelism and improves network utiliza-
tion.

2. Cutoff-based smaller grid: The data grid typically has a cutoff in g-space, e.g.
density has a g-space spherical cutoff. Charm-FFT improves performance by
avoiding communication and computation of the data beyond the cutoff.

3. User-defined mapping of library objects: The placement of objects that consti-
tute the library instance can be defined by the user based on the application’s
other concurrent communication and placement of other objects.

4. Overlap with other computational work: Given the callback-based interface
and Charm++’s asynchrony, the FFTs are performed in the background while
other application work can be done in parallel.

Charm-FFT Details: The creation of an instance of the library is performed
by calling Charm createFFT from any process. The user is required to specify the
size of the FFT grid and the desired decomposition. A cutoff and mapping of the
FFT objects can also be specified. Optionally, a callback can be specified which
is invoked when the distributed creation of the library instance is completed.
Internally, three types of Charm++ objects are created: D1, D2, and D3. Each of
these objects owns a thin bar (a pencil) of the FFT-grid in one of the dimensions,
e.g. in Fig. 3(a), D1 objects own pencils along Z axis. The decomposition of the
FFT-grid among these objects is decided based on the user input.

OpenAtom: Scalable Ab-Initio Molecular Dynamics with Diverse Capabilities 149

Fig. 3. Charm-FFT: concurrent cutoff-based FFTs with 2D-decomposition.

Typically, D1 objects are associated with the grid in the real-space, while D3
objects are used for the grid in the g-space. The D2 objects are not visible to
the user as they are used for the intermediate transpose only. Before executing
FFTs, the user is required to inform D1 and D3 objects about the memory where
the grid resides by making local API calls in a distributed manner.

When the setup is complete, an FFT can be started on an instance by calling
Charm doForwardFFT or Charm doBackwardFFT. These calls return immediately
without actually performing the FFT, but after registering it with the library. If
Charm doForwardFFT is invoked, the FFTs are performed locally along Z dimen-
sion by D1 objects. Following this FFT, any data along Z axis that is beyond
the cutoff is ignored, and only the data within the cutoff is communicated to
D2 (Fig. 3(b)). On D2 objects, FFT along Y dimension is performed which fur-
ther reduces the FFT-grid to a cylinder of thin bars as shown in Fig. 3(c). This
data is communicated to D3 objects, where FFT along X dimension reduces
the cylinder to a sphere (Fig. 3(d)). At this point, the user specified callback is
invoked informing the application of FFT’s completion. The distribution of pen-
cils, which have grid points within the sphere, to D3 objects is performed such
that the total number of grid points that are in the sphere are load balanced
across D3 objects. For Charm doBackwardFFT call, these steps are performed in
reverse order. Note that if FFTs are started on multiple instances one after the
other, all of them are performed concurrently.

Adapting OpenAtom to Use Charm-FFT: In order to use Charm-FFT
with OpenAtom, a significant fraction of the density object implementation has
been rewritten. This is because the decomposition of density objects is tied to
the decomposition of the FFT-grid. The integration has provided three benefits:

150 N. Jain et al.

(1) The decomposition of the density objects is no longer restricted to be a 1D-
decomposition. Users can choose a decomposition that suits their system.

(2) The RS to density reduction is now divided among finer chunks and is
targeted to objects that are distributed among more cores. This is likely to
improve the performance due to better utilization of the network.

(3) The significant lines of code (SLOC) count for the control flow of density
has been reduced by more than 50% from 4, 198 to 1, 831.

Mapping of FFT Objects: To make the best use of the 2D-decomposition of
density, a new mapping scheme has been developed for the density and Charm-
FFT objects. Since the RhoR objects are no longer tied to only one plane of RS,
they are evenly spread among the available cores. However, while spreading them
uniformly, we attempt to keep RhoR objects close to the RS planes with which
they communicate. Other density objects are similarly spread while maintaining
their proximity to the RhoR objects with which they interact. The Charm-FFT
objects, D1 and D3, are colocated with the real-space and g-space objects. The
D2 objects are assigned in close proximity of the D1 objects they interact with.

4.3 Scaling Multiple Instances

When multiple instances, i.e., Ubers described in Sect. 3.1, are executed concur-
rently, two additional concerns arise: (1) How should the objects that belong to
different Ubers be mapped? (2) What impact does presence of multiple instances
have on the performance of OpenAtom? In this section, we explore these issues
and discuss how they are addressed in OpenAtom.

In Sect. 3.1, we have described the implementation of different multi-instance
methods. From that description, it is easy to see that inter-Uber communication
is infrequent and low volume. Hence, it is preferable to map objects of different
Ubers on different cores, so that they do not interfere with each other. We have
experimented with two types of mappings based on this idea:

(1) Disjoint Partitions (DPS): In this scheme, the ordered distance-aware list
of cores created by the topology manager is divided evenly among the instances
using a block-mapping scheme. Given the topologically sorted property of the
list, this reduces interference among the intra-Uber communication of different
Ubers. This also reduces the number of hops for communication within a Uber.

(2) Interleaved Partitions (IPS): This scheme divides the topologically
sorted list of cores among various instances in a round-robin manner. Here, while
the intra-Uber communication of different Ubers may interfere, the increased
bisection bandwidth may improve the performance of the 3D-FFTs. This scheme
may also benefit from overlap of computation time of one Uber with communi-
cation of other Ubers since cores connected to a router are assigned to different
Ubers.

Performance Comparison: To compare the two schemes, DPS and IPS, we
execute the MOF system (Sect. 5) with 2, 4, and 8 Ubers, where each Uber

OpenAtom: Scalable Ab-Initio Molecular Dynamics with Diverse Capabilities 151

is allocated 2,048 cores of Blue Waters. When only two Ubers are executed,
both schemes provide similar performance. However, as the number of Ubers
is increased to four and eight, DPS reduces the time per step by up to 31 %
and 40 %, respectively in comparison to IPS. From these results, we conclude
that avoiding interference among intra-Uber communication of different Ubers
is better, and thus DPS is used for all the remaining results in this paper.

Effect of Ubers on Performance: Figure 4b presents the time line view of
Projections [17] obtained when OpenAtom is executed with four Ubers on a
Blue Gene/Q system for one time step. Each horizontal bar in this figure shows
the computation executed on a core (or process) colored using the legend shown
in Fig. 4a. It can be observed that a significant fraction of the timeline is colored
white, which implies high idle time.

High idle time is observed because the execution of different Ubers is not as
synchronized as it should be given their similar workload. As seen in Fig. 4b, this
is because the start of the time step in some Ubers is delayed (highlighted in the
figure), which in turn is caused by these Ubers waiting on information computed
by the multi-instance methods. Longer waits are observed for some Ubers since
transmission of such information is blocked by forward progress made by other
Ubers that have already received the information. To avoid these delays, we force
all Ubers to wait at the end of each time step till all instances have received the
data needed to perform the next time step.

Figure 4c shows another type of delay caused by inter-Uber interference. This
delay is because, in Charm++, global operations such as broadcasts and reduc-
tions are implemented using optimized tree-based construction that spans all
cores (as is done in most parallel languages). However, when multiple instances
are executed, the global broadcasts and reductions are meant for only a sub-
set of objects on some cores. Such operations may get delayed if intermediate
cores, which are not part of the source Uber, are busy performing other work.
This inefficiency is removed by replacing global broadcasts and reductions by
Charm++’s sections-based operations. Use of these constructs ensures that only
participating cores are used for forwarding data during global operations, and
thus minimizes aforementioned delays.

After eliminating idle time due to inter-Uber interference, we observe that
the small amount of additional work done for the multi-instance methods unex-
pectedly takes a very long time as highlighted in Fig. 4d. We find two reasons for
this: (1) Excessive fine-grained division of work required by multi-instance meth-
ods leads to a large number of small-sized broadcasts and reductions, (2) Core 0
is overloaded since it is assigned work both as a member of an Uber and as the
multi-instance method coordinator. These issues are solved first by increasing
the granularity of the chare array that performs the multi-instance method; this
reduces the number of broadcasts and reductions. Second, core 0 is excluded
from being assigned work for any Uber.

Figure 4e presents the last performance issue we observe: as core 0 is
offloaded, one of the cores in one of the Ubers (which gets one less core than oth-
ers) gets overloaded with the pair calculator work resulting in some performance

152 N. Jain et al.

Fig. 4. Multi-instance performance optimization. (a) Legend for the performance
analysis. graphs. (b) Out of sync Ubers cause idle time. (c) Global reductions lead
to interference. (d) Idle time after CPAIMD. (e) Load imbalance on one of the cores.
(Color figure online)

OpenAtom: Scalable Ab-Initio Molecular Dynamics with Diverse Capabilities 153

loss. To remove this inefficiency, we allow the affected Uber to place only pair
calculators on core 0. This works fine because no other computation overlaps
with the computation done by pair calculators.

5 Scaling Results

In this section, we present scaling results obtained by integrating capabilities and
optimizations described in Sects. 3 and 4 into OpenAtom. All the experiments
have been performed on Blue Waters, a Cray XE6/XK7 system, and Vulcan and
Mira, IBM Blue Gene/Q systems. Most experiments were repeated five times to
account for runtime variabilities, but only up to 1% deviation was observed on
both types of systems.

We use two systems of scientific interest in these studies: Liquid water and
Metal-organic Framework (MOF). Water is a simple system which contains a box
of water with 32 molecules. MOF is a more complex larger system used to study
suitability of metal-organic frameworks (Fig. 1) for H2 storage [22]. The MOF
system used in this paper is MOF-5 which comprises Zn4O(BDC)3 (BDC 1,4
benzenedicarboxylate). It contains 424 atoms, 1552 electrons, and 776 KS states.
We have found it to be stable at the cutoff of 50 Rydberg, which is used in our
simulations. Each state is represented by a 220 × 220 × 220 size grid.

5.1 Performance of Charm-FFT

Fig. 5. FFT on a 300× 300× 300 grid.

The first set of results shows the perfor-
mance of Charm-FFT as a FFT library.
To understand the impact of decompo-
sition on the time taken to compute a
3D-FFT, we perform a FFT of a 300 ×
300 × 300 size grid on 512 nodes of Blue
Gene/Q using different decompositions.
For these experiments, the baseline exe-
cution time is 76 ms, which is obtained
when 1D-decomposition of the grid is
performed, i.e., 300 objects are used. In
Fig. 5, it can be seen that as we per-
form finer decomposition of the grid along
two dimensions, the time to compute 3D-
FFT reduces significantly. The best per-
formance is obtained when the grid is divided among 2,500 objects that are
arranged as a 2D grid of size 50 × 50. In this case, the time to perform FFT is
reduced by 70 % in comparison to the baseline. Further decreasing the decom-
position granularity leads to excess communication overhead.

Figure 6 (left) demonstrates that the choice of cutoff can have a significant
impact on the time to perform FFT. For a grid of size 300 × 300 × 300, up to 3x
reduction in execution time can be seen on 512 nodes of Blue Gene/Q. While

154 N. Jain et al.

Fig. 6. (left) As the G2 cutoff decreases, time to FFT reduces. (right) Charm-FFT
improves the time per step of OpenAtom by up to 40 %.

cutoffs as low as 100 are unrealistic from a scientific perspective, G2 values that
eliminate as many as half the grid points are common. In Fig. 6 (left), the x-
axis value of 6,400 represents this common scenario, where 41 % reduction in
execution time is observed.

Finally, in Fig. 6 (right), we present the impact of using Charm-FFT in Ope-
nAtom for the 32-molecule Water system scaled to core counts that are at the
parallelization limits of the Water system. For most of the core counts, Charm-
FFT is able to increase the available parallelism and reduces the time per step
by 30–40 %. For core counts less than 400, we find that the performance of the
default version of OpenAtom matches closely with the version that uses Charm-
FFT. This is expected since for small core counts, the default 1D-decomposition
is able to utilize most of the network bandwidth.

5.2 Single Instance Execution

In this section, we present performance results for simulating a single instance
of MOF with OpenAtom. Figure 7 shows strong scaling results when the core
count is increased from 512 to 32,768 on Blue Waters. It can be seen that the time
per step decreases significantly from 11.7 s to less than a second as more cores are
used. Our topology-aware mapping scheme consistently provides a performance
boost of 16–32 % on all system sizes. Similar improvements are obtained on Mira
where three hardware threads are utilized on every core. Best execution time of
0.67s per time step is obtained on 32,768 cores of Blue Waters for the MOF
system which has only 776 electronic states. Note that topology aware mappings
are computed once at the beginning of long running simulations. Hence, overhead
due to such computations is minimal. For example, for a typical science run of
several hours on 1,024 nodes, computing the mapping takes less than 3.2 s.

In Fig. 8, good scalability is shown for BOMD computation as we scale from
4,096 cores to 16,384 cores on Blue Gene/Q. Use of topology-aware mapping
outperforms the default mapping by up to 32% in these cases. In fact, with
topology-aware mapping, 74% reduction in time per step is obtained when the
number of cores is increased by four times, i.e., perfect scaling is observed. These
results strongly indicate that OpenAtom is able to provide scalable support to
different simulation methods by exploiting their common characteristics.

OpenAtom: Scalable Ab-Initio Molecular Dynamics with Diverse Capabilities 155

Fig. 7. OpenAtom shows good scaling on both Cray XE6 and Blue Gene/Q. Benefit of
topology aware mapping is significant as shown by the % values. (Color figure online)

5.3 Scalability of Ubers

Now, we present performance results for simulating multiple instances of MOF
on Blue Gene/Q. As a representative of multi-instance methods, we use the Path
Integral method (CPAIMD PI) in these experiments. Three configurations with
8, 16, and 32 Ubers are strong scaled from 8,192 cores to 262,144 cores, where
three hardware threads are used on each core. For each of these configurations,
Fig. 9 shows that an efficiency of 52% is obtained when the core count is increased
by 8× from the smallest configuration executed. For example, the 32 beads
simulations observe a 4.2× speed up when core count is increased from 32,768 to
262,144. Time per step as low as 1.7s is obtained for executing 32 beads on 262K
cores of Blue Gene/Q. For other configurations, time per step close to one second
is obtained by making use of multiple hardware threads available on the system.

156 N. Jain et al.

Fig. 8. Perfect scaling and positive impact of topology-aware mapping is demonstrated
for BOMD computation.

Fig. 9. By exploiting Uber infrastructure and topology-aware mapping, OpenAtom
enables strong scaling of Path Integrals up to a quarter million cores on Blue Gene/Q.
These are representative results that should extend to other multi-instance methods
such as the k-points, Parallel Tempering, and Spin. (Color figure online)

In fact, due to the communication intensive nature of these simulations, one out
of every three threads is dedicated to advancing communication asynchronously,
while the other two threads perform computation.

6 Conclusion

In this paper, we have presented the capabilities and scalability of OpenAtom.
New science capabilities, viz. multi-instance methods and BOMD, have been
added to OpenAtom recently and are described in this paper. Positive impact
of optimization techniques, namely distance-aware mapping, Uber indexing, and

OpenAtom: Scalable Ab-Initio Molecular Dynamics with Diverse Capabilities 157

overdecomposed 3D-FFTs with spherical cutoff, has also been shown on two pro-
duction HPC platforms, IBM Blue Gene/Q and Cray XE6. By leveraging these
techniques, we have demonstrated that OpenAtom provides efficient strong
scaling up to 32,768 cores for MOF, an important science system with only a
few hundred atoms. Finally, a time per step of 1.7s and strong scaling up to
262,144 cores have been shown for multi-instance scientific simulations. These
results strongly suggest that OpenAtom is a highly scalable simulation code
with diverse capabilities.

Acknowledgments. This research is partly funded by the NSF SI2-SSI grant titled
Collaborative Research: Scalable, Extensible, and Open Framework for Ground and
Excited State Properties of Complex Systems with ID ACI 13-39715. This research is
also part of the Blue Waters sustained-petascale computing project, which is supported
by the National Science Foundation (award number OCI 07-25070) and the state of
Illinois. Blue Waters is a joint effort of the University of Illinois at Urbana-Champaign
and its National Center for Supercomputing Applications.

This research used resources of the Argonne Leadership Computing Facility at
Argonne National Laboratory, which is supported by the Office of Science of the U.S.
Department of Energy under contract DE-AC02-06CH11357. This research also used
computer time on Livermore Computing’s high performance computing resources, pro-
vided under the M&IC Program.

References

1. Acun, B., Gupta, A., Jain, N., Langer, A., Menon, H., Mikida, E., Ni, X.,
Robson, M., Sun, Y., Totoni, E., Wesolowski, L., Kale, L.: Parallel programming
with migratable objects: Charm++ in practice. In: SC (2014)

2. Agarwal, T., Sharma, A., Kalé, L.V.: Topology-aware task mapping for reducing
communication contention on large parallel machines. In: Proceedings of IEEE
International Parallel and Distributed Processing Symposium 2006, April 2006

3. Alam, S., Bekas, C., Boettiger, H., Curioni, A., Fourestey, G., Homberg, W.,
Knobloch, M., Laino, T., Maurer, T., Mohr, B., Pleiter, D., Schiller, A., Schulthess,
T., Weber, V.: Early experiences with scientific applications on the IBM Blue
Gene/Q supercomputer. IBM J. Res. Dev. 57(1/2), 14:1–14:9 (2013). doi:10.1147/
JRD.2012.2234331

4. Bhatele, A.: Automating topology aware mapping for supercomputers. Ph.D. the-
sis, Department of Computer Science, University of Illinois, August 2010. http://
hdl.handle.net/2142/16578

5. Bhatele, A., Bohm, E., Kale, L.V.: Optimizing communication for Charm++ appli-
cations by reducing network contention. Concurr. Computat.: Pract. Exp. 23(2),
211–222 (2011)

6. Bohm, E., Bhatele, A., Kale, L.V., Tuckerman, M.E., Kumar, S., Gunnels, J.A.,
Martyna, G.J.: Fine grained parallelization of the Car-Parrinello ab initio MD
method on Blue Gene/L. IBM J. Res. Dev.: Appl. Massively Parallel Syst. 52(1/2),
159–174 (2008)

7. Car, R., Parrinello, M.: Unified approach for molecular dynamics and density func-
tional theory. Phys. Rev. Lett. 55(22), 2471 (1985)

http://dx.doi.org/10.1147/JRD.2012.2234331
http://dx.doi.org/10.1147/JRD.2012.2234331
http://hdl.handle.net/2142/16578
http://hdl.handle.net/2142/16578

158 N. Jain et al.

8. Carloni, P., Bloechl, P., Parrinello, M.: Electronic structure of the Cu, Zn super-
oxide dimutase active site and its interactions with the substrate. J. Phys. Chem.
99, 1338–1348 (1995)

9. cpmd.org. http://www.cpmd.org/
10. Earl, D.J., Deem, M.: Parallel tempering: theory, applications, and new perspec-

tives. Phys. Chem. Chem. Phys. 7, 3910–3916 (2005)
11. Brugé, F., Bernasconi, M., Michele, P.: Ab initio simulation of rotational dynamics

of solvated ammonium ion in water. J. Am. Chem. Soc. 121, 10883–10888 (1999)
12. Fitch, B.G., Rayshubskiy, A., Eleftheriou, M., Ward, T.J.C., Giampapa, M.,

Pitman, M.C.: Blue matter: approaching the limits of concurrency for classical
molecular dynamics. In: SC 2006: Proceedings of the 2006 ACM/IEEE Conference
on Supercomputing. ACM, New York (2006)

13. Gygi, F., Draeger, E.W., Schulz, M., de Supinski, B.R., Gunnels, J.A., Austel, V.,
Sexton, J.C., Franchetti, F., Kral, S., Ueberhuber, C.W., Lorenz, J.: Large-scale
electronic structure calculations of high-Z metals on the BlueGene/L platform.
In: Proceedings of the 2006 ACM/IEEE Conference on Supercomputing, SC 2006.
ACM, New York (2006). http://doi.acm.org/10.1145/1188455.1188502

14. Gygi, F., Draeger, E.W., Schulz, M., Supinski, B.R.D., Gunnels, J.A., Austel, V.,
Sexton, J.C., Franchetti, F., Kral, S., Ueberhuber, C., Lorenz, J.: Large-scale elec-
tronic structure calculations of high-Z metals on the Blue Gene/L platform. In:
Proceedings of the International Conference in Supercomputing. ACM Press (2006)

15. Hoefler, T., Snir, M.: Generic topology mapping strategies for large-scale parallel
architectures. In: Proceedings of the International Conference on Supercomputing,
ICS 2011, pp. 75–84. ACM, New York (2011)

16. IBM Blue Gene Team: Overview of the IBM Blue Gene/P project. IBM J. Res.
Dev. 52(1/2) (2008)

17. Kale, L.V., Zheng, G., Lee, C.W., Kumar, S.: Scaling applications to massively par-
allel machines using projections performance analysis tool. Future Gener. Comput.
Syst. Spec. Issue: Large-Scale Syst. Perform. Model. Anal. 22, 347–358 (2006)

18. Kumar, S., Shi, Y., Bohm, E., Kale, L.V.: Scalable, fine grain, parallelization of
the Car-Parrinello ab initio molecular dynamics method. Technical report, UIUC,
Department of Computer Science (2005)

19. Lee, H.S., Tuckerman, M., Martyna, G.: Efficient evaluation of nonlocal pseudopo-
tentials via Euler exponential spline interpolation. Chem. Phys. Chem. 6,
1827–1835 (2005)

20. Marx, D., Parrinello, M.: Ab initio path integral molecular dynamics. Z. Phys. B
95, 143–144 (1994)

21. Payne, M.C., Teter, M.P., Allan, D.C., Arias, T.A., Joannopoulos, J.D.: Iterative
minimization techniques for ab initio total-energy calculations: molecular dynamics
and conjugate gradients. Rev. Mod. Phys. 64, 1045 (1992)

22. Rosi, N.L., Eckert, J., Eddaoudi, M., Vodak, D.T., Kim, J., O’Keeffe, M.,
Yaghi, O.M.: Hydrogen storage in microporous metal-organic frameworks. Sci-
ence 300(5622), 1127–1129 (2003). http://www.sciencemag.org/content/300/
5622/1127.abstract

23. Vadali, R.V., Shi, Y., Kumar, S., Kale, L.V., Tuckerman, M.E., Martyna,
G.J.: Scalable fine-grained parallelization of plane-wave-based ab initio molecular
dynamics for large supercomputers. J. Compt. Chem. 25(16), 2006–2022 (2004)

http://www.cpmd.org/
http://doi.acm.org/10.1145/1188455.1188502
http://www.sciencemag.org/content/300/5622/1127.abstract
http://www.sciencemag.org/content/300/5622/1127.abstract

SPRITE: A Fast Parallel SNP Detection
Pipeline

Vasudevan Rengasamy(B) and Kamesh Madduri

The Pennsylvania State University, University Park, PA, USA
{vxr162,madduri}@psu.edu

Abstract. We present Sprite, a new high-performance data analysis
pipeline for detecting single nucleotide polymorphisms (SNPs) in the
human genome. A SNP detection pipeline for next-generation sequenc-
ing data uses several software tools, including tools for read alignment,
processing alignment output, and SNP identification. We target end-to-
end scalability and I/O efficiency in Sprite by merging tools in this
pipeline and eliminating redundancies. For a benchmark human whole-
genome sequencing data set, Sprite takes less than 50min on 16 nodes
of the TACC Stampede supercomputer. A key component of our opti-
mized pipeline is parsnip, a new parallel method and software tool for
SNP detection. We find that the quality of results obtained by parsnip
(sensitivity and precision using high-confidence variant calls as ground
truth) is comparable to state-of-the-art SNP-calling software. A proto-
type implementation of Sprite is available at sprite-psu.sourceforge.net.

1 Introduction

In this work, we consider the pervasive genetic variation detection workflow in
biomedical informatics. The goal of this workflow is to automatically determine
genetic variations present in the genome of an individual (called the donor), by
comparing it to a reference genome. SNPs are nucleotide differences at a single
position and account for nearly 90 % of the total variations. Detecting SNPs with
high accuracy plays a very important role in identifying disease risk, studying
drug efficacy [31], etc. SNP detection using current state-of-the-art tools can take
more than a day of sequential compute time, and the pipeline is typically I/O
bound. In this paper, we focus on improving end-to-end efficiency and parallel
scaling of this pipeline, and design new hybrid parallel algorithms and software
(Sprite, comprised of prune, sampa, parsnip). The end-to-end running time
of Sprite on the Stampede supercomputer is 11.7 hours on a single compute
node, and 48 min on 16 nodes, for a realistic input data set. In comparison, the
end-to-end time using current state-of-the-art tools on a single compute node is
23 hours, and so we achieve a speedup of 1.97× and 28.7× using single node and
16 nodes respectively. We also show that the resulting SNP detection quality
is comparable to two state-of-the-art variant detection pipelines. Further, we
create Sprite+, an in-memory version that does not generate intermediate files.
Sprite+ can be executed on just a few compute nodes (requiring about 105 GB
aggregate main memory for the human genome).
c© Springer International Publishing Switzerland 2016
J.M. Kunkel et al. (Eds.): ISC High Performance 2016, LNCS 9697, pp. 159–177, 2016.
DOI: 10.1007/978-3-319-41321-1 9

http://sprite-psu.sourceforge.net

160 V. Rengasamy and K. Madduri

2 Background: Variant Detection Pipelines

Fig. 1. A simplified view of computational
stages in a SNP detection pipeline.

The genome sequences of any two
(human) individuals are highly simi-
lar. However, the small percentage of
genetic variation (variants) is believed
to have important biological and
medical implications. Identifying an
individual’s single nucleotide genetic
variants has become a standard first
step in many biological and biomed-
ical applications. In this section, we
describe the three key steps in the
workflow to detect genetic variants, shown in Fig. 1, and mention prior
approaches to exploit parallelism.

Alignment. The output of a DNA sequencer is a set of reads. A read is a
short segment of the genome whose sequence is known, but whose location in
the genome is not known. The first step of this pipeline, Alignment, refers to
identifying the location of the donor genome’s reads, by using an index built from
the known reference genome. Alignment is the most computationally intensive
task in the workflow. This step takes FASTQ (FQ) files containing the reads as
input and produces output in the Sequence Alignment/Map (SAM) format [17].

There are several approaches to aligning reads against a reference genome.
Usually, an alignment algorithm uses an index of the reference genome. The
FM-index [7] is the index of choice for the most popular aligners of sequencing
data [13,15,16,19]. It can be used to find if a query substring occurs in the
reference in time independent of the length of the reference. The FM-index is a
full-text index which is based on the Burrows-Wheeler transform [1,2] developed
for text compression. An alternate to the FM-index is a hash-based index. In
this approach, a hash table is created mapping all small strings (called seeds)
to their locations in the reference (or, sometimes, in the reads). While initially
popular [18,29], hash-based approaches have largely been replaced by the FM-
index approach due to its superior performance.

Most alignment software tools exploit parallelism on a single node through
multithreading [11,15], but do not directly support multi-node parallelism. For
multi-node scaling, the coarse-grained strategy that is typically followed is to
split the input gzipped FASTQ files into multiple equally-sized files, and con-
currently execute the binary on each read partition file. The tool pMap [26], for
instance, enables multi-node execution of different aligners such as BWA [16],
SOAP [19], Bowtie [13], in this manner. Peters et al. [24] introduce the pBWA
framework, which uses a master-slave approach to support multi-node execution
of BWA.

SPRITE: A Fast Parallel SNP Detection Pipeline 161

Intermediate File Processing. In this step, SAM files are converted to a
binary file format called Binary Alignment/Map (BAM). BAM files store the
same information as SAM files, but using compressed binary-encoded records.
BAM files are also sorted according to the alignment position, merged and
indexed. SAMtools [17] and Picard [25] are two widely-used tools for SAM/BAM
file processing. Both these tools support multithreaded execution for some of
their SAM/BAM file processing stages.

Variant Calling. A variant caller takes a single BAM file as input and generates
a list of variants (SNPs; Insertions and Deletions or indels). Roughly, this is done
by a left-to-right scan of the BAM file. Locations where all alignments do not
agree with the reference nucleotide are statistically analyzed to determine if the
alternate nucleotide is due to a variant in the donor, or due to a sequencing
error. The output of this step is a text file in the Variant Calling Format (VCF),
containing a single line for every variant. While there are further downstream
filtering and analysis steps that are often performed after variant calling, they
are computationally less intensive, and so we do not discuss them here.

The variant callers in SAMtools [14] and FreeBayes [8] use a Bayesian statis-
tical framework in their variant calling procedure. GATK [5] is another popular
variant caller using a multistage variant calling strategy. It first performs local
realignment around Indels and a routine called base quality score recalibration to
output analysis-ready BAM output. In the next phase, GATK emits raw variants
by discovering all sites with statistical evidence for the presence of an alternate
allele. Finally, the raw variant calls are integrated with external data, such as
known variants, to separate true variants from false positives.

Nielsen et al. [23] review various SNP-calling methods and classify them
as either methods based on counting nucleotides or as probabilistic methods.
Counting-based methods perform well when the sequencing depth of coverage
is high (> 20×). Our SNP detection algorithm parsnip is a counting-based
method, and we show that its accuracy is comparable to probabilistic methods,
for a benchmark data set with 50× coverage. Liu et al. [21] evaluate the accu-
racy of four variant callers (SAMtools, GATK, glftools2 [10], and Atlas2 [3])
and observe that GATK often outperforms other methods for various objective
metrics.

End-to-End Pipelines and Benchmarking. There are several recently
developed variant detection pipelines using different tool combinations for the
pipeline stages. SpeedSeq [4] uses BWA-MEM to perform alignment, SAM-
BLASTER [6] to mark duplicates and extract discordant reads and split reads,
Sambamba [30] for sorting the records, and FreeBayes to call variants. It sup-
ports single-node parallelism through multithreading and its speedup is mainly
due to in-memory duplicate removal and sorting. BALSA [22] is an extension of
the GPU-based alignment software SOAP3-dp [20], and performs read quality
control, alignment, base score recalibration, de-duplication and realignment in
memory. Therefore, it achieves high single-node performance. Churchill [12] is a

162 V. Rengasamy and K. Madduri

variant detection pipeline using BWA-MEM for alignment, Picard for alignment
output processing, and GATK to call variants. Churchill divides the reference
genome into equally-sized regions, so that reads aligning to individual regions
can be assigned to different nodes in order to improve scalability. The Isaac [27]
pipeline requires high-memory compute nodes and supports multithreaded par-
allelism. In this paper, we perform direct comparisons of Sprite to SpeedSeq
and a reference pipeline constructed using state-of-the-art tools. We were unable
to run all steps in Churchill and BALSA to completion for the data sets we eval-
uated. The reference pipeline and SpeedSeq outperform Isaac on the data sets
we looked at.

There has been recent work to identify high-confidence variant calls that can
be used to evaluate the accuracy of various pipelines. Zook et al. [33] develop
a benchmark data set of SNP and Indel calls for the NA12878 human genome.
They integrate variant calls using 14 data sets from five sequencing technologies,
seven aligners, and 3 variant callers. SMASH [32] is another benchmarking effort
consisting of synthetic and real genome data sets, and a set of variants for each
data set.

3 SPRITE: Algorithms and Implementation Details

Fig. 2. The Sprite pipeline with the new
prune, sampa, and parsnip tools. Note
the new aeb/aib file formats used by
sampa.

We now discuss our new SNP-calling
pipeline Sprite and explain the ratio-
nale behind creating new modules.
Sprite is made up of three tools,
prune, sampa, and parsnip, corre-
sponding to the three key steps of
alignment, intermediate file process-
ing, and variant calling, discussed in
the previous section. Figure 2 shows
the pipeline stages. Note that the
intermediate file formats have changed
in this case, but we still work with the
restriction of using FASTQ files as input and generating VCF-formatted output
files. Our pipeline is designed to exploit both shared- and distributed-memory
parallelism as much as possible. We use MPI for inter-node parallelism and
POSIX threads within each node for exploiting shared-memory parallelism.

3.1 PRUNE: Alignment Parallelization

prune is based on the BWA-MEM [15] aligner. We describe key changes to
support multi-node parallelism and reduce I/O in subsequent stages of Sprite.

Virtual Read Partitioning. In Sprite, we do not explicitly partition reads
and create smaller FQ files. This is the strategy used in pMap [26] and
Churchill [12]. Instead, we create an index file in which we store offsets to read

SPRITE: A Fast Parallel SNP Detection Pipeline 163

blocks within the original FQ file. We do not need to read the entire file in
order to determine the offsets: if l is the read length (in bytes) and B is the
desired block size, then finding the offset for read block i requires accessing the
file roughly at the location 4Bli, reading until the start of the next read, and
writing the offset to the index file. This divides the FQ file into approximately
equally-sized chunks. For a full human data set, this read partitioning completes
in a few seconds on uncompressed FQ files, and we choose a block size B ensuring
good load balance.

Hybrid Parallelism. We exploit hybrid MPI and pthreads parallelism in
prune to scale BWA-MEM across multiple nodes. Each read block is further
partitioned across multiple threads within a process. The reference sequence is
comprised of multiple contigs (or contiguous sequence without gaps), and there
are about 100 contigs of different lengths in the reference human genome. Each
MPI process creates a separate output file for each contig. This reduces the need
for frequent inter-node communication and simplifies the other steps of Sprite.

Exact and Inexact Alignment Records. We develop a new intermediate
alignment output format that is based on inspecting the CIGAR string field in a
SAM record. Our format classifies alignment records as being exact or inexact.
A concatenation of these records results in the AEB (Alignment Exact Binary)
and AIB (Alignment Inexact Binary) files indicated in Fig. 2. Creating separate
files for exact and inexact alignments has the following benefits:

– AEB records require much less memory when compared to AIB records, since
they do not require a CIGAR string. Since more than 90 % of the reads fall
in the AEB category for high read depth data sets, separating the two types
of records results in a significant output file size reduction. For instance, for
the NA12878 data set used in all our experiments, the size of the SAM file
created by BWA-MEM aligner is 448 GB, and the combined sizes of all exact
and inexact alignment files created by prune sums to 54 GB, which is a 88 %
reduction in output size.

– Exact alignment records do not have any insertions, deletions, or soft/hard
clipping, and as a result, are easier to process downstream.

We list the fields present in AEB and AIB records in Table 1. The fields
#CigarOps and CigarStr are not needed for AEB records, since #CigarOps is
1, and CigarStr is lM for all AEB records (l is the read length). We restrict the
maximum number of CIGAR operations to 10 per read in order to reduce the
size of AIB output files. This does not impact SNP detection accuracy, since
only a tiny fraction of reads have CIGAR strings with more than 10 CIGAR
operations.

An upper bound on the number of AEB and AIB files to be generated is
known beforehand. We do not store unaligned reads and zero quality alignments,
and this reduces the file sizes for subsequent stages.

164 V. Rengasamy and K. Madduri

Table 1. Fields present in Exact and Inexact alignment records.

Exact Inexact Size
Field

Alignment Alignment (Bytes)

Position 4

Flag 2

MapQuality 1

Sequence 30

ReadLength × 1

#CigarOps × 1

CigarStr × 20

3.2 SAMPA: Intermediate File Processing

Once alignment completes, the AEB and AIB records are sorted according to the
alignment position. The primary goal of sorting is to order reads for SNP calling.
As the records aligning to different reference contigs are written to different
output files in prune, we can now sort records of each contig concurrently. This
is not the case if a SAM file is created, and this is one of the reasons why the
sort and index steps in the SAMtools software are time-consuming.

We use MPI-based parallelization for this step, with each process sorting
alignment output files corresponding to a set of contigs. Our algorithm called
sampa partitions alignment files among MPI tasks such that each MPI task gets
approximately an equal number of alignment records, and all alignment files
corresponding to a contig are processed by a single MPI task.

The time taken per MPI task by the sort step is linear in the number of
AEB/AIB records assigned to the MPI process. In the first stage, sampa reads
the alignment output files and counts the number of reads aligned to each posi-
tion of a reference contig. Then, a prefix sum computation gives the position
(in the sorted output file) of the first record corresponding to each alignment
position. In the second stage, the position in the output file for each record is
computed by using the calculated offset, and the records are written to an out-
put buffer at that position. The output buffer is finally written to disk after
processing all records.

In comparison to the SAMtools sort, our approach is done entirely in-memory.
Hence, it is significantly faster. If alignment output files corresponding to a single
contig are distributed across different MPI tasks, the sorted output of all such
tasks have to be merged in a subsequent step. We avoid this by assigning each
contig to a single task. However, doing so limits scalability, as the maximum
number of MPI tasks is limited by the number of contigs in a reference genome.
Due to in-memory sorting, memory becomes a bottleneck as the number of
MPI tasks per node increases. Each MPI task sorts one contig at a time. The
maximum memory required depends on the longest contig and the number of
reads aligning to that contig. For the NA12878 data set, we require 5.5 GB to
process the longest contig.

SPRITE: A Fast Parallel SNP Detection Pipeline 165

3.3 PARSNIP: Parallel SNP Detection

We now discuss our parsnip counting-based SNP detection algorithm and
related optimizations. The inputs to this algorithm are the sorted binary align-
ment records (AEB and AIB records created using sampa) and the reference
set of contigs. The output of the parsnip algorithm is a file containing SNP
records in the VCF format. The output specifies the SNP position in a contig,
the reference nucleotide and the alternate allele, a quality score assigned to the
SNP call, and values for parameters used as quality filters. Our work currently
considers just SNPs, and we do not yet support indel or other complex structural
variation detection. Hence, we are able to modify the intermediate steps so that
the input to parsnip is in an easy-to-parse format.

Fig. 3. Organization of the frequency table
F used in parsnip.

The key data structure used in
our algorithm is a frequency table
(denoted as F). This array-based tab-
ular representation is shown in Fig. 3.
Each entry in this table corresponds to
a single position in the reference contig
and stores the number of occurrences
of each type of base, the read depth at
that position, and the number of alter-
nate bases occurring in forward strand
and reverse strand.

While processing each AEB record,
l consecutive entries in F starting from
the alignment position of the read
sequence are updated such that, in
each of the table entries, the base count and the read depth are incremented
by 1. Note that the CIGAR operation M (Match) indicates matches as well as
single base flips, and so all read bases in the matched positions need not actually
match with the corresponding bases in the reference sequence.

AIB records are processed by iterating through the CIGAR operations. If the
operation is Match, the base count and depth fields of F are incremented for the
matched positions, similar to the AEB case described previously. If the operation
is Deletion, then the depth field alone is incremented for these positions, since
it indicates a gap character in these positions.

Hybrid Parallelization. We use MPI and pthreads to parallelize parsnip.
parsnip proceeds by assigning a set of contigs to each MPI process such that each
process gets approximately an equal number of alignment records to process.
After this initial step, each MPI process performs the following three tasks for
each contig assigned to it: (1) Update F using AEB records, (2) Update F using
AIB records, and (3) Call SNPs using F . Tasks 1 and 3 are much more expensive
than task 2, due to the low fraction of AIB records. We parallelize these two tasks
using pthreads. For task 1, each thread is assigned a contiguous portion of the
sorted AEB file to process. Let si be the alignment position of the first record

166 V. Rengasamy and K. Madduri

assigned to thread i. Each thread processes the records assigned to it until it
encounters the first record R satisfying the condition,

AlignPosition(R) + ReadLength(R) ≥ si+1,

where AlignPosition(R) is the position at which R is aligned to the reference,
and ReadLength(R) gives the read length of R. This prevents different threads
from modifying same locations in F , thus avoiding race conditions. The records
skipped in this manner are processed sequentially. For task 3, each thread calls
SNPs present in a distinct region of contigs and hence, there is no race condition.

F is the major memory-consuming data structure. With parsnip, each MPI
task requires only the current contig’s frequency table F to be in memory. For the
hg19 human reference genome, the longest contig length is around 250 million
base pairs, corresponding to the contig chr1. A row in F , corresponding to one
position of the reference contig, requires 28 bytes. So the largest contig requires
approximately 7 GB memory, which would be the maximum memory required
by any MPI process.

Filters. SNP calling requires applying filters to each entry of the table F .
Table 2 shows the filters used by parsnip and their default settings. A SNP is
reported only when it passes all filters.

Table 2. parsnip SNP filters.

Filter Description Default setting

DP Read depth > 1

AAC Alternate allele count > 1

MQ Average mapping quality of alternate allele 20

AAF Fraction of alternate allele count to total read depth 20 %

SB Strand bias > 0

The filter SB filters out those SNPs which occur predominantly in either
the forward or reverse strand, but not both. Values of SB ranges from 0 to 1,
with 0 indicating that an alternate allele occurs in only one type of strand, and
1 indicating equal occurrence in both strand types. The rest of the filters are
commonly-used in other tools as well.

4 SPRITE+: An In-Memory Version of SPRITE

To avoid I/O overheads between stages of the Sprite pipeline, we have developed
an in-memory version of Sprite called Sprite+. Our aim is to generate VCF
file containing SNPs from input FASTQ files in a single step without creating
intermediate files, as shown in Fig. 4.

SPRITE: A Fast Parallel SNP Detection Pipeline 167

Fig. 4. Sprite pipeline with in-memory processing.

Changes to PRUNE. Instead of writing AEB and AIB output records to
disk, we modified prune to store the alignment records in memory. Each thread
within a MPI process has two buffers (AEBBuffer, AIBBuffer) for each contig,
and all the buffers are expanded dynamically as required. Each thread uses
separate buffers in order to avoid contention. Separate buffer for each contig
enables independent processing of alignment records for each contig during the
subsequent steps.

Intermediate Communication. parsnip requires all alignment records cor-
responding to a contig to be processed by the same MPI process. So, alignment
records generated by all processes for a particular contig have to be transferred
to a single node. Communication involves three stages:

1. Each process obtains the total number of AEB and AIB records present in
all processes for each contig. Let AlSize denote the array containing the total
number of alignment records for each contig.

2. Each process determines the set of contigs it should process by sorting the
AlSize array and dividing it into P parts using recursive bisection.

3. Each process receives the alignment records for the contigs assigned to it from
all other processes using the MPI Alltoallv collective call.

Sort and SNP Calling. Once all processes receive the alignment records for
the contigs assigned to them, the records are sorted according to the alignment
positions using an in-place sort. Once sorted, each process invokes hybrid-parallel
parsnip and outputs VCF files containing SNP calls.

For the NA12878 data set, SPRITE+ requires 104 GB for single node exe-
cution, 137 GB per node for 2 nodes, 68.4 GB per node for 4 nodes, 34.3 GB
per node for 8 nodes, and so on. The memory increase from 1 to 2 node run is
due to the additional send/receive buffers needed for node count greater than 1.
Hence, for systems with limited memory per node, SPRITE+ can be run using
larger node counts, since the memory required per node decreases with increasing
node counts. The memory bottleneck can be substantially reduced by splitting
the communication stage into multiple steps, each step involving transferring a
single contig’s alignment records to the appropriate MPI task.

168 V. Rengasamy and K. Madduri

5 Results and Discussion

In this section, we compare performance and quality results of our new Sprite
pipeline to two other pipelines. For all our experiments, we used the Stampede
supercomputer at the Texas Advanced Computing Center (TACC). Stampede
is a Dell Linux cluster with 6400+ Dell PowerEdge server nodes. Each node
has two 8-core Intel Xeon E5 (Sandy Bridge) processors and an Intel Xeon Phi
coprocessor (MIC architecture). We use the Lustre-based Scratch file system for
file I/O. We do not use the Xeon Phi coprocessor. Each compute node has 32 GB
DDR3 memory.

Table 3. Software tools used in experimental study.

Tool Version Purpose

BWA 0.7.12 BWT-based Aligner

SAMtools 1.1 SAM file to BAM file, sorting and merging BAM files

GATK v3.2.2 Call variants using HaplotypeCaller tool

SpeedSeq 0.0.3b Variant detection pipeline

vcftools 0.1.14 Filter out SNPs present in high confidence regions

vcflib Convert complex variants to SNPs and INDELs

RTG Tools 3.5.2 Compare VCF files

Table 3 mentions the list of software tools used in our work along with their
versions. We report performance results with the Illumina platinum genome
sequence data set NA12878 in this paper. We have also experimented with other
data sets, and please refer to the longer technical report version [28] for more
details. The NA12878 data set was sequenced to 50× depth on an Illumina HiSeq
2000 system. We use the human genome version 19 (hg19) as the reference.

5.1 PRUNE Parallel Scaling

Figure 5 shows prune’s scalability for aligning reads in the NA12878 dataset
when going from 1 compute node up to 32 nodes. For our multi-node exper-
iments, we use 1 MPI process per node and 16 threads per process. We see
that the throughput of prune (measured in Mbp/s, million of bases aligned per
second) increases almost linearly with MPI task counts. The fraction of I/O to
compute time remains nearly constant (about 17 %) across runs using 1 to 32
nodes, due to the high I/O bandwidth to the shared scratch filesystem of the
Stampede system. The near-linear scaling indicates that our virtual read parti-
tioning strategy results in good load balance. We chose the block size B to be
around 5 million reads. We have run strong-scaling experiments up to 128 nodes
(2048 cores) and observed good parallel efficiencies for prune.

SPRITE: A Fast Parallel SNP Detection Pipeline 169

Fig. 5. prune scales almost linearly with the number of compute nodes on Stampede.
Both Compute and I/O time reduce with increasing parallelism.

5.2 SAMPA and PARSNIP Parallel Scaling

Figure 6 shows sampa’s scalability across multiple nodes, and parsnip’s scalabil-
ity within a node and across nodes. The experiments are run using 1 process per
node up to 16 nodes for multi-node experiments. With parsnip, we experiment
with up to 16-way thread concurrency. Since all the reads mapping to a contig
are assigned to a single MPI process, and since the majority of the reads map
to only 23 contigs (out of 93), it becomes more difficult to perform fine-grained
load balancing among MPI processes as the number of MPI processes increases.
This load imbalance results in a decrease in speedup for sampa and parsnip
when using more than 4 compute nodes.

sampa’s parallel speedup is about 11× for 16 MPI processes. sampa’s execu-
tion time is 615 s and 57 s for single-task and 16-way parallel runs, respectively.

The third plot in Fig. 6 shows the intra-node scaling characteristics of
parsnip for the largest contig in hg19, chr1. It can be seen that just the compute
time scales well up to 12 cores. For higher number of cores (> 8), I/O time dom-
inates the overall time, and hence the overall speedup does increase beyond 8
cores. For chr1, parsnip’s execution time is 52 s, of which I/O time corresponds

Fig. 6. sampa and parsnip scaling on Stampede: NA12878 data set.

170 V. Rengasamy and K. Madduri

to 20 s. Using 16 cores, the total time drops to 24.6 s, with I/O still taking 20 s.
Parallel I/O for this stage is left to future work.

5.3 End-to-End Pipeline Execution

In this section, we compare the single-node execution time of Sprite to two other
pipelines supporting shared-memory parallelism. The tools used by individual
pipelines for different stages are given in Table 4. RefPipeline is a pipeline we
have put together using popular state-of-the-art tools for each stage. This con-
forms to “GATK best practices” [9] and the tools used are very popular in the
bioinformatics community. In RefPipeline, all stages except SAM-to-BAM con-
version are done using 16 threads. SAM-to-BAM conversion lacks multithreading
support and is performed using a single thread.

Table 4. Tools used in each pipeline.

Stage RefPipeline SpeedSeq Sprite

Alignment BWA-MEM 0.7.12 BWA-MEM v0.7.12 prune

Alignment SAMtools-1.1 SAMBLASTER v0.1.21,
Sambamba v0.4.7

sampa
Output
processing

SNP Calling GATK v3.2.2 FreeBayes v0.9.16-1 parsnip

Table 5 gives the single-node execution times for each stage of the three
pipelines. Alignment is the dominant step in all three pipelines. The RefPipeline
alignment time using BWA-MEM is 580 min. SpeedSeq’s alignment time also
includes alignment output processing time and it is 1.65× faster than the com-
bined time for these two stages using the RefPipeline. prune currently uses
the BWA-MEM implementation in version 0.7.10 of BWA, which does not have
compute-I/O overlap. Version 0.7.12 of BWA supports compute-I/O overlap,
but we are yet to transition to this version. Also, the SAM records created by
BWA are parsed in-order to create AEB and AIB records. Due to these reasons,
prune takes 692 min (Compute: 571 min, I/O: 71.5 min, SAM parsing: 49.5 min),
as compared to RefPipeline’s lower running time.

In our parallelized run of SpeedSeq SNP calling, each contig is assigned to a
separate instance of a FreeBayes process. We follow the same approach to paral-
lelize GATK-HC (HaplotypeCaller), by assigning one contig per process. Speed-
Seq’s multiprocess FreeBayes is 1.63× faster than RefPipeline’s multiprocess
GATK-HC. parsnip is significantly faster than both the parallelized versions of
GATK-HC and SpeedSeq on a single node.

Due to in-memory duplicate marking and sorting, SpeedSeq achieves a
speedup of 1.65× over RefPipeline. All stages of SpeedSeq are run using 16

SPRITE: A Fast Parallel SNP Detection Pipeline 171

Table 5. End-to-end pipeline execution times (in minutes) and speedup on a single
compute node (16 cores) of Stampede for the NA12878 data set.

Pipeline RefPipeline SpeedSeq Sprite

Stage Time Time Speedup Time Speedup

Alignment 580 670 1.65× 692 0.84×
Alignment output processing 526 4 131.5×
SNP Calling 270 166 1.63× 3.5 77×
Overall 1376 836 1.65× 699.5 1.97×

cores. Sprite is 1.97× faster and the majority of the overall speedup is due to
sampa and parsnip speedup.

For single node execution of sampa and parsnip, alignment records are
distributed among 4 single-threaded MPI processes. We restrict the number
of MPI processes to 4 due to the memory limitation imposed by the output
buffer for sampa and the F table for parsnip. sampa is 131.5× faster than
SAMtools sort because sampa is an in-memory approach, whereas SAMtools
sort writes temporary files to disk while sorting. parsnip’s 77× speedup over
GATK-HC comes from the simple counting-based in-memory algorithm, fixed-
length alignment records, and fast processing of AEB records.

Table 6 shows speedup of 16-node execution of Sprite and the in-memory
version of Sprite (Sprite+) over single-node Sprite execution time. Avoid-
ing alignment file creation results in improving prune’s speedup from 12.67×
to 14.78×. sampa and parsnip have less speedup with 16 nodes as compared
to prune, because of less work per process and some load imbalance issues.
Since we do not implement hybrid parallelism for sampa, its speedup is lower
than parsnip. Sprite+ takes 48 min for FQ file ingestion to VCF creation for
NA12878 dataset, and the majority of the time is spent in the alignment phase.

Table 6. End-to-end pipeline execution times (in minutes) and speedup on 16 compute
nodes (256 cores) of Stampede for the NA12878 data set. Speedups are with respect
to single-node performance of Sprite (Table 5). Sprite+ denotes version of Sprite
avoiding intermediate I/O.

Pipeline sprite 16 nodes Sprite+ 16 nodes

Stage Time Speedup Time Speedup

prune 54.60 12.67× 46.80 14.78×
sampa 1.13 3.54× 0.80 5×
parsnip 0.68 5.14× 0.37 9.46×
Overall 56.40 12.4× 48.00 14.6×

172 V. Rengasamy and K. Madduri

5.4 SNP Calling Accuracy

In this section, we compare the accuracy of SNPs called by prune with GATK’s
HaplotypeCaller (GATK-HC) and FreeBayes. For accuracy comparisons, we use
two high-confidence SNP call sets as ground truth.

1. NIST GIAB v2.19: This data set consists of high-confidence SNP and Indel
calls for NA12878. These calls are integrated from multiple executions of
GATK-UG and GATK-HC on samples of NA12878 sequenced using several
different technologies.

2. Illumina high quality calls v7.0: This data set is derived using high confidence
variants called by several different analysis pipelines on all 17 Illumnina Plat-
inum genome samples in the CEPH pedigree trio 1463.

Theses data sets also come with auxiliary files specifying high-confidence
regions of the genome where the SNP and Indel calls are believed to be accu-
rate. We extracted the variants in these regions using vcflib. We then converted
complex variants into simple SNP and Indel valls using the vcfallelicprimitives
tool in vcflib. All comparisons are done using the vcfeval tool available in the
RTG Tools package.

Table 7. SNP calling quality comparison on NA12878. SNPhc: SNPs in high confidence
regions, SNPall: Total SNPs reported.

Pipeline SNPall NIST-GIAB v2.19 Illumina high quality calls v7.0

Sensitivity Precision SNPhc Sensitivity Precision SNPhc

RefPipeline 4.04M 99.55 99.48 2.79M 97.5 99.7 3.53M

SpeedSeq 4M 99.51 99.32 2.79M 97.5 99.41 3.54M

Sprite-1 3.97M 99.46 98.71 2.80M 97.3 98.88 3.55M

Sprite-2 3.75M 98.93 99.35 2.77M 95.9 99.18 3.49M

Sprite-3 4.85M 99.63 92.12 3.01M 98.3 97.53 3.63M

Fig. 7. SNP calling quality com-
parison on NA12878.

Comparing Accuracy. Table 7 compares
parsnip’s accuracy to GATK-HC (in Ref-
Pipeline) and FreeBayes (in SpeedSeq). The
table reports Sprite’s accuracy for three dif-
ferent configurations of filters used by parsnip.

– Sprite-1 reports SNPs satisfying MQ > 20,
SB > 0.1 and AAF > 20%.

– Sprite-2 reports SNPs satisfying MQ > 30,
SB > 0.2 and AAF > 25%

– Sprite-3 reports SNPs satisfying MQ > 0,
SB >= 0 and AAF > 20%

SPRITE: A Fast Parallel SNP Detection Pipeline 173

Sprite-2 uses stringent filters and as a result, it gives the highest precision
results among the three Sprite configurations. Sprite-3 on the other hand
uses only the AAF filter, and as a result, it detects the maximum number of cor-
rect SNPs (high sensitivity) by sacrificing precision. The Sprite-1 configuration
strikes a balance between the other two configurations and has good precision
and sensitivity values, which are comparable to the other two pipelines. Also,
we can see that with more filtering criteria, the total number of SNPs reported
(SNPall) and the number of SNPs in high-confidence regions (SNPhc) are much
lower than the SNP counts obtained with fewer filters. In all our experiments,
we used the DP > 1 and AAC > 1 filters.

Fig. 8. parsnip’s overlap with GIAB v2.19 and Illumina v7.0 base calls.

We compare all the SNPs reported by Sprite-1 with those reported by Ref-
Pipeline and SpeedSeq pipelines in Fig. 7. Figure 8 shows the percentage of over-
lap between the SNPs reported by Sprite (using Sprite-1 filter configuration)
and the SNPs present in the high-confidence regions of the GIAB and Illu-
mina data sets. With this configuration, we see that 98.3% of the SNPs overlap
with GIAB data and about 96.3% overlap with Illumina calls. We observe that
parsnip’s overall accuracy is comparable to other tools.

5.5 PARSNIP Filter Tuning

In this section, we analyze the importance of each filter used in reducing the
false positive count. Ideally, the filter should remove all false positives without
removing true positives. We obtain raw SNPs by setting the initial filter condi-
tions to values given in the Sprite-3 configuration, which maximizes sensitivity.
This configuration is shown as the leftmost point in each of the three plots in
Fig. 9.

We can observe the drop in sensitivity as more SNPs are filtered out with
the aim of improving the precision. In each of these plots, one of the three filters
(AAF, SB, MQ) is varied, while setting other the two filter values to that of
Sprite-3 configuration. The precision and sensitivity values shown are obtained
by evaluating Sprite’s accuracy with NIST-GIAB v2.19 call set.

174 V. Rengasamy and K. Madduri

Fig. 9. Effect of various filters on parsnip’s accuracy.

As the AAF filter is increased from 20 to 30, the precision improves by 5.77%
with only a slight decrease (.3 %) in sensitivity. Compared to this, increasing
AAF from 30 to 35 results in .93% improvement in precision for 1.17% drop in
sensitivity. Hence, an AAF filter of value up to 30 results in a good improvement
in precision without compromising sensitivity.

Filtering out SNPs with SB = 0 improves precision by 4.92% for a mere
0.04% loss in sensitivity. Hence, this is highly effective in eliminating false posi-
tives. Increasing this filter value to 0.1% improves the precision further by 0.3%
and decreases sensitivity by 0.05%, and beyond this, the gain is insignificant.

Finally, filtering out SNPs with MQ < 20 improves precision by 1.42% and
decreases sensitivity by 0.13%. Filtering out SNPs with MQ < 30 improves
precision by 0.18%, but the sensitivity drops by 0.25% and hence not recom-
mended.

5.6 Memory Requirement for SPRITE+

Sprite+ implementation requires additional memory per node in order to buffer
all alignment records created on a node, and also for temporary communication
buffers required to send/receive alignment records to/from other processes. In
this section, we give an account of maximum memory required per node to
execute the Sprite+ pipeline on the NA12878 data set.

During alignment, the maximum buffer size required per node for the output
alignment records is 5.7 GB. The next stage involves communicating alignment
records to other processes. In the worst case, each process sends all of its records
to other processes and receives new set of data from others. Hence, the send and
receive buffer sizes are upper-bounded by 5.7 GB. So, the maximum memory
required per node during the communication phase is 17 GB (3 × 5.7). After
the communication step, the send buffer is no longer required and can be freed,
resulting in 11.4 GB of in-memory requirement after the communication stage.

The sampa stage does not require additional memory since we sort using
an in-place quicksort. Finally, the parsnip step requires additional memory of
7.5 GB for the F table, and thus the maximum memory required per node for
parsnip step is nearly 19 GB (11.4 GB + 7.5 GB), which is also the maximum

SPRITE: A Fast Parallel SNP Detection Pipeline 175

memory required per node at any point of execution in the Sprite+ pipeline.
For a single node run, since there is no communication stage, the maximum
memory required for Sprite+ execution is 104 GB (5.2 GB for reference index
+16 × 5.7 GB for alignment output + 7.5 GB for F table).

6 Conclusions

In this paper, we presented the Sprite pipeline for detecting single nucleotide
variations present in a high-depth donor genome. We discussed three new tools
in Sprite: prune (a scalable parallel implementation of BWA-MEM) to per-
form alignment, sampa (a counting sort-based in-memory method) for sorting
the alignment records, and detecting SNPs using parsnip (a hybrid parallel
counting-based SNP-calling algorithm). To reduce overheads due to intermedi-
ate file I/O operations, we have developed an in-memory version of Sprite called
Sprite+. We obtained a single-node speedup of 1.97× and 16-node speedup of
28.7× over a single-node reference pipeline implemented using state-of-the-art
tools. Also, the SNP-calling accuracy of Sprite is comparable to that of the
reference pipeline and the SpeedSeq pipeline. Our results indicate that for high-
coverage genomic data, counting-based SNP detection methods could be used
instead of the more compute-intensive probabilistic methods, without sacrificing
result accuracy.

Acknowledgments. This research is supported by the National Science Foundation
award # 1439057. We thank members of our project research team for helpful discus-
sions.

References

1. Adjeroh, D., Bell, T.C., Mukherjee, A.: The Burrows-Wheeler Transform: Data
Compression, Suffix Arrays, and Pattern Matching. Springer, Heidelberg (2008)

2. Burrows, M., Wheeler, D.J.: A block sorting lossless data compression algorithm.
Technical report 124, Digital Equipment Corporation, Palo Alto, CA (1994)

3. Challis, D., Yu, J., Evani, U.S., Jackson, A.R., Paithankar, S., Coarfa, C., Milosavl-
jevic, A., Gibbs, R.A., Yu, F.: An integrative variant analysis suite for whole exome
next-generation sequencing data. BMC Bioinformatics 13(1), 8 (2012)

4. Chiang, C., Layer, R.M., Faust, G.G., Lindberg, M.R., Rose, D.B., Garrison, E.P.,
Marth, G.T., Quinlan, A.R., Hall, I.M.: SpeedSeq: ultra-fast personal genome
analysis and interpretation. Nat. Methods 12, 966–968 (2015)

5. Depristo, M., Banks, E., Poplin, R., Garimella, K., Maguire, J., Hartl, C.: A frame-
work for variation discovery and genotyping using next-generation DNA sequencing
data. Nat Genet 43, 491–8 (2011)

6. Faust, G., Hall, I.: SAMBLASTER: fast duplicate marking and structural variant
read extraction. Bioinformatics 30, 2503–5 (2014)

7. Ferragina, P., Manzini, G.: Opportunistic data structures with applications. In:
Proceedings Symposium on Foundations of Computer Science, pp. 390–398 (2000)

176 V. Rengasamy and K. Madduri

8. Garrison, E., Marth, G.: Haplotype-based variant detection from short-read
sequencing (2012). http://arxiv.org/abs/1207.3907

9. GATK best practices. https://www.broadinstitute.org/gatk/guide/best-practices.
php. Accessed May 2016

10. Abecasis Lab GLF tools. http://www.sph.umich.edu/csg/abecasis/glfTools.
Accessed May 2016

11. Kathiresan, N., Temanni, M.R., Al-Ali, R.: Performance improvement of BWA
MEM algorithm using data-parallel with concurrent parallelization. In: Proceed-
ings of the International Conference on Parallel, Distributed and Grid Computing
(PDGC) (2014)

12. Kelly, B., Fitch, J., Hu, Y., Corsmeier, D., Zhong, H., Wetzel, A., Nordquist, R.,
Newsom, D., White, P.: Churchill: an ultra-fast, deterministic, highly scalable and
balanced parallelization strategy for the discovery of human genetic variation in
clinical and population-scale genomics. Genome Biol. 16(1), 6 (2015)

13. Langmead, B., Salzberg, S.L.: Fast gapped-read alignment with Bowtie 2. Nat.
Methods 9(4), 357–359 (2012)

14. Li, H.: A statistical framework for SNP calling, mutation discovery, association
mapping and population genetical parameter estimation from sequencing data.
Bioinformatics 27(21), 2987–2993 (2011)

15. Li, H.: Aligning sequence reads, clone sequences and assembly contigs with BWA-
MEM (2013). http://arxiv.org/abs/1303.3997v2

16. Li, H., Durbin, R.: Fast and accurate short read alignment with Burrows-Wheeler
transform. Bioinformatics 25(14), 1754–1760 (2009)

17. Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G.,
Abecasis, G., Durbin, R.: 1000 Genome Project Data Processing Subgroup: The
aequence alignment/map format and SAMtools. Bioinformatics 25(16), 2078–2079
(2009)

18. Li, H., Ruan, J., Durbin, R.: Mapping short DNA sequencing reads and calling
variants using mapping quality scores. Genome Res. 18(11), 1851–1858 (2008)

19. Li, R., Yu, C., Li, Y., Lam, T.-W., Yiu, S.-M., Kristiansen, K., Wang, J.: SOAP2:
an improved ultrafast tool for short read alignment. Bioinformatics 25(15), 1966–
1967 (2009)

20. Liu, C., Wong, T., Wu, E., Luo, R., Yiu, S., Li, Y., Wang, B., Yu, C., Chu, X.,
Zhao, K., Li, R., Lam, T.: SOAP3: ultra-fast GPU-based parallel alignment tool
for short reads. Bioinformatics 28(6), 878–879 (2012)

21. Liu, X., Han, S., Wang, Z., Gelernter, J., Yang, B.-Z.: Variant callers for next-
generation sequencing data: a comparison study. PLoS ONE 8(9), e75619 (2013)

22. Luo, R., Wong, Y.-L., Law, W.-C., Lee, L.-K., Cheung, J., Liu, C.-M., Lam, T.-
W.: BALSA: integrated secondary analysis for whole-genome and whole-exome
sequencing, accelerated by GPU. PeerJ 2, e421 (2014)

23. Nielsen, R., Paul, J., Albrechtsen, A., Song, Y.: Genotype and SNP calling from
next-generation sequencing data. Nat. Rev. Genet. 12, 443–451 (2011)

24. Peters, D., Luo, X., Qiu, K., Liang, P.: Speeding up large-scale next generation
sequencing data analysis with pBWA. J. Appl. Bioinform. Comput. Biol. 1(1), 1–6
(2012)

25. Picard tools. http://broadinstitute.github.io/picard. Accessed Dec 2015
26. pMap: Parallel sequence mapping tool. http://bmi.osu.edu/hpc/software/pmap/

pmap.html. Accessed May 2016

http://arxiv.org/abs/1207.3907
https://www.broadinstitute.org/gatk/guide/best-practices.php
https://www.broadinstitute.org/gatk/guide/best-practices.php
http://www.sph.umich.edu/csg/abecasis/glfTools
http://arxiv.org/abs/1303.3997v2
http://broadinstitute.github.io/picard
http://bmi.osu.edu/hpc/software/pmap/pmap.html
http://bmi.osu.edu/hpc/software/pmap/pmap.html

SPRITE: A Fast Parallel SNP Detection Pipeline 177

27. Raczy, C., Petrovski, R., Saunders, C.T., Chorny, I., Kruglyak, S., Margulies,
E.H., Chuang, H.-Y., Kllberg, M., Kumar, S.A., Liao, A., Little, K.M., Strömberg,
M.P., Tanner, S.W.: Isaac: ultra-fast whole-genome secondary analysis on Illumina
sequencing platforms. Bioinformatics 29(16), 2041–2043 (2013)

28. Rengasamy, V., Madduri, K.: Engineering a high-performance SNP detection
pipeline. Technical report, The Pennsylvania State University (2015)

29. Rumble, S.M., Lacroute, P., Dalca, A.V., Fiume, M., Sidow, A., Brudno, M.:
Shrimp: accurate mapping of short color-space reads. PLoS Comput. Biol. 5(5),
e1000386 (2009)

30. Sambamba: process your BAM data faster! http://lomereiter.github.io/
sambamba/. Accessed May 2016

31. Single Nucleotide Polymorphism - SNPedia. http://www.snpedia.com/index.php/
Single Nucleotide Polymorphism. Accessed May 2016

32. Talwalkar, A., Liptrap, J., Newcomb, J., Hartl, C., Terhorst, J., Curtis, K., Bresler,
M., Song, Y.S., Jordan, M.I., Patterson, D.: SMaSH: a benchmarking toolkit for
human genome variant calling. Bioinformatics 30(19), 2787–2795 (2014)

33. Zook, J., Chapman, B., Wang, J., Mittelman, D., Hofmann, O., Hide, W.: Inte-
grating human sequence data sets provides a resource of benchmark SNP and indel
genotype calls. Nat. Biotechnol. 32, 246–251 (2014)

http://lomereiter.github.io/sambamba/
http://lomereiter.github.io/sambamba/
http://www.snpedia.com/index.php/Single_Nucleotide_Polymorphism
http://www.snpedia.com/index.php/Single_Nucleotide_Polymorphism

Machine Learning

Predictive Modeling for Job Power
Consumption in HPC Systems

Andrea Borghesi1(B), Andrea Bartolini2,3, Michele Lombardi1,
Michela Milano1, and Luca Benini2,3

1 DISI, University of Bologna, Bologna, Italy
{andrea.borghesi3,michele.lombardi2,michela.milano}@unibo.it

2 DEI, University of Bologna, Bologna, Italy
luca.benini@unibo.it

3 Integrated Systems Laboratory, ETH, Zurich, Switzerland
barandre@iis.ee.ethz.ch

Abstract. Power consumption is a critical aspect for next generation
High Performance Computing systems: Supercomputers are expected to
reach Exascale in 2023 but this will require a significant improvement
in terms of energy efficiency. In this domain, power-capping can signif-
icant increase the final energy-efficiency by cutting cooling effort and
worst-case design margins. A key aspect for an optimal implementation
of power capping is the ability to estimate the power consumption of
HPC applications before they run on the real system. In this paper we
propose a Machine-Learning approach, based on the user and applica-
tion resource request, to accurately predict the power consumption of
typical supercomputer workloads. We demonstrate our method on real
production workloads executed on the Eurora supercomputer hosted at
CINECA computing center in Bologna and we provide useful insights to
apply our technique in other installations.

1 Introduction

Supercomputers peak performance1 is expected to reach the ExaFlops (1018)
scale in 2023 [20], as revealed by the exponential increase of the worldwide
supercomputer installation [16]. A key factor limiting their further growth is the
power consumption.

Indeed today’s most powerful supercomputer is Tianhe-2 which reaches 33.8
PetaFlops with 17.8 MW of power dissipation [15]. Exascale supercomputers
built with today’s technology would led to an unsustainable power demand
(hundreds of MWatts of power) while accordingly to [6] an acceptable range
for an Exascale supercomputer is 20 MW. For this reason, current supercom-
puter systems must significantly increase their energy efficiency, with a goal of
50 GFlops/W. Today “greenest” supercomputers achieve around 9 GFlops/W,
thus a wide gap still needs to be closed in order to satisfy Exascale requirements.

1 Measured as FLOPS (floating point operation per second).

c© Springer International Publishing Switzerland 2016
J.M. Kunkel et al. (Eds.): ISC High Performance 2016, LNCS 9697, pp. 181–199, 2016.
DOI: 10.1007/978-3-319-41321-1 10

182 A. Borghesi et al.

The power consumed by a HPC systems is converted into heat therefore,
beside the IT power strictly needed for the computation, the additional power
consumption of the cooling infrastructure must be taken into account. The extra
infrastructure needed for cooling down the HPC systems has been proved to be a
decisively limiting factor for the energy performance; a common approach taken
to address this problem is the shift from air cooling to the more efficient liquid
cooling. To further reduce the cooling cost HPC systems uses hot water recycling
and free-cooling solutions [19]. Indeed when ambient conditions allow it, it is
possible to remove heat with direct exchange of heat with the ambient. The
amount of heat removed with this approach is proportional to the temperature
gradient between the supercomputer outlet temperature (water or air) and the
inlet ambient temperature. During cold days the gradient increases, enabling
a larger heat portion to be removed without switching on the chillers. At the
same time an internal hot-temperature (i.e. hot-water cooling) increases the heat
exchanged with the ambient.

A widely used metric for power efficiency is the PUE index (Power Usage
Effectiveness), i.e. the ratio between the power consumption of the whole
data center and the power consumption of the IT equipment alone. Common
approaches for the design of the facility as well as for the PUE computation
assume average or worst-case ambient parameters (temperature and humidity) as
well as peak power consumption. However peak power consumption is rare event,
which may not happen for the entire lifetime of the supercomputer. Moreover
this static design approach becomes suboptimal when dealing with free-cooling.
Indeed as early described in this circumstance the amount of IT power which can
be removed without activating the chillers depends on the external temperature
and humidity level, and thus varies across daily and night hours and seasons.

Current supercomputers cooling infrastructures are designed to withstand
power consumption at the peak performance point. However, the typical super-
computer workload is far below the 100 % resource utilization and also the
jobs submitted by different users are subject to different computational require-
ments [31]. Hence, cooling infrastructures are often over-designed. To reduce
overheads induced by cooling over-provisioning several works suggest to optimize
job dispatching (resource allocation plus scheduling) exploiting non-uniformity
in thermal and power evolutions [5].

Hardware heterogeneity as well as dynamic power management have started
to be investigated to reduce the energy consumption [17]. The idea is to limit the
power consumed by a supercomputer exploiting the power variation which can be
found across the computing resources of homogeneous [29] or heterogeneous [18]
large-scale systems, in order to create energy and power aware schedulers.

A common approach to limit the amount of power consumed by HPC systems
is power capping [21], which means forcing a supercomputer not to consume more
than a certain amount of power at any given time. Power capping approaches are
gaining popularity due the relatively simple implementation and the effective-
ness in reducing the total power consumed by a supercomputer. We are especially
interested in power capping techniques which do not require any change to the

Predictive Modeling for Job Power Consumption in HPC Systems 183

system components, nor to their performance, but only to jobs execution order
alone. For these approaches a critical aspect is the possibility to know during
the dispatching phase, before the actual execution, the amount of power con-
sumed by a job. The key idea of this paper is therefore to provide a predictive
model able to estimate with high accuracy the power consumptions of different
applications running on a supercomputer. We evaluated our approach on a real
supercomputer, with its own peculiar characteristics, but the methodology we
employed is general and can be applied to different HPC systems.

The rest of the paper is organized as follows. Section 2 describes in more
detail the power capping method and introduces the HPC machine considered
in this work. In Sect. 3 we consider the nature of the applications running on
supercomputers and the complications which may arise in a large system where
multiple jobs may share the same resources. In Sect. 4 we present the prediction
model and in Sect. 5 we evaluate the quality of the prediction w.r.t. real histor-
ical data. Finally Sect. 6 draws some conclusions and illustrates future research
avenues.

2 Power Capping

Today’s most common power budgeting techniques rely on the hardware com-
ponents capacity to operate at different frequencies and therefore with different
power consumptions. The main idea is to limit the computing nodes perfor-
mance (i.e. through Dynamic Voltage Frequency Scaling, DVFS, the capacity
of varying processor clock frequencies) when the total power consumption get
closer to the critical threshold [13]. For example, in [26] an Integer Linear Pro-
gramming (ILP) model is presented to enforce power capping in a HPC cluster.
The goal is to combine power aware characteristics with CPU power capping to
maximise job throughput of data centres where power is a constraint. Another
possibility is the so called “overprovising”. Supercomputer components such as
CPU, GPU and memory have a vendor-specified Thermal Design Power (TDP)
that corresponds to the maximal power required by the subsystem. Currently,
maximum power consumption of an HPC system is determined by the sum of
the TDP of its subsystems to take into account worst-case scenario where all
components work at their TDP level. The ability to constrain the maximum
power consumption of the subsystems below the vendor-specified TDP value
allows to add more machines while ensuring that the total power consumption
of the supercomputer does not exceed its power budget [23]. Today’s processing
elements can be configured to automatically limit they power consumption to a
given budget. However this approach can severely degrade the performance of
all the applications which will use the power capped resource, as they will run
on a de-facto reduced performance HW.

Another strategy to impose a power constraint is to act on the job execu-
tion order alone, without requiring any HW modification nor any change in the
operational frequencies of the computing nodes. Actually, this form of power
capping may not exclude the HW one, because the HW one can still be required

184 A. Borghesi et al.

in case of optimistic misprediction. In general HW control can prevent power
limit violations at a significant performance cost. Previous works have shown
that extending current HPC system job dispatchers with power capping could
lead to substantial energy savings without degrading the performance of the
supercomputer and the QoS for the users [7,8]. The approaches studied in these
work produce proactive schedules: they consider all the jobs which need to be
run - and submitted in a job queue by the supercomputer users - and decide
the starting time of each one of them in advance, according to a specified objec-
tive (i.e. QoS, maximal power savings, etc.). Compared to reactive power capping
approaches which cannot prevent dangerous violations of the desired power bud-
get as they are based on a posteriori measurement of the power consumption,
proactive approaches can predict which one will be the power consumption of a
future schedule and thus can ensure that the power budget is never exceeded.

Typically, job dispatchers need to know the power consumption (or at least
an estimate) of each application before deciding a schedule - i.e. the order in
which the job are executed. The goal is to guarantee a priori that the power
constraint will not be violated in any moment (with a certain level of confidence).
For this reason the capability of predicting the power consumptions of the jobs
which need to be run is extremely important for the optimal implementation of
a power capping method, as underlined by several works [22,30]. Furthermore, a
greater prediction accuracy is related to a better performance of a power capped
dispatcher (in terms of higher machine utilization and greater energy savings)
[12]. Intuitively if we could exactly know the power consumed by each application
we could generate optimal schedules and be sure that these schedules will never
exceed the power budget; conversely, we may obtain sub-optimal solutions when
we deal with imperfect estimates - we may want to be robust and never violate
the power constraint (for example, employing a tighter power budget), or we can
accept to exceed the power limit from time to time.

A common way to estimate an application energy or power consumption
exploits hardware performance counters which monitors the system’s compo-
nents usage during the workload execution [11,14]. Despite the good accuracy
obtained with these models the need to know the performance counters, which
should be measured at runtime, clashes with the idea of having power con-
sumption predictions available during the dispatching phase. A model to pre-
dict energy and power consumptions is presented in [28]. The authors propose
an approach which does not require any application code instrumentation and
allows for ahead of time power and energy consumption prediction. The main
limit of the described method is that it considers only jobs which occupied entire
computational nodes (this is due to the characteristics of the considered super-
computer). This on one hand simplifies the power consumption prediction but on
the other hand cannot be directly generalized to different systems where multiple
applications can possibly concurrently run on the same node.

Interest in power predictions is not limited to power capping. For example,
the authors of [3] use DVFS in order to develop an energy aware scheduler
able to reduce energy consumption of supercomputers. For this purpose they

Predictive Modeling for Job Power Consumption in HPC Systems 185

introduce a prediction model to forecast power and performance application
in case of different execution frequencies. This model relies heavily on precise
information about the application executables and requires the user to provide
a tag identifying similar jobs. While we think this is an interesting direction,
currently users provided information cannot be taken for granted.

In the rest of this section we describe the supercomputer which served as our
case study.

2.1 The Eurora Supercomputer

The Eurora supercomputer prototype, developed by Eurotech and Cineca [1] has
ranked first in the Green500 list in July 2013, achieving 3.2 GFlops/W on the
Linpack Benchmark with a peak power consumption of 30.7 KW. Eurora has
been supported by PRACE 2IP project [2] and it serves as testbed for next gen-
eration Tier-0 system. Its outstanding energy efficiency is achieved by adopting a
direct liquid cooling solution and a heterogeneous architecture with best-in-class
general purpose HW components (Intel Xeon E5, Intel Xeon Phi and NVIDIA
Kepler K20). For its characteristics Eurora is a perfect vehicle for testing and
characterizing next-generation “greener” supercomputers. As described in [4]
Eurora has a heterogeneous architecture based on nodes (blades). The system
has 64 nodes, each with 2 octa-core CPUs and 2 expansion cards configured to
host an accelerator module: currently, 32 nodes host 2 powerful NVidia GPUs,
while the remaining ones are equipped with 2 Intel Xeon Phi accelerators. Every
node has 16 GB of installed RAM memory. A few nodes (external to the rack)
allow the interaction between Eurora and the outside world, in particular a login
node connects Eurora to the users and runs the job dispatcher (PBS). A key ele-
ment of the energy efficiency of the supercomputer is a hot liquid cooling system,
i.e. the water inside the system can reach up to 50◦ C.

Jobs are submitted by the users into one of multiple queues, each one char-
acterized by different access requirements and by a different estimated waiting
time. Users submit their jobs by specifying (1) the number of required nodes;
(2) the number of required cores per node; (3) the number of required GPUs
and Xeon Phi per node (never both of them at the same time); (4) the amount
of required memory per node; (5) the maximum execution time.

Monitoring Infrastructure. Eurora features an integrated and low-overhead mon-
itoring system composed by a set of software daemons and parsing scripts. The
SW daemons run periodically (every 5 s) on each node to collect traces of the
processing elements (CPUs, GPUs, Xeon Phi) activity by mean of HW perfor-
mance counters. For each core they gather values from the Performance Moni-
toring Unit as well as the core temperature sensors, and the time-step counter.
In addition, for each CPU it gathers the energy monitoring counters (power unit,
core energy, dram energy, package energy) present in the Intel Running Aver-
age Power Limit (RAPL) interface. The parsing scripts process off-line the raw
log of the performance counters to generate performance metrics (CPI, Load,
Temperature, Power, etc.) and relate them with the job running on the node.

186 A. Borghesi et al.

In addition to the physical information monitoring framework we also gather
the information regarding the jobs which executed on the supercomputer; we
consider parameters describing the job, such as the user who submitted it, the
requirements (number of core requested, etc.), when it started and when it ended,
etc. All the collected data are stored on a database hosted at CINECA.

A critical problem arises from the fact that multiple jobs can run concurrently
on the same node: while we can directly measure only the power consumed by
the CPUs the jobs can be allocate to single cores. Moreover, we know on which
node a job run but we cannot distinguish the exact CPU it used (two CPUs
per node). Therefore we cannot directly measure the power consumptions of
applications which do not occupy entire nodes. The number of jobs which use
only node portions is not negligible at all, since that is actually the majority of
jobs which run on Eurora supercomputer2. This problem may emerge in many
different HPC systems due to the various power measurements methodologies
found in current supercomputers [27]. In the following sections we explain how
we deal with such a problem.

3 Job Power Profiling

In this section we discuss and empirically validate two extremely important key
concepts: (1) the power of a job can be approximated with its average value
keeping a good accuracy; (2) a method to compute the power consumed by jobs
which required only portion of nodes.

In this work we decided to consider only the power consumption of the
CPUs, thus disregarding HW accelerators. We focused on the CPU consump-
tions because these are the most difficult to deal with, due to the fact multiple
jobs can run on the same CPUs. Currently, HW accelerators cannot be shared by
multiple jobs. Therefore from now on with “power” we are referring to the CPU
power consumption. As already mentioned we must make a distinction between
two kinds of problem: jobs which require entire nodes (one or more) and jobs
which require only a portion of a node. In the first case we can simply use the
power measures we collected; in the latter case we need a method to compute
the power consumptions with the data at our disposal. This method is described
in Sect. 3.1.

A HPC application power consumption may vary during its lifetime due to
the nature of the applications itself and of the different phases which compose it,
but the impact of such variability has not been extensively studied. Conversely,
if the power consumption was constant - i.e. if we can associate to each job a
precise, single value - the task of a job dispatcher would be greatly simplified3.

2 It is probably due to the fact that Eurora was originally a prototype and only later
entered production phase.

3 The proactive job dispatchers aforementioned require to know in advance the job
power consumption as a single value; they could theoretically manage the power as
a more complex object (i.e. a curve instead of a single value) but we risk to incur in
significant performance losses.

Predictive Modeling for Job Power Consumption in HPC Systems 187

Our idea is to use the mean power to represent the power consumption of a job, in
the hope that the power variability is relatively low and the power consumption
relatively constant or that when we add all the job power traces the variability of
the power of each job is compensated by the others. This mean value is calculated
as the average of all power measurements collected during the job lifetime.

In Fig. 1 we can see the power consumption profiles of three different jobs, A
(Fig. 1a), B (Fig. 1b) and C (Fig. 1c). The first two jobs present a similar profile:
their power consumption is quite constant and with a relatively small variability.
In particular the power consumption of job B shows very little variability while
job A powers have a higher variance - but still quite small compared to the
mean value. As job C reveals, this is not always the case: there are also jobs
whose power consumption changes more drastically during their lifetime (see
the sharp increase in the power consumed by job C). Nevertheless, we can still
estimate a job power consumption through its mean (average) value because the
jobs with significant power variability are only the minority of all the jobs. The
overwhelming majority of jobs show a low standard deviation in their power
consumptions.

In Fig. 1d finally we see the histogram of the “normalized” standard devi-
ations distribution. For each job we first compute the mean and the standard
deviation of all the power measurements then we divide the standard devia-
tion by the mean value to obtain a normalized standard deviation (to let us
compare standard deviations of different jobs). We can easily see that for the
vast majority of the jobs the standard deviation of the power consumptions is
less than 10 % of the mean value - and in many cases even less than 5 %. This
means that the standard deviation is, on average, very small and consequently
the power variability is not too big. This is probably a characteristic of HPC
jobs, which are generally carefully tuned to avoid big workload changes during
the key computation.

This observation allows us to estimate the power consumption with the mean
value without losing too much accuracy. It is clear that when associating a
single power to a job we are going to lose some information about the real power
consumption and therefore commit a certain (small) error. A job dispatcher with
power capping is interested in the total power consumption of the system: when
we sum all the jobs the errors tend to compensate each other thus the average
error we commit is low.

3.1 Power Consumption of Jobs Not Using Entire Nodes

We describe now the technique to estimate the power of jobs running on portions
of nodes. As discussed before we do not have a direct measurement of the power
consumed by job using only a portion of a node. In this section we present a
method to compute a power for these jobs. The main idea behind our approach
is that each job consumes an amount of power proportional to its requirements
(more specifically the number of requested cores).

An important requirement of our approach is the knowledge of the number
of running jobs and “active” cores in each node at every time. Number of active

188 A. Borghesi et al.

Fig. 1. Real power consumptions of 3 jobs (A, B and C) and standard deviation dis-
tribution histogram

cores means the number of cores that should be used in a node given the number
of cores requested by all jobs running on such node. We therefore created these
node profiles using the historical job traces. The information regarding the num-
ber of cores active on a node at any given time is fundamental for our approach
since it allows us to understand the amount of power associated with a job: if a
job j runs alone on node i the number of active cores is equal to the number of
cores requested by job j and all the power consumption can be attributed to that
job. Conversely if more jobs are running concurrently, each job will contribute
to only a portion of the whole power (i.e. with 2 jobs sharing a node, using all
the node cores, each job can be associated with half the measured power). This
reasoning motivates the power we associate to each job as expressed in Eq. 1

Pj = Pij
crj
ncaij

(1)

where Pj is the power associated to job j, crj is the number of cores required by
job j, Pij is the average power of the node i on which the job j has run during

Predictive Modeling for Job Power Consumption in HPC Systems 189

the job lifespan and ncaij is the weighted average number of cores which were
active on node i during the duration of job j. In practice this equations says
that the power associated to a job depends on the amount of workload related
to the job - i.e. how many of the active cores on the nodes were used by the job.

While Pij and crj are information stored in our database and ready to be
used, ncaij needs to be computed. This value tells the average number of cores
(related to the number of concurrent jobs) which were active during the lifetime
of the job; this number can be computed using the node profiles described pre-
viously, which can tell us the number of active cores in any moment of the job
duration. More precisely we divide the job lifespan in sub-intervals where the
number of active cores is constant and then we compute the average number of
cores, weighted by the sub-interval duration. To formalize, given a node i we
suppose to have job j, with duration Durj , which starts at STj and terminates
at ETj . We then have a set of intervals s ∈ j, each one with duration Durs; in
a sub-interval the number of active cores is ncs. The weighted number of active
cores can be computed as follows:

ncaij =
∑

s∈j

ncs
Durs
Durj

(2)

We designed an experiment to test the accuracy of the approximation method
for jobs using node portions. For a given time interval we compare the total real
power of the system, computed as the sum of all the node power measurements
at each given time (we use time sub-intervals of 5 min). Then, for every time
considered we also compute the total estimated power, i.e. the sum of the powers
of the jobs running at that time; the power of each job is calculated with the
method discussed above. A clear limitation in this approach is the fact that
we are comparing two aggregate metrics (total real power and total estimated
power) and we do not calculate the single job error.

In Fig. 2 some results are shown - the trace corresponds to a one-day period.
As we can see the results are remarkably good, for example in the period con-
sidered we can see that our power estimate has an accuracy around 99 %. The
results can nevertheless be worse in general, but the accuracy for our whole data
set is always between 95 % and 96 %. Part of the error we observe is not due to
the method itself, but actually is caused by the imperfect data in our possession.
For example, our algorithm strongly depends on the traces of the jobs which
run on Eurora and particularly on the resource requirements declared by the
jobs. This can be a source of error because users declare the peak requirement
of their application but the average usage may be lower (i.e. asking for 4 cores
but actually using just one on average).

The main weak point of our method is its reliance on the resource require-
ments, which are declared by the users. Hypothetically, users should make truth-
ful declarations, but it turns out - as we discovered through previous analysis
- that this is not always the case. This could also be due to the fact that we
consider resource requirements as constant during a job lifespan whereas a job
may not always employ all the requested resources. Nevertheless, there is a

190 A. Borghesi et al.

Fig. 2. Comparison between the real aggregated power and the computed aggregated
power. Mean error: 0.011

discrepancy between the resource requirements declared by the users and the
resource actually used and such discrepancy is going to be a problem for the
prediction model. We discuss this issue in Sect. 4.3.

4 Powers Prediction Model

In the previous sections we have seen that it is possible to describe a job power
consumption with a single value - the mean value - and we are able to do that for
every job running on the system, whether it occupies an entire node or not. With
this information we can now create a prediction model to estimate jobs power

Predictive Modeling for Job Power Consumption in HPC Systems 191

consumptions. For this purpose we employed a machine learning approach (ML)
which counts on the large amount of historical data in our possession: using the
knowledge we have on the applications that run in the past we can learn a model
able to predict the consumption of future jobs. We implemented our machine
learning models with a Python module called scikit-learn [24].

The basic idea of a machine learning predictor is to learn a model which
correlates a set of input features, or independent variables, with a target, or
dependent variable. In our particular context we want to correlate the job char-
acteristics (duration, requirements, etc.), i.e. the features, with the job power
consumptions. This correlation can be learned by the model thanks to the large
number of example which constitutes the training set, i.e. the data regarding
past jobs, with their characteristics and power consumptions. After the learn-
ing phase the model can estimate the powers for new jobs (not seen during the
training). A critical element for the success of ML techniques is the availability
of large data sets for the training phase; in the Eurora’s case we have a data set
comprising tens of thousands of jobs (more or less 100k), which is more than
enough to obtain good quality predictions.

We developed two different approaches, one to be used with jobs which
require entire nodes (Sect. 4.1) and one to be used with jobs occupying only
portion of nodes (Sect. 4.2). In this second case, we created multiple prediction
models: one for each user with already enough collected data plus a generic one
for new users.

4.1 Jobs on Entire Nodes

In the case of jobs on entire nodes we created a single model which takes
into account the following features: user, queue, requested duration, number of
requested nodes, number of requested cores, number of requested GPUs, number
of requested Xeon Phi4, amount of requested memory. The ML method we used
for this model is called Random Forest Regression [10], which is an evolution
of the classical and widely used Decision Tree [25]. Other than Random Forest
we tried other supervised regression techniques, using the default implemen-
tations provided by sci-kit. We used Generalized Linear Model, Support Vector
Machines, Decision Trees and ensemble methods (which combine the predictions
of several base estimators) such as Bagging, AdaBoost and Gradient Tree Boost-
ing. We then chose the approach with the better accuracy. The time required to
train the model is very low, less than 3 s, and the time required to make a pre-
diction is negligible, much less than a second. The training should be performed
once with the available historical data and then the model could be updated
regularly with the new jobs information collected during the normal execution.

A common way to compute the goodness of a prediction model is to split the
data set into two subsets: the training set and the test set. With the training
4 The number of requested HW accelerators is important because GPUs adn Xeon

Phi are mounted on computing nodes with different power consumptions, i.e. a job
requiring a GPU will necessary run on a CPU consuming more power than those
with a Xeon Phi.

192 A. Borghesi et al.

Fig. 3. Prediction errors histogram for two test sets

set we can learn the prediction model, which is then used to estimate the power
consumptions of the jobs in the test set. These estimates are then compared
with the real power consumptions of the jobs in the test set, computing the
“prediction error” for each job in the test set5. The average of these prediction
errors then measures the quality of the prediction, with lower values indicating
higher quality. The average prediction error computed in this way is around
4 %–5 %, which guarantees a very accurate prediction. Figure 3a, b show the
histograms of the prediction errors for two different test sets of jobs on entire
nodes. These results were obtained with a training set of around 10k jobs and the
test sets are, respectively, of 943 and 714 jobs (test and training sets randomly
extracted from the whole data set).

4.2 Jobs on Portions of Nodes

In the case of jobs using only node portions the prediction turned out to be
more difficult than the entire node case and that forced us to try with a different
approach. In particular, we chose to create a prediction model for each user,
since it is probable that a certain user will submit jobs with a similar pattern.
Also in this case the best ML technique has been selected after a preliminary
study and the best performance was obtained with Decision Tree Regression [9]
- also a Decision Trees based method. The problem with having one predictor
per user is that we split our training (and test) set and therefore the dimension
of these sets decreases. If the test set dimension decreases too much the learn-
ing looses its effectiveness and consequently we cannot make good predictions.
This problem happens particularly if there are users who submitted few jobs
and thus we cannot actually learn a prediction model for them6. To solve this
5 We actually used a normalized prediction error: (real power −
predicted power)/real power.

6 This is also a problem for new users to whom we cannot build any prediction model
until a sufficient number of jobs are submitted.

Predictive Modeling for Job Power Consumption in HPC Systems 193

issue together with the single user predictors we also have a “general” predictor,
devised without splitting the test set and including all users. This generalized
predictor is slightly less accurate than the specific ones, but it is an essential
component in our prediction mechanism.

The input features of the generalized predictor are the same used for the
entire nodes models plus the following: the job name, the number of jobs running
on the system at the job start time, the number of cores used on the system
at the job start time and the ratio between active cores and total number of
cores on the system at job start time. These additional information mainly serve
to characterize the supercomputer state and we also added the job name (the
application executable) since jobs with similar names - by the same users -
usually represent different runs of the same application (and probably are similar
in terms of power consumption). The specific (per user) predictors have all the
input features of the generalized predictor minus the user name: obviously, since
it would be the same for all the jobs in the test set. The training time is very
fast also in this case, usually less than 2 s for each user predictor.

The accuracy of the prediction has been computed as before, i.e. using the
average prediction error. Now we have different accuracies for the different user
predictors and to obtain an aggregate measure we calculate the mean of all the
average prediction errors (one average prediction error user, plus the generalized
one). The quality of the prediction is lower than in the case of jobs on entire
nodes, with an average error around 15 % - for some user the error could be
smaller than 3 % while for other users it could be up to 35 %. In Fig. 4 we can
see the histograms of the prediction errors for two different users, User A and
User B. In the case of User A (Fig. 4a) we see how the accuracy is very good
since the errors are very small and centred on zero. Conversely Fig. 4b reveals
that for User B the prediction is definitely less precise; it’s easy to see that while
the majority of jobs are well predicted (small error around zero), a few of them
are extremely bad predicted (queue of errors much smaller than −1, on the left
of the graph). In the following section we are going to describe the reason of this
behaviour.

The predictor models devised for the jobs running on node portions could
be also used without modifications also to predict the power of jobs running on
entire nodes (jobs on entire nodes are a subset of jobs on node portions). Clearly,
the accuracy of the prediction decreases w.r.t. to the dedicated predictor.

4.3 Outliers Management

After collecting the prediction results described previously we investigated them
to understand why some predictions were so wrong. The first thing we noticed
is that these bad estimated jobs have a small power (compared to the rest of the
jobs). As we see in the next section, these “bad” jobs do not have a great impact
on the aggregate prediction precision (that is, when we compare the total real
system power consumption and the total predicted power) and could actually be
disregarded. Furthermore we claim that these jobs are outlier, i.e. jobs not rep-
resenting a typical Eurora workload. This is due to two factors. First, these jobs

194 A. Borghesi et al.

Fig. 4. Prediction error histogram for two different users

show “strange” behaviours: they usually have a very short duration (under 5 min
and very often even less)7. This frequently means that these jobs did not have a
correct execution and terminated abruptly, possibly without actually using the
requested resources. The second issue is related to the discrepancy between the
declared resource requirements and the resources actually used - due to both
incorrect estimates by users and varying levels of resource utilization during the
job execution. The jobs whose estimates are extremely wrong present a signif-
icantly higher level of discrepancy between the declared resource requirements
and the resources actually used.

If we discard these outliers from the average prediction error computation,
the accuracy increases sharply: the mean error becomes smaller than 4 %. This
consideration leads us to formulate two simple guidelines to obtain better predic-
tions: (1) it is extremely important that the users declare realistic requirements
and should be incentivized to do that; (2) the job monitoring framework has to
keep track of those jobs which did not terminate their execution correctly and
must be able to distinguish them from the “successful” ones.

5 Results

In this section we present the conclusive results of the methods we introduced in
the rest of the paper: estimate of a job power consumption with the mean value
of multiple powers measures and prediction of such mean powers with a ML
model. We want to know the final error we obtain after having applied all the
stages of our method, each of them introducing some inaccuracy. For this purpose
we tested our predictions against the real system power consumptions (again,
we consider only CPU powers). The experiment set up is the same employed
to compare mean power consumptions and real ones, that is we compare the

7 We cannot just delete all jobs with short durations from the train set since in this
way we could discard legitimate jobs.

Predictive Modeling for Job Power Consumption in HPC Systems 195

total real power in the system at time t with the sum of all power predictions of
job running at time t. The power predictions are obtained with the previously
mentioned model and for the sake of simplicity we did not employ the dedicated
predictor for the jobs running on entire nodes.

In our accuracy calculations we decided to disregard the outliers, as described
in Sect. 4.3. In Fig. 5 we can see some results; the figure corresponds to a two-
days period. On the left the predicted trend is compared to the real power trend
and on the right we can see the histograms of the prediction errors. As we can
see the results are very good, with a mean error smaller than 6 %. This is true
also if we consider more extended period of times; the average error for the whole
test period (a month) is around 8 % and 9 %.

Fig. 5. Comparison between the real total power and the predicted total power. Period
2. Mean error: 0.056

196 A. Borghesi et al.

While the average error is good with must consider the nature of our mis-
predictions in relation to the power capping. More specifically we can observe
under-prediction and over-prediction. The first one could lead to emergencies
(the real power actually exceeds the cap planned in the dispatcher) and the
second one leads to machine under-utilization and it is undesirable as well. The
concerns about underestimates is that they may lead to power and thermal over-
shoots. More in detail, when the predicted power is below actual power for a time
significantly longer than the thermal time constants of the HPC machine, and
the prediction error is above 10 %, then hardware power throttling would kick
in at run time to prevent temperature overshoots, leading to undesirable perfor-
mance losses and possible violations of service level agreements. We call these
events “critical underestimates”. Our error analysis reveals that critical under-
estimates would happen for less than 2 % of the operating time of the machine.
For example, in the 2-days period of Fig. 5 we registered 37 periods when the
predicted power was lower than the real one. While this could seem a high num-
ber, the great majority of these under-prediction periods were very short: 90 %
of the times the under-predictions lasted for less than 2 min and 80 % of the
under-predictions lasted less than 1 min. The longest under-prediction period
lasted for 8 min. These values are very short w.r.t. a typical HPC application
duration (i.e. a few hours). Even tough these results are very good we can nev-
ertheless take into account under-predictions and there a few ways to cope with
them. From one hand, we can back up our dispatcher with a HW power cap
mechanism to ensure to never exceed the power budget. Another solution could
be to require the dispatcher to respect a power constraint tighter than the real
one, thus guaranteeing never to surpass the desired power budget.

An extremely important factor for the quality of the prediction is the avail-
ability of information regarding previous jobs. The size of the data set used to

Fig. 6. Data set size and prediction error

Predictive Modeling for Job Power Consumption in HPC Systems 197

train our learning machine models greatly influences the results accuracy. To
give an idea of the relevance of this point we can look at Fig. 6. We have on the
x -axis the increasing data set sizes (obtained through random sampling of our
original data set) and on the y-axis the corresponding mean normalized error
of the prediction. The mean error reported is the aggregated, final one. We can
easily see that the prediction accuracy decreases (the error increases) when the
data set size shrinks. A good dimension for the data set is around 80k entries
(previously observed jobs)8.

6 Conclusion

In this paper we presented a set of techniques which aim to improve the perfor-
mance of power capping in HPC systems. Since job dispatchers need to know the
power consumptions of the applications in order to create an optimal schedule
here we proposed a method to predict such power consumptions. We have done
that using techniques borrowed from the Machine Learning field and relying on
the big quantity of data we collected on our case-study system - the Eurora
supercomputer. The main results we obtained are the following.

First, we can approximate the power consumption of a job with a single value,
the average of all the power measurements taken during its lifetime, with only a
small loss of precision. Dealing with a single values instead of multiple ones is a
great help for the job dispatcher. Then we tackled the problem of co-executing
jobs, i.e. applications which run on the same node and using only a portion of
the node resources. The problem arised from the mismatch between the minimal
allocation unit in the system and the granularity of the power measures collected.
We proposed an algorithm to estimated the mean power consumptions of such
jobs and proved its efficacy. Finally we devised a method to predict the mean
power consumption for every application obtaining a great prediction accuracy
and we also provided guidelines to ensure the quality of the predictions.

As future work we plan to integrate the proposed solution in our previous
job dispatchers with power capping. In order to do that we are also going to
extend our model to consider the HW accelerators in our estimates.

Acknowledgement. This work was partially supported by the FP7 ERC Advance
project MULTITHERMAN (g.a. 291125). We also want to thank CINECA and
Eurotech for granting us the access to their systems.

References

1. Eurora page on the cineca web site. http://www.cineca.it/en/content/eurora.
Accessed 14 Apr 2014

2. PRACE, the Partnership for advanced computing in europe

8 In Eurora’s case this corresponds to less than 3 months of observation.

http://www.cineca.it/en/content/eurora

198 A. Borghesi et al.

3. Auweter, A., Bode, A., Brehm, M., Brochard, L., Hammer, N., Huber, H., Panda,
R., Thomas, F., Wilde, T.: A case study of energy aware scheduling on SuperMUC.
In: Kunkel, J.M., Ludwig, T., Meuer, H.W. (eds.) ISC 2014. LNCS, vol. 8488, pp.
394–409. Springer, Heidelberg (2014)

4. Bartolini, A., Cacciari, M., Cavazzoni, C., et al.: Unveiling eurora - thermal and
power characterization of the most energy-efficient supercomputer in the world. In:
Design, Automation Test in Europe Conference Exhibition (DATE), March 2014

5. Bartolini, A., Cacciari, M., Tilli, A., Benini, L.: Thermal and energy management
of high-performance multicores: distributed and self-calibrating model-predictive
controller. IEEE Trans. Parallel Distrib. Syst. 24(1), 170–183 (2013)

6. Bergman, K., Borkar, S., Campbell, D., et al.: Exascale computing study: technol-
ogy challenges in achieving exascale systems, September 2008

7. Borghesi, A., Collina, F., Lombardi, M., Milano, M., Benini, L.: Power capping in
high performance computing systems. In: Pesant, G. (ed.) CP 2015. LNCS, vol.
9255, pp. 524–540. Springer, Heidelberg (2015)

8. Borghesi, A., Conficoni, C., Lombardi, M., Bartolini, A.: MS3: a mediterranean-
stile job scheduler for supercomputers - do less when it’s too hot! In: International
Conference on High Performance Computing & Simulation, HPCS, Amsterdam,
Netherlands, 20–24 July 2015, pp. 88–95 (2015)

9. Breiman, L., Friedman, J., Stone, C.J., Olshen, R.A.: Classification and Regression
Trees. The Wadsworth and Brooks-Cole Statistics-Probability Series. Taylor &
Francis, Abingdon (1984)

10. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
11. Chetsa, G.L.T., Lefevre, L., Pierson, J., et al.: Exploiting performance counters to

predict and improve energy performance of HPC systems. Future Gener. Comput.
Syst. 36, 287–298 (2014)

12. Choi, J., Govindan, S., Urgaonkar, B., et al.: Profiling, prediction, and capping of
power consumption in consolidated environments. In: IEEE International Sympo-
sium on Modeling, Analysis and Simulation of Computers and Telecommunication
Systems, MASCOTS, pp. 1–10. IEEE (2008)

13. Cochran, R., Hankendi, C., Coskun, A.K., Reda, S.: Pack & cap: adaptive
DVFS and thread packing under power caps. In: Proceedings of the 44th Annual
IEEE/ACM International Symposium on Microarchitecture, pp. 175–185. ACM
(2011)

14. Contreras, G., Martonosi, M.: Power prediction for intel xscaleprocessors using
performance monitoring unit events. In: Proceedings of the International Sympo-
sium on Low Power Electronics and Design, ISLPED 2005, pp. 221–226. ACM,
New York (2005)

15. Dongarra, J.J.: Visit to the national university for defense technology changsha,
China. Technical report, University of Tennessee, June 2013

16. Dongarra, J.J., Meuer, H.W., Strohmaier, E.: 29th top500 Supercomputer Sites.
Technical report, Top500.org, November 1994

17. Feng, W., Cameron, K.: The Green500 list: encouraging sustainable supercomput-
ing. IEEE Comput. 40(12), 50–55 (2007)

18. Fraternali, F., Bartolini, A., Cavazzoni, C., et al.: Quantifying the impact of vari-
ability on the energy efficiency for a next-generation ultra-green supercomputer.
In: Proceedings of the International Symposium on Low Power Electronics and
Design, ISLPED 2014, pp. 295–298. ACM, New York (2014)

19. Jungsoo, K., Ruggiero, M., Atienza, D.: Free cooling-aware dynamic power manage-
ment for green datacenters. In: 2012 International Conference on High Performance
Computing and Simulation (HPCS), pp. 140–146, July 2012

Predictive Modeling for Job Power Consumption in HPC Systems 199

20. Kogge, P., Resnick, D.R.: Yearly update: exascale projections for 2013, October
2013

21. Lefurgy, C., Wang, X., Ware, M.: Power capping: a prelude to power shifting.
Cluster Comput. 11(2), 183–195 (2008)

22. Pakin, S., Storlie, C., Lang, M., et al.: Power usage of production supercomputers
and production workloads. Concurrency Comput.: Pract. Experience (2013)

23. Patki, T., Lowenthal, D.K., et al.: Exploring hardware overprovisioning in power-
constrained, high performance computing. In: Proceedings of the 27th International
ACM Conference on International Conference on Supercomputing, ICS 2013, pp.
173–182. ACM, New York (2013)

24. Pedregosa, F., Varoquaux, G., Gramfort, A., et al.: Scikit-learn: machine learning
in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

25. Quinlan, J.R.: Induction of decision trees. Mach. Learn. 1(1), 81–106 (1986)
26. Sarood, O., Langer, A., Gupta, A., et al.: Maximizing throughput of overprovi-

sioned HPC data centers under a strict power budget
27. Scogland, T.R.W., Steffen, C.P., Wilde, T., et al.: A power-measurement method-

ology for large-scale, high-performance computing. In: Proceedings of the 5th
ACM/SPEC International Conference on Performance Engineering, ICPE 2014,
pp. 149–159. ACM, New York (2014)

28. Shoukourian, H., Wilde, T., Auweter, A., Bode, A.: Predicting the energy and
power consumption of strong and weak scaling HPC applications. Supercomputing
Front. Innovations 1(2), 20–41 (2014)

29. Shoukourian, H., Wilde, T., Auweter, A., Bode, A.: Power variation aware config-
uration adviser for scalable HPC schedulers. In: 2015 International Conference on
High Performance Computing Simulation (HPCS), pp. 71–79, July 2015

30. Storlie, C., Sexton, J., Pakin, S., et al.: Modeling and predicting power consumption
of high performance computing jobs. arXiv preprint arXiv:1412.5247 (2014)

31. You, H., Zhang, H.: Comprehensive workload analysis and modeling of a petascale
supercomputer. In: Cirne, W., Desai, N., Frachtenberg, E., Schwiegelshohn, U.
(eds.) JSSPP 2012. LNCS, vol. 7698, pp. 253–271. Springer, Heidelberg (2013)

http://arxiv.org/abs/1412.5247

Towards Machine Learning on the Automata
Processor

Tommy Tracy II1(B), Yao Fu2, Indranil Roy3, Eric Jonas4,
and Paul Glendenning2

1 University of Virginia, Charlottesville, VA, USA
tjt7a@virginia.edu

2 Micron Technology, Inc., Milpitas, CA, USA
{alfu,pglendenning}@micron.com

3 Micron Technology, Inc., Boise, ID, USA
iroy@micron.com

4 University of California, Berkeley, CA, USA
jonas@ericjonas.com

Abstract. A variety of applications employ ensemble learning models,
using a collection of decision trees, to quickly and accurately classify
an input based on its vector of features. In this paper, we discuss the
implementation of such a method, namely Random Forests, as the first
machine learning algorithm to be executed on the Automata Processor
(AP). The AP is an upcoming reconfigurable co-processor accelerator
which supports the execution of numerous automata in parallel against
a single input data-flow. Owing to this execution model, our approach is
fundamentally different, translating Random Forest models from exist-
ing memory-bound tree-traversal algorithms to pipelined designs that
use multiple automata to check all of the required thresholds indepen-
dently and in parallel. We also describe techniques to handle floating-
point feature values which are not supported in the native hardware,
pipelining of the execution stages, and compression of automata for the
fastest execution times. The net result is a solution which when evalu-
ated using two applications, namely handwritten digit recognition and
sentiment analysis, produce up to 63 and 93 times speed-up respectively
over single-core state-of-the-art CPU-based solutions. We foresee these
algorithmic techniques to be useful not only in the acceleration of other
applications employing Random Forests, but also in the implementation
of other machine learning methods on this novel architecture.

Keywords: Automata processor · Machine learning · Random forest

1 Introduction

Recent research has shown that tree-based ensemble models, in particular Ran-
dom Forests [3], are fast and accurate models of classification for a wide range

T. Tracy II and Y. Fu—Both authors contributed equally to this work.

c© Springer International Publishing Switzerland 2016
J.M. Kunkel et al. (Eds.): ISC High Performance 2016, LNCS 9697, pp. 200–218, 2016.
DOI: 10.1007/978-3-319-41321-1 11

Towards Machine Learning on the Automata Processor 201

of applications including bioinformatics [11], computer vision [4], and sentiment
analysis [19]. As data rates climb, accelerating the classification rate of these
models is critical, but also presents a variety of challenges. While the non-
uniform memory access patterns of tree traversal algorithms result in memory-
bound CPU-based implementations, execution divergence while traversing differ-
ent paths in the tree(s) prevents multiple threads on Single Instruction Multiple
Data (SIMD) accelerators such as GPGPUs from executing in parallel.

Although parallelization on contemporary Multiple Instruction Multiple
Data (MIMD) machines like CPU clusters is possible due to the independent
computability of the individual trees, achieving good load balancing remains a
challenge owing to different tree depths, deepest of which determines the overall
runtime. Additionally, broadcasting a feature vector for every input to all the
processors often makes the execution communication bound.

In spite of the above mentioned challenges, the classification rate is an impor-
tant design metric for Random Forest-based applications. As the training and
optimization is typically completed offline, the rate of classification determines
the actual runtime performance of the algorithm. For example, the web search
engine described by Asadi et al. [2] uses Random Forests in its innermost loop.
Therefore, accelerating this loop for a search engine that processes billions of
queries per day has a significant effect on the perceived latency experienced
by the user. Similarly, a more efficient implementation leads to reduced power,
infrastructure and cooling costs for the service providers.

The Automata Processor (AP) is a new non-Von Neumann processor based
on the Multiple Instruction, Single Data (MISD) architectural taxonomy. It can
compute thousands of user-defined Nondeterministic Finite Automata (NFAs)
against a single data stream, in hardware and in parallel. We assert that this is
an ideal architecture for accelerating Random Forests, because the values from
a single feature vector (representing an input sample), need to be evaluated
against the threshold conditions captured by the root-to-leaf paths in the deci-
sion trees. By creating a separate automaton for all possible root-to-leaf paths,
and by executing thousands of such automata in parallel on the AP, significant
acceleration may be achieved.

Nonetheless, executing Random Forest models on the AP required over-
coming some fundamental challenges hitherto not addressed by previous AP
work [12,13,17,20]. First, Random Forest feature values are often expressed as
floating point numbers. Unfortunately, neither floating point numbers nor oper-
ations are supported on the AP. To address this limitation, we developed a
labeling technique to represent floating point numbers using the symbol-space
of the AP, and to operate on the same using the supported instruction set. Sec-
ond, since all automata on the AP consume bytes from the input in the same
order, each automaton was designed to process the feature values in a predefined
ordered sequence. This deviates from the current Random Forest implementa-
tions, wherein the order of access to the feature values is determined by the tree
traversal leading to non-uniform memory accesses.

202 T. Tracy II et al.

Finally, in order to fit all of the automata required for large Random Forest
models onto a single AP board, we adopted a compression technique called
Automata Folding, which combines the address spaces of multiple features into
as few State Transition Elements (STEs) as possible, reducing the automaton’s
size.

Having overcome the above mentioned challenges, we have expanded the use
of this new processor to accelerate applications employing decision tree-based
ensemble classifiers. As exemplars, we used these techniques to accelerate two
applications: (1) the classification of handwritten digits and (2) characterization
of a poster’s sentiment behind a Tweet, a 140-character long message on the
popular online social networking service Twitter. We hope that the techniques
described in this paper catalyze further research on the acceleration of other
applications using Random Forests, as well as other machine learning techniques
on the Automata Processor.

The rest of the paper is arranged as follows. In Sect. 2, we briefly review
decision trees and Random Forests, as well as the Automata Processor. Then
in Sect. 3, we introduce our techniques to represent Random Forests as a set of
automata that can be executed on the AP. In Sect. 4, we present our evaluation
results, and finally we conclude with a discussion on avenues of future research
in Sect. 5.

2 Background

2.1 Random Forest

The Random Forest [3] is a supervised classification algorithm. It is an ensemble
technique, composed of multiple binary decision trees. Each tree is trained inde-
pendently by using a random subset, with replacement, of the available training
samples. A tree is built by iteratively choosing a split feature from a random sub-
set of the feature space, and determining the best threshold value to maximize
the entropy reduction per split. This threshold comparison for the split feature is
captured as a split node in the tree, whose left child corresponds to the next state
if the threshold qualification is met, and the right to the contrary. This learning
process continues until a maximum depth or minimum error threshold has been
met. Each leaf node in a tree represents a classification result. For example, the
decision tree shown in Fig. 1a can be used to classify an input sample into one
of the four classes: Class 0 - Class 3 based on the values of features f1–f4.

At runtime, a classification of the input sample, represented by a feature
vector, is calculated for each tree. Starting at the root node, a root-to-leaf path
is traversed based on the values of the features of the input sample. Since each
of the split outcomes is mutually exclusive, there is only one root-to-leaf path
per tree which can be traversed for any input feature vector. For example, the
root-to-leaf path traversed in the decision tree in Fig. 1a for the input feature
vector shown in Fig. 1b is highlighted in bold. The sample is therefore classified
as belonging to Class 2 by this tree. The net classification of the Random Forest
is the mode of the results from all trees.

Towards Machine Learning on the Automata Processor 203

Fig. 1. A decision tree.

Like most machine learning algorithms, Random Forests are trained offline
and then optimized for fast runtime classification. Current state of the art imple-
mentations run in super-linear time with decision tree depth. This non-linearity
arises from the limited locality of the memory access pattern. Computation at
each node requires non-uniform access to both the feature vector and the Ran-
dom Forest model. This is because the split node features are unpredictable, and
so are the traversals of the root-to-leaf path for the trees. This unpredictability
makes current Random Forest implementations memory-bound, hampering the
scalability of the models.

Previous Work. The decision trees in Random Forest models are often non-
uniform in shape and significant in depth. This makes it impossible to fit an
entire decision tree as well as feature vector in the cache memory of modern
processors. Therefore, optimizing the traversal algorithm to maximize the spatial
and temporal locality has been widely studied.

Essen et al. [16] compare multi-core CPU, GPGPU and FPGA Random
Forest implementations for the highest classification rate, performance-to-power
and performance-to-cost ratios. They augmented the Compact Random Forest
(CRF) design [10] to improve the pipelinability of Random Forests on CPUs,
GPUS and FPGAs, and reported improvements in the classification rate by
clumping similar trees. Their results show that CRFs computed on FPGAs offer
the highest level of performance per watt, GP-GPUs to offer the best perfor-
mance per dollar, and CPUs to offer the simplest, but lowest performing solution.

Researchers have also used ideas from modern compiler and database design
to maximize the efficiency of Random Forest models. For example, Asadi
et al. [2] use predication and vectorization to improve the net locality of deci-
sion tree traversal to maximize runtime performance. Predication is a technique

204 T. Tracy II et al.

originating from compiler design to convert control dependencies into data
dependencies. Vectorization is a technique originating from database research
and batches decision tree computation to mask the cache misses that a sequen-
tial algorithm would incur. Although these techniques have shown consider-
able improvement over existing tree-based solutions, they are only incremen-
tal improvements on an algorithm that fundamentally lacks the data-locality
necessary for high performance throughput on a von-Neumann architecture.

In [7], Lucchese et al. use an entirely different approach to accelerating addi-
tive ensembles of regression trees or a learn-to-rank model by representing tree
traversals using bit vectors. Their algorithm, QuickScorer, uses the commutative
property of the boolean AND operation to compute out-of-order tree traver-
sals. We use a similar approach, ordering all feature thresholds to be used for
simultaneous comparisons, but we pipeline the thresholding, effectively reduc-
ing the size of the resulting model, and simplifying the memory footprint. The
authors report the fastest run-times to date by reducing the rates of control
hazards and branch mispredictions over the previous state-of-the-art VPRED
implementation [2].

2.2 Automata Processor

Micron’s Automata Processor (AP) [5] is a re-configurable fabric of automata ele-
ments. The AP contains State Transition Elements (STEs) and boolean elements
that can be configured to compute a set of Nondeterministic Finite Automata
(NFA) in hardware. The AP also contains counter elements that give it more
power than that available from pure NFAs. The programmer designs their appli-
cation as automata, which are then compiled and loaded onto the processor.

Automata Representation. NFAs are represented as homogeneous automata
on the AP with STEs and activation edges. STEs represent states and their
corresponding state transition conditions; activation edges describe activation
(transition-enabling) relationships between STEs. STEs with incoming edges
from the start state are marked as Start STEs, and STEs with final states are
marked as Reporting STEs. Start STEs can be configured as start-of-data STEs
which process only the first symbol of the input data stream, or all-input-start
STEs which process every symbol in the input data stream.

At runtime, all of the automata are loaded onto the processor, and the input
data is streamed in as a data flow. This data flow broadcasts one symbol per
cycle to all of the AP-chips in an AP Rank. On the first clock cycle, only the
Start STEs are active which then match the input symbol against the character
class of those STEs. If a match occurs, the matched STE activates all STEs
connected to its outgoing connections. This process continues on the next cycle.
The counter elements and boolean elements may be used to provide additional
logic to these activation signals. If in a cycle one or more reporting STEs are
matched, then an output is reported identifying the reporting STE(s) and the
offset in the data flow where the match(es) occurred.

Towards Machine Learning on the Automata Processor 205

Programming Resources and Throughput. A single AP chip contains
49, 152 STEs, 2304 boolean elements and 768 counter elements. An AP board
contains 32 such chips, arranged in 4 ranks of 8 chips each. This cumulatively
amounts to over 1.57 million STEs, 73, 728 boolean elements and 24, 576 counter
elements. All of the chips in one rank can receive a broadcast from a single data
flow or can be organized into two logical cores of 4 chips each. Each logical core
processes the data flow at up to 1 Gbps, allowing a maximum data processing
rate of 8 Gbps per board. Currently, ongoing work is continuing to increase this
throughput to 16 Gbps by allowing logical cores of 2 chips each.

Current Status. The AP hardware is accompanied by a Software Development
Kit (SDK) [1] which includes design tools to define, visualize, simulate, compile,
load, and run user-defined NFAs on the AP. Using these tools, previous work
including biological motif search [13], modeling Markov Chains [15], association
rule mining [17], and Brill tagging [20] were developed. Although, these works
inspired our research, we report results on actual hardware for the first time. In
fact, the application for sentiment analysis has been showcased on hardware at
the International Supercomputing Conference 2015 (ISC-15) and the Supercom-
puting Conference 2015 (SC-15), albeit with restrictions on prototype hardware
which is currently in the validation phase.

3 Methodology

3.1 Overview

Figure 2 shows an overview of the execution pipeline. The classification process
consists of three pipelined stages: labeling, model execution, and voting. In the
first labeling stage, the floating point feature vector is converted into 8-bit labels.
The labels corresponding to the feature values are concatenated to form a label
vector delimited by the # symbol. The label vectors of the inputs serve as the
input data flow.

In the second model execution stage, the automata loaded on the AP process
this data flow in parallel to identify classifications for each tree in the model.
Finally, in the voting stage, the classifications from all of the trees are combined
to generate the final classification using a simple majority-consensus model for
each input sample.

Currently, the labeling and voting stages are computed on the CPU and
contribute to the overall runtimes. In the future, these will be computed on the
FPGA present on the AP board. After porting labeling and voting to the FPGA,
the tree-classification stage is estimated to become the rate-determining stage
of the pipeline, hiding the runtimes of the other stages.

3.2 Automata Design

Given the AP’s execution model, the most expeditious implementation of the
Random Forest algorithm is obtained by representing each decision tree with one

206 T. Tracy II et al.

Fig. 2. Three stage execution pipeline

or more automata processing the same data flow in parallel. In order to achieve
this we represent each root-to-leaf path in every decision tree in the Random
Forest as a chain automaton, and execute all of the chain automata concur-
rently. In this section, we describe our techniques to generate such automata by
overcoming three fundamental challenges. First, the feature vector values across
all of the automata must be accessed on the same clock cycle(s). Secondly, a
method to handle floating point numbers for feature values and split thresholds
must be devised as no native support is present in the hardware. And thirdly, a
compression technique must be adopted to arrest the expanded representation
of all root-to-leaf paths in the trees. Throughout the rest of the section, We have
used the decision tree shown in Fig. 1a as our running example to illustrate our
techniques.

3.3 Enabling Parallel Execution of Decision Trees

We represent each root-to-leaf path in a decision tree as a chain of feature
evaluation nodes. Each evaluation node represents one side of the decision tree’s
split node, and all possible paths are translated into chains. Because the eval-
uations are complete and exclusive, any feature vector will result in a single
chain being traversed from top to bottom, and that one chain will return its
associated classification. In this way, we’ve translated a tree-traversal to a set of
exact-match automata.

Towards Machine Learning on the Automata Processor 207

Note that the order of the nodes in a chain does not affect the outcome of the
computation, as the boolean AND operation is commutative; for this reason, we
are free to re-order them. All automata on the AP must process feature values
in the same order. Therefore, as the second step, the nodes in all of the chains
are re-arranged in ascending order by feature id as shown in Fig. 3.

Fig. 3. Reordered chains representation of decision tree shown in Fig. 1a.

Next, the nodes representing identical features are combined, and new satisfy-
on-any-value nodes are introduced for features that are not considered in a
chain. The resultant chains are shown in Fig. 4. The satisfy-on-any-value nodes
are depicted with a ∗ symbol. Notice that, in the resultant chains, all of the
features are checked serially and in the same order, and hence these chains can
be converted into automata executed in parallel on the AP. However, evaluating
the thresholds for floating point numbers still remains a challenge; we discuss
our solution next.

Fig. 4. Completed chains representation of decision tree shown in Fig. 1a.

208 T. Tracy II et al.

3.4 Handling Floating Point Features and Threshold Values

Floating point feature values cannot be directly expressed on the AP, as there is
no native support. Scaling down these feature values to the 1-byte symbol space
of an STE (or a few STEs) is easy to achieve, but may lead to an unacceptable
loss of precision. We formulated an alternate approach by observing that the
feature values are only used by the Random Forest to determine which side of
a split threshold that value lies. Therefore, it is only necessary to know between
which two of the Forest’s thresholds a feature value resides. For each feature,
we express the address space of floating point numbers as a set of intervals
demarcated by split thresholds used for the feature in all the trees in the forest.
Each interval is then assigned a label. In our case studies, the number of intervals
for each feature was always less than 255, and hence a 1-byte label could be used.
In cases where this is not true, multi-byte labeling is utilized.

This labeling technique is easy to compute, and leads to a simple automa-
ton design without any loss of precision. Figure 5 shows the labels selected for
features f1–f4 of our running example. The address space of feature f1 is split
using the values v1, v5 and v6. Therefore, the intervals (−∞, v1), [v1, v5), [v5, v6)
and [v6,∞) are labeled using 1-byte labels 0x0, 0x1, 0x2 and 0x3, respectively.
Similarly, the address-space for feature f2 can be labeled as 0x4, 0x5, 0x6; f3
as 0x7, 0x8; and f4 as 0x9, 0xa. A later section on Automata Folding will clar-
ify the need for disjoint feature address spaces. Care is taken to avoid labeling
an interval with the delimiter symbol 0xff. Notice that, given a feature value,
its corresponding label can be computed in logarithmic time of the number of
intervals associated with that feature. This binary-search look up operation is
to be implemented on the on-board FPGA in the future.

Fig. 5. Feature address space

Finally, these chains are ready to be converted into automata that can be
executed concurrently on the AP. The resultant automata are shown in Fig. 6.
The STEs in the automata are depicted using circles with labels placed inside.
A Start STE is demarcated using a solid triangle on the top-left corner. The ∞
sign inside the triangle marks the STE as an all-input-start STE. The reporting
STEs are outlined using double lines. STEs representing satisfy-on-any-value

Towards Machine Learning on the Automata Processor 209

Fig. 6. Chains represented as automata executable on the Automata Processor

nodes are labeled to match any label for that feature. For example, for feature
f2, the STEs are labeled as 0x4-0x6, f3 as 0x7-0x8 and f4 as 0x7-0x8.

For any input sample, the processing of all automata begins at the top Start
STE. Because this STE is an all-input-start STE which is active on every clock
cycle, it processes the end-delimiter 0xff, shown as #, at the end of the label
vector of the previous input sample and activates the second STE to check the
value of feature f1 in the next cycle. If the check is successful, the next STE
is activated to check the value of feature f2, and so on. If the checks for all
feature values are successful, then a report is generated by the reporting STE
on encountering the delimiter at the end of the label vector.

The report contains the id of the reporting STE, which has an associated
classification value. The report also contains the offset in the data flow where
the report was generated which is used to determine the input sample associated
with the classification. A simple majority of the classifications from all of the
trees for an input sample is then declared as its final classification. These simple
post-processing steps are scheduled to be migrated to the on-board FPGA.

3.5 Optimizing Automata for Higher Parallelism

The use of one STE per feature per automaton leads to significant resource
requirements, even for moderately sized Random Forests. By realizing that
the symbol space of an STE is typically much larger than the number of
intervals associated with a feature, we used a compression technique called
AutomataFolding to effectively combine features in a single STE. We did this
by folding a chain into a loop.

Figure 7 shows the folded automata for our running example. The features
in a typical Random Forest model have differing numbers of intervals associated

210 T. Tracy II et al.

with them. In general, the more relevant a feature is to determining the bound-
ary between classifications, the more split nodes for that feature will exist in
the forest, and the more intervals assigned to that feature. Assuming that the
maximum number of thresholds used by a single feature is less than 255, it is
possible to represent multiple features with a single STE!

Automata Folding works by solving the following optimization problem:

minn : ∀i ∈ [1, n],
�m/n�∑

j=0

fnj+i ≤ C (1)

Where n is the number of STEs used in the automaton, i is the index of the
current STE, fnj+i is the number of intervals assigned to feature nj+ i, m is the
total number of features, and C is the capacity of the STE, 255. This optimization
function returns the minimum number of STEs required to represent m features,
where the STEs are chained to form a loop. In a simple case where two STEs
are required, STE1 checks feature 1. STE2 then checks feature 2. STE1 checks
feature 3, STE2 checks feature 4, and so forth.

Since the total number of labels for all of the features is less than 2551, we
need a single STE to check the labels of all of the features. This STE checks
the first symbol of the label vector against the possible labels for feature f1.
If a match occurs, it activates itself to check the second symbol in the label
vector against the possible labels for f2 and so on. This is possible because the
labels for different features are processed on separate clock cycles and the labels
assigned to each feature are disjoint.

Fig. 7. Combining features into STEs.

4 Experimental Analysis

We implemented our automata-based Random Forest design on the AP as a
proof of concept. We then compared our AP implementation against a state of
the art Random Forest CPU implementation using two different models trained
1 The symbol space of an STE minus one symbol reserved for the delimiter.

Towards Machine Learning on the Automata Processor 211

with differing data sets. The first data set, the MNIST handwritten digits data-
base [6], contains labeled images of handwritten digits, where the classification
for each image reflects the representative digit’s value from 0 to 9. Each sample
is represented by a 28 × 28 pixel 2-d array representing the image after being
centered and scaled. Although we were able to successfully run our design on
the AP hardware, because this is a prototype version, we were not able achieve
the max performance expected from the hardware.

The second data set, the Sanders Twitter Sentiment Corpus [14], contains
one large data set of Twitter messages with their associated sentiments. Three
sentiments were considered in the set. The positive, neutral and negative clas-
sifications indicate the author’s sentiment, while the irrelevant classification is
reserved for Tweets in a different language, or those that have no meaning.

These two application data sets were used to train diverse Random Forest
models using version 0.16.1 of the Scikit-Learn [9] machine learning framework,
with differing tree counts, tree depths, and feature counts. We then took the
generated models and converted them into our pipelined automata design to run
on the AP. We chose to naively represent the handwritten digits with a 784-wide
feature vector, one value per pixel. For the Tweet data, we used TF-IDF (Term
Frequency, Inverse Document Frequency) vectorization with an experimentally-
determined 1600 feature size.

The Random Forest models from both application were converted into space-
efficient chain models that we loaded onto the AP. Knowing the number of STEs
per chain, the feature vector size, and the number of trees in the ensemble,
we could calculate the throughput of our models on future releases of the AP
development board. There are 16 rows of STEs per block, 192 blocks per AP
chip, 8 chips per rank, and 4 ranks per AP development board. The input symbol
rate is 133 MegaSymbols per second. If the Random Forest model fits on a single
rank, we can use inter-rank multiplexing to increase our throughput to 4x that.
If the model is small enough to fit into two of chips in a rank, we can use rank
logic core multiplexing and achieve an addition 4x speedup, with an effective
throughput of 2.128 GigaSymbols per second!

The CPU throughput values were experimentally determined by using Scikit-
Learn’s Random Forest implementation (Scikit-Learn version 0.16.1) using the
same Random Forest models we discussed above.

While benchmarking CPU performance using multi-cores, we found that the
performance varies depending on the hardware configuration and the algorithm’s
parallel efficiency. In our analysis, Scikit-Learns performance did not scale well
with core count. For example, with 16 cores, a speedup of no more than 3x was
observed. Therefore, in order to provide a more reliable and stable comparison,
we chose to use a single thread of the Intel Xeon CPU E5-2630 v3 @ 2.40 GHz
processor for benchmarking CPU performance.

4.1 Results and Discussion

Random Forests Model Parameters and Accuracy. Before comparing
the AP and CPU implementations for the Twitter data set, we did a parameter

212 T. Tracy II et al.

exploration on the number of trees and number of leaves per tree and their impact
on the sentiment model’s accuracy. The goal was to find the elbow in the graph
that maximized accuracy, while reducing the number of trees in the ensemble,
and the number of leaves, which relates to the number of split nodes per feature.
The experimental results on Twitter data show that the classification accuracy
increases as the leaves per tree increases. We found that the maximum accuracy
for our model saturated at 72% with 800 leaves per tree. We also found the
classification accuracy to increase from 5 to 40 trees, but no more significant
increase of accuracy with more than 40 trees.

We performed the same parameter space exploration for the MNIST data
set models. Our results show that increasing the number of leaves per tree in
the ensemble has a similar effect as with the Twitter data, and we found our
elbow with around 1000 leaf nodes per tree. Unlike the other data set, Twitter
data models had a significant increase in accuracy when increasing the number
of trees in the ensemble from 5 to 160 trees. Our highest experimental accuracy
was calculated to be 97.1% and was determined with 160 trees and 4500 leaves
per tree (Fig. 8).

Throughput vs. Accuracy. Generally, there is a trade-off between through-
put and model accuracy for classification models. Random Forest models with
fewer and shallower trees can achieve higher throughput, but at lower accuracy.
Adding additional trees and training them to be deeper increases the accuracy
to the model’s saturation; adding any additional resources beyond this point just
reduces the efficiency of the model and can yield over-fitting. The goal of model
optimization is to find the trade-off between these parameters that maximizes
throughput, while still achieving the required level of accuracy. This is often
accomplished with design space exploration.

AP vs. CPU. Figures 9 and 10 show that throughput is significantly affected
by the number of trees in the Random Forest ensemble. As we discussed above,
we saturate our accuracy with 40 decision trees, and therefore adding any more
is unnecessary. With the same number of trees per model, the AP consistently
performs with higher throughput than a single-threaded CPU on Twitter data.
Figure 10 shows that, on MNIST data, the AP outperforms the CPU in most of
the cases. With the number of trees greater than 20, and a large leaf number
per tree (over 4000 leaves per tree), the throughput matches.

The AP architecture allows up to 16x multiplexing if the Random Forest
model fits into two chips. As the model size increases, this multiplexing factor is
reduced by factors of two (Tables 1 and 2). The steps in the graph indicate the
model dimensions where the hardware cannot sustain the multiplexing factor.
Future generations of the hardware will be able to fit larger models, therefore
flattening the throughput curve.

For the Twitter models, the Random Forest implementations on the AP
achieve from 2 times to 93 times the prediction throughput of a single CPU. For
MNIST, the AP can achieve up to 63 times speed up over the CPU. The speed

Towards Machine Learning on the Automata Processor 213

Fig. 8. MNIST handwritten digits random forests throughput on AP vs. accuracy

ups achievable using the AP are more significant with models that have fewer
leaves per trees and fewer trees per forest.

The AP is a massively parallel device. With smaller Random Forests models,
especially for models with lower numbers of leaves per tree, the AP’s advantage
of massive parallelism can be greatly taken as it can process hundreds of trees
simultaneously. For the smaller models, we were able to achieve results with up to
93 times speedup against a single CPU thread. The AP’s advantage decreases as

Table 1. Key data points of twitter results

Trees Leaves Accuracy AP throughput CPU throughput AP speed up

(k pred/sec) (k pred/sec)

5 40 66.9 % 14400 154 93

10 40 67.5 % 8130 129 63

20 40 67.7 % 5360 93.4 57

40 40 68.0 % 3750 58.5 64

5 600 70.4 % 2010 118 17

10 600 71.4 % 1530 86.4 18

20 700 71.7 % 385 51.5 7

40 700 71.9 % 194 32.4 6

214 T. Tracy II et al.

Fig. 9. Twitter sentiment random forests throughput on AP

Table 2. Key data points of MNIST results

Trees Leaves Accuracy AP throughput CPU throughput AP speed up

(k pred/sec) (k pred/sec)

5 50 82.2% 13200 337 39

10 50 86.1% 5980 242 25

20 50 87.8% 4170 150 28

40 50 88.7% 3350 86.5 39

80 50 89.2% 2940 46.4 63

160 50 89.6% 1350 25.0 54

10 500 93.3% 2480 205 12

20 500 94.3% 1160 125 9

40 750 95.2% 420 68.0 6

80 1250 96.0% 111 34.3 3

20 4000 96.1% 129 98.9 1.3

40 4750 96.7% 55.0 51.5 1.1

80 5000 96.9% 25.0 26.6 0.9

160 5000 97.1% 12.2 13.5 0.9

Towards Machine Learning on the Automata Processor 215

Fig. 10. MNIST handwritten digits random forests throughput on AP

the number of leaves per tree increase. With significantly decreased parallelism,
a higher frequency CPU can reach similar performance as the AP.

With these properties in mind, it’s important to focus on compacting ensem-
ble models on the AP to maximize performance. Future applications of Random
Forest-like models on the AP should focus on models that require smaller trees,
but with large number of trees. As the AP scales with process nodes, we expect
the hardware to achieve better scaling.

5 Future Work

5.1 Further Optimizations

Our first generation design addresses many important aspects of computing
machine learning applications as automata on specialized hardware. Further
optimizations include improving the performance by means of modifying the
ensemble models and the automata algorithm. For example, reducing the size
of the ensemble algorithms by using Compact Random Forest (CRF) [10] tech-
niques would result in smaller trees utilizing fewer feature values, but achieving
similar accuracies. Whereas Essen et al. constrain their CRFs to 6 levels to fit
FPGAs, the AP allows us additional flexibility to choose larger tree depths and
tree counts that may provide higher accuracy.

216 T. Tracy II et al.

There are also potential algorithmic improvements that can be made. A
denser binning technique could reduce the number of STEs used per tree, signif-
icantly increasing the size of forests that could be supported by one AP board.
By potentially further combining feature address spaces, fewer symbols would
need to be streamed per feature, improving the throughput of the system.

5.2 Accelerating Other Models

The techniques that we presented in this paper are not limited to Random
Forests. Any decision-tree based ensemble technique can be ported to our
automata design with little effort by a similar transformation. Some examples
of models that could be accelerated include Boosted Trees [18] and Random
Ferns [8]. These models are fundamentally similar in their tree traversal tech-
nique, but with emphasis on reducing the depth of trees or applying specialized
learning techniques.

5.3 Automata on Other Hardware

Our automata design effectively reduces the run time complexity of the Random
Forest algorithm by splitting the algorithm into floating point labeling and model
computation. Splitting the critical path allows for the algorithm to be pipelined,
accelerating the model.

This design could also work well on other hardware platforms including
CPUs, GPGPUs and FPGAs. By considerably reducing the size of the Ran-
dom Forest model, we could increase the cache utilization on a CPU or GPU.
The thresholding operation could be computed in parallel on a subset of the
available cores, while the model is executed on the remaining cores. Additional
future work would include measuring the power-efficiency of this algorithm, and
potentially using automata computation on low-power embedded applications.
This work is left open for future research.

6 Conclusions

In this paper we present a technique for converting the Random Forest algorithm
from a tree-traversal algorithm to a series of pattern matching automata in a
pipelined system. This novel algorithm has effectively introduced a new design
space for machine learning researchers. Whereby past research has focused on
creating shallower decision trees to reduce the latency for tree traversal, our
algorithm runs in linear time with the number of features, regardless of the depth
of the decision trees! This potentially opens the door for future research into
deeper trees on fewer features. We implemented our algorithm on Micron’s AP
and evaluated the runtime performance of our Random Forest implementation
on AP. The results not only showed a promising avenue of applying tree-based
ensemble classification methods on AP, but also provide information on the
relationship between model settings and the runtime performance on the AP,
which can be used to guide future research and development of more efficient
classification models.

Towards Machine Learning on the Automata Processor 217

References

1. The micron automata processor developer portal, November 2014. http://www.
micronautomata.com/

2. Asadi, N., Lin, J., de Vries, A.P.: Runtime optimizations for tree-based machine
learning models. IEEE Trans. Knowl. Data Eng. 26(9), 1 (2014)

3. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001).
http://dx.doi.org/10.1023/A3A1010933404324

4. Criminisi, A., Shotton, J., Konukoglu, E.: Decision forests: a unified frame-
work for classification, regression, density estimation, manifold learning and semi-
supervised learning. Found. Trends Comput. Graph. Vis. 7(2–3), 81–227 (2012).
http://dx.doi.org/10.1561/0600000035

5. Dlugosch, P., Brown, D., Glendenning, P., Leventhal, M., Noyes, H.: An efficient
and scalable semiconductor architecture for parallel automata processing. IEEE
Trans. Parallel Distrib. Syst. 25(12), 3088–3098 (2014)

6. LeCun, Y., Cortes, C.: Mnist handwritten digit database. AT&T Labs (2010).
http://yann.lecun.com/exdb/mnist

7. Lucchese, C., Nardini, F.M., Orlando, S., Perego, R., Tonellotto, N., Venturini,
R.: Quickscorer: a fast algorithm to rank documents with additive ensembles of
regression trees. In: Proceedings of the 38th International ACM SIGIR Conference
on Research and Development in Information Retrieval, SIGIR 2015, pp. 73–82.
ACM, New York (2015). http://doi.acm.org/10.1145/2766462.2767733

8. Ozuysal, M., Fua, P., Lepetit, V.: Fast keypoint recognition in ten lines of code.
In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2007,
pp. 1–8, June 2007

9. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: machine
learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

10. Prenger, R., Chen, B., Marlatt, T., Merl, D.: Fast map search for compact additive
tree ensembles (cate). Technical report, Lawrence Livermore National Laboratory
(LLNL), Livermore, CA (2013)

11. Qi, Y.: Random forest for bioinformatics. In: Zhang, C., Ma, Y. (eds.)
Ensemble Machine Learning, pp. 307–323. Springer US, New York (2012).
http://dx.doi.org/10.1007/978-1-4419-9326-7 11

12. Roy, I.: Algorithmic techniques for the micron automata processor. Dissertation,
Georgia Institute of Technology (2015)

13. Roy, I., Aluru, S.: Finding motifs in biological sequences using the micron automata
processor. In: Proceedings of the 2014 IEEE 28th International Parallel and Distrib-
uted Processing Symposium, IPDPS 2014, pp. 415–424. IEEE Computer Society,
Washington, DC (2014). http://dx.doi.org/10.1109/IPDPS.2014.51

14. Sanders, N.: Twitter sentiment corpus (2011). http://www.sananalytics.com/lab/
twitter-sentiment/

15. Stan, J., Skadron, K.: Uses for random and stochastic input on microns automata
processor. Technical report CS-2015-06, University of Virginia Department of Com-
puter Science, Charlottesville, VA, September 2015

16. Van Essen, B., Macaraeg, C., Gokhale, M., Prenger, R.: Accelerating a random for-
est classifier: multi-core, GP-GPU, or FPGA? In: 2012 IEEE 20th Annual Interna-
tional Symposium on Field-Programmable Custom Computing Machines (FCCM),
pp. 232–239. IEEE (2012)

http://www.micronautomata.com/
http://www.micronautomata.com/
http://dx.doi.org/10.1023/A3A1010933404324
http://dx.doi.org/10.1561/0600000035
http://yann.lecun.com/exdb/mnist
http://doi.acm.org/10.1145/2766462.2767733
http://dx.doi.org/10.1007/978-1-4419-9326-7_11
http://dx.doi.org/10.1109/IPDPS.2014.51
http://www.sananalytics.com/lab/twitter-sentiment/
http://www.sananalytics.com/lab/twitter-sentiment/

218 T. Tracy II et al.

17. Wang, K., Qi, Y., Fox, J., Stan, M., Skadron, K.: Association rule mining with the
micron automata processor. In: IPDPS 2015, May 2015

18. Windeatt, T., Ardeshir, G.: Boosted tree ensembles for solving multiclass problems.
In: Roli, F., Kittler, J. (eds.) MCS 2002. LNCS, vol. 2364, pp. 42–51. Springer,
Heidelberg (2002)

19. Zhang, K., Cheng, Y., Xie, Y., Honbo, D., Agrawal, A., Palsetia, D., Lee, K.,
Keng Liao, W., Choudhary, A.: Ses: sentiment elicitation system for social media
data. In: 2011 IEEE 11th International Conference on Data Mining Workshops
(ICDMW), pp. 129–136, December 2011

20. Zhou, K., Fox, J.J., Wang, K., Brown, D.E., Skadron, K.: Brill tagging on the
micron automata processor. In: 2015 IEEE International Conference on Semantic
Computing (ICSC), pp. 236–239. IEEE (2015)

AutoMOMML: Automatic Multi-objective
Modeling with Machine Learning

Prasanna Balaprakash1,2(B), Ananta Tiwari3, Stefan M. Wild1,
Laura Carrington3, and Paul D. Hovland1

1 Mathematics and Computer Science Division, Argonne National Laboratory,
Argonne, IL, USA

{pbalapra,wild,hovland}@mcs.anl.gov
2 Leadership Computing Facility, Argonne National Laboratory, Argonne, IL, USA

3 Performance Modeling and Characterization (PMaC) Laboratory,
San Diego Supercomputer Center, La Jolla, CA, USA

{tiwari,lcarring}@sdsc.edu

Abstract. In recent years, automatic data-driven modeling with
machine learning (ML) has received considerable attention as an alter-
native to analytical modeling for many modeling tasks. While ad hoc
adoption of ML approaches has obtained success, the real potential for
automation in data-driven modeling has yet to be achieved. We propose
AutoMOMML, an end-to-end, ML-based framework to build predictive
models for objectives such as performance, and power. The framework
adopts statistical approaches to reduce the modeling complexity and
automatically identifies and configures the most suitable learning algo-
rithm to model the required objectives based on hardware and appli-
cation signatures. The experimental results using hardware counters as
application signatures show that the median prediction error of perfor-
mance, processor power, and DRAM power models are 13 %, 2.3 %, and
8 %, respectively.

1 Introduction

Modeling objectives such as performance, failures of critical subcomponents,
power, and energy as functions of application and platform characteristics play
a central role in managing extreme-scale computing goals. These models can be
used to quantify meaningful differences across the decision space and to provide
error bounds associated with their predictions; to offer a convenient mechanism
for exposing near-optimal spots in the decision space; and to prune the decision
space in autotuning. In a nutshell, multi-objective models can help compilers,
operating systems, and runtime systems to make decisions proactively and/or
reactively in order to best map applications to target platforms.

Analytical performance models based on first-principle, closed-form mathe-
matical expressions may not be sufficiently accurate for all objectives of interest.

I’m an employee of the US Government and transfer the rights to the extent
transferable (Title 17 §105 U.S.C. applies)

c© Springer International Publishing Switzerland 2016 (outside the US)
J.M. Kunkel et al. (Eds.): ISC High Performance 2016, LNCS 9697, pp. 219–239, 2016.
DOI: 10.1007/978-3-319-41321-1 12

220 P. Balaprakash et al.

In such settings, data-driven (or “empirical”) modeling can bridge the gap. In
this approach, application and platform characteristics and their corresponding
objectives are collected directly on the target platform, and a predictive model
is built for each objective using statistical/machine-learning (ML) approaches.

The empirical models presented in the high performance computing (HPC)
literature have been guided primarily by the expertise of the human modeler. It
has become increasingly evident in the ML literature that success with ML algo-
rithms depends not merely on the adoption of the suitable learning approach for
a given data set, but also on the mastery of a more complex feature and algorithm
engineering process [6]. Challenges in predictive modeling can be attributed to
two major factors: the modeling complexity and the degrees of freedom model-
ers encounter when developing predictive models. Crucial aspects in predictive
model development comprise variable selection, model selection, parameter tun-
ing, cross-validation techniques, and background knowledge in disciplines such as
machine learning, statistics, and mathematical optimization. Furthermore, even
when several ML components and their implementations exist as open source
software, assembling them for (multi-objective) predictive modeling task often
requires ML expertise and domain knowledge; i.e., automating ML pipeline for
a given data set is still a challenging task. This lack of automation in assembling
a ML pipeline for modeling multiple objectives has meant that the adoption of
ML approaches in HPC literature has mostly been ad-hoc.

We propose as a solution to the aforementioned problem an automated,
end-to-end modeling framework called AutoMOMML (for Automatic Multi-
Objective Modeling with Machine Learning). AutoMOMML employs a pipeline
of statistical approaches in a systematic way to automate the predictive model-
ing process. The framework identifies the important variables, and selects and
tunes the learning algorithms to model the required objectives based on hard-
ware and application characteristics. Applications are characterized by using a
set of performance hardware counters, which are counts of microarchitectural
events. To generate training data, AutoMOMML uses a series of prepackaged
microkernels to “probe” a target system to develop a comprehensive understand-
ing of the degree to which application characteristics and hardware configura-
tions affect component-level power draw and performance. That understanding is
then encapsulated in models by using ML algorithms. The end-to-end framework
greatly reduces the barrier to entry in model development for software develop-
ers, run-time designers, and hardware engineers and has the potential to bring
modeling into the mainstream workflow of software and hardware stakeholders.

The key contribution of the paper is the general-purpose multi-objective
modeling framework that comprises a pipeline of effective ML algorithms. We
demonstrate the use of the framework for offline-modeling of performance and
power. The proposed framework provides a systematic approach to compose ML
components in an automatic way so that extensive ML expertise will no longer be
a prerequisite for HPC predictive modeling tasks. In addition to being automatic
and end-to-end, the framework is designed to produce analysis results after each
stage of the pipeline that help understand what architectural factors affect the
objectives, and how application signatures and objectives relate to each other.

AutoMOMML: Automatic Multi-objective Modeling with Machine Learning 221

2 The Problem and Setup

Given a target platform, the task of multi-objective modeling is to find a function

F (x) = [F1(x), . . . , Fm(x)] : x ∈ D ⊂ R
n, (1)

where x is a vector of size n that parameterizes a hardware and application
signature and D is a domain of possible values for x. The unknown function F
takes the signature vector x as input and returns a vector [F1(x), . . . , Fm(x)]
quantifying m objectives, where each component corresponds to an objective of
interest.

Approaches available for modeling F can be grouped into analytical and
empirical modeling. The former deals with developing analytical approxima-
tions for each component function Fj using expert knowledge. The latter adopts
statistical or ML methods to derive a surrogate model Sj ≈ Fj using a set of
training points T = {(x1, y1), . . . , (xl, yl)} = {X,Y } obtained from microker-
nels. Each point in the training set comprises the signature vector x(.) and its
corresponding multi-objective vector y(.) ∈ R

m.
Modeling with ML typically requires a pipeline of methods such as data

preprocessing, variable importance analysis, variable selection, and model selec-
tion. The complexity of employing an effective ML pipeline is beyond most HPC
users because of the algorithmic choices available for each method; therefore,
users tend to resort to rules of thumb, which often result in nonrobust models.
We develop a methodology that automatically selects an ML pipeline for the
multi-objective modeling problem.

We focus on a signature vector consisting primarily of hardware counters
exposed by the underlying hardware and collected using the Performance Appli-
cation Programming Interface (PAPI) [26]. Hardware counters provide a conve-
nient mechanism to measure the extent to which applications utilize/stress dif-
ferent architectural elements—e.g., counters that measure the number of branch
instructions can be used to assess the level of stress that different applications
put on the branch predictors. As such, a vector of hardware counters can be
used to describe an application. In addition, a given application’s power and
performance behavior are affected by power- and performance-related hardware
settings (e.g., CPU clock frequency, and power caps). Consequently, we add CPU
clock frequency to the signature vector.

3 Proposed Approach

AutoMOMML consists of a pipeline of algorithmic modules (shown in Fig. 1)
that can be grouped into two stages. The first stage is the dimension reduction
stage, which reduces the number of inputs and outputs required for modeling via
correlation analysis, input importance, and input selection modules. This stage
reduces modeling complexity. The second stage is the model selection stage,
where several supervised-learning methods are evaluated and fine-tuned on the
training set; high-performing methods are then composed to obtain the multi-
objective models.

222 P. Balaprakash et al.

Fig. 1. AutoMOMML framework: multiple arrows after correlation analysis indicate
that subsequent models are run for each objective.

3.1 Dimension Reduction

Data Preprocessing: Different entries in the signature vector x can take dif-
ferent ranges of values. For example, instruction-cache-related counts (e.g., L1
instruction cache misses) are usually orders of magnitude smaller than data-
cache-related counts (e.g., L1 data cache misses). This difference in the range
of values that entries in x can take affects several algorithmic modules in the
pipeline. AutoMOMML adopts range transformation [11] to scale the values of
each column in X to [0, 1].

Correlation Analysis: This module computes the pairwise correlation to check
for correlation among inputs. Given two input columns j and j′ of X, the Pearson
correlation coefficient ρ ∈ [−1.0, 1.0] is given by the ratio of the covariance
between j and j′ to the product of the standard deviations of j and j′. When
the value of |ρ| is greater than a user-defined cutoff parameter ccoff, the input
xj′

that corresponds to column j′ is removed from further analysis. The same
analysis is applied on the output matrix Y to eliminate correlated outputs. Note
that if two outputs are correlated, then it suffices to model only one of them.
There are correlated outputs—power drawn by two sockets are correlated to each
other and the same is true for the power drawn by two sets of DIMMs. Instead
of modeling all these, it is enough to model only uncorrelated ones.

For each uncorrelated output u, AutoMOMML creates an output-specific
training set Tu. It comprises all uncorrelated inputs and the output u. After this
analysis, the subsequent algorithmic modules are run for each Tu; consequently,
each Tu can be tackled independently.

Balanced Sampling: Heavily skewed distribution of response u in Tu can lead
to unbalanced training points. This is due to the fact that we cannot explicitly

AutoMOMML: Automatic Multi-objective Modeling with Machine Learning 223

control samples in performance counter (input) space and the corresponding
outputs. When these points are used for predictive modeling, the model will
have high prediction accuracy in high (probability) density regions but not in
other areas. To address this issue, we adopt over sampling strategy, in which
training points are sampled repeatedly from low-frequency ranges. Given an
output-specific set Tu, we consider E equal-sized intervals for the output u.
Let Emax be the number of points that belong to the high-frequency interval.
For each of the remaining intervals, the number of points is increased to Emax

by repeatedly sampling (with replacement) from that interval. Thus, for each
output, the total number of points in the training set will be E × Emax. We
denote the resulting balanced training set by T ′

u.

Input Importance: This module analyzes the impact of the uncorrelated
inputs on the output and tries to remove some inputs from further consideration.
The results can be used to understand (and rank) the application characteristics
that affect the power and performance responses the most.

Fig. 2. Example decision-tree for DRAM
power.

For this purpose, the random for-
est (rf) method [12], a state-of-the-
art supervised-learning method for
nonlinear regression, is adopted. The
rf method uses a decision-tree-based
approach that recursively partitions
the multidimensional input space D
into hyperrectangles such that inputs
with similar output values fall within
the same hyperrectangle. Partitions
give rise to a decision tree of if-else
rules as shown in Fig. 2. The tree
shows that DRAM power is highly
dependent on how the codes utilize
on-chip and off-chip instruction and
data caches, along with the behav-
iors of the TLB and branch predic-
tor. High DRAM power is associated
with a higher number of accesses to slower caches (L2 and beyond) and more
TLB misses (more on this in Sect. 5). The depth of the tree is determined by a
parameter dpt, which controls the learning ability of the tree.

Typically, a constant value is assigned to the leaf of the tree and is given by
the mean of output values that fall within the same hyperrectangle. Prediction
for a new input x∗ is obtained by finding the hyperrectangle to which this point
belongs using the decision tree and returning the constant value at the associated
leaf. The strength of the rf method lies in using a set of decision trees because
the ensemble corrects the instability of the individual trees. The predicted value
for x∗ is the average of leaf values obtained from each generated tree.

AutoMOMML deploys the permutation accuracy importance of rf. For a
given training set T ′

u, by randomly permuting the values of column j in X, the

224 P. Balaprakash et al.

Algorithm 1. Model-based input selection.
Input: Number of folds, K, for cross-validation, training points T ′′

u , a set S of subset
sizes, error tolerance percentage δ%, set Iu of inputs
/* cross-validation phase */

1 create K folds {T ′′
u1, · · · , T ′′

uK} from T ′′
u

2 for k = 1 : K do
3 Tout ← T ′′

uk; Tin ← T ′′
u \Tout

4 uobsr ← observed output in Tout

5 Mrf ← fit(Tin, I′′
u)

6 compute permut. acc. importance of I′′
u

7 for each s ∈ S do
8 Is ← s most important inputs from I′′

u

9 Mrf ← fit(Tin,Is)
10 upred ← predict(Mrf , Tout)
11 errks ← RMSE(uobsr, upred)
12 end for
13 end for

/* subset selection phase */

14 errs ←
∑K

k=1 errks

K

15 err∗ ← mins∈S errs
Output: sbest = arg min{s ∈ S : errs ≤ err∗ × (1 + δ%)}

original relationship between input xj and the response u will be broken. When
X with permuted xj is used to predict u, the prediction accuracy decreases
substantially as compared with that of the original dataset with nonpermuted
xj . The impact of an input parameter xj on the output o is computed as follows.
For each tree, the random subsample X ′ ⊂ X is split into in-bag and out-of-bag.
The in-bag is used for building the tree, and the mean squared error (MSE) on
the out-of-bag data is computed before and after permuting xj in in-bag. The
differences between the two are then averaged over all trees and normalized by
the standard deviation of the differences. A significant increase in MSE after
permuting values of xj indicates that xj has significant impact on u. When
the increase in MSE is small (e.g., <5 %), xj is removed from the set of inputs
required for predicting u. Compared to other sensitivity analysis methods, this
approach covers the impact of each input both individually and in combination
with other inputs. Moreover, each tree is constructed only from a fraction of
random inputs, thereby reducing the number of training points required. The
resulting training set is denoted as T ′′

u , which comprises only the significant
inputs for output u.

Input Selection: Given the training set T ′′
u and a set S of input sizes, this

module tries to find an input size s ∈ S for predicting the output u. As shown
in Algorithm 1, input selection is done in two phases.

The first phase is K-fold cross-validation (lines 1–11). Training points are par-
titioned into K equal-sized folds by using random sampling without replacement.
Out of the K folds, a single fold is retained as an out-of-bag set for validation;

AutoMOMML: Automatic Multi-objective Modeling with Machine Learning 225

the remaining K − 1 folds are used as in-bag points for training. Importance
of each input in the in-bag points is obtained with the permutation accuracy
importance of rf. For each candidate value s ∈ S, an rf model is retrained with
the s most important inputs, and the root-mean-squared error (RMSE) for the
prediction is obtained from the out-of-bag points. This process is repeated so
that each of the K folds is used exactly once as out-of-bag.

The second phase of input selection consists of analyzing the results from
the K folds to compute a single best subset size. The mean prediction error
errs for each s ∈ S is obtained by averaging the prediction error over K folds.
The algorithm chooses the smallest s ∈ S whose prediction error errs is not
more than δ% of the minimal mean prediction error err∗. Smaller s values are
preferred because they reduce the input space and can improve the predictive
power of the model. Note that the sbest inputs for each fold can be different
because the training points are different. This module handles such cases by
computing the average rank of each input over all K folds and selects the top
sbest inputs using the aggregated rank value.

Although Algorithm 1 relies on the rf method, it has been shown that for
a number of modeling tasks input selection from the rf method is robust, and
can improve the accuracy of other supervised-learning methods [20].

3.2 Model Selection

The model selection module consists of finding an appropriate method (and
associated parameters) from a set of supervised-learning methods. A supervised-
learning method that performs well on some predictive modeling tasks could be
a bad choice for other tasks [6,11]. Moreover, choosing appropriate parameter
settings for a given supervised-learning method is critical because it balances the
bias-variance tradeoff [11] — high bias produces simpler models but leads to poor
prediction accuracy, while high variance results in complex models with high
prediction accuracy on the training set but can have poor prediction accuracy
on the testing set.

Model selection is a difficult optimization problem. In ML research, this task
has been traditionally tackled by using a trial-and-error process. New algorithmic
methods have begun to emerge and have proven to be more effective than default
settings and manual model selection [6]. The model selection module of Auto-
MOMML considers a set of supervised-learning methods of varying complexities,
tunes the parameters of each method, and combines the high-performing models
to form a single model.

Algorithm 2 shows the model selection module. In addition to K and T , it
requires a set Z of supervised-learning methods and a subset Qz ∈ Q of parame-
ter configurations for each method z ∈ Z. The module comprises three phases.
First, for each method z ∈ Z and for each parameter configuration q ∈ Qz, the
cross-validation phase consists of configuring z with q, training on the in-bag
points and computing the prediction error on the out-of-bag points (lines 1–
13). The second phase identifies the best configuration qz for each method z by
comparing the mean prediction error. In the third phase, the module selects the

226 P. Balaprakash et al.

Algorithm 2. Model selection.
Input: number K, training points T , set Z of methods, set Q of parameter configu-

rations for each method in Z
/* cross-validation */

1 create K folds {Tu1, · · · , TuK} from Tu

2 for k = 1 : K do
3 Tout ← Tuk; Tin ← Tu\Tout

4 uobsr ← observed output in Tout

5 for each z ∈ Z do
6 Qz ← subset of param configs in Q for z
7 for each q ∈ Qz do
8 Mz ← fit(Tin, q)
9 upred ← predict(Mz, Tout)

10 errkzq ← RMSE(uobsr, upred)
11 end for
12 end for
13 end for

/* select best parameter setting for each method */
14 for each z ∈ Z do
15 for each q ∈ Qz do

16 errzq ←
∑K

k=1 errkzq

K

17 end for
18 qz ← arg minq∈Qz errzc
19 end for

/* select best method(s) using statistical test */
20 z∗ ← arg minz∈Z errzqz
21 for each z ∈ Z do
22 if t-test(err(.)zqz , err(.)z∗qz∗) cannot reject then
23 Mz ← fit(T , qz)
24 end if
25 end for
Output: M = ∪zMz

method z∗ (configured with qz∗) with minimal mean prediction error as a base-
line and adopts the statistical t-test to check the prediction errors of a method z
(err(.)zqz) is different from the baseline z∗ (err(.)z∗qz∗). The method z gets elim-
inated when the t-test rejects the null hypothesis that the difference is equal to
zero. Note that the t-test is relatively robust to normality violations, one could
easily replace the t-test with the Wilcoxon rank sum test to eliminate the low-
performing learning methods automatically. The key idea behind the adoption of
such a test is to remove the human from the pipeline. The methods that survive
the elimination are configured with their corresponding best parameter setting
and trained on all training points. The resulting models are returned as candi-
date models. For a given output, when there is more than one candidate model,
the predictive value of a new testing point is given by the average of predicted
values from each candidate model. This can be viewed as a systematic ensemble

AutoMOMML: Automatic Multi-objective Modeling with Machine Learning 227

learning approach, a paradigm where multiple algorithms are used for learning
from the same training set. The main difference from customary ensemble learn-
ing is that instead of using all the available models, the framework adopts only
high performing ones.

In addition to rf, we consider five supervised-learning methods. A brief sum-
mary of each method is given below.

Linear regression (lm). takes the form h(x) = c +
∑M

i=1 αi × xi, where c is a
constant and αi is the coefficient of the input xi. Training the model consists in
finding the appropriate value of (c, α). This is obtained by minimizing the sum
of differences between observed values in the training set and the corresponding
values provided by the model.

K-nearest-neighbor (knn) regression [11] computes the mean of the outputs
of the K nearest (we use the Euclidean distance) points in the training set.

Support vector machines (svm) [22] for nonlinear regression project the input
space of the training points into a higher-dimensional feature space and per-
forming linear regression in that space. Training the svm consists of solving a
quadratic programming problem. We adopt the widely used Gaussian radial
basis function (RBF) as our kernel function. The cost v of constraint violation
in the quadratic programming problem and the window parameter σ of the RBF
provide tradeoffs between bias and variance.

Cubist (cbt) [1] is similar to rf but with the following differences. The nt trees
are built sequentially such that the model of the bth tree is adjusted to correct
the prediction error of the (b−1)th tree on the whole training set. This correction
is done by adding the residuals of the (b − 1)th tree to the response vector and
fitting a new tree. Given a new testing point x∗, each tree can predict a value
and nt predictions are averaged to give a final prediction. During prediction, it
performs additional corrections based on nn nearest neighbors in the training set.

Stochastic gradient boosting (sgb) [17] is similar to cbt, in which nt trees
are built sequentially but on a random subset of the training points. Each tree
is generated with depth dpt and its leaves have at least mino observations. At
the bth iteration, a tree model is built to minimize the prediction error of the
(b − 1)th model. The key idea is that the residuals of the (b − 1)th model are
used as the negative gradient of the squared error loss function being minimized.
Similar to gradient-descent algorithms, sgb generates a new model at the bth
iteration by adding the bth tree that fits the negative gradient to the (b − 1)th
model. The bth model is multiplied by a parameter 0 < λ ≤ 1.0 to control the
bias-variance tradeoff.

Except lm, all other supervised-learning methods require user-specified values
for their respective parameters. Since promising values for each parameter are
available for knn, svm, rf, cbt, and sgb, we define the set Qz of parameter
configurations for the method z using a grid. For example, if the method z has
two parameters with 3 and 5 values, respectively, then we consider all possible
combinations (|Qz| = 3 × 5). The set Qz over all z ∈ Z forms Q, which is given
as input to Algorithm2.

228 P. Balaprakash et al.

4 Experimental Setup

We now describe the hardware testbed, benchmarks and applications, data col-
lection techniques, and other methodological decisions made for data collection.

Hardware Testbed Specifications: The testbed is a dual-processor node with
two 8-core Intel Xeon E5-2650v2 (Ivy Bridge) processors. Each core has a 64 KB
L1 cache (32 KB instruction cache and 32 KB data cache), a 256 KB combined
L2 cache, and a 20 MB shared, last-level cache. The system has 64 GB of DDR3
DRAM. Hyperthreading and turbo boost are disabled for all the experiments.
Each of the processors can be independently clocked at frequencies of 2.60 GHz to
1.20 GHz (at 100 MHz intervals). Processor clock frequency is changed by using
the cpufreq-utils package available with many popular Linux distributions.

We use the RAPL (Running Average Power Limit) interface [16] to measure
component-level power draw. For the processor, we collect “package power,”
which consists of power drawn by cores, the last-level cache and memory con-
troller. We also collect power drawn by DRAM.

Model Training Benchmarks: AutoMOMML comes prepackaged with micro-
kernels that exercise a target system’s architectural components (e.g., CPU, and
memory) in different ways1. Together, these computational kernels can be used to
create power and performance profiles of the system and to learn what hardware
events correlate with those profiles. These microkernels have different patterns
of computation and memory access, and are highly prevalent in large-scale appli-
cations. Our hypothesis is that a sufficiently diverse set of computational kernels
can be used as the basis for a general understanding of the impact that different
computational properties have on performance and power draw.

Our suite draws compute kernels from a variety of scientific domains. Some
of the kernels are modified versions of microkernels from the Polybench [31] and
SPAPT suites [5], both of which are used to evaluate compiler-driven autotuning
strategies [29]. Such kernels include matrix-matrix and matrix-vector operations,
stencil kernels, and correlation and covariance calculation kernels. We also use
the source code transformation framework CHiLL [14] to generate alternative
implementations of a subset of Polybench kernels (dsyrk, dsyr2k, mm, mvt, and
trmm). We apply cache tiling and loop unrolling code-transformation techniques
to generate these variants.

The kernels are configured to run in an embarrassingly parallel mode using
MPI and using all cores available on the testbed. Each MPI process initializes
its own set of data structures and waits on a barrier for all the processes to finish
initialization; all processes then do the exact same calculation. This configura-
tion was motivated by two factors. First, RAPL power measurements can be
made only at the per-socket level; per-core-level measurements are not available.
Second, using node-level view enables our models to take contention on shared
resources (e.g., last-level cache, TLB, and DRAM) into account.

1 We will make the packages and the framework available on our website (http://
www.sdsc.edu/∼tiwari/AutoMOMML) at the time of publication.

http://www.sdsc.edu/~tiwari/AutoMOMML
http://www.sdsc.edu/~tiwari/AutoMOMML

AutoMOMML: Automatic Multi-objective Modeling with Machine Learning 229

Each kernel in our training suite is configured to run either in single or double
precision. We also configure each of the kernels to work off of different levels in
the memory hierarchy; that is, for each kernel, we have multiple working set
sizes that fit in L1, L2, and last-level caches and main memory. This results in
a total of eight configurations for each computational kernel.

Model Validation Applications: To validate the models, we use five appli-
cation benchmarks (CG, FT, LU, MG, and SP) from the NAS parallel Bench-
marks (NPBs) [3] and two co-design mini-applications from the Mantevo suite
(miniGhost and CoMD) [23]. For all NPBs, we consider class C problems. We
include all four stencil operations (5-, 7-, 9-, and 27-point) available in miniGhost
in our evaluation. We consider both the Lennard-Jones (LJ) and embedded atom
method (EAM) within CoMD. For all versions of miniGhost and CoMD, we
consider a 1283-sized grid for our evaluations. We compiled all our tests with
gcc-4.6.3 and the -O2 flag.

For all the application benchmarks, we first profile the codes to determine
hot-spot loops. We then manually instrument the source code to collect hardware
counters around such loops. Intel’s documentation states that RAPL counters are
updated once every millisecond. However, others have noted that such updates
do not occur at such intervals [21]. To ensure we have a sufficient number of
power readings for each of the hot loops, we only consider loops that have per-
visit lengths of more than 5 ms.

Tools: To measure the hardware counters, we wrote a simple library-based tool
that allows us to “register” compute loops in kernels and applications for hard-
ware counter data collection. Internally, the tool uses PAPI to collect the hard-
ware counters. Each MPI process produces its own output file, and the outputs
are merged to generate the node-level characterization for computations.

Data Collection: The models developed in this work are based on performance
hardware counters. These counters are available on all modern processors and
record low-level microarchitectural events (e.g., number of L1 cache accesses,
number of mis-predicted branches) and are accessible via special-purpose model-
specific registers. Hardware-level parameters (e.g., CPU clock speed and power
caps on CPU and DRAM) also affect power draw and performance of compu-
tations. To also encapsulate the effects of those parameters, we measure power
and performance of computations at different CPU frequencies.

Training kernels and application loops are instrumented to measure all
PAPI-supported hardware counters. Hardware counter collection can be a noisy
process, and care must be taken to reduce the noise in the measurements. We
take two steps to limit this noise. First, we limit the number of hardware coun-
ters that we measure at a time to the number of counters that can be measured
without multiplexing. This means measuring at most 11 compatible counters at
a time on the Ivy Bridge testbed. Second, we measure each hardware counter
five times; from among these five measurements, we take the average of the three
values that are closest to each other and discard the remaining two.

230 P. Balaprakash et al.

Component-level power draw is measured by using PAPI. We reset the RAPL
energy counters at the start of each computational loop. At the completion of the
loop, the counters are read again to capture the per-component energy required
to run the loop. To derive power, we divide the energy measurements with time.
We express performance as cycles per instruction (cpi).

As a rule of thumb, ML methods require a number of training points that are
roughly 10 times number of dimensions (or inputs). Our training set consists of
approximately 1300 points; we generate multiple variants of the base 150 micro-
kernels by using single and double precision modes and using different working
set sizes (e.g., working set sizes that fit in L1 cache and L2 cache). The use
of different precision modes and working set sizes produce variants that have
markedly different computational signatures and performance/power profiles.
We also run the kernels under multiple CPU clock frequencies. The assumption
that we make when selecting the training set kernels is that these kernels cover
the most common compute patterns in scientific applications (e.g., dense and
sparse matrix computations, stencils, memory-intensive vs. compute-intensive
kernels). For the scientific applications that we have focused on, the training set
that we use provides good coverage. The implication of this underlying assump-
tion is that when the framework encounters a computational signature that is
not represented in the training set, the prediction will not be accurate enough.
However, the automated nature of the framework will make it easy to incorporate
this new computational signature into the existing training set.

Model Evaluation Metrics: To evaluate the predictive accuracy of the mod-
els, we rely on a set of metrics. The first of these is the arithmetic mean absolute
prediction error (AMAPE), a simple and widely reported metric in the HPC
literature. The main drawback of AMAPE is that it is sensitive to outliers and
can even lead to misleading conclusions [36]. Given that the kernels and appli-
cations in our prediction set are diverse and have wide a range of run times and
power draws, the distribution of prediction errors can be skewed. Therefore, we
also rely on geometric mean absolute prediction error (GMAPE) and median
absolute prediction error (MedAPE). We also report the usual ML metrics such
as RMSE and R2.

5 Experimental Results

We adopt a robust out-of-sample model validation strategy; first, from among
all the microkernels, we select 75 % for training (≈150 microkernels) and use
them as the kernel training set—this is given as training data set I to the
AutoMOMML. The remaining points in the kernel data set are tagged as the
kernel testing set, which is then used to validate the models. This setup is based
on an exploratory study in which we used 25 %, 50 %, 75 %, and 90 % for kernel
training set and found that 75 % provides a reasonable coverage of input/output
space. Note that sampling is done by using the names of the microkernels, which
will ensure that all configurations of any given microkernel (single- and double-
precision versions with working set sizes that fit in the L1, L2 and last-level

AutoMOMML: Automatic Multi-objective Modeling with Machine Learning 231

Fig. 3. Correlation analysis for output metrics.

caches and memory) belong to either the training or test set. Furthermore, we
validate the models by using all points from the mini-applications, which are
referred to as the application testing set.

AutoMOMML comprises few high-level component level parameters that can
potentially affect the tradeoff between accuracy and the model building time.
Based on component-level exploratory studies on the kernel training set, we
set and recommend the following settings as default. The cutoff value in the
correlation module is set to 0.90, and the number E of intervals in the balanced
sampling module is set to 10. For the input selection, the number of folds K is
set to 10, and the tolerance level, δ, is set to 1 %. For each output, we generate
10 subset sizes by generating a sequence of 10 equally spaced values from 3 to
|Is|. When the equally spaced value is not an integer, it is rounded off to the
nearest integer.

5.1 Modeling Complexity Reduction

Data Preprocessing, Correlation Analysis, and Balanced Sampling: We observe
that several inputs are highly correlated. Among the 40 PAPI counters, only 20
counters are uncorrelated. Highly correlated counters, for example, include data
cache misses on L1 and L2 data cache accesses. These sets of counters effectively
measure the same underlying phenomenon.

The results from the correlation analysis module for the outputs are shown
in Fig. 3. Of 7 outputs, only 3 outputs are uncorrelated—dram_0_power and
proc_0_power values are highly correlated to dram_1_power and proc_1_power,

232 P. Balaprakash et al.

Fig. 4. Input importance with permutation accuracy importance.

respectively. This is to be expected because we run the same workload on both
sockets of the testbed. Therefore, given dram and processor power for one socket,
it will be straightforward to predict the values for the other socket. From this
phase, AutoMOMML applies the rest of the modules in the pipeline for each
of the three uncorrelated outputs (dram_0_power, proc_0_power, and cpi)
independently.

Fig. 5. Memory performance at dif-
ferent CPU clock frequencies.

Input Importance and Input Selection:
Fig. 4 shows the results from the input
importance module. The plots show the
impact of the input on the three outputs
using permutation accuracy importance of
the rf method. The x-axis shows percentage
increase in MSE (%IncMSE) after permut-
ing the input column xi in the training set.
For dram_0_power, we observe that on-chip
(L1 and L2) and off-chip (L3) cache-related
activities (reads/writes/accesses/misses for
both data and instructions) emerge as the
most significant inputs. CPU clock frequency (freq) appears as the second most
important input. To explain this counterintuitive observation, we took note of
previous work [32] and used the lmbench benchmark [28] to measure memory
read bandwidth across different CPU clock frequencies on our testbed. The
results are plotted in Fig. 5. The curve shows that memory performance (mea-
sured in terms of the read bandwidth) degrades by roughly 26 % when CPU
clock frequency is reduced to 1.2 GHz from 2.6 GHz. The power drawn by DRAM
at 1.2 GHz is roughly 7 % lower than the power drawn at 2.6 GHz CPU clock
frequency. A particularly interesting entry in the rankings is the branch mis-
predicted event. We attribute this to the potential of branch mispredictions to
increase instruction cache misses by fetching the wrong instruction streams [1].
If the instruction footprint is larger than the exclusive L1 instruction cache, the

AutoMOMML: Automatic Multi-objective Modeling with Machine Learning 233

trips to memory for instructions can significantly increase if instructions cached
in inclusive L2 (and L3) caches are frequently evicted because of contention with
data. TLB data misses also contribute to the DRAM power draw. Each TLB
miss (on data or instruction) triggers a load from main memory in addition to
a page walk. TLB misses will, therefore, also have implications for the cpi.

For the proc_0_power, the most significant parameter is freq, which is fol-
lowed by memory, floating point, TLB, and cache-related events. For cpi, events
related to memory (loads and stores) and branch units are the most signifi-
cant. Memory and branch units contribute heavily to CPU stalls (or wasted
cycles). Memory-related stalls are mainly due to poor data locality, which leads
to poor cache usage. The performance of branch units is important because more
than 10 % of the total instructions in the microkernels, on average, are branch
instructions. Whether or not a given branch is accurately predicted therefore
has a significant impact on performance. Even though branch predictor units in
modern Intel processors are highly accurate, branch mispredictions incur a high
penalty by requiring a complete flush of the deep instruction pipeline.

Using the results from this module, AutoMOMML removes inputs that do
not have significant impact on the output. For each output, when %IncMSE for
an input xi is less than 5 %, it is removed from the predictor list for the corre-
sponding output. Nevertheless, the results show that no input is insignificant for
the three outputs. Note that the rf method is effective in identifying impactful
parameters but it has limitations in detecting insignificant inputs [20].

Figure 6 shows the results from the input selection module. Algorithm1 is
run for each output with 10 subset sizes. The general trend is that increasing
the number of inputs decreases RMSE, but the reduction becomes insignificant
after a certain number of inputs. The results also show the number of inputs
under various tolerance levels. For the adopted default tolerance of 1 %, Auto-
MOMML selects 8, 6, and 13 inputs for dram_0_power, proc_0_power, and cpi,
respectively. The selected j inputs for an output correspond to the top j inputs
for the same output in Fig. 4.

Fig. 6. Model-based input selection results.

234 P. Balaprakash et al.

Fig. 7. Model selection results.

5.2 Model Selection

Each learning method is configured to run with 30 parameter configurations. The
best parameter setting is obtained from the 10-fold cross-validation, as described
in Algorithm 2. Figure 7 shows the box plots obtained from 10 RMSE values of
each method with its best parameter setting. As evidenced by the box plot, the
t-test establishes different model combinations based on the given output: for
dram_0_power, rf and sgb are selected for bagging; for cpi rf, cbt, and sgb
require being combined; for proc_0_power, sgb outperforms all other models.

To build the final predictive models, for each output, the selected methods are
configured with their corresponding best parameter setting and retrained with
the kernel training set (150 microkernels). Given an unseen point, the predicted
value is given by the arithmetic mean of predicted values from the corresponding
models — e.g., cpi prediction is given by the mean of predicted values from rf,
cbt, and sgb models.

5.3 Model Validation

Table 1. Model validation results
Response R2 RMSE AMAPE (%) MedAPE (%) GMAPE (%)

Kernel testing set

proc_0_power 0.99 0.84 1.41 0.94 0.76

dram_0_power 0.89 1.00 4.60 1.23 1.50

cpi 0.93 0.19 17.4 13.3 8.57

Application testing set

proc_0_power 0.95 1.98 3.11 2.30 1.87

dram_0_power 0.45 2.36 15.9 8.00 7.16

cpi 0.91 0.47 15.5 12.9 7.63

Table 1 summarizes the
validation results on ker-
nel and application test-
ing sets. Recall that this is
out-of-sample validation—
i.e., the testing set points
are not used in training
the models. On the ker-
nel testing set, we observe
a high prediction accuracy
for dram_0_power and proc_0_power with AMAPE, GMAPE, and MedAPE
values within 5 %. MAPE’s sensitivity to a few outliers is evident in the case
of cpi. While the MAPE for cpi is 17.4 %, GMAPE and MedAPE values are
8.57 % and 13.3 %, respectively. We also note that R2 value for cpi is 0.93, which

AutoMOMML: Automatic Multi-objective Modeling with Machine Learning 235

suggests that the model accurately captures the relationship between inputs and
outputs well and that the model can be effective in comparing two competing
code optimization strategies in an autotuning (e.g., selection of code variants)
or run-time environment (e.g., selection of CPU clock frequency).

The results with the application testing set are promising and show a trend
similar to that of kernel testing set. In particular, for cpi and proc_0_power,
AMAPE, GMAPE, MedAPE, and R2 values are similar to the values observed
in the kernel testing set. Despite the fact that AMAPE for dram_0_power is
15.9 %, GMAPE and MedAPE are not more than 8 %. The RMSE value shows
that, on average, the prediction is off only by 2.36 W. Closer examination of the
results for dram_0_power prediction reveals that one instance of the NAS Par-
allel Benchmark, FT, shows a rather high prediction error (∼30 %). Compared
to other mini-applications and kernel testing set, FT’s computational loops tend
to have large number of function calls, which can affect instruction cache per-
formance and execute significantly large number of branch instructions.

6 Related Work

The closest related work is the MuMMI [37] end-to-end automatic multi-
objective modeling framework. MuMMI requires that training and testing points
come from the same application. Thus, the data collection and modeling are
needed for each application and obtained multi-objective models are application-
specific. Consequently, modeling problem becomes relatively easy. MuMMI uses
linear correlation for input selection, a linear model to capture the relationship
between PAPI counters and performance, power, and energy. The major differ-
ence between AutoMOMML and MuMMI is that the models obtained from the
former is not application-specific—i.e, within AutoMOMML, for a given system,
model development is a one time process that consists of collecting training data
using microkernels and using that data to train models.

From a methodological perspective, in [30] six supervised-learning meth-
ods are used to learn the relationship between hardware counters, source-code
transformation parameters (tiling, parallelization, vectorization, and data local-
ity improvement) and performance. It is a semi-automatic approach because
input importance and selection and model selection are manually driven. In [34],
kernel-specific surrogate models built by using artificial neural networks were
used to model the relationship between compiler transformation parameters and
objectives such as power draw, execution time, and energy usage of HPC kernels.

Research in model-guided autotuning has focused on developing online surro-
gate models for performance [18,27,33]. In [13,19], the authors developed online
surrogate models for several scientific kernels on multicore architectures. In [7],
the authors adopted boosted regression trees for obtaining online surrogate mod-
els for a GPU implementation of an image-filtering kernel.

Performance counters have been used to develop predictive power models in
multiple research projects [9,10,24]. Bertran et al. [9] use the notion of “power
components” (closely related architectural elements), develop microkernels that

236 P. Balaprakash et al.

stress those components separately, identify a set of performance counters that
can be used to quantify such stress, and use those performance counters to
develop linear-regression-based power models. Isci and Martonosi [24] use a sim-
ilar approach to identify a set of counters that can used to approximate the
activities within key architectural components. The hardware counters are then
used to develop component-level power models. Bircher and John [10] use per-
formance hardware counters to develop power models that can predict system
level power usage as a combination of component-level power usage. Lim et al.
[25] developed a general approach for building system power estimation models
based on hardware performance counters.

ML-based techniques have also been applied for multi-objective modeling in
design space exploration—see [2,15] and references therein. Their focus is in the
adoption of supervised learning algorithms to maximize prediction accuracy and
minimize the number of expensive simulations; they do not provide a pipeline of
algorithmic components for end-to-end automated multi-objective modeling.

7 Conclusion

Automated modeling techniques have the potential to provide valuable hints for
proactive and/or reactive steering of extreme scale systems towards better energy
efficiency and reliability. To that end, this paper presented the AutoMOMML
framework, a general-purpose machine-learning based framework for modeling
multiple objectives. We applied the framework to model power and performance
on a widely used Intel architecture and showed that the framework is capable of
(1) producing highly accurate models that can predict power and performance
of real-world application benchmarks, and (2) providing valuable information on
how the modeled objectives relate to the properties of applications and power
and performance related hardware parameters.

Our work in this area is only beginning. The fact that models trained using
empirical data collected for microbenchmarks can predict power and perfor-
mance of application benchmarks (i.e., out-of-sample prediction) across all CPU
frequency settings is highly encouraging. Such predictions will form the corner-
stones for developing, for example, intelligent runtime systems that can steer
execution towards better energy efficiency by using model-guided selection of
power-related hardware parameters. We are already pursuing multiple research
avenues in this general genre: incorporating AutoMOMML within an autotun-
ing framework [4], energy-aware computing framework [35], and the introspective
and adaptive runtime systems envisioned for future extreme-scale systems [8].

Acknowledgments. This work was supported by the U.S. Department of Energy,
Office of Science, Advanced Scientific Computing Research program under contract
number DE-AC02-06CH11357.

AutoMOMML: Automatic Multi-objective Modeling with Machine Learning 237

References

1. Ailamaki, A., DeWitt, D.J., Hill, M.D., Wood, D.A.: DBMSs on a modern proces-
sor: where does time go? In: Proceedings of the International Conference on Very
Large Data Bases, VLDB 1999, pp. 266–277, San Francisco (1999)

2. Azizi, O., Mahesri, A., Lee, B.C., Patel, S.J., Horowitz, M.: Energy-performance
tradeoffs in processor architecture and circuit design: a marginal cost analysis. In:
ACM SIGARCH Computer Architecture News, vol. 38, pp. 26–36. ACM (2010)

3. Bailey, D.H., Barszcz, E., Barton, J.T., Browning, D.S., Carter, R.L., Dagum, L.,
Fatoohi, R.A., Frederickson, P.O., Lasinski, T.A., Schreiber, R.S., Simon, H.D.,
Venkatakrishnan, V., Weeratunga, S.K.: The NAS parallel benchmarks-summary
and preliminary results. In: Proceedings of ACM/IEEE Conference on Supercom-
puting, SC 1991, New York (1991)

4. Balaprakash, P., Tiwari, A., Wild, S.M.: Multi objective optimization of HPC ker-
nels for performance, power, and energy. In: Jarvis, S.A., Wright, S.A., Hammond,
S.D. (eds.) PMBS 2013. LNCS, vol. 8551, pp. 239–260. Springer, Heidelberg (2014)

5. Balaprakash, P., Wild, S., Norris, B.: SPAPT: search problems in automatic per-
formance tuning. Proc. Comp. Sci. 9, 1959–1968 (2012)

6. Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. J.
Mach. Learn. Res. 13(1), 281–305 (2012)

7. Bergstra, J., Pinto, N., Cox, D.: Machine learning for predictive auto-tuning with
boosted regression trees. In: Innovative Parallel Computing (InPar 2012), pp. 1–9.
IEEE (2012)

8. Berry, M., Potok, T.E., Balaprakash, P., Hoffmann, H., Vatsavai, R., Prabhat:
Machine learning and understanding for intelligent extreme scale scientific com-
puting and discovery. Technical report (2015)

9. Bertran, R., González, M., Martorell, X., Navarro, N., Ayguadé, E.: A systematic
methodology to generate decomposable and responsive power models for CMPs.
IEEE Trans. Comp. 62(7), 1289–1302 (2013)

10. Bircher, W.L., John, L.K.: Complete system power estimation: a trickle-down app-
roach based on performance events. In: International Symposium on Performance
Analysis of Systems and Software, ISPASS 2007, pp. 158–168. IEEE (2007)

11. Bishop, C.M.: Pattern Recognition and Machine Learning, vol. 1. Springer, New
York (2006)

12. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
13. Cavazos, J., Fursin, G., Agakov, F., Bonilla, E., O’Boyle, M.F., Temam, O.: Rapidly

selecting good compiler optimizations using performance counters. In: IEEE Inter-
national Symposium on Code Generation and Optimization (CGO 2007), pp. 185–
197 (2007)

14. Chen, C., Chame, J., Hall, M.W.: CHiLL: a framework for composing high-level
loop transformations. TR 08–897, Univ. of Southern California, June 2008

15. Chen, T., Guo, Q., Tang, K., Temam, O., Xu, Z., Zhou, Z.-H., Chen, Y.:
Archranker: a ranking approach to design space exploration. In: ACM/IEEE 41st
International Symposium on Computer Architecture (ISCA), pp. 85–96. IEEE
(2014)

16. David, H., Gorbatov, E., Hanebutte, U.R., Khanna, R., Le, C.: Rapl: memory
power estimation and capping. In: 2010 ACM/IEEE International Symposium on
Low-Power Electronics and Design (ISLPED), pp. 189–194, August 2010

17. Friedman, J.H.: Stochastic gradient boosting. Comput. Stat. Data Anal. 38(4),
367–378 (2002)

238 P. Balaprakash et al.

18. Fursin, G., Miranda, C., Temam, O., Namolaru, M., Yom-Tov, E., Zaks, A.,
Mendelson, B., Bonilla, E., Thomson, J., Leather, H., et al.: MILEPOST GCC:
machine learning based research compiler. In: GCC Summit (2008)

19. Ganapathi, A., Kuno, H., Dayal, U., Wiener, J.L., Fox, A., Jordan, M., Patterson,
D.: Predicting multiple metrics for queries: better decisions enabled by machine
learning. In: IEEE International Conference on Data Engineering (ICDE 2009),
pp. 592–603 (2009)

20. Genuer, R., Poggi, J.-M., Tuleau-Malot, C.: Variable selection using random
forests. Pattern Recogn. Lett. 31(14), 2225–2236 (2010)

21. Hähnel, M., Döbel, B., Völp, M., Härtig, H.: Measuring energy consumption for
short code paths using RAPL. SIGMETRICS Perform. Eval. Rev. 40(3), 13–17
(2012)

22. Hearst, M.A., Dumais, S.T., Osman, E., Platt, J., Scholkopf, B.: Support vector
machines. IEEE Intel. Sys. App. 13(4), 18–28 (1998)

23. Heroux, M.A., Doerfler, D.W., Crozier, P.S., Willenbring, J.M., Edwards, H.C.,
Williams, A., Rajan, M., Keiter, E.R., Thornquist, H.K., Numrich, R.W.: Improv-
ing performance via mini-applications. Sandia National Laboratories. Technical
report SAND-5574 (2009)

24. Isci, C., Martonosi, M.: Runtime power monitoring in high-end processors: method-
ology and empirical data. In: International Symposium on Microarchitecture,
MICRO 36, p. 93. IEEE Computer Society, Washington, DC (2003)

25. Lim, M.Y., Porterfield, A., Fowler, R.: Softpower: fine-grain power estimations
using performance counters. In: Proceedings of the 19th ACM International Sym-
posium on High Performance Distributed Computing, pp. 308–311. ACM (2010)

26. London, K., Moore, S., Mucci, P., Seymour, K., Luczak, R.: The PAPI cross-
platform interface to hardware performance counters. In: Department of Defense
Users’ Group Conference Proceedings, pp. 18–21 (2001)

27. Magni, A., Dubach, C., O’Boyle, M.F.P.: A large-scale cross-architecture evalua-
tion of thread-coarsening. In: Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis, SC 2013 (2013)

28. McVoy, L., Staelin, C.: lmbench: portable tools for performance analysis. In:
USENIX Annual Technical Conference, ATEC 1996, p. 23. USENIX Association,
Berkeley (1996)

29. Norris, B., Hartono, A., Gropp, W.: Annotations for productivity and performance
portability. In: Petascale Computing: Algorithms and Applications, pp. 443–462.
Chapman & Hall (2007)

30. Park, E., Cavazos, J., Pouchet, L.-N., Bastoul, C., Cohen, A., Sadayappan, P.:
Predictive modeling in a polyhedral optimization space. Int. J. Parallel Program.
41(5), 704–750 (2013)

31. Pouchet, L.-N.: PolyBench: the polyhedral benchmark suite (2012). http://www.
cse.ohio-state.edu/pouchet/software/polybench/

32. Schöne, R., Hackenberg, D., Molka, D.: Memory performance at reduced CPU
clock speeds: an analysis of current x86 64 processors. In: Proceedings of USENIX
Conference on Power-Aware Computing and Systems (2012)

33. Spillinger, O., Eliahu, D., Fox, A., Demmel, J.: Matrix multiplication algorithm
selection with support vector machines (2015)

34. Tiwari, A., Laurenzano, M.A., Carrington, L., Snavely, A.: Modeling power and
energy usage of HPC kernels. In: IEEE International Conference on Parallel
and Distributed Processing Symposium Workshops (IPDPSW 2012), pp. 990–998
(2012)

http://www.cse.ohio-state.edu/pouchet/software/polybench/
http://www.cse.ohio-state.edu/pouchet/software/polybench/

AutoMOMML: Automatic Multi-objective Modeling with Machine Learning 239

35. Tiwari, A., Peraza, J., Laurenzano, M., Carrington, L., Snavely, A.: Green queue:
customized large-scale clock frequency scaling. In: International Conference on
Cloud and Green Computing, CGC 2012 (2012)

36. Tofallis, C.: A better measure of relative prediction accuracy for model selection
and model estimation. J. Oper. Res. Soc. 66, 1352–1362 (2014)

37. Wu, X., Lively, C., Taylor, V., Chang, H.-C., Su, C.-Y., Cameron, K., Moore,
S., Terpstra, D., Weaver, V.: Mummi: multiple metrics modeling infrastructure.
In: ACIS International Conference on Software Engineering, Artificial Intelligence,
Networking and Parallel/Distributed Computing (SNPD), pp. 289–295 (2013)

Datacenters and Cloud

Supercomputing Centers and Electricity Service
Providers: A Geographically Distributed

Perspective on Demand Management in Europe
and the United States

Tapasya Patki1(B), Natalie Bates2, Girish Ghatikar3, Anders Clausen4,
Sonja Klingert5, Ghaleb Abdulla1, and Mehdi Sheikhalishahi6

1 Lawrence Livermore National Laboratory, Livermore, USA
patki1@llnl.gov

2 Energy Efficient High Performance Computing Working Group, Livermore, USA
3 GreenLots and Lawrence Berkeley National Laboratory, Berkeley, USA

4 University of Southern Denmark, Odense, Denmark
5 The University of Mannheim, Mannheim, Germany

6 Create-Net, Trento, Italy

Abstract. Supercomputing Centers (SCs) have high and variable power
demands, which increase the challenges of the Electricity Service
Providers (ESPs) with regards to efficient electricity distribution and
reliable grid operation. High penetration of renewable energy generation
further exacerbates this problem. In order to develop a symbiotic
relationship between the SCs and their ESPs and to support effective
power management at all levels, it is critical to understand and analyze
how the existing relationships were formed and how these are expected
to evolve.

In this paper, we first present results from a detailed, quantitative
survey-based analysis and compare the perspectives of the European
grid and SCs to the ones of the United States (US). We then show
that contrary to the expectation, SCs in the US are more open
toward cooperating and developing demand-management strategies with
their ESPs. In order to validate this result and to enable a thorough
comparative study, we also conduct a qualitative analysis by interviewing
three large-scale, geographically-distributed sites: Oak Ridge National
Laboratory (ORNL), Lawrence Livermore National Laboratory (LLNL),
and the Leibniz Supercomputing Center (LRZ). We conclude that
perspectives on demand management are dependent on the electricity
market and pricing in the geographical region and on the degree of control
that a particular SC has in terms of power-purchase negotiation.

1 Introduction

Current Supercomputing Centers (SCs) for High-Performance Computing (HPC)
with peta-scale capabilities have high power demands, with peak requirements
of over 30 MW and fluctuations of a few megawatts over short-time scales [4].
c© Springer International Publishing Switzerland 2016
J.M. Kunkel et al. (Eds.): ISC High Performance 2016, LNCS 9697, pp. 243–260, 2016.
DOI: 10.1007/978-3-319-41321-1 13

244 T. Patki et al.

This trend is expected to continue in the future as we push the limits of
supercomputing further. As a result, Electricity Service Providers (ESPs) for such
SCs need to support efficient electricity generation, transmission and distribution
along with reliable grid operation. ESPs today already face reliability concerns
for accommodating megawatt-level fluctuations from SCs and often require HPC
client sites to forecast their electricity use. The acceptance and proliferation
of renewable sources of energy further adds to the variability in electricity
generation, making grid reliability even more challenging. A tighter integration
and open communication between ESPs and their client SCs is thus critical as we
proceed toward the next generation of supercomputing.

At present, most ESP-SC relationships are linear and unidirectional. Power
is typically generated, distributed and delivered to customer sites without direct
or active involvement, and most electricity pricing contracts are negotiated
without any communication requirements. Going forward, however, it is expected
that a multi-directional relationship will evolve between the ESPs and SCs.
Communication and control will flow from end-customers to one or more of the
electricity generation and distribution entities, and contract terms will enforce
stringent usage requirements. The cloud and data center providers, such as
Google, have already started to anticipate this multi-directional relationship and
are taking advantage of this changing landscape. For example, Google’s response
suggests vertical integration, especially with Google’s Energy Subsidiary which
gives Google the right to sell energy within the United States [11]. Another
example is the SmartGrid initiative [19] by the U.S. Department of Energy, which
is making electricity delivery faster and more efficient by involving customers,
adjusting to dynamic demands, and by providing automated solutions and quick
responses to remote facilities. Demand management (DM) is a set of explicit
actions taken by large-scale data centers, cloud providers, SCs and other entities
in order to establish such multi-directional relationships with their ESPs. One
key element is the temporal component that indicates the timescale requirements
for the DM actions. The benefits of DM depend on the timescales of negotiation
and implementation of this relationship with the ESPs. The Energy-Efficient
High-Performance Computing Working Group (EE HPC WG) seeks to analyze
the impact of DM implementations for SCs with HPC workloads and for
their ESPs.

In our previous work, we focused on understanding how ESPs and SCs can
work together to improve DM through grid-integrated services by surveying
large-scale SCs in the United States [4]. We developed a questionnaire and
surveyed 11 sites. We noted that none of the SCs are working directly with
their ESPs to leverage the benefits of DM. Our main conclusion from this work
was that SCs in the United States were interested in a tighter integration with
their ESPs, but a business case for the same had not been well-demonstrated.
In this work, we expand our analysis to include European SCs. We accomplish
this by extending the aforementioned questionnaire and quantitatively surveying
nine European SCs.

Supercomputing Centers and Electricity Service Providers 245

The main motivation for our geographical study lies in the way electricity is
priced. In Europe, electricity is more expensive and is subject to more variability
because of the larger mix of renewable sources. Additionally, the SCs in both
geographical regions have different maximum power demands. For example, in
the United States, four of the SCs we surveyed had HPC workloads of 10 MW
or more. The remaining SCs in the United States as well as all the SCs in
Europe had workloads of 5 MW of less. The size of demand and its variability
have different and co-related impacts on the operation of the SCs and grid.
Furthermore, the European grid is more integrated and differs in terms of its
market interconnections than the United States, which impacts the benefits of
DM for SCs [10].

The key objectives for this study thus included:

– Understanding the similarities and differences in the ESP-SC relationships
based on geographical locations in Europe and the United States,

– Understanding how these relationships impact the motivation for DM and
how the SCs under consideration can leverage the DM benefits, and,

– Determining any necessary regulatory and technology interventions for
grid-integrated DM.

Our initial expectation was that the European SCs will be more tightly
integrated with their ESPs because of the higher prices and more extensive
use of renewables. Contrary to our expectations, however, we found that
the United States shows more interest in responding to requests from their
ESPs than Europe. The four SCs that needed 10 MW or more had active
communication channels with their ESPs about responding to grid requests.
None of the SCs in Europe had similar relationships with their ESPs. In this
paper, we present these results and analyze the differences across the two
geographies that may have led to this result. We first present results from
our quantitative survey from 9 European SC sites and 11 United States SC
sites, and then conduct a detailed qualitative analysis for three major SCs: Oak
Ridge National Laboratory (ORNL), Lawrence Livermore National Laboratory
(LLNL), and Leibniz Supercomputing Center (LRZ). The main goal for the
qualitative analysis is to delve deeper into the electricity pricing structures as
well as the available incentives for a tighter integration, and to understand what
motivates the existing relationship between SCs and their ESPs to leverage the
benefits from DM.

Section 2 motivates the need for an open multi-directional relationship
between SCs and their ESPs and Sect. 3 presents an overview of DM actions.
Section 4 presents the quantitative results from the questionnaire. In Sect. 5,
we review our site-specific interviews and present a qualitative analysis of the
DM options available to these sites. Section 6 presents related work, and Sect. 7
summarizes our results and discusses future research directions.

246 T. Patki et al.

2 Motivation for Demand Management

We measured the power consumption of Sequoia, which is the world’s third
fastest supercomputer (17.1 petaflops) hosted at LLNL. Sequoia is a BlueGene/Q
system with 98,304 16-core PowerPC A2 compute nodes and has a power rating
of 7.9 MW. The data from Sequoia was collected at three-minute intervals
over three days and the results can be seen from Fig. 1. Information about
the workload being executed was not made available. The y-axis is the power
consumed, and the x-axis represents the time samples. As can be noted from
this figure, fluctuations of a few megawatts are fairly common. Some of these
fluctuations may be related to maintenance cycles and could be scheduled
or forecasted. However, there are other times where the fluctuations are not
scheduled in advance and may occur as a result of the workload that is executing
on the supercomputer.

0 500 1000 1500

0
2

4
6

8

Power Swings on the Sequoia Supercomputer

Three Minute Time Samples, Apr 23 to Apr 26, 2013

M
ea

su
re

d
P

ow
er

 (
M

W
)

180 kW

5.5 MW

9 MW

6 MW

Fig. 1. Sequoia supercomputer power swings

We observe similar trends with data from Titan, which is the world’s
second-fastest supercomputer hosted at ORNL. Titan is a 17.6 petaflop system
with a power rating of 8.2 MW. It comprises of 18,688 16-core AMD Opteron
6274 compute nodes, and each compute node has a NVIDIA Tesla K20X
GPU. Figure 2 shows data gathered from identical WL-LSMS executions on the
Titan supercomputer. WL-LSMS is a benchmark that performs thermodynamic
calculations [15]. The graph in Fig. 2 has instantaneous power in MW on the
y-axis and the benchmark execution time on the x-axis. The data is reported
for a CPU-only run as well as a GPU-enabled run. The power samples for
the CPU-only run were collected every 8 min, where as the samples for the
GPU-enabled run were reported every second. The red line represents the
GPU-enabled run and the blue line represents the CPU-only run. As can be
noted from this data, substantial power swings are observed on Titan, both in
the case of CPU-only as well as GPU-enabled runs.

Supercomputing Centers and Electricity Service Providers 247

0 50 100 150 200 250

0
2

4
6

8
10

Power Swings on Titan (WL−LSMS v.3.0)
 CPU only versus GPU Enabled Power Consumption

Cray XK7 18,561 compute nodes

Time (minutes)

In
st

an
ta

ne
ou

s
Po

w
er

C

on
su

m
pt

io
n

(M
W

)

GPU Enabled
CPU Only

Fig. 2. Titan supercomputer power swings (Color figure online)

The energy efficiency improves by about seven times when the GPU is
enabled as the application runs significantly faster. Note that the improvement in
energy efficiency is application-dependent, and that the power swings observed
here are a result of the ensemble runs of WL-LSMS. In this example, they occur
when a new set of calculations is being initiated and there is a pause between the
compute-intensive work phases. This trend is observed for both the GPU-enabled
and the CPU-only runs. Peak power increased by about one megawatt with the
GPU-enabled run. The net effect is that less energy is used to get the same
amount of work done in the GPU-enabled case, but with slightly higher power
draw and potentially higher power variability.

Both these datasets clearly indicate that power fluctuations occur in real
production systems, and this can affect the reliability of the ESP grid. It is thus
imperative to understand how such variable power demands can be managed
better. In this context, demand management (DM) is one approach to mitigate
the consequences of these power fluctuations that promotes a tighter relationship
between ESPs and SCs.

3 Demand Management

Demand Management covers strategies, programs and methods that SCs and
ESPs can employ to ensure grid reliability. We define strategies as power
management techniques used by SCs to manage power and provide load
flexibility. Strategies may or may not improve energy efficiency. For example,
Load Migration is a strategy that SCs may use in response to an ESP’s
request, and while it helps manage power effectively, it does not impact the
energy efficiency of the site. On the other hand, fine-grained power management
techniques, such as using node-level power capping, or better job scheduling
algorithms are likely to improve energy efficiency but may not be as useful in

248 T. Patki et al.

response to an ESP request. Almost all sites employ some power management
strategies, especially the ones involving lighting, temperature, cooling, fine-grain
power management and job scheduling.

Programs are incentives offered by ESPs to their customers and to SCs
in order to motivate them to help balance the electrical grid and perform
power managment. Common examples include peak shedding, peak shifting and
dynamic pricing. Peak shedding describes the action where SCs (or consumers)
reduce their electricity consumption in response to a request from the ESP. The
reduction in electricity consumption does not lead to an increase in consumption
at a later point in time. Peak shifting, on the other hand, moves load from one
time slot to another, in response to a request from the ESP. Lastly, dynamic
pricing is a mechanism used by the ESP to incentivize an increase or decrease
in consumption by varying the price of electricity over time.

Methods are used by the ESPs to balance the electrical grid in the
transmission and distribution phases. Examples of methods include regulation,
frequency response, grid scale storage.

Another important aspect of DM is the wider acceptance of renewable sources
of energy. In the current electricity mix, the benefits of demand forecasting (that
is, predicting the amount of power required by an SC for a certain period of
time) by the SCs and their communication with their ESPs for better capacity
planning and electricity purchase negotiations have been shown. Such benefits
can be exercised with active DM actions within a forecasted power band as
described above. With increasing variable renewable generation in the electricity
mix, more granular demand forecasting by the SCs can help ESPs to identify
and plan for grid impacts during over- and under-generation conditions.

4 Quantitative Study

In this section, we discuss the results from our quantitative survey. We extended
our questionnaire from our previous work [4] and contacted sixteen SCs in
the European region. Appendix A provides an overview of the questionnaire.
The detailed definitions for each of the demand management approaches and
strategies can be found in our previous work [4]. Nine out of the sixteen European
SCs that we contacted responded to the questionnaire. All except one of these
sites were in Top 50 supercomputers in the world [1].

Figures 3 and 4 depict the total load in megawatts for each of the respondents
in the United States and in Europe. Most supercomputing sites have a total load
of under 5 MW (sixteen out of twenty). Four of the surveyed supercomputing
sites had a total load of over 10 MW.

Both United States and Europe had power swings and fluctuations of a few
megawatts. In our questionnaire, we asked respondents to report the maximum
variability that they have experienced in their SCs. The results of these for
United States as well as Europe are shown in Figs. 5 and 6 respectively. In the
United States, three of the eleven sites surveyed had maximum variability of over
5 MW. For our United States respondents, the minimal option for reporting this

Supercomputing Centers and Electricity Service Providers 249

Total HPC Load for Specific Sites
 in United States

To
ta

l H
PC

 L
oa

d
(M

W
)

0

5

10

15

 1 2 3 4 5 6 7 8 9 10 11

Fig. 3. Total load at SCs in United States

Total HPC Load for Specific Sites
 in Europe

To
ta

l H
PC

 L
oa

d
(M

W
)

0

1

2

3

4

5

6

7

 1 2 3 4 5 6 7 8 9

Fig. 4. Total load at SCs in Europe

was “Less than 3 MW”, because of which we could not capture less intense
power swings. In the European survey, we allowed the respondents to provide a
more accurate value, and as shown in Fig. 6, we observed power swings in the
range of half a megawatt to about 2 MW. Almost all of the respondents reported
that this variability is due to maintenance cycles, and that it can be scheduled
day-ahead if necessary.

In terms of demand management strategies, the survey indicated that there is
moderate interest in grid integration strategies such as coarse- and fine- grained
power management or temperature control in the United States, and low interest
for the same in Europe. From the point of view of SCs, strategies such as cutting
jobs or load migration have little or no interest.

250 T. Patki et al.

Maximum Variability for Specific Sites
 in United States

M
ax

im
um

 V
ar

ia
bi

lit
y

(M
W

)

0

2

4

6

8

10

 1 2 3 4 5 6 7 8 9 10 11

Fig. 5. Maximum variability at SCs in United States

Maximum Variability for Specific Sites
 in Europe

M
ax

im
um

 V
ar

ia
bi

lit
y

(M
W

)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

 1 2 3 4 5 6 7 8 9

No
Data

Fig. 6. Maximum variability at SCs in Europe

From our questionnaire, we also concluded that neither European nor the
United States sites are engaged with peak shedding, peak shifting or dynamic
pricing programs at present. More sites in the United States have communicated
with their ESPs regarding these programs. While both European and United
States SCs are interested in dynamic pricing, there is mixed interest in peak
shedding and peak shifting. The European sites are more interested in peak
shedding than peak shifting, but the United States sites are more interested in
peak shifting. Both European and US sites are interested in discussing renewables
with their ESPs, but there is little interest in communicating with regards to
the other possible methods.

Supercomputing Centers and Electricity Service Providers 251

Table 1. Motivation for communicating with ESP (European respondents)

Ques: Please evaluate as high, medium or low the following
motivations for your site’s interest in pursuing a stronger
relationship with your electricity service provider

Low Medium High Rating count

Economically justified 14.3 % (1) 28.6 % (2) 57.1 % (4) 7

Good citizen 14.3 % (1) 71.4 % (5) 14.3 % (1) 7

Adverse consequences 66.7 % (4) 16.7 % (1) 16.7 % (1) 6

Government regulation 71.4 % (5) 28.6 % (2) 0.0 % (0) 7

We also asked our European respondents to indicate what might motivate
them to communicate with their ESPs. The results are shown in Table 1. As can
be noted from this table, the main motivators are the financial incentives and the
desire to be “good citizens”. Thus, SC motivations are driven by market-based
mechanisms that justify economics and social-responsibility, even under the
absence of regulatory support.

Table 2. Communications with ESPs regarding available programs

Program Europe United States

Peak shedding 1 6

Peak shifting 0 4

Dynamic pricing 0 5

We noted that none of the European SCs communicated about grid
integration potential, demand management and available flexibility with their
associated ESPs. Additionally, there was little interest in a tighter integration
with the ESPs. In general, the SCs in the United States seem to have a closer
relationship with their ESPs than the ones in Europe. This can also be verified
from Table 2, which shows that only 1 of the 9 respondents in Europe have had
a discussion with their ESP.

4.1 Comments from Survey Respondents

From the comments section in our questionnaire, we noted that all SCs are
already using demand forecasting to communicate their upcoming demands and
maintenance cycle schedules with their ESPs. For example, one comment was
“We project hourly average power at least a day in advance, within +/−1MW”.
Another interesting comment was “We’ve to ensure that our power load neither
over- nor under-shoots the contracted power band. In any cases of foreseen
power abnormalities we’ve to inform our grid provider at least two days ahead
of schedule”.

252 T. Patki et al.

One of the SCs mentioned that they could not provide the forecast that was
being asked by their ESP. More specifically, their comment indicated that their
ESP asked for “multi-year forecast of energy requirements, additional detailed
forecasting and ultimately real time data, and power projections, hour by hour,
for at least a day in advance”.

When it came to ESP programs, the United States SCs showed more
interest. “Our site generates 30–35 MW of power yet still imports 5–10 MW.
As a large generation source the utility providers see the campus as a highly
attractive partner for offloading grid stress. automatic load shedding is being
explored/deployed today”, one of the SCs noted. Another comment was “[We
are] working on load sharing of data with utility to provide better scheduling
tools and address potential grid changes”. One of the SCs mentioned that they
demonstrated that peak shedding and shifting was possible, but not deployed
due to its impact on HPC productivity.

The European SCs, on the other hand, did not have much knowledge about
ESP programs. Some of the responses were “There are not so many related
options and features offered by providers. We are open to further and pro-active
efforts as long as providers have other kinds of programs to propose” and “With
many of your questions I am wondering about the kind of contracts other centers
might have and about the quality of some electricity providers”.

The comments also indicated that the SCs in United States are investigating
the impact of power fluctuations on the electrical grid. “[We are] working directly
with provider to ensure that the effects of large load swings are understood.
Have funded a simulation that accounts for all loads”. and “Our provider has no
problem with our load swings. They indicate no concern with our next system
either, but we are still looking into possible options in case there actually is a
problem”. Were some of the interesting responses.

5 Qualitative Study: Site-Specific Interviews

The results presented in the previous section were based on data gathered
through a questionnaire created for HPC centers based on experience from a
United States context. The preliminary results of the comparison across the
geographical regions gave the impression that European SCs had very limited
communication with their ESPs with respect to grid integration. However, it was
apparent that some SCs in Europe engage in collaboration with their ESPs in
order to ensure minimal fluctuations as well as for forecasting of deviations from
normal power consumption patterns. In order to shed light on the details of the
relationships between SCs and ESPs that were not captured in the questionnaire,
we designed a qualitative interview and surveyed ORNL, LLNL and LRZ. The
thesis was that a qualitative analysis will yield more complete information and
will enable us to present more thorough comparative study on the status of grid
integration of SCs in Europe and the US. For each site, we asked the questions
listed below. We present the information from each SC in the subsections that
follow.

Supercomputing Centers and Electricity Service Providers 253

– What is your responsibility for negotiating the contract between your HPC
facility and your ESP?

– Could you elaborate on the details of the pricing structure on your electricity?
Note that for this question, we did not request specific information on the
actual price the SC pays for electricity. We were interested in the type of
pricing program they were enrolled in.

– Do you have any obligations towards your ESP, and if so, what is your
incentive towards committing to these obligations? These obligations are
characterized by being static and pre-smart grid, in the sense that no real-time
communication is needed between ESP and SC. Examples include limits for
allowed variability in power consumption and/or fixed power consumption
limits. Examples for potential incentives include reduction in electricity price,
enabling of direct payments and legislation benefits.

– Do you offer any kind of services for your ESP, and if so, what is your
incentive for offering these services? These services are characterized by two
way communication between the site and the ESP, where a consumer reacts
to information sent by the ESP. Examples include load capping, powering up
backup generations, etc.

– How do you envision your future relationship with your electricity provider?
(Possible answers were: tighter, for example, by selling local generation
capacity; or looser, for example, by being self-sufficient with regards to
electricity needs.

5.1 Oak Ridge National Laboratory

For ORNL, DOE negotiates the contract with the ESP. ORNL gets its power from
Tennessee Valley Authority (TVA), which generates, transmits and distributes
the power. The DOE and TVA negotiate the power capacity that is being
provisioned each year. Typically, a range for operation is chosen, for the current
year, this range is 35 MW to 75 MW. In terms of electricity pricing, ORNL incurs
two kinds of charges: a demand charge, which is fixed for a month, and an energy
charge based on actual power consumption. The demand charge is determined by
analyzing 30 min blocks and by determining the peak or maximum value for the
month. The demand charge can be off-peak or on-peak based on the time of the
day. It also has a time-of-use per day component. ORNL’s provider, TVA, is not
affected by power swings of a few megawatts (5 to 8 MW) and is very reliable. The
goal for ORNL is to keep its HPC systems fully utilized in terms of power.

ORNL does not have any obligations and provide any services to its ESP.
The only requirement is to operate in the range that was negotiated (35 MW to
75 MW). They have a model that explains their power usage that they provide
to the TVA annually, but there is no two-way communication or forecasting. In
general, the capital expenditure for the SC at ORNL dominates the operational
costs. As the HPC system cost depreciates with time (for example, Titan’s
depreciation is about 20 K dollars per hour), there is little financial incentive
to be flexible and to save on electricity costs. The goal is thus to keep their site
fully utilized in terms of power.

254 T. Patki et al.

5.2 Lawrence Livermore National Laboratory

In the case of LLNL, DOE negotiates the contract with the ESP with the help of
a consulting company called Exeter. A bulk purchase of power is made for about
100 MW of power capacity from the California-Oregon Transmission Project (or
COTP) and is shared between LLNL and two other DOE sites. Pacific Gas and
Electric (PG&E) and Western Area Power Administration (WAPA) are used
for transmission and distribution. In terms of electricity pricing, LLNL does not
pay a demand charge, but only pays a flat energy charge of about 4.5 cents per
kWh, which is on the lower side when compared to the industry. Forecasting
is done on a regular basis in order to be a good citizen. For the scope of this
questionnaire related to the HPC facility, there is not much financial incentive
to save energy costs. Additionally, there are no obligations from the ESP and
no services are provided. The goal is to keep the site fully utilized in terms of
power and to minimize leftover power in order to be energy efficient.

5.3 Leibniz Supercomputing Center

The power contract between LRZ and Stadtwerke München, a Munich Power
Company is the result of pan-European procurement. LRZ purchases a
basic power band for one or multiple years at the European power stock
exchange. Hence, the power price is determined by the European stock market.
Additionally, there are charges for the power grid, renewable energy, concession
levy as well as taxes which are significant. The charges for power generation and
distribution constitute only 25 % of the power price in Germany. As a result, the
energy costs are very expensive for LRZ.

LRZ operates in a 4 to 6 MW power band. They have a contracted power
price of 0.16e per kWh until 2018. A power grid usage fee is mainly determined
by annual peak power consumption so large power swings result in much higher
electricity cost. Power consumption measurements are averaged over 15 min
time intervals. The annual power consumption maximum is also the average
peak power consumed within a 15 min time interval. It is thus imperative to
be able to forecast any power swings and to inform the ESP about the same.
Better prediction models for power usage will definitely benefit LRZ in terms of
electricity costs, as one of their goals is to save on energy costs. This is primarily
because their energy costs dominate their operational costs. Typically, LRZ lets
the ESP know about 2 days in advance for any scheduled downtimes. At present,
there are no major obligations toward or services provided to the ESP, mostly
because of the QOS guarantees that have to be adhered to for their users.

5.4 Analysis

The key goals for our qualitative analysis were to understand the power purchase
relationships, energy use, and the level of demand management flexibility
available to reduce electricity use and/or energy costs for the three SCs under
consideration. Our interviews thus focused on the annual electricity purchase

Supercomputing Centers and Electricity Service Providers 255

negotiations and pricing structure, and on characterizing SC’s electricity use
relative to larger campus. We also tried to identify the level of motivation for
demand management for lowering peak power and energy use and for any services
being offered. We observed that while some trends were common across all
three sites, there were some differences. We summarize these similarities and
differences below.

Similarities: An important common trend was that the power purchase
negotiations were typically done by a third party (for example, DOE, Exeter
or Stadtwerke München) and on an annual basis. Power capacity was negotiated
by specifying an upper limit on the amount of power procured for all three sites.
Additionally, in the case of ORNL and LRZ, a lower bound on the power capacity
was also clearly specified. Negotiations for all three sites were done at the level of
entire site or a set of collaborative sites, and not merely for the supercomputing
facility that was located within the site.

Differences: We observed that the pricing structure was different in all three
cases. In case of LLNL, there was a flat rate, which makes LLNL less sensitive
to electricity cost variation. For ORNL, there was a variable rate, which makes
it somewhat sensitive to electricity costs. LRZ, however, is very sensitive to the
pricing structure because of the expensive energy costs as well as the impact
of power swings on electricity costs. In terms of power fluctuations, LLNL used
demand forecasting to be a good citizen. For both LLNL and ORNL, reliability
was not a major concern and power variations were acceptable by the ESP. For
LRZ, the electricity cost increases if there were more power swings, making them
highly responsive to such variability and enabling the need for better forecasting.
The electricity generation mix in the United States was mostly thermal, where
as in Europe it was largely renewable sources of energy.

Overall, we believe that several factors drive the motivation for demand
management. The key ones are the control that a site has when it comes
to power purchase negotiations, their price sensitivity to power fluctuations,
and financial as well as good-citizen-based intentions for communicating their
demand with their ESP. One of the factors that was unclear in this analysis was
the contribution of the electricity cost as a part of the site’s annual budget or
operation costs, which we plan to explore as part of our future work.

6 Related Work

The focus of our study is the relationship between ESPs and SCs. SCs
are fundamentally different than data centers as they have stricter QoS
and performance guarantee requirements and need to maintain high levels
of utilization. At present, little research exists in the domain for demand
management for SCs. Data centers are known to be capable of providing flexibility
in their power consumption, and thus are great candidates to participate into
energy market demand response (DR) programs. Wierman et al. [27] survey the
opportunities and challenges for data center DR participation. Aikema et al.

256 T. Patki et al.

[2] overview multiple types of ancillary service markets, and study the capacity
and potential benefit by introducing a simple data center participation model.
Siano [20] present a survey of DR for smart grids. Ghatikar et al. [13] exploit
various load management techniques, such as load shedding and shifting for
data center DR. Goiri et al. [14] propose GreenSlot, a workload scheduler to
maximize the green energy consumption (that is, solar energy) while meeting
the job deadline. Geographic load migration is another broadly studied data
center management technique to help balance the grid, and reduce the energy cost
exploiting the electricity price differences [9,16,17,24,25].

The participation of data centers in traditional DR programs, such as
real-time dynamic energy pricing [12,18,26] and peak shaving [3,22,23], has been
widely studied. Recently, there are a growing number of interests on the data
center participation in emerging DR programs that are more profitable. Chen
et al. [6] develop real-time dynamic control policies by leveraging both server
level power management techniques and server state switches for data centers
to provide regulation service reserves (RSRs). They also implement a prototype
of the control policies on real-life server clusters with virtualized CPU resource
limits [8]. Brocanelli et al. [5] propose the joint management of data center and
employee Plug-in Hybrid Electric Vehicles (PHEVs) to increase the regulation
profit. A systematic comparison shows that RSR is a more profitable program for
data centers to participate than traditional programs such as peak shaving [7].
Clausen et al. [10] found that smaller data centers aggregated through a Virtual
Power Plant are a potential resource in demand management, but no electricity
markets that aimed to facilitate this type of resource existed in Denmark.
However, Energinet.dk and other Nordic transmission system operators do
recognize demand response and demand-side market participation as a resource
in grid management, and have set forth initiatives to reducing market barriers
towards this type of capacity.

DC4Cities [21] is a visionary project funded by the European Union to
develop new scenarios within a smart city context, considering renewable energy
availability, and a data center’s energy needs. Through the development of energy
management authorities (EMA) within smart cities, EMA admins can define
energy goals for data centers. Workload managers at the level of each data
center will then plan scheduling for applications according to energy goals and
renewable energy availability, making data centers more energy adaptive.

7 Summary and Next Steps

In this paper, we conducted a quantitative and qualitative analysis on demand
management perspectives in Europe and the United States from the point of view
of supercomputing centers with HPC facilities. We surveyed 9 SCs in Europe and
11 SCs in the United States, most of which were part of the Top500 list. Our
key findings were that contrary to our expectation, the SCs in Europe were not
communicating actively with their ESPs with regards to demand management
approaches. Our qualitative interviews with ORNL, LLNL and LRZ helped us

Supercomputing Centers and Electricity Service Providers 257

understand the motivation and reasons behind this result. We observe that
perspectives on demand management are dependent on the electricity market
and pricing in the geographical region and on the degree of control that a
particular SC has in terms of power-purchase negotiation.

In summary, we believe that the European ESP programs for DM need to
be studied in greater detail and the awareness of the benefits for these programs
needs to be raised among the SCs. As part of our future work, we want to explore
the European ESP programs further, the lack of such closer relationships, and
also conduct a similar study in Japan, which has different institutional and
electricity supply challenges. We also want to conduct more qualitative analysis
through in-person site interviews to understand the electricity markets and the
available incentive better.

8 Additional Authors

Torsten Wilde, Leibniz Supercomputing Center
James H. Rogers, Oak Ridge National Laboratory
Ayse Coskun, Boston University
Hao Chen, Boston University
Peter M. Schwartz, Lawrence Berkeley National Laboratory
Gert Svensson, KTH Royal Institute of Technology
Bo Norregaard Jorgensen, University of Southern Denmark

Acknowledgments. The authors would like to thank Herbert Huber from the Leibniz
Supercomputing Center (LRZ) and Anna Maria Bailey from Lawrence Livermore
National Laboratory for the insights provided. This research used resources of the Oak
Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, which is
supported by the Office of Science of the U.S. Department of Energy under Contract
No. DE-AC05-00OR22725. This work was partially performed under the auspices of
the U.S. Department of Energy by Lawrence Livermore National Laboratory under
Contract DE-AC52-07NA27344 (LLNL-CONF-680495).

A Appendix

The details of our questionnaire are presented below.

1. What is your total facility energy? This should be the same as the total
facility energy number that is used for calculating PUE.

2. What is your total HPC load?
3. What is your facility PUE?
4. What is your facility’s theoretical peak energy, as the infrastructure is

currently fit up?
5. What is the maximum intra-hour variation in total facility energy that is

likely to re-occur?
6. Do you employ coarse-grained power management strategies?
7. Do you employ fine-grained power management strategies?

258 T. Patki et al.

8. Do you employ load migration as a strategy?
9. Do you employ job scheduling as a strategy?

10. Do you employ back-up scheduling as a strategy?
11. Do you employ shutdown as a strategy?
12. Do you employ lighting control as a strategy?
13. Do you employ increasing air temperature as a strategy?
14. Do you employ liquid temperature adjustment as a strategy?
15. Do you cut jobs as a strategy?
16. Are there any other strategies that you employ to manage and control

your total facility energy in response to a request from your energy
utility/provider?

17. Please evaluate each of the above strategies from questions 7 to 16 as high,
medium or low, based on the MW impact of each of these strategies as a
response to a grid request.

18. Have you had conversations with your electricity service provider about peak
shedding?

19. Have you had conversations with your electricity service provider about peak
shifting?

20. Have you had conversations with your electricity service provider about
dynamic pricing?

21. Have you had conversations with your electricity service provider about grid
scale storage?

22. Have you had conversations with your electricity service provider about
power variability related to renewables and methods used for responding to
such variability?

23. Have you had conversations with your electricity service provider about
frequency response?

24. Have you had conversations with your electricity service provider about
regulation?

25. Have you had conversations with your electricity service provider about
congestion?

26. Is there information you would like from your provider that you are not
getting? If yes, please describe what you would like to know.

27. Is your provider asking for information from you that you are not able to
provide? If yes, please describe what they are asking for.

28. Do you experience any power quality issues at your HPC facility? If yes,
please describe.

29. Do you know of any consequences between your site and your provider from
either scheduled or un scheduled intra-hour power variations?

30. Please evaluate as high, medium or low the following motivations for your
site’s interest in pursuing a stronger relationship with your electricity service
provider.

31. Please help us understand the economic aspects of power saving strategies.
This is an open ended question and we encourage any feedback. For instance,
what might it take to induce your site to participate in programs offered by
your electricity service provider? What are the tradeoffs between savings
and loss of scientific productivity and equipment depreciation.

Supercomputing Centers and Electricity Service Providers 259

References

1. Top500 Supercomputer Sites, November 2014. http://www.top500.org/lists/
2014/11

2. Aikema, D., Simmonds, R., Zareipour, H.: Data centres in the ancillary services
market. In: IGCC, pp. 1–10 (2012)

3. Aksanli, B., Pettis, E., Rosing, T.: Architecting efficient peak power shaving
using batteries in data centers. In: IEEE 21st International Symposium on
Modeling, Analysis and Simulation of Computer and Telecommunication Systems
(MASCOTS), pp. 242–253 (2013)

4. Bates, N., Ghatikar, G., Abdulla, G., Koenig, G., Bhalachandra, S., Sheikhalishahi,
M., Patki, T., Rountree, B., Poole, S.: Electrical grid and supercomputing
centers: an investigative analysis of emerging opportunities and challenges. Inform.
Spektrum 38(2), 111–127 (2015)

5. Brocanelli, M., Li, S., Wang, X., Zhang, W.: Joint management of data centers
and electric vehicles for maximized regulation profits. In: IGCC, pp. 1–10 (2013)

6. Chen, H., Caramanis, M.C., Coskun, A.K.: The data center as a grid load
stabilizer. In: IEEE 19th Asia and South Pacific on Design Automation Conference
(ASP-DAC), pp. 105–112 (2014)

7. Chen, H., Caramanis, M.C., Coskun, A.K.: Reducing the data center electricity
costs through participation in smart grid programs. In: IEEE International Green
Computing Conference (IGCC), pp. 1–10 (2014)

8. Chen, H., Hankendi, C., Caramanis, M.C., Coskun, A.K.: Dynamic server power
capping for enabling data center participation in power markets. In: International
Conference on Computer-Aided Design (ICCAD) (2013)

9. Chiu, D., Stewart, C., McManus, B.: Electric grid balancing through low cost
workload migration. SIGMETRICS Perform. Eval. Rev. 40(3), 48–52 (2012)

10. Clausen, A., Ghatikar, G., Jorgensen, B.N.: Load management of data centers as
regulation capacity in denmark. In: International Green Computing Conference
(IGCC), pp. 1–10. IEEE (2014)

11. Google Energy. Ferc order granting market-based rate authorization. Federal
Energy Regulatory Commission (2010)

12. Ghamkhari, M., Mohsenian-Rad, H.: Data centers to offer ancillary services. In:
3rd International Conference on Smart Grid Communications, pp. 436–441. IEEE
(2012)

13. Ghatikar, G., Ganti, V., Matson, N., Piette, M.A.: Demand response opportunities,
enabling technologies for data centers: findings from field studies. LBNL-5763E. pdf
(2012)

14. Goiri, Í., Haque, M.E., Le, K., Beauchea, R., Nguyen, T.D., Guitart, J., Torres, J.,
Bianchini, R.: Matching renewable energy supply and demand in green datacenters.
Ad Hoc Netw. 25, 520–534 (2015)

15. Oak Ridge National Laboratory. WL-LSMS Benchmark (2013). https://www.olcf.
ornl.gov/wp-content/training/electronic-structure-2012/Eisenbach OakRidge
February.pdf

16. Lin, M., Liu, Z., Wierman, A., Andrew, L.L.: Online algorithms for geographical
load balancing. In: IGCC, pp. 1–10. IEEE (2012)

17. Liu, Z., Lin, M., Wierman, A., Low, S.H., Andrew, L.L.: Greening geographical
load balancing. In: Proceedings of the ACM SIGMETRICS, pp. 233–244. ACM
(2011)

http://www.top500.org/lists/2014/11
http://www.top500.org/lists/2014/11
https://www.olcf.ornl.gov/wp-content/training/electronic-structure-2012/Eisenbach_OakRidge_February.pdf
https://www.olcf.ornl.gov/wp-content/training/electronic-structure-2012/Eisenbach_OakRidge_February.pdf
https://www.olcf.ornl.gov/wp-content/training/electronic-structure-2012/Eisenbach_OakRidge_February.pdf

260 T. Patki et al.

18. Liu, Z., Liu, I., Low, S., Wierman, A.: Pricing data center demand response.
In: ACM International Conference on Measurement and Modeling of Computer
Systems, pp. 111–123 (2014)

19. US Department of Energy. Smart Grid (2015). https://www.smartgrid.gov/the
smart grid/smart grid

20. Siano, P.: Demand response and smart grids? A survey. Renew. Sustain. Energ.
Rev. 30, 461–478 (2014)

21. European Union. DC4Cities (2015). http://www.dc4cities.eu/en/
22. Urgaonkar, R., Urgaonkar, B., Neely, M.J., Sivasubramaniam, A.: Optimal power

cost management using stored energy in data centers. In: Proceedings of the ACM
SIGMETRICS Joint International Conference on Measurement and Modeling of
Computer Systems, pp. 221–232 (2011)

23. Wang, D., Ren, C., Sivasubramaniam, A., Urgaonkar, B., Fathy, H.: Energy storage
in datacenters: what, where, and how much? ACM SIGMETRICS Perform. Eval.
Rev. 40(1), 187–198 (2012)

24. Wang, H., Huang, J., Lin, X., Mohsenian-Rad, H.: Exploring smart grid and data
center interactions for electric power load balancing. ACM SIGMETRICS Perform.
Eval. Rev. 41(3), 89–94 (2014)

25. Wang, R., Kandasamy, N., Nwankpa, C., Kaeli, D.R.: Data centers as controllable
load resources in the electricity market. In: International Conference on Distributed
Computing Systems (2013)

26. Wang, Y., Lin, X., Pedram, M.: A sequential game perspective and optimization
of the smart grid with distributed data centers. In: Innovative Smart Grid
Technologies (ISGT), pp. 1–6. IEEE (2013)

27. Wierman, A., Liu, Z., Liu, I., Mohsenian-Rad, H.: Opportunities and challenges
for data center demand response. In: IGCC, pp. 1–10 (2014)

https://www.smartgrid.gov/the_smart_grid/smart_grid
https://www.smartgrid.gov/the_smart_grid/smart_grid
http://www.dc4cities.eu/en/

Resource Management for Running HPC
Applications in Container Clouds

Stephen Herbein1, Ayush Dusia1, Aaron Landwehr1, Sean McDaniel1,
Jose Monsalve1, Yang Yang1, Seetharami R. Seelam2, and Michela Taufer1(B)

1 University of Delaware, Newark, USA
taufer@udel.edu

2 IBM T. J. Watson Research Center, Yorktown Heights, USA
sseelam@us.ibm.com

Abstract. Innovations in operating-system-level virtualization tech-
nologies such as resource control groups, isolated namespaces, and lay-
ered file systems have driven a new breed of virtualization solutions
called containers. Applications running in containers depend on the host
operating system (OS) for resource allocation, throttling, and prioritiza-
tion. However, the OS is designed to provide only best-effort/fair-share
resource allocation. Lack of resource management, as in virtual machine
managers, constrains the use of containers and container-based clusters
to a subset of workloads other than traditional high-performance com-
puting (HPC) workflows. In this paper, we describe problems with the
fair-share resource management of CPUs, network bandwidth, and I/O
bandwidth on HPC workloads and present mechanisms to allocate, throt-
tle, and prioritize each of these three critical resources in containerized
HPC environments. These mechanisms enable container-based HPC clus-
ters to host applications with different resource requirements and enforce
effective resource use so that a large collection of HPC applications can
benefit from the flexibility, portability, and agile characteristics of con-
tainers.

1 Introduction

While operating-system-based virtualization and containers are not new con-
cepts, the emerging use of containers as a mechanism for operations across
clusters in datacenters has the potential to change the computing landscape
in HPC [26]. It also opens new research challenges in this field. Specifically,
containers still need proper mechanisms for enforcing controlled resource alloca-
tion and management in containerized environments. This experimental paper
describes mechanisms for the management of three key resources in container-
ized HPC applications: CPU, I/O, and network. The paper extends preliminary
work presented in three posters at IEEE Cluster 2015 [9,11,19] by describing the
mechanisms in a cohesive fashion and presenting their implementation in detail.
Our implementation is based on Docker technology but can be adapted to other
container technologies.
c© Springer International Publishing Switzerland 2016
J.M. Kunkel et al. (Eds.): ISC High Performance 2016, LNCS 9697, pp. 261–278, 2016.
DOI: 10.1007/978-3-319-41321-1 14

262 S. Herbein et al.

Containers depend on the host OS for resource allocation and throttling.
The fact that each container does not have its own kernel removes the kernel
overhead from the container image and makes containers lighter weight in their
memory and file system footprint as well as more easily portable than virtual
machine (VM) images for HPC applications. On the other hand, the depen-
dency on the host OS limits the containers’ capability to control the allocation
and management of HPC resources. Because traditional operating systems are
designed to provide best-effort and fair-share resource allocation, they do not
always support the workload requirements of containerized HPC applications.
Thus, a containerized HPC application may, for example, experience substan-
tial slowdowns because of the frequent context switching associated with the
default fair-share scheduler, or they may suffer from high contention because of
the fair-share bandwidth allocated by the OS kernel.

The contributions of this paper to the solution of resource managements
problems in containerized HPC environments are threefold. First, we address the
CPU allocation challenge for CPU-intensive applications running inside Docker
containers that share the same compute node. By default, the host OS schedul-
ing policy shares the node’s CPUs between the containers using its fair-share
quanta-based scheduling policy. In this policy each container is allowed to use a
node’s CPU for a predefined amount of time (typically 10 ms) before the next
container is assigned to the CPU in a round-robin fashion. For applications such
as LINPACK, this kind of fair sharing significantly slows the application perfor-
mance because more time is spent on context switching than on real computa-
tion. To achieve better performance, we introduce a timeslicing mechanism [13]
currently missing at the container level. When our mechanism is used, only a sin-
gle container is scheduled at any time on shared resources for a prolonged period
of time. This technique is akin to gang scheduling in HPC. With such a sim-
ple mechanism, we can improve an application’s performance in a containerized
environment by up to 4x.

Second, we address the challenge associated with disk I/O contention and disk
I/O load imbalance in containerized applications across datacenter clusters. By
default, containers are placed on nodes based only on available CPU and memory,
ignoring the nodes’ I/O load and capacity. This placement may result in poor I/O
load balancing across the datacenter machines and ultimately in I/O hotspots
for those nodes hosting containers with intensive I/O operations (e.g., frequent
checkpointing). To prevent the formation of hotspots, we propose a two-tiered
mechanism (i.e., at both the node and cluster levels) that extends Docker and
Docker Swarm, making both capable of monitoring the containers’ I/O activities
and allocating containers based on I/O load balance across the datacenter nodes.
We demonstrate how our two-tiered mechanism has the potential for higher
bandwidth utilization without the contention effect.

Third, we address the challenge associated with network bandwidth throt-
tling and prioritization. In order to ensure high-quality performance for critical,
communication-intensive applications executed in containers, a required band-
width level should be ensured without expanding or overprovisioning the net-
work. By default in containers such as Docker, networks are configured to provide

Resource Management for Running HPC Applications in Container Clouds 263

the “best effort” to all the traffic. Under these conditions, parameters such as
bandwidth, reliability, and packets per second for a specific HPC application
cannot be guaranteed. Consequently, a communication-intensive containerized
application may experience unacceptable performance when hosted on nodes
with other containerized applications. We address this problem by proposing a
mechanism that enables bandwidth limits and preferential delivery service for
critical applications in containers. Our solution can control latency and delay
while providing a way to reduce data losses.

The rest of this paper is organized as follows. Section 2 presents our mecha-
nism for dynamic CPU resource allocation among containers. Section 3 presents
methods to enforce I/O constraints among containers. Section 4 describes our
mechanism to manage the network among containers. Section 5 provides back-
ground on containers and Docker as well as relevant related work. Section 6
briefly summarizes our conclusions.

2 CPU Allocations in Containers

Docker builds on the Linux kernel to allocate CPU resources to containers.
Specifically, Docker uses Linux control groups (CGroups [2]) to provide por-
tions of CPU resource pools to containers. Users specify the number of shares
to give to a container or group of containers a priori (or statically), and the
Linux OS gives each container a CPU allocation proportional to the number
of shares that the container was allocated. When the specified shares saturate
the CPU resource pools, the kernel allocates a fair share across all containers.
Traditionally, containers are given time slices of 10 ms before context switching.
The frequent context switching imposes an overhead on the system and causes
cache thrashing, ultimately leading to performance degradation. Figure 1 shows
an example of execution times for different numbers of containers ranging from
1 to 5, when running the LINPACK benchmark with a default 10 ms time slice.
The optimal execution time has a linear behavior (ideal); the observed execut-
ing time is superlinear (10 ms time slice). The fine-grained time-slice granularity
defines the interval each container is allowed to run on the CPU resources before
being preempted. Every time a container’s context switch is performed, the new
context thrashes the content of the cache memory and overwrites the previously
running container’s context, requiring storing all its applications’ values and exe-
cution state. The shorter the cycle in which the containers’ context switching
occurs, the less locality that can be exploited by the containers’ applications and
the more context switches that are performed.

To mitigate losses in performance associated with static resource allocation
and frequent context switching, we design and implement a mechanism that
allows Docker to define and deploy a dynamic, coarse-grained time slice for
each container. The mechanism serializes the containers’ consumption of CPU
resources and is particularly suitable for high-caching, compute-intensive HPC
applications in containers.

264 S. Herbein et al.

Fig. 1. Example of execution times for different numbers of containers running the
LINPACK benchmark on an unmodified Linux OS with default 10 ms time slice.

2.1 CPU Allocation Mechanism

Current Docker containers support only static resource allocations. Shares are
defined a priori and remain unchanged during the containers’ executions. Our
mechanism enables dynamic resource allocations at runtime by serializing the
containers’ execution for longer time-slice intervals. The serialization is obtained
by increasing the shares of one container to 100 % and decreasing the shares of
all other containers to 0 %. From an implementation point of view, we extend
Docker with a simple but effective round-robin time-slice policy integrated into
an Observe-Decide-Act (ODA) control loop [24] that schedules individual con-
tainers to be run one at a time for a defined time-slice interval. The round-robin
policy first selects the container with the highest number of shares and allows
it to run for the duration of the slice. The control loop then repeats, selecting
containers in a round-robin fashion, each time reserving the entire pool of CPU
resources for a single container.

With the ODA loop, we can collect container-specific information (e.g., pri-
ority information, application-specific information, and metadata on container
requirements) that can serve as additional input for the decision-making process
of the ODA loop. This is not possible if a third-party solution that runs out-
side Docker (e.g., in the Linux OS) is used. Moreover, the docker API and the
command user interface are not changed, making the deployment of new capabil-
ities for the user easier. Furthermore, we can leverage the Docker’s client-server
structure. The background Docker daemon provides the API to create, delete,
or modify any container in the host OS; the Docker client provides the users
with the command line interface, launches the daemon if necessary, and sends
the commands to the daemon through the use of HTTP-like connections. In
our implementation of the mechanism, a single Docker client can handle several
Docker daemons, and a single ODA loop can handle multiple CPU resources
in the distributed environment. Specifically, in our implementation, the CPU
utilization is monitored at each step of the ODA loop; when overutilization is

Resource Management for Running HPC Applications in Container Clouds 265

detected, the allocation mechanism decides whether to adjust the CPU shares to
control which container is using the CPU resources of the corresponding machine.

To implement the allocation mechanism, we modify the Docker 1.6.1 source
files at three levels. First, we modify the Docker daemon’s driver by adding a
new function that modifies CGroups’ parameters for a given container. Specif-
ically, at the driver level, we create a new update driver interface that updates
the containers’ CGroups configuration dynamically by pulling the current con-
figuration (i.e., libcontainer::Container::Config) and pushing a new config-
uration with updated CPU shares allocation (i.e., libcontainer::Container
::Set). We use the new function in the driver to make all of the necessary
CGroup parameter modifications. Second, we add a new interface to the API of
the server front-end that receives the update command for a specific container.
Specifically, at the server front-end, we create a new POST handler that handles
CPU share update commands sent from the client and initiates a new “update”
job on the daemon. Third, we modify the Docker client by adding an additional
command to the Docker command line interface. The new command handles the
ODA loop, retrieves utilization information from the RESTful API, and pushes
new CPU allocation information to the RESTful API. The source code of our
implementation is available on GitHub at [22].

2.2 Empirical Results

To evaluate Docker when using our mechanism, we create containers for a high-
caching, compute-intensive benchmark such as LINPACK [10] with a matrix of
size 1000 × 1000 and a block size of 100× 100. This is a large-enough problem
size to represent a long-term execution (i.e., longer than 60 s) on our 8-core
nodes, one for each hardware thread. Each container utilizes 100 % of the CPU
resources available on the host machine.

The first question we address in our assessment is the identification of an opti-
mal time-slice size. To this end, we measure the execution time of the benchmark
with different time-slice intervals ranging from 0.5 to 20 s and different numbers
of containers ranging from 2 to 5. Figure 2a zooms in on the execution times for
two containers; Fig. 2b zooms out for four configurations of 2, 3, 4, and 5 con-
tainers. For smaller time-slice intervals, we see no improvement in performance
because of a delay in the reaction time for CGroups when used through Docker.
Reaction time here is the amount of time elapsed between when a CGroup is
changed and when the change results in altering the application performance.
CGroup value changes do not instantaneously impact application performance
because the OS scheduler does not pick them up as soon as they are changed.
We observed an average delay time of approximately 700 ms. As the time-slice
interval grows, we observe a performance sweet spot around 10 s for any number
of containers considered in our tests.

The second question we address in our assessment is the impact of our mech-
anism on performance. To this end, we consider the optimal time-slice interval
of 10 s (within the observed sweet spot window observed in Fig. 2b). Figure 3
shows the context switching of 5 containers when using our mechanism for the

266 S. Herbein et al.

LINPACK benchmark. In the test depicted in the figures, we start the adaptive
scheduler after 10 s. The figure outlines the overlapping in the containers’ exe-
cutions before our mechanism is applied and the subsequent time-slice intervals.
Within every ODA cycle, each container assumes complete control over the CPU
resources for its time-slice interval. This process repeats until all the containers
terminate their computation.

In Fig. 4 we compare the execution times of containers under differing levels of
overallocation when using our mechanism (10 s time slice) versus using the tradi-
tional Linux implementation (10-ms time slice). For the sake of completeness we
also add the ideal performance trend. As already outlined in Fig. 1, without our
mechanism, as we increase the oversubscription of resources, the execution times

Fig. 2. Impact of time-slice intervals on execution times for different number of con-
tainers. (Color figure online)

Fig. 3. Time slice of five containers and 10 s time slice.

Resource Management for Running HPC Applications in Container Clouds 267

significantly increases in a superlinear pattern because of caching and synchro-
nization conflicts. With our mechanism, on the other hand, the performance is
almost linear with the number of concurrent containers and improves by approx-
imately a factor of 4 because of the mitigation of the aforementioned issues. With
our mechanism, five containers take ∼5x the time of a single container whereas
in the default model, five containers take over ∼20x times the time of a single
container.

Fig. 4. Execution time for different numbers of containers with and without our mech-
anism with a time-slice interval of 10 s. (Color figure online)

We observe that our mechanism based on serializing applications in contain-
ers is efficient when there is an oversubscription of CPU resources and appli-
cations are highly optimized for maximal resource usage such as in LINPACK.
The longer time-slice interval ultimately reduces cache thrashing and the over-
head of context switching. Unlike the Linux scheduler, our time-slice intervals
are on the order of seconds; performance sweet spots are observed for inter-
vals ranging between 10 and 15 s. Under this time slice, a number of containers
ranging between two and five are able to freely operate alone for long periods
of time while taking full advantage of the locality during their execution. Our
results demonstrate that an adaptive control scheme can positively affect the
overall application performance. We are not suggesting that this mechanism is
suitable for all applications; different application domains need different time
slices. LINPACK is an example of compute-intensive applications where OS-
based allocations is clearly not sufficient and a better CPU allocation results
in a significant performance improvements when the application is executed in
containerized workloads.

3 I/O Management of Container Clusters

HPC applications perform disk I/O operations (i.e., read and write) for vari-
ous reasons such as reading the input parameters of a program, writing output

268 S. Herbein et al.

results of a simulations, and periodically checkpointing the simulation state.
The management of containerized applications is ignorant of the applications’
load and nodes’ I/O capacity. In other words, containers are placed on machines
based only on available CPU and memory knowledge. When dealing with I/O-
intensive applications, this naive placement of containers ultimately results in
poor I/O load balancing across datacenter machines. Figure 5a shows an exam-
ple of naive allocation of containers and its impact on the I/O bandwidth. The
results in the figure refer to 90 containers executed in 14 virtual machines, each
container hosting one I/O-intensive application. Each application continuously
streams data to disk with different I/O rates: of 2 MB/s, 4 MB/s, or 8 MB/s.
The I/O rate is randomly assigned at the container’s launch time. The number
of containers per VM depends on what containers are selected to be scheduled
on the specific VM. In the figure we observe that after all the applications have
been launched, the I/O bandwidth imbalance between nodes is significant, on
the order of 50 MB/s. While the example in the figure depicts a load-imbalanced
scenario across VMs, a similar behavior is expected across nodes in datacenter
clusters.

To balance the load across nodes, we define a two-tier solution that combines
a node-level mechanism and a cluster-level mechanism. At the node level, we
change the Docker daemon to allow monitoring each container’s I/O load, and
we set absolute upper bounds on the container’s I/O bandwidth. At the cluster
level, we enable the scheduling system to perform load balancing by placing new
containers across nodes based on the node’s system I/O capability and utilized
I/O bandwidth. Together these two mechanisms allow I/O-intensive applica-
tions to effectively execute with available I/O resources in HPC containerized
environments.

3.1 Allocation Mechanisms

While kernels provide statistics on the I/O activity of each node and the Blkio
CGroup has various parameters that allow us to control allocations such as I/O
operations per second and bandwidth per second, container managers such as
Docker do not provide API functions to leverage these capabilities [1]. At the
node level, we extend the Docker API to capture the I/O device status for each
container; the status includes disk utilization in terms of how much time the
storage device has outstanding work (i.e., is busy), write bandwidth in terms of
the number of bytes written to the device per second, read bandwidth in terms
of the number of bytes read from the device per second, and wait time in terms
of the average time (milliseconds) for I/O requests issued to the device to be
served. To capture the I/O activities and to modify bandwidth limits for reads
and writes in containers, we augment the client-side API of the Docker daemon
in three ways. In our first modification, we add the ability for the Docker daemon
to determine the maximum I/O bandwidth of the node it is running on. When
a Docker daemon starts, it continuously performs unbuffered writes of 4 MB for
30 s and then calculates the effective bandwidth over that time period. In our
second modification, we add the ability for the Docker daemon to determine the

Resource Management for Running HPC Applications in Container Clouds 269

current I/O bandwidth utilization on each of the nodes. The Docker daemon
parses the node’s kernel information present at /proc/diskstats. Among the
many statistics stored in /proc/diskstats is the number of sectors read and
written to disk since boot. Every two seconds, the modified Docker daemon
parses the number of sectors read and written, comparing the values between
samples, and computes a running average of bytes accessed per second over 15
samples. We add this information, along with the maximum bandwidth, to the
response for the /info Docker API call. For the third modification, we enable
the Docker daemon to set the blkio.throttle write bps device flag and the
blkio.throttle read bps device flag in the Blkio controller. Setting these
flags under the CGroup directory named after the container ID allows us to limit
the I/O bandwidth of a container.

At the cluster level, we ensure that the I/O load is being balanced across
entire clusters. This task involves ensuring that the I/O load is distributed across
the nodes of a cluster and that no node in the cluster is overburdened with
I/O operations. To this end we monitor the average load of each node (i.e.,
CPU, memory, and I/O loads); the I/O load is monitored, and the I/O device
status is stored with the modifications described above. When a new container
is scheduled, it is allocated to the node with the lowest total load, where the
weight of each load type is user configurable. We implement our solution on
top of Docker Swarm. Note, however, that our method is generic to any other
scheduling solution and can be easily extended to other schedulers such as Mesos
and SLURM. While Docker Swarm includes the capability to monitor CPU and
memory as well as to schedule containers across a cluster, it lacks knowledge of
the I/O capacity and utilization of the containers. The node-level mechanism
described above extends the Docker daemon to make the I/O activity of each
node and the I/O throttling of containers available through the /info Docker
API call. The information is made available to Docker Swarm by augmenting
the internal data structures of Swarm to store the I/O information for each node
in the cluster and by increasing the frequency at which Swarm makes the /info
API call to each Docker daemon so that Swarm always has an up-to-date view
of the cluster’s I/O state. We include the collected I/O information in Swarm’s
scheduling strategies and adapt the node weighting function that Swarm uses to
determine the current load on a node to integrate the I/O weight together with
the existing CPU and memory weights. These modifications to Docker Swarm
allow us to determine when the I/O of a node is saturated and consequently stop
scheduling containers on that specific node. The modifications also allow Swarm
to better load balance container allocations across the cluster when using the
spread scheduling strategy since it can include I/O when calculating the load
on a node. The source code of the implementation of our node-level [20] and
cluster-level [15] mechanisms is available on GitHub.

3.2 Empirical Results

To demonstrate the benefits of I/O knowledge once integrated in Docker Swarm,
we repeat the test in Fig. 5a but with our modified Swarm. As described above,

270 S. Herbein et al.

Fig. 5. Examples of imbalanced and balanced I/O load obtained with and without our
augmented Docker and Docker Swarm. Each line represents the I/O used by one of 14
VMs running multiple I/O-intensive containerized applications. (Color figure online)

our test is performed on 14 VMs running 90 containers on the modified Docker
daemons. Each VM had a dedicated core and dedicated hard drive to minimize
contention. Figure 5b shows the results for the augmented Docker and Docker
Swarm with full knowledge of the system’s I/O. Contrary to the results in Fig. 5a,
the I/O load across the 14 VMs is well balanced, and each VM is roughly using
the same I/O bandwidth. More important, no single VM has maxed out its disk
bandwidth. Under this balancing scheme, I/O-intensive containerized applica-
tions get their desired bandwidth easily and without contention. More generally,
Fig. 5b provides a proof of concept to support the claim that the additional
I/O knowledge allows Swarm to make better decisions at schedule time, which
ultimately result in better load balancing and higher resource utilization. When
applied to containers on HPC clusters, the same mechanism allows container-
ized applications to satisfy the I/O requirements and balance the load across the
nodes of a datacenter.

4 Network Allocations in Containers

The Docker networking interface offers limited options to configure the net-
work usage of containers. Docker networks are currently configured to provide
the “best effort” to the network traffic. When Docker boots up, a single vir-
tual Ethernet bridge, called docker0, is generated. By default, all the contain-
ers are configured to be in the same subnet and use docker0 to enable the
communication with one another. Thus, no throttling or traffic prioritization is

Resource Management for Running HPC Applications in Container Clouds 271

available. Without throttling, communication-intensive applications can starve
other applications. Moreover, the lack in network traffic prioritization can cause
poor performance in time-sensitive containerized applications. For example, a
container hosting a real-time HPC application (e.g., a streaming application
with fast Fourier transformations requiring iterative manipulations) may require
more bandwidth than does a container hosting a batch or analytics applications.
Figure 7a shows an example of a scenario with four containers with different
traffic priorities: the first container has high network traffic priority, the second
medium priority, and the last two low priority. Each container hosts an applica-
tion that downloads a 450 MB file over FTP from an FTP server. Although we
assign different priorities to the four containers a priori and the four download
jobs start simultaneously (with one job in each container), the network band-
widths do not reflect the desired traffic prioritization with the default Docker
networking.

To support different bandwidths and priorities for a pool of Docker containers
with different network requirements, we implement two mechanisms that allow
Docker to provide prioritization and throttling based on a network priority or
rate limit assigned to containers by the user a priori. The two mechanisms can
be used separately or in concert, since they complement each other.

4.1 Throttling and Priority-Based Allocation

Our priority-based mechanism extends Docker to include a priority scheme for
network traffic. The priority scheme is enforced by using a packet classifier and
scheduler. When using the packet classifier, packets are classified and added to
one of three available priority queues (i.e., high, medium, or low). The medium
level is the default level that is assigned to any container when no priority is
defined by the user. The scheduler dequeues the packets and sends each packet
to a container according to the queue’s priority. Figure 6 provides a high-level
overview of the mechanism.

We use the Linux traffic control (TC) utility to classify and then schedule
the network traffic in and out of the docker0 interface [6]. Using the TC utility,
we configure a network scheduling algorithm, also called a queuing discipline
(qdisc), for both the ingress and egress directions [5]. Specifically, we use the
PRIO qdisc, a scheduling algorithm that contains an arbitrary number of classes
with priorities. We configured the PRIO qdisc to utilize three classes, where
Class 1 has the highest priority, Class 2 (the default class) has a medium priority,
and Class 3 has the lowest priority. In order for the PRIO qdisc to schedule
packets based on priority, the packets must first be classified. We use TC filters
to classify incoming and outgoing packets based on their IP address. A priority
is assigned to containers when they are created. Since each container has an
unique IP address, packets coming from or going to a container’s IP address
take on the priority of that container. For example, all the packets that have
destination IP address of a container with high priority are enqueued to Class 1.

272 S. Herbein et al.

Fig. 6. Overview of the packet classifier and scheduler workflow.

Similarly, the packets with destination IP address of a container with default
and low priority are added to Classes 2 and 3, respectively. Once the packets are
properly classified and populate the appropriate class queues, the PRIO qdisc
can begin scheduling the packets. The PRIO qdisc scheduler first checks for
packets in the queue of Class 1; if no packets are available to dequeue, then
the queue of Class 2 is checked; and if no packets are available to dequeue in
the queue of Class 2, the queue of Class 3 is checked. The dequeuing of packets
from the queue of different classes enforces the scheduling policy and priorities
of containers. The problem with using just a PRIO qdisc is that individual
connections, or “flows,” within the same class can contend with one another
and degrade performance. To avoid this scenario, we add a stochastic fairness
queuing (SFQ) qdisc to each class. SFQ ensures fairness within each class by
scheduling flows of the same class in a round-robin fashion, thus preventing any
single flow from drowning out the rest of the flows.

Our throttle-based mechanism gives Docker the capability to throttle the
rate at which the packets are sent or received by a given container. To throt-
tle each container to its specified limit, we use TC to apply an independently
configurable token bucket filter (TBF) qdisc to each container’s packet queue.
Each TBF has two required parameters. The first parameter is the traffic rate
limit, specified by the users and assigned during the containers’ initialization.
The second parameter is the burst size, which determines the size of the buffer
used by the TBF to queue packets when traffic is being throttled. If the buffer
size is too small, packets may be dropped because more packets arrive than can
be accommodated in the buffer. These dropped packets will cause an overhead
to our throttling mechanism. We reduce this overhead by configuring the qdisc
parameters for optimal performance—specifically, by setting the burst size to
10 % of the user-defined throttle rate. The source code of the implementation
of both our network prioritization and throttling mechanisms is available on
GitHub [12].

Resource Management for Running HPC Applications in Container Clouds 273

4.2 Empirical Results

We assessed our priority-based mechanism by repeating the test in Fig. 7a with
the same four containers uploading a 200 MB file to the same FTP server but
this time with the property-based mechanism in place. Figure 7b shows the net-
work throughput observed for the four containers. In Fig. 7a we use the default
Docker network, and the network throughput remains the same for all three
containers despite the user-defined priorities. On the other hand, in Fig. 7b we
observe different network throughput for the four containers because of our mech-
anism. Initially, the high-priority container (#1) has the highest share of the
total throughput. When the file download completes for the high-priority con-
tainer, the medium-priority container (#2) gets the highest share of the total
throughput. Similarly, when the file download completes for the medium-priority
container, the low-priority containers (#3 and #4) get all the bandwidth. The
results also show that the low-priority containers get an equal share of the total
throughput. These results prove that our mechanism implements priorities in
containers and that the containers with equal priority get an equal share of the
available bandwidth.

Fig. 7. Network throughput of 4 containers downloading 450 MB over FTP with and
without our network prioritization mechanism. Container 1 is assigned high priority,
Container 2 medium priority, and Containers 3 and 4 low priority. (Color figure online)

To assess our throttle-based mechanism, we assign different bandwidth limits
to three containers running on the same node and then monitor the network
throughput experienced by each container. The containers’ limits are 4.5, 3, and
1.5 MBps. The containers are configured to execute only a single job of uploading
a file of size 200 MB to an FTP server. We use an FTP server to receive files from

274 S. Herbein et al.

all the containers. The network throughput of all three containers is monitored
for the duration of the uploads, first without throttle-based mechanism and then
with the mechanism in place. Figure 8a shows the network throughput obtained
by the three containers without our mechanism; Fig. 8b shows the throughput
for the same test with our mechanism.

Fig. 8. Network throughput of three containers without and with throttle-based mech-
anism. When the throttle-based mechanism is in place, the three bandwidth limits
of 4.5, 3, and 1.5 MBps are observed for the three containers’ uploads. (Color figure
online)

Without the throttle-based mechanism, the network throughput is almost
the same for all the containers. On the other hand, with limits, the network
throughput is throttled to 4.5 MBps for Container 1, 3 MBps for Container 2,
and 1.5 MBps for Container 3. The dips in the network throughput are due to
the congestion control mechanism of TCP. In particular, if a packet loss occurs,
multiple duplicate ACK signals are received, and the congestion window (cwnd)
is reduced by the sender. The congestion window size estimates the congestion
between sender and receiver and avoids overloading the link between sender and
receiver with too much traffic.

The results of our empirical tests show that our Docker implementation with
the throttle-based and priority-based mechanisms efficiently provides resource
allocations to containers based on priorities and requirements. Specifically, our
extension to Docker networking guarantees that containers’ network bandwidth
matches assigned priorities. Providing priority-based network allocation to con-
tainers has three advantages. First, container hosting bandwidth-intensive appli-
cations can be assigned a limit to prevent them from contending with other con-
tainers sharing the network. Second, operating costs can be reduced by using

Resource Management for Running HPC Applications in Container Clouds 275

existing network resources more efficiently and thus delaying or reducing the
need for expansion or upgrades. Third, time-sensitive and critical applications
hosted in high-priority containers can now be assigned higher priority to get a
higher share of network bandwidth, without starving other containers. More-
over, when containers host applications using UDP, which is not sensitive to
network congestion, our mechanisms allow the associated containers to be throt-
tled appropriately to achieve the desired level of bandwidth sharing.

5 Background and Related Work

This section provides background on container technologies, including container
clouds. Also discussed in related work on Docker.

5.1 Containers, Docker, and Container Clouds

OS-based virtualization has supported containerization since the early 1980s,
enabling users to isolate and customize their processes’ environments (e.g., each
container can have its own set of libraries while sharing resources of the sys-
tem). FreeBSD Jails [18], Solaris Zones, AIX WPARs (Workload PARtitions),
and HP UX containers are all examples of container technology used in various
application domains.

Linux OS introduced resource control groups (i.e., CGroups) in 2007.
CGroups are a set of features to measure, control, and isolate CPU, memory,
disk I/O, network, namespace, and devices to a set of processes. Namespaces in
particular allow the creation of containers with their own identify in terms of
hostname, process identifiers, and network devices. CGroups are used to build
isolated execution contexts called containers. Docker [21], Warden [3], Kuber-
netes [4], LMCTFY, LXC, LXD, and rkt are only a few examples of container
technologies built on top of Linux CGroups. As of this writing, Docker is by
far the most popular container technology. Figure 9 shows a typical system with
Docker technology. The host operating system consists of the Docker Container
Manager (i.e., Docker Engine). This engine can create, modify, and delete con-
tainers. Containers are created from file system packages called Docker images.
A Docker image is a file system that contains all of the software necessary to run
an application. The software includes the application code, dependent libraries,
tools, and system libraries. There can be one or more docker containers per
application on a given host, as shown in the figure. Other container technologies
such as Warden and rkt are built on these same concepts. Although each con-
tainer can have its own set of application codes and libraries, all the containers
running on a host share the host kernel. Thus, the Container Manager depends
on the host kernel for resource isolation, management, and enforcement. Linux
kernels provide only fair sharing of resources across processes; advanced sharing
policies are not normally implemented as part of the base kernel.

Container clouds are technologies that enable a cluster of Docker Engines to
run on multiple hosts and offer the cluster resources as a service to multiple users

276 S. Herbein et al.

Fig. 9. Illustration of a typical container system. Docker Engine creates and manages
the containers. The host OS provides the resource management functions.

with supporting tools for application composition, deployment, and operations.
Docker Swarm is a clustering solution to group a set of Docker Engines. When
an application composed of multiple containers is deployed to a Swarm cluster,
different containers of the application may run on different nodes. In this context,
efficient resource management has to be enforced across the multiple containers.
Such efficient resource management is still missing for container-based clusters
hosting HPC applications.

5.2 Related Work

The National Energy Research Scientific Computing Center (NERSC) developed
Shifter [17], a system that allows for HPC centers and users to utilize Docker
images in their normal workflows. It makes code deployment easier for users and
software stack management easier for center administrators because application
dependencies are integrated into the Docker images. Their system integrates
with many existing HPC resources such as high-speed interconnects, parallel
filesystems, batch job schedulers, resource managers, and HPC-specific operating
systems (Cray Linux environment). Their work shows that Docker can be a
valuable addition to the HPC workflow, but it lacks extensive testing of the
overhead associated with containers.

Extensive analyses have been made of the overheads associated with con-
tainers compared with other virtualization methods and “bare metal” execu-
tion [8,14,23,27]. These analyses are usually limited to a single machine, how-
ever, and rarely study the effects of multiple containers running simultaneously.
Soltesz et al. do study the contention caused by multiple containers on an overal-
located system, but their work targets Linux-VServer, a virtualization technology
that predates Linux containers and is limited to the CPU and I/O resources of a
single machine [25].

Others have developed two-tiered systems for resource management of con-
tainers. Hong et al. developed a node-level system that monitors the CPU and
memory usage of the containers running on each node in the cluster and a
cluster-level scheduler that places new containers on nodes with the lightest
load [16]. This is similar to how Docker Swarm schedules containers. Our two-
tiered method is similar, with the crucial difference being that our method
includes disk I/O in the load calculation. Blagodurov et al. developed a node-
level system that pins memory-intensive applications to separate NUMA nodes

Resource Management for Running HPC Applications in Container Clouds 277

in order to minimize contention and a cluster-level manager that migrates heav-
ily contended applications to less contended nodes [7]. Their method does not
directly integrate with the container scheduler, however, and thus they make
decisions only at runtime, after the contention has occurred. Our method seeks
to prevent contention before it happens, by integrating with the container sched-
uler and improving the scheduling decisions.

6 Conclusion

The resource management provided by the operating system is not sufficient for
containerized workloads in HPC. We discuss resource management challenges in
CPU, network, and I/O and describe solutions that achieve better application
performance and system utilization. Our CPU management mechanism allows
users to mitigate the performance slowdown due to frequent context switching
and fair share. Our I/O management mechanism deals with I/O contention by
allowing Docker to set up I/O bandwidth limits and to perform cluster-wide
I/O load balancing. Our network management mechanism enables application-
specific bandwidth priorities and bandwidth limits. Our results demonstrate that
advanced resource management technologies are necessary to leverage containers
for a broad set of HPC applications.

Acknowledgment. This work is supported by NSF grant #312259 and #312236. We
also thank IBM for providing access to their Softlayer (http://www.softlayer.com) and
Supervessel (https://ptopenlab.com) cloud platforms and for providing guidance on
container technologies. Our code can be found on GitHub at [12,15,20,22].

References

1. Block I/O Controller. https://www.kernel.org/doc/Documentation/cgroups/
blkio-controller.txt

2. CGroups. https://www.kernel.org/doc/Documentation/cgroups/
3. Cloud Foundry Warden. https://github.com/cloudfoundry/warden
4. Kubernets by Google. http://kubernetes.io
5. Linux Advanced Traffic Control. http://lartc.org/howto/
6. Network Classifier CGroup. https://www.kernel.org/doc/Documentation/

cgroups/net cls.txt
7. Blagodurov, S., Fedorova, A.: Towards the contention-aware scheduling in HPC

cluster environment. J. Phys. Conf. Ser. 385(1), 012010 (2012)
8. Dandapanthula, N., Stanfield, J.: High Performance Computing - Contain-

ers, Docker, Virtual Machines and HPC. http://en.community.dell.com/
techcenter/high-performance-computing/b/general hpc/archive/2014/11/04/
containers-docker-virtual-machines-and-hpc

9. Diaz, J.M.M., Landwehr, A., Taufer, M.: Poster: resource management layers for
dynamic CPU resource allocation in containerized cloud environments. In: Pro-
ceedings of the IEEE Cluster 2015 Conference, pp. 1–2, September 2015

10. Dongarra, J.J.: Performance of various computers using standard linear equations
software. SIGARCH Comput. Archit. News 20(3), 22–44 (1992)

http://www.softlayer.com
https://ptopenlab.com
https://www.kernel.org/doc/Documentation/cgroups/blkio-controller.txt
https://www.kernel.org/doc/Documentation/cgroups/blkio-controller.txt
https://www.kernel.org/doc/Documentation/cgroups/
https://github.com/cloudfoundry/warden
http://kubernetes.io
http://lartc.org/howto/
https://www.kernel.org/doc/Documentation/cgroups/net_cls.txt
https://www.kernel.org/doc/Documentation/cgroups/net_cls.txt
http://en.community.dell.com/techcenter/high-performance-computing/b/general_hpc/archive/2014/11/04/containers-docker-virtual-machines-and-hpc
http://en.community.dell.com/techcenter/high-performance-computing/b/general_hpc/archive/2014/11/04/containers-docker-virtual-machines-and-hpc
http://en.community.dell.com/techcenter/high-performance-computing/b/general_hpc/archive/2014/11/04/containers-docker-virtual-machines-and-hpc

278 S. Herbein et al.

11. Dusia, A., Yang, Y., Taufer, M.: Poster: network quality of service in Docker con-
tainers. In: Proceedings of the IEEE Cluster 2015 Conference, pp. 1–2, September
2015

12. Dusia, A., Yang, Y.: Nework QoS Mechanism - Docker, May 2015. https://github.
com/adusia/docker

13. Feitelson, D.G., Rudolph, L.: Parallel job scheduling: issues and approaches. In:
Feitelson, D.G., Rudolph, L. (eds.) IPPS-WS 1995 and JSSPP 1995. LNCS, vol.
949, pp. 1–18. Springer, Heidelberg (1995)

14. Felter, W., Ferreira, A., Rajamony, R., Rubio, J.: An updated performance com-
parison of virtual machines and Linux containers. In: 2015 IEEE International
Symposium on Performance Analysis of Systems and Software (ISPASS) (2015)

15. Herbein, S.: I/O QoS Mechanism - Docker Swarm, May 2015. https://github.com/
SteVwonder/swarm

16. Hong, J., Balaji, P., Wen, G., Tu, B., Yan, J., Xu, C., Feng, S.: Container-based
job management for fair resource sharing. In: Kunkel, J.M., Ludwig, T., Meuer,
H.W. (eds.) ISC 2013. LNCS, vol. 7905, pp. 290–301. Springer, Heidelberg (2013)

17. Jacobsen, D., Canon, R.: Contain this, unleashing Docker for HPC. In: Cray User
Group (CUG 2015), Chicago, IL, April 2015

18. Kamp, P.H., Watson, R.N.M.: Jails: confining the omnipotent root. In: Proceedings
of the 2nd International SANE Conference (2000)

19. McDaniel, S., Herbein, S., Taufer, M.: Poster: a two-tiered approach to I/O quality
of service in Linux. In: Proceedings of the IEEE Cluster 2015 Conference, pp. 1–2,
September 2015

20. McDaniel, S.: I/O QoS Mechanism - Docker, May 2015. https://github.com/
seanmcdaniel/docker/

21. Merkel, D.: Docker: lightweight Linux containers for consistent development and
deployment. Linux J. 2014(239), 2 (2014)

22. Monsalve, J., Landwehr, A.: CPU QoS Mechanism - Docker, May 2015. https://
github.com/josemonsalve2/docker

23. Ruiz, C., Jeanvoine, E., Nussbaum, L.: Performance evaluation of containers for
HPC. In: Hunold, S., et al. (eds.) Euro-Par 2015 Workshops. LNCS, vol. 9523, pp.
813–824. Springer, Heidelberg (2015). doi:10.1007/978-3-319-27308-2 65

24. Sironi, F., Bartolini, D., Campanoni, S., Cancare, F., Hoffmann, H., Sciuto, D.,
Santambrogio, M.: Metronome: operating system level performance management
via self-adaptive computing. In: Design Automation Conference (DAC), 2012 49th
ACM/EDAC/IEEE, pp. 856–865, June 2012

25. Soltesz, S., Pötzl, H., Fiuczynski, M.E., Bavier, A., Peterson, L.: Container-based
operating system virtualization: a scalable, high-performance alternative to hyper-
visors. In: Proceedings of the 2nd ACM SIGOPS/EuroSys European Conference
on Computer Systems 2007, pp. 275–287 (2007)

26. Vaughan-Nichols, S.: New approach to virtualization is a lightweight. Computer
39(11), 12–14 (2006)

27. Xavier, M., Neves, M., Rossi, F., Ferreto, T., Lange, T., De Rose, C.: Performance
evaluation of container-based virtualization for high performance computing envi-
ronments. In: 2013 21st Euromicro International Conference on Parallel, Distrib-
uted and Network-Based Processing (PDP), pp. 233–240, February 2013

https://github.com/adusia/docker
https://github.com/adusia/docker
https://github.com/SteVwonder/swarm
https://github.com/SteVwonder/swarm
https://github.com/seanmcdaniel/docker/
https://github.com/seanmcdaniel/docker/
https://github.com/josemonsalve2/docker
https://github.com/josemonsalve2/docker
http://dx.doi.org/10.1007/978-3-319-27308-2_65

Communication Runtime

Mitigating MPI Message Matching Misery

Mario Flajslik(B), James Dinan(B), and Keith D. Underwood

Intel Corporation, Hudson, MA, USA
{mario.flajslik,james.dinan,keith.d.underwood}@intel.com

Abstract. To satisfy MPI ordering semantics in the presence of wild-
cards, current implementations store posted receive operations and unex-
pected messages in linked lists. As applications scale up, communica-
tion patterns that scale with the number of processes or the number of
threads per process can cause those linked lists to grow and become a
performance problem. We propose new structures and matching algo-
rithms to address these performance challenges. Our scheme utilizes a
hash map that is extended with message ordering annotations to signifi-
cantly reduce time spent searching for matches in the posted receive and
the unexpected message structures. At the same time, we maintain the
required MPI ordering semantics, even in the presence of wildcards. We
evaluate our approach on several benchmarks and demonstrate a signifi-
cant reduction in the number of unsuccessful match attempts in the MPI
message processing engine, while at the same time incurring low space
and time overheads.

1 Introduction

The Message Passing Interface (MPI) point-to-point ordering semantic ensures
deterministic messaging between processes. This behavior eases the complexity
of exchanging data in MPI applications and provides an efficient mechanism for
sending ordered messages. While this semantic has contributed to the success of
MPI, it may also pose performance challenges to applications that perform large
volumes of communication without the need for point-to-point ordering.

To facilitate message matching, MPI implementations typically manage two
queues: the posted receive queue and the unexpected message queue. These
queues are implemented as linked lists to preserve the order in which receives
are posted and unexpected messages are received. During the message matching
process, these lists are searched for a match, starting with the oldest entry at
the head of the list. However, the time to search through a linked list is known
to linearly increase with the number of elements (i.e. searching a list has O(N)
time complexity), which can pose a performance challenge for some applications.

Current hardware trends suggest that match queue depth is of growing con-
cern. New processors are built with more cores, leading to more MPI processes
per node and more threads per MPI process. But at the same time, those
individual cores are not getting more powerful to deal with the increase in
message rates resulting from higher network bandwidth available to the node.

c© Springer International Publishing Switzerland 2016
J.M. Kunkel et al. (Eds.): ISC High Performance 2016, LNCS 9697, pp. 281–299, 2016.
DOI: 10.1007/978-3-319-41321-1 15

282 M. Flajslik et al.

Faster implementations of current matching algorithms are difficult to derive,
since searching through a linked list does not parallelize well. Instead, a new
algorithm is needed, particularly for classes of applications that are susceptible
to deep match queues.

Some applications post a small number of receive operations at a time, result-
ing in short queues. For those applications O(N) search complexity may not incur
high overheads. However, we identify three classes of applications with commu-
nication properties that yield significant queue traversal overheads

1. Global communication patterns are characterized by most or all processes
sending messages to most or all of their peers. In this work, we examine the
LAMMPS molecular dynamics simulator [21] and the NAS Integer Sort bench-
mark [1]. Both of these applications perform all-to-all communication. LAMMPS
directly makes point-to-point communication calls in its all-to-all exchange, while
Integer Sort leverages MPI Alltoall collective operation. Typical algorithms for
MPI all-to-all collective limit the number of receive operations that are posted
at any given time in order to balance overheads from unexpected message
processing with the cost of posted receive queue traversal [24]. However, cus-
tom application-level, global communication patterns typically make no such
effort, which makes them especially vulnerable to deep match queues.

2. Incast communication patterns (e.g. MPI Gatherv) are characterized by
processes that receive many messages at the same time from many other
processes. Because these messages arrive from different processes in no particu-
lar order, they can lead to large unexpected message queues on the destination
processes, or the messages are matched deep into the posted receive queue. In
this work, we examine a Fire Dynamics Simulator (FDS) [14] that relies heav-
ily on the MPI Allgather operation. Because of this application’s communication
pattern, matching performance significantly impacts overall application perfor-
mance and scalability.

3. Multithreaded communication is growing in importance as hybrid program-
ming with MPI and threading systems gains popularity. The number of posted
receive operations and unexpected messages can increase with the number of
threads per process for fully multithreaded usage models, thus further exacer-
bating message matching overheads.

In this paper we present new matching algorithms and structures for travers-
ing and storing posted receives and unexpected messages. Our solution replaces
existing linked list approaches with a hash map. The hash map solution sig-
nificantly reduces time spent searching for a message match; however, a simple
hash map is not sufficient for ensuring the MPI ordering requirements in the
presence of wildcard receive operations. Our algorithm efficiently stores addi-
tional metadata to maintain ordering, and is able to provide faster MPI message
matching times, while at the same time maintaining correctness and performance
in the presence of wildcards. Using this approach, we have reduced the number
of match attempts per message by more than 50x for LAMMPS, 10x for Integer
Sort, and 250x for FDS. In the case of FDS, this improvement in MPI matching
performance resulted in an overall speedup of 3.5x.

Mitigating MPI Message Matching Misery 283

To the best of our knowledge, this is the first solution that hashes on the full
complement of MPI message matching parameters (communicator ID, source
rank, and user-supplied tag) for both posted receives and unexpected message
queues. For many applications, hashing on all matching parameters is critical to
achieving a good distribution across bins and realizing the performance benefits
of the hash map. Further, our approach is designed to enable efficient hardware
offload implementations, as well as being suitable for fast software implemen-
tations. In such scenarios, limited space is available for storing ordering meta-
data; we present the first solution that is able to tolerate wrap-around and space
exhaustion in the ordering metadata. In addition, the hash map approach breaks
down message queues into multiple bins, resulting in an implementation that
better lends itself to fine-grain locking of the matching structures and thereby
relaxing a challenging serialization obstacle in multithreaded MPI implementa-
tions.

The rest of the paper is organized as follows: in Sect. 2 we present relevant
MPI background and previous work on MPI message matching; Sect. 3 describes
our binned algorithms that are evaluated in Sect. 4. We end the paper with a
discussion in Sect. 5 and a conclusion in Sect. 6.

2 Background

The Message Passing Interface (MPI) [16] defines point-to-point message order-
ing between two processes based on the matching criteria of MPI messages:
user-supplied tag, sending (a.k.a. source) process rank, and communicator iden-
tifier (typically an integer context ID). For a given sequence of send operations
from process A to process B, receive operations performed by B — including
those that use the any-tag and any-source wildcards — must attempt to match
A’s messages in the order in which they were sent. Additionally, when process B
attempts to match a message sent by process A, B must select the oldest posted
receive operation that matches A’s message (i.e. same tag or any-tag, same
source or any-source, and same communicator). If a matching posted receive is
not found, B typically stores A’s message in an unexpected message list for later
processing. The corollary of these ordering rules is that MPI message matching is
deterministic; nondeterminism only arises when the any-source wildcard is used
and messages arrive from multiple senders.

This FIFO-like semantic and the presence of wildcards are the reason most
MPI implementations store posted receive operations in a single message queue,
implemented as a linked list that is ordered from oldest to newest. Upon message
arrival, the queue is searched from oldest to newest, resulting in linear O(N)
overhead. This is the approach used by the open source MPICH [18] MPI library,
which provides the base for many commercial MPI implementations.

2.1 Related Work

MPI message ordering has historically presented a significant hurdle to the devel-
opment of alternative MPI message matching structures. At the same time, the

284 M. Flajslik et al.

overhead of message matching has grown so important that the MPI Forum is
considering a proposal to allow users to disable wildcards [17] as a means to
enable optimizations that reduce matching overhead. As a result, the research
community has closely tracked MPI match queue depth in the context of several
applications [4,5,7,13], and investigated the latency impact of message queue
length in relation to the message processing in offload engines [25] and processor
speed [3].

One approach used in prior work is to fragment the unexpected message and
posted receive queues based on communicator context ID [23]. Hashing or uti-
lizing separate matching structures based on the context ID requires no special
techniques, as communicators provide isolation and messages from one commu-
nicator cannot interact with operations on a different communicator. While this
approach is well-understood, it has limited benefit in practice, as few applica-
tions spread traffic across communicators in a way that would yield a benefit,
e.g. by using per-thread communicators.

MPI queues have also been fragmented based on the sender’s rank [23]. Sep-
arate queues for local and remote processes are commonly used in practice to
optimize shared memory communication [8,10,12]. These queues can be further
fragmented into a set of queues, where each peer process has a separate queue
or a hashing function is used to select a queue based on the sender’s rank [9].
This method of splitting based on the sender’s rank still presents challenges
when any-source receive operations are performed, since an incoming message
must match the oldest receive operation posted for that source or the any-source
wildcard. For the posted receive queue, any-source wildcard receive operations
can be appended to all lists and then removed from all lists on a successful
match [23]; however, this approach results in an overhead that is proportional to
the number of lists. Alternatively, wildcard receives can be stored in a separate
list and when a wildcard operation is performed, subsequent non-wildcard oper-
ations can be queued in a single list to preserve ordering [9]. A third approach,
used when matching messages sent over the OpenMPI [10] Byte Transport Layer
(BTL), involves storing wildcard receive operations in a separate list and adding
sequence numbers to all wildcard and non-wildcard operations to capture order-
ing information. During matching, both the per-process list and the wild list
are searched and the matching entry with the oldest timestamp is selected [27].
For the unexpected message queue, fragmentation based on the sender’s rank
is straightforward; when the unexpected list is searched for a match to an any-
source receive operation, deterministic behavior is not required and unexpected
messages sent by all processes are searched in any order.

While per-peer queues can reduce matching times, they incur space over-
heads that are proportional to the number or processes. Recent work by Zoun-
mevo and Afsahi [27] developed a new approach to hashing on the sender’s rank
that improves space scaling. Rather than utilizing a hash table, where collisions
can result in searching through entries that cannot match a given query, their
approach utilizes per-peer queues, resulting in a sparse vector of queue pointers.
The process ID is decomposed into coordinates in a sparse vector representation,

Mitigating MPI Message Matching Misery 285

and a logarithmic set of levels of indexing lists are searched to locate the queue for
receive operations posted to a given peer. This approach shortens posted receive
lists dramatically; however, locating a given posted receive queue requires linear
searches through multiple levels of indirection to reduce the space required to
store the sparse set of per-peer posted receive queues. These additional levels
of indirection complicate offload implementations and incur an overhead on all
receive operations, which increases with the logarithm of the number of peers
and can severely impact latency sensitive applications.

In contrast to the most advanced work on this topic [27], our approach uti-
lizes hash tables, which incur a constant overhead in queue selection and have a
fixed layout, thus adding modest overheads to latency sensitive communication
patterns. Our approach is the first to hash based on the full set of matching
criteria; previous approaches including [23,26,27] hash only on sender’s rank
and communicator ID. Finally, we use timestamps and overflow markers, rather
than sequence numbers, providing the first solution for wrap-around and sig-
nificantly reducing the space required to store ordering information. This more
compact representation is especially important for MPI implementations where
space considerations are important, such as implementations that pack data
into a cache line or that utilize hardware offload. By eliminating overheads pre-
viously imposed by required handling of wildcard receive operations, our solution
improves message matching overheads for most applications, while in the worst
case maintaining the same level of performance as current solutions.

3 Binned Matching Algorithm

MPI message processing engines typically split message processing into two sep-
arate structures: one for handling posted receive operations and a second that is
used to handle unexpected messages. The former structure captures information
about which messages the receiver is ready to accept, whereas the latter stores
information about messages that arrived but have not yet been received by the
application.

3.1 Posted Receive Operations

We present a posted receive structure that provides fast search times by using
multiple bins with a linked list within each bin. In other words, posted receives
are stored in a hash map, but with a guarantee that the order within each bin
is preserved. While this approach improves search time, it presents a challenge
to provide MPI ordering in the presence of wildcard receives. First, we describe
a general solution to the wildcards problem using marker list entries. We then
optimize this approach to replace markers with embedded timestamps, and uti-
lize markers to handle timestamps wrap-around. The resulting approach is more
compact and amenable to efficient implementation.

286 M. Flajslik et al.

Fig. 1. Posted receive structure with 4 bins, containing receive entries with (c, s, t)
parameters.

Capturing Ordering with Markers. In Fig. 1 we show the posted receive
structure used in our binned algorithm. This structure is used to capture infor-
mation about pending MPI receive operations. The programmer can explicitly
post multiple pending operations through the use of nonblocking communica-
tion, e.g. by calling the MPI Irecv function, or by having multiple threads perform
receive operations at the same time. Nonblocking communication is an impor-
tant optimization mechanism for MPI applications, which can be used to over-
lap communication with computation and pre-post receive operations to avoid
overheads associated with unexpected messages. In addition to explicit receive
operations, the MPI library may also implicitly post multiple pending receive
operations while executing other MPI calls, such as blocking and nonblocking
collectives or I/O operations.

Each of the bins in the structure contains a linked list. List entries are either
markers (identified by letter M), or they are receive entries. Each receive entry is
described with (c, s, t) tuple, which corresponds to communicator, source rank,
and tag, where “*” describes wildcarded source or tag. In the corner of each
receive entry in Fig. 1 is the insertion order number which establishes the order
in which the entries were inserted into the structure. These numbers are for
illustrative purposes only, and are not kept as state within each structure.

For the sequence of receive operations described by the insertion order num-
bers, current MPI implementations would create a linked list, where entry “1”
is at the head of the list, followed by entry “2”, and so on. In our approach, we
create the set of lists shown in Fig. 1 by appending a posted receive descriptor for

Mitigating MPI Message Matching Misery 287

each receive operation to the list determined by a hash function. In this example,
we use 4 bins and the hash function given by Eq. 1.

hash(c, s, t) = (c + s + t) % NUM BINS (1)

However, the hash function and the number of bins are configurable parameters.
Descriptors containing wildcard receive entries are appended to a separate wild
bin. Further splitting of the wild bin may be possible; however, most wildcard
communication usage cases exhibit matching near the head of the list, limiting
the potential benefit of this extension.

Figure 1 also demonstrates the use of markers to provide ordering between
non-wild and wildcard entries. When a wildcard receive is appended to the wild
bin, if the last item appended was not also a wildcard, markers are appended to
all bins, including the wild bin, prior to appending the wildcard receive descrip-
tor.

The sender cannot specify a wildcard in a message, thus searches through
the posted receive structure are always performed using a (c, s, t) tuple that
contains no wildcards. On a given search, both the selected bin corresponding
to hash(c, s, t) and the wild bin are searched for a match.

While searching through the selected bin and the wild bin for a match, the
algorithm may encounter marker entries. Markers are used to recreate the order-
ing between entries in the bin list and the wild list. During the search, two
timestamp counters are initialized to zero and maintained, one for the selected
bin’s list, and one for the wild list. As marker entries are encountered, the
timestamp counter for the corresponding list is incremented, effectively count-
ing how many marker entries have been encountered in the list up to that
point. When matching receive descriptors are found in multiple lists (i.e. selected
bin list and wildcard list), the descriptor in the list with the oldest (smallest)
timestamp is selected. In cases where the timestamps are equal, the wild descrip-
tor is selected. As receive descriptors are dequeued, markers move to the head
of each bin. Markers can be periodically removed whenever a marker is present
at the head of every bin. As an optimization, if all bins have N markers at their
head, all N can be removed.

The algorithm for searching the binned posted receive structure is shown in
Listing 1.1. In this formulation, we further shorten search times by searching
both lists simultaneously to avoid continuing a search once a match has been
found. If a match is not found in the posted receive structure, the message is
appended to the unexpected message structure. The posted receive search and
the unexpected message append must be accomplished atomically with respect
to any other search or append.

Capturing Ordering with Timestamps. While markers are a sufficient
means to establish ordering, they are not compact and can incur significant time
and space overheads, as each marker is a separate list entry. We further refine
our algorithm by embedding the timestamp value, dubbed wild time or WT,
that would have been calculated via markers, into the receive descriptor. In this

288 M. Flajslik et al.

elem *e = get_head(hash(c,s,t));

elem *we = get_head(WILD_BIN);

elem *match = NULL;

long e_ts = 0, we_ts = 0;

while (NULL != e || NULL != we) {

if (is_marker(e)) {

e_ts ++; e = e->next;

}

else if (is_marker(we)) {

we_ts ++; we = we->next;

}

else if (NULL != e && (NULL==we || e_ts <we_ts)) {

if (check_match(e, msg)) { match=e; break; }

e = e->next;

}

else if(NULL != we) {

if (check_match(we , msg)) { match=we; break; }

we = we ->next;

}

}

Listing 1.1. Algorithm to search posted receive structure assuming message msg with
matching parameters (c, s, t).

scheme, the current timestamp current wt is maintained in a variable, and it is
incremented whenever we would have appended markers. The current wt value
is stored as wild time in each receive descriptor, as they are appended to the
structure.

For implementations where it is possible to use a large timestamp represen-
tation, e.g. a 64-bit integer, overflow may be virtually impossible. However, for
implementations where the size of the receive descriptor must be compact, e.g.
so that match list entries fit within a cache line or within limited memory in
a hardware matching offload engine, timestamp overflows are possible and can
be corrected using a combination of timestamps and markers. In this case, a
marker is appended to every bin and current wt is reset to 0 whenever current wt

has reached its maximum value. The matching algorithm is also extended to
calculate the timestamp for a given descriptor using Eq. 2.

ts = wt + m cnt ∗ WT MAX (2)

where wt is the wild time embedded in a given descriptor, m cnt is the number of
markers encountered during the traversal of the descriptor’s list, and WT MAX
is the maximum value that can be stored in a timestamp.

Mitigating MPI Message Matching Misery 289

Fig. 2. Unexpected message structure with 4 bins, containing message entries with
(c, s, t) parameters.

3.2 Unexpected Messages

Messages that arrive at the receiver before the corresponding receive operation
has been performed are referred to as unexpected messages. It is possible for
the MPI layer to reject unexpected messages and require the sender to retrans-
mit them; however, this can result in significant overheads. Instead, most MPI
implementations buffer unexpected messages in whole, or in part, allowing data
to be either copied locally or requested from the sender when the correspond-
ing receive operation is performed. When unexpected messages are buffered,
the list of unexpected messages must be scanned before a receive operation is
appended to the posted receive structure to determine if the message has already
arrived. The unexpected message search and the posted receive append must be
accomplished atomically with respect to any other search or append to preserve
ordering.

Analogous to the posted receive queue, our unexpected message processing
algorithm uses multiple bins to facilitate faster searching through the unexpected
message structure. The receiver chooses the bin for each unexpected message
based on a hash of the (c, s, t) tuple, which is comprised of the communicator
ID, sender rank, and tag. Figure 2 shows a 4-bin example structure for handling
unexpected messages. Each message is represented as a list entry that belongs
to one of the bins. The number in the corner indicates the global order in which
all messages were appended to the unexpected structure. This ordering number
is for illustrative purposes only, and is not stored in the structure. In order to
support wildcard receives, a globally ordered list is maintained (marked red in
Fig. 2), in addition to per-bin lists (marked purple) and reusing the same list
entries. Global list head and tail pointers are marked with H and T in Fig. 2.
The round-robin hashing algorithm in Eq. 1 was used in this example.

290 M. Flajslik et al.

Upon arrival, a message that does not match in the posted receive structure
is appended to the unexpected message structure. First, the target bin is com-
puted using a hash function, and then the unexpected message is added to the
corresponding per-bin list, as well as to the globally ordered list.

When the application posts a receive operation, the unexpected message
structure is searched for a possible match. If the receive contains wildcards for
any field, by specifying either MPI ANY SOURCE or MPI ANY TAG, the global
list is used to search for a message matching that receive operation. In the non-
wildcard path, the bin is calculated first by hashing on the communicator, source,
and tag values given in the receive operation. Then, the list corresponding to
that bin is searched for a matching message. If a match is found through either
type of search, the message is unlinked from both lists.

3.3 Analysis of Binned Algorithm

For an implementation with B bins, the average time spent searching the posted
receive structure to match in incoming a message is O(N/B). The worst case
remains O(N) when all posted receives are contained within the same bin or
the wild bin. However, it is likely that such a list would contain entries with the
same matching criteria and that the entry at the head of the list would match
the incoming message, eliminating the O(N) search. The cost of searching the
unexpected list when posting a non-wildcard receive is similar. For a search of
the unexpected list when posting a wildcard receive, the worst case is O(N);
however, wildcard receives are likely to match at the head of the unexpected
list, eliminating this search cost.

To ensure that MPI ordering is preserved by the binned approach, we must
maintain two safety properties for any pair of operations performed between
processes A and B.

1. A message from process A that may match multiple receive operations at
process B must attempt to match B’s receive operations in the order in
which they were posted.

2. A receive operation at process B that may match two messages sent by process
A must attempt to match A’s messages in the order in which they were sent.

Our algorithm, just like the linked list algorithm, guarantees that the posted
receive and the unexpected message structures never contain receives and mes-
sages that match each other. This is true because the unexpected list is searched
before appending a posted receive to the posted receive structure and vice versa.
Further, these search and append operations are performed atomically. Addition-
ally, the MPI library processes messages in the order they are sent, eliminating a
reordering possibility outside of the matching algorithm. Therefore, it is enough
to satisfy the two ordering requirements in each of the posted and unexpected
structures independently.

Mitigating MPI Message Matching Misery 291

For the posted receive structure, we observe that a receive operation matching
a message with parameters (c, s, t) can be located only in the H(c, s, t) bin or
the wild bin. Posted receive operations within each bin are stored in a linked list
that is ordered oldest to newest and ordering across bins is preserved through
the use of a virtual timestamp. When a search is performed, all bins that could
contain a matching operation are searched — in this case, the H(c, s, t) and wild
bins. If a match is found in both lists, the timestamp is used to select the oldest
match, satisfying the first safety property.

Similarly, for the unexpected message structure, a message with parameters
(c, s, t) can be located only in the H(c, s, t) bin as a consequence of the deter-
ministic hashing function H. The same message is also located in the global list.
Both lists are ordered from oldest to newest. When a non-wildcard search is per-
formed, the H(c, s, t) bin is searched in order; this bin contains all unexpected
messages that could potentially match the given non-wildcard receive operation.
A wildcard search can potentially match an entry in any bin; thus, in this case,
the global list is searched. In both cases, the ordered list property ensures that
the second safety property is also maintained.

4 Evaluation

We evaluate our message matching scheme using the Fire Dynamics Simula-
tor (FDS) application [14], the LAMMPS molecular dynamics simulator [21],
and the NAS Integer Sort benchmark [1]. The evaluation was conducted on a
64 node cluster equipped with Intel R© Xeon R© E5-2697 v3 processors. Nodes
are connected through Mellanox R© ConnectX R©-3� FDR InfiniBand host chan-
nel adapters. The operating system is Red Hat R© Enterprise Linux R© Server
release 6.5, with gcc 4.4.7 compiler that is used throughout. Version 3.1.3 of the
MPICH [18] MPI library was modified to include our binned matching algo-
rithm in the common matching code across all network modules. As of the time
of writing, MPICH does not directly include support for InfiniBand; thus, IPoIB
was used in conjunction with the sockets network module.

We instrumented the MPI library to capture posted receive and unexpected
message details. An average number of match attempts per message (i.e. the
average match location in the structure) is kept at every rank. Additionally,
for up to first 2048 matches, each rank keeps a log that records match loca-
tion and queue depth for each message. We also used high-resolution timers to
record the total amount of time spent traversing posted and unexpected struc-
tures. To gather more consistent numbers, we run no more than one process
per hardware thread and disabled shared memory optimizations by setting the
MPICH NO LOCAL environment variable.

We introduce a metric of match attempts per message, which provides a
machine-independent measurement of an application’s exposure to matching
overheads. Match attempts per message includes attempts in both posted and
unexpected message structures. Processing of each message always requires
searching both structures: if a message is matched in the posted structure,

292 M. Flajslik et al.

the receiver had to search through the unexpected structure before posting
that receive; alternatively, if the message is matched in the unexpected struc-
ture, the processing engine had to attempt to match that message with posted
receives before appending it to the unexpected structure.

4.1 Fire Dynamics Simulator

Fire Dynamics Simulator (FDS) [14] is a computational fluid dynamics applica-
tion that relies heavily on the MPI Allgather() operation for communication. FDS
is representative of a significant class of workloads, and as a result is included in
the SPEC MPI R© benchmark suite [19]. We run weak scaling experiments using
the “circular burner” workload with up to 1792 ranks. The scaling results are
presented in Fig. 3a,b shows the relative speedup of binned matching algorithm
over the baseline case for varying numbers of bins.

Fig. 3. Fire Dynamics Simulator results for the “circular burner” workload.

Figure 3a reveals that FDS encounters scalability challenges with the increase
in number of ranks. Poor performance of the baseline matching algorithm is one
of the reasons for the poor scaling, and our binned matching algorithm improves
the large scale performance by more than a factor of 3.5x for 1792 ranks with
256 bins.

Figure 4 shows our match queue analysis of the FDS application. In Fig. 4a
we show the number of match attempts per message versus the number of ranks
for the baseline case. The baseline case is the unmodified MPICH matching algo-
rithm that utilizes a single linked list. Along with displaying the average attempts
per message computed across all ranks, we also show the values for worst and
best case ranks. Match attempts in the worst case rank (rank 0) increase rapidly
with number of ranks, reaching thousands of attempts per message.

The improvement from binned matching is shown in Fig. 4b. The improve-
ments are greater with larger number of available bins, and the baseline case

Mitigating MPI Message Matching Misery 293

Fig. 4. FDS match queue analysis, showing match attempts per message. (Color figure
online)

is represented in this graph as the one bin case. The process that incurs the
worst matching overheads (rank 0) especially benefits with the increased num-
ber of bins, as the number of match attempts per message drops linearly with
the number of bins. With 256 bins, we are able to reduce search times from over
200 µs to less than 1 µs, resulting in more than 200x reduction in matching
overheads.

4.2 LAMMPS

LAMMPS is a molecular dynamics simulator application [21]. In our evaluations
we run the rhodopsin protein benchmark, which uses particle-mesh method to
calculate long range forces [22]. As part of that method, it calculates a distributed
3-D FFT several times. This FFT calculation includes a matrix transpose, which
in turn requires an all-to-all communication exchange along a dimension of the
matrix. This global communication pattern is prone to deep match queues. This
is in contrast to analysis in [4], which used chains workload that exhibits different
match queue behavior.

In Fig. 5a we present a scatter plot showing how the number of match
attempts per message depends on the number of MPI ranks for the baseline
case. This is a strong scaling example with the size of the problem fixed at
15 × 15 × 15 of basic rhodopsin blocks (benchmark replication factor is 15 along
each dimension). Up to a certain number of ranks, the domain decomposition is
such that during the FFT section, each process holds an entire 2-D slice of the
matrix, and the decomposition is done only in one dimension. In this mode, the
number of attempts per message grows linearly with number of processes (points
connected with lines in Fig. 5a). For larger number of ranks (points without lines
in Fig. 5a), the frequency domain matrix is decomposed in two dimensions, and
each rank holds “pencil”-like chunks of the matrix. In that mode, the number

294 M. Flajslik et al.

Fig. 5. LAMMPS match queue analysis (workload replication: x,y,z = 15,15,15). (Color
figure online)

of match attempts per message heavily depends on the domain decomposition;
in particular on how well the number of ranks factorizes. The overall trend is for
attempts per message to increase with the square root of number of ranks.

Our binned matching algorithm is capable of significantly improving the num-
ber of match attempts per message, depending on number of available bins, as
shown in Fig. 5c. At the same time, it also improves the absolute time spent
searching through posted and unexpected structures, as shown in Fig. 5d.

To further our understanding of the match queues, an example posted and
unexpected queue trace for baseline matching is given in Fig. 5b. This example
is for a representative rank (e.g. rank 171) out of 542 total ranks. The trace
is recorded every time the queue is searched, but not on queue appends. This
explains why queue depth values spike up and then ramp down. For example, in
posted queue case, when the rank posts many receives back to back, that shows
up as many trace entries in the unexpected queue (because unexpected queue is
searched before receive is appended to posted queue). However, these receives do

Mitigating MPI Message Matching Misery 295

not show up in the posted queue until the next time a message is received and the
posted queue is searched. At that time the trace records match attempts (blue)
and queue depth (red) values. Large queue depth values are not necessarily a
performance problem; the issue arises when there are large numbers of failed
match attempts, which often correlates with large queue depths. In Fig. 5b, one
can distinctly see several triangles which correspond to transpose sections of the
application. For some transposes, the queue depth reaches over 200 elements.

4.3 Integer Sort

Integer Sort is taken from the NAS Parallel Benchmarks suite [1]. In our evalu-
ations, we run the class “C” problem size. Integer sort makes use of MPI Alltoall

collective, with large message sizes. The all-to-all algorithm for large mes-
sages is to post multiple MPI Irecv, one for each expected message, but up to
a threshold value. Using this algorithm, no more than the threshold value of

Fig. 6. Integer Sort match queue analysis (alltoall threshold = 32). (Color figure online)

296 M. Flajslik et al.

receives are pending at any time. The default threshold value in MPICH is 32.
Additionally, care is taken to post receives in the order they are expected to be
received at each node. The intent of this approach is to reduce the number of
unsuccessful match attempts.

Figure 6a shows that the number of match attempts increases with the num-
ber of ranks in the baseline case. One can see a local peak at 32 ranks, which cor-
responds to the threshold value. However, as the number of ranks is increased fur-
ther, the number of match attempts still increases. This is due to the unexpected
queue not being bounded by the threshold value. As can be seen in Fig. 6b, the
posted queue caps off at 32 entries, but the unexpected queue can grow beyond
that limit, thus increasing the overall number of unsuccessful matches. Integer
Sort was also evaluated in [7], where authors observe a continuous increase in
posted and unexpected queue depths without posted queue depth capping off at
the threshold value. This discrepancy is most likely due to a different implemen-
tation of the MPI Alltoall collective algorithm that does not include the threshold
optimization.

Using our binned approach, one can reduce the number of match attempts
per message, as shown in Fig. 6c. Additionally, the improvement in absolute
time spent on walking the posted and unexpected structures is shown in Fig. 6d.
Another benefit of our binned algorithm is that it enables the user to increase
the threshold value which may unlock more communication overlap without the
match queue depth penalty.

5 Discussion

Selection of Parameters: The matching performance improvement is dependent
on the number of bins and the distribution of message or receive descriptors
across bins. More bins yield lower search times, but require additional space
to store the state. The application behavior and hash function determine the
distribution of messages across bins. Any hash function can be used, and it can
use any or all of the matching criteria as inputs. For example, a cryptographic
hash function, such as MD5, might provide best distribution of messages across
all the bins. However, we observed that a simple, round-robin hash function,
which is fast to compute, can work just as well across a broad set of usage
models. The optimal hash function for assigning MPI messages to bins is a topic
that is ripe for future investigation.

Implications to Multithreaded Message Processing: When a linked list is used,
most MPI implementations utilize a single lock to synchronize accesses to the
posted receive and unexpected message queues. By fragmenting these queues into
multiple lists, the binned approach enables finer-grain locks to be used to synchro-
nize each bin separately. If, for example, threads post receive operations that use
different, non-wildcard tags, each thread accesses different bins in the unexpected
message and posted receive structures, allowing them to perform these operations
concurrently. It was previously believed that concurrent message processing by

Mitigating MPI Message Matching Misery 297

multiple threads is only possible when separate messaging structures are used for
each communicator and threads use different communicators.

Implications to Offload Message Processing: Offloading MPI matching to special-
ized hardware has been investigated by the research community [6,26] and put
into practice in several network interfaces, including the Myrinet�, Quadrics�,
and Bull BXI� interfaces. As system-level and node-level scales increase, and
implementors attempt to drive down MPI messaging latency, there is renewed
interest in offloading MPI message matching. To enable the use of specialized
hardware and software techniques, several current low-level networking APIs
provide interfaces that include support for message matching [2,11,15,20]. Our
work combines simple, well-understood data structures and algorithms in order
to accelerate MPI message processing. While more sophisticated approaches are
possible, we speculate that this practical approach is amenable to both hardware
and software MPI matching engines.

6 Conclusion

We identify MPI message matching as a performance as a growing concern for
applications, expecially those where MPI communication increases with the num-
ber of MPI processes or threads per MPI process. We presented new algorithms
and data structures for storing MPI’s internal posted receive and unexpected
message queues. Our binned algorithm is based on a hash map, and it signif-
icantly accelerates searching through the structures for the case without wild-
cards. At the same time, even in the presence of wildcards, the binned algorithm
maintains MPI message ordering semantics, while offering performance that is
equivalent to, or better than the current implementations.

Our algorithm, with 256 bins, reduced the number of match attempts per
message by more than 50x for LAMMPS, 10x for Integer Sort, and 200x for
Fire Dynamics Simulator (FDS). In the case of FDS, this improvement in MPI
matching performance resulted in an overall speedup of 3.5x.
�Other names and brands may be claimed as the property of others. Intel and Xeon are trademarks
of Intel Corporation in the U.S. and/or other countries. Software and workloads used in performance
tests may have been optimized for performance only on Intel microprocessors. Performance tests,
such as SYSmark and MobileMark, are measured using specific computer systems, components,
software, operations and functions. Any change to any of those factors may cause the results to
vary. You should consult other information and performance tests to assist you in fully evaluating
your contemplated purchases, including the performance of that product when combined with other
products. For more information go to http://www.intel.com/performance.

References

1. Bailey, D.H., Barszcz, E., Barton, J.T., Browning, D.S., Carter, R.L., Dagum, L.,
Fatoohi, R.A., Frederickson, P.O., Lasinski, T.A., Schreiber, R.S., et al.: The NAS
parallel benchmarks. Intl. J. High Perform. Comput. Appl. 5(3), 63–73 (1991)

http://www.intel.com/performance

298 M. Flajslik et al.

2. Barrett, B.W., Brightwell, R., Hemmert, S., Pedretti, K., Wheeler, K., Underwood,
K., Riesen, R., Maccabe, A.B., Hudson, T.: The portals 4.0.2 network programming
interface. Technical report SAND2013-3181, Sandia National Laboratories, April
2013

3. Barrett, B.W., Hammond, S.D., Brightwell, R., Hemmert, K.S.: The impact of
hybrid-core processors on mpi message rate. In: Proceedings of 20th European
MPI Users’ Group Meeting, EuroMPI 2013, pp. 67–71 (2013)

4. Brightwell, R., Goudy, S., Underwood, K.: A preliminary analysis of the MPI queue
characterisitics of several applications. In: International Conference on Parallel
Processing, ICPP 2005, pp. 175–183, June 2005

5. Brightwell, R., Pedretti, K., Ferreira, K.: Instrumentation and analysis of MPI
queue times on the SeaStar high-performance network. In: Proceedings of 17th
International Conference on Computer Communications and Networks, ICCCN
2008, pp. 1–7, August 2008

6. Brightwell, R., Riesen, R., Maccabe, A.B.: Design, implementation, and perfor-
mance of MPI on Portals 3.0. Int. J. High Perform. Comput. Appl. 17(1), 7–19
(2003)

7. Brightwell, R., Underwood, K.D.: An analysis of NIC resource usage for offloading
MPI. In: Proceedings of Workshop on Communication Architecture for Clusters
(2004)

8. Buntinas, D., Mercier, G., Gropp, W.: Design and evaluation of nemesis, a scalable,
low-latency, message-passing communication subsystem. In: Proceedings of 6th
International Symposium on Cluster Computing and the Grid, CCGrid, vol. 1, pp.
521–530, May 2006

9. Dózsa, G., Kumar, S., Balaji, P., Buntinas, D., Goodell, D., Gropp, W., Ratter-
man, J., Thakur, R.: Enabling concurrent multithreaded MPI communication on
multicore petascale systems. In: Keller, R., Gabriel, E., Resch, M., Dongarra, J.
(eds.) EuroMPI 2010. LNCS, vol. 6305, pp. 11–20. Springer, Heidelberg (2010)

10. Gabriel, E., Fagg, G.E., Bosilca, G., Angskun, T., Dongarra, J.J., Squyres, J.M.,
Sahay, V., Kambadur, P., Barrett, B., Lumsdaine, A., Castain, R.H., Daniel, D.J.,
Graham, R.L., Woodall, T.S.: Open MPI: goals, concept, and design of a next
generation MPI implementation. In: Proceedings of 11th European PVM/MPI
Users’ Group Meeting, pp. 97–104. Budapest, Hungary, September 2004

11. Intel Corporation: Intel R© True Scale Fabric Architecture: Enhanced HPC Archi-
tecture and Performance (2013)

12. Jin, H.W., Sur, S., Chai, L., Panda, D.: LiMIC: support for high-performance
MPI intra-node communication on Linux cluster. In: Proceedings of International
Conference on Parallel Processing, pp. 184–191, June 2005

13. Keller, R., Graham, R.L.: Characteristics of the unexpected message queue of MPI
applications. In: Keller, R., Gabriel, E., Resch, M., Dongarra, J. (eds.) EuroMPI
2010. LNCS, vol. 6305, pp. 179–188. Springer, Heidelberg (2010)

14. McGrattan, K., Hostikka, S., Floyd, J.E.: Fire Dynamics Simulator, User’s Guide.
NIST Special Publication 1019 (2013)

15. Mellanox Technologies: Mellanox HPC-XTM Software Toolkit User Manual (2014)
16. MPI Forum: MPI: a message-passing interface standard version 3.0. Technical

report, University of Tennessee, Knoxville, October 2012
17. MPI Forum Point-to-Point Working Group: No wildcards proposal to the MPI

Forum, April 2015. https://svn.mpi-forum.org/trac/mpi-forum-web/ticket/461
18. MPICH: A high performance and widely portable implementation of the MPI

standard, April 2015. http://www.mpich.org

https://svn.mpi-forum.org/trac/mpi-forum-web/ticket/461
http://www.mpich.org

Mitigating MPI Message Matching Misery 299

19. Müller, M.S., van Waveren, M., Lieberman, R., Whitney, B., Saito, H., Kumaran,
K., Baron, J., Brantley, W.C., Parrott, C., Elken, T., Feng, H., Ponder, C.: SPEC
MPI2007-an application benchmark suite for parallel systems using MPI. Concurr.
Comput.: Pract. Exp. 22(2), 191–205 (2010)

20. Open Fabrics Alliance: Open fabric interfaces (OFI), April 2015. http://ofiwg.
github.io/libfabric/

21. Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Com-
put. Phys. 117(1), 1–19 (1995)

22. Plimpton, S., Pollock, R., Stevens, M.: Particle-Mesh Ewald and rRESPA for par-
allel molecular dynamics simulations. In: Proceedings of 8th SIAM Conference on
Parallel Processing for Scientific Computing, PPSC (1997)

23. Squyres, J.: The message passing interface (MPI). In: Gavrilovska, A. (ed.) Attain-
ing High Performance Communications: A Vertical Approach, pp. 251–280. CRC
Press, Boca Raton (2009)

24. Thakur, R., Rabenseifner, R., Gropp, W.: Optimization of collective communi-
cation operations in MPICH. Int. J. High Perform. Comput. Appl. 19(1), 49–66
(2005)

25. Underwood, K., Brightwell, R.: The impact of MPI queue usage on message latency.
In: International Conference on Parallel Processing, ICPP 2004, vol. 1, pp. 152–160,
August 2004

26. Underwood, K.D., Hemmert, K.S., Rodrigues, A., Murphy, R., Brightwell, R.: A
hardware acceleration unit for MPI queue processing. In: Proceedings of 19th Inter-
national Parallel and Distributed Processing Symposium 2005, p. 96b (2005)

27. Zounmevo, J.A., Afsahi, A.: An efficient MPI message queue mechanism for large-
scale jobs. In: Proceedings of 18th International Conference on Parallel and Dis-
tributed Systems, ICPADS 2012, pp. 464–471 (2012)

http://ofiwg.github.io/libfabric/
http://ofiwg.github.io/libfabric/

INAM2: InfiniBand Network Analysis
and Monitoring with MPI

Hari Subramoni(B), Albert Mathews Augustine, Mark Arnold,
Jonathan Perkins, Xiaoyi Lu, Khaled Hamidouche, and Dhabaleswar K. Panda

Department of Computer Science and Engineering, The Ohio State University,
Columbus, OH, USA

{subramoni.1,augustine.80,arnold.668,perkins.173,lu.932,
hamidouche.2,panda.2}@osu.edu

Abstract. Modern high-end computing is being driven by the tight inte-
gration of several hardware and software components. On the hardware
front, there are the multi-/many-core architectures (including accelera-
tors and co-processors) and high-end interconnects like InfiniBand that
are continually pushing the envelope of raw performance. On the soft-
ware side, there are several high performance implementations of popular
parallel programming models that are designed to take advantage of the
high-end features offered by the hardware components and deliver multi-
petaflop level performance to end applications. Together, these compo-
nents allow scientists and engineers to tackle grand challenge problems
in their respective domains.

Understanding and gaining insights into the performance of end appli-
cations on these modern systems is a challenging task. Several researchers
and hardware manufacturers have attempted to tackle this by design-
ing tools to inspect the network level or MPI level activities. How-
ever, all existing tools perform the inspection in a disjoint fashion and
are unable to correlate the data generated by profiling the network
and MPI. This results in a loss of valuable information that can pro-
vide the insights required for understanding the performance of High-
End Computing applications. In this paper, we take up this challenge
and design InfiniBand Network Analysis and Monitoring with MPI -
INAM2. INAM2 allows users to analyze and visualize the communica-
tion happening in the network in conjunction with data obtained from
the MPI library. Our experimental analysis shows that the INAM2 is able
to profile and visualize the communication with very low performance
overhead at scale.

1 Introduction and Motivation

Across scientific domains, application scientists are constantly looking to push
the envelope by running large-scale, parallel jobs on supercomputing systems.

This research is supported in part by National Science Foundation grants #CCF-
1213084, #CNS-1419123, #CNS-1513120, #ACI-1450440 and #IIS-1447804.

c© Springer International Publishing Switzerland 2016
J.M. Kunkel et al. (Eds.): ISC High Performance 2016, LNCS 9697, pp. 300–320, 2016.
DOI: 10.1007/978-3-319-41321-1 16

INAM2: InfiniBand Network Analysis and Monitoring with MPI 301

Supercomputing systems are currently comprised of thousands of compute nodes
based on modern multi-core architectures. Interconnection networks have rapidly
evolved to offer low latencies and high bandwidths to meet the communication
requirements of parallel applications. InfiniBand (IB) has emerged as a popular
high performance network interconnect and is increasingly being used to deploy
some of the top supercomputing installations around the world. The Message
Passing Interface (MPI) [27] is a very popular parallel programming model for
developing parallel scientific applications that run on such high end supercom-
puting systems.

As IB clusters and the MPI-based applications that use these clusters have
become increasingly complex, understanding how an HPC application interacts
with the underlying IB network and the impact it can have on the performance
of the application becomes ever more challenging. It is critical for the users and
administrators of HPC installations as well as developers of high performance
MPI middleware that run on these HPC installations to clearly understand
this interaction. Such understanding will enable all involved parties (applica-
tion developers/users, system administrators and MPI runtime developers) to
maximize the efficiency and performance of the various individual components
that comprise a modern HPC system and solve the various “grand challenge”
problems. System administrators, application developers and developers of high
performance parallel programming runtimes rely on a plethora of tools to acceler-
ate and simplify the task of analyzing and understanding the various components
of an HPC system.

One of the common questions system administrators tend to get from the
users of the clusters they manage is: Why is my application running slower than
usual now? Interaction with a concurrent job in the network or network based
parallel file system is the most common cause for this behavior. Several tools
exist in literature and as products which allow system administrators to analyze
and inspect the IB fabric (e.g.: Nagios [4], Ganglia [1], Mellanox Fabric IT [34],
INAM [8], BoxFish [10]). However, due to the lack of interaction with, and knowl-
edge about the MPI library, no existing IB fabric monitoring tool can correlate
network level and MPI level behavior to classify traffic as belonging or being
generated by particular MPI primitives (e.g.: Point-to-point, Collective, RMA).
Furthermore, they cannot classify network traffic as belonging to a particular job
due to the lack of interaction with the job scheduler. Such classification would
allow the system administrators to pin point the source of the conflict at a much
finer granularity than what is possible with the existing set of tools.

Current generation high performance MPI runtimes are complicated pieces of
software with hundreds of performance oriented features and knobs (e.g.: support
for different high performance transport protocols, support for different collective
communication algorithms and mechanisms, network topology aware communi-
cation, hardware offloaded communication, network hot spot avoidance). Some
of these features have interdependencies and interactions with others. While the
default setting of these features will deliver about 80 % of the maximum achiev-
able performance in most cases, careful application specific tuning is required

302 H. Subramoni et al.

to extract that last 20 % of performance. This requires in-depth understand-
ing of the workings of the MPI library and how it interacts with the under-
lying communication fabric. Existing MPI level profiling tools (like TAU [5],
HPCToolkit [18], Intel VTune [13], IPM [2], mpiP [3]) give reasonable insights
into the MPI communication behavior of applications. However, they have no
knowledge about the underlying IB fabric and thus are not able to correlate
network level and MPI level behavior to identify issues such as increased traf-
fic levels on one link causing performance degradation for an MPI job whose
communication is going over said link. Furthermore, most existing MPI profiling
tools are unable to provide deep insights into the operations of the MPI library
due to the lack of an interface that allows them to interact with the MPI library
and identify the behavior of various internal components. To address this con-
cern, the MPI forum recently proposed the MPI T [26] interface which allows
MPI profiling tools to track the performance of various internal components of
the MPI library. Researchers have already begun to take advantage of this inter-
face to provide optimization and tuning hints to the users [14]. However, these
tools have no knowledge about the underlying IB fabric and thus suffer from the
same drawbacks as other existing MPI tools.

As we can see, there is a gap in the support provided by existing network
as well as MPI level profiling tools which must be filled. Any tool that is able
to bridge this gap will enable end users to correlate the behavior of the IB
fabric and the MPI runtime to gain true insights into the performance being
delivered by high performance scientific applications. These issues lead us to
the following broad challenge - How can we design a tool that enables in-
depth understanding of the communication traffic on the InfiniBand
network through tight integration with the MPI runtime?

2 Contributions

In this paper, we take up this challenge and design INAM2 - a low-overhead pro-
filing and visualization tool that is capable of presenting the profiling information
obtained from the network and the MPI library in conjunction to allow users to
gain more insights than afforded by existing tools that profile/visualize the net-
work and MPI disjointly. We demonstrate how, through the profiling information
provided by INAM2, designers as well as users of high performance middleware
can gain more insights into the communication characteristics of their runtimes
allowing them to further fine tune the performance on a per application or per
run basis. We show how, through the link analysis capabilities of INAM2, sys-
tem administrators can pin point the cause of network performance issues to a
granularity of a process. Our experimental evaluation shows that the INAM2

is able to profile and visualize the communication with very little performance
overhead at scale. To summarize, INAM2 provides the following major features:

INAM2: InfiniBand Network Analysis and Monitoring with MPI 303

– Analyze and profile network-level activities with many metrics (data and
errors) at user specified granularity

– Capability to analyze and profile node-level, job-level and process-level activ-
ities for MPI communication (Point-to-Point, Collectives and RMA)

– Capability to profile and report several metrics of MPI processes at node-
level, job-level and process-level at user specified granularity in conjunction
with the MPI runtime

– Capability to analyze and classify the traffic flowing in a physical link into
those belonging to different jobs in conjunction with the MPI runtime

– Capability to visualize the communication map at process level and node level
granularities in conjunction with the MPI runtime

– “Job Page” to display jobs in ascending/descending order of various perfor-
mance metrics in conjunction with the MPI runtime

Note that many of the features and capabilities described in this paper
are already publically available as part of OSU INAM package for free down-
load at http://mvapich.cse.ohio-state.edu/tools/osu-inam/. While we chose
MVAPICH2 for implementing our designs, any MPI runtime can be enhanced
to perform similar data collection and transmission.

The rest of the paper is organized as follows. Section 3 gives a brief overview
of InfiniBand MPI over IB. In Sect. 4 we present the framework and design of
INAM2. We evaluate and analyze the correctness and performance of INAM2

in various scenarios in Sect. 5. We present the possible use cases for INAM2 in
Sect. 6. The currently available related tools are described in Sect. 7. Finally we
summarize the conclusions and possible future work in Sect. 8.

3 Background

In this section, we provide the necessary background information for this paper.

3.1 InfiniBand

InfiniBand is a very popular switched interconnect standard being used by almost
47 % of the Top500 Supercomputing systems [33] according to the Nov’15 list-
ing. InfiniBand Architecture (IBA) [16] defines a switched network fabric for
interconnecting processing nodes and I/O nodes, using a queue-based model.
It supports two communication semantics: Channel Semantics (Send-Receive
communication) over Reliable Connected (RC), Extended Reliable Connected
(XRC), Dynamic Connected (DC), and Unreliable Datagram (UD); and Mem-
ory Semantics (Remote Direct Memory Access communication) over RC, DC and
XRC. Both semantics can perform zero-copy transfers from source-to-destination
buffers without additional host-level memory copies. RC is connection-oriented
and requires dedicated QP for destination processes while the connection-less
UD transport uses a single QP for all [22,24]. XRC optimizes QP allocation by
requiring each process to create only one QP per node [23]. DC on the other hand

http://mvapich.cse.ohio-state.edu/tools/osu-inam/

304 H. Subramoni et al.

combines the scalability of UD by providing the capability to use just on DC end
point to communicate with an peer while providing the high-end RDMA/atomic
features available with RC and XRC.

3.2 MPI

Message Passing Interface (MPI) [27], is one of the most popular programming
models for writing parallel applications in cluster computing area. MPI libraries
provide basic communication support for a parallel computing job. In particu-
lar, several convenient point-to-point and collective communication operations
are provided. High performance MPI implementations are closely tied to the
underlying network dynamics and try to leverage the best communication per-
formance on the given interconnect. In this paper, we use modified MVAPICH2-
X [25] based on the 2.2a release for our evaluations. However, our observations
in this context are quite general and they should be applicable to other high
performance MPI libraries as well.

3.3 MPI T

The MPI Tools Information Interface (MPI T) provides a standard mechanism
for MPI tool developers to both inspect and tweak the various internal settings
and performance characteristics of MPI libraries. The MPI T interfaces define
two types of objects. The first type of object is the performance variable. Access-
ing the values of performance variables allows the software to peak under the
hood of the MPI library to determine the state and how it is being affected
by the MPI application. The second type of object is the control variable. This
type of object is tied to a modifiable parameter of the MPI library. Accessing
and modifying these will allow the software to change the behavior of the MPI
library. Section 14.3 of the MPI 3 standard describes the MPI T interface in full
detail.

4 Design of INAM2

The overall architecture of InfiniBand Network Analysis and Monitoring with
MPI (INAM2) is presented in Fig. 1. It consists of four major design components:
(1) OSU INAM daemon (osuinamd), (2) OSU INAM Database, (3) Java-based
Webserver, and (4) Web-based front end for visualization. We will go into the
details of each in the following sections.

4.1 Design of OSU INAM Daemon

The OSU INAM daemon is the hub for all data collection related activities in
INAM2. As we saw in Sect. 2, one of the major capabilities of INAM2 is its
ability to interact with and extract information from the MPI processes and
present data at network level, job level and process level granularities to the

INAM2: InfiniBand Network Analysis and Monitoring with MPI 305

Fig. 1. Overall framework

end users. Apart from this, the daemon is also responsible for discovering the
IB fabric and extracting data from various selected components in the IB fabric.
Finally, it is also responsible for pushing all collected data elements into the OSU
INAM database (described in Sect. 4.2). In order to allow these tasks to proceed
in parallel and not bottleneck each other, we dedicate a thread for each activity.

MPI Data Collection Thread. While existing IB fabric monitoring tools like
Nagios, Ganglia, and Mellanox Fabric IT are capable of displaying the overall
state of the fabric, they’re unable to break down the traffic and classify it at
finer granularities (for instance at process level or as point-to-point or collective
traffic) which can enable deep understanding. While one can theoretically use
per virtual lane level counters and force MPI processes to use different virtual
lanes to have process level granularity using existing tools, this method suffers
from a fundamental issue — The IB standard only supports 16 virtual lanes.
Given the current and emerging dense many-core nodes where the number of
processes per node can be as high as 71, it becomes hard to perform a one-to-
one mapping between processes and virtual lanes even at the node level. This
fundamental bottleneck is further exacerbated by two mundane issues: (1) very
few system administrators enable the use of multiple virtual lanes in practice
on production supercomputing installations and (2) very few (if any) currently
available IB products support per virtual lane level counters. Another advantage
of using such an approach is that it frees us from the need to query the HCA on
the node as the MPI process itself will send us the necessary details when the
node is computing and while the node is not in use, we do not care about it as
it is not expected to be contributing network traffic in a significant fashion.

306 H. Subramoni et al.

To overcome these limitations, we designed and integrated the MPI data
collection thread into the daemon process. The sole responsibility of this thread
is to collect data specific to each MPI process running on the system and push
it to OSU INAM Database. This allows us to analyze and visualize the data at
job level, node level and process level granularities. We designed the thread to
be a listener which accepts data from remote MPI processes to avoid the single
point bottlenecks that can arise from a design where the thread actively polls
each MPI process for data. The thread uses IB based communication to achieve
high performance and low latency. The thread further uses the interrupt driven
mode in IB to reduce CPU utilization by eliminating the need to continually
poll to identify the arrival of new packets.

Design Choices for IB Transport Protocol: As mentioned above, the MPI
data collection thread uses IB to enable high performance and low latency com-
munication. It is known that IB supports several transport protocols such as
Reliable Connected (RC), Unreliable Datagram (UD), Extended Reliable Con-
nected (XRC), and Dynamic Connected (DC) [23,24]. Each transport protocol
has different cost/performance tradeoffs. Our previous research has shown that
using the UD and DC transport protocols over others can have significant bene-
fits in terms of scalability and memory footprint [23,32]. Thus we eliminate RC
and XRC from the pool of possible protocols. The choice of whether to use DC
or UD depends on the communication requirements. From the point of view of
the INAM2, the communication requirements are similar to what one would
expect from a high performance stock market application - typically small mes-
sages, high performance, high scalability, low latency and no requirement for
absolute reliability. Our previous research has shown that [32], between DC and
UD, UD is able to deliver high performance, high scalability, low latency better
than DC when reliability is not an issue. Thus, we choose the UD protocol as
the IB transport protocol for the MPI data collection thread.

Co-designing the MPI Runtime to Work with INAM2 . As we saw in
Sect. 1, the MPI T interface provides a convenient method to keep track of
various internal states and metrics of an MPI library. We piggyback on this
infrastructure and enhance it to enable monitoring for several more process
level metrics. We introduce support in MVAPICH2-X [28] to keep track of: (1)
CPU utilization of each process including idle time, user time, system time and
the rest; (2) memory utilization of each process including current and maxi-
mum size of virtual memory consumed; (3) inter-node and intra-node commu-
nication buffer utilization including the maximum number of buffers that were
required (high water mark); (4) intra-node bytes sent/received; (5) inter-node
bytes sent/received; (6) total bytes sent/received for collective operations; and
(7) total bytes sent for RMA operations. The MPI runtime collects this informa-
tion and sends updates to the MPI data collection thread via UD Queue Pairs
(QP) at user specified intervals (default value: 30 s). In addition to this, each
packet sent has some meta data information about the process itself like rank,
LID/GUID from which it’s sending the data, time stamp when data was sent,

INAM2: InfiniBand Network Analysis and Monitoring with MPI 307

job ID, etc., which will be used later to retrieve the data from the database. The
MPI data collection thread dumps the UD QP and Local Identifier (LID) that it
is listening on to a file. This location of this file is passed through environment
variables set up by the system administrator to the MPI runtime. The runtime
then uses this information while sending data out to the MPI data collection
thread. While we chose MVAPICH2 for implementing our designs, any MPI
runtime (e.g.: OpenMPI [12]) can be modified to perform similar data collection
and transmission.

Fabric Discovery Thread. The Fabric Discovery (FD) thread is responsible
for discovering the IB fabric and extracting data from various selected compo-
nents in the IB fabric. The fabric discovery has multiple phases. In the first
phase, the thread uses methods similar to what is used by the “ibnetdiscover”
utility to identify the various IB devices present in the network and their current
status. The data is stored in an easy to retrieve format in the database. Once
all the devices have been identified, it computes the network path between each
pair of hosts and pushes this information into the database as well. Once this is
done, the fabric thread will monitor the network for any changes at a user spec-
ified interval. Then, the FD thread switches over to retrieving the performance
counter information from the network.

Different design choices were explored to retrieve the performance counter
information from the IB fabric. Using an OpenSM plugin in for the performance
manager module to extract the performance counter information. However, this
method will cause data to be extracted from all network devices (including the
end nodes themselves). As the MPI data collection thread is already capturing
information at a much finer granularity than what can be delivered by the net-
work level counters, it would be prudent to avoid the useless query to retrieve this
information. To avoid this, the FD thread issues queries to selected components
in the network at user specified intervals. In our case, the selected components
would be various switches in the network. By doing this, we also reduce the
amount of high-priority management traffic that is generated on the network.
Although the default value for the query interval is 30 s, we recommend that
users set it to a lower value as the “Xmit Data” and “Rcv Data” counters are
only 32-bit and can easily overflow depending on the volume of data being trans-
ferred. On receiving a response, the FD thread queues up the message in a FIFO
queue to the database thread for eventual insertion into the database.

Database Thread. The Database (DB) thread is responsible for receiving
information from the MPI data collection thread as well as the FD thread.
When being run for the first time the DB thread will create all the tables in
the schema that the given version of the tool expects. If an earlier version of
the tool which used a different table scheme exists in the same system, it will
automatically update them to avoid conflicts and make life easier for the user.

308 H. Subramoni et al.

4.2 Design of OSU INAM Database

The Database design for INAM2 is critical since all necessary data needs to be
stored in and queried from it. A useful and scalable database schema plays a
key role for the system to achieve the flexibility and high-performance needed
to scale with large clusters. Figure 2 shows the design of the INAM2 database.
From this figure, we can see that through nine tables, INAM2 is able to cover
all the capabilities as mentioned in Sect. 2 and we believe all these tables and
fields are necessary to maintain all the important statistical data for both the
InfiniBand network and the MPI processes and their correlations.

For instance, the fields in the tables of “route”, “links”, “nodes”,
“port data counters”, and “port errors” can hold all the important data for
InfiniBand network infrastructure, like links, nodes, ports and routes. On the
other hand, in order to keep track of MPI process communication charac-
teristics, we utilize the tables of “process info”, “process comm main”, and
“process comm grid” to store MPI library counters and the communication
paths over the links. Through these, INAM2 is able to analyze and profile
node-level, job-level and process-level activities for MPI Point-to-point, collec-
tives, and RMA communication. Further, this information can help to profile and
report several important parameters/counters of MPI processes at the node-
level, job-level and process-level as well as visualize the communication map
at process-level and node-level granularities. Another example is analyzing and
classifying InfiniBand network traffic flows in a physical link, through tables of
“route”, “link route”, and “links”, we are able to distinguish the traffic into those
belonging to different jobs in conjunction with the MPI runtime. More analysis
examples and scenarios will be discussed in Sect. 6.

4.3 Design of Java Webserver and Web-Based
Front-End Visualization

One of the most user-friendly features our INAM2 tool provides is the Web-
based visualization. Through INAM2’s Web front-end, system administrators,
MPI developers and end users can easily understand the statistics data of the
activities over underlying InfiniBand network and MPI jobs, which are gathered
from the OSU INAM daemon and acquired from the Slurm job scheduler as
shown in Fig. 1. This information is organized and shown through Web pages in
a way that can help users to correlate network level and MPI level behavior and
identify the root causes of performance issues.

INAM2 was not only designed for providing functionality, the high-
performance design of the Web server and front-end will provide low latency
as well as high throughput for users’ queries, so that users can profile the net-
work and MPI job performance during the job execution. As shown in Fig. 3, we
designed the INAM2 Web server based on the Spring [15] MVC (Model, View
and Controller) architecture which can be integrated easily with a Java Tomcat
server. On the client side, we choose to use the light-weight JQuery [21] library
to send HTTP requests through AJAX [20]. With the help from JQuery and

INAM2: InfiniBand Network Analysis and Monitoring with MPI 309

Fig. 2. Overview of OSU INAM database design

AJAX, INAM2 pages can send data to and retrieve responses from the server
asynchronously without interfering with the display and behavior of the existing
page. Such a solution will dramatically improve the user experience because it
hides a lot of the data processing and page rendering in the background.

The overall processing flow is as follows: (1) Whenever a user’s action gen-
erates an HTTP request, it will be sent to the server side by Web browser or
JQuery library with AJAX; (2) Once the Tomcat server receives the request, it
is passed to the the Spring framework who will dispatch the coming request
to the corresponding controller based on the mapping information of URL

310 H. Subramoni et al.

Fig. 3. Overall of INAM web server and front-end

(in the request) and Controller. The dispatcher has information about which
controller needs to be invoked; (3) The selected controller will be invoked and
it can query the model for some information, in most cases, about some data
in database; (4) Once processing has been done, the Spring framework will get
the response to build the view through JSP, XML, etc.; (5) Finally the HTTP
response will be sent back to the browser at the client side. Then the Web page
will be get updated. Note that the whole process is completed very fast since all
the data has been stored in database through the OSU INAM daemon in advance
and all the processing steps are configured and indexed in the database. As indi-
cated earlier, many users’ actions are handled through AJAX which alleviates
the need to reload the page for fresh data.

5 Experimental Results

We describe the results of the various experiments carried out for this paper in
this section.

5.1 Experimental Setup

Each node of our 184 node testbed has eight Intel Xeon cores running at 2.53 GHz
with 12 MB L3 cache. The cores are organized as two sockets with four cores
per socket. Each node also has 12 GB of memory and Gen2 PCI-Express bus.
They are equipped with MT26428 QDR ConnectX-2 HCAs with PCI-Express
interfaces. We used a Mellanox MTS3610 QDR switch, with 11 leafs, each hav-
ing 16 ports. Each node is connected to the switch using one QDR link. The
HCA, as well as the switches, use the latest firmware. The operating system
used is Red Hat Enterprise Linux Server release 6.5 (Santiago), with the 2.6.32-
431.el6.x86 64 kernel version. Mellanox OFED version 2.2-1.0.1 is used on all
machines.

INAM2: InfiniBand Network Analysis and Monitoring with MPI 311

5.2 Impact of Profiling on Performance of Basic Microbenchmarks
and NAS Parallel Benchmarks

In this section we study the impact the co-design of the MPI runtime with the
MPI data collection thread of INAM2 has on basic communication performance
of different point-to-point as well as collective microbenchmarks and popular
application kernels like the NAS parallel benchmarks [9]. Figure 4a compares
the basic point-to-point inter-node latency obtained with and without the data
collection happening in the MPI runtime. As we can see, the data collection
adds less than 1 % degradation when compared to the native performance. In
Fig. 4b, we depict the inter-node message rate obtained with the osu mbw mr
microbenchmarks using a pair of processes. We see that the data collection and
transmission adds about 6 % to 8 % overhead for messages less than 4,096 bytes.
However, for larger messages, we see no significant impact at all (less than 1 %).

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1 4 16 64 1K 16K 256K 4M
 0

 20

 40

 60

 80

 100

L
at

en
cy

 (
us

)

Pe
rc

en
ta

ge
 D

eg
ra

da
tio

n
(%

)

Message Size (Bytes)

Default
INAM2

Degradation

(a) Latency

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 1.8e+06

 1 4 16 64 1K 16K 256K 4M
 0

 20

 40

 60

 80

 100
M

es
sa

ge
 R

at
e

(M
es

sa
ge

s/
se

c)

Pe
rc

en
ta

ge
 D

eg
ra

da
tio

n
(%

)

Message Size (Bytes)

Default
INAM2

Degradation

(b) Message Rate

Fig. 4. Microbenchmark-level point-to-point performance

Figure 5a and b depict the performance impact the data collection and trans-
mission has on some common collective communication patterns such as Broad-
cast and Alltoall, respectively. The evaluations were done at a scale of 512
processes. As we can see, the tool adds less than 5 % overhead for Broadcast. For
Alltoall, we observe less than a 5 % degradation for messages up to 1,024 bytes.
For larger messages the degradation is mostly around 7 % with only 4,096 byte
message showing up to 12 % degradation.

Figure 6 compares the performance of the version of the MPI runtime with
support for MPI level data collection with one which does not have the sup-
port. As we can see, at the application level, there is little to no impact on
the performance due to the addition of the data collection and reporting. These
are encouraging trends which positively advocate the use of such tools for end
applications on modern supercomputing systems.

312 H. Subramoni et al.

 0

 100

 200

 300

 400

 500

 600

 1 4 16 64 1K 16K 256K
 0

 20

 40

 60

 80

 100
L

at
en

cy
 (

us
)

Pe
rc

en
ta

ge
 D

eg
ra

da
tio

n
(%

)

Message Size (Bytes)

Default
INAM2

Degradation

(a) Performance of Broadcast

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 1 4 16 64 1K 16K 256K
 0

 20

 40

 60

 80

 100

L
at

en
cy

 (
us

)

Pe
rc

en
ta

ge
 D

eg
ra

da
tio

n
(%

)

Message Size (Bytes)

Default
INAM2

Degradation

(b) Performance of Alltoall

Fig. 5. Microbenchmark-level collective performance at 512 processes

 0

 50

 100

 150

 200

 250

 300

CG EP FT IS LU MG

E
xe

cu
tio

n
T

im
e

(S
ec

on
ds

)

Benchmark

Default
INAM^2

Fig. 6. Performance of class D NAS parallel benchmarks at 512 processes (Color figure
online)

6 Discussion on Features of INAM2 and Its Impact

In this section, we highlight some of the many features of INAM2 and describe
some of the potential impact it can have on the understanding and performance
of applications.

6.1 Analyzing and Understanding Inter-node Communication
Buffer Allocation and Use

Several high performance implementations of the the MPI programming model
allocate a set of internal communication buffers that have been pre-registered
with the IB HCA to enable fast small message communication. MVAPICH2,
for instance, has been extensively tuned to ensure that the number and size of
communication buffers is large enough to maintain good communication per-
formance without significantly increasing the amount of memory consumed for
these buffers. The memory footprint is even more important for these as they
are always “pinned” to the physical memory and cannot be swapped out in case
the application requires more memory to do its computation. However, at the

INAM2: InfiniBand Network Analysis and Monitoring with MPI 313

level of end applications, one cannot assure that all the internal communication
buffers that have been pre-allocated and pinned are being used by the applica-
tion for communication. We use the INAM2 tool to profile and understand the
communication behavior of the NAS benchmarks and visualize how they use
the internal communication buffers that MVAPICH2 allocates. Once the job has
completed execution, we monitor the high water marker for the internal commu-
nication buffer usage over the lifetime of the job using the “historical job view”
that INAM2 offers. Table 1 shows the results of our analysis. It highlights the
number of internal inter-node communication buffers taken for a 512 process run
of class D NAS parallel benchmarks. The column “Default-Alloc” highlights the
number of communication buffers pre-allocated with the default communication
buffer tuning done for MVAPICH2. The “Default-HWM” column highlights the
maximum number of communication buffers actually used by the application
kernel in the default scenario. As we can see, there is a significant waste of com-
munication buffers for several application kernels. With this insight, we perform
application specific tuning and reduce the number of inter-node communication
buffers pre-allocated at initialization time. “Tuned-Alloc” indicates the number
of buffers allocated after we tuned the number of communication buffers with
the insights gained from INAM2. As we can see by comparing the memory taken
for the default and tuned, we are able to save significant amounts of memory
without any impact on the communication performance. Another observation is
that the “Tuned-HWM” value is higher than “Default-HWM” in several cases
even when the “Tuned-Alloc” is much less than “Default-Alloc” indicating better
utilization of available communication buffer resources.

Table 1. Comparison of communication buffer utilization for default and tuned sce-
narios for 512-process class D NAS parallel benchmarks

Benchmark Default-

HWM

(max

value)

Default-

alloc (max

value)

Default-

communication

Buffer-Memory

(sum) (MB)

Tuned-HWM

(max value)

Tuned-alloc

(max value)

Tuned-communication

Buffer-memory

(sum) (MB)

CG 1 240 1570.20 2 48 409.33

EP 1 240 1570.20 3 48 348.22

FT 356 544 1735.49 295 320 647.24

LU 161 352 1584.74 152 192 503.76

MG 30 240 1570.20 32 80 561.33

6.2 Identifying and Analyzing Sources of Link Congestion

Existing IB fabric monitoring tools are capable of identifying congested links
in the fabric. However, identifying the network “hot spots” alone is not good
enough for system administrators. What they are looking for is the source of the
congestion. Unfortunately, no tool offers the kind of automatic “reverse-lookup”
feature that allows one to identify the various sources (end compute nodes)
that could possibly have routes through the link in question. On a typical net-
work with dynamic routing, doing this would prove to be a near insurmountable

314 H. Subramoni et al.

challenge. However, as IB networks are typically statically routed, it becomes a
challenge that can be solved. We tackle and solve this challenge in INAM2 using
the various tables described in Fig. 2. Figure 7 depicts how one can identify the
various routes going through the link. As we can see, the different paths that go
through a given link gets highlighted in yellow. We actually go one step further
and provide the capability to analyze and classify the traffic flowing in a physical
link into those belonging to different jobs in conjunction with the MPI runtime
allowing system administrators to identify exactly which job was contributing
to the traffic going over a particular link. Users can view the link utilization by
the jobs sending/receiving data through it in both directions in an absolute (in
terms of number of bytes)or relative sense (as a percentage of total link capac-
ity). Figure 8 depcits how, by selecting a job id, INAM2 can process level link
utilization for the selected job. Sections 4.2 and 4.3 describe how data is fetched
from various tables to construct and display this novel feature.

Fig. 7. Identifying communication routes going through a given link

6.3 Monitoring Jobs Based on Various Metrics

While typical job schedulers list what nodes are being used by which jobs, they
do not list what each individual job is currently doing and how that impacts
the different components of the HPC system. For instance, if a job is dumping
a lot of data to the file system due to a checkpoint operation or because it has
encountered a segmentation fault and is currently in the process of dumping
cores, it is going to negatively affect all other processes in the system. Similarly,
if a job is performing a network intensive communication operation, like an
Alltoall, all jobs may get affected. Thus, it is in the best interest of all concerned
that such”high-value” jobs be closely monitored by the system administrator. To
address this concern, we introduce a “Live Job” page in INAM2 which lists all

INAM2: InfiniBand Network Analysis and Monitoring with MPI 315

Fig. 8. Process level link utilization for a user specified job (Color figure online)

MPI jobs that are sending data to it through the MPI data collection framework.
The page allows sorting the various jobs in ascending/descending order of the
various metrics listed in the “process info” table depicted in Fig. 2. Figure 9
shows an example of how this page would look like on a real cluster scenario
with various jobs running. As we can see, each job ID is a hyperlink which takes
the user to the “job page” for the corresponding job so that the user can get
more details of what exactly is going on in the job.

316 H. Subramoni et al.

Fig. 9. Live job page to display jobs in ascending/descending order of various perfor-
mance metrics in conjunction with the MPI runtime

6.4 Capability to Profile and Report Several Metrics of MPI
Processes at Different Granularities

One of the dangers of providing users with too much data is the possibility of
inundating them with so much information that the high value data items get
lost in the deluge of less relevant details. Thus, it is always helpful if one can
aggregate and display the information to users so that they are first presented
with a high level view first (e.g.: a cluster level or job level) and then allowed to
slowly dig their way into more details (e.g.: node level or process level views).
We provide this exact capability in INAM2. Although the data from the MPI
processes arrive at a process level granularity, once it has been entered into
the database, things can be easily manipulated so that we can aggregate and
display the details at much coarser granularities (e.g.: node level or job level).
Figures 10 and 11 depict examples of the live job-level view of a given job and
node level view of different processes that belong to a job respectively as ren-
dered by INAM2. Further, INAM2 allows such analysis to be done in a “live”
or a “historical” manner. This capability of INAM2 to display historical infor-
mation can prove very useful to system administrators. For instance, it is quite
possible that the system or network administrator is made aware of an issue
“post-mortem”. In such scenarios, the current IB fabric monitoring tools, which
do not have support to store information in databases for later retrieval, more or
less leave the administrators helpless. However, if an administrator has access to
a tool like INAM2 which has the ability to “play back” events that occurred at
a specified time in the past, it provides administrators the flexibility to inspect
events “post-mortem” and identify the culprit(s) that caused the issue.

7 Related Tools

We believe that INAM2 fills a void in the tools space as many do not monitor
and correlate the impact of particular MPI jobs on the system. In principle,
the pre-existing tool most closely related in design is Lightweight Distributed
Metric Service (LDMS) [6] by Sandia. It strives to be a low overhead system
monitoring tool which also correlates jobs to the impact on the system. LDMS

INAM2: InfiniBand Network Analysis and Monitoring with MPI 317

Fig. 10. Live job level view of a particular job

does not monitor the InfiniBand network directly as INAM2 but does a good
job monitoring other resources such as memory or filesystem I/O.

Another tool suite available is HOlistic Performance System Analysis
(HOPSA) [7]. This suite is more focused on application on MPI but is designed
in a way where each application or job may have different metrics monitored
which may not allow for a full system view of how the set of jobs are interacting
on the system.

The group at the Texas Advanced Computing Center have also developed a
tool TACC STATS [31] to help them to explore job and system level reports.
These reports help to identify jobs or system components that may need atten-
tion based on policies that they’ve set forth ahead of time. The main difference
between this tool and INAM2 is that TACC STATS does their analysis post-
mortem whereas we try to make this information available in real time.

As mentioned earlier, several tools exist which allow system administrators
to analyze and inspect the IB fabric such as Nagios, Ganglia, Mellanox Fabric
IT, INAM, and BoxFish. However, due to lack of in-depth knowledge about the
MPI library, no existing IB fabric monitoring tool can correlate the network level
and MPI level behavior to classify traffic as being generated by particular MPI

318 H. Subramoni et al.

Fig. 11. Live node level view of different processes that are part of a particular job

primitives. Furthermore, they cannot classify network traffic as belonging to a
particular job due to the lack of interaction with the job scheduler.

Also mentioned earlier, existing MPI level profiling tools like TAU,
HPCToolkit, Intel VTune, IPM, and mpiP give reasonable insights into the
MPI communication behavior of applications. However, they have no knowl-
edge about the underlying IB fabric and thus are not able to correlate network
level and MPI level behavior. With INAM2 we strive to bridge the gap between
the system level and MPI level profilers and monitors.

8 Conclusions and Future Work

In this paper, we presented the design of INAM2 - a low-overhead profiling and
visualization tool that is capable of presenting the profiling information obtained
from the network and the MPI library in conjunction. We demonstrated how,
through the profiling information provided by INAM2, designers as well as
users of high performance middleware can gain more insights into the commu-
nication characteristics of their runtimes allowing them to further fine tune the
performance on a per application or per run basis. We showed how, through the
link analysis capabilities of INAM2, system administrators can pin point the
cause of network performance issues to a granularity of a process. Several fea-
tures of INAM2 presented in this paper are already publically available in the
released versions of the OSU INAM package which can be downloaded for free
from http://mvapich.cse.ohio-state.edu/tools/osu-inam/. We plan to release the
remaining features in upcoming releases of the OSU INAM. While the MPI data

http://mvapich.cse.ohio-state.edu/tools/osu-inam/

INAM2: InfiniBand Network Analysis and Monitoring with MPI 319

collection was designed and implemented using MVAPICH2-X, note that the
same techniques are equally applicable to other MPI stacks.

As part of future work, we plan to incorporate support for additional MPI T
counters in conjunction with the MPI library. We would also like to extend
INAM2 to be capable of profiling and analyzing communication taking place
to and from GPGPUs. Further, we would like to add the capability to profile
various PGAS programing languages such as OpenSHMEM [29], UPC [35] and
CAF [11] as well as different BigData frameworks like Apache Hadoop [17],
MapReduce [19] and Spark [30].

Acknowledgements. We would like to thank Michael Knox from Cray and John
Hanks from KAUST for their feedback on the OSU INAM package and thus enabling
us to fix several bugs and performance issues.

References

1. Ganglia Cluster Management System. http://ganglia.sourceforge.net/
2. Integrated Performance Monitoring (IPM). http://ipm-hpc.sourceforge.net/
3. mpiP: Lightweight, Scalable MPI Profiling. http://www.llnl.gov/CASC/mpip/
4. Nagios. http://www.nagios.org/
5. Malony, A.D., Shende, S.: Performance technology for complex parallel and dis-

tributed systems. In: Kotsis, G., Kacsuk, P. (eds.) Proceedings of DAPSYS, pp.
37–46 (2000)

6. Agelastos, A., Allan, B., Brandt, J., Cassella, P., Enos, J., Fullop, J., Gentile, A.,
Monk, S., Naksinehaboon, N., Ogden, J., Rajan, M., Showerman, M., Stevenson,
J., Taerat, N., Tucker, T.: The lightweight distributed metric service: a scalable
infrastructure for continuous monitoring of large scale computing systems and
applications. In: Proceedings of International Conference for High Performance
Computing, Networking, Storage and Analysis, SC 2014, pp. 154–165. IEEE Press,
Piscataway, NJ, USA (2014)

7. HOPSA Holistic Performance System Analysis. http://www.vi-hps.org/projects/
hopsa/overview

8. OSU InfiniBand Network Analysis and Monitoring. http://mvapich.cse.ohio-state.
edu/tools/osu-inam/

9. Bailey, D.H., Barszcz, E., Dagum, L., Simon, H.D.: NAS parallel benchmark
results. Technical report 94-006, RNR (1994)

10. PAVE Software Boxfish. https://computation.llnl.gov/project/performance-
analysis-through-visualization/software.php

11. Coarray Fortran (CAF). http://caf.rice.edu/
12. Open MPI: Open Source High Performance Computing. http://www.open-mpi.

org
13. Intel Corporation. Intel VTune Amplifier. https://software.intel.com/en-us/

intel-vtune-amplifier-xe
14. Gallardo, E., Vienne, J., Fialho, L., Teller, P., Browne, J.: MPI advisor: a minimal

overhead MPI performance tuning tool. In: EuroMPI 2015 (2015)
15. Spring Framework. http://projects.spring.io/spring-framework/
16. Pfister, G.: Aspects of the InfiniBand architecture. In: IEEE International Confer-

ence on Cluster Computing (CLUSTER), pp. 369. IEEE Computer Society (2001)

http://ganglia.sourceforge.net/
http://ipm-hpc.sourceforge.net/
http://www.llnl.gov/CASC/mpip/
http://www.nagios.org/
http://www.vi-hps.org/projects/hopsa/overview
http://www.vi-hps.org/projects/hopsa/overview
http://mvapich.cse.ohio-state.edu/tools/osu-inam/
http://mvapich.cse.ohio-state.edu/tools/osu-inam/
https://computation.llnl.gov/project/performance-analysis-through-visualization/software.php
https://computation.llnl.gov/project/performance-analysis-through-visualization/software.php
http://caf.rice.edu/
http://www.open-mpi.org
http://www.open-mpi.org
https://software.intel.com/en-us/intel-vtune-amplifier-xe
https://software.intel.com/en-us/intel-vtune-amplifier-xe
http://projects.spring.io/spring-framework/

320 H. Subramoni et al.

17. Apache Hadoop. https://hadoop.apache.org/
18. HPCToolkit. http://hpctoolkit.org/
19. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters.

In: Proceedings of 6th Conference on Symposium on Opearting Systems Design
and Implementation, OSDI 2004, vol. 6, p. 10. USENIX Association, Berkeley,
CA, USA (2004)

20. Asynchronous JavaScript and XML. http://www.w3schools.com/Ajax/ajax intro.
asp

21. Jquery. https://jquery.com/
22. Koop, M., Jones, T., Panda, D.K.: MVAPICH-Aptus: scalable high-performance

multi-transport MPI over InfiniBand. In: IPDPS 2008, pp. 1–12 (2008)
23. Koop, M., Sridhar, J., Panda, D.K.: Scalable MPI design over InfiniBand using

extended reliable connection. In: IEEE International Conference on Cluster Com-
puting (Cluster 2008), September 2008

24. Koop, M., Sur, S., Gao, Q., Panda, D.K.: High performance, MPI design using
unreliable datagram for ultra-scale infiniband clusters. In: ICS 2007: Proceedings
of the 21st Annual International Conference on Supercomputing, pp. 180–189.
ACM, New York, NY, USA (2007)

25. Liu, J., Jiang, W., Wyckoff, P., Panda, D.K., Ashton, D., Buntinas, D., Gropp, W.,
Toonen, B.: Design and implementation of MPICH2 over InfiniBand with RDMA
support. In: Proceedings of International Parallel and Distributed Processing Sym-
posium (IPDPS 2004), April 2004

26. Schulz, M., MPIT: a new interface for performance tools in MPI 3. http://cscads.
rice.edu/workshops/summer-2010/slides/performance-tools/2010-08-cscads-mpit.
pdf

27. Message Passing Interface Forum: MPI: A Message-Passing Interface Standard,
March 1994

28. MVAPICH2-X: Unified MPI+PGAS Communication Runtime over OpenFab-
rics/Gen2 for Exascale Systems. http://mvapich.cse.ohio-state.edu/

29. OpenSHMEM. http://openshmem.org/site/
30. Apache Spark. http://spark.apache.org/
31. TACC STATS. https://www.tacc.utexas.edu/research-development/tacc-projects/

tacc-stats
32. Subramoni, H., Hamidouche, K., Venkatesh, A., Chakraborty, S., Panda, D.K.:

Designing MPI library with dynamic connected transport (DCT) of InfiniBand:
early experiences. In: Kunkel, J.M., Ludwig, T., Meuer, H.W. (eds.) ISC 2014.
LNCS, vol. 8488, pp. 278–295. Springer, Heidelberg (2014)

33. Top 500 Supercomputers. http://www.top500.org/statistics/list/
34. Mellanox Technologies. Mellanox Integrated Switch Management Solution. http://

www.mellanox.com/page/ib fabricit efm management
35. Unified Parallel C (UPC). http://upc.lbl.gov/

https://hadoop.apache.org/
http://hpctoolkit.org/
http://www.w3schools.com/Ajax/ajax_intro.asp
http://www.w3schools.com/Ajax/ajax_intro.asp
https://jquery.com/
http://cscads.rice.edu/workshops/summer-2010/slides/performance-tools/2010-08-cscads-mpit.pdf
http://cscads.rice.edu/workshops/summer-2010/slides/performance-tools/2010-08-cscads-mpit.pdf
http://cscads.rice.edu/workshops/summer-2010/slides/performance-tools/2010-08-cscads-mpit.pdf
http://mvapich.cse.ohio-state.edu/
http://openshmem.org/site/
http://spark.apache.org/
https://www.tacc.utexas.edu/research-development/tacc-projects/tacc-stats
https://www.tacc.utexas.edu/research-development/tacc-projects/tacc-stats
http://www.top500.org/statistics/list/
http://www.mellanox.com/page/ib_fabricit_efm_management
http://www.mellanox.com/page/ib_fabricit_efm_management
http://upc.lbl.gov/

Comparing Runtime Systems with Exascale
Ambitions Using the Parallel Research Kernels

Rob F. Van der Wijngaart1(B), Abdullah Kayi1, Jeff R. Hammond1,
Gabriele Jost1, Tom St. John1, Srinivas Sridharan1, Timothy G. Mattson1,

John Abercrombie2, and Jacob Nelson2

1 Intel Corporation, Hillsboro, OR, USA
rob.f.van.der.wijngaart@intel.com

2 University of Washington, Seattle, WA, USA

Abstract. We use three Parallel Research Kernels to compare perfor-
mance of a set of programming models(We employ the term program-
ming model as it is commonly used in the application community. A
more accurate term is programming environment, which is the collective
of abstract programming model, embodiment of the model in an Applica-
tion Programmer Interface (API), and the runtime that implements it.):
MPI1 (MPI two-sided communication), MPIOPENMP (MPI+OpenMP),
MPISHM (MPI1 with MPI-3 interprocess shared memory), MPIRMA
(MPI one-sided communication), SHMEM, UPC, Charm++ and Grappa.
The kernels in our study – Stencil, Synch p2p and Transpose – underlie a
wide range of computational science applications. They enable direct prob-
ing of properties of programming models, especially communication and
synchronization. In contrast to mini- or proxy applications, the PRK allow
for rapid implementation, measurement and verification. Our experimen-
tal results show MPISHM the overall winner, with MPI1, MPIOPENMP
and SHMEM performing well. MPISHM and MPIOPENMP outperform
the other models in the strong-scaling limit due to their effective use of
shared memory and good granularity control. The non-evolutionary mod-
els Grappa and Charm++ are not competitive with traditional models
(MPI and PGAS) for two of the kernels; these models favor irregular algo-
rithms, while the PRK considered here are regular.

Keywords: Programming models · MPI · PGAS · Charm++

1 Introduction

With the stagnation of frequency scaling in modern processors and the emer-
gence of power as a critical constraint in the design and deployment of super-
computers, hardware parallelism has been increasing dramatically. Managing
expanded concurrency while maintaining voluminous validated legacy codes is a
challenge, compounded by the expected increase in faults, and performance non-
determinism. These challenges have inspired the development of dynamic run-
time systems (DRTS). While DRTS offer much promise for exascale, it is vitally
c© Springer International Publishing Switzerland 2016
J.M. Kunkel et al. (Eds.): ISC High Performance 2016, LNCS 9697, pp. 321–339, 2016.
DOI: 10.1007/978-3-319-41321-1 17

322 R.F. Van der Wijngaart et al.

important that they meet the needs of HPC applications at all relevant scales
of parallelism. And even if DRTS prove more suitable for asynchronous and/or
task-oriented algorithms, they must be able to support the regular/structured
algorithms and more synchronous/procedural styles common in HPC.

Our goal is to study many relevant HPC programming models, evaluating
them on their ability to support ubiquitous application patterns. The m by n
complexity of this problem–m programming models and n application patterns–
constrains the scope greatly. We have learned from the community that even
mini-applications are difficult to port to new models and that many algorithms in
different domains map to the same parallel programming patterns, meaning that
porting many mini-applications may not produce a proportional understanding.
On the other hand, studying a small number of programming models, or even
treating MPI as a single programming model, does not sufficiently answer the
question of how to implement HPC applications for peta- and exascale.

In this paper we evaluate a range of different programming models using the
Parallel Research Kernels (PRK). The PRK comprise about a dozen different
application patterns; we focus on the three that are most relevant to scientific
computing applications running on modern HPC systems: Synch p2p, Stencil
and Transpose (details in Sect. 2). The models evaluated include:

– MPI11 and MPI+X models in the form of MPI1+OpenMP (MPIOPENMP)
and MPISHM2;

– established PGAS models SHMEM and UPC (Unified Parallel C), and the
relatively new but semantically similar MPIRMA (MPI with direct Remote
Memory Access); and

– the non-evolutionary programming models Charm++ and Grappa, both of
which are oriented at irregular and unstructured computations, but which are
still capable of implementing regular, structured computations.

In the rest of this paper we provide a detailed description of the PRK and
motivate our choice of kernels. Next, we describe the programming models stud-
ied and how the PRK were implemented in each. We report experiments on one
to 512 nodes of a state-of-the-art supercomputer, analyzing them in terms of
the PRK implementation and observable runtime effects. We also reference the
substantial body of related work and present our conclusions and future plans.

The novel contributions of this paper are: (1) an evaluation of four different
usage models for MPI, including two using new features introduced in MPI-3;
(2) the direct comparison of eight different programming models for three differ-
ent parallel computing patterns on a platform (Cray� XC30) that is appropriate
for all of them; (3) the demonstration that the PRK expose interesting behav-
ior in programming models and are a viable alternative to the more complicated
1 MPI refers to any model based upon the Message Passing Interface standard, while

MPI1 refers to the usage of MPI two-sided communication.
2 MPISHM refers to an MPI1-like program that uses shared memory within the node

instead of explicit communication. It is similar to MPIOPENMP, but with significant
differences related to locality and runtime overheads, among others. We use MPI-3
as our implementation of shared memory.

Comparing Runtime Systems 323

mini-applications currently used to evaluate programming models. In particular,
the Cray� XC30 is the only mainstream HPC platform where the vendor pro-
vides MPI-3, UPC and SHMEM�, and where Charm++ and GASNet (used in
Berkeley UPC) have been extensively tested and tuned, meaning that our data is
less susceptible to runtime implementation quality effects. In our previous work,
we found that comparing these models on InfiniBand� was problematic due to
variation in implementation quality of all of the runtime systems except MPI.

2 Background and Motivation

In this section we provide context for our workloads, core programming models,
and specific combinations of programming models used in our study.

2.1 Parallel Research Kernels

The PRK [36] are a suite of elementary operations (kernels) that can be used
to study the suitability of parallel systems for parallel application programming.
The full suite includes about a dozen kernels designed to expose various perfor-
mance bottlenecks of a parallel system. In many cases, programmers can relate
the observed performance of the PRK to the expected bottlenecks in their appli-
cations, allowing the PRK to serve as proxies for full applications.

The PRK are defined as paper-and-pencil operations independent of any
particular implementation, although they do prescribe certain rules regarding
data distribution on distributed memory systems. In addition to a canonical ser-
ial version, we provide reference implementations3 using various parallelization
techniques. The PRK implementations are self-contained, are arbitrarily scalable
(problem size, compute resources), synthesize any data they need, and validate
the results. They have been used to study new hardware architectures using
simulators, as well as to evaluate new features in programming models [14].

For our study of programming systems for exascale computers, we use three
kernels, in order of nominally increasing granularity: Synch p2p, Stencil and
Transpose. In our description of the reference implementations of the kernels we
will refer to the units of execution generally as ranks. This should be replaced
with threads, chares, or PEs as needed, depending on the particular program-
ming model. For grid-based kernels we always opt for 2D over 3D. The reason
is twofold. First, 2D problems typically have fewer options to exploit concur-
rency and more overhead than 3D (worse surface-to-volume ratios in domain
decomposition problems, especially in the strong scaling case), which creates the
extra stress for the runtime that we want to study. Second, 2D codes are more
compact than 3D codes–a PRK design goal to maximize portability–but without
sacrificing the realism that 1D codes do.

Synch p2p involves a simple stencil-based problem. A two-dimensional
array A of size n × m, representing scalar values at grid points, is distributed

3 PRK open source repository: https://github.com/ParRes/Kernels.

https://github.com/ParRes/Kernels

324 R.F. Van der Wijngaart et al.

among the ranks in vertical strips. We apply the following difference stencil:
Ai,j = Ai−1,j + Ai,j−1 − Ai−1,j−1, with the condition that only updated array
values or (fixed) boundary values may be used. The 2D data dependencies are
resolved using a 1D software pipeline. Synch p2p models the algorithmic struc-
ture of well-known benchmarks such as the LU-SGS NAS Parallel Benchmark
(NPB) [3], and SNAP [37], but is even more stressful w.r.t. communication, as
the kernel has only two spatial dimensions. It is not data-parallel, and must
synchronize strictly on a point-to-point basis. Such synchronizations can be
implemented using shared flags plus the flush directive in OpenMP, point-
to-point messages in MPI1 and Charm++, put-wait in SHMEM and shared
pointer access in UPC. In Grappa we use FullEmpty Bits (FEB) to implement
producer/consumer synchronization. These techniques incur a forced write-to
and read-from shared memory in OpenMP, and an inter-process communication
latency for MPI1, SHMEM, UPC, Charm++, and Grappa. Performance is con-
strained by the overhead of frequent synchronization between ranks. Note: it is
possible to increase the algorithm’s granularity by grouping grid lines together
explicitly, and our PRK implementation does indeed offer that option. But we
do not consider that conforming, as we are interested in fine-grain application
behavior.

The second kernel is Stencil, which applies a scalar, data-parallel stencil
operation to the interior of a two-dimensional discretization grid of size n × n.
The stencil, which represents a discrete divergence operator, has radius r. In
operator notation: A = S(r)B, where A and B are two-dimensional arrays and
S(r) is the stencil operator of radius r. The distributed-memory versions used
in this paper employ two-dimensional domain decompositions to minimize the
surface to volume ratio, and hence the communication volume. Communication
is required to obtain ghost point values from logically nearest neighbors.

The third kernel is Transpose, in which a square matrix B of order n is
divided into strips (columns) among the ranks, which store its transpose BT

in matrix A. The matrices are distributed identically, necessitating a global
rearrangement of the data (all-to-all communication), as well as a local rearrange-
ment (per-rank transpose of matrix tiles). Canonical execution of Transpose may
lead to high numbers of cache and TLB misses, due to the strided nature of the
data access of either A or B. To reduce this effect we employ blocking to imple-
ment the local transpose operation. For all programming models we use the same
block size (32 × 32).

Each of the kernels’ main operations is executed a number of times, and per-
formance is computed by timing the entire sequence of operations, but skipping
the first to reduce the effects of implicit initialization (e.g. network connections).

2.2 Programming Models

MPI1. The first version of the MPI standard [26] focused on message-passing
functionality, defining point-to-point and collective operations as well as the
critical infrastructure that makes MPI portable, extensible and composable. The
set of functions in MPI-1 is quite complete with respect to practical parallel

Comparing Runtime Systems 325

programming within Hoare’s Communicating Sequential Processes (CSP) model.
Contrary to popular belief, MPI-1 did not implement Valiant’s Bulk Synchronous
Parallel (BSP) model (this pattern was introduced in MPI-2 via MPI Win fence).
Much of the success of MPI has been built upon the extensibility of the CSP
model.

MPIOPENMP. MPI-2 [27] introduced an awareness of threads to MPI. Sup-
port for threads is not holistic; communication routines merely became thread-
safe according to the user’s request during initialization, but no changes to the
communication routines were made that might make multithreaded MPI pro-
grams more efficient. For example, while the MPI standard does not explic-
itly require locks, most implementations use coarse-grain mutual exclusion for
MPI THREAD MULTIPLE, which can have significant (negative) performance effects.

Because of the performance issues associated with concurrent access to MPI,
many users only perform MPI calls outside of threaded regions. The fork-join
model limits scalability, but the practical consequences of this are often relatively
small if an MPI process is associated with each NUMA domain and threads are
used only within that. For small numbers of threads, it is often the case that
the overhead of mutual exclusion, which persists throughout the application,
regardless of whether or not it is actually needed4 is worse than the effect of
joining (or merely serializing) all the threads to make MPI calls.

MPISHM:MPI Plus Interprocess Shared-Memory. While MPI+Threads
is the most commonly applied solution to the multicore problem, an alternative
model employs interprocess shared-memory. Heroux and coworkers proposed to
use interprocess shared memory instead of threads in the context of MPI applica-
tions [20]. Members of the MPI Forum have elaborated upon this model [21] and
it became part of MPI-3 [28]. This model is also referred to as MPI+MPI, as a
way of connecting to MPI+X, where X equals MPI-3 shared memory.

SHMEM. Pioneered by Cray Inc. in the 1990s [17], SHMEM is a library
specification that supports programming for a logically shared but physically
distributed address space. All processes see variables in the global address
space (symmetric variables), but also have their own local view in the parti-
tioned global address space (PGAS). The SHMEM API provides a set of com-
munication operations, similar to the MPI one-sided communication routines.
SHMEM emphasizes one-sided communication features that can be mapped
directly to hardware, which offers the potential for a more efficient implementa-
tion compared to MPI two-sided communication. Historically, SHMEM imple-
mentations have varied between vendor implementations, making it difficult to
write portable SHMEM programs. Recently, OpenSHMEM [1] has emerged as a
vendor-independent community standard and associated reference implementa-
tion, which has increased interest in SHMEM.
4 MPI calls outside of threaded regions do not require mutual exclusion, but MPI has

no way to know this.

326 R.F. Van der Wijngaart et al.

MPIRMA: MPI One-Sided Communication. MPI-2 [27] introduced
remote memory access (RMA), or one-sided communication, to MPI. This
was not a successful effort, due to semantic constraints and implementa-
tion issues. With MPI-3 [28], the semantic issues were largely addressed, and
MPIRMA is able to support the semantics of important PGAS models like
SHMEM, Global Arrays (ARMCI), and Fortran coarrays, as demonstrated by
OSHMPI5, ARMCI-MPI6, and OpenCoarrays7, respectively, in addition to BSP
and message-passing synchronization. We employ both passive- and active-target
synchronization in the PRK. In all kernels we could use multiple styles of MPI-3
RMA, but we chose only one each for Synch p2p and Stencil, and two for Trans-
pose. The reason is that, to the extent that MPI-3 RMA can be semantically
equivalent to SHMEM, the SHMEM implementation tells us what is possible
with the passive-target motif, up to implementation differences (which may be
substantial today).

UPC. UPC [34] is a PGAS extension to the the ISO C99 language. It handles
shared and distributed memory with a uniform programming interface. Like
SHMEM, UPC presents the abstraction of a global, shared address space. That
space is partitioned among threads in a well-defined, user-prescribed way, allow-
ing the programmer to exploit thread-to-data affinity and hence improve locality.
Explicit put and get operations can also be used to increase granularity.

Charm++. The Charm++ programming framework [23] provides asynchro-
nous remote method invocation (RMI) on persistent but migratable objects
(chares) organized in multi-dimensional arrays. Communications between chares
take place by specifying the parameters of the remote method (marshalling) or by
sending the remote chare a message. While similar to MPI messaging, there are
important differences. Chares are virtualized and may migrate between compute
units transparently to the programmer. The flow of a program is not statically
defined in terms of two-sided message passing; RMIs (with their data) are placed
in task queues at the recipient, and are scheduled by the runtime, subject to an
execution policy. Hence, messages may arrive in different order and well before
they are needed, potentially providing substantial asynchrony. In addition, mul-
tiple chares may be assigned to the same compute unit (overdecomposition),
which may provide more asynchrony and latency hiding. RMIs are nominally
non-blocking, but may wait for certain events to occur if they contain Structured
Dagger (SDAG) code. Messages and SDAG constructs generally offer the best
performance and control. We use these for the Charm++ versions of the PRK.

Grappa. The Grappa runtime [30] is loosely based on innovations explored in
the Tera� MTA [2] and Cray XMT [18] architectures, which allow very fast,

5 https://github.com/jeffhammond/oshmpi.
6 http://git.mpich.org/armci-mpi.git/.
7 https://github.com/sourceryinstitute/opencoarrays.

https://github.com/jeffhammond/oshmpi
http://git.mpich.org/armci-mpi.git/
https://github.com/sourceryinstitute/opencoarrays

Comparing Runtime Systems 327

hardware supported context switching between multiple instruction streams per
core. This provides substantial latency hiding, but requires special hardware
support. Grappa emulates these features in software using fast, user-level context
switching, in addition to fine-grained communication and synchronization using
FEBs across a partitioned global address space. The runtime watches for multiple
asynchronous messages with a common destination from independent instruction
streams, or from asynchronous communications in the same instruction stream,
and batches them into a single transfer, transparently to the user. This can
greatly improve the performance of fine-grain workloads.

3 Implementation and Performance Results

We performed three scaling experiments wherein problem size remains constant
as more compute and memory resources are added for each kernel. For Stencil
we select a star-shaped stencil of radius four (i.e. a 17-point star), and a grid of
49152×49152 points. We use the same dimensions for the grid of Synch p2p and
the matrix in Transpose. Problem sizes, numbers of ranks, and overdecomposi-
tion factors are chosen to allow for an even load across all processing elements
when using all the cores on a node. An exception is made for Charm++, which
performs better if one core per node is reserved for communication. This core is
counted in the resource consumption, but does no computational work. To bal-
ance the load among the remaining cores on a node, we change the problem size
for Charm++ to 47104 for all kernels. While strong-scaling from 1 to 512 nodes
is not common in real applications, it exaggerates runtime overheads and allows
us to draw conclusions about performance at much higher scale with a larger
overall problem size but a per-node problem size within the range considered.

Our experiments were conducted on NERSC Edison, a Cray XC30 super-
computer with two 12-core Intel R© Xeon R© E5-2695 processors per node with
the Aries interconnect in a Dragonfly topology. We used Intel 15.0.1.133 C/C++
compiler for all codes, except that Cray Compiler Environment (CCE) 8.4.0.219
was used for Cray UPC, and GCC 4.9.2 was used for Grappa. Berkeley UPC
compiler 2.20.2 was used with the same Intel C/C++ compiler. System library
versions were Cray MPT (MPI and SHMEM) 7.2.1, uGNI 6.0, and DMAPP
7.0.1. All MPIRMA transpose experiments enabled asynchronous progress; pas-
sive target RMA employed the DMAPP implementation8. While asynchronous
progress in MPI may introduce overheads, it is the natural way to use one-
sided communication and compares fairly to SHMEM and UPC, which make
asynchronous progress on this platform.

All implementations of the PRK are derived from the same original MPI1
source code, and are functionally as similar as feasible, except for scheduling
by the runtime, orchestration of communication, and data sharing. Although
the implementations were written in a portable way, we consider them of high
quality, since they were co-written and/or reviewed by the developers of the
8 The environment variables are MPICH RMA OVER DMAPP, MPICH MAX THREAD SAFETY,

and MPICH NEMESIS ASYNC PROGRESS.

328 R.F. Van der Wijngaart et al.

runtimes (Grappa, Charm++), or by the authors of this paper, who are experts
in the other runtimes. All kernels are compiled with the same optimization flag
(-O3). The use of Cray UPC and GCC C++ compilers (for Grappa) introduces
a discrepancy that cannot be reconciled. However, sample trials using Gnu and
Intel compilers for the same kernels show negligible performance differences,
so we posit that this discrepancy does not substantively alter our results or
conclusions with respect to Grappa.

Our methodology for presenting performance results is as follows. When a
kernel is expected to show good scalability, we show normalized performance, in
which absolute performance using P nodes is divided by P , as well as by the per-
formance of the MPI1 code using a single node. This is the method we used for
Stencil. When a kernel is expected to experience moderate to severe scalability
problems, we show absolute performance on a log (cores)-linear (performance)
scale, since this best depicts performance differences between the different mod-
els. This is the method we used for Synch p2p and Transpose. For all kernels
we report the maximum performance observed over a large number of experi-
ments. This is because at the time of our experiments NERSC Edison experi-
enced intermittent network issues, leading to a number of outliers that would
unfairly penalize models that happened to run at an unfavorable time. Selecting
the maximum over a large number of attempts produced the most consistent,
fairest data.

3.1 Stencil Implementation Details and Performance

For the Stencil kernel we employ a 2D domain decomposition, where each MPI
rank running on a processor core is assigned a tile within the overall grid that
it updates in each iteration, based on the values computed in the previous iter-
ations, as well as on values generated by logically nearest neighbor ranks. We
employ the same method in Charm++, except that we allow an overdecompo-
sition, which means that we divide the grid into more tiles–each assigned to a
chare–than the number of processor cores employed. This technique is often used
to provide overlap of computation and communication, since a core can work on
updating the tile associated with one of its chares while the comunication needed
for another of its chares is in progress. Overdecomposition could be applied in
MPI as well, in principle, but would require explicit management of multiple
tiles per rank, constituting a significant programming complication.

In all cases the tiles are chosen as close to square as possible to minimize their
surface to volume ratio, which in turn minimizes the communication volume. An
overdecomposition factor greater than 1 increases the number of tiles beyond the
required minimum value, and hence increases the communication volume.

MPI1. Within each iteration an MPI rank determines whether it has a topolog-
ical neighbor in each of four coordinate directions (+x, −x, +y, −y) and posts
asynchronous receive calls (MPI Irecv) for data from each of these neighbors.
Subsequently, it copies data from its grid boundaries into communication buffers

Comparing Runtime Systems 329

and posts asynchronous send calls (MPI Isend) to each of its neighbors. Finally,
it waits for all asynchronous communications belonging to the current iteration
to finish (MPI Wait) before copying the received data into ghost point locations
and updating its tile values. It should be noted that the primary purpose of
using asynchronous calls is to avoid deadlock. Since the load is fully balanced,
all ranks engage in communication at effectively the same time, and negligible
overlap of computation and communication occurs.

MPIOPENMP. We spawn one MPI rank per socket, and use OpenMP to
parallellize the performance-critical loop nest in the code among the 12 cores
(our experiments show that one MPI rank per node performs more poorly, due
to NUMA effects). MPI communications only take place outside the threaded
code regions. In a separate OpenMP-only experiment we determined that, for the
granularities involved in this problem, OpenMP’s fork-join overhead is negligible,
justifying the use of omp parallel for.

MPISHM. The MPISHM implementation uses a hybrid communication
method and a hierarchical domain decomposition. Ranks are grouped into a
shared memory domain (spanning one socket in the case of MPISHM12 and two
sockets for MPISHM24). As in the case of flat MPI, we use a two-dimensional
domain decomposition that minimizes the surface to volume ratio and that pro-
duces one tile per rank. The tiles in this decomposition are grouped into logical
rectangles (super-tiles), each of which is assigned to a group of ranks within the
same subcommunicator. See Fig. 1a.

(a) Stencil kernel (b) Synch p2p kernel

Fig. 1. Hierarchical domain decompositions for MPISHM

One rank per subcommunicator allocates shared memory to store the data
belonging to a super-tile. This memory includes ghost point values at the
perimeter of the super-tile for communication with other super-tiles only. There
is no explicit communication within a super-tile, only loads and stores, with
proper synchronization. We synchronize via empty messages exchanged between

330 R.F. Van der Wijngaart et al.

logically nearest neighbors within the super-tile. If neighboring tiles are not in the
same shared memory group, standard MPI1 communication is used to exchange
ghost point values. This happens on a peer-to-peer basis, in which individual
ranks at the boundary of their super-tile exchange messages with their topo-
logical neighbors in other super-tiles, unlike in the MPIOPENMP case, where
individual threads do not communicate.

MPIRMA. For MPIRMA, we replaced non-blocking Send-Recv pairs with
MPI Put and added MPI Win fence synchronization where required (same loca-
tion as calls to MPI Wait). We could have instead used PSCW as in Synch p2p, or
passive target RMA with atomic counter synchronization as the SHMEM imple-
mentation does. In the future, we will implement and compare these different
versions.

Charm++. The Charm++ implementation follows effectively the same strat-
egy as MPI1. Virtually the entire program executed by a chare is cast as a single
method invocation on the chare, comprising all iterations, including all commu-
nications with logically neighboring chares. Data is sent to neighbors asynchro-
nously using messages, a special kind of RMI, and is received in an SDAG when
construct. Such constructs are allowed to block until remote data has arrived.
In that case the runtime can switch to work on another chare, if available, and
execute its methods.

Grappa. The Grappa implementation also follows the MPI1 strategy, except
that a core responsible for providing ghost point values to its neighbors writes
those directly into those neighbors’ communication buffers, to be scattered into
actual ghost point locations by the receiving core. This bypasses the creation of
communication buffers on the sending side, but at the expense of many small
remote write operations (the runtime is capable of bundling these transparently,
in principle). A single FEB word per buffer is used for synchronization.

SHMEM. The SHMEM implementation also closely follows the MPI1 version.
We employ shmem putmem for communication. For synchronization we use shmem
atomic increments and shmem wait until until the required number of ghost
point updates has been received.

UPC. The UPC implementation also closely follows the MPI1 version. We cre-
ate shared ghost zones for each UPC thread. These are filled with neighbor
data via upc memget. Initial shared arrays are privatized for optimization. For
synchronization we use upc barrier. We refer to the Berkeley and Cray imple-
mentations of UPC as BUPC and CRAYUPC, respectively, in the text and
figures.

Comparing Runtime Systems 331

Performance of Stencil. In Fig. 2 we show the performance of all runtimes
for the stencil problem, divided by the peformance of single-node MPI1 and
the number of nodes used. The numerals on Charm++ (1, 4, 16) indicate the
overdecomposition factor. Those on MPISHM (12, 24) indicate the number of
cores in a shared memory group. The graph mostly separates performance of
implementations that rely on global barriers for synchronization and hence do
not scale well (MPIRMA, BUPC, CRAYUPC), and those that use only point
to point synchronization between nodes. Except for the highest core counts,
performance of the latter is dominated by bandwidth to memory, forcing most
of the performance curves together. Grappa has a lower absolute level because of
its numerous small direct remote memory accesses. Charm++ uses a somewhat
different problem size and hence a different data layout, which affects its absolute
level of performance. Its scalability is good, except for an overdecomposition
factor of 16, in which case runtime management and communication overhead
of the wide ghost zones (4 points on all sides of a grid tile) limit performance.

Fig. 2. Absolute performance of Stencil problem, divided by performance of single-node
MPI1 and number of nodes used. (Color figure online)

3.2 Synch p2p Implementation Details and Performance

The implementation of Synch p2p follows the same principles as that of Stencil.
Here the data dependencies dictate a 1D domain decomposition, where each rank
is responsible for a vertical slice of the grid, see Fig. 1b. As mentioned in Sect. 2.1,
the data dependency is resolved by updating values on only a single grid line
segment before communicating one word with the logically neighboring rank.
Implementation in MPI1 and Charm++ is obvious and will not be detailed.

332 R.F. Van der Wijngaart et al.

MPIOPENMP. This kernel has no data parallelism, and hence we cannot use
the simple fork-join mechanism of omp parallel for to parallelize the code
among the threads within a rank. Instead, we use the method employed, for
example, in the OpenMP version of the LU NPB, and documented in [9], for
point-to-point synchronization between threads. Because there is no fork-join
parallelism, the entire sweep over the grid is within a parallel OpenMP section
(omp parallel), and threads within different ranks are required to communicate
directly. A further complication is that the method for creating a dependence
between successive sweeps over the grid involves a communication between the
last thread on the last node, and the first thread on the first node. This neces-
sitates use of MPI THREAD MULTIPLE, which typically hurts performance.

Grappa. In Synch p2p all memory is private, except for a vector of ghost point
values containing for each core all the rightmost grid point values that were
produced by its predecessor in the pipelined solution process. These are FEB
words for efficient synchronization. Their values are stored remotely using the
async write method, which allows multiple individual writes to be combined
automatically by the runtime into a single message, thus reducing latency costs.
The programmer is responsible for setting an aggregation target for the runtime
when building the code. Our best results were obtained for a bundling factor of
64 words, displayed in Fig. 3. Larger values of the aggregation factor can reduce
latency more, but also increase pipeline fill time, so a non-trivial optimum usually
obtains, which is not the same for all numbers of cores. Our optimum value of
64 was chosen to give the best performance at the highest core count for which
we ran the Grappa version of the code.

MPISHM. The implementation of MPISHM is very similar to that of MPI1
and Grappa combined; communications between topologically neighboring ranks
on different nodes uses blocking Send-Recv. Data exchange between neighboring
ranks on the same node takes place via reads from the neighbor’s shared memory
window, supplemented with point-to-point synchronization via empty messages.

MPIRMA. The MPIRMA implementation of Synch p2p is identical in form to
MPI1, wherein Send-Recv pairs are replaced with the Post-Start-Complete-Wait
(PSCW) pattern (see Ref. [28] for details). Data is transferred with MPI Put. As
there is essentially no semantic difference between MPI1 and MPIRMA for this
kernel, we attribute any performance differences to implementation issues.

SHMEM. The SHMEM Synch p2p implementation features two synchroniza-
tion protocols, termed handshake and no handshake. The latter allows for
relaxed synchronization, established via one fine-grain semaphore per grid line
segment [35]. We only show results for this protocol, since it performs best.

Comparing Runtime Systems 333

UPC. The Synch p2p implementation has two variations. One is portable, using
a shared flag for communication between neighboring ranks. The other is more
optimized but non-portable, using extensions in the Berkeley UPC compiler [8].
That version, denoted by BUPCsem, utilizes semaphores for synchronization
within an iteration. However, both versions synchronize via a global barrier after
each iteration.

Fig. 3. Absolute performance of Synch p2p problem (Color figure online)

Performance of Synch p2p. Figure 3 shows performance of Synch p2p. The
results are dominated by two performance artifacts: efficiency with which run-
times can handle very frequent point-to-point synchronization, and the cost of
doing global synchronization after each iteration. MPIRMA and both versions
of UPC have barriers after each iteration, and clearly suffer the performance
consequences at higher core counts. MPI1, SHMEM, Grappa, and MPISHM all
function effectively the same, and their relative performances are close together
(Grappa’s scalability suffers beyond 64 nodes due to the current policy in the
aggregator: it uses atomic operations to poll for messages to aggregate between
cores in a node, which wastes significant inter-socket bandwidth at scale for prob-
lems with communications locality; new policies need to be added to serve sparse
problems like Synch p2p). The Charm++ runtime is designed for workloads that
require flexibility, resilience, and dynamic load balancing. The overhead of such
functionality results in higher latencies than for the other runtimes, and that
effect is exaggerated by Synch p2p. Finally, MPIOPENMP suffers from commu-
nication serialization within a rank due to the need for different threads within
a rank to be able to communicate safely.

334 R.F. Van der Wijngaart et al.

3.3 Transpose Implementation Details and Performance

Transpose requires all-to-all communication, wherein each processing element
scatters pieces of its matrix columns to all other processing elements.

MPI1. This global exchange could be accomplished using MPI Alltoall, but
since the tiles of B are not contiguous in memory, and also need to be trans-
posed locally, this would require a tripling of the memory footprint for matrix
B to fit message buffers. Instead, we perform the transpose on N ranks in N −1
communication phases. In each phase each ranks sends a different tile to a dif-
ferent recipient rank, using a conflict-free schedule that accomplishes a pairwise
exchange. Message buffers are reused in each phase, which keeps the memory
pressure small and improves locality. Local transposition of B tiles takes place
as matrix elements are read from B and placed in the contiguous send buffer.
Upon receipt of a tile, its data is scattered into the columns of A owned by the
receiving rank, but no more transposition is required.

Charm++. This implementation exactly follows MPI1’s.

MPIOPENMP and MPISHM. In the MPIOPENMP implementation we
parallelize the loops that transpose, pack, and unpack the tile values using
#pragma omp parallel for, but the MPI communications are carried out only
by the master thread.

The MPISHM implementation closely follows MPIOPENMP. All ranks inside
a node collaborate to transpose, pack, and unpack the tile values, and only a
single rank within each node carries out the communication. We could have
chosen to let all ranks participate in the communication, but then MPISHM
would be conceptually identical to MPI1. Instead, ranks within a node synchro-
nize before send and after receive so that a single rank can perform internode
communication.

Grappa. Grappa communicates at the granularity of block rows directly into
the destination matrix, so does not need a receive buffer, but issues many
small asynchronous communication requests for the transport of column seg-
ments within each matrix tile. Synchronization at the end of iterations is via
barriers.

UPC. The UPC implementation follows the MPI1 approach. However, tiles are
communicated directly into the private space of each thread using upc memget.
For synchronization we use upc barrier.

Performance of Transpose. Fig. 4 shows performance of the Transpose
kernel. At smaller core counts it constitutes a coarse-grain workload. The mes-
sage sizes decrease quadratically with the number of cores used; on 1536 cores,

Comparing Runtime Systems 335

Fig. 4. Absolute performance of Transpose problem (Color figure online)

these are 4.5 MiB for 1 communicating rank per node (CRPN), 1.25 MiB bytes
for 2 CRPN, and 8 KiB for the “flat” models (i.e. those with 24 CRPN), which
is in the bandwidth-limited regime of the network. At 12288 cores, the message
sizes associated with these models decrease to 72 KiB, 16 KiB, and 128 bytes,
respectively. While 1 and 2 CRPN still use large messages, the other cases have
become fine-grain. While Cray XC30 was designed to support fine-grain commu-
nication, it is still difficult to provide the same level of efficiency, and overheads
are noticeable. This fact alone explains the most obvious trend in the data: only
MPI+X models scale past 1536 cores. The figure shows data for MPISHM12
(2 CRPN, one on each socket), MPISHM24 (1 CRPN) and MPIOPENMP (2
CRPN for all cases except 12288, which used 1 CRPN). All the flat models taper
off. Of the flat models, SHMEM is clearly the best at scale, in addition to being
the best overall at 1536 cores and below. We attribute this to the low overhead of
the SHMEM interface and the excellent support for SHMEM one-sided seman-
tics in the Cray XC30 network. MPI1 is slightly worse than SHMEM, but follows
a similar trend. Cray and Berkeley UPC also share a trend and flatten around
1536, reaching performance similar to the other flat models at high core counts.
MPIRMA with flush synchronization, which is a similar semantic to the PGAS
models, performs roughly on par with Cray UPC. MPIRMA with fence synchro-
nization (collective) shows an anomaly at 12288 cores, which is hard to explain
without detailed information about Cray MPI (we do not have it). It is possible
that message aggregation permitted by the semantics of this synchronization
motif becomes active at 128 bytes. Charm++ is competitive up to 768 cores,
at which point it falls off and performs worst at scale, due to runtime overhead

336 R.F. Van der Wijngaart et al.

at fine granularities (cf. Synch p2p). We evaluated Charm++ with overdecom-
position, but it was no better than without, as expected, so we excluded the
former from the figure for brevity. The performance of Grappa is poor, because
its Transpose implementation is even finer grain than the other flat models.

4 Related Work

Cantonnet and coworkers evaluated UPC using NPB [3] and other benchmarks
in [10,16]. Berlin and coworkers considered Pthreads, OpenMP, MPI and UPC
using numerical (CG) and non-numerical (hash table update and integer sort)
workloads in [7]. Coarfa and coworkers compared MPI, UPC and Coarray For-
tran using the NPB in [11,12]. These papers considered the NPB MG, CG, SP
and BT. Because of the generation of the hardware employed in the experiments,
multicore effects were not considered. In [31], MPI and UPC were evaluated
from both a productivity and performance standpoint using the power method
on sparse matrices. Ref. [33] compares the HPCS languages (X10, Chapel and
Fortress) using a simple version of the Hartree-Fock method found in quantum
chemistry. In [13], the authors evaluate a wide range of programming models
on their maturity (including tool support) and suitability to their applications.
Performance experiments were not the focus of that paper. In [29], the authors
present comparative experiments with Cilk, Go, TBB, and Chapel. Of these,
only Chapel can run on clusters; however, in that study even on a single shared-
memory node, Chapel did not show good performance or scalability. MPI, UPC
and Coarray Fortran were compared in the context of the Cray Gemini intercon-
nect in [32] using NPB FT and microbenchmarks. Dun et al. evaluated Chapel
using a range of tests, from microbenchmarks to a molecular dynamics mini-
application [15]. In [25], the authors compare Serial, OpenMP, MPI and CUDA
against Chapel, Charm++, Liszt, and Loci when implementing LULESH. This
interesting work focuses solely on the parallel pattern of the explicit stencil
computation, which, while important, leaves out numerous patterns and appli-
cations. Moreover, at the cluster level, only weak-scaling results are presented,
which do not fully stress scalability. In [4] the authors compare MPI against
MPIOPENMP for an explicit stencil operation and use that as the motivation
to create an MPI+X programming model, where X consists of asynchronously
spawned tasks, based on overdecomposition of the computational domain. This
approach shows promise and has the advantage that it is only a small departure
from “classical” MPI1 style programming.

Our contribution differs from the above works in that each PRK focuses
on a single, parameterized application pattern, allowing us to separate per-
formance artifacts in different parts of an application. In addition, our work
is unique in terms of the combinaton of number of scalable runtimes consid-
ered, and the extensiveness of the multiple-kernel tests. Previous studies using
Synch p2p include [6,14], which proposed new features for OpenSHMEM and
MPI, respectively.

Comparing Runtime Systems 337

5 Conclusion and Future Work

We compared performance and scalability of eight programming models using
three important patterns from the PRK. While there was no clear winner, a
number of trends emerged. The incumbent models, MPI1 and SHMEM, per-
formed well in general, although with Transpose both suffered at scale compared
to MPISHM, which sends fewer and larger messages. SHMEM was better than
MPI1 for Transpose, but otherwise they were roughly the same. The critical role
of explicit aggregation of messages is clear from the Transpose results, with both
variants of MPI+X winning by a large margin at scale, which is attributed to
the message sizes. While MPIOPENMP is the easiest way for programmers to
achieve aggregation and to take advantage of low-latency synchronizations in
shared memory, we see evidence that MPISHM is the superior way to realize
it, both from the empirical results of Synch p2p and Transpose, and because of
the challenges of mixing different runtimes (MPI and OpenMP). The success of
SHMEM and MPI+X merits future investigation of SHMEM+X.

Both implementations of UPC delivered lower performance than the more
explicit MPI1 and SHMEM, and the standard-compliant UPC implementation of
Synch p2p suffered due to lack of support for this synchronization motif (partly
solved by a language extension). It may be possible to improve preformance by
eliminating barriers, but that is non-trivial, due to the lack of explicit support
for point-to-point synchronization in UPC (or other PGAS languages).

Charm++ performs best for Stencil at granularities for which it was designed,
but fared poorly in Synch p2p and Transpose. We do not observe much benefit
from overdecomposition; The simple and naturally load balanced PRK are not
well-suited to evaluate this feature. Grappa performed decently for the fine-
grain Sync p2p and medium-grain Stencil workloads, but scalability needs to
be improved by better and more flexible message aggregation. In our kernels
we found FEB most effective for synchronization through control variables, not
directly through primary solution values.

The scope of this paper was limited in the kernels and models considered. All
the kernels we used can be load balanced statically, which makes them amenable
to easy implementation in MPI and derivatives. Asynchronous, adaptive models
such as Charm++, Grappa, HPX (High Performance ParalleX) [22], and Legion
[5] cannot demonstrate their strength with such simple workloads. We are devel-
oping a new PRK [19] that defies static load balancing, to explore this design
space that is clearly less favorable for MPI and static PGAS models; the latter
provide only low-level primitives for building dynamic load-balancing capability.
None of the kernels we used tests fault tolerance, a feature that is today only pro-
vided by the Charm++ runtime, but that is gaining rapid importance. We are
working on an objective framework, using existing PRK, to measure effectiveness
and overhead of runtime error recovery mechanisms. We are also expanding our
PRK implementations to Legion and HPX, and will include performance and
scalability measurements of Fine-Grain MPI [24] in our next evaluation.

338 R.F. Van der Wijngaart et al.

�Other names and brands may be claimed as property of others.
Intel and Xeon are trademarks of Intel Corporation in the U.S. and/or other countries. Software
and workloads used in performance tests may have been optimized for performance only on Intel
microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific
computer systems, components, software, operations and functions. Any change to any of those
factors may cause the results to vary. You should consult other information and performance tests
to assist you in fully evaluating your contemplated purchases, including the performance of that
product when combined with other products. For more information go to http://www.intel.com/
performance.
We used NERSC, a DOE Office of Science User Facility, DE-AC02-05CH11231.

References

1. OpenSHMEM Specification. http://www.openshmem.org
2. Alverson, R., et al.: The Tera computer system. In: International Conference on

Supercomputing, pp. 1–6. ACM, New York, NY, USA (1990)
3. Bailey, D.H., et al.: The NAS parallel benchmarks. Int. J. High Perf. Comp. Appl.

5(3), 63–73 (1991)
4. Barrett, R.F., et al.: Toward an evolutionary task parallel integrated MPI+X pro-

gramming model. In: Proceedings of Sixth International Workshop on Program-
ming Models and Applications for Multicores and Manycores, pp. 30–39. ACM
(2015)

5. Bauer, M., Treichler, S., Slaughter, E., Aiken, A.: Legion: expressing locality and
independence with logical regions. In: Supercomputing, p. 66. IEEE Computer
Society Press (2012)

6. Belli, R., Hoefler, T.: Notified access: extending remote memory access pro-
gramming models for producer-consumer synchronization. In: IPDPS, Hyderabad,
India, May 2015

7. Berlin, K., et al.: Evaluating the impact of programming language features on the
performance of parallel applications on cluster architectures. In: Rauchwerger, L.
(ed.) LCPC 2003. LNCS, vol. 2958, pp. 194–208. Springer, Heidelberg (2004)

8. Bonachea, D., et al.: Efficient point-to-point synchronization in UPC. In: PGAS.
ACM (2006)

9. Bull, J.M., Ball, C.: Point-to-point synchronisation on shared memory architec-
tures. In: 5th European Workshop on OpenMP (2003)

10. Cantonnet, F., Yao, Y., Zahran, M., El-Ghazawi, T.: Productivity analysis of the
UPC language. In: IPDPS, p. 254. IEEE (2004)

11. Coarfa, C., Dotsenko, Y., Eckhardt, J., Mellor-Crummey, J.: Co-array Fortran
performance and potential: an NPB experimental study. In: Rauchwerger, L. (ed.)
LCPC 2003. LNCS, vol. 2958, pp. 177–193. Springer, Heidelberg (2004)

12. Coarfa, C., et al.: An evaluation of global address space languages: co-array fortran
and unified parallel C. In: PPoPP, pp. 36–47. ACM (2005)

13. Cook, R., Dube, E., Lee, I., Nau, L., Shereda, C., Wang, F.: Survey of novel
programming models for parallelizing applications at exascale. Technical report
LLNL-TR-515971, Lawrence Livermore National Laboratory (2011)

14. Dinan, J., Cole, C., Jost, G., Smith, S., Underwood, K., Wisniewski, R.W.: Reduc-
ing synchronization overhead through bundled communication. In: Poole, S., Her-
nandez, O., Shamis, P. (eds.) OpenSHMEM 2014. LNCS, vol. 8356, pp. 163–177.
Springer, Heidelberg (2014)

15. Dun, N., Taura, K.: An empirical performance study of Chapel programming lan-
guage. In: IPDPSW, pp. 497–506. IEEE (2012)

http://www.intel.com/performance
http://www.intel.com/performance
http://www.openshmem.org

Comparing Runtime Systems 339

16. El-Ghazawi, T., Cantonnet, F.: UPC performance, potential: a NPB experimental
study. In: Supercomputing, p. 17. IEEE (2002)

17. Feind, K.: Shared memory access (SHMEM) routines. In: CUG (1995)
18. Feo, J., et al.: Eldorado. In: Computing Frontiers, pp. 28–34. ACM (2005)
19. Georganas, E., Van der Wijngaart, R.F., Mattson, T.G.: Design and implementa-

tion of a parallel research kernel for assessing dynamic load-balancing capabilities.
In: Parallel and Distributed Processing, ser. IPDPS, vol. 16 (2016, to appear)

20. Heroux, M.A., Brightwell, R., Wolf, M.M.: Bi-modal MPI and MPI+threads com-
puting on scalable multicore systems (2011)

21. Hoefler, T., et al.: MPI + MPI: a new hybrid approach to parallel programming
with MPI plus shared memory. Computing 95(12), 1121–1136 (2013)

22. Kaiser, H., et al.: HPX: a task based programming model in a global address space.
In : PGAS, p. 6. ACM (2014)

23. Kale, L.V., Krishnan, S.: CHARM++: a portable concurrent object oriented sys-
tem based on C++, vol. 28. ACM (1993)

24. Kamal, H., Wagner, A.: FG-MPI: fine-grain MPI for multicore and clusters. In:
IEEE International Symposium on Parallel and Distributed Processing, Workshops
and Phd Forum (IPDPSW), pp. 1–8. IEEE (2010)

25. Karlin, I., et al.: Exploring traditional and emerging parallel programming models
using a proxy application. In: IPDPS, pp. 919–932. IEEE (2013)

26. MPI Forum: MPI: a message-passing interface standard (1994)
27. MPI Forum: MPI-2: Extensions to the message-passing interface (1996)
28. MPI Forum: MPI: a message-passing interface standard. Version 3.0, November

2012
29. Nanz, S., et al.: Benchmarking usability and performance of multicore languages.

In: International Symposium on Empirical Software Engineeringg. Measurement,
pp. 183–192. IEEE (2013)

30. Nelson, J., Holt, B., Myers, B., Briggs, P., Ceze, L., Kahan, S., Oskin, M.: Latency-
tolerant software distributed shared memory. In: 2015 USENIX Annual Technical
Conference (USENIX ATC 2015). USENIX Association, Santa Clara, CA, July
2015

31. Patel, I., Gilbert, J.R.: An empirical study of the performance and productivity of
two parallel programming models. In: IPDPS, pp. 1–7. IEEE (2008)

32. Shan, H., et al.: A preliminary evaluation of the hardware acceleration of the
Cray Gemini interconnect for PGAS languages and comparison with MPI. ACM
SIGMETRICS Perf. Eval. Rev. 40(2), 92–98 (2012)

33. Shet, A.G., et al.: Programmability of the HPCS languages: a case study with a
quantum chemistry kernel. In: IPDPS, pp. 1–8. IEEE (2008)

34. UPC Consortium: UPC lang. spec. v. 1.3, November 2013
35. Van der Wijngaart, R.F., et al.: Using the parallel research kernels to study PGAS

models. In: PGAS. IEEE (2015)
36. Van der Wijngaart, R.F., Mattson, T.G.: The parallel research kernels: a tool for

architecture and programming system investigation. In: HPEC. IEEE (2014)
37. Zerr, R., Baker, R.: Snap: Sn (discrete ordinates) application proxy: description.

Technical report, Los Alamos National Laboratories, LAUR-13-21070 (2013)

Intel Xeon Phi

High Order Seismic Simulations on the Intel
Xeon Phi Processor (Knights Landing)

Alexander Heinecke1(B), Alexander Breuer2,
Michael Bader3, and Pradeep Dubey1

1 Intel Corporation, 2200 Mission College Blvd., Santa Clara, CA 95054, USA
alexander.heinecke@intel.com

2 University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
3 Technische Universität München, Boltzmannstr. 3, 85748 Garching, Germany

Abstract. We present a holistic optimization of the ADER-DG finite
element software SeisSol targeting the Intel R© Xeon PhiTM x200 proces-
sor, codenamed Knights Landing (KNL). SeisSol is a multi-physics soft-
ware package performing earthquake simulations by coupling seismic
wave propagation and the rupture process. The code was shown to scale
beyond 1.5 million cores and achieved petascale performance when using
local time stepping for the computationally heavy seismic wave propa-
gation. Advancing further along these lines, we discuss the utilization of
KNL’s core features, the exploitation of its two-level memory subsystem
(which allows for efficient out-of-core implementations), and optimiza-
tions targeting at KNL’s 2D mesh on-die interconnect. Our performance
comparisons demonstrate that KNL is able to outperform its previous

generation, the Intel R© Xeon Phi
TM

coprocessor x100 family, by more
than 2.9× in time-to-solution. Additionally, our results show a 3.4×
speedup compared to latest Intel R© Xeon R© E5v3 CPUs.

Keywords: High-order · Vectorization · ADER · Discontinuous
Galerkin · Finite Element Method · Intel Xeon Phi · Knights landing ·
KNL

1 Introduction

The understanding of earthquake dynamics is greatly supported by highly
resolved, coupled simulations of the rupture process and seismic wave prop-

Optimization Notice: Software and workloads used in performance tests may have
been optimized for performance only on Intel microprocessors. Performance tests,
such as SYSmark and MobileMark, are measured using specific computer systems,
components, software, operations and functions. Any change to any of those factors
may cause the results to vary. You should consult other information and performance
tests to assist you in fully evaluating your contemplated purchases, including the per-
formance of that product when combined with other products. For more information
go to http://www.intel.com/performance.
Intel, Xeon, and Intel Xeon Phi are trademarks of Intel Corporation in the U.S.
and/or other countries.

c© Springer International Publishing Switzerland 2016
J.M. Kunkel et al. (Eds.): ISC High Performance 2016, LNCS 9697, pp. 343–362, 2016.
DOI: 10.1007/978-3-319-41321-1 18

http://www.intel.com/performance

344 A. Heinecke et al.

agation. Requirements in resolution are pushed by detailed discretizations of
complex geometric features, accurate representations of material heterogeneities
and the need for resolved, high frequencies. This grand challenge of seismic mod-
eling requires a large amount of computational resources. Optimal utilization by
software is imperative.

Therefore, in addition to challenges from a numerical perspective, software
packages that tackle this grand challenge, have to exploit the capabilities of
state-of-the-art supercomputing architectures. In the past, simulations of seis-
mic wave propagation used some of the largest supercomputers worldwide (e.g.
[2,3,7–9,16–18,21,28,29]). However, only very few of the performed landmark-
simulations coupled dynamic rupture propagation directly to seismic wave prop-
agation (e.g. [10,16]). Taking the total number of simulation environments in the
SCEC/USGS Spontaneous Rupture Code Verification Project [15] into account, a
gap between latest physics-driven developments and HPC capabilities is visible.
Reason is the required, high degree of algorithmic development, optimization
and testing required to exploit all levels of parallelism offered by state-of-the-art
supercomputing architectures [3].

The SeisSol software package1 is the topic of this paper and uses, among
other software (e.g. [1,27]), the Discontinuous Galerkin (DG)-Finite Element
Method (FEM) for spatial discretization. Together with the use of unstructured
tetrahedral meshes and the Arbitrary high-order DERivatives (ADER) scheme in
time, this allows for accurate discretization of fault systems, surface topography
and material heterogeneities [13,14,22].

In this paper, we present various improvements of the software package
SeisSol for the new Intel Knights Landing architecture (KNL). To maximize
application performance, equaling shortest time-to-solution, our optimizations
address KNL’s major enhancements over the current architecture, code-named
Knights Corner, by (a) efficiently using both 512-bit wide vector processing
units (VPU) per core, by (b) leveraging the low-bandwidth DDR4 memory and
the high-bandwidth in-package multi-channel DRAM (MCDRAM) by an out-
of-core application memory management, and finally by (c) balancing the on-die
interconnect mesh-traffic for optimal throughput. In addition to our hardware-
aware implementation, we demonstrate that advanced numerics and solvers are
required for reduced time-to-solution. Here, SeisSol’s computationally heavy
wave propagation component was recently enhanced by a high performance Local
Time Stepping (LTS) scheme to capture time step variations, commonly present
in unstructured tetrahedral meshes [6]. Although the irregularities introduced by
LTS normally contradict with the demands of modern and increasingly regular
hardware architectures, such as KNL, we will demonstrate that our implemen-
tation is capable of running LTS efficiently on many-core processors with wide
vector units.

1 https://github.com/SeisSol/SeisSol, git-tag 201511 was used in this paper.

https://github.com/SeisSol/SeisSol

High Order Seismic Simulations on the Intel Xeon Phi 345

2 The Knights Landing Architecture

The Intel Xeon Phi x200 processor family, based on the KNL architecture, is
the successor of the Intel Xeon Phi coprocessor introduced in 2012. It is fully
binary compatible with latest Intel Xeon processors code-named Haswell and
Broadwell, e.g. Xeon E5v3 and E5v4,2 and is the first chip that offers support
for the AVX512F, AVX512CD, AVX512PF and the AVX512ERI instruction set
extensions, which double the width of Intel Architecture’s (IA) vector comput-
ing capabilities. AVX512F and AVX512CD instructions will be also available
on future Intel Xeon processors and increase the number of programable 512-bit
wide vector-registers to 32. In contrast to the first generation Xeon Phi coproces-
sor, KNL is intended to be operated in self-booted fashion and has therefore no
need for a host processor. An overview of a KNL-based processor is depicted
in Fig. 1. The following descriptions are based on [25,26], which disclosed many
detailed architectural information of KNL.

Fig. 1. Architectural overview of KNL: schematic die layout including the 2D-mesh of
tiles and MCDRAM MC, DDR4 MC, IIO agents incl. a zoom into a tile.

KNL introduces many changes compared to KNC: up to 36 computing tiles
(housing two cores with a shared L2 cache), 2 DDR4–2400 memory controllers
(MC), 8 MCDRAM controllers (MCDRAM MC, accessing up to 16 GB in-
package high-bandwidth memory) and a PCIe rootport with 36 PCIe3 lanes.
All components are connected by a 2D mesh to ensure scalable communica-
tion within the die. Each DDR4 memory controller handles 3 channels with
one DIMM each, allowing for up to 384 GB of system memory at 90 GB/s. The
combined bandwidth of the eight high-bandwidth memory controllers exceeds
490 GB/s.

The computational heart of KNL is formed by an array of tiles. Each tile com-
prises two cores that share an 1 MB L2 cache and a Cache/Homing Agent (CHA).
The latter one holds parts of a distributed tag directory which is used to main-
tain coherency across all L2 caches of all tiles. The cores are based on the Intel R©

2 TSX instructions, however, are not considered to be legacy x86 instructions.

346 A. Heinecke et al.

Atom
TM

architecture code-named Silvermont [19], but offer many enhancements
for HPC workloads. The most important one is the tighly coupled floating point
unit (FPU) implemented by two 512-bit wide vector processing units (VPU),
which support the aforementioned AVX512 instruction set extensions. Addition-
ally, the cores feature larger L1 caches (32 KB each for data and instructions),
more aggressive out-of-order execution and optimized support for huge pages.
The core itself is two-issue-wide at instruction level (decode, retire) and supports
up to six concurrent micro operations (2 VPU-, 2 memory-, 2 integer-operations).
Thus, a single thread per core can utilize the full VPU-performance. The higher
execution width is needed to optimally load the machine, e.g. to handle bursts
after cache misses.

KNL’s mesh can be operated in three different cluster modes which are
selectable at boottime. As pointed out above, each tile holds a fraction of the
distributed tag directory. The goal of KNL’s cluster modes is to provide different
levels of affinity between the requesting tile, the tile which holds the correspond-
ing tag entry, and the memory controllers. In the so-called ALL2ALL mode no
affinities are enforced. This has the advantage that no explicit partitioning of
memory controllers is required. However, this mode has also higher latencies as
packages might travel through the entire chip. In QUADRANT mode the mesh is
divided into four logical quadrants and an affinity between the tag directory and
the memory controller is created by placing both in the same quadrant. Finally,
Sub-NUMA-Clustering (or SNC4) is an extended version of the QUADRANT
mode. Here, the four quadrants are exposed via NUMA domains to the OS such
that applications can optimize memory access latencies even further.

KNL’s memory subsystem is based on two different technologies. For capac-
ity a 6-channel DDR4 is provided. For performance an up-to 16 GB large high-
bandwidth in-package MCDRAM is provided. The MCDRAM can be used in
different modes. The directly-mapped CACHE mode backs up the DDR4 mem-
ory. For applications that stay local or have a memory consumption of less
than 16 GB, this is a simple solution to get nearly all benefits from the high-
bandwidth memory. Hence CACHE mode introduces an additional hierarchy,
MCDRAM cache-misses add latency to the corresponding accesses. The sec-
ond mode is the so-called FLAT mode. Here, the MCDRAM is exposed as an
additionally NUMA domain in the physical address space and the programmer
can explicitly request memory in this region by using close-to-metal libnuma or
Intel’s memkind3 library. Note that the default memory in this mode is DDR4,
such that the MCDRAM cannot get polluted by OS housekeeping. Finally, the
HYBRID mode is a mixture of the CACHE and FLAT mode.

3 Computational Core

SeisSol solves the elastic wave equations, a linear system of partial differential
equations with variable coefficients, in stress-velocity formulation:

qt + Ax1qx1 + Ax2qx2 + Ax3qx3 = 0. (1)
3 https://www.github.com/memkind/memkind.

https://www.github.com/memkind/memkind

High Order Seismic Simulations on the Intel Xeon Phi 347

q(x , t) = (σ11, σ22, σ33, σ12, σ13, σ23, u1, u2, u3)T is the space-time-dependent
vector of quantities containing the six-dimensional stress tensor and the par-
ticle velocities. The quantities q are functions of space x = (x1, x2, x3)T ∈ R

3

and time t ∈ R. Here, the three normal stress components are given by σ11,
σ22 and σ33, the three shear stresses by σ12, σ13 and σ23, and the three parti-
cle velocities in x1-, x2-, and x3-direction by u1, u2 and u3. The subscripts in
(1) denote partial derivatives with respect to t and x1, x2, x3. Axc(x) are the
three space-dependent Jacobian matrices (size 9 × 9) carrying the influence of
the heterogeneous material [14]. Extensions of (1) might include source terms,
viscoelasticity, anisotropy, or dynamic rupture physics [12,14,20,22,23].

We obtain the fully discrete formulation by applying the DG-machinery to
(1) for space discretization and the ADER scheme in time [14,20]. SeisSol uses
static, unstructured tetrahedral meshes. Let Qk (size BO × 9) summarizes the
per-element Degrees of Freedom (DOFs) for tetrahedral element k. The number
of orthogonal basis functions BO depends on the order of the overall scheme.
In this work we present results for convergence rates O ∈ {2, . . . , 6}, leading to
B2 = 4, B3 = 10, B4 = 20, B5 = 35 and B6 = 56 basis functions. To advance an
element k by its local time step, tnk+1

k = tnk

k + Δtk, we compute the solution of
SeisSol’s time kernel, volume kernel and surface kernel.

Time: The time kernel predicts the evolution of the element-local DOFs
within a time step. Following the Cauchy-Kowalewski procedure, we replace
time derivatives by space derivatives and obtain:

∂d+1

∂td+1
Qk(t0) = −

3∑

c=1

K̂ξc

(
∂d

∂td
Qk(t0)

)

Aξc
k . (2)

K̂ξc (size BO × BO) are the three unique stiffness matrices, multiplied by the
inverse, diagonal mass matrix in pre-processing. The stiffness matrices and the
mass matrix are defined with respect to a reference element and in terms of the
ξ1ξ2ξ3− reference coordinate system. The matrices Aξc

k (size 9 × 9) are linear
combinations of the Jacobians. We use the DOFs at the current time step tnk

k

as initial condition for the recursive procedure in (2): ∂0/∂t0Qk(t0) = Qnk

k . The
time derivatives Dk = ∂d/∂tdQk allow us to integrate the DOFs in time as
required by the volume and surface kernel:

Tk(t0, t̂, Δt) =
O−1∑

d=0

(
t̂ + Δt − t0

)d+1 − (
t̂ − t0

)d+1

(d + 1)!
· ∂d

∂td
Qk(t0). (3)

Integration of the DOFs via (3) is valid in arbitrary intervals [t̂, t̂+Δt] within the
stability limits imposed by the CFL-condition. This translates to the condition
tnk

k ≤ t̂ < t̂ + Δt ≤ tnk

k + Δtk, where our element-local time step Δtk satisfies
the CFL-requirements. Depending on an element’s LTS configuration, it stores
different, permanent time data for read-only access by face-neighboring elements.
Here, an element might store the derivatives Dk, or add the full time integrated
DOFs of the time step, T full

k = Tk(tnk

k , tnk

k ,Δtk), to a permanent buffer Bk, or
store both.

348 A. Heinecke et al.

Volume: The volume kernel uses T full
k and computes the net-effects of the

volume integration for an entire, element-local time step Δtk:

Vk(T full
k) =

3∑

c=1

K̃ξc
(T full

k

)
Aξc

k . (4)

K̃ξc (size BO × BO) are the three non-transposed stiffness matrices, multiplied
with the inverse mass matrix in pre-processing. Analogue to the time derivative
computation (2), Aξc

k are linear combinations of the Jacobians.
Surface: Our last kernel is the surface kernel, computing the surface integra-

tion of the fully discrete ADER-DG formulation. The surface kernel uses the time
integrated DOFs T full

k of tetrahedron k and the time integrated DOFs T part
ki

of
the four face-neighboring tetrahedrons ki. As discussed at the end of this section,
T part

ki
integrate face-neighboring derivatives Dki

via (3), or directly use the buffer
Bki

, containing one or multiple time integrated DOFs of the face-neighbor ki.
For a local face i ∈ {1, . . . , 4} of tetrahedron k, the kernel is given by:

Fk,i

(T full
k , T part

ki

)
= F̂−,i

(T full
k

)
Â−,i

k + F̂+,i,jk(i),hk(i)
(T part

ki

)
Â+,i

k . (5)

F̂−,i and F̂+,i,j,h with i, j ∈ {1, . . . , 4} and h ∈ {1, 2, 3} are the 52 unique flux
matrices (size BO ×BO), multiplied by the inverse mass matrix in preprocessing.
Here, the used indices jk and hk depend on the location of the elements’ vertices
in the reference element with respect to the shared face. As for the stiffness
matrices and the mass matrix, the flux matrices are defined with respect to the
unique reference element and thus shared among all elements. The matrices Â−,i

k

(size 9 × 9) account for the element’s own contribution to the numerical flux,
while Â+,i

k (size 9 × 9) carry the contribution of the neighboring elements.
Update: By combining the individual kernels, we obtain the following two-

step update scheme for an element-local time step tnk

k → tnk+1
k :

Q∗,nk+1
k = Qnk

k + Vk −
4∑

i=1

F̂−,i
(T full

k

)
Â−,i

k , (6)

Qnk+1
k = Q∗,nk+1

k −
4∑

i=1

F̂+,i,jk(i),hk(i) (Tki
) Â+,i

k . (7)

Equation (6) summarizes all element-local contribution to the time step, while
Eq. (7) accounts for the contribution of the face-neighboring elements.

Local Time Stepping: We use the Local Time Stepping (LTS) scheme intro-
duced in [6] to account for heterogeneities in the CFL-imposed time step restric-
tions. This scheme trades some of the ADER scheme’s flexibility, which in the-
ory is able to advance each element with its optimal time step, for increased
homogeneity. Here, we determine a fundamental time step equalling the global,
minimal allowed time step of all elements. Afterwards, we assign every element
to a cluster, such that it advances with an integer multiple of this fundamental

High Order Seismic Simulations on the Intel Xeon Phi 349

time step. Considering the minimal, fundamental time step as Δt, the clustering
reads as:

C1 = [Δt, r1Δt[, C2 = [r1Δt, r1r2Δt[, . . . , CL = [r1 . . . rL−1Δt, r1 . . . rLΔt[. (8)

With rates rl ∈ N>1, we choose our L clusters to cover the entire interval of
CFL-imposed time steps. In initialization all elements are assigned to their cor-
responding cluster. This work presents results for a clustering with fixed rates
of rl = 2 ∀l. Further, the LTS scheme of [6] limits cluster dependencies and
complex, worst-case memory handling by a normalization step, which lowers the
time step of corner-case elements. All elements of a cluster advance in time with
the cluster’s lower time step limit. Global Time Stepping (GTS) is a special
case of our LTS scheme with a single cluster having rate r1 = ∞. For GTS we
store, in addition to the DOFs, the time integrated DOFs T full

k , computed for
the element-local contributions in (6). These are then used in the update step
(7) by face-neighboring elements.

In contrast, elements being in LTS-relation with at least one of their face-
neighbors require a more complex handling. Here, an element might have to
sum and store consecutive time integrated DOFs, obtained via (3), over multiple
element-local time steps in a buffer Bk to feed face-neighboring elements with
larger time steps. Conversely, elements having face-neighbors with smaller time
steps store the time derivatives (Dk), obtained using (2), which can then be
evaluated by the face-neighbors in multiple evaluations of (7).

Summarizing, our LTS scheme is more challenging than GTS for the under-
lying hardware due to increased heterogeneity and memory requirements. In
[6] we present full-machine results for a petascale, production character run on
SuperMUC-2 (Haswell architecture). This run achieved 46 % of SuperMUC-2’s
HPL performance. Interpreting these results in terms of time-to-solution, rather
than machine utilization, shows the real value of the LTS scheme. In the case of
the rate-2, production character run, we reached a 4.1× speedup over GTS.

4 Implementation

The discussion of the underlying ADER-DG discretization in SeisSol made clear
that this algorithm is well suited for modern high-performance processors. The
introduced update scheme requires dense compute capabilities (element-local
operations in general) as well as high memory bandwidth for selected data struc-
tures (Bki

and eventually Dki
in the surface integral computation). In the up-

coming subsections we will address how hardware features such as SIMD units
and high-bandwidth memory can be leveraged to run high-order seismic simula-
tions at high efficiencies. We discuss the following (co-)processors (Turbo mode
being disabled):

HSX one Intel R© Xeon R© E5-2699v3 processor with 18 cores, 1.9 GHz at AVX-
base frequency and up to 2.6 GHz Turbo frequency, 64 GB of DDR4-2133

350 A. Heinecke et al.

KNC one Intel R© Xeon Phi
TM

7120A coprocessor in native mode with 61
cores, 1.24 GHz base and 1.33 GHz Turbo frequency, 16 GB of GDDR5, one
core reserved for OS
KNL an Intel R© Xeon Phi

TM
7250 processor with 68 cores, 1.2 GHz AVX-base

core-clock and 1.5 GHz all core Turbo frequency, 1.7 GHz mesh-clock, 16 GB
MCDRAM@7.2 GT, 96 GB DDR4-2400, FLAT/(CACHE or QUADRANT),
one core reserved for OS

4.1 Highly-Efficient Small Matrix Kernels

Small sparse and dense double precision matrix multiplication kernels form the
computational back-bone of SeisSol. Single precision is possible but suffers from
accuracy issues for higher orders [5], we therefore restrict ourselves to double
precision in this work. As pointed out in previous work [5,7,16], the best strategy
is to generate optimal code for these kernels. After an auto-tuning exercise, we
found out that a fully dense backend is the best choice on KNL. Note that
also on latest Intel Xeon processors (HSX) the sparse/dense tuning achieves
only between 12 % (order 2) and 1.5 % (order 6) improvement with respect to
time-to-solution. For the remainder of this section, we rely on regular BLAS
notation: C = αA · B + βC, C ∈ R

M×N , A ∈ R
M×K and B ∈ R

K×N . lda,
ldb and ldc define the length of the leading memory dimension of each matrix,
and therefore lda ≥ M , ldb ≥ K and ldc ≥ M . Since we only need the simple
cases of α = 1 and β ∈ {0, 1}, we do not discuss the efficient integration of
arbitrary α and β values into our kernels. A generalized version (N �= 9) of the
presented code generation approach is used in the back-end of the LIBXSMM
open source project4. This library is already used in other scientific applications
(e.g. CP2K [4] or Nek5000 [24]) which demand small matrix multiplications as
well.

As we have discussed the implementation of SeisSol’s kernels on older Intel
architectures in detail in [5], we only focus on KNL in this article. Since KNL
has 32 architectural registers available and we know that N = 9 holds always
true, we decided to work in all cases on all columns of B and C simultaneously.
A naive implementation might load 8 rows of column k of A into a register
and then perform 9 FMA instructions, which broadcast the kth row of all 9
columns of B on the fly. After having processed all columns of A and rows of
B, we would hold a 8 × 9 sub-matrix of C in 9 accumulator registers which
are stored back to all 9 columns of C. However, such a kernel would suffer
many instruction level dependencies which block efficient execution. An optimal
AVX512 implementation needs to consider therefore two points: (a) eliminating
dependencies by software pipelining to reduce pressure on micro-op level and (b)
ensuring smallest possible instructions to reduce pressure on the frontend.

The problem of (a) is twofold. First, the innermost kernel consists of 9 FMA
instructions which presumably run in throughput scenarios in 4.5 cycles as there
are 2 VPUs per out-of-order core with a latency of 6 cycles. This puts high

4 https://github.com/hfp/libxsmm.

https://github.com/hfp/libxsmm

High Order Seismic Simulations on the Intel Xeon Phi 351

pressure on the core as the same nine registers (e.g. zmm23-31) will be reused
in the next iteration of the microkernel. As a solution we introduce a second
temporary accumulator for C, zmm14-22, which is used in every other iteration.
This ensures that the same register is only reused after at least 9 cycles. Before
storing back to C we need to merge zmm23-31 and zmm14-23, however the over-
head in case of a larger K is minor. Second, we pipeline the loads of rows per
column k of A to get them as early as possible into the core’s pipeline. This is
easily doable as registers zmm0-13 are still unused: we implement a 6-register
ring-buffer of A column-vectors.

Fig. 2. Standalone matrix kernel performance running out of a hot L1 cache for HSX,
KNC and KNL. Left: kernel performance for BO×9×BO matrix multiplication shapes;
right: kernel performance for BO × 9 × 9 matrix multiplication shapes. (Color figure
online)

Issue (b), ensuring smallest possible instructions, is more problematic since
we cannot afford to re-structure our data as it is normally done for large
DGEMMs. We therefore have strided accesses (offset is ldb times 8), when read-
ing B in the FMA-fused broadcast. If the offset exceeds 128 bytes, the length
of the FMA instruction increases from 7 to 11 bytes which puts avoidable pres-
sure on the fetch and decoder units. However, the instruction size can be fixed
to 8 byte per FMA if the x86 SIB scale-index-base (SIB) addressing mode is
utilized. Since we have spare general purpose registers, we can express the 9
column streams of B by SIB with different base registers (to the first, fourth
and seventh column of B) and multiples ({1,2,4,8}) of ldb. Every 128th k we
need to increase these pointers by 128 to remain in the one-byte offset range. In
fact 128 elements in k-direction are possible as the AVX512 FMA instructions
use a special encoding for the memory offest: they scale the offset value by the
datatype size. For example, if the encoded offset is 55, then the offset used during
the memory access is 55 · 8 = 440 (assuming double precision numbers).

Figure 2 compares the performance for the most often used kernel operations
in SeisSol running single-threaded on HSX, KNC and KNL. HSX numbers are
taken from [5]. For both operator shapes (M×N×K), BO×9×BO and BO×9×9,
KNL clearly outperforms its previous generation (KNC). For BO ×9×BO nearly
HSX performance is achieved. The governing reason for the lower performance

352 A. Heinecke et al.

Table 1. Placements for all orders and the different data structures of SeisSol;
DDR4/MCDRAM denotes if a particular data structure is placed in DDR4/MCDRAM.

Order Qk Bk, Dk Aξc
k , Â−,i

k , Â+,i
k K̂ξc , K̃ξc , F̂−,i, F̂+,i,j,h

2 MCDRAM MCDRAM MCDRAM MCDRAM

3 MCDRAM MCDRAM MCDRAM MCDRAM

4 DDR4 MCDRAM MCDRAM MCDRAM

5 DDR4 MCDRAM DDR4 MCDRAM

6 DDR4 MCDRAM DDR4 MCDRAM

compared to HSX is KNL’s two-issue-wide pipeline: all instructions which are
not FMA instructions reduce the attainable FLOPS peak. Since these occur
relatively more often for the BO×9×9 operations, its performance is accordingly
lower on KNL than the performance of the BO × 9 × BO shapes.

4.2 Out-of-Core Time Kernel

SeisSol’s wave propagation solver is implemented by two macro-kernels: the reg-
ular time kernel fused with the element-local volume kernel and element-local
part of the surface kernel (6), and the contribution of the face-neighboring ele-
ments (7). In the case of high-order simulations the access frequency to Qk, Bk or
Dk and the element-local Aξc

k , Â−,i
k in the computation of the local contributions

is very low, as the data causing the majority of the compute (K̂ξc , K̃ξc , F̂−,i and
temporary buffers) can be cached in each tile. However, gathering the neighbor-
ing contributions, Bki

or Dki
, requires significantly more bandwidth than Â+,i

k for
higher orders as they are bigger but have the same access frequency. These access
patterns allow to overcome size limitations of the 16 GB MCDRAM by placing
the ’slow-running’ data structures in DDR4. Therefore, in FLAT mode and for
higher order runs, we store Bk and/or Dk of every element into MCDRAM on
the fly via the memkind library when computing them. As both memory types
are seamlessly integrated into the architecture, we simply change the place of
allocation, but not our macro-kernels. Thus pointers to Bk and/or Dk reference
memory physically stored in MCDRAM whereas Aξc

k , Â−,i
k , Â+,i

k , Qk reside in the
DDR4 portion of the address space for orders O = 5 and O = 6. Additionally,
we hold unique matrices, K̂ξc , K̃ξc , F̂−,i, F̂+,i,j,h, including the 48 flux matri-
ces required for neighboring elements’ contribution to the surface kernel (7), in
MCDRAM as well, as we expect local L2 cache evicts for higher orders. For
lower orders, two to four, the bandwidth requirements of SeisSol for the element
local matrices and Qk increase. We therefore allocate more data structures in
MCDRAM. In fact, for orders O = 2 and O = 3, all important data structures
are placed in MCDRAM. Table 1 summarizes the used placements, when running
on KNL in FLAT mode.

High Order Seismic Simulations on the Intel Xeon Phi 353

4.3 Optimizing the Mesh Traffic and Prefetching

KNL’s last level cache (LLC) is not a shared cache level as it is implemented by
a 2D mesh of up to 36 1 MB large slices of L2 caches, c.f. Sect. 2. These slices are
kept coherent by a distributed tag directory in each tile’s CHA. As we pointed
out in the last section, for higher orders than four, the 48 flux matrices F+,i,j,h

approach (500 KB for order five) or even exceed the size (1.5 MB for order O = 6)
of one tile’s L2 cache. This can negatively effect the performance of (7) for two
reasons: (a) especially for order O = 6 this results into a high rate of CHA-to-
CHA communication as the unstructured mesh causes unstructured accesses to
the flux matrices (b) the hardware prefetcher cannot pick-up the unstructured
accesses. Keeping the last section in mind, we know that we still have plenty
of MCDRAM bandwidth available in higher orders. Therefore, we place several
copies, one per two tiles, in MCDRAM. This ensures that the mesh traffic gets
equally distributed and the access latency may not be limited by one CHA in
the entire mesh holding the directory entries for one particular flux matrix.
Additionally, we are using modified matrix kernel operations in (7), which allow
for prefetching the flux matrix required for the next face-neighbor’s contribution
as well as the next Bki

or Dki
. For best performance these prefetches are widely

scattered throughout all eight matrix operations.
The effects of these tweaks are depicted in Fig. 3 when running a setup with

LOH.1 characteristics, c.f. Sect. 5, using order O = 6 in FLAT/QUADRANT
mode on KNL. The plot shows scaling curves for the local part (6), the neighbor
element’s contribution (using no optimization and all optimization discussed
above), and SeisSol’s overall scaling using the optimized neighboring contribution
(7). Its aforementioned performance tweaks roughly double the performance of
(7) and result in nearly perfect scaling. For all operations the biggest scaling
drop occurs when moving from one to two cores. The reason for this is the
shared L2 cache per tile which allows for reading one line per cycle and writing
a half line per cycle. This effects the performance of (7) more severe, since more
data (flux matrices, time integrated DOFs/time derivatives, flux solvers) are
read per element as in case of the element-local integrations. As for order O = 6
the local part (6) takes up roughly 70 % of SeisSol’s total runtime, the overall
scaling follows the scaling of the (6). The full solver’s performance is only slightly
affected by the lower performance of (7).

5 Scenarios

In this section we evaluate the performance of three different scenarios. The
first scenario, LOH.1, is a wave propagation benchmark, the second setting sim-
ulates seismic wave propagation in the volcano Mount Merapi, while the last
configuration is a multi-physics dynamic rupture simulation of the 1992 Landers
earthquake.

Our performance comparisons are carried out on a socket-to-socket basis for
two reasons: (a) the power per KNL-socket is only ≈50 % higher than for a
single-socket HSX and (b) Intel’s reference platforms for KNL and HSX pack 4
sockets of each into 2U of rack-space. Furthermore, in case of KNL the socket

354 A. Heinecke et al.

Fig. 3. Scaling of a setup with LOH.1 characteristics (c.f. Sect. 5) on KNL using global
time stepping. Shown is the separated performance of the element local contribution
(6) and the contribution of the face-neighboring elements (7) and the combined full
solver for order O = 6 (measured by a performance proxy application for single-node
SeisSol executions with errors of less than 1%). Additionally, we show the scaling of
the neighboring elements’ contribution to the surface kernel without our optimization
for KNL’s mesh and distributed LLC. (Color figure online)

power includes also MCDRAM power, therefore for a single-socket comparison
roughly the same amount of energy is spent in the actual CPU. Additionally,
SeisSol is known to run large-scale equivalents of the used Mount Merapi and
Landers setups well to more than 100,000 cores [6,7,16].

5.1 LOH.1

The Layer Over Half-space benchmark [11] consists of two different material
regions. The higher resolved layer is located at the flat surface and reaches
1 km deep into the computational domain. We use material parameters ρ =
2600 kg/m3, λ = 20.8GPa, and μ = 10.4GPa for the layer. The half-space covers
the remaining part of the computational domain. Here, we use material para-
meters ρ = 2700 kg/m3, λ = 32.4GPa, and μ = 32.4GPa. Figure 4 illustrates
the 386,518-element mesh of the LOH.1 benchmark. The faces of the tetrahedral
elements are aligned to the interface of the layer and the half-space, and are
aligned to the boundary of the computational domain.

Boundary conditions are free-surface for the top of the computational domain
(z = 0) and outflow everywhere else. We use a point dislocation at (0,0,2 km) as
seismic source.

The upper plot of Fig. 5 depicts the speed-up over global time stepping
(GTS), executed on HSX, with respect to time-to-solution for the LOH.1 sce-
nario. In terms of FLOPS, this translates into roughly 1.2 TFLOPS of raw per-
formance on KNL which is ≈4× more than on HSX. However, we have to keep
in mind, that we are using different sparse/dense switches for each operator
on HSX, KNC and KNL (see Sect. 4.1, [7]). Therefore, the only fair compari-
son is time-to-solution. In this measure, KNL achieves a speed-up of 2.1–3.4×
depending on the chosen order of convergence in global time stepping (GTS)
runs and baseline architecture (upper plot of Fig. 5). We pad Qk, Bk and Dk in
their respective data structures on a per-element basis. On HSX we pad to the
next 32-byte boundary and on KNL/KNC to the next 64-byte boundary and
store Aξc

k dense on KNL, therefore the lower speed-up for lower orders (two to

High Order Seismic Simulations on the Intel Xeon Phi 355

Fig. 4. Illustration of the Layer Over Half-space (LOH.1) setup. Shown is the domain
Ω = [−15 km, 15 km]2×[0, 17 km]. The upper part of the domain is covered by the 1Km
thick layer (dark gray) and the remainder by the half-space (gray). The structure of
the mesh is illustrated by removing the elements in [0, 15 km]2 × [0, 10 km].

four) is expected. Here, the execution is memory bandwidth bound. In the case of
O = 2, KNL/KNC have to move roughly twice as much data as HSX. How heav-
ily these low orders are bandwidth bound can also be seen from the ≈3× faster
computations resulting from execution out of MCDRAM. For higher orders the
MCDRAM-benefit is measurable, but much smaller. It is worthwhile noting that
the LOH.1 benchmark fits into MCDRAM for every order. At order 6 all data
structures consume ≈6 GB. Therefore it does not matter if the MCDRAM is
used in the explicit FLAT or the implicit CACHE mode. When enabling rate-2
local time stepping (LTS) in SeisSol, a theoretical speed-up of 2.8× over GTS
can be achieved. For higher orders HSX can achieve close to 95 % of this value
and KNL can reproduce 95 % of HSX’s LTS speed-up. The slightly lower speed-
up is due to the cluster sizes and their distribution: the first and most often
updated cluster contains less than 0.5 % of all elements whose calculations have
to be parallelized across 67 cores on KNL instead of 18 on HSX. Nevertheless,
when comparing to the HSX GTS baseline, KNL is able to execute the LOH.1
benchmark up to 7.7× faster.

5.2 Mount Merapi

Our second setting simulates seismic wave propagation in the volcano Mount
Merapi. Except for the smaller mesh, now having 1,548,496 tetrahedral elements,
this setting is identical to the one used in [6,7]. The origin (0, 0, 0) of our setup
is located at mean sea level below Mount Merapi’s peak. For elements inside the

356 A. Heinecke et al.

Fig. 5. Normalized time-to-solution speed-up in the LOH.1 scenario for HSX, KNC
and KNL and orders 2–6. Upper plot: global time stepping, Lower plot: rate-2 local
time stepping.

Fig. 6. Three LTS clusters of the Merapi configuration. Shown are, from left to right:
C2 = [2Δt, 4Δt[, C3 = [4Δt, 8Δt[, C4 = [8Δt, 16Δt[.

High Order Seismic Simulations on the Intel Xeon Phi 357

Fig. 7. Normalized time-to-solution speed-up in the Mount Merapi scenario for orders
2–6 and (co)processors HSX, KNC and KNL over HSX global time stepping. Upper
plot: global time stepping, lower plot: rate-2 local time stepping.

volcano, being in the sphere with radius 5.1 km and center (4 km, 0, 0), we use the
material settings ρ = 2400 kg/m3, λ ≈ 3.3GPa and μ ≈ 4.7GPa. All remaining
elements have paramters ρ = 2000 kg/m3, λ ≈ 2.3GPa and μ ≈ 2.4GPa. Two
different characteristic lengths for element sizes are used inside and outside the
volcano.

Figure 6 illustrates three different clusters for rate-2 clustering (rl = 2 ∀l in
(8)). From the left to the right, we see the elements of clusters C2 = [2Δt, 4Δt[,
C3 = [4Δt, 8Δt[and C4 = [8Δt, 16Δt[. The colors of the elements correspond to
the element-local CFL-imposed time step. Boundary conditions are free-surface
at the surface and outflow everywhere else. The faces of our tetrahedral elements
are aligned to the surface topography, the material contrast and the spherical
shape of the outflow boundary. We use a double-couple point source approxima-
tion at (0, 0, 0) as seismic source in the Mount Merapi setup.

358 A. Heinecke et al.

Compared to the LOH.1 setup, the larger mesh allows us to analyze our
out-of-core implementation in more detail. Figure 7 depicts the time-to-solution
when executing the Mount Merapi scenario, here rate-2 LTS can gain 4× in
theory with respect to time-to-solution. The increased mesh size is reflected
by KNC’s performance results: due to lack of memory we can not execute the
simulation for orders larger than two. In contrast, on KNL this limitation is
no longer present. As the Merapi scenario achieves LOH.1-comparable speed-
ups over HSX in FLAT, our out-of-core implementation is not limited by KNL’s
DDR4 bandwidth, e.g. for order O = 6 the total consumed memory is 25 GB with
7.3 GB used in MCDRAM. For LTS the total memory consumption increases
to 30 GB and 11 GB of used MCDRAM. While in GTS every element k only
stores a buffer Bk for read-only access by face neighbors, an element k in LTS
configurations might have to store buffers Bk, or derivatives Dk, or both Bk and
Dk. Even the software-transparent CACHE mode of the MCDRAM helps a lot
compared to a pure DDR4 execution as its performance is always within 10 % of
the manually optimized FLAT mode implementation. As a bottom line we can
conclude that KNL can execute the Mount Merapi scenario up to 12.1× faster
than the HSX GTS baseline.

5.3 1992 Landers

The 1992 Landers setup is similar to the large-scale, production configuration
of [16]. However, in this work we only use a total of 466,574 tetrahedrons to
discretize the spatial domain. A higher mesh resolution is used to represent the
geometry of the fault system and the topography. We solve dynamic rupture
physics for faces aligned to the fault system, depicted in Fig. 8. Effectively, we
replace our Riemann solver, used in the surface kernel of Sect. 3, with a for-
mulation explicitly enforcing a Godunov state, which satisfies a certain friction
law [22]. Boundary conditions are free-surface at the surface and outflow every-
where else.

Material parameters in the domain are discretized using a one-dimensional,
layered velocity profile. This velocity profile leads to gradually increasing wave
speeds with increasing depth. The 1992 Landers setup uses global time stepping
and orders 2–6 for the seismic wave propagation component. For the dynamic
rupture computations a single quadrature point in time and multiple quadra-
ture points in space are used [16]. Note that our computational core supports
dynamic rupture physics only in GTS execution. While our considerations for the
LTS wave propagation component in [6] directly translate to dynamic rupture
elements, extensive benchmarking is required to validate local time stepping in
dynamic rupture workloads. Here, one can either decide to follow the LTS app-
roach of the scheme in [6] directly and perform a minimal impact normalization
only. Other options could enforce neighboring dynamic rupture elements to have
the same time step or enforce a shared, minimal time step for all elements with
dynamic rupture faces. As in case of the LOH.1 scenario, all data structures
would easily fit into MCDRAM any time as the total memory consumption at
order 6 is 7.1 GB.

High Order Seismic Simulations on the Intel Xeon Phi 359

Fig. 8. Wave field of the 1992 Landers scenario after 12.5 s of simulated time. Shown
is the fault system with a subsection of the unstructured tetrahedral mesh.

The GTS performance of the 1992 Landers setup is provided in Fig. 9. As
this is a multi-physics scenario, we expect slightly lower performance than for
the earlier pure wave propagation runs on a many-core processor. This is due
to the fact that the dynamic rupture portion of the solver requires high scalar
performance. Here, KNL’s increased single-thread performance becomes visible.
KNL reassembles more than 92 % of the pure wave propagation speed-up over
HSX whereas the previous generation KNC chip is only able to attain 83 %. This
results into a relative performance which is comparable to HSX. KNL’s time-
to-solution speed-up for executing the 1992 Landers earthquake simulations is
2.5–2.9× depending on the chosen order.

6 Conclusion

In this article, we presented a holistic optimization of SeisSol, a multi-physics
simulation package for seismic simulations, which tightly couples seismic wave
propagation, and dynamic rupture processes. First, we presented a deep-dive
into KNL’s architectural features and their challenges and opportunities for
high-performance software. After a brief recapitulation of SeisSol’s mathemati-
cal background, we discussed in detail how to exploit KNL’s two VPUs per core
efficiently and to leverage both memory subsystems for a novel out-of-core imple-
mentation in SeisSol’s high-order wave propagation solver. The KNL-optimized
implementation was evaluated for three different scenarios with distinct chal-
lenges and sizes. In case of global time stepping runs, KNL was able to out-
perform its predecessor, KNC, by 2.9× and the current most powerful Intel

360 A. Heinecke et al.

Fig. 9. Normalized time-to-solution speed-up over HSX for KNC and KNL and orders
2–6 when simulating the 1992 Landers scenario using global time stepping.

Xeon processor, E5v3, by more than 3.4×. Even more important, in contrast to
KNC, KNL can maintain its speed-up over the E5v3 also when boosting time-to-
solution via local time stepping, resulting into a more than 12.1× speed-up when
comparing against global time stepping runtimes on Intel Xeon E5v3. Up to 3.1×
faster execution on KNL is possible when taking local time stepping runtimes
as a baseline. In summary, our results have demonstrate that for best time-to-
solution we must not only rely on performance engineering (increasing achieved
FLOPS) but also investments in algorithmic design achieving best asymptotic
complexity (increasing the ratio of science/FLOP).

References

1. Benjemaa, M., et al.: 3-D dynamic rupture simulations by a finite volume method.
Geophys. J. Int. 178, 541–560 (2009)

2. Bielak, J., et al.: Parallel octree-based finite element method for large-scale earth-
quake ground motion simulation. Comput. Model. Eng. Sci. 10(2), 99 (2005)

3. Bielak, J., et al.: The shakeout earthquake scenario: verification of three simulation
sets. Geophys. J. Int. 180(1), 375–404 (2010)

4. Borstnik, U., et al.: Sparse matrix multiplication: the distributed block-compressed
sparse row library. Parallel Comput. 40(5–6), 47–58 (2014)

5. Breuer, A., et al.: High-order ADER-DG minimizes energy- and time-to-solution
of SeisSol. In: Kunkel, J.M., Ludwig, T. (eds.) ISC High Performance 2015. LNCS,
vol. 9137, pp. 340–357. Springer, Heidelberg (2015)

6. Breuer, A., et al.: Petascale local time stepping for the ADER-DG finite element
method. In: Proceedings of IPDPS 2016 (2016). To appear

High Order Seismic Simulations on the Intel Xeon Phi 361

7. Breuer, A., et al.: Sustained petascale performance of seismic simulations with
SeisSol on SuperMUC. In: Kunkel, J.M., Ludwig, T., Meuer, H.W. (eds.) ISC
2014. LNCS, vol. 8488, pp. 1–18. Springer, Heidelberg (2014)

8. Carrington, L., et al.: High-frequency simulations of global seismic wave propaga-
tion using SPECFEM3D GLOBE on 62K processors. In: Proceedings of SC 2008
(2008)

9. Cui, Y., et al.: Physics-based seismic hazard analysis on petascale heterogeneous
supercomputers. In: Proceedings of SC 2013 (2013)

10. Cui, Y., et al.: Scalable earthquake simulation on petascale supercomputers. In:
Proceedings of SC 2010 (2010)

11. Day, S.M., et al.: Tests of 3D elastodynamic codes: final report for lifelines project
1A02. Pacific Earthquake Engineering Research Center (2003)

12. de la Puente, J., et al.: An arbitrary high-order discontinuous galerkin method
for elastic waves on unstructured meshes-IV. Anisotropy. Geophys. J. Int. 169(3),
1210–1228 (2007)

13. de la Puente, L., et al.: Dynamic rupture modeling on unstructured meshes using
a discontinuous Galerkin method. J. Geophys. Res. 114, B10302 (2009)

14. Dumbser, M., et al.: An arbitrary high-order discontinuous Galerkin method for
elastic waves on unstructured meshes-II. The three-dimensional isotropic case. Geo-
phys. J. Int. 167(1), 319–336 (2006)

15. Harris, R.A., et al.: The SCEC/USGS dynamic earthquake rupture code verifica-
tion exercise. Seismol. Res. Lett. 80(1), 119–126 (2009)

16. Heinecke, A., et al.: Petascale high order dynamic rupture earthquake simulations
on heterogeneous supercomputers. In: Proceedings of SC 2014. Gordon Bell Finalist
(2014)

17. Ichimura, T., et al.: Implicit nonlinear wave simulation with 1.08 T DOF and 0.270
T unstructured finite elements to enhance comprehensive earthquake simulation.
In: Proceedings of SC 2015 (2015)

18. Ichimura, I., et al.: Physics-based urban earthquake simulation enhanced by 10.7
BLNDOF × 30 K time-step unstructured fe non-linear seismic wave simulation. In:
Proceedings of SC 2014 (2014)

19. Intel Corporation: Intel(R) 64 and IA-32 Architectures Optimization Reference
Manual, January 2016

20. Käser, M., et al.: An arbitrary high-order discontinuous Galerkin method for elas-
tic waves on unstructured meshes-III. Viscoelastic attenuation. Geophys. J. Int.
168(1), 224–242 (2007)

21. Komatitsch, D., et al.: High-order finite-element seismic wave propagation mod-
eling with MPI on a large GPU cluster. J. Comput. Phys. 229(20), 7692–7714
(2010)

22. Pelties, C., et al.: Three-dimensional dynamic rupture simulation with a high-order
discontinuous Galerkin method on unstructured tetrahedral meshes. J. Geophys.
Res. 117, B02309 (2012)

23. Pelties, C., et al.: Verification of an ADER-DG method for complex dynamic rup-
ture problems. Geosci. Model Dev. Discuss. 6, 5981–6034 (2013)

24. Shin, J., et al.: Speeding up Nek5000 with autotuning and specialization. In:
Proceedings of the 24th ACM International Conference on Supercomputing (ICS
2010), pp. 253–262. ACM, New York (2010)

25. Sodani, A.: Knights Landing (KNL): 2nd generation Intel(R) Xeon Phi(TM)
processor. In: Hotchips-2015 (2015)

26. Sodani, A., et al.: Knights Landing (KNL): 2nd generation Intel(R) Xeon Phi(TM)
processor. IEEE Micro, Hot Chips Special Issue, (2016, to appear)

362 A. Heinecke et al.

27. Tago, J., et al.: A 3D hp-adaptive discontinuous Galerkin method for modeling
earthquake dynamics. J. Geophys. Res. 117, B09312 (2012)

28. Tu, T., et al.: From mesh generation to scientific visualization: an end-to-end app-
roach to parallel supercomputing. In: Proceedings of SC 2006 (2006)

29. Wilcox, L.C., et al.: A high-order discontinuous Galerkin method for wave propaga-
tion through coupled elastic-acoustic media. J. Comput. Phys. 229(24), 9373–9396
(2010)

Leveraging a Cluster-Booster Architecture
for Brain-Scale Simulations

Pramod Kumbhar1(B), Michael Hines2, Aleksandr Ovcharenko1,
Damian A. Mallon3, James King1, Florentino Sainz4, Felix Schürmann1,

and Fabien Delalondre1

1 Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL),
Lausanne, Switzerland

pramod.kumbhar@epfl.ch
2 Yale University, New Haven, USA

3 Juelich Supercomputing Center, Jülich, Germany
4 Barcelona Supercomputing Center, Barcelona, Spain

Abstract. The European Dynamical Exascale Entry Platform (DEEP)
is an example of a new type of heterogeneous supercomputing architec-
ture that include both a standard multicore-based “Cluster” used to run
less scalable parts of an application, and an Intel MIC-based “Booster”
used to run highly scalable compute kernels. In this paper we describe
how the compute engine of the widely used NEURON scientific applica-
tion has been ported on both the DEEP and the Intel MIC platform.
We discuss the design and implementation of the core simulator with an
emphasis on the development workflow and implementation details that
enable the efficient use of the new “Cluster-Booster” type of architec-
tures. We describe optimizations of the data structures and algorithms
tailored to the Intel Xeon Phi coprocessor which contributed to improve
the overall performance of NEURON by a factor 5. Validation of our
implementation has first been done on STAMPEDE supercomputer in
order to emulate the DEEP architecture performance. Building on these
results, we then explored opportunities offered by the DEEP platform
to efficiently support complex scientific workflow.

Keywords: DEEP · NEURON · Intel MIC · Neuronal network
simulations · Performance analysis and optimization

1 Introduction

Current efforts toward Exascale systems show that the architecture trend has
changed considerably in comparison with Terascale to Petascale transition.
Designing “bigger and faster” processors by increasing clock speed is not possible
anymore due to the limitation of CMOS scaling [1]. To overcome this limitation,
we observe increasing efforts to build new architectures that combine both spe-
cialized low-power consumption accelerators and general purpose CPUs. As an
example, the CORAL collaboration [2] plans to build hybrid systems by com-
bining CPUs with accelerators like NVIDIA GPUs and Intel MIC. An emerging
c© Springer International Publishing Switzerland 2016
J.M. Kunkel et al. (Eds.): ISC High Performance 2016, LNCS 9697, pp. 363–380, 2016.
DOI: 10.1007/978-3-319-41321-1 19

364 P. Kumbhar et al.

consensus in the HPC community seems to indicate that a major refactoring
of large-scale scientific applications will be needed to fully exploit the massive
amount of parallelism offered by these new systems. As such a large refactoring
may require considerable man-power resource, it seems critical to investigate
alternative ways that can offer both performance and productivity for most of
the scientific applications. Though typical HPC applications use cases are better
described by Gustafson’s law [3], there are several caveats that can possibly limit
the scalability of parallel applications on future massively parallel systems. As
such, a large part of the HPC applications running on to-date Petascale systems
can be broadly categorized into two classes [4]:

– Limited number of applications with highly scalable code parts and regular
communication patterns;

– Large number of applications with complex workflows and limited scalability.

Even though the second class of applications is traditionally harder to scale, it
usually also offers optimization opportunities for a reduced set of kernels well
represented by Amdahl’s law. As such, these applications show more than one
level of concurrency: highly scalable kernels with O(N) concurrency and other
kernels with only O(K) concurrency (1 ≤ K � N , where N is large number of
cores). To overcome the performance and scaling challenges of these applications
at Exascale and provide opportunities to also maintain scientific productivity, the
European Dynamical Exascale Entry Platform (DEEP) project [5] is exploring
a new type of supercomputing architecture consisting of an x86-based “Cluster”
with Infiniband interconnect to run complex, less scalable code parts and an Intel
MIC based “Booster” with EXTOLL network to run highly scalable compute
kernels.

The Blue Brain Project (BBP) [6] at École Polytechnique Fédérale de Lau-
sanne focuses on the systematic integration of the heterogeneous neuroscience
data into a unifying model for simulation-based research. As part of this research
effort, a comprehensive modeling software platform which support the build-
ing, simulation, analysis and visualisation of the models is being developed to
facilitate neuroscience research. One of the main software component of this
platform is the NEURON [7] simulator which is widely used by neuroscientists
to model the electrical activity of large neuronal networks whose cable proper-
ties play an important role. As part of the co-design efforts carried out during
the development of the DEEP platform, we have been porting and improving
the performance of morphologically detailed, multi-compartment neuronal model
simulation carried out by the BBP.

This paper is then organized as follows: In the second section, the DEEP plat-
form as well as it programming models are first introduced. The third section
presents our efforts in porting NEURON application on both Intel MIC and
DEEP systems with an emphasise on non-traditional offload workflow. Perfor-
mance optimisation of the application tailored to the DEEP/Intel MIC systems
are then presented in Sect. 4 before its performance analysis using both timers
and performance counters is described.

Leveraging a Cluster-Booster Architecture for Brain-Scale Simulations 365

2 DEEP Platform

The DEEP platform consists of a hardware as well as a software stack includ-
ing programming environment, libraries and performance analysis tools. The
high level of the system architecture and parallel programming environment is
described below.

2.1 Hardware

The simplified architecture of the DEEP system shown in Fig. 1 is based on
the duality of the multi-core Cluster system complemented by the Booster of
Intel MIC coprocessors. The cluster consists of 128 compute nodes, each with two
eight-core Intel Xeon E5 CPUs, arranged in fat tree topology with the InfiniBand
interconnect. The Booster part consists of 384 Xeon Phi coprocessors arranged
in 3D torus topology with the EXTOLL network [8]. In addition to the MIC, the
Booster carries Booster Interface (BI) cards with the Intel Core i7 CPU which
provides management functionality to Booster nodes as well as high bandwidth,
low latency bridging functionality between Cluster and Booster. Unlike current
clusters with Xeon Phi coprocessors, the Booster nodes are capable of running
autonomously with the BI.

xeon

xeon

xeon

xeon

xeon

xeon

xeon

xeon

MIC

MIC

MIC

MIC

MIC

MIC

MIC

MIC

MIC

MIC

MIC

MIC

BI

BI

BI

BI

Cluster Booster

Fig. 1. The DEEP architecture shows the Intel Xeon Cluster with InfiniBand network
on the left and the Booster of Xeon Phi coprocessors connected by the EXTOLL
network on the right.

2.2 Software Stack and Programming Models

Parallel programming models are evolving slowly compared to hardware plat-
forms and that presents a major challenge to developing applications with
portable performance on heterogeneous HPC systems. In order to ease the appli-
cation development, the DEEP software stack provides a runtime system and
parallel programming models (based on MPI and OpenMP). When running

366 P. Kumbhar et al.

on the DEEP system, applications need to offload and communicate between
processes on the Cluster as well as the Booster nodes. The OmpSs [9] data-
flow programming model developed by the Barcelona Supercomputing Center
has been extended to support asynchronicity, heterogeneity and data move-
ment between the Cluster and the Booster. Applications using Message Passing
Interface (MPI) can use the dynamic process management interface, namely
MPI Comm spawn, to offload kernels. To facilitate this, the MPI-3 compliant
ParaStation MPI library has been extended and optimized on the architecture.
This way, ParaStationMPI can work simultaneously over InfiniBand, EXTOLL,
and bridges both fabrics with a custom developed protocol that guarantees low
latency and high bandwidth. The DEEP hardware and software stacks have
been discussed in more detail in [4]. Using this software stack six real-world
HPC applications from different scientific areas are being ported as part of the
co-design process, more information can be found in [8].

3 Porting NEURON’s Core Engine

NEURON is a simulation environment developed over the last thirty years for
modeling networks of neurons with complex branched anatomy including extra-
cellular potential near membranes and biophysical properties such as multiple
channel types, inhomogeneous channel distribution and ionic accumulation. It is
also capable of handling diffusion-reaction models and integrating diffusion func-
tions into models of synapses and cellular networks. Morphologically detailed
models simulated using NEURON are able to represent the spatial diversity of
electrical and biophysical properties of a neuron cell. Such models typically rely
on the coupling of a set of partial differential equations modeling each branch
of the dendritic tree via suitable boundary conditions at the branching points.
Models of individual neurons are subdivided into individual compartments by
the simulator via the tree of connected sections. Each section is the unbranched
part of the cell with possibly inhomogeneous biophysical properties. The electri-
cal behavior of each section is described by the cable Eq. 1.

cm
∂v

∂t
=

104

4d(x)Ra

∂

∂x

(

d(x)2
∂v

∂x

)

− Iion + Isyn, (1)

where the unknown v[mV] represents the membrane potential, cm[µF
cm2] is the

membrane capacitance, Ra[Ωcm] is the section’s axial resistivity (a constant),
d(x)[μm]is the diameter of the cross section as a function of the axial coordinate,
Iion [mA

cm2] is the current generated as a result of the flow of ions through the
membrane via ion channels and ion pumps and Isyn [mA

cm2] is the current generated
as a result of the flow of ions through the membrane as a consequence of a
synaptic event. More detailed information about the simulator algorithm and its
implementation can be found in [10].

The NEURON simulator is developed with a mixture of compiled (C, C++),
interpreted (Python, HOC) and domain specific (NMODL) languages which

Leveraging a Cluster-Booster Architecture for Brain-Scale Simulations 367

helps building a flexible simulation framework. But porting the simulator to
accelerators is a challenging task due to the following reasons:

– large codebase with complex application workflow;
– simulation environment allowing user to build and simulate models;
– complex data structures for offload programming models;
– hundreds of small compute kernels without a single hotspot.

In this section we describe efforts to refactor the core engine of the NEURON
simulator and how we map it to the DEEP platform.

3.1 Extracting Core Engine of NEURON

The rat somatosensory cortex model currently investigated by computational
neuroscientists of the BBP comprises approximately 217k neurons, with roughly
400 compartments and 3,500 synapses per neuron, and 3 to 5 channels per com-
partment. The BBP intends to use NEURON simulator to simulate very large
models such as the rat and the human brain. A key issue to simulate network
models with millions of cells is numerical efficiency and scalability, particularly
with the use of the novel memory hierarchies and accelerators. Although the
simulator has demonstrated scaling up to 64k core counts on the IBM Blue
Gene/P system [11], solving morphologically detailed models of billions of neu-
rons requires extensive changes in the simulator such as re-design of data struc-
tures to reduce memory footprint, enable vectorization and exposing more par-
allelism to take advantage of all available hardware threads.

In order to simulate the electrical activity of large scale neuronal networks,
the in-memory network representation is built using morphologies of neuron cells.
This part is very memory consuming and does not scale beyond the circuit of
million cells. As part of the DEEP project we have contributed in factoring out
the numerical engine of the NEURON simulator which enabled us to separate
memory limiting model building part of the simulator from the core simulation
engine. Figure 2 shows the workflow of the extracted NEURON simulator which
is relevant for porting and optimization on supercomputing platforms. As part
of a preprocessing step, neuroscientists can now use a model building workflow
that relies on NEURON to build larger neuronal networks. Once the in-memory
representation is built, NEURON dumps the circuit in binary and ASCII format
to persistent storage. In this model building process, the input datasets are
grouped into collection of cells so that every MPI rank or thread can load a
pre-balanced dataset. The extracted simulator starts by reading binary circuit
datasets and initializes necessary model data structures. The first I/O phase
reads network connection topology information from the circuit and allocates
memory for the required data structures. The second I/O phase reads all cell
structures and parameters of the circuit into memory. In Fig. 2, the I/O phases
are shown with the data size that they read, where small corresponds to a few
megabytes per node and large means couple of gigabytes per node (depending
upon the simulation network size).

368 P. Kumbhar et al.

Circuit

I/O Phase I

I/O Phase II

Initialise Model

Timesteps?

synaptic current

solver

channel state

spike enqueue

min_delay ?

spike exchange

hdf5reportingLib

spike / voltage report

stop

Yes

No

Yes

No

45%

5%

38%

5%

7%

small

large

large,
periodic

Fig. 2. Workflow of extracted core simula-
tor of NEURON.

The main timestep loop in the sim-
ulator represents a hybrid clock and
event driven algorithm using optimal
direct gaussian elimination to solve
the large number of tree topology
coupled algebric equations [12]. First,
the matrix is built using contribu-
tions from ion channels and synaptic
current computations. The membrane
potential is obtained by solving the lin-
ear system and is used to update chan-
nel state variables. As synaptic events
are not necessary to synchronize on
every timestep, spike exchange is per-
formed after minimum network delay
which is typically four timesteps in our
model. The percentage on the left for
every phase in Fig. 2 shows the percent
of simulation time spent in the individ-
ual phase for typical weak scaling sim-
ulation. The highlighted reportingLib
component is used to write periodic
compartment reports with HDF5 file
format which is currently under devel-
opment and not ported yet.

3.2 Mapping the Simulator to
Hardware

In current HPC platforms with accel-
erators applications typically start the
execution on the host CPU and then
offload compute expensive kernels to
the accelerator. Offloading has some
cost due to the initialization, kernel
invocation, marshalling and transfer of
data between host CPU and accelera-
tor. Even if offloaded kernels execute
faster, offload may or may not provide speedup for overall application as it’s
profitability depends on a mixture of factors like offload runtime, application
characteristics, accelerator performance etc. The initial plan for the NEURON
simulator was to solve linear algebra and perform spike exchange on host CPUs
and to offload computation of synaptic and channel currents, and gating states
to the MIC. The NEURON simulator uses membrane model components devel-
oped by neuroscientists using NMODL [13] domain specific language (DSL).
Our typical simulations have sixty to eighty compute kernels with each of them

Leveraging a Cluster-Booster Architecture for Brain-Scale Simulations 369

having less than 2 % of the total simulation time on the average. The detailed
performance analysis using the Score-P performance analysis tool [14] showed
that compute kernels take about a millisecond per timestep and also introduce
strong synchronization between host CPU and accelerator due to the linear alge-
bra solver. Implementing traditional offload (i.e. Cluster to Booster on the DEEP
platform or CPUs to MIC on today’s HPC cluster) would lead to a situation
where simulator would offload lots of small kernels every timestep (with data
copy for linear algebra on CPU). Interestingly, in addition to the traditional
offload model, the DEEP programming model, with integration of job schedul-
ing, provides the capability to implement the Reverse Offload where applications
can start execution natively on the Booster nodes to execute compute expensive
kernels and offload inefficient kernels to the Cluster nodes. This implementation
allows the simulator to run large number of compute expensive kernels natively
on the Booster and offload “CPU friendly” compartment report and initializa-
tion routines to the Cluster.

Multi-threading implementation and compiler vectorization of kernels (dis-
cussed in the next chapter) enables efficient use of Intel MIC coprocessor. The
initialization phase and reportingLib library read/write gigabytes of data on
every node. As I/O on the MIC is very slow, we adopted the Reverse Offload
strategy to offload all I/O kernels to host CPUs or Cluster. We refactored the
simulator code, and its offload implementation is shown in Fig. 3.

Fig. 3. I/O offload implementation in the simulator.

This newly developed I/O Offloader module transparently offloads I/O rou-
tines from the Booster to the Cluster. This is implemented using the OmpSs
offload as well as MPI Comm spawn so that it can be run on the DEEP plat-
form as well as today’s HPC clusters. The Circuit Reader module is extracted
and extended in order to handle I/O requests from threads of the simulator in

370 P. Kumbhar et al.

first come first serve manner. The number of reader processes spawned depends
on the number of nodes available and can be configured at runtime. Note that
the efficient use of DEEP architecture with normal or reverse offload mode
depends on the task granularity and suitability of the Cluster or the Booster
nodes. One technique to evaluate the suitability of such a platform is to use the
Paraver-Dimemas performance prediction toolset [15] which allows forecasting
the effects of code optimization and can perform what-if analysis.

3.3 Offload Friendly Data Structures

One of the major challenges for application developers to adopt offload program-
ming models like Intel LEO, OmpSs or OpenACC is complex, user defined data
structures. Simple bitwise copyable C struct or C++ class without dynamically
allocated members can be transparently copied to accelerators by current com-
pilers. But data structures with multiple levels of pointer indirection are chal-
lenging as they require deep memory copy semantics [16] and are currently not
supported by many compilers. The NEURON simulator has complex data struc-
tures to represent details of neuron cells such as branches of varying diameters
and lengths, ionic channels, synapses, etc. This is a major challenge to imple-
ment the offload using OmpSs or other programming models. Figure 4 shows
the schematic presentation of part of the data structure used in compute ker-
nels. The NeuronGroup container loads group of cells from the circuit. Channel
instances of different types are inserted into the cell and are represented by Mech-
List with a linked list. Actual data for mechanisms is stored in the MechData
vectors which are bitwise copyable. Depending on the type of the mechanism,
additional data structures like ion data are allocated. For linear algebra calcula-
tions additional vectors are allocated to store, for example, the right hand side
RHS and Diagonal elements of the matrix. In order to transfer NeuronGroup
for offload, one needs to either transfer individual bitwise copyable vectors or

NeuronGroup

RHS

Diagonal

solver data

MechType

MechData MechData MechData MechData

MechType MechType MechType

ion data ion data

Fig. 4. Representation of data structure used in compute kernels.

Leveraging a Cluster-Booster Architecture for Brain-Scale Simulations 371

needs to change the data structures. In the current implementation of the sim-
ulator changing data structures is a non-trivial task. Instead, we changed the
Circuit Reader and the memory allocation strategy by packing data structures
for compute kernels into contiguous vectors that allow us to easily transfer data
structures using offload semantics.

4 Performance Optimization

After refactoring and porting the compute engine of the NEURON simulator on
the DEEP platform, we optimized its performance on the MIC with the following
changes.

4.1 Thread Parallelism

NEURON uses MPI to implement distributed memory parallelism and has
demonstrated good scaling up to 64k cores on IBM BlueGene/P [11]. Although
the simulator has threading implementation using pthreads, the pure MPI imple-
mentation is most commonly used due to a better scaling. Intel MIC card has 61
cores and each core has the ability to support 4 hardware threads. Applications
can run in pure MPI mode without significant modification, but to reduce the
memory footprint and the process scheduling overhead, it is recommended to
use fewer MPI tasks per node. In the extracted core engine of the simulator we
implemented OpenMP threading based on the existing shared memory thread-
ing APIs. Individual threads process a single cell or a group of cells in parallel
which helps to expose on-node parallelism.

Figure 5 shows the comparison of the pure MPI implementation with the
new OpenMP implementation. When 60 MPI ranks or threads per node are
used, there is no significant performance difference. Once we use two or four
MPI processes per core, OpenMP implementation shows approximately 12 %
improvement.

4.2 Data Layout and Vectorization

Limited memory bandwidth is the first impediment to accelerating the per-
formance of many real world applications. Figure 6 shows memory bandwidth
utilization for few timesteps of the simulator on the Intel MIC. The simulator
reach 140 GB/s which is close to the peak what many applications can achieve.
This clearly shows that the compute kernels are memory bandwidth limited
about 60 % of the simulation time. In order to better understand the nature of
memory accesses and possible optimizations, we describe discretized structure
of neuron cells and channels in Fig. 7. The complicated dendritic structures of
neurons are divided into small compartments coupled to their adjacent compart-
ments. The membrane channels or mechanisms (like K, Na, Ih) are inserted into
different compartments of the cell. The number and types of channels vary from
compartment to compartment.

372 P. Kumbhar et al.

64 128 256

2.99

3.58

4.3

5.16

6.19

7.43

#MPI ranks or #OpenMP threads per node

S
o
lv

er
ti

m
e

(S
ec

)

Pure MPI

OpenMP

Fig. 5. Performance of pure MPI implementation compare to new OpenMP implemen-
tation on single MIC node for the simulation of 3200 cells. (Color figure online)

Fig. 6. Timeline view of a bandwidth utilization on MIC with original AoS memory
layout when running core engine of the NEURON simulator. The first trace is a read
bandwidth, whereas the second trace is the write bandwidth (in GB/s).

To efficiently compute the channels and exploit locality, the channels are
grouped together by their type as shown in Fig. 7A. The original implementation
of the simulator stores the properties of individual mechanisms (like gna, tau,
iketc.) in the Array of Struct (AoS) layout as show in Fig. 7B. Even though
modern compilers can vectorize loops with AoS memory layout using gather-
scatter instructions, this leads to the strided memory accesses which often have
poor performance. In order to reduce the pressure on a memory bus and improve
the performance of vectorization, channel properties are now re-arranged into the
Structure of Array (SoA) layout as shown in Fig. 7C.

4.3 DSL Source to Source Compiler Changes

Due to the variety of models being developed by neuroscientists using NMODL
domain specific language (which gets translated into C at compile time), it
is not feasible to hand-tune kernels for different platforms. Instead, we have
modified the NMODL source to source compiler to generate kernels with either
AoS or SoA memory layout and provide hints to the compiler to auto-vectorize
most of the compute kernels. New keywords like CONDUCTANCE have been

Leveraging a Cluster-Booster Architecture for Brain-Scale Simulations 373

Ih

K_P

K

Im

Na

Im

K

Im

Na
Ca

gna tau ik ek ina gna tau ik ek ina gna tau

Na Na Na Na

gna tau ik ekgna tau ik ekgna tau ik ek

C] Properties of mechanism instances in SoA layout

A] Ordered collection of mechanisms by type

B] Properties {gna, tau, ik, ek, ina} of individual mechanism instances in AoS layout

Ca Ca Ca K K K K

Fig. 7. Figure on the left shows schematic representation of dendritic structure of a
neuron cell. The dendrites are divided into small interconnected compartments shown
as cylinders. Different types of mechanisms are inserted into the compartment whose
distribution changes for different cell types. On the right: [A] shows how the NEURON
simulator groups the mechanism instances of the same type; [B] shows how properties
of individual mechanism (e.g. Na) are stored in the AoS layout; [C] shows new SoA
layout for storing mechanism properties in the extracted core engine of the simulator
with the help of changes in the DSL compiler.

added which allow users to specify ohmic relation of current-voltage to avoid
the numerical derivative computation during the NMODL to C translation. In
order to generate kernels with reduced pressure on memory ports, unnecessary
intermediate variables in the NMODL files were removed.

5 Benchmarking and Performance Analysis

At the time of the performance analysis study the Cluster part of the DEEP
hardware at Juelich Supercomputing Centre(JSC) was not fully in production
to perform scaling studies. But since the core engine of NEURON is completely
ported to run natively on MIC, we used the Booster for scaling studies. For
the Reverse offload benchmarking we used the Stampede system at the Texas
Advanced Computing Center [17]. On this system the simulator can start exe-
cution natively on MICs of allocated compute nodes and then use host CPUs to
offload Circuit Reader routines. Note that OmpSs transparently manages offload-
ing of kernels by spawning processes on available host CPUs but for the MPI
offload implementation we used node allocation information from job scheduler
to appropriately set MPI Info keys with MPI Comm spawn. The Xeon Phi work-
station at the JSC is used for hardware performance counter analysis. Table 1
shows details of benchmarking systems used for this study. Note that some nodes

374 P. Kumbhar et al.

on the Stampede system have two MICs while others have a single MIC card.
In order to compare the performance with the DEEP system, we considered a
socket with MIC card as a node in order to mimic the DEEP architecture where
we use only MIC and dynamically use CPUs for offload.

Table 1. Details of benchmarking systems

DEEP Host Sandy Bridge E5-2670 8 core CPU @
2.6 GHz

MIC 7120X Xeon Phi 61 core @1.23 GHz, 16 GB
DRAM

OmpSs toolchain 15.06 (with DEEP extensions)

Intel toolchain icc 15.2.164, Intel MPI 5.1 and Parastation
MPI

Network InfiniBand + Extoll

Stampede Host Sandy Bridge E5-2680 8 core CPU @
2.7 GHz

MIC Xeon Phi 61 core @1.1 GHz, 8 GB DRAM

Intel toolchain icc 14.0.1 and Intel MPI 4.1.0

Network InfiniBand

Xeon Phi
workstation

Host Sandy Bridge E5-2670 8 core CPU @
2.6 GHz

MIC 7120A Xeon Phi 61 core @1.23 GHz, 16 GB
DRAM

OmpSs toolchain 15.06 (with DEEP extensions)

Intel toolchain icc 15.0.1 and Intel MPI 4.1.2.040

Network InfiniBand

For the performance analysis of the simulator we used a circuit of 115k neuron
cells produced by the neuroscientists at the BBP. In order to get the detailed
on-node performance and hardware counter analysis we focus on results of ten
representative kernels from five models written in NMODL. The majority of
these computationally expensive models have two types of kernels that closely
match with the code structure shown in Listings 1.1 and 1.2. First, the nrn state
kernel represents a channel state update and is dominated by exponential and
division operations. Second, the nrn current kernel represents a synaptic current
calculation with very low arithmetic intensity and strided memory access due to
the branched structure of a neuron cell.

Leveraging a Cluster-Booster Architecture for Brain-Scale Simulations 375

Listing 1.1. Structure of compute intensive nrn state kernel

1 _PRAGMA_FOR_VECTOR_LOOP_

2 for(i = 0; i < node_count; i++) {

3

4 int idx = node_index[i];

5 double v = vec[idx];

6 p3[i] = data[ion_index[i]];

7 double qt = 2.952882641412121;

8 double mAlpha = (0.182*(v+32.0)) / (1.0-(exp(-v-32.0)/6.0));

9 double mBeta = (0.124*(-v-32.0)) / (1.0-(exp(v+32.0)/6.0));

10 double mInf = mAlpha/(mAlpha+mBeta);

11 double mTau = (1.0/(mAlpha+mBeta))/qt;

12 p1[i] = p1[i] + (1.0-exp(dt*(-1.0/mTau))) *

(-(mInf/mTau)/((-1.0/mTau)-p1[i]));

13 vec[idx] = v + _update_;

14 }

Listing 1.2. Structure of nrn current kernel dominated by strided memory accesses
with indirect index

1 _PRAGMA_FOR_VECTOR_LOOP_

2 for(i = 0; i < node_count; i++) {

3

4 int idx = node_index[i];

5 v = vec[idx];

6 p3[i] = data[ion_index[i]];

7 double gNaTs2 = p0[i]*p1[i]*p1[i]*p1[i]*p2[i];

8 double ina = gNaTs2*(v-p3[i]);

9 data[ion_index1[i]] += gNaTs2;

10 data[ion_index2[i]] += ina;

11 vec_rhs[idx] -= ina;

12 vec_d[idx] += gNaTs2;

13 }

For both kernel types the compiler assumes data hazards for storing array
variables with indirect indexing (like vec[idx], vec rhs[idx], data[ion index1[i]]
etc.). For channel models, there is generally only one instance of the same channel
type in a given compartment. In order to enable compiler auto-vectorization,
NMODL source to source compiler is modified to provide compiler dependent
vectorization hints (like ivdep with icc, ibm independent loop with xlc, CRI
ivdep with craycc etc.) using the macro PRAGMA FOR VECTOR LOOP .

Figure 8 shows the speedup for the nrn state and the nrn current kernels
in comparison with the original implementation (referred as “Orig”) of the
extracted core engine of NEURON simulator. The “SoA” implementation rep-
resent the simulator version with the SoA memory layout and compiler vector-
ization, and the “SoAOpt” represent the version with additional optimisations
discussed in Sect. 4.3. The vectorized SoA implementation shows 6x to 8x per-
formance improvement which is expected with the use of a full 512-bit vector

376 P. Kumbhar et al.

Fig. 8. The figure on the left shows the speedup for the nrn state kernels. The figure
on the right shows the speedup for the nrn current kernel compared to the original
implementation of NEURON simulator. (Color figure online)

instructions on the Intel MIC. The runtime of these kernels is dominated by expo-
nential and division operations whose throughput is limited due to the limited
pipelining in hardware functional units. That is why the SoAOpt implementa-
tion with memory access optimisations does not show significant improvement for
nrn state kernels. The Intel VTune Amplifier is used in order to measure perfor-
mance counters to derive Cycles Per Instruction (CPI) and Vectorisation Inten-
sity (VPU ELEMENTS ACTIVE per VPU INSTRUCTIONS EXECUTED)
which are shown in Table 2. When a vector instruction with two full vector
registers is performed, the VPU ELEMENTS ACTIVE event is incremented

Table 2. Cycles per instruction and vectorisation intensity

Kernel type Compute kernel Cycles per instruction Vectorisation intensity

Orig SoA SoAOpt SoA SoAOpt

nrn state S Ih 4.04 4.52 4.52 9.15 9.26

S Im 4.10 4.85 4.81 8.90 9.03

S Na 4.01 4.82 4.71 9.18 9.27

S SKv 3.84 4.86 4.96 9.00 9.10

S PGAB 19.30 9.61 7.31 8.32 8.44

S PAMPA 23.46 8.15 6.57 8.34 8.43

nrn current B Ih 4.13 6.20 9.63 6.50 3.21

B Im 4.51 8.64 13.34 5.39 3.49

B Na 4.48 7.33 11.76 5.48 3.97

B SKv 4.26 7.77 12.78 5.29 3.55

B PGAB 5.48 4.20 4.27 6.39 4.68

B PAMPA 4.16 4.48 3.76 8.01 6.96

Leveraging a Cluster-Booster Architecture for Brain-Scale Simulations 377

by 16 and 8 for the single and the double precision respectively. The
VPU INSTRUCTIONS EXECUTED includes instructions for floating-point
operations, memory load/store operations, instructions to manipulate vector
mask registers, etc. The CPI for nrn state kernels with AoS, SoA and SoAOpt
implementations does not change significantly due to the high latency division
and exponential operations which, even if implemented with intrinsics, have
latencies that are one or two orders of magnitude higher comparing to addition
or multiplication operations. The vectorization intensity around eight shows the
full use of vector units (values greater than eight might be due to the use of
math library functions).

The nrn cur kernels have very low arithmetic intensity and strided memory
accesses with indirect indexes as shown in Listing 1.2. Even if these kernels are
vectorized, the compiler needs to use non-optimal vector gather-scatter instruc-
tions. Due to memory bandwidth saturation, these kernels show 3x to 4x speedup
when compared to the original implementation. The SoAOpt implementation
shows the improved performance for these kernels due to the reduced memory
accesses described in Sect. 4.3. Note that the addition of the CONDUCTANCE
keyword eliminates the computation of numerical derivative (strided memory
accesses remains the same) and hence we can see the increase in CPI and the
decrease in vectorisation intensity. The S PAMPA and B PAMPA kernels rep-
resent the synapse model. Synapses are responsible for receiving electrical or
chemical signals from other neurons. These mechanisms are more computation-
ally expensive since the number of synapses are three orders of magnitude higher
than the number of other mechanisms. We optimized memory accesses and also
precomputed some parameters during the initialization phase. These optimiza-
tions with the SoA memory layout and vectorization improved the performance
by a factor of 20 for nrn state and by a factor of 8 for nrn current kernel of the
synapse mechanism.

Fig. 9. On the left: Strong scaling of the simulator on a MIC node with two threads
per core. On the right: Performance comparison of the 8-core Sandy Bridge CPU with
the 61-core Xeon Phi coprocessor. (Color figure online)

378 P. Kumbhar et al.

Fig. 10. On the left: the performance comparison of the Circuit Reader using native
I/O vs offload I/O (61 cores per node, up to 64 nodes). On the right: the parallel
efficiency of the simulator running natively on up to 64 nodes. (Color figure online)

Figure 9A shows strong scaling performance of Orig, SoA and SoAOpt imple-
mentations using two OpenMP threads per core on a single MIC node. Even
though the original code exhibited good scaling, the on-node performance was
very low due to the AoS memory layout and non-vectorized kernels. For small
core counts the SoA implementation improves the performance by a factor of
6 due to vectorization and efficient memory bandwidth utilization. But as we
increase the number of OpenMP threads, the memory bandwidth saturates after
32 cores and hence limits the scaling. Memory optimizations in the SoAOpt
implementation reduces memory bandwidth pressure and helps improving the
performance by a factor of 2. Overall we can see the 5.5x speedup when compared
to the original code.

Although in this paper we focused on the Intel MIC architecture, the opti-
mizations discussed have also significantly improved the performance on the x86
and Blue Gene/Q platforms. Figure 9B shows the performance of the original
code on a CPU compared with the latest optimized version on the 8-core Sandy
Bridge CPU and the 61-core Intel MIC. This simulation involves 3200 neuron
cells with the biological time of one millisecond. The optimizations including
memory layout changes and vectorization have improved the performance by a
factor of 4.4 and 5 on the Blue Gene/Q and the x86 platforms respectively. As
the memory bandwidth on the Intel MIC is significantly higher, the Intel MIC
is 2.2x faster comparing to the 8-core CPU.

In order to measure the performance improvement using the offload pro-
gramming model, we performed scaling studies up to 64 nodes on the Stampede
system. Figure 10 (on the left) shows the performance of the Circuit Reader with
I/O offload to CPUs and MIC native I/O on Stampede system. This simulation
loads about 1850 neuron cells (about 3.5 GB) per node from the circuit. Note
that loading circuit data involves a lot of small I/O operations due to a mixture

Leveraging a Cluster-Booster Architecture for Brain-Scale Simulations 379

of ASCII and binary data. As native I/O on the MIC is very slow in comparison
with host CPUs, the Circuit Reader with offload is 30x faster than the native
I/O on the MIC. In the weak scaling simulation the I/O size increases with
the number of threads. However, since the I/O size per node remains constant
beyond 61 cores, the time to load the circuit remains the same. Currently we
use offload only for the Circuit Reader module during circuit loading but we
believe this implementation will allow us to transparently ship periodic com-
parement reports generated with the reportingLib library. The parallel efficiency
of the simulator (initialization excluded) up to 64 nodes is shown in Fig. 10 (on
the right). The multi-threading implementation at the cell level exposes suffi-
cient parallelism to allow using a single MPI rank per node with 120 OpenMP
threads. The input circuit is balanced as part of the pre-processing step, which
achieves excellent load balancing (98 %) across the threads as well as the MPI
ranks. One can observe on the right side of the Fig. 10 that the simulator shows
good scaling behaviour with parallel efficiency of 0.93 when using 64 nodes. The
difference from ideal scaling is due to non-scaling behaviour of MPI Allgather
and spike event queueing mechanism.

6 Conclusion and Future Work

In this paper we presented our results of porting and optimizing the core engine
of the widely used NEURON simulator on both the Intel MIC system and the
DEEP platform. We discussed algorithmic workflow and low level optimizations
that improved the overall performance of the application by a factor of 5. Build-
ing on the results, we provided a detailed performance of the application using
hardware counters, demonstrating that the application is reaching peak band-
width performance. Finally we showed how the different programming models
offered by the DEEP software stack allowed the easy offload of the I/O intensive
part of the application from booster to cluster nodes, as opposed to traditional
cluster to booster offload offered by for example NVidia GPU systems. The lat-
ter allows exploring future scientific workflow development opportunities that
could include run time data analysis and interactive in-situ visualization.

Acknowledgements. The research leading to these results has received funding from
the European Community’s Seventh Framework Programme (FP7/2007-2013) under
Grant Agreement no. 287530. The EPFL Blue Brain Project as well as parts of this
study are funded by the ETH board. The scaling studies were performed on the Stam-
pede supercomputer hosted at the Texas Advanced Computing Center (TACC) and
funded by the National Science Foundation (award OCI-1134872). We thank Jochen
Kreutz for supporting benchmarking work on the DEEP system and Estela Suarez for
reviewing the manuscript.

380 P. Kumbhar et al.

References

1. Taur, Y.: CMOS design near the limit of scaling. IBM J. Res. Dev. 46(2.3) (2002).
doi:10.3389/fncom.2011.00049

2. Department of Energy: DOE Awards $425 Million for Next Generation Supercom-
puting Technologies. 2014. http://energy.gov/articles/department-energy-awards-
425-million-next-generation-supercomputing-technologies. Accessed 14 Nov 2014

3. Gustafson, J.L.: Reevaluating Amdahls law. Commun. ACM 31(5), 532–533 (1998)
4. Eicker, N., et al.: The DEEP project: pursuing cluster-computing in the many-core

era. In: HUCCA (2013)
5. DEEP project. http://www.deep-project.eu. Accessed 10 Oct 2015
6. Markram, H.: The blue brain project. Nat. Rev. Neuro-Sci. 7(2), 153–160 (2006).

doi:10.1038/nrn1848
7. Migliore, M., et al.: Parallel network simulations with NEURON. J. Comput.

Neurosci. 21(2), 119–129 (2006). doi:10.1007/s10827-006-7949-5
8. Mallon, D.A., et al.: Programming model and application porting to the dynamic

exascale entry platform (DEEP). In: EASC (2013)
9. Duran, A., et al.: Ompss: a proposal for programming heterogeneous multi-core

architectures. Parallel Proc. Lett. 21(2), 173–193 (2011)
10. Hines, M.: NEURON — a program for simulation of nerve equations. In:

Eeckman, F.H. (ed.) Neural Systems: Analysis and Modeling, pp. 127–136.
Springer, New York (1993)

11. Hines, M., Kumar, S., Schurmann, F.: Comparison of neuronal spike exchange
methods on a Blue Gene/P supercomputer. Front. Comput. Neurosci. 5(49) (2011).
doi:10.3389/fncom.2011.00049

12. Hines, M.: Effcient computation of branched nerve equations. Int. J. Bio-Med.
Comput. 15(1), 69–76 (1984)

13. Hines, M., Carnevale, T.: Expanding NEURON’s repertoire of mechanisms with
NMODL. Neural Comput. 12(5), 995–1007 (2000)

14. Knüpfer, A., et al.: Score-P: a joint performance measurement run-time infrastruc-
ture for Periscope, Scalasca, TAU, and Vampir. In: Brunst, H., Müller, M.S., Nagel,
W.E., Resch, M.M. (eds.) Tools for High Performance Computing, pp. 79–91.
Springer, Heidelberg (2012). doi:10.1007/978-3-642-31476-6 7

15. Badia, R.M., et al.: DIMEMAS: predicting MPI applications behavior in grid envi-
ronments. In: Workshop on Grid Applications and Programming Tools (GGF8)
(2003)

16. Beyer, J., Oehmke, D., Sandoval, J.: Transferring user-defined types in OpenACC.
In: CRAY User Group Proceedings (2014)

17. Texas Advanced Computing Center: Stampede Supercomputer. (2015). https://
www.tacc.utexas.edu/stampede/. Accessed 22 Sept 2015

http://dx.doi.org/10.3389/fncom.2011.00049
http://energy.gov/articles/department-energy-awards-425-million-next-generation-supercomputing-technologies
http://energy.gov/articles/department-energy-awards-425-million-next-generation-supercomputing-technologies
http://www.deep-project.eu
http://dx.doi.org/10.1038/nrn1848
http://dx.doi.org/10.1007/s10827-006-7949-5
http://dx.doi.org/10.3389/fncom.2011.00049
http://dx.doi.org/10.1007/978-3-642-31476-6_7
https://www.tacc.utexas.edu/stampede/
https://www.tacc.utexas.edu/stampede/

Manycore Architectures

Efficient and Predictable Group Communication
for Manycore NoCs

Karthik Yagna, Onkar Patil, and Frank Mueller(B)

North Carolina State University, Raleigh, USA
mueller@cs.ncsu.edu

Abstract. Massive manycore embedded processors with network-on-
chip (NoC) architectures are becoming common. These architectures
provide higher processing capability due to an abundance of cores. They
provide native core-to-core communication that can be exploited via mes-
sage passing to provide system scalability. Despite these advantages,
manycores pose predictability challenges that can affect both perfor-
mance and real-time capabilities.

In this work, we develop efficient and predictable group communica-
tion using message passing specifically designed for large core counts in
2D mesh NoC architectures. We have implemented the most commonly
used collectives in such a way that they incur low latency and high timing
predictability making them suitable for balanced parallelization of scal-
able high-performance and embedded/real-time systems alike. Experi-
mental results on a single-die 64 core hardware platform show that our
collectives can significantly reduce communication times by up to 95 %
for single packet messages and up to 98% for longer messages with supe-
rior performance for sometimes all message sizes and sometimes only
small message sizes depending on the group primitive. In addition, our
communication primitives have significantly lower variance than prior
approaches, thereby providing more balanced parallel execution progress
and better real-time predictability.

1 Introduction

The future of computing is rapidly changing as manycore processors are
becoming ubiquitous. Massive manycore platforms with NoC architectures are
starting to penetrate high-performance systems, three-tier servers, network
processing and embedded/real-time systems. These architectures provide a sig-
nificant advancement due to an abundance of cores, which requires mesh-based
NoCs for scalability. This allows a large number of cooperating tasks to be
scheduled together. Tasks can employ group communication via messages over
the NoC to achieve scalability and reduced latency. Their on-chip mesh NoC
speeds are at par with processor clock frequencies as a hop between neighboring
tiles/cores takes 1–2 cycles, which is a game changer in terms of communication.

This work was supported in part by NSF grants 0905181 and 1239246.

c© Springer International Publishing Switzerland 2016
J.M. Kunkel et al. (Eds.): ISC High Performance 2016, LNCS 9697, pp. 383–403, 2016.
DOI: 10.1007/978-3-319-41321-1 20

384 K. Yagna et al.

But such meshes are not without challenges as link contention and flow control
become potential bottlenecks.

Poor group communication implementations can result in increased and
highly variant latency due to NoC contention resulting in loss of predictabil-
ity and imbalance in execution progress across cores. When multiple pairs of
cores communicate, they may experience contention due to wormhole routing:
After opening a source-destination path along a route, any other communication
trying to use links on this path remains blocked until the former connection is
closed. Such situations can be avoided using intelligent scheduling of each round
of message exchanges.

For example, consider 9 cores taking part in all-to-all communication as in
Fig. 1. The task on core 3 is trying to send to the task on core 8, and the task
on core 4 is trying to send to the task on core 2. This results in 2 messages, one
from 3 → 8 and another from 4 → 2. When sent at the same time, contention on
link 4 → 5 due to wormhole routing results in a delay for one of these messages
as they are arbitrated within the NoC hardware routers. Thus, sending tasks
experience highly variable latencies. The effect shown in this example is amplified
with increasing NoC mesh sizes. Such situations can be avoided using intelligent
scheduling of each round of message exchanges.

Fig. 1. NoC contention (Color figure online)

Furthermore, NoC architectures provide multiple message queues and net-
works [1–4]. On the TilePro64 [2], the User Dynamic Network (UDN) uses
dynamic routing to forward messages from a source core to a destination core on
Manhattan path following first the X- and then the Y-direction (X/Y-dimension
ordered routing). The Static Network (SN) uses statically configured routes to
forward packets received on each link. SN is faster than UDN in terms of packet
forwarding speed (1 vs. 2 cycles), but is difficult to program and has route setup
overhead.

This work contributes the design and implementation of group communi-
cation for large core counts utilizing 2D mesh NoC architectures. We employ

Efficient and Predictable Group Communication for Manycore NoCs 385

efficient algorithms to reduce communication latency and exploit advanced NoC
hardware features to provide better performance. We also ensure that commu-
nication uses contention-free paths and that no deadlock may occur. Deadlocks
may occur due to head-of-line and path-based blocking, they are avoided by
credit-based backpressure monitoring [5,6] or by ensuring absence of link con-
tention (this work, for collectives, only). We have implemented five commonly
used group communication primitives [7].

Our Barrier, Broadcast and Reduce use a communication tree in which the
cores are arranged as nodes and share a parent-child relationship. The com-
munication tree is used to send messages to/from the root. The Barrier and
Reduce implementations utilize the UDN, whereas Broadcast uses the SN. Our
implementation of Alltoall exploits simple pattern-based communication, com-
mon in MPI [7] runtime system implementations, to send messages concurrently,
yet without contention, to reduce communication latency. This neither requires
dynamic computation of a routing schedule nor incurs scheduling overhead or
memoization of large routing tables. Our implementation uses message passing
over the NoC of a TilePro64 and Intel SCC but is generic enough to be adopted
to any 2D mesh NoC.

Experimental results on the TilePro hardware platform show that our imple-
mentation has lower latencies and less timing variability (lower variance) than
prior work. We compared the performance of our implementation in micro-
benchmarks against OperaMPI [8], a reference MPI implementation for the
Tilera platform. Performance improvements of up to 95 % are observed in com-
munication for single packet messages with significantly higher timing pre-
dictability (lower variance), which supports more balanced execution progress for
high-performance computing (HPC) and helps meet deadlines in embedded/real-
time scenarios. Our port to the Intel SCC achieves similar results compared to
the vendor libraries [9].

2 Design and Implementation

Our work assumes a generic, generalized 2D mesh NoC switching architecture
similar to existing fabrics with high core counts [1–3,9]. Each core is composed
of a compute core, network switch, and local caches.

NoC Message Layer (NoCMsg): Our implementation provides an MPI-style
message passing interface for NoCs. This facilitates basic point-to-point commu-
nication and supports our group communication. The NoC message layer imple-
mentation optionally provides flow control support. In our design, we turn off
flow control when not required by program logic to further improve performance.

Group Communication Primitives: The key ideas behind our design of
group communication primitives are to (1) reduce contention in the NoC; (2)
exploit pattern-based communication to exchange messages concurrently; (3)
reduce the number of messages by aggregation; and (4) leverage hardware fea-
tures to improve performance. Due to these objectives, it is not feasible to simply

386 K. Yagna et al.

resort to binomial trees for most collectives or other algorithms such as recur-
sive doubling for allreduce since these algorithms are contention agnostic and
will result in reduced performance over contention-sensitive NoCs.

We implemented the group communication on the Tilera TilePro64 and
ported it to the Intel SCC [9] to demonstrate that our implementation is generic
and can be extended to any 2D mesh NoC architectures.

2.1 Alltoall and Alltoallv

Alltoall/Alltoallv employ pattern-based communication, which allows several
sets of tasks to exchange messages concurrently without contention as many
exchanges split into multiple rounds.

The rounds are comprised of (1) direct (2) left and (3) right rounds. The
direct round is further split into two subrounds. In subrounds, each task sends
messages only along a straight path to its partner task. Tasks exchange mes-
sages along the X direction in direct subround 1 and along the Y direction in
direct subround 2. In left rounds, each task sends messages along the X direction
followed by the Y direction such that their path follows a counter-clockwise direc-
tion. In right rounds, each task sends messages along the X direction followed by
the Y direction such that their paths follow a clockwise direction. These cases
are depicted in Fig. 2. The XY dimension routing ensures that these directions
are maintained consistently.

0 1 2

3 4 5

6 7 8

0 1 2

3 4 5

6 7 8

Direct Round 1 Direct Round 2

0 1 2

3 4 5

6 7 8

Left Round

0 1 2

3 4 5

6 7 8

Right Round

Fig. 2. Alltoall rounds (Color figure online)

The implementation details are sketched in Algorithm 1. In each round,
the number of hops the message is forwarded is incremented until all tasks

Efficient and Predictable Group Communication for Manycore NoCs 387

are covered. To begin, each task starts the direct subround one with one hop.
The current column is selected by function Select-col. Tasks exchange messages
with their neighbors one hop away along the X direction. This is done to ensure
that the exchange is free of contention. The select functions operate as follows:
Given a horizontal distance (e.g., two), determine the subset of cores via mod-
ulo arithmetic (example: every even core / rank modulo 2) that are active,
followed by others round (example: every odd core / rank+1 modulo 2). Once
the round has been completed, a barrier is forced between all tasks. The bar-
rier ensures absence of contention across rounds. Subsequent rounds for other

Algorithm 1. Alltoall: x,y are task ranks; myrow,mycol are Cartesian coordi-
nates of x.
1: function NoCMsg-Alltoall
2: Xmax ← gridwidth; Y max ← gridheight
3: for xhops ← 1, Xmax do // Direct subround 1 (DR1)
4: currcol = Select-col(DR1, xhops) // select column for this round
5: if mycol == currcol then � my column’s turn
6: UDN-xchg(x+xhops, y); UDN-xchg(x-xhops, y)
7: end if
8: Barrier()
9: end for

10: for yhops ← 1, Y max do // Direct subround 2 (DR2)
11: currrow = Select-row(DR2, yhops) // select row for this round
12: if myrow == currrow then � my row’s turn
13: UDN-xchg(x, y+yhops); UDN-xchg(x, y-yhops)
14: end if
15: Barrier()
16: end for
17: for yhops ← 1, Y max do // Left round (LR)
18: for xhops ← 1, Xmax do // select row, column for this round
19: currrow = Select-row(LR, yhops); currcol = Select-col(LR, xhops)
20: if myrow, mycol == currrow, currcol then
21: UDN-xchg(x-xhops, y+yhops); UDN-xchg(x+xhops, y-yhops)
22: end if
23: Barrier()
24: end for
25: end for
26: for yhops ← 1, Y max do // Right round (RR)
27: for xhops ← 1, Xmax do // select row, column for this round
28: currrow = Select-row(RR, yhops); currcol = Select-col(RR, xhops)
29: if myrow, mycol == currrow, currcol then
30: UDN-xchg(x+xhops, y+yhops); UDN-xchg(x-xhops, y-yhops)
31: end if
32: Barrier()
33: end for
34: end for
35: end function

388 K. Yagna et al.

directions follow. The algorithm is unique in its absence of contention, which is
key to the performance improvements we observed compared to naive exchange
sequences with contention.

2.2 Barriers

We utilize modified 3-ary tree-based barriers that distribute the work evenly
among nodes to minimize cycle differences upon barrier completion. In a 2D
mesh, nodes have a most 4 neighbors so that in a barrier tree, any interior node
receives a message from one neighbor and relays this message to 3 others. This
provides maximal link coverage with minimal tree height (which is optimal).
Hence, the tree is 3-ary on the interior, 4-ary for the root (to be precise) and
of lower degree (2/1/0) for nodes close to the leaves and leaves themselves. The
root of this tree is placed in the center of the NoCMsg grid to minimize latency
(hops). The tree is constructed as part of the initialization process. Children
notifying their parents when they have entered the barrier, up to the root. Once
the root has received notifications from all children, it broadcasts a notification
back down the tree by replying to its children and returns from the barrier call,
as do the children. UDN is used to send/receive synchronization packets and
their replies. Figure 3 shows an example of a barrier tree for a 4× 4 grid.

Fig. 3. Barrier tree: setup (Color figure online)

Flow control is not needed in barriers as a prerequisite of entering a bar-
rier is that all outstanding sends/receives of local cores have completed. The
synchronization packet is small enough so that the core can drop an entire syn-
chronization packet into its output queue. It can then start a blocking send
operation that halts the core’s pipeline until synchronization packets become
available. This technique significantly reduces synchronization costs when all
cores are ready, yet conserves power when they are not.

2.3 Broadcast

Our Broadcast uses the SN of the TilePro64. The SN is more intricate to program
and suffers from route setup overhead. However, message forwarding incurs zero

Efficient and Predictable Group Communication for Manycore NoCs 389

Fig. 4. Broadcast tree: static routes configuration (Color figure online)

overhead (due to a static route configuration). Since broadcast has a single sender
and multiple receivers, the number of route configurations is low. This was the
motivation behind using SN for the broadcast implementation.

We designed a tree-based algorithm rooted at the task performing the broad-
cast. Each task determines the root’s row and column and configures the SN
route. The route setup in the root is such that the message from the core is
sent on its available links. All the tasks in the same column as the root have
their route configured such that they receive from the root along the Y direction
and send the message along other available links. Tasks in other columns receive
along one X direction and send the message along the other X link.

For example, let the task with rank 5 initiate a broadcast. Then, its routes
are set up to send the message from the core to all the links. The routes of
tasks on cores in column one will be set up such that they send out the received
message along the X and Y directions. The routes in all the other tasks will be
set up in such a way that they will receive and forward along the X direction.
This results in a broadcast tree as shown in Fig. 4. Different nodes have different
route setup depending on their relative position to the root node. The root node
is highlighted in red. The blue nodes receive along the Y direction and send along
X direction (East and West). The green nodes receive along the X direction (from
West) and send along the X direction (toward East). All the other nodes have
receive along the X direction.

The static route of each task is configured inside the Broadcast call such that
the message from the root flows to each leaf task. Our current implementation
requires only a single route configuration per task and is contention-free.

2.4 Reduce and AllReduce

Our Reduce is similar to the barrier. The reduction operation is performed along
the tree. Each child task sends its partial result upward toward the root. The
root reduces the partial results to obtain the final result. The construction of the
reduction tree is different from that of the Barrier. The reduction tree maps to a
NoC grid such that the root task becomes the root of the tree. The tasks along
its row become first-level children. The tasks in each column become second-level
children to the first-level ones. Via recursive refinement, the algorithm extends
to larger meshes, where more levels would be employed.

390 K. Yagna et al.

For example, let rank 5 be the root for the reduction operation. The tasks
along its row become the first-level children (in this case, tasks with rank 4, 6
and 7). These first-level children become children of the root. Each column will
therefore have a root or a first-level child. All the other tasks become children
of the root or first-level children along their column. In the example, rank 5
becomes the root with ranks 1, 4, 6, 7, 9 and 13 as its first-level children. Rank
4 will have ranks 0, 8 and 12 as 2nd-level children etc. This reduction-tree setup
is shown in Fig. 5. To avoid contention we impose rounds of communication per
level and distance: distance 2 cores to level 1 send their values first (e.g., core
15), followed by distance 1 (e.g., core 11); followed by distance 2 cores to root
(e.g., core 7) and distance 1 (e.g., core 6). Each of these four rounds has no link
contention by tree construction.

Fig. 5. Reduction tree: setup (Color figure online)

A reduction tree constructed in this fashion has two major advantages: (1)
The implementation is simple and scalable and (2) the entire reduction takes
place in two steps irrespective of the size of the NoC grid. The first step occurs
in parallel for the root and its 1st-level children, where they receive and reduce
values from their respective 2nd-level children. In the second step, the root will
receive partial results from the 1st-level children and perform the reduction
operation.

AllReduce is an extension of Reduce. It is implemented by performing a
Reduce relative to rank 0, followed by a broadcast from rank 0 to all other tasks
in the group.

3 Framework

Experiments were conducted on a 700 MHz 64-core Tilera TilePro processor
(TilePro 64) and the Intel SCC. Our implementation is written in C and the
programs were compiled with Tilera’s MDE 3.03 tool chain/Intel’s ICC at the
O3 optimization level with respective C/C++/Fortran compilers. Some cores are
used for specific purposes and are not available to run user programs restricting
the maximum grid size to 7× 7 on Tilera. In our experiments, grid sizes rang-
ing from 2× 2 to 7× 7 were utilized allowing for a total of six configurations
(omitting rectangular, non-square configurations, which are also valid).

Efficient and Predictable Group Communication for Manycore NoCs 391

OperaMPI implements the MPI 1.2 standard [10] for C. It is layered over
Tilera’s iLib, an inter-tile communication library that utilizes the UDN NoC
network. The iLib library is vendor-supplied software and allows developers to
easily take advantage of many features provided by the Tilera architecture. Mes-
sage passing is one such feature. Point-to-point messages are directly supported
by iLib closely resembling the equivalent MPI semantics. Internally, iLib utilizes
interrupt-based virtual channels and complex packet encodings to synchronize
senders and receivers to set up such point-to-point communication. However, iLib
only supports a limited number of collective operations, namely broadcast and
barrier. Hence, OperaMPI creates virtual overlays (e.g., binomial trees for reduc-
tions, recursive doubling for allreduce) to implement more complex MPI collec-
tives, which result in NoC contention in contrast to our approach. OperaMPI has
been evaluated against the IBM, Intel, MPICH and SPEC MPI test suites. Some
of these results and implementation details (such as tree reduce/alltoall) are dis-
cussed in [8], which provides a fair foundation for comparison to OperaMPI.
Furthermore, OperaMPI is the only working MPI implementation on Tilera and
other ports (MPICH or Open MPI) are not only beyond the scope of this work
but would be subject to the same NoC design/implementation choices we made.

Results of NoCMsg, our scalable and predictable NoC messaging framework,
and the third-party OperaMPI and RCKMPI [11,12] were compared for Tilera
and SCC, respectively. NoCMsg traffic is routed over the UDN/SN with 1–
2 cycles and 1 cycle per hop, respectively, using polling instead of relying on
iLib/OperaMPI interrupts with messages packaged in 128 byte flits.

4 Experimental Results

We experimented with of NoCMsg group communication repeating each run 21
times and reporting averages on the Tilera TilePro64 and also the Intel SCC [9]
to demonstrate portability. We report the Tilera results first.

4.1 Single Packet Messages

The benchmark timing results for single packet messages are depicted in Figs. 6,
7, 8, 9 and 10 for 5 collectives. Time on the y-axis is plotted logarithmically
in microseconds for averaged benchmark runs over different number of tasks
(equal to cores) in the range from 4 to 49. Tables 1 and 2 depict execution time
variances for each micro-benchmark for varying number of tasks for NoCMsg
and OperaMPI, respectively.

We observe that as the number of tasks increases, the execution time of group
communication increases. In case of Opera, the increase in runtime is significant
for larger number of tasks. In comparison, our NoCMsg implementation is highly
efficient, and increases in runtime are gradual. For Alltoall, our pattern-based
approach effectively eliminates network contention resulting in a reduction of
execution time by about 62 % (from 2027 down to 761) for a 7× 7 grid size with

392 K. Yagna et al.

a variance of 0.4 to 5.6 depending on the numbers of cores used. This variance
is several orders of magnitude lower than that of the OperaMPI particularly for
larger number of cores.

 1

 10

 100

 1,000

 10,000

4 9 16 25 36 49

T
im

e
(i

n
m

ic
ro

 s
ec

on
ds

)

Tasks

NoCMsg
OperaMPI

Fig. 6. Timing results for alltoall

 1

 10

 100

 1,000

 10,000

4 9 16 25 36 49

T
im

e
(i

n
m

ic
ro

 s
ec

on
ds

)

Tasks

NoCMsg
OperaMPI

Fig. 7. Timing results for reduce

 1

 10

 100

 1,000

 10,000

4 9 16 25 36 49

T
im

e
(i

n
m

ic
ro

 s
ec

on
ds

)

Tasks

Fig. 8. Timing results for allreduce

 1

 10

 100

 1,000

 10,000

4 9 16 25 36 49

T
im

e
(i

n
m

ic
ro

 s
ec

on
ds

)

Tasks

NoCMsg
OperaMPI

Fig. 9. Timing results for barrier

 1

 10

 100

 1,000

 10,000

4 9 16 25 36 49

T
im

e
(i

n
m

ic
ro

 s
ec

on
ds

)

Tasks

NoCMsg
OperaMPI

Fig. 10. Timing results for broadcast

Table 1. NoCMsg runtime var. [μs2]

Num tasks 4 9 16 25 36 49

Alltoall 0.7 0.4 0.7 5.6 1.3 1.6

Barrier 0.5 0.8 0.4 1.6 1.1 5.6

Broadcast 0 0 0.2 0.24 0.53 0.12

Reduce 0.2 0.12 1.1 1.06 3.96 7.27

AllReduce 1.34 2.29 2.49 26.77 31.55 50.82

Table 2. OperaMPI runtime variance [μs2]

Num tasks 4 9 16 25 36 49

Alltoall 3 984 18 2277 133330 622903

Barrier 750 303 29385 1838 2911 32117

Broadcast 7 57 259 4541 3004 3869

Reduce 545 686 21 2007 9980 3431

AllReduce 11 51 49 3839 5536 7517

Efficient and Predictable Group Communication for Manycore NoCs 393

Barrier and Broadcast are our most efficient collectives with up to 98 % reduc-
tion in execution time, i.e., Opera takes up to two orders of magnitude longer
due to contention. Broadcast uses the SN with a single route setup (to configure
the communication tree, setup time included) and minimal routing overhead.
The SN is typically faster than the UDN, which makes Broadcast our most effi-
cient and predictable collective in comparison. (Over UDN, broadcast would be
close to the time of a barrier.) Execution time increases only by a factor of 3.5
as the grid size is gradually changed from 2× 2 to 7× 7 with a variance of less
than 0.6 for all cases.

Our implementations of Reduce and Allreduce have 97 % and 98 % lower exe-
cution time, respectively, than OperaMPI for all tested grid sizes, i.e., OperaMPI
is up to nearly two orders of magnitude slower. However, these collectives have
a larger variance than others due to the two-step reduction employed by Reduce
operations.

4.2 Varying Message Sizes

Figures 11, 12, 13, 14 and 15 depict the averaged performance for varying mes-
sage sizes and number of tasks (cores) for both our NoCMsg implementation
and OperaMPI, the reference implementation. Notice that execution times are
plotted on a logarithmic scale on the y-axis. The solid lines represent execution
times for NoCMsg while the dotted lines represent execution times for Oper-
aMPI. The legend further indicates the number of tasks, i.e., key N4 represents
NoCMsg with 4 tasks while O4 depicts OperaMPI with 4 tasks with the same
color coding for identical grid sizes (in the same order as the line graphs). The
range of grid sizes ranges from 4 to 49 total number of tasks (cores).

Figure 11 shows the execution time of the Alltoall collective for message sizes
up to 4 KB, which is an inset to Fig. 12, the latter of which extends to 1 MB sizes.
The execution and communication times increase with an increase in message
size for both NoCMSg and OperaMPI. Our NoCMsg implementation of Alltoall
performs very well for small messages with savings between 43 %–62 % up to a
threshold (256 Bytes to 4 KB depending on message size and number of tasks, see
Fig. 11). Yet, as message sizes increase, performance degrades, and for message
sizes greater than this threshold, OperaMPI outperforms NoCMsg (see Fig. 12).
This is because our Alltoall implementation is split into rounds of exchanges
followed by barrier synchronization to ensure absence of contention. For large
messages, this results in noticeable overhead. OperaMPI’s Alltoall implemen-
tation is split into N-1 stages, where N is the total number of tasks. At each
stage, one task takes a turn to send to a partner. While their setup is subject
to contention to create a virtual channel, transmission proceeds without con-
tention once a channel has been created, which provides higher bandwidth for
large messages. Yet, prior work has shown that typical applications tend to uti-
lize collectives with very small message payloads [13], which indicates that our
NoCMsg covers the critical path for most applications and nicely complements
OperaMPI’s advantage for large messages.

394 K. Yagna et al.

Fig. 11. Alltoall: inset msgs ≤ 4 KB
(Color figure online)

Fig. 12. Alltoall: varying msg sizes
(Color figure online)

Fig. 13. Reduce: varying msg sizes
(Color figure online)

Fig. 14. AllReduce: varying msg sizes
(Color figure online)

Fig. 15. Broadcast: varying msg sizes
(Color figure online)

Fig. 16. Allreduce variants: avg. time
[usec]

Efficient and Predictable Group Communication for Manycore NoCs 395

The timing results for Reduce and Allreduce are shown in Figs. 13 and 14,
respectively. The execution time of our implementation is 48 %–98 % lower than
that of OperaMPI for all message sizes up to 1 MB (and beyond), i.e., Oper-
aMPI is up to two orders of magnitude more costly. However, the gap grad-
ually decreases to about one order of magnitude difference. Asymptotically,
the performance results of the two implementations approach each other for
very large (but, in practice, unrealistic) message sizes. The implementation of
Reduce in OperaMPI uses a communication tree but does not map it to the
NoC in a contention-free manner. The resulting contention causes larger com-
munication/execution times. The same observation also holds for AllReduce, a
Reduce followed by a Broadcast. Since Reduce dominates the communication
and execution time in AllReduce, its behavior is the same as Reduce.

We also compared our version to one that uses recursive doubling. Figure 16
indicates that the former outperforms the latter for larger core sizes while the
latter to results in less setup overhead and thus better performance for smaller
number of tasks. Collectives tend to involve all tasks in a code, so scalability is
key. At 49 cores, the former is almost twice as fast as the latter and has lower
asymptotic behavior indicating a higher potential for scalability. We identified
the absence of contention in our design as the main contributor of the reduced
time over doubling.

Figure 15 represents the execution time of Broadcast for different message
sizes. OperaMPI implements Broadcast using a tree-like communication pattern,
where the root task initiates the broadcast by sending the message to another
task. The two tasks send the message to another two tasks. This transitive dis-
tribution of messages continues and eventually terminates after log(N) steps,
where N is number of tasks. This communication tree approach is efficient but
does not map to the NoC in a contention-free manner. Similar to Reduce, there
is always contention resulting in larger communication and execution time. Our
Broadcast implementation uses SN unlike OperaMPI, which uses UDN. Routing
overhead in SN is lower than that in UDN. This also contributes to better per-
formance and lower execution time. From the NoCMsg curve, we can see that
the execution time remains constant for message sizes up to 256 Bytes since only
1–2 flits are required (latency bound). Beyond 256 Bytes, the execution time
of NoCMsg Broadcast increases at a higher rate than that of OperaMPI as it
transitions from being latency to being bandwidth bound. This continues up to
a message size of 128 KB, after which the rate of increase in execution time with
increase in message size is nearly same for both NoCMsg and OperaMPI (band-
width bound). Again, the execution times of the two implementations approach
each other asymptotically for very large (but, in practice, unrealistic) message
sizes.

Overall, these results show that our NoCMsg implementation is ideal for
all/small message sizes depending on the collective primitive. As prior work has
indicated, typical MPI applications utilize collectives with very small message
payloads [13], and embedded/real-time applications follow a similar trend for
numerical, actuator-based control systems. This underlines the contribution of

396 K. Yagna et al.

our work for high-end and embedded/real-time applications alike as NoCMsg
provides better performance and timing predictability than prior related work for
the common case, and, moreover, for realistic 2D meshes without wrap-around
network links at grid boundaries.

4.3 NAS Parallel Benchmark

We used NPB version 3.3 to evaluate our implementation. NPB by default uses
strong scaling, where input sizes stay fixed for different numbers of cores. We
used strong scaling due to input constraints for MG (input class A, to mostly
remain on chip in L2 cache) and our own weak scaling inputs for all other
benchmarks [14]. Weak scaling ensures that the computational work per core
remains the same as the number of cores cooperating in a parallel application
is increased. We choose inputs to remain resident in private L2 so that results
measure the NoC properties rather than being dominated by off-chip memory
traffic.

Figure 17 depicts the results for MG with strong scaling. MG is memory
intensive and uses long- and short-distance inter-processor communication. The
number of processes grows as a power of 2 resulting in 5 different grid sizes.
We observe that NoCMsg is faster than OperaMPI for all grid sizes. Strong
input scaling causes the total time to reduce as the number of tasks increases.
For small task sizes, NoCMsg is much faster than OperaMPI. As the number
of tasks increases, the time difference decreases. This is because MG is memory
intensive with limited inter-process communication, and for large grid sizes the
performance improvement due to efficient communication declines.

We used weak scaling for IS, FT, CG and LU. IS sorts integer numbers and
perform frequent all-to-all collective communication for rebalancing. FT is a dis-
crete 3D Fast Fourier Transform solver for partial differential equations using
all-to-all communication. CG estimates Eigenvalues using the conjugate gradient
method with irregular memory accesses and communication. LU is a computa-
tional fluid dynamics code with stencil-style point-to-point communication.

For IS and CG (Figs. 18 and 19), the execution time of NoCMsg is lower
than that of OperaMPI. Performance benefits include both collectives and point-
to-point improvements with improvements due to collectives (this paper) and
point-to-point messages (for the latter, see [5,6]). The difference in execution
time increases with as the number of tasks grows since inter-process communi-
cation dominates. For FT (Fig. 20), small differences in execution time between
NoCMsg and OperaMPI are due to larger messages sizes.

For LU (Fig. 21), OperaMPI is faster than NoCMsg for small numbers of
tasks when computation dominates total execution time. As the number of tasks
increases, the inter-task communication starts to dominate the total execution
time. The execution time of NoCMsg grows slower than that of OperaMPI,
indicating that for larger numbers of tasks NoCMsg provides better performance.

Efficient and Predictable Group Communication for Manycore NoCs 397

 0

 2

 4

 6

 8

 10

 12

 14

 16

2 4 8 16 32

T
im

e
(i

n
se

co
nd

s)

Tasks

NoCMsg
OperaMPI

Fig. 17. NPB MG: strong scaling

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

2 4 8 16 32

T
im

e
(i

n
se

co
nd

s)

Tasks

NoCMsg
OperaMPI

Fig. 18. NPB IS: weak scaling

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

2 4 8 16 32

T
im

e
(i

n
se

co
nd

s)

Tasks

NoCMsg
OperaMPI

Fig. 19. NPB CG: weak scaling

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

2 4 8 16 32

T
im

e
(i

n
se

co
nd

s)

Tasks

Fig. 20. NPB FT: weak scaling

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

2 4 8 16 32

T
im

e
(i

n
se

co
nd

s)

Tasks

Fig. 21. NPB LU: weak scaling

4.4 Portability

The Intel SCC is a single chip with 48 cores connected by a 6 × 4 mesh with x/y
dimension-ordered routing, where each of the 24 routers is attached to one tile
with two local cores [9,15]. There is no cache coherence across the mesh; instead,
message passing is supported via bare-bones message with RCCE and MPI-style
communication with RCKMPI [11,12]. The mesh is subject to link contention (as
was Tilera) but also core contention due to two cores sharing a single router. We
ported NoCMsg to the Intel SCC using the same design philosophy in that link

398 K. Yagna et al.

(and, for the SCC, also core) contention should be avoided in the implementation
of any collective communication primitive, which is not the case for RCCE and
RCKMPI collectives. We were able to ensure absence of contention using pattern-
based collectives in communication rounds over one-sided put/get primitives of
RCCE, which is the lowest level of communication on the SCC.

Figures 22, 23, 24 and 25 depict the effective throughput for different mes-
sage sizes for RCCE, RCKMPI and NoCMsg (from bottom to top), averaged over
10,000 runs each. We observe that NoCMsg results in 2–5 times higher maxi-
mum throughput depending on the type of collective as NoCMsg approaches the
theoretical bandwidth of the SCC. (Figure 22 is lacking RCCE results since the
API does not support alltoall natively.) This throughput is constrained by the
shared MPB SRAM buffer of 384 KB, which is split into 8 KB regions per tile,
and the mesh frequency of 1066 MHz. Peaks are reached earlier for [All]Reduce
(4 KB) than for Broadcast/Alltoall (128 KB and 196 KB) due to the cost of
reductions vs. significant link contention for Alltoall, whereas Broadcast levels
out at 15 MB/s but remains high. This is larger than the individual MPB size,
which shows that the MPB streams multi-packet messages efficient as long as
the data is L2 cache resident, i.e., not exceed 256 KB.

Figure 26 shows that the execution time of broadcasting a 236 KB message
remains constant even as the number of cores increases due to pattern-based
communication whereas that of RCCE and RCKMPI is one to four orders of
magnitude higher for 48 cores. (Notice that 16 or more cores show nearly the
same performance. The mesh only has 24 routers, and from 24 to 48 cores, a
single copy between core pairs over their pair-wise local bus interconnect suf-
fices.) Fig. 27 depicts the time of a 48-core barrier for each core involved in
this collective. We observe that barriers are also 2–3 orders of magnitude faster
under NoCMsg compared to RCCE/RCKMPI. We also see that barrier comple-
tion varies between even and odd cores, which is visible by the jagged curve for
NoCMsg. This is due to two cores sharing a router, where the odd core is served
first and then signal its sibling (even) core. The jagged lines for RCCE/RCKMPI
are not visible since the y-axis is logarithmic.

Overall, NoCMsg is shown to be portable in its code base and results in
significantly better throughput and performance for collectives than contention-
oblivious communication methods.

5 Related Work

Communication patterns and communication trees as a means to implement col-
lective operations have been well studied [16]. Barnett’s broadcast [17] is loosely
based on spanning binomial trees. Yang’s tree-based multicast [18] constructs a
quad-branch multicast (QBM) tree, a logic tree rooted at the source node of a
multicast and has four subtrees. Our implementation of Broadcast uses a com-
munication tree in a contention-free manner. But unlike QBM, our approach
does not require special registers/buffers in the routers, support of double-X/Y
routing and changes to message headers. QBM also cannot handle alltoallv.
Topology-aware collectives [19] reduce but cannot eliminate congestion for HPC
interconnect whereas our work eliminates any contention.

Efficient and Predictable Group Communication for Manycore NoCs 399

Fig. 22. Throughput for alltoall (Color
figure online)

Fig. 23. Throughput for reduce (Color
figure online)

Fig. 24. Throughput for allreduce
(Color figure online)

Fig. 25. Throughput for broadcast
(Color figure online)

Fig. 26. Broadcast timing over cores
(Color figure online)

Fig. 27. Timing results per core for
barrier (Color figure online)

400 K. Yagna et al.

Several approaches apply graph theoretic concepts to build efficient trees,
e.g., a multi-level broadcast tree using extended dominator nodes (EDN) [20]
but requires an expensive all-port instead of the current single-port NoC com-
munication architectures.

Barriers were implemented in hardware for IBM’s BlueGene [21]. Router-
based barriers [22,23] require long headers to carry the information of multiple
destinations and incur additional processing at each node. Tree-based barri-
ers [24] partition the 2D mesh into four overlapping quadrants using the chosen
root node as the origin whereas Barrier Tree for Meshes (BTM) utilizes a 4-ary
synchronization tree constructed in a recursive manner [25]. Our implementation
of barrier also uses a tree rooted at a chosen root node, but, unlike the others,
neither requires a 2D division into submeshes nor relies on special registers for
tree construction.

Our implementation of alltoall exploits pattern-based communication to
concurrently exchange messages between partners. On the surface, this app-
roach shares design strategies with Thakur’s direct algorithm [26], which assigns
mesh nodes ordinal numbers 0..N-1 in a row-major fashion. During step k, for
k = 1..N − 1, the node with ordinal number i sends a message to the node
whose ordinal number is an exclusive or (XOR) of i and k. This results in a
communication pattern similar to ours under dimension order routing. Unlike
our approach, their direct algorithm suffers from link contention, which is also
the case for BG/L’s random lists [27].

Others split tasks into disjoint communication groups [28–31]. Our imple-
mentation also uses a bottom-up approach, but neither requires a grid division
into smaller submeshes nor results in contention.

More recent approaches focus on building static schedules for alltoall commu-
nication [32]. Some approaches perform path selection, core mapping and time-
slot allocation intelligently to resolve conflicts on shared networks [33]. Others
exploit time-division multiplexing on NoCs to solve the slot and path selection
problem and this avoid contention [34]. Unlike these approaches, our implemen-
tation neither requires dynamic route calculations nor offline pre-calculations
nor storage of large routing tables. Our tree-based implementations rely on the
relative position of nodes to the root and take advantage of 2D mesh topol-
ogy to map a tree in a contention-free manner, which is novel. This keeps our
implementation simple, generic and scalable with minimum overhead.

6 Conclusion

We designed a set of efficient and predictable group communication primi-
tives using message passing utilizing NoC architectures. The primitives employ
highly efficient algorithms to provide contention-free communication and uti-
lize advanced NoC hardware features. These primitives improve performance
and reduce imbalance for HPC applications while providing higher timing pre-
dictability for embedded/real-time systems.

Our implementation of the most commonly used collectives reduces the com-
munication time over a reference MPI implementation on TilePro64 by up to

Efficient and Predictable Group Communication for Manycore NoCs 401

95 % for single packet messages and up to 98 % for larger messages. NoCMsg
has superior performance over OperaMPI irrespective of message size for all but
one collective: For Alltoall, NoCMsg performs better for message sizes up to
256 Bytes while OperaMPI performs better for larger messages. The evaluation
of NPB codes shows that NoCMsg outperforms OperaMPI for actual workloads.
Our NoCMsg for the Intel SCC shows orders of magnitude increases in perfor-
mance and 2–5 times higher throughput. NoCMsg thus nicely complements prior
work that is efficient at larger (yet less common) message sizes for this case. Addi-
tionally, the variance of execution times for our implementation is several orders
of magnitude lower than that of the reference MPI implementation, making
our implementation ideal for balanced high-end as well as embedded/real-time
applications. And instead of assuming ideal NoC symmetry with wrap-around
links on the 2D boundaries, our work addresses realistic 2D meshes without
wrap-around, such as present in contemporary NoC hardware designs.

References

1. Intel: Tera-scale research prototype: connecting 80 simple cores on a sin-
gle test chip. ftp://download.intel.com/research/platform/terascale/tera-
scaleresearchprototypebackgrounder.pdf

2. Tilera: Tilera processor family. www.tilera.com/products/processors.php
3. Wentzlaff, D., Griffin, P., Hoffmann, H., Bao, L., Edwards, B., Ramey, C., Mattina,

M., Miao, C.C., Brown III, J.F., Agarwal, A.: On-chip interconnection architecture
of the tile processor. IEEE Micro 27, 15–31 (2007)

4. Adapteva: Adapteva processor family. www.adapteva.com/products/silicon-
devices/e16g301/

5. Zimmer, C., Mueller, F.: NoCMsg: scalable NoC-based message passing. In: Inter-
national Symposium on Cluster Computing and the Grid (CCGRID), pp. 186–195
(2014)

6. Zimmer, C., Mueller, F.: NoCMsg: a scalable message passing abstraction for
network-on-chips. ACM Trans. Archit. Code Optim. 12(1), 1 (2015)

7. Gabriel, E., et al.: Open MPI: goals, concept, and design of a next genera-
tion MPI implementation. In: Kranzlmüller, D., Kacsuk, P., Dongarra, J. (eds.)
EuroPVM/MPI 2004. LNCS, vol. 3241, pp. 97–104. Springer, Heidelberg (2004)

8. Kang, M., Park, E., Cho, M., Suh, J., Kang, D.I., Crago, S.P.: MPI performance
analysis and optimization on Tile64/Maestro. In: Workshop on Multi-core Proces-
sors for Space – Opportunities and Challenges, July 2009

9. Mattson, T., van der Wijngaart, R., Riepen, M., Lehnig, T., Brett, P., Haas, W.,
Kennedy, P., Howard, J., Vangal, S., Borkar, N., Ruhl, G., Dighe, S.: The 48-core
SCC processor: the programmer’s view. In: Supercomputing, November 2010

10. Gropp, W., Lusk, E., Doss, N., Skjellum, A.: A high-performance, portable imple-
mentation of the MPI message passing interface standard. Parallel Comput. 22(6),
789–828 (1996)

11. Wijngaart, R.V.D., Mattson, T.: RCCE: a small library for many-core communi-
cation (2010)

12. Comprés Ureña, I.A., Riepen, M., Konow, M.: RCKMPI – lightweight MPI Imple-
mentation for intel’s single-chip cloud computer (SCC). In: Cotronis, Y., Danalis,
A., Nikolopoulos, D.S., Dongarra, J. (eds.) EuroMPI 2011. LNCS, vol. 6960,
pp. 208–217. Springer, Heidelberg (2011)

ftp://download.intel.com/research/platform/terascale/tera-scaleresearchprototypebackgrounder.pdf
ftp://download.intel.com/research/platform/terascale/tera-scaleresearchprototypebackgrounder.pdf
www.tilera.com/products/processors.php
www.adapteva.com/products/silicon-devices/e16g301/
www.adapteva.com/products/silicon-devices/e16g301/

402 K. Yagna et al.

13. Vetter, J., Mueller, F.: Communication characteristics of large-scale scientific appli-
cations for contemporary cluster architectures. In: International Parallel and Dis-
tributed Processing Symposium, April 2002

14. Gustafson, J.L.: Reevaluating Amdahl’s law. Commun. ACM 31(5), 532–533
(1988)

15. Howard, J: A 48-Core IA-32 message-passing processor with DVFS in 45nm CMOS.
In: IEEE International Solid-State Circuits Conference, pp. 108–109, February 2010

16. McKinley, P.K., Tsai, J.I., Robinson, D.F.: A survey of collective communication
in wormhole-routed massively parallel computers. IEEE Comput. 28, 39–50 (1994)

17. Barnett, M., Payne, D.G., van de Geijn, R.A.: Optimal broadcasting in mesh-
connected architectures. Technical report, Austin, TX, USA (1991)

18. Yang, J.S., King, C.T.: Efficient tree-based multicast in wormhole-routed 2D
meshes. In: Proceedings of the 1997 International Symposium on Parallel Architec-
tures, Algorithms and Networks, ISPAN 1997, Washington, DC, USA, pp. 494–500.
IEEE Computer Society (1997)

19. Sack, P., Gropp, W.: Faster topology-aware collective algorithms through non-
minimal communication. In: ACM SIGPLAN Symposium on Principles and Prac-
tice of Parallel Programming, pp. 45–54 (2012)

20. Tsai, Y.J., McKinley, P.K.: Broadcast in all-port wormhole-routed 3D mesh net-
works using extended dominating sets. In: Proceedings of the 1994 International
Conference on Parallel and Distributed Systems, Washington, DC, USA, pp. 120–
127. IEEE Computer Society (1994)

21. Ramakrishnan, V., Scherson, I.D.: Efficient techniques for nested and disjoint bar-
rier synchronization. J. Parallel Distrib. Comput. 58(2), 333–356 (1999)

22. Lin, X., McKinley, P.K., Ni, L.M.: Deadlock-free multicast wormhole routing in 2D
mesh multicomputers. IEEE Trans. Parallel Distrib. Syst. 5(8), 793–804 (1994)

23. Panda, D.K.: Fast barrier synchronization in wormhole k-ary n-cube networks
with multi destination worms. In: Proceedings of the 1st IEEE Symposium on
High-Performance Computer Architecture, HPCA 1995, Washington, DC, USA,
pp. 200–209. IEEE Computer Society (1995)

24. Yang, J.S., King, C.T.: Designing tree-based barrier synchronization on 2D mesh
networks. IEEE Trans. Parallel Distrib. Syst. 9(6), 526–534 (1998)

25. Moh, S., Yu, C., Lee, B., Youn, H.Y., Han, D., Lee, D.: Four-ary tree-based bar-
rier synchronization for 2D meshes without nonmember involvement. IEEE Trans.
Comput. 50(8), 811–823 (2001)

26. Thakur, R., Choudhary, A.: All-to-all communication on meshes with wormhole
routing. In: Proceedings of the 8th International Parallel Processing Symposium,
pp. 561–565 (1994)

27. Almási, G., Heidelberger, P., Archer, C.J., Martorell, X., Erway, C.C., Moreira,
J.E., Steinmacher-Burow, B., Zheng, Y.: Optimization of MPI collective commu-
nication on BlueGene/L systems. In: International Conference on Supercomputing,
pp. 253–262 (2005)

28. Bokhari, S., Berryman, H.: Complete exchange on a circuit switched mesh. In:
Proceedings of the Scalable High Performance Computing Conference, SHPCC
1992, pp. 300–306 (1992)

29. Sundar, N.S., Jayasimha, D.N., Panda, D., Sadayappan, P.: Complete exchange in
2D meshes. In: Proceedings of the Scalable High-Performance Computing Confer-
ence, pp. 406–413 (1994)

30. Suh, Y.J., Shin, K.G.: All-to-all personalized communication in multidimensional
torus and mesh networks. IEEE Trans. Parallel Distrib. Syst. 12(1), 38–59 (2001)

Efficient and Predictable Group Communication for Manycore NoCs 403

31. Suh, Y.J., Yalamanchili, S.: All-to-all communication with minimum start-up costs
in 2D/3D tori and meshes. IEEE Trans. Parallel Distrib. Syst. 9(5), 442–458 (1998)

32. Brandner, F., Schoeberl, M.: Static routing in symmetric real-time network-on-
chips. In: International Conference on Real-Time and Network Systems, pp. 61–70
(2012)

33. Hansson, A., Goossens, K., Rǎdulescu, A.: A unified approach to constrained map-
ping and routing on network-on-chip architectures. In: Proceedings of the 3rd
IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and
System Synthesis, CODES+ISSS 2005, New York, NY, USA, pp. 75–80. ACM
(2005)

34. Stefan, R., Goossens, K.: An improved algorithm for slot selection in the ethereal
network-on-chip. In: International Workshop on Interconnection Network Archi-
tecture: On-Chip, Multi-Chip, pp. 7–10 (2011)

Distributed Job Allocation for Large-Scale
Manycores

Subramanian Ramachandran and Frank Mueller(B)

North Carolina State University, Raleigh, NC 27695-8206, USA
mueller@cs.ncsu.edu

Abstract. Contemporary operating systems heavily rely on single sys-
tem images with shared memory constructs that may not scale well to
large core counts. We consider the challenge of distributed job alloca-
tion, where each job is comprised of a set of tasks to be mapped to
disjoint cores. A naive solution performing fragmented allocations may
quickly escalate to deadlocks, where jobs hold and wait for cores in cir-
cular dependencies. To tackle these challenges, we propose a deadlock
free distributed job allocation protocol. We have devised two policies
for avoiding deadlocks, namely active cancellation and sequencer-based
atomic broadcast. The protocol and the two policies have been imple-
mented and evaluated on a Tilera TilePro64 processor with 64 cores on
a single socket. Results show sparse job allocations to incur lower over-
head for active cancellation while sequencer-based atomic broadcast has
less overhead for denser allocations.

1 Introduction

While Moore’s law has held for a considerable time in microprocessor design, it
has reached its limits and may not keep pace with the ever increasing process-
ing demand. Nonetheless, multicore/manycore processors have the potential to
enjoy continued performance increases to meet future processing needs while
reducing/constraining power consumption. Current trends in the industry indi-
cate that the number of cores that fit on a single chip is rapidly increasing. With
current single microprocessor chips packing 64+ cores on a die [1–3] and special-
ized computing devices, e.g., graphic processing units (GPUs), already support
over 1000 core today.

Current multicores fall short of their scalability potential. One reason for
this stems from reusing conventional Single System Image (SSI) OS designs
for multicore architectures. With SSI, resources are aggregated to present a
single view of the OS environment while data access and communication are
realized via shared memory over traditional bidirectional buses. This approach
delivers some performance increases in the natural evolution from single core
up to 16 cores, but it deteriorates rapidly when the number of cores increases
further [4]. Recent work [4–6] shows that coherent shared memory may not scale

This work was supported in part by NSF grants 0905181 and 1239246.

c© Springer International Publishing Switzerland 2016
J.M. Kunkel et al. (Eds.): ISC High Performance 2016, LNCS 9697, pp. 404–425, 2016.
DOI: 10.1007/978-3-319-41321-1 21

Distributed Job Allocation for Large-Scale Manycores 405

well to large core counts. They instead promote the usage of scalable message
passing for OS communication in large-scale manycores. Intel’s Knights Landing
(KNL) next-generation Xeon Phi provides L2 cache coherence via SSI, which may
lead to contention at the mesh interconnect, similar to the overheads of shared
memory shown to exceed those of simple message passing over the network-on-
chip (NoC) for 16 cores or more in previous Tilera research [4,7]. Based on these
observations, we conjecture that future large-scale NoCs may support shared
memory partitions only for partitions of 8–16 cores complemented by message
passing across partitions. This would depart from an SSI design and necessitate a
distributed paradigm, which then requires a distributed job allocation approach
for parallel codes to be executed, the focus of this work. An alternative solution
would be hierarchical locks for non-uniform memory access (NUMA) systems [8],
but this would still require a centralized job allocation strategy with limitations
on scalability whereas a distributed approach is more general We believe that
research on distributed designs for NoCs is essential for now as the implications
of scalability limitations persist.

In this work, we propose a novel protocol to tackle the challenges of job
allocation in a distributed system. Allocating jobs of tasks on a partitioned
multi-resource system is known to be NP-hard, even for prioritized jobs [9]. The
problem is further complicated in a distributed system due to the distributed
nature of job generation. A naive approach allowing fragmented allocations could
quickly lead to deadlocks in the job allocation algorithm. Our distributed job
allocation protocol with two policies, active cancellation and sequencer-based
atomic broadcast, takes a well disciplined approach in solving these issues. First,
we avoid deadlocks by enforcing a globally unique order to resolve conflicting job
allocations. Second, we split the job allocation problem into two subproblems:
(1) query and reserve available resources; (2) find a good task-to-core mapping.
Such a split enables effective heuristics [10,11] to tackle NP-hard task-to-core
mapping while our distributed job allocation protocol reserves cores for the job.

While our distributed job allocation protocol is generic in scheduling any
application, we use Message Passing Interface (MPI) [12] applications as our
standard workload in this work for the following reasons: All ranks (tasks) of
an MPI program need to start execution at the same time. Such a workload
demands guaranteed availability of cores to start execution or waits until they
are available. This allows us to model the job wait time as the overhead of the
distributed job allocation protocol. And enables more flexible execution models
where tasks are dynamically created in a distributed manner, e.g., using fine-
grained task graphs to track dependencies.

In summary, this paper, makes the following contributions: (1) We propose
the Pico-kernel Adaptive and Scalable Operating System (PICASO) to address
the scalability challenges of future manycore processors. (2) We analyze the
distributed job allocation problem and present a protocol with two policies,
active cancellation and sequencer-based atomic broadcast. (3) We evaluate the
solutions on the Tilera TilePro64 through a set of benchmarks to analyze the
performance and scalability.

406 S. Ramachandran and F. Mueller

2 PICASO

PICASO features a distributed message passing system comprised of pico-kernels
per core. Pico-kernels are worker cores that execute a job’s user tasks. A set of
pico-kernels are managed by a micro-kernel. Micro-kernels are dedicated cores
for control purposes, e.g., to manage a set of pico-kernels and schedule jobs
in coordination with other micro-kernels. Let a micro-kernel domain be the
set of pico-kernels governed by this micro-kernel. Micro-kernels are typically
topographically centered within its domain.

A pico-kernel reports only to its parent micro-kernel. A micro-kernel, on the
other hand, apart from controlling its set of pico-kernels, also co-ordinates with
other micro-kernels. An advantage of such a system is the decentralization of
control, where each micro-kernel may engage in fast and autonomous decisions
on managing its set of pico-kernels. Since pico-kernels are just worker cores,
we use the terms pico-kernels and cores interchangeably in this work. Figure 1
shows how a PICASO system with micro- and pico-kernel abstraction can be
organized in a large-scale manycore system. In contrast to other manycores,
PICASO partitions the available cores into different domains represented by
different colors. Each domain has a topologically centered core chosen to be the
micro-kernel. The chosen micro-kernels (in red) manage their set of pico-kernels.
All external interactions occur only between micro-kernels.

Fig. 1. Sample micro kernel (uk) plus pico kernel abstraction for manycores (Color
figure online)

3 Distributed Job Allocation

We use the following terminology in our discussion: (1) A task is the basic unit of
execution. (2) A job consists of a collection of tasks. (3) The home micro-kernel
of a particular job is the micro-kernel where the job submission was initiated.

Assumptions: In this work, we consider jobs that require to be co-scheduled,
i.e., these jobs consist of inter-dependent tasks that need to be concurrently

Distributed Job Allocation for Large-Scale Manycores 407

executed on different nodes/cores. An example would be jobs of MPI programs,
where all associated tasks need to start execution at the same time. Such a job
allocation process can be divided into two steps: (1) Query available idle cores
and reserve them for this job. (2) Devise the best possible task-to-core mapping
from the available cores. Our focus in this paper is on the former part. Once
enough cores are reserved for a job, methods and results from prior work [10,11]
can be applied to find the best task-to-core mapping for a given job. However,
the problem becomes more complicated when extended to a distributed system
due to the nature of job generation.

Conventional solutions involve a centralized resource manager that handles
all job allocations. All cores continuously report their availability to this entity.
Such an approach does not scale to a large number of cores due to (1) con-
tention at the centralized entity (because of the incessant status updates) and
(2) a single point of failure. More importantly, it allows for only a single job
submission portal. These restrictions are undesirable for large core counts where
jobs generate allocations queued up at different cores throughout the system.

Our proposed pico-/micro kernel distributed system abstraction partitions
the available cores between different micro-kernels. This domain-specific del-
egation of scheduling capabilities to micro-kernels enables jobs that can be
locally satisfied within a single micro-kernel domain to be handled by fast and
autonomous decisions.

For jobs requiring more cores than can be locally satisfied, the home micro-
kernel, where the particular job is submitted, co-ordinates with other micro-
kernels to devise the allocation of cores to this job. Multiple job requests sub-
mitted at different micro-kernels could compete with each other for resources.
Hence, we need a co-ordination protocol to resolve these conflicts and to choose
the next job to execute loosely based on a globally unique order. This global
unique order could be based on user-defined priority or a First Come First
Serve (FCFS) policy. Such an ordering guarantees fairness and avoids starva-
tion. Adhering to loose ordering rather than strict allows non-conflicting job
allocations to proceed in parallel, thereby increasing the system utilization.

But a lack of such co-ordination protocols may lead to deadlocks. Deadlocks
can happen when multiple jobs submitted at different micro-kernels hold differ-
ent subsets of cores and wait for more cores to become available. Yet, none are
able to proceed because all cores have been allocated to jobs without meeting
the full allocation request of any single job in full. Figure 2 shows a deadlock con-
dition with two micro-kernel domains. Each domain has initially 8 pico-kernels
(worker cores) available. In step 1, two job submissions require 12 and 16 cores,
respectively. In step 2, each job first holds on to available local cores and sends
out a request for more cores. In step 3, each micro-kernel is blocked waiting
indefinitely for responses to their requests. Since none of the job requests are
fully satisfied, the system remains deadlocked.

Random back-off schemes could be used to recover in case of potential dead-
locks. In such a method, different micro-kernels yield their cores and retry their
job allocations after waiting for a randomly chosen back-off time. This proba-
bilistically avoids a deadlock again, but fails to guarantee a bound on completion

408 S. Ramachandran and F. Mueller

Fig. 2. Deadlock: 2 simultaneous jobs submissions (uk = micro-kernel)

time for the allocation algorithm. A more serious issue is potential starvation
of jobs that require large allocations as they might never be satisfied. There-
fore, a job allocation algorithm that avoids starvation with an upper bound on
completion time is required.

4 Deadlock-Free Job Allocation

We have devised a distributed job allocation protocol for large-scale manycores.
Two policies for deadlock avoidance are proposed, namely (1) active cancellation
and (2) sequencer-based atomic broadcast. Both of these policies require that a
globally unique order be established. For example, we could use timestamps of
the job submission time along with the micro-kernel identifier to devise a glob-
ally unique job identifier, or we could use user-defined priorities in conjunction
with a method to break ties for matching priorities. For the discussion in this
work, we will refer to job priority based on a globally unique job ordering rather
than a user-defined priority. In the following sections, we examine the two differ-
ent approaches, compare their capabilities and finally conclude with a detailed
performance evaluation.

4.1 The Main Scheduling Loop

Algorithm 1 shows the main scheduling loop. It performs two main functions: (1)
Process any incoming message, and (2) in the absence of an incoming message,
schedule pending job requests submitted at this micro-kernel.

The scheduling loop uses message passing as the only means of communi-
cation between micro-kernels, and between a micro-kernel and its set of pico-
kernels. There can also be architecture-specific optimizations for micro- to pico-
kernel communication, not shown here.

Distributed Job Allocation for Large-Scale Manycores 409

Algorithm 1. Scheduling loop at each micro-kernel
while TRUE do

post nonblocking receive for fixed size header
repeat

if policy == active cancellation then
schedule job via active cancellation // (2)

else if policy == atomic broadcast then
schedule jobs via atomic broadcast // (2)

end if
until fixed size header is received
receive entire message body (blocking) // (1)
call respective message handler routine

end while

The significant message types of the distributed job allocation protocol are as
follows: Core Allocation Request: Sent by the home micro-kernel of the job. The
request is propagated to all micro-kernels via an efficient request propagation
scheme. Core Allocation Response: Sent by a micro-kernel when it commits cer-
tain cores to a particular job. Job Spawn Request: Sent by the home micro-kernel
when it devises the best task allocation for the given job. This request follows the
same propagation path earlier traversed by the Core Allocation Request. Micro-
kernels that are not part of an allocation, release their reservations for this job
when they receive this request. Job Cancel Request: When the active cancellation
policy is used, this message is sent by the home micro-kernel if it determines
that there is an higher priority job to be satisfied first (see Subsect. 4.2). Submit
Job to Sequencer: Under the sequencer-based atomic broadcast policy, all micro-
kernels use this message to submit their job requests to the fixed sequencer (see
Subsect. 4.3).

4.2 Active Cancellation

The periodic active cancellation procedure works as follows: Any micro-kernel
that launches a job requiring more than the locally satisfiable cores sends a
core allocation request to all its neighbors. This request is propagated to all
other micro-kernels via an efficient request propagation scheme (see Sect. 4.4).
A greedy policy is employed, i.e., the request to each micro-kernel always asks
for the total number of cores required for the job, even if other micro-kernels
have already simultaneously allocated a subset of cores for this job. This policy
frequently allocates more cores than needed for a job, but guarantees a successful
allocation (of cores committed to this job) and facilitates termination (unlike
non-greedy approaches).

The algorithm handles the arrival of a higher priority core allocation request
as follows: Each micro-kernel maintains a wait queue based on the globally unique
order consisting of both the job requests it has sent out and the job requests
it has received. All incoming job requests are inserted in the wait queue as per

410 S. Ramachandran and F. Mueller

the globally unique ordering. If the new request is the head of the wait queue,
it first checks if this request has a higher priority than any job request it has
sent out earlier. If so, it engages in active cancellation of the lower priority job
changing it to the BLOCKED state pending a renewed request. This frees up
resources otherwise allocated to unsuccessful lower priority job requests. Finally,
the micro-kernel commits as many cores as it can afford for this job request by
responding with the committed cores to the home micro-kernel of this partic-
ular job request. The micro-kernel contributes new cores to this commitment
whenever its resources become free. This scheme satisfies multiple job requests
loosely based on the global ordering but also offers a relaxation to this hard
criteria by allowing a lower priority request to proceed if its allocation is satis-
fied quickly enough before a higher priority job overrides it in the wait queue.
This relaxation is allowed under the assumption that any job using a successful
allocation will eventually complete, after which time the resources it was given
becomes available for the next high priority job in the wait queue (bounded by
the longest job).

4.3 Sequencer Based Atomic Broadcast

This method is inspired by the sequencer based atomic broadcast as explained
in Défago et al. [13]. In this method, a micro-kernel is elected to be the sin-
gle sequencer of the system. All job requests, even if submitted at different
micro-kernels, are in turn forwarded to the sequencer to ensure globally unique
ordering. The sequences sends the request to all the micro-kernels only once it
has determined which job to execute next. Our approach differs here. Instead
of broadcasting the request, we use a custom built request propagation scheme
as explained in Sect. 4.4. This ensures that the job allocations happen in order
without any collisions. Less conflicts directly translate to fewer messages com-
pared to active cancellation. But since each micro-kernel has to send requests to
the sequencer, it leads to contention at the sequencer and additional delays even
for small allocation requests, which could have been solved with just a few neigh-
boring micro-kernels. As we show in Sect. 7, this additional overhead translates
into real performance benefits only in case of dense and large job allocations.

4.4 Pattern-Based Message Propagation

An efficient method for propagating request messages, such as core allocation
and job spawn requests from any given source to all other micro-kernels in a
2D mesh topology, is required. Multi-casting messages from a given source to all
micro-kernels is inefficient as this involves sending individual messages to each
micro-kernel, unless hardware support for multi-casting exists [14]. Therefore,
we have designed and implemented two alternatives: (1) a fixed pattern-based
propagation scheme and (2) an adaptive pattern-based propagation scheme. We
use the term nodes when introducing these schemes, as they not only apply to

Distributed Job Allocation for Large-Scale Manycores 411

micro-kernels but any set of nodes in a 2D mesh topology. The adaptive pattern-
based propagation scheme has the advantage that it does not expect nodes to
be arranged in a 2D mesh topology.

Fixed Pattern-Based Propagation. When a message needs to be sent to all
nodes in a 2D mesh processor NoC, the source sends the message only to its
neighboring nodes. Each neighbor in turn propagates the request to its next set
of unvisited neighbors following a predefined pattern over a minimum spanning
tree. The pattern depends on the placement of the initial source of the message.
Consider Fig. 3(a). The source initially sends the request to all its neighbors with
an embedded information to propagate the request toward the East (and North
if in column 1). Each node receiving this message propagates the request as per
the embedded information. Similarly, if the source is located at bottom-right,
the propagation will be toward West(+North) etc. Fig. 3(b) shows the pattern
when the source is located at the center, in which case each arm takes the
responsibility of propagating the request in all four directions. Following such
a predefined pattern avoids duplicate requests, which waste link resources and
increase processing time at the nodes.

(a) Fixed pattern, source: lower left (b) Fixed pattern, source at center (c) Adaptive pattern

Fig. 3. Pattern-based request propagation schemes

Adaptive Pattern-Based Propagation. This scheme involves an initializa-
tion phase responsible for forming the adaptive pattern. In this phase, an empty
message is forwarded from the given source to all its neighbors. Each neighbor
in turn broadcasts the message to all of its next set of neighbors until all the
nodes have been visited. At this point, each node has received the given message
from multiple sources. It chooses one among these sources as a preferred source
and informs it. The preferred source remembers this decision and forwards all
messages it receives to this node. The criteria to choose the preferred source can
be based on various policies, e.g., the first received request or shortest distance
from the source to this node, to name a few. At the end of the first phase, every
node has identified its preference from which source it wishes to receive a request
in the future; or, alternatively, each node has remembered a list of neighbors to
forward a message to that was received from a particular source. This forms
an adaptive pattern (spanning tree) ensuring each node receives a message only
once. An advantage of such adaptive patterns compared to fixed patterns is that

412 S. Ramachandran and F. Mueller

the patterns could be adaptively rearranged in case of link failures. The ini-
tialization phase needs to be run only once during the system startup or when
recovering from faults, hence reducing the overhead by amortizing the costs.

As an example, consider the pattern shown in Fig. 3(c) for a 3 × 3 tile with
numbered nodes. This pattern is formed with 1 as the source node and forwarding
paths from nodes 1 to 2 & 4, 2 to 3 & 5, 4 to 7, 5 to 8 & 6 and 8 to 9.

5 Implementation

The distributed job allocation protocols are applicable to any system of inter-
networked cores, even heterogeneous cores [1,14]. But for the purpose of imple-
mentation and experimentation alone, the job allocator has been optimized for a
2D-mesh architecture, such as the Tilera TilePro64 [1,2]. The Tilera TilePro64
processor has 64 tiles interconnected with a 2D-Mesh NoC interconnect. Each
tile has a processor engine running at 700 MHz, a switch engine for routing
on the NoC over five different network interconnects and a cache engine. The
User Dynamic Network (UDN) interconnect is the only one available for user-
generated messages. We use the services of the NoCMsg [4] library. NoCMsg pro-
vides a deadlock free, scalable and efficient low-level message passing layer over
UDN with an MPI like interface. This motivated our design choice and, hence,
our scheduling loop. The protocols and the messages were designed entirely
around these MPI like interfaces. This, in itself, makes our design generic enough
to be ported to other message passing libraries as well.

For our experiments, we use an ordering based on a FCFS policy. Each tile
on the TilePro64 has synchronized clocks. Hence, we use the time-stamp of the
job submission along with the unique micro-kernel identifier of the job’s home
micro-kernel as a tie breaker for job submissions.

6 Evaluation Framework

We use the TilePro64 processor [1] for our evaluation. While the TilePro64
supports 64 tiles, at least two tiles are reserved exclusively by Tilera’s hypervisor
for administrative tasks and Input/Output operations. The maximum square tile
size that can be reserved for user tasks is 7 × 7. We choose a square tile size so
as to eliminate possibilities of discrepancies due to other asymmetric tile sizes.
Overall, the Tilera platform limits our evaluation to 49 cores. Tilera supports a
subset of Linux (but not a fully compatible Linux design) for system calls that
go through the hypervisor. Job allocation, however, becomes the responsibility
of the user to pin tasks to specific cores. We lift this burden via our distributed
job allocation design, which is agnostic of Tilera’s Linux layer and generalizes
to any distributed OS design.

We support two different experimental frameworks for testing the perfor-
mance of the job allocator, (1) a real task mode, and (2) a partial simulation
mode. The real task mode supports execution of jobs that are MPI programs
from the NAS Parallel benchmarks (NPB). Figure 4 shows the real task mode

Distributed Job Allocation for Large-Scale Manycores 413

on the Tilera TilePro64 processor. This small PICASO system on a 6×6 tile has
been divided into four regions. Each region has a topologically centered micro-
kernel managing a set of 8 pico-kernels. Thus, a combination of NPB of power
of two sizes (1,2,4,8,16 and 32) can be executed. This platform is primarily used
to assess the schedulability of real user tasks.

Fig. 4. PICASO system, 6 × 6 tile on TilePro64 (Color figure online)

The limited number of usable cores on the TilePro64 constraints our scala-
bility tests on the real task mode. To overcome this, we have developed a partial
simulation framework, where we consider all cores in the reserved tile as micro-
kernels without pico-kernels. Task execution is simulated by timers triggering a
job completion message after a certain user-defined execution time. This simula-
tion platform is justified by the fact that the distributed job allocation protocol
requires only micro-kernel interaction. Our results could be directly translated
to the real task mode combining them with the pico-kernel management over-
heads obtained in the real task mode. Partial simulation assesses our protocol
with up to 49 micro-kernels on a 7 × 7 tile.

The following sections detail the experiments/results under the real task
mode and the partial simulation mode for different job allocation mixtures.

7 Experimental Results

The distributed job allocator and user programs are compiled as applications
with O3 optimizations using Tilera’s C/C++/Fortran compilers of the Multicore
Development Environment (MDE) 3.03.

7.1 Performance Analysis

We first analyze the performance of both proposed schemes under partial simu-
lation. We execute a set of job loads. For each job, we measure the job allocation
overhead as the wait time of the job from the time of submission to the time it
receives all the resources to execute. This wait time includes both the overhead
of the distributed job allocation protocol and the time spent waiting for the ear-
lier job allocations to terminate and to release its cores. Our focus is to measure

414 S. Ramachandran and F. Mueller

the overhead of the distributed job allocation protocol in isolation. Hence, for
performance tests, we use an initial state where no jobs are active. We then trig-
ger simultaneous job submissions from different micro-kernels as they have the
highest probability to result in fragmented allocations. This creates a workload
for our protocol triggering its deadlock avoidance subsystem. Note that all our
experiments cover cases where the job allocations require large numbers of cores
that need more than one micro-kernel domain to be fully satisfied. Recall that
job allocations, which could be satisfied within a single micro-kernel domain,
have a constant overhead.

For all our experiments, the reported job wait times are averaged over 15
runs. The maximum relative standard deviation observed in these experiments
was less than 20 %, except for the experiment in Fig. 5(b) with a relative stan-
dard deviations of up to 41 %. We discuss this exception and other significant
experimental details in the following relevant sections.

In our experiments, we compare both our proposed polices, active cancella-
tion and sequencer-based atomic broadcast, against one another. When reporting
the relative performance improvement or degradation, we always follow the con-
vention of comparing active cancellation against sequencer-based atomic broad-
cast as follows: Let the overhead of active cancellation be denoted as Oac and
the overhead of sequencer-based atomic broadcast be denoted as Oab. Then the
relative performance change of active cancellation is given by: (Oab−Oac)

Oab
×100%

7.2 Overhead for Sparse Job Allocations

This experiment uses the partial simulation mode. Job allocation requests are
generated simultaneously from the four extreme corners of a 7 × 7 tile. These
requests can be satisfied with just a few nearby micro-kernels even before the
conflicting job requests arrive from the other corners. Hence, in most of these
cases, cancellation of the lower priority job request may not even be required as
all the simultaneously submitted jobs are satisfied without the need for global
ordering. Conversely, with sequencer-based atomic broadcast, all requests have to
still go to the single sequencer, which can only serve one request at a time so that
serialization delays impact these small job allocations. This experiment proves
that active cancellation provides best performance in scenarios where sparse job
submissions can proceed in parallel.

In the following set of experiments, we consider two scenarios: Jobs that
can be execute in parallel and jobs that need to be executed serially one after
another.

Jobs Executing in Parallel. Figure 5(a) and 5(b) depict the scenario where
each job can proceed in parallel. For the four jobs (x-axis), their corresponding
job wait times are depicted (y-axis). The job wait time does not include execution
times of prior jobs as all these jobs execute in parallel. Hence, the measured job
wait time can be considered as the exclusive protocol overhead. We observe a
relative decrease in the job wait times for active cancellation when compared to
sequencer-based atomic broadcast.

Distributed Job Allocation for Large-Scale Manycores 415

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

Job1 Job2 Job3 Job4

Jo
b

W
ai

t T
im

e
(s

ec
on

ds
)

Jobs

active cancellation
atomic broadcast

(a) 3 micro-kernels

 0
 0.001
 0.002
 0.003
 0.004
 0.005
 0.006
 0.007
 0.008
 0.009
 0.01

Job1 Job2 Job3 Job4

Jo
b

W
ai

t T
im

e
(s

ec
on

ds
)

Jobs

active cancellation
atomic broadcast

(b) 12 micro-kernels

Fig. 5. Overhead for parallel allocations (a) 3 micro-kernels (b) 12 micro-kernels (Color
figure online)

In the 1st experiment (Fig. 5(a)), each job requires a number of pico-kernels
(cores) that is satisfied with available cores from 3 out of a total of 49 micro-
kernel domains. We observed a relative performance improvement for active can-
cellation over sequencer-based atomic broadcast of 23% for the 1st job, 76% for
the 2nd job and 83% for the 3rd and 4th jobs. The serialization at the sequencer
results in “backpressure” that aggregates latency (compared to resolving requests
in parallel).

In the 2nd experiment (Fig. 5(b)), each job requires a number of pico-kernels
(cores) that is satisfied with available cores from 12 out of the total 49 micro-
kernel domains. The relative performance improvement of active cancellation
over sequencer-based atomic broadcast for the four jobs were: 21% for the first
job, 58% for the second job, 73% for the third job and 48% for the fourth job.
For active cancellation, we observe a maximum relative standard deviation of
41% in this experiment, which is explained as follows: The wait time of each
job depends on how many cancellations are required after the first job has been
successfully allocated. In some runs, we observe that a lower priority job request
propagated fast enough to succeed in its allocation before a higher priority job
triggers cancellation. In these cases, the job wait times for the lower priority jobs
are reduced. They are otherwise above average if more cancellations occur.

Jobs Executing Serially. When jobs execute serially, job wait times depend
largely on execution times of preceding jobs. When prior jobs take a long time,
this becomes the main contributor to the job wait time. Conversely, when the
execution time is lower than the minimum job allocation overhead, then the
overhead of the distributed job allocation protocol is the main contributor to
the job wait time. Hence, for the next two experiments, we consider both short
and long running jobs. Short running jobs help assess the actual overhead of the
two polices. Long running jobs demonstrate that for serially executing jobs, this
performance improvement is not entirely carried over as a reduction in the job
wait times.

416 S. Ramachandran and F. Mueller

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

Job1 Job2 Job3 Job4

Jo
b

W
ai

t T
im

e
(s

ec
on

ds
)

Jobs

active cancellation
atomic broadcast

(a) 24 micro-kernels (short runs)

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0.008

Job1 Job2 Job3 Job4

Jo
b

W
ai

t T
im

e
(s

ec
on

ds
)

Jobs

active cancellation
atomic broadcast

(b) 49 micro-kernels (short runs)

Fig. 6. Overhead for short jobs (a) 24 micro-kernels (short runs) (b) 49 micro-kernels
(short runs) (Color figure online)

Short Running Jobs: We set the job execution times to 0.001 seconds, which is
below the minimum overhead observed. Figure 6(a) depicts a case where each job
requires a number of pico-kernels (cores) that is satisfied by exactly 24 out of the
total 49 micro-kernel domains. Hence, two out of the four jobs can run in parallel.
As not all jobs can run in parallel, allocations of the lower priority jobs require
cancellation so that the allocation of higher priority jobs is satisfied. This results
in an additional overhead for active cancellation compared to sequencer-based
atomic broadcast of ≈ 17% and ≈ 12%, respectively, for the first two jobs, but
considerably less for the next two jobs (7% and 4%, respectively). Figure 6(b)
depicts the case where all jobs require a number of pico-kernels (cores) that
is satisfied by exactly all available 49 micro-kernel domains and, hence, execute
serially one after another. Here, active cancellation incurs additional overhead as
lower priority job allocations need to be canceled to enforce the globally unique
order. The overhead for active cancellation is ≈ 12% for the 1st job and reduces
considerably to 4% for the 2nd job, and then to ≈ 1% for the 3rd/4th jobs.

Long Running Jobs : For these experiments, we set the job execution times
to 0.5 seconds, which is much higher than the overhead of the distrib-
uted job allocation protocol. Hence, in these cases, the execution time is
the main contributor to the job wait time. During the initial execution
delay for the spawned jobs, the job allocation protocol reorders the job wait
queue. Therefore, subsequent jobs are spawned as soon as the earlier jobs
complete with a minimal overhead. Figure 7(a) depicts a case where each
job requires a number of pico-kernels (cores) that is satisfied by exactly
24 out of the total 49 micro-kernel domains. Hence, two out of the four
jobs can run in parallel. Job wait times are depicted on the y-axis on a
logarithmic scale. Here, active cancellation incurs an additional overhead of 17%
and 13%, for the first two jobs, respectively. The additional overhead for the next
two jobs is very minimal (0.03% to 0.05%). Figure 7(b) depicts the case where
all jobs require a number of pico-kernels (cores) that is satisfied by exactly all
available 49 micro-kernel domains and, hence, execute serially one after another.

Distributed Job Allocation for Large-Scale Manycores 417

Job wait times are depicted on the y-axis on a logarithmic scale again. Here,
active cancellation incurs an additional overhead of ≈ 12% for the first job but
only 0.01 − 0.04% for subsequent jobs. Hence, the above experiments show that
for long running jobs, which execute serially one after another, the performance
gain achieved by sequencer-based atomic broadcast is minimal.

 0.001

 0.01

 0.1

 1

Job1 Job2 Job3 Job4

Jo
b

W
ai

t T
im

e
(s

ec
on

ds
)

Jobs

active cancellation
atomic broadcast

(a) 24 micro-kernels (long runs)

 0.001

 0.01

 0.1

 1

 10

Job1 Job2 Job3 Job4
Jo

b
W

ai
t T

im
e

(s
ec

on
ds

)
Jobs

active cancellation
atomic broadcast

(b) 49 micro-kernels (long runs)

Fig. 7. Overhead for long jobs (a) 24 micro-kernels (long runs) (b) 49 micro-kernels
(long runs) (Color figure online)

7.3 Job Allocation Overhead for Increasing Tile Sizes

In this experiment, we scale the tile size (n×n) from 2 × 2 to the maximum
supported size of 7 × 7. Per tile size, we generate n simultaneous job requests,
each requiring pico-kernels (cores) satisfied by exactly n micro-kernel domains.
E.g., in a tile size of 2 × 2, there will be 2 simultaneous job requests requiring
pico-kernels (cores) satisfied by 2 micro-kernels each, and in a tile size of 7 × 7,
there will be 7 simultaneous job requests requiring pico-kernels (cores) satisfied
by 7 micro-kernels each. This experiment shows the additional overhead for jobs
that can ideally execute in parallel.

The results depicted in Fig. 8 compare the job wait times of the first and
last jobs for active cancellation and atomic broadcast. Here, the job wait times
are depicted on the y-axis for different tile sizes on the x-axis. We observe that
the wait time for the first among the n jobs is consistently lower for active
cancellation as it does not incur the overhead of submitting all job requests at
the sequencer. We observe a reduction in the job wait time of the first job from
6% for a tile size of 2×2 to up to 60% for a tile size of 7×7. For the sake of
analysis, let us assume that the highest priority job overrides all other jobs in
their home micro-kernels before any of the lower priority jobs gets a chance to
execute. In this case, there will be one initial request sent for the highest priority
job. For all other lower priority jobs, there will be n − 1 initial requests plus
n− 1 cancel and finally n− 1 repeat requests sent in total. Thus, all subsequent
jobs incur this additional overhead. Notice that significant performance gains in
spawning the first job compensates for this additional overhead for subsequent

418 S. Ramachandran and F. Mueller

jobs to a large extent. Compared to sequencer-based atomic broadcast, we observe
a slight increase in the job wait times for active cancellation (1−12% for smaller
tile sizes, i.e., 2 × 2 and 3 × 3). But for larger tile sizes, we observe a more
significant reduction in the overhead for active cancellation (up to 15%). This
experiment reinforces our earlier finding that as long as multiple simultaneous
job submissions can execute in parallel, active cancellation has a lower overhead
compared to sequencer-based atomic broadcast.

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0.008

 0.009

2x2 3x3 4x4 5x5 6x6 7x7

jo
b

w
ai

t t
im

e
(s

ec
on

ds
)

tile size (nxn), with n job submissions

active cancellation first job
atomic broadcast first job
active cancellation last job
atomic broadcast last job

Fig. 8. Job allocations as tile size
increases (Color figure online)

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0 5 10 15 20 25 30 35 40 45 50C
on

fli
ct

 r
es

ol
ut

io
n

tim
e

(s
ec

on
ds

)

of simultaneous jobs for tile size 7x7

active cancellation
atomic broadcast

Fig. 9. Worst case for n simultaneous
jobs

7.4 Worst-Case Conflict Resolution for N Simultaneous Jobs

In this experiment with n simultaneous job submissions, we measure the conflict
resolution time for the first job to execute. We use a fixed tile size of 7 × 7 in
the partial simulation mode. As all the cores are considered to be micro-kernels
in this mode, a maximum of 49 micro-kernels are available. All job submissions
require a large number of pico-kernels (cores) that can only be satisfied by the
cores available in all the 49 micro-kernel domains. In this worst-case scenario,
the sequencer-based atomic broadcast scheme provides the best performance. The
sequencer-based atomic broadcast scheme just has to wait for the job allocation
request with the highest priority to arrive. It can then send out core allocation
requests one after another. The maximum overhead occurs when the highest
priority job request is the one that reaches the sequencer last. Compare this
to the considerable overhead in active cancellation. Here, in the worst-case, the
n− 1 lower priority job requests together could have reserved all available cores
in all micro-kernels. But none would have reserved enough to proceed executing.
Hence, for the highest priority job request to execute, it has to override each of
the lower priority job request in all other micro-kernels by sending job cancel
requests. In the worst-case, n − 1 cancellation requests need to be sent before
the first job can get enough cores for its allocation to be satisfied. We see this
reflected in Fig. 9. The wait time for the first job is shown on the y-axis and
x-axis depicts n, the number of simultaneous job submissions. We observe that

Distributed Job Allocation for Large-Scale Manycores 419

the worst-case performance is better for the sequencer-based atomic broadcast
scheme once the number of micro-kernels simultaneously requesting allocations
exceeds 1/4th of the total number of micro-kernels.

7.5 Experiments with NPB Codes in Real Task Mode

The real task mode on the TilePro64, introduced in Sect. 6, consists of 4 micro-
kernels, each managing a set of 8 pico-kernels. We can execute jobs that require
a maximum of 32 cores in this mode. To confirm the pattern observed under
the partial simulation mode, we conduct similar, yet scaled down experiments
in real task mode.

Job Allocations Executing in Parallel. Here, two jobs (NPB FT Class = S
size = 16) run in parallel in two different micro-kernel domains with inputs chosen
to be L2 resident (to ensure that experiments are not dominated by DRAM
memory latencies). Each job requires 16 cores, which can be satisfied in parallel.
We measure the average job wait time. This wait time is exclusively due to the
protocol overhead as it does not include any resource wait time. This experiment
is an approximation of the sparse job allocations explained in the context of the
partial simulation mode. We observe results following the same pattern: Under
active cancellation, less overhead is incurred compared to sequencer-based atomic
broadcast. These results are shown in Fig. 10. The y-axis depicts job wait time
for the two jobs executing in parallel (x-axis).

 0

 0.0001

 0.0002

 0.0003

 0.0004

 0.0005

 0.0006

 0.0007

Job1 Job2

Jo
b

W
ai

t T
im

e
(s

ec
on

ds
)

Jobs

active cancellation
atomic broadcast

Fig. 10. Real task mode: parallel job
alloc. (Color figure online)

 0

 0.0001

 0.0002

 0.0003

 0.0004

 0.0005

 0.0006

 0.0007

Job1 Job2 Job3 Job4

Jo
b

W
ai

t T
im

e
(s

ec
on

ds
)

Jobs

active cancellation
atomic broadcast

Fig. 11. Real task mode: Serial Job
Alloc. (Color figure online)

Job Allocations Executing Serially. In this experiment, four jobs (NPB
FT Class = S size = 32) requiring all the 32 cores available from all of the four
micro-kernels are submitted simultaneously. These job submissions compete for
all resources and are eventually serialized to execute one after another. Thus,
this experiment is similar to the partial simulation mode experiment in Sect. 7.4,
which measured the worst-case conflict resolution time for n simultaneous job

420 S. Ramachandran and F. Mueller

submissions. We obtain similar results, where sequencer-based atomic broadcast
performs much better than active cancellation. Figure 11 shows these results with
the exclusive job wait time on the y-axis for the four jobs on the x-axis. Exclusive
job wait time is calculated here as the actual job wait time minus execution times
of all prior jobs. This metric provides the job allocation overhead in isolation. A
purely centralized approach should perform inferior. But our sequencer approach
uses a centralized approach enhanced by contention-free communication over a
spanning tree of micro-kernels (Fig. 3), which scales further.

7.6 Performance of Pattern-Based Propagation

To evaluate the impact of scalability of pattern-based message propagation, a
simple experiment was devised. A request is broadcasted to all nodes (cores) in a
7×7 tile (max. 49 nodes). The time to broadcast this request and receive a reply
from all endpoints in the reverse path of broadcast is measured. The results in
Fig. 12 compare the time taken on the y-axis against the number of nodes to
which the message is broadcast on the x-axis. Four different schemes are com-
pared: (1) A naive broadcast scheme (The source sends m individual messages
to m recipients.); (2) distributed flooding (The source sends the message to all
its neighbors who multi-cast the message to their neighbors until all nodes have
received the message.); (3) fixed pattern-based propagation (see Sect. 4.4); and
(4) adaptive pattern-based propagation (see Sect. 4.4). We resort to analysis to
determine scalability in number of cores on our single chip platform.

For our analysis, let us assume a tile size of n×n. One sender needs to broad-
cast the message to the remaining n2−1 recipients. Among the different schemes,
the naive broadcast scheme tends to be the most time consuming. In this scheme,
a single source node sends the message to all the recipients and waits for replies
from each of them. This increases the load on the single source. The number
of individual end-to-end messages on the NoC equals the number of recipients
of the broadcast, i.e., n2 − 1. But it is important to note that, on a 2D mesh
topology with X-Y dimension ordered routing, the messages are sent over the
same link multiple times resulting in unnecessary link utilization. We can easily
observe that as the same X-Y path is traversed multiple times, there is heavy
contention on a few links that become the bottleneck.

Distributed flooding performs slightly better. In this method, the load on
the single source node is reduced as all nodes contribute to forwarding the mes-
sage. Also, the message is sent exactly once over each link. But the number of
individual messages on the NoC is comparatively larger than that of the naive
broadcast scheme. For a tile size of n × n, the total number of messages equals
the total number of links on the NoC, i.e., 2n(n − 1). Hence, after a threshold
point, the cost of distributed flooding tends to increase and is as costly as the
naive broadcast scheme. This trend was observed in Fig. 12, when the number
of nodes is greater than 43.

Distributed Job Allocation for Large-Scale Manycores 421

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

 0.004

 0.0045

 0.005

 5 10 15 20 25 30 35 40 45 50

br
oa

dc
as

t t
im

e
(s

ec
on

ds
)

number of nodes

naive broadcast
distributed flooding
Adaptive pattern-based
Fixed pattern-based

Fig. 12. Different request propagation schemes (Color figure online)

Fixed pattern-based propagation, where messages propagate in a predefined
pattern, uses the least number of individual messages, namely n2 − 1. The fixed
pattern reduces the number of links used to n2−1 and the message is sent exactly
once on each link. Also, the load on the single source node is considerably reduced
as each recipient forwards the message further. Hence, pattern-based propagation
consumes the least amount of time (see Fig. 12).

In the adaptive pattern-based propagation scheme, the number of individual
messages is n2 − 1, which is the same as in the fixed pattern-based scheme.
Also, the scheme ensures that the message is sent only once per link. Even the
additional cost in setting up the adaptive pattern is amortized over multiple
runs. Hence, the adaptive pattern-based scheme performs as good as the fixed
pattern-based scheme (see Fig. 12). The adaptive pattern-based scheme is only
slightly costlier than the fixed pattern-based scheme. This is explained as follows:
Depending on the adaptive pattern formed, certain nodes may need to forward
the message to more than one recipient (unlike the fixed pattern-based scheme).
E.g., nodes 2 and 5 incur this additional processing time in Fig. 3(c).

8 Related Work

Manycores have sparked many OS redesigns [5,6,15–20]. Our micro-kernel and
pico-kernel abstraction is design for larger number of cores and was inspired
by FOS and Barrelfish [6,15], where application and OS services run on physi-
cally separate cores. In contrast to FOS, we benefit more from spatial locality as
pico-kernels (cores) only need to communicate with their parent micro-kernel.
We follow the core of the design principles postulated by Peter et al. [21] for
designing multi-core schedulers. We even go one level further and take a purely
distributed message passing approach as the primary means of communication
via adoption of NoCMsg [4] for low-level messaging. Boyd-Wickizer et al. [20]
analyze and fix scalability issues in the Linux kernel for several system appli-
cations and show that good scalability up to 48 cores could be achieved by

422 S. Ramachandran and F. Mueller

modest changes. However, their workload consisted of embarrassingly parallel
codes, such as independent Apache threads and parallelized “make” commands.

The compute chip of BlueGene/Q [22,23] has 16 cores for executing applica-
tion tasks, one core dedicated to OS services and one (disabled) to increase man-
ufacturing yield. This is similar to our approach of dedicated micro-kernels for
OS services and applications. Our design differs as we propose multiple dedicated
micro-kernels managing the cores in a manycore chip rather than across nodes.
Kobbe et al. [24] provide agent-based allocation on a multicore for malleable
applications, where cores of a job are governed by a single agent. ADAM [25]
also uses an agent-based approach but requires a global (centralized) agent coor-
dinating smaller agents per cluster of cores. Our approach is much finer grained
with multiple micro-kernels coordinating the allocation of a job in a distributed
manner. It is also lighter weight than agent-based allocation in Grid/Cloud com-
puting, which use complex allocation schemes with high latency unsuitable for
on-chip allocation [26,27].

Job schedulers for HPC clusters, such as the TORQUE resource manager [28],
SLURM [29] and the Maui scheduler [30], use similar algorithms for resource allo-
cation and employ backfilling algorithms to increase utilization. These cluster
schedulers are centralized while Mesos [31] only allocates a subset of requested
resources and Omega [32] allows parallel schedulers to access shared state in a
lock free manner. All of them have scalability limitations due to shared/cen-
tralized state (covered by our sequences-based approach in experiments), while
our advanced design follows a distributed/message passing design and scales.
Omega employs an optimistic concurrency control and has parallel scheduling
capabilities. But atomic updates to the shared state serialize scheduling deci-
sions. Instead, we allow individual micro-kernels to be scheduled in parallel and
resolve conflicts only when needed. Our techniques and algorithms also have
been tailored and optimized to benefit from the on-chip communication of NoC
processors. Job co-scheduling for High-end computing (HEC) systems often use
a single job submission portal [33,34], which requires a centralized resource man-
ager that does not scale. Tang et al. [35] propose a distributed job co-scheduler for
HEC systems. They propose to resolve deadlocks by yielding the resources after
a predefined wait time subject to deadlock (see Sect. 3). Our approach differs as
we avoid deadlocks in job allocation and guarantee a definite completion time for
the distributed job allocator. NoC architectures like the Kalray MPPA-256 [14]
have specialized support for multi-casting, which can vastly improve the perfor-
mance of our distributed job allocation protocol as job requests propagate fast
resulting in fewer cancellations for active cancellation. Most NoC architectures
([1,3]) lack hardware support for multi-casting, while our efficient pattern-based
request propagation schemes can be applied to them.

9 Conclusion

We introduce PICASO, a distributed message passing system, to meet the scal-
ability challenges of future manycore processors and demonstrate the ease and

Distributed Job Allocation for Large-Scale Manycores 423

usability of such a system in managing large numbers of cores on a single chip.
We study the distributed job allocation problem and propose a protocol with
two policies, active cancellation and sequencer-based atomic broadcast. Both poli-
cies avoid fragmented allocations (that would otherwise lead to deadlocks) and
guarantee allocations loosely following a global order. Experimental TilePro64
results indicate that for sparse job allocations the active cancellation scheme pro-
vides lower overhead while for denser job allocations the sequencer-based atomic
broadcast scheme provides lower overhead.

References

1. Tilera tile64 processor family. https://en.wikipedia.org/wiki/TILE64
2. Wentzlaff, D., Griffin, P., Hoffmann, H., Bao, L., Edwards, B., Ramey, C., Mattina,

M., Miao, C.C., Brown III, J.F., Agarwal, A.: On-chip interconnection architecture
of the tile processor. IEEE Micro. 27, 15–31 (2007)

3. Howard, J., et al.: A 48-core IA-32 message-passing processor with DVFS in 45nm
CMOS. In: Solid-State Circuits Conference Digest of Technical Papers (ISSCC),
pp. 108–109 (2010)

4. Zimmer, C., Mueller, F.: Nocmsg: scalable noc-based message passing. In: Inter-
national Symposium on Cluster Computing and the Grid (CCGRID) (2014)

5. Baumann, A., Barham, P., Dagand, P.E., Harris, T., Isaacs, R., Peter, S., Roscoe,
T., Schüpbach, A., Singhania, A.: The multikernel: a new OS architecture for
scalable multicore systems. In: Symposium on Operating Systems Principles, pp.
29–44 (2009)

6. Wentzlaff, D., Agarwal, A.: Factored operating systems (fos): the case for a scalable
operating system for multicores. SIGOPS Oper. Syst. Rev. 43, 76–85 (2009)

7. Zimmer, C., Mueller, F.: NoCMsg: a scalable message passing abstraction for
network-on-chips. TACO 12(1), 1–24 (2015). doi:10.1145/2701426

8. Chabbi, M., Fagan, M., Mellor-Crummey, J.: High performance locks for multi-
level numa systems. In: ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, pp. 215–226 (2015)

9. Davis, R.I., Burns, A.: A survey of hard real-time scheduling for multiprocessor
systems. ACM Comput. Surv. (CSUR) 43(4), 35 (2011)

10. Zimmer, C., Mueller, F.: Low contention mapping of real-time tasks onto tilepro
64 core processors. In: IEEE Real-Time Embedded Technology and Applications
Symposium, pp. 131–140 (2012)

11. Agarwal, T., Sharma, A., Kale, K.: Topology-aware task mapping for reducing
communication contention on large parallel machines. In: International Parallel
and Distributed Processing Symposium, April 2006

12. Snir, M., Otto, S., Huss-Lederman, S., Walker, D., Dongarra, J.: MPI: The Com-
plete Reference, vol. 1, 2nd edn. MIT Press, Cambridge (1998)

13. Défago, X., Schiper, A., Urbán, P.: Total order broadcast and multicast algorithms:
taxonomy and survey. ACM Comput. Surv. (CSUR) 36(4), 372–421 (2004)

14. de Dinechin, B.D., de Massas, P.G., Lager, G., Léger, C., Orgogozo, B., Reybert,
J., Strudel, T.: A distributed run-time environment for the Kalray MPPA-256
integrated manycore processor. Procedia Comput. Sci. 18, 1654–1663 (2013)

15. Baumann, A., Peter, S., Schüpbach, A., Singhania, A., Roscoe, T., Barham, P.,
Isaacs, R.: Your computer is already a distributed system. why isn’t your OS? In:
HotOS (2009)

https://en.wikipedia.org/wiki/TILE64
http://dx.doi.org/10.1145/2701426

424 S. Ramachandran and F. Mueller

16. Gamsa, B., Krieger, O., Appavoo, J., Stumm, M.: Tornado: maximizing locality
and concurrency in a shared memory multiprocessor operating system. In: OSDI,
pp. 87–100 (1999)

17. Boyd-Wickizer, S., Chen, H., Chen, R., Mao, Y., Kaashoek, M.F., Morris, R.,
Pesterev, A., Stein, L., Wu, M., Dai, Y.H., et al.: Corey: an operating system for
many cores. In: OSDI, pp. 43–57 (2008)

18. Nightingale, E.B., Hodson, O., McIlroy, R., Hawblitzel, C., Hunt, G.: Helios: het-
erogeneous multiprocessing with satellite kernels. In: Proceedings of the ACM
SIGOPS 22nd Symposium on Operating Systems Principles, pp. 221–234. ACM
(2009)

19. Liu, R., Klues, K., Bird, S., Hofmeyr, S., Asanovic, K., Kubiatowicz, J.: Tessel-
lation: space-time partitioning in a manycore client OS. In: HotPar 2009, vol. 3,
Berkeley, CA (2009)

20. Boyd-Wickizer, S., Clements, A.T., Mao, Y., Pesterev, A., Kaashoek, M.F., Morris,
R., Zeldovich, N.: An analysis of Linux scalability to many cores (2010)

21. Peter, S., Schüpbach, A., Barham, P., Baumann, A., Isaacs, R., Harris, T., Roscoe,
T.: Design principles for end-to-end multicore schedulers. In: 2nd Workshop on Hot
Topics in Parallelism, Berkeley, CA, USA (2010)

22. Haring, R.A., Ohmacht, M., Fox, T.W., Gschwind, M.K., Satterfield, D.L., Sug-
avanam, K., Coteus, P.W., Heidelberger, P., Blumrich, M.A., Wisniewski, R.W.,
et al.: The IBM BlueGene/Q compute chip. IEEE Micro. 32(2), 48–60 (2012)

23. Boyle, P.: The BlueGene/Q supercomputer. In: PoS LATTICE 2012, vol. 20 (2012)
24. Kobbe, S., Bauer, L., Lohmann, D., Schröder-Preikschat, W., Henkel, J.: Distrm:

distributed resource management for on-chip many-core systems. In: Proceedings
of the Seventh IEEE/ACM/IFIP International Conference on Hardware/Software
Codesign and System Synthesis, pp. 119–128 (2011)

25. Al Faruque, M.A., Krist, R., Henkel, J.: Adam: run-time agent-based distributed
application mapping for on-chip communication. In: Design Automation Confer-
ence, pp. 760–765

26. Cao, J., Jarvis, S.A., Saini, S., Kerbyson, D.J., Nudd, G.R.: Arms: an agent-based
resource management system for grid computing. Sci. Program. 10(2), 135–148
(2002)

27. Berman, F., Wolski, R., Casanova, H., Cirne, W., Dail, H., Faerman, M., Figueira,
S., Hayes, J., Obertelli, G., Schopf, J., Shao, G., Smallen, S., Spring, N., Su, A.,
Zagorodnov, D.: Adaptive computing on the grid using apples. IEEE Trans. Parallel
Distrib. Syst. 14(4), 369–382 (2003)

28. Staples, G.: TORQUE resource manager. In: Supercomputing, p. 8 (2006)
29. Yoo, A.B., Jette, M.A., Grondona, M.: SLURM: simple linux utility for resource

management. In: Feitelson, D.G., Rudolph, L., Schwiegelshohn, U. (eds.) JSSPP
2003. LNCS, vol. 2862, pp. 44–60. Springer, Heidelberg (2003)

30. Jackson, D.B., Snell, Q.O., Clement, M.J.: Core algorithms of the maui sched-
uler. In: Feitelson, D.G., Rudolph, L. (eds.) JSSPP 2001. LNCS, vol. 2221, p. 87.
Springer, Heidelberg (2001)

31. Hindman, B., Konwinski, A., Zaharia, M., Ghodsi, A., Joseph, A.D., Katz, R.,
Shenker, S., Stoica, I.: Mesos: a platform for fine-grained resource sharing in the
data center. In: USENIX Conference on Networked Systems Design and Imple-
mentation, pp. 295–308 (2011)

32. Schwarzkopf, M., Konwinski, A., Abd-El-Malek, M., Wilkes, J.: Omega: flexible,
scalable schedulers for large compute clusters. In: European Conference on Com-
puter Systems, pp. 351–364 (2013)

Distributed Job Allocation for Large-Scale Manycores 425

33. Huedo, E., Montero, R.S., Llorente, I.M.: A framework for adaptive execution in
grids. Softw.: Pract. Exp. 34(7), 631–651 (2004)

34. Kannan, S., Roberts, M., Mayes, P., Brelsford, D., Skovira, J.F.:
Workload management with loadleveler. IBM Redbooks 2, 2 (2001).
http://www.redbooks.ibm.com/redbooks/pdfs/sg246038.pdf

35. Tang, W., Desai, N., Vishwanath, V., Buettner, D., Lan, Z.: Job coscheduling on
coupled high-end computing systems. In: ICPP Workshops, pp. 317–326 (2011)

http://www.redbooks.ibm.com/redbooks/pdfs/sg246038.pdf

Extreme-Scale Computations

Many-Core Acceleration of a Discrete Ordinates
Transport Mini-App at Extreme Scale

Tom Deakin1(B), Simon McIntosh-Smith1, and Wayne Gaudin2

1 Department of Computer Science, University of Bristol, Bristol, UK
tom.deakin@bristol.ac.uk, simonm@cs.bris.ac.uk

2 High Performance Computing,
UK Atomic Weapons Establishment, Aldermaston, UK

Wayne.Gaudin@awe.co.uk

Abstract. Time-dependent deterministic discrete ordinates transport
codes are an important class of application which provide significant
challenges for large, many-core systems. One such challenge is the large
memory capacity needed by the solve step, which requires us to have a
scalable solution in order to have enough node-level memory to store all
the data. In our previous work, we demonstrated the first implementation
which showed a significant performance benefit for single node solves
using GPUs. In this paper we extend our work to large problems and
demonstrate the scalability of our solution on two Petascale GPU-based
supercomputers: Titan at Oak Ridge and Piz Daint at CSCS. Our results
show that our improved node-level parallelism scheme scales just as well
across large systems as previous approaches when using the tried and
tested KBA domain decomposition technique. We validate our results
against an improved performance model which predicts the runtime of
the main ‘sweep’ routine when running on different hardware, including
CPUs or GPUs.

1 Introduction

Deterministic discrete ordinates neutral particle transport is a balance equation
which describes the movement of neutral particles through materials of varying
properties. As the particles move through the material, they can collide with
material atoms causing a change in direction of movement and/or a change
in energy level of the particle. Additionally, the particle may be absorbed and
potentially a fission reaction can occur, resulting in the loss or gain of particles.
The governing equation for this balance of particles, the transport equation, is
solved via a numerical method resulting in an approximate solution due to the
complexity of finding an analytic solution in all but the simplest cases. Therefore
this is a computationally intensive problem which requires High Performance
Computing in order to find solutions in a tractable time. Indeed, it is estimated
that 50–80 % of simulation time is devoted to transport codes on United States
Department of Energy systems [14] making this a very important problem.

The solution of the transport equation involves a matrix-free inversion of an
operator which forms a sweep across the grid; it is this part of the algorithm
c© Springer International Publishing Switzerland 2016
J.M. Kunkel et al. (Eds.): ISC High Performance 2016, LNCS 9697, pp. 429–448, 2016.
DOI: 10.1007/978-3-319-41321-1 22

430 T. Deakin et al.

which takes up the majority of the computation time in transport codes. In this
paper we investigate applying our previous attempts to accelerate the intra-node
updates to run a transport mini-app at large scale using many-core processors
such as GPUs. A mini-app removes the complexity of a production application
whilst also providing a proxy for performance. We use the KBA algorithm for
spatial decomposition, the de facto algorithm to provide the benchmark for the
performance of transport codes [15], see Sect. 2.1. We show weak scaling results
for our accelerated scheme requiring storage of the angular flux in device memory,
and discuss the challenges of strong scaling.

In particular we make the following contributions:

1. We present weak scaling results using an improved node level scheme running
on GPUs. The results show that the KBA algorithm is still a solution at scale.

2. We improve on a performance model to predict the running time of our accel-
erated transport sweep at scale.

3. Results are presented for two leading GPU enabled supercomputers, the two
largest in the world at the time of writing. We demonstrate up to a 4× speedup
of a GPU accelerated time-dependent deterministic transport application at
scale compared to an optimised CPU version.

The rest of the paper is structured as follows. In Sect. 2 we introduce
the SNAP mini-app and the KBA algorithm used for spatial decomposition.
Section 3 introduces the current state of the art. Our implementation is discussed
in Sect. 4. Our performance model is introduced in Sect. 5 and we present weak
and strong scaling results in Sect. 6 before concluding in Sect. 7.

2 SNAP: Sn Application Proxy

The Discrete Ordinates (SN) Application Proxy (SNAP) [24] is a proxy applica-
tion (mini-app) from Los Alamos National Laboratory based on their determin-
istic discrete ordinates neutral particle transport code, PARTISN. It maintains
the performance characteristics of PARTISN, without the complexity of a pro-
duction application; in particular the input data is deliberately arbitrary and
non-physical. Deterministic transport models the movement and interaction of
neutral particles, such as neutrons or photons, through a mesh with varying
material properties. As the particles move in straight lines within the material,
they may interact with the material and change energy and/or direction. It is the
net balance of these neutral particles that is governed by the Boltzmann trans-
port equation (1) solved in the proxy application; the authors would recommend
that readers unfamiliar with the solution of the transport equation consult the
Lewis and Miller textbook for an introduction [16]. Whilst the transport equa-
tion can in general include fission terms, the equation solved in SNAP does not
include this.

Many-Core Acceleration of a Discrete Ordinates Transport Mini-App 431

[
1
v

∂

∂t
+ Ω̂ · ∇ + σ(r, E)

]

ψ(r, Ω̂, E, t) = (1a)

qex(r, Ω̂, E, t) + (1b)
∫

dE′
∫

dΩ′σs(r, E′ → E, Ω̂′ · Ω̂)ψ(r, Ω̂′, E′, t) (1c)

The transport equation operates over seven dimensions: time (t), three-
dimensional space (r), two angular (Ω̂) and energy (E). The net movement of
the neutral particles in these dimensions is called the angular flux ψ. Integrat-
ing over the angular dimensions yields the scalar flux φ. qex defines an external
source of particles. A large number of particles are assumed so that each dimen-
sion can be considered as a continuum. However in order to solve the equation
using numerical methods they must be discretised; SNAP uses finite difference
in space and time, multi-group in energy and discrete ordinates in angle.

The application seeks to solve numerically the equation for the unknown ψ.
This is done by iteration on the scattering source: a simple iteration where the
value of ψ for the previous iteration is used in (1c) in order to update the values
for ψ in (1a). Jacobi is used in energy groups [6]. This results in two implicit solve
iteration loops for each time-step, typically called outer and inner iterations. The
update of the value on the right hand size of (1) is partially updated in the outer
and inner iterations. The outer updates the group-to-group scattering whilst the
inner updates only the within group scattering.

It is the inversion of the streaming-collision operator (1a) that results in
a sweep across the mesh and consists of the vast majority of the runtime of
the SNAP proxy application. The discrete ordinates and spatial discretisation
results in a data dependence between cells, as pictured in Fig. 1. In order to
calculate the angular flux at the centre of each cell, the incoming face values are
required from upwind neighbours. Outgoing fluxes are then calculated to satisfy
downwind neighbour dependencies.

ψ

Upwind

Downwind

Fig. 1. Data dependency of the sweep algorithm

The original implementation of SNAP uses OpenMP threads to run in par-
allel over energy groups, and relies on automatic SIMD compiler vectorisation

432 T. Deakin et al.

over angles. The spatial domain is decomposed across MPI ranks according to
the KBA algorithm, discussed in more detail in Sect. 2.1. The sweep within each
MPI rank is conducted in serial.

SNAP is designed to perform both time-dependent and time-independent
deterministic transport solves. For the purposes of this paper we consider a
time-dependent solution and therefore require storage of the full angular flux,
rather than just the scalar flux and face angular fluxes. This imposes a sig-
nificant memory capacity requirement and it is important that this is taken
into account for discrete accelerators. The angular flux in a time-dependent
solution requires storage for two time-steps each containing all points in the
six-dimensional space/energy/angle domain.

2.1 The KBA Schedule

The data dependency between cells during the sweep requires some degree of
sequential computation. Given that the angular flux is spatially decomposed
across multiple compute nodes we require an algorithm or schedule to orchestrate
the computation which adheres to the data dependency whilst maximising the
concurrency in the wavefront.

Such a schedule was developed by Koch, Baker and Alcouffe (KBA) [5,7,15].
This method decomposes the spatial domain in one dimension less than the
total dimension of the problem: a 1D decomposition for a 2D problem and a 2D
decomposition for a 3D problem. Each node therefore contains the full domain
of a single spatial dimension, and a portion of the remaining spatial dimensions.
This is visualised in three-dimensions in Fig. 2. Each coloured 2 × 2 × 6 block of
the spatial domain is placed onto a separate compute node. Due to their long,
thin, shape these sub-domains are often described as pencils.

A sweep begins from a corner of the grid, with a single angle. The schedule
performs the sweep over all angles in this octant before sweeping all angles in the
octant starting from the cell at the opposite end of the pencil. The next corner
is then chosen until all angles are swept.

The communication occurs when a calculation reaches a sub-domain bound-
ary; once a value of the angular flux is calculated on a boundary edge for a
given angle, this value is communicated to the neighbouring node so that it may
begin or continue with the sweep. This results in a natural over-decomposition
or tiling of the spatial domain. Note that cells within a pencil on a given node
are operated on in serial in the original algorithm.

The data dependency of the sweep gives a simple task dependency graph for
the sweep of each angle. By combining the graphs of each angle, the workload
can be pipelined so that the number of idle stages is reduced; as soon as one
processor finishes their portion of work for one angle they begin the graph for
the next angle.

This algorithm has been extended to consider more modern architectures
with vector units on each processor [6]. Vector units allow for angles within an
octant to be solved concurrently in a data parallel fashion.

Many-Core Acceleration of a Discrete Ordinates Transport Mini-App 433

Fig. 2. KBA spatial decomposition in three dimensions

3 Related Work

Denovo is a three-dimensional steady state discrete ordinates code from Oak
Ridge National Laboratory [12]. It is designed to solve the time independent
version of the Boltzmann transport equation. Denovo uses the KBA algorithm
for spatial decomposition (see Sect. 2.1) and a GMRES solve for within-group
solves in contrast to the traditional iteration on a scattering source. The sweep
routine occupies over 80 % of typical Denovo execution time. As the Denovo code
solves only the steady state version of the transport equation, only the scalar
flux need be stored.

The Denovo code has also been ported to GPUs using CUDA, in particular
targeted at the Titan supercomputer [4]. Octants and energy groups are decou-
pled so that they may be solved on different portions of the machine. The spatial
domain is decomposed according to the KBA algorithm using MPI. The KBA
algorithm is also applied to thread blocks to exploit spatial parallelism within
the sub-domains. Each moment in the scalar flux is assigned to a warp.

The reference [4] shows scaling results on the early upgrade of the Jaguar
supercomputer in preparation for the full upgrade to Titan when the system was
installed with NVIDIA Fermi X2090 GPUs. Weak scaling results on this system
show that the GPU version of the sweep was up to 3.5× faster than the CPU
sweep. The same Denovo code was later run on Titan, which contains NVIDIA
Tesla K20X GPUs. The sweep routine on the GPU was 4–6× faster than the
CPU sweep running on 8 (of 16) cores per node, however the total code obtained
an overall 2× speedup for the benchmark problems [11].

Whilst these results show good speedup, Denovo does not require storage of
the angular flux as it is not time-dependent, and so is not constrained by this
challenging memory capacity requirement. Due to the limited memory capacity
of the many-core devices compared to CPU DRAM capacity, a solution which
requires storage of the angular flux requires a solution with better scalability in
order to provide the total memory footprint by using many more nodes.

Additionally, because energy groups are decomposed into separate sets in
Denovo they are solved on separate parts of the machine and so a fixed problem
size artificially requires a large node count. Because of the speedup in the sweep

434 T. Deakin et al.

routine from the GPU code, the majority of computation time shifts to other
portions of the code which require all-to-all communication to distribute updated
vectors.

A direct port of the SNAP mini-app using the CUDA framework by Wang
et al. exists and uses a similar parallelisation scheme to the original code [23].
In our previous work we showed that on a single node this approach did not
improve the performance over our benchmark CPU despite the use of GPUs [9].

4 A Many-Core Implementation

The KBA schedule discussed in Sect. 2.1 describes the spatial decomposition
between compute nodes but stipulates little about the computation within a
node. It was shown that a hybrid approach where each MPI rank should utilise
a number of cores to improve the scalability of the transport application [6], and
this approach is implemented in the original SNAP implementation.

The authors have previously demonstrated that the intra-node solve of SNAP
can be accelerated using many-core devices, such as GPUs [9,10] providing single
node speedups in line with the improved memory bandwidth of such devices.
Our previous work was, to the best of our knowledge, the first time that such a
significant speedup was achieved for a SNAP-like transport code using a many-
core processor. The within-cell concurrency of angles within an octant and of
energy groups via Jacobi was combined with the spatial concurrency of the
wavefront within a node’s spatial domain (as pictured in Fig. 3) in order to
provide an effective scheme to exploit the increased resources of the many-core
device over the multi-core CPU. However these improvements will not necessarily
transfer to a multi-node domain.

Octant 2

Octant 1

Fig. 3. Parallel sweep

Many-Core Acceleration of a Discrete Ordinates Transport Mini-App 435

KBA is used as a baseline for sweep scheduling algorithms, and so it is
important to begin with combining this schedule with our accelerated intra-
node scheme. However, this does not necessarily yield equivalent scaling results
for many-core. Sweep algorithms rely on pipelining the work to maximise the
number of busy processors while minimising the start up and tear down costs
associated with the data dependency across the decomposed spatial domain; not
all processors can begin at the start of the simulation and must wait until some
internal boundary data reaches them before they can begin. The approaches to
obtain good intra-node performance on accelerated devices require large aggre-
gation factors in the angular and energy dimensions, and so if the length of the
pipeline relies on these dimensions then the number of sweeps available to over-
lap is severely reduced and hence predicted scaling is poor; this is the case for the
algorithms of Adams et al. [1,2]. The KBA algorithm was originally designed to
allow for aggregating all angles in one octant [15]; the original authors of KBA
found that while this reduced the theoretical parallel efficiency it performed bet-
ter in practice. The SNAP mini-app uses KBA and so a fair comparison with the
same spatial decomposition is required to test how our accelerated intra-node
scheme performs at scale.

Our implementation of KBA and accelerated intra-node transport sweep uses
MPI and OpenCL. OpenCL [18] is a parallel programming framework for het-
erogeneous platforms. The basic model consists of a host and a device such as
a GPU, CPU, FPGA, etc. The host CPU and device have separate memory
regions and memory must be explicitly managed by the programmer.

Units of work are defined, called work-items. Similar to OpenMP, this unit
of work is typically the body of a loop. The work-items are mapped onto vector-
lanes of the device architecture. In general these lanes are called processing
elements, and operate in groups called compute units.

A kernel defines the problem size (number of work-items) and if required the
work-group size. A work-group is a collection of work-items. Synchronisation is
only possible within a work-group on the device and between work-groups via the
host at the end of kernels. On a CPU, each work-group would be assigned to a
core, and the work-items to vector lanes within that core. The kernel is enqueued
on (offloaded to) the device as a whole and the OpenCL runtime schedules the
computation of work-groups. The host controls the compute offload and memory
transfer through the use of a command queue.

OpenCL therefore allows a very fine grained parallel programming notation of
concurrent work. This means that it is very portable and can run on a variety of
supported architectures from different vendors. In other work we have compared
the performance of OpenCL and CUDA versions of this code and they are within
a few percent of each other.

The computation of the angular flux kernel is designed so that each work-
item computes the angular flux for one angle and energy group in one cell. The
number of work-items is the number of angles in the octant multiplied by the
number of energy groups, multiplied by the number of cells in the wavefront.

436 T. Deakin et al.

The original SNAP mini-app is written in Fortran, however OpenCL provides
a C API, and so the required parts of the mini-app were rewritten in C. This
includes the MPI communication routines so that the energy groups can be
included in the kernel solve. The original SNAP calls the MPI routines from
within the OpenMP parallel region, something which is not possible when using
an offload model such as that in OpenCL. Moving the MPI calls outside of the
group iteration loop allows us to send a single (larger) message containing data
from all energy groups, rather than one message per energy group reducing the
number times the penalty of message latency is paid.

Within a pencil sub-domain of the array according to the KBA decomposi-
tion, the many-core implementation runs in parallel over all cells within the local
wavefront. We are free to choose how many XY -planes, or chunks, we compute
before communicating to neighbouring nodes. Figure 4 shows a 2D pencil shape
where six planes numbered 1–6 are computed before communication of down-
wind fluxes occurs. The numbers show which wavefront the cells are in. Notice
that the widest (and thus most parallel) wavefront in this example occurs at
the third and fourth wavefront. There is a start-up time until this maximum
wavefront size is reached, and also a tear down cost returning back to a single
cell just before the communication.

1

2

2

3

3

3

4

4

4

5

5

6

Chunk 1 Chunk 2

Fig. 4. Chunking of KBA communication

The original SNAP implementation operates in serial over cells in the chunks
and so the start-up/tear-down costs do not appear there. For the many-core ver-
sion the number of cells in the wavefront helps to generate enough independent
work-items to keep the GPU saturated with enough work; we are running just
a single cell’s worth of work-items at the start and end of every chunk. Kernel
invocations of wavefronts consisting of just a few cells will likely under-utilise
the GPU, however generates a simpler communication pattern than an approach
suggested by Pennycook et al. for non-perpendicular chunking which avoids this
repeated start-up cost [20].

As we are performing a time-dependent solve of the transport equation we
require storage of two instances the angular flux. Our implementation requires

Many-Core Acceleration of a Discrete Ordinates Transport Mini-App 437

that this data is stored resident on the accelerator device. We will therefore be
limited by the memory capacity of the device. It is the subject of a future study
to stream the data from host memory to the device memory. However, note
that future self-hosting many-core systems, such as Intel’s upcoming Knights
Landing, may require a fully resident scheme such as presented in this paper.

5 Performance Model

The performance model proposed by Bailey and Falgout [3] predicts the runtime
of transport sweeps derived from the number of stages in the sweep multiplied
by the time to complete a stage. The time per stage is defined as the sum of the
computational time per stage C, the communication time per stage B and the
latency time per stage L. Whilst the model is just for the sweep time rather than
total application time, given that the sweeps form the majority of the runtime
of the application it should provide a reasonable approximation to runtime.

The latency time per stage L can be given as αK, for K messages per stage
and a machine dependent value α representing the time to send a message (net-
work latency). Likewise the communication time per stage B can be given as
βmΓ , where Γ is the total number of cells in the communication faces, m is the
number of bytes to communicate per cell, and β is a machine dependent value
representing the time to send a byte (inverse network bandwidth). Both α and
β are running micro-benchmarks on the machine in question.

We define the number of cells in a given three dimensional problem by the
values Nx, Ny, Nz, the number of energy groups by Ng and the number of angles
per octant Nm. We employ a two dimensional decomposition across Px × Py

processors. We also define the number of chunks (XY -planes per communication)
as η.

The number of stages is derived from the KBA scheduling algorithm. A stage
consists of calculating a chunk of the KBA pencil and communicating the values
to the neighbouring processors. Octants are pipelined in pairs where the sweeps
start from the same processor in the four corners of the processor grid. Each
one of the pairs behaves symmetrically. The processor in the opposite corner of
the processor grid must wait to receive its first message. This is Px + Py − 2
stages before the final processor can begin. Once the processor in the opposite
corner to the starting processor starts we assume that it can complete its work
uninterrupted as messages will arrive on time (this fact was demonstrated by
Adams et al. [1]). The workload is the number of chunks in the pencil for each
of the two octants.

Therefore the total time T for S stages of the sweep is given in the model (2):

T = S(C + B + L) (2a)
B = βmΓ (2b)

L = αK (2c)

S = 4
(

Px + Py − 2 +
2Nz

η

)

(2d)

438 T. Deakin et al.

Finally we must define the computational time per stage C. For a code which
uses the CPU for the sweeps we use the metric suggested by Bailey and Fal-
gout (3). This is the product of a ‘grind time’, γ, per value of the angular flux
to update in a stage. This γ gives us a tuning parameter to the model that is
related to machine characteristics. This value allows us to use regression analysis
to assist fitting the model to the data.

CCPU = γNmNgη
Nx

Px

Ny

Py
(3)

We alter this model for our GPU accelerated version. We hope to capture the
idea that running a kernel on a GPU with few work-items takes similar time to
a kernel with enough work-items to saturate a GPU device. Therefore the work
per stage is related to the number of kernel enqueues, rather than the amount
of work per cell, as specified in (4). Notice that the number of kernel enqueues
is the number of wavefronts in each chunk, and γ represents an average kernel
execution time.

CGPU = γ

(
Nx

Px
+

Ny

Py
+ η − 2

)

(4)

The model requires three machine dependent parameters: network latency
(α), inverse bandwidth (β) (time to send a byte) and an estimate of the compute
cost (γ). In order to obtain the first two metrics the benchmark b eff was run on
2048 nodes of Titan, with one MPI rank per node [21]. The benchmark reported
a network latency of α = 3.327μs and an effective bandwidth of 575 MBytes/s
per node, and so β = 1/(575 × 106).

We also ran the benchmark on 64 nodes of Piz Daint, with one MPI rank
per node and achieved a network latency of α = 1.735μs and an effective band-
width of 6354 MBytes/s per node, and so β = 1/(6354 × 106). These network
benchmarks show that Piz Daint has a higher performing network than Titan.

6 Results

6.1 Supercomputers

The Swiss National Supercomputing Centre supercomputer, Piz Daint, is a Cray
XC30 supercomputer consisting of 5,272 nodes, each containing one 8-core Intel
Xeon E5-2670 CPU and one NVIDIA Tesla K20X GPU. The nodes are connected
with the Aries interconnect according to a Dragonfly topology. The machine has
an RMAX of 6.3 PFLOPS/s [22]. Piz Daint has CUDA 6.5 with OpenCL driver
version 340.87.

The Oak Ridge National Laboratory supercomputer, Titan, is a Cray XK7
consisting of 18,688 nodes, each containing one 16-core AMD Opteron 6274 CPU
and one NVIDIA Tesla K20X GPU. The nodes are connected with the Gemini
interconnect according to a three-dimensional torus topology. The machine has
an RMAX of 17.6 PFLOPS/s [22]. Titan has CUDA 7.0 with OpenCL driver
version 346.99.

Many-Core Acceleration of a Discrete Ordinates Transport Mini-App 439

6.2 Weak Scaling

In order to assess the weak scaling of our implementation we drew inspiration
from previous weak scaling transport studies [6]. The problem is chosen with
sub-domains representing pins in a reactor, and so by weak-scaling the pencil-
shaped blocks of work per node by increasing the number of pencils one can
begin to build a model of a full reactor core. This means that both the total
amount of work and the nature of that work per node remains constant as the
problem is scaled up. We therefore use the following parameters:

– 4 × 4 × 400 cells per MPI rank with mesh size of 1.0 cm × 1.0 cm × 100.0 cm
– S32: 136 angles per octant and 32 energy groups
– 1 time-step of 0.01 s with inner convergence criteria of 1.0E − 5
– 2 orders of scattering expansion
– Computation of 4 XY planes before communication

We found that this problem requires four outer iterations, with between four and
two inner iterations per outer. Each MPI rank requires 3.6 GBytes for storage of
the angular flux. Note that we always perform an inner for each energy group in
our implementation. Each NVIDIA Tesla K20X GPU has 6 GBytes of memory,
of which 5.6 GBytes is usable by OpenCL. Our current implementation requires
the data be fully resident on the GPU and so we are limited by the memory
capacity of the GPU; our experiments are chosen to remain within this limit.

The scaling studies begin at 4 MPI ranks, and we assign one GPU per MPI
rank. This requires both vertical and horizontal communication across the inter-
connect in the 2D MPI rank layout according to KBA. We also run the original
implementation of SNAP on the CPUs in an appropriate configuration given
the memory capacity per compute node. We found that two MPI ranks per
socket/NUMA region provided the fastest run time on the CPU. On Titan this
is four MPI ranks per node, and on Piz Daint this is two MPI ranks per node.
This will allow some threading over the energy groups whilst also providing more
spatial parallelism than a layout with fewer MPI ranks.

Titan. The results from Titan can be seen in Fig. 5. It is clear that the GPU
implementation provides a speedup of around 4× over the CPU implementation.
The STREAM benchmark [17] achieves a memory bandwidth of 32 GBytes/s
on the Opteron CPUs, whilst GPU-STREAM [8] achieves 182 GBytes/s on the
K20X GPUs, a 5.7× improvement in memory bandwidth of the GPU over the
CPU. These benchmarks have no communication costs associated with them as
they are simply run on a single node. We previously showed that we obtained a
4× speedup of single node performance of our intra-node accelerated scheme on
Titan [9], and we can see here that this speedup is maintained as we weak-scale
up to thousands of GPUs.

Our performance model can be used as a comparison to the results. For the
CPU version of the model, we set γCPU = 1.8 × 10−8 in (3), and for the GPU
version we set γGPU = 8.0×10−6 in (4). Note again that γ is a tuning parameter

440 T. Deakin et al.

Fig. 5. Weak scaling SNAP on Titan

to the model that we cannot directly benchmark, and so we must choose a
value with regression. We use the benchmarked values for network latency and
bandwidth as given in Sect. 5.

The model predicts the runtime of eight octant sweeps, and so we multiply
the prediction by the number of these as reported by the application; for the
CPU this was 348 sweeps and for the GPU this was 11 sweeps. The number
of sweeps is the same as the number of inners performed, noting that the CPU
version sweeps (and counts) energy groups independently whereas the GPU code
always sweeps all groups.

The model is plotted in Fig. 5 alongside the data collected from the imple-
mentation and it is clear that our scaling results are validated by the model.
Given the choice of γ in the performance model, the scaling results are accurate
on average to 17.6 % for the GPU, and 18.8 % for the CPU runs; these accuracies
are across a very wide range of scales, from 1 to 8,192 nodes. Note that we would
not expect ‘perfect’ weak scaling of a horizontal line parallel to the x-axis in the
figure. The achieved times of the CPU runs at large scale do start to deviate
from the model, however this is likely due to network considerations on Titan,
rather than being attributed to inaccuracies the model.

It should be noted that even on four nodes the accelerated implementation
spends 55 % of the sweep time in communication. At 8192 ranks with a total
grid size of 512 × 256 × 400, 84 % of the sweep time is spent in inter-node
communication. At this scale, we obtain 35 % weak-scaling efficiency comparing
the time for four nodes to 8192. This efficiency is similar to that obtained by
the original implementation running on the CPUs. Therefore the benefits of our

Many-Core Acceleration of a Discrete Ordinates Transport Mini-App 441

improved node-level scheme utilising GPUs have successfully carried across to
the MPI version at scale, whilst running four times as fast.

The running times on Titan can be very variable, often up to a 2× differ-
ence. Whilst the time taken to complete the sweeps increases this is only in
the network time; the computation portion remains the same. There seems to
be large variability in the network performance of the Titan supercomputer at
scale, as has been shown previously for the Gemini network with the torus topol-
ogy [13,19]. In our results we have taken the minimum time across five runs. We
see the variability even within consecutive runs within the same job allocation;
node placement is not the major factor in the variability.

Piz Daint. The results of the same weak scaling experiment run on Piz Daint
can be seen in Fig. 6. The GPU implementation provides a speedup of up to 2×
over the original implementation running on the CPU. The STREAM bench-
mark [17] achieves a memory bandwidth of 41 GBytes/s on the single socket
Xeon compared to 182 GBytes/s for GPU-STREAM on the K20X [8].

Fig. 6. Weak scaling SNAP on Piz Daint

Piz Daint performs much better than Titan when it comes to time spent
communicating. At the initial point of four nodes, 42 % of the sweep time is
spent in the communications compared to 55 % on Titan. At 2048 nodes this
has risen to 60 % on Piz Daint compared to 80 % on Titan demonstrating that
Piz Daint has better network performance at scale. The communication time
then doubles when doubling the number of nodes to 4096, but the compute time
stays constant. Piz Daint consists of 5272 nodes and so this experiment is over

442 T. Deakin et al.

75 % of the whole machine. The figure also shows that parallel efficiency was at
around 70 % up to 2048 nodes. This is an improvement over Titan, and this is
likely due to the better interconnect. Communication times are between 1.3 and
3.2 times faster on Piz Daint than Titan over the weak scaling experiment. The
computation time of the sweep is also around 14 % faster on the GPUs in Piz
Daint than those in Titan; this may be due to driver versions and the improved
host CPUs in Piz Daint as the GPUs between the two machines are identical.

As before, our performance model can be used as a comparison to the results
as is shown in Fig. 6. For the CPU version of the model, we set γCPU = 9.0×10−9

in (3) (half of what we chose for Titan), and for the GPU version we set γGPU =
1.4 × 10−4 in (4). The GPU scaling results match well to the predicted values,
with an average of a 8.6 % difference. The CPU model lies within 11.9 % of the
achieved values, but does not capture the wave-like trend of the obtained results;
importantly the upward curve indicating an increase at node counts beyond 128
is captured by the model showing the scaling performance as a whole with enough
accuracy to be of use.

After each inner and outer iteration the convergence of the solution is com-
pared. The maximum change since the previous iteration of the scalar flux per
energy group is computed and shared between all MPI nodes. This requires an
MPI Allreduce operation. For the outer iteration convergence check, only the
maximum change overall is needed and so only a reduction operation over a
single value is required. As we weak scale to more nodes, the time to perform
these reduction operation increases from less than 1 % to approximately 8 % of
the runtime. The sweep still dominates the solution time requiring around 90 %
of the total time.

6.3 Choice of Chunk Size

The larger the chunk size, the fewer times we have to exhibit the start-up/tear-
down costs (see Fig. 4) and so the total time spent in the computation kernel
reduces. Note the total amount of work remains constant for all chunk sizes.
However by increasing the chunk size we increase the size of the messages that
we need to send and hence copy from the GPU to the CPU, over the network
and back onto the neighbouring GPU. Figure 7a shows the effect that chunk size
has on performance. The time to copy the data is negligible at small chunk sizes,
but the computation time is larger than the minimum achievable with a larger
chunk size. We are also not using much network bandwidth as we are sending
many comparatively small messages; approximately 140 kilobytes per message
for a chunk size of one.

Conversely for large chunk sizes the data transfer time over PCIe becomes
noticeable and the network is required to send fewer, larger messages; approxi-
mately 28 megabytes per message for a chunk size of 200. Note that in this case
we are also holding the sweep up and the MPI rank starting the sweep will sit
idle for much of the sweep execution time.

The minimum height bar in Fig. 7a will give the best trade-off between com-
putation time per node, network bandwidth and latency, and keeping all nodes

Many-Core Acceleration of a Discrete Ordinates Transport Mini-App 443

busy throughout the sweep by providing enough chunks along the pencil length
for spatial over-decomposition. Due to the data dependency of the wavefront
sweep MPI communications cannot be overlapped with computation as each
rank must always have a blocking receive. As can be seen from Fig. 7a, for Titan
the best chunk size we found was eight; on Piz Daint we found the best was 20.

Our performance model from Sect. 5 (using γGPU = 8.0×10−6 as before) also
shows this increase in running time with larger chunk size, as pictured in Fig. 7b.
The model predicts the lowest running time could be achieved with chunk size
of 2, however most small chunk sizes are very similar in runtime. The predicted
values are most sensitive to the bandwidth parameter β.

6.4 Strong Scaling

The strong scaling of deterministic transport has always presented a challenge in
the real world. The limit imposed by memory capacity means a realistic starting
point for a strong scaling study (at a few nodes) is difficult.

To begin an investigation into strong scaling, a relatively large grid was cho-
sen with common angular and energy group fidelity. The physical spatial and
time dimensions were chosen only so that the problem converged within a short
amount of time. We therefore use the following parameters which has a memory
footprint of approx. 690 GBytes:

– 256 × 256 × 256 cells with mesh size of 2.56 cm × 2.56 cm × 2.56 cm
– S8: 10 angles per octant and 32 energy groups
– 1 time-step of 0.01 s with inner convergence criteria of 1.0E − 5
– 2 orders of scattering expansion
– Computation of 4 XY planes before communication

When running this problem on Titan it was not possible to run the original
CPU code with hybrid MPI + OpenMP as the original code would hang, and so
the results were collected in this section with flat MPI with 16 ranks per node.
The original code required 347 inners to converge.

Figure 8a shows the strong scaling results obtained on Titan with the original
CPU implementation and in Fig. 8b our new version running on the GPUs.
Predicted times for both implementations are added, using predicted grind times
of γCPU = 1.8 × 10−8 and γGPU = 3.0 × 10−5.

A linear line is also plotted to demonstrate that the model (and obtained
times) are not expected to scale linearly with node count; this shows that strong
scaling is a real challenge for transport code. Note that the CPU version scaled
nearly linearly to begin with; this implies that in order to improve the scala-
bility of the many-core version we must reduce the node count by increasing
the potential memory capacity of each GPU node. However, our solution strong
scales at least as well as the state of the art for deterministic transport.

444 T. Deakin et al.

Fig. 7. Sweep timings for various chunk sizes on 64 nodes of Titan (Color figure online)

Many-Core Acceleration of a Discrete Ordinates Transport Mini-App 445

Fig. 8. Sweep timings for strong scaling

446 T. Deakin et al.

7 Conclusion

Many-core devices such as GPUs deliver memory bandwidth advantages over
traditional multi-core CPU architectures along with improved hiding of memory
latency and so are attractive for increasing performance of memory bound codes,
of which deterministic transport is one such. However, deterministic transport is
also network bound and is sensitive to careful balance of intra-node work levels
in order to obtain good performance on a large system.

We used the KBA algorithm for spatial decomposition and saturated the
GPU devices with work by solving all angles and energy groups for all cells in
the local wavefront. We have shown that good scaling is still possible when using
GPUs to accelerate the computation on the node. The GPUs themselves are also
being utilised well as we have shown they are obtaining performance increases
relative to their memory bandwidth.

By accelerating the intra-node solve, we do however make the final perfor-
mance of the transport code more dependent on the network. Over half of the
running time is spent in communication with our accelerated version. Placing
more GPU devices in a single node to avoid network communication and provid-
ing increased bandwidth and lower latency network interfaces are two possible
solutions for this at a hardware level. Additionally if the memory capacity of
GPU devices was increased it would be possible to run on fewer MPI ranks.

Our accelerated version of the SNAP mini-app shows that time-dependant
solves of the transport equation scale well enough using the regular KBA algo-
rithm. This approach is therefore valuable in the preparation of transport solvers
for the upcoming many-core Department of Energy CORAL procurement sys-
tems, Sierra and Summit.

7.1 Future Work

We intend to investigate schemes to improve the strong scalability by increasing
the size of the spatial sub-domain per MPI rank. We can stream the data to
the device so we are not limited by the memory capacity of the device, instead
using the larger memory capacity of the host and thus reducing the number of
MPI ranks required. Additionally we will implement our scheme in OpenMP 4.5
to compare a single source implementation across GPUs and Knights Landing
Xeon Phis.

Acknowledgements. This work has been financially supported by A.W.E. The
authors would like to thank the University of Bristol High Performance Computing
Group and Intel Parallel Computing Center; and Maria Grazia Giuffreda of CSCS at
the Swiss National Supercomputing Centre for access to Piz Daint. This research used
resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National
Laboratory, which is supported by the Office of Science of the U.S. Department of
Energy under Contract No. DE-AC05-00OR22725.

Many-Core Acceleration of a Discrete Ordinates Transport Mini-App 447

References

1. Adams, M.P., Adams, M.L., Hawkins, W.D., Smith, T., Rauchwerger, L., Amato,
N.M., Bailey, T.S., Falgout, R.D.: Provably optimal parallel transport sweeps on
regular grids. In: International Conference on Mathematics, Computational Meth-
ods and Reactor Physics, pp. 2535–2553 (2013)

2. Adams, M.P., Adams, M.L., Mcgraw, C.N., Till, A.T., Bailey, T.S.: Provably opti-
mal parallel transport sweeps with non-contiguous partitions. In: Joint Interna-
tional Conference on Mathematics and Computation (M&C), Supercomputing in
Nuclear Applications (SNA) and the Monte Carlo (MC) Method, pp. 1–19. No.
ANS MC2015, American Nuclear Society, Nashville, Tennessee (2015)

3. Bailey, T.S., Falgout, R.D.: Analysis of massively parallel discrete-ordinates trans-
port sweep algorithms with collisions. In: International Conference on Mathemat-
ics, Computational Methods, and Reactor Physics, pp. 1–15. American Nuclear
Society, New York, USA (2009)

4. Baker, C., Davidson, G., Evans, T.M., Hamilton, S., Jarrell, J., Joubert, W.: High
performance radiation transport simulations: preparing for TITAN. In: 2012 Inter-
national Conference for High Performance Computing, Networking, Storage and
Analysis, pp. 1–10 (2012)

5. Baker, R., Koch, K.: An Sn algorithm for the massively parallel CM-200 computer.
Nucl. Sci. Eng. 128, 312–320 (1998)

6. Baker, R.S.: An Sn algorithm for modern architectures. In: Joint International
Conference on Mathematics and Computation (M&C), Supercomputing in Nuclear
Applications (SNA) and the Monte Carlo (MC) Method. No. ANS MC2015, Amer-
ican Nuclear Society, Nashville, TN (2015)

7. Baker, R., McGhee, J., Koch, K., Morel, J.: Two Sn algorithms for the massively
parallel CM-200 computer. Submitted to Nuclear Science and Engineering (1996)

8. Deakin, T., McIntosh-Smith, S.: GPU-STREAM: benchmarking the achievable
memory bandwidth of Graphics Processing Units (poster). In: Supercomputing,
Austin, Texas (2015)

9. Deakin, T., McIntosh-Smith, S., Gaudin, W.: Expressing parallelism on many-
core for deterministic discrete ordinates transport. In: Workshop on Representative
Applications at IEEE Cluster, Chicago (2015)

10. Deakin, T., McIntosh-Smith, S., Martineau, M., Gaudin, W.: An improved paral-
lelism scheme for deterministic discrete ordinates transport. Int. J. High Perform.
Comput. Appl. (Spec. Issue) (2015, in press)

11. Evans, T.M., Joubert, W., Hamilton, S.P., Johnson, S.R., Turner, J.A., David-
son, G.G., Pandya, T.M.: Three-Dimensional Discrete Ordinates Reactor Assem-
bly Calculations on GPUs. In: Joint International Conference on Mathematics
and Computation (M&C), Supercomputing in Nuclear Applications (SNA) and
the Monte Carlo (MC) Method. No. ANS MC2015, American Nuclear Society,
Nashville, Tennessee (2015)

12. Evans, T.M., Stafford, A.S., Slaybaugh, R.N., Clarno, K.T.: Denovo: a new three-
dimensional parallel discrete ordinates code in SCALE. Nucl. Technol. 171, 171–
200 (2010)

13. Freed, J., Gupta, S., Tiwari, D.: An analysis of network congestion in the Titan
supercomputers interconnect (poster). In: Supercomuting, pp. 1–2 (2015)

14. Hoisie, A., Lubeck, O., Wasserman, H.: Performance and scalability analysis of
teraflop-scale parallel architectures using multidimensional wavefront applications
(2000)

448 T. Deakin et al.

15. Koch, K., Baker, R., Alcouffe, R.: Solution of the first-order form of three-
dimensional discrete ordinates equations on a massively parallel machine. Trans.
Am. Nucl. Soc. 65, 198–199 (1992)

16. Lewis, E., Miller, W.J.: Computational Methods of Neutron Transport. American
Nuclear Society, La Grange Park (1993)

17. McCalpin, J.D.: Memory bandwidth and machine balance in current high perfor-
mance computers. In: IEEE Computer Society Technical Committee on Computer
Architecture (TCCA) Newsletter, pp. 19–25, December 1995

18. Munshi, A.: The OpenCL Specification, Version 1.1 (2011)
19. Pedretti, K., Vaughan, C., Barrett, R., Devine, K., Hemmert, K.S.: Using the Cray

Gemini performance counters
20. Pennycook, S.J., Hammond, S.D., Mudalige, G.R., Wright, S.A., Jarvis, S.A.: On

the acceleration of wavefront applications using distributed many-core architec-
tures. Comput. J. 55(2), 138–153 (2012)

21. Rabenseifner, R., Schulz, G.: B eff v3.6. https://fs.hlrs.de/projects/par/mpi/b eff/
22. Strohmaier, E., Simon, H., Dongarra, J., Meuer, M.: Top 500, November 2015.

http://www.top500.org
23. Villa, O., Johnson, D.R., OConnor, M., Bolotin, E., Nellans, D., Luitjens, J.,

Sakharnykh, N., Wang, P., Micikevicius, P., Scudiero, A., Keckler, S.W., Dally,
W.J.: Scaling the power wall: a path to exascale. In: Supercomputing (2014)

24. Zerr, R.J., Baker, R.S.: SNAP: SN (discrete ordinates) application proxy - proxy
description. Technical report, LA-UR-13-21070, Los Alamos National Labratory
(2013)

https://fs.hlrs.de/projects/par/mpi/b_eff/
http://www.top500.org

Efficiency of High Order Spectral Element
Methods on Petascale Architectures

Maxwell Hutchinson1(B), Alexander Heinecke2, Hans Pabst3,
Greg Henry4, Matteo Parsani5, and David Keyes5

1 Department of Physics, University of Chicago, Chicago, IL, USA
maxhutch@uchicago.edu

2 Intel Corporation, Santa Clara, CA, USA
3 Intel Semiconductor AG, Zurich, Switzerland

4 Intel Corporation, Hillsboro, OR, USA
5 Extreme Computing Research Center, KAUST,

Thuwal 23955, Kingdom of Saudi Arabia

Abstract. High order methods for the solution of PDEs expose a trade-
off between computational cost and accuracy on a per degree of freedom
basis. In many cases, the cost increases due to higher arithmetic intensity
while affecting data movement minimally. As architectures tend towards
wider vector instructions and expect higher arithmetic intensities, the
best order for a particular simulation may change.

This study highlights preferred orders by identifying the high
order efficiency frontier of the spectral element method implemented in
Nek5000 and NekBox: the set of orders and meshes that minimize compu-
tational cost at fixed accuracy. First, we extract Nek’s order-dependent
computational kernels and demonstrate exceptional hardware utiliza-
tion by hardware-aware implementations. Then, we perform production-
scale calculations of the nonlinear single mode Rayleigh-Taylor instabil-
ity on BlueGene/Q and Cray XC40-based supercomputers to highlight
the influence of the architecture. Accuracy is defined with respect to
physical observables, and computational costs are measured by the core-
hour charge of the entire application. The total number of grid points
needed to achieve a given accuracy is reduced by increasing the polyno-
mial order. On the XC40 and BlueGene/Q, polynomial orders as high
as 31 and 15 come at no marginal cost per timestep, respectively. Taken
together, these observations lead to a strong preference for high order

Optimization Notice: Software and workloads used in performance tests may have
been optimized for performance only on Intel microprocessors. Performance tests,
such as SYSmark and MobileMark, are measured using specific computer systems,
components, software, operations and functions. Any change to any of those factors
may cause the results to vary. You should consult other information and performance
tests to assist you in fully evaluating your contemplated purchases, including the per-
formance of that product when combined with other products. For more information
go to http://www.intel.com/performance.
Intel, Xeon, and Intel Xeon Phi are trademarks of Intel Corporation in the U.S.
and/or other countries.

c© Springer International Publishing Switzerland 2016
J.M. Kunkel et al. (Eds.): ISC High Performance 2016, LNCS 9697, pp. 449–466, 2016.
DOI: 10.1007/978-3-319-41321-1 23

http://www.intel.com/performance

450 M. Hutchinson et al.

discretizations that use fewer degrees of freedom. From a performance
point of view, we demonstrate up to 60 % full application bandwidth
utilization at scale and achieve ≈1 PFlop/s of compute performance in
Nek’s most flop-intense methods.

Keywords: High order · Vectorization · Spectral element method ·
Nek5000

1 Introduction

The solution of partial differential equations (PDEs) is a core problem in HPC,
with particular application to computational materials science and fluid dynam-
ics. PDEs are solved by discrete approximation: space and time are sampled and
the PDEs is translated into a relation on those samples. From a mathemati-
cal point of view, these approximations are characterized by stability conditions
and convergence rates. Schemes which do not satisfy stability conditions usually
fail catastrophically with values that diverge to infinity. The convergence rate
describes the relationship between the resolution and the error. For a character-
istic inter-sample spacing h, a method is of order p if the error goes as hp. High
order methods are schemes with convergence rates higher than third order [21],
many of which expose the order as a user input.

From a computational point of view, the approximations are characterized
by sparsity, locality, and arithmetic intensity. As the order increases, the spar-
sity and locality typically decrease while the arithmetic intensity increases. The
improved convergence rates are ‘paid for’ with more floating point operations
(FLOP), on a per sample basis, while, for a given error tolerance, the num-
ber of samples can be decreased. The relationship between these computational
characteristics and computational cost is complicated by features common to
modern architectures: vector instructions, deep caches, and arithmetic-to-data
movement imbalance.

Here, we explore the relationship between order, accuracy, cost, and architec-
ture. We identify the user-facing properties of high order methods: the accuracy
in observables, time to solution, resource usage, and required scale. We also iden-
tify the user-defined inputs: the physical problem, the order, the total number
of samples, the number of processors, and the computer architectures. To make
the study more practical, we focus on the specific task of optimizing a study
of the single-mode Rayleigh-Taylor instability (smRTI) as a parameter sweep
over Grashof and Prandtl numbers. This is a high throughput use-case, where
the relevant cost is resource usage and scale is fixed with respect to the size
of the problem and assumed to not be a limitation. This leaves us with the
accuracy and resource usage versus the order, number of samples, and computer
architectures.

We select the NekBox version of the Nek5000 code (together: Nek), which
implements the spectral element method (SEM) [18] with tunable order, is known
to scale to a million ranks [16], and has been used for Rayleigh-Taylor problems

Efficiency of High Order Spectral Element 451

in the past [9]. NekBox takes advantage of static, uniform meshes to solve the
coarse part of the preconditioner with FFTs or DCTs, improving efficiency and
scalability. We extract representative order-dependent kernels from Nek and ana-
lyze their performance on BlueGene/Q and Cray XC40 supercomputers.

We also conduct a set of application benchmarks to measure the cost and
accuracy. The cost is computed in core-hours, in the same way most users are
charged. The accuracy is computed with respect to the smRTI’s bubble height
and mix volume, which are the most common observables studied in the smRTI
community. The benchmarks vary the order and total number of samples, and are
conducted on the Mira and Shaheen XC40 supercomputers at Argonne Lead-
ership Computing Facility (ALCF) and KAUST Supercomputing Laboratory
(KSL), respectively.

1.1 Outline

In Sect. 2, we review the SEM as implemented in Nek. In Sect. 3, we introduce
LIBXSMM for hardware-aware implementation of Nek’s performance critical
kernels, and demonstrate their performance in isolation. In Sect. 4, we perform a
convergence/performance study of SEM discretizations for the smRTI problem
and present full-application performance at scale. Section 5 concludes with a dis-
cussion of preferred orders on the BlueGene/Q and Cray XC40 supercomputers.

2 Nek’s Computational Core

2.1 Governing Equations and Time-Splitting

Nek5000 and NekBox solve the incompressible Navier–Stokes equations:

∂u

∂t
+ u · ∇u = −1

ρ
∇p + ν∇2u + f ∇ · u = 0, (1)

where u is the flow velocity, ρ is the fluid density, p is the pressure, ν is the
kinematic viscosity, and f consists of user-defined forcing terms. Additionally,
Nek can solve advection-diffusion equations for scalars, such as the temperature
or mass fraction:

∂φi

∂t
+ u · ∇φi = αi∇2φi + qi, (2)

where φi is the scalar value, αi is the diffusivity, and qi is a user-defined source
term, each for the ith scalar.

The time derivative is discretized with a backward difference formula (BDF),
within which the nonlinear and forcing terms are extrapolated (EX):

k∑

j=0

βi

Δt
Mun−j

i = −1
ρ
Dip

n + νKun
i +

n∑

j=1

aj

[
Mfn−j

i − (Cui)n−j
]
, (3)

where M is the mass matrix, C is the convection matrix, K is the stiffness matrix,
D is the gradient matrix, i ∈ {1, 2, 3} are the spatial dimension indexes, n is the

452 M. Hutchinson et al.

time level index, and k is the formal order of accuracy of the BDF/EX scheme.
The pressure is decoupled from the new velocity, un, by taking the divergence:

Kpn = Di

n∑

j=1

ajF
n−j
i , (4)

where Fn
i = Mfn

i − (Cui)n, which results in the Poisson pressure equation.
Finally, the pressure is incorporated back into (3):

[

νK +
b0
Δt

M

]

un
i = −Di

pn

ρ
+

k∑

j=1

[

ajF
n−j
i +

bj
Δt

Mun−j

]

, (5)

which results in three Helmholtz velocity equations.
These steps are the core of Nek5000 and NekBox: the explicit calculation of

right-hand sides, a Poisson solver for the pressure, (4), and a Helmholtz solver
for the three components of the velocity, (5).

2.2 Spectral Element Method

Nek5000 and NekBox implement SEM: a two-level discretization constructed
from tensor products of Gauss-Lobatto-Legendre (GLL) quadrature points
within elements and continuity across elements, forming a mesh. Fields are rep-
resented as

u(x, y, z) =
p∑

i=0

p∑

j=0

p∑

k=0

ũi,j,k,ehi(x)hj(y)hk(z), (6)

where p is the polynomial order of the method, e(x, y, z) is the index of the
element in the mesh, and hi(x) is the ith Lagrange polynomial through the GLL
points of element e. The choice of Lagrange polynomials leads to diagonal mass
matrices and related geometric factors. The spectral basis within each element
enjoys exponential convergence with respect to the polynomial order. GLL points
do not sample space uniformly, so concatenating elements is more effective at
reducing grid spacing than increasing spectral order. Many small elements are
also better able to match complex geometries than fewer larger ones. The spectral
element method is able to satisfy both the demand for geometric flexibility with
quasi-uniform coverage and spectral convergence, but the particular choice of
the spectral order versus the number of elements can be difficult to optimize.

In SEM, operators are written as the product of a local operator and direct
stiffness summation, which enforces continuity at the shared element boundaries.
The local operators are decomposed into tensor products of 1D operators. The
general form of an operator A is:

A = (Ax × Iy × Iz) + (Ix × Ay × Iz) + (Ix × Iy × Az), (7)

where Ax, Ay, Az are 1D projections of the operator A and I is the identity
matrix. In this way, linear operators from RN×N×N → RN×N×N can be eval-
uated in O(N4) operations instead of O(N6) [20]. This reduces the arithmetic
intensity of operator evaluation in SEM to O(p).

Efficiency of High Order Spectral Element 453

2.3 Computational Profile

The spectral element method, as implemented in Nek5000 and NekBox, spends
its time in three computational motifs: sparse communication, vector-vector,
and matrix-matrix. The sparse communication comes from the direct stiffness
summations and the coarse part of the pressure preconditioner. The vector-vector
workload comes from inner products in the solvers and frequent rescaling by
geometric factors, which are shaped like the diagonal mass matrix. The matrix-
matrix workload comes from local operator evaluation.

The direct-stiffness summation is handled by a stand-alone library [11,17]. In
Nek, the pressure solve takes roughly 30 % of the run-time, distributed between
operator application, inner products, and the preconditioner. The preconditioner
is multigrid with a local additive Schwarz part and the global coarse part [13].
In NekBox, the coarse part of the pressure preconditioner is solved directly with
FFTs or fast cosine transforms, and typically takes less than 5 % of the total
runtime. Local communication makes up a small portion of NekBox’s run time
at moderate numbers of points per processor, and Nek5000 and NekBox weak
scale effectively to millions of ranks [9].

The efficiency of the vector-vector computation is generally left to the com-
piler, aided by aggressive loop merging in the solvers. For architectures that
support them, the compiler needs help issuing non-temporal stores, which are
performance optimal only if the working set is larger than the last level cache.
These stores are used in parts of the solver and local element evaluation, and
are discussed further in Sect. 3.

Matrix-matrix is the most accessible and performance critical portion of the
workload. In particular, it is the only part of Nek that depends on the order,
holding the total degrees of freedom (DOFs) fixed.

2.4 Order-Dependent Kernels

There are two matrix-matrix routines that sit inside of the iterative solvers: the
Helmholtz operator and a basis transformation.

The Helmholtz operator is found on the left-hand side of (4) and (5):

Hu = (h1K + h2M)u,

where the special case of h2 = 0 is the Poisson operator.

1: procedure Local Helmholtz operator(Hu, u, h1, h2)
2: (Hu)i,j,k ← (Gx)i,j,k ∗∑l(Kx)i,lul,j,k � matrix-multiply size (p2, p, p)
3: for k = 0 → p do
4: (Hu)i,j,k += (Gy)i,j,k ∗∑l(Ky)j,lui,l,k � matrix-multiply size (p, p, p)
5: end for
6: (Hu)i,j,k += (Gz)i,j,k ∗∑l(Kz)k,lui,j,l � matrix-multiply size (p, p2, p)
7: (Hu)i,j,k += h1(Hu)i,j,k + h2Mi,j,kui,j,k

8: end procedure

454 M. Hutchinson et al.

G is a constant diagonal matrix derived from geometric terms and subscripts
within parenthesis refer to spatial directions. Matrix sizes are given in BLAS
notation: rows in result, columns in result, inner dimension.

The basis transformation is used to diagonalize the local Poisson operator
in the overlapping Schwarz preconditioner, to restrict and interpolate the solu-
tion and residual in the multigrid preconditioner, and to dealias the convection
operator.

1: procedure Transform(v, u)
2: fi,j,k ← ∑

l(Ax)i,lul,j,k 	 matrix-multiply size (p2, p, p)
3: for k = 0 → p do
4: gi,j,k ← ∑

l(Ay)j,lfi,l,k 	 matrix-multiply size (p, p, p)
5: end for
6: vi,j,k ← ∑

l(Az)k,lgi,j,l 	 matrix-multiply size (p, p2, p)
7: end procedure

3 Kernel Analysis and Optimization

3.1 Small Matrix Multiplications

The implementation of fast matrix multiplications, i.e., the BLAS library’s
GEMM routines, and dense linear algebra more generally is one of computer
science’s best studied fields. However, large matrices [7] have been the primary
focus and, as a result, vendor-tuned BLAS implementations do not provide
optimal performance when used for the small GEMMs in Nek. Several BLAS
libraries recently introduced so-called batched interfaces to speed-up series of
independent and small multiplications by exploiting parallelism and amortizing
calling overheads [10]. As Nek performs dependent GEMMs within each ele-
ment, batched execution would necessarily be inter-element, inhibiting impor-
tant caching optimization and consuming significantly more memory bandwidth.
Therefore, most of Nek’s computer science related work was devoted on speeding
up small GEMMs [19]. Parts of Nek5000 and the related NekCEM codes have
been independently ported to OpenACC [14,17] to speed-up small GEMMs.

Today, Nek5000 and NekBox ship with a FORTRAN-based matrix-matrix
implementation called mxm std. By default, mxm std explicitly defines multi-
ple interfaces corresponding to values of the inner dimension k, and provides
unrolled FORTRAN primitives to the compiler. For IBM’s BlueGene series,
common sizes are manually implemented for best performance in FORTRAN
assembly-intrinsics in mxm bgq. Similarly, mxm std features some special case
optimizations targeting AMD’s Opteron processor, which is used in the United
States’ largest system, Titan, at Oak Ridge National Laboratory.

In order to ensure the best possible performance on a range of mod-
ern Intel processors, featuring different versions of Advance Vector Extensions
(AVX) instructions, we would need to conduct a long and complicated tun-
ing effort of Nek’s mxm std akin to the narrow customizations already present.
Instead, we integrated an early prototype of the LIBXSMM library [1,8] into

Efficiency of High Order Spectral Element 455

NekBox. LIBXSMM provides highly-optimized single-threaded small matrix-
multiplication routines tuned for all recent Intel processors. It is already suc-
cessfully used in the quantum chemistry application CP2K and high-order finite
element seismic wave equation solver SeisSol [4].

In contrast to mxm std, LIBXSMM creates a specific kernel implementation
for each small matrix multiplication size and optimizes that kernel specifically
for each set of vector extensions. Each kernel is composed from a-priori known
and best-performing basic blocks. Remainder handling can be performed either
explicitly by application-side padding or internally by slightly less efficient fill-in
basic blocks. We rely on the latter in our integration of LIBXSMM into NekBox.

We leverage LIBXSMM’s experimental just-in-time (JIT) compilation fea-
ture to adapt at runtime to Nek’s spectral order. The JIT feature generates
a small matrix multiplication when its size is requested for the first time and
caches compiled code until the application process is terminated. Additionally,
LIBXSMM can expose the function pointer to the application to bypass future
dispatches when call patterns are simple.

As an example, we provide the integration of LIBXSMM into NekBox’s local
Helmholtz kernel from Sect. 2.4 in Listing 1.1. This fragment is called within a
loop over elements that is typically long enough to amortize overheads. When
entering the element-local operator for the very first time, we request the required
kernels from the LIBXSMM library, which JIT compiles them internally, and
store the corresponding functions pointers into persistent variables to avoid dis-
patching in subsequent calls. Compared to the pseudo-code fragment, cf. 2.4,
we use temporary buffers to separate matrix-matrix from vector-vector opera-
tions, which are performed in one step at the end of each element. The other
common matrix-matrix motifs, basis transformation in particular, are optimized
analogously.

3.2 Enhancing Element Update Performance by Streaming Stores

Caches in Intel processors are designed as write-back caches with read-for-
ownership (RFO). Therefore, writing to a vector in main memory costs two
operations: a load into the cache and the write. Nek performs many such element
updates, cf. Listing 1.1, and long vector updates in linear solvers. Compiling the
Helmholtz element update leads to 5 streams being explicitly read (gx, gy,
gz, b, u), one RFO of au and one write of au. As we stream through all
elements the RFOs are harmful for two reasons: (a) they consume bandwidth
and therefore can cause a ≈16 % performance drop; and (b) they unnecessarily
occupy cache space and might evict useful data.

Since the SSE2 instruction set, the Intel architecture offers so-called non-
temporal stores (NTS). These special instructions write data directly into main
memory without generating RFOs and consuming cache. They operate best
when being executed on vector-length aligned addresses, as cache-line splits are
impossible. The compiler cannot fulfill the alignment requirement for all orders,
because Nek stores field data compactly, which prohibits semi-automatic gener-
ation of NTS. Therefore, we implemented a FORTRAN interface module with a

456 M. Hutchinson et al.

Listing 1.1. Integration of LIBXSMM into NekBox’s element-local Helmholtz oper-
ator. xmm1, xmm2, xmm3 are persistent functions pointers to amortize LIBXSMM’s
dispatching overhead. The libxsmm dispatch call JITs the requested kernel and
populates the persistent function pointers.

logical, save :: init = .false.
type(LIBXSMM_DMM_FUNCTION), save :: xmm1, xmm2, xmm3

! lazy initialization of function-private function pointers
! to eliminate dispatching overhead
if (.not. init) then

call libxsmm_dispatch(xmm1, nx, ny*nz, nx, 1.0_dp, 0.0_dp)
call libxsmm_dispatch(xmm2, nx, ny, ny, 1.0_dp, 0.0_dp)
call libxsmm_dispatch(xmm3, nx*ny, nz, nz, 1.0_dp, 0.0_dp)
init = .true.

endif

! element-local operation
call libxsmm_call(xmm1, C_LOC(wddx), C_LOC(u(1,1,1)), C_LOC(work1))
do iz=1,nz

call libxsmm_call(xmm2, C_LOC(u(1,1,iz)), C_LOC(wddyt), C_LOC(work2(1,1,iz)))
enddo
call libxsmm_call(xmm3, C_LOC(u(1,1,1)), C_LOC(wddzt), C_LOC(work3))

! element update
au(:,:,:) = h1* (work1*gx + work2*gy + work3*gz) + h2*b*u

C-backend and x86 intrinsics that applies loop-peeling to leverage NTS for the
majority of stores in long, potentially unaligned updates. This module covers
the important kernels of Nek by offering NTS-enhanced primitives to: (a) set an
1d-array to a fixed value (b) copy an 1d-array (c) multiply component-wise an
1d array, and (d) perform the Helmholtz element update, including the special
case of the Poisson operator, h2 = 0. For case (b), Listing 1.2 depicts Intel AVX2
code.

3.3 Discussion of Performance Reproducers

In order to analyze the performance of LIBXSMM integration and the NTS mod-
ule, we have implemented standalone reproducers of the identified small matrix
multiplication motifs. They are included in the LIBXSMM library as examples
and performance tests. In contrast to NekBox, they are parallelized via OpenMP
instead of MPI, but the performance agrees within 10 % of a full NekBox exe-
cution at scale. We used a single node of the Cray XC40 and BlueGene/Q, cf.
Sect. 4.1, for generating performance data in this section.

Figure 1 compares the performance of Intel MKL 11.2.1, Nek’s own mxm std,
and LIBXSMM with and without non-temporal stores. For all element sizes,
LIBXSMM offers the best performance, but the difference for orders ≤16 are
very small as the execution is heavily memory bandwidth bound. A significant
boost is possible by leveraging NTS: we are able to sustain 100 % of the STREAM
triad bandwidth (101.6 GiB/s) up to an element size of 16. For larger problems,
the small GEMM performance is more important. Here LIBXSMM is up to 2×
faster than mxm std und up to 40 % faster than Intel MKL.

Efficiency of High Order Spectral Element 457

Listing 1.2. Loop peeling approach including determining the middle section for which
aligned NTS instructions can be used.
void stream_vector_copy(const double* i_a,

double* io_c,
const int i_length) {

int l_n = 0;
int l_trip_prolog = 0;
int l_trip_stream = 0;

/* init the trip counts to determine aligned middle section */
stream_init(i_length, (size_t)io_c, &l_trip_prolog, &l_trip_stream);

/* run the prologue */
for (; l_n < l_trip_prolog; l_n++) {

io_c[l_n] = i_a[l_n];
}
/* run the bulk, using streaming stores */
for (; l_n < l_trip_stream; l_n+=8) {

_mm256_stream_pd(&(io_c[l_n]), _mm256_loadu_pd(&(i_a[l_n])));
_mm256_stream_pd(&(io_c[l_n+4]), _mm256_loadu_pd(&(i_a[l_n+4])));

}
/* run the epilogue */
for (; l_n < i_length; l_n++) {

io_c[l_n] = i_a[l_n];
}

}

In case of very low orders the benefit of NTS is greater than 16 %, which we
attribute to NTS avoiding cache pollution. For medium sized orders we exactly
see the expected 16 %, and large problems have additional bandwidth available
such that RFOs are less harmful.

Fig. 1. Performance of the Helmholtz reproducer running on a single node of Shaheen
for different implementation of small matrix multiplications. NTS denotes the usage of
the non-temporal store optimized module. (Color figure online)

The performance numbers for the basis transformation on Shaheen are com-
parable to the Helmholtz operator and therefore not plotted. To summarize
them, LIBXSMM-based GEMMs are the fastest and, due to higher computa-
tional demand, NTS are only important of for very small 1d sizes. LIBXSMM
is able to achieve 50 % of maximum floating-point performance for moderate
orders. LIBXSMM ranges from 4× faster than mxm std and Intel MKL at the
smallest order to 40 % faster at the largest.

458 M. Hutchinson et al.

The performance of the Helmholtz kernel is representative of the basis trans-
formations kernel on Mira as well. To compare with Shaheen, Fig. 2 repeats the
Helmholtz operator reproducer experiment on a single node of Mira. IBM ESSL
version 5.1.1 is used as the vendor library in place of Intel MKL. In place of
LIBXSMM, mxm bgq, which features QPX SIMD instructions, is used for the
sizes that it supports. When no QPX implementation is available, mxm bgq falls
back to mxm std. Up to element size 16, Nek’s mxm std and mxm bgq libraries
are a better choice compared to IBM ESSL. For larger element sizes (except
22 and 24) the performance is comparable. However, the fraction of available
bandwidth used is significantly worse than on Shaheen. Even at high element
sizes, Shaheen is at 80 % bandwidth utilization with LIBXSMM and 50 % with-
out, whereas Mira runs at 17 %. The relative efficacy of mxm bgq on Mira, where
available, highlights the strength of LIBXSMM: the ability to automatically issue
the best available vector instructions at any size.

Fig. 2. Performance of the Helmholtz operator reproducer running on a single node of
Mira for different implementation of small matrix multiplications. (Color figure online)

Figure 3 depicts corresponding performance numbers for the basis transfor-
mation reproducer in three use cases: (a) unitary transformation from element
size to element size, (b) prolongation/dealiasing from 1d size to (3/2) the ele-
ment size, and (c) restriction/aliasing from 1d size to (2/3) the element size.
Note that the (3/2) factor implies some dimensions are significantly larger then
the element size shown on the x-axis.

As with the Helmholtz reproducer, the LIBXSMM-based executions are the
fastest and due to higher computational demand; NTS are only important of
for very small 1d sizes. LIBXSMM is able to achieve 50 % of maximum floating-
point performance for medium sized orders In direct comparison to mxm std
and Intel MKL, the speed-up of LIBXSMM varies between close to 4× at very
small order to roughly 40 % at very large order.

4 Scenarios and Performance

4.1 Architectures

We run on two supercomputers: Mira at the ALCF and Shaheen XC40 at the
KSL. Mira is a IBM BlueGene/Q with 49,152 nodes. Each node has 16 cores with

Efficiency of High Order Spectral Element 459

Fig. 3. Performance of the basis transformation reproducers using different implemen-
tation for the small matrix multiplications. NTS denotes the usage of the aforemen-
tioned non-temporal store optimized module. The top plot shows the diagonalization
in the local Poisson operator, the middle one the prolongation and the bottom one the
restriction case. (Color figure online)

4 hardware threads per core and can support 204.8 GFLOPS and 30 GiB/s main
memory bandwidth, measured by [15]. Shaheen is a Cray XC40 with 6144 nodes.
Each node has two Intel R© Xeon R© E5-2698v3 (code-named Haswell) processors
with 16 cores each and can support around 1177.6 GFLOPS and 101.6 GiB/s
main memory bandwidth, measured by [15]. Shaheen’s cores therefore have 2.9×
the floating point and 1.7× the memory bandwidth of Mira’s BlueGene/Q cores.

4.2 Single Mode Rayleigh-Taylor Instability

The Rayleigh-Taylor instability (RTI) occurs when the pressure and density
gradients point in opposite directions, as in the canonical case of a heavy fluid
supported on top of a lighter fluid in a gravitational field. The Rayleigh-Taylor
growth rate is an increasing function of the wave-number, up to a viscous cutoff,
making the smallest scales grow fastest. Because energy is pumped into the
system at small scales, the RTI is notoriously difficult to model numerically [5].

The RTI describes how the dense fluid is pushed through and mixes with
lighter fluid. This dynamic mixing process is essential to the behavior of flows

460 M. Hutchinson et al.

found in exploding stars [3], the oceans and atmosphere [12], and inertial con-
finement fusion. In the latter case, dense plastic ablator is pushed into and mixed
with the lighter hydrogen fuel. The carbon-laden ablator radiates energy much
more quickly than the fuel, reducing hot-spot temperature and preventing igni-
tion. The study of the RTI and related mixing is a priority research direction for
inertial confinement fusion performance [6].

Nek5000 and NekBox [2] are used to model the incompressible Boussinesq
equations, which approximate the RTI at low density contrasts:

∂u

∂t
+ u · ∇u = −∇p + ν∇2u + g̃T (8)

∂T

∂t
+ u · ∇T = α∇2T (9)

∇ · u = 0, (10)

where T is a scalar that can be interpreted as a temperature, in which case α
is the thermal diffusivity and g̃ is the product of the gravitational acceleration
and the thermal expansion coefficient.

The single-mode Rayleigh-Taylor instability (smRTI) restricts the initial per-
turbation of the interface to be sinusoidal, and is generally considered in periodic
span-wise boundary conditions:

T (x, y, z, 0) = A · erf
[
z + a0 cos(2πx/λ) cos(2πy/λ)

δ

]

, (11)

where A ∈ (0, 1] is the Atwood number, λ is the wavelength, a0 is the initial
interface amplitude, and δ is the initial interface width. This simplification allows
the problem to be defined by only two dimensionless numbers in the limit of
a0, δ → 0, the Grashof number (Gr) and the Prandtl number (Pr):

Gr =
Ag̃λ3

ν2
, Pr =

ν

α
. (12)

Even under these simplifications, the late-time behavior is not well under-
stood. Experiments are prone to spurious low-wavelength modes that dominate
the dynamics at late times, while the cost of direct numerical simulations is
quadratic with the domain’s aspect ratio.

It would be valuable to systematically sample the Grashof-Prandtl space with
high fidelity simulations at late-time/high-aspect-ratio to better inform experi-
mental design and model development. Such a study would be very expensive,
so it is important to select a cost-minimizing strategy.

We take this problem, the selection of a cost-minimizing strategy for the late-
time smRTI, as our motivation. In addition to the isolated reproducers discussed
in Sect. 3, we present NekBox application benchmarks based on smRTI with
typical Nek settings. The aim of these benchmarks is to identify minimum cost
discretizations that attain a given accuracy.

The benchmarks are conducted for combinations of the element size
taken from {4, 6, 8, 10, 12, 14, 16, 32} and span-wise mesh size taken from

Efficiency of High Order Spectral Element 461

{2, 4, 8, 12, 16, 24, 32, 48, 64, 96, 128}. The total number of points ranges from
around 1 million to 4 billion. The problem is weak-scaled: the number of ele-
ments per rank is chosen as to consume approximately half of the available main
memory, or around 16k and 262k points per rank on Mira and Shaheen, respec-
tively. The problems are constrained to fill an integer number of nodes, which
puts a lower bound on the mesh size and excludes some cases that would par-
tially fill nodes. The domain is a box with dimension [0, .5]2 × [−1, 1], and the
elements are cubic. The span-wise boundary conditions are symmetric and the
vertical boundary conditions are no-slip in velocity and no-flux (insulating) in
the scalar. The initial condition is stationary in velocity with a scalar given by
(11), the Grashof number is 17,324, and the Prandtl number is 1. The timestep
is calculated based on a Courant number of 0.4, which scales linearly with the
number of elements and quadratically with the size of the element due to the
spacing of the GLL nodes. The Courant condition is defined only in a linear
limit, so during the initial exponential growth regime the Courant number is
computed using the stagnation velocity,

√
Ag̃/(πλ).

Outputs are written at regular intervals in simulated time, constant across
problem sizes. Therefore, smaller problems perform a greater share of I/O, as is
the common case in CFD. Nek5000 and NekBox write separate files for separate
ranks. The number of ranks that participate in I/O is a fixed proportion of the
total number of ranks.

(a) Scalar (b) Vertical velocity (c) Vorticity (d) Pressure

Fig. 4. Scalar, velocity, vorticity, and pressure fields at end of simulation. (Color figure
online)

Slices of the end of the simulation are shown in Fig. 4. Two observables are
calculated in post-processing: the bubble height and the mix volume:

H = sup
{

z : min
x,y

T (x, y, z) < T0

}

, Θ =
∫

|T − T0| dV, (13)

462 M. Hutchinson et al.

where T0 is the volumetric average temperature. These two observables are com-
mon to smRTI models and lie at opposite ends of the locality spectrum: the
bubble height is defined by the neighborhood of the bubble tip while the mix
volume is an integral over the entire domain. The root mean square error in each
observable is computed over all the outputs.

4.3 Time to Accuracy

For each simulation, we compute the FLOP rate and aggregate memory band-
width. NekBox includes explicit FLOP and memory operation counters and
timers in the most performance critical regions of the code. Memory opera-
tions are counted assuming single-element intermediate data stays in cache, and
therefore does not contribute to main memory bandwidth. These counters are
consistent with those used in the reproducers. The whole application is not cov-
ered, so the counters can be considered lower bounds on the whole-application
performance.

The attained memory bandwidth per core on Shaheen and Mira are plotted
in Fig. 5. On Shaheen, bandwidth is constant with respect to the number of
elements and a weak function of the order, ranging from around 65 to 75 %
of peak. On Mira, bandwidth is still constant with respect to the scale, but
varies more strongly with polynomial order, especially at orders greater than
16 and those not divisible by 4. It ranges from around 15 to 50 % of peak. The
mxm bgq library, discussed in Sect. 3, is used, resulting in performance spikes at
QPX-supported orders, e.g. 8.

Fig. 5. Weak scaling of bandwidth on Shaheen and Mira. In (a), circles and crosses
indicate memory bandwidth per core on Shaheen and Mira, respectively, vs the problem
size labeled by element size. In (b), the ratio of the bandwidths are shown vs element
size for common discretizations. The solid line indicates ratio of STREAM memory
bandwidth. (Color figure online)

Efficiency of High Order Spectral Element 463

Fig. 6. Error with respect to bubble height, (13), vs. the computational cost, in proces-
sor hours, on Shaheen (a) and Mira (b). Points are labeled as (p+1, e) pairs, where p is
the order, p + 1 is the element size, and e is the number of elements in one dimension.
More runs are present on Mira due to the smaller BGQ nodes evenly dividing more
problem sizes.

The accuracy is plotted versus the computational cost for a variety of dis-
cretizations in Fig. 6. The error in bubble height and mix volume are strongly cor-
related, so only the error in the height is plotted. As expected, doubling the the
spectral order while keeping the number of elements fixed, e.g. (4, 32) → (8, 32)
and (8, 8) → (16, 8), significantly improves the accuracy, but also increases the
cost by 16–32×. The first 8× is due to an increase in the number of degrees of
freedom, the next 2× is due to the shorter timestep, and, when compute-bound,
the final 2× is due to an increase in the floating point load. Doubling the spec-
tral order while keeping the number of points fixed, e.g. (16, 8) → (32, 4) and
(8, 8) → (16, 4), increases the cost by 2–4×, as expected, but also improves the
accuracy. Doubling the spectral order while halving the number of points in each
direction, e.g. (8, 32) → (16, 8) and (14, 16) → (28, 4), reduces the cost by 4–8×
while maintaining or slightly improving the accuracy.

We define the efficiency frontier as the set of discretizations that minimize
computational cost for fixed accuracy or, equivalently, minimize error given fixed
computational cost. The efficiency frontiers on Mira and Shaheen are comprised
of discretizations with very high orders, given our constraints. The most efficient
schemes are those with element size greater than 16, except for very low accuracy
simulations.

4.4 Whole Application Performance

To date, our largest calculation on Shaheen occupied 131,072 cores as depicted
in Fig. 7 for element size 32. NekBox achieved 197 TiB/s memory bandwidth

464 M. Hutchinson et al.

Fig. 7. Strong scaling (left) and weak scaling (right) on Shaheen on up to 131,072 cores
(2/3) of the full 7 PFLOPS machine using an element size of 32. To avoid log plots we
show per-core performance. (Color figure online)

and 290 TFLOPS in weak scaling. This corresponds to 47.8 % of peak memory
bandwidth sustained over the entire application at high order. In case of strong
scaling these numbers are slightly lower with 130 TiB/s and 195 TFLOPS. How-
ever, the Helmholtz operator, as the most compute intense sub-routine, is able
to achieve up to 0.94 PFLOPS in strong and 1.33 PFLOPS in weak-scaling on
131,072 cores. We also consider 65,536 cores runs, occupying 1/3 of Shaheen.
These runs achieved at least 135.6 TiB/s memory bandwidth and 184.9 TFLOPS.
This corresponds to 67.5 % of peak memory bandwidth sustained over the entire
application at high order. Finally, extrapolating to full machine, NekBox would
reach at least 406.8 TiB/s and 554.6 TFLOPS. At the same scale, a weak scal-
ing of the Helmholtz operator would result into 1.9 PFLOPS out of 7 PFLOPS
performance.

5 Conclusion

NekBox enhanced by LIBXSMM generated kernels on Shaheen XC40 executes
the performance critical, order-dependent components of Nek above 80 % of peak
memory bandwidth. For comparison, compiled code on the BlueGene/Q archi-
tecture is only able to reach 50 % of peak and for many polynomial orders oper-
ates around 30 %. Therefore, despite only having 1.7× the memory bandwidth,
Shaheen’s cores outperform Mira’s cores by 3–6× with the greatest improvement
at high order and for sizes that are not divisible by the vector width, 4 in this
case. NekBox is able to scale 67.5 % utilization rates to 65,536 cores on Shaheen.

For the smRTI, the efficiency frontier, i.e. the discretizations that minimize
cost given accuracy or minimize error given cost, have polynomial orders between
15 and 31, higher than are typically used in spectral element schemes. The
presence of high order schemes on the efficiency frontier can be understood by the
combination of two effects. First, the increase in arithmetic intensity is hidden
by the imbalance between floating point capabilities and memory bandwidth,
providing high order at no marginal cost on a per time-step basis. Second, higher
order schemes with fewer degrees are freedom are more accurate than lower
order schemes with more degrees of freedom. It is generally possible to maintain
accuracy by increasing the order while decreasing the total degrees of freedom,
and, consequently the total cost.

Efficiency of High Order Spectral Element 465

Generally the order should be chosen to be at least large enough to saturate
the floating point capabilities of the architecture in the order-dependent kernels,
because increasing the order to that point significantly improves accuracy at no
marginal computational cost. On BlueGene/Q, this mark is polynomial order
15, while on the Cray XC40 it is 31.

For many problems and observables, the calculation may additionally benefit
from increasing the order until just before single-element operations spill out of
cache. The improvement in accuracy is exponential with the polynomial order,
so the degrees of freedom needed to achieve a level of accuracy can decrease. The
increase in the cost with respect to order for compute-bound orders is linear, so
if the decrease in the number of degrees of freedom needed is super-linear, the
net result is a less expensive calculation. Usage in this way, which exceeds the
largest element sizes that we ran on Shaheen, warrants further study.

More generally, high order methods with high locality, the structured ele-
ments in SEM being only one example, are able to take advantage of wider
vectors and higher compute to memory ratios to reach higher order at little
to no marginal cost on a per-step basis. However, increases in cost can come in
through coupling to the choice of time-step and an increase in iteration counts in
the solvers. These increases can often be mitigated by reducing the total number
of degrees of freedom, relative to an equivalent lower-order calculation.

The next generation will include supercomputers featuring the Xeon Phi
processor code-named Knights Landing, e.g., Cori at NERSC with more than 20
PFLOPS. As the architecture continues to evolve, we can see that updated node-
level optimizations and order-sensitivity studies are key to helping scientists
continue to perform large scale, high efficiency simulations.

Acknowledgment. This research used the resources of the Supercomputing Labora-
tory at the King Abdullah University of Science and Technology (KAUST) in Thuwal,
Saudi Arabia. This research used resources of the Argonne Leadership Computing
Facility, which is a DOE Office of Science User Facility supported under Contract
DE-AC02-06CH11357. We acknowledge useful conversations with Paul Fischer, James
Lottes, Aleksandr Obabko, Oana Marin, Michel Schanen, Scott Parker, Vitali Morozov,
Matthew Otten, and Robert Rosner.

References

1. LIBXSMM v1.0.2 (2015)
2. NekBox v2.0.0 (2015)
3. Bell, J.B., et al.: Direct numerical simulations of type Ia supernovae flames. II.

The Rayleigh-Taylor instability. Astrophys. J. 608(2), 883–906 (2004)
4. Breuer, A., Heinecke, A., Rannabauer, L., Bader, M.: High-order ADER-DG min-

imizes energy- and time-to-solution of seissol. In: Kunkel, J.M., Ludwig, T. (eds.)
ISC High Performance 2015. LNCS, vol. 9137, pp. 340–357. Springer, Heidelberg
(2015)

466 M. Hutchinson et al.

5. Dimonte, G., Youngs, D.L., Dimits, A., Weber, S., Marinak, M., Wunsch, S.,
Garasi, C., Robinson, A., Andrews, M.J., Ramaprabhu, P., Calder, A.C., Fryxell,
B., Biello, J., Dursi, L., MacNeice, P., Olson, K., Ricker, P., Rosner, R., Timmes,
F., Tufo, H., Young, Y.-N., Zingale, M.: A comparative study of the turbulent
RayleighTaylor instability using high-resolution three-dimensional numerical sim-
ulations: the Alpha-Group collaboration. Phys. Fluids 16(5), 1668 (2004)

6. Gocharov, V., et al.: Panel 3 report: implosion hydrodynamics. LLNL report
LLNLTR-562104, pp. 22–24 (2012)

7. Goto, K., et al.: Anatomy of high-performance matrix multiplication. ACM Trans.
Math. Softw. 34(3), 12:1–12:25 (2008)

8. Heinecke, A., et al.: LIBXSMM: a high performance library for small matrix mul-
tiplications. In: Poster and Extended Abstract Presented at SC 2015 (2015)

9. Hutchinson, M.: Direct numerical simulation of single mode three-dimensional
Rayleigh-Taylor experiments (2015). arXiv:1511.07254

10. Intel Corporation: Intel MKL 11.3 Release Notes. Introduced
(S/D)GEMM BATCH and (C/Z)GEMM3M BATCH functions to perform
multiple independent matrix-matrix multiply operations (2015)

11. Ivanov, I., et al.: Evaluation of parallel communication models in Nekbone, a
Nek5000 mini-application. In: 2015 IEEE International Conference on Cluster
Computing (CLUSTER), pp. 760–767. IEEE (2015)

12. Linden, P.F.: On the structure of salt fingers. Deep Sea Res. Oceanogr. Abstr. 20,
325–340 (1973)

13. Lottes, J.W., et al.: Hybrid multigrid/Schwarz algorithms for the spectral element
method. J. Sci. Comput. 24(1), 45–78 (2005)

14. Markidis, S., et al.: OpenACC acceleration of the Nek5000 spectral element code.
Int. J. High Perform. Comput. Appl. 29(3), 311–319 (2015)

15. McCalpin, J.D.: STREAM: sustainable memory bandwidth in high performance
computers. Technical report, University of Virginia, Charlottesville, Virginia, 1991–
2007. A continually updated technical report. http://www.cs.virginia.edu/stream/

16. Offermans, N., Marin, O., Schanen, M., Gong, J., Fischer, P., Schlatter, P., Obabko,
A., Peplinski, A., Hutchinson, M., Merzari, E.: On the strong scaling of the spectral
element solver Nek5000 on petascale systems. In: Solving Software Challenges for
Exascale, pp. 57–68. Springer (2016)

17. Otten, M., et al.: An MPI/OpenACC implementation of a high-order
electromagnetics solver with GPUDirect communication. Int. J. High Per-
form. Comput. Appl. (2016). http://hpc.sagepub.com/content/early/2016/02/01/
1094342015626584.abstract. doi:10.1177/1094342015626584

18. Patera, A.T.: A spectral element method for fluid dynamics: laminar flow in a
channel expansion. J. Comput. Phy. 54(3), 468–488 (1984)

19. Shin, J., et al.: Speeding up Nek5000 with autotuning and specialization. In: Pro-
ceedings of the 24th ACM International Conference on Supercomputing, ICS 2010,
pp. 253–262. ACM, New York (2010)

20. Tufo, H.M., et al.: Terascale spectral element algorithms and implementations. In:
Proceedings of the 1999 ACM/IEEE Conference on Supercomputing, p. 68 (1999)

21. Wang, Z.J., et al.: High-order CFD methods: current status and perspective. Int.
J. Numer. Meth. Fluids 72(8), 811–845 (2013)

http://arxiv.org/abs/1511.07254
http://www.cs.virginia.edu/stream/
http://hpc.sagepub.com/content/early/2016/02/01/1094342015626584.abstract
http://hpc.sagepub.com/content/early/2016/02/01/1094342015626584.abstract
http://dx.doi.org/10.1177/1094342015626584

Resilience

Scalability of Partial Differential Equations
Preconditioner Resilient to Soft and Hard Faults

Karla Morris1(B), Francesco Rizzi1, Khachik Sargsyan1, Kathryn Dahlgren3,
Paul Mycek2, Cosmin Safta1, Olivier Le Mâıtre4,

Omar Knio2, and Bert Debusschere1

1 Sandia National Laboratories, Livermore, CA, USA
{knmorri,fnrizzi,ksargsy,csafta,bjdebus}@sandia.gov

2 Duke University, Durham, NC, USA
{paul.mycek,omar.knio}@sandia.gov

3 UC Santa Cruz, Santa Cruz, CA, USA
kmdahlgr@ucsc.edu

4 LIMSI-CNRS, Orsay, France
olm@limsi.fr

Abstract. We present a resilient domain-decomposition preconditioner
for partial differential equations (PDEs). The algorithm reformulates the
PDE as a sampling problem, followed by a solution update through data
manipulation that is resilient to both soft and hard faults. We discuss an
implementation based on a server-client model where all state informa-
tion is held by the servers, while clients are designed solely as computa-
tional units. Servers are assumed to be “sandboxed”, while no assumption
is made on the reliability of the clients. We explore the scalability of the
algorithm up to ∼12k cores, build an SST/macro skeleton to extrapolate
to ∼50k cores, and show the resilience under simulated hard and soft faults
for a 2D linear Poisson equation.

1 Introduction

As computing platforms evolve towards exascale, several key challenges are aris-
ing related to resiliency, energy consumption, memory access, concurrency and
heterogeneous hardware [1,6,7,10,11]. There is no consensus or clear idea yet on
what a “typical” exascale architecture might look like [1]. One of the main con-
cerns is understanding how the hardware will affect future computing systems in
terms of reliability, communication and computational models, and which ones
will emerge to become the main reference for exascale.

Exascale simulations are expected to rely on thousands of CPU cores running
up to a billion threads [6,7]. This framework will lead to systems with a large
number of components, and large communication cost for data exchange. The
presence of many components and the increasing complexity of these systems,

I’m an employee of the US Government and transfer the rights to the extent
transferable (Title 17 §105 U.S.C. applies)

c© Springer International Publishing Switzerland 2016 (outside the US)
J.M. Kunkel et al. (Eds.): ISC High Performance 2016, LNCS 9697, pp. 469–485, 2016.
DOI: 10.1007/978-3-319-41321-1 24

470 K. Morris et al.

e.g. more and smaller transistors, and lower voltages, can become a liability in
terms of system faults. Exascale systems are expected to suffer from errors and
faults more frequently than the current petascale systems [6,7]. Current parallel
programming models and implementations will require a resilient infrastructure
to be suitable for fault-free simulations across many cores in reasonable amounts
of time.

In general, system faults can be grouped under two main categories, namely
hard and soft faults [6,16]. Hard faults can cause partial or full computing nodes
to fail, or the network to crash. These faults have an evident impact on the run
and the system itself. Soft errors, on the other hand, are more subtle because
some of them can be undetected, e.g. in the case of silent data corruption (SDC).
The reason is that their effect is simply to alter information where it is stored,
transmitted, or processed. The key feature of silent errors is that, when unde-
tected, there is no opportunity for an application to directly recover from the
fault when it occurs.

Currently, application checkpoint-restart is the most commonly used tool for
fault-tolerance [6]. This approach is in fact straightforward and robust, but it is
anticipated that in future extreme scale systems it will not be suitable because
the time for checkpointing and restarting will exceed the mean time to failure
[6,7,21]. Also, check-pointing can lead to substantial overhead depending on
the simulation size [4]. Improving reliability and efficiency for future extreme
scale systems is thus becoming increasingly important. This is crucial in the
context of large-scale scientific problems, ranging from climate predictions, to
nano-engineering, medicine and biology, where complexity can only be tackled
with large computing power and time.

In this paper, we present a domain-decomposition preconditioner for the solu-
tion of 2D partial differential equations (PDEs) targeting resilience to both hard
faults and silent data corruption in the form of bit-flips. This work is part of
Resilient EXtreme Scale Scientific Simulation (REXSSS), a project focusing on
developing novel approaches for resilient extreme scale computing. The algorithm
presented consists of recasting the original PDE as a sampling problem, followed
by a resilient data manipulation to achieve the final solution update. One of the
main features is that the algorithm does not need to detect all types of system faults
that can occur, but focuses solely on the information that a simulation provides.

For the implementation, we rely on a server-client model (SCM) grouping
MPI processes into servers and clients. For the purpose of this work, the servers
are assumed to be safe (or “sandboxed”) units holding the data. The clients are
designed solely to accept and perform work without any assumption on their relia-
bility. A client is simply defined as a set of MPI processes, which can take up part or
all of a computing node. A key advantage of this structure is its inherent resiliency
to hard faults, provided that the MPI framework is fault-tolerant. Since the actual
data is safely held by the servers, the SCM is inherently resilient to clients crashing
(partial or complete node failures), as this translates to missing tasks.

We analyze the scalability of the algorithm and implementation up to ∼12k
cores, and complement it with an SST/macro [32] skeleton of our application to
extrapolate the performance up to ∼50k cores. To test resilience, two different

Scalability of PDEs Preconditioner Resilient to Soft and Hard Faults 471

types of faults are considered: hard faults modeling clients crashing, and soft
faults in the form of bit-flips occurring on the clients during task execution.
These faults are modeled using a Poisson process with a failure rate extracted
from the literature. We demonstrate the resiliency of the algorithm for a 2D
linear elliptic PDE, and explore the effect of the faults.

The main innovations of this work are: (a) the reformulation of the PDE solve
so it is reduced to a number of independent tasks to increase concurrency and
parallelism, and (b) the ability to inherently mitigate the effects of both hard
and soft faults that may occur in the execution of those tasks. To frame this work
in the proper context, our approach is intended for future exascale platforms,
with fault rates so high that checkpoint-restart will not be a viable option, and
current solvers will fail to adequately scale due to system size. As such, the
current version of our application is not meant to be competitive with current
state-of-the-art solvers on today’s computational platforms. Rather, it is an early
version of a novel domain-decomposition-based approach targeting scaling and
resilience to soft and hard faults on exascale platforms. Our approach can be
seen as a preconditioner that will enable today’s solvers to be used effectively
on future architectures by operating on subdomain levels.

The paper is organized as follows. In Sect. 2, we discuss related work; in
Sect. 3, we describe the mathematical formulation; in Sect. 4, we illustrate the
implementation details; in Sect. 5, we present the results, focusing on the scala-
bility Sect. 5.1, and resilience Sect. 5.2. Finally, Sect. 6 presents the conclusions.

2 Related Work

On the path to extreme-scale computing, one of the main efforts being pur-
sued is resiliency and fault-tolerance at various levels, namely solutions based
on hardware, software and combinations of the two [30]. In the case of hard-
ware solutions, developers consider mechanisms for preventing hardware errors
as well as the detection and subsequent correction of errors, e.g. through the re-
execution of failed instructions. The increased cost and overhead associated with
node reliability is potentially mitigated through the construction of computing
systems with a heterogeneous infrastructure [30].

Approaches to fault-tolerance also include algorithm-based fault tolerance
(ABFT) [4,8,12], process-level redundancy [28], and algorithmic error correction
code [23]. ABFT is labeled as a non masking approach because algorithms need
to integrate ABFT by incorporating some level of redundancy [6]. If an error or
a fault occurs, data redundancy allows reconstruction of the missing part of the
result. It is increasingly recognized that new approaches need to be incorporated
at the algorithm’s level to account for potential faults, so that the algorithms
themselves are made more robust and resilient, without relying exclusively on
hardware.

Domain decomposition methods [19] are easy to parallelize. While the scal-
ability and convergence of these methods have been extensively studied in
both PDE, see e.g. [24,31], and linear solvers, see e.g. [2,15,18], we are not

472 K. Morris et al.

aware of any fault resilience study specific to domain decomposition algorithms.
Chen et al. [8] proposed an algorithm-based recovery method for iterative system
solvers to enable resilience to fail-stop failures based on data partitioning tailored
to the characteristics of the iterative scheme, while Larson et al. [20] achieved
fault tolerance by combining solutions on sparse grids. Both approaches can
in principle be reformulated in a domain decomposition paradigm, but with a
distinct flavor of fault-detection or redundancy present.

Most of the work related to the development of resilient algorithms relies on
the detection of a fault and the process to overcome its effect [5,13,29]. The
work we present here circumvents the need for fault and error detection and at
the same time exploits the foreseen heterogeneity of the future extreme-scale
platforms to enable the resiliency of the overall algorithm.

3 Mathematical Formulation

We present the formulation for a generic 2D elliptic PDE of the form

Ly(x) = g(x), (1)

where L is an elliptic differential operator, g(x) is a given source term, and x =
{x1, x2} ∈ Ω ⊂ R

2, with Ω being the target domain region. We focus on Dirichlet
boundary condition y(x)|x∈Γ = yΓ along the boundary Γ of the domain Ω. A
formulation of the algorithm focusing on 1D elliptic PDEs can be found in [26].
Elliptic equations are chosen as a test case because they represent fundamental
problems encountered in physics, and also pose challenges within many scientific
simulations, e.g. the pressure Poisson equation for the incompressible Navier-
Stokes equations, or the solution of the electrostatic configuration in molecular
dynamics. The algorithm below is conceptually not limited to elliptic PDEs, and
we are currently working on its extension to parabolic and hyperbolic PDEs,
which will be the subject of future publications. Moreover, it can be readily
extended to 3D domains as well.

Figure 1 shows a high-level schematic of the algorithm’s workflow. The start-
ing point is the discretization of the computational domain. In general, the choice
of the discretization method is arbitrary, potentially heterogeneous across the
domain, e.g. uniform, or non-uniform rectangular grid, or a finite-element trian-
gulation, etc.

The second step is the partitioning stage. The target 2D domain, Ω, is par-
titioned into a grid of nx1 × nx2 overlapping regions (or subdomains), with nxk

being the number of subdomains along the xk-th axis. The size of the overlap
does not need to be equal and uniform among all partitions, and can vary across
the domain. The partitioning stage yields a set of nx1 ×nx2 subdomains Ωij , and
their corresponding boundaries Γij , for i = 0, . . . , nx1 −1, and j = 0, . . . , nx2 −1,
where Γij represents the boundary set of the ij-th subdomain Ωij .

One of the advantages of the above decomposition for the elliptic problem
in Eq. (1) is that if we know the solution along the subdomain boundaries, then
this information can be used as boundary condition within each subdomain,

Scalability of PDEs Preconditioner Resilient to Soft and Hard Faults 473

Fig. 1. Schematic of the workflow of the algorithm. For clarity, starting with stage 2 we
only show the steps for Ω01 but the same “operations” are applied to all subdomains.

to perform a single local solve that yields the full solution over the full domain,
Ω. Consequently, we define as our object of interest the set of solution fields
along the boundaries, which we denote y(x)|x∈Γij

for i = 0, . . . , nx1 − 1, and
j = 0, . . . , nx2 − 1. Due to the overlapping, each subdomain Ωij includes inner
boundaries, Γ in

ij , i.e. the parts of the boundaries contained within Ωij that belong
to the intersecting (neighboring) subdomains. The core of the algorithm relies
on exploiting within each subdomain Ωij the map relating the solution at the
subdomain boundaries, y(x)|x∈Γij

, to the solution along the inner boundaries,
y(x)|x∈Γ in

ij
. These maps can be written compactly as

y(x)|x∈Γ in
ij

= f (ij)
(
y(x)|x∈Γij

)
, (2)

for i = 0, . . . , nx1 −1, and j = 0, . . . , nx2 −1. The system of equations assembled
from these boundary-to-boundary maps collected from all subdomains, combined
with the boundary conditions on the full domain y(x)|x∈Γ , yields a fixed-point
problem of the form

y(x) = Fy(x), (3)

where y represents the vector of the solution values at all subdomains boundaries.
This problem is only satisfied by the solution of Eq. (1). We remark that these
boundary maps f (ij) relate the y-values, since they are built from the restrictions
of the subdomain solutions at the corresponding boundaries. As outlined in
[26], even though general (non-)linear solvers can solve the fixed point problem,

474 K. Morris et al.

this approach is not the best because it involves an overhead due to global
communication and would require on the fly subdomain solutions to evaluate
the maps.

The method adopted in [26] for 1D problems, which we carry over in the
current work, is to construct approximations (or surrogates) of the boundary-
to-boundary maps, which we call f̃ (ij). One of the key features of the algorithm
is that the construction of these maps can be done for each subdomain inde-
pendently from all the others. This allows us to satisfy data locality and avoid
the overhead due to communication, which is crucial to achieve scalability on
extreme scale machines. To build these surrogate maps, given a current “state”
of the solution at the subdomains boundaries, we use a sampling strategy to solve
the target PDE equation locally within each subdomain for sampled values of
the boundary conditions on that subdomain, see stage 3 in Fig. 1. These samples
are used within a regression approach to “infer” the approximate boundary-to-
boundary maps. For non-linear problems, the maps are non-linear and using
linear surrogate maps will carry an additional source of discrepancy, due to the
linear approximation of a generally non-linear map. For linear PDEs, instead, as
shown in [26], the boundary maps are linear as well.

The construction of the boundary-to-boundary maps plays a key role for
addressing soft faults. As shown in [26], when inferring linear maps, using a suit-
able �1-error model one can seamlessly filter out the effects of few corrupted data.
The �1 noise model allows us to find the solution with as few non-zero residuals
as possible. Under the assumption that faults are rare and provided that the case
targeted is linear, the inferred maps will fit the non-corrupted data exactly while
effectively ignoring the corrupted data. In the present work, we employ an iter-
atively reweighted least squares (IRLS) method, which is effectively equivalent
to a �1 minimization [9].

Following the construction of the surrogate boundary-to-boundary maps, we
can then solve the approximate version of the fixed point system in Eq. (2), which
provides us with the new solution state at all the subdomains boundaries and
represents an approximation of the solution. In the case of linear PDEs, because
the boundary-to-boundary maps are linear and assuming an ideal scenario where
no faults occur, the approximate solution obtained after one iteration is exact.
An important measure of the accuracy of the current solution y(x)|x∈Γij

is the
residual vector, defined as

z(T) = Fy(T) − y(T), (4)

which can be computed by extra subdomain solves using boundary conditions
defined by the current solution y(T), and subtracting the corresponding current
solutions y(T) from the resulting values at all boundaries. Given the fixed-point
problem in Eq. (3), the residual in Eq. (4) vanishes if y(T) is the exact solution.
The above outline of the algorithm shows that the original PDE problem is prac-
tically recast as a sampling problem, followed by a resilient data manipulation
to achieve the final solution update.

Scalability of PDEs Preconditioner Resilient to Soft and Hard Faults 475

4 Implementation Details

We have developed a parallel, C++ implementation of the algorithm using a
server-client model (SCM). In this section, we describe the SCM and its resilience
properties; how we implement each stage of the algorithm to exploit the inherent
SCM model’s resilience; and an SST/macro [32] skeleton model of the algorithm
that we use for performance and scalability analysis.

4.1 Server-Client Model

Figure 2 shows a schematic of our SCM structure. We adopt a cluster-based
model, namely the MPI ranks are grouped into separate clusters, with each
cluster containing a server and, for resource balancing purposes, the same num-
ber of clients. These clusters are designed such that all servers can communicate
between each other, while the clients within a cluster are only visible to the server
within that cluster. Moreover, within any given cluster, clients are independent,
i.e. each client handles a different work unit and they cannot communicate with
each other. This design allows us to have clients failing without affecting any
other clients. Only the work being executed by that client is affected. From a
practical standpoint, this structure is enabled by constructing an inter-server
communicator, which links all the servers and is only visible to the servers; a
cluster communicator, shared among a server and its clients; and an intra-client
communicator defined for each client, which is only visible to the ranks defining
that client. The data is distributed among the servers, and these are assumed
to be highly resilient (safe or under a “sandbox” model implementation). The
sandbox model assumed for the servers can be supported by either hardware
or software. The former assumption is supported by hardware specifications on
the variable levels of resilience that can be allowed within large computer sys-
tems. In the case of software support, a sandbox effect can be accomplished by a
programming model relying on data redundancy and strategic synchronization
[5,14,22].

This sandboxing model implies an overhead both in terms of needing extra
nodes, and the cost to make those extra nodes safe to faults. This overhead
and its cost should be examined with respect to the benefits this would yield
for resilience purposes. In other words, one should explore whether investing in
sandboxing a subset of the machine components offsets the cost one would have
to face if adopting a different model. The sandboxing model also has potential
benefits for energy purposes, since it would allow variable energy consumption
across the machine. For example, while the servers could be run in a highly
reliable hardware/software configuration, the client nodes could be run in less
reliable configuration (lower voltage, less error correction levels, etc.), which
would result in a lower energy cost that may offset the server overhead. Effective
approaches for sandboxing servers to make them safe to faults are the subject
of ongoing research in the community.

Since the servers hold the data, they are responsible for generating tasks,
dispatching them to their pool of available clients, as well as receiving and

476 K. Morris et al.

Fig. 2. Schematic of the server-client structure. (Color figure online)

processing tasks. Currently, the framework is designed such that data is distrib-
uted among the servers once during the setup stage. We are currently working
on relaxing this constraint to allow dynamic load balancing, i.e. designing the
servers such that they can exchange/steal work during runtime.

A client is defined as a set of MPI processes, and is designed solely to accept
and perform work without any assumption on its reliability. To minimize com-
munication, the root rank of a client is the only one receiving from the server a
new task to perform. This paradigm can be exploited in certain hardware config-
urations because leveraging local communication within a client is more efficient
than having the server communicate a task to all the MPI ranks in a client. One
example is the case where all ranks of a client live in the same node, so that one
can exploit in-node parallelism and faster memory access. After receiving the
task, the root process then broadcasts it to all the other ranks in the client, so
that the client as a whole works in parallel to solve the task. The implementation
also supports the capability of having the root rank of a client receiving multiple
tasks, and distributing them among all the children ranks of that client so that
each child rank works on an individual task. This working mode is useful when
tasks are lightweight such that it becomes more efficient to have all ranks in
a client solving individual tasks, rather than having all ranks working together
to solve in parallel the same task. All communications between a server and its
clients are done with non-blocking operations, allowing us to overlap them on
the server side with the computational operations involved in the creation and
processing of the tasks. Given that our code is based on complex C++ objects,
e.g. the tasks objects themselves, we leverage the Boost serialization/MPI library
to enable object communication via MPI.

Scalability of PDEs Preconditioner Resilient to Soft and Hard Faults 477

A key property of the SCM structure is the inherent resiliency to hard faults,
provided that the MPI framework is fault-tolerant. This is because clients crash-
ing (partial or complete node failures) only translates into missing tasks. Of
course, this needs to be complemented by making the application resilient to
hard faults, i.e. designing the algorithm so that it can deal with missing data.

4.2 Algorithm Implementation

The algorithm described in Sect. 3 involves four main stages: sampling, regres-
sion, fixed-point solve, and updating. As illustrated before, sampling and regres-
sion can be performed within each subdomain independently and concurrently.
This feature reveals their task-based nature, and is therefore implemented in
the form of tasks executed by the clients. On the other hand, the fixed-point
solve of the boundary-to-boundary maps system and the updating of the sub-
domains are executed by the servers, since they fully own the state information.
The system of equations built from the boundary maps is much smaller than
the original discretized PDE system over the full domain grid, and so it fits on
a small number of servers. Moreover, the servers are “sandboxed”, allowing us
to circumvent any potential data corruption during these operations.

4.3 Skeleton Model for Performance Analysis Without Faults

We have developed a skeleton of the algorithm by stripping away all operations
except for communication and control statements. This skeleton is useful for
identifying the basic control flow of the algorithm, and allows the estimation of
the algorithm’s performance through the SST/macro library [32]. SST/macro
is a library for simulating applications running on architectures using network
discrete events. More specifically, relying upon models of a target architecture,
SST/macro estimates the performance of processing and network components
without incurring the cost of doing actual message passing or computation oper-
ations. Accordingly, SST/macro skeletons only need to contain the control flow
and message passing behavior of actual applications. The library can thus be
used to estimate the performance of a given application on new or existing
architectures without launching the application on the actual target machines.

5 Results

As a test case, we rely on the following 2D linear elliptic PDE

∂

∂x1

(

k(x)
∂y(x)
∂x1

)

+
∂

∂x2

(

k(x)
∂y(x)
∂x2

)

= g(x), (5)

where k(x1, x2) is the diffusivity, and g(x1, x2) is the source term. This PDE
is solved over a unit square Ω = (0, 1)2, with homogeneous Dirichlet boundary
conditions. The diffusivity and source fields are defined as

478 K. Morris et al.

k(x1, x2) = 8.0 ∗ exp(−d(x1, x2)/0.025) + 2.0, (6)
g(x1, x2) = 2.0 ∗ exp(−d(x1, x2)/0.050) − 1.0, (7)

where d(x1, x2) = (x1−0.35)2+(x2−0.35)2. To solve the above PDE within each
subdomain, we employ a structured grid and second-order finite differences to
discretize Eq. (5). The resulting linear system stemming from the finite-difference
discretization of the local problem is solved using the parallel solver AztecOO
in Trilinos [17].

5.1 Nominal Scalability

In this section, we concentrate on the scalability achieved in the absence of
faults, and focus on the communication-intensive stages of the algorithm. The
scalability tests were performed on Edison (NERSC), a Cray XC30, with Peak
performance of 2.57 Petaflops, Cray Aries high-speed interconnect with Dragon-
fly topology with ∼8 GB/sec MPI bandwidth (http://www.nersc.gov). Table 1
lists the parameters used for the scalability runs strategically chosen to complete
the tests we envisioned within the available allocation time.

Table 1. Scalability tests.

Weak Strong

Subdomains 122, 182, 242, 302, 482 322

Total cores 3088, 6948, 12352, 19300, 49408 3088, 12352, 49408

Subdomain grid size ∼1152 ∼1152

Overlap (# cells) 12 12

Servers 16, 36, 64, 100, 256 16, 64, 256

Number of clients/server 48 48

Size of each client 4 4

Weak Scaling. Due to the properties of the SCM, the weak scaling can be setup
in two possible ways. The first involves fixing the number of servers, and as the
problem size increases, the number of clients is proportionally increased. One
drawback of this approach is that it limits the size of the problem that one can
tackle, because the number of servers is fixed. This configuration would work well
for small problems, but in the limit of the problem size increasing, the memory of
the servers would impose a constraint. The alternative is a configuration where
the number of clients per server and the amount of data owned by each server
is fixed, and the problem size is increased by adding increasingly more clusters.
This setting imposes no constraint on the problem size. This is the case that we
adopt in this work, as shown in Table 1.

http://www.nersc.gov

Scalability of PDEs Preconditioner Resilient to Soft and Hard Faults 479

Fig. 3. Nominal weak scaling results (i.e. without faults): left panel shows the compar-
ison between the results obtained with the SST/macro skeleton and REXSSS, while
the right panel shows the results obtained with the SST/macro skeleton only. (Color
figure online)

Figure 3 shows the results for the weak scaling. The full REXSSS code has
been tested up to ∼12k cores, while the SST/macro skeleton was used to extrap-
olate the behavior up to ∼50k. The efficiency stays within 95% for the REXSSS
code, and the behavior is qualitatively well reproduced by the SST/macro skele-
ton. The discrepancy is partially due to the fact that the skeleton only approx-
imates the full code, and that while the skeleton relies on regular MPI, the full
code uses the Boost serialization/MPI library, which introduces overhead. The
excellent weak scalability is further confirmed by the extrapolation run with the
SST/macro model, showing approximately the same efficiency up to ∼50k.

Strong Scaling. For a given fixed problem size, the strong scaling can be setup
in three different ways. One involves fixing the number of servers and the size of
each client, and increasing the computational power by adding more clients per
server. The second involves fixing the number of servers and number of clients per
server, and increasing the size of each client to increase the overall computational
power. The third involves defining a cluster as the reference computational unit,
and increasing the numbers of clusters to add computational power. In this work,
we focus on the third scenario because it is consistent with the setup used for
the weak scaling, namely having a cluster as reference unit.

Figure 4 shows the strong scaling results obtained through the SST/macro
skeleton up to ∼50k. The plot shows that the scaling is excellent, only slightly
deviating from the ideal trend. This result confirms that the application is not
limited by communication. Tests with REXSSS are ongoing to confirm this
strong scaling behavior.

5.2 Resiliency

The key property of our algorithm is its resilience. In this section, we now focus
on showing the resiliency of the algorithm under simulated system faults, and

480 K. Morris et al.

Fig. 4. Nominal strong scaling results (i.e. without faults). (Color figure online)

explore the effect of the faults on the algorithm performance. We focus on two
different types of faults: hard faults, which can only affect the clients (servers
are safe), and cause a client to crash; and SDC during computation while a
client is performing work. We evaluate the resilience against SDC affecting the
numerical data used in the algorithm and we exclude other types of faults, e.g. in
data structures or control flow, since these issues represent a different problem.
All the runs are performed with the full REXSSS code.

Failure Distribution. To simulate the occurrence of faults, we assume a Pois-
son process, defined by a constant average rate, r (failures/time), and a failure
distribution, F (t) = 1−exp(−rt). Using an exponential distribution implies that
the process is assumed “memoryless”, i.e. each event is independent of the other.
If a different model was used, this would not affect the results of this study as
our focus is on how our approach handles faults, regardless of how they occur in
time.

To define suitable failure rates for modeling the occurrence of the faults, we
rely on the data in [27]. We extract failure rates by scaling up the results found
in [27] assuming future architectures to have a 104-way local concurrency within
nodes (stemming from a combination of cores and threads), and comprising 105

nodes. From the analysis, we obtain for hard faults r1 = 5 · 10−5 and r2 =
1.8 · 10−4 (nfaults/sec), while for SDC we have r1 = 4 · 10−5 and r2 = 1.7 ·
10−4 (nfaults/sec).

From an implementation standpoint, to simulate the occurrence of a fault
for a target operation we proceed as follows. For a given failure rate, we draw
a sample from a standard uniform random number, and extract from the cor-
responding failure density F (t) the amount of time until the next fault occurs.
We then measure the execution time for the target operation to complete, and

Scalability of PDEs Preconditioner Resilient to Soft and Hard Faults 481

if that time exceeds the next failure time, then a fault is triggered. Once the
fault is triggered, if it is a SDC, then the result of the task is corrupted. If it is
a hard fault, then all ranks of that client are set idle to mimic the case of a lost
(crashing) client. This enforces no further communication between that client
and its server since the client is no longer visible to the server. We are currently
working on an implementation using User Level Fault Mitigation (ULFM) MPI
[3], a fault tolerance capability proposed for the MPI standard. This will allow
us to actually kill MPI ranks without causing the MPI framework to exit with
failure. Some of the complications related to fault tolerant MPI implementations
stem from the need to reconstruct broken MPI communicators, which is required
by a regular SPMD application to proceed after the loss of an MPI rank. The
advantage of the SCM we are proposing is that this can be circumvented by sim-
ply not rebuilding a lost client, and having the server distributed tasks among
the remaining clients.

Test Problem and Discussion. To show resiliency, we consider a problem
involving 482 subdomains, distributed among 48 servers. Each server-client clus-
ter includes 48 clients each made of 1 rank. The local grid within each subdomain
is ∼1002. We consider three runs, one with no faults that is used as a reference,
and two runs with faults based on the rates defined before. The correspond-
ing number of cores is in all cases 2352, and all runs are performed on Edison.
We anticipate that to have a more statistically meaningful analysis an ensem-
ble of runs would be needed, but this objective was prohibitive to obtain on
Edison. However, a resilience analysis based on ensemble runs was performed for
a smaller PDE test and can be found in [25].

Fig. 5. (Left): root-mean-square (RMS) error of the residual in Eq. (4); (Right): blue
is used to show the number of faults broken down by category, while red is used to
visualize the time to converge t normalized by t∗, which is the corresponding time for
the faultless case. (Color figure online)

Figure 5 shows key results obtained for the resilience runs. The left panel
shows the root-mean-square (RMS) residual in Eq. (4) for each test run,

482 K. Morris et al.

computed from the value of the residual at each boundary location. Color-coded
blue is the region of acceptance, i.e. the region of RMS values where the runs are
considered successful. The reason this envelope is very tight around very small
RMS is that, as anticipated before, when the algorithm is applied to a linear
PDE, the boundary-to-boundary maps are linear and are inferred exactly. Con-
sequently, when the fixed-point system is solved with sufficiently small tolerance,
the final error is close to machine precision. The figure shows that in all cases,
the solution converges, regardless of the number of faults occurring. The right
panel shows in blue the number of faults affecting each run, broken down by
category, while in red we plot the time to converge, t, normalized by t∗, which
is the corresponding time for the no faults case. Despite the fact that in the r2
case about 600 clients are lost out of an initial pool of 2304, and the simulation
is affected by about 600 SDCs, the results show that the runtime stays approx-
imately constant. At first glance, this result seems to imply that the run-time
is bound by communication costs. In the present work, however, as seen from
the scalability plots, the SST/macro model allowed us to determine that the
messages are indeed small enough to not cause any bottleneck for the applica-
tion. The negligible effect of the faults on the runtime is due to the overhead
caused by the Boost serialization/MPI library, which tends to make the effec-
tive communication costs much higher than with pure MPI. These results show
that using the Boost serialization library prevents us from quantifying the real
overhead of the resiliency. We are currently working on addressing this question
using regular MPI.

6 Conclusions

This study presented a domain-decomposition PDE preconditioner that is
resilient to hard and soft faults, and showed its application to a 2D elliptic
problem involving a steady diffusion equation with variable coefficients. The
algorithm exploits a novel reformulation of the problem that allows us to cast it
into a sampling problem over a set of subdomains such that “data” is generated,
and then suitably manipulated to yield the final updating of the solution state.

We discussed a server-client-based implementation, and presented its scala-
bility. The weak scaling showed a 95% efficiency up to 12k cores. The analysis
was complemented by building a SST/macro skeleton of our application which
allows us to estimate both weak and strong scalability to 50k cores. The results
showed excellent scalability over the range explored.

The paper finally showed the resilience of the algorithm under the SCM
implementation with both simulated hard faults and SDCs. The results showed
convergence in all cases. They also revealed that the overhead due to the presence
of faults is negligible, being within 2%, even though up to 35% of the clients die
and about 600 SDCs occur during the run performed for the largest failure rate.
This effect, however, is due to the use of the Boost serialization/MPI library.

Scalability of PDEs Preconditioner Resilient to Soft and Hard Faults 483

Acknowledgments. Sandia National Laboratories is a multi-program laboratory
managed and operated by Sandia Corporation, a wholly owned subsidiary of Lock-
heed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Secu-
rity Administration under contract DE-AC04-94AL85000. This material is based upon
work supported by the U.S. Department of Energy, Office of Science, Office of Advanced
Scientific Computing Research, under Award Numbers 13-016717. This research used
resources of the National Energy Research Scientific Computing Center, a DOE Office
of Science User Facility supported by the Office of Science of the U.S. Department of
Energy under Contract No. DE-AC02-05CH11231.

References

1. Ang, J.A., Barrett, R.F., Benner, R.E., Burke, D., Chan, C., Cook, J., Donofrio, D.,
Hammond, S.D., Hemmert, K.S., Kelly, S.M., Le, H., Leung, V.J., Resnick, D.R.,
Rodrigues, A.F., Shalf, J., Stark, D., Unat, D., Wright, N.J.: Abstract machine
models and proxy architectures for exascale computing. In: Proceedings of the 1st
International Workshop on Hardware-Software Co-Design for High Performance
Computing. Co-HPC 2014, pp. 25–32. IEEE Press, Piscataway, NJ, USA (2014).
http://dx.doi.org/10.1109/Co-HPC.2014.4

2. Benzi, M., Frommer, A., Nabben, R., Szyld, D.B.: Algebraic theory of multiplica-
tive schwarz methods. Numerische Mathematik 89(4), 605–639 (2001)

3. Bland, W., Bouteiller, A., Herault, T., Bosilca, G., Dongarra, J.: Post-
failure recovery of mpi communication capability: design and ratio-
nale. Int. J. High Perform. Comput. Appl. 27(3), 244–254 (2013).
http://dx.doi.org/10.1177/1094342013488238

4. Bosilca, G., Delmas, R., Dongarra, J., Langou, J.: Algorithm-based fault tolerance
applied to high performance computing. J. Parallel Distrib. Comput. 69(4), 410–
416 (2009)

5. Bridges, P.G., Ferreira, K.B., Heroux, M.A., Hoemmen, M.: Fault-tolerant linear
solvers via selective reliability. ArXiv e-prints, June 2012

6. Cappello, F., Geist, A., Gropp, B., Kale, L., Kramer, B., Snir, M.: Toward exascale
resilience. Int. J. High Perform. Comput. Appl. 23(4), 374–388 (2009)

7. Cappello, F., Geist, A., Gropp, W., Kale, S., Kramer, B., Snir, M.: Toward exas-
cale resilience: 2014 update. Supercomput. Front. Innovations 1(1) (2014). http://
superfri.org/superfri/article/view/14

8. Chen, Z.: Algorithm-based recovery for iterative methods without checkpointing.
In: Proceedings of the 20th International Symposium on High Performance Dis-
tributed Computing, HPDC 2011, pp. 73–84. ACM, New York, NY, USA (2011).
http://doi.acm.org/10.1145/1996130.1996142

9. Daubechies, I., DeVore, R., Fornasier, M., Güntürk, C.S.: Iteratively reweighted
least squares minimization for sparse recovery. Commun. Pure Appl. Math. 63(1),
1–38 (2010). http://dx.doi.org/10.1002/cpa.20303

10. DOE-ASCR: Exascale programming challenges. Technical report, July
2011. http://science.energy.gov/∼/media/ascr/pdf/program-documents/docs/
ProgrammingChallengesWorkshopReport.pdf

11. DOE-ASCR: Top ten exascale research challenges. Technical report, February 2014
12. Du, P., Bouteiller, A., Bosilca, G., Herault, T., Dongarra, J.: Algorithm-based

fault tolerance for dense matrix factorizations. In: Proceedings of the 17th ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming, PPoPP

http://dx.doi.org/10.1109/Co-HPC.2014.4
http://dx.doi.org/10.1177/1094342013488238
http://superfri.org/superfri/article/view/14
http://superfri.org/superfri/article/view/14
http://doi.acm.org/10.1145/1996130.1996142
http://dx.doi.org/10.1002/cpa.20303
http://science.energy.gov/~/media/ascr/pdf/program-documents/docs/ProgrammingChallengesWorkshopReport.pdf
http://science.energy.gov/~/media/ascr/pdf/program-documents/docs/ProgrammingChallengesWorkshopReport.pdf

484 K. Morris et al.

2012, pp. 225–234. ACM, New York, NY, USA (2012). http://doi.acm.org/10.
1145/2145816.2145845

13. Du, P., Luszczek, P., Dongarra, J.: High performance dense linear system solver
with soft error resilience. In: IEEE International Conference on Cluster Computing
(CLUSTER), pp. 272–280, September 2011

14. Engelmann, C., Naughton, T.: Toward a performance/resilience tool for hard-
ware/software co-design of high-performance computing systems. In: 2013 42nd
International Conference on Parallel Processing (ICPP), pp. 960–969, October 2013

15. Griebel, M., Oswald, P.: Greedy and randomized versions of the multiplicative
schwarz method. Linear Algebra Appl. 437(7), 1596–1610 (2012)

16. Gupta, R., Iskra, K., Yoshii, K., Balaji, P., Beckman, P.: Introspective fault tol-
erance for exascale systems. Technical report, Argonne National Laboratory, 9700
South Cass Avenue, Argonne, IL 60439 (2012)

17. Heroux, M., Bartlett, R., Hoekstra, V.H.R., Hu, J., Kolda, T., Lehoucq, R., Long,
K., Pawlowski, R., Phipps, E., Salinger, A., Thornquist, H., Tuminaro, R., Willen-
bring, J., Williams, A.: An overview of trilinos. Technical report, SAND2003-2927,
Sandia National Laboratories (2003)

18. Holst, M.: Algebraic schwarz theory. Technical report CRPC-994-10, California
Institute of Technology (1994)

19. Keyes, D.: How scalable is domain decomposition in practice? In: Proceedings of
the 11th International Conference on Domain Decomposition Methods, pp. 286–
297. Domain Decomposition Press (1999)

20. Larson, J.W., Hegland, M., Harding, B., Roberts, S., Stals, L., Rendell, A.P.,
Strazdins, P., Ali, M.M., Kowitz, C., Nobes, R., Southern, J., Wilson, N., Li, M.,
Oishi, Y.: Fault-tolerant grid-based solvers: combining concepts from sparse grids
and mapreduce. Proc. Comput. Sci. 18, 130–139 (2013)

21. Li, D., Vetter, J.S., Yu, W.: Classifying soft error vulnerabilities in extreme-scale
scientific applications using a binary instrumentation tool. In: Proceedings of the
International Conference on High Performance Computing, Networking, Storage
and Analysis, SC 2012, pp. 57:1–57:11. IEEE Computer Society Press, Los Alami-
tos, CA, USA (2012). http://dl.acm.org/citation.cfm?id=2388996.2389074

22. Li, M.L., Ramachandran, P., Sahoo, S.K., Adve, S.V., Adve, V.S., Zhou, Y.:
Understanding the propagation of hard errors to software and implications
for resilient system design. SIGOPS Oper. Syst. Rev. 42(2), 265–276 (2008).
http://doi.acm.org/10.1145/1353535.1346315

23. Malkowski, K., Raghavan, P., Kandemir, M.: Analyzing the soft error resilience of
linear solvers on multicore multiprocessors. In: 2010 IEEE International Sympo-
sium on Parallel Distributed Processing (IPDPS), pp. 1–12 (2010)

24. Quarteroni, A., Valli, A.: Domain Decomposition Methods for Partial Differential
Equations. Numerical Mathematics and Scientific Computation. Clarendon Press,
Oxford (1999)

25. Rizzi, F., Morris, K., Sargsyan, K., Mycek, P., Safta, C., LeMaitre, O., Knio, O.,
Debusschere, B.: Partial differential equations preconditioner resilient to soft and
hard faults. In: IEEE International Conference on Cluster Computing (CLUS-
TER), pp. 552–562, September 2015

26. Sargsyan, K., Rizzi, F., Mycek, P., Safta, C., Morris, K., Najm, H., Mâıtre, O.L.,
Knio, O., Debusschere, B.: Fault resilient domain decomposition preconditioner for
PDES. SIAM J. Sci. Comput. 37(5), A2317–A2345 (2015)

27. Schroeder, B., Gibson, G.: A large-scale study of failures in high-performance com-
puting systems. IEEE Trans. Dependable Secure Comput. 7(4), 337–350 (2010)

http://doi.acm.org/10.1145/2145816.2145845
http://doi.acm.org/10.1145/2145816.2145845
http://dl.acm.org/citation.cfm?id=2388996.2389074
http://doi.acm.org/10.1145/1353535.1346315

Scalability of PDEs Preconditioner Resilient to Soft and Hard Faults 485

28. Shye, A., Moseley, T., Reddi, V., Blomstedt, J., Connors, D.: Using process-level
redundancy to exploit multiple cores for transient fault tolerance. In: 37th Annual
IEEE/IFIP International Conference on Dependable Systems and Networks, 2007,
DSN 2007, pp. 297–306 (2007)

29. Sloan, J., Kumar, R., Bronevetsky, G.: Algorithmic approaches to low overhead
fault detection for sparse linear algebra. In: 2012 42nd Annual IEEE/IFIP Inter-
national Conference on Dependable Systems and Networks (DSN), pp. 1–12, June
2012

30. Snir, M., Wisniewski, R.W., Abraham, J.A., Adve, S.V., Bagchi, S., Balaji,
P., Belak, J., Bose, P., Cappello, F., Carlson, B., Chien, A.A., Coteus, P.,
DeBardeleben, N., Diniz, P.C., Engelmann, C., Erez, M., Fazzari, S., Geist, A.,
Gupta, R., Johnson, F., Krishnamoorthy, S., Leyffer, S., Liberty, D., Mitra, S.,
Munson, T., Schreiber, R., Stearley, J., Hensbergen, E.V.: Addressing failures in
exascale computing. IJHPCA, 129–173 (2014)

31. Toselli, A., Widlund, O.: Domain Decomposition Methods - Algorithms and The-
ory. Springer Series in Computational Mathematics. Springer, Heidelberg (2005).
http://link.springer.com/book/10.1007/b137868

32. Wilke, J.J., Kenny, J.P.: Using discrete event simulation for programming model
exploration at extreme-scale: macroscale components for the structural simulation
toolkit (SST). Technical report, Sandia technical report SAND2015-1027 (2015)

http://springerlink.bibliotecabuap.elogim.com/book/10.1007/b137868

Multi-versioning Performance Opportunities
in BGAS System for Resilience

Nan Dun1, Dirk Pleiter2(B), Aiman Fang1, Nicolas Vandenbergen2,
and Andrew A. Chien1

1 Department of Computer Science, University of Chicago, Chicago, USA
{dun,aimanf,achien}@cs.uchicago.edu

2 Jülich Research Centre, JSC, 52425 Jülich, Germany
{d.pleiter,n.vandenbergen}@fz-juelich.de

http://gvr.cs.uchicago.edu

Abstract. Resilience has become a major concern in high-performance
computing (HPC) systems. Addressing the increasing risk of latent errors
(or silent data corruption) is one of the biggest challenges. Multi-version
checkpointing system, which keeps multi-version of the application states,
has been proposed as a solution and has been implemented in Global View
Resilience (GVR). The resulting more sophisticated management of data
introduces overheads and the resulting impact on performance need to
be investigated. In this paper we explore the performance of GVR for an
HPC system with integrated non-volatile memories, namely Blue Gene
Active Storage (BGAS). Our empirical study shows that the BGAS sys-
tem provides a significantly more efficient basis for flexible error recov-
ery by using GVR multi-versioning features compared to using a standard
external storage system attached to the same Blue Gene/Q installation.
Using BGAS especially achieves at least 10× performance boost for ran-
dom traversal across multiple versions due to significantly better perfor-
mance for small random I/O operations.

Keywords: Resilience · Multi-versioning · Global view resilience ·
BGAS · Parallel file-system

1 Introduction

Resilience has already become a major concern while top high performance sys-
tems continue to progress towards 1018 Flops/s performance. Current large-scale
systems are comprised of millions of components, leading to significant growing
error rates. It is anticipated that the mean time between failures (MTBF) could
soon become less than an hour [39,48,51]. Future exascale systems are projected
to have the mean time to interrupt (MTTI) as low as 10 to 30 min [8,9,20,41].

Checkpoint/restart has been the classical approach to tolerate failures. How-
ever, as the size of checkpoints scale up, the limited disk bandwidth becomes the
critical bottleneck of performance, e.g., I/O bandwidth as high as 60 TBytes/s

c© Springer International Publishing Switzerland 2016
J.M. Kunkel et al. (Eds.): ISC High Performance 2016, LNCS 9697, pp. 486–504, 2016.
DOI: 10.1007/978-3-319-41321-1 25

ISC 2016: Multi-versioning Performance in BGAS System 487

is required to meet checkpointing demand [37]. Various checkpoint/restart tech-
niques have been efficiently applied to improve the performance of checkpoint-
ing [4,6,12,15,19,41,50]. Using high bandwidth non-volatile memories (NVM)
can reduce both checkpoint cost and lost computation dramatically upon recov-
ery from failures (due to reduced optimal checkpointing interval, or “micro-
checkpointing”), which enables systems to tolerate high rates of “fail-stop”
(immediately detected) errors [47].

To this end, we have proposed Global View Resilience (GVR), an app-
roach using versioned, distributed arrays to enable computational scientists to
build portable, resilient applications [14,27]. The goal of the GVR project is
to address a larger class of errors, including not only fail-stop (immediately
detected failures such as an ECC or checksum detected partial data loss) or
node crash addressed by classical checkpoint/restart [28], but also growing con-
cerns about latent errors, or often called silent data corruption (SDC). Latent
errors are errors which are not detected immediately, but may eventually man-
ifest as incorrect results, severe performance degradations, or even application
crashes [21,49]. Multi-versioning is especially useful during recovery from latent
errors [38]. Checkpoint/restart keeps only the latest checkpoint by assuming
checkpointed data is correct. But checkpointed data can be already corrupted
by latent errors. If the application detects a latent error after a checkpoint has
been taken, it has to restart the whole computation from the beginning.

In this work, we exploit how multi-versioning can benefit from integrating
NVM into high performance system architectures, particularly in the Blue Gene
Active Storage (BGAS) system — an extension of the Blue Gene/Q architecture.
Adding BGAS to a Blue Gene/Q installation with a standard external storage
system results in a hierarchical storage system. The external storage system
is based on hard disk drives and is accessed through the General Parallel File
System (GPFS). In this paper we specifically focus on understanding

1. How BGAS helps the multi-version rollback recovery, where its efficiency is
determined by the performance of reading/writing the whole versions of data.

2. How BGAS helps the multi-version flexible recovery, where its efficiency is
determined by the performance of reading/writing partial data across multi-
ple versions with different access patterns.

Experimental results show that using BGAS achieves 1.2× speedup for whole
version access and at least 10× speedup for random partial version access
comparing to the use of the external storage system. Therefore, GVR multi-
versioning is able to harness the power of NVM to enable efficient flexible recov-
ery for applications to tolerate growing error rates in future extreme-scale sys-
tems.

The rest of this paper is organized as follows. Section 2 describes the GVR
programming model and especially its versioning feature that enables flexible
error recovery. The BGAS system is illustrated in Sect. 3. In Sect. 4, we elaborate
the evaluation of GVR versioning performance on both BGAS and GPFS and
present the experimental results. Finally, Sect. 5 discusses the related work and
Sect. 6 summarizes our conclusions.

488 N. Dun et al.

2 Global View Resilience

2.1 Global View Resilience and APIs

The Global View Resilience (GVR) model enables portable application-
controlled resilience. In GVR, applications control redundancy (per data struc-
ture), error checking, and recovery (exploit application semantics) in a portable
fashion with versioned distributed arrays [38]. GVR’s interface has two parts:
(1) basic data access, update, and version creation, and (2) error signaling and
handling, which achieves the following key features:

– Multi-version distributed arrays that enable complex and latent error recov-
ery.

– Multi-stream versioning that gives the programmer control of when versions
are created for an array.

– Unified error signaling and handling, customized per GVR distributed
array, that enable algorithm-based fault-tolerance (ABFT) error-checking and
recovery.

GVR distributed arrays each have a global name but are distributed across
multiple nodes [5,42,43]. The Global Array Interface comprises array data access
and versioning APIs. The global name supports flexible programming of irregu-
lar applications and, in the context of resilience, eases recovery programming
when the number of physical resources has changed. In addition to distrib-
uted array creation, GVR supports block-based access operations (put/get) on
multi-dimensional arrays, synchronization operations (wait/fence), and accumu-
late operations (acc/get acc). Beyond these traditional operations, GVR adds
novel operations to create and label versions as well as to navigate between
different versions.

GVR includes the Open Resilience (OR) interface, designed to support flexi-
ble application and cross-layer handling. Open resilience supports a wide variety
of error types, including process crash, node failure, memory error, network
error, and application-detected error, and is extensible to more as they arise.
The OR interface allows applications to define error-checking and recovery rou-
tines, exploiting both application and system semantics for efficiency and robust
recovery. The interested reader can find a full description of GVR APIs and
usage examples in the GVR documentation [27].

The versioning feature of GVR is implemented using different techniques
such as flat array or log-structured array [24,25]. Log-structured arrays allow for
a more efficient implementation of versioning as version updates are recorded as
logs. This improves the use of BGAS in different aspects. First, log-structured
array reduce space costs for bookkeeping changes between versions, thus requir-
ing lower I/O bandwidth for versioning persistence. Second, less versioning space
costs allows more versions to be stored in the persistent storage layer. Third,
since the lifetime of non-volatile memories is also a critical concern, less version
writes improves the overall lifespan of NVM storage.

ISC 2016: Multi-versioning Performance in BGAS System 489

We have applied GVR approach to several scientific applications, including
ddcMD, Trilinos/PCG, Chombo, and OpenMC [14]. Figure 1 illustrates an exam-
ple of flexible recovery in OpenMC [45], a Monte Carlo particle transport code,
by using partial data of versioned arrays. In GVR enabled OpenMC, the tally
data is accumulated to a versioned global array. At the end of each batch simu-
lation tally data can be snapshotted as a version and thus a history of tally data
is created. Since the tally scoring is Monte Carlo accumulation only, if a latent
error is detected at the latest batch but this error occurred in some batch, then
we are able to correct the contaminated tally data by removing the contribution
caused by this latent error. This forward error correction allows the application
to recover from latent errors without rolling back to a previous state and thus
conserves the computational efforts. For example, if we use checkpoint/restart
then we have to roll back to a correct batch and restart all computations. Within
the proposed forward error recovery scheme, not the entire array but only a small
portion of array requires correction. Furthermore, using GVR to implement the
tally data achieves superior parallel performance and scalability, i.e., 85 % effi-
ciency at 16,384 processes comparing to 1,000 processes with 2.39 TBytes mesh
tally across 1,366 nodes on Cray XC30 supercomputer, comparing to other data
decomposition implementations [17,45].

Fig. 1. Flexible recovery using GVR in OpenMC.

490 N. Dun et al.

2.2 Scalable Checkpointing Restart

Scalable Checkpoint Restart (SCR) is a multi-level checkpointing system
designed to reduce the overhead of checkpointing and meet the scalability
requirements [2,41]. In future high performance computing systems, checkpoint-
ing to an external storage system becomes extremely expensive as the checkpoint
size keeps increasing while the disk bandwidth is limited. On large systems it
can already take hours to write one single checkpoint [11]. The idea of SCR is to
write inexpensive but less resilient checkpoints in memory and higher layers of a
hierarchical storage system. Only the most resilient checkpoints are kept in the
lowest layer, which is typically accessed through a parallel file system (PFS). Here
the creation of checkpoints is most expensive. Therefore SCR can exploit the use
of different memory and storage technologies that feature different bandwidth
and capacity characteristics. This allows, in particular, to increase checkpoint
frequency and reduce checkpoint costs exploiting new NVM technologies.

2.3 Input/Output Organization

GVR uses SCR interfaces to store versions across the storage hierarchy. Essen-
tially SCR serves as a file manager. The overview of the utilization of SCR
in GVR is illustrated in Fig. 2. In GVR’s implementation, an array is a set of
chunks held by participating processes. By a versioning procedure, a version of
the array is first created in memory by GVR. Second, to flush a version to SCR,
GVR uses SCR to create a file name for each chunk. GVR defines the suffix
of the file name and records this metadata, thus GVR maps a chunk to a file.
Given the file name, GVR writes chunks to files on local disks. SCR then man-
ages these files and creates redundant copies within the storage hierarchy. The
frequency at which SCR flushes files to the lower-level storages, e.g., NVM or
PFS, is determined by the runtime configuration.

Fig. 2. Usage of SCR in GVR.

ISC 2016: Multi-versioning Performance in BGAS System 491

GVR manages metadata of versions and therefore can access them flexibly.
For example, to read an element from an array, GVR first checks whether it is
in memory or not:

– If it is in memory, GVR simply returns that element.
– If it is not in memory, GVR first calculates which chunk that element resides

in. Given the metadata, GVR creates the suffix of the file name for the target
chunk and uses SCR to obtain the full path of that file, which allows to locate
the file. Finally, GVR opens the file and uses the offset metadata to read the
element and returns its value.

3 Blue Gene Active Storage System

The Blue Gene Active Storage (BGAS) extends the IBM Blue Gene/Q (BG/Q)
architecture [22,23,31] by integrating I/O nodes (ION) equipped storage-class-
memory in between the compute nodes and the external storage, i.e., GPFS,
as shown in Fig. 3. Each BGAS node is connected via I/O links to 2 compute
nodes. The bandwidth of these links is roughly matched by the bandwidth to
NVM device attached to each BGAS node and thus the aggregate I/O band-
width scales with the number of BGAS nodes. BGAS thus has the potential
of significantly improving the I/O capabilities of a BG/Q installation in terms
of higher bandwidth and access rates. The first BGAS system worldwide was
attached to the JUQUEEN supercomputer at Jülich Supercomputing Centre
(JSC) in 2013 [34].

The JUQUEEN system consists of 28 racks with a total of 458,752 processor
cores providing a peak performance of 5.9 PFlops/s. Each node (either compute
node or I/O node) comprises one processor with 16 IBM A2 cores, which are
based on the PowerPC ISA and run at 1.6 GHz. Each nodes features 16 GiBytes
of SDRAM-DDR3 memory (thus 448 TBytes memory in total).

The BGAS system attached to JUQUEEN consists of 32 I/O nodes each
equipped with a newly designed Hybrid Scalable Solid State Storage (HS4) PCIe
card comprising 2 TBytes of SLC NAND flash memory. All these nodes are
interconnected by a 3-dimensional torus network. Furthermore, each node is
connected to 2 of the 28 JUQUEEN racks, i.e. 2048 compute nodes, and an
external storage. Following the design of Blue Gene/Q the bandwidth between a
BGAS node and the directly connected compute nodes matches the bandwidth to
the I/O device, i.e. the bandwidth to the flash memory plus the Ethernet fabric.
The nominal bandwidth to the flash memory is about 2 GB/s and therefore
roughly equal to 2 10-Gigabit Ethernet links. It is worthwhile noting that this
design point differs from those of burst buffers, where the bandwidth to compute
nodes and NVM memory is chosen to be significantly larger compared to the
bandwidth towards the external storage.

In the configuration of BGAS considered here, direct access to the storage
attached to the BGAS nodes is only possible for processes running on the BGAS
nodes. These can either use a POSIX interface to a local file system or use the
new Direct Storage Access (DSA) interface [40], which provides RDMA APIs

492 N. Dun et al.

to the flash memory. Since for this installation we are not using a parallel file
system there is no shared namespace. Furthermore, compute node processes
have to interact with service processes on the BGAS nodes to access the flash
memory. For this the capabilities of the BG/Q system software stack can be
used to, e.g., delegate POSIX file I/O requests or to communicate with processes
running on the BGAS nodes via named pipes. Alternatively, proprietary service
daemons can be used, which are currently being implemented as Jülich BGAS
Runtime (BGRT) and provide access to the DSA RDMA interfaces through split
transactions [33]. In the following we will not consider this option.

BG/Q Compute Nodes (CN) BGAS (I/O) Nodes (ION) Archival Storage

Fig. 3. Overview on the BGAS architecture.

4 Evaluation

To measure the GVR version create and traversal performance on BGAS, we first
use the IOR benchmark to understand the base I/O performance of BGAS. Then
we synthesize a micro-benchmark simulating various version access patterns to
evaluate how GVR versioning performs on BGAS.

4.1 Experimental Settings

We run the experiments only on the IONs and use either the BGAS storage
devices or the external storage, which are accessed through a local POSIX file
system or GPFS, respectively. As external storage the scratch file system of the
JUST4 storage system at JSC is used. This file system is provided through 28
IBM GSS-24 systems, each equipped with 6 dual-port 10 GE adapaters. For
the current (experimental) BGAS installation the number of Ethernet ports
towards the external storage thus exceeds those towards the BGAS nodes by a
factor of about 20. For GPFS and the local file system a file system block size

ISC 2016: Multi-versioning Performance in BGAS System 493

of 1 MiByte and 4 kiBytes are used, respectively. It should be noted that the
HS4 card internally operates with blocks of size 8 kiBytes. We use GCC 4.4.7,
MVAPICH2 2.1, IOR 2.10.3 [1], GVR 1.0.1, and SCR 1.1.7 [2]. The BGAS driver
version is D14, and is still under active development and based on the hardware
capabilities performance improvements are feasible.

4.2 Base I/O Performance

Cache Effects. To understand the cache effects on the I/O nodes, we per-
form benchmark runs using IOR for different file sizes to exhaust the on-node
buffer cache and therefore to find the optimal file size for further investigation.
We measure the aggregated I/O bandwidth on one single I/O node for a total
of 16 processes using one file per process/core on various file size (by setting
blockSize in IOR), where transferSize is set to 2 MiBytes. Figure 4 shows
the results for GPFS and BGAS, respectively. For GPFS, when the aggregated
file size reaches 2 GiBytes (16 · 128 MiBytes), the file read throughput saturates
at around 2 GiBytes/s. For BGAS, the stable throughput is achieved at around
2.5 GiBytes/s when the aggregated file size reaches 8 GiBytes (16 ·512 MiBytes).
To eliminate the cache effects for both GPFS and BGAS, we from now on con-
sider 1 GiBytes file size per process, only.

16M 32M 64M 128M 256M 512M 1G 2G 4G

2,000

4,000

6,000

8,000

10,000

12,000

14,000

File Size (Bytes)

I/
O

T
h
ro

u
g
h
p
u
t
(M

iB
/
se
c
)

BGAS seq write BGAS rand read BGAS seq read

GPFS seq write GPFS rand read GPFS seq read

Fig. 4. POSIX I/O performance varying file size, one file per process, 16 processes,
transfer size of 2MiByte.

Basic I/O Performance. In the following we use a file size per process of
1 GiByte. The number of concurrent processes is varied with each process writ-
ing/reading to/from a separate file. Two different access patterns are used:

494 N. Dun et al.

sequential and random access. We use 1, 2, and 4 BGAS IONs in the exper-
iments and spawn 2 processes on each node.

As shown in Fig. 5, for sequential write, GPFS generally outperforms BGAS
when transfer size is larger than 16 kiBytes. The lower performance of the HS4
storage devices for large transfer sizes reflect the high costs of the erase and
program operations required for writing data to flash as well as some inefficiencies
of the block device driver. Using the DSA interface bandwidth exceeding the
GPFS performance can be achieved. As shown in and Figs. 6 and 7, BGAS has
better overall read performance than GPFS, at least 2× for sequential read and
10× for random read.

4K 8K 16K 32K 64K 128K 256K 512K 1M 2M
0

2,000

4,000

6,000

Transfer Size (Bytes)

S
e
q
u
e
n
ti
a
l
W

ri
te

T
h
ro

u
g
h
p
u
t
(M

iB
/
se
c
) BGAS p = 2 BGAS p = 4 BGAS p = 8

GPFS p = 2 GPFS p = 4 GPFS p = 8

Fig. 5. Sequential write performance, 1GiByte per process.

4.3 GVR Version Traversal Performance

To understand the version traversal performance under different access patterns
during the recovery, we developed a micro-benchmark to read versions that are
already persisted by SCR as files stored on BGAS or GPFS.

These synthesized microbenchmarks are motivated by real applications and
are representative for major array access patterns during the error recovery [14].
For example, OpenMCs forward error recovery generally issues a few small ran-
dom read operations to get a portion of global array data across different ver-
sions. If we directly measure OpenMCs recovery performance on BGAS and
GPFS, the difference will be quantitatively invisible because the overall runtime
is much larger than array access time. But with discrepancies in performance of
different storage layers increasing, we expect these differences to become signifi-
cant. In addition, other applications may use contiguous large reads for recovery,

ISC 2016: Multi-versioning Performance in BGAS System 495

4K 8K 16K 32K 64K 128K 256K 512K 1M 2M
0

5,000

10,000

15,000

Transfer Size (Bytes)

S
e
q
u
e
n
ti
a
l
R
e
a
d

T
h
ro

u
g
h
p
u
t
(M

iB
/
se
c
)

BGAS p = 2 BGAS p = 4 BGAS p = 8

GPFS p = 2 GPFS p = 4 GPFS p = 8

Fig. 6. Sequential read performance, 1GiByte per process.

4K 8K 16K 32K 64K 128K 256K 512K 1M 2M
0

5,000

10,000

Transfer Size (Bytes)

R
a
n
d
o
m

R
e
a
d

T
h
ro

u
g
h
p
u
t
(M

iB
/
se
c
)

BGAS p = 2 BGAS p = 4 BGAS p = 8

GPFS p = 2 GPFS p = 4 GPFS p = 8

Fig. 7. Random read performance, 1GiByte per process.

so we also synthesized this access pattern in our microbenchmarks. In general,
the performance of application-specific flexible recovery can be determined by
many factors. By separating the I/O contribution of storage layer from other fac-
tors, we are able to quantitatively justify the performance gain by using BGAS.

In the following experiments, we use 4 BGAS IONs and scale the number of
processes from 1 to 8 on each node, i.e., 4 to 32 processes in total. The array size
is proportional to the number of processes, i.e., weak scaling, by 256 MiB per

496 N. Dun et al.

process. Since GVR uses block distribution by default, each process is responsible
for exposing 256 MiBytes of memory as subarray and managing its versions. SCR
is configured to flush every version to the lower-level storage, i.e., disabling in-
memory versions, so that only the current version of the array is held in memory.
Then we apply a series version creation and traversal operations on the array as
follows:

Increase versions. Create 10 versions of the array using GDS version inc(),
e.g., version 0 to 9 in chroicle order. The element type is equivalent to CHAR.
Each version is flushed to files on the lower-level storage by the configuration
of SCR.

Read previous version. Read entire previous version, i.e., version 0, of the
array using one GDS get() call to copy the whole array to local buffers.
Each process loads 256 MiB chunk of the version from the files stored on
lower-level storage.

Read latest 5 versions. Read entire previous 5 versions, i.e., version 0 to 4,
of the array using GDS get(), for each version only one GDS get() is called
to copy the whole array to local buffers.

Read oldest 5 versions. Read entire oldest 5 versions, i.e., version 5 to 9, of
the array using GDS get(), for each version only one GDS get() is called to
copy the whole array to local buffers.

Read 1 MiByte From latest 5 versions. Read 1 MiByte segment at random
offsets from each version of latest 5 versions of the array using GDS get()
on each process. This access pattern represents use cases where users try
to flatten specific data structures and store them as contiguous segments in
versioned array.

Read 1 MiByte From oldest 5 versions. Read 1 MiByte segment with
random offsets from each version of oldest 5 versions of the array using
GDS get() on each process

Read random 64 words from latest 5 versions. Read 64 words at random
offsets from each version of latest 5 versions of the array using GDS get()
on each process. This access pattern represents use cases where application
stores an array of numerical values (e.g., integer or double type) globally
addressable by all processes. For example, in OpenMC, each element in the
tally data array is a score value of specific physical quantity at some point
in 3D space. During the forward correction (see Sect. 2), elements with cor-
rupted values can be fixed by using values stored in previous versions.

Read random 64 words from oldest 5 versions. Read 64 words at random
offsets from each version of oldest 5 versions of the array using GDS get()
on each process.

Figure 8 shows results of measuring elapsed time of versioning. The perfor-
mance of version increment is consistent with the observation of sequential write
performance shown in Figs. 4 and 5: GPFS is slightly better than BGAS for
sequential write.

ISC 2016: Multi-versioning Performance in BGAS System 497

4 8 16 32

20

30

40

50

Number of processes

E
la
p
se
d

ti
m
e
(s
e
c
o
n
d
s)

BGAS GPFS

Fig. 8. Create 10 versions on 4 nodes, weak scaling, 256 MiBytes/process.

Figure 9 shows the comparison for reading previous, recent 5, and oldest 5
versions, respectively. Notice that accessing older versions generally has extra
latency. This may be due to cache effects of underlying I/O stacks.

Figures 10 and 11 show the partial version traversal performance. In general,
using the local BGAS storage devices result in at least 10× speedup, especially
for random words read, compared to the external GPFS storage system.

4 8 16 32

0

5

10

15

Number of processes

E
la
p
se
d

ti
m
e
(s
e
c
o
n
d
s)

BGAS previous BGAS latest 5 BGAS oldest 5

GPFS previous GPFS latest 5 GPFS oldest 5

Fig. 9. Entire versions traversal on 4 nodes, weak scaling, 256 MiBytes/process.

498 N. Dun et al.

4 8 16 32

0

0.1

0.2

0.3

0.4

0.5

Number of processes

E
la
p
se
d

ti
m
e
(s
e
c
o
n
d
s)

BGAS 1MiB latest 5

BGAS 1MiB oldest 5

GPFS 1MiB latest 5

GPFS 1MiB oldest 5

Fig. 10. Partial versions traversal on 4 nodes by reading 1 MiByte at random offsets
from each version, weak scaling, 256 MiBytes/process.

4 8 16 32

0

5

10

15

20

Number of processes

E
la
p
se
d

ti
m
e
(s
e
c
o
n
d
s)

BGAS random words latest 5

BGAS random words oldest 5

GPFS random words latest 5

GPFS random words oldest 5

Fig. 11. Partial versions traversal on 4 nodes by reading 64 words at random offsets
from each version, weak scaling, 256 MiBytes/process.

To shed some light in the reasons for this significant performance difference,
we repeated the benchmark run using 32 processes using the scalable HPC I/O
characterization tool Darshan [13]. In Table 1 we compare the time spent in
reading and writing data, metadata operations as well as other operations. The
time spent on other operations includes GVR creating the copy of the array and

ISC 2016: Multi-versioning Performance in BGAS System 499

invoking SCR calls to store, search, and retrieve files from lower-level storage
system. Note that the performance difference comes from two major parts: the
read itself and metadata operations. In particular, using BGAS shows about
20× and 60× speedup for 1 MiByte and random words reads, respectively. For
both types of operations the total amount of read and written data is (almost)
identical, however, the I/O patterns of both cases differ significantly. In case of
random reads the number of seek and file open operations is about 20× and
60× larger compared to the contiguous reads case. This is consistent with the
observed difference in execution time.

The impact of non-sequential small I/O requests on GPFS performance has
been discussed before [29,32]: GPFS prefers large request size, when request size
is smaller than GPFS block size, a significant portion of data will be wasted.
One solution is to use a higher-level I/O library to reorder and combine small
requests before sending them to GPFS.

Table 1. Time spent on different types of operations during GVR partial version
traversal on 4 IONs as reported by Darshan.

Elapsed time (sec) Read contiguous 1MiB Read 64 random words

BGAS GPFS BGAS GPFS

Read 0.19 0.32 0.19 4.77

Write 6.23 3.94 5.87 3.82

Metadata 0.01 0.20 0.13 6.59

Others 19.56 17.54 20.82 28.82

5 Related Work

There have been years of studies on checkpoint/restart [18] and NVM research
effort has been focused on using hybrid memory systems to improve the per-
formance of checkpointing. Li et al. discussed the opportunities for NVM in
scientific applications [36]. Dong et al. used a hybrid Phase-Change Random
Access Memory (PCRAM) based checkpointing to reduce the overhead to less
than 4 % on a projected exascale system [16]. Zhou et al. proposed an app-
roach for multi-core system by using writeback-aware analysis to partition the
bandwidth of PCM [52]. However, as pointed out by Gao et al. these hybrid
systems can still have prohibitively high checkpoint overhead and system down-
time, especially when checkpoints are taken frequently and therefore a partial
checkpointing approach is proposed to further improve the checkpointing effi-
ciency [26].

Checkpoint restart (C/R) system can also use SCR to manage and flush
its checkpoints to low-level external storage system. However, C/R will not be
able to provide the same flexibility as GVR to do application specific flexible

500 N. Dun et al.

recovery, e.g., partial data recovery where GVR can explore more benefits than
C/R. How to recover communicators and execution after node failures is beyond
the scope of this paper. But GVR can restore all consistent versions available in
NVM after node loss. This is because (1) GVR has internal redundancy schemes
which skew versions across nodes to create redundancy. This guarantees there are
consistent versions available even after node loss. (2) the metadata is replicated
in all nodes so that GVR can use it to recover any consistent versions and discard
corrupted versions.

Recently, NVM-based burst buffers have been proposed as a high-bandwidth,
storage tier between compute nodes and traditional disk storage. It serves as I/O
offloading layer that absorbs bulk data produced by applications, while seam-
lessly draining the data to the PFS in the background. The advanced architecture
features of burst buffer systems have been recognized. Several next generation
of supercomputers are going to deploy burst buffers. Cori [4] is National Energy
Research Scientific Computing (NERSC) Center’s next supercomputer system
(NERSC-8). The phase 1 system will provide approximately 750 TBytes of burst
buffer storage. Summit [3] is Oak Ridge National Laboratory’s next high perfor-
mance supercomputer. It will consist of approximately 3,400 nodes, each with at
least 512 GBytes memory and 800 GBytes NVM-based storage. With this layer
of burst buffers, applications can dump data quickly and return to computation
without waiting data to be moved to disk. Recent works including Bent et al.
[7], Brown et al. [10], Liu et al. [37], and other works [35,44,46] have explored
utilizing burst buffers to improve the resilience.

6 Summary and Future Work

We studied the performance opportunities of multi-versioning, a GVR approach
to add flexible resilience to applications, using BGAS. The NVM-based BGAS
system provides a more efficient basis and opportunities for GVR versioning com-
paring to an traditional external storage systems attached to the same system,
especially for flexible error recovery using random version access.

We used Blue Gene/Q and BGAS as an available vehicle to get a better
understanding of what will be possible on future architectures. We believe the
results of the paper to be relevant beyond the considered system as it shows
the capabilities of a system providing a fast storage layer that has properties,
which support fast traversal between different copies of data objects. For the
considered system this was mainly achieved by avoiding the parallel file system,
exploiting locality properties and having a relatively high bandwidth. We further
highlighted the opportunities of exploiting data processing capabilities within the
storage. All this should be taken into account for future architecture designs and
coincides nicely with the roadmaps of next generation pre-exascale systems.

Equipped with additional compute resource, e.g., idle cores on ION, in-situ
analysis could be off-loaded to the ION. Such active storage concepts can poten-
tially be exploited for enabling algorithm-based fault-tolerance (ABFT) error-
checking (see, e.g., [30] for an approach that could benefit from such an archi-
tecture). Though using BGAS via the file system interface is the most portable

ISC 2016: Multi-versioning Performance in BGAS System 501

way for applications, we look forward to exploiting more efficient alternatives
of using the BGAS system such as Direct Storage Access (DSA) from compute
nodes.

Acknowledgments. This work was supported by the Office of Advanced Scientific
Computing Research, Office of Science, the U.S. Department of Energy, under Award
DE-SC0008603 and Contract DE-AC02-06CH11357. This work was completed in part
with resources provided by Jülich Supercomputing Centre and we would like to thank
in particular Michael Stephan for his support. We gracefully acknowledge the collab-
oration with IBM Research on the BGAS architecture in the context of the Exascale
Innovation Center (EIC). In particular, we want to thank Blake Fitch for his continu-
ous support and for many helpful discussions. Part of the work has been done within
the Joint Laboratory for Extreme Scale Computing (JLESC).

References

1. IOR benchmark. http://ior-sio.sourceforge.net
2. Scalable checkpoint/restart (SCR) library. https://github.com/hpc/scr
3. Summit compute system. https://www.olcf.ornl.gov/summit/
4. Antypas, K., Wright, N., Cardo, N.P., Andrews, A., Cordery, M.: Cori: a Cray XC

pre-exascale system for NERSC. In: Cray User Group Proceedings. Cray (2014)
5. Bariuso, R., Knies, A.: SHMEM user’s guide for C. Cray Research, Inc. (1994)
6. Bautista-Gomez, L., Tsuboi, S., Komatitsch, D., Cappello, F., Maruyama, N., Mat-

suoka, S.: FTI: high performance fault tolerance interface for hybrid systems. In:
Proceedings of the 2011 ACM/IEEE International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis, SC 2011 (2011)

7. Bent, J., Grider, G., Kettering, B., Manzanares, A., McClelland, M., Torres, A.,
Torrez, A.: Storage challenges at Los Alamos National Lab. In: IEEE 28th Sym-
posium on Mass Storage Systems and Technologies, pp. 1–5, April 2012

8. Bergman, K., Borkar, S., Campbell, D., Carlson, W., Dally, W., Denneau, M.,
Franzon, P., Harrod, W., Hiller, J., Karp, S., Keckler, S., Klein, D., Lucas, R.,
Richards, M., Scarpelli, A., Scott, S., Snavely, A., Sterling, T., Williams, R.S.,
Yelick, K.: Exascale computing study: technology challenges in achieving exascale
systems. Technical report DARPA IPTO (2008)

9. Borkar, S., Chien, A.A.: The future of microprocessors. Commun. ACM 54, 67–77
(2011)

10. Brown, D.L., Messina, P., Keyes, D., Morrison, J., Lucas, R., Shalf, J., Beckman, P.,
Brightwell, R., Geist, A., Vetter, J., et al.: Scientific grand challenges: crosscutting
technologies for computing at the exascale. Office of Science, U.S. Department of
Energy, pp. 2–4, February 2010

11. Cappello, F.: Fault tolerance in petascale/exascale systems: current knowledge,
challenges and research opportunities. Int. J. High Perform. Comput. Appl. 23(3),
212–226 (2009)

12. Cappello, F., Casanova, H., Robert, Y.: Preventive migration vs. preventive check-
pointing for extreme scale supercomputers. Parallel Process. Lett. 21(02), 111–132
(2011)

13. Carns, P., Latham, R., Ross, R., Iskra, K., Lang, S., Riley, K.: 24/7 characteri-
zation of petascale I/O workloads. In: IEEE International Conference on Cluster
Computing and Workshops, pp. 1–10, August 2009

http://ior-sio.sourceforge.net
https://github.com/hpc/scr
https://www.olcf.ornl.gov/summit/

502 N. Dun et al.

14. Chien, A.A., Balaji, P., Beckman, P., Dun, N., Fang, A., Fujita, H., Iskra, K.,
Rubenstein, Z., Zheng, Z., Schreiber, R., Hammond, J., Dinan, J., Laguna, I.,
Dubey, A., Hoemmen, M., Heroux, M., Teranishi, K., Siegel, A.: Versioned dis-
tributed arrays for resilience in scientific applications: global view resilience. In:
Proceedings of International Conference on Computational Science (2015)

15. Daly, J.T.: A higher order estimate of the optimum checkpoint interval for restart
dumps. Future Gener. Comput. Syst. 22(3) (2006)

16. Dong, X., Muralimanohar, N., Jouppi, N., Kaufmann, R., Xie, Y.: Leveraging 3D
PCRAM technologies to reduce checkpoint overhead for future exascale systems.
In: Proceedings of the Conference on High Performance Computing Networking,
Storage and Analysis, SC 2009, pp. 57:1–57:12 (2009)

17. Dun, N., Fujita, H., Tramm, J., Chien, A.A., Siegel, A.R.: Data decomposition in
Monte Carlo particle transport simulations using global view arrays. Int. J. High
Perform. Comput. Appl. March 2015

18. Egwutuoha, I.P., Levy, D., Selic, B., Chen, S.: A survey of fault tolerance mech-
anisms and checkpoint/restart implementations for high performance computing
systems. J. Supercomput. 65(3), 1302–1326 (2013)

19. Fang, A., Chien, A.A.: How much SSD is useful for resilience in supercomputers.
In: Proceedings of the 5th Workshop on Fault Tolerance for HPC at eXtreme Scale
(2015)

20. Ferreira, K., Stearley, J., Laros III, J.H., Oldfield, R., Pedretti, K., Brightwell, R.,
Riesen, R., Bridges, P.G., Arnold, D.: Evaluating the viability of process replication
reliability for exascale systems. In: Proceedings of 2011 International Conference
for High Performance Computing, Networking, Storage and Analysis (2011)

21. Fiala, D., Mueller, F., Engelmann, C., Riesen, R., Ferreira, K., Brightwell, R.:
Detection and correction of silent data corruption for large-scale high-performance
computing. In: Proceedings of 2012 International Conference on High Performance
Computing, Networking, Storage and Analysis, pp. 78:1–78:12 (2012)

22. Fitch, B.G.: Exploring the capabilities of a massively scalable, compute-in-
storage architecture (2013). http://www.hpdc.org/2013/site/files/HPDC13 Fitch
BlueGeneActiveStorage.pdf

23. Fitch, B.G., Rayshubskiy, A., Pitman, M.C., Ward, T.J.C., Germain, R.S.: Using
the active storage fabrics model to address petascale storage challenges. In: Pro-
ceedings of the 4th Annual Workshop on Petascale Data Storage (2009)

24. Fujita, H., Dun, N., Rubenstein, Z.A., Chien, A.A.: Log-structured global array for
efficient multi-version snapshots. In: Proceedings of 2015 15th IEEE/ACM Inter-
national Symposium on Cluster, Cloud and Grid Computing, pp. 281–291 (2015)

25. Fujita, H., Iskra, K., Balaji, P., Chien, A.A.: Empirical comparison of three ver-
sioning architectures. In: Proceedings of IEEE Cluster 2015 (2015)

26. Gao, S., He, B., Xu, J.: Real-time in-memory checkpointing for future hybrid mem-
ory systems. In: Proceedings of the 29th ACM on International Conference on
Supercomputing, pp. 263–272 (2015)

27. GVR Team.: Global View Resilience (GVR) API documentation, version 1.0.1.
Technical report, University of Chicago, Department of Computer Science, October
2015

28. Hargrove, P.H., Duell, J.C.: Berkeley lab checkpoint/restart (BLCR) for Linux
clusters. J. Phys. Conf. Ser. 46, 494 (2006)

29. Heger, D., Shah, G.: IBM’s general parallel file system (GPFS) 1.4 for AIX. Tech-
nical report, IBM Corporation, November 2001

30. Huang, K.H., Abraham, J.: Algorithm-based fault tolerance for matrix operations.
IEEE Trans. Comput. C–33(6), 518–528 (1984)

http://www.hpdc.org/2013/site/files/HPDC13_Fitch_BlueGeneActiveStorage.pdf
http://www.hpdc.org/2013/site/files/HPDC13_Fitch_BlueGeneActiveStorage.pdf

ISC 2016: Multi-versioning Performance in BGAS System 503

31. IBM Blue Gene Team: The IBM Blue Gene project. IBM J. Res. Dev. 57 (2013)
32. Jones, T., Koniges, A., Yates, R.K.: Performance of the IBM general parallel

file system. In: Proceedings of 2000 IEEE International Parallel and Distributed
Processing Symposium (2000)

33. Jülich Supercomputing Centre: BGAS user documentation. https://trac.version.
fz-juelich.de/EIC/wiki/bgas-user

34. Jülich Supercomputing Centre: Blue Gene Active Storage boosts I/O performance
at JSC. http://www.fz-juelich.de/SharedDocs/Pressemitteilungen/UK/EN/2013/
13-11-18bgas.html

35. Kulkarni, A., Manzanares, A., Ionkov, L., Lang, M., Lumsdaine, A.: The design
and implementation of a multi-level content-addressable checkpoint file system.
In: 2012 19th International Conference on High Performance Computing, pp. 1–
10, December 2012

36. Li, D., Vetter, J.S., Marin, G., McCurdy, C., Cira, C., Liu, Z., Yu, W.: Identifying
opportunities for byte-addressable non-volatile memory in extreme-scale scientific
applications. In: Proceedings of the 2012 IEEE 26th International Parallel and
Distributed Processing Symposium, pp. 945–956 (2012)

37. Liu, N., Cope, J., Carns, P., Carothers, C., Ross, R., Grider, G., Crume, A.,
Maltzahn, C.: On the role of burst buffers in leadership-class storage systems.
In: Proceedings of the 2012 IEEE Conference on Massive Data Storage (2012)

38. Lu, G., Zheng, Z., Chien, A.A.: When is multi-version checkpointing needed? In:
Proceedings of the 3rd Workshop on Fault-Tolerance for HPC at Extreme Scale,
pp. 49–56 (2013)

39. Martino, C.D., Kalbarczyk, Z., Iyer, R.K., Baccanico, F., Fullop, J., Kramer, W.:
Lessons learned from the analysis of system failures at petascale: the case of Blue
Waters. In: Proceedings of the 2014 44th Annual IEEE/IFIP International Con-
ference on Dependable Systems and Networks, pp. 610–621 (2014)

40. Metzler, B., Trivedi, A.: Prototyping byte-addressable NVM access. In: Proceed-
ings of 11th OpenFabrics Developers Workshop (2015)

41. Moody, A., Bronevetsky, G., Mohror, K., de Supinski, B.R.: Design, modeling,
and evaluation of a scalable multi-level checkpointing system. In: Proceedings of
the 2010 ACM/IEEE International Conference for High Performance Computing,
Networking, Storage and Analysis, pp. 1–11 (2010)

42. Nieplocha, J., Palmer, B., Tipparaju, V., Krishnan, M., Trease, H., Aprà, E.:
Advances, applications and performance of the global arrays shared memory pro-
gramming toolkit. Int. J. High Perform. Comput. Appl. 20(2), 203–231 (2006)

43. Numrich, R.W., Reid, J.: Co-Array Fortran for parallel programming. SIGPLAN
Fortran Forum 17(2) (1998)

44. Ouyang, X., et al.: Enhancing checkpoint performance with staging I/O and SSD.
In: Proceedings of 2010 International Workshop on Storage Network Architecture
and Parallel I/Os, May 2010

45. Romano, P.K., Forget, B.: The OpenMC Monte Carlo particle transport code.
Ann. Nucl. Energy 51, 274–281 (2013)

46. Sato, K., Mohror, K., Moody, A., Gamblin, T., de Supinski, B.R., Maruyama, N.,
Matsuoka, S.: A user-level InfiniBand-based file system and checkpoint strategy for
burst buffers. In: Proceedings of 2014 14th IEEE/ACM International Symposium
on Cluster, Cloud and Grid Computing (2014)

47. Schlichting, R.D., Schneider, F.B.: Fail-stop processors: an approach to designing
fault-tolerant computing systems. ACM Trans. Comput. Syst. 1(3), 222–238 (1983)

https://trac.version.fz-juelich.de/EIC/wiki/bgas-user
https://trac.version.fz-juelich.de/EIC/wiki/bgas-user
http://www.fz-juelich.de/SharedDocs/Pressemitteilungen/UK/EN/2013/13-11-18bgas.html
http://www.fz-juelich.de/SharedDocs/Pressemitteilungen/UK/EN/2013/13-11-18bgas.html

504 N. Dun et al.

48. Schroeder, B., Gibson, G.A.: A large-scale study of failures in high-performance
computing systems. In: Proceedings of 2006 IEEE/IFIP International Conference
on Dependable Systems and Networks (2006)

49. Shantharam, M., Srinivasmurthy, S., Raghavan, P.: Characterizing the impact of
soft errors on iterative methods in scientific computing. In: Proceedings of Super-
computing (2011)

50. Young, J.W.: A first order approximation to the optimum checkpoint interval.
Commun. ACM 17(9) (1974)

51. Zheng, Z., Yu, L., Tang, W., Lan, Z., Gupta, R., Desai, N., Coghlan, S., Buettner,
D.: Co-analysis of RAS log and job log on Blue Gene/P. In: Proceedings of 2011
IEEE International Parallel and Distributed Processing Symposium (2011)

52. Zhou, M., Du, Y., Childers, B.R., Melhem, R., Mosse, D.: Writeback-aware band-
width partitioning for multi-core systems with PCM. In: Proceedings of the 22nd
International Conference on Parallel Architectures and Compilation Techniques,
pp. 113–122 (2013)

Author Index

Abdelfattah, Ahmad 21
Abdulla, Ghaleb 243
Abercrombie, John 321
Agrawal, Ankit 98
Ailamaki, Anastasia 81
Almgren, Ann 116
Arnold, Mark 300
Augustine, Albert Mathews 300

Bader, Michael 343
Balaprakash, Prasanna 219
Bartolini, Andrea 181
Bastem, Burak 116
Bates, Natalie 243
Benini, Luca 181
Bohm, Eric 139
Borghesi, Andrea 181
Breuer, Alexander 343

Carrington, Laura 219
Chandrasekaran, Sunita 3
Chapman, Barbara 3
Chien, Andrew A. 486
Choudhary, Alok 98
Clausen, Anders 243

Dahlgren, Kathryn 469
Deakin, Tom 429
Debusschere, Bert 469
Delalondre, Fabien 363
Dinan, James 281
Dongarra, Jack 21
Dubey, Pradeep 343
Dun, Nan 486
Dusia, Ayush 261

Fang, Aiman 486
Farooqi, Muhammed Nufail 116
Flajslik, Mario 281
Fu, Yao 200

Gaudin, Wayne 429
Ghatikar, Girish 243

Gilray, Thomas 61
Glendenning, Paul 200

Haidar, Azzam 21
Hamidouche, Khaled 300
Hammond, Jeff R. 321
Heinecke, Alexander 343, 449
Heinis, Thomas 81
Hendrix, William 98
Henry, Greg 449
Herbein, Stephen 261
Herkersdorf, Andreas 39
Hines, Michael 363
Hovland, Paul D. 219
Hutchinson, Maxwell 449

Ismail-Beigi, Sohrab 139

Jain, Nikhil 139
Jindal, Prateek 139
Jonas, Eric 200
Jost, Gabriele 321

Kale, Laxmikant V. 139
Kayi, Abdullah 321
Keyes, David 449
Kim, Minjung 139
King, James 61, 363
Kirby, Robert M. 61
Klingert, Sonja 243
Knio, Omar 469
Kumbhar, Pramod 363

Landwehr, Aaron 261
Le Maître, Olivier 469
Lee, Sunwoo 98
Li, Qi 139
Liao, Wei-keng 98
Lombardi, Michele 181
Lu, Xiaoyi 300

Madduri, Kamesh 159
Magalhães, Bruno R.C. 81

Mallon, Damian A. 363
Mandal, Subhasish 139
Martyna, Glenn J. 139
Mattson, Timothy G. 321
McDaniel, Sean 261
McIntosh-Smith, Simon 429
Michelogiannakis, George 116
Might, Matthew 61
Mikida, Eric 139
Milano, Michela 181
Monsalve, Jose 261
Morris, Karla 469
Mueller, Frank 383, 404
Mycek, Paul 469

Nelson, Jacob 321
Nguyen, Tan 116

Ovcharenko, Aleksandr 363

Pabst, Hans 449
Palsetia, Diana 98
Panda, Dhabaleswar K. 300
Parsani, Matteo 449
Patil, Onkar 383
Patki, Tapasya 243
Perkins, Jonathan 300
Pleiter, Dirk 486
Pujari, Ravi Kumar 39

Ramachandran, Subramanian 404
Rengasamy, Vasudevan 159
Rizzi, Francesco 469
Roy, Indranil 200

Safta, Cosmin 469
Sainz, Florentino 363
Sargsyan, Khachik 469
Schürmann, Felix 81, 363
Seelam, Seetharami R. 261
Shalf, John 116
Sheikhalishahi, Mehdi 243
Sridharan, Srinivas 321
St. John, Tom 321
Subramoni, Hari 300

Taufer, Michela 261
Tauheed, Farhan 81
Tian, Xiaonan 3
Tiwari, Ananta 219
Tomov, Stanimire 21
Tracy II, Tommy 200

Unat, Didem 116
Underwood, Keith D. 281

Van der Wijngaart, Rob F. 321
Vandenbergen, Nicolas 486

Wild, Stefan M. 219
Wild, Thomas 39

Xu, Rengan 3

Yagna, Karthik 383
Yang, Yang 261

Zhang, Weiqun 116

506 Author Index

	Preface
	Organization
	Contents
	Autotuning and Thread Mapping
	An Analytical Model-Based Auto-tuning Framework for Locality-Aware Loop Scheduling
	1 Introduction
	2 GPU Architecture and OpenACC Directives
	3 A Motivating Example
	4 Auto-tuning for GPU Loop Scheduling
	4.1 The Auto-tuning Framework
	4.2 Loop Schedule Patterns
	4.3 Thread Scheduling
	4.4 Memory Access Cost Model

	5 Performance Evaluation
	6 Related Work
	7 Conclusion and Future Work
	References

	Performance, Design, and Autotuning of Batched GEMM for GPUs
	1 Introduction
	2 Related Work
	3 Batched GEMM Design and Implementation Details
	4 Performance Results and Analysis
	5 Conclusion and Future Work
	References

	TCU: A Multi-Objective Hardware Thread Mapping Unit for HPC Clusters
	1 Introduction
	2 Related Work
	3 Hardware Accelerated Thread Assignment
	3.1 Multi-objective Thread Assignment
	3.2 Thread Control Unit
	3.3 TCU Prototype

	4 Experimental Validation
	5 Conclusion
	References

	Data Locality and Decomposition
	Dynamic Sparse-Matrix Allocation on GPUs
	1 Introduction
	1.1 Contributions

	2 Background
	3 Dynamic Compressed Sparse Row (DCSR)
	4 Experimental Results
	4.1 Matrix Updates
	4.2 SpMV Results
	4.3 Post-processing Overhead
	4.4 Multi-GPU Implementation

	5 Conclusion
	References

	An Efficient Parallel Load-Balancing Framework for Orthogonal Decomposition of Geometrical Data
	1 Introduction
	1.1 Related Work and Applications

	2 Model and Algorithms
	2.1 Slicing Problem Definition
	2.2 Elements Sorting on a Given Dimension
	2.3 Slices Coordinates Calculation
	2.4 Computational Complexity

	3 Sort Balance Split
	3.1 Distributed Sorting
	3.2 Distributed Load Balancing
	3.3 Network Split
	3.4 Computational Complexity

	4 Results
	4.1 Testing Environment
	4.2 Data Representation
	4.3 Slicing Schemes Load Imbalance
	4.4 Load Imbalance of Approximation Methods
	4.5 Large Scale Runtime Analysis
	4.6 Weak and Strong Scaling

	5 Summary and Conclusions
	References

	Parallel Community Detection Algorithm Using a Data Partitioning Strategy with Pairwise Subdomain Duplication
	1 Introduction
	2 Related Work
	3 MEP Algorithm
	3.1 Region Growing Phase
	3.2 Community Merge Phase

	4 Design and Implementation
	4.1 Parallel Read
	4.2 Graph Partitioning
	4.3 Subgraph ID Distribution
	4.4 Pairwise Subgraph Duplication
	4.5 Local Graph Construction
	4.6 Local Region Growing
	4.7 Local Community Merge
	4.8 Global Resolution
	4.9 Complexity Analysis

	5 Experiments and Performance Evaluation
	5.1 Synthetic Graphs
	5.2 Real World Data Set
	5.3 Result Quality Analysis
	5.4 Comparison with Parallel Louvain

	6 Conclusion
	References

	TiDA: High-Level Programming Abstractions for Data Locality Management
	1 Introduction
	2 Programming Model
	2.1 Data Locality Model
	2.2 Programming Abstractions
	2.3 Parameterization

	3 Implementation
	3.1 Overview
	3.2 TiDA Types
	3.3 Supporting Parameterization
	3.4 Tile Boundaries
	3.5 Thread and Memory Affinity

	4 Code Example
	5 Experimental Evaluation
	5.1 Evaluated Platforms
	5.2 Performance Evaluation of Single-Mesh Applications
	5.3 Region and Tile Size Parameters
	5.4 Performance Evaluation of Multigrid
	5.5 Programming Effort

	6 Related Work
	7 Conclusion
	References

	Scalable Applications
	OpenAtom: Scalable Ab-Initio Molecular Dynamics with Diverse Capabilities
	1 Introduction
	2 Background and Related Work
	2.1 Parallelization of OpenAtom in Charm++
	2.2 Related Work

	3 New Capabilities
	3.1 Uber Scheme
	3.2 Born-Oppenheimer Method

	4 Parallel Optimizations
	4.1 Distance-Aware Mapping
	4.2 Overdecomposed FFTs with Cutoffs
	4.3 Scaling Multiple Instances

	5 Scaling Results
	5.1 Performance of Charm-FFT
	5.2 Single Instance Execution
	5.3 Scalability of Ubers

	6 Conclusion
	References

	SPRITE: A Fast Parallel SNP Detection Pipeline
	1 Introduction
	2 Background: Variant Detection Pipelines
	3 SPRITE: Algorithms and Implementation Details
	3.1 PRUNE: Alignment Parallelization
	3.2 SAMPA: Intermediate File Processing
	3.3 PARSNIP: Parallel SNP Detection

	4 SPRITE+: An In-Memory Version of SPRITE
	5 Results and Discussion
	5.1 PRUNE Parallel Scaling
	5.2 SAMPA and PARSNIP Parallel Scaling
	5.3 End-to-End Pipeline Execution
	5.4 SNP Calling Accuracy
	5.5 PARSNIP Filter Tuning
	5.6 Memory Requirement for SPRITE+

	6 Conclusions
	References

	Machine Learning
	Predictive Modeling for Job Power Consumption in HPC Systems
	1 Introduction
	2 Power Capping
	2.1 The Eurora Supercomputer

	3 Job Power Profiling
	3.1 Power Consumption of Jobs Not Using Entire Nodes

	4 Powers Prediction Model
	4.1 Jobs on Entire Nodes
	4.2 Jobs on Portions of Nodes
	4.3 Outliers Management

	5 Results
	6 Conclusion
	References

	Towards Machine Learning on the Automata Processor
	1 Introduction
	2 Background
	2.1 Random Forest
	2.2 Automata Processor

	3 Methodology
	3.1 Overview
	3.2 Automata Design
	3.3 Enabling Parallel Execution of Decision Trees
	3.4 Handling Floating Point Features and Threshold Values
	3.5 Optimizing Automata for Higher Parallelism

	4 Experimental Analysis
	4.1 Results and Discussion

	5 Future Work
	5.1 Further Optimizations
	5.2 Accelerating Other Models
	5.3 Automata on Other Hardware

	6 Conclusions
	References

	AutoMOMML: Automatic Multi-objective Modeling with Machine Learning
	1 Introduction
	2 The Problem and Setup
	3 Proposed Approach
	3.1 Dimension Reduction
	3.2 Model Selection

	4 Experimental Setup
	5 Experimental Results
	5.1 Modeling Complexity Reduction
	5.2 Model Selection
	5.3 Model Validation

	6 Related Work
	7 Conclusion
	References

	Datacenters and Cloud
	Supercomputing Centers and Electricity Service Providers: A Geographically Distributed Perspective on Demand Management in Europe and the United States
	1 Introduction
	2 Motivation for Demand Management
	3 Demand Management
	4 Quantitative Study
	4.1 Comments from Survey Respondents

	5 Qualitative Study: Site-Specific Interviews
	5.1 Oak Ridge National Laboratory
	5.2 Lawrence Livermore National Laboratory
	5.3 Leibniz Supercomputing Center
	5.4 Analysis

	6 Related Work
	7 Summary and Next Steps
	8 Additional Authors
	A Appendix
	References

	Resource Management for Running HPC Applications in Container Clouds
	1 Introduction
	2 CPU Allocations in Containers
	2.1 CPU Allocation Mechanism
	2.2 Empirical Results

	3 I/O Management of Container Clusters
	3.1 Allocation Mechanisms
	3.2 Empirical Results

	4 Network Allocations in Containers
	4.1 Throttling and Priority-Based Allocation
	4.2 Empirical Results

	5 Background and Related Work
	5.1 Containers, Docker, and Container Clouds
	5.2 Related Work

	6 Conclusion
	References

	Communication Runtime
	Mitigating MPI Message Matching Misery
	1 Introduction
	2 Background
	2.1 Related Work

	3 Binned Matching Algorithm
	3.1 Posted Receive Operations
	3.2 Unexpected Messages
	3.3 Analysis of Binned Algorithm

	4 Evaluation
	4.1 Fire Dynamics Simulator
	4.2 LAMMPS
	4.3 Integer Sort

	5 Discussion
	6 Conclusion
	References

	INAM2: InfiniBand Network Analysis and Monitoring with MPI
	1 Introduction and Motivation
	2 Contributions
	3 Background
	3.1 InfiniBand
	3.2 MPI
	3.3 MPI_T

	4 Design of INAM2
	4.1 Design of OSU INAM Daemon
	4.2 Design of OSU INAM Database
	4.3 Design of Java Webserver and Web-Based Front-End Visualization

	5 Experimental Results
	5.1 Experimental Setup
	5.2 Impact of Profiling on Performance of Basic Microbenchmarks and NAS Parallel Benchmarks

	6 Discussion on Features of INAM2 and Its Impact
	6.1 Analyzing and Understanding Inter-node Communication Buffer Allocation and Use
	6.2 Identifying and Analyzing Sources of Link Congestion
	6.3 Monitoring Jobs Based on Various Metrics
	6.4 Capability to Profile and Report Several Metrics of MPI Processes at Different Granularities

	7 Related Tools
	8 Conclusions and Future Work
	References

	Comparing Runtime Systems with Exascale Ambitions Using the Parallel Research Kernels
	1 Introduction
	2 Background and Motivation
	2.1 Parallel Research Kernels
	2.2 Programming Models

	3 Implementation and Performance Results
	3.1 Stencil Implementation Details and Performance
	3.2 Synch_p2p Implementation Details and Performance
	3.3 Transpose Implementation Details and Performance

	4 Related Work
	5 Conclusion and Future Work
	References

	Intel Xeon Phi
	High Order Seismic Simulations on the Intel Xeon Phi Processor (Knights Landing)
	1 Introduction
	2 The Knights Landing Architecture
	3 Computational Core
	4 Implementation
	4.1 Highly-Efficient Small Matrix Kernels
	4.2 Out-of-Core Time Kernel
	4.3 Optimizing the Mesh Traffic and Prefetching

	5 Scenarios
	5.1 LOH.1
	5.2 Mount Merapi
	5.3 1992 Landers

	6 Conclusion
	References

	Leveraging a Cluster-Booster Architecture for Brain-Scale Simulations
	1 Introduction
	2 DEEP Platform
	2.1 Hardware
	2.2 Software Stack and Programming Models

	3 Porting NEURON's Core Engine
	3.1 Extracting Core Engine of NEURON
	3.2 Mapping the Simulator to Hardware
	3.3 Offload Friendly Data Structures

	4 Performance Optimization
	4.1 Thread Parallelism
	4.2 Data Layout and Vectorization
	4.3 DSL Source to Source Compiler Changes

	5 Benchmarking and Performance Analysis
	6 Conclusion and Future Work
	References

	Manycore Architectures
	Efficient and Predictable Group Communication for Manycore NoCs
	1 Introduction
	2 Design and Implementation
	2.1 Alltoall and Alltoallv
	2.2 Barriers
	2.3 Broadcast
	2.4 Reduce and AllReduce

	3 Framework
	4 Experimental Results
	4.1 Single Packet Messages
	4.2 Varying Message Sizes
	4.3 NAS Parallel Benchmark
	4.4 Portability

	5 Related Work
	6 Conclusion
	References

	Distributed Job Allocation for Large-Scale Manycores
	1 Introduction
	2 PICASO
	3 Distributed Job Allocation
	4 Deadlock-Free Job Allocation
	4.1 The Main Scheduling Loop
	4.2 Active Cancellation
	4.3 Sequencer Based Atomic Broadcast
	4.4 Pattern-Based Message Propagation

	5 Implementation
	6 Evaluation Framework
	7 Experimental Results
	7.1 Performance Analysis
	7.2 Overhead for Sparse Job Allocations
	7.3 Job Allocation Overhead for Increasing Tile Sizes
	7.4 Worst-Case Conflict Resolution for N Simultaneous Jobs
	7.5 Experiments with NPB Codes in Real Task Mode
	7.6 Performance of Pattern-Based Propagation

	8 Related Work
	9 Conclusion
	References

	Extreme-Scale Computations
	Many-Core Acceleration of a Discrete Ordinates Transport Mini-App at Extreme Scale
	1 Introduction
	2 SNAP: Sn Application Proxy
	2.1 The KBA Schedule

	3 Related Work
	4 A Many-Core Implementation
	5 Performance Model
	6 Results
	6.1 Supercomputers
	6.2 Weak Scaling
	6.3 Choice of Chunk Size
	6.4 Strong Scaling

	7 Conclusion
	7.1 Future Work

	References

	Efficiency of High Order Spectral Element Methods on Petascale Architectures
	1 Introduction
	1.1 Outline

	2 Nek's Computational Core
	2.1 Governing Equations and Time-Splitting
	2.2 Spectral Element Method
	2.3 Computational Profile
	2.4 Order-Dependent Kernels

	3 Kernel Analysis and Optimization
	3.1 Small Matrix Multiplications
	3.2 Enhancing Element Update Performance by Streaming Stores
	3.3 Discussion of Performance Reproducers

	4 Scenarios and Performance
	4.1 Architectures
	4.2 Single Mode Rayleigh-Taylor Instability
	4.3 Time to Accuracy
	4.4 Whole Application Performance

	5 Conclusion
	References

	Resilience
	Scalability of Partial Differential Equations Preconditioner Resilient to Soft and Hard Faults
	1 Introduction
	2 Related Work
	3 Mathematical Formulation
	4 Implementation Details
	4.1 Server-Client Model
	4.2 Algorithm Implementation
	4.3 Skeleton Model for Performance Analysis Without Faults

	5 Results
	5.1 Nominal Scalability
	5.2 Resiliency

	6 Conclusions
	References

	Multi-versioning Performance Opportunities in BGAS System for Resilience
	1 Introduction
	2 Global View Resilience
	2.1 Global View Resilience and APIs
	2.2 Scalable Checkpointing Restart
	2.3 Input/Output Organization

	3 Blue Gene Active Storage System
	4 Evaluation
	4.1 Experimental Settings
	4.2 Base I/O Performance
	4.3 GVR Version Traversal Performance

	5 Related Work
	6 Summary and Future Work
	References

	Author Index

