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Abbreviations

CDH	 Cadherin
Cx	 Connexin(s)
Dsc 1–3	 Desmocollin
Dsg	 Desmoglein
GJ	 Gap junction
GJIC	 Gap junctional intercellular communication

9.1	 �Melanoma Microenvironment

This is an update of our previous reviews on this topic (Haass et al. 2004, 2005; 
Kuphal and Haass 2011; Brandner and Haass 2013).

The state of a cell – quiescence, proliferation, differentiation or cell death – is 
under normal conditions determined by homeostasis (Bissell and Radisky 2001).  
A symbiotic relationship between a melanocyte and approximately 36 associated 
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keratinocytes, which forms the epidermal melanin unit, maintains this homeostatic 
balance of the human epidermis (Fitzpatrick and Breathnach 1963; Jimbow et al. 
1976). Within the stratum basale, the melanocytes keep a lifelong stable ratio of 1:5 
with the keratinocytes (Fitzpatrick et al. 1979). This balance is maintained through 
regulated induction of melanocyte division coordinated through intercellular com-
munication, which can be endocrine and paracrine via soluble factors and/or by 
direct contact via cell–cell and cell–matrix adhesion, or gap junctional intercellular 
communication (GJIC) (Haass et al. 2004, 2005). Dysregulation of this homeostasis 
may cause an imbalance of the epidermal melanin unit and trigger uncontrolled 
proliferation of the melanocytes, which may lead to the development of a nevus and/
or a melanoma (Haass and Herlyn 2005).

Alterations in the interaction between neoplastic cells and their immediate 
microenvironment play a key role in these processes (Hanahan and Weinberg 2000, 
2011; Park et al. 2000). The tumor microenvironment includes (1) the tumor stroma 
composed of fibroblasts, endothelial cells, immune cells, soluble molecules, and the 
extracellular matrix (ECM); (2) the tissue where the tumor had originated from; and 
(3) different sub-compartments within the tumor itself. Signals to and from the 
stroma via cell–cell and cell–matrix contact and/or via secretion of cytokines and 
growth factors may lead to a remodeling of the tumor microenvironment and conse-
quently to promotion of melanoma development, growth, and metastasis by induc-
ing angiogenesis, invasion, and migration (Villanueva and Herlyn 2008; Zigler et al. 
2011). In addition to the interaction with the tumor stroma, primary melanoma pro-
gression as well as cutaneous melanoma metastases impact on the epidermal tumor 
microenvironment: the multilayered epithelium of the skin (Haass et  al. 2010). 
Finally, different microenvironmental conditions within the tumor itself are created 
by differential access to nutrients and oxygen (Groebe and Mueller-Klieser 1991; 
Minchinton and Tannock 2006; Santiago-Walker et  al. 2009; Haass et  al. 2014; 
Haass 2015).

The microenvironment is not only important for the primary tumor, but also for 
colonization of a secondary organ. The “seed and soil” hypothesis implies that the 
metastatic process depends on the tumorigenic capacity of the cells and – again – on 
their interactions with the microenvironment (Fidler 2003).

9.2	 �Adherent Junction of Cadherins

Cross-talk between benign precursor cells, malignant cells, and surrounding host 
cells influences tumor development. Already in 1914, Theodor Boveri recog-
nized the importance of changes in tumor cell adhesion for the development of 
cancer (Boveri 1914). Among the molecules involved in this intercellular com-
munication are cadherins, which play a critical role for the homeostasis of nor-
mal skin and also during tumor formation and progression (Fig.  9.1). The 
identification of cadherins in the late 1970s and early 1980s was primarily moti-
vated by an interest in understanding the mechanisms of cell adhesion during 
development (Franke 2009).
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Cell–cell as well as cell–matrix adhesions are critical for cells and tissues to 
respond to mechanical stimuli from their environment. Both cell–cell and cell–
matrix adhesions bear intrinsic mechanosensitivity, which allows them to promptly 
respond to stress and effectively propagate signals controlling cell shape and motil-
ity. This mechanosensitive response has been associated with pronounced changes 
in the size and molecular composition of specific adhesion sites and, consequently, 
the signals evoked by those adhesion sites. In polarized epithelia of vertebrates, the 
adherent junction is part of the tripartite junctional complex localized at the juxtalu-
minal region, which compromises the tight junction (TJ, see below), adherent junc-
tion (AJ), and desmosomes (macula adherens).

More than 80 proteins belong to the cadherin superfamily and are separated into 
the following “adherent junction” (AJ) subgroups in vertebrates:

	1.	 Classical adhesive cadherins of type 1 (6 members) and type 2 (13 members), 
e.g., E-, N-, P-, R-, and VE-cadherin. The classical cadherin family comprises 19 
members that share a common domain organization of five repetitive extracel-
lular calcium-binding subdomains (Overduin et al. 1995). Most of these classical 
cell–cell adhesion molecules are connected to the actin filaments and microtu-
bules of the cellular cytoskeleton via catenins. The four known catenins, alpha-, 
beta-, gamma (plakoglobin)-, and delta (p120)-catenin, are important regulatory 
elements either for sustained cell–cell adhesion or signaling cascades into the 
cell.

	2.	 The “nonclassical” desmosomal cadherins, transmembrane proteins of desmo-
somes are, for example, desmocollin 1–3 (Dsc 1–3) and desmoglein 1–4 (Dsg 
1–4). They are connected to intermediate filaments.

	3.	 Finally, there are nonclassical cadherins, like the protocadherins (e.g., protocad-
herin 15, cadherin 23), H-cadherin, and cadherin-like molecules (e.g., Fat, 
Dachsous, Flamingo, or Ret) belonging to the cadherin superfamily.

The most important classical cell–cell adhesion molecules of the skin and dur-
ing melanoma development are E (epithelial)-cadherin (CDH-1), N 
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Fig 9.1  Overview of the cadherin repertoire in skin and melanoma (Illustration R.J. Bauer)
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(neuronal)-cadherin (CDH-2), and P (placental)-cadherin (CDH-3), which belong 
to the group of calcium-dependent glycoproteins. Certainly, this group of classical 
adhesion molecules can be extended with atypical VE (vascular endothelial)-cad-
herin (CDH-5, CD144) and the nonclassical cadherin H (heart)-cadherin 
(T-cadherin, CDH-13) (Fig. 9.1). In normal epidermis, melanocytes and keratino-
cytes are mostly connected via E-cadherin, P-cadherin, and H-cadherin (Kuphal 
et al. 2009; Nishimura et al. 1999; Tang et al. 1994). Whereas melanocytes in the 
basal layer of the epidermis seem to contain predominantly E-cadherin and 
H-cadherin, those residing in hair follicles are rich in P-cadherin (Nishimura et al. 
1999). In contrast, N-cadherin is expressed on fibroblasts and vascular endothelial 
cells of normal skin (Hsu et al. 1996).

9.2.1	 �Loss of E-Cadherin in Tumorigenesis

E-cadherin is the major cadherin in polarized epithelial cells. Furthermore, the 
crosstalk between melanocytes and keratinocytes mediated by E-cadherin plays an 
important role in human epidermis. The normal melanocytic phenotype and con-
trolled proliferation of melanocytes are strictly regulated by keratinocytes via 
E-cadherin. The E-cadherin knockout mouse is lethal in early embryonic stages 
(Larue et al. 1994) supporting the finding that E-cadherin has an essential role in 
morpho- and organogenesis. In skin development, there is evidence that E- and 
P-cadherin play some role in guiding melanocyte precursor cells to their final desti-
nation in the epidermis (Nishimura et al. 1999).

Malignant transformation of melanocytes is frequently attended by loss of 
E-cadherin expression and induction of N-cadherin (Hsu et al. 1996). This leads to 
the loss of the regulatory dominance of keratinocytes over melanocytes. The degen-
erated melanocytes/melanoma cells express N-cadherin to get into contact to fibro-
blasts and vascular endothelial cells during migration and invasion into the tumor 
stroma, dermis, lymph, and blood vessels (Hsu et al. 2000) (Fig. 9.2). The switch of 
the cadherin class is an interesting phenomenon of melanoma cells and in epithe-
lial–mesenchymal transition (EMT) in general.

However, immunohistochemical examination of primary melanomas and their 
metastases has revealed that a proportion of melanoma cells are still E-cadherin-
positive and present little, if any, N-cadherin (Danen et al. 1996; Hsu et al. 1996; 
Sanders et al. 1999; Silye et al. 1998). Therefore, the cadherin switch as an obliga-
tory prerequisite of malignant behavior is still controversial and might depend on 
the subtype of the melanoma examined. However, immunohistochemistry data 
could not show whether the expressed E-cadherin is really functionally active 
regarding adhesion or still possesses signaling function. The general consensus is 
that E-cadherin is a tumor invasion suppressor.

9.2.1.1	 �Regulators of E-Cadherin
The mechanism by which E-cadherin expression is lost during malignancy differs 
between tumor entities. Loss of E-cadherin function can be caused by various 
genetic or epigenetic mechanisms. In patients with diffuse gastric cancer and breast 
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Fig. 9.2  (a) Cell–cell adhesion of melanocytes and melanoma cells. Melanocytes adhere to kera-
tinocytes via E-cadherin and desmoglein, which enables them to communicate with each other 
through gap junctions with cells in their environment. (b) In melanoma cells, E-cadherin is down-
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cancer, the E-cadherin gene is mutated, leading to the expression of a nonfunc-
tional protein (Strathdee 2002). The consequence is abnormal expression and 
abnormal subcellular localization of cadherin or the components of the cadherin-
containing adhesion complex. Further, the CDH-1 gene locus can be epigenetically 
silenced by hypermethylation, leading to downregulation of E-cadherin expression 
which is known from several cancer entities, e.g., hepatocellular carcinoma (Kanai 
et al. 1997), squamous cell carcinoma (Saito et al. 1998), and thyroid cancer (Graff 
et al. 1998).

In most cases, E-cadherin expression is downregulated at the transcriptional 
level. The zinc-finger containing transcriptional repressor Snail1, which is a master 
regulator of neural crest cell specification and melanocyte migration during devel-
opment in vertebrates, is mainly responsible for the loss of E-cadherin in melanoma 
(Batlle et  al. 2000; Poser et  al. 2001). The level of Snail1 expression correlates 
directly with the loss of E-cadherin expression, and forces overexpression of Snail 
in primary melanocytes downregulates E-cadherin expression (Poser et al. 2001). 
Slug (Hajra et al. 2002; Bolós et al. 2003), Snail2, ZEB1 and ZEB2 (Eger et al. 
2005; Caramel et al. 2013), and SIP1 (Comijn et al. 2001), also members of the zinc 
finger transcription factor family of Snail, are further regulators of E-cadherin in 
melanoma, as well as basic helix–loop–helix transcription factors E12/47 (Perez-
Moreno et al. 2001) and Twist (Yang et al. 2004). Additionally, the T-box transcrip-
tion factor Tbx3 is overexpressed in melanoma, which enhances melanoma 
invasiveness through prevention of E-cadherin expression (Rodriguez et al. 2008). 
Furthermore, within human melanoma lesions, GLI-2, a mediator of hedgehog sig-
naling, is associated with loss of E-cadherin (Alexaki et al. 2010).

Proteolytic degradation of E-cadherin by matrix metalloproteinases (MMPs) is 
another mechanism by which E-cadherin-mediated cell–cell adhesion can be 
ablated. In this case, cell surface E-cadherin becomes soluble by cleavage of the 
extracellular domain, a process known as ectodomain shedding. For melanoma, 
Adam-10 is responsible for E-cadherin shedding (Billion et  al. 2006) (see also 
Chap. 8).

A family of microRNAs, such as miR-200a, miR-200b, miR-200c, and miR-205 
was reported to control the expression level of E-cadherin during the epithelial–
mesenchymal transition. The microRNA targets the transcriptional repressors ZEB1 
and ZEB2 of E-cadherin (Gregory et al. 2008; Hurteau et al. 2007). As one example 
for cancer, loss of miR-200c expression is significantly correlated with early stage 
T1 bladder tumor progression (Wiklund et al. 2011). Another miRNA, miR-373, 
induces expression of genes with complementary promoter sequences. It was found 
that miR-373 induces E-cadherin expression by recognizing a target site in the pro-
moter of the cdh-1 gene (Place et al. 2008). Liu et al. 2012 showed that miR-9 is 
downregulated in metastatic melanomas compared with primary melanomas. A 
tumor suppressor effect after re-expression of miR-9  in melanoma is mediated 
through its direct binding to sites within the NF-kB 3′-UTR, resulting in suppres-
sion of Snail1 and upregulation of E-cadherin. However, whether microRNAs are 
responsible for regulating cadherins directly and specifically in melanoma is still 
not known (see also Chap. 6).
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9.2.2	 �Loss of P-Cadherin During Tumorigenesis

In human skin, P-cadherin is expressed mainly on cells of the epidermal basal layer 
(Furukawa et al. 1997) and those melanocytes residing in hair follicles (Nishimura 
et al. 1999). Concerning carcinogenesis, the effective role of P-cadherin remains an 
object of debate, since it can behave differently depending on the molecular context 
and tumor cell model studied. In melanoma cells, loss of full-length P-cadherin was 
reported (Bachmann et  al. 2005; Van Marck et  al. 2005; Jacobs et  al. 2011). 
Therefore, P-cadherin has a similar tumor-suppressive behavior to E-cadherin. 
Additionally, a truncated 50 kDa form of the N-terminal part of P-cadherin was 
found, which appeared to be secreted from the melanoma cells. If this secreted form 
of P-cadherin is expressed from melanoma cells, it is responsible for cell migration 
and invasion (Bauer et al. 2005, 2006; Bauer and Bosserhoff 2006).

9.2.3	 �Loss of T-Cadherin During Tumorigenesis

T-cadherin (truncated-cadherin, cadherin 13, gene name CDH13) or H-cadherin, 
named for its strong expression in the heart, is an atypical member of the cadherin 
family, lacking the classical HisAlaVal recognition motif at its N-terminus, lacking 
the typical transmembrane and cytosolic domains and possessing a glycosylphos-
phatidylinositol moiety that anchors T-cadherin into the outer plasma membrane.

Immunohistochemistry of melanoma tissue samples showed positive T-cadherin 
staining of the endothelial cells. T-cadherin expression in endothelial cells was dem-
onstrated to be redox sensitive (Joshi et al. 2008). The melanoma cells themselves 
showed loss of T-cadherin whereas healthy skin showed staining of melanocytes 
and keratinocytes of the basal layer of the epidermis. Loss of T-cadherin in mela-
noma is associated with migration and invasion of the cells (Kuphal et al. 2009). In 
general, the exact functional role and signaling of T-cadherin for melanoma cells 
itself and for the intratumoral angiogenesis are not clarified, so far. It was only 
shown that loss of T-cadherin in melanoma regulates AKT signaling and desensi-
tizes for apoptosis (Bosserhoff et al. 2014). Also, a connection of loss of T-cadherin 
to tumor progression was speculated (Rubina et al. 2013) but not evidenced, until 
today.

9.2.4	 �N-Cadherin Expression During Tumorigenesis

N-cadherin plays a pivotal role in cell adhesion between melanoma cells and both 
dermal fibroblasts and vascular endothelial cells. During the cadherin class switch, 
loss of E-cadherin expression is accompanied by induced N-cadherin expression, 
which confers new adhesive properties on the cells (Fig. 9.2). The shift in cadherin 
profile during melanoma progression has been found not only in  vitro but also 
in vivo (Hsu et al. 1996; Sanders et al. 1999). Experimentally, melanoma cell migra-
tion across fibroblasts is impaired upon addition of an N-cadherin neutralizing 
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antibody (Li et  al. 2001). The functional relevance of N-cadherin is to conduct 
migration and invasion of melanoma cells whereas N-cadherin expression corre-
lates with progression to advanced-stage melanoma. The cell adhesion molecule 
N-cadherin has been suggested to represent a melanoma progression marker 
(Watson-Hurst and Becker 2006).

The switch of the cadherin class from E-cadherin to N-cadherin is directly con-
nected. The transcriptional repressor Snail not only regulates E-cadherin repression 
but also represses the expression of the deubiquitinating enzyme CYLD. Loss of 
CYLD expression in melanoma in turn led to ubiquitination of Bcl-3 which is a 
transcriptional regulator of N-cadherin expression (Massoumi et al. 2009).

9.2.5	 �VE-Cadherin Expression During Tumorigenesis

The term vasculogenic mimicry describes the formation of vascular-like tubular 
structures and patterned networks through the connection of melanoma cells. The 
vascular structures are essential for the supply of the tumor. Several key molecules 
are responsible for the formation and maintenance of the tubular networks and these 
molecules are also often essential in normal blood vessels. One molecule expressed 
during vasculogenic mimicry of melanoma cells is VE-cadherin, previously consid-
ered to be endothelial cell specific. Analyzing VE-cadherin in detail demonstrated 
an interaction with EphrinA2 (EphA2), a tyrosine kinase. VE-cadherin engages the 
membrane-bound ligand of EphA2 and becomes phosphorylated on its tyrosines at 
the cytoplasmic domain. The mutual impact of VE-cadherin and EphA2 results in 
loosening of cell–cell adhesion and allowing for an increase in cell migration, inva-
sion, and vasculogenic mimicry. Further studies describe the role of VE-cadherin 
for melanoma transendothelial migration. Here, p38 MAP kinase is necessary for 
increased VE-cadherin-mediated junction disassembly important for the migration 
processes of melanoma cells (Hendrix et al. 2001, 2003; Khanna et al. 2010).

9.2.6	 �FAT Expression During Tumorigenesis

FAT1, FAT2, FAT3, and FAT4 are human homologs of Drosophila Fat, which is 
involved in tumor suppression and planar cell polarity (PCP). FAT molecules belong 
to the cadherin-like protein family. FAT1 and FAT4 undergo the first proteolytic 
cleavage by Furin and are predicted to undergo the second cleavage by γ-secretase 
to release intracellular domain (ICD). Recently, it was shown using Northern blot-
ting that human melanoma cell lines variably but universally express FAT1 and less 
commonly FAT2, FAT3, and FAT4. Both normal melanocytes and keratinocytes 
also express comparable FAT1 mRNA relative to melanoma cells. However, in mel-
anoma cells, the non-cleaved proform of FAT1 is also expressed at the cell surface 
together with the furin-cleaved heterodimer. Moreover, furin-independent process-
ing generates a potentially functional proteolytic product in melanoma cells, a per-
sistent 65-kDa membrane-bound cytoplasmic fragment no longer in association 
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with the extracellular fragment. In vitro localization studies of FAT1 showed that 
melanoma cells display high levels of cytosolic FAT1 protein. Such differences in 
protein distribution appear to reconcile with the different protein products generated 
by dual FAT1 processing. It was suggested that the uncleaved FAT1 could promote 
altered signaling, and the novel products of alternate processing provide a dominant 
negative function in melanoma (Sadeqzadeh et al. 2011). Among the human FAT 
gene family, FAT4 gene is recurrently mutated in several types of human cancers, 
such as melanoma (40 %), pancreatic cancer (8 %), HNSCC (6 %), and gastric can-
cer (5 %) (Nikolaev et al. 2011).

9.2.7	 �Signaling of Cadherins

In contrast to integrins, evidence for cadherin-induced outside–in signaling came 
into focus only slowly. Over the last 10 years, a number of studies have appeared to 
agree that signaling cascades emanating from cadherins play an important role in 
confluency-dependent growth arrest, migration, invasion, and differentiation. 
Changes in expression or function of cell adhesion molecules can therefore contrib-
ute to tumor progression both by altering the adhesion status and by affecting cell 
signaling. To date, no enzymatic activity has been attributed to the cytoplasmic tails 
of adhesion molecules like E-cadherin or N-cadherin. The signaling capability ema-
nates from intracellularly bound kinases and phosphatases that link to the cytoplas-
mic tail of adhesion receptors (Fig. 9.3).

9.2.7.1	 �Signaling Cascades of E-Cadherin
Four modes of E-cadherin signaling are known:

	1.	 Modulation of receptor tyrosinase signaling (RTK) (see also Chap. 7)
	2.	 Inhibition of the Wnt signaling pathway (see also Chap. 7)
	3.	 Regulation of cytoplasmic β-catenin signaling
	4.	 Regulation of signaling through Rho GTPases

One way by which E-cadherin transmits growth-inhibiting outside–in signals 
appears to follow a strikingly similar scheme to that of the integrins. By using an 
immortalized nontumorigenic keratinocyte cell line, HaCaT, as a model system, Pece 
and Gutkind (2000) provide evidence that the assembly of calcium-dependent adher-
ens junctions leads to a rapid and remarkable increase in the state of activation of 
MAPK and that this event is mediated by E-cadherin. Furthermore, it was found in 
these studies about HaCaTs that E-cadherin stimulates the MAPK pathway through 
ligand-independent activation of receptor tyrosine kinases, in particular EGF-receptors 
(Pece and Gutkind 2000). They speculated that upon adherens junction formation, 
signals emanating as a result of the E-cadherin-EGFR interaction might be involved 
in maintaining the functional and structural integrity of quiescent epithelia and, as a 
function of the adhesion status of the cells, possibly in promoting epithelial cell dif-
ferentiation rather than proliferation. In contrast, another group detected signaling 
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Fig. 9.3  Schematic depiction of cadherin signaling in melanoma. The transcriptional repressor 
Snail inactivates E-cadherin expression in melanoma. With the loss of E-cadherin cytosolic beta-
catenin activates the MAP kinase p38, which stimulates the transcriptional activity of 
NFkappaB. NFkappaB has N-cadherin as target gene. Additionally, Snail represses the expression 
of the tumor suppressor Cyld, which in turn leads to ubiquitination of Bcl-3 which also has 
N-cadherin as target gene. The overexpression of N-cadherin activates signaling cascades of SRC 
and PKB/Akt which leads to tumor progression (Illustration R.J. Bauer)
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cascade inhibition through EGF-receptor/E-cadherin complex formation in mela-
noma and breast cancer cells (Qian et al. 2004). Unfortunately, most of the literature 
on E-cadherin signaling does not cover melanoma. Studies on keratinocytes and other 
cancer cell types revealed that the E-cadherin complex associates and cooperates with 
an EGF-receptor family member to activate the PI3K/Akt pathway in a Src-family 
kinase-dependent manner (Muller et al. 2008; Perrais et al. 2007) (see also Chap. 7).

Some studies showed that homophilic ligation of E-cadherin signals directly 
through Rho GTPase activity (Braga 2000; Braga et al. 1997). Loss of E-cadherin 
in melanoma may involve changes in the organization of the cytoskeleton which is 
exerted by members of the Rho family. They control not only the cytoskeletal orga-
nization but also cell motility, migration, and tumor progression to malignancy at 
the same time. As example, E-cadherin suppresses RhoA activity in melanoma by 
activating p190RhoGAP (Molina-Ortiz et al. 2009). E-cadherin overexpression led 
to association of p190RhoGAP and p120ctn on the plasma membrane where 
E-cadherin bounds p120ctn. Recently, it was shown that E-cadherin also regulates 
RhoC GTPase. Here, loss of E-cadherin activates the expression of the RhoC in 
melanoma through upregulation of the transcription factor ETS-1, which results in 
increased c-Jun protein stabilization and activation (Spangler et al. 2012).

In addition to its role in adhesion, nuclear β-catenin is involved in Wnt signal 
transduction, and it interacts with transcription factors of the leukocyte enhancer 
factor (LEF)/T-cell factor (TCF) family to regulate transcription of target genes 
implicated in cell growth control such as cyclin D1 and c-myc (van Noort and 
Clevers 2002). By sequestering β-catenin at the cell surface, E-cadherin has been 
shown to antagonize nuclear β-catenin signaling pathways and to induce growth 
inhibition (Gottardi et  al. 2001; Shtutman et  al. 1999). Furthermore, β-catenin 
bound to E-cadherin inhibits phosphorylation of p38 and prevents activation of 
NFkappaB. Unbound cytoplasmic β-catenin activates the signaling pathway ending 
at transcriptional activation of N-cadherin expression in melanoma cells (Kuphal 
et al. 2004). In general, it was shown by Onder et al. (2008) that loss of E-cadherin 
promotes metastasis via multiple downstream transcriptional pathways. The publi-
cation presents ~84 of 617 genes differentially expressed in shE-cadherin human 
breast epithelial cells (HMLE). They presented, e.g., twist and TCF-8 among other 
19 transcription factors as upregulated after loss of E-cadherin.

9.2.7.2	 �Signaling Cascades of N-Cadherin
N-cadherin-mediated intercellular interactions promote survival and migration of 
melanoma cells through activation of cytoplasmic signaling cascades. The Src fam-
ily kinases are involved in the regulation of N-cadherin-mediated cell adhesion and 
signaling during, e.g., melanoma cell transendothelial migration. Src is localized at 
the heterotypic contacts of N-cadherin and becomes activated when melanoma cells 
are transmigrating across the endothelium. Activated Src has the Tyrosine-860 at the 
cytoplasmic domain of N-cadherin as target site for phosphorylation. The phos-
phorylation leads to disruption of β-catenin binding followed by nuclear transloca-
tion of this molecule to activate gene transcription of genes responsible for 
proliferation (Qi et al. 2006). N-cadherin mediates cell adhesion-activated antiapop-
totic protein Akt/PKB and subsequently increases β-catenin and inactivates pro-
apoptotic factor Bad (Li et al. 2001).
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9.2.8	 �Desmosomes/Hemidesmosomes

Desmosomes, composed of desmogleins and desmocollins, are localized spot-like 
adhesions randomly arranged on the lateral sides of plasma membranes and are also 
members of the cadherin family. The extracellular domain of the desmosome is 
called the extracellular core domain (ECD) or the Desmoglea, and is bisected by an 
electron-dense midline where the desmoglein and desmocollin proteins bind to each 
other. On the cytoplasmic side of the plasma membrane, there are two dense struc-
tures called the outer dense plaque (ODP) and the inner dense plaque (IDP). In the 
ODP, the cytoplasmic domains of the cadherins desmoglein and desmocollin attach 
to desmoplakin via plakoglobin and plakophilin, while in the IDP, desmoplakin 
attaches to the intermediate filaments such as keratine filaments.

A number of melanoma cell lines synthesize, in the absence of desmosomes, the 
desmosomal cadherin desmoglein 2 (Dsg2) as a frequent plasma membrane glyco-
protein that is not assembled into any junction but is dispersed over large parts of the 
cell surface. Indeed, in tissue microarrays, Dsg2 has been demonstrated in a sizable 
subset of nevi and primary melanomas (Rickelt et  al. 2008). In contrast, Dsg1, 
Dsg3, and desmocollins 1–3, were absent in the analyzed melanoma cell lines but 
plakoglobin and plakophilin3 were also expressed in several melanoma cell lines 
(Schmitt et al. 2007). Future studies will have to clarify the diagnostic and prognos-
tic significance of these different adhesion protein subtypes.

9.3	 �Integrins

Integrins are transmembrane adhesion receptors localized at cell–matrix contact 
sites where they link ECM (extracellular matrix) components, e.g., vitronectin, 
fibronectin, laminin, osteopontin, or collagen, to the actin cytoskeleton and interact 
with multiple structural and signaling molecules including talin, kindlin, paxillin, 
vinculin, α-actinin, FAK (focal adhesion kinase), ILK (integrin-linked kinase), Rho 
GTPases, and SHC (Berrier and Yamada 2007; Papusheva and Heisenberg 2010). 
The latter are important mediators downstream of integrins by which they interact 
either directly or indirectly to effect adhesion-dependent responses (Playford and 
Schaller 2004). The metastatic transformation of melanocytes is associated with 
altered expression of integrins, which transduce signals upon ligation to ECM pro-
teins that regulate tumor growth and metastasis, apoptosis, differentiation as well as 
tumor angiogenesis. Integrin receptors are functional dimers of α- and β-integrin 
subunits, which each have a large ectodomain, a single transmembrane domain, and 
a generally short cytoplasmic tail (except for β4 integrin). The combination of dif-
ferent α- and β-subunits determines the substrate specificity of the dimer (Danen 
and Sonnenberg 2003). There are at least 18 known α-chains and 8 β-chains, allow-
ing for at least 24 unique heterodimers.

The pattern of integrins on the cell surface is usually very specific, which makes 
the cell fit perfectly into its surrounding environment. Importantly, integrin expres-
sion patterns differ considerably in vitro versus in vivo. Thus, in vitro studies may 
not translate into the in vivo situation.
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Several publications have shown that the expression levels mainly of αvβ3, α2β1, 
α3β1, α4β1, and α5β1 appear to increase from primary melanomas to metastatic 
melanoma tissue sections, whereas there was a significant decrease in α1β1, α2β1, 
and α6β1 expression levels in metastatic melanoma compared to primary melanoma 
(Friedl et  al. 1998; Natali et  al. 1993; Schadendorf et  al. 1993). Although many 
integrins have been implicated in mediating melanoma growth and metastasis, per-
haps none have been studied as much as the vitronectin receptor, αvβ3 (Danen et al. 
1995; Mortarini and Anichini 1993; Seftor et al. 1999). αvβ3 integrin adheres to 
vitronectin, fibronectin, laminin, collagen, and osteopontin. Binding fibronectin and 
vitronectin induces the expression of MMP-2, which is able to degrade the collagen 
of the basement membrane (Felding-Habermann et al. 2002). Furthermore, osteo-
pontin’s RGD-sequence (Arg–Gly–Asp) has high binding affinity and specificity to 
αvβ3. As the aggressiveness of melanoma has been associated with high osteopon-
tin expression (Sieg et al. 2000), this interaction of αvβ3 and osteopontin is impor-
tant for melanoma progression. Interaction between αvβ3 and extracellular matrix 
molecules serves to promote cell attachment, spreading, and migration. αvβ3 integ-
rin also undergoes heterophilic binding with two members of the immunoglobulin 
superfamily of cell adhesion molecules, PECAM-1 and L1. The αv subunit is widely 
expressed on melanomas regardless of disease stage. This stands in contrast to the 
β3 subunit, which is predominantly expressed on melanoma cells in the vertical 
growth phase. The onset of β3 integrin expression is one of the most specific mark-
ers of the transition from radial growth phase to vertical growth phase of melanoma 
(Albelda et al. 1990; Danen et al. 1995; Natali et al. 1997). Although many studies 
on human melanoma cell lines have correlated αvβ3 integrin expression with pro-
gression and metastasis, in vivo studies are less clear.

9.3.1	 �Integrin Signaling in Melanoma

Apart from being involved in the attachment of cells to the ECM, integrins are also 
responsible for signaling between the cells and the environment. Signaling works 
bidirectionally: “outside–in signaling” can control behavior, proliferation, cell 
polarity, cell growth, and migration. “Inside–out signaling,” on the other hand, 
changes the integrins from a passive, weak binding state into an active, adhesive 
state and alters the interaction of the receptors with the extracellular environment. 
Integrins are receptors for cell movement in response to binding to ECM of the 
basement membrane or connective tissue or plasma membrane receptors expressed 
on endothelial cell surfaces. Additionally, integrins bind cytoplasmic adaptor pro-
teins of the actin-myosin filaments and create a plasticity that allows the cell to 
move. In summary, integrins are bivalent linker proteins, binding simultaneously to 
extracellular ligands as well as cytoplasmic proteins including intracellular signal-
ing molecules. They influence, for example, tyrosine kinases, serine/threonine 
kinases, phosphoinositides, and signaling cascades which determine the fate of a 
cell, letting it grow, proliferate, or die whenever it is necessary in the context of the 
whole organism. This paragraph introduces some of the most important and best 
studied proteins which are known to interact with integrins in melanoma.

9  Cell–Cell Contacts in Melanoma and the Tumor Microenvironment



240

There is the non-receptor protein tyrosinase kinase FAK (focal adhesion kinase) 
(Fig. 9.4) that co-localizes with integrins in focal adhesions. FAK becomes phos-
phorylated and then controls processes like cell spreading, proliferation, motility, 
vasculogenic mimicry, and survival (Schaller 2001). Proteins like c-SRC, SHC, 
CSK, PI3K, and GRB2 are known to interact with FAK to transfer the signaling into 
the cytoplasm and to link FAK signaling also to MAP kinases (Chakraborty et al. 
2002) (see also Chap. 7). FAK expression seems to be required in melanoma cells 
for substrate adhesion. It has been shown that in melanoma FAK is constitutively 
active and that it is essential for maintaining adhesiveness in melanoma cells 
(Hamamura et al. 2008; Kahana et al. 2002).

Fig. 9.4  Schematic depiction of the signaling pathways leading from integrins to focal adhesion 
kinase (FAK) and integrin-linked kinase (ILK), respectively, and further reactions of the cell 
(Illustration R.J. Bauer)
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Furthermore, the integrin-linked kinase (ILK), a serine/threonine kinase, is 
implicated in connecting cell–extracellular matrix interaction and growth factor sig-
naling to cell survival, cell migration, invasion, anchorage-independent growth, 
angiogenesis, and epithelial–mesenchymal transition. It has been shown that strong 
ILK expression was significantly associated with melanoma thickness, migration, 
and invasion (Wong et al. 2007). Increased expression of integrin-linked kinase is 
correlated with melanoma progression and poor patient survival (Dai et al. 2003). 
ILK directly phosphorylates PKB/Akt and glycogen synthase kinase-3 (GSK-
3beta), which is inactivated upon phosphorylation (Delcommenne et  al. 1998; 
Troussard et al. 1999). SHC is another protein which is implicated in integrin sig-
naling. It is an adaptor protein capable of binding phosphotyrosine-containing 
sequences. So far, studies have demonstrated that SHC signaling is involved in path-
ways, which play a role in the development of malignancies like c-Myc activation 
(Gotoh et al. 1997), survival signaling (Friedmann et al. 1996; Sakai et al. 2000), 
cytoskeletal organization, and mitogenic signaling through RAS. It has been pro-
posed that SHC is a substrate for FAK.

Also, the ERK/MAP kinase cascade is a pathway in which integrin-mediated 
adhesion is involved. In the ERK pathway, various stimuli of many important inte-
grin signaling molecules like FAK or SHC converge and are able to influence nearly 
every profound cellular activity (Meier et al. 2005).

Epidermal growth factor receptor (EGFR) is also activated by integrins to 
generate cellular responses such as adhesion-dependent cell survival and prolif-
eration in response to ECM. Subsequently, integrin-mediated EGFR activation 
induces ERK/MAP kinase signaling (Howe et  al. 2002; Jost et  al. 2001). 
Furthermore, Caveolin-1 (CAV1) is the main structural component of caveolae, 
which are plasma membrane invaginations that participate in vesicular traffick-
ing and signal transduction events. Following integrin activation, B16F10 cells 
expressing CAV1 display reduced expression levels and activity of FAK and Src 
proteins. Furthermore, CAV1 expression markedly reduces the expression of 
integrin β3 in B16F10 melanoma cells. These findings provide experimental evi-
dence that CAV1 may function as an antimetastatic gene in malignant melanoma 
(Trimmer et al. 2010).

9.4	 �Immunoglobulin Gene Superfamily of Cell Adhesion 
Molecules (CAMs)

Whereas normal melanocytes express few cell–cell adhesion receptors of the immu-
noglobulin gene superfamily of cell adhesion molecules (CAMs), melanoma cells 
show an increase in expression of melanoma cell adhesion molecule (MCAM, Mel-
CAM, MUC18, CD146), L1 cell adhesion molecule (L1-CAM, CD171), activated 
leukocyte cell adhesion molecule (ALCAM, CD166), vascular cell adhesion mole-
cule 1 (VCAM-1, CD106), intercellular cell adhesion molecule 1 (ICAM-1, CD54), 
and carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM-1, 
CD66a) (reviewed in Haass et al. 2005).
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9.4.1	 �Melanoma Cell Adhesion Molecule (MCAM, Mel-CAM, 
MUC18, CD146)

Mel-CAM mediates homologous and heterologous interactions between melanoma 
cells and endothelial cells, respectively, via a heterophilic Ca2+-independent adhesion 
to its ligand (Shih et al. 1997a, b; Johnson et al. 1997). Recently, Laminin-411 (α4β1γ1 
integrin) and Galectin-1 have been identified as Mel-CAM ligands (Flanagan et al. 
2012; Jouve et al. 2013; Yazawa et al. 2015). In melanocytic cells, expression of Mel-
CAM is first found in nevi, when the cells have separated from the epidermal kerati-
nocytes and have migrated into the dermis (Shih et al. 1994; Kraus et al. 1997). With 
progression to malignancy, Mel-CAM expression gradually increases and is highest 
in metastatic melanoma cells (Xie et al. 1997; Johnson et al. 1996; Shih et al. 1994; 
Lehmann et al. 1987, 1989). In vitro and in vivo data supporting an important role of 
Mel-CAM in melanoma progression was demonstrated in several experimental stud-
ies (reviewed in Haass et al. 2005; Lei et al. 2015). Recently, the zinc finger transcrip-
tion factor ZBTB7A was found to repress melanoma metastasis by directly binding to 
the promoter and transcriptionally repressing Mel-CAM (Liu et al. 2015).

An evaluation of tissue arrays of primary and metastatic melanomas revealed that in 
patients meeting the current criteria for sentinel lymph node dissection, both Mel-
CAM expression positivity and intensity were independently predictive of survival and 
development of lymph node disease in primary melanoma over and above established 
markers of prognosis, such as Breslow thickness. Mel-CAM-negative patients had a 
5-year survival of 92 % compared with 40 % for Mel-CAM-positive patients (Pearl 
et al. 2008). Recently, a study on 175 patients revealed that sequential molecular detec-
tion of Mel-CAM mRNA in the peripheral blood correlated with poor prognosis. The 
authors suggested to utilize Mel-CAM expression as a “molecular warning of progres-
sion” even in early stage patients in otherwise disease-free conditions (Rapanotti et al. 
2014). However, larger trials to confirm this finding as a biomarker are still pending.

9.4.2	 �L1-Cell Adhesion Molecule (L1-CAM, CD171)

L1-CAM, originally described as a neuronal cell adhesion molecule, has also been 
detected in a number of other non-neuroendocrine tissues and in several malignant 
tumors, including melanoma (Nolte et al. 1999; Thies et al. 2002b). L1-CAM medi-
ates adhesion both via homophilic (L1-CAM-L1-CAM) and heterophilic (L1-CAM-
αvβ3 integrin) mechanisms (Hortsch 1996). In melanoma/melanoma cell and in 
melanoma/endothelial cell interactions, L1-CAM binds to αvβ3 integrin (Montgomery 
et al. 1996). The interaction of L1-CAM and αvβ3 integrin plays an important role in 
transendothelial migration of melanoma cells (Voura et al. 2001) whereas overex-
pression of L1-CAM promotes conversion from radial to vertical growth phase 
melanoma without upregulation of αvβ3 integrin expression (Meier et  al. 2006). 
There is an increase in L1-CAM immunoreactivity in melanomas and metastases of 
melanoma compared to acquired melanocytic nevi (Fogel et al. 2003). A study that 
systematically identified novel melanoma-specific genes confirmed that L1-CAM is 
not expressed in normal skin and melanocytic nevi, but is highly and differentially 
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expressed in primary melanoma tissues and melanoma lymph node metastases 
(Talantov et al. 2005). Evaluation of specimens of nevi, primary melanomas, senti-
nel lymph nodes, and distant metastases showed that L1-CAM can serve as a highly 
sensitive and specific diagnostic marker for melanoma (Thies et al. 2007). A 10-year 
retrospective biomarker study, evaluating 100 melanoma specimens, showed that 
the expression of L1-CAM in human primary cutaneous melanoma is significantly 
associated with metastatic spread and that L1-CAM expression is an independent 
predictor for the risk of metastasis (Thies et al. 2002b). A recent study revealed that 
the CE7 epitope of L1-CAM on a variety of tumors (however, melanoma was not 
included in the study) may be amenable to targeting by CE7R+ T cells, making it a 
promising target for adoptive immunotherapy (Hong et al. 2014).

9.4.3	 �Activated Leukocyte Cell Adhesion Molecule (ALCAM, 
CD166)

ALCAM is involved in homophilic (ALCAM-ALCAM) (Degen et al. 1998) and 
heterophilic (ALCAM-CD6) (Patel et  al. 1995) cell–cell adhesion interactions. 
ALCAM is expressed in metastatic human melanoma cells, whereas it is absent in 
non-metastatic cells (Degen et al. 1998). Immunohistochemistry on a series of com-
mon nevi, primary melanomas, and melanoma metastases revealed that ALCAM 
expression correlates with melanoma progression (van Kempen et  al. 2000). 
ALCAM is therefore proposed to be a molecular melanoma progression marker. 
Intact cell adhesion function of ALCAM favored primary tumor growth and repre-
sented a rate-limiting step for tissue invasion, which supported the view that 
dynamic control of ALCAM plays an important role in progression (van Kempen 
et al. 2004). An immunohistochemical biomarker study, evaluating tissue microar-
rays showed that a significantly greater percentage of melanomas (combined pri-
mary and metastatic) than nevi contained cells that expressed ALCAM (Klein et al. 
2007). Interestingly, a recent study evaluating ALCAM expression and long-term 
survival in melanoma patients suggested that, in primary melanomas, high ALCAM 
expression was a marker of negative outcome, but in regional lymph node mela-
noma metastases low expression of ALCAM was a feature associated with unfavor-
able prognosis (Donizy et al. 2015). ALCAM upregulation in metastatic melanoma 
cells is driven by miR-214 and depends on transcriptional mechanisms mediated by 
TFAP2 and posttranscriptional mechanisms mediated by miR-148b, which itself is 
controlled by TFAP2. Therefore, miR-214 and miR-148b have opposite effects on 
melanoma cell dissemination and are part of a regulatory loop (Penna et al. 2013).

9.4.4	 �Intercellular Adhesion Molecule-1 (ICAM-1, CD54)

ICAM-1 can be induced in a cell-specific manner by several cytokines, e.g., TNF-α 
(tumor necrosis factor-alpha), IL-1 (interleukin-1), and IFN-γ (interferon-gamma). 
The ligands of ICAM-1 are αLβ2 (lymphocyte function-associated antigen 1, LFA-1) 
and Mac1 on lymphocytes (van de Stolpe and van der Saag 1996). ICAM-1 
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correlates with melanoma progression and increased risk of metastasis (Johnson 
et  al. 1989). Its expression in melanoma is stronger than in common nevi and 
increases with the Breslow index in primary melanomas (Natali et al. 1990, 1997; 
Schadendorf et al. 1993, 1995). The observation that stage I patients with ICAM-1-
positive melanomas had a significantly shorter disease-free interval and overall sur-
vival than those with ICAM-1-negative tumors (Natali et  al. 1997) and that the 
suppression of ICAM-1 in an animal model reduced the metastatic capacity (Miele 
et al. 1994), supported the role of ICAM-1 in melanoma progression and metastasis. 
However, the specific role of ICAM-1 in melanoma progression remains to be deter-
mined. Expression of ICAM-1 may promote aggregate formation with leucocytes, 
which can enhance survival in the vascular system and encourage extravasation 
(Aeed et  al. 1988). On the other hand, ICAM-1 is shed from melanoma cells 
(Giavazzi et  al. 1992)  – possibly in a form that inhibits lymphocyte–tumor cell 
interaction and thus contributes to tumor survival (Becker et  al. 1993). A recent 
study has unraveled a mechanism by which shear flow-regulated melanoma cell 
adhesion to the endothelium can upregulate endothelial ICAM-1 expression (Zhang 
et al. 2014). Elevated ICAM-1 levels may serve as receptors to recruit neutrophils 
and bind fibrin, which assists melanoma cell adhesion and migration. An increase 
of ICAM-1 expression on endothelial cells could be a result of direct ligation of 
tumor CD44 and endothelial E-selectin, through the PKCα-p38-SP-1 pathway. This 
suggests a new mechano-signaling cascade triggered by stretching E-selectin to 
induce ICAM-1 expression (Zhang et al. 2014).

9.4.5	 �Carcinoembryonic Antigen-Related Cell Adhesion 
Molecule 1 (CEACAM-1, CD66a)

CEACAM1 is involved in intercellular adhesion and subsequent signal trans-
duction events in a number of epithelia. In epithelial cells, CEACAM1 is 
believed to act as a growth suppressor, since its expression was shown to be lost 
or significantly down- or dysregulated in carcinomas of liver, prostate, endo-
metrium, breast, and colon (reviewed in Haass et al. 2005). On the other hand, 
CEACAM1 is upregulated in non-small cell lung cancer (Sienel et al. 2003). 
CEACAM1 interacts with the β3 integrin subunit via the CEACAM1 cytoplas-
mic domain. CEACAM1 and the β3 integrin subunit co-localize at the tumor–
stroma interface of invading melanoma masses, suggesting that 
CEACAM1–integrin β3 interaction plays a role in melanoma cell migration and 
invasion (Brummer et al. 2001). The expression of CEACAM1 in primary mel-
anomas is associated with the subsequent development of metastatic disease 
(Thies et  al. 2002a). Furthermore, the overexpression of CEACAM1  in 
CEACAM1-negative melanocytic cells and melanoma cell lines increases the 
migratory and invasive growth potentials in vitro (Ebrahimnejad et al. 2004) 
supporting the role of CEACAM1  in melanoma progression and metastasis. 
Evaluation of specimens of nevi, primary melanomas, sentinel lymph nodes, 
and distant metastases showed that CEACAM1 can serve as a highly sensitive 
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and specific diagnostic marker for melanoma (Thies et  al. 2007). Indeed, 
CEACAM1 was shown to be one of the seven plasma markers best able to iden-
tify metastatic melanoma patients (Kluger et al. 2011).

9.5	 �Gap Junctions/Connexins

Connexins belong to a family of transmembrane proteins that form gap junctions 
(GJs), cell–cell junctions that are essential for intercellular communication. Gap 
junctional intercellular communication (GJIC) in the skin is involved in mainte-
nance of homeostasis, regulation of proliferation, differentiation, barrier function, 
and recruitment of inflammatory cells. GJIC is thus a critical factor in the life and 
death balance of cells (Djalilian et al. 2006; Langlois et al. 2007; Maass et al. 2004; 
Man et al. 2007) (reviewed in Kretz et al. 2004; Mese et al. 2007). Furthermore, 
GJIC is critical in keratinocyte–melanocyte interaction (Hsu et  al. 2000; 
Satyamoorthy et al. 2001). Alternatively, connexins can form hemichannels, which 
allow release (e.g., ATP, NAD+) or putative uptake of molecules and ions to and 
from the cellular environment (Barr et  al. 2013; Chandrasekhar and Bera 2012). 
Finally, connexins, especially Cx43, interact with structural and signaling mole-
cules, which may add further functions to these molecules (Herve et al. 2007).

GJs form channels between adjacent cells allowing the intercellular transport 
of small metabolites, second messengers, and ions (Loewenstein 1981; Spray 
1994). In addition to molecular weight and size, the ability of a solute to trans-
verse these channels depends on its net charge, shape, and interactions with spe-
cific connexins that constitute gap junctions in particular cells (Goldberg et al. 
2004). Each GJ channel consists of two hemichannels called connexons, each 
formed by six connexins (reviewed in Richard 2000). Twenty-one connexins 
have been identified, 11 of which are in the skin (Di et al. 2001; Willecke et al. 
2002; Zucker et al. 2013). GJs can be homotypic, heterotypic, homomeric, and 
heteromeric (reviewed in Richard 2000). A connexon is homomeric if it is com-
posed of six identical connexin subunits (e.g., Cx32 only), or heteromeric if it is 
composed of more than one connexin species (e.g., Cx32 and Cx43 and/or oth-
ers). Channels are homotypic if both connexons are homomeric of the same type, 
heterotypic if homomeric connexons are of different types, and heteromeric if 
both connexons are heteromeric. Not all connexins are equally compatible at 
forming a connexon – even though they may co-exist in the same cell (reviewed 
in Haass et al. 2004). The type of connexin-forming GJ channels influences their 
selectivity and thereby controls the specificity of GJIC. For example, channels 
formed by Cx26 prefer cations, while those formed by Cx32 prefer anions 
(Brissette et al. 1994; Elfgang et al. 1995; Veenstra 1996). Thus, the up- or down-
regulation of a certain connexin in a tissue may change its GJIC considerably. In 
addition, connexins can also form hemichannels, which have been shown to be 
able to exchange molecules with the extracellular microenvironment. These 
hemichannels are relevant for signal propagation and especially for calcium 
homeostasis (reviewed in Evans et al. 2006).
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9.5.1	 �Connexins Are Conditional Tumor Suppressors

Loss of gap junctional activity and/or downregulation of connexins have been 
reported both in cell lines as well as in tissues of many tumor types, such as 
hepatocellular carcinoma, gastric carcinoma, prostate cancer, lung cancer, gli-
oma, mammary carcinoma, basal cell carcinoma, squamous cell carcinoma, and 
melanoma. This phenomenon was first observed half a century ago (Loewenstein 
and Kanno 1966) and summarized in a number of review articles (Cronier et al. 
2009; Mesnil et al. 2005; Naus and Laird 2010). The type of connexins lost dur-
ing tumor progression varies according to tumor type. In the 1980s and 1990s, a 
series of studies were published showing that reagents and/or oncogenes that 
promote tumor onset or progression frequently inhibit GJIC or downregulate 
connexin expression (Lampe 1994; Trosko et al. 1990; Atkinson et al. 1981). The 
role of connexins as potential tumor suppressors was also shown in gene knock-
down studies (Shao et al. 2005). Correspondingly, ectopic expression of connex-
ins in tumors restored functional communication and reduced tumor proliferation 
and growth both in  vitro and in  vivo (reviewed in Naus and Laird 2010). 
Importantly, ectopic expression of connexins partially differentiated transformed 
cells (Zhu et al. 1991; McLachlan et al. 2006; Hellmann et al. 1999; Hirschi et al. 
1996). Moreover, functional abrogation of connexins, using antisense or domi-
nant-negative mutant approaches, have demonstrated an enhancement of the 
malignant phenotype in several tumor types, such as Cx26 in HeLa cells (Duflot-
Dancer et  al. 1997), Cx32  in hepatocellular carcinoma (Dagli et  al. 2004), 
Cx43 in lung cancer (Avanzo et al. 2004), Cx43 in glioma (Omori and Yamasaki 
1998), and Cx43 in bladder carcinoma (Krutovskikh et al. 1998). Finally, Cx32 
knock-out mice have an increased incidence of tumor onset when challenged 
with carcinogens (Temme et  al. 1997; King and Lampe 2004a, b; Moennikes 
et al. 2000).

This may lead to the assumption that connexins are general tumor suppressors, 
but it appears that this is only the case in the earlier steps of cancerogenesis. In 
fact, the role of connexins in invasion and metastasis is very complex, and con-
nexins might facilitate invasion, intravasation, extravasation, and metastasis 
(Krutovskikh et al. 1994; el-Sabban and Pauli 1991, 1994; Ito et al. 2000; Saunders 
et al. 2001; Lin et al. 2002; Miekus et al. 2005; Pollmann et al. 2005; Kanczuga-
Koda et  al. 2006; Bates et  al. 2007; Li et  al. 2007; Dobrowolski et  al. 2008; 
Cotrina et al. 2008; Elzarrad et al. 2008; Ezumi et al. 2008). The following model 
supports both the tumor suppressor and the tumor driver theories (Cronier et al. 
2009): for the step from primary to invasive tumors, there is a need for disruption 
of intercellular junctions including GJs, consistent with the model that connexins 
are tumor suppressors. In contrast, for the tumor cell dissemination and metastasis 
steps, increased cell contacts and communication are needed in order to enable 
interaction with the tumor stroma – especially between cancer cells and endothe-
lial cells. Therefore, connexins might be better classified as conditional tumor 
suppressors that modulate cell proliferation as well as adhesion and migration 
(Naus and Laird 2010).
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9.5.2	 �Cx43 in Cancer

Cx43 is decreased in prostate cancer (Tsai et al. 1996), mammary cancer (Hirschi et al. 
1996), glioma (Huang et al. 1999), lung cancer (Jinn et al. 1998; Zhang et al. 1998), 
bladder carcinoma (Krutovskikh et al. 2000), cervical carcinoma (King et al. 2000), 
and various skin cancers including melanoma (Haass et al. 2006; Tada and Hashimoto 
1997; Wilgenbus et  al. 1992). Electron microscopy investigations have shown that 
basal and squamous cell carcinomas do not have fully developed GJs, and that Cx43 is 
not restricted to these poorly developed GJs but is present in the cytoplasm (Tada and 
Hashimoto 1997). In several cancers, Cx43 acts as a tumor suppressor gene with loss 
of Cx43 contributing to metastasis (Czyz 2008; Gershon et al. 2008; Shen et al. 2007). 
Functional abrogation of Cx43 enhances the malignant phenotype in lung cancer 
(Avanzo et  al. 2004), glioma (Omori and Yamasaki 1998), and bladder carcinoma 
(Krutovskikh et al. 1998).

In contrast to other cancers, hepatocellular carcinoma is associated with an 
induction of Cx43, which is, however, localized in the cytoplasm, and thus is not 
involved in GJIC (Krutovskikh et al. 1994). The loss of GJIC might help the tumor 
cells to survive, as GJIC has been shown to spread cell-killing signals, most likely 
Ca2+ ions (Krutovskikh et al. 2002). In addition, downregulation of Cx43 expression 
or function resulted in increased proliferation and migration in primary keratino-
cytes, implying a contribution of Cx43 to controlling early stages of tumorigenesis 
(Mori et al. 2006; Wright et al. 2009; Pollok et al. 2011). Finally, increased opening 
of hemichannels formed by connexins resulted in cell death in cochlear supporting 
cells of the ear and in keratinocytes of the epidermis (Xu and Nicholson 2013).

Conversely, expression of Cx43 has also been shown to increase tumor metasta-
sis in breast cancer, glioma as well as in melanoma through increased attachment 
and communication with the vascular endothelium (Bates et al. 2007; Kanczuga-
Koda et al. 2006; Cotrina et al. 2008; Lin et al. 2002; el-Sabban and Pauli 1991, 
1994; Pollmann et al. 2005; Elzarrad et al. 2008).

9.5.3	 �Cx32 in Cancer

Cx32 is downregulated in gastric carcinoma (Uchida et al. 1995), lung cancer (Jinn 
et al. 1998), and hepatocellular carcinoma (Eghbali et al. 1991; Loewenstein and Rose 
1992; Krutovskikh et al. 1994; Yamaoka et al. 1995). In the latter case, the remaining 
Cx32 is localized in the cytoplasm or in the plasma membrane free from contact with 
other cells. In addition, it was found that there was no mutation in the coding sequence 
of Cx32 in hepatocellular carcinoma; instead, it appears that the aberrant localization 
of Cx32 is a consequence of the disruption of Cx32 gap junction plaque formation 
(Krutovskikh et al. 1994). Functional abrogation of Cx32 enhances the malignant phe-
notype in hepatocellular carcinoma (Dagli et al. 2004). Cx32 knock-out mice have an 
increased incidence of tumor onset when challenged with carcinogens (Temme et al. 
1997; King and Lampe 2004a, b; Moennikes et al. 2000). In contrast to most other 
tumors, Cx32 is upregulated in some breast cancer cells (Saunders et al. 2001).
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9.5.4	 �Cx26 in Cancer

Whereas in mammary carcinoma cells, there is a downregulation of both Cx43 and 
Cx26 (Hirschi et al. 1996); in human basal cell carcinoma, Cx43 is downregulated 
but there is an induction of Cx26 (Haass et al. 2006; Wilgenbus et al. 1992). Cx26 
is also highly expressed in HeLa cells, where its functional abrogation enhances the 
malignant phenotype (Duflot-Dancer et al. 1997).

9.5.5	 �Connexins in Melanoma

Reflecting the situation in many other cancer types as discussed above, the role of 
connexins and GJIC is still highly controversial also in melanoma and its tumor 
microenvironment.

Cx43 is the most-studied connexin in melanoma. Western blotting revealed Cx43 
protein expression in foreskin-derived melanocytes and several melanoma cell lines 
(Hsu et  al. 2000). This was confirmed by immunofluorescence detecting Cx43 
expression in human melanoma cell lines (Lin et  al. 2010). While neither study 
quantified the Cx43 protein expression levels, a qRT-PCR and immunofluorescence 
study demonstrated lower Cx43 expression levels in human melanoma cell lines 
compared to human melanocytes (Schiffner et al. 2011). Also, a microarray study 
revealed that Cx43 was expressed at low levels in human melanoma cell lines and, 
importantly, that its overexpression suppressed anchorage-independent growth in 
colony-forming efficiency assays, suggesting a tumor-suppressor role of Cx43  in 
melanoma (Su et al. 2000). By qRT-PCR, no expression for Cx26, Cx30, Cx31.1, 
Cx36, and Cx37; low expression for Cx30.3 and Cx31; and higher expression levels 
for Cx32, Cx40, Cx43, and Cx45 were detected in human melanoma cell lines 
(Zucker et  al. 2013). Surprisingly, Western blotting showed much higher Cx43 
expression levels in migrating than in non-migrating cells (Zucker et  al. 2013). 
Consistently, high levels of Cx43 protein expression were found in human meta-
static melanoma cell lines (Villares et al. 2009). Loss of protease-activated receptor-
1 (PAR-1) expression resulted in the loss of Cx43 and, correspondingly, 
overexpression of PAR-1 contributed to melanoma metastasis via upregulation of 
Cx43 (Villares et al. 2009, 2011). Interestingly, while initial levels of Cx43 were 
low in B16 mouse melanoma cells, Cx43 protein levels increased after infection 
with bacteria or treatment with interferon-γ (Saccheri et al. 2010). This was fol-
lowed by the transfer of preprocessed antigenic peptides from melanoma cells to 
dendritic cells, which then presented those peptides on their surface and activated 
cytotoxic T cells against the tumor antigen. Correspondingly, melanoma cells in 
which Cx43 had been silenced, failed to elicit a cytotoxic antitumor response after 
infection with bacteria (Saccheri et al. 2010).

In addition to the discussed in vitro data, there are also a number of studies on 
human melanoma tissue. Using immunofluorescence on human tissue samples, we 
did not detect Cx43 (nor Cx26 and Cx30) in nevi, primary melanomas, or cutaneous 
melanoma metastases, while the internal controls (adjacent epidermis) were positive 
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in the expected layers (Haass et al. 2006, 2010). In contrast, using immunohisto-
chemistry, other groups reported Cx43 expression in human melanoma tissue, higher 
than in human nevi (Rezze et al. 2011; Sargen et al. 2013). However, neither of these 
studies provided high magnification images to confirm the subcellular localization 
nor did they show appropriate positive and negative controls. Indeed, in both studies, 
Cx43 expression in melanoma cells appeared to be cytoplasmic and hence would 
argue for a cell–cell or cell–matrix communication-independent role of these con-
nexins. This would not support the mechanism for melanoma survival in brain metas-
tasis proposed by Lin and colleagues, who showed that reactive astrocytes protect 
metastatic melanoma cells in the brain from chemotherapy by sequestering intracel-
lular calcium through direct cell–cell communication (Lin et al. 2010). Moreover, in 
the Rezze and Sargen studies, the expression pattern of Cx43 in nevi and different 
melanoma stages appeared very variable and the typical Cx43 staining in the epider-
mis was missing (Rezze et al. 2011; Sargen et al. 2013). An Oncomine analysis of 
human tissue showed that increased Cx43 (and Cx26) gene expression in primary 
lesions correlated with metastasis and poor patient survival (Stoletov et al. 2013).

Cx26 and Cx30 are much less studied. Cx26 was found to be upregulated in the 
highly aggressive BL6 sub-line of B16 mouse melanoma cells compared to the less 
aggressive F10 sub-line (Ito et al. 2000). F10 cells transfected with wild-type Cx26 
exhibited similar metastatic behavior to the BL6 cells. Correspondingly, BL6 cells 
transfected with a dominant-negative Cx26 mutant showed the less aggressive 
behavior characteristic of F10 cells. Cx26 was not found to be expressed in human 
melanoma in situ but was upregulated in invasive melanomas (Ito et  al. 2000). 
However, in this study, Cx26 staining in both melanoma cells and epidermal kerati-
nocytes was cytoplasmic. Moreover, the study did not distinguish between Cx26 
and Cx30. In contrast, we showed in immunofluorescence studies on human mela-
noma tissue samples, that all areas of melanocytic nevi, primary melanomas, and 
cutaneous melanoma metastases lacked Cx26 and Cx30 expression (Haass et  al. 
2006, 2010) – similar to our findings in Merkel cell carcinoma (Haass et al. 2003a). 
This was confirmed by other groups who did not detect Cx26 in melanoma using 
immunohistochemistry on human tissue samples (Sargen et al. 2013) or did not find 
Cx26 and Cx30 expression in human melanoma cell lines using qRT-PCR (Zucker 
et  al. 2013). Contrastingly, a positive correlation between Cx26 expression and 
metastatic potential was reported using Cx26 shRNA in B16 mouse melanoma cells 
(Stoletov et al. 2013). This was supported by an Oncomine analysis of human tis-
sue, which showed that increased Cx26 expression in primary lesions correlated 
with metastasis and poor patient survival (Stoletov et al. 2013).

Interestingly, loss of Pannexin 1, a channel-forming glycoprotein remotely 
related to connexins, attenuated melanoma progression by reversion to a melanocyte-
like phenotype (Penuela et al. 2013).

The Oncomine data (Stoletov et al. 2013) do not seem to match the data on pri-
mary melanomas in other studies; however, it would be interesting to re-analyze 
these data more in detail. As there appears to be a correlation to tumor thickness, is 
there no or little expression on thin tumors and a differential expression pattern in 
different areas of thick melanomas?

9  Cell–Cell Contacts in Melanoma and the Tumor Microenvironment



250

The discrepancies between the different studies in Cx43, Cx26, and Cx30  in 
melanoma may be due to the following reasons:

	1.	 Several studies investigated the molecules on mRNA level only. The presence of 
mRNA does not necessarily mean that the respective protein is present.

	2.	 In tissues, it is difficult to separate between connexins present in melanoma cells 
and those present in epidermal, mesenchymal, or endothelial tissues enclosed by 
the tumor.

	3.	 Immunohistochemistry is often dependent on staining conditions and can result 
in false-positive and false-negative results. Appropriate positive and negative 
controls showing the sensitivity and specificity of the antibody are indispensable 
for the interpretation of these results. For example, the Cx26 antibody used in 
some of the discussed studies shows cross-reactivity with Cx30.

Importantly, most of the apparent discrepancies in this paragraph can be explained 
by a model, which implies that connexins are tumor suppressors during early mela-
nomagenesis but tumor drivers during metastasis (Cronier et al. 2009). During early 
melanomagenesis, the respective connexins are typically located in the cell mem-
branes indicating that they are functioning through GJIC. In contrast, in advanced 
stages, connexins are typically located in the cytoplasm indicating a different func-
tion – possibly through interaction with signaling molecules.

9.5.6	 �Connexins in the Epidermal Tumor Environment 
of Melanoma

Keratinocytes communicate with melanocytes but not with melanoma cells via 
GJIC; instead, melanoma cells communicate among themselves and with fibro-
blasts and endothelial cells (Hsu et al. 2000). This switch in communication part-
ners coincides with the E- to N-cadherin switch, suggesting that the gain of 
N-cadherin with the concurrent loss of E-cadherin facilitates GJ formation with 
fibroblasts and endothelial cells (Hsu et  al. 2000). Additionally, GJ formation in 
human melanoma cell lines appears to require MCAM (Satyamoorthy et al. 2001). 
This switch will allow melanoma cells to de-couple from the epidermal microenvi-
ronment and to communicate with cell types important for their metastatic spread. 
Several studies have suggested that connexins may promote metastasis in mela-
noma and other tumors by forming intercellular connections between cancer cells 
and vascular endothelium that are able to initiate tumor cell diapedesis (Hsu et al. 
2000; Villares et al. 2009; el-Sabban and Pauli 1991, 1994; Saito-Katsuragi et al. 
2007; Pollmann et al. 2005). Melanoma cells expressing higher levels of Cx43 show 
increased coupling to vascular endothelial cells (el-Sabban and Pauli 1991) and the 
ability of tumor cells to metastasize appears to correlate with the ability of tumor 
cells to communicate with endothelial cells (Pollmann et al. 2005). Also, Cx26 may 
contribute to the metastasis of melanoma by facilitating communication between 
melanoma cells and their surrounding endothelial cells (Saito-Katsuragi et al. 2007). 
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Cx26 expression is associated with lymphatic vessel invasion and poor prognosis in 
human breast cancer (Naoi et al. 2007).

Melanoma brain metastases are surrounded and infiltrated by astrocytes, and 
these astrocytes can play a role similar to their established ability to protect neurons 
from apoptosis (Lin et  al. 2010). In co-culture experiments, astrocytes reduced 
apoptosis in human melanoma cells treated with various chemotherapeutic drugs. 
This chemoprotective effect was dependent on physical contact and GJIC between 
astrocytes, which express high levels of Cx43, and tumor cells. Moreover, the pro-
tective effect of astrocytes resulted from their sequestering calcium from the cyto-
plasm of tumor cells. These data suggest that brain metastases can harness the 
neuroprotective effects of reactive astrocytes for their own survival (Lin et al. 2010). 
In a chick embryo model, B16 mouse melanoma cells, which express Cx26 but not 
Cx43, colonized the chicken brain forming numerous microtumors invading along 
the preexisting vasculature (Stoletov et al. 2013). In contrast, Cx26 knockdown B16 
cells formed significantly fewer and less invasive tumors, suggesting that in meta-
static melanoma cells Cx26 expression enhances microtumor formation in the brain 
in association with the existing vasculature (Stoletov et al. 2013).

While these studies demonstrate the interaction of melanoma cells with the 
stroma and the role of connexins and/or GJIC in the early and late steps of melano-
magenesis, interactions between melanoma and the epidermal tumor microenviron-
ment (ETM) – the multilayered epithelium of the skin – are poorly understood. In 
this regard, we have demonstrated the induction of Cx26 and Cx30 in the epidermis 
adjacent to malignant tumors (e.g., melanoma and Merkel cell carcinoma), but not 
in the epidermis adjacent to benign tumors (e.g., melanocytic nevi and angiomas) 
(Haass et al. 2003a, 2006). Subsequently, we found correlation between (a) tumor 
thickness (Breslow index) and vertical Cx26 and Cx30 expression in the ETM, (b) 
tumor thickness and horizontal Cx26 dissemination in the ETM, (c) metastasis and 
horizontal Cx26 expression in the ETM, and (d) vertical epidermal expression pat-
terns of Cx26 and Cx30 and the proliferative index in the ETM. We thus provided 
evidence for the association of ETM alteration with tumor malignancy and progres-
sion (Haass et al. 2010). The results of this study, which included dysplastic nevi as 
well as thin melanomas which are often difficult to distinguish (reviewed in Haass 
and Smalley 2009), suggest that membrane expression of Cx26 and Cx30  in the 
epidermal tumor microenvironment may be a useful diagnostic aid for the distinc-
tion of melanomas and melanocytic nevi (Haass et al. 2010). As neither Cx26 nor 
Cx30 are expressed in the melanoma itself, but both are induced in its tumor micro-
environment, they may be useful complementary melanoma markers.

Cx26 and Cx30 upregulation in the epidermal tumor microenvironment did not 
correlate with the proliferative index of the melanoma cells, but correlated signifi-
cantly with the proliferative index in the epidermis. In transgenic mice expressing 
Cx26 ectopically, proliferation was increased in the epidermis (Djalilian et  al. 
2006), suggesting that Cx26 influences keratinocyte proliferation and not vice 
versa. Interestingly, Cx26 overexpressing mice showed a delay in wound healing, 
which needs to be explored with regards to ulceration, a biomarker associated with 
very poor prognosis for melanoma patients (Balch et  al. 2001). In our study, all 
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melanomas with ulceration showed Cx26 (and Cx30) expression in all layers of the 
epidermal tumor microenvironment (Haass et al. 2010). Induction of angiogenesis 
by the hyperplastic epithelium could stimulate growth and progression of mela-
noma (McCarty et al. 2003). This suggests a positive feedback mechanism: tumor 
cells induce alterations in keratinocytes, which results in the production of growth 
factors which, in turn, stimulate tumor survival via endothelial cells. The induction 
of Cx26 and Cx30  in the epidermis adjacent to melanoma putatively leading to 
GJIC or signaling via hemichannels may play a role in this feedback mechanism by 
inducing proliferation and other functions. An interruption of this vicious circle 
may provide a novel therapeutic approach.

9.6	 �Tight Junctions

In simple epithelia and endothelia, tight junctions (TJs) are responsible for the for-
mation and maintenance of the tissue barrier between distinct compartments by 
controlling the paracellular pathway (“barrier function”) (reviewed in Stevenson 
and Keon 1998; Tsukita et al. 2001). Subsequently, the involvement of TJs in the 
barrier function of a complex epithelium, the epidermis, was shown (Pummi et al. 
2001; Brandner et al. 2002, 2003; Furuse et al. 2002; Langbein et al. 2002). In addi-
tion, TJs prevent the diffusion of membrane proteins and lipids from the apical to 
the basolateral side of an epithelial cell sheet, helping to maintain cell polarity 
(“fence function”) (reviewed in Mitic and Anderson 1998; Tsukita et  al. 2001). 
Therefore, TJs are crucial for the epithelium to generate chemical and electrical 
gradients that is necessary for vectorial transport processes such as absorption and 
secretion (reviewed in Martin and Jiang 2009). Moreover, TJ molecules act as inter-
mediates and transducers in cell signaling, thus playing a role in the processes of 
polarity, cell differentiation, cell growth, and differentiation. Finally, TJs act as cell–
cell adhesion molecules and as a barrier to cell migration (reviewed in Martin and 
Jiang 2009).

TJs are composed of integral transmembrane proteins (claudin 1–24, occludin, 
and junctional adhesion molecules A-C, 4 (JAMs)), peripheral plaque proteins 
(zonula occludens (ZO) proteins 1–3, MAGI 1–3, MUPP-1, PAR-3, PAR-6, AF-6, 
CASK, and CAROM), and associated proteins (symplekin, ZONAB, cingulin, Rab-
13, Rab-3B, c-src, α-catenin, PKA, ZAK, and Rho GTPases). The molecular com-
position of TJs is highly complex and varies according to the cell type and degree of 
differentiation. TJ molecules from neighboring cells associate and form paired 
strands which seal the paracellular pathway and which contain aqueous pores or 
paracellular channels, explaining the ion and size selectivity for passaging mole-
cules of TJ (Tsukita and Furuse 2000).

In cancer, disruption of TJs should occur in three critical steps: (1) detachment of 
the tumor cell from the primary tumor, (2) intravasation of the tumor through the 
endothelium, and (3) extravastion of the circulating tumor cell (reviewed in Martin 
and Jiang 2009). Early studies have shown a correlation between lack of TJs and 
tumor differentiation and there is evidence that TJs need to be overcome by cancer 
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cells in order to metastasize (reviewed in Martin and Jiang 2001, 2009). Cancer 
cells frequently exhibit deficiencies in TJ function, as well as decreased differentia-
tion and cell polarity (Weinstein et al. 1976; Soler et al. 1999). Loss of TJ integrity 
may be particularly important in allowing the diffusion of nutrients and other fac-
tors necessary for the survival and growth of the tumor cells (Mullin et al. 1997). In 
addition, decreased polarity and differentiation may be important for the metastatic 
phenotype, where individual cells must leave the primary site and enter the blood 
vessels to reach distant sites (Ren et al. 1990).

Electron microscopy studies in human thyroid tumors showed that TJs decrease 
in number and are attenuated during carcinogenesis, which is associated with loss 
of tumor differentiation (Kerjaschki et  al. 1979). Expression of TJ proteins is 
decreased in some cancer types, e.g., ZO-1 and occludin in gastrointestinal adeno-
carcinoma (Kimura et  al. 1997), occludin in epithelial-derived tumors (Li and 
Mrsny 2000), claudin 3 in glioblastoma multiforme (Wolburg et al. 2003), claudin 
1 in sporadic and hereditary breast cancer (Kramer et al. 2000), and claudin 7 in 
ductal carcinoma of the breast (Kominsky et al. 2003). On the other hand, some TJ 
molecules appear to be upregulated in some cancers. We found protein expression 
of claudins 3, 4, and 5, occludin, and ZO-1 in Merkel cell carcinoma cells (Haass 
et al. 2003b). Strikingly, expression of some claudin family members is highly ele-
vated in various human cancers, e.g., claudin 7 in two breast cancer cell lines (Nacht 
et al. 1999), claudin 1 in colorectal cancer (Miwa et al. 2000), and claudins 3 and 
4 in ovarian (Hough et al. 2001; Rangel et al. 2003) and prostate cancer (Long et al. 
2001).

The expression of TJ proteins in melanoma tissues and cultured melanoma cells 
was described on RNA and on protein level (Cohn et al. 2005; Smalley et al. 2005; 
Leotlela et al. 2007; Schmitt et al. 2007; Morita et al. 2008). In a tissue array study, 
Claudin-1 was found to be significantly reduced in metastatic melanoma (Cohn 
et  al. 2005). These data were, however, directly contradicted by another study 
(Leotlela et al. 2007). In this study Claudin-1 appeared to contribute to melanoma 
cell invasion, as transient transfection of melanoma cells with Claudin-1 increased 
metalloproteinase 2 (MMP-2) secretion and activation, and subsequently, motility 
of melanoma cells as demonstrated by wound-healing assays. Conversely, knock-
down of CLDN1 by siRNA resulted in the inhibition of motility, as well as decreases 
in MMP-2 secretion and activation (Leotlela et al. 2007).

In contrast to most cancers, where levels of ZO-1 are typically downregulated, 
leading to increased motility, we found that ZO-1 expression is upregulated in mela-
noma cells and is located at adherens junctions between melanoma cells and fibro-
blasts (Smalley et  al. 2005). Immunofluorescence and co-immunoprecipitation 
studies showed co-localization of ZO-1 with N-cadherin. Downregulation of 
ZO-1  in melanoma cells through RNA interference produced marked changes in 
cell morphology – leading to a less dendritic, more rounded phenotype. Consistent 
with a role in N-cadherin-based adhesion, RNAi-treated melanoma cells were less 
adherent and invasive when grown in a collagen gel. These data provided the first 
evidence that increased ZO-1 expression in melanoma contributes to the oncogenic 
behavior of this tumor and further illustrated that protein products of genes, such as 
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ZO-1, can function in either a pro- or anti-oncogenic manner when expressed in 
different cellular contexts (Smalley et al. 2005).

In summary, while it appears that functional TJs may be tumor suppressors, the 
upregulation of certain TJ proteins can contribute to oncogenic behavior. The relation-
ship between TJ protein overexpression and cancer initiation or progression is thus 
unclear at present, but may be explained by the lack of functional TJs and that the upreg-
ulated TJ proteins therefore likely function through TJ-independent mechanisms.
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