
177© Springer International Publishing AG 2017
A. Bosserhoff (ed.), Melanoma Development, 
DOI 10.1007/978-3-319-41319-8_7

Y. Cheli • E. Lau 
Tumor Initiation and Maintenance Program, Cancer Center, Sanford Burnham Prebys 
Medical Discovery Institute, La Jolla, CA 92037, USA 

Z.A. Ronai (*) 
Sanford Burnham Prebys Medical Discovery Institute,  
10901 North Torrey Pines Road, La Jolla, CA 92037, USA
e-mail: zeev@ronailab.net

7Altered Signal Transduction Pathways 
in Melanoma

Yann Cheli, Eric Lau, and Ze’ev A. Ronai

7.1  Introduction

Signal transduction pathways are central to all cellular biological processes, as they 
provide the link between extracellular or intracellular stimuli and an array of regula-
tory proteins, including protein kinases, ubiquitin ligases, and transcription factors. 
Given this, it is not surprising that signal transduction pathways are often deregu-
lated in cancer. Indeed, melanoma is a paradigm for rewired signaling because most 
critical mutations discovered in this tumor type are centered around relatively few 
major signaling cues, the most significant of which are the mitogen-activated pro-
tein kinase (MAPK) and phosphatidylinositol-3-kinase (PI3K) pathways. Both 
pathways contain regulatory components with catalytic activities, making them the 
preferred targets for therapy. Here, we summarize our current understanding of the 
major deregulated signaling pathways in melanoma and the implications of such 
deregulation for tumor biology.

7.1.1  Extracellular Receptors

Among the receptors reported to be deregulated in melanoma are numerous 
membrane- bound G protein-coupled receptors and receptor tyrosine kinases 
(RTKs), including MC1R (melanocortin 1 receptor), c-Kit (mast/stem cell growth 
factor receptor), c-Met (hepatocyte growth factor receptor), IGFR (insulin-like 
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growth factor receptor), and Frizzled (WNT receptor). Deregulation of other RTKs, 
including AXL, epidermal growth factor receptor (EGFR), fibroblast growth factor 
receptor (FGFR), and vascular endothelial growth factor receptor (VEGFR), has 
also been implicated in the resistance of melanomas to certain treatments such as 
BRAF inhibitors (BRAFi) (Fargnoli et al. 2010; Landi et al. 2006; Mattei et al. 
1994; Topcu-Yilmaz et al. 2010; van Ginkel et al. 2004).

7.1.1.1  MC1R
MC1R is a melanocyte-specific G protein-coupled receptor that binds to 
α-melanocyte-stimulating hormone (α-MSH, Fig. 7.1). MC1R–α-MSH interactions 
play a central role in the regulation of both pigmentation, by inducing generation of 
eumelanin and cAMP, and melanocyte proliferation (Hunt et al. 1995; Mountjoy 
et al. 1992; Robinson and Healy 2002; Suzuki et al. 1996).

MC1R exhibits genetic variance, with mutations at the hot spot residues R151C, 
R160W, and D294H being the most significant. The mutations reduce receptor 
function and result in a phenotype of fair, freckled skin and red hair (Kadekaro et al. 
2003). Stimulation of MC1R by α-MSH normally potentiates p16INK4A tumor 
suppressor activity after UV exposure (Pavey et al. 2002); these specific mutations 
are associated with reduced UV-induced DNA damage repair efficiency and 
increased melanoma risk (Scott et al. 2002; Song et al. 2009). In contrast, overex-
pression of MC1R variants has been shown to render cells insensitive to α-MSH- 
mediated suppression of cell proliferation (Robinson and Healy 2002), suggesting 
that polymorphic variants of MC1R may enhance melanoma susceptibility or pro-
gression by attenuating p16INK4A function, at least in part.

Although MC1R is neither genetically nor epigenetically silenced (Kim et al. 
2008a), expression of the functionally impaired variants compromises receptor 
activity and correlates with increased melanoma risk (Landi et al. 2006). Carriers of 
MC1R variants who have mutations in CDK2NA also have a higher melanoma risk 
(Fargnoli et al. 2010). Notably, germline mutations of MC1R are associated with an 
increased incidence of BRAF mutations in melanoma (Landi et al. 2006). Likewise, 
inactivation of MC1R in the BrafV600E:Pten−/− mouse melanoma model increases the 
incidence of melanoma independently of UV radiation (Mitra et al. 2012).

Mutation of G proteins themselves, in particular the α-subunit of G(q) (GNAQ), 
may induce alterations in early melanoma lesions (Kusters-Vandevelde et al. 2010; 
Lamba et al. 2010; Van Raamsdonk et al. 2009). GNAQ is mutated within a RAS- 
like domain at position Q209L, which renders the protein constitutively active and 
amplifies PKC and MAPK signaling. Accordingly, overexpression of the GNAQ 
Q209L mutant is sufficient to confer anchorage independence and increase the 
tumorigenicity of immortalized melanocytes.

7.1.1.2  Receptor Tyrosine Kinases
Many cell surface receptors for growth factors, hormones, and cytokines are RTKs. 
Ligand binding activates the intrinsic RTK enzymatic activity, often by autophos-
phorylation, with subsequent phosphorylation of tyrosine residues on many sub-
strates, including PLCγ, PI3K, and MAPK, which drive cell proliferation 
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differentiation, survival, and cell migration. Among the growth factor RTKs deregu-
lated in melanoma are AXL, EGFR, c-Kit, c-Met, and IGFR, which bind to growth 
arrest-specific 6 (Gas6), epidermal growth factor (EGF), stem cell factor (SCF), 
hepatocyte growth factor (HGF), and insulin-like growth factor (IGF), respectively 
(Fig. 7.2). Ligand binding by these receptors activates the downstream RAS–RAF–
MEK–MAPK and PI3K–AKT signaling pathways independently of any existing 
MAPK pathway mutations and promotes cell survival and proliferation. Changes in 
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Fig. 7.1 α-MSH and MC1R receptor signaling. Binding of α-melanocyte stimulating hormone 
(α-MSH) to its cognate receptor melanocortin-1 receptor (MC1R) activates G protein-coupled 
adenylate cyclase and increases cytoplasmic cAMP levels. cAMP initiates a cascade that sequen-
tially activates protein kinase A (PKA), CREB, and transcription of MITF. In parallel, cAMP acti-
vates the RAS–RAF–MAPK–RSK cascade, which results in MITF activation. MITF then 
modulates the transcription of downstream pigmentation and proliferation genes. Branches of this 
signaling pathway that are upregulated in melanoma are indicated in black. The dashed arrow 
indicates modulation of transcriptional programming by MITF to favor tumorigenesis
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Fig. 7.2 Growth factor receptors and MAPK signaling. Membrane-bound growth factor receptors 
(c-Kit, c-Met, IGFR, AXL, EGFR) generally signal inwards through adaptor complexes containing 
proteins, such as GRB-SOS, which recruit the RAS family members HRAS, KRAS, or NRAS for 
activation. In melanoma, NRAS is the most commonly mutated protein and plays a predominant 
role in activation of the downstream effector kinases, RAF and MEKK. The RAF family of effector 
kinases includes A-, B-, and CRAF. Although signaling through ARAF has been less studied, in 
melanoma, it appears that BRAF- and CRAF- mediated signaling predominate. BRAF and CRAF 
activate downstream MEKK, MEK, and RSK. MEK activation leads to further downstream activa-
tion of JNKK1–JNK1 and ERK, as well as their cytoplasmic or nuclear transcriptional targets. 
Together, BRAF and ERK activate RSK to suppress LKB1, which would otherwise activate 
AMPK. In melanoma, this arm of AMPK activation, which normally regulates cell growth and 
survival, is downregulated (gray dashed arrow). Branches of the MAPK pathway that are upregu-
lated in melanoma appear in black
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the expression of these receptors have been implicated in several tumor types; in 
melanoma, altered expression has not been observed uniformly but may be associ-
ated with specific phases of tumor development.

7.1.1.3  AXL
AXL RTK is ubiquitously expressed in epithelial, mesenchymal, and hematopoietic 
tumors, and in the corresponding non-transformed cells. AXL was discovered in 
patients with chronic myeloproliferative disorder, and has since been implicated in 
the proliferation and drug resistance of numerous cancers, including melanoma 
(Paccez et al. 2014).

AXL is upregulated in ocular melanomas and melanoma cell lines, where it pro-
motes cell proliferation and confers a survival advantage under serum starvation 
conditions (van Ginkel et al. 2004). Increased AXL expression is also found in both 
NRAS- or BRAF-mutated tumors, although the incidence is higher in NRAS mutant 
melanomas. Of interest, AXL expression inversely correlates with melanoma dif-
ferentiation and microphthalmia-associated transcription factor (MITF) expression 
(Muller et al. 2014), and the combination of low MITF and high AXL expression is 
associated with a highly invasive phenotype. Pharmacological AXL inhibitors 
attenuate but do not abolish the invasive phenotype (Sensi et al. 2011), indicating a 
role for other RTKs and/or signaling pathways in the invasive phenotype. In response 
to chemotherapy, a subset of tumor cells that exhibit a senescence phenotype show 
elevated production and secretion of cytokines (Ohanna et al. 2011), with concomi-
tant activation of STAT3 and AXL and increased migration and invasion properties 
in surrounding cells (Ohanna et al. 2013).

Lastly, a major clinical obstacle in melanoma therapy is the acquisition of resis-
tance to either BRAFi or MEKi. The mechanisms underlying such resistance include 
upregulation of AXL, among many RTKs, which coincides with low levels of MITF 
and activation of NF-kB and JAK1 (Konieczkowski et al. 2014). Accordingly, treat-
ment of resistant melanomas with a pharmacological inhibitor of AXL augments the 
effect of the BRAFi or MEKi and enhances cell death (Muller et al. 2014).

7.1.1.4  EGFR
EGFR is a transmembrane receptor for members of the EGF family of growth fac-
tors. Increased expression or mutation of the EGFR gene is commonly seen in a 
number of tumor types, including colorectal, breast, and non-small cell lung can-
cers, where it is thought to serve as an oncogenic driver.

EGFR upregulation has been implicated as a mechanism of therapy resistance 
for several tumor types, including melanoma. Consistent with this, co- administration 
of BRAFi and EGFRi appears to attenuate ERK activity and sensitizes resistant 
melanomas to BRAFi or MEKi inhibition (Girotti et al. 2013). The resistance of 
BRAFV600E mutant colorectal cancer to BRAFi therapy has also been associated 
with high EGFR expression, which enables reactivation of ERK via RAS and CRAF 
to bypass BRAF inhibition (Corcoran et al. 2012).

Elevated EGFR expression, as observed in resistant melanoma, has been linked to 
SOX10 and MITF expression (Ji et al. 2015). Furthermore, EGFR upregulation is often 
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accompanied by upregulation of other RTKs that are associated with SOX10 and 
TGF-β signaling, including platelet-derived growth factor receptor β (Sun et al. 2014).

Interestingly, SOX10 was also found to regulate the expression of the ubiquitin 
ligase RNF125, which controls JAK1 stability through ubiquitin–proteasome- 
dependent degradation. BRAFi-resistant melanomas exhibit downregulation of 
SOX10 and concomitant inhibition of RNF125 expression. Consequently, JAK1 
stability and availability increase, and the expression of several RTKs, including 
EGFR and AXL, is stimulated. As might be expected, inhibition of JAK1 effec-
tively reduces the expression of RTKs and overcomes the resistance of melanomas 
to BRAFi (Kim et al. 2015).

7.1.1.5  c-Kit
c-Kit expression is apparent in early or radial growth phase melanomas. Although 
the penetrance appears to be low, a c-Kit-activating mutation, L576P, has been 
reported in melanoma (Antonescu et al. 2007; Rivera et al. 2008; Willmore-Payne 
et al. 2006). Interestingly, however, downregulation of c-Kit expression is associ-
ated with melanoma progression (Giehl et al. 2007; Janku et al. 2005; Montone 
et al. 1997; Natali et al. 1992). These observations suggest that upregulation of c-Kit 
and its ligand SCF may be required to establish the primary lesions, but that contin-
ued expression of c-Kit is not needed for invasion and metastasis. The disparity of 
mutations in or altered expression of c-Kit among different melanomas was initially 
overlooked in clinical trials of c-Kit-specific inhibitors. In more recent trials, clini-
cal efficacy has been observed when patient cohorts harboring c-Kit mutations were 
treated with the highly selective pharmacological inhibitor, Gleevec (Terheyden 
et al. 2010). How inhibition of c-Kit contributes to melanoma progression remains 
an important topic for investigation. The c-Kit ligand SCF is a keratinocyte-secreted 
factor, and it has been proposed that downregulation of c-Kit in melanoma cells may 
allow them to escape SCF-induced cell death. Indeed, in vitro studies have shown 
that re-expression of c-Kit in metastatic melanoma sensitizes the cells to SCF- 
mediated apoptosis and reduces their tumorigenic and metastatic potential in vivo 
(Bar-Eli 1997; Huang et al. 1996; Willmore-Payne et al. 2005).

Although the mechanism by which c-Kit is downregulated during melanoma 
progression remains unclear, a recent study found that downregulation may be epi-
genetically linked to expression of microRNAs (miRNAs) (see also Chap. 6), spe-
cifically miR-221 and miR-222, which were shown to suppress expression of both 
c-Kit and p27Kip (Felicetti et al. 2008).

7.1.1.6  c-Met
c-Met-dependent signaling is amplified in melanoma, although genetic mutations or 
modifications that result in aberrant activation of c-Met do not appear to be com-
mon. Two c-Met mutations, N948S and R988C, have been identified in melanoma 
cell lines and tumor tissues and shown to activate c-Met signaling through several 
downstream effectors, including MITF, tyrosinase, and AKT and its effectors (Chin 
et al. 2006; Puri et al. 2007). However, c-Met upregulation has also been observed 
in melanoma, particularly in the later stages of disease (Natali et al. 1993). This has 
been suggested to play a role in metastasis, especially in the liver (Rusciano et al. 
1995). Genetic amplification and activation of c-Met concomitant with Src 
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activation has been reported in BRAFi-resistant melanoma cells; accordingly, 
genetic or pharmacological inhibition of c-Met attenuated the proliferation and 
invasion of the BRAFi-resistant cells (Vergani et al. 2011).

c-Met upregulation can be induced by a number of mechanisms. One is via MITF, 
which is induced by MC1R–α-MSH signaling, as mentioned above (Rouzaud et al. 
2006; Rusciano et al. 1999). Indeed, impaired MC1R function, which is frequently 
observed in melanoma, is indicative of deregulated c-Met at both the genetic and 
protein levels.

The ubiquitin ligase skeletotrophin is another protein implicated in the regula-
tion of c-Met. In melanoma, expression of skeletotrophin is lost due to increased 
SNAIL-mediated transcriptional repression. Re-expression of skeletotrophin 
impairs the invasive capacity of melanoma cells in vitro, and this correlates with a 
reduction in c-Met mRNA transcripts (Takeuchi et al. 2006). MicroRNAs have been 
shown to contribute to increased c-Met levels in melanoma. miR-34a is normally 
expressed in melanocytes but is downregulated in melanoma. Here too, re- expression 
of miR-34a in vitro reduces c-Met expression and suppresses the growth, migration, 
and invasive capacities of melanoma cells (Yan et al. 2009).

7.1.1.7  IGFR1
IGF1R is another growth factor receptor that is upregulated in progressively malig-
nant melanoma (Mallikarjuna et al. 2006). In early melanoma lesions, IGF1R 
appears to enhance cellular growth and survival by promoting MAPK- and 
ß-catenin-dependent signaling pathways; however, IGF1R-dependent stimulation 
of these two pathways may be dispensable in later stage melanomas where other 
oncogenes are constitutively activated (Satyamoorthy et al. 2001).

Upregulation of IGF1R is associated with both malignant progression and resis-
tance to apoptotic stimuli. Antisense-mediated inhibition of IGF1R is sufficient to 
inhibit the growth of mouse melanoma cells in nude mice (Resnicoff et al. 1994), 
and monoclonal antibody-targeted inhibition of IGF1R in human melanoma cells 
similarly inhibits their growth and invasion in xenograft mouse models (Maloney 
et al. 2003). Furthermore, disruption of IGF1R can sensitize melanoma cells to 
TRAIL-induced apoptosis (Karasic et al. 2010) and increase radiosensitivity of 
melanoma by impairing the ATM-mediated DNA damage response (Macaulay et al. 
2001). Moreover, inhibition of IGF1R is sufficient to suppress growth of human 
melanomas harboring the BRAFV600E mutation (discussed further below), indicating 
that IGF1R inhibition can override signaling events that circumvent the known 
IGF1R effector, the RAS-MAPK signaling axis (Yeh et al. 2006). High levels of 
IGF1R have been reported in BRAFi-resistant cells, and have been implicated in 
upregulation of the PI3K pathway (Villanueva et al. 2010).

7.2  Cellular Kinases and Transcription Factors

7.2.1  WNT–ß-catenin

The WNT–ß-catenin signaling pathway plays an important regulatory role in mela-
nocyte development and is deregulated in melanoma (see also Chap. 5). WNT is a 
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secreted ligand for the membrane receptor, Frizzled (Fig. 7.3), and WNT binding 
activates the cytoplasmic Frizzled effector, Dishevelled. Consequently, Dishevelled 
inhibits GSK3ß–Axin–APC-mediated degradation of ß-catenin, stabilizing its lev-
els and allowing nuclear import to execute its transcriptional functions. Activation 
of the WNT–ß-catenin pathway facilitates ß-catenin-mediated upregulation of 
MITF, which promotes melanocyte differentiation and development (Dorsky et al. 
2000; Takeda et al. 2000). MITF can itself bind to ß-catenin, thereby tilting the 
transcriptional activity towards MITF targets and generating a positive feedback 
loop (Schepsky et al. 2006).

As expected, melanomas harboring activating ß-catenin mutations also have 
increased MITF levels (Doglioni et al. 2003). In turn, MITF upregulation has been 
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Fig. 7.3 WNT signaling pathway. Binding of WNT to its cognate receptor Frizzled and co-recep-
tor LRP5/6 results in inactivation of GSK3ß via Dishevelled. Inactivation of Dishevelled stabilizes 
ß-catenin by releasing it from its degradation complex, which includes Axin and APC. Under non-
stimulated conditions, ß-catenin is bound by ß-TRCP, which facilitates its ubiquitination and sub-
sequent proteasomal degradation. Stabilized ß-catenin is then imported into the nucleus to facilitate 
transcriptional regulation of proliferation, differentiation, and migration genes. Branches of this 
signaling pathway that are upregulated in melanoma are indicated in black; downregulated 
branches are indicated by dashed gray arrows
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shown to increase multivesicular body synthesis and consequently WNT signaling, 
allowing the cells to enter a proliferative stage (Ploper et al. 2015). Interestingly, 
ß-catenin also upregulates the transcription factor Brn-2, which transcriptionally 
represses Mitf and simultaneously enhances invasive melanoma behavior. Brn-2 
expression also characterizes distinct subsets of MITF-negative melanoma cells 
(Goodall et al. 2008). The implications of MITF heterogeneity within the same and 
different tumors is the subject of intense investigation.

WNT–ß-catenin signaling is upregulated in melanoma, and although only 
~3 % of melanoma biopsies harbor ß-catenin mutations, ~30 % of human mela-
nomas exhibit increased nuclear localization of ß-catenin (Larue and Delmas 
2006). Increased WNT signaling directly upregulates Mitf and Brn-2 expres-
sion, with concomitant suppression of p16INK4A transcription; these changes 
act in concert to drive melanoma growth and proliferation (Delmas et al. 2007; 
Goodall et al. 2004a; Widlund et al. 2002). Nuclear localization of ß-catenin is 
observed in melanomas carrying mutant phosphatase and tensin homolog 
(PTEN) phosphatase and has been implicated in melanomagenesis by cooperat-
ing with NRASQ61K to increase caveolin-dependent transcriptional activity. This 
effectively bypasses the senescence phenotype elicited by mutant NRAS alone 
and promotes metastasis, in part by internalization of E-cadherin (Conde-Perez 
et al. 2015).

Interestingly, the functional role of WNT signaling in melanoma development 
varies with the specific WNT isoform. WNT3, an activator of the canonical WNT 
signaling axis, is anti-tumorigenic and its expression correlates with primary/
nevi lesions and decreased proliferation of tumor models in vitro and in vivo. 
Furthermore, WNT3 expression correlates with upregulation of genes control-
ling melanocyte development and differentiation, including Axin, Tcf7, and Mitf 
(Chien et al. 2009). In contrast, WNT5A, which activates the non-canonical 
WNT signaling axis, appears to antagonize the transcriptional effects of 
WNT3A. Indeed, WNT5A is pro-tumorigenic, cooperating with other signaling 
pathways (e.g., PKC) to enhance the metastatic and invasive behavior of mela-
noma cells, which most likely occurs through its known function in the re-distri-
bution of adhesion receptors (Weeraratna et al. 2002; Witze et al. 2008). 
Consistent with this, WNT5A-positive melanoma tumors appear to exhibit 
increased invasiveness and decreased proliferation compared with WNT5A-
negative but MITF- and Melan-A-positive tumors, supporting a model of prolif-
erative vs invasive phenotype switching during tumor progression (Eichhoff 
et al. 2010). Of note, increased WNT5A expression was also seen in tumors with 
acquired BRAFi resistance, and its inhibition re-sensitized tumors to BRAFi and 
reduced their proliferation, in part via attenuation of p-AKT activity (Anastas 
et al. 2014).

Melanomas with activated WNT–β-catenin signaling have a strong immunosup-
pressive effect on dendritic cells and cytotoxic T lymphocytes, mediated by 
increased IL-10 secretion and reduced IFN-γ secretion by the T cells. In this regard, 
it is interesting to note that activated WNT–β-catenin signaling has been linked with 
resistance to immunotherapy (Spranger et al. 2015; Yaguchi et al. 2012).
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7.2.2  MAPK Signaling Axis

Alterations in the expression or activity of AXL, EGFR, MC1R, c-Kit, c-Met, IGFR, 
and WNT are examples of the most external layers of perturbed signaling cues that 
promote melanoma formation and progression. Several of the signaling pathways 
downstream of these receptors are themselves deregulated in melanoma.

The majority of melanomas display deregulated MAPK signaling due to muta-
tions in the NRAS or BRAF genes. As a consequence, the downstream kinases and 
transcription factors are rendered constitutively active, regardless of aberrations 
upstream of NRAS or BRAF. In this section, we review our current understanding 
of alterations in the MAPK signaling axis and the implications for melanoma devel-
opment or progression.

The MAPK pathway is coupled to upstream membrane receptors by the RAS 
family of small G proteins; HRAS, KRAS, and NRAS (Bos 1989; Dhillon et al. 
2007). In non-transformed cells, the RAS proteins are responsive to activation by 
c-Kit, c-Met, IGFR, and WNT, for example, and transduce activating signals through 
interplay with the RAF family of effector serine/threonine kinases; ARAF, BRAF, 
and CRAF. Signals are then transduced by sequential activation of a cascade of 
MAP kinases: MEK, MEKK, and finally, ERK (Fig. 7.2). Of these proteins, NRAS 
and BRAF are the most commonly mutated in melanoma, with ~15 % and more 
than 50 % of melanomas harboring NRAS and BRAF mutations, respectively 
(Davies et al. 2002; Fecher et al. 2007). Further downstream, MEK mutations have 
also been reported, particularly in the context of acquired resistance to chemother-
apy. For instance, MEK1 mutations occur at low incidence overall, but they are most 
frequently reported following BRAFi therapy and confer resistance to MEKi and 
BRAFi (Emery et al. 2009; Murugan et al. 2009).

While most melanoma-associated mutations in NRAS occur at amino acid 61, 
BRAF deregulation is attributed to mutations at several hotspots, most prominently 
V600E, resulting in a constitutively active kinase (Wan et al. 2004). Indeed, the 
catalytic activity of BRAFV600E was calculated to be ~10-fold higher than that of 
wild-type BRAF (Brummer et al. 2006). While mutant BRAF and NRAS share 
some downstream effectors, most notably ERK, they each also activate unique 
downstream components. As illustrated in Fig. 7.2, BRAF activity also affects 
MEK–ERK kinases and RSK. These kinases in turn suppress the activity of the 
LKB1–AMPK signaling pathway, thereby promoting melanoma proliferation 
(Esteve-Puig et al. 2009; Zheng et al. 2009). As a result of their unique contributions 
to signaling, BRAF and NRAS mutants have distinct characteristics with respect to 
melanoma development and progression.

As noted above, ERK is the downstream kinase most commonly affected by 
NRAS and BRAF mutations in melanoma, and constitutive or super-activation of 
ERK perturbs critical regulators of cellular behavior. For example, BRAFV600E 
antagonizes apoptosis via ERK-dependent inhibition of the apoptotic proteins Bad, 
Bim, and PUMA, and upregulation of anti-apoptotic proteins such as Mcl-1 (Jiang 
et al. 2008; Sheridan et al. 2008; Wang et al. 2007b). Enhanced ERK activation also 
alters cell cycle control and proliferation by suppressing the negative cell cycle 
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regulator p27/Kip1 (Kortylewski et al. 2001) and, importantly, by modulating the 
expression of melanocyte MITF isoforms and inducing the M-MITF 6a isoform 
(Primot et al. 2010; Wellbrock et al. 2008). MAPK/ERK activation can further 
enhance the proliferative capacity of melanoma cells by promoting upregulation of 
other transcription factors such as c-Jun and Brn-2, either by increasing their stabil-
ity (c-Jun) or increasing their expression (Brn-2) (Goodall et al. 2004a, b; Lopez- 
Bergami et al. 2007). Mutant BRAF-mediated ERK signaling also impinges on 
invasive cellular behaviors resulting from changes in growth or invasion regulatory 
proteins such as Plexin B or matrix metalloproteinase-1 (Argast et al. 2009; 
Huntington et al. 2004). Indeed, activation of the RAS–RAF–MAPK–ERK path-
way has been implicated in immune evasion by modulating the production of immu-
nosuppressive cytokines such as IL-6, IL-10, and VEGF by melanoma cells 
(Sumimoto et al. 2006).

Constitutive upregulation of ERK signaling results in rewiring of signaling path-
ways, a common occurrence in many tumors, including melanoma. For example, 
rewired ERK signaling causes constitutive activation of c-Jun via two complemen-
tary pathways. ERK-mediated upregulation of RSK–CREB increases c-Jun tran-
scription, whereas ERK-mediated phosphorylation of GSK3ß inhibits its ability to 
phosphorylate c-Jun on residue 243, which is required for targeting of c-Jun for 
ubiquitination and degradation by FBW7 (Nateri et al. 2004; Wei et al. 2005), 
thereby resulting in increased c-Jun stability (Lopez-Bergami et al. 2007). In turn, 
c-Jun induces transcription of a large set of targets genes that include cell cycle 
regulators such as Cyclin D as well as components of other signaling pathways. One 
is the PKC adaptor protein RACK1, which potentiates both PKC and JNK signal-
ing. As a result, RACK1–PKC signaling increases JNK activity and further activates 
its substrates, including c-Jun, thus enforcing a feed-forward signaling pathway. 
Another c-Jun transcriptional target implicated in melanoma development is the 
kinase PDK1, which activates AKT. The c-Jun-mediated increase in PDK1 tran-
scription, and thus activation of both the AKT and PKC pathways. Inhibition of 
c-Jun effectively attenuates melanoma development in a xenograft mouse model, 
and this can be rescued by re-expression of PDK1 (Lopez-Bergami et al. 2010). 
Thus, ERK signaling causes activation of the JNK, PKC, PDK1, and AKT path-
ways, representing a paradigm for rewired signaling.

Constitutive activation of MAPK itself is sufficient for transformation of immor-
talized melanocytes through elevation of angiogenic and invasive behavior second-
ary to upregulation of VEGF and MMP-2 (Govindarajan et al. 2003). However, 
synergistic crosstalk between upregulated MAPK signaling and other major signal-
ing axes (e.g., PI3K–AKT–MTOR), can further promote additional tumorigenic 
behaviors such as the enhanced proliferation observed in uveal melanoma (Babchia 
et al. 2010).

Upregulated or constitutive activation of the MAPK signaling cascade correlates 
with poor clinical outcome (Houben et al. 2004), which is commonly attributed to 
activating mutations at different branch points along the signaling pathway. Thus, 
HRAS and KRAS mutations appear to correlate with benign Spitz nevi and primary 
lesions, whereas NRAS is most frequently mutated in primary and metastatic 
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melanoma and is characteristic of chronically sun-exposed lesions (Ball et al. 1994; 
Jafari et al. 1995; Jiveskog et al. 1998; Shukla et al. 1989; van Dijk et al. 2005; van 
Elsas et al. 1995). Immediately downstream of the RAS proteins are the RAF kinases, 
of which BRAF is the most frequently mutated (specifically BRAFV600E) in mela-
noma. The more dominant oncogenic role of BRAF compared with ARAF and 
CRAF is most likely due to its higher kinase activity (Emuss et al. 2005; Lee et al. 
2005). Although BRAF germline mutations have been reported, they are not com-
mon in familial melanoma (Lang et al. 2003), suggesting that BRAF mutations occur 
during melanoma development. Interestingly, BRAFV600E and NRAS mutations 
appear to be mutually exclusive in melanoma; a phenomenon that may be influenced 
by type and site of origin of the melanoma tumor. For example, BRAF mutation does 
not appear to correlate with the degree of sun exposure, as is the case for NRAS 
mutations (Davies et al. 2002). Interestingly, NRAS mutations induce a switch in the 
dominant usage of RAF isoforms from BRAF to CRAF (Dumaz et al. 2006).

Mutant BRAF is also found in congenital nevi and other non-malignant lesions, 
where it is associated with upregulation of senescence markers such as senescence- 
associated ß-galactosidase (SA-ß-gal) and mosaic p16INK4A induction (Michaloglou 
et al. 2005). Indeed, mutations of NRAS and BRAF (V600E) alone can promote cel-
lular senescence in vitro, which not only illustrates oncogene- induced senescence but 
also highlights the need for other oncogenic events to drive tumor progression (see 
also Chaps. 4, 5, and 11). Nevertheless, ERK activity does not always correlate with 
BRAF activation, most likely due to variations in the functional status of ERK phos-
phatases. It has been proposed that some ERK phosphatases might be less active in 
malignant than non-malignant cells, although it is not yet clear whether and how ERK 
phosphatases might be deregulated in melanoma. In this regard, BRAF mutation 
alone is insufficient to transform melanocytes, and secondary mutations that confer 
uncontrolled cell cycle progression are required. The notion that BRAF acts coopera-
tively to induce melanoma development is supported by observations in zebrafish, 
where mutant BRAF promotes nevi development but additional oncogenic changes, 
such as loss of p53, can promote progression to invasive lesions (Patton et al. 2005).

Other secondary mutations that can support uncontrolled proliferation include 
p16INK4A and p19INK4D (see cell cycle section). Although it is unclear what role 
p16INK4A may play in BRAF-driven senescence, loss of p16INK4A can facilitate 
melanoma tumor formation driven by mutant RAS (Ackermann et al. 2005; Chin 
et al. 1997). Interestingly, cooperative stabilization of ß-catenin results in silencing 
of p16INK4A, and in combination with mutant NRAS, this is sufficient to promote 
melanoma progression (Delmas et al. 2007). Additional signaling mechanisms that 
contribute to oncogene-induced senescence and earlier barriers to melanoma pro-
gression continue to be identified. For example, early oncogene-induced activation 
of the ER stress-activated unfolded protein response was found to halt tumorigene-
sis independently of conventional senescence mechanisms (Denoyelle et al. 2006).

Although epigenetic perturbations that promote activation of these pathways 
remain largely obscure, the mutational status of melanoma tumors is known to cor-
relate with some characteristic epigenetic profiles. For example, melanomas with 
BRAF mutations exhibit changes in several miRNAs, such as downregulation of 
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miR-193a, miR-338, and miR-565, and upregulation of miR-191 (Caramuta et al. 
2010). A further level of complexity is suggested by the finding that pseudogene 
transcripts can act as false miRNA “decoy” targets (a.k.a., competitive endogenous 
RNAs), thereby absorbing and nullifying the function of miRNAs targeting specific 
endogenous transcripts (Chen 2010; Poliseno et al. 2010; Karreth et al. 2015). Such 
regulation has been demonstrated for PTEN and BRAF and may effectively alter the 
expression of other genes that are central to the control of melanoma development. 
As increasing effort is devoted to sequencing the melanoma genome, a wealth of 
pseudogenes contributing to different stages of melanoma biology are expected to 
be identified (Pleasance et al. 2010).

7.2.3  PTEN–PI3K–AKT

The phosphatidylinositol-3-kinase–AKT (PI3K–AKT) pathway is also frequently 
deregulated in melanoma (Inoue-Narita et al. 2008; Robertson 2005), although the 
mechanisms underlying the deregulation of many components remain largely elu-
sive. Like the MAPK pathway, the PI3K pathway is an effector signaling cascade 
positioned downstream of the membrane receptors described earlier, including c-Met 
and IGFR1. PI3K converts phosphatidylinositol-4,5 bisphosphate (PIP2), located on 
the cytoplasmic face of the plasma membrane, into the secondary lipid signaling 
molecule, phosphatidylinositol-3,4,5 trisphosphate (PIP3). In turn, PIP3 activates the 
downstream effector AKT/protein kinase B. The three members of the AKT family 
of serine/threonine kinases (AKT1, AKT2, and AKT3) have well- characterized pro-
survival functions (Datta et al. 1999; Madhunapantula and Robertson 2009) (Fig. 7.4), 
with AKT3 appearing to be the isoform most affected in melanoma.

One mechanism by which AKT signaling is enhanced is via deregulation of PIP2 
processing by perturbation of inositol polyphosphate 4-phosphatase type II 
(Gewinner et al. 2009). However, upregulation of AKT activity in melanoma can 
largely be attributed to deregulation of its negative regulator, PTEN (Parmiter et al. 
1988). Although loss of PTEN protein is prevalent in melanoma (Chudnovsky et al. 
2005), deregulation by mutation accounts for only a small fraction of melanomas 
with deregulated PTEN. Accordingly, while PTEN is commonly mutated in mela-
noma cell lines, such genetic mutations are rare in actual tumor samples, particu-
larly those of metastatic grade (Goel et al. 2006; Pollock et al. 2002; Wu et al. 
2003). These observations indicate that downregulation or loss of PTEN in patient’s 
tumors results from additional transcriptional and post-translational modifications, 
with the latter being the most common. Although not shown yet in melanoma, the 
ubiquitin ligase NEDD-4, which targets PTEN for destruction, is upregulated in 
numerous cancer types, including gastric and colorectal cancers (Kim et al. 2008b; 
Trotman et al. 2007; Wang et al. 2007a). Oncogenic deregulation of PTEN also 
occurs via Fyn-related kinase (FRK, previously known as RAK), which is overex-
pressed in melanoma and numerous other cancers. FRK phosphorylates PTEN, 
thereby abrogating its interaction with NEDD-4 and increasing its availability 
(Brauer and Tyner 2009; Yim et al. 2009).
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Other forms of epigenetic silencing of PTEN include promoter methylation, 
which is observed in up to 62 % of patients with metastatic melanoma 
(Mirmohammadsadegh et al. 2006). In effect, loss of PTEN promotes an excess of 
PIP3 and activation of AKT and its downstream targets, resulting in increased 
growth and survival of melanoma. Notably, activated AKT which is affected by 
deregulated PTEN is inversely correlated with a positive clinical outcome for mela-
noma patients (Dai et al. 2005).

In addition to loss of PTEN, direct changes to AKT family members can modu-
late the PI3K pathway in melanoma. Of the three AKT isoforms, AKT3 is specifi-
cally and significantly upregulated in sporadic melanoma tumors, particularly those 

IGFR

c-Met

PI3K

PIP2
PIP3

PTEN

mTOR

Bad, Bax

XIAP

NFkB

 Wee1

p27Kip

p21Cip

CycD1
Bim

 FOXO

Myc

 GSK3

Mdm2

Akt1 / Akt2 / Akt3

 p53

PDK1

Fig. 7.4 AKT signaling. Various membrane-bound growth factor receptors (c-Met and IGFR) 
signal inwards via PI3K, which phosphorylates PIP2 to produce the secondary messenger molecule 
PIP3. PIP3 then functions to activate PDK1, which in turn activates AKT family kinases (AKT1, 
AKT2, and AKT3). AKT is a widely recognized pro-survival effector kinase that acts by upregulat-
ing or activating numerous cell survival-related proteins, such as NF-kB, XIAP, and mTOR, and 
inhibiting cell death-related proteins such as Bad, Bax, and Bim (see also Chap. 10). AKT also 
inhibits transcription factors, such as FOXO, which contribute to cell death or cell cycle arrest. 
AKT promotes cell cycle progression by inhibiting cell cycle inhibitors, including Wee1, p21Kip, 
p21Cip, and p53 (via activation of Mdm2), and relieving Cyclin D1 and Myc from suppression by 
GSK3. Branches of the AKT pathway that are upregulated in melanoma appear in black; down-
regulated branches appear in dashed gray
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of metastatic grade (Robertson 2005; Stahl et al. 2004). Although AKT3 upregula-
tion has mainly been attributed directly to an increase in genomic copy number, a 
recent report has identified a novel activating mutation of AKT3 (E17K) in some 
melanoma cases (Davies et al. 2008). Targeted siRNA-mediated silencing of AKT3 
is sufficient to suppress melanoma progression and induce cell death, emphasizing 
the oncogenic potential of deregulated AKT3 activation.

AKT signaling affects numerous cellular process: it influences cell cycle dynamics 
through regulation of the G1/S phase regulator Cyclin D3 (Spofford et al. 2006); affects 
cell growth, metabolism, and proliferation via control of VEGF expression and inter-
play with mTOR and the TORC1 and TORC2 complexes (Bhaskar and Hay 2007; 
Govindarajan et al. 2007; Levine et al. 2006); contributes to invasive behavior by 
NF-kB-mediated regulation of matrix metalloproteinase-2 and -9 (Kim et al. 2001); 
and suppresses apoptosis by inhibiting the expression of pro-apoptotic proteins such as 
Bad and caspase-9 (Cardone et al. 1998; Datta et al. 1997). Each of these AKT effects 
can be attenuated or suppressed by the antagonistic function of PTEN. Importantly, 
deregulation of the ERK–c-Jun signaling axis in melanoma leads to c-Jun-mediated 
transcriptional upregulation of PDK1, further enhancing AKT activation (Lopez-
Bergami et al. 2010). PDK1 has also been demonstrated to make critical AKT-
independent contributions to tumorigenesis via activation of its substrate SGK3/CISK; 
this has been shown for breast cancer, among others (Vasudevan et al. 2009).

Recent studies using genetic melanoma models have substantiated the role of 
PDK1 in the development and progression of melanoma. Thus, melanocyte-specific 
inactivation of PDK1 in the BrafV600E::Pten−/− mouse model delayed the formation of 
tumors and largely abolished the metastatic lesions commonly seen in this model. 
Consistent with these findings, examination of melanoma tissue microarrays 
revealed upregulation of PDK1 in primary melanomas compared with nevi 
(Scortegagna et al. 2014). Further dissection of the pathways underlying the PDK1 
effects on melanoma development identified a role for the PDK1 substrate SGK3. 
Indeed, inhibition of SGK3 partially phenocopied the changes seen upon PDK1 
inhibition. Interestingly, a synthetic lethal screen for kinases that may synergize 
with PDK1 in eliciting these effects identified PI3K, suggesting that concerted inhi-
bition of the PI3K–PDK1 axis alone may suffice to inhibit growth of BRAF-mutant 
melanomas (Scortegagna et al. 2014, 2015).

7.3  Cell Cycle Regulation

Malignant melanoma cells are highly proliferative and often exhibit genomic insta-
bility (Hazan et al. 2002; Henrique et al. 2000; Satoh et al. 2000; Soyer 1991; 
Steinbeck et al. 1996; Urso et al. 1992). Such an aggressive proliferative state results 
from the specific expansion of transformed cells with imbalanced signal transduc-
tion favoring proliferation while deregulating normal replicative senescence and 
apoptotic signaling (Bennett 2008). Accordingly, the stringent cell cycle regulatory 
mechanisms that govern cell proliferation in normal skin tissues are frequently 
impaired during melanoma development. For instance, proper function of the G1/S 
checkpoint that restricts cell cycle progression is often lost in melanoma (Sauroja 
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et al. 2000). Similar perturbations in signaling can be traced to specific familial 
mutations or epigenetic dysregulation that result in the downregulation of tumor 
suppressor genes that negatively regulate the cell cycle or the upregulation of onco-
genic genes that promote cell cycle progression.

Patients afflicted with familial melanoma commonly exhibit conserved mutations 
in 9p21, a chromosomal locus associated with deregulation of cell cycle control. The 
9p21 locus comprises the CDK2NA gene, which encodes p16INK4A and its alternate 
reading frames p14ARF and p19ARF. These proteins negatively regulate cell cycle 
progression and contribute to senescence through their control of cell cycle-promot-
ing proteins such as Cyclin D and E and the transcription factor E2F1 (Fig. 7.5) 
(Bandyopadhyay and Medrano 2000; Ranade et al. 1995). Furthermore, p16INK4A 
binds to and inhibits the cell cycle-promoting kinase CDK4, with concomitant effects 
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on Rb and its control of E2F in the cell cycle. Germline mutations in CDK2NA have 
been reported in melanoma (Koh et al. 1995; Ranade et al. 1995) and result in ampli-
fied CDK4-mediated signaling, thereby perturbing normal cell cycle control. The 
increased CDK4 activity observed in melanoma can also result from mutations in the 
CDK4 gene (Chudnovsky et al. 2005). These perturbations impair proper cell cycle 
control and appropriate entry of melanocytes into senescence (Bandyopadhyay and 
Medrano 2000; Haferkamp et al. 2008; Rane et al. 2002).

Mutational perturbation of the alternate reading frame gene product p14ARF 
also promotes cellular proliferation. Indeed, mutation of ARF has been demon-
strated to synergize with RAS mutations in promoting melanoma tumor develop-
ment (Ha et al. 2007). p14ARF normally contributes to p53 function by targeting 
and suppressing the p53 negative regulator, Mdm2. Thus, although mutations in p53 
are relatively rare in melanoma, its activity can be downregulated by the increased 
Mdm2 levels induced by mutational silencing of ARF (Freedberg et al. 2008). Of 
note, there have been few reports on upregulation of Mdm2 or downregulation of 
p53 expression or activity in melanoma (Bardeesy et al. 2001) (see also Chap. 4). 
Hence, the precise contribution of p53 to melanoma development remains unclear. 
Among the possibilities currently being explored is that p53 is partially inactivated, 
impairing its ability to control cell cycle arrest or apoptotic cues in melanoma.

Enhanced proliferation of melanoma cells can also be elicited by alterations in 
other negative regulators of cell cycle progression, including Rb. Notably, Rb is 
silenced in melanoma (Yang et al. 2005) as a result of nonsense mutations or of 
inactivating phosphorylation of the translated protein (Bartkova et al. 1996; Brantley 
and Harbour 2000). Loss of Rb function can also contribute to abrogation of mela-
nocyte senescence (Haferkamp et al. 2008).

In addition to genetic mutations, alterations in the epigenetic regulation of core 
cell cycle and proliferation genes also contribute to melanoma development and 
progression. Direct modification of chromatin structure, such as by aberrant pro-
moter hypermethylation, results in the CDK2NA silencing reported in multiple 
melanoma types (Straume et al. 2002; van der Velden et al. 2001). CDKN2A silenc-
ing can also be achieved via upregulation of repressor proteins. One example in 
melanoma is overexpression of the CDKN2A transcriptional repressor Id1 (Healey 
et al. 2010). Suppression of p16INK4A in melanoma is also mediated by ß-catenin 
(Delmas et al. 2007). The histone methyltransferase EZH2 has been implicated in 
the epigenetic repression of the CDK2NA locus and is upregulated in melanoma via 
a non-canonical NF-kB pathway. Inhibition of this pathway promotes senescence 
by inducing re-expression of p16INK and p21 (De Donatis et al. 2016).

Recent studies have highlighted the role played by miRNAs in the epigenetic 
control of melanoma progression (Jukic et al. 2010). Several miRNAs that suppress 
proliferation are downregulated during melanoma progression, including miR-let-7 
and miR-34a. miR-let-7 targets numerous cell cycle proteins, including Cyclin D1/
D3/A, and is expressed at lower levels in melanoma compared with nevi (Schultz 
et al. 2008). Expression of miR-34a, a transcriptional target of p53, is sufficient to 
induce G1 arrest/senescence and can act as a tumor suppressor by targeting c-Met. 
However, in melanoma, miR-34a is silenced by aberrant CpG promoter methylation 
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(Lodygin et al. 2008), which derepresses the cell cycle proteins Rb, CDC2, and 
E2F3, among others (Satzger et al. 2010; Yan et al. 2009). Deregulation of other 
miRNAs, including miR-210 and miR-15b, have been demonstrated to promote 
melanoma tumorigenesis (Satzger et al. 2010; Zhang et al. 2009) (see also the sec-
tion on miRNAs and melanoma).

7.4  Therapeutic Targets

The MAPK–MEK–ERK and PTEN–P13K–AKT pathways are recognized to be 
critical determinants of melanoma development and progression, and an intensive 
effort is under way to develop inhibitors of components of these pathways 
(Madhunapantula and Robertson 2009; Meier et al. 2005; Russo et al. 2009). A 
series of specific inhibitors of BRAFV600E showed impressive results in early clinical 
trials (Kumar et al. 2004). However, the initial success was tempered by the high 
incidence of therapy-resistant tumors, limiting the effectiveness of these specific 
drugs (Flaherty et al. 2010). In recent years, extensive work on the molecular basis 
for this resistance has pointed to diverse mechanisms, most of which cause amplifi-
cation of the downstream MAPK signaling pathway and bypass the effects of the 
BRAFi. One emerging approach to overcome resistance is the use of immunothera-
peutic drugs that do not directly target the tumor per se, but instead unleash the 
anti-tumor immune response. Among these therapies are antibodies to CTLA-4 and 
PD-1, which overcome the drug-resistant tumor phenotype by blocking inhibitory 
immune checkpoints. These agents have recently been assessed as first-line therapy 
or as combination therapies with selective BRAFi or MEKi (Larkin et al. 2015; 
Menzies and Long 2013).

7.4.1  Overcoming Resistance to Targeted Therapies

To date, the use of single agents as first-line therapy has demonstrated only limited 
clinical efficacy. This disappointing outcome has been attributed to the unexpected 
plasticity of tumors, as reflected by their ability to adapt to harsh growth conditions and 
become resistant to initially effective drugs. The mechanisms for achieving resistance 
largely center on signal transduction pathways that have been rewired, either by genetic 
mutation or alteration in epigenetic control (Smalley et al. 2009; Emery et al. 2009).

Although BRAF inhibitors suppress tumor growth, the effect is transient, and the 
tumor cells eventually develop one or more “salvage” mechanisms that bypass 
BRAF or MEK inhibition. Such mechanisms include upregulation of activated 
CRAF activity (Gollob et al. 2006; Hatzivassiliou et al. 2010; Kaplan et al. 2011; 
Montagut et al. 2008; Paraiso et al. 2010; Tsai et al. 2008; Wellbrock and Hurlstone 
2010); mutation of NRAS, which leads to CRAF activation and bypasses BRAF 
inhibition (Nazarian et al. 2010); upregulation of COT, which activates ERK in a 
MEK-dependent and RAF-independent manner (Johannessen et al. 2010); and 
upregulation of RTKs (Nazarian et al. 2010) (see section 7.1.1.2 on RTKs).

Y. Cheli et al.



195

Melanomas may also develop resistance to BRAF-targeting therapies via upreg-
ulation of AKT3-dependent mechanisms (Shao and Aplin 2010), which is consis-
tent with the reported cooperation between mutant BRAF and active AKT (Dankort 
et al. 2009). Additionally, resistance to BRAFi can be achieved by alternative splic-
ing of BRAF (Wellbrock et al. 2004), which results in a protein lacking the RAS- 
binding domain due to a silent mutation in intron 8 (Salton et al. 2015). This BRAF 
isoform dimerizes even in the presence of low levels of RAS, conferring drug resis-
tance through reactivation of the ERK pathway.

Combined targeting of MEK and BRAF results in additive and synergistic effects 
on progression-free survival of melanoma patients, with a 67 % response rate and 
93 % overall survival at 6 months (Flaherty et al. 2012a; Flaherty et al. 2012b). 
Nevertheless, resistance to MEKi emerges through the same mechanisms seen in 
BRAFi resistance, including increased CRAF activity and mutation of both NRAS 
and MEK1 (Greger et al. 2012).

Most tumor resistance mechanisms result in increased activity of the translation 
initiation complex, which supports the translation of cancer-driving genes such as 
oncogenes and cell cycle/DNA damage response genes. Hence, partial disruption of 
the eIF4F complex is a potential therapeutic strategy for drug-resistant tumors, 
including melanoma. In support of this approach, recent studies have demonstrated 
efficacy in overcoming melanoma resistance to therapy by targeting eIF4F with 
silvestrol and several flavaglines (Boussemart et al. 2014), and by targeting a key 
component of the eIF4F complex, eIF4G1, with the small molecule SBI-756 (Feng 
et al. 2015).

7.4.2  Immunotherapy

A great deal of effort has been devoted to the use of immune-based therapies to 
overcome drug resistance in melanoma (Hu-Lieskovan et al. 2014; Vanneman and 
Dranoff 2012), but the success rate has been low and pronounced toxicity has been 
observed in most cases. The notion that the immune system could be manipulated 
to enable a global attack on tumors was initially met with skepticism, largely due to 
fears that uncontrolled activation would lead to autoimmunity. However, the pio-
neering work of Drs. Allison and Honjo introduced the immune checkpoint mole-
cules, CTLA-4 and PD-1, respectively, as new paradigms for cancer immunotherapy 
(Leach et al. 1996; Okazaki et al. 2013; Peggs et al. 2006). Targeting of CTLA-4 
circumvents downregulation of T-cell proliferation, whereas PD-1 blockade is likely 
to affect both activation of T cells and the direct anti-tumor activity of effector T 
cells.

Clinical trials with anti-CTLA-4 antibodies have shown unexpected success, 
with an overall response rate of about 20 %, albeit with notable toxicity (Attia et al. 
2005; Hodi et al. 2010). Clinical trials with anti-PD-1 antibodies have achieved 
greater response rates (30–40 %) and significant increases in patient survival 
(Topalian et al. 2014). More recently, combination therapy with anti-CTLA-4 and 
anti-PD-1 achieved about 60 % response rate and 79 % 2-year survival rate (Topalian 
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et al. 2014). Other ongoing work includes the evaluation of combination therapies 
of immune checkpoint blockers with BRAFi or MEKi, which have shown promis-
ing results in pre-clinical experiments (Hu-Lieskovan et al. 2015).

7.5  Epilogue

Our understanding of the mechanisms underlying the development, progression, 
and drug resistance of melanoma has increased significantly in recent years. At the 
same time, we have come to appreciate that a major obstacle to achieving sustained 
therapeutic responses is the innate plasticity of tumor cells, which allows them to 
adapt to harsh conditions, withstand therapy, and acquire metastatic ability. This 
means that the rewired signaling observed in tumor cells could be further changed 
by the tumor microenvironment or by stress imposed by the chemotherapeutic 
drugs. Thus, we must divert from our current approach to cancer therapy—more 
intense targeting of a mutated pathway—to find new therapeutic modalities. These 
include fine-tuning the immune checkpoint machinery to enable a concerted 
immune attack on the tumor, and targeting the central mechanisms that provide a 
global advantage to the tumors. Among the latter mechanisms are the translation 
initiation complex and the unfolded protein response, which are cardinal nodes for 
tumor-driving genes and may offer a more global approach to targeting the plastic 
tumor. These molecular hubs have already garnered attention and we may expect an 
exciting new cadre of modulators to reach clinical evaluation in the coming years.
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